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1

Multiplication of Vectors by Scalars
and Addition of Vectors

Introduction. Vectors constitute one of the several Mathematical
systems which can be usefully employed to provide mathematical handling
for certain types of problems in Geometry, Mechanics and other branches
of Applied Mathematics. Other such systems are those of Matrices,
Tensors, Quaternions eic. The system of vectors alone, however, will be
the subject of study in this book.

Application of mathematics to a problem or a body of problems
consists in constructing a system of entities and equipping the same with
some structure [order or/and Algebraic or/and Topologic] such that the
system of entities and the corresponding structure have a close corres-
pondence with the objects of study in the problem.

Vectors facilitate mathematical study of such physical objects as
possess Direction in addition to Magnitude. Velocity of a particle, for
example, is one such object.

It is true that the set of real numbers also provides mathematical tool
for the study of various types of physical problems for which vectors are
found useful but the use of vectors is more direct and natural. As a result
of limitation to the set of real numbers, we associate not one number but
a set of numbers to a physical entity involving direction, for we have to split
up the entity into components and associate a number with each. The use
of vectors, however, avoids this splitting up and leads to a direct study of
the objects in question.

In this book, the Algebra of Vectors will be dealt with and applied to
the study of Geometry and Statics alongwith an elementary idea of vector
calculus. Vectors Calculus involving topological notions of Limit, Conti-
nuity, and tepological algebraic notions of Derivability and Integrability
has been treated in a *second book.

Note, The study of vectors naturally leads 1o the notion of directed line
segments which we shall now introduce.

* Vector Calculus by Shanti Narayan and J.N. Kapur.
1



2 A Textbook of Vector Algebra
11. DIRECTED LINE SEGMENTS
Any given portion of a given straight line where for the two end points
are distinguished as Initial and Terminal is called a Directed Line Segment.
The directed line segment with initial point A and terminal point B is
denoted by the symbol
-
AB.
The two end points of a directed line segment arc not interchangeable
and the directed line segments
- -
AB and BA
must be thought of as different.
111 Length, Support and Sense of a Directed Line Segment
Associated with every directed line segment
48,
we have its
Length, Support and Sense

B

A

Fig. 11
() Length. The length of AB will be denoted by the symbol
-
1 ABI
Clearly, we have
- -
1 ABI=| BAI.
(i) Support. The line of unlimited length of which a directed line
segment is a part is called its line of support or simply the Support.
(i) Sease. The sense of AB is from A to B and that of | BAI from
B to A so that the sense of a directed line segment is from its initial to the
terminal point.
The directed line segments
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o -
AB and BA
have the same lengths and supports but different senses (Fig. 1.1).
The question of comparison of the senses of two directed line seg-
ments arises only when they have the same or parallel support (Fig. 1.2).

M S
/Q
P R

L

Fig. 12
Two directed line segments having the same or parallel supports may
have the same or opposite senses.
Ex. How many Directed Line Segments are determined by 2, 3 and 4 given
points,
12. VECTORS AND SCALARS
1.2.1. Vector
Def. A directed line segment is called vector.
12.2. Equality of Two Vectors
Def. Two vectors are said to be equal if they have
(i) the same length,
(if) the same or parallel supports, and
(iii) the same sense.
It may thus be seen that two different Directed Line Segments may
correspond to the same vector.

‘Thus, the vectors

are equal (Fig. 1.3).
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Two vectors will not be equal if they have different lengths or inclined
supports or again, they will not be equal even if they have the same lengths
and parallel supports but different senses (Fig. 1.2).

If ABCD is a parallelogram, we have

-+ -

AB=DC

nd -

and BC=AD
Every vector belongs to a class of equal vectors.

[ ]

Fig. 14

1.2.3. Notation for a Vector

A vector is also denoted by a single letter such that
a, b, ¢, etc.
by using bold face* type so that we may write

a=AB.
Then the symbol

denotes the length of the vector, a, also called the Magnitude of the
vector.

1.2.4. Co-initial Vectors

It is possible to replace a given vector by another equal vector having
any given point as its initial point.

P

B

A
2

Fig. 1.5
- -
* The reader may, in his writing denote vectors by barred letters such as a, b.
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Thus, if }:B be any given vector and O, any given point, then by
drawing through O, a line OP parallel to AB in the same sense as AB of

length equal to that of AB, we obtain a vector 6:9 equal to IB and with
the given point, O as the initial point (Fig. 1.5).

Vectors with the same initial point may be called Co-initial Vectors,
1.2.5. Zero Vector

A vector whose initial and terminal points are coincident is called the
Zero Vector.

The length of the zero vector is zero but it can be thought of as having
any line as its line of support.

The zero vector is denoted by the bold face type 0. It will be seen that
the zero vector has many properties similar to those of the zero number.
1.2.6. Scalars

In the following, real numbers will be called scalars. The absolute value
of a scalar, m, will as usual, be denoted by the symbol | m| so that

Iml=m if m*>0 and -m if m<O

1.3. ALGEBRA OF VECTORS

It is possible to develop an Algebra of Vectors which proves useful in
the study of Geometry, Mechanics and other branches of Applied
Mathematics.

By the ‘Algebra of Vectors’ will be meant a body of work which
prescribes various useful manners of combining vectors and scalars
satisfying some laws which may be called Laws of Composition.

The following manners of composition will be introduced in appro-
priate places in the book :
I. Multiplication of Vectors by Scalars.
II. Addition of Vectors.
III. Scalar Multiplication of Vectors.
IV. Vector Multiplication of Vectors.

The first two will be introduced in this chapter and the last two in
Chapter III and Chapter IV respectively. The first two compositions which
will be dealt with in this chapter are also called Linear Compositions.

1.3.1. Multiplication of Vectors by Scalars

Let, a, be any given vector and, m, be any given scalar. Then the
symbol

ma,
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called the product of the vector, a, by the scalar, m, is a vector such that

(i) the length of ma is given by

Imal=Iml lal

i.e., the length of the vector, ma is m times or, —m, times that of, a,
according as m is positive (including zero) or negative.

Thus, b=ma = Imi=I1bl/lal

(ii) the support of m a, is the same or parallel, to that of a.

(iii) the sense of m a, is the same or apposite, to that of a, according
as m is positive or negative.

The symbol, m a, is also sometimes written as, a m, so that the scalar,
m, appears on the right of the vector instead of on the left.

=1(a)

2a

* -2(a) —
Fig. 1.6

The following results are immediate consequences of the above
definition of the multiplication of vectors by scalars.

L (mn)a=m(na),
where m, n are any scalars and, a, any vector.

II.0a=0,
so that the product of a vector, a, by the zero scalar is the zero vector.

Here, 0, on the lefi stands for the zero scalar and 0, on the right for
the zero vector,

III. If two vectors have the same or parallel supports, then each can
be thought of as a product of the other by a suitable scalar, the absolute
value of the scalar being the ratio of the lengths of the vectors taken in
an appropriate order.

Thus, for example, if C be the midpoint of a line AB, we have

- - - -
AB=2AC, BC=-EAB
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.

Fig. 1.7
Two paralle]l vectors may also be described as collinear.
b
a
—_—
Fig. 1.8

1.3.2, Addition Composition
Let a, b be two given vectors. Take a point O.

- -
OA=a, AB=h,

so that the terminal point of the vector a is the initial point of the vector
b.

The vector

-
OB

is said to be the sum of the vectors, a and b, and we write
- = =
OB=0A +AB=a+b.
We have a + 0 = a, for every a; 0, being the zero vector.

Note. As a matter of logical necessity, we must show that the sum of two
vectors is independent of the choice of the point O.

Let O, O¢ be any two points and let

- -
OA=a=04",

- -
AB=b=A'F".
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By elementary geometry, we may now deduce that
-» =
O'B = 0B.

A
a

1
I
1
1
I
L)
1
I
]
'

Al

o

Fig. 1.10

For this deduction, we have to employ the fact that the lines joining the
extremities of two equal and parallel straight lines (drawn in the same sense) are
themselves equal and parallel.

1.3.3. Parallelogram Law of Addition of Vectors

Consider a parallelogram OABC. C B
The the sum of the vectors

- - -
OA and OC is the vector OB.
e e e e

for = = >
OB=0A+AB=0A+0C. A

Fig. 1.11
1.4. LAWS OF ADDITION COMPOSITION

1.4.1. Addition of vectors is Commutative, ie.,

a+bub+a [ a B
for any pair of vectors, a, b. b
: - >
Let OA=a, AB=h.
We have
> 0 a A
a +b = OB. Fig. 1.12

Complete the parallelogram OABC having OA and OC as adjacent
sides. Then
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- - >
OC=AB=b, CB=0A=a
. so that we have

> 5
OB=0C+CB=b+a

Hence,a+b=b +a.
1.4.2. Addition of vectors is Associative, ie.,
a+(b+c)=@+b)+c
where, a, b, c are any three vectors.
Take any point O. Let

- - -
OA=a, AB=b, BC=c.

‘We have
> o5 o
b+c= AB+BC=AC
> 2 =
= a+(b+c)= OA+AC=0C.
Again
5> o5 o
a+b= OA+AB=0B
5 o
= (a+b)+c= OB+BC=0C.
Thus

(a+b)+c= 30=u+(b+c).
In view of the equality of the vectors.
@+b)+c, a+(+c)
‘We denote each of these equal vectors by
a+b+ec
143, Negative of a vector

definition of the multiplication of vectors
by scalars,
>
AO=(-Da.
Thus,
> 2 o
a+(-1)a=0A+A0=00=0.

-1@
Fig. 114
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On account of this property, the vector (- 1) a is called the negative
of the vector a, and we write
—a=(-Da
so that the relation a + (1) a = 0, may also be re-written as
a+(-a)=0
15. RELATIONS BETWEEN THE TWO COMPOSITIONS
We shall now consider the relations between the two linear
compositions considered in § 3.1. and § 3.2.
@()m@+b)=ma+mb. (i)(m+n)a=ma-+na,
where m, n are scalars and a, b are vectors.

() Let m, be positive and let ]
o - B
OA=a, AB=b,
We have
> .
OB=a+b. o 4 A
Let OA" = ma. Fig. 1.15

Through A’ draw a line parallel to AB and in the same sense as AB
to meet OB in B'. With the help of Elementary Geometry, we have
AB =mAB and OF =mOB.
Thus, we have

el -
A'B'=mAB=ma+mb
S o
and OB' = mOB=m(a+b).
It follows that

m(a+b) n'O}’ = 0-,.4'+A-’;1' =ma+mb.
The result may similarly be proved with the help of the accompanying
figure 16, when m is negative.

Fig. 116
(if) The proof is a simple development of the definitions.
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1.6. SUBTRACTION
Difference of Two Vectors. Def. If a, b, be any two given vectors,
then we write
a+ (- b
and call the composition Subtraction.
Thus, we have, in particular
a a+(-a)
It is important to see that

-b

a+(-Na=0.

- - - B,
OA=a, OB=b = AB=b-a. b -a
In fact, we have
b-a=b+(-a) ] A

R S
=0B+A0=A0+0B= AB. Fig. 1.17
161 -(a+b)=-a-b We have

(-a)+(bl+[b+a]
=(a)+[-b)+bl+a

Thus, (- a) + (= b

= —a+b=

The proof of the result may be also directly obtained with the help of
figure 18 given below.

Fig. 118

17. A VECTOR EQUATION
If a, b be two given vectors, then the vector equation
a+x=bh
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is satisfied by one and only one vector, viz., B
x=b-a
Wo have b x=b-a
a+x=b
© (-a)+(@+x)=(-a)+b 0 4
< [(-a)+a]l+x=b+(-a) a
= O+x=b-a Fig. 1.19
« x=b-a

18. A SUMMARY OF THE BASIC PROPERTIES OF THE LINEAR
COMPOSITIONS

‘We catalogue below the basic laws of the Addition of vectors and of
multiplication of vectors by scalars, ie., of the linear compositions. The
set of all the vectors will be denoted by V and the set of all real numbers
by R.

L. a+b=b+ayabeV;
I a+(b+c)=@+b.+cy a,bceV;

L. 3a vector, viz, 0 such that

a+0=a=0+ayacV;

IV. To each a € V there corresponds b € V such that

a+b=0=b+a;
‘The vector b is denoted by — a.
V. (mn)(a)=m(na) vy aeVand v m neR;

VL l1(a=ayacV;

VI. m(@+b)=ma+mbyme Rand v a,be V;

VIIL (m+na=ma+naymneRand y aecV.

19. LINEAR COMBINATIONS

A vector, v, is said to be a linear combination of the vectors, a, b, c,
... etc. if there exist scalars x, y, 7, etc. such that

r=xa+yb+ze
Thus, for example, the vectors
2a+b-4c, a+2b-3c
are linear combinations of the vectors a, b, ¢.
A linear combination of vectors involves the two linear compositions
of the addition of vectors and the multiplication of vectors by scalars.
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In the following linear combinations
xa, xa +yb, xa+ yb + zc
will be of special interest to us.
‘1.9.1. Parallel Vectors. Collinear Vectors

Of the two vectors having the same or parallel supports, each is a linear
combination of the other. Thus, if a, b be two parallel vectors, then there
exists a scalar x such that b = xa or a = (1/x) h.

Parallel vectors are also called collinear vectors, for the support of
parallel coinitial vectors is the same line.

1.9.2. Def. Coplanar Vectors.

A set of vectors is said to be coplanar, if their supports are parallel to
the same plane, i.e., if there exists a plane parallel to the supports of each
of the vectors.

The supporz of coplanar co-initial vectors are coplanar.

The vector xa + yb which is a linear combination of the vectors a, b

is coplanar with a and b.
EXAMPLE

ABCDEF is a regular hexagon. Let ,?B:q and B-'C= b. Find the
vectors determined by the other four sides taken in order. Also express the
vectors A-*C, :D, !:.F, :E, C.-‘;.-'.' in terms of a and b,

) — — -
Solution. AC=AB+BC=a+b
-~ AD is parallel and double of BC,
AD =12b.
In A ACD,
- -+ -+
AC+CD=AD
- - -
= CD=AD-AC E D
=2b-~(a+h)
=b-a.

- -+
AF=CD=b-a.
- -

Now, DE=BA=-a
EF =CB=-b
s Fig. 1.20
FA=DC=-(b-a)=a-b

. -+ - -
Again, AE=AD+DE=2b+(-a)=2b-a

-+ - -
and CE=CD+DE=b-a+(-a)
=b-2a
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1. ABC is any triangle and D, E, F are the middle points of its sides BC, CA,
AB respectively; express
- = =
() the vectors BC, AD, BEdeF

aap
as linear combinations of the vectors AB and AC.

- = = —
(i) the vectors AB, BC, CA, AD
- -

as linear combinations of the vectors BE and CF.
- = — -
(iiiy the vectors AC, BC, AD and CF
- -
as linear combinations of the vectors AB and BE.
- = -
Show that AD + BE + CF =0.

2. ABCD is a parallelogram and AC, BD are its diagonals. Express
- - - —
() ACand BD in terms of ABand AD,
- - - —
() ABand AD in terms of AC and BD,
- - - -
(/i) ABand AC in terms of ADand BD.

Show that
- - = = = -
AC+DB=2DC,AC-BD=2AB.

3. OABC is a tetrahedron express

- - -

() the vectors BC,CA, and AB
- = -

in terms of the vectors  OA,O0B and OC,

. - = -

(if) the vectors OA,OB and CA

, -+ - -

- in terms of the vectors  oC, AB and BC

4. Given that
-3b=¢ -3a+5b=d,

express & and b as linear combinations of ¢ and d.

Justify each step on the basis of different laws of compositions.
5. Same question as 5 above for the following pairs of equations :

()-a+2b=2; 5a-2b=73d

(i -a+b=-c 2a-b=c+d
6. OB and OC are two lines and D is a point on BC such that

BD m

DC n

*
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show that C
. - -3 —» n
oD = nOB+mOC
m+n
7. Which of the following statements are correct : D
If in triangle OAC, B is the mid-point of AC and m
- — (0] B
OA=a and OB=b, then Fig. 1.21
- 1 -»
(@) OC=—(a+b), (b) OC =2b-2a,
> 2 -
(¢} OC=2b-a, (d) OC=3a-2b,
—)
() OC=13b-2a.

8. Which of the following statements are correct :
If M is the mid-point of AB and O is any point, then

- = = - -
(@) OM = 0A + MA, (b) OM = OA - MA

- = - 1 = -
(c) OM -E(OA_OB)' d) oM ﬂ;(OB +0A),

- 1 -3
(e) oM = ;(OB —0A).

1.10. EXPRESSIONS AS LINEAR COMBINATIONS
1.10.1. Coplanar Vectors
If a, b be two given non-collinear vectors, then every vector r,
coplanar with a and b can be represented as a linear combination
xa + yb '
x, y being some scalars. Also this representation is unique.

Existence. Take any point O. b B

- -
Let OA=a, OB=h. A

P

=

Let OP =r be any vector
] -+ _
coplanar with OA and OB. 0 7 a 4
Fig. 1.22

The lines OA, OB und OF are coplana.
Through P, draw lines parallel to OB and OA to meet OA and OB
respectively in L and M. We have

—* - -k - -»
r=0P =0L+LP=0L+0M.
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Also
- -
OL and OM
are products of vectors
- -
OA and OB
with some suitable scalars. Let
> o - -
OL=x0A=xa, OM=yOB=yb.
Thus, we have
r=xa+yb.
Uniqueness. Let, if possible,
r=xa+yb.
We have

xa+yb=xa+
= @x-x)a+(G-y)b=0.
If x - x' # 0, we have

If a, b, ¢ be three given non-coplanar vectors, then any vector, r, can
be represented as a linear combination
xa+yb+zc
X, 3 z being some scalars. Also this representation is unique.
Take any point O. Let
- - - -
OA=s, OB=b, OC=c, OP=r.
‘The lines OA, OB, OC being not coplanar, they determine three different
planes
BOC, COA, AOB
when taken in pairs.
Through P draw planes parallel to the three planes BOC, COA and AOB
mecting OA, OB and OC in L, M and N respectively so that we obtain a
parallelopiped having OP as a diagonal. We have

-
r =0P
-
= OL+LP
R T T
= OL+LN'+N'P=0L +OM +ON.



Multipiication of Vectors by Scalars 17
There exists scalars x, y and z such that

> - - - o
OL=x0A=xa, OM = yOB=yb, ON =z0C = zc.
‘Thus, we have
r=xa+yb+ze
Uniqueness. Let, if possible
r=xa+yb+Zc
‘We have
m+yb+ze=xa+yb+7c
= Gx-xX)a+(@-y)b+@z-2)e=0.
If x - x' # 0, we have
-=u-b+2;c
x'-x  x-x
= a is coplanar with 1, b and ¢ and we arrive at a contradiction of
the given hypothesis.
Thus, x— ¥ =0 & x=x. Similaly y = y and z = ..

c Fig. 1.23

The uniqueness of the representation is thus proved.
Ex. Show that the vector xa + yb is coplanar with the vectors a and b.
L11. LINEARLY INDEPENDENT AND DEPENDENT
OF VECTORS
Def. A system of vectors

a,b,c, ..
is said 10 be linearly dependent, if there exists a system of scalars
XNz
not all zero, such that
O=xa+yb+zc+.., 0]
A system which is not linearly dependent is said to be linearly
independent. For such a system, every relation of the type (i) implies
x=0, y=0, z=0, ..



18 " A Textbook of Vector Algebra

Note. A pair of collinear vectors is  linearly dependent system. Also a triad of
coplanar vectors is a linearly dependent system.
Theorem. A pair of non-zero, non-collinear vectors is a linearly
dependent system.
Let a, b be a pair of non-zero, non-collinear vectors and let x, y be two
scalars such that
a+yb=0.
We shall show that x = 0 and y =
xa+yb=0 = l=—%b
so that a appears as a product of the vector b with a scalar. Thus a and b
are collinear and as such we arrive at a contradiction.
Hence, x = 0. Similarly y = 0.
Hence the theorem.
Theorem. A triad of non-zero, non-coplanar vectors is a linearly
independent system.
Let a, b, ¢ be three non-zero, non-coplanar vectors and let x, , z be
three scalars such that

. Let x # 0. Now

x+yb+ze=
‘We shall show that x =0, y =0 and z
Now xa+yb+zc=0.

. Let x # 0.

= a=-2% b-"'cv

x
so that a is coplanar with b and c. nux,wehuvenconmdicﬁon.

Hence, x = 0. Similarly y = 0, z = 0.

Hence the theorem.

Theorem. Every set of four vectors is a linearly dependent system.

Let a, b, ¢, d be four given vectors.

Let three of them, say a, b and ¢ form a non-coplanar system. We then
have a relation of the form

d=xa+yb+zc = xa+)b+zc+(-d)=0
so that a, b, ¢, d form a linearly dependent system.

Now suppose that no three of the given vectors forms a non-coplanar
system. Consider the triad of vectors a, b, ¢ which are coplanar. Supposing
that no pair of these three vectors is collinear, we have a relation of the form

c=xa+yh = xm+yb+(-¢)+(0)d=0
50 that a, b, ¢, d form a linearly dependent

‘We may similarly consider the case when a, b, c are all collinear.
1.12. BASES. COMPONENTS AND CO-ORDINATES OF A VECTOR

Let g, b, c be three given non-coplanar vectors so that if r be any given
vector, we have the relation

r=xa+)yb+zc
The vectors
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xa, yb, zc
are said to be the components and the scalars x, y, z the co-ordinates of the
vector r, relatively to the triad of non-coplanar vectors a, b, c.

The set of non-coplanar vectors a, b, ¢ relatively to which we may
decompose any given vector r is called a Base. Every triad of non-coplanar
vectors can thus be thought of as a Base.

Of course, the components and the co-ordinates of a given vector will
be different for different Bases,

1.12.1. Co-ordinates of the Sum of Two Vectors and the Product of a
Vector with a Scalar

Let r, r' be two given vectors with co-ordinates (x, y, z) and (¥, ¥, 2')}
respectively relatively to a given base {a, b, ¢} so that we have

r=xa+yb + zc; r=xa+yb+7c

Thus,

r+r=(x+xYa+(+yY)b+(z+7)c

so that the co-ordinates of r + ' are

x+x,y+y,z2+2)
obtained by co-ordinate-wise addition of the co-ordinates of r and r'.

Again, if m be any scalar, we have

mr = mxa + myb + mze

so that the co-ordinates of the vector mr are
(mx, my, mz)

obtained on co-ordinate-wise multiplication of the co-ordinates of r with
n

Note 1. It is easy to see that if (x, y, z) be the co-ordinates of a vector r relatively
to a base (a, b, ¢) so that we have a relation

r=xa+yb + zc,
then r is coplanar witha, b < z=0,
ris coplanar witha & y=0,z=0.

Note 2. If a, b be two non-collinear vectors in a plane, then every vector in that
plane is expressible in the form xa + yb so that we can think of x and y as the co-
ordinates of this vector. We may thus see that a system of coplanar vectors has a base
consisting of only two members. Similarly, for a system of collinear vectors, we have
a base consisting of only one member.

EXAMPLES
Example 1. Show that if a triad a, b, c is a base, then the iriad
a,a+bas+b+e
is also a base.

Given that x, y, z are the co-ordinates of a vector u relatively to the
base a, b, ¢, what are its co-ordinates relatively to the base a, a + b,
a+b+e

Solution. We write

p=a,q=a+b,r=a+b+c



20 A Textbook of Vector Algebra
and show that p, g, r is a linearly independent set.
Now

lp+mq+nr =
| = la+m@+b)+n@+b+c) =
] = (+m+na+(m+nb+n =
| = l+m+n=0 m+n=0, n =
| [a, b, ¢ being a base and therefore a linearly independent set]
|

ceece

= n=0m=0=1=0
= Py G, r is a linearly independent set
= P» G, £ is a base.
Again we are given that
u=xa+yb+ze (i)

Let
u=xa+y@+b)+Z@+b+c)
=@+y+2)a+(y +7)b+7Ze
The expression of u as a linear combination of a, b, ¢ being umque,

we obtain
. xX'+y+z =x] =z
Y+=yr & 1y=y-2
2=z X' =x-y.

Thus, x - y, y - 2 z are the required co-ordinates relatively to the new
base. Thus, we have
u=xa+yb+ze
and u=(x-y)a+(y-)@+b)+z@+b+c).

2. Examine whether the vectors 5a + 6b + 7c, 7a - 8b + 9¢
and 3a + 20b + 5c, (a, b, ¢ being non-coplanar vectors) are linearly
independent or de|

Solution. If possible, let txe lincarly dependent. Then there exist
scalars x,, X, Xy, not all zero, that
x, (58 + 6b + 7¢) + x, (7a - 8b + 9¢) + x; (32 + 20b + 5¢) = 0

0]
= (Sx,+‘lx,+3x,)-~(ﬁx, 8x, +20x) b + (7x, + 9%, + 5x;) e =0
As a, b, ¢ are non-coplanar

2-2-Bok @y

2& X = —lz. xn=-k
Mv:lnﬂahoumfylhethm‘leqnmm.
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Hence, there exist scalars x,, x,, x, such that (1) holds. Hence, given
vectors are linearly dependent.
Example 3. If a, b, ¢ be three non-zero, non-coplanar vectors, find
a relation between the vectors a + 3b + 4c, a - 2b + 3c, a + 5b - 2c,
6a + 14b + 4c.
Solution. Let
a+3b+dc=x, (a-2b+3c) +x(a+5h-2)
B + x, (6a + 14b + 4c)
= a+3b+de=(x; +x+6x)a+(-2x +5x,+ 14x) b
+(x, -2 +4x) ¢
Equating the coefficients of a, b, ¢ on both sides, we get
X+ x b 6xy= 1, —2x 4 56, + l4xy =3, 3x, -2, + 4x, = 4
= x=-2 x,=-3,x=1
a+3b+4c=-2(a-2b+3c)-3(a+5b-2)
+ (6a + 14b + 4c).
EXERCISES
Given that the vectors a, b, ¢ form a base, find the co-ordinates of the
vectors.

@ 3u-v+w if us=a+ec v=b+e w=a-
(@) 2u-3v+dw ifu=2b+3c,v=-2a+cw

+

©
() 20-3v+dw if u=2a+3b+4c, v=3a-2b+de
w=2a-4db+3c
2. Show that the following set of vector is lincarly dependent :
a-2b+3 -2a+3b-4c -b+2c
Find also the linear relations.
3. 8, b, cis a system of linearly independent vectors; show that the
following sets of vectors are also linearly independent.
) a-b+e b+c—a, 2a-3b+de
@) 2a-b+3c, a+b-2 a+b-le
4. Given that g, b, c is a linearly independent set of vectors show that :
@ a+2b+c, 2a-b+c, 3a+b+2 :
is a linearly dependent set.
) 2a+b+c, a-b+2, -a+b-g
is a linearly independent set.
@) ma+bsc, atmbtc, a+b+me
is a linearly independent set if and only if m # - 2.
5. u, v, w being a linarly independent set of vectors; examine the set p,
q,  where
p=ucosa+vcosh+weose,
q=usina+vsinb+wsinc
r=usin(x+a)+vsin G+ b) + wsin (x + ),
for linear independence.
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Consider a base a, b, ¢ and a vector
~2a+3b-c
Compute the co-ordinates of this vector relatively to the base p, g, r
where
p=2a-3b, q=a-2b+¢c, r=-3a+b+2
With reference to the base, u, v, w, show that the vectors
W+W, —u+w, B+vVewW
for of the co-

ordinates of a vector.

m.n)mmhxxzmmem&moflwmwof

IbehﬂDLOMON find its co-ordinates in terms of the base

OL'.0M", ON".
Find the linear relations between the following system of vectors; a, b,
; being any three non-coplanar vectors;
@ a-b+c, btc-a, c+a+b, 2a-3b+de
@) a-2b+c, ~b+2c+s c-a+3b a+b+ec

Given that a, b is a pair of non-collinear vectors such that
® (1+2h-Ba+2-h+26)b=0,
@) Gh+k)a+(1-2h)b=ha+2b

find k and k in each case.

Given that a, b, c is a triad of three non-coplanar vectors such that
@ U-h-k+Da+@h-3%k-Db+B+h+Kkc=0,
@ Ch+Ba+G-4h+Db+(+h+kc=ha+kb+lc

find h, k and [ in each case.

Show that the three vectors with co-ordinates.

G y.-tn)- k.-r:-a) Gy ¥y 29
relatively to any given base linearly dependent if and only if
N n
n »n n|=0
B3Ny

SUMMARY
Properties of multiplication of vectors by scalars and of addition
of vectors.

L a+b=b+ayabeV

L a+®+c)=@+b+cy a,bceV.

IL 3a vector, viz, 0 such that
a+0=a=0+ayacV

IV. To each a € V there corresponds b € V such that
a+b=0=b+a
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The vector b is denoted by — a.
V. (m)a=m@a) vy aeVandy mneR.
VL 1@=avyacV;
VIL. m(a+b)=ma+mby meRand v a,beV.
VIL (m+n)a=ma+nay mnacRand vy aeV.
A vector r is a linear combination of
() two vectors a, b if 3 scalars x, y such that
r=xa+yb.
(if) three vectors a, b, ¢ if 3 scalars x, y, z such that
r=xa+yb+ze
(i) If two vectors a, b are linearly independent, then
a+yb=0, = x=0, y=0.
Two collinear vectors are linearly dependent and two
non-collinear vectors are linearly independent.
(if) If three vectors a, b, ¢ are linearly independent, then
xa+yb+ze=0, = x=0, y=0, z=0.
Three coplanar vectors are linearly dependent and three non-
coplanar vectors are linearly independent. Every system of four
vectors is linearly dependent.
If a vector r is coplanar with two vectors a, b, 3 scalars x, y such
that
r=xa+yb
If a, b, ¢ be three given non-coplanar vectors and r is any vector,
3 scalars x, y, z such that
r=xa+yb+ze
The set of linearly independent vectors such that any given
vector is a linear combination of the members of the set is called
a Base.
OBJECTIVE QUESTIONS

For each of the following questions, four alternatives are given for the
answer. Only one of them is correct. Choose the correct alternative.

- -
If a and b represent the sides AB and BC of a regular hexagon

N
ABCDEF, than FA =

@b-a @®a-b

) a+b (d) None of these

2. If c is the middle point of AB and P is any point outside AB; then

- o - 2> o o>
(@) PA+PB=PC (b) PA+PB=2PC

> o> o - o o
() PA+PB+PC=0 (d) PA+PB+2PC=0
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3. One of the following is not a vector :

(a) displacement (b) work

(c) centrifugal (d) gravitational field
4. Which one of the following is not a scalar :

(a) temperature (b) density

(c) mass (d) weight

5 Let a=(x+4y)a+(2x+y+1)b and

B=(y-2x+2)a+(2x-3y-1)b,
whﬂealndbmnon—mn,noncoﬂmmlf}u+28.
@=x=1 y=2
@zx=-1,y=2

(a) does not exist (b) towards origin
(c) indeterminate (d) None of these
7. If a be an unit vector, then
(a) direction of a is constant
(b) magnitude of a is constant
(c) direction and magnitude of a is constant
(d) any one of direction or magnitude is constant.
8. If g, b, c are three non-coplanar, non-zero vectors and r is any
vector, then r can be represented as xa + yb + z¢
(a) always (b) never
(c) is one and only one way  (d) None of these
9. If vectors (x — 2) a + b and (2x + 1) a — b are parallel, then
x=
@ 13 ® 3
©-3 @-13
10. If a is a vector and x is a non-zero scalar, then

(a) xa is a vector in the direction of a
(b) xa is a vector collinear to &
(c) xa and a have independent directions
(d) None of these.

ANSWERS

LG 20) 30) 4@ 5@
6( 7.0 8() 9 (@ 1 (B
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Geometry with Vectors.
Affine Geometry

Introduction. The application to Geometry of the Vector Algebra so
far developed will be considered in this chapter. It should be of some
importance to notice that geometrical problems of Affine nature alone can
be treated with the help of the compositions of the addition of vectors and
the multiplication of vectors by scalars. These two compositions are
inadequate for an unrestricted treatment of Metric relations involving
comparisons of lengths, angles, arcas and volumes and the compositions of
scalars and vector products are needed for the purpose which will be
considered in the following chapters.

It is not proposed to consider the detailed meanings and significance of
the terms, Affine and Metric here. It may only suffice to say that the
relations which involve comparisons of distances lying along the same or
parallel lines only or deal with the comparison of directions only so far as
parallelism is concerned are called Affine.

‘Thus, the scope of Affine geometry in so far as it deals with lengths and
angles is very limited.

Some well-known theorems of planc Geometry such as Pappu's
theorem, Desargue’s theorem on triangles etc., will also be proved with the
help of vector methods and included in on appendix to the chapter.

2.1. ORIGIN OF REFERENCE, POSITION VECTOR

The application of vector methods of Geometry depends upon the
concept of Position Vector or the Co-ordinate Vector of a point which will
now be introduced.

2.1.1. We take any arbitrary point, O to be called the Origin of
reference.

The position vector of any point P, with respect to the origin O is the

Y
vector OP.
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Thus, with the choice of any point, O as the origin of reference, we
can associate a vector to every point P and, conversely, to every given
vector, r, there corresponds a point, viz, the point P such that
- P

OP=r.

In fact P is the terminal point of the
vector r, whose initial point is the origin O. °
212, Choice of the Origin of Reference Fig. 21

Origin of reference may be chosen arbitrarily but a suitable choice of
the same often facilitates the solution of geometrical problems a good
deal.

The origin of reference having been once chosen, a point whose
position vector is r will usually be referred to as the point r.

2.1.3. A vector expressed in terms of the position vectors of its end
points. The equality -

P
AB=0B-0A
which expresses any vector
,:B o c
in terms of the position vectors Fig. 22
- -
OA and OB
of its end points will prove very useful in what follows.
2.2. SECTION FORMULA

To find the position vector of the point which divides the line joining
two given points in a given ratio. _

Let O, bethempnofnfuunemdlﬂl.bbemeponuonvmu
of!hepmpmnh.&ﬂwﬂmwehlve

OA=a, 0B=h.
Let P divide AB so that

) g 23

Here m/n i positive or negative according as, P, divides AB intemally

or externally. We have o express the position vector OP of the point P

in terms of the position vectors OA and OB of the points A and B.
We re-write (7) as
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nAP = mPB
and obtain the vector equality
AP =mPB.
Expressing the vector AP and PB in terms of the position vectors of the
end points, we obtain
- -
n(OP - OA)= m (OB - OP)
- - -
= (n+m)OP =mOB +nOA
R >
- o,,=m0£+n0A=mh+u.
m+n m+n
This result is analogous to the corresponding one in Cartesian Geometry.
Cor. Middle point. The position vector of the mid-point of the join of
two points with position vectors, a, and b, is
1
—(a+b)
Z(l )
obtained on taking m = n.
2.3. APPLICATIONS TO GEOMETRY
‘We shall now consider the applications to geometry of the subject so
far developed.
EXAMPLES
Example 1. Show that the medians of a triangle are concurrent.
Solution. Let the position vectors of the vertices A, B, C of a triangle
ABC with respect to any origin be a, b, ¢.
The position vectors of the mid-points D, E, F of the sides are

respectively,
A

D
Fig. 24
1 1 1
2@+ (era) —2-(.+b)
Position vector of the point G dividing AD in the ratio 2 : 1 is



2»%(!»:)4»1.:

2+1

By symmetry, we see that this point also lies on the other two
medians.

Thus, the medians of a triangle are concurrent. Also the position

vector of the point of concurrence, is %(IH:N:); a, b, c; being the
position vectors of the vertices of the triangle.

The point of concurrence of the medians of a triangle is called its
Centroid.

Example 2. Show that the lines joining the vertices of a tetrahedron to
the centroids of the opposite faces meet in a point.

Solution. Let the position vectors of the vertices of a tetrahedron
ABCD, with respect to any origin of reference O be

a, b, ¢ d A
‘The position vectors of the centroids
G, G, G,, G,
of the triangular faces
BCD, CDA, DAB, ABC are

;(b+c+d), 3(e+¢1+.), c b

Larast), Larbro, Fig, 25
respectively.
The position vector of the point dividing AG, in the ratio 3 : 1
3-l(b+c+d)+l-- bict+d
atbie+d, NG
3+1 4
By virtue of the symmetrical form of (i), we see that this point as well
lies on each of the other similarly obtained lines BG,, CG,, DG,
Thus the lines, in question, are concurrent.
Example 3. The straight line joining the mid-points of two non-parallel
sides of a trapezium is parallel to the parallel sides and half of their sum.
Solution. Let ABCD be a trapezium with parallel sides AB, CD.
A as the origin of reference. Let

Ap=b, AD=4,
so that b, d aré the position vectors of the points B and D respectively with
. the point A as the origin of reference.
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As DC is parallel to AB, the vector DC must be a product of the
vector AB by some scalar r. Let

S
DC=tAB=1b -0

Now the position vector of C is
P c
AC=AD+DC=d+.

The position vectors of the mid- 9

points E and F of BC and AD are F E
1 1 !
E(b+d+1b) and Ed respectively. AL 8.
We have .
Fig. 26

PN
FE = AE + AF
- l(b+d#&)-%d

2
=Lisnv=Lasnas
2 2
- -
= the vector FE is the product of the vector AB by a scalar

%(l+l)

= FE Il AB and FE=%(1+I)AB.
Also from (i), we have
DC = tAB.
It follows that
AB +DC=(1+1)AB=2EF

Example 4. If M, N are the mid-points of the sides AB, CD of a
parallelogram ABCD, prove that DM and BN cut the diagonal AC at its
points of trisection which are also the points of trisection of DM and BN
respectively.

Solution. A as origin of reference. A M b B
Take position vectors of B and D as b
and d respectively. 4

ABCD is a parallelogram.

-
= BC=AD=d. D N c
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e
AC=AB+BC=bsad
If X is a point which trisects-AC, then
N
Ax= %(Ind) @
Again, if X' be the point which divides DM in the ratio 2 : 1, then

1
. z[ib)ﬂ.d L
A =2t (bed)
2+1 3
-
) =AX
Implying that X and X must coincide. Thus, DM cuts the diagonal AC
at its point of trisection X which is also the point of trisection of DM.
Similarly other result can be established.
Example 5. The middle points of the adjacent sides of any quadrilat-
eral are joined; prove that the figure so formed is a parallelogram.
Solution. ABCD is a quadrilateral and E, F, G, H be the mid-points of
AB, BC, CD and DA respectively. Let A be the origin of reference and b,
«, d be the position vectors of B, C and D.
Position vectors of E, F, G, H are

%h. Lw+o, %(ud) and %d 2 S <
respectively.

P 11 A F

EF-E(bd‘c)-;the

Lo 1 A E B
mi AG=l+d-td=lc P 28

=> EF is equal and parallel to HG. Hence, EFGH is a parallelogram.

