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Abstract
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants,
animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-
inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-
related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health.
Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deteri-
oration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some
benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will
benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for
instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced
immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake.
Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including
embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of
several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern.
Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in
different species.
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Introduction

The trace element boron is a dynamic nutrient of essential
importance to animal and human biology. This has turn into
progressively obvious as latest researches have revealed a
hitherto surprise actions for this minerals in areas significant
to animal and human health. Boron occurs mainly in the form
of inorganic borates in oceans and soils [1] and stabilizes
ribose, a major constituent of the self-assembling molecule
RNAwhich might have preceded DNA [2]. The physiological
quantities of boron can alter the metabolism and consumption
of various substances involved in growth and development

[3]. Boron, therefore, usually affects several organs and body
systems, including the skin, brain, digestive, skeletal, and im-
mune organs and systems. In vertebrates, the borates are es-
sential for their unique bonding and structural characteristics
[4]. This function serves to ease certain conditions in animals,
such as arthritis, osteoporosis, and coronary heart disease [5,
6]. Boron also alters different metabolic parameters in ani-
mals, such as swine, chicken, cattle, ostrich, and some other
tested species [6–9]. Furthermore, it is beneficial for different
organs, because of its interactions with calcium, vitamin D,
and magnesium [10–12]. That is why borates are being used
on industrial scale in different diet supplements and
medicines.

Occurrence, Source, and History of Boron

The trace nutrient boron belongs to the family of metalloid,
having an atomic number of 5 and a molecular weight of
10.81 g/mol. Boron has two abundant isotopes, 10B and 11B.
Due to large capture cross-section, 10B is an exceptional
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neutron absorber [13, 4]. Boron does not occur as an elemental
form in nature, and its chemistry is complex and forms com-
pound (borates) with other elements [4]. The most widely
used borates having boron minerals are listed in Table 1 [14,
15]. The nutrient boron is present mostly in soil and water. The
earth crust mainly contains boron, having an average concen-
tration of 10–20 ppm in soil [16]. The large parts of the world
has less boron, while a high amount is also present, for exam-
ple, in parts of the western USA, Turkey, Brazil, Russia, and
China [4, 17]. The world’s largest deposits of boron are found
in a topographical constituency that is from the Mediterranean
nations inland to Kazakhstan [17, 18].

The average of 4.6 ppm boron with range of 0.5–9.6 ppm is
present in seawater. The range of boron in freshwater varies from
0.01 to 1.5 ppm, with more concentrations in areas having high
concentrations in soil [19]. Boron is the most energetic nutrient
that makes their approach into the food and can be derived from
soil minerals directly. The dietary sources of boron are of plant-
based (vegetables, fruits, and nuts). It is also obvious that a con-
siderable amount of boron is found in all main types of feed,
which is equivalent to the amount of essential traceminerals such
as zinc and copper [20]. Mostly, rich boron concentration is
found in fruits except for pineapple, berries, and citrus fruit
[21]. Moreover, leafy plants, dry fruits, and nuts contain a high
amount of boron [21–24] (Table 2).

The history of boron is very old and credit was dated back
over 4000 years ago by Babylonians who used borax as a flux
in gold industry. The ancient Egyptians are well known for the
use of boron in mummification, metallurgic, and medicinal
purposes. These very old evidences has not been verified,
but the most verified evidence of boron usage in old ages
was the trade of borate Btinkar^ from China to Mecca and
Medina in the eighth century by Arab traders [25]. Another
proved evidence of borax flux usage by goldsmiths of Europe
dated back in twelfth century. The most primordial source of
borates is considered as Tibetan lakes and transported from
Himalayas region to India [26, 19]. The borate manufacturing
in Turkey started with calcium borate mining in 1865. At
about the similar period, some borate reserves were

discovered in Death Valley in Nevada and California. The
borax deposit in Mojave Desert in California was found in
1913 [27, 26]. Sodium borates were found in 1960 at Kirka
and Anatolia. Turkey has delivered borates for many years to
European boric acid manufacturers [26, 28, 29]. As a conse-
quence, today, Turkey is well known for being the largest
boron products supplier in the world (Table 3).

Requirement of Boron in Microorganisms
and Plants

Boron is constituent in all phyla of living organisms
performing several biological functions. Boron is a compo-
nent of microbial antibiotics, such as borophycin,
aplasmomycin, tartrolon, and boromycin [30], present in bac-
terial quorum sensing signal molecule, auto-inducer (AI-2)
[31], and in the vibrioferrin. Some marine bacteria produced
siderophore containing boron [32]. Besides, boron is an im-
portant element for algal flagellate and marine cyanobacteria
species [30, 33]. Recently, a special group of boron com-
pounds containing borolithochromes has been found in well-
preserved Jurassic red algae Solenopora jurassica, which is
responsible for their unique coloration. Borolithochromes are
the complex spiroborates (esters of boric acid) having pheno-
lic moieties, and they are representing a distinctive class of
fossil organic pigments [34]. Moreover, high boron endurance
of Saccharomyces cerevisiae, due to multidrug resistance
transporter encoded by ATR1, makes it the most beneficial
species of yeast, involved in baking and fermenting. This gene
is also distributed in some bacteria, fungi, and lower eukary-
otes and activated on boron exposure [35]. Bacillus
boroniphilus needs boron for its growth and can endure more
than 450 mM of boron [36]. The Azotobacter, which is in-
volved in nitrogen fixation, also needs boron for this activity.
Blue-green algae and microorganisms of genus Frankia also
need boron for their growth. Furthermore, boron was reported
to interact and stabilize the glycolipids of the heterocyst’s
[37–40].

Table 1 The most commonly
used boron-containing
compounds around the world

Compound Color Boron percentage Water solubility

Anhydrous borax White 21.49 2.5556 g/100 g at 25 °C

Borax Colorless 11.34 5.92 g/100 g at 25 °C

Borax penta-hydrate White 14.85 3.6 g/100 g at 20 °C

Boric acid White 17.48 63.5 g/L at 30 °C

Boron oxide Colorless 31.06 Slightly soluble

Colemanite White 15.78 Slightly soluble

Sodium perborate mono-hydrate White 10.83 15 g/L at 20 °C

Sodium perborate tetra-hydrate White 7.03 23 g/L at 20 °C

Ulexite White 13.33 Slightly soluble

References: Muetterties [14]; Windholz et al. [15]
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Boron is also necessary for plants growth and develop-
ment, and its availability in water and soil is a key factor of
the agricultural production [41]. Some scientists assessed that
about 90% of boron is present in the plant cell walls [42].
Boron can form complexes with cell wall ingredients such
as polyhydroxyl polymers, pectins, and polyols [41, 43].
That is why boron is associated in stability and synthesis of
cell wall by making esters with the cis-diol components of cell
wall [42]. This helps in provision of shape, strength, and ri-
gidity to the cell. Borates are also able to form linkage with
biological compounds having hydroxyl groups. One of the
main functions of boron in plants has been described due to
its capability to make esters with rhamnogalacturonan II (RG-

II) [44]. The establishment of this borate ester is necessary for
cell wall function and structure [45], as it plays a role in the
control of tensile strength and cell wall permeability [46]. For
instance, decreased RG-II dimer formation and abnormally
swollen cell walls have been revealed by deficiency of boron
[47]. Furthermore, the importance of the RGII-borate complex
has been shown in the Arabidopsismur1-1 andmur1-2mutant
plants [48]. Meanwhile, Noguchi et al. have also described
less cross-linking actions in the cell walls of Arabidopsis
bor1-1 mutant compared to wild-type plants under boron de-
ficiency [49].

