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Preface

Theoriesoftheknown, which are described by differ entphysi cal deas, may be equivalent
in all their predictions and hence scientificallyindistinguishable. However, they are not
psychologicallyidentical when trying to move fromthat baseinto the unknown. For dif-
ferent views suggest differ entki nds of modifi cationswhich might be made and henceare
not equivalentin the hypotheses one generates fromthemin one's attempt to understand
what isnot yet understood.

R. P. Feynman [1966]

A Parable

Imagine a society in which the citizens are encouraged, indeed compelled up to
acertain age, to read (and sometimes write) musical scores. All quite admirable.
However, this society also has a very curious—few remember how it all started—
and disturbing law: Music must never be listened to or performed!

Though itsimportance is universally acknowledged, for some reason musicis
not widely appreciated in this society. To be sure, professors till excitedly pore
over the great works of Bach, Wagner, and the rest, and they do their utmost to
communicate to their students the beautiful meaning of what they find there, but
they still become tongue-tied when brashly asked the question, " What's the point
of al this?"

In this parable, it was patently unfair and irrational to have a law forbidding
would-bemusic studentsfrom experiencing and understanding the subject directly
through "'sonic intuition.” But in our society of mathematicians we have such a
law. It is not a written law, and those who flout it may yet prosper, but it says,
Mathematics must not be visualized!

More likely than not, when one opens a random modern mathematics text
on a random subject, one is confronted by abstract symbolic reasoning that is
divorced from one's sensory experience of the world, despite thefact that the very
phenomenaoneis studying were often discovered by appealing to geometric (and
perhaps physical) intuition.

This reflects the fact that steadily over the last hundred years the honour of
visual reasoning in mathematics has been besmirched. Although the great mathe-
maticians have always been oblivious to such fashions, it is only recently that the
"mathematicianin the street™ has picked up the gauntlet on behalf of geometry.

The present book openly challenges the current dominance of purely symbolic
logical reasoning by using new, visually accessible argumentsto explain thetruths
of elementary complex analysis.
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Computers

In part, theresurgenceof interest in geometry can betraced to the mass-availability
of computersto draw mathematical objects, and perhaps a so to therelated, some-
what breathless, popular interest in chaos theory and in fractals. Thisbook instead
advocates the more sober use of computers as an aid to geometric reasoning.

I havetriedtoencouragethereader to think of thecomputer asaphysicist would
his laboratory —it may be used to check existing ideas about the construction of
the world, or as a tool for discovering new phenomena which then demand new
ideas for their explanation. Throughout the text | have suggested such uses of the
computer, but | have deliberately avoided giving detailed instructions. The reason
is simple: whereas a mathematical idea is a timeless thing, few things are more
ephemeral than computer hardware and software.

Having said this, the program “f (z)” is currently the best tool for visually
exploring theideasin this book; a free demonstration version can be downloaded
directly from Lascaux Graphics [http://www.primenet.com/lascaux/l. On occa-
sion it would aso be helpful if one had access to an al-purpose mathematical
engine such as MapleMor Mathematica® However, | would like to stress that
none of the above software is essential: the entire book can be fully understood
without any use of acompuiter.

Finally, some readers may be interested in knowing how computers were
used to produce this book. Perhaps five of the 501 diagrams were drawn us-
ing output from Mathematica®; the remainder | drew by hand (or rather by
mouse”) using CoreIDRAW™, occasionally guided by output from “f (z)”. |
typeset the book in I£KIEX using the wonderful Y&Y TgX Systemfor Windows
[http:/Mmww.Y andY .com/l, the figures being included as EPS files. The text is
Times, with Helvetica heads, and the mathematics is principally MathTime™,
though nine other mathematical fonts make cameo appearances. All of these
Adobe Type 1 fonts were obtained from Y&Y, Inc., with theexception of Adobe's
MathematicalPi-Six font, which | used to represent quaternions. Having typeset
the book, | used the DVIPSONE™ component of the Y&Y TgX Systemfor Win-
dowstogenerate afully page-independent, DSC-compliant PostScript® file, which
| transmitted to Oxford viathe Internet (using FTP) in the form of asingle ZIP
file. Finally, OUP printed the book directly from this PostScript® file.

The Book's Newtonian Genesis

In the summer of 1982, having been inspired by Westfall's [1980] excellent biog-
raphy, | madean intense study of Newton's [1687] masterpiece, Philosophiae Nat-
uralisPrincipia Mathematica. While the Nobel physicist S. Chandrasekhar [1995]
has sought to lay bare the remarkable nature of Newton's resultsin the Principia,
the present book instead arose out of afascination with Newton's methods.

It isfairly well known that Newton's original 1665 version of the calculus
was different from the one we learn today: its essence was the manipulation of
power series, which Newton likened to the manipulation of decimal expansions
in arithmetic. The symbolic caculus—the one in every standard textbook, and
the one now associated with the name of Leibniz—was also perfectly familiar to
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Newton, but apparently it was of only incidental interest to him. After all, armed

with his power series, Newton could evaluate an integral like fe”‘2 dx just as
easly as [ sinx dx. Let Leibniztry that!

Itislesswell known that around 1680 Newton becamedisenchanted with both
these approaches, whereupon he proceeded to developathird versionof calculus,
based on geometry. This "geometric calculus” is the mathematical engine that
propelsthe brilliant physicsof Newton's Principia.

Having grasped Newton's method, | immediately tried my own hand at using it
to simplify my teaching of introductory calculus. An example will help toexplain
what | mean by this. Let us show that if T = tan0, then % = 1+ T2.If we
increase @ by a small amount 46 then T will increase by the amount 4T in the
figurebelow. To obtaintheresult, we need only observethatin thelimit asd9 tends
to zero, the black triangle is ultimately similar [exercise] to the shaded triangle.
Thus, in thislimit,

aT L dT

- = L2=1+4+T2

Ldo 1 a0~

Only gradually did | cometo realize how naturally this modeof thought could

be applied—amos exactly 300 years later! —to the geometry of the complex
plane.

Reading This Book

In the hope of making the book fun to read, | have attempted to write as though |
wereexplainingtheideasdirectly to afriend. Correspondingly,| havetried to make
you, thereader, into an active participant in developing theideas. For example, as
an argument progresses, | havefrequently and deliberately placed apair of logica
stepping stonessufficientlyfar apart that you may need to pauseand stretch dightly
to passfrom onetothenext. Such placesaremarked"'[exercise]"'; they oftenrequire
nothing more than a simple calculation or a moment of reflection.
Thisbringsmeto the exercises proper, which may befound at theend of each
chapter. In the belief that the essentia prerequisite for finding the answer to a
questionisthedesireto find it, | have made every effort to provide exercisesthat
provoke curiosity. They are considerably more wide-rangingthan iscommon, and
they often establish important facts which are then used fredly in the text itsalf.
While problemswhosebeall and end all isroutinecal cul ation arethereby avoided,
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| believethat readers will automatically devel op considerable computational skill
in the process of seeking solutions to these problems. On the other hand, my
intention in alarge number of the exercisesisto illustrate how geometric thinking
can often replace lengthy calculation.

Any part of thebook marked withastar (“*””) may beomitted on afirstreading.
If you do elect toread a starred section, you may in turn choose to omit any starred
subsections. Please note, however, that a part of the book that is starred is not
necessarily any moredifficult, nor any lessinteresting or important, than any other
part of the book.

Teaching from this Book

Theentire book can probably be coveredin ayear, butin asingle semester course
one must first decide what kind of course to teach, then choose a corresponding
path through the book. Here | offer just three such possible paths:

e Traditional Course. Chapters 1 to 9, omitting all starred material (e.g., the
wholeof Chapter 6).

o Vector Fidd Course. In order to take advantage of the Pélya vector field ap-
proachto visualizing complex integrals, onecould follow the" Traditional Course™
above, omitting Chapter 9, and adding the unstarred parts of Chapters 10 and 11.

e Non-Euclidean Cour se. At the expense of teaching any integration, one could
give a course focused on Mobius transformations and non-Euclidean geometry.
These two related parts of complex analysis are probably the most important ones
for contemporary mathematics and physics, and yet they are also the onesthat are
amost entirely neglectedin undergraduate-level texts. Ontheother hand, graduate-
level works tend to assume that you have already encountered the main ideas as
an undergraduate: Catch 22!

Such a course might go as follows: All of Chapter 1; the unstarred parts of
Chapter 2; all of Chapter 3, including the starred sections but (possibly) omitting
the starred subsections; all of Chapter 4; all of Chapter 6, including the starred
sections but (possibly) omitting the starred subsections.

Omissions and Apologies

If one believesin the ultimate unity of mathematics and physics, as | do, then
a very strong case for the necessity of complex numbers can be built on their
apparently fundamental role in the quantum mechanical laws governing matter.
Also, the work of Sir Roger Penrose has shown (with increasing force) that com-
plex numbers play an equally central role in the relativistic laws governing the
structure of space—time. Indeed, if the laws of matter and of space-time are ever
to be reconciled, then it seems very likely that it will be through the auspices of
the complex numbers. This book cannot explore these matters; instead, we refer
the interested reader to Feynman [1963, 1985], to Penrose [1989, 1994], and to
Penrose and Rindler [1984].

A moreserious omissionisthelack of discussionof Riemann surfaces, whichl
had originally intended to treat in afinal chapter. This plan wasaborted onceit be-
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cameclear that aserioustreatment would entail expanding the book beyondreason.
By this time, however, | had already erected much of the necessary scaffolding,
and this material remainsin the finished book. In particular, | hope that the inter-
ested reader will find the last three chapters helpful in understanding Riemann's
original physical insights, asexpounded by Klein[1881]. See also Springer [1957,
Chap. 1], which essentially reproduces Klein’s monograph, but with additional
helpful commentary.

| consider the history of mathematics to be a vital tool in understanding both
thecurrent state of mathematics, and itstrajectory into thefuture. Sadly, however, |
can do no morethan touch on historical mattersin the present work; instead | refer
you to theremarkablebook, Mathematicsand Its History, by John Stillwell [1989].
Indeed, | strongly encourage you to think of his book as a companion to mine:
not only doesit trace and explain the devel opment of complex analysis, but it also
explores and illuminates the connections with other areas of mathematics.

To the expert reader | would like to apologize for having invented the word
“amplitwist” [Chapter 4] asa synonym (more or less) for " derivative',as well the
component terms' amplification™ and "twigt". | can only say that the need for some
such terminology wasforced on mein the classroom: if you try teaching theideas
in this book without using such language, | think you will quickly discover what
I mean! Incidentally, a precedence argument in defence of “amplitwist” might be
that a similar term was coined by the older German school of Klein, Bieberbach,
etal. They spokeof "' eineDrehstreckung”, from" drehen™ (to twist) and "' strecken™
(to stretch).

A significant proportion of the geometric observations and arguments con-
tained in this book are, to the best of my knowledge, new. | have not drawn atten-
tion to thisin the text itself as this would have served no useful purpose: students
don't need to know, and experts will know without being told. However, in cases
where an idea is clearly unusua but | am aware of it having been published by
someone else, | havetried to give credit where credit is due.

In attempting to rethink so much classical mathematics, | have no doubt made
mistakes; the blamefor theseismineaone. Correctionswill be gratefully received,
and then posted, at http://www.usfca.edu/vca.

My book will no doubt beflawedin many waysof which| am not yet aware, but
thereisone"sin” that | haveintentionally committed, and for which | shall not re-
pent: many of theargumentsare not rigorous, at least asthey stand. Thisisaserious
crimeif one believesthat our mathematical theories are merely elaborate mental
constructs, precariously hoisted aloft. Then rigour becomes the nerve-racking ba-
ancing act that prevents the entire structure from crashing down around us. But
suppose one believes, as | do, that our mathematical theories are attempting to
capture aspects of arobust Platonic world that is not of our making. | would then
contend that aninitial lack of rigour isasmall priceto pay if it allowsthereader to
seeinto thisworld moredirectly and pleasurably than would otherwise be possible.

San Francisco, California T.N.
June, 1996
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I Introduction
1 Historical Sketch

Four and a half centuries have elapsed since complex numbers were first discov-
ered. Here, as the reader is probably aready aware, the term complex number
refersto anentity of theforma +ib, wherea and b are ordi nary real numbersand,
unlikeany ordinary number, i hastheproperty thati2 = —1. Thisdiscovery would
ultimately have a profound impact on the whole of mathematics, unifying much
that had previously seemed disparate, and explaining much that had previously
seemed inexplicable. Despite this happy ending—in reality the story continues to
unfold to this day —progress following theinitial discovery of complex numbers
waspainfully ow. Indeed, relativeto the advances madein the nineteenth century,
littlewas achieved during the first 250yearsd thelife d the complex numbers.

How isit possible that complex numbers lay dormant through ages that saw
thecoming and the passing of such great minds as Descartes, Fermat, Leibniz, and
even the visionary genius of Newton? The answer appears to lie in the fact that,
far from being embraced, complex numbers wereinitially greeted with suspicion,
confusion, and even hostility.

Girolamo Cardano’s Ars Magna, which appeared in 1545, is conventionally
taken to be the birth certificate of the complex numbers. Yet in that work Car-
dano introduced such numbers only to immediately dismiss them as " subtle as
they are usdless”". Aswe shall discuss, thefirst substantial cal culations with com-
plex numbers were carried out by Rafael Bombelli, appearing in his L’Algebra
o 1572. Ye here too we find the innovator seemingly disowning his discoveries
(at least initially), saying that '"the whole matter seems to rest on sophistry rather
than truth". Aslate as 1702, Leibniz described i, the square root of —1, as"that
amphibian between existence and nonexistence™ . Such sentiments were echoed
in the terminology of the period. To the extent that they were discussed at all,
complex numberswerecalled "impossible" or "imaginary", thelatter term having
(unfortunately) lingered to the present dayl. Even in 1770 the situation was still
sufficiently confused that it was possible for so great a mathematician as Euler to
mistakenly argue that +/—2 +/—3 = /6.

"However, an "imaginary number" now refersto areal multipleof i, rather than to a general
complex number. Incidentally, the term *'real number was introduced precisely to distinguish
such a number from an "imaginary number".
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Theroot cause of all thistrouble seemsto have been a psychological or philo-
sophical block. How could oneinvestigate these matters with enthusiasm or confi-
dence when nobody felt they knew the answer to the question, " What isacomplex
number?"

A satisfactory answer to this question was only found at the end of the eigh-
teenth century?. Independently, and in rapid succession, Wessel, Argand, and
Gauss al recognized that complex numbers could be given a simple, concrete,
geometric interpretation as points (or vectors) in the plane: The mystical quantity
a* ib should be viewed simply as the point in the xy-plane having Cartesian
coordinates(a,b) ,or equivaently as the vector connecting the origin to that point.
See [1]. When thought of in this way, the plane is denoted C and is called the
complex plane>.

he Complex Plane

c

Figure[1]

The operations of adding or multiplying two complex numbers could now be
given equally definite meanings as geometric operations on the two corresponding
points (or vectors) in the plane. Therule for addition isillustrated in [2a]:

Thesum A+ B of two complex number sisgivenby the parallelogram )
rule of ordinary vector addition.
Notethat thisisconsistent with[1],in the sensethat 4+ 3i (for example) isindeed
thesum of 4 and 3i.

Figure [2b] illustrates the much less obvious rule for multiplication:

Thelength of AB isthe product of the lengths of Aand B, and the @
angle of AB isthe sumof the anglesof Aand B. )
Thisruleis not forced on usin any obvious way by [1], but notethat it is at least
consistent withit, in the sensethat 3i (for example) isindeed the product of 3 and

2Wallis almost hit on the answer in 1673; see Stillwell [1989, p. 191] for an account of this
interesting near miss.

3 Also known as the " Gauss plane”” or the " Argand plane”.
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i. Check thisfor yourself. As a more exciting example, consider the product of i
withitself. Since i has unit length and angle (r/2), i2 has unit length and angle
7. Thus i2 = —1.

The publication of the geometric interpretation by Wessel and by Argand went
all but unnaticed, but the reputation of Gauss (as great then asit is now) ensured
wide dissemination and acceptance of complex numbers as points in the plane.
Perhapslessimportant than the details of this new interpretation (at least initially)
was the mere fact that there now existed some way of making sense of these
numbers—thet they were now legitimate objects of investigation. In any event, the
floodgates of invention were about to open.

It had taken more than two and a half centuriesto come to termswith complex
numbers, but the development of a beautiful new theory of how to do calculus
with such numbers (what we now call complex analysis) was astonishingly rapid.
Mogt of the fundamental results were obtained (by Cauchy, Riemann, and others)
between 1814 and 1851 —a span of less than forty years!

Other viewsof the history of the subject are certainly possible. For example,
Stewart and Tall [1983, p. 7] suggest that the geometric interpretation® was some-
what incidental to the explosive development of complex analysis. However, it
should be noted that Riemann’s ideas, in particular, would simply not have been
possible without prior knowledge of the geometry of the complex plane.

2 Bombelli's "Wild Thought"

The power and beauty of complex analysis ultimately springs from the multipli-
cation rule (2) in conjunction with the addition rule (1). These rules were first
discovered by Bombelli in symbolicform; more than two centuries passed before
the complex plane revealed figure [2]. Since we merely plucked the rules out of
thin air, let usreturn to the sixteenth century in order to understand their algebraic
origins.

Many texts seek to introduce complex numbers with a convenient historical
fiction based on solving quadratic equations,

“Wemust protest onepieceof their evidence: Wallisdid not possessthegeometricinter pretation
in 1673; seefootnote 2.
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x* =mx +c. (©))

Two thousand yearssc, it was already known that such equations could be solved
using amethod that is equivalent to the modern formula,

v=} [m VT ad].

But what if m? + 4c is negative? This was the very problem that led Cardano to
consider square roots of negative numbers. Thus far the textbook is being histor-
ically accurate, but next we read that the need for (3)to always have a solution
forcesusto take complex numbers seriously. Thisargument carriesalmost aslittle
weight now asit did in the sixteenth century. Indeed, we havealready pointed out
that Cardano did not hesitate to discard such " solutions™ as useless.

It was not that Cardano lacked the imagination to pursue the matter further,
rather hehad afairly compelling reason not to. For theancient Greeks mathematics
wassynonymouswithgeometry, and thisconception still held sway in thesixteenth
century. Thus an algebraic relation such as (3) was not so much thought of as a
probleminitsownright, but rather asamerevehiclefor solving agenuine problem
of geometry. For example, (3) may be considered to represent the problem of
finding the intersection points of the parabolay = x2 and theliney = mx + c.
See[3a].

[l bl

Figure[3]

In the case of L; the problem has a solution; algebraically, (m? + 4¢) > 0
and the two intersection points are given by the formula above. In the case of L,
the problem clearly does not have a solution; algebraically, (m? + 4¢) < 0 and
the absenceof solutionsiscorrectly manifested by the occurrence of " impossible"
numbersin theformula.

It was not the quadratic that forced complex numbersto be taken serioudly, it
wasthe cubic,

»=3 px + 2q.

[Ex. 1showsthat ageneral cubic can alwaysbereduced tothisform.] Thisequation
representsthe problem of finding theintersection pointsof thecubic curvey = x3
and theliney = 3px + 2g. See [3b]. Building on the work of del Ferro and
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Tartaglia, Cardano’s Ars Magna showed that this equation could be solved by
meansof aremarkableformula[see Ex, 2]:

x=€/q+,/q2—p3+§/ -ya* - pr “

Try it yourself on x3 = 6x + 6.

Somethirty years after thisformulaappeared, Bombelli recognized that there
was something strange and paradoxical about it. First note that if theliney =
3px + 2q issuch that p? > ¢? then the formulainvolves complex numbers. For
example, Bombelli considered x3 = 15x + 4, which yields

x= 2+ 11i + ¥/2 — 11i.

In the previouscase of [3a] this merely signalled that the geometric problem had
no solution, but in [3b] it is clear that the line will always hit the curve! In fact
inspection of Bombelli's exampleyieldsthe solution x = 4.

As he struggled to resolve this paradox, Bombelli had what he called a*'wild
thought'": perhapsthesolutionx = 4 could berecoveredfromtheaboveexpression
if ¥2+11i =2+ ni and ¥2—=11i = 2 — ni. Of coursefor this to work he
would have to assume that the addition of two complex numbersA =a +i% and
B = b+ i b obeyed the plausiblerule,

A+B=@+id)+®b+ib)=(a+b)+i(@+b). 5)

Next, to seeif therewasindeed avalueof nfor which ¥/2+11i = 2+ in, he
needed to calculate (2t in)3. To do so he assumed that he could multiply out
bracketsasin ordinary algebra, so that

(@a+id) (b+ib)=ab+i(ab+adb)+i*adb.

Usingi2 = —1, heconcluded that the product of two complex numberswould be
given by

AB=(a+id) (b+ib)=(ab—Gb)+i(ab+ab). (6)

Thisrulevindicated his"wild thought", for hewasnow abletoshow that (24i)3 =
2 + 11i. Check thisfor yourself.

While complex numbers themselves remained mysterious, Bombelli's work
on cubic equations thus established that perfectly real problemsrequired complex
arithmetic for their solution.

Just as with its birth, the subsequent development of the theory of complex
numbers was inextricably bound up with progressin other areas of mathematics
(anda sophysics). Sadly, wecan only touch on these mattersin thisbook; for afull
and fascinating account of theseinterconnections,the reader isinstead referred to
Stillwell [1989]. Repeating what was said in the Preface, we cannot overstate the
valueof reading Stillwell'sbook aongside this one.
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3 Some Terminology and Notation

L eaving history behind us, we now introduce the modern terminol ogy and notation
used to describe complex numbers. The information is summarized in the table
below, and isillustrated in [4].

Name M eaning Notation
modulus of z lengthr of z z|
argument of z angled of z arg ()
real part of z x coordinate of z Re(2)

imaginary part of z y coordinate of z Im(z)
imaginary number real multiple of i
real axis set of real numbers
imaginary axis set of imaginary numbers
complex conjugateof z | reflectionof z in thereal axis Z

>

7
0&,\\&80{ ’z=x+iy=r£6

y = Im(z) = imaginary part of z

ol imaginary axis

rea axis

x =Re(z) =read partof z

7 = complex conjugateof z = x — iy
®

Figure[4]

It is valuable to grasp from the outset that (according to the geometric view)
acomplex number isasingle, indivisible entity —a point in the plane. Only when
we choose to describe such a point with numerical coordinates does a complex
number appear to be compound or "'complex'. More precisely, C issaid to betwo
dimensional, meaning that two real numbers (coordinates) are needed to label a
point withinit, but exactly how thelabelling isdoneis entirely up to us.

Oneway to label the pointsis with Cartesian coordinates (the real part x and
theimaginary part y), the complex number beingwrittenasz = x Fiy. Thisisthe
natural labelling when we are dealing with the addition of two complex numbers,
because (5) saysthat the real andimaginary partsof A+ B areobtained by adding
thereal and imaginary partsof A and B.

In the case of multiplication, the Cartesian labelling no longer appears natural,
for it leadsto the messy and unenlightening rule (6). The much simpler geometric
rule (2) makesit clear that we should instead |abel atypical point z withits polar
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coordinates,r = |z] and 8 = arg z. In placeof z = X + iy we may now write
z = r .6, wherethesymbol / servestoremind usthat 8 istheangledf z. [Although
this notation is still used by some, we shall only employ it briefly; later in this
chapter wewill discover amuch better notation (the standard one) which will then
be used throughout the remainder of the book.] The geometric multiplicationrule
(2) now takesthe simpleform,

(RLp) (rL0) = (Rr)L(¢ + 0). )

In common with the Cartesian label X T+ iy, agiven polar label r 26 specifiesa
unigue point, but (unlike the Cartesian case) a given point does not have a unique
polar label. Since any two angles that differ by amultipleof 2 correspond to the
samedirection, a given point hasinfinitely many different |abels:

e.=rl(@—4n)=rl@ =2n)=rlB=rl(0@ +2n)=rl(0@+4n)=...

This simple fact about angles will become increasingly important as our subject
unfolds.

The Cartesian and polar coordinates are the most common ways of labelling
complex numbers, but they are not the only ways. In Chapter 3 we will meet
another particularly useful method, called " stereographic' coordinates.

4 Practice

Before continuing, we strongly suggest that you make yourself comfortable with
the concepts, terminology, and notation introduced thus far. To do so, try to con-
vince yoursdlf geometrically (and/or dgebraically) of each of thefollowingfacts:

Re(z) = 3[z+7] Im(z) = 5[z — 7] 2l = V22 + 2

tan[arg z] = {{ggg 2z =z? r/0 =r(cos@ +isinf)

Defining g by (1/2)2 = 1, it followsthat = = ~%5 = £/(—6).

Rl _R,cs_ 1 x .y
r7g = ri@—0 G+~ 242 22
(1+i)*=-4 (143 =-25(1 +1i) (1 +i+/3)0 =26

A+iv3® _ 4 A+’ _ 5y T8/ (
N 4i N V2L —(m/12) 18 =rl(-6)

un+n=u+22 7122 =2122 21/72 =71/7%2.
Lagtly, establish the so-called generalized triangle inequdlity:
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|21 + 22+ -+ zal < 21l + |22 + -+ - + |zal. ®)

When does equality hold?

5 Equivalence of Symbolic and Geometric Arithmetic

We have been using the symbolic rules (5) and (6) interchangeably with the geo-
metric rules (1) and (2), and we now justify this by showing that they areindeed
equivalent. The equivalence of the addition rules (1) and (5) will be familiar to
thosewho havestudied vectors; in any event, theverificationissufficientlystraight-
forward that we may safely leaveit to the reader. We therefore only address the
equivalencedf the multiplication rules (2) and (6).

First we will show how the symbolic rule may be derived from the geometric
rule. To do so we shall rephrasethe geometric rule (7) in a particularly useful and
important way. Let z denoteagenera pointin C, and consider what happenstoit—
whereit movesto—when it is multiplied by afixed complex number A = RZ¢.
Accordingto(7), thelength of z ismagnified by R, whiletheangleof z isincreased
by ¢. Now imagine that thisis done simultaneoudly to every point of the plane:

Geometrically, multiplication by a complex number A = RZ¢ isa
rotation of the planethroughangle ¢, and an expansion of the plane  (9)
by factor R.

A few commentsarein order:

e Both therotation and the expansion are centred at the origin.

¢ |t makes no differencewhether wedo therotation followed by the expansion,
or the expansion followed by the rotation.

o If R < 1then the"expanson'isin redlity acontraction.

Figure [5] illustratesthe effect of such a transformation, the lightly shaded
shapes being transformed into the darkly shaded shapes. Check for yoursdf that
in this example A = 1+ i+/3 =2 L%.

It is now a simple matter to deduce the symbolic rule from the geometric
rule. Recall the essential steps taken by Bombelli in deriving (6): (i) i2 = —1;
(i) brackets can be multiplied out, i.e., if A, B, C, are complex numbers then
A(B * C) = AB T AC. We have aready seen that the geometric rule gives
us (i), and figure [5] now revedsthat (ii) is aso true, for the smple reason that
rotations and expansions preserve parallelograms. By the geometric definition of
addition, Bt C isthefourth vertex of the paralelogramwith vertices0, B, C. To
establish (ii), we merely observethat multiplication by A rotates and expandsthis
parallelograminto another parallelogramwith vertices0, AB, AC and A(B T C).
This completesthe derivationof (6).

Conversely, we now show how the geometric rule may be derived from the
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Figure[6]

symbolic rule®. We begin by considering the transformation z +> iz. According
to the symbolic rule, this means that(x Tiy) — (- ytix), and [6a] reveds
that iz is z rotated through a right angle. We now use this fact to interpret the
transformation z — A z, where A isageneral complex number. How thisisdone
may be grasped sufficiently well using the example A = 4+ 3 = 5/¢, where

SIn every text we have examined thisis done using trigonometricidentities. We believethat
the present argument supportstheview that such identitiesaremer ey complicatedmanifesations
of thesimplerulefor complex multiplication.
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¢ = tan~1(3/4). See [6b]. The symbolic rule says that brackets can be multiplied
out, so our transformation may be rewritten asfollows:

z—> Az = (@A+3i):
47 +3(iz)
4z + 3 (z rotated by 2).

Thisis visualized in [6¢]. We can now see that the shaded triangles in [6¢] and
[6b] are similar, so multiplication by 5/¢ does indeed rotate the plane by ¢, and
expand it by 5. Done.

Il Euler's Formula
1 Introduction

It istimeto replace the r Z6 notation with a much better one that depends on the
following miraculousfact:

€% = cos@ +isinf|! (10)

Thisresult wasdiscovered by Leonhard Euler around 1740, anditiscalled Euler’s
formula in his honour.

Before attempting to explain this result, let us say something of its meaning
and utility. Asillustrated in [7a], theformula says that €° is the point on the unit
circleat angle8. Instead of writing ageneral complex number asz = r LO, wecan
now write z = r €°. Concretely, this says that to reach z we must take the unit
vector €0 that points at z, then stretch it by the length of z. Part of the beauty of
thisrepresentation is that the geometric rule (7) for multiplying complex numbers
now looks almost obvious:

(R ei¢) (r eig) = Rr /@9,

Put differently, algebraically manipulating e®inthesame way asthereal function
e* yieldstrue facts about complex numbers.

In order to explain Euler's formula we must first address the more basic ques-
tion, "' What does ¢’ mean? Surprisingly, many authors answer this by defining
€, out of theblue, to be (cos0 +i sin0)! Thisgambitislogically unimpeachable,
butitisaso alow blow to Euler, reducing one of his greatest achievementsto a
mere tautology. We will therefore give two heuristic argumentsin support of (10);
deeper arguments will emergein later chapters.

2 Moving Particle Argument

Recall the basic fact that €* is its own derivative: &e* = ¢*. Thisiis actually
a defining property, that is, if g;f (x) = f(x),and f(0) = 1, then f (x) =
e*. Similarly, if k is area constant, then * may be defined by the property
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Figure[7]

j—xf (xX) = kT (x). To extend the action of the ordinary exponential function e*
from real valuesof x to imaginary ones, let us cling to this property by insisting
thet it remain trueif k =i, so that

d it _ . it
dte =ie". an

Wehave used theletter t instead of x becausewewill now think of thevariable
as being time. We are used to thinking of the derivativeof areal function as the
dope of the tangent to thegraph of thefunction, but how are we to understand the
derivativein the above equation?

To make sense of this, imagine a particle moving along a curvein C. See
[7b]. The motion of the particle can be described parametrically by saying that a
timet its position is the complex number Z(¢). Next, recall from physicsthat the
veocity V() is the vector—now thought of as acomplex number —whoselength
and direction are given by theinstantaneous speed, and theinstantaneousdirection
d moation (tangent to thetragjectory), of the moving particle. The figureshowsthe
movement M of the particle between timet and t + 6, and this should make it
clear that d Z(r+ 5) — Z(t) .

M
G2 = i~ =m =V

Thus, given acomplex function Z(¢) of ared variablet, we can alwaysvisualize
Z asthe position of amoving particle, and %f— asits veocity.

We can now usethisideato find thetrajectory in thecase Z(t) = et See[8].
Accordingto (11),

velocity = V = i Z =position, rotated through a right angle.

Since theinitial position of the particleis Z(0) = € = 1, itsinitia velocityisi,
and soit is moving vertically upwards. A split second later the particle will have
moved very dightly in thisdirection,and its new velocity will be at right anglesto
its new position vector. Continuing to construct the motion in this way, it is clear
that the particle will travel round the unit circle.
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>

initial velocity =i

& 01 initial position =1

Figure[8]

Since we now know that | Z(¢)| remains equal to 1 throughout the motion, it
follows that the particle's speed |V ()| adso remains equa to 1. Thus after time
t = 6 the particlewill havetravelled adistance & round the unit circle, and so the
angleof Z(6) = €° will bed. Thisisthe geometric statement of Euler’s formula.

3 Power Series Argument

For our secondargument, webegin by re-expressingthedefiningproperty ;—;‘;f x) =
f (X) interms of power series. Assuming that f (x) can be expressed in theform
ag t aix T apx? + ..., asimple calculation shows that

x2 x3
ex=f(x)=1+X+§!’+§+"‘,
and further investigation shows that this seriesconvergesfor al (rea) values of x.

Putting x equal to areal valued, thisinfinite sum of horizontal real numbers
is visualized in [9]. To make sense of €°, we now cling to the power series and
putx =i6:

PR () N ()
e —1+19+'—2—!—+ N
Asillustratedin [9], thisseriesisjust asmeaningful astheseriesfor €€, butinstead
of thetermsall having the same direction, hereeach term makesaright angle with
the previousone, producing akind of spiral.

This picture makesit clear that the known convergenceof the series for e
guaranteesthat the spiral seriesfor €° convergesto adefinitepointin C. However,
itiscertainly not clear that it will convergeto the point on the unit circleat angle
6. To seethis, we split the spiral into itsreal and imaginary parts:

&l =Cc©) +iS®),

where
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C(0)—1—-2-T+——~~, and S@) = 9“§+§T_“"

At this point we could obtain Euler's formulaby appealing to Taylor's Theorem,
which showsthat C(8) and S(8) arethe power seriesfor cosé andsin8. However,
we can aso get the result by means of the following elementary argument that
does not requireTaylor's Theorem. .

We wish to show two things about e © = C(8) + i S(0): (i) it has unit length,
and (ii) it hasangle 8. To do this, first note that differentiation of the power series
C and S yields

C'=-S and S =C,

where a prime denotes differentiation with respect to 8.
Toestablish (i), observe that

55|e"9|2 = (C%+ §% =2(CC’ +88') =0,
which meansthat thelength of el isindependent of 6. Sincee!® = 1, we deduce
that |¢'®| = 1for all 6.
To establish (ii) we must show that ®(0) = 8, where ®(6) denotes the angle
d e sothat
S5(6)
C(0)

Sincewe dready know that c2+s?= 1, wefind that the derivativeof theLHS
o theaboveequationis

tan® (@) =

[tan®(©B)] = (1 + tan’ ®) O’ = (1 + SZ)@' = 9/
Cc? c?’

and that thederivativeof theRHS is

s7_sc-c's_ 1
cl™ ¢ T cr
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Thus
a _ 0 =1
o 7
whichimpliesthat ©(9) = 0+ const. Takingthe angle of ¢!© = 1 to be 0 [would
it make any geometric differenceif wetook it to be 27?1, wefind that ® = 8.
Althoughitisincidental toour purpose, notethat wecan now conclude (without

Taylor's Theorem) that C(8) and S(8) are the power series of cosé and siné.