EXERCISES
1. Show that the diagonals of a parallelogram bisect each other. Also
conversely, show that a plane quadrilateral whose diagonals bisect each
other is a parallelogram.
2. Prove that the line joining the mid-points of two sides of a triangle is
parallel to the third side and half of it.
3. Show that the straight line joining the mid-points of the diagonals of a
trapezium i parallel to the parallel sides and is half of their difference.
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4. Prove that the straight lines joining the mid-points of pairs of opposite
edges of a tetrahedron are concurrent.

5. G is the centroid of a tetrahedron ABCD; A B'CD’ is another tetrahedron
such that AA’, BB’, CC', and DL¥, are all bisected at G; show that G is also
the centroid of the tetrahedron ABC D"

6. OF is a diagonal of the parallelopiped with coterminous edges OL, OM,
ON, and OQ, OR, OS are the diagonals of the parallelopiped constructed
with

OM, ON, OP; ON, OL, OP; OL, OM, OP
as coterminous edges. Finally OM is a diagonal of the parallelopiped with
0Q, OR, OS as coterminous edges. Show that OM lies along OL and is
five times OL

7. Show that the four diagonals of any parallelopiped are concurrent and are
bisected at the point of concurrence.

8. The diagonals of the three faces of the parallelopiped drawn from the
same vertex are prolonged half their lengths; show that the three points
thus obtained are coplanar with the opposite vertex,

2.4. PARAMETRIC VECTORIAL EQUATIONS

It is possible to express the position vectors of points on given lines and
planes in terms of some fixed vectors and variable scalars, called
parameters, such that

(i) for arbitrary values of the parameters, the resulting position
vectors represent points on the locus in question, and

(if) conversely, the position vector of each point on the locus arises
for some suitable values of the parameters.

Parametric Vectorial Equation of a Line. To find the parametric
vectorial equation of a line which passes through a given point and is
parallel to a given line,

Take any point, O, as the origin of reference.

Let, a, be the position vector of the given point, A, and let b, be a
vector parallel to the given line.

Fig. 29



32 A Textbook of Vector Algebra
Let, r, be the position vector of any point P, on the given line.
The vector AP=r-a and b being collinear, we have

r =t = r=a+m (i)

Each point, P, of the line arises for some value of the scalar t. Also,
coaversely, for each value of the scalar, 7,

a+b

is the positive vector of a point of the line.

Hence, (7) is the required parametric vectorial equation of the given line
so that the parametric vectorial equation of the line through a point with a
Pposition vector a and is parallel to a vector, b, is

r=a+1b,

where, 1, is a scalar parameter. (Kanpur, 94)
Cor. Line through two given points. Let a, b be the position vectors

of the two given points A, B with reference to any origin O and let r be

the position vector of any point P on the line.

Fig. 2.10

- -
Now the vectors AP = r — a and AB=b-a being collinear the
required equation of the line AB is
r-a=t(b-a)
r=a+tb-a)=(1-na+b
‘Thus, the parametric vectorial equation of the line through two points
with position vectors & and b is
r=(1-nNa+1h
2.5. CONDITION FOR THE COLLINEARITY OF THREE POINTS
The necessary and sufficient condition for three points A, B, C with
position vectors a, b, ¢ respectively to be collinear is that there exist three
scalars x, y z not all zero, such that
xa+yb+ze=0, x+y+2=0.
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‘We have ;Bﬂll—l‘ A“C:c-t.

The points A, B and C will be collinear if and only if the vectors
b - aand ¢ - a are collinear.

The condition is necessary. Let the points A, B, C be collinear so that
the vectors AB and AC are collinear. Thus, there exists a scalar k such
that

b k(c-a) > (k-1a+b-k=0
Taking x = k~ 1,y = 1, z = - k, we sce that if the points A, B, C
are collinear, then there exists scalars x, y, z not all zero such that
xa+yb+ze=0 and x+y +2z=0.
The condition is sufficient. Let there
exist three scalars x, y, z are not zero such
that c
xa+yb+ze=0,x+y+2z=0.

From these we obtain o B
~p+2a+yb+rzc=0

= yb-a)t+zc-a)=0 P

= c-a=-yr'(b-a) if z20. A

Thus, the vectors ¢ -~ a and b - a are

collinear and as such the points A, B, C are
collinear. Fig. 211

Note. Rewriting the relations xa + yb + z¢ = 0, x + y 4 z = 0 in the form

e=PE® o may see that the point C divides AB in the ratio y : x
+y
EXAMPLES
Example 1. Show that the three poinis A, B, C with position vectors
~2a+3b+5c,a+2b+37a-c

are collinear. Find the ratio in which C divides AB. Obtain also the
equation of the line.

Solution. Let O be the origin of reference.

We have

AB=0B-0A=(a+2b+3)~(-2a+3b+50)=3a-b-2c.

v o

AC=0C-0A,
=(7a-¢)—(-2a+3b+ 5
= (9 - 3b - 60) = 34B

>

Fig. 212



34 A Textbook of Vector Algebra

Thus, the vectors AB, AC are collinear. These vectors being also
coterminous, the points A, B, C, are collinear.
Also, we have
2(-2a+3b+5¢)-3(a+2b+3c)+(Ta-¢c)=0
where 2-3+1=0.
so that the truth of the result is also seen by following the result of § 2.5.
By § 2.5 note, we may see that C divides AB in the ratio 3 : 2.
Another Method. Let the point C divide AB in the ratio k : 1.
The point dividing AB in the ratio k : 1 being
k(a+2b+3c)+1(-2a+3b+5¢c)
k+1
this must be same as 7a - ¢ so that
k(a+2b+3c)+1(-2a+3b+5¢) _
k+1 -
k(a+2b+3c)+1(-2a+3b+5)=(k+1)(Ta-c)
k-2-Tk-TNa+(2Zk+3)Db+Bk+5+k+1)c=0
(-6k-9a+2k+3)b+{dk+6)c=0
-6k-9=0, 2k+3=0, dk+6=0,
These equations are constant in k and

3

k=—=.

Ta~-c

U4 Ul

Thus, the points A, B, C are collinear and C divides AB in the ratio
-3:2

The equation of the line through the two points A, B is
r=-2a+3b+5c+t[(ma+2b+ 3)-(—2a + 3b + 5¢)]
=—-2a+3b+5c+1t(3a-b-2).

It may be seen that the point C arises for t = 3.

Example 2. Find the point of intersection of the lines
r=a-2b+A(b+2a)r=2a-b+pa+2b),

a, b being non-parallel vectors.
Solution. At the point of intersection of the lines, we have
a-2b+A(b+2a)=2a-b+pa+2b)
= (h-p-NDa+(A-2u-1)b=0.
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As, a, b are non-parallel vectors, we have

A-p-1=0, A-2u-1=0
giving l-% and u=-§-

Putting A:%, in the equation of the line with A parameter, we see
that the position vector of the point of intersection, is -i—(--b). It may
be verified that for u=—%. we get the same point.

3. Through the middle point M of the side AD of a

Example
parallelogram ABCD, the straight line BM is drawn cutting AC at R and
CD produced at Q; prove that

QR = 2RB.
Solution. Take A as the origin of reference.

Fig. 2.13
Let b, d be the position vectors of the point B and D so that

- -
AB=b, AD=d.
mwmwﬁuh%awmwcu
- o o
=AB+BC=AB+AD=b+d.
The cquation of the line BM joining the points, B, M with position
vecmh,%dil
1
=b+t|=d-b
r +I[2 ) ()
and the equation of the line DC through the point D with position vector
d and parallel to AB=b is

r=d+ph i)
At the point of intersection of the lines (i) and (i), we have
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hu&d—b)q-»pb

o (1—x—p)b+&:-|)d=o

= 1=t-p=0, 1r—1=0
=03

= t=2 p=-1;

the vectors b, d being non-collinear.
Substituting the value of ¢ in (i) or of p in (ii), we see that the position
vector of the point Q of intersection of the lines BM and DC is
d-b=AQ.
‘We shall now find the position vector of the point R of intersection of
the lines AC and BM.

Again the equation of AC is
r=k(b+d).
‘We may show that the point R of intersection of the lines AC and BM

1 -
3@+d)=AR
It follows that

S S 42 2.1
=AR-AQ=—b-=d=2|2b-—
OR = AR-AQ 3l: 3d 2(3 3 )

S o 1
RB=AB-AR=b-Z(b+d)=

S
Thus OR=2RB = QR="2RB.
4. In a triangle ABC, D divides BC in the ratio 3 : 2 and E
divides CA in the ratio 1 : 3. The lines AD and BE meet at H and CH meets
AB in E. Find the ratio in which F divides AB.



Geometry with Vectors 37
Solution. Take C as the origin of reference. Let a, b be the position
vectors of the points A and B respectively. Now the point D is %h and the
1
point E is -4-1
‘The equation of AD and BE are

r=|+k[-§—h—n). and r=bs

—h) respectively.

For the point of intersection H, we have

2 1
.+k(§b_.)=b“(zl_hJ G)

t 2 5 2
1ok=t, Zpaior = k=322
= i = k=83

Putting these values of k and ¢ in the equations of the lines AD and
BE, we see that the point H is
l- +1 b.
6 3
The equations of CH and AB being

r=t[2+2), and r=a+k(b-a
(2+3) (b-a).

we have for the point of intersection F,

v(%+§)=-+k(b-u)

These give ¢
Thus, the point F is
a+2b
rl
50 that F divides AB in the ratio 2 : 1.

Example 5. Find the equations of the bisectors of the angles between
the lines

r=a+h, r=a+pe
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Solution. Let AL, AM be the given lines so that a is the position

vector of the point A. Let P Q, R be three points at unit distances from

Anmﬂ:eﬁ;wa.l#!,i‘beﬂnmid-pm’nhnfmek.

Fig. 215
Then AE, AF are the bisectors of the angles between the given lines.
‘The position vectors of £, Q, R are
b ar S LR
b Merr *Tinl
respectively, implying that the position vectors of E, F are

-*%(%*.‘7)"*%(%—%}

Thus, the required equations of the bisectors AE, AF are

respectively, where ¢ and p are scalar parameters.
Example 6. Show that the internal (external) bisector of any angle of
a triangle divides the base internally (externally) in the ratio of the sides
containing the angle. .
wummﬂmmmmw»fawqﬂe
denoted by a, B, ¥
‘Take A as the origin of reference. Let b, ¢ be the position vectors of
the points B and C so that
- -
AB=b, AC=c.
A
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We have
- -
1ABI=y, |ACI=B.

Now 2, £ are unit vectors along AB and AC so that the quation of
the internal bisector AD is
.=,(2.£]. ©
v B

Also the equation of the line BC joining the points B and C with
position vectors b and ¢ is
r=b+plc-b). i)
At the point of intersection D of the lines AD and BC, we have

n[;+§)=h+p(c—h)

t t
L tepl=be|i-ple=0.
- (-1+0)-+ -7
As the vector b, ¢ are non-parallel, we have
' t
—=l4p=0, ——p=0
Y B
By Y
1= p=_T_,
= pey PTBey
Substituting the value of ¢ in (i) or of p in (i), we see that the position
vector of the point of intersection D of AD and BC is
Bb+yc
B+y
which divides BC in the ratio y : B, i.e, AB : AC.
Considering the external bisector AD"

we may similarly prove the part corresponding to the external bisector.

Example 7. ABC is a triangle; AD, AD’ are the bisectors of the angle
A meeting BC in D, D’ respectively; A’is the mid-point of DD'; B', C', are
the points on CA and AB similarly obtained. Show that the points A", B', C',
are collinear.
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Let a, b, ¢ be the position vectors of the vertices A, B, C with respect
to any origin of reference O. Let the lengths of the sides BC, CA, AB of the
triangle be a, B, 1. :

The position vectors of D, D are
ﬂh+1=' Bb-yc
B+y © By

respectively, so that the position vector of the mid point A’ of D D’is

l(ﬂb'rve*ﬂ-—vc)J’b—v‘e

=a', say.
2\p-y "By ) B-7?
By symmetry, the position vectors of B', C' are
say, and o’a-p%b
» ay, and S5

@ -rHa'+(" -a?) b+ +p) ¢=0

B -1)+*-o) +@? +p)=0

It follows that the points A’, B', C', with position vectors a’, b', ¢’ are
collinear (§ 2.5 Page 32).

Example 8. Show that the internal bisectors of the angles of a triangle
are concurrent.
Solution. Take any point O as the
origin of reference. Let a, b, ¢ be the
position vectors of the vertices A, B, C and E
a, B, y the lengths of the sides of the
triangle. The position vector of the point D
where the internal bisector of the angle A

meets BC is B b c
Bbiye Fig. 2.17
B+y
The position vector of the point dividing AD in the ratio (B + ) / a is
aa+Bb+ye
a+f+y -

By symmetry, we sec that this point lies on the other two bisectors also.

‘Thus, the bisectors are concurrent and the point of concurrence is given
by (.
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EXERCISES

Find the points of intersection of the following pairs of lines, assuming
that the vectors a and b are not parallel.

O r=y(®-a), r=2b+pa

@) r=y®b+a), r=pb-a)

(iii) r=(b-8)+y(a-b), r=(b-2)+u(b+3a)

@) r=22+2b+y@=-b), r=3a+p(®-a)

() r=a+pb, r=b+ya

2. Test for collinearity the sets of points with the following position
vectors : (Kanpur 93)
@) a-2b+3c 2a43b-4c, =-Tb+10c
(i) 3a-4b+3c,  -da+Sb-6c da-Tb+6e
(i) 22+ 5b - 4c, a+db-3c,  4a+7b-6e
(v) Sa+4b+2, Ga+2b-c Ta+b-c

w

. Show that the lines
r=a+ib+o) r=b+r(c+n)
intersect and find also their point of intersection.
In a A OAB, E is the mid-point of AB and F is the point in OA such that
OF = 2 FA. Calculate the ratios OC : CE and BC : CF where C is the
point of intersection of OF and BF.
. Find the position vector of the point P of intersection of the lines 1, and
1, with vector equations
r=2a+A(b-3a) and r=3(@-b)-p@+b),
where a, b are non-parallel vectors. 0 is the point in /, when A = 1 and
Ris the point in I, when = 1. If POSR is a parallelogram, give the vector
equations of the lines OS and RS as also the position vector of the point S.
6. Ina A OAB, C s the mid-point of AB and D is the mid-point of-OB. The
line OC meets AD at G. Calculate the ratio in which G divides OC and
AD. If E is the point in which OA meets BG, calculate the ratio in which
G divides BE and show that E is the mid-point of OA.

»

»

- - -
‘The points O, A, B, X and Y are such that OA=a, OB=b, OX=3a

bl

- > o
and OY =3b. Express BX and AY in terms of a and b.

-
The point P divides AY in the ratio 1 : 3. Express BP in terms of a and
b and show that P lies on BX.
In a triangle ABC, D divides BC in the ratio 2 : 1 and E divides CA in
the ratio 3 : 1. The line DE meets the line AB in F. Find the ratio in
which the point F divides AB.
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9. The median AD of a triangle ABC is bisected at E and BE is produced
to meet the side AC in F; show that

AF-%AC and EF-%BF.

10. ABCD is a parallelogram and L, M are the mid-points of AB and CD
respectively; show that DL and BM trisect AC and are trisected by AC.

11. A line EF drawn parallel to the base BC of a triangle ABC meets AB and
AC in F and E respectively; BE and CF meet in L. Show that AL bisects
BC,

12. The sides CA, AB of a triangle ABC are divided intemally in the same ratio
at E and F, show that EF divides BC extemally in the scnare cf this ratio,

13. Points Y and Z are taken on the sides CA, AB of a triangle ABC such that
CY=YA and AZ = 2 ZB; BY and CZ meet at P, show that CP = 3 PZ. Also
find the ratio in which AP divides BC.

14. A, B, Cand A', B’, C are two sets of points on two skew lines such that
AB: BC=AB . BC.

Show that the middle points of AA', BB', CC are collinear.

2.6. PARAMETRIC VECTORIAL EQUATION OF A PLANE

To find the parametric vectorial equation of the plane which passes
through a given point and is parallel to two given lines.

Let AB, AC be two lines through the point A parallel to the vector b
and c.

Take any point O, as the origin of reference. Let, a, be the position
vector of the given point A. Let, r, be the position vector of any point P on
the given plane.

Fig. 2.18

-3
The vectors AP=r-a,b,c being coplanar, we have a relation of the
form '
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r-a=t+pc

= r=a+th+pc
where 1 and p are scalars.

Here each point of the plane arises for some values of the scalars
1, p. Also conversely, it is clear that for arbitrary scalar values of ¢ and p,
a + tb + pc is the position of a point on the plane.

Thus, the parametric vector equation of the plane which passes through
the point with position vector a, and which is parallel to the vectors b and
cis

r=a+t+pe,
where 1, p are scalars parameters.

Cor. 1. Plane through two given points and parallel to a given line.
If a, b are the position vectors of the given points A, B and ¢ is a vector

- -
parallel to the given plane, then the vectors AP=r-a, AB=b-a, and ¢
being coplanar, we see that

o
Fig. 219
r=a+tb-a)+pc=(1-Na+h+pc
is the required equation. (Kanpur 95)

Cor. 2. Plane through three given points. If a, b, ¢ be the position
vectors of three given points A, B, C, then the vectors

- - -
AP=r-a,AB=b-a,AC=c-a,
being coplanar, the equation of the plane is
r=a+t(b-a)+plc-a)=(1-t-p)la+b+pc
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2.7. CONDITION FOR THE COPLANARITY OF FOUR POINTS
The necessary and sufficient condition for four peints A, B, C, D with
position vectors a, b, ¢, d to be coplanar is that there exists four scalars
x, ¥ z t not all zero, such that
xa+yb+ze+md=0, x+y+z+1t=0.

We have
- - -
AB=b-a, AC=c—-a, AD=d-a.
The points A, B, C, D will be coplanar, if and only if the vectors

- = -
AB, AC and AD are coplanar,

The condition is necessary. Let the points ABCD be coplanar so that
the vectors ;I? XE A_I} are coplanar. Thus, there exist scalars I, m such
that

d-a=Il(b-a)+m(c—2a)

= (+m-1Da-b-me+d=0.

Takingx=I{+m—1, y=-1 z=-m, t= 1, we see that if the points
A, B, C, D are coplanar, there exist scalars x, y, z ¢ not all zero such that
m+ybp+zc+ud=0andx+y+z+et=0.

The condition is sufficient. Let there exist scalars x, y, z, t not all zero
such that

n+yb+zc+rﬁ=0, x+y+z+t=0

From these we obtain

~-y+z+t)a+yb+zc+d=0

= d-a=(-yr'Yy(®b-a)+(-zr')(c-a) ify=0
so that d — a, b — a, ¢ - a are coplanar vectors and as such A, B, C, D are
coplanar points.
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EXAMPLES
Example 1. Show that the points with position vectors
-6a+3b+2 3a-2b+4c Sa+7b+3c -13a+17b-c
are coplanar.
Solution. Denoting the given points by A, B, C, D respectively, we
obtain .

> > o
AB=0B-0A=(3a-2b+4c)~(-6a+3b+2c)
=9 - 5b + 2¢c.
-
AC=1la+4b+c.
-
AD=-Ta+14b-%.
> o
AB-2AC=-13a-13b.
> o > o
AD +3AC =26a+26b=-2(AB-2AC)
> o > o
= AD+3AC=-2AB+4AC
N
= —2AB+AC=AD.
> o o
Thus, the vectors AB, AC, AD are coplanar. These three vectors,
being also coterminous, we see that the four points A, B, C, D are coplanar.
This result may also be proved with the help of the result of § 2.7. The
student may find the equation of the plane through the points A, B, C and
show that the point D lies on it.
Example 2. Show that the lines
r=28 -9 + I0c +t(3a - I6b + 7c),
r =15 + 2% + 5c + p (3a + 8b - Sc),
are non-coplanar; a, b, ¢ being non-coplanar vectors.
Solution. We shall show that the two lines have no point in common.
Assuming that the lines have a point in common, we have
8a - 9b + 10c + ¢ 3a - 16b + 7c),
= 15a + 29b + 5S¢ + p (3a + 8b - 5¢)
= B+3-15-3p)a+(-9-16:-29-8p) b e
+(10+7t-5+5p)c=0
= (-7+3t-3pa+(-38-16r-8p)b+(5+Tt+5p)e=0.
As a, b, ¢ are non-coplanar vectors, it follows that
~74+3t-3p=0, -38-16t~8p=0, 5+ 7t +5p=0.
It may be shown that these three equations in the two unknowns t and
Pp are not consistent.
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Thus, the two given lines have no point in common and hence are non-
coplanar. These lines are also not parallel.

Example 3. Assuming that the vectors a and ¢ are not collinear,
examine the following lines for intersection :

r=6a-c+A(2c-a), r=a—-c+p(a+ 3c)

Solution. Assuming that the lines intersect, there must exist values of

A and p such that
6a-c+A(2c~a)=a-c+p(a+3c)

= G6-A-p-Da+(2A+1+1-3p)c=0

= S-A-pwa+@L-3u)c=0

- S5<A=-p=0
M-3u=0
A-p=-5

= 21——3#50'}

These give AL =3; n=2.
Putting the values of A and p in the given equations, we see that the
lines intersect and the point of intersection is
3a + Se.
Also therefore the lines are coplanar.
Example 4. Find the point of intersection of the line
r=2a+b+t(b~c)

and the plane
r=a+A(b+c)+p(a+2b-c)
Solution. At the point of intersection of the line and the plane, we have
Za+b+rt(b-c)=a+A(b+c)+p(a+2b-c¢)
= C-1-pa+(+t-A-2u)b+(-t+A+p)c=0
= 1-p=0, 1+t-A-2u=0, —t-A+p=0
These give p=1; A=0; r=1
Putting the value of ¢ in the given equation of the line, we see that the
position vector of the point of intersection is
2a+2b-c.
The same result may be obtained by putting the values of A and u in
the equation of the plane.
Example 5. Obtain the vector equation of the line of intersection of
the planes
r=b+d, (b-a)+p (a+c); r=c+X, (b-c)+p, (a+h)
8, b, ¢ being non-coplanar vectors.
Solution. At the point of intersection of the two planes, we have
bei,(b-a)+p (@+e)=c+A, (b~ e)+p,(-+b)
= Erh+pmp)ar(l=-A+0+1)b
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+@-1+2)ec=0.
As a, b, ¢ form a linearly independent system, we have
A -y =0, T4A -A =0 -1 42, =0.

‘We have 3 equations in four unknowns A, py, Ay, B,

We now eliminate A, jt, and find a relation between A, and p. We may
obtain

A=

Writing A, = 0, wemymelhxt\.hehmmeq\lmmur-h-)pl
(a + c) where p, is the parameter.

We also have &, = 1 ~ .

Writing A, = 1 -, and 1, = i, e see that the vectorial equation of
the line may be described as

r=e+(l-p)(b-c)+p (@a+b)

= r=b+p, (@a+ec).
which is the same result as obtained by putting A, = 0 in the first equation
of the plane.

Example 6. Find the vector equation of the line of intersection of the
planes

r=A(@+b)+p (@a-c

and r==2b+i,(a+2b-c)+pa.

Solution. For points on the line of intersection, we have

M@+b)+p (@-0)=-2b+A, (@ +2b=c)+pa

= A tm-hy-p)at G +2-2) b+ (g +A)c=0.

7~|+l‘|‘7-z—l‘z=°}

—24,+2=0
“H+A; =0
Here we have 3 linear equations in four unknowns A, A,, p, and p,.
Solving these we get
Ay=kid=2%k-2;p,=2k-2. Herep, =
Putting the values of I, and m, in the first equation of the plane, we
have

=

r=k-2)@+b)+k@-c
=@Bk-2)a+(2k-2)b-ke 0]
Also putting the values of A, and p, in the second equation of the
plane, we obtain
r=-2b+k@+2b-c)+2-2)a
=(Bk-2)a+(2k-2)b-kc
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Thus, the required vector equation of the line of the intersection of the
given planes is
r=-2a-2b+k(3a+2b-c)
Example 7. Show that four points r,= la + mb + ng, i = 1,2, 3, 4
are coplanar if and only if
ho b bk
m m mg omg
momony oy
11 1
Solution. If the given points are coplanar, then there must exist a
relation of the form
x(a+mb+nc)+ybLa+mb+nc)+z(a+mb+ngc)
+1(a+mb+nge)=0 A1)
where x+y+z+1t=0 -(2)
m = Gy + yb + 2y + tl) a + (xmy + ymy + zmy + tm) b
+(xny +ymy + 21+ m)c=0
Since a, b, ¢ are non-coplanar vectors, hence above equation holds
only when

xy+yh+ 2+t =0 ~(3)
xmy + ym, + zmy + tm, = 0 ~(4)
an 4y + g+t = 0 -A5)

Eliminating x, y, z and f between (2), (3), (4) and (5), we get the required
result in the determinant form.
EXERCISES
(In the following 8, b, ¢ denote a set of non-coplanar vectors.)
1. OABC is a tetrahedron such that

> 5 o
OA=a, OB=b, OC=c.
Find the equations of its faces.
2 OABCDEFGis a parallelopiped such that
> o o

OA=a, OB=b, OC=c.

Obtain the equations of its six faces.

3. Find the equations of the planes through the following triads of points :
@ 2a+2b-2, 3a+4b+2, Ta+6e
@ a+b+e a-b+e -7a-3b-5c,

4. Examine for coplanarity the following sets of points :
@ -6a+3b+2, 3a-2b+dc, Sma+Thb+3c, ~13a+17b -
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@

Ea

13.

o
(i) 6a-4b +4c, —a-2b-3c, a+2b-5c, —dc
@) 3a+2b-5c, 3a+8b+5c, ~3a+2b+c a+db-3c
Show that the four points with position vectors
~a+4b-3c, 3a+2b-5c, -3a+8b-5¢, -3a+2b+c
are coplanar.
Show that the line joining the points 6a + 4b + 4¢, - 4c, intersects the
join of the points @ + 2b - Sc and - a — 2b — 3c.
Find the position vectors of the points of intersection of the line
r=a+2b+t(@-c)
with each of the following planes :
@ r=i(a+2b)+p@b+o).
@ r=b+A(@+c)+u2a+b-o.
@) r=2a+X(@+c)+p(@+b).
Find the point of intersection of the line
r=2a+3b+rc
with the plane
r=a-b+p@+b-c)+k(@+c-b).
Find the points of intersection, whenever they exist, of the following pairs
of lines :
@ r=a+b+r (b-c) r=-@+)+A@+bh).
) r=3@+c)+A(b-c), r=2(b-c)+p(@+b).
@) r=b-2+A(@+b), r=2b-c+p(b+oc).
Obtain the vector equations of the lines of intersection of the following
pairs of planes :
@ r=r@+b+pbd-0),
~204k (Qa+b-0)+pb
@ r=a+r b+ +p (@=-b),
r=h@+c)+p,2a-b+o).
@ r=b+X@+b)+p @-0)
r=l@+b) +p (b +o).
@) r=-2a+r (B+e)+p @-0)
r=a+dctd, (@- h)+u,(-+b+k)
Show that the following lines
r=(@-b-10c) +(2a - 3b¢lc)‘
r=(4a-3b-c)+k(a-4b+70).
Find also the point of intersection.
Show that the lines
r=-38+06b+1(-4a+3b+20),
r=-2a+Tc+t(-4a+b+c),
do not intersect.
Examine the intersection of the following pair of lines :
r=-a-3b-5c+7(3a+5b+7)
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r=2a+4b+6c+¢(a+3b+5)

Show that a linear relation
PR T )
connecting the position vectors
By By e B,
of any n points

Ap s Apr A,
will be independent of the choice of origin if and only if the sum

[Compare with the conditions for coplanarity of four given points (§ 2.7,

Page 45) and the collinearity of three given points, (see § 2.5, Page 32)]

Verify the condition obtained in Ex. 14 in each of the following cases :

(9 The point C divides the line AB in the ratio m : n.

(i@ A, B, G, D are four points such that the line AB is parallel to the line
cp.

(@) A, B, C, D are the vertices of a parallclogram.

(#) G is the centroid of the triangle with vertices 4, B, C.

() G is the centroid of the tetrahedron with vertices A, B, C, D.
SUMMARY

. If a, b be the position vectors of two points A, B, then the position

vecma;oflhepointhhichdividuABinmnﬁom:nh
mb+na
m+n
O being the origin of reference.
‘The parametric vectorial equation of the line
() which passes through the point with position vector a and
which is parallel to the vector b is
r=a+bh.
(i) which passes through two points A, B with position vectors
abis
r=a+t(b-a),
t is the parameter in each case.
The parametric vectorial equation of the plane
() which passes through a point with position vector a and
which is parallel to the vectors b, ¢ is
r=a+t(b-a)+p(c~a)
(i) which passes through the points A, B with position vectors
2, b and which is parallel to the vector ¢ is
r=a+1(b-2a)+pe
(iii) which passes through the three points A, B, C with position
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vectors a, b, ¢ is
r=a+t(b-a)+plc—a)
Here ¢, p are the parameters in each case.
4. (i) Three points A, B, C with position vectors a, b, ¢ are collinear
if there exist three scalars x, y, z such that
xa+yb+ze=0 and x+y+2=0.
Also in this case the point C divides AB in the ratio y : x.
(#) Four points A, B, C, D with position vectors a, b, ¢, d are
coplanar if there exist scalars x, y, z ¢ such that
xa+yb+ze+d=0 x+y+2+1t=0.
Also in this case the position vector of the point of
intersection of the lines AB and CD is
zc+d
z+t

2D hich is the same as
x+y

‘OBJECTIVE QUESTIONS
For each of the following questions, four alternatives are given for the
answer. Only one of them is correct. Choose the correct alternative.
1. If a, b, c are position vectors of the vertices of a AABC, then

> 5> >
AB+BC+CA=

@0 ®) 2a (c) 2b @) 3¢
2. If a, b, ¢ are the position vectors of the points A, B, C respectively,

- = o

then AB+ BC+ AC is equal to
@o @ 2@®-a)
© 2(c-a) @da+b+c

3. The position vectors of A and B are a and b respectively. Then the
position vector of a point D dividing AB in the ratio 2 : 3

externally is
@ %(znub) ® %(ZIHS-)
1
© gla+b) (@ (3a-2b)
4. Point A is a + 2b, and a divides AB in the ratio 2 : 3. The position
vector of B is
@ 2a-b (b) b-2a

(c) a-3b @hH
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P, Q, R, S have position vectors p, q, 1, s, such that p - q =
2 (s - r) then

(a) PQ and RS bisect each other

(b) PQ and PR bisect each other

(c) PQ and RS trisect each other

(d) OS and PR trisect each other

a, b, c are three non-zero vectors, no two of which are collinear
and the vector a + b is collinear with ¢, b + ¢ is collinear with a,
then a + b + ¢ is equal to

(@) a ®b ©ec (d) None of these
Given that the vectors a and b are non-collinear, the value of x and
y for which the vector quantity 2u — v = w holds true if
uw=uxa+2yb, v=-2ya+3xb, w=4a-2bare
(@) x =411, ®) x =101,
(c) x =87, @d@=x=2 y=

=41

. If a, b, ¢ are position vectors of three-collinear points such that xa

+ yb + zc = 0 and atleast one scalar x, y, z # 0, then
@x+y+2=0 B x+y+z#0

(c) there exists no relation between x, y and z

(d) None of these
Fru+y+w=x(@+w+y(u+w+Z@+Vv+w),
u, v, w being non-zero, non-coplanar vectors, then x’ is equal to

@ -Leer-te o ek

© —%x—y-v%z () x—%y+%z

> -
. The points O, A, B, X and Y are such that OA=a, OB=b,

- -
OX =3a, OY =3b;and the point P divides AY in the ratio 1 : 3
-
internally, then the vector PB is equal to
1 1
@ ?("3") ®) 7(3-—2!1)

© %(3. -b) @ §2a-3)
ANSWERS

1. (@ 2 3. @ 4. (© 5. (@
6. (@ 7. (b) 8. (a) *9% () 10. (c)



APPENDIX I

1.1. VECTORIAL PROOFS OF SOME WELL-KNOWN
CLASSICAL THEOREMS

1. Ceva’s Theorem and its Converse. If D, E, F are three points on
the sides BC, CA, AB respectively of a triangle ABC such that the lines AD,
BE and CF are concurrent, then

BD CE AF

e P |

and conversely.

Let AD, BE and CF concur at H. Take any point, O, as the origin of
reference. Let a, b, ¢, h be the position vectors of the points A, B, C, H
respectively.

A

B D C

Fig. 1
These four points being coplanar, there exist four scalars x, y, z, 7 such
that
xa+yb+ze+th=0 x+y+z+1=0

These give
xa+yb zc+t
X+y FTYR
xa+yb zc+th
Now x+y and St
are points of the lines AB and CH respectively.
It follows that

(xa +yb) /x + y

is the position vector of the point F of intersection of the lines AB and CH
so that F divides AB in the ratio

AF/FB =yx < AF/BF=-yhk
53
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Similarly

BD z CE_ x
CD y AE 2
3&&(% __4
CD AE BF y
Conversely, let D, E, F be three onthenduBC,CAandAB
respectively such that
BD CE AF
AR BF= D)
Suppose that
BD : CE_ «x
Cp~ "y AET 7 sothatby ()
AF y
B

If a, b, ¢ be the position vectors of the points A, B, C, then the position
vectors of the points D, E, F are

yb+zc zc+xa xa+)yb
y+z | z+x  x+y

respectively.
Therefore the position vectors of the points dividing AD, BE, CF in the
ratios
y+2:Xx Z+Xx:) x+y:2z
are all equal to

n-u-yb-l-ac.
x+y+z
Thus, the lines AD, BE and CF are concurrent.
2. Menelan’s Theorem and its Converse. If D, E, F are three poinss

on the sides BC, CA, AB respectively of a triangle ABC such that the points
D, E, F are collinear, then

BD CE AF _,
CD AE BF
and conversely.

Let BE, CF meet at H.
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Let a, b, ¢, h be the position vectors of the four points A, B, C, H
relative to any origin O of reference.

These four points being coplanar, there exist four scalars x, y, z, ¢ such
that
xa+yb+ze+th=0 x+y+z+1t=0
The position vectors of the points E and F, therefore, are
xa+zc xa+yb

x+z x+y
respectively.
We now require the position vector of the point D. Writing
e= n+zc‘ f= xa+ yb
x+z x+y

and eliminating, a, we have

x+2)e-(x+yf=2zc-yb,

(x+)e-(x+)Nf _z2¢-)b
- a

Ax+2)-(x+y) z-y

This equality shows that (z¢ — yb) / (z — y) is the position vector of
the point D. Thus

BD__z CE_x AF_y
CD y EA 2’ FB «x
- BD CE AF _,
CD AE'BF
Conversely, let D, E, F be three points on the sides BC, CA, AB such
that
BD CE AF _
CD AE BF
Suppose that
BD _z CE_ x o BE__2
CD y AE z F4
BD__z CE x AF »y
= DC y EA 7' EB x
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‘Thus, if &, b, ¢ be the position vectors of the vertices A, B, C, then the
position vectors of the points D, E, F, are
zc-yb xat+zc xa+yb
z-y ' x4z x+y
respectively. Denoting these by d, e, f respectively, we obtain
-@-Nd+GE+De-(x+y =0,
where
-@-N+E+2D-x+y)=0.
Thus, the points D, E, F are collinear.
3. Pappu’s Theorem. If A,, A, A, and B,, B,, B, are two sets of
collinear points, then the points of intersection of the pairs of lines
ABy ABy; ABy AB; AB, ABy
are collinear.

‘The two lines must of course be coplanar.
Take O, the point of intersection of the two lines as the origin of
reference. Let a, b be the two vectors along the two lines.
Let
M A A b, b, b,
be the position vectors of the two sets of points, A,, A,, A, and B,, B,,
B, respectively.
The equations of the lines A,B, and A,B, are
r=2a+r(ha-Lb), r=Aa+p@a-pb).
At their point of intersection, we have
Aa + £ (a - ub) = Asa + p (ha - p,b)
= A+ -A-prh)a+ (-, +pp)b=0
= Aty =Ry = phy =0, — iy +pp,; =0,
the vectors a, b being non-parallel.



Appendix | 57
These give
Ha(Ry-2y)
Ay =Raig)
Making substitution, we see that the position vector of the point of
intersection of the lines A,B,, A,B, is
MAa (=) | Bita Ay —Rg)
Ay —Aghy Aty =Agny
Changing the suffixes, 1, 2 to 2, 3 respectively and 1, 2 to 3, 1

respectively, we see that the position vectors of the other two points of
intersection are

b=p,, say.

Ay i) | oty Ry —A;)b=m_ say
Aotz =Ashy Aoz =y
A ) | Bt Rs —Ay)
2l a4 23 i pop,, say
Agps=Mpy Asds=Aady
Now we may see that
Ehpy(Attz = Aapy) by =0,
where

Zhpy(Aghy ~Aghy) =0.

Thus, the points are collinear.

Or directly, we may show that the vector P, — P, is the product of the
vector Py — P, by a scalar.

4. Desargue’s Theorem. If ABC, A,B,C, are two triangles such that
the three lines AA,, BB, and CC, are concurrent, then the points of
intersection of the three pairs of sides

BC, B,C,; CA, CA,; AB,AB,
are collinear and conversely.

Let AA,, BB, and CC, are concur at O. Take O as the origin of
reference. Let

- - o
OA=a, OB=b, OC=c.

Then
- - -
OA, =Aa, OB, =pb, OC, =ve
where A, i, v are some scalars. The equations of BC and B,C, respectively
are
r=b+t(b=-c), r=pb+p(ub-ve),
so that at the point of intersection P of BC and B,C,, we have
b+t(®-c)=pb+p(pb-ve),
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= (A+t-p-pp)b+(-t+pv)e=0.

= 1+t-p-pp=0, —t+pv=0.
the vectors b and ¢ being non-parallel.

‘These give

p=(-p/(p-

[4]
P Fig 4
Making substitution, we see that the position vector of the point P of
intersection of BC, B,C, is
1-p
e say.

By considerations of symmetry, the two other points of intersection Q,
R are
1-2 1-v
voa ey e

We now see that
EA-AN)(-v)p=0 where Z(1-A)(u-v)=0.

Thus, the three points of intersection whose position vectors are p, g,
r are collinear.

Conversely, let , b, ¢ : a,, by, ¢, be the position vectors of the vertices
of the triangles ABC, A,B,C, with respect to some origin 0. Let P, O, R be
the points of intersection of the pairs of lines

BC,B,C;; CA,CA,; AB,AB,
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‘These points are given to be collinear.
Let P divide BC in the ratio z : y so that the position vector.of the point
Pis
Ob+z)/(y +2).
Let @ divide BC in the ratio x : z so that the position vector of the point
Qis
(e +xa)/ (2 + x).
The position vector of the point R of intersection of PQ and AB may
now be easily seen to be
(b - xa)/ (y - x).
Denoting these position vectors by p, g, r respectively, we have the
relation
O+)p-Gz+0q-@-x)r=0 1)
between the position vectors of the collinear points P, Q, R.
Similarly, denoting by z, : y, and x, : y; the ratios in which the points
P and Q divide B,C, and C,A, we obtain
yb+zec Lactxna nb+xa
wra o atn | onm

and the relation
O+ P-GrR) -0 -x)r=0. -
From (1) and (2), we obtsin
Ytz _ THE  yex 4oL
Nty y+x y-x

so that
y+z=k@,+2), @+x)=k(z+x), y-x=k@,-x) ..03)
Also we have
yh+u‘yh!+z!= xHxm 70 08

y+z Nn+y z+x Z+x
b-xa _ b -xa

y-x nto w(4)

so that with the help of (3), we obtain
z¢ - kgye, = kyby — yb = kxja) - xa

ke, _kyb -yb _kxa -xa
= -k, ky-y  ky-x -
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The three equal vectors in (5) being the position vectors of points on
CC,, BB, AA,, we see that these lines are concurrent.