Numerous studies have also pointed out the importance of
boron for nitrogen-fixation, as in the vesicles of actinomycetes
of the genus Frankia [37]. This microorganism needs boron
for the solidity of the envelopes that shelter nitrogenase by
oxygen from inactivation. Boron is also required for the reg-
ulation of glycoproteins that are essential as indicators for
differentiation of bacteroid into a nitrogen-fixing form [38].
It is well established that boron is involved in various process-
es in plants such as oxidase activity, root elongation, sugar
translocation, pollen tube growth, carbohydrate metabolism,
and nucleic acid synthesis [42]. Boron is an important nutri-
ent, required for flowering, seed setting, pollination, and fruit
quality. Adequate boron uptake will assist in the increased
fertilization and fruit set, because it is involved in pollen tube
formation and pollen germination [42]. Therefore, if the sup-
ply of boron is insufficient, flower will blossom poorly, the
rate of fruit setting is low, and the yield is affected. There is
also increasing data that boron is obligatory for the

Table 2 The amount of boron in
some edible items Source Boron content/100 g Source Boron content/100 g

Almonds 2.82 Grapes 2.72

Apples 2.73 Hazelnuts 2.77

Apricots 2.11 Honey 0.72

Avocado 1.66 Lentils 0.74

Bananas 2.06 Milk 0.23

Beans 1.56 Onion 0.20

Bread 0.48 Orange 0.25

Broccoli 2.19 Peaches 0.52

Carrots 1.39 Peanuts 1.92

Cashew nuts 1.15 Peanuts 1.80

Catsup 1.39 Pear 0.32

Celery 2.47 Potato 0.18

Cheese 0.19 Prunes 1.18

Cherries 1.47 Raisins 4.51

Chickpeas 0.71 Soy meal 2.80

Dates 1.08 Tomato 2.72

Egg 0.37 Walnuts 1.63

Flour 0.28 Wheat 2.41

References: Hunt et al. [21]; Vanderpool and Johnson [22]; Nielson [23]; Anderson et al. [24]

Table 3 Reserves of boron (million tons) around the world

Country Total reserves
(million tons)

Percentage
share of world

Argentina 09 01

Bolivia 19 02

Chile 41 05

China 36 04

Kazakhstan 15 02

Peru 22 02

Russia 100 11

Turkey 563 64

USA 80 09

Reference: Sirin [29]
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preservation of the functions and structure of plasma mem-
brane [50, 44]. It has been proposed that few membrane mol-
ecules having hydroxylated ions such as glycolipids and gly-
coproteins are good contenders for a probable boron action in
the plasma membranes [42]. However, the mechanism of
these borate complexes has not been cleared yet. Thus, it is
essential to note that boron might put forth its potential in
plasma membranes not only by alleviating of membrane mol-
ecules having cis-diol groups but also by modulating the
genes expression interwoven in membrane function and
structure.

Role of Boron in Animals and Humans

Recently, boron is considered to be possibly essential for an-
imals and humans health. Boron appears to participate in hy-
droxylation reactions, which plays a role in the synthesis and
metabolisms of diverse reactions [8]. Boron is an effective
treatment choice for arthritis and cause significant improve-
ment in bone development seen in 95% of cases by increasing
calcium integration effectively into bone, joints, and cartilage.
Moreover, it affects several hormones, comprising testoster-
one and estrogen [1]. The cancer therapy can be ensured by
boron neutron capture agents. The boric acid is very useful to
overcome breast cancer cells in vitro [51]. It is supposed that
boron can affect some of the blood clotting factors in the body.
Boron can expressively ease the problems produced by con-
gestive heart failure conditions. Boron assists to lessen lipid
accumulation and allows the cholesterol removal through var-
ious ways, therefore minimizing the risks of developing situ-
ations like blood clots and atherosclerosis, and defending the
body against heart attacks and strokes [52]. But further re-
search is required to validate this result, which would lead to
a main confederate in the battle against heart disease. Due to
complex structure and bonding characteristics, borates have
shown inhibitory action on enzymes like aldehydes dehydro-
genase, nitric oxide synthase, peptidase, xanthine oxidase, and
proteases [53]. Boron affects the metabolism of testosterone,
estrogen, glucose, and insulin. Glycoproteins, glycolipids, and
other molecules having hydroxyl group may form complex
with boric acid and modify the integrity of membrane [54,
55]. Borates also revealed the actions as an anti-
inflammatory and antioxidant agent in cancer, wound healing,
diseases control, reducing genotoxicity, and modulating mito-
chondrial membrane activity [56–58]. Additionally, boric acid
has overhauled the job of the acetylcholinesterase which is
repressed by the pesticides [59] and also prevented the body
from the oxidative stress induced by CCL4 and other agents
[60–62]. The required boron quantities are species-specific
and also highly variable. In most species, including humans,
the exact required amount of boron is still being determined.

Boron and Growth Performance

Boron is essential for growth, due to its role in strengthening
the cell membrane [63]. The concentration of boron varies
from species to species [64, 65] and low boron status inhibits
growth [66]. As boron deficiency leads to poor growth, for
that reason, it should be available in suitable concentration for
body growth and development. In the previous study, ostrich
chicks supplemented with 160 mg/L of boron exhibited a
positive effect on the final body weight. Similarly, the average
daily gain and acid detergent fiber also significantly increased
[64]. In another study, broilers were given free access to water
and feed, and different groups were treated with various doses
of boron. The body weight of female birds was not influenced
by dietary boron; however, it was significantly increased in
male birds [67]. Fassani et al. showed that providing boron at
30, 60, 90, and 120 ppm caused linear growths in the body
weight at the age of 21–42 days in birds. Birds fed 30 ppm of
boron consumed 140 g of less feed compared to control, and
showed better feed conversion and less mortality [68].
Similarly, boron was added to boron-deficient diet, and an
improved feed intake and growth rate was observed in pigs
[6, 69]. Goihl described that low amount of boron supple-
mented to the swine feed (5–10 ppm) were favorable, causing
better weight gain, feed efficiency, and phosphorus and calci-
um maintenance in the body [70]. Though the findings are
revealing a positive boron function in the animal’s growth, it
is recommended that the ultimate concentration should be
found based on further studies.

Boron and Meat Quality

According to several researches, the ultimate pH, ash con-
tents, and meat color are the most significant indicators of
meat quality [71, 72]. The pH of meat depends on the lactic
acid content in muscle tissue, and glycolysis is the main pro-
ducer of lactic acid after slaughter, while a close correlation
between muscle pH and glycogen levels has been widely ac-
cepted [73, 74]. The alteration in pH of meat significantly
affects its quality and is a direct result of changes in muscle
glycogen stores prior to slaughter [75]. It has been reported
that meat with a higher pH has a higher water holding capacity
and lower levels of moisture loss [71]. At a higher pH, protein
can bind more strongly with water, resulting in less free water
and a darker meat color [76]. Meanwhile, at a high pH, the
tenderness of the meat also increases and the flavor becomes
less attractive [75]. Boron, with the aid of oxidoreductases,
plays a basic role in controlling the processes associated with
specific metabolic pathways [77]. Oxidoreductases need pyr-
idine to promote enzyme activity. Boron reversibly reduces
the activity of these enzymes by making transition state ana-
logs, or by competing for nicotinamide adenine dinucleotide
(NAD) or flavin adenine dinucleotide (FAD) [77, 78], which
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are the important substrates of glycolysis. Boron inhibits the
glycolytic pathway by acting on NAD, thereby reducing the
lactic acid content of muscle and affecting the pH value of
meat. Boron has also been reported to regulate the pH con-
centration of muscle by acting on metabolite concentration
[64]. Since supplemental boron is beneficial in controlling
pH, therefore suitable for improving the quality of the meat
[77, 64].

The ash content of the muscle is also an important index, as
it is representative of the minerals and trace elements in the
meat [79]. Boron regulates the metabolism of minerals like
Mg, P, Mo, and Ca [80]. The addition of boron to the drinking
water of the chickens also showed the improvement of Fe and
Zn levels in the meat [81]. Therefore, boron supplementation
modulates the contents of ash in meat [82]. The ash content
showed a gradual increase, as boron effectively increased the
mineral content of the muscle; however, further research is
needed to quantify this factor. Supplementation of boron also
inhibits the activity of serine proteases. Serine proteases com-
prise one of the most abundant groups of proteolytic enzymes
that are involved in several physiological processes, through
the activation of precursor proteins [83]. In one study, differ-
ent doses of boron were administered in the drinking water of
ostriches to evaluate physical and chemical properties of os-
trich meat [64]. The meat physical properties (pH, drip loss,
cooking loss) showed significant result following boron ad-
ministration. The data revealed that the cooking loss and drip
loss were decreased, while the result of meat color was non-
significant by boron supplementation. The results of meat
chemical properties (moisture, fat, protein, ash, and cholester-
ol levels) were also significant in boron-treated groups as
compared to non-boron-treated group. And, the doses of bo-
ron up to 160 mg/L were desirable in both physical and chem-
ical properties of meat in ostrich chicks [64]. Meanwhile, the
previous study on rat showed that boron supplementation at
8 mg/kg caused a reduction in triglycerides (TG) and choles-
terol levels [84]. Also, boron showed positive effects on vis-
ceral fat by reducing oxidative stress [85]. Furthermore, the
administration of boron reduced levels of TG, cholesterol, and
non-esterified fatty acids in the blood [8], thus modulates
muscle profile. So far, the studies have been carried out mainly
in serum. Data on changes in the lipid profile in the muscle
after boron administration are necessary, thus more studies are
needed to elucidate the effect on the lipid profile.