4 Sine and Cosine in Terms of Euler's Formula

A simple but important consequence of Euler's formulaisthat sine and cosine can
be constructed from the exponential function. More precisely, inspection of [10]
yields

2i sin 6

Figure [10]
e e % =2c0s0 and €0 — e =2ising,
or equivaently,
i + ,~if 9 _ ,—i6
cos0 = % and sin0= % (12)

Il Some Applications
1 Introduction

Often problems that do not appear to involve complex numbers are nevertheless
solved most elegantly by viewing them through compl ex spectacles. In thissection
we will illustrate this point with a variety of examples taken from diverse areas
of mathematics. Further examples may befound in the exercises at the end of the
chapter.

Thefirst example [trigonometry] merely illustrates the power of the concepts
already developed, but the remaining examples develop important new ideas.

2 Trigonometry

All trigonometric identities may be viewed as arising from the rule for complex
multiplication. In the following examples we will reduce clutter by using the fol-
lowing shorthand: C = cosé, S = sin#, and similarly,c = cos¢, s = sing.
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[b] 3

Figure[11]

Tofind anidentity for cos(8 + ¢), view it asacomponent of e!®+%)_ See(114].
Since

cos(9 + ¢) + i sin(@ + ¢)

(1 6+9)
— (90

= (C+iS)(c+is)
= [Cc-Sgti[sctcCy,

we obtain not only an identity for cos(é + ¢), but alsoonefor sin(@ + P):
cos(@+¢)=Cc—-Ss and sin(® +¢) =Sc+ Cs.
Thisillustratesanother powerful featureof usingcomplex numbers: every complex

equation saystwo thingsat once. _
To simultaneoudly find identitiesfor cos38 and sin 38, consider P

cos36-+isin 30 = e = ()} = (C+iS)* = [? - 3¢5?]+i [3¢%5 - ]

Using €2 + 52 = 1, theseidentities may be rewrittenin the morefamiliar forms,
cos38=4C>-3C and sin38=—4s>t3s.

We have just seen how to expresstrig functions of multiplesof 8 in terms of

powers of trig functions of 8, but we can adso go in the opposite direction. For

example, sugposewewant anidentity for cos*@ in terms of multiplesof 8. Since
2cosf =e®+

e i,
. N4
2costy = (e'19 + e“’e)
= (em + e‘iw) +4 (eizg + e"m) +6

= 2cos40 +8cos260 +6
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= cos*6 = 1[cos48 +4cos20 +3].

AlthoughEuler's formulaisextremely convenientfor doing such calculations,
itis not essential: al we arereally using is the equivalenceof the geometric and
symbolicformsof complex multiplication. To stressthispoint, let usdo an example
without Euler's formula.

Tofind anidentity for tan38intermsof T =tan8, considerz=1 +iT. See
[11b]. Sincez is at angle 8, z3 will be at angle 38, so tan 38 = Im(z3)/Re(z3).
Thus,

3T-713

3 _ sn3 2 . 3 —
2=0tin’=01-31H+iGT-71%) — tan38 =T

3 Geometry

We shall base our discussion of geometric applications on a single example. In
[12a] we have constructed sguares on the sides of an arbitrary quadrilateral. Let

Figure[12]

us prove what this picture strongly suggests: the line-segments;joining the centres
d opposite squares are perpendicular and d equal length. It would require a
great deal of ingenuity to find a purely geometric proof of this surprising result,
soinstead of relying on our own intelligence, let usinvoke theintelligence of the
complex numbers

Introducing a factor of 2 for convenience, let 2a, 2b, 2c, and 2d represent
complex numbersrunning along theedges of the quadrilateral. Theonly condition
isthat the quadrilatera closeup, i.e.,

a+b+c+d=0.

Asillustrated, choosetheorigin of C to beat the vertex where2a begins. To reach
the centre p of the square constructed on that side, we go along a, then an equa
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distance at right anglesto a. Thus, since ia is a rotated through a right angle,
p=atia= (1t i)a. Likewise,

g=2a+0+idb, r=2a+2b+1+i), s=2a+2b+2c+(1+i)d.

Thecomplex numbersA =s — g (fromgtos)and B =r — p(from ptor)are
thereforegiven by

A=(+2+d)Ti(d-b) ad B=(a+2b+c)+i(c-a).

We wish to show that A and B are perpendicular and of equal length. These
two statementscan becombined into thesinglecomplex statement B = i A, which
saysthat B is A rotated by (z/2). To finish the proof, note that thisis the same
thingas A B =0, the verification of whichisaroutinecalculation:

A+iB=@+b+c+d) +i(@a+b+c+d) =0.

As afirg step towards a purely geometric explanation of the result in [12a],
consder [12b]. Here squares have been constructed on two sides of an arbitrary
triangle, and, as the picture suggests, the line-segments from their centresto the
midpoint m of the remaining side are perpendicular and of equal length. Asis
shownin Ex. 21, [128] can bequickly deduced® from [12b]. Thelatter result can,
d course, be proved in the same manner as above, but let usinstead try tofind a
purdy geometric argument.

To do so we will take an interesting detour, investigating trandations and
rotationsof the planeintermsof complex functions. Inredlity, this" detour' ismuch
moreimportant than the geometric puzzleto which our resultswill be applied.

L&t 7, denoteatrand ationof the planeby v, so that ageneral point 2 is mapped
t0Ty(z) =z +v. See [13a], which adsoillustrates the effect of the trandationon
atriangle. The inverse of 7,, written ’T,,‘l, is the transformation that undoesiit;
more formally, 7,7} isdefined by 7,7! 0 7, = & = T, o 7,71, where € is the
"do nothing' transformation (called the identity) that maps each point to itself:
@) =z Clealy, T, ' =T_,.

If we perform T, followed by another trandation 7,,, then the composite
mapping Ty, o 7, of the planeis another trandation:

Tw o Ty(2) = Tu(z + v) = 2+ (W + v) = T4 (2).

Thisgivesusaninterestingway of motivating additionitself. If we had introduced
acomplex number v as being the trandation 7, then we could have defined the
"sum"” of two complex numbers 7, and 7, to be the net effect of performing
these trandationsin succession (in either order). Of course thiswould have been
equivaent to the definition of addition that we actually gave.

SThis approach is based on a paper of Finney [1970].
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Figure [13]

Let RY denote arotation of the plane through angle 0 about the point a. For
example, RSoRE = R5™, and (RZ)—1 =R;?. Asafirststeptowardsexpressing
rotations as complex functions, note that (9) says that a rotation about the origin
can be written as R§(z) = €/z.

Asillustrated in [13b], thegeneral rotation R can be performed by translating
a toO, rotating 0 about 0, then trandlating 0 back to a:

Re(2) = ('1; oRY o ’1;"1) ) =e%z—a)+a=e%2+k,

wherek = a(l — €B). Thus we find that a rotation about any point can instead
be expressed as an equal rotation about the origin, followed by a trandation:
RS = (T o RY). Conversely, a rotation of e about the origin followed by a
trangdlation of v can aways be reduced to a single rotation:

T,oRE =R, Where c=uv/(l —¢%).

In the same way, you can easily check that if we perform the trand ation before the
rotation, the net transformation can again be accomplished with a single rotation:
RYol,=RS. Whatis p?

The results just obtained are certainly not obvious geometrically [try them],
and they serveto illustrate the power of thinking of trand ations and rotations as
complex functions. As a further illustration, consider the net effect of perform-
ing two rotations about different points. Representing the rotations as complex
functions, an easy caculation [exercise] yields

(R‘,’f oRZ) () = @97+ v, where v=ae'?(1 - € T b(l - €?).
Unless (@ T ¢) isa multiple of 27, the previous paragraph therefore tells us that

v _ ae'?(1 - e® + b(l — €'?)

b 160 — 2(0+9) —
Ry oR, =R, where c= 1 — ¢i6+e) — 1 — ¢i®+9)

[What should c equal if b = a or ¢ = O? Check the formula] This result is
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Figure[14]

illugrated in [14a]. Later we shdl find a purely geometric explanation of this
result, and, in the process, a very simple geometric construction of the point ¢
given by the complicatedformulaabove.

If, on the other hand,(8 + ¢) isamultipledf 2, then !¢+ = 1, and

REoRE=T, whee v=(1-e?)b—a).

For example, putting @ = ¢ = =, this predictsthat R} o R} = Tap—q) is @
trandation by twicethe complex number connecting thefirst centreof rotationto
the second. That thisisindeed true can be deduced directly from [14b].

The above result on the composition of two rotations implies[exercise] the
following:

LeM =R% o...0R2 o RY be the composition of n rotations,
andlet ® =6; T 6, ...+ 6, bethetotal amount of rotation. In
genera, M = R? (for some c), but if ® isa multipleof 2z then
M = T,, for somev.

Returning to our origina problem, we can now give an elegant geometric
explanation of the result in [12b]. Referring to [15a], let M = RZ o RS/ o

RI/® | According to the result just obtained, M isatrandation. Tofind out what
trandation, we need only discover the effect of M on a single point. Clearly,
M(k) =k, so M isthe zero trandation, i.e., theidentity transformation&. Thus

RyP o R = (RE) ™ o M = RE,
If wededfines = R, (s)then m isthe midpoint of ss'. But, on the other hand,
§' = (RE? o RE) (5) = REs).

Thusthetriangle sps' isisoscelesand has aright angle at p, so sm and pm are
perpendicular and of equd length. Done.
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; Z(t) — eateibt

Figure[15]
4 Calculus

For our calculus example, consider the problem of finding the 100%™ derivativeof
e* anx. Moregeneraly, wewill show how complex numbers may be used to find
then™ derivativeof € sin bx.

In discussing Euler’s formulawe saw that ' may bethought of asthelocation
a timet of a particletravelling around the unit circleat unit speed. In the same
way, €t may be thought of as a unit complex number rotating about the origin
with (angular) speed b. If we stretch this unit complex number by e asit turns,
thenitstipdescribesthe motion of aparticlethat isspiralling away fromtheorigin.
See[15b].

Therdevanceof thisto theopening problemisthat thelocation of the particle
attimetis _

Z(t) = Pt = g™ cosht T e™ sinbt.

Thus the derivativeof e® sinbt is simply the vertical (imaginary) component of
thevelocity V of Z.

We could find V ssimply by differentiating the componentsof Z in the above
expression, but we shall instead use this example to introduce the geometric ap-
proach that will be used throughout this book. In [16], consider the movement
M = Z(t T 6) — Z(¢) of the particle betweentimet and (t T+ 6).

Recall that V is defined to be the limit of (M/8) as 6 tends to zero. Thus V
and (M /5) are very nearly equal if 6 is very smadll. This suggests two intuitive
ways of speaking, both of which will be used in this book: (i) we shall say that
"V = (M/8) when 6 is infinitesma" or (ii) that "V and (MIS) are ultimately
equa" (as 6 tendsto zero).

We dtressthat herethewords' ultimately equal™ and infinitesmal™ are being
used in definite, technical senses; in particular, "infinitesma™ does not refer to
somemystica, infinitely small quantity’. More precisely, if two quantities X and

7For moreon thisdistinction, see the discussion in Chandrasskhar [1995].
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Y depend on a third quantity &, then

X
Iimo =1 = "X =Y forinfinitesmal §”.
50 Y

— "X and Y areultimately equal asStendsto zero™.

It followsfrom the basictheoremson limitsthat " ultimateequaity™ inherits many
of the propertiesof ordinary equdity. For example, since V and (M/$) are ulti-
matdy equal, soare V4§ and M.

We now returnto the problem of finding the vel ocity of the spiralling particle.
Asillustrated in [16], draw raysfrom 0 through Z(¢) and Z (¢ + S), together with
circular arcs (centred at 0) through those points. Now let A and B be the complex
numbers connecting Z(¢) to the illustrated intersection points of these rays and
acs If Sisinfinitesimal,then B isat rightanglesto A and Z, and M = A +B.

P (a +ib)

Figure[16]

Let usfind the ultimate lengths of A and B. During the time interval S, the
angled Z increasesby bé, so thetwo rayscut off an arc of length b8 on the unit
cirde and an arc of length |Z|bé on thecirclethrough Z. Thus|B] is ultimately
equd to [ Z]bS. Next, notethat |A| istheincreasein |Z(t)] occurringin the time
intervd S Thus, since

d d
ZIZ(I‘)I = ;;te‘" =alZ|,

|A] isultimately equdl to | Z|as.

The shaded triangle at Z is therefore ultimately similar to the shaded right
trianglewith hypotenusea + i b. Rotating the latter triangleby theangledf Z, you
should now be ableto see that if Sisinfinitesimal then
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M = (a +i b) rotated by theangle of Z, and expanded by |Z|$
= (a+ib)Zs
=V = %Z =(a+ib)Z. 13)

Thusall raysfrom theorigin cut the spiral at the same angle[theangleof (atib)],
and the speed of the particleis proportional toits distance from the origin.

Note that although we have not yet given meaning to € (wherez isa genera
complex number), it iscertainly tempting to write Z (r) = et = ¢@+ib)t Thjs
makes the result (13) look very natural. Conversely, this suggests that we should
definee? = ™+ to be e*¢™?; another justification for this step will emergein
the next chapter.

Using (13), it is now easy to take further derivatives. For example, the accel-
eration of the particleis

¢ z=%y= (a+ib)2Z=(atib)Vv

m - a - l — .
Continuinginthisway, each new derivativeisobtained by multiplying theprevious
oneby (aT ib). [Try sketching these successivederivativesin [16].] Writing (at
ib) = Re'?, where R = v/a2 + b2 and ¢ isthe appropriate valueof tan~!(b/a),
we thereforefind that

n

7 = (a + ib)n 7 = R" ein¢ eateibt = Rneatei(bt+n¢).

dr
Thus q

o [ sinbr] = (@2 + b2)f et sin [bt +n tan_l(b/a)] L)
5 Algebra

In the final year of hislife (1716) Roger Cotes made a remarkabl e discovery that
enabled him (in principle) to evaluate the family of integrals,

f dx
xn—1’
wheren = 1,2, 3,.... To see the connection with agebra, consider the case

n = 2. The key observations are that the denominator (x2 — 1) can befactorized
into (x — 1)(x F 1), and that the integrand can then be split into partial fractions:

dx 1 1 1 | x—1
— =5 - dx = 51 .
/x2—1 2/[]6—1 x+1] * 2n[x+l]
Asweshall see, for higher valuesof n onecannot completely factorize (x™ — 1)
into linear factors without employing complex numbers—a scarce and dubious




Some Applications 23

commodityin 1716! However, Coteswasawarethatif hecould break down (x"—1)
intored linear and quadratic factors, then hewould beableto evaluatetheintegral .
Here, a''red quadratic" referstoaquadrati cwhosecoefficientsared | real numbers.

For example, (x*— 1) can bebrokendowninto (x — 1)(x +1) (x2+ 1), yielding
apartid fraction expressionaof theform

1 __A , B Cx D
-1 x—1 x+1" x241 x241

and henceanintegral that can beevauatedintermsof In andtan-". Moregeneraly,
evenif the factorizationinvolves more complicatedquadraticsthan (x2 + 1), itis
essy to show that only In and tan-' are needed to evaluatethe resultingintegrals.
Inorder toset Cotes work on (x" — 1) inawider context, we shall investigate
the genera connection between the roots of a polynomid and its factorization.
Thisconnection can be explained by considering the geometricseries,

Gm-1= Cm-l + c""'zz + (_.m—322 +. 4 CZM—Z + zm—l’

in which ¢ and z are complex. Just asin real algebra, this series may be summed
by notingthat zG m—1 ad cG,,—1 contain almost the sameterms—try anexample,
sy m = 4, if you have trouble seeing this. Subtracting these two expressions
yidds

(z—¢)Gm-1=27" - ", (15)
and thus m_m
z —
Gm-1 = .
z—c¢

If wethink of ¢ asfixed and z as variable, then (z™ — ¢™) isan mm—degree
polynomid in z, and z = c isaroot. The result (15) says that this m'-degree
polynomid can be factored into the product of the linear term (z — ¢) and the
(m — 1)P_degree polynomial Gm—1.

In 1637 Descartes published an important generalization of this result. Let
P, (z) denote ageneral polynomia of degreen:

P2 =7"+A"'+...+ Dz +E,
wherethe coefficients A, .. ., E may becomplex. Since (15) implies
Pn(z)—Pn(C)=(Z—C)[G,,_1 +AG,,_2+...+D],

we obtain Descartes' Factor Theorem linking the existence of roots to factoriz-
ability:

F ¢ isasolution of P,(z) = 0 then P,(z) = (z — ¢) P,—1, Where
P,_1isd degree(n — 1).
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If wecouldinturnfind aroot ¢’ of P,—1, then the same reasoning would yield
P, = (z — ¢)(z — ¢") P,—3. Continuingin thisway, Descartes’ theorem therefore
holds out the promise of factoring P, into precisely n linear factors:

Pu(2) = (z—c1)(z—c2)--- (2 —¢Cn)- (16)

If we do not acknowledge the existence of complex roots (as in the early 18t
century) then this factorization will be possiblein some cases (e.g., z2 — 1), and
impossiblein others (e.g., z2 T 1). But, in splendid contrast to this, if one admits
complex humbersthen it can be shown that P, alwayshasn rootsin C, and the
factorization (16) isalwayspossible. Thisis called the Fundamental Theorem o
Algebra, and we shall explainitstruth in Chapter 7.

Eachfactor (z — ¢) in (16) representsacomplex number connecting theroot ¢,
to thevariablepoint z. Figure[17a] illustratesthisfor ageneral cubic polynomial.
Writing each of these complex numbersin the form Ry e/, (16) takesthe more
vividform

P,(z) = RiRy- - R, & G1tdattén)

Althoughthe Fundamental Theorem of Algebrawas not availableto Cotes, let
us see how it guaranteesthat he would succeed in his quest to decomposex” — 1
into real linear and quadratic factors. Cotes polynomial hasreal coefficients, and,
quite generally, we can show that

Ifa polynomial has real coefficients then its complex rootsoccur in
complex conjugatepairs, and it can befactorized into real linear
and quadraticfactors.

For if the coefficientsA, ..., E of P,(z) are al red then P,(c) = 0 implies
[exercisg] P,(¢) = 0, and thefactorization (16) contains

(z—c)(z—E)=22—(c+5)z+c5=z2—2Re(c)z+|c|2,

whichisareal quadratic.

Let us now discuss how Coteswasabletofactorizex” — lintoreal linear and
quadraticfactorshy appealing to thegeometry d theregular n-gon.[An*'n-gon"'is
an n-sided polygon.] To appreciatethefollowing, placeyoursdf in his18™* century
shoesand forget all you have just learnt concerning the Fundamental Theorem of
Algebra; even forget about complex numbersand the complex plane!

For thefirst few values of n, the desired factorizationsof U, (X) = x™ — 1 are
not too hard to find:

Urx) = (x-DxtD, amn
Usx) = (x—-DE2+xt, (18)
Usx) = (x—1Dx+D@E2+1), 19
s = 0 (o [55]e0) (2 [55] 0 ),
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Figure{17]

but the general pattern seemselusive.

Tofind such apattern, let ustry to visualize the simplest case, (17). See[17b].
Le O beafixed point,and P avariablepoint, on alinein the plane (whichweare
not thinking of asC), and let x denote the distance O P. If we now draw acircle
d unitradiuscentred at 0, and let C1 and C3 beitsintersection points with the
line, then clearly8 Us (x) = PC; - PCs.

To understand quadraticfactorsinthisspirit, let usskip over (18) tothesmpler
quadretic in (19). This factorization of Us(x) is the best we could do without
complex numbers, but ideally we would have liked to have decomposed Ua(x)
intof our linear factors. This suggeststhat we rewrite (19) as

Ux) =(x — Dx+ DVx2+1vVx2 +1,

thelast two"'factors* beinganal ogousto genuinelinear factors. If wearetointerpret
thisexpression (by analogy with the previouscase) as the product of thedistances
d Pfromfourfixed points, then the pointscorrespondingto thelast two**factors'
mus be off the line. More precisdy, Pythagoras Theorem tells us that a point
whosedistancefrom P isv/x2 + 12 must lieat unit distancefrom O inadirection
a right anglesto the line O P. Referring to [18a], we can now see that Us(X) =
PCy - PC2. PC3. PC4, where C1C2C3C4 istheillustrated squareinscribedin
thecircle.

Since we have factorized Ug(x) with the regular 4-gon (the square), perhaps
wecan factorize Us (x) with the regular 3-gon (theequilateral triangl€). See [18b].
Applying Pythagoras' Theorem to thisfigure,

2
PC|.PC;-PC3 = PCi-(PC)*=G-D(x t %]2 + [Azé] )
= @=DE*+x+1),

8Here, and in what follows, we shall suppose for convenience that x > 1, so that Un(x) is
positive.
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Figure [18]
which isindeed the desired factorization (18) of U3 (x)!
A plausible generalization for U, now presentsitself:

If C1C2C3.-.C, is a regular n-gon inscribed in a circle d unit
radius centred at O, and P isthepoint on OC; at distance xfrom
O, thenU,(x) = PC; - PC2..-PC,.

Thisis Cotes' result. Unfortunately, he stated it without proof, and heleft no clue
as to how he discovered it. Thus we can only speculate that he may have been
guided by an argument like the one we havejust supplied®.

Since the vertices of the regular n-gon will always come in symmetric pairs
that are equidistant from P, the examplesin [18] make it clear that Cotes' result
isindeed equivalent to factorizing Uy, (x) into real linear and quadratic factors.

Recovering from our feigned bout of amnesia concerning complex numbers
and their geometric interpretation, Cotes' result becomes simple to understand
and to prove. Taking O to be the origin of the complex plane, and C; to be 1, the
verticesof Cotes' n-gon aregivenby Cy41 = ¢'*?7/m _See[19], whichillustrates
thecasen = 12. Since (Cx4+1)" = €*?* =1, all is suddenly clear: Theverticesd
the regular n-gon arethen complex rootsd U, (z) = z" — 1. Becausethesolutions
of z" — 1 = 0 may be written formally asz = /1, the vertices of the n-gon are
called the nth rootsd unity.

By Descartes’ Factor Theorem, the complete factorization of (z" — 1) is there-
fore

2'-1=U,@) =@z -C(z—-C) (z—Cp),

with each conjugate pair of roots yielding areal quadratic factor,

(z _ eik(Zn/n)) (z _ e—ik(ZJ'r/n)) — 22 2708 [2k7r] +1.

n

Eachfactor (z — Cx) = Ry €/% may beviewed (cf. [17a]) asacomplex number
connecting a vertex of the n-gon to z. Thus, if Pisan arbitrary point in the plane

9Stillwell [1989, p. 195] has instead speculated that Cotes used complex numbers (as we are
about to), but then deliberately stated his findingsin aform that did not require them.
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Cry1 = e'2kn/n

Figure [19]

(notmerely apoint onthered axis), then weabtain thefollowinggeneraizedform
o Cotes' result: ‘
U.(P) = [PCy - PCy--. PC,) €%,

where® = (¢ T ¢, T...F¢,). If Phappenstobeareal number (again supposed
gregter than 1) then ® = 0 [make sureyou seethis], and werecover Cotes' result.

We did not immediately state and prove Cotes result in terms of complex
numbers because we felt there was something rather fascinating about our firg,
direct approach. Viewed in hindsight, it shows that even if we attempt to avoid
complex numbers, we cannot avoid the geometry of the complex plane!

6 Vectorial Operations

Na only is complex addition the same as vector addition, but we will now show
that the familiar vectorial operationsof dot and cross products (also called scalar
and vector products) are both subsumed by complex multiplication. Since these
vectorid operations are extremely important in physcs—they were discovered
by physicigsl —their connection with complex multiplicationwill prove vauable
bath in applying complex analysisto the physical world, and in using physicsto
understand complex analysis.

When acomplex number z = x +iyis being thought of merely as a vector,
we shall writeit in bold type, with its componentsin a column:

I=x+iy z=(;).

Although the dot and cross product are meaningful for arbitrary vectorsin space,
we shall assume in the following that our vectors al lie in a single plane—the
complex plane.

Giventwo vectorsaand b, figure[20a] recallsthe definition of thedot product
asthelength of onevector, timesthe projectiononto that vector of theother vector:

a-b = |a||b|cosf = b-a,
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o x [b]

0

\®\

Figure [20]

where8 isthe angle between a and b.

Figure [20b] recalls the definition of the cross product: a x b is the vector
perpendicular to the plane of a and b whose length is equal to the area A of the
parallelogram spanned by a and b. But wait, there are two (opposite) directions
perpendicular to C; which should we choose?

Writing A = {a| |b| sin8, the area A has a sign attached toit. An easy way to
see thissign isto think of the angle 8 fromato b aslying in range —x to zr; the
signof A isthenthesameas8. If A > 0, asin [20b], then wedefineax b to point
upwardsfrom the plane, and if A < 0 we defineit to point downwards. It follows
thatax b= —(bx a).

This conventional definition of a x b isintrinsically three-dimensional, and it
therefore presents a problem: if a and b are thought of ascomplex numbers, a x b
cannot be, for it does not lie in the (complex) plane of a and b. No such problem
exists with the dot product becausea-b issimply areal number, and this suggests
away out.

Since al our vectorswill be lying in the same plane, their cross products will
all have equa (or opposite) directions, so the only distinction between one cross
product and another will be the value of A. For the purposesof this book we will
therefore redefine the cross product to be the (signed)area A of the parallelogram
spanned by a and b:

axb=|al|blsin8 =—(bx a).

Figure [21] showstwo complex numbersa = |a| €'V and b = |b| ¢!, theangle
fromatobbeing8 = (8 —a). Toseehow their dot and cross productsare related
to complex multiplication, consider the effect of multiplying each point in C by
a. Thisisarotation of —a and an expansion of |a|, and if welook at the image
under this transformation of the shaded right triangle with hypotenuse b, then we
immediately see that

ab=a-b+i(axbh). 20)

Of course we could also have got this by simple calculation:

ab = (lale ") (|b| €#) = |a| |b| B~ = |a| |b| €' = |a]| |b|(cosb + i sinh).
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Figure[21]

When we refer to the dot and cross products as "' vectoria operations” we
mean that they are defined geometrically, independently of any particular choice
d coordinateaxes. However, oncesuch achoice hasbeen made, (20) makesit easy
to expressthese operationsin terms of Cartesian coordinates. Writinga = x + iy

andb=x'Ttiy,

ab=(x—iy)x' +iy) = @x"+yy) +i(xy — yx),

)2(5)--r
y' ’

We end with an examplethat illustratestheimportance of the sign of the area
(ax b). Consider the problem of finding the area A of the quadrilateral in [22a]
whose vertices are, in counterclockwiseorder, a, b, ¢, and d. Clearly thisisjust
thesum o the ordinary, unsigned areas of thefour trianglesformed by joining the
verticesof the quadrilateral to the origin. Thus, since the area of each triangleis

SO

Figure [22]
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simply half the area of the corresponding parallelogram,

A = laxb)t®mxc)t(exd) T @dxa)
= s;Im[ab+bc+cd+dal. eay)

Obviously this formula could easily be generalized to polygons with more than
four sides.

But what if 0 is outside the quadrilateral? In [22b], A is clearly the sum of
the ordinary areas of three of the triangles, minusthe ordinary area of the striped
triangle. Since the angle from b to C is negative, %(b X C) is automaticaly the
negative of the striped area, and A istherefore given by exactly the same formula
as beforel

Can you find a location for 0 that makes two of the signed areas negative?
Check that the formula still works. Exercise 35 shows that (21) always works.

IV Transformations and Euclidean Geometry*
1 Geometry Throughthe Eyes of Felix Klein

Even with the benefit of enormous hindsight, it is hard to introduce complex
numbersin acompelling manner. Historically, we have seen how cubic equations
forced themuponusalgebraically,andin discussing Cotes' work wesaw something
of theinevitability of their geometricinterpretation. In thissection wewill attempt
to show how complex numbers arise very naturally, amost inevitably, from a
careful re-examination of plane Euclidean geometry'©.

Asthe * following the title of this section indicates, the material it contains
may be omitted. However, in addition to "explaining" complex numbers, these
ideas are very interesting in their own right, and they will also be needed for an
understanding of other optional sections of the book.

Although the ancient Greeks made many beautiful and remarkable discover-
ies in geometry, it was two thousand years later that Felix Klein first asked and
answered the question, ""What is geometry?"

Let usrestrict ourselves from the outset to plane geometry. One might begin
by saying that thisis the study of geometric properties of geometric figuresin the
plane, but what are (i) "' geometric properties”, and (ii) " geometric figures"? We
will concentrate on (i), swiftly passing over (ii) by interpreting " geometricfigure'
as anything we might choose to draw on an infinitely large piece of flat paper with
aninfinitely fine pen.

Asfor (i), we begin by noting that if two figures (e.g., two triangles) have
the same geometric properties, then (from the point of view of geometry) they
must be the "same", "equa™, or, as one usually says, congruent. Thus if we had
aclear definition of congruence (**geometric equality™) then we could reversethis

10The excellent book by Nikulinand Shafarevich[1987] is the only other work we know of in
which asimilar attempt is made.
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observation and define geometric properties as those properties that are common
to all congruent figures. How, then, can we tell if two figures are geometrically
equal?

Consider the triangles in [23], and imagine that they are pieces of paper that
you could pick up in your hand. To seeif T iscongruent to T', you could pick up
T and check whether it could be placed on top of T'. Notethat it isessential that
we be alowedto move T in space: in order to place T ontop of T we must first
flipit over; wecan't just lide T around withinthe plane. Tentatively generalizing,
this suggeststhat a figure F is congruent to anotherjigure F if there exists a
motion of Fthrough space that makes it coincidewith F. Notethat the discussion
suggests that there are two fundamentally different types of motion: those that
involveflipping thefigureover, and those that do not. Later, we shal return to this
important point.

Figure [23]

Itisclearly somewhat unsatisfactory that in attempting to define geometry in
the plane we have appealed to the idea of motion through space. We now rectify
this. Returning to [23], imaginethat T and T' are drawn on separate, transparent
sheets of plastic. Instead of picking up just the triangle T, we now pick up the
entire sheet on whichitis drawn, then try to placeit on the second sheet so as to
meke T coincide with T'. At the end of this motion, each point A on T’s sheet
liesover apoint A" of T'’s sheet, and we can now definethe motion M to be this
mapping A — A' = M (A) of the planeto itself.

However, not any old mapping qualifiesasa motion, for we must also capture
the (previoudly implicit) idea of the sheet remaining rigid whileit moves, so that
distances between points remain constant during the motion. Here, then, is our
definition:

Amotion M isa mapping of the planetoitself such that thedistance
between any two points A and B is equal to the distance between (22)
their images A' = M (A) and B' = M (B).

Note that what we have called a motion is often termed a"'rigid motion™, or an
"isometry".

Armed with this precise concept of motion, our final definition of geometric
equdity becomes
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Fis congruent to F', written F = F, if there existsa motion M 23)
suchthat F = M (F).

Next, as a consequence of our earlier discussion, a geometric property of a figure
isonethat is unaltered by all possible motionsof the figure. Finally, in answer to
the opening question of ""What is geometry?, Klein would answer that it is the
study of these so-called invariantsof the set of motions.

One of the most remarkable discoveries of thelast century wasthat Euclidean
geometry is not the only possible geometry. Two of these so-called non-Euclidean
geometries will be studied in Chapter 6, but for the moment we wish only to
explain how Klein was able to generalize the above ideas so as to embrace such
new geometries.

Theaimin (23) wasto use afamily of transformations to introduce a concept
of geometric equality. But will this=-type of equality behavein theway wewould
like and expect? To answer this we must first make these expectations explicit. So
as not to confuse this general discussion with the particular concept of congruence
in (23), let us denote geometric equality by ~.

(i) A figureshould equal itself: F~ F,forall F.
(i) If FequasF', then F shouldequal F- F~ F' = F' ~ F.

(iii) If Fand F areequal, and F’ and F' are equal, then F and F” should also
beequa: F~F & F ~ F" = F~ F”".

Any relation satisfying these expectationsis called an equivalencerelation.

Now suppose that we retain the definition (23) of geometric equality, but that
we generalize the definition of ""motion™ givenin (22) by replacing the family of
distance-preserving transformations with some other family G of transformations.
It should be clear that not any old G will be compatible with our aim of defining
geometric equality. Indeed, (i), (ii), and (iii) imply that G must havethefollowing
very specid structure, which isillustrated! in [24].

(i) Thefamily G must contain atransformation £ (called the identity) that maps
each point to itself.

(i) If Gcontainsatransformation M , then it must also contain a transformation
M~ (called the inverse) that undoes M . [Check for yourself that for M~!
to exist (let alone be amember of G) M must have the special properties of
being (a) onto and (b) one-to-one, i.e., (a) every point must be the image of
some point, and (b) distinct points must have distinct images.]

(iii) If M and N are members of G then so is the composite transformation
N oM = (M followed by V). This property of G iscalled closure.

Wehavethusarrived, very naturally, at aconcept of fundamental importancein the

HHere G is the group of projections. If we do a perspectivedrawing of figuresin the plane,
then the mapping from that plane to the "'canvas” planeiscalled a perspectivity. A projectionis
then defined to be any sequenceof perspectivities. Can you see why the set of projectionsshould
form agroup?
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wholeof mathematics: afamily G of transformationsthat satisfiesthese three!?
requirementsis called a group.

Let uscheck that themotionsdefinedin (22) doindeed form agroup: (i) Since
theidentity transformationpreservesdistances, itisamotion. (ii) Provided itexists,
the inverse of a motion will preserve distancesand hence will be amotion itself.
Asfor existence, (a) it is certainly plausible that when we apply a maotion to the
entire plane then the image is the entire plane—we will provethislaer—and (b)
the non-zero distance between distinct pointsis preserved by a motion, so their
images are again distinct. (iii) If two transformationsdo not ater distances, then
goplying them in succession will not ater distances either, so the composition of
two motionsis another motion.