5. Complete Quadrilateral. (i) The three mid-points of the three
diagonals of a complete quadrilateral are collinear.

(ii) Each diagonal of a complete quadrilateral is cut harmonically by
the other two.

(f) Consider any four lines

AB, BC, CA, EE
no three of which are concurrent. These lines intersect in pairs in six points
called the vertices of the complete quadrilateral. These six vertices are
divided into three pairs of opposite vertices, viz, the intersections of the
pairs of lines
A

C
Fig. §

CA, AB; BC, EF.

AB, BC; CA, EF.

BC, CA; AB, EF.

Thus

AD; BE; CF

are three pairs of opposite vertices. The lines
AD, BE, CF

joining the pairs of opposite vertices are called the three diagonals of the
complete quadrilateral. We have to prove that the mid-points of AD, BE, CF
are collinear.

Let
BE, CF meet in H.
With any point O as the origin of reference, let
ab,ch
be the position vectors of A, B, C, H respectively. These points being
coplanar, there exist four scalars x, 3, z ¢ such that
a+yb+ze+th=0 x+y+z+1t=0. ()]
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From this we deduce that
xc+xa xa+yb
z+x | x+y
are the position vectors of the points E and F respectively.
We now require the position “ector of the point D.
‘Writing

zx+xa . xa+yb
z+x ' x4y
and eliminating, a, we see that
@+x)e-(x+y)f=ze-yb
(Z+x)e-(x+)f _zc-yb
@n-(x+y)  z-y
This equality shows that

=

-y

-
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is the position vector of the point, D, of intersection of the lines, BC, EF.

The mid-points P, Q. R of AD, BE and CF are

. (z=y)a-yb+zc xa+(z+x)b+ze xa+yb+(x+y)k

Az-y) 2z+x) Ax+y)
Denoting these by p, g, r respectively, we see that
X@-NPp+yE+Nq-z(x+)r=0
where
X@=-N+y@+x)-z@x+y=0

Thus, the three points P Q, R with position vectors p, q, T are

collinear.
(ii) The position vectors of the points B, H, E are
xa+yb+ze ze+xa
xtytz | ztx

respectively so that H divides BE in the ratio (z + %) : . The point A’

which divides BE in the ratio (z + x) : - y is
(a+z0)-yb _ xa+(zc-yb)
(x+2)-y x+(z-y)

which is clearly also a point on the line AD dividing the same in the ratio

@-y:x

Thus, the diagonal BE is divided at two points of intersection H and H'
with the other two diagonals CE, AD in equal and opposite ratios. Hence,

! the second part.
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Another Proof.
Take A as the origin of reference. Let
- -
AB=b, AE=e.
It should be possible to obtain the position vector of every point in
the plane of the quadrilateral in terms of b and c.
Let AF=2b, AC=pe; A, p being scalars,
The equations of BC and EF are
r=b+t(pe~b), r=e+p(e~Ab).
At their point of intersection,
b+t (ue-b)=e+p(e-Ab)

= (A-t+pA)b+(W-1-ple=0

= 1-t+pA=0, w-1-p=0;
b, e being non-parallel vectors.

These give

Making substitution, we see that the point D, of intersection of the
lines BC and EF is
balr (pe-py= A=Wy nA-D)
(R B IR
Thus, the mid-points of AD, BE, CF respectively are

1A0-w, pa-d)
z[l_w be

1 1
1-7n 5(‘-"). ;(umnx

Denoting these by p, g, r respectively, we see that
A-M)p+Aipq+(-Dr=0,

where
(A=A +Ap+(-1)=0.



MISCELLANEOUS EXERCISES I

1. OAB is a given triangle such that OA =u, OB=b. Also C is a point on AB
such that AB = 2BC. State which of the following statements are correct 7

(a) i'c--:-(b--). ® A"c-%(.-b).
- 3 - 3
@ AC=Z(b+a), @) AC==(b-u)

(e) A-.CI%(I+|!).

2.0, A, B, C, D, E are five coplanar points such that
OA=n, OB=b, OC=2a+3b, OD=a-2b, OE=a+b.

Show that O, BC are parailel and OB, AD are parallel.

3. E and F are the mid-points of the diagonals BD and AC of a quadrilateral
ABCD respectively. Show that

() AB+AD+CB+CD=4EF.

(i) AB+BC+CD+AD=2AD.

4. Let OA=a and OB=b and OC=a+b.

What is the type of the quadrilateral OACB 7

5. OAB is a given triangle and P, @, R are the mid-points of the sides OA, AB
and BO respectively of the triangle. Express in terms of the vectors JA and C?B

6. The mid-points of the sides OP and OQ of a triangle O P Q are S and R

respectively. Express the vectors P-’Q,S}.SFEJM I‘E’P intcrm.lofJPanl:l C?Q
Let SO and RP meet at the point X and let

X m KX _.
so " RP
Show that
@ OX=a+m(2b-2) (i) OX=b+n(2a—b)

where JP-h and O-b-ih.
Deduce the X divides SQ and RP in the ratio 1 : 2.
63
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7. The diagonals AC, BD of a quadrilateral ABCD meet at a point E. Given that

- -
AB=a, BC=b, and that E is a point of trisection of each of AC and BD nearer

Aaswcllasﬂ.expmsinmmﬁflmdbthcm B-.Emdﬂ-l’c

8. The point E is a point of trisection of the straight line PQ such that
PE: EQ =1:2. Also R is any point not on the line PQ and F divides QR internally
such that QF : FR = 2 : 1. Show that EF is parallel to PR.

9. In the triangle OAB, L is the mid-point of OA and M is a point on OB such

oM
that ﬁ'l P is the mid-point of LM, and the line AP is produced to meet OB
at Q. Given that 6:1=a and t'TB=b, find in terms of a and b, the vectors

@) OP, (i) AP.

- - -+ —--
If AQ=AAP and OQ=yp OB, find Lm%m%
10. Points X and Y are taken on the sides QR and RS, respectively, of a

parallelogram PQRS, so that QX =4 XR and RY =4Y5. The line XY cuts the line

PR at Z. Prove that PZ=(21/25)PR.

11. The diagonals of a parallelogram ABCD intersect at E. The position vector
with respect to an origin O of A is a. Also AB=p and BC=gq. Determine the
position vectors of the vertices B, C, D, E with respect to O in terms of a, p and
q.

12. ABC is a triangle and the position vectors of the points A, B, C relative to
the origin O are a, b, ¢ respectively. The point P is on the side BC such that BP :
PC =2 ; 3, and the point Q is on the side CA such that CQ : QA = 1 : 4. Find
the position vector of the common point R of AP and BQ. Find also the ratio in which
CR divides AB.

-+ -
13. In a triangle OAB, OA=a and OB=b, Point P and (2 are taken so that

ﬁ-}’=a and EQ-ZI:. (bmiuuprndomfuﬂnvmﬁ_b and and ﬁ'mm
of a and b. mlmAandBPmeumﬂmdlhelmeDanABuS Find
the ratio in which § divides AB.

14. ABC is a triangle, D is the mid-point of AB and E is the point of trisection
of BC nearer C. Show that the mid-point F of CD is on AE and find also the ratio
AF : FE,

Let DE meet AC at L. Find the ratio in which L divides AC.

15. In a triangle OAB, L is a point on the side AB and M is a point on the side
OB and the lines OL and AM meet at §.

It is given that AS = SM and 4 05 = 30I.mdtlm

OM

OB md AB
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- -
(§) Express the vectors AM, and OS in terms of a, b and & and the vectors

OL and OS in terms of 2, b and k where OA=g and OB =b. Find h and k

(ii) BS meets OA at N. Find the ratios in which L, M and N divide AB, BO and
OA respectively.
16. ABC is a triangle and P, Q are the mid-points of AB, AC respectively. If

-+ -+ -+ -+
AB=2a and AC=12b, express in terms of a and b the vectors ({) BC, (i) PQ,

@iii) PC, (iv) BQ. What can you deduce about the line segments BC and PQ ?
17. OAB is a triangle and X is the point of the line segment AB such that

OX=2XB. If OA=a and OB=b, show that 5x=%a+§b. The line OX meets

the line through A parallel to OB in Y. Find ¥ and OX/XY.
—+ =+ —» -
18.1f OA=a, OB=h, OC=c, OD=d and the points F, Q, R, § are such that

-+ - - —+ - -+ - -+
AP=2PB, BQ=2QC, CR=2RD, D§=125A.
— -
Express PQ and SR in terms of a, b, ¢, d and show that the condition for P

Q@ R 5to be a parallelogram isa + ¢c= b + d.
19. OABCD is a pentagon in which the sides OA and CB are parallel, and the
sides OD and AB are parallel. Also

0&_2 obp 1
CcB AB 3
- -+ -+ -
Given that OA=a and OD=d, txpress each of the vectors AD, OC and

Y ox and AX
DC in terms of a and d. If the diagonals OC and AD meet at X, find "y~ D

20. OAB is given triangle; X is a point on OA such that OX=20A and Y is
-+ -
a point on OB, such that OY = %OB. The line XY meets the side AB of the triangle
at P. Find the ratio in which P divides AB. Find also the ratio in which P divides
¥X.

oL 1
21.Innlrianglc6|-w.Listlwpoinlon(]ﬂsucht}mtH'E and M is the
mid-point of AB. N is the point in which the line LM meets the side OB. Find the
ratio in which L divides MN.
22. Given a regular hexagon ABCDEF with centre O, show that

() 0B-0A=0C-0D,
(i) OD+20A=208+0F,

. -+ - -» -
(W) AD+EB+FC=4AB.
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23. The points O, 4, B, C are the vertices of a pyramid and £ Q, R, § are the
mid-points of OA, OB, BC, AC respectively.
If OA=3, OB=b, OC=c,
express in terms of 8, b, ¢ the vectors
@ OP. 00, OR and 05.
(i) OG and GH where G, H are the mid-poiats of PR, QS respectively.
State what can be deduced about PR and QS.
24. ABCD s parallelogram whose diagonals intersect at E and M is the mid-point
of DC. If
AB=a and AD=b,
express in terms of a and b the vectors
® AE ) BD Gid) MB
28, In a quadrilateral ABCD, the point P divides DB in the ratio 1 : 2 and Q
is the mid-point of AC. Prove that
2DC+ BC-2AD - AB=6P0.
a quadrilateral and
PQ=s, QR=b, SP=a-b,
M is the mid-point of QR and X is the point of SM such that

26. POR:

SX=(415)SM.
(i) Prove that PR and PX are parallel and find the ratio of their lengths.
() Express in terms of a and b the vectors PR,SM,SX and PX.
(i) What can be deduced about the line segments PX, XR.
27. Given that O is a point inside the triangle ABC and that D, E and F are the
mid-points of BC, CA and AB respectively. Show that
® Ab+BE+CE=0,
@ OD+OE+OF=0A+0B+0C.
28. 0, A, B and C are points such that
OA=2,08=b,0C=ka+M.
where k and [ are numbers. Exptm
AB‘ AC and DC
in terms of k, /, a and b, show that if k + [ = 1, then AB, AC and BC are in the
same direction. State the conclusion that follows from this, concemning the points A,
B and C and express the ratio AC : CB in terms of k and L
X and ¥ are points such that
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-+ 2 -
0X=§l and QY =2b,

e
Express XY in terms of a and b and hence show that the point Z, given by
0z= on%,{"r
is the mid-point of AB.
29, The triangles OAE, OCD are such that
- - -+ - ’
OA=a, OB=b,0C=-3a and OD=-3b.
- =, =
Express in terms of a and b the vectors AB, BC, AD and DC and state which
of them are in parallel directions.
30. In a trianglc OARB, L is the mid-point of OA and M is the point on OB such

that %-2. P is the mid-point of LM and the line AP is produced to meet OB at
0.
-t -
Given that OA=a and OB=Db find as linear combinations of a and b the
- -
vectors OP and AP.
- — - -

If AQ=hAP and OQ=kOB,
find h, k, AP/PQ and OQ/QB.

31. The position vectors of points A, B, C relative to a fixed origin O are a, b,
c respectively. If D is the mid-point of AB, and if E is the point which divides CB
internally in the ratio 1 ; 2, write down the position vectors of D and E in terms of
ab,c

Show that the mid-point F of CD is on AE and find the ratio AF : FE.

32. In the triangle OAB, M is the mid-point of AB, C is a point on OM such

that OCB%CM and X is a point on OB such that OX = 2XB, The line XC is

produced to meet OA at Y. Find
or L, XC
YA cY
33. OABC is a quadrilateral in which the diagonals OB and AC meet at X. A line

BD 3

dmnthmughﬂpmﬂldm&mﬂﬁpmdumdmﬂ.smmma'; and
AD 1

oA 2
34. The vertices P, Q0 and § of a triangle PQS have position vectors p, q and
s respectively
(i) Find m, the position vector of M, the mid-point of PQ, in terms of p
and q.
(#) Find t, the position vector of T on SM such that ST: TM =2 :1, in
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terms of p, q and 5.
(i) If the parallelogram PQRS is now completed. Express r, the position
vector of the point R in terms of p, q and 5.
Prove that P, T and R are collinear.
JS.ABChlﬁndslndDmypdnllnﬂuplmeo!aneAOBDmd
CO meet the sides BC, CA and AB in D, E, F respectively; show
oo 08 oF
AD BE CF
36. ABCD is a tetrahedron and O is any point; the lines joining O to the vertices
‘meet the opposite faces in B, O, R, S respectively. Prove that
oP 00 OR os=
AF BQ
“Take O, as origin of reference.
A

Let 0OA=3, OB=b, OC=c, OD=d.
As cvery system of four vectors is lincarly dependent, there is a linear relation

mybrzetd=0. )

We re-write (1) as
shizerm .
y+z+t yHz+t

Now (b + zc + &) / (y + z + ) is a point of the planc BCD, and

—xa (y + z + £) is a point of the line OA. Thus, this must be the point P of intersection
ofmcliumwhhmeplmeﬂcﬂ.

OP=-—%—a = ---’*“'or
yezst

Also Ap=40+0P

=-—a-———a=-————a
. yHzHt y+z+t
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Zx —(y+z+l) OP-

=-y¢u|

AP
= or
Similarly

9 _y OR_z 05 &

BQ Ix' CR Ix' DS =x
Hence

oP 00, OR 05 _,

37. Any plane cuts the sides AB, BC, CD, DA of a skew quadrilateral in P, 0,
R, S respectively, prove that

Let b, ¢, d be the position vectors of the points B, C, D
respectively with reference to A as origin.
Let

R B,
DR s

P

S0 that the position vectors of the points £, O, R, § are
Ab Aget+b Adic _d
R A VI I VTR W

A B

respectively.
Denoting these by p, 4, 1, § mpemv:ly, we proceed to find a relation between
same independent of b, ¢,

a,u)q_a,un,ub-x,xjd

= "' p A+ D+ + DA =Aphy(A, +1)5=0.
An.howwﬂ' P» G, T, 5 are the position vectors of four coplanar points, we have
Bl 414y + DAy ~hphy(hy +1=0,
1
= AAAR =L

Hence the result.



3

Scalar Product

Introduction. The concept of the Scalar product of two vectors, as a
result of which a scalar is associated to any given pair of vectors, will be
introduced in this chapter. The justification for the use of the word Product
lies in the fact that the so-called scalar product of two vectors is a scalar
proportional to the length of each of the two factor vectors and also obeys
the Distributive Law like the product of numbers. Also one very. imporiant
use of the notion of scalar product is that it enables the lengths of vectors
and the angles between pairs of vectors to be expressed in terms of the same
and thus provides an analytical tool for the study of Metric Geometry.

It will also be possible to obtain various formulae of the three
Dimensional Cartesian Geometry simply as a result of translation in terms
of cartesian co-ordinates of the corresponding Vector notation formulae.

Some well-known properties of tetrahedra amenable to treatment by
scalar products will also be obtained

3.1. SCALAR PRODUCT
3.1.1. Scalar Product of Two Vectors

Def. The scalar product of two vectors a, b is the scalar
lal Ibl cos @
where, 8, is the angle, between the vectors a and b,

Also the scalar product of any vector with the zero vector is, by
definition, the scalar zero.

The scalar product of the vectors a, b is denoted by the symbol
a.b.

and is, on this account, also called the Dot product of the two vectors a,
b.

Thus, we have, by definition,
a.b=lal |bl cos9;
O being the angle between the vectors a, b,

70
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Note. It may be easily seen that the scalar product of two vectors remains
unaltered when they are replaced by vectors equal to the same so that
a=a and b=b = a.b=a.b

Ex. D is the mid-point of the side BC of a triangle ABC. show that

e e
DA.DB+ DA.DC=0,

3.1.2. Sign of the Scalar Product
Def. If a, b be two non-zero vectors, then the scalar product
a.b=lal Ibl cosB

is positive, negative or zero, according as the angle, 8, between the vectors
is acute, obtuse or right.

g 90° 9
a - a a
Fig. 3.1

Thus
Qisacue = cos8>0 = a.b>0,
Bisright = cos89=0 = a.b=0
Oisobtuse = cosB<0 = a.b<(

We notice that if a, b be two vectors, then their scalar product will
be zero if and only if, either one at least of the two vectors is the zero
vector or the two vectors are at right angles to each other. Thus

a.b=0 = a=0 or b=0 or 6 =905
0 being the angle between the vectors a, b.

It is very importiant to remember that the scalar product of two non-
zero vectors is zero if and only if they are at right angles to each other

3.1.3. Length of a Vector as a Scalar Product

If a be any vector, then the scalar product a.a of a with itself is given
by
sa.a=lal lalcosO=1lal
Thus, the length | a | of any vector, a, is the non-negative square root
1f(a.a) of the scalar product a.a.
A convention. a.a will be denoted as a?, so that a2, is a scalar which
equals the square of the length of a.
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3.14. Angle between Two Vectors in terms of Scalar Mroducts
If © be the angle between two non-zero vectors, a, b, we have
a.b=1al Iblcos b,
a.b - cos™! a.b ]
lal Ibl (+42.8)(+(b.b)

= 0=cos™

Ex. 1. Is it true that .
) a.b=a.c = b=c? (i) a.b=0 = alb?
Ex. 2. Give two points O, A; identify the locus of the point P in each of the

following cases :

- - o o Lo o
@) OP.0A>0, (i) OP.0A=0. (@) op.0A <.

Ex. 3. Given two points A, B, what is the locus of the point P such that

- = - > - -

({) PA.PB<0. (i) PA.PB=0. (ii) PA.PB>0.

Ex. 4. Given that a, b are two vectors of lengths 1 and 2 respectively and
a.b=—+3. What is the angle between the vectors a and b ?

Properties of Scalar Product. We shall now obtain some basic
properties of scalar product.
3.1.5. Commutativity

a.b=>b.a,

for every pair of vectors a, b.

This property is obvious from the definition.
316, a.(~by=-=(a.b); (-a).(-b)=a.b forevery pair of vectors,
a, b.

The proof is simple. [Refer Fig. 3.2]

b b

0 i) _ . —-a 0

Fig. 3.2
3.1.7. ma . nb = mn (a, b) where a . b are any vectors and m, n any
scalars.
Let m, n be both positive, so that the angle between ma and nb is the
same as that between a and b.



We have

i
&
n

Imal Inbl cos®
Iml lal Inl Ib[ cos B
=mnlal |Iblcos®=mn (a.b)

Let now m be positive and n be negative so that the angle between ma
and nb is m — 68; O being the angle between & and b.

We have

ma . nb

Imal I nb| cos (- 0)
Iml lal Ilnl Ib) (-cos @)
-mnlal |bl (-cosB)
=mnlal |Iblcos®@=mn(a.b)
Other cases may be similarly disposed of.
3.1.8. If the scalar product of a vector, r, with each of three non-
coplanar vectors is zero, then, r, must be the zero vecior.

]

This follows from the fact that no non-zero vector can be perpendicu-
lar to each of three non-coplanar vectors.

In particular, if a vector, r, is perpendicular to every vector, then r
must be the zero vector.

_’
3.1.9. Letb = PQ and let L, M be the feet of the perpendiculars for P
and Q on the support AB of the vector a.

P+

ayY
)

[}
[}
i
L]
M
Fig. 3.3
The projection of b upon AB = LM =1b | cos 6.
Thus, the scalar product a . b is the product of the length of a, with
the projection of b, upon a, taken with the proper sign.
3.1.10. Distributivity

Scalar multiplication of vectors distributes the addition of vectors.
‘We have to prove that

a.(b+c)=a.b+a.c
for all vectors a, b, ¢

S
[l e
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This property is an immediate consequence of the fact that the
projection of the sum of two vectors on any line is equal to the sum of their
projections on the same line.

2-.._._....._...........

r----
Ix-------
Ry

Fig. 3.4
Let

- - —
AB=b, BC=c sothat AC=b+c.

Let L, M, N be the feet of the perpendiculars from A, B, C on the line
of support of the vector a.

Let
prb, pre, pr(b+c)
denote the projections of b, ¢ and b + ¢ on a.

We have
prb = LM, pre = MN, pr (b + ¢) = LN,
so that pr(b+c¢) =prb + pre
Thus a.(b+c)=lalpr(b+c¢)

=lal(prb + pre)
=lalpb+lalpce=a.b+a.c
It may also be shown that
a.(b-¢)=a.b-a.c
We have
a.(b-c)=a.[b+(-¢)
=a.b+a.(-0¢
=a.b+[-(a.c))=a.b-a.c
3.1.11. Some Simple Identities
) @+b.(a-b)=a.a-b.b=a’-b,
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(@) (a+b)y

(a+b).(a+b)
a.a+2a.b+b.b=a’+2a.b+b?
(a-b).(a-b)
=a.,a-2a.b+b.b=2a’-2a.b+hbk
These identities are simple consequences of the fact that the scalar

multiplication distributes the addition of vectors and of the other results
in § 19.

We may also note that

(i)  (a-b)

n.b:%(la+blz—ln—blz}.

so that the scalar product of two vectors is expressed in terms of the
lengths of their sum and difference.

'‘APPLICATIONS
EXAMPLES

Example 1. Cosine Formula for Triangles. To prove that for any
triangle ABC

¢ = b + a? - 2ab cos C
in the usual notation of plane Trigonometry.

Solution. We have

- = —
AC+CB=AB

- - - -+ -+ =
= (AC+CB).(AC+CB)= AB.AB
A
B/:\\C
"=c
Fig 3.5
-+ -
= AC? +CB* +2AC .CB = AB*
= B +a®-2abcos C=cL

Example 2. Projection Formula for Triangles. To prove that for any
triangle ABC

c=bcos A+ acos B
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4
A
o c

Fig. 3.6
Solution. We have
> o
AC +CB=AB
P S SO
= AC.AB+CB.AB=AB.AB
= bccos A+ cacos B=c?

= bcosA +acosB=c
Example 3. Show that the diagonals of a rhoi=bus ure at right angles.

D
A B
Fig. 3.7
Solution. Let ABCD be a rhombus.
We have
T N S
AC.BD = (AB+ BC).(AD- AB)
- e o
=(AB+ AD).(AD- AB)
- - - -
=(AD)? -(AB)? = (AD)* - (AD)* =0
5 o
= ACLBD.

Example 4. Show that the sum of the squares of the sides of any
quadrilateral (plane or skew) equals the sum of the squares of its diagonals
together with four times the square of the line joining their middle points.

D d-c C
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Solution. Take the vertex A as origin.
Let b, ¢, d be the position vectors of the vertices B, C, D.
The position vectors of the mid-points P, Q of the diagonals AC, BD

are %c‘ -;—(h+d) respectively. We have
AB? + BC? + CD* + DA?=b? + (c - b} + (d - ¢ + d?
2B+ 2+ @) -2(be + cd)
12
Also AC* + BD? + 4PQ=c? + (d- bR + 4 [%u.m)-%c]

=207 + & + d?) -2 (bie + c.d).
Hence the result.

Example 5. D is the mid-point of the side BC of a triangle ABC; show
that

AB? + AC? = 2 (AD® + BD?).

A
B
5 c
Fig. 39
Solution. We have
o o
AB=AD + DB
P
= AB? =(AD + DB)*
= AD*+DB* +2AD .DB. )
Also we have
AC=AD=DC
= AC? = (AD+DC)?
o "
=AD?+DC? +2AD.DC. i)

Adding (i) and (i) we get
PO
AB? + AC? = 2AD* +2BD" +2 AD (DB+ DC)
=2(DA? + DB?), for DB+DC=0.
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Example 6. ABC and A B,C, are two coplanar triangles such that the
perpendiculars from A, B, C to the sides B,C,, C\A,, A,B, of the triangle
A,B\C, are concurrent; show that the perpendiculars from A,, B,, C, to the
sides BC, CA, AB of the triangle ABC are also concurrent.

Solution. Let the position vectors of the vertices of two triangles with
respect to any origin O of reference be

a,b,c;a,b, ¢,

Let the perpendiculars from A, B, C to the sides of the second triangle
concur at a point /f with position vector h.

Now

AH 1L BC, = (h-a).(c,~b)=0,
BH1CA = (h-b).(a,-¢)=0,
CHL1AB = (h-c).(bj-a)=0.
Adding we obtain
Z(h-a).(c;-b)=0
= Za. (e, -b)=0
= Za, . (c-b)=0. L)
Again, let the perpendiculars from B,, C, to the sides CA, AB of the
triangle ABC meet at H, with position vector h;. Now
BH LCA = (hy-b).(a=¢c)=0 (7))
CH LAB = (h;-¢).(b-a)=0. (i)
Adding (), (i) and (i), we get
(hy—a) . (c-b)=0
= AH 1BC
Hence the result.
Example 7. Show that the circumcentre, the centroid and the

orthocentre of a triangle are collinear and the centroid divides the join of
the circumcentre and the orthocentre in the ratio I : 2.

Solution. Let O, G, H denote the circumcentre, centroid and orthocentre
respectively of a triangle ABC.

Let a, b, ¢ be the position vectors of the vertices A, B, C of the triangle
with respect to the circumcentre O, as the origin of reference.

- -

0 G B
Fig. 3.10

We have
OA =0B=0C

= al=b?=¢? (£)
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Also the position vector of G is
> 1
OG=§(I+|14-:).

We have, by (i)
(@a+b+c)-al.(b-c) =0,
(a+b+c)-b].(c-a)=0,
(@+b+c)-cl.(a-b)=0.

5o that if H’ denotes the point with position vector
a+b+ec,
we sce that
H'ALBC, H'BL1 CA H'CLAB
so that H is the orthocentre of the triangle ABC
and we have (;;l=-+b+c.

Thus, we have

-

OH =30G
= G divides OH in the ratio 1 : 2.
Hence the result. '

Example 8. If two pairs of opposite edges of a tetrahedron are at
right angles, then show that the third pair is also at right angle. Further
show that for such a tetrahedron, the sum of the squares of each pair of

opposite edges is the same.

Solution. Let OABC be a given tetrahedron such that

OA L BC and OB L CA.

Let
- - -
OA=a, OB=b, OC=c.
Now
> o
OALBC = OA.BC=0
= a.(c-b)=0 = a.c=a.b
Also
- o
OBLCA = OB.CA=0
= b.(a-c)=0 = b.a=b.c

From the results (i) and (i), we have
a.c=a.b=b.c

o)

i)
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a.c=b.c = (a-b).c=0 . (11))]
-+ -
= BA.OC=0 = OCLAB
Again
- -+
OA? + BC? = (0A)* +(BC)?

=a’+(c-bP=a>+b*+c*-2b.c
Similarly, we have :
OB + CA’=a2+b* +c2-2c.n,
OC + AR =22 +b* +c?-2a.h
Thus, we have
OA? + BC? = OB® + CA? = OC® + AB.
fora.b=b.c=c.a
Example 9. If the perpendiculars from two vertices B and C to the

opposite faces of a tetrahedron ABCD intersect, then BC is perpendicular

to AD and the perpendicular from A and D to the opposite faces also
intersect.

Solution. Take A as the origin of reference. Let

-+ -+ -+
AB=b, AC=¢, AD=d.
Let the perpendiculars from B and C to the opposite faces ACD and
ABD meet at a point H whose position vector is h. Thus, we have

—» -+ —+ -+
BH1AC = (h-b).c=0; BHLAD = (h-b).d=0,

- = - -+
CH1AB = (h-¢).b=0; CHLAD = (h-c).d=0.
These give
h.c=b.¢, h.d=b.d
{ll.h=b.c, h.d=c.d
= b.d=c.d = (b-¢).d=0 = BC.1AD.

Let K be the foot of the perpendicular from A to the opposite face
BCD and let k be its position vector. As AK is perpendicular to the plane
BCD, we have

k.(ce-b)=0, k.(b=-d)=0
= k.c=k.b=k.d

We shall show that there is a point L on AK such that DL is
perpendicular to the face ABC. If Ak be the position vector of this point,
the two equations

(Mk-d).b=0, @(k-d).c=0
must be consistent in relation to A.
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These equations are really the same for
k.b=k.c and b.d=c.d,
so that A is determined.
Hence the result.
Example 10. Prove that the angle in a semi-circle is a right angle.
Solution. Let O be the centre
and AB the bounding diameter of P
the semi-circle. Let P be any point
on the circumference. With O as

. - -
origin, let OA=a, OB=-a and

o

OP=r. H 5 i
Obviously, OA = OB = OP,

cach being equal to radius of the semi-circle. Fig. 3.1

AP=r-a and BP=r-(-a)=r+a
A‘}’RB”P:(r—l)A(ri-l):rz—l’
= 0P - 0A’=0
= AP and BP are perpendicular to each other, ie., Z APB = 90".
Example 11. The base BC of a AABC is divided at D so that mBD
= nCD. Show that mAB? + nAC? = mBD?* + nCD?* + (m + n) AD*.
Solution. With A as origin, let the A
position vectors of B and C be b and c.

- -
mBD=nDC

5
= mDB+nDC=0 g D ¢
Now, Fig. 3.12
> — R
AB? = (AB)* = (AD+ DB)* = AD* + DB +2AD.DB
- 5 o - o
AC? =(AC)? = (AD+ DC)* = AD* + DC* +2AD.DC
Multiplying by m and n respectively and adding, we get
mAB? + nAC? = (m + n) AD? + mBD?

5 s s
+nDC? +2AD . (m DB +nDC)
= (m + n) AD? + mBD* + nDC%.
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Example 12, Prove that if a point is equidistant from the vertices of
a right angled triangle, its joint to the mid-point of the hypotenuse is
perpendicular to the plane of the triangle.

Solution. ABC be a right
angled triangle and let D be the
mid-point of its hypotenuse BC.
Let P be any point and a, b, ¢, ¢
the position vectors of A, B, C

and P respectively.
Given PA = PB = PC

= PA? = PB? = PC?

Fig. 3.13
= @a-rP=(b-r=(c-rp? (1)
n = b-r).b-r)=(C-r).(c-r)
= P+P2-2b.r=c?+2-2c.r
= bP-c2-2(.b=-r.c)=0
= (b-=¢c).(b+c)-2r.(b-¢c)=0
= (b-c).[(b+c)-2r]=0
= z(b—c}-[-'ﬂ— ]=u
2
=+ =
= CB-PD=0
= CB is perpendicular to PD. (1)
Let E be the mid-point of AB.
Then
mn = (@a-r2=@®b-r?
- 2(a—b)-(“;"-r)=o
- =
= 2BA.-PE=0
= BA is perpendicular to PE. -(2)

Since D and E are mid-points of BC and AB respectively, DE must be
parallel to AC. Again, AC is perpendicular to BA.

Hence, DE is perpendicular to BA, ie.,
-
AB-DE=0 ()
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Now,

- - -
AD= AB+BD
-+ = - = -
AD. DP =(AB+ BD)-(DP)

-+ 3 =+ -

=AB- DP+BD-DP
-+ - - =
=AB- DP-!-EBC-D
[+ D is mid-point of BC]

= AR.DP by (1))

-+ =

= AB-DE+AB-EP=0, [by (2) and (3)]

= DP is perpendicular to AD. -.(4)

From (1) and (4), it follows that PD is perpendicular to both CB and
AD and hence, PD must be perpendicular to the plane of A ABC.

10.

EXERCISES

Prove that the altitudes of a triangle are concurrent.
Prove that the right bisectors of the sides of a triangle are concurrent.

Show that the mid-point of the hypotenuse of a right angled triangle is
equidistant from its vertices.
Show that a parallelogram whose diagonals are equal is a rectangle.

Show that a quadrilateral whose diagonals bisect each other at right
angles is a rhombus.

Two medians of a triangle are equal, show that the triangle is isosceles.

Show that the diagonals of a trapezium having equal non-parallel sides

are equal and conversely.

Show that the sum of the squares on the diagonals of a parallelogram

is equal to the sum of the squares on its sides.

Show that the sum of the squares of the six edges of a tetrahedron is

equal to

(i) four times the sum of the squares of the lines joining the vertices

to its centroid;

(i) four times the sum of the squares of the lines joining the mid-
points of its opposite edges.

Show that the sum of the squares of the four diagonals of a

parallelopiped is equal to the sum of the squares of its edges.
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Show that the sides of a trapezium having equal non-parallel sides are
equally inclined to the parallel sides.
A triangle OAB is right angled at O; squares OALM and OBPQ are
constructed on the sides OA and OB externally.
Show that the lines AP and BL intersect on the altitude through Q.
Show that a parallelopiped with equal diagonals is a cuboid.
Also show that a cuboid such that the angle between any two of its
diagonals is the same is a cube.
If a straight line be perpendicular to each of two intersecting straight
lines at their point of intersection, prove that it is perpendicular to every
line in the plane determined by the two lines.
In a tetrahedron OABC, OA 1 BC, show that
OB? + CA? = OC? + AB.

If two opposite edges of a tetrahedron are equal in length and are at
right angles to the line joining their mid-points, show that the remaining
pairs of opposite edges have the same property.
The line joining the mid-points of two opposite edges of a tetrahedron
is perpendicular to the edges. show that the remaining pairs of opposite
edges are equal. Also prove the converse.
ABCD is a tetrahedron such that the perpendiculars AK, BL, CM and
DN to the opposite faces are concurrent. Prove that

() any two opposite edges of the tetrahedron are orthogonal.

(ii) K is the orthocentre of the triangle BCD.

Two opposite edges AB, CD of a tetrahedron are perpendicular to each
other; show that the distance between the mid-points of BD and AC is
equal to the distance between the mid-points of BC, AD.

ABCD is a tetrahedron and G is the centroid of the base BCD. Prove
that

AB? + AC? + AD? = GB? + GC? + GD? + 3GAL

3.2. ORTHOGONAL BASES

It has been seen in Chapter 1 that a linearly independent set of three
vectors can be considered as a Base in the sense that any given vector can
be expressed as a linear combination of its members. Also we have seen that
any non-coplanar triad of vectors is a linearly independent system.

In view of the concepts of the length of a vector and angle between
veclors as introduced in this chapter, it is possible lo consider as Bases
systems such that

(i) Length of each member of the system is unity;
(it) and any two members of the system are mutually perpendicular.
Such bases are known as Orthogonal.
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Let i, j, k denote vectors of unit length along three perpendicular lines
as shown in the figure. As the length of each of the vectors i, j, k is unity
and they are mutually perpendicular. We have the relations

i.i=1 j.j=1, k.k=
i.§=0=j.i, j.k=0=k.j,

o)

Fig. 3.14

3.2.1. Scalar Product in Terms of Components
Let two given vectors a, b expressed as linear combinations of the
vectors i, j, k of an orthogonal base be
a=aji+aj+ak b=bhi+bj+bk
Making use of the property that scalar multiplication distributes the
sum of vectors and of the relation (i), we obtain
ab = @i+ ay + a) . (b + by + bk) = ab, +ah, + ahy.
3.22. Length of a Vector and Angle between Two given Vectors
We have
a=gi+aj+ak = laP=a.a=a’+a?+al
Also the angle © between the vectors
a=aji+aj+ak b=bi+bi+bk
is given by
_ab by +asb, +asby .
Tal Ibl foZ a2y ad) (6 +52 +52)
Cor. For the perpendicularity of the two vectors
aji + ayj + ak, bji + byj + bk,

we have
(ai + ajj + ak) . (byi + by + bk) = cos 90° = 0
+ayb, + ahy = 0.
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EXAMPLES
Example 1. Given two vectors
a=i+j-k b=i-j+k
find a unit vector ¢, perpendicular to the vector a and coplanar with a and
b. Find also a vector @ perpendicular to both a and c.
Solution. Any vector coplanar with a and b is
AMi+j-R+pl-j+R=QA+Pi+A-pi+Cr+pk
This will be perpendicular to a if
A+ 1+A-p. 1+CA+pED=0
S A+p+A-p+A-p=0 = A -p=0 = p=3A
Thus, the unit vector perpendicular to a is
2 (41-25+2k) where A28 =1 > A=—b

7

Thus
c J_m 2j+2K) J_(Zl j+K).
If pi + gj + rk is the required unit vector d then, because of its
perpendicularity to both a and ¢, we have,
p+q-r=0; 2p-qg+r=0
which give p=0, g=r. [By taking a .d =0 and c. d = 0]
Thus, the required vector d is given by (1/42)(j+K).
Example 2. Given two vectors
a=2i-3+k b=-i+2j-k
Find the projection of a on b and that of b on a.
Solution. Let 8 denote the angle between the vectors a and b, so that
Ibl cos O is the projection of b on a and Ia | cos 8 is the projection of a
onb.

We have
a -9
lalcos®= —=—
and @ lcos - J6
Hence the results.
Example 3. Prove that cos (B - A) = cos A cos B + sin A sin B.
Solution. Let ZXOL=A, £XOM=B.

Draw oY 1 OX.
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Let i, j denote unit vectors along OX and OY.

Fig. 3.15

If P and Q be points on OL and OM such that 5}’ and JQ are unit
vectors, we have

t'.;:P=(cosA)i+{sin.4)j. JQ=(cosB)i+(sinB)j.

-+ =
= OP.-0Q=cosAcosB+sinAsinB.
Also by def.

-+ = '
OP-0Q=11cos(B—A)=cos (B-A).
Hence the result.

Example 4. If a and b are unit vectors and 8 is the angle between

I -~ -
them, show that sin(6/2)=—la-bl.