Boron and Bone Development

Boron plays an important role in the development of bones
[86], as it is beneficial in metabolism [87] and regeneration
[86] of bones. Boron also plays a role in the proliferation and
mineralization of bones [88]. It is well known that boron af-
fects a variety of metabolic activities in bones. It interacts with
magnesium, vitamin D, and calcium, all of which play an

important role in the metabolism of bone [1]. This synergistic
association with Ca and Mg homeostasis aids its role in bone
strength [10]. The increment of age may cause bone weakness
with porous bone, and boron is helpful to overcome this dete-
rioration by certifying that the level of calcium and magne-
sium is working effectively [89, 90, 10]. Boron appears to
accelerate the osteoblastic cell activity through calcium flux
[91]. Calcium fructoborate significantly reduces serum levels
of the C-reactive protein levels in serum, signifying that this
distinctive plant–mineral borate formulation may stimulate
the bone health and strength by controlling inflammation re-
lated with the loss of bone mineral density [92]. Furthermore,
boron was reported to be helpful for the metabolism of bone in
terms of proliferation, cell survival, and mRNA expression of
osteoblast proteins (MC3T3-E1) and mineralization [88].

The concentration of boron in bone depends on the amount
of element consumed that could be favorable for bone metab-
olism, mineralization, and regeneration [93]. Boron depriva-
tion in animals leads to impaired growth and abnormal bone
development [1]. Rats that had been deprived of boron
showed increased trabecular separation and reduced bone vol-
ume. Furthermore, boron deficiency resulted in reduced
strength of the femur [94]. Boron deficiency is associated with
mineral changes, suggesting that boron plays a role in promot-
ing bone growth and maintenance in osteoblast activity [95].
Some researchers recommend only an optimal dosage of bo-
ron for proper bone development in the animals and humans
[88, 96]. Earlier studies have shown that suitable doses could
have desirable effects on bone strength and development. A
low supply of boron accelerates the differentiation and prolif-
eration of osteoblasts [91]. Histopathological and microbio-
logical evaluation indicated that local or systematic applica-
tion of boric acid was effective to treat bone disorders [97]. An
experimental study showed that boron was helpful in improv-
ing the ash content of the femur [94]. Cheng et al. supplement-
ed the drinking water of ostrich chicks with boron at 0, 100,
200, and 400 mg/L, to investigate the effects of those doses on
the tibia. Various parameters, such as bone mineral density,
tibial length, ash content, weight, perimeter, and thickness of
cortical bone, were examined. A significant increase was not-
ed among most parameters, and 200 mg/L was shown to be an
effective dose for enhancing bone strength [96]. Appropriate
boron supplementation caused significant improvement in
bone strength because it affects leptin which is essential for
bone [96, 98]. Rats that are deficient in leptin exhibit lower
bone density in the femur and lower levels of bone minerals
[99].

Recently, bioactive glass technology has also shown that
boron aids in bone formation. When bioactive glass contains
boron, bone formation was enhanced [100]. This enhance-
ment occurs because of the effects of bioactive glass on an-
giogenesis, a process that is important for tissue engineering
and wound repair. Experimentally, animal showed increased
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angiogenesis with the use of boron-containing bioactive glass
[101]. Furthermore, the comparison of boron supplementation
at doses of 1.0 and 0 ng/mL was conducted following cell
culture study, and displayed positive effects with boron [88].
In addition, boron increases the levels of bone morphogenetic
proteins, and its deficiency could lead to osteoporosis [102].
These studies show that boron is an important and effective
therapy for weak bones, thus, essential for the formation and
maintenance of bone. More studies in different animals are
needed to determine optimum level of boron.

Boron and Liver Functions

The liver is known as the largest body gland [103] and the first
organ receiving nutrients from food. That is why the liver is
more prone to the risk of toxic substances exposure. As liver
develops, the liver cells gradually attain the ability to perform
the functions, for instance the detoxification of toxic ingredi-
ents such as pesticides, drugs, etc. [104]. Boron has reported
to show positive effects in the development and protection of
liver. Significant reductions in very low-density lipoprotein
(VLDL) and serum TG levels were reported in animals treated
with boron via oral administration [105]. In one study, boron
was orally administered to 12 pregnant cattle at 30 g/day for
28 days. In that study, the effects of hormones and serum
metabolites were evaluated and blood samples were collected
on a weekly basis. Boron showed positive effects in the mod-
ulation of serum metabolites, which are necessary for liver.
The overall liver metabolism was enhanced by boron, and
the incidence of liver damage during early lactation was re-
duced [8, 105]. Although the precise mechanisms remain un-
known, boron obviously counteracts the adverse effects of
liver disease, by modulating the effects of oxidative stress
and restoring normal liver function [106].

In another study, the effects of boron on the liver were
examined in New Zealand white rabbits. Rabbits were supple-
mented with oral doses of boron at 10, 30, and 50 mg/kg BW
for 96 h. These levels did not affect any hematological param-
eters, and the report suggested that boron showed positive
effects on fatty liver and visceral fat, by reducing oxidative
stress [107]. Boron appears to inhibit liver damage by acting
on the mitochondria. It reportedly affects the Krebs cycle, the
glucose-alanine cycle, and methionine metabolism, thereby
reducing oxidative stress and positively affecting the lipid
profile of the liver [107]. The administration of boron at 4 g/
day has been effective in maintaining relatively low lipid
levels in the plasma of dogs. One week after oral administra-
tion of boron, lower levels of insulin, glucose, and apolipo-
protein B-100 was detected in boron-treated dogs, in compar-
ison to the non-boron-treated group. During the second week
of boron supplementation, lower levels of TG and VLDL
were also observed [108]. These results support the assump-
tion that boron effectively reduces lipid levels in the liver.

Boron might also affect other hepatocyte functions, including
the storage and metabolism of glycogen at optimal supple-
mentation. So, it is necessary to evaluate this mechanism.

Boron and Embryonic Development

The fetus depends entirely on maternal nutrition, comprising
trace minerals. Insufficient transmission of these nutrients can
lead to fetal mineral dearth, resulting in fetal dysplasia and
other abnormalities. In addition, newborns with inadequate
maternal nutrients intake in the course of gestation or preg-
nancy have less body assets and are prone to mineral paucity
in the early life [109]. Some researchers have studied the sig-
nificance of boron in animals and human nourishment.
Nielsen’s Bstressor model^ is an extensively used proposal.
In this project, the lack of one or more nutrients in diet, such
as potassium, copper, calcium, magnesium, or vitamin D, is
used as dietary stress to increase the chance of observing bo-
ron reactions [110]. Moreover, Nielsen et al. executed many
studies to assess the supplemental boron effects on diets hav-
ing marginal concentration of copper or magnesium in the
body [111]. Under these circumstances, boron positively al-
tered the biochemistry of numerous nutritional indicators, in-
cluding hemoglobin, blood glucose, platelet, and hormonal
levels. In addition, boron supplements were found to reduce
the severity of birds and rats lacking calcium and vitamin D
[112, 113].