Klein’s idea was that we could first select a group G at will, then define a
corresponding “geometry” as the study of the invariantsof that G. [Klein first
announced this ideain 1872—when he was 23 years dd! —at  the University of
Erlangen, andit hasthuscometo beknown ashisErlangen Program.] For example,
if we choose G to be the group of motions, we recover the familiar Euclidean
geometry of the plane. But thisis far from being the only geometry of the plane,
asthe so-called projective geometry of [24] illustrates.

Klein’s vision of geometry was broader still. We have been concerned with
wha geometries are possible when figures are drawn anywhere in the plane, but
suppose for example that we are only alowed to draw within some disc D. It
should be clear that we can construct "' geometries of D™ in exactly the same way
thet we constructed geometries of the plane: given agroup H of transformations
of D toitself, the corresponding geometry is the study of the invariantsof H. If
yau doubt that any such groups exist, consider the set of al rotations around the
centreof D.

121 more abstract settingsit isnecessary to add a fourth requirement of associativity, namely,
Ao@BoC) = (Ao oC. Of coursefor transformations thisis automatically true.
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Thereader may well feel that the above discussion is a chronic case of mathe-
matical generalization running amuck —that the resulting conception of geometry
is (to coin a phrase) "as subtle as it is usdless". Nothing could be further from
the truth! In Chapter 3 we shall be led, very naturally, to consider a particularly
interesting group of transformationsof adisctoitself. Theresulting non-Euclidean
geometry iscalled hyperbolic or Lobachevskian geometry, and it is the subject of
Chapter 6. Far from being useless, this geometry has proved to be an immensely
powerful tool in diverse areas of mathematics, and the insights it continues to
providelie on the cutting edge of contemporary research.

2 Classifying Motions

To understand the foundations of Euclidean geometry, it seems we must study its
group of mations. At the moment, this group is defined rather abstractly as the set
of distance-preserving mappings of the planetoitself. However, it iseasy enough
to think of concrete examplesof motions: arotation of the planeabout an arbitrary
point, atrandation of the plane, or areflection of the planein someline. Our aim
isto understand the most general possible motionsin equally vivid terms.

We begin by stating a key fact:

A motion is uniquely determined by its effect on any triangle (i.e., 24)
on any three non-collinear points).

By thiswe mean that knowing what happensto the three pointstells us what must
happen to every point in the plane. To seethis, first ook at [25]. This shows that
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Figure [25]

each point P isuniquely determined by its distancesfrom the vertices A, B, C of
such atriangle!. Thedistancesfrom A and B yield two circleswhich (in general)
intersect in two points, P and Q. The third distance (from C) then picks out P.
Toobtaintheresult (24), now look at [26]. Thisillustratesamotion M mapping
A,B,CtoA', B, C. By thevery definitionof amotion, M must map an arbitrary

13This is how earthquakes are located. Two types of wave are emitted by the quake as it
begins: fast-moving ""P-waves" of compression, and slower-moving "*S-waves" of destructive
shear. Thus the P-waves will arrive at a seismic station before the S-waves, and the time-lag
betweentheseeventsmay beused to cal cul atethedistanceof thequakefrom that station. Repeating
this calculation at two more seismic stations, the quake may be located.
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Figure [26]
point P to a point P whose distances from A', B', C' are equa to the original
distancesof P from A, B, C. Thus, asshown, P’ is uniquely determined. Done.

A hig step towards classification is the realization that there are two funda-
mentaly different kinds of motions. In terms of our earlier conception of motion
through space, the distinctioniswhether or not afiguremust beflipped over before
it can be placed on top of a congruent figure. To see how this dichotomy arisesin
terms of the new definition (22), suppose that a motion sends two points A and
B to A" and B'. See [27]. According to (24), the motion is not yet determined:
we need to know the image of any (non-collinear) third point C, such as the one
shownin [27]. Since motions preserve the distances of C from A and B, thereare
just two possibilitiesfor theimage of C, namely,C' andits reerc‘uonC in theline
L through A" and B'. Thusthere are precisely two motions ( M and M , say) that
map A, Bto A', B: M sendsCtoC', and M sends C to C.

A distinction can be made between M and M by looking at how they affect
angles. All motions preserve the magnitude of angles, but we see that M also
preservesthe sense of theangle 8, while M reversesit. Thefundamental nature of
thisdistinction can be seen from the fact that M must in fact preserveall angles,
whlle M must reverseall angles.

Figure [27]
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To see this, consider the fate of the angle ¢ in thetriangle T. If C goesto C’
@i.e., if themotionis M ) then, carrying out the constructionindicated in [26], the
imageof T is T, and the angleis preserved. If, on the other hand, C goesto C
(i.e., if the motionisM_ ) then theimage of T isthereflection T of T/ inL, and
theangleisreversed. Motionsthat preserveanglesarecalled direct, and those that
reverseanglesare called opposite. Thusrotationsand trand ationsare direct, while
reflections are opposite. Summarizing what we have found,

There is exactly one direct motion M (and exactly one

opposite mation M) that maps a given linesegment AB

to another linesegment A'B' o equal length. Furthermore,
= (M followed by reflection in the line A'B).

25)

To understand motions we may thus consider two randomly drawn segments
ABand AB' of equd length, thenfind the direct motion (and the oppositemotion)
that maps one to the other. It is now easy to show that

Every direct motion isa rotation, or else (exceptionally) a transla- (26)
tion.

Note that this result gives us greater insight into our earlier calculations on the
composition of rotationsand trandations. sincethe composition of any two direct
motionsis another direct motion [why?], it can only be arotation or atrandation.
Conversdly, those caculations allow usto restate (26) in avery neat way:

Every direct motion can be expressed as a complex function of the @7
foomM (z)= €% +v.

We now establish (26). If the line-segment AB' is parallel to AB then the
vectors AB and A'B’ are either equal or opposite. If they are equal, asin [28a],
themotionisatrandation; if they areopposite, asin [28b], themotionisarotation
of 7 about the intersection point of thelines AA" and BB..

If the segmentsare not paralel, produce them (if necessary) till they mest at
M, and let 8 be the angle between thedirections of AB and A’B'. See[28c¢). First
recall an elementary property of circles: thechord AA' subtends the sameangle 8
at every pointof thecirculararc AMA'. Next, let O denotetheintersection point of
thisarc with the perpendicular bisector of AA". We now seethat thedirect motion
carrying AB to AB' isarotation of 6§ about O, for clearly A isrotatedto A, and
thedirectionof AB isrotated into thedirection of A’B’. Done.

The sense in which trandations are "' exceptional” is that if the two segments
aredrawn at randomthenitisvery unlikely that they will be pardlel. Indeed, given
AB, atrandationisonly needed for one possibledirectionof A' B’ out of infinitely
many, so the mathematical probability that arandom direct motion isatrandation
isactualy zero!

Direct transformationswill be moreimportant to usthan opposite ones, so we
relegate the investigation of opposite motions to Exs. 39, 40, 41. The reason for
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Figure [28]

the greater emphasis on direct motions stemsfrom thefact that they form agroup
(asubgroup of thefull group of motions), whiletheoppositemotionsdo not. Can
yau see why?

3 Three Reflections Theorem

In chemistry oneis concerned with the interactionsof atoms, but to gain deeper
indghtsone must study theelectrons, protons, and neutronsfrom which atomsare
built. Likewise, though our concern is with direct motions, we will gain deeper
insghts by studying the opposite motions from which direct motions are built.
More precisely,

Every direct motion is the composition of two reflections. (28)

Noate that the second sentence of (25) then implies that every opposite motion
is the composition of three rejections. See Ex. 39. In brief, every motion is the
composition of either two or three reflections, a result that is called the Three
Reflections Theorem!*.

Earlier wetried to show that the set of motionsforms a group, but it was not
clear that every motion had an inverse. The Three ReflectionsTheorem settlesthis
negtly and explicitly, for the inverse of a sequence of reflectionsis obtained by
reversang the order in which the reflectionsare performed.

In what follows, let R;, denote reflection in aline L. Thus reflectionin L
followed by reflectionin L is written Rz, o Rz,. According to (26), proving
(28) amounts to showing that every rotation (and every trandation) is of theform
R, o Ry, . This isan immediate consequence of the following:

If L1 and L, intersect at O,and theangle from L1 to Ly is¢, then
R, o Ry, is arotation of 24 about O,

ad

l4Results such as (26) may instead be viewed as consequences of this theorem; see Still-
wdl [1992] for an elegant and elementary exposition of this approach.
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If L1 and L areparalel, and V is the perpendicular connecting
vectorfrom L to L2, then Rz, o R, isatranslationd 2V.

Both these results are easy enough to prove directly [try it!], but the following is
perhaps more elegant.

First, since Rz, o Ry, is a direct motion (because it reverses angles twice),
it iseither arotation or a trandation. Second, note that rotations and translations
may bedistinguished by their invariant curves, that is, curvesthat are mappedinto
themselves. For arotation about apoint 0, theinvariant curvesare circles centred
at 0, whilefor atrandation they are lines parallel to the tranglation.

Figure[29]

Now look at [29a]. Clearly #1, o R, leavesinvariant any circlecentred at O,
soitisarotation about 0. To seethat the angle of therotation is 24, consider the
image P’ of any point P on L. Done.

Now look at [29b]. Clearly Ry, o Ry, leavesinvariant any line perpendicular
toL;and L2, soitisatrandation paralel to suchlines. To seethat the translation
is2V, consider theimage P’ of any point P on Lj. Done.

Note that a rotation of 8 can be represented as %z, o Rr,, where Ly, Ly is
any pair of lines that pass through the centre of the rotation and that contain an
angle (6/2). Likewise, atrandlation of T corresponds to any pair of parallel lines
separated by T/2. This circumstance yields a very elegant method for composing
rotations and translations.

For example, see [30a]. Here arotation about a through 8 isbeing represented
asfy, o R, and arotation about b through ¢ is being represented as R, o Ry .
To find the net effect of rotating about a and then about b, choose L, = L to be
theline througha and b. If 6 T ¢ # 27, then L; and L/, will intersect at some
point ¢, asin [30b]. Thus the composition of the two rotationsis given by

Gty oRp) o Ry oRpy) =Ry o Ry,

whichisarotation about ¢ through (8 + $)! That thisconstruction agreeswith our
calculation on p. 18 isdemonstrated in Ex. 36.
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Figure [30]
Further examplesof this method may befound in Ex. 42 and EX. 43.

4 Similarities and Complex Arithmetic

Let ustakeacloser look at theroleof distancein Euclidean geometry. Supposewe
havetwo right triangles T and T _drawn in the same plane, and supposethat Jack
measures T while Jill measures T. If Jack and Jill both report that their triangles
havesides3, 4, and 5, thenitistempting to say that thetwotrianglesarethe same,
in thesensethat thereexistsamotion M suchthat T = M (T). But wait! Suppose
that Jack's ruler is marked in centimetres, while Jill's is marked in inches. The
two triangles are similar, but they are not congruent. Whichis the"true" 3, 4, 5
triangle?Of course they both are.

The point is that whenever we talk about distances numerically, we are pre-
supposinga unit d measurement. This may be pictured as a certain line-segment
U, and when we say that some other segment has a length of 5, for example, we
meen that precisely 5 copiesof U can befittedintoit. But on our flat!® plane any
choice of U is as good as any other —there is no absolute unit of measurement,
and our geometric theorems should reflect that fact.

Meditatingon this, werecognizethat Euclidean theoremsdo not in fact depend
on this (arbitrary) choice of U, for they only deal with ratios of lengths, which
ae independent of U. For example, Jack can verify that his triangle T satisfies
Pythagoras’ Theoremin theform

(3em)? + (4cm)? = (5cm)?,

but, dividing both sides by (5cm)2, this can be rewrittenin terms of the ratios of
the sides, which are pure numbers:.

(3/5)% + (4/5)* = 1.

Try thinking of another theorem, and check that it too deals only with ratios of
lengths.

151n the non-Eudlidean geometriesof Chapter 6 we will be drawing on curved surfaces, and
theamount of curvaturein the surfacevill dictatean absoluteunit of length.
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Since the theorems of Euclidean geometry do not concern themselves with
the actual sizes of figures, our earlier definition of geometric equality in terms of
motionsisclearly too restrictive: two figures should be considered thesameif they
are similar. More precisely, we now consider two figuresto be the sameif there
existsa similarity mapping one to the other, where

AsimilarityS isamapping of the planetoitselfthat preservesratios
of distances.

It is easy to see [exercise] that a given similarity S expands every distance
by the same (non-zero) factor r, which we will call the expansion of S We can
thereforerefine our notation by including the expansion as a superscript, so that a
general similarity of expansionr iswrittenS'. Clearly, theidentity transformation
isasimilarity, S¥ o« 8" = Sk, and (§")"! = SU/N w0t isfairly clear that the
set of al similaritiesforms agroup. We thus arrive at the definition of Euclidean
geometry that Klein gavein his Erlangen address:

Euclidean geometry is the study of those properties of geometric 29)
figures that are invariant under the group of similarities.

Since the motions are just the similarities S! of unit expansion, the group of
motionsisasubgroup of thegroup of similarities;our previousattempt at defining
Euclidean geometry therefore yieldsa'* subgeometry™ of (29).

A simpleexampleof anS isacentral dilation D Asillustratedin [31a], this
leaves o fixed and radially stretcheseach segment oA by r . Note that theinverseof
acentral dilationisanother central dilationwith thesamecentre: (D;)“ = Df,l/ i
If thiscentral dilationisfollowed by (or preceded by) arotation RS with the same
centre, then we obtain the dilative rotation

D% =RY oD =D}, o R,

shownin [31b]. Notethat a centra dilation may be viewed as a special case of a
dilativerotation: D, = D;°.

Dy (4)

DI (A)

O AL

Figure[31]
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This figure should be ringing loud bells. Taking o to be the origin of C, (9)
systhat D{;B correspondsto multiplication by r e'®:

D0 (2) = (r eie) 2.

Conversdy, and thisis the key point, the rule for complex multiplicationmay be
viened as a consequence of the behaviour of dilativerotations.

Concentrate on the set of dilative rotations with a common, fixed centre o,
which will bethought of astheorigin of thecomplex plane. Each DY is uni quely
determined by its expansion r and rotation 0, and so it can be represented by a
vector of length r at angle 0. Likewise, fo“” can be represented by a vector of
length R at angle ¢. What vector will represent the composition of these dilative
rotations?Geometrically it is clear that

DRS D10 = DI o DR — DRrO+9)

sothe new vector isobtai ned from the original vectorsby multiplyingtheir lengths
and adding their angles—complex multiplication!

On page 17 we saw that if complex numbers are viewed as trand ations then
compodtion yields complex addition. We now seethat if they areinstead viewed
asdilativerotations then composition yiel ds complex multiplication. To complete
aur "explanation™ of complex numbersin terms of geometry, we will show that
thesetrand ationsand dil ativerotations are fundamental to Euclidean geometry as
definedin (29).

To understand the general similarity S' involved in (29), notethat if pisan
abitraypoint, M =S on,l/ " isamoti on. Thusany similarityisthe composition
of a dilation and a motion:

S = Mo, (30)

Qur classfication of motionsthereforeimpliesthat similaritiescomein two kinds:
if M preservesanglesthen sowill S' [adirect similarity];if M reversesangles
then sowill S’ [an opposite similarity].

Just asweconcentrated on thegroup of direct motions, so wewill now concen-
trate on the group of direct similarities. The fundamental role of trandationsand
dilativerotationsin Euclidean geometry finally emergesin thefollowing surprising
theorem:

Every direct similarity is a dilative rotation or (exceptionally)a 31)
trandation.

For us thisfact constitutes one satisfying ""explanation' of complex numbers; as
mentioned in the Preface, other equally compelling explanations may befoundin
thelawsof physics.

To begin to understand (31), observe that (25) and (30) imply that a direct
smilarity isdetermined by theimage A'B' of any line-segment AB. First consider
theexceptional casein which A'B' areof equal length AB. Wethen havethethree
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Figure [32]

casesin [28], al of whichareconsistent with (31). If A'B' and AB are paralle but
not of equal length, then we have the two cases shownin [32a] and [32b], in both
of which we have drawn thelines AA' and BB' intersecting in p. By appealing
tothe similar trianglesin these figures, we see that in [32a] the similarity isDr’O,
whilein [32b] itis D", wherein both casesr = (pA’/pA) = (pB’/pB).

Now consider the much moreinteresting general casewhere A B and AB are
neither the same length, nor parallel. Take a peek at [32d], which illustrates this.
Here n isthe intersection point of the two segments (produced if necessary), and
0 is the angle between them. To establish (31), we must show that we can carry
AB to A'B' with asingle dilativerotation. For the time being, smply note that if
AB isto end up having the same direction as A'B' then it must be rotated by 0,
so theclaim isreally this: There exists a point g, and an expansion factor r, such
that D, carries Ato A and B to B'.

Consider the part of [32d] that is reproduced in [32c]. Clearly, by choosing
r = (nA’/nA), Dy will map Ato A'. Moregenerally, you seethat wecan map A
to A with Df,’g if andonly if AA" subtends angle 0 atq. Thus, with theappropriate
valueof r ,D,’I’O maps A to A f and only if g lieson thecircular arc AnA’. The
figureillustrates one such position, g = m. Before returning to [32d], we need to
notice one more thing: m A subtends the same angle (marked a) at n and A'.

Let us return to [32d]. We want D,’I’g tomap Ato A and B to B'. According
to the argument above, g must lieon thecircular arc An A’ and on the circular arc
BnB'. Thustherearejust two possibilities: = n or g = m (the other intersection
point of thetwoarcs). If youthink aboutit, thisisamoment of high drama. Wehave
narrowed down the possibilitiesfor g to just two points by consideration of angles
alone; for either of these two points we can choose the value of theexpansion r so
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astomake A goto A, but, once this choice has been made, either B will map to
B' or it won'tl Furthermore, it is clear from the figure that if g = » then B does
not mapto B', sog = mistheonly possibility left.

In order for D{,;e to simultaneously map A to A" and B to B', we need to have
r=(mA’/mA) = (mB’/mB); in other words, the two shaded triangles need to
be similar. That they areindeed similar is surely something of a miracle. Looking
a the angles formed at n, we see that 6 + © T e = 7, and the result follows
immediately by thinking of the RHS as the angle-sum of each of the two shaded
triangles. This completes our proof'® of (31).

Thereader may feel that it isunsatisfactory that (31) callsfor dilativerotations
about arbitrary points, while complex numbers represent dilative rotations about
a fixed point o (the ori%i n). This may be answered by noting that the images of
AB under D;’e and D2° will be parallel and of equal length, so there will exist a
trandation[see Ex. 44 for details] 7, mapping one onto the other. In other words, a
generd dilativerotation differsfrom an origin-centred dilative rotation by a mere
trandation: D,’I’g =7, oD, Tosum up,

Every direct similarity S" can be expressed as a complexfunction
d theform S'(z) = ref®z +v.

5 Spatial Complex Numbers?

Let us briefly attempt to generalize the above ideas to three-dimensional space.
Firdgly, acentral dilation of space (centred at O) isdefined exactly as before, and
adilativerotation with the same centre is then the composition of such a dilation
with arotation of space about an axis passing through O. Once again taking (29)
as the definition of Euclidean geometry, we get off to a flying start, because the
key result (31) generalizes: Every direct similarity d space isa dilative rotation,
atrandation, or the compositiond a dilative rotation and a tranglation along its
rotation axis. See Coxeter [1969, p. 103] for details.

Itisthereforenatural to ask if there might exist " spatial complex numbers” for
which additionwoul d be composition of translations, and for which multiplication
would becompositionof dilativerotations. Withaddition all goeswell: theposition
vector of each point in space may be viewed as a tranglation, and composition of
these trandations yields ordinary vector addition in space. Note that this vector
addition makes equally good sense infour-dimensional space, or n-dimensiona
specefor that matter.

Now consider the set Q of dilative rotations with a common, fixed centre O.
Initidly, the definition of multiplication goes smoothly, for the' product™ Qj o Q2
d twosuchdilativerotationsiseasily seento beanother dilativerotation (Q3, say)
d the same kind. This follows from the above classification of direct similarities
by noting that Q1 o Q, leaves O fixed. If theexpansionsof Q; and Q> arer; and

16The present argument has the advantage of proceeding in steps, rather than having to be
discoveredall at once. For other proofs, see Coxeter and Greitzer {1967, p. 971, Coxeter [1969,
p. 73], and Eves[1992, p. 71]. Also, see Ex. 45for asimple proof using complex functions.
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ry thentheexpansionof Q3 isclearly r3 = rq rp, andin Chapter 6 we shall givea
simplegeometric constructionfor therotation of Q3 from therotationsof Q; and
Q2. However, unlikerotationsin the plane, it makes adifferencein what order we
perform two rotationsin space, so our multiplication ruleis not commutative:

Q1002 %# @20 Q1. (32)

We are certainly accustomed to multiplication being commutative, but thereis
nothing inconsi stent about (32), so this cannot be considered a decisive obstacle
to an algebraof "' spatial complex numbers”.

However, a fundamental problem does arise when we try to represent these
dilative rotations as points (or vectors) in space. By analogy with complex mul-
tiplication, we wish to interpret the equation Q1 o @2 = Q3 as saying that the
dilativerotation Q3 mapsthe point 0, to the point Q3. But thisinterpretationis
impossible! The specification of a point in space requires three numbers, but the
specificationof adilativerotation requiresfour: onefor the expansion, onefor the
angleof rotation, and two!” for the direction of the axis of the rotation.

Although we have failed to find a three-dimensiona analogue of complex
numbers, we have discovered thefour-dimensional space Q of dilative rotations
(centred a 0) of three-dimensiona space. Membersof Q are called quaternions,
and they may be pictured as points or vectorsin four dimensions, but the details
o how to do this will have to wait till Chapter 6. Quaternions can be added by
ordinary vector addition, and they can be multiplied using the non-commutative
rule above (composition of the corresponding dilative rotations).

Thediscoveriesaf therulesfor multiplyingcomplex numbersand for multiply-
ing quaternions have someinteresting parallels. Asis well known, the quaternion
rule wasdiscoveredin algebraic form by Sir William Rowan Hamiltonin 1843. It
islesswell known that three yearsearlier Olinde Rodrigues had published an ele-
gant geometricinvestigationof thecomposition of rotationsin spacethat contained
essentially the same result; only much later!® wasit recognized that Rodrigues
geometry was equivalentto Hamilton's algebra.

Hamiltonand Rodriguesarejust two examplesof hapless mathematicianswho
would have been dismayedto examinethe unpublished notebooksof thegreat Karl
Friedrich Gauss. There, likejust another log entry in the chronicle of his private
mathematical voyages, Gauss recorded his discovery of the quaternion rule in
1819.

In Chapter 6 weshall investigatequaternionmultiplicationin detail and find that
it haselegant applications. However, theimmedi atebenefit of thisdiscussionisthat
we can how seewhat aremarkableproperty itisof two-dimensionalspacethatitis
possibletointerpret pointswithin it asthefundamental Euclideantransformations
acting on it.

1770 see this, imagine a sphere centred a 0. The direction of the axiscan be specified by its
inter section with the sphere, and this point can be specified with two coor dinates, e.g., longitude
and latitude.

18gee Altmann [1989] for the intriguingdetailsof how thiswasunravelled.
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V Exercises

1 Therootsof ageneral cubicequationin X may be viewed (in the XY -plane) as
theintersectionsof the X-axiswith the graph of acubic of theform,

Y=X>+AX?>+BX +C.

(i) Show that the point of inflection of the graph occursat X = —%.

(ii) Deduce (geometrically) that the substitution X = (x — %) will reduce the
aboveequationtotheform Y = x3 + bx + c.

(iii) Veify thisby calculation.
2 In order to solve the cubic equation x3 = 3 px + 2q, do thefollowing:

(i) Maketheinspired subtitutionx = s +t, and deducethat x solvesthecubic
if st = p ands3+ t3 = 24.

(i) Eliminate t between these two equations, thereby obtaining a quadratic
equationin s3.

(iii) Solvethisquadratic to obtain the two possible valuesof s3. By symmetry,
what are the possible vaues of t3?

(iv) Giventhat weknow that s® + t3 = 2q, deducetheformula(4).

3 In 1591, more than forty years after the appearance of (4), Francois Viéte pub-
lished another method of solving cubics. The method is based on the identity
(seep. 15) cos30 = 4C3 — 3C, where C = cos0.

(i) Substitutex = 2,/p C into the (reduced) genera cubicx3® =3px + 2q to
obtain4C3 —3Cc = —1—.
N
(i) Provided that g> < p?, deduce that the solutions of the original equation
ae

x =2 /peos [} +2mm) ]

wherem isaninteger and ¢ = cos~!(g/p./P)-

(iii) Check that this formula gives the correct solutions of x3 = 3x, namdly,
x=0,+43.

4 Hereisabasicfact about integersthat has many usesin number theory: Iftvo
integerscan be expressedasthesum d two squares, then so can their product.
With the understanding that each symbol denotes an integer, this says that if
M =a?+ b2and N = 2+ d?, then MN = p? + ¢2. Prove this result by
considering}(at ib)(ctid)[%.
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5 Thefigurebeow shows how two similar triangles may be used to construct the
product of two complex numbers. Explain this.

6 (i) If cisafixed complex number, and R isafixed real number, explain with a
picture why |z — ¢| = R istheequation of acircle.

(i) Giventhat z satisfiesthe equation |z T 3 — 4i| = 2, find the minimum and
maximum values of |z|, and the corresponding positions of Z.

7 Useapictureto show that if a and b are fixed complex numbersthen |z — a] =
|z — b| istheequation of aline.

8 Let L beastraight linein C making an angle ¢ with thereal axis, and let d be
its distance from the origin. Show geometrically that if z isany point on L then

d= IIm[e_id’ z]‘ .

[Hint: Interpret e~? using (9).]

9 Let A, B, C, D befour pointson theunitcircle. If A+ B+ C+ D =0, show
that the points must form arectangle.

10 Show geometrically that if |z] = 1 then

b4
Im|———=1|=0.
" [(z n 1)2]
Apart from the unit circle, what other points satisfy this equation?
11 Explain geometrically why thelocus of Z such that

arg (Z _a) = const.
z—b

isan arc of acertain circle passing through the fixed pointsa and b.

12 By using pictures, find the locus of z for each of the following equations:

—1—i
m|{——— | =0U.
Re( Z+1+i
[Hints: What does Re(W) = 0 imply about the angle of W? Now use the

previousexercise.]
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13 Find the geometric configuration of the pointsa, b, and c if

b- ca) a—c
c—a)=\b-c/’
[Hint: Separately egquate the lengths and angles of thetwo sides.]
14 By considering the product (2+ 1) (3 +i ), show that

14 a1
— =tan

= -I-tan_]l
4 2 3

15 Draw e/™/4, ¢/™/2, and their sum. By expressing each of these numbers in the
form (x F iy), deduce that

3
tan—:;—=1+«/§.

16 Starting from theorigin, go one unit east, then the samelength north, then (1/2)
o the previouslength west, then (1/3) of the previouslength south, then (1/4)
o the previous length east, and so on. What point does this " spira" converge
to?

17 If z =€® # —1,then (z — 1) = (i tan §) (z + 1). Provethis (i) by calculation,
(i with apicture.

18 Provethat
. . i(0+¢) . , i(6+¢)
€% + e’ = 2cos [9—;—4’] e 2 and €% — e® = 2isin [9—;‘2] e 2

(i) by calculation, and (ii) with a picture.

19 The" centroid" G of atriangle T istheintersection of itsmedians. If thevertices
arethe complex numbersa, b, and c, then you may assume that

G=13i@+b+o).
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Onthesidesof T wehaveconstructed threesimilar triangles[dotted] of arbitrary
shape, so producinganew triangle[dashed] with verticesp, g, r. Using complex
algebra, show that the centroid of the new triangleisin exactly the same place
asthe centroid of the old triangle!

20 Gaussian integersare complex numbersof theformm +in, wherem and n are
integers—they are the grid pointsin [1]. Show that it isimpossible to draw an
equilateral trianglesuch that all three verticesare Gaussianintegers. [Hints: You
may assumethat oneof the verticesisat theorigin; try aproof by contradiction;
if atriangleisequilateral, you can rotate one side into another; remember that
J3isirrational ]

21 Makeacopy of [12a], draw in the diagonal of the quadrilateral shownin [12b],
and mark its midpoint m. Asin [12b], draw the line-segments connecting m to
p,d,r,ands. Accordingtotheresultin[12b], what happensto p and to » under
arotation of (;r/2) about rn?So what happens to the line-segment pr? Deduce
theresult shown in [12a].

22 Will the result in [12a] survive if the squares are instead constructed on the
inside of the quadrilateral?

23 Draw an arbitrary triangle, and on each side draw an equilateral triangle lying
outsidethegiventriangle. What do you suspect is special about the new triangle
formed by joining the centroids (cf. Ex. 19) of the equilateral triangles? Use
complex algebra to prove that you are right. What happens if the equilateral
triangles are instead drawn on the inside of the given triangle?

24 From (15), we know that

2 net_ 201
1+z+z°4+---+72 =?‘—1‘

(i) Inwhat regionof C mustz liein order that the infinite series1tz+ 22+ . -
converges?

(i) If z liesin this region, to which point in the plane does the infinite series
converge?

(iii) Inthespirit of figure[9], draw alarge, accurate picture of theinfiniteseries
inthecasez = 5 (1 +1), and check that it doesindeed convergeto the point
predicted by part (ii).

25 Let S=cos0 + cos38+ cos50 + . -. T+ cos(2n — 1)6. Show that

S — sm-2n0 or equivalently S — san cosno
2sin0 sin0

[Hint: Use EX. 24, then Ex. 18 to simplify theresult.]



Exercises 49

26 (i) By considering (at ib)(cos6 T i sin®), show that

bcos6 T asing = va? + b2 sin [6 + tan-' (b/a)] )

(ii) Usethisresult to prove (14) by the method of induction.
27 Show that the polar equation of thespiral Z(z) = e®e® in[15b]isr = e(@/b¥,

28 Reconsider the spiral Z(z) = e in [15b], where a and b are fixed real
numbers. Let T be a variable real number. According to (9), z > Fr(z) =
(e¥elP) z isan expansion of the plane by factor €@, combined with arotation
of the planethrough angle b.

(i) Show that 7 [Z(#)] = Z(t +t), and deduce that the spira isan invariant
curve (cf. p. 38) of the transformations F.

(i) Usethisto give a calculus-free demonstration that al rays from the origin
cut the spiral at the same angle.

(iii) Show thatif thespira isrotated about the origin through an arbitrary angle,
the new spiral isagain an invariant curve of each 7.

(iv) Arguethat the spiralsin the previous part are the only invariant curves of

.F-r.

29 (i) If V(¢) isthe complex velocity of a particle whose orbit is Z(z), and dt is
an infinitesimal moment of time, then V(¢) dt is a complex number along
the orbit. Thinking of the integral as the (vector) sum of these movements,
what is the geometric interpretation of f,'f V(@)dt?

atelbt.

(i) Referringto [15b], sketch the curve Z (1) = 17 €

(i) Given the result (13), what is the velocity of the particle in the previous
part.

a+ib
and draw in this complex number in your sketch for part (ii).

(v) Usethisto deduce that

. a1
(iv) Combinethe previous parts to deduce that fol e“eltdt = [—1—— eate'b‘]o,

1 a a qj
a(e? cosb—1)+be? sinb
& cosbtdt = 5
fo e* cos 2+

! b(l — e?cosb) +ae? sinb
 sinbt dr =
./o e sinbt dt NET
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30 Given two starting numbers S1, S, let us build up an infinite sequence S, S5,
S3, 84, .. . withthisrule: each new number istwicethedifference d theprevious
two. Forexample,if S1 = 1and S, = 4,weobtain1, 4, 6,4, —4, —-16, —24, ....
Our aimisto find aformulafor the n" number Sy.

(i) Our generating rulecan bewrittensuccinctly as S,+2 = 2(Sp+1 — Sn). Show
that S, = z" will solve this recurrence relation if z2 — 2z ¥ 2=0.

(ii) Usethe quadratic formulato obtain Z = 1 + i, and show that if A and B
are arbitrary complex numbers, S, = A(l +i)” + B(1 — i) isasolution
of the recurrencerelation.

(iii) 1f wewant only real solutionsof the recurrence relation, show that B = A,
and deducethat S, = 2Re[A(1 T i)"].

(iv) Show that for the above example A = —(1/2) — i, and by writing thisin
polar form deduce that S, = 2"/24/5 cos [@T + tan1 2] .

(v) Check that thisformula predicts S34 = 262144, and useacomputer to verify
this.

[Note that this method can be applied to any recurrence relation of the form
Sn+2 = PSn+1 + q5n.]
31 With the same recurrence relation as in the previous exercise, use a computer

to generate thefirst 30 members of the sequence givenby §; = 2and S, = 4.
Notethe repeating pattern of zeros.

(i) With the same notation as before, show that this sequence corresponds to
A=—i,sotha S, = 2Re[—i (1 Ti)"].

(i) Draw asketch showing thelocations of —i(1+i)" forn=1ton = 8, and
hence explain the pattern of zeros.

(iii) Writing A = a + ib, our example corresponds to a = 0. More generally,
explain geometrically why such a repeating pattern of zeros will occur if
andonly if (a/b) =0,+10rb=0.

(iv) Show that —% = % [l - %] and deduce that a repeating pattern of zeros

will occur if and only if S2 = 2S; (asin our example), S = S, $1 =0, or
S, =0.

(v) Useacomputer to verify these predictions.
32 The Binomial Theorem saysthat if nisa positiveinteger,
n ]
+ b)Yt = n n—r pr n — n:
@vb ;(r a”" b, where r (n—nr)tr!

are the binomial coefficients[not vectard]. The agebraic reasoning leading to
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thisresultisequally validif a and b are complex numbers. Usethisfact to show
that if » = 2m iseven then

(Z;n) B (2;11) + (2?) ...+ (_1)m+1(2r:ni 1) — 7 sin ().

33 Consider theequation (z — 1)'0 = 210,

(i) Without attempting to solve the eguation, show geometrically that al 9
solutions [why not 10?7] must lie on the vertical line, Re(z) = % [Hint;
Ex.7.]

(i) Dividing both sides by z!°, the equation takes the form w!® = 1, where
W = (z — 1)/z. Hence solve the original equation.