Solution.  |a-bI*=(@-b).(a-b)

Example 5. If a, b, ¢ are mutually perpendicular vectors of equal
magnitude, show that a + b + ¢ is equally inclined to a, b, c.
Solution. Given that : I
b.a=a.b=b.c=c.b=a.c=c.a=0 ..(1)
and lal=1bl=l¢l (2)
Now,
la+b+clP=@+b+c).(a+b+¢c)



A Textbook of Vector Algebra

=a.a+a.b+a.c+b.a
+b.b+b.c+c.at+c.b+c.c

=3laP
la+b+el=+3lal.
Lete,.a,.e,bennghsnwh:ch-¢b+eunmhnedlo-.b.c
% then +bte)a _ la 1

cos

Tasbecilal Y31af 3
1
Similarl, €080, =cos 63 =—=.
y 2 Cha 4
= 6,=6,=9,
Example 6. If a, b are vectors and a, b their lengths, show that

EXERCISES

1. Find the lengths of the following vectors :

3+2j-k, 203k, Si+dj-2k.
2. Find the angles between the following pairs of vectors :
@ i-j+k -1+j+2%k, @) 3i + 4), 2j - 5k,
Gi) A-3k 1+j+k

3. Find the unit vectors perpendicular to each of the following pairs of
vectors :

@i-J+k 1+2-k @2A+k 1+j+k

Gii) i+§ i-j+k @M2A+j+k i-2+k
4. Determine the unit vectors which make an angle of 60° with | - j and

an angle of 60° with | + k.
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5.

?‘

Given that i, j, k is an orthogonal base, show that

1 1
L yzUtk. ‘;(l‘k)
is also an orthonormal base.

Given that i - J, i + 2§ are two vectors. Find a unit vector coplanar with
these vectors and perpendicular to the first vector I - J. Find also the unit
vector which is perpendicular to the plane of the two given vectors. Do
you thus obtain an orthonormal triad ?

Let
@ a=i-J b=i+k,
@) a=i+j+k b=i+2j-ok

Find in each case a unit vector ¢ perpendicular to  and coplanar with
a and b. Also find a unit vector d perpendicular to both a and c.

Given that
asi+j+kg-b=i-j+k c=i+j-k
evaluate
@ @.D+®d.o)+(c.a);
@) @.0c+(c.b)a
(i) (@+2b).(a+(a.c)bl
Given the vectors a and b as follows :

@ a -2(-%“%&; b=i+2j+ ok

) a=i+j+k b=Bir3j-2k.

Find in each case the projections of a on b and of b on a.

3.3. APPLICATIONS TO CARTESIAN GEOMETRY

Rectangular Cartesian Coordinates and Position Vectors. We shall
now consider some preliminary applications to Cartesian Geometry. The
major results will be obtained in the following chapter with the help of
scalar triple products.

Take any point O and three mutually perpendicular straight lines OX,
OY, OZ through O. Let A, B, C be three points on these lines such that

- - -
OA=i, OB=j, OC=k,

where i, j, k denote mutually perpendicular unit vectors.
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X Fig. 3.16
Let P be any given point. Through P draw planes parallel to the three
planes BOC, COA, AOB meeting OA, OB, OC in L, M, N respectively so that
we obtain a rectangular parallelopiped having OP as a diagonal. We have
2> =2 -
r=0P=0M+ MP
-2 = =
=OM+ML'+ L'P
- = -
= OM+ON+ OL

5> 5 o
= OL+OM+ ON.

There cxist 3 scalars, x, y z such that
—» - — - - -
OL=x0A=xi, OM=y0OB=yj, ON=z0C=zk
Thus, we have
N r=x+yj+zk

Here OP=r has been expressed as a linear combination of three
mutually perpendicular unit vectors i, j, k.

The numbers x, y, z are Rectangular Cartesian Coordinates of the
point P with respect to OX, OY, OZ respectively as coordinate axes (compare
10.2 Page 16 Chapter 1).

Thus, with reference to the coordinate axes chosen as above, we see
that the statement that '

xi + yj + zKk is the position vector of a point < x, y, z are the rectangular
cartesian coordinates of the point.
3.4. DISTANCE BETWEEN POINTS WHOSE RECTANGULAR
CARTESIAN COORDINATES ARE
Px,yp 2 Q(xy ¥y 3)
The position vectors of the points P,  are
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- -
OP = xji+y,j+uk OQ=x;i+y,j+2k respectively.
We have
> o o
PQ=00-0P=(x,-x)i+(y;—y) j+(z—z)k
so that

- o
PQ* =PQ.PQ=[(x,~x)i+(y, =3 i +(z ~2) K.
[y =x)i+ Op=-y)i+(-2)kl
=0p-x)P+ -yl + (-7
3.5. DIRECTION COSINES OF A LEE
Consider any directed line and let OA denote the vector of unit length
parallel to this line. z

A
0, Y
X
Fig. 3.17
>
Let OA = li+mj+nk.
We have
-
OA.i=(i+mj+nk).i=1
= 1.1.cosa=l = I=cosa

where a denotes the angle which the given line makes with x-axis.

Similarly we may show m = cos B, n = cos y where B and y denote the
angles which the given line makes with y-axis and z-axis respectively.

Thus, ifli + mj + nk
denotes a vector of unit length parallel to a given linc, then |, m, n arc the
direction cosines of the line.

Cor. The sum of the squares of the direction cosines of any line is
unity.

- -
We have OA .OA = (li+ mj+nK) . (fi-+ mj+nk)
= 1=8+m+nd
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3.6. ANGLE BETWEEN TWO LINES
Let I, m, n;; L, my, n, be the direction cosines of two given lines.
The vectors of unit length along the given lines being
hiemignk bLitmj+nk

Fig. 3.18

we have
1.1.cos 8= (i +mj+nk). (hi+mj+nk)
= cos 0 = LI, + mym, + nn,
where 8 denotes the angle between the two lines.
The lines will be perpendicular if
Ll + mm, + nn, = 0.
EXAMPLES

Example 1. Find the angle between the lines AB, AC where A, B, C
are the three points with rectangular cartesian coordinates
,2-n, 203 G-1.L2
respectively.
Solution. In terms of usual notation, the position vectors of the given
points are - -
=i+2j+k, OB=2i+3k, OC=3i-j+2k,
O being the origin. Thus, we have
AB OB 0A=l 2j+4k, AC= OC OA 2i-3j+3k
AB.AC = (i-2j+4K). (2i-3j+3k) = 20.
-
AB? = (i-2j+4Kk) . (- 2§ + 4k) = 21.
3

C? = (21-3§+3K). (21-3j+3k) = 22.
If @ denote the angle between AB and AC, we have
-> =
AB.AC 20
cos@=—"C o
Bz

>
1ABI IACI
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Example 2. A line makes angles o, B, v, § with the diagonals of a
cube; show that

4
cos’a +cos™P+cos’y +cos?5 ==

3
Solution.
c s
R | -L

: P
x

0 1| /4

i
B ]
Y
Fig. 319

Since the angle will remain unchanged for any size of cube, consider
a unit cube. Represent the coterminous edges t;A, (;B, (;C by unit vectors
i Jy ke
o
Then OA=1, 0B=}, 0C=k,
S s s o
OP=0A+AQ+QP=i+j+k
o -
CO=-k+i+], AR=-i+k+]
and BS=i-jik

OP=CQ=AR=BS=13.
Let any line OL be given by

0L=xi+yj+zk
If a be the angle between OL and OP, then

- -
OL .OP =OLxOP xcos &

= (ﬂ"!]*lk)«(l*l+k)=‘/(x’+yz+z2).\ﬁcosu
cosq=—EFY¥D
= Js](xz-i-yz-fzz)
Similarly,
(x+y-2)

B=
cos ﬁg(xz-vy’&‘z‘)
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(x+y+2)

cosy =
J—J(x +y2+2%)

(-y+2)

cosd=
By )
5

o cos?o+cos?B+costy +

Gy +2 +(x+y-2)  +(=x+y+2) P +(x—y+2)*
3G2+y +2%)
4(; +y ?+2%) 4,
T3 +yierd) 3
EXERCISES
(In the following 1, J, k denotes an onthonormal base.)

1. Find the distance between the points whose position vectors are given as
follows :

@4i+3j-6k -20+j-k; (i)-20+3j+5k 7~
2. ﬁndudhwvaebewemxbepmsofpmnuwhnsecmmmm-dmms

(l')(—l 1,3), 0,56y @)(23,-1), (2,6,2).

3. Find the angle between the lines parallel to the following pairs of vectors :
@M6i+2j+3k 3i+12j+4k (@)i+2)+3k -i+j+2k

4. What are the direction cosines of the joins of the following pairs of points :
®6.3.2. 514 @)@3-47, 0.25).

5. Given that P, @, R, S are the poinis (6, =6, 0), (- 1, =7, 6), (3, -4, 4),
(2, =9, 2) respectively, show that PQ L RS.

6. Find the angle between the lines joining the following pairs of points :
®©41), 2.3.-1); ()@&50. 262

7. Show that the points

Go-1L 1, (7,-4,7, (1,-6,10), (-1,-3,4)

are the vertices of a rhombus.

8. Show that the join of points (1, 2, 3), (4, 5, 7) is parallel to the join of
the points (- 4, 3, - 6), (2,9, 2).

9. Show that the points

4.7.8), 23,49, -1,-2,1), (1,2,5)

arc the vertices of a parallelogram.

0. Show that the line AB is perpendicular 1o the line CD if A, B, C, D are
the points (2, 3, 4), (5, 4, - 1), 3, 6, 2), (1, 2, 0) respectively.

1. Show that the three angles of the triangle with vertices

a,-L1, 23-1 3,02

are
L 17

-_2
> g o T
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12. The points P Q. R have rectangular cartesian coordinates (1, 1, — 1),
(4,1,2) and (- 2, 1, 2) respectively. Which of the following is true for the
triangle POR 7
A. All the sides have the same length.

B. OR=2 PQ.
C. Angle PQR is a right angle.
D. The area of the triangle is 18 square units.

13. Find the angle between two diagonals of a cube.

14. 1 the edges of a rectangular parallelopiped are , B, y, show that the angles
between the four diagonals are

S olaplay?
o?+pP4y?

15, With reference to mutually axes A, B,Cand D poi
(=6, 1, 6), (6. -2, 3), (-2, -3, — 1) and (-5, -9, - 7) respectively.

« Snow um the points A, B and D lie on the surface of a sphere with

R

() lf DCE is a diameter of the sphere, find the coordinates of E.
Giii) Prove that the angle BCA s a right angle and that angle BCE equals
angle ECA. -
(iv) Show that the diameter DCE does not lie in the plane of the triangle
ABC.
SUMMARY
1. The scalar product of two vectors is the product of the length of
one vector and projection of other on it.
2. The square of the length of the vector a is
a. a denoted by lal.
3. The angle between two vectors a and b is
_a.
lal bl
4. If a, b are two non-zero vectors, then
a.b=0 ¢ aandb are perpendicular.
5. Scalar multiplication distributes the addition of vectors.
6. 1f i, j, k denote mutually perpendicular vectors, each of unit
length, then
i 1, j.j
i.j=0, j.k=0, k.i=0,
7. A base consisting of three mutually perpendicular vectors is
called orthogonal. In case each vector is of unit length, the base
is called orthonormal.
8. (a)f + 4y + ak) . (byi + byj + byK) = ab, + ayby + ahy.

9. (i) Length of a vector a,i + @, + a;K is y(a?+a2+a3).

(if) Angle between two vectors

k.k=
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aji+aj+ak and bji+bj+bk

-1 aby +ayb, +
a3 +ad) (bj +b3+b))
(iii) The vectors aji + a,j + a)k, bji + b,j + bk
are perpendicular if and only if
ab, + ab, + asby = 0.
10. If OX, OY, OZ be three mutually perpendicular axes and i, j, k are
unit vectors along OX, OY, OZ respectively, then
. (% y 2) are the coordinates of P
<> xi +yj + zk is the position vector 5’? of P.
OBJECTIVE QUESTIONS
For each of the following questions, four alternatives are given for the
answer. Only one of them is correct. Choose the correct alternative.
a,i + a,J is a unit vector perpendicular to 4i - 3j if
(@a=26 8,=8 (b)a=3 a=4
€ 2=238 2,=6 @) a =4, a,=
fa=2i-3,b=2+3k then (@a+b).@-b)=
@0 ®) -8 ©9 @ -10
> o o
If PO+0Q=Q0+OR, then P, Q, R are
(a) the vertices of an equilateral triangle
(b) the vertices of an isosceles triangle
(c) collinear (d) None of these

The triangle ABC is defined by the vertices A (1, - 2, 2),
B(1,4,0) and C (- 4, 1, 1). Let M be the foot of the altitude drawn

Lol

N

w

»

-
from the vertex B to side AC. Then BM =

@ (=207, - 3077, 10/7) (b) - 20, - 30, 10)

@© @3- (d) None of these

The vector b, which is collinear with the vector a = (2, 1, - 1) and
satisfies the condition a . b = 3, is

"

@ (1, 12, - 112) ®) 3,153, - 113)
(c) (172, 1/4, - 1/4) @ (1,1,0

6. The angle between a and b is n/ 6, then angle between 2a and 3b
is

(@ =/3 ® =/2 (©) =/6 (d) None of these
7. 1f © be the angle between the vectors i + j and § + k, then 8 is
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10.

11.

12

13.

14,

15.

16.

17.

18.

(a) 0 b) /4 (c) /2 (d)n/3

If a, b, ¢ are three vectors such that each is inclined at an angle
n/3 with the othertwo and lal=1,1b1=2,1¢ | =3, then the
scalar product of the vectors 2a + 3b — 5c and 4a — 6b + 10c is
equal to

(a) — 334 (b) 188 (c) — 522 (d) — 514
Ifa+b+c=0,lal=3,Ibi=35,|cl=7, then the angle between
aand b is

(@) n/6 (b) 2n/3 (c) 5n/3 (d ni3
Projection of the vector 2i + 3j — 2k on the vector i — 2j + 3k is
(@ 2/7J(14) &) 17 (14) () 37/ J(14) (d) None of these

The points A (1, 1, 2), B (3, 4, 2) and C (§, 6, 4). The exterior angle
of the triangle B is

(@) cos™’ [—SIJ(ST)] (b) cos™! [SIJ{?._Q)]

() cos™' (5/6) (d) None of these
If 3i + 2j + 8k and 2i + xj + k are at right angles then x =
(@) 7 b) -7 (c) 5 d) -4

The vectors 2i + 3} — 4k and ai + bj + ck are perpendicular,
when

(@a=2,b=3,c=-4(b)a=4,b=4,¢c=5
(c)a=4,b=4, c =-5(d) None of these
HA=2+2j+4k,B=-i+2j+ kand C=3i+}] then
A + 1B is perpendicular te c if ¢t is equal to

(a) 8 (b) 4 () 6 d) 2

Let a, b, ¢ and d be position vectors of four points A, B, C and
Dlyinginaplane. If (a=d).(b-¢c)=0=(b~-d). (c~a), then
AABC has A as .

{a) in-centre (b) circum-centre

(c) ortho-centre (d) centroid

A unit vector in xy-plane that makes an angle of 45° with the
vector i + j and an angle of 60° with the vector 3i - 4j is

@) i ®) (a+3)/V2

© (i-)/V2 (d) None of these
@-Di+@.j+@. k=

(@) 0 (b) a (¢) 3a (d) None of these

Let a, B, y be distinct real numbers. The points with position
vectors ai + Bj + vk, Bi + yj + ak, vi + aj + Bk
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(a) are collinear

(b) form an equilateral triangle

(c) form an scalene triangle

(d) form a right angled triangle

If (A + B) is perpendicular to B and (A + 2B) is perpendicular to
A, then

(@ A=+2B (}) A=2B ()2A=B (HA=B

20. If a, b, c are three non-zero vectors such that a + b + ¢ = 0 then

the valueof a.b+b.c+c.ais

(a) less than zero (b) equal to zero
(c) greater than zero @3

21. Ifla+bl=la-bl,a b=0,then
(@aislitob G aislwob
@lal=Ibl (d) None of these

22. If x and y are two unit vectors and ¢ is the angle between them,

then %lx—yl s equal to

@0 () =/2 (c)

-in§¢| @

1
eox—z-“

23. The value of b such that the scalar product of the vector

i+ j +k with the unit vector parallel to the sum of the vector
2i + 4j - 5k, and bi + 2j + 3k is one is
@ -2 ®) -1 @0 @1

24. The projection of a=3i - j+ Skonb=2i +3j + k is

@ 8135 ® 81J39) © 8/14) @ (19

25. Given two vectors a = 2§ — 3j + 6k on b = — 2i + 2j - k and

A= the projection of a on b
the projection of bon a *
then the value of A is
@ 317 (OR/:] ©3 @17
ANSWERS
L (@ 2 (2 3. 4. (a 5. (a)
6. () 7. (@ 8. (a) 9. (@) 10. (a)
1) 12 () 13. (b) 14. (@) 15. (c)
6. @ 1.0 18. (%) 19. (a) 20. (@)

21..(b) 22. (c) 23. (@ 24. (o) 25. (b)



4

Applications to Metric Geometry

Introduction. While in the Chapter 2, we obtained the parametric
vectorial equations of planes, we shall in this chapter obtain the vectorial
equations of planes in non-parametric form. A study of geometry of
sphere with the help of scalar product of vectors will also be taken into
account. )

4.1. NORMAL FORM OF THE VECTOR EQUATION OF A PLANE.

Non-Parametric Form. Let, n, be the unit vector normal to given
plane and let, p, be the length of the perpendicular from the origin of
reference O, to the plane; p, will be always considered as positive.

Draw OK perpendicular to the plane; K being the foot of the
perpendicular, We have

_b.
OK = pn.
P
/r
K ]
\Pﬂ ;
"I ¥
LY i
v [
‘ []
A !
\‘\ ',
N
!
(7]
Fig. 4.1
—

Let, r, be the position vector OP of any point P on the plane. As KP
lies in the plane to which OK is normal, we have
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> >
KPLOK = OK.KP=0.
Also we have
> 2 2
KP=0P-OK=r-pn.
Thus
p.(r-pn)=0 )
= ‘r.n=pn®=p; nbeing a unit vector.

‘This equation (f) is satisfied by the position vector of every point on
the plane. Also, conversely, mypumeho'epemnvectw,r,nmﬁu
(@), is a point of the plane. Thus

r.n=p
is the vector equation of the plane, such that n is the unit vector normal
to the plane and p is the length of the perpendicular from the origin to the
plane.

Cor. 1. The equation r . n = g is the equation of a plane normal to
the vector m, even if, m, be not a unit vector, for we may rewrite it as
4.

I Int

Hence, g/1nl is the length of the perpendicular from the origin of
reference to the plane r. n = g.

Cor 2. The vectorial equation of the plane normal to the vector, n, and
passing through a poins, A, with position vector, a is

(r-a).n=0

‘We can deduce it from above. Also otherwise, let r be the position

vector of any point P on the plane. We have

-
AP=r-a.
‘The line PA lies on the plane and is, as such, perpendicular to the
vector, m, 5o that, we have (r—a) .n =0.
4.1.1. Planes Coaxal with given Planes
To find the equation of the plane coaxal with the planes
rem=q, Tr.m=gq -1
and passing through the point with position vector, a.
The equation
r.m-q+k(r.n,-g)=0
= ro(ny k) =g, + kg, o)
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represents a plane through the line of intersection of the two given planes,
whatever value k may have. The plane (2) will pass through the point, a,
for the value of &, given by
a. (@ +kny)=gq +kq, «(3)
2n-a
q;-a.my
Hence, the required equation is
g+ 2 —g)=
(r.m ql)+4r‘l-lz(r-n’ 3)=0

= k=

o (r.m-g)-(a.n-g)=(r.n;~g)-(a.m ~q).
4.12. Angle between Two Planes
The angle 6, between the two planes
Fem=q, TF.m,=4q

being equal to the angle between the vectors m, and n, which are normal
to the planes, we have

i _my.n,
® TYIYE
4.1.3. Angle between a Line and a Plane
The angle 6, between any line
r=a+bt
and any plane
r.n=gq,
being equal to the complement of the angle between the normal vector, m,
of the plane and the direction vector, b, of the line, we have
n.b
inl b1’
4.14. Perpendicular Distance of a Point from a Plane
Let a be the position vector of a-given point A and
r.a=q
be the equation of the given plane.
‘The equation of the line through A, normal to the plane is
r=a+m
At the point of intersection of this line with the plane, we have
(@a+m).n=q

0=sin"!
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n’
Thus, the foot of the perpendicular L from the point with position
vector a to the given place ¥ . n = q is

4.1.5. Planes Bisecting the Angles between Two given Planes
Let
r.o=g and r.m=g,
be the given planes. The perpendicular distance of any point, r, on
either bisecting plane from the two planes being equal, we have

- Ir.n;-g,l
In,l

-
|

‘Thus, (i) gives the equations of the two required bisecting planes. In
the standard form, these may be re-written as
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4.1.6. Perpendicular Distance of a Point from a Line
Foot of the Perpendicular. Let, a be the position vector of the given
point P and let
r=b+ct
be the equation of the given line AB. If, b + cf be the position vector of
the foot L of the perpendicular, we have

P
PL L AB
= (b+ct-a).c=0
= (b-a).c=-¢ct
- = -b).c
? A L B
Thus, the foot of the perpendicular is Fig. 43

b2 l:).c .
<

Also the perpendicular distance PL

=1pLi= e BB
c
EXAMPLES
Example 1. Find the projection of the line
r=a+bt
on the plane
r.n=g

Solution. The equation of the line through any point, a + b, of the
given line normal to the given planc is
r=

+ bt + pn,
so that the projection of the point, a + bt, on the given plane is given for
the value of p, satisfying

(@+br+pn).n=gq

=
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Hence, the required projection is the line

,,(.J--;'-..)H(b_"'_;.].
o n
Example 2. Find the locus of a point equidistant from
() two given points (ii) three given points.
Sohuh-.(‘)l.etl.hbeduponmnvm:ofﬂnmmpomud B,
with reference to any origin O.
Ifrbelh:poddonvemofnypmm?onlbelmwehw:

PA? = B
= (r-ap = (r-bp
= -2r.a+a?=-2r.b+b?
> r.(n-—b)-%(n‘-—b’)a%{:ﬂ:)(ﬂ—h)
- [r-%(-+h)]~(n-h)=0.

Thus, the required locus is the plane bisecting the line AB normally.

(il)lfl.h.l:betheponﬂonvemothepvenpmnm.dmdw
required locus is the line of intersection of the planes

[r-vz—(nb) (a-b)=0, [r-vi(hu)]‘(h-e)-u

This line passes through the circumcentre of the triangle A, B, C and
is perpendicular to the plane of the same.

Example 3. Show that the centre of the sphere passing through the
four points with position vectors a, b, ¢, d is the point common 1o the three
pl

[r-%(.+h)]-(--b)=o, [r-%(bﬂ:)]{b—c)xo.

[r—%(e-n)]-(e--)-o

Solution. This is an immediate consequence of the preceding result.

Example 4. Show that the six planes through the middle point of each
edge of a tetrahedron and perpendicular to the opposite edge meet in a
Ppoint.

Solution. Taking the centroid of the tetrahedron as the origin of
reference, let a, b, ¢, d be the position vectors of the four vertices. We have

%(-Hanﬂl)-o = a+b+c+d=0.
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‘The equation of the plane through the mid-point of the edge AB and
the perpendicular to the opposite edge CD is

[r—-z-(.+b)]‘(d—c)=0

- [r+%(c+d)]-(d—c)=0 for a+btctd=0.

o T+ =(r+d>
Thus, every point on this plane is equidistant from the points
-¢-d
Considering other planes, we see that the six planes, in question, pass
through the point given by
(r+aP=(+bP=(+cP=(r+d?
which is the centre of the sphere through the four points
-a -b, -¢, -d.
This point is the centre of the circumsphere of the tetrahedron A'B'C'D"
where A", B', C, D' are the points such that AA’, BB, CC, and DD’ arc
bisecmd at the centroid of the tetrahedron ABCD.
The tetrahedron A'B'C'D’ obtained above is said to be the Associate of
the r:u'medmn ABCD. Both these tetrihedra have the same centroid.

Itis easy to see that the planes through the mid-
e ed ABCD pass through th

tetrahedron ABCD.

EXERCISES
Show that six planes bisecting the six edges of a tetrahedron perpendicu-
larly meet in a point.
Find the equation of the plane through the line of intersection of the planes
r.m =1, r.n,= 1 and perpendicular to the plane r . my = 1.
3. Find the reflection of the point, a, in the plane
r.n=q
Also find the reflection of the line r = a + rb in the same plane,
4. Find the reflection of the point, a, in the line
r=b+m
5. Show that the square of any straight line is equal to the sum of the squares
of its projections on three mutually perpendicular straight lines.
6. Prove that the square on any straight line is equal to half the sum of the
squares of its projections on three mutually perpendicular planes.
7 Hnd!hcdimoﬂbepoim,mfmmlhophwr.l-qmudpnﬂm
totheliner=b + rc.

»
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4.2. EQUATION OF A SPHERE
To find the equation of the sphere, whose centre is ¢ and radius a.
Let O be the origin and C the centre of the

sphere with position vector c. Let the position

vector of any point P on the sphere be r. If a be the

radius of the sphere, then

CP=a or (r-cP=a
= P-2r.c+?-a?=0 »
P-2r.c+k=0.(1)

A
where k=c? - a%
Since (1) is satisfied by the position vector of
every point on the surface of the sphere hence it
represents the equation of the sphere. °
Particular Cases : Fig- 44

(i)Whmﬂnonpnmmemnenfﬂw:plmdwnc—Omd
=¢? - a? = - aZ. Hence, the equation of the sphere is

(ii) ‘When _the origin lies on the surface of the sphere, then | ¢ | =
¢ = a and hence k = ¢? - a? = 0. Therefore, the equation of the

requn'edlphﬂeu
P?-2r.c=0.
4.2.1. Diameter Form of Equation of the Sphere
Let the position vectors of the /

extremities A and B of the diameter AB >
be a and b respectively. Let r be the
position vector of any point P on the N

surface of the sphere. Then

- -
AP.BP=0
= (r -a).(r-b)=0.
Fig. 45
4.2.2. Intersection of a Straight Line and a Sphere
Let N
F@=r-2r.c+k=0. (D)

be the equation of the sphere, where k = c? - 4. Let the equation of the
straight line be
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r=d+rb .2) B

which passes through the point D whose
position vector is d and is parallel to a
unit vector b.

For the points of intersection the
values of r satisfy (1) and (2) both. On
eliminating r between (1) and (2), we
get

(d+b)? -2(d+b).c+k=0
= 242b.(d-c)+d?*-2d.c+k=0
= 2+2b.(d-0)+F(d)=0 .3) D
Fig. 46

This equation is quadratic in f and hence it gives two values 1, and
t, of t, when substituted in (2) give the position vectors of the two points
A and B on the sphere.

Cor. 1. The points of intersection are real, coincident or imaginary
according as

4[b.(d- o) ~4F(d)>0=0 or <0.
Also t,=DA and t,=DB.
tt,=DA.DB=F@d)=d*-2d.c+k

which is independent of b , the direction of the line through the point
D. Hence, for all lines through D, the product of the segment DA and DB
remains unaltered.

Cor 2. If A and B tend to coincide at T, then the line becomes a tangent
at 7. Then

DI?=DA.DB = F(d)
=d’-2d.c+k

‘This gives the square of the length of the tangent from any point to

the sphere. It is also called the power of the point D with respect to the

4.2.3. Tangent Plane at a given Point
As in § 4.2.2, for the point of intersection of sphere (1) and line (2),
we have
2-2b . (d-c)+F(d)=0
since d lies on the sphere, hence N
F@d=0
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= 2-2b . (d-¢)=0
giving =0 and 1=2b.(d-¢)

Obviously, one value of ¢ is zero. If (2) tuches (1) [§ 4.2.2], both the
values of ¢ must be identical

b.(@d-¢)=0 "))
From equation of line
i-%(r—d)
= %(r—d)-(d—c)-o
= r.d-9=d.@-c A4

‘This is an equation of the form r . n = g. So (4) represents a plane which
is perpendicular to the radius through the point d.

From (4),
r.d-r.c -d+d.c=0
or r.d-r.c ~d@+d.c+(@-2d.c+H=0
or r.d-c.(r+d)+k=0 .(5)

‘This is the required equation to the tangent plane to the sphere (1) at
the given point d.
4.24. Condition for Tangency of any Plane to a Sphere
Let
P-2r.c+k=0 )
be the given sphere whose centre is ¢ and radius a.
Let the given plane be
r.n=q .2
Since the tangent plane at any point is perpendicular to the radius
through that point, the square of the perpendicular from the centre to the
tangent plane must be equal to the square of the radius. Hence, the required

condition will be
g-c.n i
Inl

4.2.5. Condition of Orthogonality
Let the two spheres be
Po2r.c + k=0 k=
Fok.qih=0 =o' -a’
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‘These spheres will intersect orthogonally if the tangent plane to any
of them at the point of intersection passes through the centre of the other.
So the square of the distance between the centres must be equal to the sum
of the squares at their radii. Thus,

©-cP=a’+a?=
= 2, .=k + ky
4.2.6. Polar Plane

Def. The polar plane of a given point with respect o a sphere is the
locus of the points the tangent planes at which pass through the given
point.

4.26.1. To find the polar plane of a point

Let

—htel-k

P?-2r.c+k=0
be the the given sphere and a the given point. Let d be any point on the
sphere the tangent plane at which pass through a. Tangent plane at d to
the sphere is
r.d-c.(c+d)+k=0
It passes through a, hence
a.d-c.@a+d)+k=0
Locus of d is
~c.(@+n)+k=0
-c.(r+a)+k=0.
4.2.7. Diametral Plane
Def. The locus of points which bisect a system of parallel chords of a
given sphere is called the diametral plane, all chords being parallel to a
given line.
4.27.1. To find the diametral plane of a sphere
Let

F@M=r-2r.c+k=0 (1)
be the given sphere and let a chord parallel to a given unit vector b and
passing through the point d be

r=d+ib 2
As in § 4.2.2, the points of intersection of (1) and (2) are given by
2 -2b.(d-c)+ Fd)=0 -03)

If d be the middle point of the chord (2), then the two values of t must
be equal and opposite in sign, ie., the sum of the roots of (3) must be zero.

Thus, b-@-9=0
the locus of the point d is
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b. (r-c)=0.

This is the required diametral plane.
4.2.8. Radical Plane

Def. The locus of a point, which moves so that the squares of the
lengths of the tangents drawn from it to the given spheres are equal (or,
powers of the point w.r.t. two spheres are equal), is called the radica! plane
of the two spheres,
4,2.8.1. To obtain radical plane of two spheres

Let 2-2r.c, +k =0
and P-2r.e,+k=0
be the two giver spheres. Let d be the position vector of a point which
moves so that the square of the tangents drawn from it to spheres (1) are
equal. Then

#-2d.c,+k=d-2d.¢c, +k
or 2d.(c,-¢) =k —k
Locus of d is
2r. (¢, —c,)) =k, -k,

Remark. The radical plane is perpendicular to ¢, - ¢,. Thus, the radical
plane of two spheres is perpendicular to the line joining the centres of the
given spheres.

4.2.8.2. Coaxal System of Spheres
Def. A system of spheres every pair of which has the same radical plane
is called a coaxal system of spheres.
4.2.8.3. Equation of a System of Coaxal Spheres
To show that the equation r2 - 2A r. ¢ + k = 0, where A is a parameter
and & is constant represents a system of coaxal spheres.
Consider two members of the system of spheres corresponding to
values A, and A, of the parameter A,
-2\ r.c+k=0
and -2, r.c+k=0.
The radical plane of these spheres is
2(A-A)r.c=0
= r.c=0, (- A =2y)
This is independent of A. Hence, whatever be the value of A, the radical
plane of every two members will be the same. Thus, 2 -2Ar.c+d=0,
represents a coaxal system of spheres.
Cor. The member of coaxal system of zero radius are called limiting

points. The radius of the sphere of the system is 1’{(1‘;)3_”, Equating
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to zero, we get A=+ \/(k /¢). Hence, the limiting points are + ‘/(klz-) c
EXAMPLES
Example 1. Show that the diameter subtends a right angle at any
point on the surface of the sphere.
Solution. Let ACB be the diameter of a sphere whose centre is the
origin C and whose radius is a.
Let P be any point on the surface of the sphere. Equation of the sphere

P=a?
> @-a)+a)=0

- -
= AP-BP=0
showing that £ APB = 90°.
Example 2. A straight line is drawn
from a point O to meet a fixed sphere in A B
P. A point Q taken in OP such that OP
: 0Q is a fixed ratio. Show that the locus
of Q is a sphere.
Solution. With O as origin, let the
fixed sphere be
N Por.e+k=0 Fig. 47
Let 0Q=r' be the position vector Q and let OP : 0Q =

> o
= OP=n0Q = r=nr'
Since P lies on the sphere, we must have
nr?.2nr . c+k=0
or r2-20 . (ln)c+ k=0
Locus of r’ is
2 -2r. (i) c + kn? =0,
which is a sphere.
Example 3. Show that the sphere which cuts the spheres F, (r) = 0
and F, (r) = 0 orthogonally, also cuts F, (r) - A F, (r) = 0 orthogonally.
Solution. Let
Fi)=r-2r.c +k=0 1)
and FM=f2-2r.q+k=0 2
be the given spheres. Then the sphere F, (r) - F, (r) = 0 is
2-2r.e +k-A(P-2r.c,+k)=0
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Let the sphere r? - 2r . ¢ + k = 0 cuts (1) and (2) orthogonally, then
Ze.c =k+k )
and 2.e,=k+k -{5)

Multiplying (5) by A and subtracting from (4), we get

2. (e - M) =k(1-N)+k - My
showing that the given sphere cuts (3) orthogonally.

4. Find the co-ondinates of the centre of the sphere inscribed
in the tetrahedron bounded by the planes

r.i=0,r.j=0 r.k=0 adr.(i+j+k)=a
Solution. Let the centre of the given sphere be xi + yj + zk. Then the

length of the perpendicular from the centre on the: given planes must be
equal. Hence,

or

O—(xd+yj+2zk). 1 _0—(xd+yj+2k).§

1 B I}
_0-(d+yi+2k).k _a—(d+yi+2k), A+
Tkl li+J+kl

a-(x+y+2z) x+y+z+a-(x+y+2) a
V3 1+1+1443 3443

o Xy 2
111
a__a
=y=z= =2(3-43
zeymi=m §6-43)

Example 5. Prove that any straight line drawn from a point O to
intersect a sphere is cut harmonically by the surface and the polar plane
of 0.

Solution. Let

P-2r.c+k=0
be the given sphere with O as origin. Polar plane of O w.rt. the sphere is
P-+0).c+k=0
or r.e=k
Let the equation of the given line through O is
l’xli
For the points of intersection of sphere and line, we have
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This is quadratic in ¢ and so it gives two 2
values f,, £, which represent the distances OP and
0Q respectively.

L, L _n+y 2be c

2 -(b.c)+k=0

OP 00 1t k

Again, for the points of interscction of polar D

plane and the sphere, we have

tb.c=k, sothat r=0R

=.L or L=h
b.c OR &k
1.1 _2 4
Hence, 5"@-@‘ Fie.45
= OP, OR, 0Q are in H.P.

Hence, the result.

1L

2.

w

EXERCISES

Prove that the locus of a point, the sum of the squares of whose distances
from n given points is constant, is a sphere.
Prove that the equation of the sphere circumscribing the tetrahedron
bounded by the planes

r.i=0, r.j=0, r,k=0
and r.@+j+0=ais

rofr-a@+j+W)=0
If the plane of the point H passes through G, then show that the polar plane
of G passes through H.
If from any point on the surface of a sphere, straight lines are drawn to
the extremities of any diameter of a concentric sphere, the sum of the
squares on these lines is constant.
If the line joining the centre O of a sphere to any point P meets the polar
plane of P in Q, prove that OP . OQ = a?, where a is the radius of the
sphere.
Find the locus of a point whose powers with respect to two spheres are
equal.

Prove by vector method that the triangle inscribed in a semi-circle is a right
angle.

Show that the locus of the straight lines which intersect the
2= 2r.c+ k=0 and bisected at a given point d is (r—d) . (d - ) =0.
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SUMMARY

1. The normal form of the equation of a plane is r . n = p. Here n

is a unit vector normal to the plane and p is the length of the
perpendicular from the origin to the plane.
® Theequmonr.n:q.mplwnunplme,nbemgnvecwf
normal to the
@y 'nlevecinteqmnonoflhep‘mwhlchpmslhmghl
point with position vector & and which is normal to the
vector m is
(r-2).n=0.
2. The perpendicular distance of the point with position vector a
from the plane r . n = g is
lg-a.nl
Inl
3. Equation of the sphere, whose ceatre is ¢ and radius a is
P-2r.c+k=0, where k=c'-a’
(i) when the origin is the centre, the equation of sphere is
P=a

(ii) when the origin lis on the surface of the sphere, the
equation of the sphere is
P-2r.c=0.
(iif) Equation of the sphere on the join of two given points a
and b as diameter is

r-8).(r-b)=0.
4. Equation of the tangent plane to the sphere r> —2r . ¢ + k=0 at
the point d is
r.d-c.(r+d) +k=0.
. Condition that a plane r*. n = g will touch the sphere r? - 2r .

c+k=0is
g-c.n)’
[ Tnl )”

6. Two spheres >~ 2r. ¢, + k, =Oand - 2r. ¢, + k, = 0 will
intersect orthogonally if 2¢, . ¢, = k, + k;.

7. Polar plane of a point a with respect to the sphere 12 — 2r . ¢ +
k=0is

@

-k

r.a-c.(r+a)+k=0.
8. Dinwenlplmofn:pl\uel‘—lr.c+k=0,panllellolgiven
unit vector b is
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b.(r-¢)=0.

9. The radical plane of two spheres can be obtained by subtracting
the equation of one sphere from the other after making the
coefficients of r2 in each equation unity.

10. Equation r? - 2Ar . ¢ + k = 0, where A is a parameter and k is
constant represents a system of coaxal spheres.
The members of coaxal system of zero radius are called limiting
points. For the coaxal system r? — 2Ar . ¢ + k = 0, the limiting
points are + J(k/c)e.
OBJECTIVE QUESTIONS

For each of the following questions, four alternatives are given for the

answer. Only one of them is correct. Choose the correct alternative.

1. The angle between two planesr.n =gandr.n' =g'is

@ sin"(“ “) (®) cos™ [l'—“—)
nn’ nn’
© m."(“"f'] (d) None of these
n
2. The intercept made by the plane r . n = g on the x-axis is equal
to
@qlG.m ® G.n/q
() gli.m) (d) None of these
3. Angle between a line £ = a + bt and the plane r . n = g is
. -1 _n.b -1 _n.b
@ s b R MY
L n.
(c) tan Tal Tl (d) None of these

4. The cquation of a sphere whose centre is the origin and radius a
is

@rP-2r.
(© P =a? @r.azk

S. The two spheres r— 2r . ¢, + k, = 0 and r? - 2r . ¢, + k, = O will
cut orthogonally if
@eee=k+k, () 2. c,=k +k
© e+ e =kk @ e+ ;= 2ky

ANSWERS
L ® 2@ 3. @ 4. 5.®
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Vector Product and
Scalar Triple Product

Introduction. The concept of the Vector product of two vectors, as a
result of which a well-defined vector is associated to a given ordered pair
of vectors, will be introduced in this chapter. Like Scalar products, Vector
products are also proportional to the lengths of the factor vectors and obey
Distributive Laws. It should be, however, remembered that quite a number
of the properties of Scalar and Vecto: products are different from those of
ordinary products of numbers.