The data regarding the role of boron nutrient in embryonic
development is not sufficient, and only a few species have
been described so far. Previously, it was shown that the growth
of the trout embryo and the survival of the zebrafish embryo
were impaired by a deficiency of boron [114, 115]. Moreover,
low boron profile adversely affected the embryonic develop-
ment of rats [116] and frogs [117]. And, boron deficiency also
restricts the maturation events of oocytes in Xenopus laevis
[66]. The mechanism underlying the enhancement of fetal
development and survival by boron has not been studied. In
the past, nutrition and embryology was mostly consid-
ered as a distinct field. More recently, researchers have
focused more on the cellular mechanisms that affect
fetal development. Though most of work is done with
rat models, it is required to persuade the results to the
practice of human and animal nutrition. Some controlled
nutritional trials must be piloted to determine whether
animals and humans have the same effect. With latest
technologies and sensitive assays available, effects of
boron nutrition and embryonic development can be
studied more easily together. The recent results present-
ed that boron treatment upregulated myogenic gene ex-
pression including desmin, myosin heavy chain,
myogenin, and MyoD [118]. These outcomes offer an
opportunity for the development of scaffolds for the
embryonic muscle growth.
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Boron and Brain Activity

Boron is essential for the activity of brain functioning, as its
deficiency possibly has unfavorable effects on the central ner-
vous system [119]. The study of brain activity in humans and
animals have displayed that boron deprivation in diet caused a
decline in the electrical activity of the brain [120]. Under
controlled feeding conditions, boron supplementation (3 mg/
day) in subjects who consumed a diet that provided approxi-
mately 0.25 mg boron/2000 kcal for about 63 days altered the
electroencephalogram, with a trend toward less activity at
lower frequencies and greater activity at higher frequencies
of the dominant frequency spectrum [121]. Meanwhile, sup-
plemental boron has led to improved psychomotor skills, less
drowsiness, short-term memory improvement, mental alert-
ness, and improved attention in older men and women.
Similar effects have been observed in the rat. Increased activ-
ity at low frequency is characteristic of the relaxed state, and
behavioral activation is associated with reduced performance
of psychomotor tasks. Reductions in high-frequency activity
have been associated with memory impairment in boron-
deficient subjects [120–122]. Boron supplementation, follow-
ing a state of boron deficiency, leads to improved psychomo-
tor speed and dexterity, and the enhanced short-term cognitive
processes of attention and memory [120]. Boron deficiency
also showed reduction in the amount of cerebellum P, indicat-
ing the modulation of brain activity in response to boron de-
ficiency [119]. Furthermore, boron-deficient rats (0.1 mg/kg)
were less active than boron-sufficient rats (3.0 mg/kg). This is
because boron deficiency reduces the number, distance, and
time of horizontal movements; front entries; distance from the
margin; and vertical breaks and jumps [123]. In the ostrich,
boron has a positive effect on the brain and an effective dose
aids in brain development. The histological structure of the
brain in the ostrich showed an enhanced development of neu-
ral cells when 160 mg/L boron is added to the drinking water.
Furthermore, inhibition of apoptosis in the brain has also been
observed at this dosage [124]. It has been hypothesized that
effects of boron on brain function and brain behavior are due
to membrane changes that affect the transmission of nerve
impulses [125, 123].

Boron and Hormonal Effects

Boron influences the metabolism of steroid hormones and in
particular of sex hormones. It upsurges low testosterone levels
in men and estrogen levels in menopausal women [126, 127].
The results showed that heavy body exercise for 2 months
could disturb the testosterone level of non-professional body-
builders, but the supplementation of boron regulates the level
of this hormone [128]. Boron can increase the estrogen pro-
duction in menopausal females, and can take back their sex
energy within a few days of treatment. It raises the natural sex

hormones level in the body, therefore reducing the need for
pharmaceutical solutions or hormone replacement therapy.
Boron can affluence the signs such as night sweats and hot
flashes that are usually related with menopause, and it con-
firms that the level of minerals is appropriate, as post-
menopausal females often suffer from hormonal imbalances
that can skew many of the body’s most important systems
[126, 129, 130]. Furthermore, progesterone hormone therapy
successfully prompted germinal vesicle breakdown in the oo-
cytes from females nourished a boron-supplemented food
[131]. Boron nutrition intake has reduced the adverse effects
of vitamin D shortage in rodent model [132]. The mechanism
may be arbitrated by increasing level of 25-hydroxyvitamin D
in serum. The boron supplement can also enhance the level
17β-estradiol in postmenopausal females getting hormone re-
placement therapy [132]. In the diet of ovariectomized rat, the
5 mg/kg supplemental boron significantly improved the ben-
eficial actions of 17β-estradiol hormone therapy on bone
growth density, bone trabecular volume, and trabecular sepa-
ration [133]. The formulation of 17β-estradiol with boron
significantly enhanced the absorption and retention of calcium
and magnesium [129]. Limited data recommends that boron
can promote the role of insulin. In feed of rat containing
0.2 mg/kg boron, 2 mg/kg of boron supplementation reduced
the plasma insulin level, but did not alter the concentration of
blood glucose [131, 134]. It was reported that pancreatic in-
sulin level released from boron-deficient chicks was nearly
75% more than boron-sufficient chicks [134]. Furthermore,
boron is obligatory for salvation of testosterone and estrogen
levels in blood [111]. Therefore, boron supplementation in
animals and humans has positive effects on estrogen, testos-
terone, and estradiol, while boron deficiency is associated
with the negative effect on these hormones [130, 131].

Boron and Wound Healing

Boron is known as wound healer, because 3% boric acid so-
lution was reported to cure deep wounds. In the past, boric
water (pharmacopeia) was known as antimicrobial agent
[135]. In recent days, borates are also used as treatment of
different wounds in very low concentrations. The mode of
action of boron in healing of wound is unclear, but some trials
have revealed that it is engaged in protein, collagen, and pro-
teoglycan synthesis [136, 137]. It was examined that boron
regulates the production of the extracellular matrix, which
shows a significant role in the wound healing course by en-
hancing the release of proteins, collagen, and proteoglycans.
Boron also encourages the release and synthesis of tumor
necrosis factor [136, 138]. Furthermore, incubation with
10 mg/L of boron for 6 h induces the expression of intracel-
lular matrix metalloproteinase-9 in keratinocytes [139].
Gelatinase zymography increased the secretion of gelatinase
in keratinocytes supernatant after incubation with boron for
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24 h. This may indicate that boron is one of the trace minerals
necessary for wound healing. An in vitro trial verified quicker
wound healing using boron compared with control [140].
Boron may play a role in wound healing by increasing
keratinocytes migration. Boric acid is also reported to accel-
erate the wound healing by affecting the DNA double-strand
breaks formation. The DNA damage and wound induced in
experimental subjects with etoposide, irinotecan, doxorubicin,
and hydrogen peroxide was measured through phosphoryla-
tion of pATM(Ser1981) and H2AX(Ser139) by the immunofluo-
rescence method in the control and boron-treated groups. It
was shown that foci numbers of H2AX(Ser139) were decreased
significantly in the boric acid-treated groups and process of
wound healing accelerated [141]. The results also indicate that
boron hydrogel formulation can heal burn wounds successful-
ly. This borate formulation may encourage burn wound
healing process through complicated mechanisms of cell mi-
gration stimulation, vascularization, inflammatory response,
and expression of growth factor [142]. The radiological, clin-
ical, and histological investigation also shows that local boric
acid administration may stimulate the fractures healing pro-
cess [143]. In light of all this, there is a need for additional
studies to further elucidate the mechanism of action of boron
in wound healing, and controlled studies must be performed to
investigate the role of boron in the treatment of wounds.

Boron and Oxidative Stress

Organophosphate (OP) compounds cause oxidative stress and
changes in the antioxidant status in organisms. OP is often
used as an insecticide in the food supply, so both humans
and animals are routinely exposed to them [144]. OP com-
pounds have produced toxic effects, particularly in the gener-
ation of ROS, by damaging numerous cell membrane compo-
nents [145]. Recent work showed that the animal having suf-
ficient amount of boron were protected from the OP insecti-
cides [59]. Administration of boron resulted in reversal of OP-
induced oxidative stress and enzyme activity. In addition, bo-
ron improved antioxidant mechanism of defense and restored
different body organs in the mice [59]. The oxidative stress
induced via endotoxin also reversed by boron administration.
Endotoxin affects the organs by generating free radicals, and
boron may protect the organs from the oxidation by causing
functional and structural changes in the proteins [146]. The
results in rodent model indicated that 40 mg/L of boron could
increase antioxidant capacity of spleens and improve the
spleen tissue structure [147]. In a recent study, boron-
supplemented subjects who were exposed to chronic alcohol
consumption revealed low level of oxidative stress [53].

Boron administration has been thought to reduce oxidative
stress by increasing the glutathione reserves that neutralize the
oxidants [148]. Additionally, the administration of boron in-
creases the levels of GSH, thereby maintaining the toxic

effects of malathion [59]. In the neonatal necrotizing entero-
colitis rat model, boron supplementation increased the level of
antioxidant to prevent the GSH reserves deletion [149]. Boron
is also thought to increase the level of antioxidant capacity by
reducing the intracellular ROS and Ca+2 ion levels, ultimately
averting apoptosis [53, 57]. In addition, the biochemical ac-
tivity of hepatocyte injury and oxidative stress in hepatocellu-
lar carcinoma may also be reversed by boron induction [150].
The effectiveness of some borates on the oxidative stress and
genotoxicity induced by heavy metals was assessed in human
blood cultures. The micronuclei (MN) assays and sister chro-
matid exchange (SCE) were executed to check the lympho-
cyte DNA impairment. The oxidative stress in the RBC was
calculated by assessing the changes in the oxidant/
antioxidants and enzyme activity [62, 151]. The SCE, MN,
malondialdehyde, and glutathione frequency was reportedly
increased by heavy metals induction, but the borates success-
fully minimize this genotoxic and oxidative effects of heavy
metals.

