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Abstract Spinal cord injury (SCI) disrupts the autonomic
nervous system (ANS), impairing its ability to coordinate or-
gan function throughout the body. Emerging data indicate that
the systemic pathology that manifests from ANS dysfunction
exacerbates intraspinal pathology and neurological impair-
ment. Precisely how this happens is unknown, although new
data, in both humans and in rodent models, implicate changes
in the composition of bacteria in the gut (i.e., the gut microbi-
ota) as disease-modifying factors that are capable of affecting
systemic physiology and pathophysiology. Recent data from
rodents indicate that SCI causes gut dysbiosis, which exacer-
bates intraspinal inflammation and lesion pathology leading to
impaired recovery of motor function. Postinjury delivery of
probiotics containing various types of “good” bacteria can
partially overcome the pathophysiologal effects of gut
dysbiosis; immune function, locomotor recovery, and spinal
cord integrity are partially restored by a sustained regimen of
oral probiotics. More research is needed to determine whether
gut dysbiosis varies across a range of clinically relevant vari-
ables, including sex, injury level, and injury severity, and
whether changes in the gut microbiota can predict the onset
or severity of common postinjury comorbidities, including
infection, anemia, metabolic syndrome, and, perhaps, second-
ary neurological deterioration. Those microbial populations
that dominate the gut could become “druggable” targets that
could be manipulated via dietary interventions. For example,
personalized nutraceuticals (e.g., pre- or probiotics) could be
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developed to treat the above comorbidities and improve health
and quality of life after SCIL.
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Paralysis and sensory loss are devastating consequences of
spinal cord injury (SCI). Less obvious to the public, but not
less incapacitating for the individual affected by SCI, are loss
of bladder and bowel function, an increase in susceptibility to
infections, depression and anxiety, fatigue, deficits in thermo-
regulation, and an increase in cardiovascular dysfunction and
disease. All of these latter complications result from damage
to the autonomic nervous system.

Within the spinal cord, autonomic function is primarily
coordinated through cholinergic sympathetic preganglionic
neurons (SPNs) that reside in the intermediate lateral gray
matter of the thoracic and upper lumbar spinal cord.
Although recent data indicate that autonomic efferents in sa-
cral spinal cord also are sympathetic (rather than parasympa-
thetic) [1]. When the spinal cord is injured, especially at high
spinal levels, most or all brainstem circuitry that provides
tonic “executive” control over SPNs is lost. Injury to these
presympathetic axons “unplugs” SPNs from the brain and
brainstem, eliminating feedback regulation of autonomic re-
flexes that are initiated below the level of injury by, for exam-
ple, visceral or somatic sensory nerves that relay information
into the spinal cord from the bowel, bladder, or muscle. Once
activated, SPNs signal to second-order postganglionic adren-
ergic neurons that innervate the cardiovascular system (chang-
ing heart rate, blood pressure), other viscera (e.g., kidney,
pancreas, liver, stomach, intestine, etc.), and lymphoid tissues
(e.g., bone marrow, spleen). After SCI, the loss of descending
control over SPNs causes autonomic reflex circuitry to
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become dysfunctional creating pathology including autonom-
ic dysreflexia and SCI-immune depression syndrome [2—7].
SCI also causes an autonomic imbalance in the gastrointesti-
nal tract, which leads to deficits in colonic motility, mucosal
secretions, and vascular tone [8, 9].

The spinal cord, gut, and immune system form an intercon-
nected triad of “super systems” that together help to maintain
human health. Damage or dysfunction to any part of the triad
breaks homeostasis and causes disease. After SCI, the initial
break in the spinal cord—gut-immune axis occurs in the spinal
cord, owing to loss of the aforementioned autonomic reflex
control over the gastrointestinal tract and lymphoid tissues,
including bone marrow and spleen [10, 11]. Less is known
about how SCI affects the function of the immune cells that
reside in gut-associated lymphoid tissues (GALT) or whether
SCI-induced changes in GALT affect postinjury morbidity or
mortality. A comprehensive understanding of how SCI causes
cellular and molecular changes in GALT will require that we
also determine how the gut microbiota are affected by SCI.