(iii) Expressthesesolutionsintheformz = x+iy, and thereby verify theresult
in (i). [Hint: To do this neatly, use Ex. 18.]

A Let S.denote the set of 12°" roots of unity shown in [19], one of which is
£ = ¢!@/6)_Notethat £ isaprimitive 12t root of unity, meaning that its powers
yield all the 12t roots ofunity: S= {£, £2, €3, ..., £'2).

(i) Find all the primitive 12t rootsof unity, and mark them on acopy of [19].

(i1) Write down, intheform of (16), thefactorization of the polynomial ®12(z)
whose roots are the primitive 12 roots of unity. [In general, ®,(z) isthe
polynomial (with the coefficient of the highest power of z equal to 1) whose
roots are the primitive n™ roots of unity; it is called the n™ cyclotomic
polynomial.]

(iii) By first multiplying out pairs of factors corresponding to conjugate roots,
show that ®12(z) = z* — 22+ 1.

(iv) By repeating the above steps, show that ®s(z) = z* + 1.

(v) For a genera value of n, explain the fact that if ¢ is a primitive n root
of unity, then sois ¢. Deduce that ®,(z) always has even degree and real
coefficients.

(vi) Show that if p isaprime number then ®,(z) =1+ 2z + pi SRR
[Hint: Ex. 241

[In these examplesit is striking that @, (z) has integer coefficients. In fact it

can be shown that thisis true for every ®,(z)! For more on these fascinating

polynomials, see Stillwell [1994].]

3 Show algebraically that the formula (21) is invariant under a trandation by k,
i.e., itsvaluedoes not changeif a becomesa +k, b becomes bt k, etc. Deduce
from [22a] that the formula always gives the area of the quadrilateral. [Hint:
Remember, (z +7) isalwaysredl ]



52 Geometry and Complex Arithmetic

36 According to thecalculationon p. 18, Rf oRY = RETD where

_ ae?(1—¢) +b(1 - €?)
€= 1 g6+

L et uscheck that thiscisthesameastheonegiven by thegeometricconstruction
in [30b].

() Explainwhy thegeometricconstructionisequivaenttosayingthat ¢ satisfies
the two conditions

arg[élg]=%¢ and arg[ :a]=—%0.

-b

(i) Verify that thecalculated valuedf ¢ (given above) satisfiesthefirst of these
conditions by showing that

c—b _r sin § -Iei¢/2
i e

(33)

[Hint: Use (1 — €i") = —2i sin(a/2) %/2.]
(i) Inthe sameway, verify that the second condition is also satisfied.

37 Deduce (33) directly from [30b]. [Hint: Draw in the dtitude through b of the
triangle abc, and express its length first in terms of sin %, then in terms of
sin &9 ]

38 On page 18 we calculated that for any non-zeroa, 7, o Ry isarotation:
T,0RE =R%, where c¢=v/(1—e%).

However, if a = 0 then 7, o R§ = 7, isatrandation. Try to reconcile these
factsby considering the behaviour of R¥ in thelimit that a tendsto zero.

39 A glide reflectionis thecomposition 7, o i = Ry o T, of reflectionin aline
L and atrandationv in thedirection of L. For example, if you walk at a steady
pacein the show, your tracks can be obtained by repeatedly applying the same
glide reflection to a single footprint. Clearly, a glide reflection is an opposite
motion.

(i) Draw alineL, aline-segment AB, theimageXE of thesegment under Rz,
and theimage A'B' of AB under theglidereflection7, o Ry.

(ii) Supposeyou erased L from your picture; by considering the line-segments
AA' and BB', show that you can reconstruct L.

(iii)) Given any two segments AB and A'B' of equal length, use the previous
part to construct the glidereflection that maps the former to the latter.
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(iv) Deducethat every opposite motionis aglide reflection.
(v) Expressaglidereflectionasthe compositionof threereflections.

40 Let L bealinemaking angle ¢ (or ¢ + n) with the real axis, and let p bethe
point on L that is closest to the origin, so that |p| is the distance to the line.
Consider the glidereflection [cf. previousexercise] G = 7, o R, wherethe
translatio%i sthroughdistancer paralel toL. Let usfix thevalued ¢ by writing
v=+re?.

(i) Useapicturetoshow that p = %i|p| /¢, and explain the geometric signif-
icanceaf the £,

(i) What transformationis represented by the complexfunction H(z) =z +r?
(iii) Usepicturestoexplanwhy G = 7, o 3 oH o725°S oT_p.
(iv) Deducethat G(z) = ei26 7 T i (r + 2i| p)).

(v) Hence describe (in geometric terms) the glide reflection represented by
G(z) = iz T 4i. Check your answer by looking at the images of —2,
2i,and 0.

41 Let M (z) be the representation of a general opposite motion as a complex
function.

(i) Explainwhy M (z) isadirect motion, and deducefrom (27) that M(z) =
¢z + w, for omeaand w.

(i) Using the previous exercise, deduce that every opposite motionis a glide
reflection.

42 On p. 19 wecalculated that if (8 + ¢) = 27 then

’R,i oRE =T, whee v=(l-é?®—a).

(i) Let Q = (b— a) bethecomplex number from thefirst centre of rotation to
the second. Show algebraically that v haslength 2sin(6/2) | Q|, and that its
direction makesan angle of (%5%) with Q.

(i) Givedirect geometric proofsof these results by redrawing figure [30b] in
thecase (8 T ¢) = 2.

43 On p. 18 we calculated that

T,0R§ =R, where ¢=v/(1—¢%).

(i) Show algebraically that the complex number from the old centre of rotation
(theorigin) to the new centre of rotation (c) haslength 5;1;"(’—‘![72—) and that its
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direction makesan angle of (Z5%) with v.

(if) Representing both R§ and 7, asthe composition of two reflections, usethe
ideain [30b] to givedirect, geometric proofs of these results.

44 Just asin [13b], a dilative rotation D,’,’e centred at an arbitrary point p may be

performed by trandating p to the origin, doing Df,’e, then trangdlating o back to
p. Representing these transformations as complex functions, show that

D) =reéz+v, where v=p(-re).
Conversely, if visgiven, deduce that

T, oD% =Dp?,  where p=uv/(1-r€9).

45 |n the previous exercise you showed that an arbitrary dilativerotation or trans-
lation can be written as a complex function of the form f (z) = az + b, and,
conversely, that every such function represents a unique dilative rotation or

trandlation.

(i) Given two pairs of distinct points{A, B) and { A", BY), show [by finding
them explicitly] that a and b exist such that f (A) = A’ and f (B) = B'.

(ii) Deducetheresult (31).
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Complex Functions as
Transformations

| Introduction

A complex function T is a rule that assigns to a complex number z an image
complex number w = T (2). In order to investigate such functionsit is essential
thet we be able to visualize them. Several methodsexist for doing this, but (until
Chapter 10) we shall focus amost exclusively on the method introduced in the
previouschapter. That is, weshall view z and itsimage w as pointsin the complex
plane so that f becomesatransformation d theplane.

Conventionally, theimage points w aredrawn on afresh copy of C, called the
imege plane or the w-plane. This conventionis illustrated in [1], which depicts
thetransformation z — w = f (z) = (1 +i+/3)z (cf. figure[5], p. 9).

A
C

v

w=f(@)=u+iv

Figure[1]

Usudly, thereal andimaginary partsof z aredenotedx and y, and those of the
image point w aredenoted # and v, sothat w = f (2) = u(z) + iv(2), whereu(z)
and v(z) arereal functionsof z. The preciseformsof thesefunctionswill depend
an whether wedescribe z with Cartesian or polar coordinates. For instance, writing
z=x tiy in the aboveexampleyields

uxtiy)y=x -+3y and vixtiy) =V3x+y,

whilewritingz = r €/® and (1 + i+/3) = 2¢!7/3 yields
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u(re®y =2rcos[9+%] ad v(re'®)=2rsin[f3+$].

Of course we may also describe the w-plane with polar coordinates so that
w = f (2) = Re'?, where R(z) and ¢ (z) are real functions of z. With the same
example as before, the transformation becomes

Rre®y=2r and ¢(re)=0+1.

We shall find that we can gain considerableinsight into agiven f by drawing
pictures showing its effect on points, curves, and shapes. However, it would be
niceif we could simultaneously grasp the behaviour of f for all valuesof z. One
such method is to instead represent f as a vector field, whereby f (z) is depicted
asavector emanating from the point z; for more detail, thereader isinvited to read
the beginning of Chapter 10.

Y & other methods are based on theidea of agraph. Inthecaseof areal function
f (x) of area variablex we are accustomed to the convenienceof visualizing the
overall behaviour of f by meansof itsgraph, i.e., thecurvein thetwo-dimensional
xy-plane made up of the points (x, f (x)). In the case of a complex function this
approach does not seem viable because to depict the pair of complex numbers
(z, f (2)) wewould needfour dimensions: twofor z = x +iy and twofor f (z) =
uTiv.

Actually, the situation is not quite as hopeless as it seems. First, note that al-
though two-dimensional spaceisneeded to draw the graph of areal functionf, the
graphitself [the set of points (x, f (x))] isonly aone-dimensional curve, meaning
that only one real number (namely x) is needed to identify each point within it.
Likewise, athough four-dimensional spaceis needed to draw the set of pointswith
coordinates (x, y, u, v) = (z, f (2)), the graph itself is two-dimensional, mean-
ing that only two real numbers (namely x and y) are needed to identify each
point within it. Thus, intrinsically, the graph of a complex function is merely a
two-dimensional surface (a so-called Riemann surface), and it is thus susceptible
to visualization in ordinary three-dimensional space. This approach will not be
explored in this book, though the last three chapters in particular should prove
helpful in understanding Riemann’s original physical insights, as expounded by
Klein [1881]. See aso Springer {1957, Chap. 1], which essentially reproduces
Klein’s monograph, but with additional helpful commentary.

Thereis another type of graph of acomplex function that is sometimes useful.
The image f (z) of a point z may be described by its distance | £(z)| from the
origin, and the angle arg[f (z)] it makes with the real axis. Let us discard half
of this information (the angle) and try to depict how the modulus | f(z)| varies
with z. To do so, imagine the complex z-plane lying horizontally in space, and
construct apoint at height | f (z)| vertically aboveeach point z in the plane, thereby
producing a surface called the modular surface d f. Figure [2] illustrates the
conical modular surface of f (z) = z, while[3] illustrates the paraboloid modular
surfaceof f (z) = z2.
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Figure[2]

Figure[3]

A note on computer s.Beginninginthischapter, wewill oftensuggest that you
use a computer to expand your understanding of the mathematical phenomenon
under discussion. However, we wish to stress that the specific usesof the computer
that we have suggested in thetext are only a beginning. Think of thecomputerasa
physicist would hislaboratory —you may useit to check your existing ideas about
the construction of the world, or as atool for discovering new phenomenawhich
then demand new ideas for their explanation. In the Preface we make concrete
suggestions(probably of only fleeting relevance) asto how your laboratory should
be equipped.

I Polynomials
1 Positive Integer Powers
ConsiderthemappingZ — w = 2", wheren isapositiveinteger. Writingz = r ¢/
thisbecomesw = r" ¢!"?, i.e., the distanceisraised to then™ power and theangle
ismultiplied by n. Figure[4] isintended to makethisalittle morevivid by showing
the effect of the mapping on some rays and arcs of origin-centred circles. Asyou
can see heren = 3.

On page 27 we saw that then solutionsof z* = 1arethevertices of theregular
n-gon inscribed in the unit circle, with one vertex at 1. This can be understood
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Figure [4]

more vividly from our new transformation point of view. If w = f (z) = z” then
the solutions of z” = 1 are the points in the z-plane that are mapped by f to
the point w = 1 in the w-plane. Now imagine a particle in orbit round the unit
circlein the z-plane. Since 1* = 1, theimage particle w = f (z) will also orbit
round the unit circle (in the w-plane), but with n times the angular speed d the
original particle. Thus each time z executes (1/nr) of arevolution, w will execute
a complete revolution and return to the same image point. The preimages of any
given won theunit circlewill therefore be successivepositions of z asit repeatedly
executes (1/n) of arevolution, i.e., they will be the vertices of aregular n-gon.
With w = 1, figure[5] illustrates thisidea for the mapping w = f (z) = .

Figure[5]

More generaly, [6] shows how to solve z° = ¢ = Re'® by inscribing an
equilateral trianglein thecircle |z| = /R. By the same reasoning, it is clear that
the solutionsof z" = c are the verticesof the regular n-gon inscribed in thecircle
lz] = A/R, with one vertex at angle (¢/n).

Toarriveat thesameresult symbolically, first notethat if ¢ isonevalueof argc,
then the complete set of possible anglesis (¢ + 2mm), wheremis an arbitrary
integer. Setting z = r €9,

n _inf@

PMeind — n _ o= R@H2mr) = r"=R and né=¢+2mmn,
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Z3
N~
Figure [6]
o the solutionsare z,, = v/R !@+2m™/n Egchtimeweincreasem by 1, z,, is

i
rotated by (1/r) of arevolution (because zm41 = en zm), Producing the vertices

d aregular n-gon. Thusthe complete set of solutionswill be obtained if welet m
takeany n consecutivevalues, say m =0,1,2,...,(n - 1).

2 Cubics Revisited*

Asaninstructiveapplication of theseideas, |et usreconsider the problemof solving
acubic equation in x. For simplicity, we shall assume in the following that the
coefficientsof the cubic are all redl.

In the previous chapter we saw [Ex. 1] that the general cubic could always be
reduced to the form x3 = 3px + 29. We then found [Ex. 2] that this could be
solved using Cardano's formula,

x=s+t, where s3=g+/q2-p3 P=g—\/g2-p3, ad st=p.

Onceagain, observethat if g2 < p? then thisformulainvolvescomplex numbers.
On the other hand, we also saw [Ex. 3] that the cubic could be solved using
Viete’s formula:

ifg2 < p3 then x =2./pcos [%(d) + 2mn)] ,

where m is an integer and ¢ = cos“(q/pﬁ). At the time of its discovery,
Viete’s ""angle trisection' method was a breakthrough, becauseit solved the cubic
(using only real numbers) precisely when Cardano's formulainvolved " impossi-
ble", complex numbers. For a long time thereafter, Viéte’s method was thought
to be entirely different from Cardano's, and it is sometimes presented in this way
even today. We shall now take acloser look at these two methodsand see that they
areredlly the same.
If ¢> < p?, thenin Cardano's formulas® and t2 are complex conjugates:

s=q+ip3—q2 and P=s3=qg—ip3-q

Thesecomplex numbersareillustrated ontheRHS of [7]. By Pythagoras Theorem,
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they both havelength |s®| = p./p, and sotheangle¢ occurringin Vigte’s formula
issimply the angle of s3.

Sinces® and t2 lie on the circle of radius (,/p)°>, their preimages under the
mapping z — z> will lieon thecircle of radius ./p. The LHS of [7] showsthese
preimages; note that the three values of t are the complex conjugates of thethree
vauesdf s.

Accordingto the Fundamental Theorem of Algebra, theoriginal cubic should
have three solutions. However, by combining each of the three vaues of s with
each of the three values of t, it would seem that Cardano's formulax = s +t
yields nine solutions.

Theresolutionliesin thefact that we also requirest = p. Sincep isredl, this
meanss and t must have equal and oppositeangles. Intheformulax = s +t, each
of thethree vauesof s must therefore be paired with the conjugate valueof t. We
can now see how Cardano's formula becomes Vigte’s formula

Xn =Sm+tm =5Sm+5n =2p cos[%(¢+2mn)].

In Ex. 4 the reader isinvited to consider thecaseg? > p3.

3 Cassinian Curves*

Consider [8a]. Theends of a piece of string of length ! are attached to two fixed
pointsa; and az in C, and, withitstipat z, apencil holdsthestring taut. Thefigure
illustrates the well known fact that if we move the pencil (continuing to keep the
string taut) it traces out an ellipse, with foci a; and ay. Writingry 2 = |z — a1,21,
the equation of theellipseisthus

ri+r=I.

By choosing different vaues of 1 we obtain the illustrated family of confocal
dlipses.

In 1687 Newton published his great Principia, in which he demonstrated that
theplanetsorbitin suchellipses, with thesun at oneof thefoci. Sevenyearsearlier,
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Figure [8]

however, Giovanni Cassini had instead proposed that the orbits were curves for
which theproduct of the distancesis constant:

ry - rp = const. = k2. )

Thesecurvesareillustratedin [8b]; they arecalled Cassinian curves, and the points
a; and a; are again calledfoci.

The following facts will become clearer in a moment, but you might like to
think about them for yourself. If k issmall then the curve consists of two separate
pieces, resembling small circles centred at a; and az. As k increases, these two
componentsof the curve become more egg shaped. When k reaches avalueegual
to haf the distance between the foci then the pointed ends of the egg shapes meset
a the midpoint of thefoci, producing afigure eight [shown solid]. Increasing the
vauedf k still further, the curve first resembles an hourglass, then an ellipse, and
findly acircle.

AlthoughCassinian curvesturned out to be uselessasadescription of planetary
motion, the figureeight curve proved extremely valuablein quite another context.
In 1694 it was rediscovered by James Bernoulli and christened the lemniscate—
it then became the catalyst in unravelling the behaviour of the so-called elliptic
integrals and elliptic functions. See Stillwell [1989, Chap. 11] and Siegel [1969]
for moreon thisfascinating story.

Cassinian curves arise naturaly in the context of complex polynomials. A
general quadratic Q(z) = 22+ pz + ¢ will havetwo roots (say, a1 and az) and so
can befactorized as Q(z) = (z — a1)(z — a2). Interms of [8b], this becomes

Q(z) = rirp '@+,
Therefore, by virtue of (1), z = w = Q(z) will map each curvein [8b] to an
origin-centredcircle, jw] = k2, and it will map thefoci to the origin.

If we follow this transformation by a trandation of c, i.e., if we changez
0()toz+ Q) tc, then theimages will instead be concentric circles centred
at ¢ = (image of foci). Conversely, given any quadratic mappingz — w = Q(2),
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the preimages of afamily of concentric circlesin the w-plane centred at ¢ will be
the Cassinian curves whose foci are the preimages of c.
In particular, consider thecasec = 1andw = Q(z) = z2. The preimages of
w = larez = £1, sothese arethefoci, and the Cassinian curves are thus centred
at the origin. See [9]. Since Q leaves the origin fixed, the lemniscate must be
mapped (asillustrated) to thecircle of radius 1 passing through the origin. Writing
z=rée?, w = r?¢?, and so we see from the figure that the polar equation of
thelemniscateis
r2 =2cos26. 2

Figure [9]

Returning to [8b], the form of the Cassinian curves may be grasped more
intuitively by sketching the modular surface of Q(z) = (z — a1)(z — a2). First
observe that as z moves further and further away from the origin, Q(z) behaves
more and more like z2. Indeed, since the ratio [Q(z)/z2] is easily seen [exercise]
to tend to unity as |z| tends to infinity, we may say that Q(z) is ultimately equal
to z2 in thislimit. Thus, for large valuesof |z|, the modular surface of Q will look
like the paraboloidin [3].

Next, consider the behaviour of the surface near a1. Writing D = |a; — a2|
for the distance between thefoci, we see[exercise] that | @ (z)] is ultimately equal
to Dry asz tendsto a;. Thus the surface meetsthe plane at a; in aconelike that
shownin [2]. Of course the same thing happens at a2.

Combining thesefacts, we obtain the surface shownin [10]. Since aCassinian
curve satisfies |Q(z)| = rirs = K2, it is the intersection of this surface with a
plane paralel to C, and at height k2 aboveit. As k increases from 0 to a large
value, it is now easy to follow the evolution of the curvesin [8b] by looking at
how thisintersection variesasthe plane movesupwardin [10]. Thusthe Cassinian
curves may be viewed as a geographical contour map of the modular surface of
the quadratic.

Interestingly, Cassinian curves were already known to the ancient Greeks.
Around 150 sc, Perseus considered the intersection curves of a torus [obtained
by rotating acircle C about an exterior line  in its plane] with planes parallel to
1 It turns out that if the distance of the plane from [ equals the radius of C then
the resulting spiric section d PerseusisaCassinian curve. See [11]; in particular,
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Figure[10]

note how the lemniscate [dashed] makesits surprise appearance when the plane
touchestheinner rimof thetorus. We have adapted thisfigurefrom Brieskorn and
Knorrer [1986, p. 171, to which the reader is referred for more details.

Returning to the complex plane, thereis a natural way to define Cassinian
curves with more than two foci: A Cassinian curve with n foci, ai, aa, ..., a,
isthe locus of a point for which the product of the distances to the foci remains
constant. A straightforward extension of the above ideas shows that these curves
arethe preimagesaf origin-centredcircles|w| = const. under the mapping given
by the nth degree polynomia whose roots arethefoci:

> w=P(2) =z —a)z—a2): - (z—ap).

Equivdently, the Cassinian curves are the cross-sections of the modular surface
of P,(z). Thissurface hasn cone-likelegsrestingon C at a1, az, ...,a, andfor
large values of |z| it resemblesthe axialy symmetric modular surface of z".

Figure[11]
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Ml Power Series
1 The Mystery of Real Power Series

Many real functions F(x) can beexpressed (e.g., viaTaylor's Theorem) as power
series:

o0
F(x)=Zijj =(,‘0+Clx+czx2+c3x3+...,
j=0

wherethec;'s arereal constants. Of course, thisinfinite series will normally only
convergeto F(x) in some origin-centred interval d convergence—R < x < R.
But how is R (the radius of convergence) determined by F(x)?

It turnsout that thisquestion has abeautifully simple answer, but only if we in-
vestigateitin thecomplexplane. If weinstead restrict ourselvestothereal line—as
mathematicianswereforced toin theerain whichsuch serieswerefirstemployed—
then therelationship between R and F(x) isutterly mysterious. Historically,it was
precisely thismystery® that |ed Cauchy to several of hisbreakthroughsin complex
analysis.

Toseethat thereisamystery, consider the power series representations of the
functions

1 1

The familiar infinite geometric series,

0
11 =Y x=1+x+x>+x+-- ifandonlyif-1<x <1, ()
— X "

j=0

immediately yields
m . w . .
Gx)=> x and Hx =) (1)) x¥,
j=0 j=0

where both series have thesame interval d convergence, —1 < x < 1.

Itiseasy to understand theinterval of convergenceof the seriesfor G(x) if we
look at the graph [12a]. The series becomes divergent at x = 1 because these
points are singularities of the function itself, i.e., they are places where {G(x)|
becomes infinite. But if welook at y = |H(x)| in [12b], there seems to be no
reason for the seriesto break down at x = £1. Yet break down it does.

To begin to understand this, let us expand these functions into power series
centredat x = k (instead of x = 0Q), i.e., into seriesof theform Z}'io ¢j X7, where
X = (x — k) measures the displacement of x from the centre k. To expand G we
first generalize (3) by expanding 1/(a — x) about k:

1cauchy was investigating the convergence of series solutions to Kepler’s equation, which
describeswhere aplanetisinitsorbit at any given time.
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and so
o0 A
7—x X;(a PSYEER if and only if | X| < |a — k|. N

To apply thisresult to G, we factorize (1 — x2) = (1 - x) (1 + x) and then
decompose G into partia fractions:

(e e]
1 _1 1 1 1 1 _ 1 1y
1—-x2 " 2[1—-x —1-x 2],2_0 (1 -kt (=1 —k)j+!

where|X| < |1 — k| and |X| < |1+ k|. Thustheinterval of convergencelX| < R
isgiven by

R =min{|1 — k{, |1+ k|} = (distance fromk to the nearest singularity of G).

This readily comprehensible result isillustratedin [13a]; ignore the shaded disc
for the time being.

Inthecaseadf H(x), | cannotthink of anelegant methodof findingtheexpansion
using only real numbers, but see EX. 9 for an attempt. Bethat asit may, it can be
shown that the radius of convergenceof the seriesin X is given by the strange
formulaR = /1 + k2. As with Cotes work in the previous chapter, we have
herearesult about real functionsthat istrying to tell us about the existence of the
complex plane.

If we picture thered line as embedded in a plane then Pythagoras’ Theorem
tellsusthat R = +/12 + k2 should be interpreted as the distance from the centre
k of the expansionto either of thefixed points that lie off the line, one unit from 0
in adirection at right anglesto theline. See[13b]. If the planeis thought of asC,
then these pointsare +i, and

= (distancefromk to =+i).
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Figure[13]

The mystery begins to unravel when we turn to the complex function A(z) =
1/(1 + z%), whichisidentical to H(x) when z isrestricted to the real axis of the
complex plane. In fact thereis a sense—we cannot be explicit yet—in which k(z)
isthe only complex function that agrees with H on thisline.

While [12b] shows that A(z) is well-behaved for real valuesof z, it isclear
that h(z) has two singularities in the complex plane, one a z = i and the other
at z = —i; these are shown aslittle explosionsin [13b]. Figure [14] triesto make
this more vivid by showing the modular surface of k(z), the singularities at +i
appearing as "volcanoes" erupting above these points. We will sort through the
details in a moment, but the mystery has all but disappeared: in both [13a] and

imaginary

Figure [14]
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[13b], the radiusd convergenceis thedistance to the nearest singularity.

If we intersect the surface in [14] with a vertical plane through the real axis
then we recover the deceptively tranquil graphin [12b], but if weinstead slice the
surface along the imaginary axis then we obtain the graph in [12a]. That thisis
no accident may be seen by first noting that G (x) isjust the restriction to thereal
axis of thecomplex function g(z) = 1/(1 — 22). Since g(z) = h(iz), hand g are
essentially thesame: if werotatethe planeby (ir/2) and then doh,weobtaing. In
particular the modular surface of g issimply [14] rotated by (7 /2), the volcanoes
a +i being rotated to £1.

2 TheDisc of Convergence

Let us consider the convergence of complex power series, leaving aside for the
moment the question of whether a given complex function can be expressed as
such aseries.

A complex power series P(z) (centred at the origin) is an expression of the
form

oo
P(z)=Zc,~zj=c0+clz+czzz+03z3+~~, &)
j=0
wherethec;'s arecomplex constants, and z isacomplex variable. Thepartial sums
o thisinfiniteseries arejust the ordinary polynomials,

n
Pn(Z)=chzj =cotciz+art+a+-+en
j=0

For a given value of z = a, the sequence of points Py (a), P2(a), P3(a), ...
is said to convergeto the point A if for any given positive number €, no matter
how small, there exists a positiveinteger N such that |[A — P,(a)| < € for every
vaue of n greater than N. Figure [15a] illustrates that thisis much simpler than
it sounds: all it saysis that once we reach a certain point Py (a) in the sequence
Pi(a), P2(a), P3(a),...,al of thesubsequent pointsliewithinanarbitrarily small
discof radiuse centred at A.

In this case we say that the power series P(z) convergesto A at z = a, and we
write P(a) = A. If the sequence P1(a), P2(a), P3(a), ... does not convergeto a

Figure [15]
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particular point, then the power series P(z) is said to divergeat z = a. Thusfor
each point z, P(z) will either converge or diverge.

Figure[15b] showsamagnified view of thediscin [15a]. If n > m > N then
P, (a)and P,(a)both liewithin thisdisc, and consequently the distance between
them must be less than the diameter of thedisc:

lem+18™ ! + cmi2a™? 4 -+ + caa"| = |Pa(@) — Pm(a)| <2¢.  (6)

Conversdly, it can be shown [exercise] that if this condition is met then P(a)
converges. Thus we have a new way of phrasing the definition of convergence:
P (a) convergesif and only if there existsan N such that inequality (6)holds (for
arbitrarily small €) whenever m and  are both greater than N.

The complex power series P(z)is said to be absolutelyconvergent at z = a if
therea series

00
P(2) EZ|CJ'ZJ| =leol +lcrzl +le2 2l +les 221+ -+,
j=0

convergesthere. Absolute convergenceis certainly different from ordinary con-
vergence. For example, [exercise] P(z) = ) z/ /j isconvergentat z = —1, butit
is not absolutely convergent there. On the other hand,

If P(z)isabsolutely convergent at some point, then it will also be

convergent at that point. ™

Thus absolute convergenceis a stronger requirement than convergence.
Toestablish (7), supposethat P (z) isabsolutely convergent at z = a, sothat (by
definition) P (a) is convergent. In termsof the partial sums P, (z) = Y-} lej 27|
of the real series ﬁ(zN), this says that for sufficiently large values of m and n we
can make [P, (a)— Py (a)]assmall as we please. But, referring to [15b], we see
that
Fo(@) - Pa(@ = lems1a™ | T lomina™ |+ -t ,a|

is the total length of the roundabout journey from P, (a)to P,(a)that goesvia
Pn+1(Q) ,Pmy2(a), etc. Since| P, (a)— Py (a) isthelength of theshortest journey
from Py, (@)to P,(a),

|Pa(@) — Pm(@)| < Py(a) — Pu(a).

Thus|P,(a)— Py, (a) must also becomearbitrarily small for sufficientlylargem
and n. Done.
We can now establish thefollowing fundamental fact:

If P(z) convergesat Z = a, then it will also converge everywhere

inside the disc|z| < |al. t)

See[16a]. Infact wewill show that P(z) isabsolutely convergent in thisdisc; the
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divergent

Figure[16]

result then follows'directly from (7).

If P(a) converges then the length |c, a"| of each term must die away to zero
as n goes to infinity [why?]. In particular, there must be a number M such that
lena®™ < M fordln. If |z| < |a| then p = |z|/|la] < 1and SO |c, 2| < Mp".
Thus,

~ ~ : M
Po@ = Pu(@) s MG 4 "2 ") = o 0™ =0 9)

wheretheRHS isas small as we please for sufficientlylargem and n. Done.

If P(z) does not convergeeverywherein the plane then there must be a least
one point d whereit diverges. Now supposethat P(z) were to converge a& some
point p further away from the origin than d. See [16a]. By (8) it would then
convergeeverywhereinsidethedisc |z| < |pl|, andin particular it would converge
a d, contradicting our initial hypothesis. Thus,

If P(z) divergesat z = d, then it will also diverge everywhere (10)
outsidethecircle|z] = |d|.

At this stage we have settled the question of convergenceeverywhereexcept
in the'ring of doubt™, |a| < |z| < |d|, shown in [16a]. Suppose we take a point
g half way acrossthering of doubt (i.e., on thecircle|z| = %;—'d—l), then check
whether P (q) convergesor not. Regardlessof the outcome, (8) and (10) enableus
to obtain a new ring of doubt that is half as wide as before. For example, if P(q)
is convergent then P(2) is convergent for |z| < |g|, and the new ring of doubt is
lg| < |zl < |d|. Repesting thistest procedurein the new ring will again haveits
width. Continuingin this manner, the ring of doubt will narrow to adefinitecircle
|z} = R (caled thecircled convergence) such that P(z) converges everywhere
insidethecircle, and divergeseverywhereoutsidethecircle. See[16b]. Theradius
R is cdled the radius d convergence—at last we see where this name comes
from! —and theinterior of thecircleiscalled thediscd convergence.

Note that this argument tells us nothing about the convergence of P(z) on the
circleof convergence. In principle, we can imagine convergence a all, some, or
noneaf thepointson thiscircle, and onecan actualy find examplesof power series
that realize each of these three possibilities. See Ex. 11.
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All of the aboveresultsimmediately generalize to a power seriescentred at an
arbitrary point k, thatisto aseriesof theform P(z) = 3" ¢j Z/,where Z = (z —k)
is the complex number from the centre k to the point z. Thus, restating our main
conclusion (due to Niels Abel) in general form,

Givena complex power series P(z) centred at k, thereexistsacircle
|z—k| = R centred at k suchthat P(z) convergeseverywhereinside (11)
thecircle, and P(z) divergeseverywhereoutsidethe circle.

Of course one can also have a series that convergeseverywhere, but this may be
thought of asthelimiting casein whichthecircleof convergenceisinfinitely large.

Returning to figures[13a] and [13b], we now recognize theillustrated discs as
the discs of convergenceof the seriesfor 1/(1 F z?).

3 Approximatinga Power Series with a Polynomial

Implicit in the definition of convergenceis a smple but very important fact: if

P(a) converges, then its value can be approximated by the partial sum P, (a),
and by choosing asufficiently large value of m we can make the approximation as
accurate as we wish. Combining this observation with (11),

At each point z inthedisc of convergence, P (z) can beapproximated
witharbitrarilyhigh precisionby a polynomial Py, (2) of sufficiently
high degree.

For simplicity's sake, let us investigate this further in the case that P(z) is
centred at the origin. The error E, (z) at z associated with the approximation
P (2) can be defined as the distance E,, (2) = |P(2) — P, (2)| between the exact
answer and the approximation. For afixed valueof m,theerror E,, (z) will vary as
z movesaroundinthedisc of convergence. Clearly,since E,, (0) = 0, theerror will
be extremely small if z is close to the origin, but what if z approaches the circle
of convergence? The answer depends on the particular power series, but it can
happen that the error becomesenormous! [See Ex. 12.] This does not contradict
the aboveresult: for any fixed z, no matter how close to the circle of convergence,
the error E,,(z) will become arbitrarily small asm tendsto infinity.

This problem is avoided if we restrict z to thedisc |z| < r, wherer < R,
because this preventsz from getting arbitrarilyclose to the circle of convergence,
|z = R. In attempting to approximate P (z) within this disc, it turns out that we
can do the following. Wefirst decide on the maximum error (say ¢) that we are
willingto put up with, then choose (once and for all) an approximating polynomial
P, (z) of sufficiently high degree that the error is smaller than e throughout the
disc. That is, throughout the disc, the approximating point P, (2) lieslessthan e
away from thetrue point, P(z). One describesthisby saying that P(z) isuniformly
convergent on thisdisc:

If P(z) has disc of convergence |z| < R, then P(2) is uniformly

convergentontheclosed disc |z| < r, wherer < R. a2



Power Series 71

Although we may not have uniform convergence on the whole disc of conver-
gence, the aboveresult showsthat thisisreally atechnicality: we do haveuniform
convergence on a disc that aimost fills the complete disc of convergence, say
r = (0.999999999) R.

To verify (12), first do Ex. 12, then have agood look at (9).