Boron and Anti-inflammatory or Immune Response

The additional boron intake has obvious immuno-stimulant
effects, comprising the enhancement of natural killer (NK)
cell activity and T cells proliferation. A recent study showed
that boron plays an important role in the organs of the immune
system [152]. Experimental animals have shown pronounced
signs of enhanced immunity following administration of bo-
ron [152, 9]. The thymus and spleen are important immune
organs in vertebrates. The thymus mediates cellular immunity
and supports the maturation of T lymphocytes. The spleen
produces antibodies and is actively involved in the immune
response. An appropriate level of boron supplementation can
promote thymic development in rats, the expression of the
macrophage Fc receptor, and IL-6 secretion, as well as en-
hance cellular immune function and increase the number of
circulating NK cells [153]. Meanwhile, the development of
spleen was seen in ostrich chicks following low dose of boron
supplementation. The area of white pulp and red pulp was
increased at the dose of 160 mg/L boron in ostrich chicks
[9]. Additionally, boron regulates enzymatic activity associat-
ed with the immune system [1]. The growth and development
of immune organs in broilers becomes slightly modulated in
2-week-old chicks, following boron supplementation at
100 mg/L. Differentiation and proliferation of T cells and B
cells are also affected during early growth but show significant
results in mature birds [154]. In addition, 20–40 mg/L of bo-
ron in the drinking water of rat model significantly improved
IgG concentrations, IL-4, IFN-γ expression, as well as prolif-
erating cell nuclear antigen cells and CD3+, CD4+ number in
the spleen. The administration of boron at low amount also
significantly increased IL-2 expression and the CD4+/CD8+

cell ratio [155].
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Several research laboratories have declared that boron also
affects the response to infection or injury. When inoculated
with an antigen (Mycobacterium butyricum) to prompt arthri-
tis, boron-supplemented (2.0 mg/kg diet) rats had less paw
swelling and lower circulating concentrations of NK cells
and CD8+/CD4− cells than did boron-deficient (0.1 mg/kg
diet) rats [156]. Meanwhile, when low boron diet (0.2 mg/
kg) rats were fed with dietary boron (20 mg/kg), there was
seen delayed arthritis [156]. The diet supplemented with low
boron (1.2 mg/kg) showed expressively more skinfold thick-
ness response to an intradermal inoculation of phytohemag-
glutinin compared with high boron (5 mg/kg) offering in gilts
[69]. When rats were offered with two different levels of bo-
ron supplementation in two groups, one with low boron diet
(0.2 mg/kg) and one with high boron diet (3 mg/kg), enhance-
ment in immune response were seen in low-dose groups
[157]. The suggestion that boron has played a regulatory role
in immune or inflammatory response can be further reinforced
by an examination of mice infested with theHeligmosomoides
bakeri, a nematode. Boron deficiency downregulated 30 of 31
chemokines or cytokines related with the inflammatory or
immune response 6 days prior to primary infection. A contra-
dictory pattern was found, especially after 21 days of boron
exposure; mice were shown an increase in 23 of 31 cytokines
[158]. These results are consistent with lower serum INF-γ
and TNF-α in pigs after LPS injection nourished a boron-
deficient diet (0.2 mg/kg) than in pigs augmented with a high
boron (5 mg/kg) diet [159].

Boron may also make changes in immune cell populations
prompted by other dietary factors, including dietary fatty
acids. Supplementation of healthy young men with polyunsat-
urated fatty acid n-3 (PUFA-3) 6 g/day for 12 weeks reduced
the number of white blood cells, mainly due to a reduced
number of granulocytes; the reduced number of granulocytes
led to an increase in the percentage of lymphocytes in white
blood cells [160]. In contrast, 1.5 g of fatty acid caused gran-
ulocyte count increment [161]. Compared to safflower oil
(mainly PUFA-6), fish oil (high PUFA-3) increased the white
blood cell count, with most of the increase in lymphocyte
fraction, in boron-sufficient diet (3 mg/kg) instead of boron-
deficient diet [162]. Fish oil (high PUFA-3) instead of safflow-
er oil (high PUFA-6) amplified basophil and monocyte num-
ber in boron-deficient rats but not in boron-sufficient rats.
Similarly, canola oil (high PUFA-3) improved the proportions
of white blood cell that were monocytes and basophils in
boron-deficient rats, instead of boron-sufficient rats [163].
The consequence on the inflammatory or immune response
could be the reason that boron was estimated favorable in an
experiment on 20 patients having osteoarthritis disease. The
proper amount of boron in these patients results in recovery
from bone disorders for a trial of 8 weeks [164]. Arthritic
individuals supplemented with boron self-reported consider-
able progresses in personal measures of restricted motion,

fewer analgesics for pain relief and joint swelling. The anti-
inflammatory or immune response of boron has been ascribed
to the various mechanisms. These include inhibition of serine
proteases released by white blood cells, suppression of leuko-
triene production, reduction of oxidative stress, and regulation
of activity of T cell and the antibody concentrations [78].
Affecting the immune response could be the reason that intake
of boron has been associated with cancer therapy.

Boron and Cancer Treatment

The experimental and epidemiological studies have shown
that boric acid has a positive effect on human prostate cancer
cells [165, 166]. These anti-carcinogenic effects of boron may
be associated with its action on NAD and calcium channel.
NAD is needed for cholesterol and fat production for the cells
[167, 168]. The cell survival also depends upon the movement
of Ca++ into and out of the cells. The cell working affects
when the production of NAD/NADP is interrupted. It has
been found that boric acid alters the NAD production and
Ca++ release in the cancer cells depending upon concentration.
The proliferation of cancer cell was reported to be impeded by
30–97% by borates [165]. The results also show that borates
showed dose-dependent effects and can bind to ADP ribose
which is an agonist of ryanodine receptor. It was suggested
that boric acid binds to a site on the ryanodine receptor so that
it can keep Ca++ channel inactive in the cancer cell lines [169].
When Ca++ levels decline due to the inactivation of calcium
channel, cytoplasmic stress granules production and eIF2α/
ATF4 pathway are prompted subsequently in DU-145 prostate
cells supplemented with the physiological quantities of boric
acid [170]. The scientists found that boric acid was also re-
quired to enhance the anti-proliferative action of chemo-
preventive agents, selenomethionine and genistein, while im-
proving the rate of cell removal by radiation treatment [171].
Boric acid can hinder the cADPR Ca2+ channel pathway
which stimulates cell proliferation and prevents differentiation
and triggers TIA-1 which inhibit tumor invasion and progres-
sion. The treatment of boric acid amplified GRP78 which
disturb the tumor cell migration and calreticulin which mini-
mize prostate cancer lines by inhibiting metastasis and
growth. Calreticulin is also required for p53 tumor suppressor
[172].

A lab experiment established that borates exposure was
beneficial for cancer treatment because it caused cells to stop
their growth and flatten these prostate cancer cells. Borates
also showed the reduction of cyto-chemicals, MAPK, and
A-E cyclines, which subsidize growth of cells. So, cells re-
vealed reduced adhesion, F-actin modifications, invasive ac-
tivity, and migration [166]. Boric acid suppressed the prolif-
eration of tumor cell lines LNCaP and DU-145 in a dose-
dependent manner, and had a good inhibitory effect on tumor
cell growth. Also, PC-3 tumor cell line was inhibited in cancer
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patients [51]. The rodents were inoculated with LNCaP cell
line and fed boric acid orally and compared with non-boron-
treated group. Tumor size was measured for 2 months. Tumor
volume was significantly reduced in mice by 25–38%, while
serum PSA levels decreased by 86–88% compared with con-
trols [173]. In addition, boron significantly reduced the insulin
growth factor-1 in the tumor [173], which is required for the
growth of prostate cancer [174, 175]. When boric acid was
added to the diet of the immune system damaged mice, the
human prostate cancer tumor that was transplanted into the
mice showed a downward trend [173]. Studies also reveal that
boric acid and phenylboronic acid alter the actin arrangement
and thus reduce the cell migration in the prostate cancer cells.
Phenylboronic acid was reported to be a more effective inhib-
itor of the tumor cell migration [176]. It was also observed that
dietary intake of boron can reduce the risk of lung cancer and
breast cancer in women [177].