The gut microbiota are a heterogeneous community of mi-
crobes that live in the gastrointestinal tract, mostly in the large
intestine. The species present and the relative abundance of
these species varies throughout the length of the gastrointes-
tinal tract (see [12—14] for a review of varied types and func-
tions of gut microbiota in mammalian intestine). These mi-
crobes outnumber mammalian cells by ~10:1 and the gut
microbiome (genes expressed by gut microbiota) contains
~100-fold more genes than the human genome [15, 16], al-
though recent estimates place the ratio at ~1:1 [17].
Regardless, in mammals a vast microbial network exists that
is critical for normal digestion, nutrient absorption, and the
development, metabolism, and function of cells throughout
the body [18-20]. Recent data indicate that gut microbes also
regulate both normal development and disease pathogenesis
in the central nervous system (CNS) [21-24].

Altering the composition of the gut microbiota creates a
state of “dysbiosis” where the balance between helpful bacte-
ria and pathogenic bacteria (“pathobionts”) is skewed, usually
favoring pathobionts. Common causes of gut dysbiosis in-
clude antibiotic use, prolonged stress, and gastrointestinal dys-
function [18, 25, 26]. Autoimmune diseases (e.g., multiple
sclerosis, type 1 diabetes, rheumatoid arthritis), allergy, and
metabolic disorders have been linked to gut dysbiosis
[27-33]. Similarly, dysbiosis has been implicated in the onset
or progression of neurological diseases, including autism,
pain, depression, anxiety, and stroke [23, 24, 34-40].

Recent data from our laboratory show that traumatic SCI
also causes gut dysbiosis and that dysbiosis impairs functional
recovery and exacerbates intraspinal inflammation and lesion
pathology (Fig. 1) [41]. Specifically, mice (C57BL/6, females)
received mid-thoracic SCIs using a clinically relevant model of
controlled contusion injury. At baseline and at different times
postinjury, fecal samples were collected and 16s rRNA

sequencing was used to quantify time-dependent changes in
gut microbiota. The 16S rRNA gene contains hypervariable
regions (V1-9) that, when sequenced, provide specific identi-
fication of bacterial communities. Data analyses revealed that
Bacteroidales and Clostridiales, the 2 major bacterial orders in
the gut [42, 43], were inversely regulated by SCI—by 3 weeks
postinjury, Bacteroidales (phylum Bacteroidetes) decreased
~30%, whereas Clostridiales (phylum Firmicutes) increased
~250% relative to preinjury values. Significant changes in these
major bacterial taxa were accompanied by lesser but consistent
changes in minor taxa, including Anaeroplasmatales,
Turicibacterales, and Lactobacillales. These changes in gut bac-
teria populations persisted, and in some cases increased by 4
weeks postinjury. Given that the bacterial orders Bacteroidales
and Clostridiales together constitute >80% of all species resid-
ing in the gut, significant and lasting changes in their relative
population densities after SCI will likely influence numerous
physiological processes, both within and outside the gastroin-
testinal tract. Indeed, although gut microbiota live in the gas-
trointestinal tract, these bacteria likely affect spinal cord struc-
ture and function by various modes of communication. For
example, the constant dialogue that occurs between gut micro-
biota and GALT immune cells produces cytokines and other
metabolites that circulate and affect CNS function [44]. After
SCI, we found that gut dysbiosis is associated with marked
changes in the relative proportion of immune cells found in
mesenteric lymph nodes and Peyer’s patches. An increase in
the synthesis of inflammatory and immunoregulatory cytokines
also occurred in GALT in parallel with changes in immune cell
populations [41]. Gut microbes also produce neuroactive me-
tabolites (short-chain fatty acids, choline) and neurotransmitters
(Y-aminobutyric acid, serotonin, dopamine, acetylcholine),
which can affect CNS function by activating vagal afferent
nerve fibers in the intestines [19, 22, 34, 45, 46].

Gut microbes may also exit the gastrointestinal tract and
colonize other tissues. Indeed, in our mouse model of SCI,
we found evidence of increased intestinal barrier permeability
with bacterial translocation to mesenteric lymph nodes, liver,
spleen, kidney, and blood [41]. Chronic systemic immune sup-
pression, intestinal obstruction, and impaired intestinal motili-
ty—all complications of SCl—can independently cause bacte-
rial translocation [47]. When this occurs, gut microbes or mi-
crobial components (e.g., endotoxin, peptidoglycan) can direct-
ly activate immune receptors (e.g., Toll-like receptors) on glia,
neurons, hematopoietic stem/precursor cells, and mature im-
mune cells [48, 49]. These are important considerations given
that gut dysbiosis also develops in people after a SCI [50].