The notion of vector products greatly facilitates the study of a type of
metrical relations such as those involving areas and volumes. Also in those
contexts where we require to deal with vectors perpendicular to two given
vectors, vector products play an important part.

It will also be seen in the last chapter that characterisation of forces by
vectors is possible with the help of Vector products.

In addition to Scalar and Vector products, Mixed product
axbh.c
known as Scalar triple product, also plays an important part. We shall also
consider this in this chapter.

The volume of a parallelopiped is given as a scalar triple product and
the vanishing of a scalar triple product provides a very neat form of
condition for three vectors to be coplanar and four points to be coplanar.

The part of the Algebra of vectors developed in this chapter will also
provide important tools for the solution of Vector Equations.

5.1. RIGHT-HANDED AND LEFT-HANDED VECTOR TRIADS

A screw experiences a motion of translation when it is rotatea and, as
such, we can distinguish a screw as being right-handed or left-handed by
the direction of its translation when it is rotated in any given manner. Also
we shall now associate a screw with any given ordered vector triad and

116
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thus be enabled to distinguish any given vector triad also as being right-
handed or left-handed.
Let a, b, ¢ be three vectors, given in this order. We shall suppose that
they are coinitial and no two are collinear.
Suppose, that, a, points towards the right of the reader and, b, towards
the upper part of the paper.
b b

c

Lef-hand Right-hand
Fig. 51

If now a right-handed (left-handed) screw be rotated from a, towards
b, through an angle < 180°, then it undergoes translation in a direction
pointing towards the reader (away from the reader). On this account, an
ordered vector triad

abc
is said 1o be right-handed or left-handed according as the right-handed
screw is translated along ¢ or opposite to ¢, when it is rotated from a
towards b, through an angle less than 180°.

Tt is easily seen that a cyclic permutation of the vectors of a triad does
not change the character of the triad from the point of view of its right-
handedness and left-handedness. Thus, if &, b, ¢ is a right-handed (lefi-
handed) triad, then

b,c,a and ¢, a,b
are also right-handed (left-handed), but
a,cb;baccba
are left-handed (right-handed).
5.2.  VECTOR PRODUCT OR CROSS PRODUCT

Def. The vector product, denoted by

axbh
of two vectors, a, b taken in this order, is the vector ¢, where
@) lel=lal Iblsin®,

O being the angle between the vectors, a, b and 0 < 0 < 180°.
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(if) the support of ¢ is perpendicular to the supports of a and b.
(iti) the sense of ¢ is such that the triad
a,b,c

forms a right-handed system.

As 0 < © < 180°, sin 6 cannot be negative so that | ¢ | will not be
negative.

Also, by def., the vector product of any vector with the zero vector is
the zero vector, ie.,

ax0=0

for every vector a.

It is important to remember that the vector product a x b is
perpendicular to each of the vectors a and b.
5.2.1. An Important Relation

(@axby = a%?-(a. by
‘We have
(@xb)? = (axb).(@xb)
(lal Ib!sin6)?
a%b? sin? O
a?b? (1 - cos? 6)
a’h? - (lal Iblcos 8y
= ¥ - (@a.by

‘This relation expresses the length of the vector a x b in terms of the

scalar products

a.a b.b, a.b
5.2.2. Formulation of Vector Product in Terms of Scalar Products
The vector product a x b is the vector ¢, such that
@ let= a6 @by}
(i) c.a=0, c.b=0,
(iii) a, b, ¢ form a right-handed system.
5.3. SOME PROPERTIES OF VECTOR PRODUCTS
5.3.1. (i) The vector product of two parallel vectors is the zero vector,
for, in this case, 8 = 0 or 180°, so that sin 8 = 0 and as such | ¢ | = 0.
Thus, ¢ = 0.
5.3.2. The vector multiplication is not commutative. In fact
axb=-bxa
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This follows from the fact that while the magnitude and the support
of b x a is the same as those of a x b, their senses are different.
5.3.3.
-axb

~(axb), ax(-b)=-(axh),
(~a)x(-b)=axh
Generally,
ma x nb = mn(a x b) = a x mnb,
where m and n are any scalars, positive or negative.
These results are immediate consequences of the definition of Vector
product.
5.3.4. Relations between the mutually perpendicular unit vectors i, j, k.
If i, j, k are mutually perpendicular unit vectors forming a right-
handed system, then, as may be easily seen, from the definition of vector
products, we have
ixi=0, jxj=0, kxk=0,
ixj=k jxi=-k
Jxk=i kxj=-i
kxi=j ixk=-j
Note. Later on, we shall show that the Distributive Law also holds for vector
multiplications, ie.,
ax(b+¢) =(xb)+ (ax o for all vectors a, b, c.
After establishing the Distributive Law, we shall be able to express
(@) + @) + ak) x (b} + b,] + bk)
as a linear combination of the vectors, i, j, k.
5.3.5. Vector Product as a Determinant
Let a=ai+aj+akb=>bji+bj+bk
axb=ab ixi+tabixj+abixk
+ab §xi+ab,§x)+abjxk
+ab kxitabkxj+abkxk
By § 5.34, it becomes
axb=(@by-ab) i+ (@b -aby)j+ (@b, -ab)k
This expression can be re-written in the determinant form as
i j k
axb=|ag a a
bbb
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53.6. Angle between Two Vectors a and b

From § 5.2, we have
laxbl=lal Iblsin®

N laxbl
= une=m
=|axb|
In terms of components, it can easily be shown that
sing o V1@ =) + @by ) + @ity — )’}
V(@ +a +a3) + (6 + 82 +3)
5.3.7. General Form of Vector Product
Let a and b be any two vectors and , m, n be three non-coplanar

vectors.
Let  a=al+am+anandb=b]+bm+bn Then
axb=(a]+am+aym) x (b1 + bym + byn)
= (@b, - ab) 1 x m - (ah, ~ ahy)
nxl+ (b -ap)mxn

mxn nxl Ixm

=la @ 4

b kb
EXAMPLES

Example 1. Determine a unit vector perpendicular to the plane of a
and b, where & = 4i + 3 — k and b = 2i - 6] - 3k Also obtain sine of
the angle between a and b.

I j k
4 3 -1
2 6 -3
= - 15i + 10§ + 30k.

As a x b is the vector perpendicular to the plane of a and b, hence

a unit vector perpendicular to the plane of a and b is
—15i+10j-30k

_axb _
Taxbl~ JC15% + (10 £ (30

—3I+ZJ+EK
7 771

Solution. axb=
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If 6 be the angle between the vectors, then

. o_laxbl {157 +107 +(-30%}
sin®
lal Ibl J{‘z+32 +(-|)’} J{Z: +(-6) 4,(_3)1}
35 5%
“J26J49) 26

Example 2. Ifa x b=c xd and a x ¢ =b x d, show that a - d and
b - c are parallel vectors.

Solution. (@a-d)x(-c)=axb-axc-dxb+dxe
=@xb-cxd-(@xc-bxd)
=0 [as given]

(a - d) and (b - c) are parallel vectors.
Example 3. Prove by vector method that
sin (@ - B) = sin @ cos P - cos & sin .

Solution. Let OX and OYbea Y
set of rectangular co-ordinate axcs
with O as origin. Let OA and OB
subtend angles a and b with OX.
Let k be the usual unit vector
perpendicular to the plane of the
paper such that, i, j, k form a right-
handed system.

Let OP=p and 0Q=§ be

= X

the unit vectors along OA and OB O M

respectively. Then, we have Fig 52.

gxp=1Llsin(@-p)k
=sin (a - B) k. (1)
Let QM be perpendicular to OX. We have
OM = 0Q cos B = cos B and MQ = OQ sin P =sin f

e

§=(cos)i+(sin) j
Similarly, p=(cosa)i+(sina) j
4 p =[(cos B) i+ (sinp) j]x[(cos &) i+ (sina) ]
=(sina cosP - cose sinP) k.
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Hence, from (1), we get
sin (@ — PB) = sin @ cos B — cos a sin P.
Example 4. If a, b, ¢ be three vectors such that a + b + ¢ = 0, prove
that a x b = b x ¢ = ¢ x a and deduce the sine rule
sinA sinB sinC
a b ¢

- =5 -
Solution. Let BC, CA, AB represent the vectors a, b, ¢ respectively.

Then, we have

(Kolkata, 99)

a+b+c=0,

= c=-(a+bh)
= bxec=bx(-a-b)
=-bxa=axbh
Fig. 5.3.
Similarly, cxa=axh
Hence, bxec=cxa=axh
= be sin (kr — A) = ca sin (x - B)
= ab sin (x = C)
= bc sin A= ca sin B = ab sin C
- sinA=sinB=sinC_

a b c
Example 5. Given thata.b=a.c,ax b =a x c and a 15 a non-
zero vector. Show that b = ¢.

Solution. a.b=a.c and a=0

= a.b-¢c)=0

= b-c=0 or ais perpendicular to (b-¢) (1)
Again axb=axc and a=0

= ax(b=c)=0

= b-¢c=0 or ais parallelto(b-c) {2)
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Since the two relations hold simultaneously. Both a is perpendicular
to (b - ¢) and a is parallel to (b — ¢) is an absurd result. Hence, the only
possibility isb-c=0so thatb = ¢.

1.

EXERCISES
Prove that the unit vector perpendicular to each of the vectors 3i + j +
2k and 2i - 2j + 4k is (i - ] - k) /J(3) and the sine of the angle between

them in 27/(7).

If 4, b,& be unit vectors such that & and b are perpendicular and & is
inclined at an angle © to both & and b.

Show that c=c(a+b)+f(axh)

where a=-cos® and P =-cos 20

Ifa.b=0and a x b =0 simultaneously, prove that atleast one of the
vectors a and b must be a null vector.

Show that the vector a x (b x a) is perpendicular to a and coplanar with
a and b

Show that a x (b x ¢) is coplanar with b and e.
a, b, ¢ are three vectors such that
axb=c¢ bxc=a;
show that the three vectors a, b, ¢ are orthogonal in pairs and
Ibl=1, lcli=1lal
a, b are two vectors. Also ¢, d are two vectors coplanar with a and b
and perpendicular to a and b respectively. Show that
(axb)xc=(@.c)b-(b.c)a, @axb)xd=(@.d)b-(b.d)a
Show that a. (b x ¢) = 0 if and only if the vectors a, b, ¢ are coplanar.

5.4. INTERPRETATION OF VECTOR PRODUCT AS VECTOR
AREA

We shall now show how it is possible to represent a plane area
bounded by a closed curve which does not cross itself by a vector. For this
purpose it is necessary to distinguish between the two senses in which the
curve may be described,

A plane area bounded by a closed curve which does not cross itself
is represented by a vector, ¢, defined as follows :

(i) The number of units of the length of ¢ is equal to the number

of units of the given area.

(if) The support of ¢ is perpendicular to the plane of the area.
(iii) The sense of c is such that the direction of description of the

boundary of the curve and the sense of ¢ correspond to a right-
handed screw.



Fig. 54.
5.4.1. Area of a Triangle as Vector Product
- -
Let OA=a, OB=b.
Consider the triangle OAB and the vector representing the vector arca.
-
AOAB.
We shall see that

> 1
AOAB=Zaxb. )

'l'hem:plmdeufuchdduo((i)h%ﬂd.oﬂlina and the support

of each is also the same. Also according to our conventions the senses of
the vectors on the two sides of (i) arc the same.

2 ﬁ‘
/\A
o __~ 0
Fig. 55. Fig. 56.
Hence, the equality (. We also hve

=/

1 l—’ e
AOAB=—axb=— OAxOB.
2 2
It may also be now easily scen that a x b is the vector area of the
- -
parallelogram constructed with OA and OB as adjacent sides (Fig. 5.6).
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55. SCALAR TRIPLE PRODUCT
The use of scalar triple product will enable us to prove that vector
product distributes. the sum of vectors. Also the concept of scalar triple
product plays a useful part in the applications of vectors of Geometry.
Let a, b, ¢ be any three vectors. Consider the expression

axb.c
which is the scalar product of the vectors a x b and ¢
Let
- - -

OA=a, OB=h, OC=c
The figures show only the three faces of the parallelopiped through the
point O,

B N B N

./ Ne \,;" \4
o/

C M c - M
]

H H

Fig. 5.7.

Firstly suppose that the three vectors are coplanar. The vector a x b,
being perpendicular to the plane of the vectors, is perpendicular to the
vector, ¢ and, as such

v

n
a
x
o
oy
-
[+

axb.c=0

Next suppose that the three vectors are not coplanar so that the lines
OA, OB and OC do not lie in the same plane.

Complete the parallelopiped with OA, OB and OC as coterminous
edges. Let V, be the volume of this parallelopiped. We shall regard, V, as
necessarily positive.

We shall now prove the following :

V=[axb.c] or V=-[axb.c]
according as the ordered vector triad a, b, ¢ is right-handed or left-handed.

The vector a x b denotes the vector area of the parallelogram with OA
and OB as adjacent sides.

Let

_’
OH=ax»h
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The volume of the parallelopiped is the product of the area of this
parallelogram with the perpendicular distance of C from its plane.
The vector triad
ab, axb
is, by definition, right-handed.
The angle between

axbandec
ie., between
- -
OH and OC
is acute or obtuse according as the vector triad
abc

is right-handed or left-handed. The perpendicular distance of C from the
plane of the parallelogram is equal to the absolute value of the projection
of OC on OH and is, therefore
- -
10H-0CI
-
I0H|
which is equal to
> > >
OH.0C o -OH-0C
- -
I0H| 10H|
- -
according as the angle between OH and OC is acute or obtuse.
nnn.ifl,b,eixnridn-hmdedsymwzhm

v= "" ot |OH 1= OH -0C=axb.c
\0H1
mdifl.b.cia-leﬁhanded-ymn.ﬂm
v= ”" ot |0H 1= =0l -0C=-axb-c.
1M1
The foregoing investigation also shows that
axb.c

is positive or negative according as &, b, ¢ is a right or left-handed system.



128 A Textbook of Vector Algebra

Notation. In view of the properties of scalar triple product obtained
above, we write

axb.c=[abe¢]

This notation takes note of the cyclic order of the vectors and disregards
the positions of dot and cross which are really not important. We have
[abel=[bcal=[cab)]
=—[achl=-[bac]=-[cha)

Note. It is very important to notice that the scalar triple product
[abc)

is zero if, and only if, the three vectors a, b, ¢ are coplanar. In particular, the
scalar triple product is zero if any two of the three vectors are the same,

Note. If i, j, k constitute an orthonormal right-handed triad, then
jkl=ixj.k=sk.k=1

5.5.2. Volume of a Tetrahedron — Theorem

The volume of a tetrahedron ABCD is

1| 2 = -
EIABxAC-ADI.

We know that the volume of a tetrahedron ABCD is %xmofMBC

»x height of D from the plane ABC. Also the volume, V, of the
parallelopiped with AB, AC, AD as its colerminous edges is equal to the
arca of the parallelogram with AB, AC as adjacent sides x height of D
from the plane ABC.

.~ volume of the tetrahedron

12> ==
=EIAE:¢AC-ADI.

Cor. Volume of the tetrahedron, the position vectors of whose vertices
A B CDarea,b,c,dis
1= = -
=—I1ABx AC-AD|

=}

=%I(I:-n)x(c-a)+(d—|.)l.

Ex. 1. Show that each of the four faces of a tetrahedron subtends the same
volume at the centroid.

Ex. 2. Compare the volume of a tetrahedron with that of the tetrahcdron
formed by the centroids of its faces.

Ex. 3. G,. G,, G, are the centroids of the triangular faces OBC, OCA, OAB
of a tetrahedron OABC, compare the volume of the tetrahedron OABC with that
of the parallelopiped constructed with OG,, OG,, OG, as coterminous edges.
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5.6. DISTRIBUTIVE LAW
Theorem. ax(b+c)=axb+axc,
where a, b, c, are any three vectors.
We shall now prove that the vector product distributes the sum of
vectors, ie.,
ax(+c)=axb+axc
This result will be proved by showing that the scalar product of the
vector a x (b + ¢) = a x b - a x ¢ with every vector is zero.
Let, ¥, be any vector whatsoever. We have
r.fax(b+c)-axb-axc
=r.ax(+c)-r.axb-r.axc
(for scalar multiplication distributes vector addi )
rxa.(b+c)-rxa.b-rxa.c
(for the positions of dot and cross are interchangeable)
=rxa.[b+c)=-b-c]
(for scalar multiplication distributes vector addition)
=rxa.0=0

Thus,
r.ax(b+c)-axb-axc=0,
for every vector r. It follows that
ax(b+c)-axb-axec=0
= ax(h+0) xb+axec
Cor 1. (b+c)xa x (b+¢)
=-faxb+axc
=-axb-axe=bxa+exa
Cor. 2. ax(b-c)=ax[b+(-c)]
=axb+ax(-¢c)=axb-axc

Similarly
(b-c)xa=bxa-cxa
Cor. 3. Scalar product in terms of an orthonormal base. If
a=ai+aj+ak b=bi+bj+bk c=ci+cj+ck
we have
axb.c= (@b, -ab,) i+ (ab, - aby j + (@b, - ab)) kl.
(e + ¢35 + k)
a @ a
=\t b by

G @ 6
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5.7. SOME PROPERTIES OF SCALAR TRIPLE PRODUCT

5.7.1. To express the scalar triple product [a b c) in terms of any
three non-coplanar vectors 1, m, n.

Let a=agl+am+amb=bl+bm+bnc=cl+cm+cn
axb=(al+am+ap) x (bl + bm + byn)
= (@yby - ayb,) (m x 0) + (a3b, - a,by) (@ x 1)
+(ayb, - b)) @ x m)
(8% b). ¢ = [(a,b; - ab) (m x m) + (@b, - a,by) (@ x 1)
+ (@b, - ab) (1 x m)) . (¢} + c;m + cym)
= ¢, (ah; - asb)) (mn 1] + ¢, (ayb, - a,by) [n 1 m]
+¢y(ah, - a,b)) 1 mn)
But,asmnl)=[m1m]=[lmn]
we have

(@ x b) . ¢ = [a, (bye; - bycy) — @y (bycy - byey)
+ay(byc, — byc)) I m n)

4 o a
= [abel=|y b b|=(mn]
G € ¢
5.7.2. To express any vector r as a linear combination of three non-
coplanar vectors a, b, c. (Kolkata, 97)

Let x, y z be three scalars. Then
r=xa+yb+ze
r.bxc=x[abcl+ybbecl+zfchcj

= rbej=x[abe]
Similaly [rcal=y[abec]
and [rabl=z[abe]

[rhc] Irca] [rab]
= fabd " abd " Taba
5.73. Distributive Law for Scalar Products
@) [,b+cdl=[abd +[acd]
@) mb+c,d+el=[abdl+fabe]+[acdl+[ace]
Proof: () [&,b+cdl=fa’® c).d
=faxb+axc.d
=@xb).d+@xc).d
=[abdl+[acd]
Similarly part (if) can be proved.

=



Vector Product and Scalar Triple Product 131

EXAMPLES

Example 1. Find the volume of the parallelopiped whose coterminous
edgesare2i - 3j +k, i-§+2kand 2i + j -
Solution. Volume of the parallelopiped

2 -3 1
=1 -1 2
2 1 -

=2(1-2)+3¢-1-49H+1(1+2)
'=—l4ur|ony14units.
Example 2. Show that the vectors a — 2b + 3¢, ~ 2a + 3b - dc and
a - 3b + Sc are cop
Solution. Letp=a—2b+3c, q=-2a+3b-4c, r=a—-3b+
Sc. By § 5.7.1.
1 =2 3
pqrl=|-2 3 -4|=[abec]
1 -3 5

=0x[abe=0
showing that p, g, r are coplanar.
Example 3. Prove that if |, m, n be three non-coplanar vectors, then
l.a_ Lb 1
Mmn] [axbl=|m.a m.b m
n.a n.b n
(Awadh 99, Rohilkhand 98)
Solution. Let a = a,i + a,j + a;k, b=bji+b,j+ bk,
I=li+hLj+bLk m= m(+m,j+m,k,
n=ni+n)+nk Then

ho b L||i § Kk
(mn] [axbl=|m m my||ay @ a
mom om||h b b

Lithj+hk  hay+hay +hay by +lyby + Ly
=|mi+myj+mk  ma+maa; +may  myby+myb, +msby
mi+nyj+nk  may +nya, +nyay by +nyby +n3by
1 La Lb La Lb 1
=/m m.a m.b|=/m.a m.b m
n n.a n.b| |n.a nb n
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Example 4. Find the value of p so that the vectors 2i - j + k,
i +2j - 3k and 3i + pj + 5k are coplanar.

Solution. Given vectors will be coplanar if

2 -1 1

1 2 =3|=0

3 p 5
= 2000+3p)+15+9N+1(p-6=0
= Tp+28=0 = p=-4

Example S. Prove that
axb=[ixa).blJi+[((xa).b]j+[kxn).kjk
Solution. For any vector r, we have
r=({.0i+(.0j+k.r)k
Replacing r by (a x b), we get -
(axb)=[l.(axb)li+[j.(axb)lj+[k.(a@xhb)]k.
=[ixa).bJi+[(jxa).b]j+[(kxa).b] k

since the position of the dot and cross can be interchanged in a scalar
triple product.

EXERCISES

1. If i, j, k are three mutually perpendicular unit vectors, compute
@@ =-J+k) x (Gi+k. (b 30-2)+3k) x (2 -3k
(€ i+ 4)) x (i-]+k)
and verify in each case with the help of scalar product that the vector
product is perpendicular to the given vectors.
Find also the lengths of these vector products.
2. Compute the following scalar triple products :
@{i-2j+3k)x2A+j-k). ([ +k)
B Ri-3j+k).({i-]+2k)x(2+]-k).
3. CTompute the following vector products :
@ [ -j+k)x (2-3j-K)] x [(-3i+]+ k) x (2] +K)]
() [(3i - 2j — 2k) x (i = K)] x [(i +j + k) x (i - 2 + 3K).
4. Show that the vectors
@F-2% i-j+k -2+3j-dk
(i 2i-j+2k, di+j 3i+k

are coplanar.
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w

Show that the vectors § + J, 1+ k, k + J are not coplanar.
Find the volume of the parallclopiped Whose coterminous edges arc
represented by a = 2% - 3j + 4k, b=i+2j-k e=3i-j+2%k
. If 8, b, ¢ are three vectors such that a x b= ¢ and b x ¢ = 8, show that
three vectors a, b, ¢ are orthogonal in pairs and [bl= 1, lel=lal.
8. Prove that

”

=

l.a Lb Le¢

(mn] abec]=(m.a m.b m.c

n.a n.b n.c

(Rohilkhand 97)
Also deduce that
a.b ac
fabel’=|b.a b.b b.c
c.a c.b c.c

. Show that the four points a, b, ¢, d are coplanar if
bedl+lcadl+fabdl=[abcl.

EXAMPLES

Example 1. If one diagonal of a quadrilateral bisects the other, then
it also bisects the quadrilateral.

Solution. Let OABC be the given quadrilateral such that its diagonal

o B
OB bisects the diagonal AC. C
- - -
Let OA=3, OB=b, OC=c.
" . . a+e >
Since the mid-points - of AC lieson
-
OB, there exists a scalar ¢ such that A
a+c Fig. 58.

=tb = a+e=2b.

Multiplyingbm.h sides vectorially with b, we have
@+c)xb=2bxb=0
= axb=bxe

1 1
—axb==bxc
= 2 2

= %lebl=%lbxcl
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= A OAB=AOBC
for OABC is a plane quadrilateral.

Hence, the diagonal OB bisects the quadrilateral.

Example 2. P, Q are the mid-poinss of the non-parallel sides BC and
AD of a trapezium ABCD. Show that A APD = A CQB.

- - > ¢
Solution. Let AB=b and AD=d.
Now DC is parallel to AB
= there exists a scalar ¢ such that 2 "
! > o>
DC=tAB=tb.
> o o 4 B
AC=AD+DC=d+tb. Fig. 52,

The position vectors of P and Q are %(hulub) and %d
respectively.
> o5 -
Now 24 APD=APx AD
.%(b+d+m)xd=%(l+l)(hxd)4

> ooy
Also 1ACDH=CD>(CB-[Ed-(dnb)]xm-(dwb)]
=[—%d—lb]x[—d+(l—x)b]
=—%(I-—t)dxb+tbxll
--;—(l—-l)bxdnbxd=%(l-l+2r)bxd

1 -
=§(l+t)bxd-zAAPD.
Hence, the result.
3. Given that 8, b, ¢ are the position vectors of the vertices
of a A ABC, find the vector area of the triangle.
Solution. The required vector area
s

\.
\.

> -
stasxao %

=S ib-a)x(e-o)]

=-;—[lxb+b)(t+¢xl]. B

Fig. 5.10.
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Example 4. Find the area of the triangle whose vertices are the points
with rectangular cartesian co-ordinates

(1,23), (-2,1,-4), (3,4,-2)

Solution. Let i, j, k denote unit vectors along the three rectangular
axes. If O be the origin and A, B, C denote lbegive‘n vertices, we have

- - -
OA=i+2j+3k OB=-2i+j-4k OC=3i+4j-2k
- 5 -

AB=0B-0A=-3i- j-Tk,

- -5 o

AC=0C-0A=2i+2j-5k

> >
AB x AC = (=31 - Tk) x (2i+ 2 - 5k)
9 - 29§ - 4k.

R
the required area =EIABXACI =E|l9l-29j—4kl

=%J(I9’+29’ +4%) = ___“':"’.

Example 5. Find the volume of the tetrahedron the rectangular
cartesian co-ordinates of whose vertices are

0. 1,2), (3,0.1), (436), (23 2).
Solution. Let, as usual, i, j, k denote unit vectors along the three
rectangular axes. If A, B, C, D denote the given vertices, we have
- -
OA=j+2k, 0B =31+k,

- -
OC = 4i+3j+6k, OD=2i+3j+2k
The required volume is

R
5! ABxAC-ADI.
We have

> > o
AB=0B-0A=3i-j-k
- o5 o
AC=0C-0A=4i+2j+4k
-

- -
AD=0D-0A=2i+2j

> >
AB x AC = (i j-K) x (41+2j+ 4k)
= - 2i - 16§ + 10k.
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> > -
AB x AC-AD = (21 -16j+10K)-(2i +2J) = ~36.
Thus, the required volume = 36.

Example 6. Show that the perpendicular distance of a point whose
position vector is & from the plane through three points with position
vectors b, ¢, d, is
Mbedj+[cadl+[abdl-[abec]/Ibxc+exd+dxbl
Solution. Let ABCD be the tetrahedron whose vertices A, B, C, D
have position vectors a, b, ¢, d respectively.
Volume of tetrahedron ABCD

n%(uuABCD)xh,

where k is the perpendicular distance of A from the plane BCD

h‘vaollmmol'MnMDnABCD
Area of A BCD

A
1 (4B, 4¢, D}

Lan it

gBacan

N

[E)IBCxBDI B

D
- [b-a, c-a, d-a) v
I(e=b)x(@-b)!
(4

_(b-2)-[(c-a)x(d-a)]
lexd-cxb-bxd|
_ (b-a)-[exd—cxa-axd]
"7 Ibxc+exd+dxbl
- [bed]-[bca]-[bad)-[acd)]
Ibxe+cxd+dxbl
_[bcdl+[cad)+{abd]-[abe]
Ibxc+exd+dxbl
Example 7. Prove that the formula for the volume of a tetrahedron in

terms of the lengths of three concurrent edges and their mutual
inclinations is

=3

Fig. 5.11.

v? cosé 1 cos®

_n’lfc’ 1 cos§ cosy
¥* cosy cos@® 1
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Solution. Let OABC be the tetrahedron with O as origin. Let 8, b, ¢ be
the position vectors of A, B, C and a, b, ¢ be their magnitudes.

Leta=ai+aj+ak b=bi+bj+bk e=ci+cj+ck

o e
bel=gh b b

]

a2 sl ]| aas
vl b ob(xn b o

a @ al |a g ¢

| @ +aj+a} "nibl*‘x"nbt:“s"x €y +30) + a5y
=36 | b1+ aaby+ashy bi+by+b 5:::*?‘:;";";
ac +ay0y +agcy biey +bycy +bicy ¢ ey +c3
lai? a.b a.c
L b b.c

a.c b.c leP

2

o abcos¢  cacosy
= 36| @bcose »? becos®
cacosy  bccos® ?

R 1 cos$ cosy
3% cos¢ 1 cos@
cosy cos® 1

Example 8. Prove that each of the four faces of a fetrahedron
subtends the same volume at the centroid.

Solution. ABCD be a tetrahedron with G as centroid. With G as
origin, let the position vectors of A, B, C, D be a, b, ¢ and d respectively.
Then

a+b+c+d '

" =0 = a+b+c+d=0.

Volume of tetrahedron GABC = %[‘lbﬂ

Volume of tetrahedron GBCD = %lbcd]
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=%~(bxc)-(—a—ll-—c)

I |
=—=—(b a=—
6( xc)-a IG[llu:]

Similarly other volumes can be shown.

Example 9. Compare the volume of a tetrahedron with that of the
tetrahedron formed by the centroids of its faces.

Solution. Let a, b, ¢, d be the position vectors of the vertices A, B,
C, D respectively of given tetrahedron. Then

V=%[b-|, c—-a, d-a]

=%[l—b, a-¢, a-d] (numerically)

Now, the position vectors g,, g, 8y, 8, of the centroids G|, G,, G,, G,
of the four faces BCD, ACD, ABD are ABC respectively are given by

_b+ec+d _a+c+d
B —‘_3 » Ez-—3 '
_a+b+d _-+b+c‘
1= 3 ’ By = 3

V'=%[g,-:., g -2 B4—8)
11 1 1
_E[E{n—b), g{h-t‘-‘}, "j(l—d)]

1 1
=E-E[(i—b)q {._c]I {._d)]

EXERCISES
1. ABC is a triangle, E and F are the mid-points of AC and AB respectively.
CP is drawn parallel to AB to meet BE produced in P, show that
AFEP-AFCE--}AABC’.

- -
2. Show that AC x BD represents twice the vector area of a plane

quadrilateral ABCD.
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3

7.

11.

ABC is a triangle and EF is any straight line parallel to BC meeting AC,
AB in E, F respectively. If BR and CQ be drawn parallel to AC, AB
respectively to meet EF in R and Q respectively, prove that

A ARB = A ACQ.
Two triangles of equal area are on the opposite sides of the same base;
prove that the straight line joining their vertices is bisected by the base.
ABCD is a quadrilateral such that

-+ - -
AB=b, AD=d, AC = mb+ pd;

show that the area of the quadrilateral ABCD is

1
—im+plibxdl
2 P

—» - -
ABCD is a plane quadrilateral with AB=a, BC =b, CD = c. Prove that

the area of the quadrilateral is
%lnx b+bxc-cxal.

Find the areas of the triangles with the following vertices :

(a) (0, 0,0), (1,2,3), (2,-1,4)

(b) (1,0,0), (0, 1,0, (1,1, 1)

€ 1,23, @ -1.=-0, (1, 1,-1)

{d) (a, 0, 0), (0,5,0), (0,0, ¢).

Find the volumes of the tetrahedron with the following vertices :
@(0,0,0), (I,1,-1, (I,-L1), (=1, 1, 1).

B =10,1) (2,-1,0), (3,2,.5), (1,2, 1)

Show that the volume of the tetrahedron, the co-ordinates of whose
vertices are (x;, ¥, 2,), (%, ¥;, 3,). (x;, ¥, 2,) and (x,, ¥, z,) is the absolute
value of

1 =% =h L—y
E X3=X Yi™hn 1374
Xg=X1 Ya=) L4—q

Show that the volume of the tetrahedron, the position vectors of whose
vertices are a, b, ¢, d is

%| [bed]+[cad]l+[abd]-[a bcﬂ

Deduce the condition for the points with position vectors a, b, ¢, d to be
coplanar.

Show that the volume of a tetrahedron bounded by the four planes
r.(mj+nk)=0,r.(nk+ M) =0, r. (A +mh=0and r. (i +mj +
nk) = p is 2p*/ 3lmn.
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5.8. VECTOR TRIPLE PRODUCTS

Let a, b, ¢ be any three vectors. Then an expression of the form
(axbh)xe
which is the vector product of a x b with ¢, is known as vector triple
product. .

It will be shown that this product is a linear combination of a and b and

precisely that
(axbyxe=(a.c)b-(b.c)a.

The vector (a x b) x ¢ being perpendicular to the vector a x b, is
coplanar with a and b and, as such, it is a linear combination of a and b
Let

(axb)xc=Ia+mb ()]

Also the vector on the left is perpendicular to the vector ¢ so that its

scalar product with, e, is zero.

Multiplying both sides of (i) scalarly with, ¢, we obtain

la.e+mb.ec=0. ()]
From (i) and (ii), we obtain an equality of the form
(axb)yxe=k[(a.c)b-(b.c)a] «.(HHE)

This equality has been obtained by using the fact that the vector
(a x b) x ¢ is coplanar with a and b and is perpendicular to c.

It will here below be shown that k = 1. The proof of this fact involves
an examination of the magnitudes of the vectors whereas the equality (if)
has been obtained by considering directions only. A proof of the result will
now be given.

Note, The vector multiplication is not associative, ie., (a x b) x ¢ and a x
(b x ¢) are not equal for all vectors a, b, c¢. In fact, as seen above,
(a x b) x ¢ is a linear combination of a and b and a x (b x ¢) is a linear
combination of b and ¢

The student may compute
{((-PDxi+]+k) x(j-k)
and (-Dx{+j+k)]x(j-k)
and see that they are not equal.
Theorem. To prove that
(axb)xc=(a.c)b-(b.c)a (Kolkata, 99)
where a, b, ¢ are three vectors.
The proof will be given by suitably selecting an orthonormal base
consisting of vectors i, j, k related to a, b, ¢.
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i, is a unit vector along a;
, is a unit vector perpendicular to
a and in the plane of a and b.

k, is a unit vector perpendicular to
i and j such that i, j, k is a right-handed
triad.

Thus, we have expressions of the form

a=ayj,
b=byi+ by
c=cit+ej+ok
Now axb=ajix b+ b))
=abk

(ax by xc=abkx(ci+cyj+ck)
= - abyc,i + abyc,j.
Also (a.©) b= (b.c)ax=ac (bi+b])- (b, +byc,) ajf
- abyci + abye, e
Hence (@axb)xc=(@.c)b-(b.c)a (i)
Cor. ax(xc=-(bxec)xa
-[.a)c—-(c.a)b]
=(c.a)b-(M.a)c cgb-(a.b)ec
Rule to Remember. As a help to memory, we notice that each of the
two scalar products on the right of (ii) involves the outer vector ¢, and of
the two other vectors, a, b in the bracket; a is remote from ¢ and b is
adjacent c. Thus, we have the rule :

(remote x adjacent) x outer = (outer . remote) adjacent —

(outer . adjacent) remote.
The formula in the cor. is also writien by the same rule.

EXAMPLES
Example 1. Prove i x (a x i) + j x (a x j) + k x (a x k) = 2a.
(Awadh 2000; Rohilkhand 2000)
Solution. LHS.=G(.Da-G.ai+(i.Da
~(j.a)j+rk.Ka-(k.a)k
=3a.{i.0)i+(j.a)j+(k.a)k
=3a-a=2a
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I
Example 2. If a, b, ¢ be three unit vectors such that ax (bx ¢)=-£|!,
find the angles which a makes with b and ¢, b and ¢ being non-paraliel.
(Awadh 97; Kumaon 98)

|
Solution. ax(bxc)= Eb

> (@.Ob-@.be=p
= (a.c——%]b—(a.b)c=0

Since b and ¢ are non-parallel, hence coefficients of b and ¢ vanish
separately.

n.c—%=0 and a.b=0

= Angle between a and encos'l(%]S% and Angle between a
and b =mw/2.

Example 3. Show that a x (b x c) = (a x b) x ¢ if and only if either
b = 0, or ¢ is collinear with a, or b is perpendicular to both a and c.

Solution. ax(bxec)=(@axb)xc

= (a.c)b-(a.b)ec=(@a.c)b-(b.c)a

= (a.b)e=(b.c)a ) ()]

The condition is necessary. If ¢ and a are collinear then theorem is
proved. But if ¢ and a are not collinear, then (1) implies that

a.b=0 and b.e=0
It is true if b= 0 or b is perpendicular to both a and ¢.

The condition is sufficient. Let b = 0, or b be perpendicular to both
a and ¢, Then both sides of (1) are equal and hence the given relation holds.
Again, if c is collinear with a, then there exists a non-zero scalar x such that
¢ = xa. Then, we have '

(a.b)c=(a.b)xa=x(a.b)a
=(xa.b).a=(c.b)a =(b.c)a

Hence the proposition.

Example 4. Prove that [a x b, bx ¢, ¢ x a] =[a b cl®

Solution. Let bxe=d

Then (bxc)x(ecxa)=dx(exa)=(d.a)c=-(d.c)a
=[bcalc-[becec]la
=[bca)c (- bee]=0)
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[axb, bxec, cxal=(@xb).[(bxc)x(cx a)]
=(axb).[bca)c
=[bcal][abc]=[abc].

EXERCISES
1. Show that
(axbyxec=ax(bxc
if, and only if, the vectors a and ¢ are collinear,
2. Show that
(D[a+b,b+c,c+a]l=2[abc]
(Kumaon 97, 2000; Rohilkhand 99)
i)(@axb)x(@axc).d=a.d[abc]

3. Prove that
Max(+c)+bx(c+a)+cx(@a+b)=0
(Awadh 99, Rohilkhand 98)
iax(bxc)+bx(cxa)+cx(axh)=0
4. Show that
(bxc).axd)+(cxa).(bxd+(@axb).{cxd)=0
5. Prove that

d.fax{bx(cxd)}l=(b.d[acdl
6. p, q, r are three vectors defined by the relations
bxe cxa axb
"mbad’ YV @ba’ T Eod’
and [abc]=0.
Prove that
(Daxp+bxq+exr=0,

P

(iDa.p+hb, gq+c.r=3,
(i) [abej(pqr]=1,
axr _ Txp Pq

parl’  [arl  (par
7. a, b, c; a', b', ¢’ are two systems of non-coplanar vectors and
p=ax(('xd¢) g=bx(c'xa'), r=cx(axh)
pP=a"x(bxc), =b x(cxa), r=c x(axh)
Show that

(V) a=

[pParl#0, < [p.q.rl=0
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a, b, ¢ are three non-coplanar vectors; express b x ¢, ¢ x a, a x b as linear
combination of a, b, ¢ and show that if

b x c:fua +II2I1 +In¢, c "‘"121‘""12" +lnl:, .
axb=1La+l,b+le
then
I{.f:.llﬁf[nbc].

where A, is the cofactor of the element in thz ith row and jth column in
the determinantal expression for [a b c]%.