4 Uniqueness

If acomplex function can be expressed as a power series, then it can only be done
S0 in one way —the power seriesis unique. Thisis an immediate consequence of
theldentity Theorem:

If
2 3 _ 2 3
co+ciz+a+ar+-=do+diz+drz"+d3z 4+

for all z in a neighbourhood (no matter how small) d 0, then the
power seriesare identical: ¢; = d;.

Putting z = 0 yields cop = dp, so they may be cancelled from both sides. Dividing
by z and again putting z = 0 then yields ¢c; = dj, and so on. [Although this
was easy, Ex. 13 shows that it is actually rather remarkable.] The result can be
strengthened considerably: If the power series merely agree along a segment d
curve (no matter how small) through 0, or f they agreeat everypoint d an infinite
sequenceof points that convergesto0, then theseriesareidentical. Theverification
is essentially the same, only instead of putting z = 0, we now take the limit as z
approaches, either along the segment of curve or through the sequence of points.

Wecan perhaps makegreater intuitive sense of theseresultsif wefirstrecall that
apower seriescan be approximated with arbitrarily high precision by apolynomial
of sufficiently high degree. Given two points in the plane (no matter how close
together) there is a unique line passing through them. Thinking in terms of a
graphy = f (x), this saysthat a polynomial of degreel, say f (x) = co +c1x,is
uniquely determined by theimages of any two points, no matter how closetogether.
Likewise,in the case of degree 2, if we are given three points (no matter how close
together), thereisonly one parabolicgraphy = f (x) = ¢o + c1x T cpx? that can
be threaded through them. Thisidea easily extends to complex functions: thereis
one, and only one, complexpolynomial d degreen that mapsagivensetd (n+1)
pointstoagivenset d (n + 1) image points. The above result may therefore be
thought of asthelimiting casein which the number of known points (together with
their known image points) tends to infinity.

Earlier wealuded toasensein which 2(z) = 1/(1 +72) is the only complex
function that agrees with the real function H(x) = 1/(1 + x2) on theredl line.
Yet clearly wecan easily write down infinitely many complex functionsthat agree
with H (x) in thisway. For example,

cos[x2y] + i sin[y?]
e¥ +x2In(e + y*)

g =gx+iy)=
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Then in what sense can h(z) be considered the unique generalization of H(x)?

Wealready know that h(z) can beexpressed asthe power series Y22 (—1)/ 2%/,
and thisfact yields[exercise] a provisional answer: h(z) istheonly complex func-
tionthat (i) agreeswith H(x) ontherea axis, and (ii) can be expressed asa power
seriesin z. Thisstill does not completely capture the sensein which 2(z) isunique,
but it's a start.

Moregenerally,supposewearegivenarea function F(x) that can beexpressed
as a power seriesin x on a (necessarily origin-centred) segment of the rea line:
F(x) = Z;io cj X’ . Then the complex power series f (z) = Z}'io ¢j 2/ withthe
same coefficientscan be used to define the unique complex function f (z) that
(i) agrees with F on the given segment of thereal axis, and (ii) can be expressed
asapower seriesin z.

For example, consider the complex exponentialfunction, writtene?, the geom-
etry of which we will discussin the next section. Since ¢* = Z;’_’;Oxf/j!,

E=1tz+H+ 52+t

Note that our heuristic, power-series approach to Euler’s formula [Chapter 1] is
starting to look more respectable!

5 Manipulating Power Series

Thefact that power series can be approximated with arbitrarily high precision by
polynomiasimplies[see Ex. 14] that

Two power series with the same centre can be added, multiplied, 13)
and divided in the same way aspolynomials.
If the two series P(z) and Q(z) have discs of convergence Dy and D3, then the
resulting seriesfor [ P + Q] and PQ will both convergein the smaller of D and
D2, though they may in fact converge within a still larger disc. No such general
statement is possiblein the case of (P/Q) = P(1/Q), because the convergence
of the seriesfor (1/Q) islimited not only by the boundary circle of D2, but also
by any pointsinside D, where Q(z) = 0.

Let usillustrate (13) with a few examples. Earlier we actually assumed this
resultin order tofind theseriesfor 1/(1—z2) centred at k. Using the partial fraction

decomposition
L V0 + 1/2)
1-z22 1—-z 147’
we obtained two power seriesfor thefunctions on the RHS, and then assumed that
these power seriescould beadded like two polynomials, by adding the coefficients.

In the specia case k = 0 we can check that this procedure works, because we
already know the correct answer for the series centred at the origin:

1
—— =142+ +20+
1-z
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Since

l+z+2+2 4+ +2+--

and —— - l-z+22-22+-2+..,

we see that adding the coefficients of these series does indeed yield the correct

seriesfor 1/(1 — 22).
—1 = [ —1 ] [ 1 ]
1—22 1—z]||1+2z],

Since
we can recycle this example to illustrate the correctness of multiplying power
siesasif they were polynomials:

Ntz+2+2+2+2+ -2+ -2+ -+
= 1401z +1-1+1) 22 + (1-1+1-1) 23 + (I-1+1-1+1) z* + - - -,

whichisagain the correct seriesfor 1/(1 — 22).
Next, let's use (13) to find the seriesfor 1/(1 — z)2:

Dt+z+2+2 4+ +2+ M+ e+ 2+ 82+ 454
= 141+ z+ A+1+1) 22 + (1+1+1+1) 22 + (I+1+1+1+D) 24 + - -+

adso(1-2)2 =120 T 12/

You may check for yoursalf that theabove seriesfor (1 — z)~! and (1 — 2) 2
are both special casesaof the general Binomia Theorem, which states that if nis
any real number (not just a positiveinteger), then within the unit disc,

(142" = 1+nz+ 20502 4 2e=D0=D) 3 4 ne-DEDEI 44 ... (14)

Higtoricdly, thisresult was one of Newton's key weaponsin devel oping calculus,
and later it played an equally central rolein thework of Euler.

In Exs. 16, 17, 18, we show how manipulation of power series may be used
to demonstrate the Binomial Theorem, first for all negative integers, then for all
rational powers. Although we shall not discussit further, the case of an irrational
power p may be treated by taking an infinite sequence of rational numbers that
convergesto p. Later we shall use other methodsto establish a still more genera
verson of (14) in which the power n is alowed to be a complex number!

Next we describe how to divide two power series P(z) and Q(z). In order to
find the series P(2)/ Q(2) = Y_ ¢;j z/, one multiplies both sidesby Q(z) to obtain
P(2) = Q(z) X_ ¢j 2/, and then multipliesthetwo power serieson theright. By the
unigquenessresult, the coefficients of thisseriesmust equal the known coefficients
o P(z), and this enables one to calculate the ¢;’s. An example will make this
process much clearer.
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In order to find the coefficientsc; in the series I/e? = )" ¢;j z/, we multiply
both sides by € to obtain

2 Z3 4

Z Z

1 = [1+z+5+5+E+-~][c0+c1z+C2z2+C3z3+c4z4+--~]
_ (&) C1 €2, 2 .. ,€0 1 2
= at@+e)z+G+ e TG+

Cc3 3
atntold o

By the uniqueness result, we may equate coefficientson both sides to obtain an
infiniteset of linear equations:

€0,

¢ t+cy,

co/2! 4+ c1/11 + c2/0!,

= co/3'+c1/2'+ /1! 4+ ¢3/0!, etc.

o o o ~
il

Successively solving thefirst few of theseequations[exercise] quickly leadstothe
guessc, = (—1)*/n!, whichis then easily verified [exercise] by considering the
binomia expansionaf (1 — 1)™, wherem isa positiveinteger. Thus we find that

et =1—z+ 52— H2 + fz* =422+ =%,
just as with thereal function e*.

6 Finding the Radius of Convergence

Givenacomplex power seriesP(z) = ¥ ¢j 2/, thereareseveral waysof determin-
ingitsradiusof convergencedirectly fromits coefficients. Sincethey areformally
identical to the methods used on red series, we merely state them, leaving it to
you to generaizethe standard real proofs.

The ratio test saysthat

R = lim
n—00

’

Cn+1
provided thislimit exists. For example, if

2 3 4

Z Z Z
P(Z)=1+Z+?+3—2+4—j+"',

then 1/”2 " s
R= lim, /nT12 7~ A, (1 5) =1L
If |cn/cn+1] tendstoinfinity then (formally) R = co, correspondingtoconvergence

everywherein the plane. For example, e = E}'io zJ /! converges everywhere,
because
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S V7 N
R=0, ¥ i = AT =co.

When the ratio test fails, or becomes difficult to apply, we can often use the
root test, which says that
. 1
R=Im —,
n—oo I Icn|
providedthislimit exists. For example, if wefirstrecall [wewill discussthislater]
that the real function e* may be written as

n—00

¢ = lim (1+;—‘)",

then applying the root test to the series

yields[exercise] R = €3.

On accasion both the ratio and root tests will fail, but there exists a dightly
refined version of thelatter which can be shown to work in all cases. It iscaled
the Cauchy-Hadamard Theorem, and it saysthat

1
R=—— .
limsup %/Tea]

We will not discuss thisfurther sinceit is not neededin this book.

The above examples of power series were plucked out of thin air, but often
our starting point is aknown complex function f (z) whichisthen expressed asa
power series. The problem of determining R then has a conceptually much more
satisfying answer. Roughly?,

Iff (z) can be expressed as a power series centred at k, then the
radiusd convergenceisthedistancerom k tothenearestsingularity (15)

off (2).

Figure [17a] illustratesthis, the singularitiesaf f (z) being represented as explo-
sions. To understand which functions can be expanded into power series we need
deep resultsfrom later in the book, but we are already in a position to verify that
arationa function [the ratio of two polynomials] can be, and that the radius of
convergencefor its expansionis given by (15).

To beginwith, reconsider [13a] and [13b], both of which areexamplesof (15).
Recall thatin [13b] wemerely claimed that R = +/1 + k2 for the seriesexpansion

2L ater [p. 96] we shall haveto modify the statement in thecase that f () isa" multifunction”,
having more than one valuefor agiven valueof Z.
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divergent *

[a]

Figure[17]

of h(z) = 1/(1t z2) centred at thereal point k. We now verify thisand explicitly
find the series.
To do so, first note that (4) easily generaizesto

1 (e ¢]

zJ . .
ﬁ';’z=,-z(‘) @ i if andonly if |Z| < |a — k|, (16)
wherea and k are now arbitrary complex numbers,and Z = (z — k) isthecomplex
number connecting thecentreof theexpansionto z. Thecondition|z — K| < |a — k]
for convergenceis that z liein the interior of the circle centred at k and passing
througha. See[17b], which also showsthediscsof convergencewhen weinstead
chooseto expand 1/(a — z) about k; or k. Sincethefunction 1/(a — z) hasjust
onesingularity at z = a, we have verified (15)for this particular function.
Earlier wefound theexpansionof 1/(1 - x2)by factorizingthedenominatorand
using partial fractions. We are now in a position to use exactly the sasmeapproach
tofind theexpansionof h(z)= 1/(1+ z2) centred at an arbitrary complex number
k:

1 1 _ 1[ 1 1 ]
1+22° z—i)+i) 2i|—i—z i-z]
Applying (16)to both terms then yields

00 1 .
1+z2 Z [ k)]+1—(l__k)j+1]21. a7

=0

Theseriesfor 1/ (fi — z) convergeinsidethe concentriccircles|z — k| = | +i —k|
centred at k and passing through the points Fi, which are the singularities of
h(z). But (17)will only convergewhen both these seriesconverge,i.e., in thedisc
Iz — k| < RwhereR isthedistancefrom thecentrek to the nearest singularity of
h(z). Thus we have confirmed (15) for h(z).

In particular, if k isreal then (17) convergesin the disc shown in [13b]. If z
isrestricted to thereal axisthen A(z) reducesto thered function 1/(1 + x2), and
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theexpansion of thisfunction into powersof X = (x — k) can be deduced easily
from (17). Sincek isnow real, |i — k| = +/1 + k2, and we may write (i — k) =
V14 k2 e'®, whereg = arg(i — k) istheappropriatevalueof tan~1(—1/k). Thus
[exercisg]

1 &[sinG+De 7.,
142 ",.;0 [(J1'+ k2)f+1] - 1o

Again, we have herearesult concerning real functionsthat would be very difficult
to obtain using only real numbers.

Theabove andysisaof 1/(1 + 22) can easily begeneralized [exercise] to show
that any rational functioncan be expressed as a power series, with radius of con-
vergencegiven by (15).

7 Fourier Series*

Onthe21st of December 1807, Joseph Fourier announced to the French Academy
adiscovery so remarkablethat hisdistinguished audiencefound it literally incred-
ible. Hisclaimwasthat any® real periodicfunction F(8), no matter how capricious
itsgraph, may be decomposedinto asum of sinusoidal wavesof higher and higher
frequency. For simplicity's sake, |et the period be 27 ; then the Fourier seriesis

o0
F(0) = ap + Z [an cosnf + by, sinnb],

n=1

where [see Ex. 20]
1 2 1 2w
a,,=—/ F(0)cosnbdf and b,,=—/ F@)sinnods.  (19)
T Jo T Jo

Thisoptional sectionis addressed primarily to readers who have aready en-
countered such series. For those who have not, we hope that this brief discussion
(together with the exercises at the end of the chapter) may whet your appetitefor
moreon thisfascinating subject?.

In the world of the real numbers there appears to be no possible connection
between the concepts of Fourier seriesand Taylor series, but when we passinto
the complex realm a beautiful and remarkablefact emerges:

Taylor series and Fourier series d real functions are merdy two
differentwaysd viewing complexpower series.

We will explain this cryptic pronouncement by meansof an example.

3Later it was found that some regtrictions must be placed on F, but they are astonishingly
weak.

4In many areasof mathematicsit ishard tofind even onereally enlighteningbook, but Fourier
analysshasbeen blessed with a least two: Lanczos [1966], and Korner [1988].
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Consider thecomplex function f (z) = 1/(1 —z). Writing z = r €8, onefinds
[exercise] that the real and imaginary partsof f (r €®) are given by

. . . 1—rcosf rsin6
o i\ | igy — ]
fre®) =u@re®)+ivire )_[1+r2—2rc089]+l[1""2_2":089].

Let's concentrate on just one of these real functions, say v. .
If z moves outward from the origin along aray 0 = const. then v(r €°)
becomes afunction of r alone, say Vu(r). For example,

N2 +r2)y —2r

If z instead travels round and round acircler = const. then v becomesafunction
of 0 aone, say V,(0). For example,

V%(I’) =

7 2sind
%(O) T 5-4cosf’

Note that thisis a periodic function of O, with period 27. The reason is simple
and appliesto any V,(0) arising from a(single-valued) function f (z): each timez
makesacompleterevolutionand returnstoitsoriginal position, f (z) travelsalong
aclosed loop and returnstoitsorigina position.
Now, to see the unity of Taylor and Fourier series, recall that (within the unit
disc) f (z2) = 1/(1 — z) can be expressed as a convergent complex power series:
f(r eiG) =1+ (r ei@) +(r ei0)2 +(r ei0)3 +(r ei9)4 4
=1+ r(cos@ +isinf) + r2(cos 20 + i sin260) + r>(cos 30 + i sin36) + - - -
In particular,
v(r %) = rsin@ + r?sin 26 + r3sin 36 + r*sin40 + r sin 56 + - - -.
If weput 0 = (/4), weimmediately obtain the Taylor seriesfor V% (n:

r

V21 +r?) =2r

Onceagain, consider how difficultthiswould betoobtain using only real numbers.
From thiswefind, for example, that

V7r (r) = r+r2+f f r6—7r +fr +--

= 98!

a8 r
dr® [ﬁ(l +r7) - 2r] r=0

_ If weinstead put r = (1/2), we immediately obtain the Fourier series for
V1 (0):
2
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2sin8 o _ . . -
ey %(0): %sm6+2%5m20+2i3sm36+2%sm49+....

The absence of cosinewavesin this seriescorrectly reflectsthe fact that Vl ©)is

an odd function of 8.

Thisconnection betweencomplex power seriesand Fourier seriesisnot merely
aesthetically satisfying, it can also be very practical. The conventional derivation
o theFourier seriesof V% (8) requiresthat we eval uatethetricky integralsin (19),

whereas we have obtained the result using only simple algebral Indeed, we can
now use our Fourier seriesto do integration:

2” . .
/ [2s1n0 smne] P
0 5 —4cosf 2n
Further examples may befound in Exs. 21, 37, 38.

We end with a premonition of things to come. The coefficientsin a Taylor
seriesmay be calculated by differentiation, whilethosein aFourier series may be
calculated by integration. Since these two types of series are redly the samein
thecomplex plane, this suggeststhat thereexists some hidden connection between

differentiation and integration that only complex numbers can reved. Later we
shdl see how Cauchy confirmed thisideain spectacular fashion.

IV The Exponential Function
1 Power Series Approach

We have seen that the only complex function expressible as a power series that
generdizesthereal function e* to complex valuesis

E=14z+ L2+ L3+ 5+,

which convergeseverywherein C. We now investigatethegeometric natureof this
function.

Figure [18] visualizes the above series as a spira journey, the angle between
successive legs of the journey being fixed and equal to argz. In the specia case
wherethisangleisaright angle, we saw in Chapter 1 that the spiral convergestoa
point on the unit circlegiven by Euler’s formula, ¢ = cosy Ti siny. Infact this
specia spiral enablesusto figureout what happensin the case of the general spiral
in[18]: for an arbitrary valueof z = x T iy, the spiral convergesto the illustrated
point at distance ¢* and at angley. In other words,

ex+zy = % e,

Thisisaconsequencedf thefact that if a and b arearbitrary complex numbers,
then e e° = ¢+%. To verify this we just multiply the two series:
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Figure[18]

eb = [1+a+21!a2+%a3+~~][l+b+%b2+%b3+---]
2 2 3 2 2 3
2ab + b
_ 1+(a+b)+[a+a + ]+|:a + 3a°b + 3ab +b]+
2! 3!
= 1+@+b)+4@+b*+L@+b>+---
a+b

= €

Here we haveleft it to you to show that thegeneral term in the penultimatelineis
indeed (a+ )" /n!.

2 The Geometry of the Mapping

Figure[19] illustratesthe essential featuresof the mapping z - w = €%, Studly it
carefully, noting thefollowing facts:

e If z travels upward at a steady speed s, then w rotates about the origin at
angular speeds. After z hastravelledadistanceof 2, wreturnstoitsstarting
position. Thus the mappingisperiodic, with period 2zi.

o If z travels westward a a steady speed, w travels towards the origin, with
ever decreasing speed. Conversdly, if z travelseastward at a steady speed, w
travel saway from the origin with ever increasing speed.

e Combining the previoustwo facts, the entire w-plane (with the exception of
w = 0) will befilled by theimage of any horizonta stripin the z-plane of
height 27.

e Alinein genera position is mapped to a spiral of the type discussed in the
previouschapter.
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Figure[19]

e Euler'sformulae’” = cosyti siny canbeinterpreted assaying that e? wraps
theimaginary axis round and round the unit circlelike a piece of string.

¢ The haf-planeto theleft of theimaginary axisis mapped to theinterior of
the unit circle, and the half-planeto theright of theimaginary axisis mapped
to theexterior of the unit circle.

e Theimages of the small squares closely resemble squares, and (related to

this) any two intersecting lines map to curvesthat intersect at the sameangle
asthelinesthemselves.

Thelast of theseobservationsis not intended to be self-evident—in Chapter 4
wewill begin to explore thisfundamental property and to seethat it is shared by
meany other important complex mappings.

3 Another Approach

The advantage of the power seriesapproach to e? isthat it suggeststhat thereis
something unique about this generalization of ¢* to complex vaues. The disad-
vantageis theamount of unillurninatingal gebra needed to decipher the geometric
meaningof theseries. We now describeadifferent approachin which thegeometry
liesmuch closer to the surface. Theideaisto generdizethe red result,

& = lim (1 n f)". (20)

n—00 n

Hereisoneway of understanding (20). Aswediscussedin Chapter 1, f (x) =
e* may be defined by the property f'(x) = f (x). Figure [20a] interprets thisin
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termsof the graph of y = f (x). Drawing atangent at an arbitrary point, the base
of the shaded triangle is always equal to 1. Asyou see from the figure, it follows
that if the heightis yoiq at Some point x, then moving x aninfinitesimal distance 6
to theright yields a new height given by

Ynew = (1 + ) Yold-

To find the height ¢* at x, we divide theinterval [0, X] into alarge number n

(bl

Ynew

[1+ (x/3)}
[1+ (/3)P3
[1+ (x/3)P

|

[=]
b

Figure[20]

of very short intervals of length (x/n). Since the height at x = 0 is 1, the height
at (x/n) will be approximately [1 + (x/n)] - 1, and so the height at 2(x/n) will
be approximately [1 + (x/n)1.[1 + (x/n)] . 1, and so......., and so the height at
X = n(x/n) will beapproximately [1+(x/n)1".[For clarity's sake, [20b] il lustrates
thisgeometric progressionwiththesmall (henceinaccurate) valuen = 3.] Itisnow
plausiblethat the approximation [ 1+ (x/n)]" becomes more and more accurate as
ntendstoinfinity, thereby yielding (20). Try using acomputer to verify empirically
that the accuracy doesindeed increase with n.
Generalizing (20) to complex values, we may definee’ as

e = lim (1+ S @1)

n—00 n
First we should check that thisis the same generalization of e* that we obtained
using power series. Using the Binomial Theorem to write down thefirst few terms
of then™ degree polynomial [1 + (z/n)1", we get

e e I I
= 1+4+z+ (1_%)22+ (1—%)(1—%)23_'_”.’

2! 3!
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which makes it clear that we do recover the original power series as n tends to
infinity.

Next we turn to the geometry of (21). In deciphering the power series for €
we felt free to assume Euler's formula, because in Chapter 1 we used the power
series to derive that result. However, it would smack of circular reasoning if we
wereto assume Euler's formulawhilefollowing our new approach to eZ, based on
(21). Temporarily, we shall therefore revert to our earlier notation and write r Z6
instead of 7 e!®; thefact we wish to understand isthereforewritten e*+¥ = ¢*/ y.

Withn = 6, figure[21] usesEX. 5, p. 46, to geometrically construct the succes-
sive powersof a = [1 F (z/n)] for aspecific valueof z. [All six shaded triangles

Figure [21]

aresimilar; the two kinds of shading merely help to distinguish one triangle from
thenext.] Even with thissmall valueof n, wesee empirically that in this particular
case[1+ (z/n)]" iscloseto e* L y. To understand this mathematically, we will try
toapproximatea = [1 + (z/n)].

Lete beasmall, ultimately infinitesimal, complex number. Consider thelength
r and angle 6 of the number (1 +¢) = /6 shownin [22]. The origin-centred
circular arc [not shown] connecting (1 + €) to the point r on the real axis almost
coincideswith theillustrated perpendicular from (1F ¢) tothereal axis. Thusr is
approximately equal to [ 1+ Re(e)], and isultimately equal toit ase tendsto zero.
Similarly,we seethat the angle8 (theillustrated arc of the unit circle) isultimately
equal to Im(e). Thus

Figure [22]
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(1+¢€)~[1+Re(e)]ZIm(e) forsmall ¢,

with equality holdingfor infinitesimal ¢.

Now set e = (z/n) = (x T iy)/n. With the samevaluesof z and n asin [21],
figure [23] shows the approximation b = (1t £) £ (2) to a, together with its
successive powers.

Figure [23]
Returning to the general case, the geometry of (21) should now beclear. If n

islarge, 2n X . o
2] ~[0+2) ¢ ) =t 2) o
Taking thelimit as r tendsto infinity, and using (20), we deduce that

&Y — X/ y,

aswasto beshown. In particular, if weput x = 0 thenwerecover Euler's formula,
e’ = 1/y, and so we areentitled to write e* Y = X ¢7.
For adightly different way of looking at (21), see Ex. 22.

V Cosineand Sine
1 Definitions and Identities

In the previous chapter Euler's formula enabled us to express cosineand sinein
termsaf the exponential function evaluated along theimaginary axis:
eix -+ e—ix eix _ e—ix
cosx=———— and SnXx=——o—.
2 2i

Now that we understand the effect of e? on arbitrary points (not merely pointson
theimaginary axis), it is natural to extend the definitionsof cosineand sineto the
complex functions
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iz —iz iz _ ,—iz
Cosz = e te and sinz= ; (22)
2 2i .
Of course another way of generalizing cosx and sinx would be viatheir power
series, discussed in the previouschapter. Thisleadsto the aternative definitions,

2 Z4 Z6 23 ZS Z7

2—!+4—!———6—!-+---, and smz=z—§+§—ﬁ+~'.

cosz=1-—
However, by writing down the seriesfor % you can easily check that these two
approaches both yield the same complex functions.

From the definitions (22) we see that cosz and sinz have much in common
with their real ancestors. For example, cos(—z) = cosz, and sin(—z) = —sinz.
Also, since € is periodic with period 2, it followsthat cosz and sinz are also
periodic, but with period 2. The meaning of this periodicity will becomecl earer
when we examine the geometry of the mappings.

Other immediate consequences of (22) are the following important general-
izationsof Euler’s formula:

e?=cosztisinz ad e *=cosz—isinz

WARNING: cosz and sinz are now complex numbers—they are not the real and
imaginary partsof e'2.

Itisnot hard to show that all thefamiliaridentitiesfor cosx and sinx continue
to hold for our new complex functions. For example, we still have

cos?z + sin’ z = (cosz +i sinz)(cosz — i Si nz) =eé'%e 2= =1,

despite thefact that thisidentity nolonger expresses Pythagoras' Theorem. Simi-
larly, wewill show that if a and b are arbitrary complex numbersthen

cos(@atb) = cosacosb-sinasnb (23)
sin@tb) = sinacosb+cosa sinb, (24)

despitethe fact that theseidentitiesno longer express the geometric rule for mul-
tiplying pointson the unit circle. First,

cos(a T b) tisin(a tb) = !@+H) = gidgihd
= (cosa + i sina)(cosb + i sin b)
= (cosa cosb — sina sinb) *i(sina cosb+ cosa sinb),

exactly as in the previous chapter. However, in view of the warning above, we
do not obtain (23) and (24) smply by equating real and imaginary parts. Instead
[exercise] onefirst finds the analogousidentity for cos(a + b) — i sin(a + b), then
addsit to (or subtractsit from) the one above.
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2 Relation to Hyperbolic Functions
Recall the definitionsof the hyperbolic cosine and sine functions:
er +e* ef —e %

hx=—— and i =
cosh x > sinh x 3

By interpreting each of these asthe average (i.e., midpoint) of e* and +e™*, itis
easy to obtain the graphsy = coshx and y = sinhx shownin [24a] and [24b].
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Figure [24]

Asyou probably know, cosh x and sinh x satisfy identities that are remarkably
similar to those satisfied by cosx and sinx, respectively. For example, if #; and r,
are arbitrary real numbers, then [exercise]

cosh(r; +r;) = coshri coshry +sinhry sinhr, (25)
sinh(ry ¥ r2) = sinhry coshry +coshry sinhr,. (26)

Nevertheless, [24] shows that the actual behaviour of the hyperbolic functionsis
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quite unlike the circular functions: they are not periodic, and they become arbi-
trarily large as x tends to infinity. It is therefore surprising and pleasing that the
introduction of complex numbers brings about a unification of these two types of
functions.

We begin to see thisif werestrict z = iy to theimaginary axis, for then

cos(iy) =coshy and sin(iy) =i sinhy.

Thisconnection becomes particularly vividif we consider the modular surface of
snz.Since| sin z| isultimately equal to |z| asz approachestheorigin, it followsthat
thesurfacerisesabovetheoriginintheformof acone. Also, | sin(z+n)| =|singz|,
sothereisanidentical coneat each multipleof = along thereal axis. These arethe
only points[exercise] at which the surface hitsthe plane. Figure [25]—which we
have adapted from Markushevich [1965, p. 1491 —shows a portion of the surface.
Noticethat thissurfacea so yieldsthe cosh graph, for if werestrictz = @Gr/2)t iy

Figure [25]

tothelinex = (37/2), for example, then |sinz| = coshyy.

A practical benefit of this unificationisthat if you can remember (or quickly
deriveusing Euler’s formula) atrigidentity involving cosineand sine, thenyou can
immediately write down the corresponding identity for the hyperbolic functions.
For example, if we substitute a = ir; and b = ir; into (23) and (24), then we
obtain (25) and (26).

Theconnection betweenthecircul ar and hyperbolicfunctionsbecomesstronger
till if we generalize the latter to complex functionsin the obvious way:

et +et et —et

COShZ = T and SiIlhz = 2

Sincewe now have

coshz=cos(iz) and sinhz= —i sin(iz),
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the distinction between the two kinds of function has all but evaporated: cosh is
the composition of a rotation through (7 /2), followed by cos; dso, sinh is the
composition of arotation through (7 /2), followed by sin, followed by arotation
through — (7 /2).

3 The Geometry of the Mapping

Just asin thered case, sinz = cos(z — %), which meansthat we may obtain sin
from cos by firgt trandating the plane by —(sr/2). It followsfrom the preceding
remarks that it is sufficient to study just cosz in order to understand all four
functions, cosz, sinz, coshz, and sinhz. We now consider the geometric nature
of themapping z — W = coszZ.

We begin by finding the image of a horizonta liney = —c lying below the
red axis. It is psychologically helpful to picture the line as the orbit of a particle
moving eastward at unit speed, whosepositionat timetisz =t —ic. See[26], in
which the lineis shown heavy and unbroken. As z tracesthisline, —z tracesthe

—Z
4--0»,-“-4--"'

7/ 2 Jmox
W\,

- -

—iz

4+-0--¢--

Figure[26]

liney = ¢, butinthe oppositedirection. Applyingthemappingz + iz (whichisa
rotation of %), theimage particlestrace the vertical linesx = £c, again with unit
speed and in opposite directions. Finally applying z +> %ez, the image particles
orbit withequal and oppositeangular speedsin origin-centredcirclesof radii %eﬂ.

The image orbit under z — w = cosz of the original particle travelling on
theliney = —c isjust the sum of these counter-rotating circular motions. This
is clearly some kind of symmetrica ova hitting the real and imaginary axes at
a =coshcandib =i sinhc. It isalsoclear that cosz executes a complete orbit
of this ova with each movement of 2z by z; thisisthe geometric meaning of the
periodicity of cosz.

| haven't found asimple geometric explanation, but it's easy to show symboli-
cally that the oval traced by cosz isaperfect elipse. Writingw = u +iv, wefind
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from the figure[exercisg] that # = a cost and v = b sint, which isthefamiliar
parametric representation of theellipse (u/a)? + (v/b)? = 1. Furthermore,

va?—-bp? = \/coshzc—sinh2c =1,

s0 the foci are at 1, independent of which particular horizonta line z travels
dong.

Try mulling thisover. How does the shape of the ellipsechangeas wevary c?
How do werecover thereal cosinefunction asc tendsto zero?What istheorbit of
cosz as z travelseastward along theliney = c, abovethereal axis? What is the
image of the vertical linex = ¢ under z — cosh z? What istheorbit of sinzasz
travels eastward along the liney = c¢; how does it differ from the orbit of cosz;
and istheresulting variation of | sin z| consistent with the modular surface shown
in[25]?

Beforereading on, try using theideain [26] to sketch for yourself theimage
under z — cosz of avertica line.

Asillustrated in [27], the answer is a hyperbola. We can show this using the

x=m/4

L

Figure [27]

additionrule (23), which yields
utiv =cos(x +iy) = cosx coshy — i sinx sinhy.

On ahorizontal line, y isconstant, so (u/ cosh y)? + (v/ sinh y)? = 1, as before,
On a vertica line, x is constant, so (#/ cosx)? — (v/sinx)? = 1, whichisthe
equation of ahyperbola. Furthermore, sincecos? x +sin? x = 1, itfollowsthat the
foci of the hyperbolaare aways +1, independent of which vertical lineis being
mapped.

Figure [27] tries to make these results more vivid by showing theimage of a
grid of horizontal and vertical lines. Notetheempirical fact that each small square
in the grid is mapped by cosz to an image shape that is again gpproximately
square. Thisis the same surprising (and visualy pleasing) phenomenon that we
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observedin the case of z — €.

We hope your curiosity is piqued—Ilater chapters are devoted to probing this
phenomenon in depth. In the present case of Z — cosz we can at least give a
mathematical explanation of part of the result, namely, that the sides of theimage
"squares” do indeed meet at right angles; in other words, each ellipse cuts each
hyperbolaat right angles.

This hinges on the fact that these ellipses and hyperbolas are confocal. To
prove the desired result [exercisg], think of each curve as amirror, then appeal to
the familiar reflection property of the conic sections: aray of light emitted froma
focusisreflected directly towardsthe other focus by the ellipse, and it is reflected
directly away from the other focus by the hyperbola. See [27].

VI Multifunctions
1 Example: Fractional Powers

Thus far we have considered a complex function T to be arule that assigns to
each point z (perhaps restricted to lie in some region) a single complex number
f (2). Thisfamiliar conception of afunction isunduly restrictive. Using examples,
we now discuss how we may broaden the definition of afunction to allow f (z)
to have many different values for a single value of z. In thiscase f iscaled a
"many-vauedfunction™, or, as we shall prefer, amultifunction.

We have, in effect, already encountered such multifunctions. For example, we
know that 3/z has three different values (if z is not zero), so it is a three-valued
multifunction. In greater detail, [28] recalls how we can find the three values of
3/p using the mapping z +> z>. Having found one solution a, we can find the

Figure [28]

other two (b and c) using the fact that asz = r ei® orbits round an origin-centred
circle, z2 = r3¢/3? orbits with three timesthe angul ar speed, executing acomplete
revolutioneach time z executesone third of arevolution. Put differently, reversing
thedirection of the mapping dividesthe angular speed by three. Thisisan essential
ingredient in understanding the mapping Z — 3/z, which we will now study in
detail.

Writing z = r el®, wehave 3/z = 3/r ¢%/3 . Here ¥/r isuniquely defined as
thereal cuberoot of the length of z; the sole source of the three-fold ambiguity in
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theformulaisthefact that there areinfinitely many different choicesfor theangle
8 of agiven point Z.