In a small cohort of SCI and able-bodied human sub-
jects (30 SCI patients vs 10 age-matched able-bodied con-
trols), gut microbe population dynamics were evaluated
from fecal samples using 16s rRNA sequencing. All indi-
viduals had sustained a SCI at least 12 months prior to
sample collection. Data from this study showed that
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Fig. 1 Spinal cord injury (SCI) disrupts brain and brainstem control over
the sympathetic preganglionic neurons (SPNs) that are located in the
thoracic spinal cord. This break in executive control over SPNs breaks
homeostasis and control over postganglionic neurons (e.g., projecting
from celiac ganglia) that innervate the gastrointestinal (GI) tract. Loss
of coordinated neural control over the GI tract will impair motility,

butyrate-producing bacteria, such as Roseburia and
Pseudobutyrivibrio, decreased in individuals with SCI
[50]. Although the mechanisms responsible for the onset
or maintenance of gut dysbiosis were not evaluated in this
clinical cohort, it is logical to assume that dysbiosis de-
velops secondary to the loss of autonomic control over the
gastrointestinal tract. Repeat or sustained antibiotic use
and psychological stress, which are common after SCI,
can also exacerbate the effects of dysautonomia on the
gut microbiome. This creates a feed-forward system;
SCI-induced dysautonomia causes dysbiosis and impairs
immune function, which, in turn, increases susceptibility
to infections [2, 3, 6, 51-55]. High rates of infection in
SCI populations increase the need for repeat dosing with
antibiotics [56—58]. Precisely how repeat antibiotic use
affects people with a SCI has not been studied, but anti-
biotics can disrupt bacterial gene and protein expression
in the gut [59] and the composition of the gut microbiota
can be changed for months or years after taking a single
prescription of antibiotics [60, 61]. Thus, the conditions
are ripe in both SCI animals and people for prolonged gut
dysbiosis, which could adversely affect organ systems
throughout the body.
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mucous secretion, immune surveillance, and epithelial barrier
permeability in the small and large intestines. Together, these changes
in the GI tract can cause bacterial translocation and gut dysbiosis (a).
After SCI, probiotic treatment may normalize the gut microbiota leading
to improvements in gut barrier integrity (b)

Gut Dysbiosis as a Therapeutic Target After SCI

Restoring effective dialogue between the spinal cord, gut, and
immune system would undoubtedly improve recovery and/or
quality of life for individuals living with SCI. However, repair
of the injured spinal cord is a formidable therapeutic target.
Both the gut and immune system are more tractable targets
and since each is affected by changes in the gut microbiota,
efforts to modify postinjury gut dysbiosis could have thera-
peutic value. In this context, oral probiotics must be consid-
ered for use in human SCL

Probiotics influence mucosal homeostasis by regulating
intestinal microbe population dynamics, stabilizing gut epithe-
lial barrier function, and by modulating local (GALT) and
systemic immune responses [62, 63]. In patients with SCI,
probiotics have been used to treat urinary tract infections
and gastrointestinal distress [64, 65]. Whether probiotics can
confer neuroprotection or ameliorate a range of comorbidities
and neurological complications caused by a traumatic SCI has
not been tested. Recently, using a mouse model of SCI, we
showed that sustained postinjury delivery of VSL#3, a
medical-grade probiotic, improved immune function and pro-
moted recovery of locomotor function [41].
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VSL#3 is a commercial probiotic formula comprised of
8 distinct lactic acid bacteria, primarily Lactobacillus and
Bifidobacterium. These and other probiotic bacteria exert
diverse effects throughout the body. In addition to their
immunomodulatory effects, Lactobacillus and
Bifidobacterium produce neuroactive metabolites (butyrate
and other short-chain fatty acids) and neurotransmitters
(serotonin, dopamine, y-aminobutyric acid) [26, 46, 66].
These neurometabolites, produced locally in the gut, can
spill over into the circulation where they can influence
systemic inflammation and immune function [19, 66, 67].
These metabolites also can bypass the blood—brain barrier
to affect CNS structure and function including mood, ap-
petite, sleep, memory and learning, temperature regulation,
and social behaviors [19, 66, 67]. Data from our laboratory
show that SCI mice fed VSL#3 daily for 5 weeks show
improvements in spontaneous locomotor recovery with re-
duced neuropathology [41]. Importantly, in the mesenteric
lymph nodes of VSL#3-treated mice, CD4+CD25+FoxP3+
regulatory T cells (Tregs) increased significantly. Tregs, a
population of T lymphocytes that express the transcription
factor FoxP3, play a crucial role in immune homeostasis;
Tregs actively suppress potentially damaging self-reactive
(autoreactive) T cells [68]. Loss of Treg function is impli-
cated in the onset or progression of multiple sclerosis,
rheumatoid arthritis, graft versus host disease, and irritable
bowel disease. Probiotics, especially those containing
Lactobacillus and Bifidobacterium, significantly boost
Treg activity in vivo and can ameliorate disease in multiple
sclerosis models [69, 70].