Furthermore, boron neutron capture therapy (BNCT) that
utilizes the nuclear capture reaction of epithermal neutrons by
boron-10 resulting in a localized nuclear fission reaction and
subsequent cell death emerged as a technique for cancer ther-
apy [178]. As the destruction of cells is limited to the diameter
of individual cells, so only the cells that contain a large
amount of boron accumulation in the neutron field are
destroyed [179]. But, the development in BNCT as a compre-
hensive cancer treatment in large part has been hindered by a
scarcity of tumor-selective boron containing agents [180,
179 ] . Due to t he s e s t r i c t n ece s s i t i e s , on ly L -
boronophenylalanine (BPA) and sodium borocaptate (BSH)
are used clinically [181]. Many scientists have carried out a
large number of efficacious clinical trials in BNCT by using
these two borates as boron agents. Because of the selectivity
of the tumor, new agents are urgently needed [181]. Recently,
many boron agents have been tried in rodent model, including
boron-containing liposomes, boronated porphyrins, boronated
DNA intercalators, boronated epidermal growth factor,
transferrin-polyethylene glycol liposomes, antiepidermal
growth factor receptor, BSH fused cell-penetrating peptide,
and vascular endothelial growth factor. But no agents have
outdone BPA and BSH [178, 179, 181]. So, for a boron agent
to be considered best, it will require decisive improvement in
the success of cancer treatment. For enhancing tumor selec-
tivity in BCNT, we must look for an ideal boron agent that is
more efficient than BPA and BSH in the upcoming years.

Applications of Boron in Food and Medicinal
Sectors

Boron compounds are used commercially, and almost all of
them are involved in boron-oxygen compounds. The forma-
tion of ester bonds has led to commercial applications and
provides a basis for the biological interaction of boron. The

borates commonly used as food supplements in capsules, ef-
fervescent powders, chewable tablets, and different liquids are
borax and boric acid. The formulations of these products vary
in different products. Moreover, these borates may also be
used as preservative in different food products at 4 g/kg dose
[182]. The most commonly available products in the market
are boron aspartate, boron ascorbate, boron chelates, boron
citrate, sodium borate, and calcium fructoborate [183].
Among all borates, the most widely studied nutraceutical is
calcium fructoborate. The calcium fructoborate is basically a
sugar borate ester (SBE) [102, 184], and produced from dif-
ferent sugars by esterification of boric acid and other borates
[185, 102]. These SBEs are of plant origin, easily absorbed by
cells of living beings, and occur mostly in vegetables and
fruits [186, 187]. The great advantage of SBE is that of less
toxicity than other borates. That is why calcium fructoborate is
used commercially as supplement in the cure of osteoarthritis
and osteoporosis [187, 188].Meanwhile, calcium fructoborate
due to having anti-inflammatory properties was reported to
use for patients suffering from angina pectoris [189, 102].
So, calcium fructoborate dietary supplements may improve
the quality of life [186–189]. Recently, some borate products
are also most commonly applied in boron neutron capture
therapy for cancer treatment [190, 191].

The previous data showed the medicinal uses of borates,
for instance, boric acid is used in contraceptives and vaginal
products [192]. The tetra-borates are reported to be used in
wave setting and bath products in concentration of 8 and 18%
respectively. Also, boric acid and tetra-borates are used as oral
hygiene and used in different products with low concentration.
They are also used in some cleaning products having higher
concentrations [192, 193]. The usage of borates in the manu-
facture of glass and other vitric products accounts for nearly
half of all boron use. Agriculture and timber protection are
also important areas of application. New techniques are being
developed for the use of borates in the paper, pulp, ceramics,
and other industries [194]. Borax (sodium borate) is common-
ly used in household products such as laundry and cleaning
products, fertilizers, and in pesticides [195]. Boric acid and
disodium octaborate tetrahydrate showed the antibacterial ef-
fects and antibiofilm capacities on selected bacterial strains.
This effect of boron is worth noting in order to find new
methods for the use of different functional microorganisms
tests in the medicine and industry [196]. Borax is used as an
ingredient in vaccines [197]. The U.S. Centers for Disease
Control and Prevention (CDC) Vaccine Excipient and Media
Summary lists four vaccines that contain sodium borate: Hep
A (Vaqta); Hib/Hep B (Comvax); HPV (Gardasil); HPV
(Gardasil 9) [197]. The role of borax in the vaccines is very
limited and unclear. According to the Immunization Advisory
Centre based at the School of Population Health at The
University of Auckland in New Zealand, sodium borate is
identified as a buffer in vaccine composition and
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manufacturing [198]. They describe buffers as substances that
Bserve to resist changes in pH, regulate tonicity, and control
osmolarity^ [198].

The awareness of the important role of boron in biological
systems has emerged in recent years. Many countries have
authorized the borates usage in food products [199]. Boron
is commonly used as a texturing agent to promote elasticity
and crispiness in certain foods such as in shrimp, prawns,
noodles, rice, and starch jelly. Therapeutic Goods
Administration (TGA) has issued a license to 14 oral borates
dietary supplements in Australia. TGA has insured that con-
centration of supplements must be less than 3 mg/day. These
supplements are mostly used in combination of vitamin D,
magnesium, and calcium. Interestingly, TGA has issued bo-
rates supplements specific to the mineralization of bone, and
labeling was not showing any warning except indicating us-
age for only adults [200]. The borates usage is also common in
the UK and European nations as mineral and multivitamin
supplements, not in licensed pharmaceuticals [201]. The only
limitation of borates on commercial scale is concentration,
which must be in safe amount. In 2004, the BEuropean Food
Safety Authority^ set the upper level (UL) tolerable amount
for boron consumption from 3 to 10 mg/day, based on age
groups [201]. The WHO recommended a UL for boron to
28 mg for adult weighing 70 kg [202]. The US Institute of
Medicine Food and Nutrition Board set a UL of 20 mg/day
[203]. Therefore, borates (especially sodium borate and boric
acid) are appropriate for supplementation in foodstuffs and
diets for specific nutritional purposes, if the aforesaid UL is
not surpassed.

Interaction of Boron with Other Nutrients

The numerous biological effects of boron which are described
above may be associated with its interaction with different
minerals. For instance, it binds with diverse organic com-
pounds to affect various biological functions [78]. Several
studies have demonstrated that chicks deficient in vitamin D
show increased levels of plasma glucose on exposure to boron
[204, 205]. Furthermore, chicks deficient in vitamin D show
higher plasma concentrations of pyruvate and triglycerides
(TG); however, administration of dietary boron alleviated
these effects [206]. Boron deficiency in rats leads to vitamin
D deficiency and ultimately raised plasma pyruvate and re-
duced plasma TG concentrations [207]. Conversely, no such
effects had been reported, when the diet had enough levels of
boron [206, 65]. Boron deficiency also promotes
hyperinsulinemia [207], when dietary levels of either vitamin
D orMg are altered in chicks and rats [134], and influences on
growth. A study was conducted to determine the dietary levels
of Mg and Ca that are required for effective interaction with
boron, and it was reported that boron was necessary for

growth, and Mg deficiency might represent a source of stress
in boron metabolism [208].

Furthermore, boron supplementation reduced the abnor-
malities level induced by Mg deficiency in chicks. Boron
supplementation also enhanced plasma concentration of Ca
and Mg, which ultimately lead to inhibition of calcification
and other complications [209]. Because of this ability, it has
been reported that boron is used to treat and prevent hypomag-
nesemia, hypocalcemia (milk fever), and fatty liver in lactat-
ing dairy cows [8]. It was also reported that low calcium diet
in lambs caused oxidative stress, reduced immune response,
less growth rate, and alteration in kidney/liver tissues, but
supplementation of boron to this diet restored normal func-
tions along with ameliorated effects on morphology of organs
[210]. In another study, when boron was supplemented in the
diet of chickens, Ca and P deficiency was reduced and growth
was enhanced [65]. Furthermore, while boron was supple-
mented in the diets of rats with severe K deficiency, a support-
ive effect was evident through the maintenance of body fat
and enhancement of glycogen deposition in the liver [211,
212]. It has previously been reported that boron has an anti-
dotal effect in the control of fluorosis in buffalo due to its
interaction with various minerals. The high intake of fluoride
in the body caused serious complications in the body as it
caused an improvement in the activity of ALP and phospho-
rus, while causing the decrease in calcium levels. However,
boron supplementation caused ameliorated effect on serum
mineral profile against fluoride toxicity [213]. Recently, it
was demonstrated that supplemental boron can be used for
the cure of acute cadmium toxicity. The results showed that
boron reversed the toxicity induced by cadmium and protect
the liver and kidney from severe damage [214]. Boron may
also alter biological systems because of its affinity for cis-
hydroxyl groups of the cell membrane and interfere with
manganese-dependent enzymatic reactions [6, 215].