Think of z asamoving point that isinitially at z = p. If wearbitrarily choose
8tobetheangle¢ shownin[28], then 3/p = a. Asz gradually movesaway from
p, 6 gradually changes fromitsinitial value ¢, and 3/z = 3/r ¢®/? gradualy
moves away from itsinitial position a, but in a completely determined way —its
distancefrom theorigin isthe cuberoot of thedistance of z, and itsangular speed
isonethird that of z.

Figure[29] illustratesthis. Usualy wedraw mappingsgoing fromlefttoright,
but here we have reversed this convention to facilitatecomparison with [28].

Figure[29]

Asz travelsalong theclosed loop A (finally returning to p), 3/z travelsalong
theillustrated closed loop and returnsto itsoriginal valuea. However, if z instead
travelsalong the closed loop B, which goes round the origin once, then 3/z does
not return to its origina value but instead ends up at a different cuberoot of p,
namely b. Note that the detailed shape of B isirrelevant, all that mattersis that
it encircles the origin once. Similarly, if z travelsalong C, encircling the origin
twice, then 3/z ends up at ¢, thethird and final cuberoot of p. Clearly, if z were
to travel along aloop [not shown] that encircled the origin three times, then 3/z
would return toitsorigina valuea.

The premisefor thispictureof z - 3/z wasthearbitrary choiceof 3/p = a,
rather than b or c. If weinstead chose 3/p = b, then the orbits on the left of [29]
would simply berotated by (2r/3). Similarly,if wechose 3/p = c, thentheorbits
would be rotated by (47z/3).

The point z = 0 iscaled abranchpoint of 3/z. Moregenerdly, let f (z) bea
multifunctionandleta = f (p) beonedf itsvauesat somepointz = p. Arbitrarily
choosing theinitial positionof f (z) to bea, we may follow the movement of f (z)
& z travelsalong a closed loop beginning and ending a p. When z returnsto p,
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T (z) will either returntoa or it will not. A branch point z = q of f isapoint such
that f (z) failstoreturntoa as z travelsalong any loop that encircles g once.

Returning to the specificexample f (z) = 3/z, we haveseen that if z executes
three revolutionsround the branch point at z = 0 then f (2) returnstoits original
value. If T (2) were an ordinary, single-valued function then it would return to its
original valueafter only onerevolution. Thus, relativeto an ordinary function, two
extra revolutions are needed to restore the original value of f (z). We summarize
thisby saying that 0 isabranch point of 3/z of order two.

More generdly, if g is a branch point of some multifunction f (z), and f (2)
first returnsto its original value after N revolutions round g, then q is called an
algebraic branch point of order (N — 1); an algebraic branch point of order 1is
called asimple branch point. Weshould stressthat it is perfectly possiblethat f (2)
never returns to its origina value, no matter how many times z travels round q.
Inthiscaseqiscalled alogarithmic branch point— the name will beexplainedin
the next section.

By extending the above discussion of 3/z, check for yourself that if n isan
integer then z(1/™ isan n-valued multifunction whose only (finite) branch point is
at z = 0, the order of thisbranch point being (n — 1). More generally, thesameis
truefor any fractional power z™/™, where (m/n) is afraction reduced to lowest
terms.

2 Single-ValuedBranches of a Multifunction

Next we will show how we may extract three ordinary, single-valued functions
from the three-valued multifunction 3/z. First, [30] introduces some terminology
which we need for describing sets of pointsin C.

A set S is said to be connected (see [30a]) if any two pointsin S can be
connected by an unbroken curvelying entirely within S. Conversely, if there exist
pairs of points that cannot be connected in this way (see [30b]), then the set is
disconnected. Amongst connected sets we may single out the simply connected
sets (see [30c]) as those that do not have holes in them. More precisely, if we

connected simply connected

[c]

disconnected multiply connected

[@

[ORR

Figure [30]
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picturethe path connecting two pointsin theset asan el asticstring, then thisstring
may be continuously deformed into any other path connecting the points, without
any part of the string ever leaving the set. Conversdly, if the set does have holes
initthenitismultiply connected (see{30d]) and there exist two paths connecting
two pointssuch that one path cannot be deformed into the other.

Now let usreturnto [29]. By arbitrarily pickingoneof thethreevauesof 3/p
at z = p, and then alowing Z to move, we see that we obtain a unique value of
3/ Z associated with any particular pathfrom pto Z. However, wearestill dealing
with a multifunction: by going round the branch point at 0 we can end up at any
oneof thethreepossiblevaluesof 3/Z.

On the other hand, the value of /Z does not depend on the detailed shape
of the path: if we continuously deform the path without crossing the branch point
then we obtain the same value of /Z. Thisshows us how we may obtain asingle-
vaued function. If werestrict z to any simply connected set S that contains p but
does not contain the branch point, then every pathin Sfrom p to Z will yield the
same vaueof /Z, which we will call £1(Z). Sincethe pathisirrdlevant, f; is
an ordinary, single-valued function of positionon S; it is called a branch of the
original multifunction 3/z.

Figure[31] illustratessuch aset S, together withitsimage under the branch f;
o /7. Herewehaverevertedtoour normal practiceof depictingthemappinggoing
from left to right. If we instead choose 3/p = b then we obtain a second branch
f2of 3/z, while }/p = cyieldsthethird andfinal branch f3. Notice, incidentally,
that all threebranchesdisplay the by now ubiquitous(yet mysterious) preservation
of small squares.

We now describe how we may enlarge the domain S of the branchesso asto
obtainthecuberootsof any pointintheplane. Firstof al, asillustratedin [32], we
draw an arbitrary (but not self-intersecting) curve C from the branch point 0 out

3z

Figure[31]
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Figure [32]

toinfinity; thisiscalled a branch cut. Provisionally, we now take S to bethe plane
with the pointsof C removed—this preventsany closed pathin S from encircling
the branch point. We thereby obtain on S the three branches fi, f2, and f;. For
example, the figure shows the cuberoot f; (d) of d.

What about apoint suchase on C?Imaginethat z istravellinground an origin-
centred circle through e. The figureillustrates the fact that f1(z) approaches two
differentvaluesaccordingasz arrivesat ewith positiveor negativeangular speed. If
we(arbitrarily) definef | (€) tobethevalueof f (z) when z travel scounterclockwise
round the circle, then fi1(z) iswell defined on the whole plane. Similarly for the
other two branches.

Of course the branch cut C is the work of man—the multifunction 3/z is
obliviousto our desire to dissect it into three single-valued functions. Aswe have
just seen, this shows up in the fact that the resulting branches are discontinuous
on C, despite the fact that the three values of 3/z always move continuously as
z moves continuously. As z crosses C travelling counterclockwise then we must
switch from one branch to the next in order to maintain continuous motion of 3/z:
for example, 1 switchesto f>. If z executes three counterclockwise revolutions
round the branch point, then the branches permutecyclically, each finally returning
toitself: using an arrow to denote a crossing of C,

S f2 3 f
L t=>16B 1>y h > 2 ¢
f3 f f2 f3

A common choicefor C isthe negativereal axis. If wedo not allow z to cross
the cut then we may restrict theangle 8 = arg(z) tolieintherange—n <6 < n.
Thisiscalled theprincipal valued theargument, written Arg (z); note the capital
first letter. With thischoice of 8, thesingle-valuedfunction 3/7 ¢©/3 iscalled the
principal branch of the cuberoot; let us writeit as[ 3/z 1. Note that the principal
branch agrees with the real cube root function on the positivereal axis, but not on
the negative real axis; for example, [3/—81 = 2¢/™/3. Also note that the other
two branches associated with this choice of C can be expressed in terms of the
principal branch as ¢! @*/3[ 3/7 ] and ¢! “*/3[ 3/7 1.
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It should be clear how the above discussion extends to a genera fractional
power.

3 Relevanceto Power Series

Earlier we explained the otherwise mysteriousinterval of convergencefor area
function such as 1/(1 + x2) by extending the function off the real line and into
the complex plane: the obstruction to convergencewas the existence of pointsat
which the complex function became infinite (singularities). We now discuss the
more subtle fact that branch points also act as obstacles to the convergence of
power series.

Thereal Binomia Theorem saysthatif nisany real number (not just apositive
integer), then

1+ x)n =14nx+ n(nz?l)xZ + n(n—13)!(n—2)x3 + n(n-l)(ri‘TZ)(n—3)x4 4l

If nisapositiveinteger then theseriesterminatesat x" and theissueof convergence
does not arise. If n is not a positive integer then the ratio test tells us that the
interval of convergence of the power seriesis —1 < X < 1. Thisinterva is
easily understood when n is negative, because the function then has a singularity
a x = —1. But how, for example, are we to explain thisinterval of convergence
inthecasen = (1/3)?

Figure[33a] showsthegraphy = (1+x)% of thereal functionf (x) = (I %x)é ,
whichiswell definedfor al x sinceevery real number hasa uniquereal cuberoot.
Looking at this graph, there seems to be no good reason for the series to break
down at £1, yet break down it does. Thisisillustrated rather vividly by thedashed
curve, whichisthegraph of the 30™ degree polynomial obtained by truncating the
binomial seriesat x3°. Asyou can see, thiscurvefollows y = f (x) very closely
(actually more closely than illustrated) between £1, but just beyond thisinterval
it suddenly starts to deviate wildly.

Unlike the case of 1/(1 T x2), observe that the mystery does not disappear

when we extend the real function f (x) to the complex function f (z) = (1F2)3,
because f (z) doesnot have any singularities.
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We have dready discussed the fact [see (14) and Exs. 16, 17, 18] that the
Binomial Theorem extends to the complex plane. In the present case it says that

f@=0+2)3 =1+3z2—- 32+ g2 — gt + 50—,
with convergenceinside the unit disc shown in [33b]. In common with all power
series, the RHS of the above equation is asingle-valued function. For example, at
z = 0 the seriesequals 1. But while f (x) was an ordinary single-valued function
of x, the LHS of the above equation is a three-valued multifunction of z, with a
second order branch point at z = —1. For example, f (0) takes three vaues: 1,

&F ,ande™’ % .Wenow recognizethat the power seriesrepresentsjust onebranch
of f (), namely theonefor which f (0) = 1.

This solves the mystery. For suppose that the series were to convergeinside
the larger circle in [33b], and in particular at the illustrated point z. Starting at
z = 0 with the value f (0) = 1, then travelling aong the two illustrated paths
to z, we clearly end up with two different values of f (z), because together the
two paths enclose the branch point at —1. But the power series cannot mimic
this behaviour since it is necessarily single-vaued—itsonly way out is to cease
converging outside the unit disc. We have demanded the impossible of the power
series, and it has responded by committing suicide!

This example shows that a branch point is just as real an obstacle to conver-
gence as a singularity. Quite generally, this argument shows that if a branch of a
multifunction can be expressed as a power series, the disc of convergence cannot
be large enough to contain any branch points of the multifunction. This strongly
suggests afurther generalization of the (unproven) statement (15):

Ifa complexfunctionorabranch d a multifunctioncan beexpressed
asa power series, the radiusd convergenceisthedistance tothe  (27)
nearest singularity or branch point.

Much later in the book we will develop the tools necessary to confirm this conjec-
ture.

4 An Examplewith Two Branch Points

Choosing the positive value of the square root, {34a] illustrates the graph y =
f (x) = +/1 + x2, which is a hyperbola. Again, the Binomial Theorem yields a
power series that mysteriously only converges between 1, namely,

HOENCRFOLES R P ST g, Je SN LN

Thedivergenceof the series beyond thisinterval isvividly conveyed by the dashed
curve, whichisthegraph of the20™ degree polynomial obtained by truncating the
binomial seriesat x2°.

As before, the explanation lies in C, where f (x) becomes the two-valued

multifunction f (z) = v/z2 + 1. Thiscan berewrittenasf (z) = +/(z — i)(z + i),
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whichmakesit clear that f (z) hastwo simple branch points, oneat i and the other
a —i. These branch pointsobstruct the convergenceof the corresponding complex
series, limiting it to the unit disc shown in [34b].

In greater detail, the notation of [34b] enables usto write

f&) = mei(01+62)/2. (28)

Here we must bear in mind that the figure illustrates only one possibility (out of
infinitely many) for each of theangles 6, and 6,. To see that i isindeed a branch
point, suppose westart with the valueof f (z) given by theillustrated valuesof 6;
and 6;. Now let z travel round theillustrated loop L. Asit does so, (z + i) rocks
back and forth, so 8, merely oscillates, finally returning toits original value. But
(z— i) undergoes a complete revolution, and so 6; increases by 2z. Thus when z

returnstoitsoriginal position, (28) showsthat f (z) does not return to itsoriginal
value, but rather to

Faew(2) = friry & COFIHOD/2 _ pin [ O/ — _ f4(2).

O course the same thing happens if z travels along aloop that goes once round
—i,instead of round +i.

In order to dissect f (2) into two single-valued branches, we appear to need
two branch cuts: onecut C; fromi toinfinity (to prevent us encircling the branch
pointat i), and another cut C; from —i toinfinity,for the samereason. Figure[35a]
illustratesa particularly common and important choice of these cuts, namely, rays
going due west. If we do not alow z to cross the cuts then we may restrict the
angle9; = arg(z — i) toits principal value, in the range —7 < 6; < n. For
example, the anglein [34b] is not the principal value, whilethe onein [35a] is. If
6 islikewiserestricted toits unique principal valuethen (28) becomesthesingle-
vaued principa branch of f (z), say F(z). The other branch of f (z) is smply
-F(2).

Let us return to the previous situation in which we allowed 8; and 6, to take
general values rather than their principal values. Figure [35b] illustrates the fact
that it is possible to define two branches of f (z) using only a single branch cut
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Figure[35]

C that connects the two branch points. If z is restricted to the shaded, multiply-
connected region S, then it cannot loop around either branch point singly. It can,
however, travel along aloop such as L that encircles both branch points together.
But in this case both 6; and 6, increase by 27, so (28) showsthat f (z) returnsto
its original vaue. Thus we can define two single-valued branches on S. Finaly,
we may expand S until it borderson C.

VIl The Logarithm Function
1 Inverse of the Exponential Function

The complex logarithm function log(z) may be introduced as the "inverse” of e2.
More precisely, we definelog(z) to be any complex number such that ¢'°8@ = 7.
It follows [exercise] that

log(z) =1In|z| + i arg(z).

Since arg(z) takesinfinitely many values, differing from each other by multiples
of 2, we seethat log(z) isamultifunction taking infinitely many values, differing
from each other by multiplesof 27i. For example,

log(2 + 2i) = In2v/2 + i (7w /4) + 2ni,

wherer isan arbitrary integer.

The reason we get infinitely many valuesis clear if we go back to the expo-
nential mapping shownin [19], p. 81: each time z travelsstraight upward by 27,
€’ executes a complete revolution and returns to its original value. Figure [36]
rephrasesthis using the above example of log(2 + 2i). If we arbitrarily choose the
initial valuew = In2+/2 Fi (7t /4) for log(2 + 2i), then as z travelsalong aloop
that encircles the origin v times in the counterclockwise direction, log(z) moves
along apathfrom w to w +2v7i. Check that you understand (roughly) the shapes
of theillustrated image paths.

Clearly log(z) hasabranch point at z = 0. However, this branch pointis quite
unlikethat of z{1/", for no matter how many timesweloop around the origin (say
counterclockwise), log(z) never returns to its original value, rather it continues
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moving upwardsforever. Y ou can how understand the previously introduced term,
"logarithmicbranch point".

Hereisanother difference between the branch pointsof z(1/?) andlog(z). Asz
approachesthe origin, say along aray, |z1/™] tendsto zero, but | log(z)| tendsto
infinity,and in this sense the originisasingularity asawell asabranch point. On
theother hand, algebraic branch pointscan al so be singularities; consider (1/4/z).

To define single-valued branches of log(z) we make a branch cut from 0 out
to infinity. The most common choice for this cut is the negativerea axis. In this
cut plane we may restrict arg(z) to its principa value Arg(z); remember, thisis
definedby —7 < Arg(z) < m. Thisyieldstheprincipal branchor principal value
o thelogarithm, written Log (z), and defined by

Log (z) = In|z| Ti Arg (2).

Forexample,Log (—+/3—i) = In2—i (57/6),Log (i) = i(7r/2),and Log (—1) =
in. Notethat if z =X isonthe positiverea axis, Log (x) = In(x).

Figure [37] illustrates how the mapping z = w = Log(z) sends rays to
horizontal lines, and circles to vertical line-segments connecting the horizontal
linesat heights +; the entire z-plane is mapped to the horizontal strip of the w-
plane bounded by these lines. Study this figure until you are completely at peace
withit. You can seethe pricewepay for forcing thelogarithm to besingle-val ued:it
becomesdiscontinuous at the cut. Asz crossesthe cut travelling counterclockwise,
the height of w suddenly jumps from = to —n. If we wish w to instead move
continuously, then we must switch to the branch Log (z) + 27i of the logarithm.

Another problem with restricting ourselves to the principal branch is that the
familiar rulesfor the logarithm break down. For example, Log (ab) is not always
equal to Log (a) T Log (b); try a = —1 and b = i, for example. However, if we
keep all valuesof thelogarithm in play thenit istrue [exercise] that
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log(ab) = log(a) +log(®) and log(a/b) = log(a) — log(b),

in the sense that every value of the LHS is contained amongst the values of the
RHS, and vice versa.

2 The Logarithmic Power Series

If wewishtofind a power seriesfor the complex logarithm, two problemsimme-
diately arise. First, sincea power seriesis single-valued, the best we can hopefor
istorepresent asingle branch of log(z); let's choosethe principal branch, Log (z).
Second, theoriginisboth asingularity and a branch point of Log (z) so we cannot
have a power series centred there(i.e., in powers of z); let us therefore try an ex-
pansoncentredat z = 1, i.e., in powersof (z — 1). [Of course any other non-zero
point would be equally suitable.] Writing Z = (z — 1), our problem, then, isto
expand Log(1 + Z) in powersof Z.

Let ususetheabbreviationL (z) = Log (1 z). Sincethebranch point of L (z)
isz= -1, thelargest disc of convergencewe can haveistheunit disc. To find the
series we will use the fact that 2@ = (1% z). Recall from (21) [on p. 82] that
by taking n to be a sufficiently large positive integer, we can approximatee- as
precisely aswewish using [1 F (L/n)]". Thus

L\" L L 1
1+; ret=(14+7) = 1+;N(1+Z)”-

Thereare n branchesof (1+ z)rlu withinthe unit disc, but sinceL (0) = 0 we need

thebranchof (1 +z)r‘lz that equals1 when z = 0. Appesling to the Binomial series
for this principal branch, we abtain

L 1 ld - 1d_pd -2
1+—%1+—z+"(" )z2+"(" G )z3+---
n n 2! 3!

s
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and hence

G-DZ  G-D-DZ G-DG- G-

L(z) ~
@~ z+—— 3 4

Findly, sincethisbecomesexact in thelimit that n tendsto infinity, we obtain the
following logarithmicpower series:

2 23 Z4 z5 6

z z
Log(1+2)=z >3 7 T3 et (29)
For other approachesto this series, see Exs. 31, 32.

Using the ratio test, you can check for yourself that this series does indeed
convergeinside the unit circle. Infact it can be shown [see Ex. 11] that the series
aso converges everywhere on the unit circle, except obviously & z = —1. This
yields some very interesting specia cases. For example, putting z = i and then
equating real and imaginary parts, we get

1 1 1 1 1 1
WVZ = 5-itestn o mt
i ™ 11 1 1 1
4 I=-3ft5s7=%-1771

Try checking thefirst serieshy noting that if z =1, thenln v2 = Lin(1 + 7).
For interesting applications of thelogarithmic series, see Exs. 36, 37, 38.
3 General Powers

If x isared variable then we are accustomed to being able to express x3, for
example, ase3!"*. Let's see whether we can do the same thing using the complex
exponentid and logarithm. That is, let usinvestigate the possibility of writing

Zk — eklog(z). (30)

Let z = r €°, whered ischosen to be the principa value, Arg (z). Then

ALog (@ _ 3nr+if) _ 3nr i3 _ 3 ,i30 _ 3

But the most general branch of log(z) is simply Log(z) t 2nri, where nisan
integer, so
e3log(z) = e6nm' e3 Log(z) — eﬁnni 23 =123

is true irrespective of which branch of the logarithm is chosen. Clearly, by the
same argument, (30) istruefor al integer valuesof k.

Next, consider the three branches of Z3. Recalling that the principal branch
[23]of thisfunctionis /7 ¢i®/3), whered againrepresentstheprincipa angle, you
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can easily check that ef L8 @ = [731. Thus the general branch of the logarithm
yields

2nm
e3log(z) _.et [Z§]

Thuswe have again confirmed (30), in the sense that the infi nltely many branches
of log(z) y|e|d precisely the three branches of the cube root: [z51, ¢l C*/d[z3],
and e’(4”/3)[z5] By the same reasoning, if (p/q) isafraction reduced to lowest

terms then e 1°2® yields precisely the g branches of z 7

Finally, notethat theRHS of (30) isstill meaningful if k = (a+ib) isacomplex
number. Embol dened by the above successes, we how take (30) asthedefinition of
acomplex power. If we use Log (z) in (30) then wefind that the principa branch
of z@+ib) jsgiven by [exercise]

[z(a+ib)] = e(a+ib) Log(z) rae—be ei(a0+blnr)

If znow travelsalong aclosed loop encircling theorigin n times, thenlog(z) moves
alongapathfromLog () to Log (2) +2nmi, and 7@+ movesaong apathfrom
[Z(a-{-ib)] to

Z(a-‘r-ib) — ei2nnae—27rnb [Z(a+ib)]‘

If b s 0 then the factor e~27"® makesit obvious that z@+?®) never returns to
itsoriginal value, no matter how many times we go round the origin. Thusz =0
isalogarithmic branch point in thiscase. Thisistill true evenif b = 0, provided
[exercise] that the real power a isirrational. Only when a is a rational number
does z# return to its original value after afinite number of revolutions, and only
when a isan integer does z* become single-valued.

Weend with an important observation on the use of “e?” to denote the single-
vaued exponential mapping. Reversing the roles of the constant and variablein
(30), we are forced to define f (z) = kZ to be the "multifunction™ [see Ex. 29]
f (z) = e2°¢®_ Byt if we now put k = e = 2.718... then we are suddenly
in hot water: the exponential mapping “e*” is merely one branch [what are the
others?] of the newly defined multifunction (2.718. . .)%. To avoid this confusion,
some authors always write the exponential mapping as exp(z). However, we shall
retain the notation “e*”, which is both convenient and rooted in history, with the
understanding that € alwaysrefers to thesingle-valued exponential mapping, and
never to the multifunction (2.718. . .).

VIIl Averaging over Circles*
1 The Centroid

This entire section is optiona because the chief result to which we shall be led
("Gauss Mean Vaue Theorem™) will be derived again later, in fact more than
once. Itisneverthelessfun and instructiveto attempt to understand the result using
only the most elementary of methods.
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Consider aset of » point particlesin C, located at z1, z2, .. ., Z». If the mass
of the particleat z; ism; thenthecentroid Z of theset of particles (also called the
"centre of mass") is defined to be

- Yi—1mizj
=5
Zj:l m;j

If weimaginethe planeto be masdess, Z isthe point at which we could rest the
planeon a pin so asto makeit balance.

Throughout this section we shall take the musses of the particles to be equal,
in which case the centroid becomesthe average position of the particles:

Thisisthe case depicted in [38a]. An immediate consequencedf thisdefinitionis

[b]

> @ -2

Figure[38]

thet 3 (z; — Z) = 0. In other words, the complex numbersfrom Z to the particles
cancel. Thisvanishingsumisillustratedin [38b]. Conversdly, if somepoint Z has
the property that the complex numbers connecting it to the particles cancel, then
Z mugt be the centroid.

Another immediateresult isthat if wetrandatetheset of pointshy b, then the
centroid will trandate with them, i.e., the new centroid will be Z + b. The same
thing happensif we rotatethe set of points about the origin—the centroid rotates
with them. In generadl,

It Z isthe centroid of {z;}, then the centroid of {az; + b)isaZ *b. (31)

Given a second set of n points {Z;} (with centroid Z), we may add pairsfrom
the two setsto obtain the set {z; +7;}, anditis easy to seethat the centroid of the
latteris Z + Z. In particular, thecentroid Z of {z; = x; Tiy;}isthesum X +iY of
thecentroid X of the points{x;} onthereal axisand thecentroidi Y of the points
{iy;} ontheimaginary axis.

Our next result will play a minor role at the end of this section, but later we
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shall seethat it hasother interesting consequences. The convex hull H of theset of
particles{z;} is defined to be the smallest convex polygon such that each particle
lieson H or insideit. Moreintuitively, firstimagine pegs sticking out of the plane
a each point z;, then stretch animaginary rubber band so asto encloseall the pegs.
When released, the rubber band will contract into the desired polygon H shown
in [39a]. We can now state the result:

The centroid Z must lie in the interior of the convex hull H . (32)

Forif pisoutsidethisset, weseethat thecomplex numbersfrom p to theparticles
cannot possibly cancel, asthey must dofor Z. Moreformally, wetakeit asvisually
evident that through any exterior point p we may draw aline L such that H and
its shaded interior lie entirely on oneside of L. Theimpossibility of the complex
numbers cancelling now follows from their lying entirely on this side of L, for
they all must have positivecomponentsin thedirection of theillustrated complex
number N normal to L. Except when the particles are collinear (in which case H
collapsesto aline-segment), the same reasoning forbids Z from lying on H.

Figure [39]
Asillustrated in [39b], an immediate consequence of (32) isthat

If all the particlesliewithin some circle then their centroid alsolies

within the circle. (33)

Themain result wewish to derivein thissectionisbased on thefollowingfact.
Defining the "'centre’ of a regular n-gon to be the centre of the circumscribing
circle,

The centre of a regular n-gon is the centroid of its vertices. (34)

By virtue of (31), we may as well choose the n-gon to be centred at the origin,
in which case the clam is that the sum of the vertices vanishes. Asillustratedin
[40a], thisis obviousif n iseven sincethe verticesthen occur in opposite pairs.
Theexplanationis not quiteso obviouswhen n isodd; see [40b], whichillus
tratesthecasen = 5. However, if wedraw ) z; systematically, taking the vertices
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[e]

Figure [40]

z; in counterclockwise order, then we obtain [40c], and the answer is suddenly
clear: the sum d the vertices d the regular 5-gon forms another regular 5-gon.
Thefigureexplainswhy thishappens. Sincethe angle between successivevertices
in [40b] is (27r/5), thisis also the angle between successive terms of the sumin
[40c]. Clearly thisargument generalizesto arbitrary n (both odd and even), thereby
establishing (34). For adifferent approach, see Ex. 40.

2 Averaging over Regular Polygons

If acomplex mapping z — w = T (z) maps the set of points {z;} to the set
{w; = T (z;)}, then the centroid W of the image points may be described as the
averageoff (z) overtheset {z;} d = points. Writing this averageas (f(z))x,

1 n
(F@hn=~ 3 f@).
j=1

Naotethat if f (zZ) = c isconstant, then its average over any set of pointsisequal
toc.

Henceforth, weshall restrictourselvesto thecasewhere{z; } arethe verticesof
aregular n-gon; correspondingly, (f (z))» will beunderstoodastheaveragedf f (z)
over theverticesof such aregular n-gon. Notethat if wewritef (z) = u(2) Fiv(z),
then

(f@)n = w@)nti (V@) (35)

Initidly, we consider only origin-centred polygons.

Consider, then, the average of f (z) = z™ over the vertices of such aregular
n-gon. Figure[41]illustratesthecasen = 6. Inthecentredf thefigureisashaded
regular hexagon, and on the periphery are the images of its vertices under the
mappings z, z2, . . ., z°8. Study thisfigure carefully, and seeif you can understand
what's going on. If we take till higher values of m, then this pattern repeats
cyclicdly: Z/islikeZz' , 2 iinkezz, and so on.

For us the essential feature of this figureis that unlessm is a multiple of 6,
the image under z™ of the regular 6-gon is another regular polygon. [Note that
we count two equal and opposite points as aregular 2-gon, but we do not count a
single point as aregular polygon.] More precisely, and in general,
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Figure[41]
Unless m is a multiple of », the image under z™ of an origin-
centred regular n-gon is an origin-centred regular N-gon, where
N = (ndivided by the highest common factor of mand n). If mis
a multipleof », thenthe imageisa single point.

(36)

Check that this agrees with [41]. Try to establish the result on your own, but see
Ex. 41 if you get stuck.

Combining this result with (34), we obtain the following key fact: 1fn > m
then (z™), = 0. Thisiseasy to generalize. If

Po@)=co+ciz+a?+a+ - +em"

isagenera polynomial of degree m,then itsaverageover the verticesof then-gon
is

(Pr(@))n = (co)n + €1 (2 + 2 (2P + €3 (Phn + -+ em ()

If the number n of verticesis greater than the degree m of the polynomial, we
therefore obtain

(Pm(2))n = (codn = co = Pp(0).
In other words, the centroid of the image points is the image of the centroid.
Expressing thisresult in the language of averages,

Ifn > mthenthe average of an mt" degree polynomial P,,(z) over
the verticesof an origin-centred regular n-gon isitsvalue P, (0) at 37
the centre of the n-gon.

Finally, let usgeneralize to regular n-gonsthat are centred at an arbitrary point
k, instead of the origin. Of course when we apply z™ to the vertices of such a
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Figure[42]

regular polygon, theimage pointsdo not form aregular polygon. See[42], which
showstheeffect of z* on the verticesof aregular hexagon H centred at k, together
with the image of the entire circle on which these verticeslie. Nevertheless, the
figurealsoillustratesthesurprising and beautiful fact that, onceagain, the centroid
o the image points is the image of the centroid of H. Figure [43a] confirmsthis
empirically by showing that the sum of complex numbers connecting k* to the
image pointsisindeed zero.

Extendingour notationslightly, wemay writetheaverageof z* over thevertices
o H as (™), so what we must show is that (z*) g = k*. It is no harder to treat
the general case of z™ acting on the vertices of a regular n-gon H centred at k.
First notethat H can be obtained by transglating an origin-centred n-gon H by k.
See the examplein [43b]. Sincea vertex z; of H trandates to a vertex z; 1 k of
H, it followsthat

@ =(z+b") g

But (z + k)™ = 374 (7)2/ k" isjustan m™ degree polynomia which maps

0 to k™. Using (37), we conclude that if n > m then {(z™)y = k™, aswasto be
shown.

=
AN

(b]

b

Figure[43]
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Generalizing theargument that led to (37), we seethat (37)isaspecia casedf
thefollowing result:

Ifn > m thentheaverage of an m™ degree polynomial Py,(z) over
the verticesof a regular n-gon centred at k isitsvalue P, (k)atthe  (38)
centre of the n-gon.

3 Averaging over Circles

Since at least the time of Archimedes, mathematicians have found it fruitful to
think of a circleasthelimit of aregular n-gon as n tendsto infinity. We will now
usethisideato investigatethe average of acomplex function over acircle.

Inscribing aregular n-gonin a given circle, and taking thelimit as n tendsto
infinity, (38)shows that

The average over a circle C of a polynomial of arbitrarily high

degreeisequal to the value of the polynomial at the centre of C. (39)

By (35), theaverage (f () )k of acomplexfunction f(z) = u(z) Tiv(z)over
acircleC may be expressed as ( f(2))c = (u(z)k ti (W(2) . Using afamiliar
ideafrom ordinary calculus, the averagesof thetwo red functionsu and v may be
expressed asintegrals. If C hascentrek and radius R, then as 8 varies between 0
and 2r, =k + R€© tracesout C. Thus,

2n . o _
w@)c = —1—/ u(k+R€)ds and (v@)c = Lf v(k+Re©)do.
2r Jo 2 Jo

More compactly, we may write

2

1 .
(f@)c = 7 fk + Ré%)do,
T Jo

in which it is understood that the complex integral may be evaluated in terms of
thered integralsabove.

Once again denoting a general mt™ degree polynomia by P (z), (39) can
therefore be expressed as an integral formula:

2n

v Pu(k + R€®)d0 = (Pu(2))c = Pn (k). (40)
2 0

For example, if C iscentred at the originand Pp(z) = 2™, then

m 1 2r n imb R™ 2 +ig
(z )c=57—t- A R™ e d0=E A [cosmé T isnmb] do =0,

in agreement with (40).
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Thefact that (40) holdsfor polynomiasof arbitrarily high degreeimmediately
suggeststhat it might also hold for power series. We shall show that it does.

Asusua wewill only givethedetail sfor origin-centred power series, the gen-
eralization to arbitrary centres being straightforward. Let P(z) = Zj'io cjz/ be
the power series, so that Py, (z) = ;"=0 cj z/ are its approximating polynomials.
If the circle C liesinsidethe disc of convergencedf P(z), then (12) impliesthe
following. No matter how small we choosea rea number €, we can find a suffi-
ciently largem such that P,, (z) approximates P (z) with accuracy e throughout C
and itsinterior. If wewrite £(z) for the complex number from the approximation
P (z) to theexact answer P(2), then

P(z) = Pn(2) + £(z), where |E(z)| < €

foral z onandinsideC, and in particular at the centrek of C.

At this point we could immediately study (P(z))c in terms of its integral
representation, but it is moreinstructive to first consider the average (P(z)), of
P(z) over aregular n-goninscribed in C. Oncethisis done, we may let n tend to
infinity to obtain (P(z))c.

First note that £(z) maps the vertices of the n-gon to points lying inside an
origin-centred disc of radiuse. By (33), or directly from the generalized triangle
inequality (8) on p. 8, thecentroid (£(z)), of thesepointsmust alsoliein thisdisc.
Choosing n greater than m, say n = (m + 1), (38) yidlds

(P@m+1 = (Pm(@)m+1 + (€@ m+1
P (k) + (E(@)m+1
P(k) + [(E@)mr1 — EW)] .

The term in square brackets is the connecting complex number from £(k) to
(€(@)}¥m+1, and since both these points lie within a disc of radius e, their con-
necting complex number must be shorter than 2e. Finally, sincethetermin square
brackets may also beinterpreted as the connecting complex number from P (k) to
(P(2))m+1, we have thefollowing result:

Let m be chosen so that Py, (Z) approximatesthe power series P(2)
with accuracy € on and within a circle C centred at k. If a regular
(m* 1)-gonisinscribed in C, then theaverage ( P(z))m41 of P(2)
over itsvertices will approximate P (k) with accuracy 2e.