SUMMARY

. The vector multiplication is neither commutative nor associative.

If i, j, k are mutually perpendicular unit vectors, then
ixi=0, jxj=0 kxk=0,
ixj=k, jxk=i kxi=}
Jxi=-kkxj=-i ixk=-},

- =
The area of a triangle OAB where OA=a and OB=b is

llaxbl.
2

The scalar triple product a . b x ¢ is 0 if and only if the three
vectors a, b, ¢ are coplanar.

A cyclic permutation of the three vectors does not change the
value of the scalar triple product and an anti-cyclic permutation
changes the value in sign but not in magnitude.

The positions of dot and cross can be interchanged without any

. change in the value of a scalar triple product.

8|

2

The expression %l.bxc denotes the volume of the tetrahedron

with coterminous edges

- - -
OA=a, OB=b, OC=c

if the vectors a, b, ¢ form a right-handed system.
Vector multiplication distributes the sum of vectors, iLe.,
ax(+ec)=axb+axc
for all vectors a, b, c.
(@i + ayj + azk) x (bji + by + bk)
= (aby — ab,) i + (ayb, — ajby) j + (@b, - a,b)) k
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r.(bxc+cxa+axhb)=[abel
Thus, the required condition is
[dbcl+[dcal+[dabl=[abc]
Note. As seen in chapter 2 four points with position vectors a, b, «, d are -
coplanar, if and only if, there exist four scalars x, ¥ z ¢ not all zero, such that
xa+yb+ze+d =0, x+y+2z2+1=0.
From these eliminating +, we obtain
xa-d)+yb-d)+z(e-d)=0
Now supposing that x # 0 and multiplying scalarly with
(b - d) x (c - d}v
we obtain
x(a=d).(b=-d)x{c=d)=0
= [abel=[dbecl+[dca)+[dab]
which is the condition as obtained above,
5.9.2. Egquation of the plane which passes through a given point A
with position vector a and is parallel to the given vectors b and c.
The vector b x ¢ is normal to the P r
plane and the point with position vector N b ’

a lies on the plane. The equation of the  / y ;
plane, therefore, is ’ ;
(r-a).bxec=0 ) c ’

= [rbel=[abel <-----oecmmoaos ‘

Note 1. The equation is actually the Fig. 5.13,
condition that the vectors r — a, b, c are
coplanar.

Note 2. The parametric equation of the plane which passes through a point
a and is parallel to the vectors b and ¢ is

r=a+ (b + pc
= r-a=tb+pe
and on multiplying both sides scalarly with b x ¢, we get
(r—=a).(bxc)=ib, bxc+pc.bxc=0
5.9.3. Equation of the plane through two given points A, B with
position vectors a, b and parallel to a given vector c.

The vector (a = b) x ¢ is normal to

F: i
the plane. Thus, we require the equa- ! )
tion of the plane which passes through ) y ;

a point a and which is normal to the K B > K
vector ' ~é !
7 ,
(a-b)xec o 4,

The required equation therefore is
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(r-a).(@a-b)xc=0

« r.lbxc+cxal=[abec]. D)

Note 1. We may also obtain this result
on taking the parametric equation

r=a+t-a)+pc o r-a=ib-a)+pc

and multiplying both sides scalarly with (b - a) x e.

Note 2. The vector b x ¢ + ¢ x & is normal to the plane which passes through
points with position vectors a, b and which is parallel to the vector c.
5.10. COPLANARITY OF TWO LINES

To find the condition for the lines

r=a+tb, r=c+pd

to be coplanar.

‘The equation of the plane which contains the line r = a + tb and
which is parallel to the vector d is

(r-a).bxd) =0

The two lines will be coplanar if this plane passes through the point
with position vector ¢, ie., if [c b d] = [a b d]. i)

Cor. 1. Plane through two coplanar lines. Assuming the condition
for coplanarity to be satisfied, we now find the equation of the plane
through the two lines.

The plane which passes through the point with position vector a and
which is parallel to the vectors b and d is the plane through the two
coplanar lines. The equation of the required plane therefore is

(r-2).bxd)=0 & r.bxd=[abd] (i)

‘The condition (#) of coplanarity is actually the condition for the plane
(ii) to contain the point ¢ of the line r = ¢ + pd.

5.11. SHORTEST DISTANCE BETWEEN TWO LINES

To find the shortest distance between the lines
r=a+mh, r=c+pd (Kolkata, 99)
The line of shortest distance between two given lines is the line which
meets the two lines perpe;
Being perpendicular to each of the
two given lines, the line of shortest
distance LM is parallel to the vector L M
bxd
Al ! LM is the projec-
Iso _t’lne ength_) is projec-
tion of AC upon LM. Fig. 5.15.

A c
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iy < e=a).x )1 _llcbd{abd]l
Ibxdl  Ibxdl

Also the line of shortest distance is the line of intersection of the two planes
through the given lines and the line LM. The equations of these planes are

(r-a).bx(bxd)=0, (r-c).dx(bxd)=0.

The line of intersection of these planes is the required line of shortest
distance.

EXAMPLES

Example 1. Show that the planes through each of the three edges of
a trihedral angle bisecting the internal angle between the other two are
coaxal.

Find also the common line in terms of the vectors along the three
edges.

Solution. Suppose that OA, OB, OC are three edges of a trihedral
angle at 0. We suppose that '
— - -
OA=a, OB=h, OC=¢c
are unit vectors.

Let OD, OE, OF bisect the internal angles between OA, OB and OC
taken in pairs. Then the bisectors OD, OF and OF lie along the vectors

b+c, c+a, a+bh
respectively. (Refer Ex. 5, Page 38-39), The equations of the planes
OAD, OBE, OCF
are
r.ax(b+e¢)=0, r.bx(c+a)=0, r.cx(a+b)=0

These planes have a point, O, in common and will thus be coaxal if
the normals to them are coplanar, ie., the vectors

ax(b+c), bx(c+a), cx(a+b) ()
are coplanar. Now we have the identity
ax(b+e)+bx(cr+a)+ex@a+b)=0,
so that each of the three vectors in (i) is a linear combination of the other
two. Thus, they are coplanar.

The line of intersection of these planes is parallel to the vector

[ax(b+c))x[bx(c+a)l=(axb+axc)x(bxc+bxa)
=faxb)xxc)+(axc)x(bxc)+(axec)x(bxa)
=[abel]b-[acbhle-[ach]a
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=[abcl[a+b+cl
Thus, the line of intersection is parallel to the vector
a+b+c
where a, b, c are unit vectors along the three edges.
Example 2. In each of the three planes determined by two of the lines
OA, 0B, OC

a straight line is drawn through O perpendicular to the third line, prove
that the three lines so determined are coplanar.

- - -

Solution. Let OA=a, OB=b, OC=c.

The plane containing OA and OB is

r.axb=0

Any line in this plane is perpendicular to the vector

axb

Thus, the line in this plane perpendicular to OC is parallel to the
vector

(@axb)xec
5o that the three lines in question are
r=t(@axb)xec, r=pdxc)xa r=k(cxa)xb
We now have the identity
(@xb)xc+(bxc)xa+(exa)xb=0
so that the three vectors
(@xb)xc, (bxc)xa, (cxa)xb

are coplanar.

Thus, the three lines are coplanar.

Example 3. I, L, Iy and m,, m,, m, are two sets of lines such that the
lines of shortest distances between I,, L,, I taken in pairs are separately
parallel to my, m,, my; show that the lines of shortest distances between
my, my, my taken in pairs are also, separately parallel to I, L, I,

Solution. Let the given lines be parallel to the vectors

8 8,8, and by, by by
‘The given conditions are equivalent to
kb =axa, kb =a,xa, kb=axa,
where h,. ky ky are some scalars.
K by % ky by = (ay % ay) x (& x 8;)
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= lay 8, 0,] 8= [a, 3, ) 3,
so that the vector a, is parallel to the line of shortest distance between the
lines m, and m,.

Hence the result.

4. A square PQRS is folded along the diagonal PR so that
the planes PRQ and PRS are perpendicular to one another. Deiermine the
shortest distance between PQ and RS in terms of p, the length of the side
of the square.

Solution. Let the new position of Q be Q. Let i, j, k denote unit
vector along PQ’, 'R, PS so that they form a right-handed orthonormal
system.

Taking P as the origin of reference, the position vectors of Q', R and
S are

P pi+pl, Pk s ’
respectively. <
The equations of PQ’ and RS are
r = ipi,
r=pi+pi+t(itpi-ph). °
the required shortest distance
Fig. 5.16.
_1pi+pb). pi x (pi+ pi- ph)1
1 pl x (pi+ pj- plo)|
\pi+p)) Pk +p*DI___ P P
1p%k+ P51 Yoty 2

Example 5. OA, OB, OC are three coterminous edges of a rectangular
parallelopiped and OA = x, OB =y, OC = z Show that the shortest
distance between OA and either diagonal skew 1o it is

)

C
and the shortest distances L
divide OA in the ratios
21y and Y2 M P
o) B
4 Fig 517. N

Solution. Let i, j, k denote unit vectors OA, OB, OC so that they form
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an orthonormal system.

The diagonals CN and BM are both skew to the edge OA.

We shall determine the shortest distance between OA and the diagonal
CN.

The position vectors of A, C, N are
xi, zk, x +yj
so that the equations of OA and CN are
r=f, r=zk+p (d+yj- k).
The length of the shortest distance between these lines is
=l(zk—0).lx()d+y_|—d()l
lix (d+yj-zk) |
Ik Okl vz
yk+g! o7+
Suppose now that the line of shortest distance meets the two lines in
the points
A, k+p (d 4y - )

so that their join is perpendicular to both the lines. Thus, we have
[k +p(xi+yj—zk—4).i=0
(2K + p(ad + yj - Zk) - di].. (xi + yj - &K) =0
px-t=0
= (px-1) x+py* -2(2- p2)=0
2 x2*
= p_y1+12. _y’+zz‘

>

If the line of shortest distance meets OA in L', the position vector OL'

of L' is )
X2

=k
Vo
g "
= OL'=xz* /(" +2%).
2
A=z- ;z 2 xy’l
Yy +zm yi+z
ov_2
LAy
We may also now consider the other diagonal BM and prove the
corresponding result.

=
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EXERCISES

Find the line through the point a parallel to the line: of intersection of the
planes

Fom=l romsl
Find the line through the point a paralel to the planes

r.on =g, r.n
Find the line through the pount ¢ parallel 1o the plane 1 . n = | and
perpendicular to the line, £ = & + b,
‘What is the equation of the line which passes through the point a, meets
the line £ = b + c and s paralel to the plane . n = I.
Find the plane which passes through  points a and is perpendicular to the
two planes

I —
Find the plane whi a point, ,is perpendicularto the plane
r.n=gqand s parallel to the line £ = b 4 rc.
Find the plane which passes through the two points a, b and is
perpendicular to the plane 1 . 1 = g.
Find the plane containing the line r = a + b and perpendicular to the plane
r.umg
What is the equation of the plane which passes through the line of
intersection of the planes

n, =g,
and is paralil 1 the line of iersestich of e planes

What is the equation o::hc plane m:z'inhm the parallel lines
r=a+n, r=b+pc
‘What is the condition for the lines
re=a+ibxc, r=b+plcxa)
to intersect. Assuming the condition satisfied, express the position vector
of the point of intersection in terms of the non-coplanar vectors a, b, c.
Show that the lines
rxa=bxa rxb=axb
intersect and find the point of intersection.
Find the equation of the line which passes through the point a and intersect
the lines
reb+r, -r=d+pe
Find the equation of the plane through the line
r=a+m,

and hence obtain the shortest distance between the two lines.
Show that the line of shortest distance between the lines
r=a+mh, r=c+pd

meet the lines at points given by
_dx@-o)Gxd) | _bx@-ol-bxd)
(bxd)? f (bxd)

‘The position vector of four points A, B, C, D relative to any origin O, are
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21

23.

2.

25.

26.

21,

denoted by g, b, ¢, d. Interpret geometrically the equations.
@@-b)x@Eexd)=0 @H@-b).(xd=0

OA, OB and OC are three concurrent lines and the lines OA,, OB,, CC,
are normal to the planes BOC, COA and AOB respectively; show that the
lines OA, OB, OC are also normal to the planes B,0C,, C,04, and 4,08,
respectively.

AA" is the common perpendicular to two skew lines PQA and PQ'A"; B
Q being any two points on the first line and 7, Q', any two points on the
second. Prove that the common perpendicular of AA’ and the line joining
the mid-points of PP, QQ" bisects AA".

. 1 a, b, ¢, d are four lines in space and (ad) represents any plane parallel

10.a and d and 50 on and if (ad) is perpendicular to (bc) and (bd) is
perpendicular to (ca), prove that (cd) is perpendicular to (ab).
OA, OB, OC are coterminous edges of a parallelopiped and P is the vertex
opposite to O; show that the distance of O from the plane ABC is twice
that of P from the same plane.
0A. OB and OC are three coterminous vectors. T, and T, are two
parallelopipeds such that OA, OB, OC are coterminous edges of 7, and are
the altitudes through O of.Ty; show that the product of the volumes of the
two tetrahedron is

o p2 7

where a, B, y are the lengths of OA, OB, OC.
A, OB and OC are three mutually perpendicular straight lines and p is the
length of the perpendicular from O to the plane ABC; show that
pl=alsblec?
and the area of the AABC is
T
a, b, c being the lengths of OA, OB and OC respectively.
‘Two skew lines AP, BQ are met by the shortest distance between them at
A, B and P, Q are points on them such that AP = p, BQ = g. If the planes
APQ and BPQ are perpendicular, show that pg is constant.
Two skew lines AP, BQ inclined to one another at an angle of 60° are
intersected by the shortest distance between them at A, B respectively and
B Q are points on the lines such that AQ is perpendicular to BP, prove that
AP . BQ = 248,
Points P and Q are taken on two skew lines so that PQ is always parallel
10 a given plane, show that the locus of a point R which divides PQ in a
given ratio is a straight line.
A straight line intersects two skew lines. Show that the locus of a point
which divides the intercept in a given ratio is a plane perpendicular to the
line of shortest distance between the given lines. Find also the condition for
the plane to bisect the line of shortest distance.
ABCD is a skew quadrilateral, Points E, F, G and H are taken on AB, BC,
CD and DA respectively such that
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AE: EB:: DG : GCand BF : FC: : AH : HD.
Show that the points EF and GH are coplanar.

28. Il. lz.lsarelhree given mutually skew lines my, m,,maareﬂwlines of
shertest distance between L, [, : L, J, and I, L, respectively. Show that the
plancs through any point P parallel to the pairs of lines [, m;; L, m,
1,, m, are coaxal.

OBJECTIVE QUESTIONS

For each of the following questions, four alternatives are given for the

answer. Only one of them is correct. Choose the correct alternative.

1. A vector that is perpendicular to both the vectorsa =i-2j+ k
andb=i-j+kis
(a) -i+k by -i-2j+k
i-2j+k (di+k

2. Givena=i+ j-kb=-i+2j+kandec=-1i+2j-k, aunit
vector perpendicular to botha + band b + ¢ is

(@) i ®j © k @ (i+j+k)/43
3. If a is perpendicular to b and ¢, then
(@ax(bbxc=1 bG)axdxec)y=0
(c)ax(bxe)=-1 (d) None of these
4, ax(b+c)+bx(c+a)+cx(a+b)isequal to

(a) 2[abc] b o

(03 (d) None of these
5, faxb=axc,a=0, then

(@) b=c+ Aa by c=a+2b

(c) a=b+Ae (d) Non= of these

6. Ifa.b=a.cand ax b=a xc, then
(a) eithcra=0o0r b =c(b) a is parallel to (b - ¢)
(c) a is perpendicular to (b — ¢) (d) None of these
7. faxb=cand b x ¢ = a, then
(a) a, b, ¢ are orthogonal inpairsand lal=lcland I bl=1
(b) a, b, ¢ are orthogonal to each other
(c) &, b, c are orthogonal in pairsbut lal = | ¢
(d) a, b, ¢ are orthogonal but | b | # 1
8. The vector a x (b x a) is :
(a) perpendicular to a  (b) perpendicular to b

(¢) null vector (d) perpendicular to both a and b
9. The triple product (a + ¢) . (b + ¢) x (a + b + ¢) equals to
(a) [abc] () 2[abc]
()0 (d) None of these
10. @+ 2b-¢).(a-b) x (a-b-c)equals to
(@) [abe] (b) -[abc]

(c)3[abc] (d-3[abc]
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11.

12.

13.

14.

15.

16.

17.

18.

a.(b+c)x(a+b+c)=

(a) 0 (b) 2[abc)

(¢) [ab¢] (d) None of these

Let a and 2b denote the diagonals of a parallelogram. Then area
of the parallelogram is given by

(@) laxbl (b %luxbl
(c)2laxbl (d) None of these

If a, b, ¢ are three unit vectors, b x ¢ and a x (b x ¢) =%b.then
angle between a and ¢ is

(@ n/6 by=nl2

(c) n/3 (d) None of these
The value of {| axh [2 +(a -b)z} + (llbz) is
(a) unity (b) zero

(c) 2 (d) None of these
(a-b) x (a+b)is equal to

(@ 0 (b) axh

() 2 (a x b) @lal+1bP

The unit vector perpendicular to each of the vectors 2i — j + k and
3i + 4§ - k is
(@) -3 +5j+ 1k (b) (-3i+5j+ 11k) / 155

(¢) (-3i+5j+ 11k) / |J(155)  (d) None of these

If © is the angle between vectorsaand b, andlaxbli=1la.bl,
then 0 is equal to

(a) 0° (b) 180° (c) 135° (d) 45°

If the vector ¢, a = xi + yj + zk and b = j are suck: that a, ¢ and
b form a right handed system then c is

(@) d - xk (b) 0

© i (d - d+xk

19. The value of x such that the vectorsa=2i-j+ k,b=xi + 2j -

20.

21.

3k and ¢ = 3 - 4j + 5k are coplanar is

(@) 1 ®) 3 (e) -2 (@ 0

The value of p such that the vectors i + 3j - 2k, 2i - j + 4k and
3i + 2j + pk are coplanar is

(a) 4 (b) 2 (c) 8 ) 10

If r satisfies the equation r x (i + 2j + k) = i - k, then for any scalar
t, r is equal to

@i+t(i+2j+k) B)j+ei+2j+k)
WOk+t(i+2j+k (d) None of these
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‘The area of the triangle whose two sides are given by 4i — j + k
and i+ j-kis
@7V B uZ ©unz @ 1142
‘The area of the parallelogram whose adjacent sides are 2i - 3k and
4+ 2k is
@ 2y(14) © 4J14) @ 16y(19) @ {(14)
The area of the parallelogram having diagonals a = 31 + j — 2k and
b=i-3j+4kis
@ 1043 ® 543 ©8 @4
If the non-zero vectors a and b are perpendicular to each other,
then the solution of the equation r x a = b, is given by
@ r=n+.L(nxb):xER
®) r=xh-ﬁ(lxb);xek
(@ r=mxb, xeR  (d) None of these

[a+b,b+c,c+a]=

(@) [abe] (b)Z(@.b)e

@ 2[mbe] @lalliblicl

The value of [a-=b,b-c,c-a] where lal=1,1b1=5
lel=3is

@0 @1 ©6 (d) None of these
[a, b, a x b] is equal to .
@ laxbl @®) laxbP

@la.bl @lallbl
ix@xD+jx@xf+kx@xk=

(@) a ©®) 22 ) 3a @0

Fu=ix@xi)+jx(@xj)+kx@xk), then

(@ wisaunitvector (B)u=a+i+j+k

(u=2a @ +j+k)
Ku=a-b,v=a+bandial=Ibl=2 thenluxvlisequal

to
@ 2‘n16—(l-b)l] ® ‘NIG—(--b)z]
@2 fo-@bf] @ [s-@ry]

For non-zero vectors a, b, ¢, | (axb).cl=lallbllclholds
if and only if
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b)) b.c=0, c.a=0
@a.b=b.c=c.a=0
x (bxc)+bx(cxa)+cx (axb)then

(a) uis aunitvector (b)u=a+b+c

©u=0 @u=0

34. The vector a lies in the plane of vectors b and ¢, which of the

following is correct :
@a.bx9)=0 (a.(bxe=1
©@a.bx)=-1 @da.bxc)=3

35. Let a, b, ¢ be distinct non-negative numbers. If the vectors

ai + aj + ck, i + k and ci + cj + bk lie in a plane, then ¢ is
(a) the AM. of a and b (b) the GM. of a and b
(c) the HM. of @ and b (d) equal to zero

36. Leta=i+jand b =2i - k, the point of intersection of the lines

rxa=bxaandrxb=axbis

@-i+j+k B 3i-j+k
©3i+j+k @i-j-k
37. If the vectors (- be, b* + be, ¢ + be), (a? + ac, - ac, & + ac)

and (a? + ab, b* + ab, - ab) are coplanar, where none of a, b or
c is zero, then

@a+h+=1 () be + ca+ab=0
@a+b+c=0 @ @ +b+c2=bc+ca+ab

ANSWERS
1 (@ 2 () 3.0 4.0 5. @
6. (a) 1. (a) 8. (a) 9. (a) 10. (¢)
11 (@) 12 (@) 13. () 14. (@) 15. (c)
16. (c) 17. (@ 18. (@) 1. (@ 20. (b)
2L 22 23. (b) 24. (b 25. (@)
2. 2. (@ 28. (%) 2. (b) 3. (9
@ 2@ 3. . (@ 35. &

6. 3B
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Geometry with Cartesian Co-ordinates

Cartesian Equations. We shall now see how the properties of scalar
products enable us to obtain various results in Cartesian Geometry, where
points, lines and planes are given in terms of cartesian co-ordinates
determined with reference to three mutually perpendicular concurrent lines
taken as cartesian axes.

6.1. NORMAL FORM OF THE CARTESIAN EQUATION OF A
PLANE

We have already shown in § 4.1, page 100 that if n be a unit vector
normal to a given plane and p be the length of the perpendicular from the
origin to the plane, then the vector equation of the plane is

r.n=p.

/T

z

X
Fig. 6.1.
Substituting
r=xd+y+zk n=ad+5bj+ck

158
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in the equation, we see that ax + by + cz = p is the cartesian equation of
the plane such that g, b, ¢ are the direction cosines of the normal to the
plane and p is the length of the perpendicular from the origin to the plane.

Note 1. Wo may st az + by + et = b alo e squmion o  phce
Here, however, a, b, c are the direction ratios of the normal to the plane.

The coefficients a, b, c are proportional to the direction cosines of the normal
10 the plane whose equation is
ax+by+cz+d=0.
The actual direction cosines are
u/\h:a’. b/\h:a‘. c/Jza’.
Note 2. Equation of a plane is of the first degree.
6.1.1. To find the equation of the plane passing through the three
points
) Py(xp yp 20 Py(xy yp ) Pylxy vy 29).
‘We have
-
OP, = xi+y j+zk, etc.,
where O is the origin and i, j, k arc unit vectors along the coordinate axes.
If P (x, y 2) be any point of the plane, we have

- > >
PPxPPyPP; =0. i)

z
z r
(4
[ Y
x x

Fig 6.2.
>
Now BP=(x-x)i+(-y) j+@z-7)k
-
BPy=(n-x) i+ - i+ -k
—
RPy = (% -x) i+ 03 - y) i+ (G -2)k
By Cor. 3, Page 130 (i) gives the following required equation :
x=x y-n z-a
=% Y~n 2-u(=0
X=H YN BTy
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6.12. To find the equation of the plane which passes through
P, (x,, ¥y, 2,) and which is parallel to two lines with direction ratios
1, my, n, and L, my, n,

Let P (x, 3, 2) be any point of the plane so that

-
OP = xi+yj+ zk.
We have

-
OB = xji+yj+zk
so that
-
PP=(x-x)i+(y-n) j+@z-2)k
Also we have
a=li+mj+nk b=lLi+mj+nk

>
The vectors PP, a and b being coplanar, the scalar product

-
RPxa.b=0
o that
X=X YN -4
L m  m =0
L omoom
is the required equation of the plane.

Note. It may be easily scen by the student that the equation of the plane
which passes through the points P, (x,, ¥, 2,) and P, (. ¥ 2,) and which is
parallel to the line with direction ratios /, m, n is

X=X y=yn =y
X=X W-»n u-z (=0
1 m n
6.2. CARTESIAN EQUATIONS OF A LINE

To find the line which passes through a point A (x,, y,, 2,) having
direction ratios p, q. r.

The position vector of the point A is x,i + y, j + 2,k and the vector
pi + gj + rk is parallel to the given line. Replacing the vectors a and b
by x,i +y, § + z/k and pi + gj + rk respectively in the parametric equation

r=a+m '
we obtain
Ad+yj+zk=i+x]+xk)+@i+g)+k
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D -x-pi+(y-y-j+@z-z-tk=0

= x-x,-tp=0, y-y -19=0, z-2, -tr=0

= x=x-Mp, y=y -lg 1=z +1r

ITH _YTh _Z7y
P q r

which are the required equations of the line.

Cor. To find the line through two points P, (x,, y,, 2,) and P, (x,, ¥,
)

We write
>
2]
b=(g-x)i+(yn-yi+@-z)k

so that a is the position vector of a point on the linc and b is a vector
parallel to the linc. The required cquations therefore are

y—
=X Nt LTu

xi+yj+zk

x-x 2-z

6.3. COPLANARITY OF LINES
To find the condition for the lines

XX _Y¥ 2%
L om o
to be coplanar.
In vector notation, we can rewrite these equations as
a+h, r=c+ud

where

a=xi+yj+zk b=li+mj+nk
c=xityitzk d=bitmitnk

The condition for coplanarity is

@-c¢).bxd=0
=X »=n u-n
) L "
b m om
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Assuming the condition to be satisfied, the equation of the plane
containing the two lines is
(a-a).bxd=0
X=X Yy=n -4
Loom om |=0
L m n
64. SHORTEST DISTANCE
Adopting the preceding notation, the length of shortest distance is

(c-a).bxd
Ibxdl
X=X NN L=y
where (c-a).bxd=| m n
b moom
and bxd=E@mn -mpn)i

= |bxd|=Jz(m,n, mm)?.

Of course the required shortest distance is the absolute value of

OX, 0¥, 0Z and 0’ X’ 0°Y; 0° 2"
be two sets of rectangular co-ordinate axes.
Let (f; g ) be the co-ordinates of O and let
by my, my; by my, ny; by my, g
be the direction ratios of 0X; 0Y; OZ’, with respect to OX, OY, OZ

Let (x, 3, 2), (¥} y% z') be the co-ordinates of a point P with respect
to the two sets of axes.

If, i, j, k : i % k”be unit vectors along the two sets of axes, we have
-
OP=xi+yj+zk

- -
O'P=xi+y J+7'K, 00 =fi+gi+hk,
F=hiemi+nk
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§=hi+mj+nk,

K= Li+mj+nk

z
Py
» 4\ o, v
P P
X

Fig. 6.3.
> o o
Now OP=00'+0'P
= xd+yj+k=fi+gj+hk+xi+yj + 7k
= @-fi+(y-gi+G@-Nk=x (i+mj+nk)

+y (i + myj + nk) + 2 (G + my + ngk)
x=f+x'h+yL+2'l,
= y=gHx m+y my+2'my,
z=h+x'm+ym+2'm,
which are the required formulae for the transformation of co-ordinates from
one set of axes to another.

EXAMPLES
Example 1. If OX, OY, OZ and O' X', O' Y', O’ Z are two sets of
rectangular co-ordinate axes and
bymy g bymy, gy Ly my, ny
denote the direction cosines of the members of either set with respect to
other, then

b omy ony

Solution. If §, j, k;

‘ K= Li+mj+nk

| Also we have

| Lomom
Wykl=|b m n|=[ijk]

| bomyom
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As [i j k) = [i% 5 k), we have the required result.
Example 2. Find the reflection of the point (2, -3, 4) in the plane
2x+3y+52+2=0.
Solution. The equations of the line through the point (2, -3, 4) and
perpendicular to the given plane are
x=2_y+3

==

=6
2 6
Equating these fractions to , we see that the point,
x=2+2 y=3-3 z=6t+4 )
lies on given plane, if
22+2D+3G-3)+6@6t+4)+2=0
A+4+9-9+36+24+2=0
= 49t =-21
3

==

Putting this value of  in () we see that the foot of the perpendicular

(

If (a, b, c) be the reflection P of the given point in the given plane,
then the mid-point of AP, viz.,
a+2 b-3 c+4
2’ 2" 2
must be the foot of the perpendicular.
a+2 _8 b-3 30 c+4 10

16
= a==2 b=-"043 =704
o am2 B 8
7 7 7
[z -39 -8
e (333F)

is the required reflection of the given point in the given plane.
Example 3. Find the reflection of the point A (1, 0, 0) in the line
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Solution. Any point P on the line is
2041, =3r-1, 8- 10. (D)
The line AP with direction ratios 21, =3t - 1, 8 - 10 will be
perpendicular to the given line, if
2(2)-3¢-3-1)+8(8-10)=0
= 4t+9+3+64-80=0
= Tt-1=0 = =1
Putting this value of ¢ in the co-ordinates (f) r of the point P we see
that the co-ordinates of the foot of the perpendicular, P are (3, -4, - 2).
If B (a, b, c) be the reflection of the point A (1, 0, 0), then the mid-point
a+l b ¢ ’
[T- 2 E] of AB must be the foot P of the perpendicular from the
point on A the given line so that we have
atl_ 3, b 4, L=
2 2 2
= a=5 b=-8, c=-4.
Thus, (5, -8, —4) is the reflection of the given point in the given line.
Example 4. Find the equation of the plane through the points A, B,
C whose rectangular cartesian co-ordinates are
(,1,1), (L,-11) (-1,-3 =35)
Solution. The position vectors of these points are
i+j+k i-j+k -i-3j+5k

respectively.
Let P
x+yj+zk
be any point on the plane. We have
- =2 -
(AB x AC) . AP =0
A [(-2jx(-2i-4j-6K)].[(x-Di+(-1]j
+(z-Dkl=0
< (12i-4k) . [(x-Di+(y~-Dj+@-1Dkl=0
= RE-1)-4@z-1)=0
= 3x-z-2=0.

which is the required equation.
Example 5. Show that the points whose rectangular cartesian co-
ordinates are
(-6,3,2), (3,-2,4), (57,3}, (-13,17,-1)
are coplanar.
Solution. In the usual notation we have

- -
OA=-6i+3j+2k, OB=3i-2j+4k,
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2

6.

10.

(i) (3,5, 8)inthe plane Ix -y -z + 26 = 0;
(i) (5. -9, —6) in the plane 2xr ~ y + 3z - 8 = 0.
Find the feet of the perpendiculars from the origin to the lines
x-3 y-8 -3
3 -4 -2
ox+l _¥y_ z—-4
@ =5 =75
. x=3 l-y z-5
= = .
@ === "
Find also the reflections in each case.
Find the reflection of the point (7, — 1, 2) in the line
x-9 y-5 z-§
I 3 5
Given a triangle with vertices (1, 2, 3), (2, 1, 4), (5, 1, 3). Show that the
orthocentre of this triangle is

)

%(23! +j+9K).

Examine if the following sets of points are coplanar :

(@ (3,2,-5), (-3,8,-5), (-3,2,1), (-1,4,-3).

) (6.-4,4), (0,0,-4), (-1,-2,-3), (1, 2,-5).

© -2,-L0) (1,-2,-1) (2, 1,4), (0. 1,0)

Find the equations of the planes through the points :

M -2,-2,2), (L1 (1,-1.2)

(ifJ (_ ﬁ'o 3- 2)! {31 _zf 4). (5- ?o 3)

By vector method prove that the shortest distance between the straight line
y+z=0 z+x=0

and the straight line

x+y=0 x+y+z-a=0
is \J6al3.
A tetrahedron has vertices
A.00, B(,1,00, C(0,1,-1), D(1,0,-1)
Show that the line joining the origin to the point (1, 1, 1) is perpendicular
to the face BCD.
A=(0,1,2), B=(3,0,1), C=(4,3,6), D=(2,3,2) are the rectangular
cartesian co-ordinates of four points. Find
() the area of the triangle ABC.
(i) the perpendicular distance from A to the line BC.
(i) the volume of the tetrahedron ABCD.
(iv) the perpendicular distance from D to the plane ABC.
(v) the shortest distance between the lines AR and CD.
Find the volume of the tetrahedron formed by the planes
my+nz=0, nz+Ilx=0, lx+my=0,
Ix + my + nz = p.
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11.

12.

13,

14,

15.

16.

17.

18.
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Find the equation of the plane which contains the line
x=2, y-z=0

and is perpendicular to the plane x + z = 3.

Find the point where this plane meets the line
x y z

—_— e v

2 3 1
Prove that a plane normally bisecting a diagonal of a cube meets the edges
of the cube in points which are the vertices of a regular hexagon.
Prove that the lines

.t+l_y+3=z'+5’ x-2 y-4 12-6

3 5 71 3 5
intersect. Find their point of intersection and the plane in which they lie.
Prove that the lines

x-a _y-b _z-=c x-a - y=b _ z-¢'

a b ¢ a b ¢ .
intersect and find the co-ordinates of the point of intersection and the
equation of the plane in which they lie.

Prove that the lines

x=1 y+1_z+10 x—4 y+3_z+l

2 3 8 ' 1 < 7
intersect. Find also their point of intersection and the plane through them.

Find the magnitude and the equations of the line of shortest distance
between the two lines :

x-3 y+I15 z-9 x+1 y-1 z-9
=
. x=3 y-4 z+2 x-1 y+7 242
T
Obtain the co-ordinates of the points where the shortest distance between

the lines

x-23 y-19 z-25 x-12 y-1_ z-5

% 4 3 -9 a4 2
meets them,
Find the shortest distance between the lines

x=1 y-2 z-3 x-2 y-3 -4

2 3 4 3 4 s
Show also that the lines are coplanar.
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show that
@Ma.b=b.c=c.a
(i) PL and BC are perpendicular.
1l Giventhatp=a+bandq=a-band(al=1bl=kshow that p
.q =0 and that
Ipxql=2[K-G@.ba"
12. The point A is (2, 1, 6) and has position vector a relative to the arigin 0;
B is (1, 3. 5) and has position vector b. The line I is given by
r=b+s5(+2j+3K) and the line m is given by r =2 + 1 (i + 6] + 5Kk). Show
that the lines / and m intersect, and state the co-ordinates of the common point. Prove
that AB is perpendicular to I, and hence write down the co-ordinates of the reflection
of Ainl.
13, Show that there is one and only one value of p for which the vectors
@+Di-3+pk pi+G+Dj-3k -3i+p+(@+Dk
are linearly dependent and find this value of p.
14, Consider these two lines
r=a+hl, r=b+pum,
where
r=Si+j+2k  b=-i+7j+8k
I=-4i+j-k m=2-5-
Show tha the two lines intersect and find the position vector of the point P of
their intersection. If the position vector of a point Q is 3i + 7j - 2k, show that PQ
is perpendicular to AB where A and B are the points with position vectors a and b.

7‘.3.(l+j+k). b=

1
7;(] k).
show that 2, b and ¢ are mutually perpendicular unit vectors and express i in the form
Ppa+gb+re.

16, Find the unit vectors which are perpendicular to both the vectors 1 + 4]
and 21 + 4§ + 3k. Find also the angles between these unit vectors and the vector

F0+1-10.

17. ABCD is a tetrahedron; X, ¥, Z are the mid-points of AB, AC, AD and P.
Q. R, are the mid-points of CD, BD, BC.
Prove that

AB® + BC? + 2PX* = AC* + BD* + 20Y* = AD* + BC* + 2RZ2.
18. Find all the sets of vectors of a, b and ¢ that satisfy the following
conditions :
a is parallel to 1 + jand a1 = 3;
bis parallel to§ - jand 1 b 1= 1;
¢ satisfies the equationa =b x cand I e 1= 9.
(Parallelism includes the case of opposite directions also.)
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19. Find the general form of the vector x which satisfies the equation
xxA+2+0)=i-k
20. Points A, B, C have position vectors a, b, ¢ and p, g, r are variable
parameters subject (o the condition p + g + r= 1. If the points are not collinear, prove
that the plane ABC is represented by the equation r = pa + gb + re.
Prove that the equation of the line of intersection of the two planes
rEpi+ 2§43k ptog 4 or=)
and rE2piiqirk  pyv gt '1"
can be written in terms of a single parametric ¢ as
6r=CG+0i+4j+9( -0k
21. The position vectors of the vertices A, B, C of a tetraliedron OABC with
respect to O as origin are

- - -
OA=2i+], OB=j+k, OC=i+3j-k.
Find the angle between (a) the edges AB, CD (b) the faces OAB, OAC.
Prove that BC s perpendicular to the plane OAB and hence prove that the volume
of the tetrahedron OABC is 3/2.
22. Prove that the lines with vector equations
r=(i+2)+ai+2)
r=k+b@+)-k),
reitj-ktcl+k)
r=2+j+dQi-J)
in the given order form a (skew) quadilateral.
Prove that the ratio of the shortest distances between the two pairs of opposite.
sides of this quadrilateral is f7:1.

-
23. Referred to cartesian axes, A is the point (1, 2). If AB=3i-j and

-
AC=3i+4}, write down the co-ordinates of the points B and C.

R B - o - o
EmdFmpninumchumBE=zAClnd BF = AB. Show that CE = EF

and state what can be deduced about the points C, E, F
24. The line r = p + u lies in the plane a . r = d, where &, p, u and d are
constants prove that a . w=0 and a . p = d. Conversely, if 8 . p=d and & . u
=0, show that the line lies in the plane.
25, Find the equation of the plane to which the vector i + § is normal, and
which contains the line [ with equation
r=d+jel)+1(=-]-K.
Find also the equation of the plane containing ! and the point J. Show that n/
6 is an angle between the normals of these planes.
26, Unit vectors | and § are at right angles to each other. Also
p=3i+4j, q=5I, dr=p+q Z=p-q.
Show that
@lpl=lql; ®) iri=lsl;
(c) ris perpendicular tos; (@ ir+si=lr-si;
() r + a s perpendicular o r - a.
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Show also that, for all real k,
Irseksl=lr-ksl.
27. Show that the lines
ir=jesi-j+k), =i-j+tG+j+k)
have no point in common. If A lies on /; B lies on L, and AB is perpendicular to both
1, and L, find the length of AB and the equation of AB. Find also the equation of
(i) the plane =, perpendicular to AB and containing /,.
(if) the plane 7, perpendicular to AB and containing L.
Find also the cartesian equations of the lines /, L, and the planes =, m,.
28. The six faces of a rectangular cuboid have vector equations
r.k=0, r.(i+)=2 r.@§-HD=2
r.k=2 r.(@+)=4, r.g-HN=-2
‘where i, j, k represent unit vectors along perpendicular axes Ox, Oy, Oz Prove that
the acute angle between the diagonals through the points 2i and 2j is
cos ™! (177). :
Find the vector equations of the planes parallel to Oz through these diagonals.
29, From the point s, = +  # k the perpendicular drawn to a plane =, is i
= j + k. From the point s, = 3i - j - k the perpendicular drawn to a plane =, is
i+ 2j + k. Find the equation of the plane =, containing the line of intersection of
the planes x, and 1, and passing through the mid-point of the line joining s, and s,.
Findumuulmmofmmammﬁvmmmunmmepmn,
‘Three vectors &, b and ¢ are such that a # 0 and a x b = 2a x c. Show
amb 2¢ = Aa where A is a scalar.