Metabolic Effects of Boron

The biological effects of boron can also be attributed to the
metabolic actions of boron on biological systems of living
organisms. It is well known that boron contributes to the me-
tabolism of animals and humans. In living organisms, boron
affects numerous mechanisms which comprise regulation and
metabolism of carbohydrate, minerals, enzymes, and hemato-
logical indices [216]. Kabu et al. performed a study showing
the effects of boron (30 g/day) on metabolites (calcium, mag-
nesium, phosphorus) of serum in the dairy cattle during peri-
partum period. Serum calcium and magnesium levels im-
proved with boron supplementation, while the parameter of
phosphorous metabolite was not significant in all groups. The
results indicate that sodium borate can be suitable for main-
taining the metabolic balance and maybe averting metabolic
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syndromes such as hypocalcemia and hypomagnesaemia in
the dairy cattle during the calving period [217]. Furthermore,
it was documented the positive metabolic effects of boron on
plasma calcium and phosphorus [119, 113], and plasma mag-
nesium levels [119] in rats. In addition, boron also had certain
metabolic effects in broilers [112]. And, slight increases in
serum metabolites were perceived by low dose of boron sup-
plementation in the layers [205]. In a study executed by Hall
et al., LDL, TG, and cholesterol levels in rats declined after
addition of boron [84]. This decrease level repressed the bond-
ing and entrance of LDL into liver and aorta cells. This phe-
nomenon was claimed to be helpful for the atherosclerosis
patients as it may lead to the removal of cholesterol from the
tissues and a reduction in the lipids accumulation [1]. In the
study carried out by Naghii and Samman, boric acid was also
reported to decrease total cholesterol and lipoprotein when it
was given to rats for 2 weeks at a dose of 2 mg/day [127].

Another study showed that supplementation of boron in the
form of boric acid in the broiler significantly affected the
serum alanine aminotransferase, aspartate aminotransferase,
creatine kinase, gamma-glutamyltransferase, lactate dehydro-
genase, aspartate aminotransferase enzyme activities and cal-
cium, magnesium, phosphors, LDL, HDL, total cholesterol,
total protein, total bilirubin, albumin, globulin, glucose, and
creatinine metabolite activity [218]. Furthermore, boron in-
creased insulin and lipase activities and decreased glucose
and LDL levels significantly in the diabetes group. So, boron
may have favorable effects on metabolic indexes changes in
the experimental diabetes [219]. Boron also appears to be
suitable in reducing negative energy balance and enhancing
health status of postpartum cows by regulating the metabolites
comprisingβ-hydroxybutyrate, postpartum valine, polyunsat-
urated fatty acid, propionate, citrate, choline, isobutyrate, cho-
lesterol, and fatty acids [220].

The effects of sodium borate on selected hormone and se-
rum metabolites in pregnant cows were also supportive. The
results showed that the concentrations of glucose were higher
during pre-partum period, and the amount of postpartum β-
hydroxybutyric acid and glucagon serum levels were higher in
the un-supplemented boron group. After sodium borate ad-
ministration, concentrations of total cholesterol, triglyceride,
HDL, LDL, VLDL, glucose, insulin, and non-esterified fatty
acids in the blood were decreased [8]. Borax administration
also increased serum total protein and decreased the serum
uric acid concentration in Simmental cows at week 4, and
decreased serum HDL concentration at week 3 of the experi-
ment. Serum total cholesterol, beta-hydroxybutyric acid, and
blood urea nitrogen concentrations increased significantly,
while non-esterified fatty acids decreased significantly after
parturition. The beta-hydroxybutyric acid concentration was
more in the control group, but began to decrease in the borax
group during the final week of the experiment. The results
show that sodium borate supplementation have positive effect

on the metabolic profile of Austrian Simmental cows during
early lactation [221].

Furthermore, a very few scientific data also indicated the
effects of boron on hematological indexes. It was reported that
borax significantly regulates the hemoglobin, white blood
cell, hematocrit, platelet, and red blood cell count in rats.
Similarly, number of lymphocyte, monocyte, neutrophil, and
basophil were also affected [222]. Kabu et al. also tried to
assess actions of boron (30 g/day) along with propylene glycol
and methionine on hematological parameters in the dairy cat-
tle during the calving. There were no alterations seen in the
number of monocytes, white blood cells, red blood cells, lym-
phocytes, granulocytes, and platelets after the supplementa-
tion of this combination. A significant difference was per-
ceived in the levels of mean cell volume and hematocrit on
the calving [8]. This study suggests the positive effects of
boron on some of the hematological parameters of bovines
in the periparturient period.

Pharmacokinetics of Boron

Boron is absorbed easily through the intestinal epithelia in
animals and humans, and across mucous tissues, such as the
eyes, mouth, and urinary system [223]. Hunt stated that ani-
mals and humans absorb around 100% of dietary inorganic
boron [78]. Some organic compounds of supplemental boron
may be not accessible to animals as plants absorb only organic
compounds in the soils after the mineralization process. Boron
is mainly defecated in the urine, with a loss of 2% in the feces,
and smaller quantities lost in sweat, breath, and bile [130].
Boron concentrations in tissues are usually retained stable by
a homeostatic mechanism, principally through renal secretion,
and higher boron intakes do not dramatically enhance plasma
levels [224]. Boron seems to be completely and readily
absorbed by the human body after oral dose [225]. After ab-
sorption, boron appears to be more concentrated in the bone
than in the blood; however, the stoppage of dietary boron
intake leads to a rapid decrease in bone boron content [226].
At normal diet or supplemental levels, there is no evidence
that boron is accumulated over time in the tissue. Tissue ho-
meostasis is maintained through rapid elimination of excess
boron [130, 225]. As the intake of boron in the diet increased,
the amount of urine excretion and fecal excretion also in-
creased. The rate of urinary boron excretion varies rapidly
with the change of boron intake, suggesting that the kidney
is the main place for boron regulation in the body. At a dosage
of 10 g/day, 84% of supplemented boron is reported to recover
in urine [224]. The half-life of boron elimination is about 21 h,
whether it is administered orally or intravenously in a healthy
body and boron in urine is a more sensitive indicator in the
range of 0.3–10 mg boron intake [224, 225].
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Previous metabolic study on 11 postmenopausal females
for 167 days revealed a swift surge in urinary boron when
intake of boron increased from 0.36 to 3.22 mg/day [227].
Naghii and Samman deliberated the effect of dietary boron
on urinary excretion in healthy male animals. When 18
healthy animals offered regular diet, the amount of boron ex-
cretion in urine was 0.3–3.53 mg/day on two different occa-
sions. The boron value difference from urine collection after
24 h from these two values were not statistically significant,
but slight difference were seen within and between some an-
imals, suggesting differences in term of boron consumption
among tested subjects. In a second study, when animals were
administered 10 mg/day of dietary boron for 4 weeks, the
amount of urinary boron increased from 1.64 ± 0.3 to 10.16
± 0.92 mg/day. This urinary excretion increment was signifi-
cant in each tested animal [228]. These results offer evidence
that urinary boron excretion reflects boron ingestion.
Furthermore, pharmacokinetics and bio-distribution of boron
was determined by administrating boronated porphyrin
(BOPP), 35 mg/kg intravenously in the dogs. The concentra-
tions of boron were measured in all of tissues and plasma, and
mixed modeling effects were applied to determine the phar-
macokinetic parameters. The levels of boron in plasma dem-
onstrated triexponential kinetics having small amount of bio-
distribution and long terminal half-life [223]. Among tissues,
lymph node, liver, kidney, and adrenal tissues hoarded the
highest amounts of boron, while least levels accumulated in
the brain. These findings showed that BOPP has tissue phar-
macokinetic and bio-distribution capabilities, suggesting that
it might be an appropriate borate for practice in the cancer
therapy.