(41)

We have thus transformed an exact result concerning the approximation Py, (z)
into an approximation result concerning the exact mapping P (z).

Forexample,let C betheunitcircle,andlet P(z) = e’. If wedesirean accuracy
of ¢ = 0.004 everywhereon the unit disc then it turnsout that m = 5is sufficient,
i.e., the approximating polynomial of lowest degreethat hasthisaccuracy is

Ps(z)=1+4+z+ %zz + 31—,23 + %z"' + %ZS.
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Figure [44]

Figure [44] shows the image under z — € of C, and in particular it shows
the images of the vertices of a regular hexagon inscribed in C. According to the
result, the centroid of these image points should differ from e = 1 by no more
than 0.008—an indiscernible discrepancy in a drawing done to this scale. This
predictionisconvincingly borne out in [45], which showsthe sum of the complex
numbers connecting 1 to the images of the vertices of the hexagon. To within the
accuracy of thedrawing, the sum isindeed zero!

Figure [45]

In the limit that ¢ tends to zero and m tends to infinity, (41) yields aform of
Gauss Mean Value Theorem:
If a complex function f (z) can be expressedasapower series, and a
circle C (radiusR and centre k) lieswithin the disc of convergence
o that power series, then

2n

1 .
(fF@)c=o— | fle+ Re9)do = f(k).
T Jo

In addition toitstheoretical importance, thisformulacan sometimesbeused to
evaluate difficult real integrals. For example, the exact version of [44]is (e*)c =
¢® = 1, and thisimplies [exercise] that /2™ €°™*¢ cos[sin 8]d6 = 2n. See Ex. 43
for another example of thisidea. )
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IX Exercises

1 Sketch thecircle |z — 1] = 1. Find (geometrically) the polar equation of the
imageof thiscircleunder themapping z — z2. Sketch thisimage curve, which
iscaled acardioid.

2 Considerthecomplex mappingz — w = (z — a)/(z — b). Show geometrically
that if we apply this mapping to the perpendicular bisector of the line-segment
joininga and b, then theimage is the unit circle. In greater detail, describe the
motion of w round thiscircleas z travelsalong theline at constant speed.

3 Consider thefamily of complex mappings

Z— a

I My(2) = =
az—1

(a congtant).

[ These mappings will turn out to be fundamental to non-Euclidean geometry.]
Do the following problems agebraically; in the next chapter we will provide
geometricexplanations.

(i) Show that M,[M,(2)] = z. In other words, M, issdf-inverse.
(ii) Show that M, (z) mapsthe unit circletoitself.

(iii) Show that if a liesinside the unit disc then M,(z) maps the unit disc to
itsalf.
Hint: Use |q|> = q7 to verify that

@z—1%—|z—al> =1 -laP®) A - |z.

4 Infigure[7] wesaw that if g> < p3 then the solutions of x3 = 3px + 2q are
dl real. Draw the corresponding picturein the case ¢? > p3, and deduce that
one solutionis real, while the other two form acomplex conjugate pair.

5 Show that the mapping Z +— 2 doubles the angle between two rays coming
out of theorigin. Usethisto deducethat the lemniscate (see[9] on p. 62) must
salf-intersect at right angles.

6 Thisquestion refersto the Cassinian curvesin [9] on p. 62.

(i) Onacopy of this figure, sketchthecurvesthat i ntersect each Cassiniancurve
at right angles; these are cdled the orthogonal trajectories of the origina
family of curves.

(ii) Give an argument to show that each orthogonal tragjectory hits one of the
foci at +1.

(iii) If the Cassinian curvesare thought of asageographical contour map of the
modular surface (cf. [10]) of (z2 — 1), then what istheinterpretation of the
orthogonal trgjectoriesin termsof the surface?



112 Complex Functions as Transformations

(iv) In Chapter 4 we will show that if two curvesintersect at some point p #
0, and if the angle between them at p is ¢, then the image curves under
Z > w = Z% will also intersect at angle ¢, at the point w = p2. Use this
to deduce that as z travels out from one of the foci along an orthogonal
trajectory,w = z2 travelsalong aray out of w = 1.

(v) Checktheresultof the previouspart by usingacomputer to draw theimages
underw + /w of (A) circlescentredat w = 1; (B) theradii of suchcircles.

(vi) Writingz = x tiy andw = u T iv, find « and v as functions of x and
y. By writing down the equation of alinein the w-plane throughw = 1,
show that the orthogonal trgjectories of the Cassinian curves are actualy
segmentsof hyperbolas.

7 Sketchthemodularsurfacedf C(z) = (z+1)(z— 1) (z+1Fi). Hencesketchthe
Cassiniancurves|C(z)| = const., thencheck your answer usingacomputer. To
answer thefollowing questions, recall that if R(z) isareal function of position
in the plane, then R(p) isalocal minimum of Rif R(p) < R(z) forall zinthe
immediate neighbourhood of p. A local maximum is defined similarly.

(i) Referringtothepreviousexercise, what isthesignificanceof theorthogonal
trgjectoriesof the Cassinian curves you have just drawn?

(ii) Does|C(z)| have any local maxima?
(iii) Does|C(z)| have any non-zerolocal minima?

(iv) If Disadisc(orindeedamorearhitrary shape), can themaximum of |C(2)|
on D occur a apointinside D, or must the maximum occur at a boundary
point of D?What about the minimumof |C(z)] on D?

(v) Do you get the same answers to these questionsif C(z) isreplaced by an
arbitrary polynomia ?What about acomplex function that is merely known
to be expressible as a power series?

8 On page 62 we saw that the polar equation of the lemniscatewithfoci at =1 is
r2 = 2c0s20. Infact James Bernoulli and his successorsworked with adightly
different lemniscate having equation r2 = cos20. Let us call thisthe standard
lemniscate.

(i) Wherearethefoci of the standard lemniscate?

(ii) What isthevaluedf the product of the distancesfrom thefoci to a point on
the standard |emni scate?

(iii) Show that the Cartesian equation of the standard lemniscateis

(2 +y9)? = x2 — y2.
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9 Hereisanattempt[ultimately doomed)] at usingreal methodsto expand H(x) =
1/ +x2)into a power seriescentred at x = k, i.e., into aseriesof theform
HX) = Zfio ¢j X/, where X = (x — k). According to Taylor's Theorem,
¢j = HD(k)/j!, where HD (k) isthe jM derivativeof H.

(i) Showthatco = 1/(1+k?) andc; = —2k/(1+ k2)2, and find c,. Note how
it becomesincreasingly difficultto cal cul ate the successivederivatives.

(i) Recall (or prove) that the n' derivative of a product AB of two functions
A(x) and B(x) isgiven by Leibniz’s rule:

n n . .

(AB)(") - ( )A(l) B0,

By applyingthisresult to the product (1 + x2)H(x), deduce that
A+ EHHD k) + 2nkH® D) + n(n — DH" D (k) = 0.

Becausethe coefficientsin thisrecurrencerel ation depend on n, we cannot
solveit using the techniqueaf Ex. 30 on p. 50.

(iii) Deducefrom the previouspart that the recurrencerelationfor thec;’s is

(1 +&%)cp + 2kep—1 + cnz = 0,
which does have constant coefficients.
(iv) Solvethisrecurrencerelation, and hencerecover the result (17) on p. 76.
10 Reconsiderthe series(18) on p. 77.

(i) Show that we recover the correct series (missingthe odd powersof x ) when
the centrek of the seriesisat theorigin.

(i) Find avaueof k such that the seriesis missing all the powers X", where
n=2,5,8,11, 14,.... Check your answer using acomputer.

11 Show that each of the following series has the unit circle asitscircle of con-
vergence, then investigatethe convergence on the unit circle. You can guessthe
correct answersby "drawing the series” in the manner of [18] on p. 80.

o o0 zn o Zn

O Y G oy = Gy =
n=0 n=1 n n=1 n

[By virtueof (29), note that the second seriesis —Log (1 — z).]

12 Consider the geometric series P(z) = Z}'io zJ, which convergesto 1/(1 — z)
inside the unit disc. The gpproximating polynomiasin this case are P,,(z) =
Z;'n=0 Zj.
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(i) Show that theerror En(z) = |P(z) — Pu(2)| is given by
|Z|m+1
En() = ———
m(Z) 11—z
(ii) If zisany fixed point in the disc of convergence, what happens to the error
asm tendsto infinity?

(iii) If we fix m, what happensto the error as z approaches the boundary point
z=1?

(iv) Supposewewantto approximatethisseriesinthedisc |z} < 0.9, and further
supposethat themaximumerror wewill tolerateise = 0.01. Find thelowest
degree polynomia P,,(z) that approximates P(z) with thedesired accuracy
throughout the disc.

13 We have seen that if we set P,(z) = 2", then the representation of a com-
plex function f (z) asan infinite series Y oo cn Pu(z) (ie., @ power series) is
unigque. Thisisnot true, however, if P,(z) isjust any old set of polynomias. The
following exampleis taken (and corrected) from Boas [1987, p. 33]. Defining

n—1 n

£ ~L m=1,23,..),

Po(z)=-1, and P,(z) = -1 Al

show that

—2Py— P+ P3+2P4+3Ps+---=e* =P 4+2P, +3P3+4Py+ - --.

14 Consider two power series, P(2) = Y72y p;z/ and Q(2) = Y7204, 7/,
which have approximating polynomials P,(z) = Z;'l:o Dj 7/ and Qm(2) =
D04 z/. If the radii of convergenceof P(z) and Q(z) are Ry and R, then
both seriesareuniformly convergentinthedisc|z| < r,wherer < min{R;, R;}.
Thusif € isthe maximum error we will toleratein this disc, we can find a suffi-
ciently large n such that

Pa(2)=P@)+&1(z) and  Qn(z) = Q(2) + &2(2),

where the (complex) errors £1,2(z) both have lengths less than €. Use this to
show that by taking a sufficiently high valueof n we can approximate [ P(z) T
Q(z)] and P(z) Q(z) with arbitrarily high precisionusing [P, (z) + 0, (z)] and
Py (2) On(2), respectively.

15 Give an example of a pair of origin-centred power series, say P(z) and Q(z),
such that the disc of convergencefor the product P(z) @(z) islarger than either
of the two discs of convergence for P(z) and Q(z). [Hint: think in terms of
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rational functions, such as [z2/(5 — z)3], which are known to be expressbleas
power series.]

16 Our @m isto give acombinatorial explanation of the Binomial Theorem (14)
for al negativeinteger valuesdf n. The smpleyet crucid first stepisto write
n = —m and to change z to —z. Check that the desired result (14) now tekes
theform (1 — z)™ = ZS‘;O ¢ 77, wherec, isthe binomial coefficient

cr:(m+r—1). “2)
r

[Notethat this says that the coefficientsc, are obtained by reading Pascal's tri-
anglediagonally, instead of horizontally.] To begin to understandthis, consider
thespecial casem = 3. Usingthegeometricseriesfor (1—z) ™!, wemay express
(1-73as

M4z+2+22+-Jell+z+22+22+ - Je[l+z+22+23+--1],

where a smply denotes multiplication. Suppose we want the coefficient co of
z°. One way to get z° is to take z* from the first bracket, z* from the second,
and z2 from the third.

(i) Writethisway of obtaining 2 asthesequencezzzezzzzezz of 9z’sand 24a's,
wherethelatter keep track of which power of z camefrom which bracket. [
got this niceideafrom my friend Paul Zeitz.] Explain why cg isthe number
of distinguishable rearrangements of this sequenceof 11 symbols. Be sure

to address the meaning of sequencesin which a a comesfirg, last, or is
adjacent to the other a.

(i) Deducethat c = (1), in agreement with (42).
(iii) Generaizethisargument and thereby deduce (42).
17 Hereisan inductive approach to the result of the previousexercise.

(i) Write down the first few rows of Pasca's triangle and circle the numbers
(), 3), (), (). Check that the sum of these numbersis (§). Explain this.

(ii) Generalize your argument to show that
n n-—1 n—2 n-—3
= + + +-+ 1
r r r—1 r—2

(iii) Assumethat (1—z)~" = 322 (M*7~1) 27 holdsfor somepositiveinteger
M. Now multiply this seriesby the geometric seriesfor (1 — z)~! to find
(1 — 2)~™+D_ Deduce that the binomia seriesis vaid for al negaive

integer powers.



116 Complex Functions as Transformations

18 Thebasicideadf thefollowing argument isdueto Euler. Initidly, let n be any
real (possibly irrationa) number, and define

) - - _rt
B(z,n)EZ(’:)Zr where (:)En(n Dr-2)...n-r 1)’

|
=0 r!

and (8) = 1. We know from elementary algebrathat if n is a positiveinteger
then B(z, n) = (1% 2)". To establish the Binomial Theorem (14) for rational
powers, we must show that if p and q areintegersthen B(z, 5) isthe principa

branchof (1+ 2)4.

(i) Withafixed valuedf n, usetheratio test to show that B(z, n) convergesin
theunitdisc, |z| < 1.

(ii) By multiplyingthe two power series, deduce that

B(z,n) B(z,m) = ZC’(n’ m)z" where C,(n,m) = Z (n)( " )

r=0 =0 /N

(iii) If m and n are positiveintegers, then show that
B(z,n) B(z,m) = B(z,n +m), “43)

and deduce that C,(n,m) = (**™). But C,(n, m) and ("*™) are smply
polynomiasin n and m, and so the fact that they agree at infinitely many
valuesof mand n [positiveintegers] impliesthat they must be equalfor all
real valuesd m and n. Thusthekey formula(43) isvdid for all real vaues
of m and n.

(iv) By subgtitutingn = —m in(43), deducethe Binomial Theoremfor negative
integer valuesof n.

(v) Use(43) to show that if g is an integer then [B(z, 7)1 = (1 2). Deduce
thet B(z, 1) isthe principal branch of (1 + z)%.

(vi) Finaly,showthatif pandqareintegers,then B(z, 5) isindeedtheprincipal
branch of (1+2)7.

19 Show that the ratio test cannot be used to find the radius of convergenceof the
power series (18) on p. 77. Use theroot test to confirmthat R = +/1 + k2.

20 Show that if m and » are integers, then [02” cosm@ cosn6 dB vanishes un-

lessm = n, in which caseit equals 7. Likewise, establish asimilar result for

02” sinm@ sinnf dB. Usethesefactsto verify (19), at least formally.
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21 Do thefollowing problemsby first substituting z = r el® into the power series
for e, then equating real and imaginary parts.
(i) Show that theFourier seriesfor [cos(sin 6)] 9 isY o2, %Q, and write
down the Fourier seriesfor [sin(sin 8)] e<°s?.

(ii) Deducethat f02” €°°39 [cos(sin 8)] cosm@ d = (/m!), wheremisapos-
itiveinteger.
(iii) By writingx = (r/+/2), find the power seriesfor f (x) = ¢* sinx.

(iv) Check thefirst few terms of the seriesfor f (x) by multiplying the series
for ¢* and sinx.

(v) Calculate the n'™ derivative f ™ (0) using (14) on p. 22 of Chapter 1. By
using these derivativesin Taylor's Theorem, verify your answer to part (iii).
22 Reconsider theformula,
n

e = lim Pa(2), where Pn(2) = (1+%)

(i) Check that P,(z) is the composition of atrandation by n, followed by a
contraction by (1/n), followed by the power mapping z +> z".

(ii) Referring to figure[4] on p. 58, use the previous part to sketch theimages
under P,(2) of circular arcscentred at —n, and of raysemanatingfrom —n.

(iii) Let S bean origin-centred square (say of unit side) in the z-plane. With a
largevaluedf n, sketch just those portions of the arcs and rays (considered
in the previouspart) that lie within S.

(iv) Usethe previoustwo partsto qualitatively explain figure[19] on p. 81.

23 If you did not do so earlier, sketch the image of a vertica linex = k under
z — w = c0sz by drawing theanal ogue of [26]. Deducethat the asymptotesof
this hyperbolaareargw = k. Check thisusing the equation of the hyperbola.

24 Consider themultifunctionf (z) = vz — 1 ¥/z — i.

(i) Where are the branch pointsand what are their orders?

(ii) Why isit not possible to define branches using a single branch cut of the
type shownin [35b]?

(iii) How many valuesdoes f (z) have at atypica point z? Find and then plot
all thevaluesof T (0).

(iv) Choose one of the values of f (0) which you have just plotted, and labd

it p. Sketch aloop L that startsand ends at the origin such that if f (0) is
initially chosento be —1, then asz travelsalong L and returnsto theorigin,
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f (z) travelsalong a path from —1 to p. Do the same for each of the other
possible valuesof f (0).

25 Describe the branch points of the function f (z) = 1/4/1 — z* What is the
smallest number of branch cutsthat may beused to obtain single-valued branches
of T (2)?Sketch an example of such cuts. [Remark: Thisfunctionishistorically
important, owing to the fact (Ex. 20, p. 214) that [ f (x)dx represents the
arc length of the lemniscate. Thisintegral (the lemniscatic integral) cannot be
evaluated in terms of elementary functions—it is an example of a new kind of
function called an eliptic integral. See Stillwell [1989, Chap. 11], for more
background and detail ]

26 For each function f (z) below, find and then plot al the branch points and
singularities. Assuming that these functions may be expressed as power series
centred at k [infact they can be], usetheresult (27) on p. 96to verify the stated
valueof the radius of convergence R.

(i) If f(z) =1/(e™ — 1) andk = (1+ 2i),thenR=1.
(i) If f (2) isabranchof ¥/z% —1andk = 3i,then R=2.
(iii) If f (z) isabranchof +/z —i/(z — 1) andk = —1, then R = /2.

27 Until Euler cleared up the whole mess, the complex logarithm was a source
of tremendous confusion. For example, show that log(z) and log(—z) have no
common values, then consider the following argument of John Bernoulli:

log[(—z)z] = log[zz] = log(—z) + log(—z) = log(z) + log(z)
= 2log(—z) = 2log(z)
= log(—z) = log(z).

What is wrong with this argument?!

28 What valuedoes 7' take at z = —1if we start with the principal valueat z = 1
(i.e., 1’ = 1), and then let z travel one and a haf revolutions clockwise round
the origin?

29 In this exercise you will see that the ""multifunction™ kZ is quite different in
character from all the other multifunctionswe havediscussed. For integer values
of n, definel, = [Log (k) T 2ni].

(i) Show that the"branches" of kZ are el 2.

(il) Suppose that z travels aong an arbitrary loop, beginning and ending at
z = p. If weinitially choose the valuee'2 ? for kZ, then what valueof kZ do
we arrive at when z returns to p? Deduce that k? has no branch points.

Since we cannot change one value of kZ into another by travelling round aloop,

we should view its'branches” {..., e/-17, ez, €12, . .1 asaninfinite set of

completely unrelated single-valued functions.
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30 Show that all thevaluesd i* arereal! Arethereany other pointsz such that z*
isreal?

31 In the case of area variable, the logarithmic power series was originaly dis-
covered [see next exercise] asfollows. First check that In(1 + X) can be written
astX[l/(l + x)]dx, and then expand [1/(1 + x)] as a power seriesin x. Fi-
nally, integrate your seriesterm by term. [Later in the book we will be able to
generalizethis argument to the complex plane]

32 Hereisanother approach to thelogarithmic power series. Asbefore, let L(z) =
Log(1 + z). Since L (0) = 0, the power seriesfor L(z) must be of the form
L(z) = az T bz% + ¢z3 +dz* +. ... Substitutethisinto the equation

l+z=el =1+L+FL%+ HL3+ L +- -,

then find a, b, ¢, and d by equating powersof z. [Historically the logarithmic
series came firg—both Mercator and Newton discovered it using the method
in the previous exercise—then Newton reversed the reasoning of the present
exerciseto obtain the seriesfor eX. See Stillwell [1989, p. 108]. ]

33 (i) Use[26] to discussthe branch pointsof the multifunction cos~(2).

(i) Rewritetheequationw = cosz asa quadratic in e**. By solving this equa-
tion, deduce that cos™! (z) = —i log[z T +/zZ — 1]. [Why do we not need
to bother to write £ in front of the square root?]

(iii) Show that asz travelsalong aloop that goes onceround either 1 or —1 (but
not both), the valueof [z + v/z2 — 1] changesto 1/[z + +/z2 — 1].

(iv) Usethe previous part to show that theformulain part (ii) isin accord with
thediscussionin part (i).

34 Write down the origin-centred power seriesfor (1 — cosz). Use the Binomial
Theorem to write down the power series (centred at Z = 0) for the principal
branch of +/1 — Z, then substitute Z = (1 — cosz). Hence show that if we
choose the branch of /cos z that maps0 to 1, then

4 96 5760
Verify this using acomputer. Where does this seriesconverge?

3H What valuedoes (z/ sin z) approach as z approachesthe origin? Use the series
forsinz tofindthefirstfew termsaf theorigin-centred power seriesfor (z/ sinz).
Check your answer using a computer. Where does this series converge?

36 By consideringLog (1+ix), wherex isarea numberlying between £+1, deduce
that
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x3 x> x! P 11

_1 frmed — —— — . on—— — o o— ..
tan” (x) = x 3 + 5 > + 5 11+- .
In what range does this value of tan~!(x) lie? Give another derivation of the

seriesusing theideain Ex. 31.

37 (i) Showgeometricallythatasz = e® goesroundand roundtheunitcircle(with
ever increasing 0), Im [Log(l +2)] = (©/2), where © is the principal
vaued 6,ie., -7 <® <n.

(if) Consider the periodic "saw tooth” function F(6) whose graph is shown
below. By substitutingz = e'® inthelogarithmicseries(29), usetheprevious
part to deduce thefollowing Fourier series:

sn20 sn30 sind0

F@©) =sno - N2 | SN
©)=sn 2 T3 ;i

(iii) Check thisFourier seriesby directly evaluating theintegrals (19).

(iv) Useacomputer todraw graphsaf the partial sumsof theFourier series. As
you increase the number of terms, observe the magical convergenceof this
sumaf smooth wavesto the jagged graph above. If only Fourier could have
seen thison the screen, not just in his mind's eye!

A F )

38 Asinthe previousexercise, let ® = Arg (z).
(i) Use(29) to show that

1 14z 23
L = il
3 og[ ] Z+ 3 +

(i) Show geometrically that asz = e'® goesround and round the unit circle,

Im{%Log [:%z]} = (sgn of ®) [%]

(iii) Consider the periodic' squarewave function G (8) whosegraphis shown
below. Usethe previoustwo parts to deducethat its Fourier seriesis
sn30 @ sn50 + sin78 +...

—sino+
G(8) =sin0 3 + 5 7
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Finally, repeat parts (iii) and (iv) of the previousexercise.

:: G
— /4 ©
p—— p- >0
—%—ﬂ'/“' {—
39 Show that (32) isstill true even if the (positive) massesof the particlesare not
all equal.

40 Hereisanother smpleway of deriving (34). If theverticesof theorigin-centred
regular n-gon are rotated by ¢, then their centroid Z rotateswith themto e® Z.
By choosing ¢ = (2m/n), deducethat Z = 0.

41 Toestablish (36), let zo, 21, 22, - . ., 2Zn—1 bethe vertices (labelled counterclock-
wise) of the regular n-gon, and let C be the circumscribing circle. Also, let
w; = 2} betheimage of vertex z; under the mapping z = z = Z™. Think of
z asaparticlethat startsat z¢ and orbitscounterclockwiseround C, so that the
imageparticlew = z" starts at wo and orbitsround another circlewith m times
theangular speed d z

(i) Show that eachtimez travel sfrom one vertex to the next, w executes(m/n)
of arevolution. Thus as z travel sfrom zg to zx, W executesk(m/n) revolu-
tions asit travel sfrom wg to wg.

(ii) Let we bethefirst point in the sequence wi, w, €tc., such that wy = wp.
Deducethat if (M/N)is (m/n) reduced to lowest terms, then k = N. Note
that N = (n divided by the highest common factor of m and n).

(iii) Explainwhy wy+1 = wi, wy2 = wy, €C.
(iv) Show that wg, w1, ..., wy—1 aredistinct.
(v) Show that wo, wy, ..., wy—1 arethe verticesof aregular N-gon.

42 Consider the mapping z — w = P,(2), where P,(z) is agenera polynomia
of degreen > 2. Let S, betheset of pointsin thez-planethat are mapped to a
particular point g in the w-plane. Show that the centroidd S, is independent
d thechoiced g, and is therefore a property of the polynomial itself. [Hint:
Thisis another way of looking at afamiliar fact about the sum of therootsof a
polynomial ]

43 Use Gauss Mean VdueTheorem [p. 110] to find the average of cosz over the
circle|z| = r. Deduce (and check with acomputer) that for all real vduesdf r,

2
] cos[r cos@] cosh[r SiN8]1dH = 2n.
0
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Mobius Transformations and
Inversion

| Introduction
1 Definitionand Significance of Mobius Transformations
A Mobius transformation® is amapping of theform

az+b

M@ = cz+d’

ey

where a, b, ¢, d are complex constants. These mappings have many beautiful
properties, and they find very varied application throughout complex analysis.
Despitetheir apparent simplicity, Mobiustransformationslie at the heart of several
exciting areas of modern mathematical research. Thisisduein large part to their
intimate and somewhat miracul ous connection with the non-Euclidean geometries
alluded to in Chapter 1. [This connection is the subject of Chapter 6.1 Moreover,
these transformations are also intimately connected? with Einstein's Theory of
Relativity! This connection has been exploited with remarkable success by Sir
Roger Penrose; see Penrose and Rindler [1984].

Thus, athough more than 150 years have passed since August Ferdinand
Mobius first studied the transformations that now bear his name, it isfair to say
that the rich vein of knowledge which he thereby exposed is still far from being
exhausted. For thisreason, we shall investigate M obius transformationsin consid-
erably greater depth than is customary.

2 The Connection with Einstein's Theory of Relativity*

Clearly it wouldbe neither appropriate nor feasiblefor ustoexplorethisconnection
indetail, but let usat least briefly indicate how Mobius transformations are rel ated
to Einstein's Theory of Relativity.

Inthat theory, thetime T andthe3-dimensional Cartesian coordinates (X, Y, Z)
of an event are combined into a single 4-vector (T, X, Y, Z) in 4-dimensional
space~time. Of course the spatial components of this vector have no absolute sig-
nificance: rotating the coordinate axes yields different coordinates (X Y, Z) for
one and the same point in space. But if two people choose different axes, they

! Also known asa"linear”, "'bilinear"", "'linear-fractiond,.ar ""homogrgphic’ transformation.
2 According to Coxeter [1967), this connection wasfirst recognized by H. Ligmann in 1905.
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will neverthelessagree on thevalueof X2+ Y2+ Z2 = x2+y2 + z2, for this
representsthe square of the distance to the point.

In contrast to this, we are accustomed to thinking that the time component
T does have an absolute significance. However, Einstein's theory--confirmed by
innumerable experiments—tells us that this is wrong. If two (momentarily co-
incident) observers are in relative motion, they will disagree about the times at
which events occur. Furthermore, they will no longer agree about the vaue of
(X2 + Y2+ 72)—this is the famous Lorentz contraction. Is there any aspect of
pace-time that has absolute significanceand on which two observersin relaive
motion must agree? Yes making aconvenient choice of unitsin which the speed
d light is equal to 1, Einstein discovered that both observers will agree on the
vaue of

- X2+ 4+ 725 =1 - (X2 +712+ 7%,

A Lorentztransformation £ isalinear transformation of space-time(a4 x 4
matrix) that maps one observer’s description (T, X, Y, Z) of an event to another
observer's description (T, X, Y, Z) of thesameevent. Put differently, £ isalinear
transformationthat preservesthe quantity 72 — (X2 + Y2+ Z2), upon which both
observers must agree.

Now imagine that the space—time coordinateorigin emitsaflash of light—an
origin-centred sphere whose radius increases at the speed of light. It turns out
that any given £ is completely determined by its effect on the coordinates of
the light rays that make up this flash. Hereis the next crucial idea: in Ex. 8 we
explain how we may set up a one-to-one correspondence between these light rays
and complex numbers. Thus each Lorentz transformation of space—timeinducesa
definite mapping of the complex plane. What kinds of complex mappingsdo we
obtain in thisway? The miraculous answer turns out to be this:

The complex mappings that correspond to the Lorentz transforma-
tions are the Mobius transformations! Conversely, every Mobius
transformation of C yields a unique Lorentz transformation of
space-time.

@

Even among professiona physicists, this "miracle” is not as well known as it
should be.

The connectionexhibitedin (2) isdeep and powerful. Just for starters, it means
that any result we establish concerning Mobiustransformationswill immediately
yiddacorrespondingresultin Einstein's Theory of Relativity. Furthermore, these
Mobiustransformation proofsturn out to be considerably moreel egant than direct
pace-time proofs.

Toreally understandtheaboveclaims, westrongly recommendthat you consult
Penrose and Rindler [1984, Chap. 1] after reading this chapter.

3 Decompositioninto Simple Transformations

Asafirgt steptowardsmaking senseof (1), let usdecompose M (z) [exercisg] into
the following sequence of transformations:
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(y 21 *+ ¢, whichisatrandation;

i) z+ (1/2);
(ad_bc) . . . ) (3)
(iii) z 1 —*=z—z, whichis an expansion and arotation;

(v) zHZ + 4, which is another tranglation.

Notethatif (ad —bc) = 0 then M (z) isan uninterestingconstant mapping, sending
every point z to thesameimagepoint (a/c); in thisexceptional case M (z) iscalled
singular. In discussing Mobiustransformationswe shall therefore always assume
that M(z) is non-singular, meaning that (ad — bc) # O.

Of thefour transformationsabove, only the second one hasnot yet beeninves-
tigated. Thismapping z — (1/z) holdsthe key to understanding Mobiustransfor-
mations; we shall call it complex inversion. The next section examines its many
remarkableand powerful properties.

Il Inversion
1 Préiminary Definitions and Facts

Theimage of z = r €€ under complex inversionis 1/(r €®) = (1/r)e~%: the
new length is the reciprocal of the original, and the new angle is the negative of
the original. See[la]. Note how a point outside the unit circle C is mapped to a
pointinside C, and vice versa.

z2=1k ()

[b]

Figure[1]
Figure[la] asoillustratesaparticul arly fruitful way of decomposingcomplex
inversioninto a two-stage process:

(i) Send z = rel® to the point that isin the same direction as z but that has
reciprocal length, namely the point (1/r) €€ = (1/z).

(ii) Apply complex conjugation (i.e., reflection in the red axis), which sends
(1/2) to (1/2) = (1/2).

Check for yourself that theorder in whichwe apply these mappingsisimmaterial.
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Whilestage (ii) isgeometrically trivial, we shall seethat the mapping in stage
(i) isfilled with surprises; it is called® geometric inversion, or smply inversion.
Clearly, theunit circleC playsaspecia rolefor this mapping: theinversioninter-
changes theinterior and exterior of C, whileeach point on C remainsfixed (i.e.,
ismappedtoitself). For thisreason wewritethe mappingasz — I¢(z) = (1/2),
and wecall Z¢ (alittlemore precisely than before) "'inversonin C".

Thisadded precisionin terminology isimportant because, asillustratedin[1b],
thereisanatural way of generalizingZ¢ toinversionin an arbitrary circleK (say
withcentreq andradiusR). Clearly, this" inversionin K, writtenz + 7 = I (2),
should besuchthat theinterior andexterior of K areinterchanged, whileeach point
on K remainsfixed. If p isthe distancefrom g to z, then we define 7 = Tk (2)
to be the point in the same direction from q as z, and at distance (R?/p) fromg.
[Check for yourself that this definition doesindeed perform as advertised.]

As usual, we invite you to use a computer to verify empirically the many
resultsweshall deriveconcerninginversion. However,in thecaseof thisparticular
mapping, you can also construct (fairly easily) a mechanical instrument that will
carry out the mapping for you; see Ex. 2.

Althoughwe shal not needit for awhile, itiseasy enoughto obtainaformula
for Zx (z). Because the connecting complex numbersfrom g to z and to 7 both
have the same direction, and their lengthsare p and (R%/p), it followsthat Z —
q)(z — q) = R%. Solvingfor Z,

2 5 2 2
Tk@) = — 4 q = X 2D @
Z—q zZ—q
For example, if weputq = 0 and R = 1, then werecover Z¢ (z) = (1/2).

Thereisavery interesting similarity (which will degpen aswe go on) between
inversonZg (z) inacircle K and reflection %1 (z) inaline L. See[2a] and [2b].
Firgt, L dividestheplaneintotwo pieces, or** components”,whichareinterchanged
by %1 (z); second, each point on the boundary between the components remains
fixed; third, R 1. (2) isinvolutoryor self-inverse, meaningthat R, oM, is theidentity
mapping, leaving every point fixed. To put thislast property differently, consider
apoint z and its reflectionz = R.(z) in L. Such a pair are said to be ""mirror
images”, or to be" symmetric with respect to L"'. Theinvolutory property saysthat
the reflection causessuch a pair of pointsto swap places.

Check for yoursdlf that Zx (z) sharesall threeaof these properties. Furthermore,
theblack trianglein [2b] illustratesthefact that if K islargethen the effect of Zx
on asmall shape closeto K looks very much like ordinary reflection. [We will
explain thislater, but you might like to check thisempirically using a compuiter.]
For these reasons, and others still to come, Zx (z) is often also called rejection
in a circle, and the pair of pointsz andZ = Zg (z) are said to be symmetricwith
respect to K.

31n older worksit is often called " transformation by reciprocal radii” .
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[b]

Figure[ 2]

We end this subsection with two simple properties of inversion, the first of
which will serve as the springboard for the investigationsthat follow. Let us use
the symbol [ cd]to stand for the distance |¢ — d| between two points ¢ and d.
We hope that no confusion will arise from this, the square brackets serving as a
reminder that [ cd]isnot the product of the complex numbersc and d.

In [2c], a and b are two arbitrary points, and @ = Zx (a)and b= Ik (b)are
their images under inversion in K. By definition, [qaJga] = R? = [gp][qb],
and so -

[gal/[gb] = [gb]/Iqal.