Given that Ial=lcl=1,1bl=4and the angle between b and c is cos™ (%)
show that A = + 4 or — 4. For each of these cases find the cosine of the angle between
amdc

31 Three non-collinear points 4, B and C have position vectors a, b and
respectively, relative to an origin O, not necessarily in the plane ABC. Prove that the
area of the triangle ABC is equal to the magnitude of the vector

l(hue#cx.olxh).

mammmmmmwmmﬁmmﬂn‘mof
0AB, OBC and OCA, considering the cases (i) O is inside the triangle

ABC(H)Ohhﬂnm.lmbwndedbyACmdBCpmdﬂud

32. Prove that the line r = & + tb and the plane r . n = p intersect
in a point whose position vector is & + (p — a . n) b/(b . n) given that
b.n=0

33, The non-zero vectors p, q are such that their vector product is the zero
vector. State what is implied by this relation about the directions of p and q.

‘The three non-zero vectors 8, b and c satisfy the equation a x b= c x a. Deduce
that b x ¢ = ka where k is a scalar. If also 8 x b= b x ¢ # 0, show that a + b
+c=0.

34. Given that x+$(p.x)p-q, show that p.x=1p.q and find x in
terms of p and q.
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Given also that OA = 2 and OB = 3; prove that the cosine of the angle AOB
is 4/5, and calculate the length of PQ.
40. The points O, A, B, C, D are such that

> o o >
OA=3, OB=b, OC=2a+3b, OD=a~2b.
- > -

Given that the length of OA is three times the length of OB show that BD

S
and AC are perpendicular.

41. ABCD is a planc quadrilateral whose sides CD, BA intersect at O. If 2. @
are the mid-points of the diagonals AC and BD, prove that the area of A OPQ is one
quarter of the area of the quadrilateral ABCD,

42. If p and q are the position vectors of two fixed points and if r is the
position vector of a variable point, describe geometrically the loci given by the
equations

C-p.c-9=0 and (r-Px(-9=0.

43. AA", BB, CC and DD are edges of a cube perpendicular to the face ABCD.
Find

(7) the perpendicular distance of D’ from the diagonal AC',

(i) the shortest distance between the edges DD and the diagonal AC'.

44. In the triangle ABC, L is the mid-point of AB and M is a point in AC such
that the ratio of the length of AM 1o the length of MC'is 2 : 1. BM and LC intersect
in N.

Find the position vector of N.

() Calculate the ratio of the area of triangle ANC to the area of triangle ANM.
() Prove that the arca of triangle BNC = area of triangle ANC.

(i) Calculate the ratio of the length of BN to the length of NM.

() Calculate the ratio of the area of triangle BNC to that of the triangle ABC.

45, 1f two opposite edges of tetrahedron are at right angles, show that every
plane section of the tetrahedron parallel to this pair is a rectangle.

46. 1 P be any point on the circumference of the in-circle of an equilateral
triangle ABC, show that PA? + PB* + PC? is constant.

47. OA, OB, OC are three mutually perpendicular straight lines through O and
A, B, C also denote the angles of the triangle ABC; show that

(@ A ABC is acute angled.

(if) OA? tan A = OB* tan B = OC® tan C.

43, Show that the mid-points of the six edges of a cube which do not meet
a particular diagonal are the six vertices of a regular hexagon. Also show that the plane
of the hexagon bisects the diagonal normally.

49. ‘The line AB is the common perpendicular to two skew lines AP and BQ,
and C and R are the mid-points of AB and PQ respectively. Prove that CR and AB

are perpendicular.

50, Let  be a given non-zero vector. For what vectors uis a x u =07
Leta=i+2]-3k, b=2l+j-k, wherel, J, k denote the usual base vectors.
Determine the set of vectors v for which
axvaaxb
Hence, find a vector v
. axv=axbh a.v=0
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Some Miscellaneous Topics
(Products of Four Vectors)

In this chapter, we shall consider products of four vectors and the
solution of some vector equations.

7.1. SCALAR PRODUCT (axb).(cxd) OF FOUR VECTORS
We shall prove that

a.c a.d

b.c b.d

Looking upen (axb).(cxd) as a scalar triple product of the three
vectors '

(@axb).(cxd)=(a.c)(b.d)-(a.d)(b.c)=

axbed
and interchanging the dot and cross, we have
(axb).(exd)=[(axb)xc].d
=[(a.c)b-(b.c)a].d
={a.c)(b.d)-(b.c)(a.d)

7.2. VECTOR PRODUCT (axb)x(cxd) OF FOUR VECTORS
We shall prove that
(axb).(exd)=[abdlc-[abcl]d=[acdlb~-[bcd]a
We can look upon (axb)x(ecxd) as a vector triple product in two

ways according as weputaxb=porcxd=q.

Thus, putting a x b = p, we have
(axb).(exd)=px(cxd)
=(p.d)e=-(p.c)d=[abd]lc-[abec]d

so that the vector product now appears as a linear combination of the
vectors ¢ and d.

Again, we have
(axb)yx(cxd)=(axb)xgq
=(a.q)b-(b.g)a=[acd]b~[bed]a,
175
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so that the vector product now appears as a linear combination of the
vectors a and b.

Thus, we have
(axb)x(exd)=[abd]c-[abc]d=[acd]b-[bcd]a.
7.3. LINEAR RELATION CONNECTING FOUR VECTORS
To determine the Linear Relation connecting four given vectors.
Let a, b, ¢, d be four given vectors. Considering
(axb)x(cxd)
as a vector triple product in two ways as in the preceding section, we obtain
[abdlc-[abcld=[acd] b-[bcd]a.
= [abdlc-[abcld-[acd]b+[bcdla=0

= [bedla-[acdlb+[abd]c-[abc]d=0 ()]
which is the required relation connecting the four vectors
a,b,cd

If{fab,c]#0,ie.,a, b, c are not coplanar vectors, we can rewrite (i)
as
_[bcd]la-facd]b+[abd]c
) [abc)

Thus, we have expressed any given vector d as a linear combination
of three non-coplanar vectors a, b, and c.

Another Method. If a, b, ¢ are not coplanar, then we have a relation
of the form

d

d=2a+pb + ve, ()
Multiplying scalarly with b x ¢, we obtain
[dbe]l=A[abcl (i)

Similarly on multiplying () scalarly with ¢ x a and a x b, successively,
we obtain
[dcal]=plbcal=pufabe] N (11)]
[dabl=vicabl=v[abc] (39
Substituting in (i) the values of A, p, v, as obtained from (ii), (iii), (iv),
we obtain the required relation.
7.4. PRODUCT OF TWO SCALAR TRIPLE PRODUCTS
To prove that
p-p' p.q p.r
lparllp’'q'r'l=(q.p" 9.9 q.r
r.p r.q r.r
where p, q, r; p' q°, r’are any vectors.
Writing p’ x g’ = a and considering the four vectors p, g, r, a, we obtain
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the linear relation connecting these four vectors. As in § 7.1, above we have

[qralp-[(pralq+[pqalr-[pqrila=0 0
Again

[qt;ll]=q!r.a=(qxr],(p-kq.}=|Q-P' q.q'|

I‘.p r‘q
[pral=pxr.a=(pxr)-(p'xq')= P-P: p.q:

r. r.q
[pq.]=pxq,':{pxq}.(prxq;)=|p‘P' p.q,|

q.p q.q

We rewrite (i) as
[pqrlp'xq =[qralp-[prajq+[pqalr
Multiplying scalarly with r’, we obtain

q.p" q.9 r.r')

[pqrilp’'q'r']=

r.p r.q'!
49-9} Rl 2 T AL L PR
r.p r.q q.9 p-p

p-p p.q p.r
=|q.p' q.4' q.r

r.pf r.q r.r

a.a a.b a.c

Cor. [abc’=|b.a b.b b.c
c.a ¢.b c.c
7.5. TWO USEFUL DECOMPOSITIONS
7.5.1. If a, b, ¢ are three non-coplanar vectors, then to prove that
bxec, cxa, axbh
are also non-coplanar and to express a, b, ¢ in terms of
bxe, exa, axh
We are given that [a b ¢] # 0 and we shall prove that the scalar triple

product
[bxe, ¢exa, axb]l=0
We have
(bxc)x(cxa).(axb)=[(b.cxa)c-(c.cxa)b].(axb)

=fabec]lc.axb, for c.cxa=a

=[abce]jlabe] 0.
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Hence, b x ¢, ¢ xa, axb are non-coplanar vectors. The vectors
bxe, cxa, axb being non-coplanar every vector and, in particular,
a, b, ¢ is expressible as linear combinations of the same.

178

=bxc+mexa+naxh.
Multiplying both sides scalarly with a, b, ¢, successively, we get
Mbxc.a=l[abc,a.b=m[abcl,a.c=nfabel

= "—m,
= L f@.a)bxc+@.bexa+@.caxbl

be]

We may similarly exp.lu b and ¢ in terms of

bxe, cxa axb.

7.5.2. If a, b, c are three non-coplanar vectors, then to express b x ¢,
cxa, axbintermsofa,b,c

It has been already proved that the vectors b x ¢, ¢ x a, and a x b are
non-coplanar.

Let

bxc=la+mb+nc
Multiplying both sides scalarly with
bxc cxa and axbh
successively, we get
(bxc).bxec)=1[abe],
Mbxc).(cxa)=mabc],
bxc).@axb)=nlabecl,
,=(b!c)-(bxc)
= [abel
mg(bxc).(cxl)‘
[abc]
o x0).@xb)
YY)
where the numerators can be transformed as in § 7.1 page 177.
Thus, we have expressed b x ¢ in terms of a, b, c.
We may similarly express ¢ x a and a x b in terms of a, b, c.
7.6. RECIPROCAL SYSTEM OF VECTORS
If a, b, ¢, be three non-coplanar vectors 5o that [a b c] # 0 and if a,
b’, ¢’ be three other vectors such that

. bxe LI b
[abc]l’ [abcl’ [abc]’

then a’, b', ¢’ are called reciprocal system to the vectors a, b, c.
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Properties,
76.1. (1) Ifa, b, c and a’, b’, ¢’ be reciprocal systems of vectors, then

r

a'=g.—xc _labd _,
=0T bd @b

Similarly b. b’ =c.¢' = 1.
Note. Due to this property, the two systems of vectors are called reciprocal
systems.
(I) To show thata.b'=a.c¢'=b.a'=b.¢'=¢c.a'=¢c.b' =0
a.b'=a- cxa =[aca]=0
[abe] [abc]
Similarly other results follow.
= () To showthat [abe] [a', b, ¢'] = 1. (Awadh 98, 2000)
bxc cxa axb
labe]l’ [abe]l’ [abc]

We have [a', b, c']= [

abel [bxe, exa, axh]

v [abc)?

_ 1
. - [abe]
[a, b, cl[abe]l =1

Since [a be] 20, hence [a', b', ¢'] # 0 = a’, b, ¢’ are also non-
coplanar. .

(IV) The orthogonal triad of vectors i, j, k is self-reciprocal.

Let i', j', k' be the system of vectors reciprocal to the system i, j, k.
Then, we have

jxk _
[i jk]

Similarly, y =j and k' = k.
7.6.2. Theorem

If a, b, ¢ be three non-coplanar vectors for which [a b ¢] # 0 and &',
b', ¢ constitute the reciprocal system of vectors, then any vector r can be
expressed as

= i

r=(r.a)a+(r.b)b+(r.c")e.
Since a, b, ¢ are non-coplanar vectors, r can be expressed as a linear
combination in the form
r=xa+yb + zc (1)
where x, y, z are some scalars.
a = r.(bxe)=xa.(bxe)+yb.(bxe)+zc.(bxc)
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=x[abc]

r.(bxc) ,
= [a b =(r.a’)
Similarly y=r.b, z=r.c¢
.~ r=(r.a)a+({r.b)b+(r.c)e (2)
Cor. 1. Similarly, we can get
r=(r.a)a’"+(r.b)b" +(r.c) ¢
Cor. 2. Since the system i, j, k is self-reciprocal, (2) can be written as
r=r.di+(r.j+r.kK k
EXAMPLES

Example 1. Prove that
[axp, bxqg, cxrl+faxq, bxr cxp]
+faxn bxp, exq]l =0
Solution. [axp, bxgq, exrj=(axp).[(bxq)x(ecxr)
=(axp).{bxq.rlc-{(bxq).c}r]
=(@axp).{lbqrlc-[bqc]r}
=[apcllbqrl-Taprlibgqgec] (1)
Also, [axgq, bxr e¢xp] .
=(bxr).[(cxp)x(axqg)
=(bxr).[{(cxp).q}a-{(cxp).a)q]
=(bxr).{lcpqla-[cpal q}
=[brallcpql-[bgrlfapc] ~(2)
[axr bxp, cxq]
=(cxq).[(axr)x(bxp)]
=(exq.[{(axr).p}b-{@xr).b}p]
=[cqgblfarpl-[cqb][arb] (3)
Adding (1), (2), (3) the required result follows.
Example 2. Prove that
[axh, ¢xd, exfl=[abd][cefl]-[abc][def]
=[abe][fcdl-[abf][ecd]
=[cdal[befl-[cdb][aef]
(Awadh 98)
Solution. [ax b, exd, ex ]

={axb).[(cxd)x(exD)
={faxb).[{cxd).fje={(cxd).e}f]
=(axb).{[cdfle-[cde]f}
=[label[cdf]-[abf][cde]
=[abel[fcd]-[abf][ecd]

Also,
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[axh, exd, exf]
=(cxd),[(ex)x(axbhb)]
=(cxd).[{(exf.b}a-{(exf).a}b]
=(exd).{[efb]a-[efa]b}
=[cda)[efb]-[cdb][efa]
=[cda][befl]-[cdb][aef]

Similarly,

[axb, ¢exd exf]
=(exf).[(ax b) x (c x d)]
=(exf).[{axb).d}e-{(axb).c}d]
=(exf).{[abd]lc-[abc]d}
=fefc]labdl-[efd]l[abc]
=[abd][cefl-[abc][def]

. Example 3. Prove that
a.a a.b a,
b.a b.b b.
c.a c.b c.c
Solution. In § 5.2.1, Page 119 we proved that
(a x b)*=a’h? - (a.b)
In the following we shall make use of this result.
We have
[laxb)xcP=(@xblPecd-(axb.c? (§52.1,P 119)
{(a®b*-(a.b)¥} 2 -[abcP
= a’b?’e?-(a.bP c?-[ab ]t
Also [(a x b) x c]* = [(a.c) b (b . ¢) a]?
=(a.clb*-2(.c)(b.c)(a.b)+(b.c)a?
.. ab*?-(a.bPFc-[abc]
=(@.clfbl-2(a.c)(b.c)(a.b)+ (b.c)a?
= [abcP=a’bct-(a.b)}c?-(b.c)a’~-(c.aPb?
+2(@a.b)(b.c)(c.a)
a.a a.b a.c
b.a b.b b.c
c.a c.b ¢.c

[
[abc)? = c

Example 4, Decompose a vector r as a linear combination of a vector
a and another vector perpendicular to a and coplanar with r and a.

Solution. The vector (a x r) x a is coplanar with a and r and perpen-
dicular to a. Let
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r=xa+y[(®xr)x a]
Now we have
r.a=xa.a = x=(r.a)/(a.a),
= rxa=yl(axr)xa]xa
=yla.a)r-(a.r)a]xa
=y(a.a)(rxa)

= y = 1/a . a).
Thus, r=2n+ (axr)xa.
a.a a.a
Example 5. Prove that
-a -b e d
a b ¢ 4
2(axb)x(exd)=
@ b o 4
ay by ¢y dy
where a=aji+aj+aket

Solution. We have
(axb)x(exd)=[abdle-[abc]d
a b d aq b q
=|la b dlc-la b o|d
a by dy a b o
Also,
(axb)x(cxd)=[acdlb-[bed]a
a ¢ 4 b ¢ 4
=l ¢ dy|b-|b, ¢, d;|a.
a; ¢ dy by ¢ ds
Adding, we get the required result.
EXERCISES
1. Prove that
D@axbxcxd)+(axc)x(dxb)
+(axdyx(bxec)==-2[bcd]a
(i(bxc).axd)+(cxa).(bxd)+(@axb).(ecxd)=0.
2. If a and b lie in a plane normal to the plane containing ¢ and d, then show
that (a x b) . (c x d) = 0.
3. If the four vectors a, b, ¢, d are coplanar, then show that
@axb)x(@Eexd)=0
4. Ifa, b, c and a’, b", ¢’ are reciprocal system of vectors, prove that
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@Wa.a+b.b+c.c' =3

a+b+c

@axb+b x4 xa , [abe]#0.

fabel '
5. Prove Lhatlh:sclolvu‘turs reciprocal to the set of vectors 21 + 3] - k,
—i-k -2 42k

-;- (2i+k), %(—8[ +7j-Tk), % (=Ti+3j-5k).
7.7. SOLUTION OF VECTOR EQUATIONS
7.7.1. 7o solve for v
rxb=axb, D)
where a, b, ¢ are two given vectors.
Let r be any solution of the equation.
Rewriting the given equation as

(r-a)xb=0.
we see that (r — n) is parallel to b, so that we must have
= r=a+th, -}

where tis a scalar. Also it may be seen that a + b satisfies (i) for every value
of the scalar . Thus, (if) gives the general solution of the given equation.
Geometrically, we know that the points whose position vectors are
given by (ii) for different values of the scalar ¢ lie on a straight line which
passes through the point, with position vector a, and is parallel to the
vector b. (Refer § 2.4, Ch. 2, P. 32)
77.2. To solve for ¢
rxb=a,
where a, b are two given vectors such that a is perpendicular to b.
a, b, ‘axb,
so that every vector is expressible as a linear combination of the same.
Suppose that a solution of a given equation is
r=aa+yb+zaxb
Substituting in a given equation, we obtain
(a+yb+zaxb)xb=a
= xaxb+z{(@.b)b-(b.b)a}=a

= —{l+z(.b))a+maxb=0 for a.b=0.

= 1+z(.b)=0, x= 0.

a,a x b, being non-collincar veclms Thus, we have
rzw—ﬁ:xb D

Substituting (i) in the given equation, we may verify that this is a
solution for every value of the scalar y. It follows that
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r=- baxb+yb.

is the general solution of the equation; y being the parameter.
Geometrically speaking, the points whose position vectors satisfy the
given equation lie on the straight line which passes through the point with
1

position vector — (a xb) and is parallel to the vector b.

b.b
7.17.3. To solve simultaneously for r
rxb=cxb o)
r.a=0 (i)

provided that a is not perpendicular to b.
Suppose that r is a solution of the given equations. Rewriting (i) as
(r=-c)xb=0,
we see that r - ¢ and b are collinear so that
r-c=th © r=c+1b,
where ¢ is a scalar. Substituting in (ii), we obtain
(c+th).a=0

< ca+th.a=0 = tr-—:';'—a, for b.a=0.

_ 5__a] b .
Thus, r=c¢c— b.a . ...(lf.ﬂ
We may also easily verify that, r, given by (iii) does satisfy the given
equations.
Hence,

c.a
r=¢———r0
b.a b,

is a solution and the only solution of the given equations,
It may be seen that r . a = 0 represents the plane which passes through
the origin and is normal to the vector a.
Thus, the solution, in question, represents the point of intersection of
a line and a plane.
7.74. To solve for r
kr+rxa=h, ()]
where, k is a given non-zero scalar and a, b are two given vectors.
Suppose that r is a solution. Expressing r as a linear combination of
the non-coplanar vectors a, b, a x b, we write
r=xa+yb+zaxh
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Substituting in the given equation, we obtain
k(m+yb+zaxb)+ybxa+z(@.a)b-(a.b)aj=b
= {kx-z(@.b)}a+ky+za?-1)b+(kz-y)axb=0
= ki-z(@.b)=0, ky+z?-1=0, kz-y=0;
a,b, a x b being non-coplanar vectors. It follows that
1

It follows that

1 a.b
T A -
Also we may easily verify that r given by (if) satisfies the given
equation. Hence, this is a solution and the only solution.

EXERCISES
1. Solve simultaneously r . m, = 1, r.n,= 1.
2. Find the condition for the equations
rxa=bh rxe=d
to be consistent. Assuming the condition for consistency to be,satisfied,
solve the equations.

OBJECTIVE QUESTIONS
For each of the following questions, four alternatives are given for the
answer. Only one of them is correct. Choose the correct alternative.
L a=2+3j-kb=-i+2-4kandc=i+j+k then
(axb) . (¢ x d) is equal to

(a) 60 (b) 64 () 74 d-74

2. The product (ai + bj) x (i=j+ k) . A +§ - k) x (- i+ j + k) is
@0 B a+b ©b-a @ -2a

cxa axb

3are= [-bc]’ 9 faba’ "Tlabq’ Whern b e ar three
non-coplanar vectors then the value of the expression (a + b +¢).
(p+q+r)is
@3 ®) 2 @1 @0

4. InQ.3,valueof (@a+b).p+(b+c).q+(c+a).ris
[OX ®) 1 © 2 @3

5. If a, b, ¢ be three non-coplanar vectors for which [a b ¢] # and &',

b', ¢’ constitute the reciprocal system of vectors, then any vector
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r can be expressed as
@r=(xa).a+(@xb).b+(rxc).c
G)r=(rxa).a+@Exb).b+(rxc).c
@r=(.a)a +(.b)b+@.cc
@r=(r.a)a+(@r.b)b+(r.c)c
a.b a.c
6. Valueof |b.a b.b b.c|is
c.a c.b c.c
(@) [abe] ®) fabcP
@ [abcpP @3abe)
7. If four vectors a, b, ¢, d are coplanar, then
@ @xb).(cxd)=0 ®) @xc).(bxd)=0
© @xb)x(exd)=0(d) (@axc)x(bxd=0
8. The value of (a x b) x (b x ) is
@afabe] (®)blabc]
() clabe]l @0
9. The value of
(@axb).(cxd)+(bxc).(axd)+(cxa).(bxd)is
(a) 0 ® 3 (2 -3
10. Value of (a x b) . (b x ¢) + (¢ x a) is
@ [abe] ) [abc?
© l[abcP (d) None of these
ANSWERS
L@ 2@ 3 @ 4. @ 5. @
6. (b) 7 (0 8. (b 9. (@) 10. (b))
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1.

tatcmarmbiac e
%h2=xb.-+yh.b+zh.c. )
%c’=m.-+y¢.h+u.c. Vi)

Agam multiplying (iii) scalarly with r and using the relations (i) and
the rel =p we get
p?= %n’ +;yb1+51¢1. Vi)
Eliminating x, , z from (iv), (v), (vi) and (vii), we get I and elimi-nating
x, y, z from (idd), (), (v) and (vi), we get I
2. If a tetrahedron OABC is such that the mid-points of its six edges
lie on a sphere of radius, r, then
() the opposite edges of the tetrahedron are perpendicular.
(@) centre of the sphere is the centroid of the tetrahedron.
@) GA? + GB* + GC* + GD? = 12r% G, being the centroid.
(V) AB? + CD? = BC? + AD? = CA? + BD* = 16°%.
mmemnOormmmm;nmmm¢peinu of the edges
as the origin of mfuence

>
Oh=3, 0B=b, OC=c, OD=4,
The sphere passcs through the points with position vectors

1 1 1 1 1 1
E(l+b). i(c+d), E(b+c), i(l+d)' E(c+-)' i(bd—d).

Thus, we have
4ar=(@+bP=(c+dl=(b+c)}

(@+dP=(c+ap=(b+d? -
From (i), we have
@+bP+(c+dR=(b+cP+(@+dy
= a.bt+c.d=b.c+a.d
> @-9).0b-d)=0 = ACLBED.

Similarly, BC 1L AD, CA L AD. Hence, the result (I).
Again, from (i),
(a+bP=(c+d?
= (@+b+c+d).[(@a+b)-(c+d)])=0
Similarly,
c+al=(b+d? = (@+b+c+d).[c+a)-Db+d]=0.
b+cP=(@+d? = (@+b+c+d).[(b+c)-(@+d]=0.
The vectors
(@+d)-(c+d), b+c)-(a+d), (c+a)-(b+d)
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cannot be coplanar, lying as they do along the lines joining the mid-points
of the pairs of opposite edges of the tetrahedron. Therefore
a+b+c+d=0
so that the centre of the circumsphere coincides with the centroid of the
tetrahedron. Hence, the result (II).
From (i), by addition
24 =3Za’+2La.b.
Also
Za=0 = (Za))=0 = Za’=-2Za.bh
Thus, we have
24P =3 Za’-Za’=2Za? = Za’= 127

= £GA? = 127

Hence, the result (III).

Again
(a+ b))+ (c+d)? =8~

= 2a.b+2.d=82-%a%= -4/

Thus, we have
(a-b2+(c-d?=3a’-(2a.b +2c.d)

=127 + 47 = 1677
= AB? + CD? = 167

Hence, the result (IV).

3. The six mid-poinis of the six edges of a tetrahedron lie on a sphere,
if the pairs of opposite edges of the tetrahedron are perpendicular to each
other.

Take the origin of reference at the centroid of the tetrahedron.
Denoting the position vectors of the vertices A, B, C, D by a, b, ¢, d, we
are given that

a+b+c+d=0 )]
a.b+tc.d=a.c+b.d=b.c-a.d (i)
From (i) '
a+b=-(c+d = (@+b?=(c+d>
Similarly

(@a+cP=(+d? (b+c)=(a+d> (i)
Again we have
(@a+bP+(c+dP=Za’+2(a.b+c.d)
=Ia+2(@.c+b.d); By (ii)
=(@+¢c)P+ (b+d>
Similarly
(@a+bP=(c+d?=(b+c)’+(a+d> (V)
From (i) and (iv), it follows that
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@+bP=(c+d?=(b+cP=(a+dP=(c+al+(b+d>

‘Thus, the middle points lie on a sphere with its centre at the centroid
which has been taken as the origin.

‘This result is the converse of the result (I) of 2.

4. Isosceles Tetrahedra. Def. A fetrahedron, the pairs of whose
opposite edges are equal in length is called an isosceles tetrahedron.

Theorem. The shortest distances between pairs of opposite edges of
an isosceles tetrahedron lie along the joins of their middle points and the
three shortest distances bisect each other at right angles.

Take the vertex O of the isosceles tetrahedron OABC as the origin of
reference. Let

> o -
OA=a, OB=b, OC=c.
Now

OA=BC = a®=b*+c?-2b.c = b.¢=%(b’+c’

OB=CA = b*=c*+a’-2c.a = :A.=%(c’+-‘-b’) )

0C=AB = & =a+b*-2a.b = a.b=2(a +b?-c})
The vectors
1o 1.1 1y La+n)
2®+e)-38 Se+a)-ob, S@+b)-o
lie along the joins of the mid-points of the pairs of opposite edges
OA, BC; OB,CA; OC, AB,

1

respectively.
The join of the mid-points of OA and BC will be perpendicular to OA
and BC, if

1. 1]ae 1. Llbeo=
[z\,znOmdz ,z(hc)O

= a'=a.b+a.c;b-c*=a.b-a.c i)

It can be at once seen that the relations (ii) are simple consequences
of the relations (). Thus, the shortest distance between OA and OB lies
along the join of their middle points.

Similarly we may show that the shortest distances between the other
pairs of opposite edges lic along the joins of their mid-points.

The three shortest distance lines lic along the vectors

b+c-a c+a-b, a+b-c

whibh)mnmmupunnohheopponmedgs.
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Now we have

(b+c-a). (c+a-b)=c?-(b-a)?
-b*-a*+2a.b=0, By()

Thus, we see that the lines of shortest distance are at right angles to
each other.

Surely they also all concur at the centroid.

5. In-sphere of a tetrahedron. In-centre and In-radius. It will be
shown that there exists a point I inside any given tetrahedron equidistant
from the four faces of the same. The sphere with centre I and radius equal
1o its distance from any face will touch the four faces of the tetrahedron
internally. This sphere is known as the In-sphere and its centre I is known
as the In-centre of the tetrahedron. The radius of the in-sphere is called the
In-radius.

Let OABC be any tetrahedron and let a, b, ¢ be the position vectors
of A, B, C with reference to O as origin.

The equations of the three planes

OBC, OCA, OAB

through the vertex O are
r.bxe=0, r.exa=0 r.axb=0.
The bisecting planes of the angles between the planes OBC, OCA are
r.bxc r.cxa

=0.
Ibxel  lexal

Of these two, the equation
r.hxc_r.cxl=
Tbxel Tcxal -0
represents the internal bisecting plane, for the points A, B lie on opposite
sides of it. By substituting a, b for r respectively in (i), we obtain
expressions having opposite signs.
The other two internal bisecting planes are

r.exa_r.axb_o .
Txal laxbl i)
r.axb_r.bxe _ .

xbl Ibxel (i)

For the sake of brevity, we write o, B, ¥ for

1 1 1
E]h"]' -z-lcx-l, Elnxbl.

respectively so that they denote the areas of the triangular faces, OBC,
OCA, OAB respectively.
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where V denotes the volume and S, the sum of the areas of the faces of the
tetrahedron.

‘The reader may compare this formula with that for the In-radius of a
triangle.

6. Regular tetrahedron. Def. A tetrahedron whose edges are all equal
in length is called a Regular tetrahedron.

“The faces of a regular tetrahedron are equilateral triangles so that the
angle between any two concurrent edges of a regular tetrahedron is 60°.

The following results will be established :

L. The angle between any two plane jaces of a regular tetrahedron is

cost L.
. 3
1L The angle between any edge and a face not containing the edge

- 1

[IL. Any two opposite edges are perpendicular to each other.

1V. The distance of any vertex from the opposite face is \ gk; k being
the length of any edge.
1. Let OABC be a regular tetrahedron. Take O as the origin of reference.
Let
- - -
OA=a, OB=b, OC=c.
and let k be the length of each of the edges,

We have
lal=Ibl=lcl=k
la.bi=lb.cl=lc.al
k’cnsﬂ}‘:%k’.
a. .b=c.c=k

The equation of the planes OAB and OBC are
r.axb=0, r.bxc=0. .
Now the angle between two planes is equal to the angle between the
normals to the same. Thus, if 8 denotes the angle between these two planes,
we have

_(axb) (bxo)
50 axbl Tbxel

Now ‘(-xh).(nxc)=(:.b)(b.e)—(b.b)(-.c)='7‘k‘
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laxbl=lal |b|llnﬂ)'=£h1=lbxc!

cos0=—1.
3

‘Thus, the acute angle between any two plane faces C
1L Ccmuder'befweABCmdtheed;eDAwhoueq
r.bxc+cxa+axbl=[abel, r= “ﬂ:“;f"
respectively.

‘The angle between a line and a plane is equal to the complement of
the angle between the line and the normal 10 the plane. Thus, if © denotes
the angle between the face and the edge, we have
(bxc+cxa+axb).a
Ibxc+cxa+axbllal

[abc]
“Tbxcrexa+axbl lal -0

sinB=

%k‘ (Cor. P. 179)

c
Also bxctcxa+axh]
is twice the area of the triangle ABC which is equilateral with each side k
so that this is
B

Substituting in (i), we obtain
no= 2 S o e[ L)
cntmf = et = 0w f])

HL We have a-l;;.‘-n.(c—b)sl.e—l.b-o so that OA L BC.
Similarly,

OBLCA and OC L AB.
IV. The equation of the plane ABC is

r.bxc+cxa+axbl=[abc,

so that the distance of the vertex O from this plane
[abc] 22
Ibxc+cxa+axbl 3

7 A is called ic if it
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is such that the altitude from its vertices to the opposite faces are
concurrent.

The following results will be established :

I. If in a tetrahedron OABC, the altitudes from A and B to the opposite
faces intersect then the edge AB is perpendicular to the opposite edge OC.

II. If the altitudes from A and B intersect and those from B and C also
intersect then all the four altitudes are concurrent and the pairs of
opposite edges are at right angles to each other.

Take O as the origin of reference. Let

- - -
OA=a, OB=bh, OC=c.

I. The equations of the altitudes from A and B to the opposite faces

are
r=a+t(bxec), r=b+p(cxa) : i)
Now
(a-b).(bxc)x(cxa)=(a+b).[abc]
=[abc](a-b).e
so that the altitudes (i) will be coplanar if, and only if
(a-bh).c=0, > AB Ll OC.

I. Assuming the condition as satisfied, we find the positicn vector of
the point of intersection of the altitudes from A and B.

For this purpose, we express the vectors a, b as linear combination of
the non-coplanar vectors b x ¢, ¢ x a,a x b.

Let

a=lbxc+mexa+naxb b=Lbxc+mexa+naxh,
so that, as may be easily shown,

a.a a.b a.c
]= * m|= -"]= L]

[abc] [abc] [abc]

b.a b.b b.c

b= Gba ™ abd ™ bd
At the point of intersection of the lines (i), we have
Lbxe)+mexa)+n(axh)+t(bxc)
=L(bxc)+m(cxa)+n,(axh)+p(cxa)

= L+t=L m=my+p, n=n,
Here n, = n, is equivalent to (ii), viz, (a-b) .c=0.
:-z,_:,.ml p=m,—m,=“b'b‘b.
[abc] [abe]

Thus, the point of intersection of the altitudes from A and B is

—-l—-{(b.a)(bxc)+(:.b){cxa}+(a.c)(axl;)} ...(it)
[abc]
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Again suppose that the altitudes from B and C also intersect so that

(b-c).a= 0 ‘The point of intersection of these altitudes is
@ b ][(l <b)(bxc)+(b.c)(cxa)+(c.a)(axb) V)

Asa.b=b.c=c.a, the points (iii) and (i) arc the same and the

common point is
k.
wba {bxc+cxa+axb} )

where k=ab=b.c=c.a

From the symmetry of (v), it is clear that all four altitudes concur at
this point. Also the conditions

ab=be=ca

imply that the pairs of opposite edges of the tetrahedron are perpendicular
to each other.

Also the point of is called the O of the
tetrahedron.

8.

Def. A whose faces have equal
areas is called equifacial.

The following results will be established :

L If the areas of two faces OAB and OAC of a tetrahedron OABC be
equal, then the line of shortest distance between OA and BC is the line
through the middle point of BC perpendicular to OA.

11 If the areas of two faces OAB and OAC are equal and those of the
Jfaces BCA, BCO are equal then the line of shortest distance between OA
‘and BC is the join of their middle points : also the faces equal in area are
congruent.

1IL. If the areas of three triangular faces through any vertex O are
equal, then the centroid and in-centre are collinear with

IV. The faces of an equifacial tetrahedron are congmnl triangles.
Every equifacial tetrahedron is isosceles.

1. Take O as origin of reference. Let

- - -
OA=a, OB=b, OC=c.
Vector areas of the faces OAB and OAC are
12 = 12 -
EGAXOB and EOAKOC
50 that we are given that
laxbl=laxel
= (@axb).(axb)=(@xc).(axc)
= (axL-axc).axb+axc)=0
= [ax(b-0].[ax(®d+c)]=0 )
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Now a x (b - ¢) is parallel to the line of shortest distance between OA
and BC.

1
Also E(I‘HI:) is the position vector cf the mid-point D of BC.

5 > 0 B
As OA=a and O'D=E(I:|+c).
the vector a x (b + ¢) is normal to the
plane OAD. E
By (i), the line of shortest distance
between OA and BC lies in the plane

\
OAD, Also it meets BC. Hence, we have 4 C

the result I. s 72.
II. By I, the line of shortest distance passes through the mid-points of
OA and BC and hence it is their join. Let E be the mid-point of OA.
The figure is symmetrical above DE so that
OB = AC and OC = AB.
Hence, the triangles OAB, OAC are congruent and the triangles BCO
and BCA are congruent.
I If a, B, v, 6 denote the areas of the faces opposite to the vertices
A, B, C, O the paosition vector of the in-centre is
oa+Pb+yc+dd 3o (a+b+c)
a+P+y+d =TT e8! (5 Page 193)

fora=p=y.
Also the centroid is
a+b+c+0 a+b+c
4 4

Thus,

o*{’;=a+‘l:+c
~ 3a(a+b+c) _ 12a O‘E

| = = .
0 a+8 3a+6
It follows that O, J, G are collinear.

IV is an immediate consequence of IL
EXERCISES
1. OARBC is an orthocentric tetrahedron and a, B, y are the angles between the
edges OA, OB, OC taken in pairs, show that
OA 0B OC

cosa cosf " cos Y
2. Find the circum-radius and in-radius of a regular tetrahedron in terms of
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3.
4.

5,

7.

10.

11.

12,
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the length of each edge. .
Show that a tetrahedron which is isosceles and orthocentric is regular.
Show that the feet of the altitudes from the vertices to the opposite faces
of an orthocentric tetrahedron are the orthocentres of the corresponding
faces.

Show that the centroid, circum-centre and in-centre of an isosceles
tetrahedron are coincident points.

Find the circum-radius and the in-radius of an isosceles tetrahedron in terms
of the lengths of its edges. Also show that the volume of an isosceles
tetrahedron in terms of the lengths of the edges is

%ﬁ(bz+c1'—az)(ct+nz—-Ir’)(lzi-b’ -c’)].
OA, OB, OC are three concurrent lines; find the axis of the right circular
cone touching the planes OBC, OCA, OAB internally.
Show that in any tetrahedron, the line joining the middle points of any one
pair of opposite edges is perpendicular to the shortest distance lines between
either of the two other pairs of opposite edges.
The altitudes from the vertices A and B to the opposite faces of a tetrahedron

intersect; show that AB is perpendicular to CD and the altitudes from the
vertices C, D 10 the opposite faces also intersect. Prove the converse also.

OABC and OABC’ are two tetrahedra such that the plane through OA
perpendicular to the face B'OC”and the two other similar planes intersect
in a line; show that the plane through OA” perpendicular to the face BOC
and two other similar planes also intersect in a line.

ABCD is a tetrahedron : h,, hy, h,, h, are the perpendicular distances of the
vertices from the opposite faces and s, 5,, 5, are the shortest distances
between the three pairs of opposite edges; prove that

Show that the centre of the sphere through four points A, B, C, D with
position vectors a, b, c, d is

- - - -
3’ ABCD+b> ACAD+c’ AABD-d” A ABC
- =S =
ABx AC-AD
Show that the circum-centre of the tetrahedron OABC is
|’(bxc)+bi(cxa)+c:(l:h)
2[abel '

- - -
where OA=a, OB=b, OC=ec.
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Statics with Vectors

Introduction. A study of Theoretical Statics with the help of Vector
Algebra will be undertaken in this chapter.