Mechanism of Action for the Bioactivity
of Boron

A plausible mechanism of boron action may be clarified by
the boron biochemistry. Boric acid along with hydroxyl
groups of organic compounds forms ester complexes. This
characteristic mostly results in the complex formation with
numerous biologically essential sugars [229]. These sugars
comprise ribose, which is a part of adenosine. Recent studies
suggest that the versatile favorable effects of boron happen
through distressing the presence of biomolecules containing
adenosine. The most important biomolecules that have more
boron affinities include adenosine phosphates (ADP) and S-
adenosylmethionine (SAM-e) in animal tissues [229]. ADP
are occurred in all animal cells and serve as signal nucleotides
in neuronal response. SAM-e is one of the utmost often used
enzyme substrate in the body [230]. About 95% of SAM-e is
involved in methylation responses, which affect the RNA,
DNA, phospholipids, proteins, and hormonal activities.
These methylation reactions end in the formation of SAM-e,

which further hydrolyzed into homocysteine. The boron-
deficient rats showed increased plasma homocysteine and de-
creased SAM-e which support the hypothesis that boron bio-
activity is through an effect on SAM-e formation [231].
Furthermore, depleted SAM-e has been found in disorders like
osteoporosis, arthritis, diabetes, and urolithiasis which are af-
fected by nutritional intake of boron [208].

The hypothesis is further supported by bacterium quorum
sensing signal molecule, AI-2, a furanosyl borate diester syn-
thesized from SAM-e. AI-2 plays an important role and incor-
porates boron. AI-2 signaling is produced by the reaction of 1-
deoxy-3-dehydro-D-ribulose, which is raised enzymatically,
with boric acid [31]. Bacterium quorum sensing is the cell-
to-cell communication accomplished through the exchange of
extracellular signaling molecules. Furthermore, boron binds
strongly to the oxidized form of NAD+ [229], thus influencing
those reactions in which it is participating. One of the roles of
NAD+ is binding on plasma membrane with CD38 receptor
which is ADP ribosyl cyclase and converting NAD+ into cy-
clic ADP-ribose sugar. This cyclic ADP binds to ryanodine
receptor in the endoplasmic reticulum and encourages calcium
ion release [56]. Boron is a reversible inhibitor of cyclic ADP-
ribose and its concentration decreased calcium ion release
from ryanodine receptor [56]. Therefore, it can be hypothe-
sized that bioactivity of boron is through binding cyclic ADP
ribose and NAD+ and inhibiting calcium ion release, which is
helpful in many processes including bone formation, brain
activity, liver function, and immune response. Studies with
plants proposed another possible mechanism of action for bo-
ron bioactivity. Boron might also showed bioactivity through
forming ester borate complexes with glycoproteins, glyco-
lipids, and phosphoinositides, in cellular membranes. These
ester complexes may act as redox modifiers and calcium che-
lators [63] that affect the membrane function and integrity
[232]. This modifying action could affect the transduction of
regulatory or signaling ions across the membranes. The effects
of this mechanism in animals and human are still to be
determined.

Toxic Effects of Boron

Current data regarding the lethal level of boron is limited, so it
needs to be improved. Boron is an essential element for life
and intake via different sources into the body. The toxic effects
of boron and compounds on the body has not been studied
enough especially in tissue level. There have been some re-
ports of congestion, inflammation, exfoliative dermatitis, re-
nal epithelial cells degeneration, swelling, and edema. Risk
assessments data regarding diet or water level showed that
sodium borate and boric acid at high level in diet and water
caused toxicity. They are not causing skin burning, but caused
irritation in eyes [233, 234]. The compounds of boron are
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lethal at high doses tested in some species, but are not carci-
nogenic. In the high boron-supplement group, the size of the
normal fetus was greatly squeezed in a dose-dependent man-
ner [235, 236]. The major toxicities are reproductive and de-
velopmental [235]. Experimentally, the toxicity in fetus was
detected in rabbits, rats, and mice [236–238]. The develop-
mental toxicities reported after boron contact comprise de-
creased fetal size, prenatal mortality, central nervous system
abnormality, eyes irritation, effect on cardiovascular system,
effect on immune organs, and intestinal apoptosis [9, 124,
236–239].

In order to check the effect of high boron status in the
growth of birds, some scientists supplemented high amount
of boron to Japanese quails, and revealed that high levels of
boron supplementation effectively reduced weight gain, feed
consumption, and feed efficiency in the birds. Percentages of
fat in the carcass were also increased [82]. Kabu et al. execut-
ed the study to assess the effects of borax the most intaken
form of boron compound on different intraabdominal organs
histologically and also clinically. Forty-two male rats divided
into 7 equal groups and different toxicological doses consis-
tent with its LD50 dose (5000 mg/kg/day) were administered
by gavage except control and sham groups. In the study, two
different kinds of borax one of which was produced for re-
search and the other for agriculture but the same formulation
were used and their effects were also compared [240]. As a
result, it was found that borax did not cause any histological
changes in the kidney, large intestine, liver, and stomach in
lower doses. But if doses were increased, a slightly inflamma-
tory cell migration was detected without clinical signs in the
liver and large intestine. However, when a single very high
dose of borax was administered, very high edema, inflamma-
tory cell migration, and neovascularization was observed and

clinically two out of six rats died within 5 h. İt was suggested
that very high dose intake of borax may cause sudden death
and also during long periods and higher dose intake may pave
the way of inflammatory bowel diseases. At the same time, in
boron-related studies, they advice that the kind of boron and
also their source should be evaluated carefully and the most
suitable compound should be chosen in case of faulty results
[240].

In vertebrates, the basic toxic consequence related with
boron includes reproductive system [235, 241–244]. For in-
stance, boron initiated unfriendly effects in reproduction of
dogs, mice, and rats, including degeneration, germ cells loss,
seminiferous tubules atrophy, and inhibition of spermiation.
Additionally, ovulation reduction and lesions in mice were
also observed [235]. Ku et al. administered orally 0, 26, 38,
52, and 68mg boron/kg/day for 63 days in rats to associate the
link between lesions development and boron levels. They
found that doses of 52 and 68 mg caused atrophy.
Meanwhile, it was reported that 52–68 mg boron amount in
testis reduced the production of sperm. While this study also
showed that low boron doses may reversed these negative
effects on reproduction [243]. Subsequent to this finding, the
same scientists exposed the testis with 11.9 μg B/g in vitro,
and found that boron affected negatively the maturation and
production of germ cells at high dose [244]. Overall, the data
regarding boron toxicity are supported by toxicity studies in
different animals (Table 4), which used higher levels of boron.

Conclusion

Recent findings have reinforced the significance to health of
adequate boron status. The effects of boron are multiple and

Table 4 Toxic effects of boron in
different species Species Dose (mg/kg) Adverse effects

Mouse 79 Effects on development

Rat 26

52

Sperm inhibition

Testicular atrophy

Rat 50 Germinal aplasia

Rat 13.3 Decreased fetus body size

Rat 25 Developmental problems

Rabbit 43.8 Fetal deformities

Rat 58.5 Testicular atrophy, weight of testis decreased,
increased thyroid/brain weight

Dog 29.0 Testicular atrophy

Ostrich 640 mg/L

320–640 mg/L

320–640 mg/L

400 mg/L

Increased intestinal apoptosis

Spleen structural changes/toxicity

Brain structure impairment

Negative effect on bone

References: Heindel et al. [236]; Ku et al. [243]; Lee et al. [241]; Price et al. [237]; Price et al. [238]; Weir and
Fisher[242]; Sun et al. [239]; Haseeb et al. [9]; Tang et al. [124]; Cheng et al. [96]
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versatile, demanding further studies to elevate the benefits and
lessen the hazards of this influential trace mineral. When ad-
ministered at an effective dose, boron shows remarkable prop-
erties, and its nutritional value cannot be underestimated.
Experimental boron administration in animals and humans
has resulted in marked improvement in immunity, anti-
oxidative effects, growth, and embryonic development.
Boron also facilitates improvements in brain function, hepatic
development, osteoporosis, cancer therapy, and wound
healing. Conversely, high dose of boron showed opposite ef-
fects; that is why usage of boron is still limited on commercial
scale. Although numerous trials on boron have been executed
over the previous decade, additional data is required to illumi-
nate its mechanism of actions. The new methods should also
be developed to estimate the requirement of boron in each
species, which may have encouraged the therapeutic aspects
and field applications.
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