Because gut microbes exert profound biological effects
throughout the body, the translocation of bacteria and the de-
velopment of gut dysbiosis after SCI could contribute to the
various comorbidities typically attributed to paralysis or the
psychological stress associated with adapting to life after SCI.
Indeed, in able-bodied individuals gut dysbiosis has been
linked to major depressive disorders and gastrointestinal and
metabolic diseases (e.g., obesity, diabetes, Crohn’s disease, ir-
ritable bowel syndrome, etc.) (Fig. 2) [34, 46, 62, 71].
Dysbiosis and “leaky gut” also have been implicated in the
onset and progression of chronic fatigue syndrome. Chronic
fatigue syndrome is a multisystem disease characterized by
persistent fatigue, postexertion malaise, cognitive impairment,
mood changes, and gastrointestinal disturbances. Despite per-
sistent fatigue, people with chronic fatigue syndrome often re-
port difficulty sleeping. Many of these same symptoms also
plague people with SCI [72—74]. In fact, fatigue affects most
SCl individuals [75]. Fatigue in people with SCI is an amalgam
of changes in physiological and behavioral factors including
innate neuromuscular ability, motivation, resilience, and
depressive-like mood swings, and is influenced by one’s overall
sense of quality of life [76, 77]. As such, measures of fatigue are
closely linked to social and mental health after SCI [75].

AN

Gut A—
W dysbiosis =

ZA\W,

(o) (4
L =
Sorders

i onlantibic,t.

\“‘ecﬂ
nysAp sunW!

uoqou

0)\6

D
5

Fig. 2 Gut dysbiosis is a disease-modifying comorbidity that likely
causes or exacerbates many other comorbidities associated with spinal
cord injury (SCI). Gut microbiota can directly influence immune func-
tion, neurocognitive function, and mood, metabolism, and energy/fatigue.
Each of these can, in turn, influence the gut microbiota. Thus, gut
dysbiosis creates a feed-forward cycle that can contribute to lasting path-
ophysiology, which will impair function and quality of life after SCI

SCI also enhances the risk or frequency of developing heart
disease or metabolic disorders, including obesity, diabetes, and
liver dysfunction [78—85]. The development of these diverse
multisystem pathologies is often attributed to inactivity in peo-
ple with SCI; however, changes in muscle mass and adiposity
take time to develop and the onset of insulin resistance and
hyperinsulinemia are not immediate consequences of SCI
[86]. Similarly, cardiovascular disease and/or the consequences
of chronic low-grade systemic inflammation do not manifest
soon after SCI. The postinjury onset of gut dysbiosis could
contribute to or cause cardiometabolic disease. After SCI in
mice, the relative abundance of Bacteroidetes (order
Bacteroidales) decreases as a function of time postinjury with
a corresponding time-dependent increase in Firmicutes (order
Clostridiales) [41]. These are the 2 major bacterial phyla that
comprise both mouse and human microbiota [42, 43]. A recip-
rocal change in the Bacteroidetes-to-Firmicutes ratio also oc-
curs in obese humans and rodents [87]. Gut microbiota are now
believed to represent novel genetic determinants that, together
with changes in diet and lifestyle, contribute to the pathophys-
iology of obesity [32, 88—90]. Precisely how obesity dysbiosis
causes or exacerbates adiposity is not known; however, a high
Firmicutes-to-Bacteroidetes ratio was found to increase energy
harvest from the diet. Indeed, an obese microbiota is more
efficient than nonobese microbiota at metabolizing and absorb-
ing dietary substrates from food [87, 91, 92].