In this connection it is important to remember that a force cannot be
completely characterised by a vector and that we require two vectors for the
purpose. As against this, a Couple is completely characterisable by one
vector,

The study will be based on the Principles of Transmissibility of
Forces and the Parallelogram Law of Forces.

8.1. FORCES REPRESENTED BY LINE VECTORS

A force acting on a rigid body is completely specified by its
(i) Magnitude, (ii) Line of action, (iii) Point of application, and (iv) Sense
along the line of action.

As a consequence of the principle of Transmissibility of forces, it can
be shown that the effect of a force acting on a rigid body is unaltered if its
point of application is changed to any other point on the line of action of
the force without any change in its magnitude and sense. Thus, while
specifying a force acting on a rigid body, we need only state its magnitude,
line of action and sense. Unlike vectors however, the particular line of
action of a force is mater.al and the effects of two forces acting along
different parallel lines are different even though they may have the same
magnitude and sense.

Thus, a force cannot be thought of as being completely representable
by a vector. For the representation of forces, we need the notion of Line
Vectors which requires a more restricted definition of equality than that for
vectors (§ 1.2.2, page 3).

Line Vectors, Def. A directed line segment is called a line vector such
that two directed line segments having the same magnitude, support and
sense are equal line vectors.

189
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Thus, two directed line scgments may be equal vectors but unequal
line vectors. For the equality of line vectors, it is necessary that their
supports are same and not just parallel as for the equality of vectors.
‘While two vectors are equal if the corresponding directed line
segments have the same length, same or parallel supports and the same
sense, the two line vectors are equal if the corresponding directed line
segments have the same length, same supports and the same sense.
A line vector is also sometimes called a Localised vector and for the
sake of distinction, the vectors, so called, are often termed Free Vectors.
Forces represented by line vectors. From the foregoing, it is clear that
a force acting on rigid body can be represented by a line vector such that
two equivalent forces are represented by equal line vectors and vice-versa.
Two forces may be said to be equivalent if they have the same effect.

8.2. STUDY OF STATICS WITH VECTORS

In view of the preceding, we see that an Analytical Vectorial study of
Statics requires the setting up of an Algebra of Line Vectors. It can be
shown, however, that a line vector can itself be specified by two vectors so
that, on our part, we shall avoid direct reference to the notion of line vectors
and show that whereas a force cannot be represented by a single vector it
can be specified by two vectors, to be called

(i) Vector of the Force,

(if) Moment Vector of the Force about a given point.

The Algebra of Vectors developed in the preceding chapters will thus
form the basis of the Vectorial study of Statics.

8.2.1. Vectors of a Force
A vector whose
(i) length represents the magnitude of the force according to some
scale,
(if) support is the same or parallel to that of the line of action of the
force,

(iii) sense is the same as that of the force,
is called the vector of the given force or Force Vector. The Vector of a force
will be denoted by the same symbol as denotes the force.

It will be seen that correspondence between Forces and Vectors is not
one-one; to each force there corresponds a single vector but to a given
vector there will correspond several, not necessarily equivalent forces.
Forces corresponding to the same vector will have the same magnitude, the
same or parallel lines of action and the same sense; they may have,
however, different points of application.
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A force is completely specified by its Vector and its point of
application.

Just as the magnitude of a force gives us only an incomplete idea of
the force, so the vector of a force also gives an incomplete idea, even
though this tells us more than the magnitude of the force.

8.2.2. Moment Vector about a given Point

R
Let F be any given force and let P
be any point on its line of action. P
Take any arbitrary point O and let
-
oP=r. r
Then the vector
M=rxF
is called the Moment vector of the °
force about O. The symbol F, here Fig. 8.1.

denotes the vector of the force.

The moment vector about O is independent of the choice of the point
P on the line of action of the force. Thus, if Q be any other point on the
line of action of the force, we have

- > o
0Q x F=(OP +PQ) x F
- -
=OPxF+PQxF
-
=0PxF;

- -
OP x F being the zero vector, for PQ and F are parallel vectors.

Of course the moment vector of a force does depend upon the point,
0 and 1o lay emphasis on this point, whenever necessary, we may write, O
— moment vector instead of just moment vector.
The two vectors F and M are clearly perpendicular to each other so that
we have
F.M=0.

8.2.3. Vanishing of the Moment Vector

‘The moment vector of a non-zero force about a point O is zero if, and
only if, the point O lies on the line of action of the force.
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8.3. FORCE DETERMINED BY ITS FORCE VECTOR AND
MOMENT VECTOR

We shall now show that the line of action of a force is known as soon
as we know F and M.
Let F, M be two vectors such that
F.M=0.
Consider the vector equation
rxF=M. (i)

Every vector r is uniquely expressible as a linear combination of the
non-coplanar vectors

M, F, FxM.
Let
r=AM+AF+AFxM ()]
Substituting in (i) we get
AMxF+AFxM)xF=M

= AMxF+ML]F.FFM-M.FF =M

= AMxF+[AF.F)-11M=0, for F.M=0,
o AM=0, (F.F-1=0.

Thus, A, =0 and A,=1/F.F.

Substituting in (ii), we get

1
F-F
Also we may easily see that the vector r given by (iii) satisfy (i) for
every value of the scalar A,.
Now the equation (iif) represents a straight line parallel to the force
vector F such that for any point on this line, the equation (i) is true.
Hence (iif) is the equation of the line of action of the force which has

F and M as Force Vector and Moment Vector respectively. Thus, the force
is completely determined.

r=

(F x M)+ A,F (]

8.4, VECTOR SUM AND MOMENT VECTOR SUM

As in the case of a single force, we can associate two vectors to any
system of forces such that, so far as the effect on a rigid body is concerned,
they determined the system completely.

Consider any system of forces

F!' F:) Fp (313
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acting on a rigid body and let
Ty Ty Ty
be the position vectors of any points on the lines of action of the forces
with reference to any point O.
The force vectors of the forces are also denoted by
Fp, Fp Fyo
We write
R=F +F, +F+..
Ge=r xF+rxFy+ryx Fy+ ...
50 that the vectors R and G are the sums of the vectors of the forces and

of the moment vectors of the forces about O. For the sake of brevity, these
will be referred to as

Vector sum  and  Moment sum
respectively.
8.4.1. Change in G with change in origin
Let O, O, be any two points and
Ty By B i Ty
be the position vectors of the points
Py Py Py
on the lines of action of the given forces with respect to O and O’
respectively.

‘We have
- —
OF =x;, O'F =v
-
= op
A
N =0'0+0P, =OP-0Q' =1, -5,
where s=00
If G, G' denote the moment sums about O and O, we have

G'=Z(r'xF)
=E(r-9)xF=Z(xF)-IsxF,
=E(@xF)-ZG6xF)
=G-sxZIF,=G-sxR

Thus, the moment sum G' about any point O’ is
G-sxR,
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where G is the moment sum about O and s is the position vector of O’
relative to O.

Cor. 1. The moment sums G, G’ are the same for two points 0, O’
when 00" is parallel to the vector sum R, for in that case

sx R=0.

Cor. 2. If the vector sum is zero and the moment sum about one point
is zero then the moment sum about every point is zero.

8.5. REDUCTION OF A SYSTEM OF FORCES

An imporant problem of Statics consists in the determination of
systems of forces which are equivalent to any given system so far as the
effect on a rigid body is concerned and which are at the same time simpler
to deal with than the given system. It is also of great importance to
determine analytical conditions which characterise equivalent systems of
forces. In this connection the two vectors R and G will be seen to play
a very important part.

The two principles of reduction. The following two principles are
fundamental for determining systems equivalent to a given system :

1. Principle of transmissibility of forces as a result of which a force
can be thought of as acting at any point of its line of action.

I1. Parallelogram law of forces as a result of which two forces F, and
F, acting at any point O are equivalent to a single force called their
esultant, whose vector is F, + F, and which also acts as O.

A system S, of forces which arises from another system §, be any
series of applications of the above two principles is equivalent to §,, in as
much as the effects of the two are the same.

By successive applications of the Parallelogram law of forces, it can
be shown that

(i) if F,, F,, F; be three forces acting at any point O and

- - -
OAI = F|. OAZ = FZ'! 0A3 = Fg,
then the forces are equivalent to a single force whose line of action passes
through O and whose vector is where OP is the diagonal of the
parallelopiped constructed with
OA;, OA,, OA,
as adjacent sides.

(ii) A system of concurrent three forces is equivalent to a single force
whose point of application is the point of concurrence and whose vector
is the sum of the vectors of the given forces.
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Al A, A,
on the lines of action of the given forces in such a manner that none of
these points lies on the plane determined by the points L, M, N so that
these are the points other than those where this plane meets the lines of
action of the given forces.

Consider any force F, acting at A,.

Let

—
A‘l Bl = Fl‘

There exists a parallelopiped whose one diagonal is along the line
A,B, of application of the force F, and whose three edges through A, lie
along A L, AM and A\N. Thus there exist three concurrent forces acting
along AL, A\M, AN equivalent to F,. We suppose that the points of
application of these forces are transferred to L, M, N.

Let each force of the system be treated in a like manner.

Thus, we arrive at three systems of concurrent forces separately

concurrent at L, M and N. Replacing these concurrent forces by their
resultants, we arrive at the theorem stated.

8.8. CONDITION FOR EQUILIBRIUM

Theorem. If for a system of forces, the vector sum and the moment
sum about a point are both zero, then the system is in equilibrium.

By Cor. 2, § 8.4.1,, page 213 moment sum about every point is zero.

We replace the given system by an equivalent system of three forces
having any three points L, M, N as their points of application. Let F,, F,,
F, be these three forces.

The vector sum and the moment sum are both zero for the new system
also. (§ 8.5, page 213)

Take any three points A, B, C on the lines of action of the forces.
Equating to zero the moment sum about A, we obtain

- -
ABxF, + ACx Fy =0,

- —
so that the vectors ABxF, and ACxF; are collinear. Thus, there exists

a linear normal to the lines AB, AC and the lines of action of the forces
F, and F,. Accordingly the lines of action of the forces lie in a plane
determined by the intersecting lines AB, AC. In other words, the lines of
action of the forces F, and F, are coplanar and the plane containing the
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part is in equilibrium. Thus, we are left with the forces

F/.Fy
forming a system cquivalent to the first.

Hence the result.
8.10. COUPLES

Def. A system consisting of a pair of equal unlike parallel forces is
called a Couple.

The vector sum of the two forces of a couple is clearly zero.

About moment sum, we have the following important result :

The moment sum of the two forces of a couple is the same about every
point.

Let the lines of action of the forces of the couple be two parallel lines.
Let A, C be any two points on these parallel lines. The two forces have
equal magnitudes but opposite sense.

Thus, if F denote the vector of one force, then — F denotes that of the
other.

The moment sum of the forces of the couple about any point O

- -
= OAxF+0Cx(-F)

> o -

=(0A-0C)xF = CAxF,
so that the moment sum is indepen-
dent of the point O. Here A, C may
be thought of as any two pointson 1
the lines of action of the two forces. Fig. 83.

The result obtained above is contained in the general theorem that if
the vector sum of the forces of a system is zero, then the moment sum about
every point is the same.

Moment of a Couple. The constant moment sum of the forces of a
couple is called the moment of the couple.

Axis of a Couple. Any line perpendicular to the plane of a couple is
called the axis of the couple so that the axis of a couple is parallel to its
moment vector.

Thus, the moment of a couple is a vector perpendicular to the plane
of the couple and its magnitude is the product of thé magnitude of either
force with the perpendicular distance between the lines of action of the
forces.
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8.10.1. Equivalent Couples

Theorem. Two couples with equal moments are equivalent, for the
vector and the moment sum are the same for each couple (§ 8.6, Page
209).

Two couplu with equal moments necessarily lie in the same or
parallel planes.
8.10.2. Composition of Couples

‘Theorem. Two couples with moments M, and M, are equivalent to a
single couple with moment M, + M,.

‘This result is also an immediate consequence of the Theorem of § 8.9.

8.10.3. Couples Represented by Vectors

‘We have seen that two couples with equal moments are equivalent and
as such a couple is completely known by its moment which is a vector.

Also a system consisting of two couples is equivalent to a third couple
whose moment is the vector sum of the moments of the two component
couples.

Finally any vector equal to the moment vector of a couple is also the
moment vector of the couple.

Thus, a couple can be completely characterised by a vector, viz., its
moment vector.

‘The axis of a couple is not a fixed line; it can, in fact, be any line
perpendicular to the plane of the couple.

EXAMPLES

Example 1. If the resultant of two forces be equal in magnitude to one
of the components and perpendicular to it in direction, find the other
component.

Solution. Let P and Q be the
forces inclined at an angle 6 to
each other. Let i and j be the
direction of P and perpendicular to
it respectively. Along j the resultant
of forces P and Q is acting.

Pi+ (- Q cos (180° - 6) i + Q sin (180° - 0) §} = Pj

= (P+QcosB)i+(Qsin8—-P)j=0

Since i and j are non-collinear vectors, hence
P+Qcos®@=0 and Qsin@-P=0
Qsin®@=P and QcosB=-P
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= an@=-1 = 06=135°

and @*sin?0+ Q%cos?0=P2+P? = Q=\2P

Example 2. Forces P, Q act at O and have a resultant R. If any
transversal cuts their lines of action at A, B, C respectively, show that

P/OA + Q/OB = R/OC.
Solution. We have
P+Q=R (1)

Let a transversal cuts the lines of action of P, Q and R at A, B, C. Let
ONis L 10 AB. Let @ be a unit vector along ON and £ BON = a, £ AON
=Band ZCON=7.

F E

mn = P.a+Q.a=R.A
= Pcosa+QcosP=Rcosy
From A AON, A BON and A CON,

cosa—% coaB-—N cos N
2y " T =%¢
ON
( )‘0( ]‘ [00)
r,o_R
= oA 0B~ oC

Example 3. Tke forces P and Q act at a point O. Their resultant R is
such that R = P. If P is doubled, show that the new resultant is at right
angles to Q.

Solution. Given P+ Q =R
Let S be the resultant of 2P and Q.
P+Q=S
Now $.Q=(2P+Q).Q
=(R+P).(R-P)
=R-P=0.
=> S is perpendicular to Q.
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Example 4. A particle is acted on by a number of centres of forces
some of which attract and some repel, the forces in each case varying as
the distance. The intensities for different centres are different. Prove that
the resultant passes through a fixed point for all positions of the particle.

Solution. Let O be the origin. Let the given particle be situated at O.
Let the position vectors of various centres of forces A, A, ..., A, be a,, a;,
<. @, Hence, the forces acting on the particle can be taken as a,, 1,
<o Myl WHETE 1, I, .., 1, are intensities of the centres and may be positive
or negative accordingly as the centres attract or repel.

Let G be the centroid of a,, y, ., a, with associated numbers p,, j,
Then

O_E? _hat totpa,
Bi+py et ity
Then R, the resultant of the forces is
R=pa, +pa+.. +pa,
5
S+t t 1) OG

Hence, the resultant is a force passing through G, which is independent
of the origin. Hence, the resultant passes through the fixed point G for all
positions of the particle.

Example 5. ABCDEF is a regular hexagon and O any point in the
plane. Show that the forces represented both in magnitude and direction
by OA, OC, O, BO, DO, FO are in equilibrium.

Solution. We have

e e e e e
OA+0C+OE+ BO+ DO+ FO = (DO+OC) +(FO+ OA) + (BO+OE)
> o o
= DC+FA+BE
I ==
=—EB+—EB-EB
2 2
> >
=EB-EB=0
= the given forces are in

equilibrium. Fig. 86.

Example 6. Find the vector moment of the three forces i + 2j - 3k,
2i + 3j + 4k and - I - § + k acting on a particle at point P (0, 1, 2) about
A(l,-20).
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7. H is the orthocentre of A ABC. Show that the resultant of forces acting on
a particle and represented by AH, HB, HC is represented by the diameter
through A of the circumcentre of A ABC.

8. Show that the moment about the point { + 2j - k of a force represented
by i + 2i + k acting through the point 2i + 3j + kis ~3i + j + k.

9. A force with components (- 7, 4, 5) acts at the point (2, 4, - 3). Find
its moment about the origin. Find also ils moment about the line
L : x = y = g; the positive direction on the line being that in which x
increases.

10. Prove that the sum of moment of two intersecting forces about a point in
their plane is equal to the moment of their resultant about that point.

11. Define the moment of a vector about a point. Find the moment about a
comer of a cube of three unit vectors converging on the opposite comer
aleng three edges. Show thai the sum of these moments is zero.

12. ABCD is a quadrilateral. Find by the vector method the position of a point
- = =
O inside the quadrilateral such that the forces represented by 0OA, OB, OC

-
and OD may be in equilibrium.
8.11. REDUCTION TO SIMPLER SYSTEMS

8.11.1. Theorem
Every system of forces acting on a rigid body is equivalent to a single
force acting at an arbitrary point together with a couple whose moment
is the sum of the moments of the forces about the point.
Let O be any arbitrary point and let R be the vector sum and G, the
moment sum of the system about O.
Then the system consisting of
(i) the force whose vector is R and whose point of application is O,
and
(i) a couple whose moment is G.
is clearly equivalent to the given system, for both the systems have the
same vector sum and the same moment sum about a point O.

8.11.2, Poinsot’s Central Axis. Wrench
Theorem. Every system of forces is equivalent to a force and a cuniple
such that the line of action of the force is the axis of the couple.

Suppose that such a reduction is possible so that there exists a line
such that the system is equivalent to a force along the line and a couple
whose axis is the line. Then the moment sum of the system about any point
of this line is parallel to the vector sum of the system. ‘

Now the moment sum about any point O is
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N
G-rxR where 00'=r.
This will be parallel to R, if

G-rxR)xR=0 NG)
= GxR-r.RR+R.R)r=0
- ra GXR o ®
TR

where ¢ is a scalar. Conversely, it may be easily seen that r given by (if)
satisfies (i) for every value of the scalar 1.

‘The points given by (if) for different values of the scalar ¢, lie on a line.

Thus, we have obtained a line whose vector equation is (ii) such that
for every point O’ on the line, the moment sum about O is parallel to the
vector sum.

This establishes the existence and uniqueness of a line such that the
system is equivalent to a force along the line and a couple whose axis is
the line.

This line is known as the Poinsot’s Central axis.

Its equation is

GxR

r=-g

+1R—

+|I:
R being the vector sum lnd G the moma\! sum about the origin of
reference.

‘Wrench. Def. A system consisting of a force and a couple such that
the line of the force is the axis of the couple is called a Wrench.

Thus, what we have proved above is equivalent to saying that any
given system of forces is equivalent-to a wrench.

8.11.3. Moment of the Couple of the Wrench equivalent to a given
ystem
The moment sum about any point
_GxR . »
R.R

of the central axis

=(;~[ Gx R-nx}xk

=G+ﬁ[G.R)R—(R-R)Gl

where p is a scalar.
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8.114. Intensity and Pitch of a Wrench

The magnitude | R | of the force R of a wrench is called its Intensity.

The moment of the couple of a wrench is necessarily the product of
the force vector R of the wrench by a scalar. This scalar is called the Pitch
of the wrench. It is usual to denote a wrench whose force is R and pitch
p by the symbol

(R, pR)

so that pR is the couple of the wrench.

It will be useful to remember-that the wrench equivalent to a system
of forces for which the vector sum is R and moment sum about the origin
of reference O is G is

(R, pR)
where

_G.R

R.R
Also the equation of the axis of the wrench is
GxR

R.R
8.11.5. Degenerate and Non-degenerate Wrenches

Def. A wrench is said to be degenerate if either the force or the couple
of the wrench is zero.

If the force and the couple be both zero, then the system is in
cquilibrium.
8.12. INVARIANTS OF A SYSTEM OF FORCES

Let R be the vector sum and G the m>ment sum about a point O of
a given system of forces.

r=-

+iR.

Clearly R is invariant in as much as it does not depend upon the choice
of the point O. The scalar R . R is also thus an invariant.

In addition to the above, there is also another scalar invariant, viz.,

G.R,

ie., the scalar product of the moment sum and the vector sum.

‘The moment sum G’ about a point O’ such that

00 =r,
is given by
G'=G-rxR
= G'.R=(G-rxR).R=G.R.
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The invariance of G . R is also an immediate consequence of the
invariance of the pitch G . R/R . R of the unique equivalent wrench and
of the invariance of R . R, as seen above.

Parameter. The invariant G . R is called Parameter of the system and
it plays an important part in investigation concerning systems of forces.

8.12.1. Geometrical Interpretation of the Parameter
G.R

Firstly we consider a system consisting of two forces F,, F,. Letr, r,
be the position vectors of any two points A, B on the lines of action of the
forces. For these two forces, we have

R=F+F, G=rxF +r,xF,
= R.G=(F,+F).(r;xF, +r,xF,)
= (F, x F) . (r,—r,).
where

_)
r; -I"l = AB.
- -
If the two forces be denoted by the line vectors AC, BD then

- = -
R.G=BDx AC.AB,

so that the parameter of two forces is six times the algebraic value of the
volume of the tetrahedron formed by the line vectors representing the
given forces as a pair of opposite edges.

Any system of forces. Consider now a system consisting of any
number of forces

F,F, ...
- -
Let A By, A;By,... be the line vectors denoting the forces. For this

system,

-3 -
R.Gﬁ{Fl ‘l'Fz +...)'(OA1 XFI +OAQ KF-Z +...}

- =
=3 (F, xF,), (04;~0A)),

where the summation extends to every pair of forces.

- - o -
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50 that the parameter of any system of forces is six times the algebraic sum
of the volumes of the tetrahedra formed by pairs of line vectors denoting
Jorces of the system as pairs of opposite edges.

The above geometric manner of the representation of R . G gives
another proof of invariance of the same.
8.13. PARAMETERS FOR SOME SPECIAL SYSTEMS OF FORCES

It should be noticed that the parameter R . G is zero, if R=00r G =0
or R is perpendicular to G.

1. The parameter for a system of coplanar forces is zero.

The moment vector of every force of the system about a point O of the
plane is perpendicular to the plane and as such the moment sum G of the
forces, about O is perpendicular to the plane. Also the vector R is parallel
to the plane. Thus, G . R = 0.

1L The parameter for a system of parallel forces is zero.

‘The moment vector about any point O of a force of the system lies in
the plane through O perpendicular to the force. As the forces are parallel,
the plane & through O perpendicular to any one force is also perpendicular
to the others. Thus, the moment sum G lies in the plane x.

Also the vector sum R is perpendicular to the plane 7. Thus, G . R=0.

1IL. The parameter of a system of concurrent forces is zero.

‘The proof follows from the fact that the moment vector of each force
about the point of the concurrence O is zero and as a consequence their
sum G is zero.

V. The parameter of a system consisting of any number of couples is
zero.
‘The proof follows from the fact that for such a system the vector sum
R is zero.

V. The parameter of a system consisting of two non-zero forces lying
along non-coplanar lines cannot be zero.

Let F,, F, be two forces acting along two skew lines AB, CD. We have,

R=F, +F,

- 3, D
G=ACxE,
where G denotes moment sum about A.  Fi R
Thus,
A c

N
GR=(ACKEy)-(5 +E) _—

= ACxF, F,».0,
for the lines of action of F,, F, are not coplanar.
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8.14. CRITERIA FOR THE NATURE OF A SYSTEM OF FORCES
Theorem.
I. If R. G = 0, the system is equivalent to a non-degenerate wrench.
IL If R . G =0 then the system is
(i) equivalent to a couple of moment G if R =0 but G # 0,
(if) equivalent to a single force if R = 0,
(iif) in equilibrium if R = 0 as well as G = 0.
The above criteria are immediate consequences of the result that any
given systems of forces is equivalent to a wrench
(R, pR) where p=G.R/R.R;
R being tire vector sum and G the moment sum of the forces of the system
about a point.

Cor. A system of coplanar forces must be equivalent to a single force
or a couple, unless it be in equilibrium, for the parameter of such a system
is zero.

Similarly, a system of parallel forces, unless it be in equilibrium, is
equivalent to a single force or a couple.

8.15. CENTRE OF A SYSTEM OF PARALLEL FORCES

Let
Ty Tp o

be the position vectors of any points on the lines of action of the

parfllel forces
F, F,, ..
Let a denote a unit vector parallel to the forces. We write
Fi=pp, F;=pp, ec,
sothatlp, |, |p,|, etc., denote the magnitudes of the forces.
We have
R=F +F,..
= +p,+..)a=(Zp)a
G=r,xpa+r,xpa+..
SPpT Xa+pr, xa+..
= (Ip;r) x a.
If Zp,= 0, i.e.,, R = 0, the system is equivalent to a couple unless G
is also zero, in which case the system will be in equilibrium.
Suppose now that Ip,# 0. We shall obtain points about which the
moment sum is zero. Let r be the position vector of such a point.
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The moment sum of the system about a point with position vector r
=G-rxR=(Zpr)xa—(Ip)rxa
=[Zpr; - (Ep) r)xa.

Equating it to zero, we see that r is given by

Ipr—-(Zp)r=ta,
where ¢ is a scalar parameter,

JIm _t B
= e Tt

which is the equation of the line of action of the resultant. Clearly this line
passes through a_point

Ipn

)
which is independent of the actual direction of the forces and depends only
on the i and the points of ication of the forces.

The point is known as the Centre of parallel forces. Clearly this is the
centroid of the weighted points

fp Ty
the respective weights being
Py Py -
8.16. MOMENT OF FORCE ABOUT A LINE
‘We have so far been concerned with moments of forces about points

but we shall now introduce the concept of the moment of a force about a
line.

Let F be any given force and, 1, any directed line.

Def. The moment of a force F about a directed line 1 is the projection
on 1 of the moment vector of the force about any point on 1

Thus, if O, P be two points on the

hd P F
line 1 such that the vector OP is of
unit length, then the moment of F about
the line 1 is the scalar triple product 4
- -
OAxF.OP, -® by

where A is any point on the line of Fig. 83.
action of the force F.
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It may be easily seen that the momnent of F akout 1 is independent of
the choice of the point O on the line 1.

It should be carefully noted that the moments of forces about points
are vectors whereas those about lines are scalars.

8.16.1. Geometrical Representation of the Moment of a Force about a
Line

It may be easily seen from (i) above that the moment of a force
-

represented by a line vector AB about a directed line 1 is represented by
six times the volume of the tetrahedron constructed with AB and any
segmeni of unit length along I as a pair of opposite edges.

It also follows from above that if a be the angle between the line of
action of F and the line 1 and, ¢, be the length of shortest distance between
the same, then the moment of F about 1 is

I Flcsina.

8.16.2. Vanishing of the Moment of a Force about a Line,

Theorem. The moment of a non-zero force about a line is zero if, and
only if, the line of action of the force is coplanar with the line for the
moment

- -
OAxF-0P

_)
of a non-zero, F about the line OP will be zero if, and only if, the three
— —
vectors OA, F and OP are all parallel to the same plane, i.e., the line of

action of F and the line OP are coplanar.

8.16.3. Moment of a System of Forces about a Line is, by definition,

the sum of the moments of the forces of the system about the line. Thus,
___}

if OP be a unit vector along the given line and F,, F,, ... be the forces

of the system and r,, r,, ... the position vectors of any points on their lines
of action with respect to O then the moment of the system about the line

- -
=l'l XFI-OP+1'2)CF2-OP+...

-3 —»
=(ry xF, +r, xF, +..)-OP=G-OP,

so that the moment of a system about any line is equal to the projection
on the line of the moment sum of the system about any point of the line.
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From this it follows that the moment about a line of a system remains
unchanged when we pass from a given system to another equivalent
system.

8.17. NULL LINES. NULL PLANES AND NULL POINTS
8.17.1. Null Lines

Def. Any line about which the moment of a system is zero is called a
Null line.

Clearly any given line will be a null line if the moment sum of the
system about a point of the line is perpendicular to the line.

Null lines through a given point. Any line perpendicular to the
moment sum about the point is a null line and as such we see that the null
lines through a point lie in a plane which passes through the point and
is perpendicular to the momens sum about the point.

This plane is called the Null plane of the point.

If a be the position vector of the given point, then the moment sum
of the system about the point is G — a x R and accordingly the equation
of the null plane of the point is

(c-a).(G-axR)=0

= r.G-axR)=a.G.

Also a point is called the null point of its null plane.

It is clear that a null Line lies in the null plane of every point of the
line.

8.17.2. Theorem

If the null plane of a point A passes through a point B then the null
plane of B passes through A.

As the null plane of A passes through B, the line AB, i.e., BA is a null
line and as such it lies in the null plane of the point B. Hence, the null
plane of B passes through A.

Analytically, we may see that the condition for the null plane

r.G-axR)=a.G
of a point with position vector a to pass through the point with position
vector b is

b.(G-axR)=2a.G

= b.G-a.G=[baR] D)
which is also the condition for the null plane of b, to pass through a. In
fact, interchanging a and b in (i), we arrive against at (i).

Cor. Null planes of collinear points have a common line of
intersection.
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Let O, A, B be three non-collinear points. Let

> -
OA=a, OB=b.
Let R be the vector sum and G, the moment sum about O. Then the
moment sums about A and B are

G-axR, G-bxR.
Equating to zero the moment sums about O, A, B, we have
0=G=G-axR=G-bxR,

= G=0, axR=0, bxR=0.

Now R cannot be parallel to both the vectors a and b. Thus,
R=0.

Also
G=0.

Hence, the system is in equilibrium.

Note. From above, we can deduce that two systems of forces are equivalent if
their moment sums about three non-collinear points are equal.

8.19.2. If each of the six edges of a tetrahedron is a null line of a
system of forces, then the system is in equilibrium.

Let OABC be a given tetrahedron and let

- - -
OA=a, OB=b, OC=c.
Let R be the vector sum and G, the moment sum about O of the system
of forces.
Equating to zero the moments :bonuheh'nes OA, OB, OC, we obtain
a
fai " €T Ibl =0 GG Icl =0
G.a=0, G.b=0, G.c=0. o)
Agnn.uﬂwmmmmnun.bom.i B, Care
G-axR, G-bxR, G-cxR,
we have, equating to zero the moments about AB, BC, CA,

G-

(G-axR)-

(G-¢exR)- i)

la-el
The vector a, b, ¢ being non-coplanar, we have, from (i)
G=0. (§ 2.7, Page 45)
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Now the equations (ii) give
axR.(b-8)=0, bxR.(c-b)=0, exR.(a=c)=0.
which are equivalent to
R.axb=0, R.bxc=0, R.cxa=0.
The vectors a x b, b x ¢, ¢ x a being non-coplanar,
we obtain
R=0. (§ 2.7, Page 45)
Hence, the system is in equilibrium,
Note. The result obtained above enables us to state the criterion for the
equivalence of two systems of forces in terms of moments about lines as follows :
Two systems of forces are equivalent if the momenis of the two systems about
each of the six edges of a tetrahedron are the same.

8.20. FORMULATION IN TERMS OF RECTANGULAR
CARTESIAN AXES

Let
| U
be forces acting on a rigid body and let
PyPy Py

be any points on their lines of action.
LetX, ¥, Z, be the resolved parts of F, along the three co-ordinate
axes and (x, y,, 2,) the co-ordinates of the point P,. We have
F’=X,l4 ]"j-vl}.’
r’=x’l +y’] +z’k.
where , is the position vector of the point P, with reference to the
origin 0.
Moment of F, about the origin
=r,xF,
=G+, + 20 x G+ Vi +2Z))
= O - 5T 1+ G, - xZ)  + (5, -5 X) k
Moment of F, about the coordinate axes. We have :
r,xF,.i=yZ,-2Y, r,xF,.j=zX, -x2,
r,xF,.k=x¥, -yX,
> A al sz g0k,

are the moments of F, about the co-ordinate axes.
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If a denote the position vector of the point A, the vector equation of
the null plane of A is
r.(G-axR)=a.G.
Making substitutions, we obtain
[L-(@aZ-aN)x+[M-(@X-a2D)y+[N-(af-a))z
=al+aM+aN
as the required cartesian equation of the null plane.
Conditions for equilibrium :
X=0, Y=0, Z=0; L=0, M=0, N=0.
Conditions for the system to be equivalent to a single force
LX+MY +NZ=0,X+ YV +Z2#0.
Conditions for the system to be equivalent to a single couple
IX+MY+NZ=0, X’ + YV +22=0, 2+ M + N # 0.

EXAMPLES

Example 1. One syster: of force reduces to a force R acting at a point
O and a couple G and a second system to a force R' at O and a couple
G'. Prove that if each system is reduced to a wrench and if

R.G'+R.G=( +p)R.R.

where p and p' are the pitches of the two wrenches then the axes of the
two wrenches are coplanar.

Solution. With O as the origin of reference, the equations of the axes
of the two wrenches are

RxG R'xG' .
re R R PR AR
They will be coplanar if the scalar triple product
RxG R'xG'
R.R R.F
®RxR')-RxG) (RxR)-R'xG')
= R.R R.R'
R .R)R'.G)-R.G)(R'.R)
= R.R
®R.BDR.G)-R.G)R'.R)
R.R'

=0

Rk
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Putting
R.G , R.G
PPRRPTRR
we obtain
R.G-p(R.R)-R.R)p'+R.G'=
= R.G'+R.G=(p+p)(R.R),
which is the required condition.

2. Forces act at the centroids nfﬂu faces of a tetrahedron
along the outward drawn normals to the faces and proportional to their
areas; show that these forces are in equilibrium.

Solution. Let OABC be the tetrahedron. Take O as the origin of
Let 2

- - -
OA=a, OB=b, OC=c. ) ¢
The centroids of the faces are

%(.+b+¢), B A ¢

. ' ' Fig. 8.10.
3B+, 3(a+0), Sa+b),

Outward drawn normal to the plane ABC is parallel to the vector

> -
ABx AC=(b-a)x(c—a)
=bxc+exa+axh
Also the outward drawn normal vectors to the faces
OBA, OAC, OCB
are parallel to the vectors
bxa axe cxb
respectively. The magnitudes of each of these outward drawn normal
vectors is equal to twice the arca of the comresponding face.
‘Thus, omitting the constant of proportionality, we have the forces
bxa axe, cxb bxc+texa+taxh
acting at the points

%(bd-l). —;-(l-bc), %(e# b), %(l +b+c)

respectively.
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Now we have
R=0
and G=%(b+l)x(hxl)+%(‘|+c)x(nxc)+%(c+b)x(cxb)

+%(a+b+c)x(bxc+cxl+-xb)

=-;-[lx(bxc)#hx(cxl)+¢x(lxb)]=0.

Hence, the system is in equilibrium.

Example 3. Equal forces act along the edges BC, CA, AB, DA, DB, DC
of a regular tetrahedron; show that the central axis of the system is
perpendicular from D to the plane ABC and the pitch of the equivalent

I
wrench is 7[> ﬁ’ﬁ where k is an edge of the tetrahedron.
Solution. Take D as the origin of reference.
Let
- - -
DA=a, DB=b, DC=c,

- - -
= BC=c-b, CA=a-c, AB=b-a.

If we neglect the factor of proportionality, we may represent the forces
themselves by

a,b,c,c-ba-c,b-a
The points of application of these forces may be taken to be
D,D,D,BCA
whose position vectors are 0, 0, 0, b, c, a.
We have
R=a+b+c+c-b+ta-c+b-a=a+b+c
G=0xa+0xb+0xc+bx(c-b)+cx(@a-c)+ax(b-a)
=axb+bxc+cxa,
We represent a + b + ¢ in terms of the vectors
bxec cxa axh,
Let
a+b+c=Ilbxc+mecxa+naxh.
Multiplying scalarly by a, b, ¢ respectively, we obtain

_a.ata.b+a.c m=b.-+b.h+b.c

_c.a+c.b+ec.c
fabe [abc] ;

[abg)

1
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where A,/k, A,Jk, Ayfk, are the magnitudes of the forces along the opposite
pairs of edges. We have

{R =y =Ay=A)a+(hg—A - A) b+(h =R =23 ¢
G=Abxc+rcxa+iaxb.
G.R=[A(Ay=A3=A)+A3(A3 =Ry —A3)+A3(A; —A; —A3)) (abe)

== 423 +23) [abe]= ~(A +13 +23)k2 /2.
Also
R.R=[(; =3 =3 + (g =4y = 1y) +(hy Ay -3 1

2 =A3=A) (g =Ry =A)+(A3 =2 =R;) (A=A, —Ry)
0y =hy-Rs) g by I

=23 +2% +A3) k%

G.R__k

R.R 242 :
Example 5. Show that any system of forces can be reduced to a set
of forces along the edge of a given tetrahedron OABC.

If these forces are

Thus, the required pitch =

> o> o > 5 o
ABC, uCA, vAB and \'OA, OB, v'OC,
prove that the forces reduce to a single force or a couple, if
A +pp+w =0,
Show that the forces reduce to a couple if

AN4+p-v=0, w4v-2=0, V+A-p=0
and prove that the axis of this couple makes angles a, B, Y with OA, OB,
OC respectively where
O0A" 0B OC

Solution. We know that any system of forces can be replaced by three
forces whose lines of action pass through three given points.

In the present case, we replace the given system by three forces whose
lines of action pass through A, B, C and regard A, B, C as their points of
application. Now the force at A can be replaced by three forces acting along
the three edges AB, AC, AO through A and 5o also in relation to the other
two forces. Hence, any system of forces can be reduced to a set of forces
acting along the edges of a given tetrahedron.

cosa:cosPicosy =
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Let

- - -
OA=a, OB=b, OC=c.

We have forces
A(c=-b),p(a-c), v(b-c), Aa, p'b, Ve
acting the points with position vectors
b, c, a, 0,0,0.
We have
R=A(c-b)+p{a-c)+vib-a)+Ara+pub++ve
=AM+p-va+(p+v-Db+(V+A=-pe,
and G=bxA(c-b)+cxp(a-c)+axv(b-a)
=Abxc+pexa+vaxh
Thus,
R.G=[A A +p=-V)+p(p+v-2+v(V+Ai-p][abc]
=X +pup’' +vw)labcl
Thus, the system will reduce to a single force or a couple if
AV 4 pp’ + wv' =0, ()]
Also the system will reduce to a couple if R = 0 which will be so if, and
only if,
AMip-—v=0, P +v-2=0, vV+r-pu=0. (7))
Axis of the couple.is parallel to G. Now,

-
G.0A=1G|0A cos . (By def.)
_)
Also G.OA=\A[abc].
= Alabe]l=IGlOAcosa
A _1GI
= OAcosa [abc]
A o p a v
Twz, OAcosa OBcosp OCcosy
Hence the result.

It may be easily seen that the condition (i) is a consequence of the
conditions (if).

Example 6. Prove that the axis of the wrench equivalent to two forces
R,, R, acting along two non-coplanar lines intersects the line of shortest
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