Each of these multiorgan “failures” develop over time and
each can be linked to preceding changes in gastrointestinal
dysfunction, dysbiosis, and leaky gut. Individuals with SCI
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also suffer from dysfunctional immune responses that exacer-
bate the above conditions and impair host defense, rendering
individuals with SCI more susceptible to infection [2, 54, 93].
Since gut dysbiosis will affect nutrient absorption, mental
health, whole-body metabolism, and systemic immune func-
tion, oral probiotics could be a “magic bullet” therapy that
would simultaneously benefit various neurological and behav-
ioral manifestations of SCI.

Future Directions and Challenges

The continuing analyses of genomic and metagenomic chang-
es in gut microbiota will allow scientists to map the dynamic
patterns of dysbiosis caused by SCI. Data from these analyses
can then be used to estimate how the biological functions
attributed to specific gut microbiota (e.g., metabolism of ami-
no acids by Lactobacilli) are affected by SCI and whether
these and other changes can predict the probability or severity
of various SCI comorbidities including infection, anemia,
obesity/metabolic syndrome, and, perhaps, secondary neuro-
logical deterioration or improvement. To date, this type of
analysis in preclinical studies has been limited to fecal sam-
ples obtained from a single mouse strain affected by a moder-
ate level of mid-thoracic SCI [41]. A similarly narrow scope of
genomic analysis has been completed in fecal samples obtain-
ed from human subjects with SCI human [50].

One might predict that the magnitude of gut dysbiosis after
SCI will vary as a function of injury level, injury severity, and
time postinjury in both males and females after SCI. Indeed, the
gut microbiota affect serotonin synthesis, metabolism, and neu-
rotransmission in a sex-specific manner [45, 46, 94]. Also, the
magnitude of innervation to the intestine by the sympathetic
nervous system will vary as a function of injury severity and
the spinal level affected by injury. Comparative studies of
dysbiosis should also incorporate an analysis of the much less
accessible small intestine microbiota [95]. The small intestine
contains fewer microbiota than the large intestine, but most
(~90%) energy absorption from the diet occurs in the small
intestine [95, 96]. Future studies should determine whether
SCl-induced changes in intestinal microbiota contribute to the
high incidence of metabolic disease and increased adiposity
that develop in individuals with SCI [80-85, 97-99]. The clin-
ical value of considering changes in the microbiota after SCI
seems obvious given that changes in the relative abundance of
discrete gut microbiota (e.g., Bacteroidetes:Firmicutes) can
contribute to the pathophysiology of obesity [32, 87-92].
These and other changes in the population dynamics of gut
microbes represent “druggable” targets and can be manipulated
in future studies using custom diets, personalized nutraceuticals
(e.g., pre- or probiotics), or possibly by altering the composition
of bacteriophages in the intestine that feed on pathobionts
(“phage therapy™) [100, 101].
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To understand how SCl-induced changes in gut microbial
communities affect human physiology and pathophysiology,
comparative preclinical studies are essential. In humans, it is
exceedingly difficult to control the many variables that influ-
ence gut microbiota, including diet, environment, and genet-
ics. These variables are easy to control in mice. Because mice
and humans have the same core bacteria in their intestines [43,
102], mice have proven to be a productive and tractable model
system for dissecting host-microbiota functional relation-
ships. In a large multicenter study, 184 fecal samples were
collected from several strains of mice housed in various labo-
ratories around the world. A comparison of the microbiota
(bacterial species) and microbiome (genes expressed by these
bacteria) in these mouse samples with a human gut gene cat-
alog revealed that the mouse and human gut microbiomes
encode proteins that control nearly identical biological func-
tions including nutrient harvest and metabolism [102]. Thus,
there is remarkable conservation of function between mouse
and human microbiota, making it reasonable to predict that the
functional implications of large shifts in gut bacterial commu-
nities in rodent SCI models are relevant to human SCI. Still,
species-specific variables do exist that can critically impact
microbiota studies, many of which are driven by dietary dif-
ferences between rodents and humans [103, 104].
Accordingly, researchers must remain vigilant about these
(and other) differences as they design and interpret data re-
garding the microbiota. By doing so, the “hype” that often
surrounds new microbiota research findings can be placed into
context to appropriately manage the scientific and public ex-
pectations of these new data [105].
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