Noting the common angle Zagb = é?z’qz, we deduce that

If inversion in a circle centred at g mapstwo pointsa and b to @

and b, then the trianglesagb and bg@ are similar. ©)

Lastly, let usfind the relationship between the separation [ab]of two points,
and the separation [ab ] of their images under inversion. Using (5),

[@b1/lab] = [qb1/lqal = R*/[galigb],

and so the separation of the image pointsis given by

o~ _.R.Z_)
b]l= ( . 6
g T ©

2 Preservation of Circles

Let us examine the effect of Zx on lines and then on circles. If aline L passes
through the centre q of K, then clearly Zx maps L to itself, which we may write
asZk (L) = L. Of course wedon't mean that each point of L remains fixed, for
Tk interchangesthe portions of L interior and exterior to K ; theonly pointsof L
that remain fixed are the two places whereit intersects K.
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Matters becomemuch moreinteresting when we consider agenera line L that
does not passthrough g. Figure[3] providesthe surprising answer:

If aline L does not pass through the centre g of K, then inversion )
in K maps L to a circle that passes through qg.

Herebisan arbitrary pointon L, whilea is the intersection of L with-the perpen-
dicular linethrough g. By virtueof (5), Zgba = Lgqab = (r/2), so blieson the
circlehaving theline-segment ga as diameter. Done. Notice, incidentally, that the
tangent at q of theimagecircleisparadlel to L.

Figure[3]

Note that (7) makes no mention of theradius R of K. You may therefore be
concerned that in [3] we have chosen R so that K does not intersect L; what
happensif K does intersect L? Check for yourself that, while the picture looks
somewhat different in this case, the geometric argument above continuesto apply
without any modification.

We now give alessdirect, but moreinstructiveway of understanding why (7)
does not depend on the size of K. We will show that if the result holds for one
circle Xy (radius R;) centred a g, then it will hold for any other circle K (radius
R») centred at q.

Let z be an arbitrary point, and let Z; = Zx, (z) and 72 = Ik, (z). Obviously
71 andZ; are bothin the samedirection from ¢ as z, and you can easily check that
the ratio of their distances from q is independent of the location of Z

[9721/[9Z1] = (R2/R1)? =k, say.

Thus
Ix, = D o Ik, ®

where the " central dilation™ D’; [see p. 40] is an expansion (centred at q) of the
planeby afactor of k. It follows[exercise] that if (7) holdsfor K thenit also holds
for K.
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Look again at [3]. SinceZx is involutory, it simply swaps thelineand circle,
and so the image of any circle through q isa line not passing through q. But what
happensto agenera circle C that does not pass through g? Initialy, suppose that
C doesnot containq initsinterior. Figure[4] providesthe beautiful answer:

IfacircleC doesnot passthrough the centreq of X, then inversion ©)
in K maps C to ancther circle not passing through g.

This fundamental result is often described by saying that inversion " preserves
circles".

It followsfrom (8) that if (9) istruefor onechoiceof K, thenit will betruefor
any choice of K. We may therefore conveniently choose K so that C liesinside
it, asillustrated. Herea and b are the ends of adiameter of C, and they therefore

N

Figure[4]

subtend a right angle at a genera point ¢ on C. To understand (9), first use (5)
to check that both the shaded angles are equal, and that both the black angles are
equal. Next look at the triangle abc, and observethat the external shaded angle at
aisthesumof thetwoillustrated internal angles: theright angle at ¢ and the black
angleat b. It followsthat Za ¢ b = (7/2), and hencethat @ and b aretheendsaf a
diameter of acirclethrough ¢. Thus we have demonstrated (9) in the case where
C does not contain q. We leaveit to you to check that the same line of reasoning
establishesthe result in the case where C does contain q.

Theresult (7) isinfact aspecid limiting caseof (9). Figure[5] showsalinelL,
thepoint p on L closestto thecentreq of theinversion,and acircleC tangentto L
a p. Asitsradiustendstoinfinity, C tendsto L, and theimagecircleC = Zg (C)
tendsto acirclethroughq.

Later wewill be able to giveamuch cleaner way of seeing that (7) and (9) are
two aspectsof asingle result.

3 Constructing Inverse Points Using Orthogonal Circles

Consider [6a)]. ThecircleC cutsthecircleaof inversion K at right anglesat a and
b. In other words, thetangent T to C at a (for example) passesthrough q. Under
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- -

Figure[5]
inversonin K, a and b remainfixed,and T is mappedintoitself. Thustheimage
d C must beacirclethat again passesthrough a and b and that is again orthogonal

to K. But clearly thereis only one circle with these properties, namely C itsdlf.
Thus,

Under inversion in K, every circle orthogonal to K is mapped to

itself. 10

Figure [6a] illustratestwo immediate consequences of this result. First, the disc
bounded by C isalso mappedtoitself, the shaded and hatched regionsinto which
K dividesit being swapped by theinversion. Second, alinefrom g throughapoint
z on C intersects C for the second time at theinverse point .

[a] )

Figure[6]

Another consequence (the key result of this subsection) is the geometric con-
sruction shown in [6b], the verificationof whichisleft to you.

TheinverseZ of z in K isthe second intersection point of any two
circles that pass through z and are orthogonal to K.

Nate that the construction of 7 in [6a] is the special limiting case in which the
radiusof one of thecirclestendsto infinity, and so becomesalinethrough q. For
ather, lessimportant, geometric constructions of inversion, see Ex. 1.

The previoudy mentioned analogy betweeninversionin K and reflectionina
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. bl 7

Figure[7]
line L now deepens, for the reflectionZ = R (z) of z in L can be obtained using
precisely the same construction; see{7a]. Notethat theline-segment joining z and
Zisorthogona to L, and that itsintersection p with L isequidistant from z and zZ:
[pz)/lpZ]1 =1

Asillustratedin [7b], the segment of L inthevicinity of p can beapproximated
by anarcof alargecircle K tangentto L at p. HereZ = Ik (2) is theimage under
inversionin K of the same point z as before. As you can see, thereis virtually
no difference between the two figures. More precisaly, as theradius of K tendsto
infinity, inversionin K becomesreflectionin L. In particular, [pz]/[pZ] tendsto
unity, or equivalently,[ pZ1is" ultimately equal” to [ pz]. We can now understand
what was happening in figure [2b].

We can also check this result algebraicaly. First, though, observe that from
the geometric point of view it is sufficient to demonstrate the result for a single
choice of theline L and asingle point p onit. Let usthereforechoose L to bethe
rea axis, and let p be the origin. Thecircle K of radius R centredat g = iR is
thereforetangent to L at p. Using (4), we obtain [exercise]

Z
Ik (2) = T GR)

Thus as R tendsto infinity we find that Zx (z) is ultimately equal to R, (z) = z,
as was to be shown.

Hereis another way of looking at the result. Instead of making K larger and
larger, let z move closer and closer to an arbitrary point p on acircle K of fixed
size. As z approaches p from any direction, Zx (z) is ultimately equal to R (z),
where T isthetangentto K at p.

Again, we can aso get thisalgebrai cally using the aboveeguation. If R is fixed
and |z| < R, then[exercisg]

=2 =3

— 1z Z
IK(Z)ZZ"‘T_

F-'_“.'

Thus as z approaches p = 0, Zk (z) is ultimately equal to fr (z2) = z, whichis
reflectionin thetangent to K at p.
4 Preservation of Angles

Let usbegin by discussing what is meant by ** preservationof angles”. In thecentre
of [8] are two curves S1 and Sy intersecting at a point p. Provided these curves
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Figure[8]

are sufficiently smooth at p, then, asillustrated, we may draw their tangent lines
Ty and T, a p. We now define the ""angle between S; and S»” at p to be the
acute angle 8from Tj to T2. Thusthisangle 8 hasasign attached to it: the angle
between S; and S is minus the illustrated angle between 1 and S2. If we now
aoply a sufficiently smooth transformation to the curves, then the image curves
will again possess tangents at theimage of p, and so there will be a well-defined
angle between theseimage curves.

If the angle between the image curves is the same as the angle between the
origina curves through p, then we say that the transformation has " preserved
theangleat p. It is perfectly possible that the transformation preservesthe angle
between one pair of curves through p, but not every pair through p. However, if
the transformation does preserve the angle between every pair of curvesthrough
p, then we say that it is conformal at p. We stress that this means that both the
magnitude and the sign of the angles are preserved; see theright of [8]. If every
angleat p isinstead mappedto anangleof equal magnitudebut oppositesign, then
we sy that the mappingis anticonformal at p; seetheleft of [8]. If the mapping
is conformal at every point in the region where it is defined, then we call it a
conforma mapping; if itisinstead anticonformal at every point, then wecall it an
anticonformal mapping. Finally, if amappingisknown to preservethe magnitude
o angles, but we are unableto say whether or not it preservestheir sense, then we
cdl it an isogonal mapping.

It is easy enough to think of concrete mappings that are either conformal
or anticonformal. For example, atrandation z — (z + ¢) is conformd, asis a
rotation and expansion of theplanegiven by z — az. Ontheother hand, z — Z is
anticonformal,asisany reflectionin aline. Theanalogy between such areflection
and inversion in acircle now gets even deeper, for

Inversionin a circleisan anticonformal mapping.

To seethis, first ook at [9]. Thisillustratesthe fact that given any point z not
on K, thereis precisaly one circle orthogonal to X that passes through z in any
givendirection. [Given the point and thedirection, can you think how to construct
thiscircle?]

As in [8], suppose that two curves S; and S, intersect at p, and that their
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Figure[9]

tangentsthere are T1 and T2, the angle between them being 8. To find out what
happenstothisangleunderinversionin K, let usreplace $1 and S with theunique
circlesorthogonal to X that passthrough p in thesamedirectionsas directions 1
and &, i.e., circleswhose tangentsat p are 71 and T2 See[10a]. Sinceinversion
in K mapseach of thesecirclestothemsalves, thenew angleat p = Zx (p)is — 8.
Done.

Figure [10b] illustratesthe effect of Z — (1/z) on angles. Sincethis mapping
isequivalent to reflection (i.e., inversion) in the unit circlefollowed by reflection
in thereal axis (both of which are anticonformal), we see that their composition
reversesthe angletwice, restoring it toitsoriginal value:

Complex inversion, z — (1/z), is conformal.

By the same reasoning, it follows more generaly that

Thecomposition of an even number of rejections(inlinesor circles)
isa conformal mapping, while the composition of an odd number of
such rejections is an anticonformal mapping.

s

.

RS
I

o bl

Figure[10]
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5 Preservation of Symmetry

Consider [11a], which showstwo pointsa and b that are symmetric with respect
toalineL. If reflection in aline M mapsa tod,btob,and L toL, then clearly
theimage pointsa and b are again symmetric with respect to theimagelineL. In
brief, reflectionin lines™ preserves symmetry™ with respect to lines.

We now show that reflectionin circlesal so preserves symmetry with respect
tocircles:

| fa and-b aresymmetricwith respecttoacircle K, then their images
a and b under inversion in any circle J are again symmetric with
respect to the image K of K.

To understand this, first note that, sinceinversionis anticonformal, (10) isjust a
special case of thefollowing moregenera result:

Inversion maps any pair of orthogonal circles to another pair of
orthogonal circles.

O courseif onedf thecirclespassesthrough the centreof inversionthenitsimage
will be aline. However, if we think of lines as merely being circles of infinite
radius then theresult is true without qualification.

Thepreservationof symmetry resultisnow easily understood. See[11b]. Since
the two dashed circlesthrough a and b are orthogonal to K, their images under
inversionin J arelikewiseorthogonal to K, and they thereforeintersect in a pair
o pointsthat are symmetric with respect to K.

6 Inversionin a Sphere

Inverson Zs of three-dimensional spacein asphere S (radius R and centreq) is
definedin theobviousway: if pisapointinspaceat distancep fromq, thenZs(p)
isthe point in the same direction fromq as p, and at distance (R?/p) from g. We
should explainthat thisisnot generalizationfor itsown sake; soon wewill seehow
thisthree-dimensional inversion sheds new light on two-dimensiona inversionin
C

. Without any additional work, we may immediately generalize mogt of the

Figure(11]
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Figure [12]

aboveresultsoninversionincirclestoresultsoninversionin spheres. For example,
reconsider [3]. If we rotate this figure (in space) about the line through q and a,
then we obtain [12], in which the circle of inversion K has swept out a sphere of
inversion S, and the line has swept out a plane IT. Thus we have the following
resullt:

Under inversionin a sphere centred at g, a plane IT that does not
containq is mapped to a sphere that containsq and whose tangent

plane there is paralle to I1. Conversely, a sphere containing g is (11)
mappedto a planethat is parallel to thetangent plane of that sphere

atq.

By the same token, if we rotate figure[4] about theline through q and a, then
we find that

Under inversionina sphere, theimage of a spherethat doesnot con-
tain the centre of inversion is another sphere that doesnot contain
the centreof inversion.

Thisresultimmediately tellsuswhat will happentoacirclein spaceunderinversion
in asphere, for such acircle may be thought of as the intersection of two spheres.
Thus we easily deduce [exercise] the following result:

Under inversionin a sphere, the image of a circle C that does not
passthroughthe centreq of inversionisanother circlethat doesnot
passthrough g. If C does passthrough g then theimageis a line
parallel to thetangent of C at q.

12)
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The closeconnection betweeninversionin acircleand reflectionin alineaso
perssts: reflectionin a planeis alimiting case of inversionin a sphere. For this
reason, inversion in a sphere is also caled "reflection in a sphere”. Of particu-
lar importance is the fact that such three-dimensiona reflections again preserve
Symmetry:

Let K beaplaneor sphere,and let a and b be symmetric pointswith
respect to K. Under a three-dimensional reflectionin any plane or
sphere, the images of a and b are again symmetric with respect to
theimageof K.

(13)

We now describe the stepsleading to thisresult; they are closely anal ogousto the
stepsleading to the two-dimensiona preservation of symmetry result.

If werotatefigure[6a] about thelinejoiningthecentresof K and C, wededuce
thet

Under inversion in a sphere K, every sphere orthogonal to X is

mapped to itself. (14

When we say that spheres are " orthogond™ we mean that their tangent planes
are orthogonal at each point of their circle of intersection. However, in order to
be able to easily draw on previousresults, let us rephrasethis three-dimensiona
description in two-dimensiona terms:

Let S1 and S2 beintersecting spheres,and let Cy and C2 bethe great
circlesin which these spheresintersect a plane I1 passing through
their centres. Then S; and S» are orthogonal if and only if C; and
C, areorthogonal.

See[13]. Thisfigureis asointended to help you seethat if werestrict attentionto
IT then the three-dimensional inversionin S isidentical to the two-dimensional
inversonin Cy. Thisway of viewing inversionin spheres allows us to quickly
generalizeearlier results.

For example, referring back to [6b], we find—meake sure you see this—thet if
pliesin IT then p = Zs, (p) may be constructed as the second intersection point
o any twocircleslike C, that (i) liein I, (ii) are orthogonal to C1, and (iii) pass

Figure[13]
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through p.

Next, supposethat S; and S in [13] are subjected toinversionin athird sphere
K. ChooseIT to be the unigue plane passing through the centres of 1, 2, K, and
let C bethe great circlein which K intersects I1. Since Z¢ maps C; and C2 to
orthogonal circles, wededuce[exercise] that (14) isaspecia caseof thefollowing
result:

Orthogonal spheresinvert to orthogonal spheres. (15)

Here we are considering a plane to be alimiting case of a sphere.
Putting these facts together, you should now be able to see the truth of (13).

Il Three lllustrative Applications of Inversion
1 A Problemon Touching Circles

Figure[14]

For our first problem, consider [14], in which we imagine that we are given two
circles A and B that touch at g. Asillustrated, we now construct thecircle Co that
touches A and B and whosecentrelieson the horizontal line L throughthecentres
o A and B. Finaly, we construct thechain of circlesCj, Ca, €tc., such that Cp,+1
touchesCp,, A, and B.

Thefigureillustratestwo remarkable results about this chain of circles:

a Thepointsof contact of thechain Cp, Cy, Ca, €tc., al lieon acircle[dashed]
touching Aand B a q.

a If theradiusof C, isr,, then the height above L of the centreof Cy, is2nr,.
Thefigureillustratesthisfor C3.

Before reading further, seeif you can prove either of these results using conven-
tional geometric methods.

Inversiondlows usto demonstrate both these resultsin asinglee egant swoop.
In[14], we havedrawntheuniquecircleK centred a q that cutsC3 at right angles.
Thusinversionin K will map Cs toitself, and it will map A and B to parale
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4o

Figure [15]
vertica lines; see [15]. Check for yourself that the stated results are immediate
consequencesof thisfigure,

2 A Curious Property of Quadrilaterals with Orthogonal Diagonals

Figure[16]

Figure [16] shows a shaded quadrilateral whose diagonals intersect orthogonally
a g. If wenow reflect g in each of the edgesof the quadrilateral, then we obtain
four new points. Vay surprisingly, these fourpoints lie on a circle®. As with the
previous problem, seeif you can provethis by ordinary means.

To demondtrate the result using inversion, wefirst usethe constructionin [7a]
to represent the reflection of ¢ in an edge as the second intersection point of any
two circlesthrough g whosecentreslie on that edge. Moreprecisely, let uschoose
the centres of these circlesto be the vertices of the quadrilateral; seethe LHS of
[17]. Notethat, becausethediagonal sareorthogonal, apair of thesecirclescentred
a theendsof an edgewill intersect orthogonally both at g and at the reflection of
g inthat edge.

It follows that if we now apply aninversionin any circlecentred at g, then a
par of such orthogona circlesthrough g will be mapped to a pair of orthogonal

41 am grateful to my friend Paul Zeitz for challenging me with this problem, which appeared
in the USA Mathematical Olympiad.
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Figure[17]

lines (parallel to the diagonals of the original quadrilateral); see the RHS of [17].
Thustheimages of thefour reflectionsof q aretheverticesof arectangle, and they
thereforelie on acircle. The desired result followsimmediately. Why?

3 Ptolemy's Theorem

Figure[18a] showsaquadrilateral abcd inscribed in acircle. Ptolemy (c. Ap 125)
discovered the beautiful fact that the sumof the product of the opposite sidesisthe
product of the diagonals. In symbols,

[ad][bc]t [ab][cd]= [ac][bd].

We note that for Ptolemy this was not merely interesting, it was a crucia tool
for doing astronomy! See Ex. 9. Hisorigina proof (which is reproduced in most
geometry texts) is elegant and simple, but it is very difficult to discover on one's
own. On the other hand, once one has become comfortable with inversion, the
following proof isamost mechanical.

Figure [18]
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Inverting figure[18a] in acircle K centred at one of the vertices (say a), we
obtain [18b], in which

be1tEdli=1b4d1.

Recalling that (6) tells us how the separation of two inverted pointsis related to
the separation of the original points, we deduce that

[be] , _ledl _ _[bd]
labllac] lacl[ad] [abl[ad]

Multiplying both sides by ([ab] [ac] [ad]), we deduce Ptolemy's Theorem.

IV The Riemann Sphere
1 The Point at Infinity

Indiscussing inversionwe saw that results about lines could always be understood
as special limiting cases of results about circles, simply by letting the radius tend
toinfinity. Thislimiting process is nevertheless tiresome and clumsy; how much
better it would beif lines could literally be described as circles of infiniteradius.

Hereis another, related inconvenience. Inversionin the unit circle is aone-to-
onemapping of the planetoitself that swaps pairsof points. Thesameistrueof the
mapping z = (1/z). However, there are exceptions: no image point is presently
associated with z = 0, nor is 0 to befound among the image points.

Toresolve both thesedifficulties, notethat asz movesfurther and further away
fromtheorigin, (1/z) movescloser and closer to0. Thusasz travel sto ever greater
distances(in any direction), it is as though it were approaching a single point at
infinity, written oo, whose image is 0. Thus, by definition, this point co satisfies
thefollowing equations:

— =0,
(o .¢]

ol =
i
8

The addition of this single point at infinity turns the complex plane into the so-
called extended complex plane. Thus we may now say, without qualification, that
7z (1/z) isaone-to-one mapping of the extended plane to itself.

If a curve passes through z = 0 then (by definition) the image curve under
z H (1/z) will be a curve through the point at infinity. Conversely, if the image
curve passes through 0 then the original curve passed through the point oo. Since
z = (1/z) swaps acircle through 0 with aline, we may now say that alineis
just acircle that happens to pass through the point at infinity, and (without further
qualification)inversionin a'circle" sends ' circles” to "'circles".

Thisisal very tidy, but it leavesonefeeling nonethe wiser. We are accustomed
to using the symbol oo only in conjunction with alimiting process, not as a thing
in its own right; how are we to grasp its new meaning as a definite point that is
infinitely far away?
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2 Stereographic Projection

Riemann’s profoundly beautiful answer to this question wasto interpret complex
numbers as points on asphere I:,instead of as pointsin a plane. Throughout the
following discussion, imagine the complex plane positioned horizontally in space.
In order to be definite about which way up the plane is, suppose that when we
look down on € from above, apositive (i.e., counterclockwise) rotation of (7 /2)
carries1toi. Now let © be the sphere centred at the origin of C, and let it have
unit radius so its" equator” coincides with the unit circle®.

Wenow seek to set up acorrespondence between pointson I: and pointsinC., If
wethink of I: asthe surfaceof the Earth, then thisistheancient problem of how to
draw ageographical map. In an atlas you will find many different waysof drawing
maps, the reason for the variety being that no single map can faithfully represent
every aspect of a curved® surface on aflat piece of paper. Although distortions of
some kind are inevitably introduced, different maps can " preserve' or "'faithfully
represent” some (but not all) features of the curved surface. For example, a map
can preserve angles at the expense of distorting areas.

Ptolemy (c. ap 125) was the first to construct such a map, which he used to
plot the positions of heavenly bodies on the " celestial sphere'. His method is
called stereographic projection, and we will soon see how perfectly it is adapted
to our needs. Figure [19] illustrates its definition. From the north pole N of the

Figure[19]

sphere I, draw the line through the point p in C; the stereographic image of p
on I: isthe point p where this lineintersects . Since this gives us a one-to-one
correspondence between pointsin C and pointson I:,let usalsosay that p isthe
stereographicimage of p. No confusion should arisefromthis, the context making
it clear whether we are mapping C to I:,or vice versa.
Notethefollowingimmediate facts: (i) theinterior of the unit circleis mapped

5Some worksinstead define X to be tangent to the complex planeat its south pole.
6This concept of " curvature’ will be defined moreprecisely in Chapter 6.
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to the southern hemisphere of ¥, and in particular 0 is mapped to the south pole,
S, (ii) each point on the unit circleis mapped to itself, now viewed as lying on
the equator of X; (iii) the exterior of the unit circle is mapped to the northern
hemisphereof X, except that N is not theimage of any finite point in the plane.

However, it is clear that as p moves further and further away from the origin
(in any direction), p moves closer and closer to N. This strongly suggeststhat N
is the stereographic image of the point at infinity. Thus stereographic projection
establishesaone-to-onecorrespondencebetween every point of theextended com-
plex planeand every point of . Instead of merely speaking of a'* correspondence™
between complex numbersand pointsof X, we can imaginethat the pointsof X
are the complex numbers. For example, S = 0 and N = co. Once stereographic
projection has been used to label each point of ¥ with a complex number, X is
called the Riemann sphere.

We have aready discussed thefact that alinein € may be viewed asacircle

passing through the point at infinity. The Riemann sphere now transforms this
abgtract ideaiinto aliteral fact:

The stereographic image of a line in the plane is a circleon ¥
. _ 16)

passing through N = oc.

Toseethis, observethat as pmovesaongthelineshownin[19], thelineconnecting

N to p sweepsout a planethrough N. Thus 7 moves along theintersection of this

planewith X, whichisacirclepassing through N. Done. In addition, notethat the

tangentto thiscircleat N is parallel to theoriginal line. Why?

From this last fact it follows that stereographic projection preserves angles.
Consider[20], which showstwolinesintersectingat p,together withtheir circular,
stereographicprojections. By symmetry, the magnitudeof theangle of intersection
between the circlesis the same at their two intersection points, p and N. Since
their tangentsat N are paralle to the original linesin the plane, it followsthat the
illustrated angles at p and p are of equal magnitude. But before we can say that

N

Figure[20]
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stereographic projection is ' conformal'*, we must assign a sense to the angle on
the sphere.

According to our convention, theillustrated angle at p (from the black curve
to the white one) is positive, i.e., it is counterclockwise when viewed from above
the plane. From the perspective from which we have drawn [20], the angle at p
isnegative, i.e., clockwise. However, if we werelooking at thisanglefrom inside
the sphere then it would be positive. Thus

If we define the sense of an angle on ¥ by its appearance to an
observer inside X, then stereographic projection is conformal.

Clearly, any origin-centred circlein the planeis mapped to a horizontal circle
on X, but what happens to a general circle? The startling answer is that it too
is mapped to a circle on the Riemann sphere! Thisis quite difficult to see if we
stick toour original definitionof stereographic projection, butit suddenly becomes
obviousif wechangeour point of view. L ook again at [12], and observehow closely
it resembles the definition of stereographic projection.

\ -
| 3 z
! B X
1 h
¢ 1 7=1/z
[a] z [b]
Figure [21]

Tomaketheconnection precise, let K bethe sphere centred at the north pole N
of X that intersects £ along itsequator (the unit circle of C). Figure [21a} shows
a vertical cross section (through N and the redl axis), of K, ¥, and C. The full
three-dimensional pictureisobtained by rotating thisfigureabout theline through
N and S. We now see that

If K is the sphere of radius +/2 centred at N, then stereographic
projection isthe restriction to C or C of inversionin K.

In other words, if aisapoint of C and @ isits stereographic projection on C, then
d=7Ik(a)anda =Zk(Q).

Appealing to our earlier work oninversionin spheres, (12) confirmsour claim
that

Stereographic projection preserves circles.
Note that (16) could also have been derived from (12) in this way.
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3 Transferring Complex Functions to the Sphere

Stereographicprojection enables usto transfer the action of any complex function
to the Riemann sphere. Given acomplex mappingz — w = f(z) of C toitself,
we obtain a corresponding mapping? — w of X toitself, where? and & arethe
stereographicimages of z and w. We shall say that z — w induces the mapping
7+ Wof T.

For example, consider what happensif we transfer f(z) = z to Z. Clearly
[exercisg],

Complex conjugation in C inducesarejection of the Riemannsphere
in the vertical plane passing throughthe real axis.

For our next example, consider z = 7 = (1/z), which isinversionin the unit
circleC. Figure [21b] showsa vertical crosssection of X takenthrough N and the
point z in C. Thisfigureaso illustratesthe very surprising result of transferring
thisinversionto X:

Inversionaof C intheunit circle inducesa rejection of the Riemann
- i a7
spherein its equatorial plane, C.
Hereisan elegant way of seeing this. First notethat not only arethe pair of points
z and Z symmetric (in the two-dimensiona sense) with respect to C, but they
are dso symmetric (in the three-dimensional sense) with respect to the sphere .
Now apply the three-dimensiona preservation of symmetry result (13). Since z
and 7 are symmetric with respect to I, their stereographicimagesz = Zx (z) and
7 = Ik (Z) will be symmetric with respect to Zx (X). But Zg (X) = C. Done! A
more elementary (but lessilluminating) derivation may befound in Ex. 6.

By combining the above results, we can now find the effect of complex in-
versgon on the Riemann sphere. In @, we know that Z — (1/z) is equivaent to
inversonin the unit circle, followed by complex conjugation. Theinduced map-
ping on X istherefore the composition of two rejections in perpendicular planes
through the real axis--onehorizontal, theother vertical. However, itisnot hard to
e (perhapswith theaid of an orange) that the net effect of successivelyreflecting
¥ in any two perpendicular planes through the real axisis arotation of X about
thereal axisthrough angle n. Thus we have shown that

The mapping z — (1/z) in C induces a rotation of the Riemann (18)
sphere about the real axisthrough an angle of n.

Recall that the point oo wasoriginally defined by the property that it be swapped
with O under complex inversion, z > (1/z). The result (18) vividly illustrates
the correctness of identifying N with the point at infinity, for the point 0 in C
correspondsto the south pole S of X, and therotation of n about thereal axisdoes
indeed swap S with N.
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4 Behaviour of Functions at Infinity

Suppose two curves in C extend to arbitrarily large distances from the origin.
Abstractly,onewould say that they meet at the point at infinity. On £ thisbecomes
aliteral intersection at N, and if each of the curves arrivesat N in awell defined
direction, then one can even assign an "intersection angle at 00". For example,
[20} illustrates that if twolinesin C intersect at afinite point and contain an angle
athere, then they intersect for a second time at oo and they contain an angle —«
at that point.

Transferring acomplex function to the Riemann sphere enablesoneto examine
its behaviour "a infinity" exactly as one would at any other point. In particular,
one can look to see if the function preserves the angle between any two curves
passing through co. For exampl e, theresult (18) showsthat complex inversiondoes
preserve such angles at N, and it is therefore said to be " conformal at infinity".
By the same token, this rotation of X will also preserve the angle between two
curvesthat passthrough thesingularity z = 0 of z —~ (1/z), socomplex inversion
is conformal there too. In brief, complex inversion is conformal throughout the
extended complex plane.

In this chapter we have found it convenient to depict z — w as a mapping
of C to itself, and in the above example we have likewise interpreted the induced
mapping z — w as sending points on the sphere to other points on the same
sphere. However, it is often better to revert to the convention of the previous
chapter, whereby the mapping sends pointsin the z-plane toimage pointsresiding
inasecond copy of C, the w-plane. In thesame spirit, theinduced mapping? +— w
may be viewed as mapping pointsin one sphere (the z-sphere) to pointsin asecond
sphere (the w-sphere). Weillustrate this with an example.

Consider z — w = 2", where n is a positive integer. The top half of [22]
illustratestheeffect of the mapping (inthecasen = 2) onagrid of small "' squares”
abutting the unit circle and two rays containing an angle 8. Very mysteriously, the
images of these "squares” in the w-plane are again almost square. In the next
chapter we will show that thisis just one consequence of a more basic mystery,
namely, that z — w = z" is conformal. Indeed, wewill show that if a mappingis
conformal, then any infinitesimal shapeis mapped toasimilar infinitesimal shape.

Since stereographic projection is known to be conformal, we would therefore
anticipate that when wetransfer the grid from the z-plane to the z-sphere, theresult
will again beagrid of "squares”. That this does indeed happen can be seen at the
bottom left of [22]; the bottom right of [22] illustrates the same phenomenon as
we pass from the image grid in the w-plane to the image grid on the w-sphere.
Quite generaly, any conforma mapping of C will induce a conforma mapping
of X that will (as one consequence) map agrid of infinitesimal squares to another
grid of infinitesimal squares.

Figure [22] not only manifests the conformality of z — w = z2, but it also
illustrates that there exist points at which this conformality breaks down. Clearly,
theangle6 at theoriginisdoubled; moregeneraly,z — w = z" multipliesangles
at 0 by n. Quite generally, if the conformality of an otherwise conformal mapping
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Figure [22]

breaksdown at aparticular point p, then p iscalled acritical point of the mapping.
Thuswe may say that 0 isacritical point of z —> w = z".

If werestrict ourselvesto C then thisistheonly critical point of this mapping.
However, if welook at the induced mapping of X, then the figure makesit clear
that in the extended complex planethereisasecond critical point at infinity: angles
thereare multiplied by n, just asthey were at 0. Thus, more precisely than before,
theclamisthat z — w = 7" is aconformal mapping whose only critical points
are( and co.

Next, we discuss how the behaviour of acomplex mapping at infinity may be
investigated algebraically. Complex inversion rotates Z so that a neighbourhood
o N = oo becomes a neighbourhood of S = 0. Thus to examine behaviour near
infinity we may first apply complex inversionand then examine the nei ghbourhood
of the origin. Algebraically, this means that to study f (z) at infinity we should
study F(z) = f (1/z) at the origin. For example, f (Z)is conformal at infinity if
and only if F(z) isconformal at the origin.

For example, if f (z) = (z + 1)3/(z° - 2), then F(2) = 22(1t 2)*/(1 - 2%,
which hasadoubleroot at 0. Thusinstead of merely saying that f (z) " diesaway
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to zero like (1/2%) as z tends to infinity™, we can now say (more precisely) that
f (2) hasadoubleroot at z = co.

This process can also be used to extend the concept of a branch point of a
multifunction to the point at infinity. For example, if f (z) = log(z) then F(z) =
—log(z). Thus f (z) not only has alogarithmic branch point at z = 0, it also has
oneat z = 00.

5 Stereographic Formulae*

In thissubsection wederiveexplicit formul ae connecting the coordinates of apoint
z in C and its stereographic projection? on C. These formulae will prove useful
in investigating non-Euclidean geometry, but if you don't plan to study Chapter 6
then you should feel free to skip this subsection.

To begin with, let us describe z with Cartesian coordinates. z = X + iy.
Similarly, let (X, Y, Z) be the Cartesian coordinates of Z on C; here the X- and
Y -axes are chosen to coincide with the x- and y-axes of C, so that the positive
Z-axis passes through N. To make yourself comfortable with these coordinates,
check thefollowing facts: the equation of Cis X2+ ¥2 + z2 = 1, thecoordinates
of N are (0,0, 1), and similarly S= (0,0, —1), 1= (1,0,0), i = (0, 1, 0), etc.

Now let usfind theformulafor the stereographic projectionz = x T iy of the
pointZ on C in terms of the coordinates (X, Y, Z) of Z. Let 2 = X +iY bethe
foot of the perpendicular from? to C. Clearly, the desired point z isin the same
directionasz, so

2=y
FAI
Now look at [23a], which shows the vertical cross section of ¥ and C taken
through N and Z; note that this vertical plane necessarily also contains z’ and z.
From the similarity of theillustrated right triangles with hypotenuses N 7 and Nz,
weimmediately deduce [exercise] that

l2l 1

] 1-2"
and so we obtain our first stereographic formula:

X +iY

7 19)

x+iy=

Let us now invert thisformula to find the coordinates of 7 in terms of those of

z. Since [exercise]
| |2 __1
z|F =

1-z’
we obtain [exercise]

2z 2x +i2y 4 7 lz]> =1

X +iY = = , an = )
t L4+1z12 14 x2 42 1zI2 + 1

(20)
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Figure[23]

Althoughitisoften useful to describethepointsof £ with thethreecoordinates
(X, Y, 2),thisiscertainly unnatural,for thesphereisintrinsically twodimensional.
If weinstead describe? with the more natural (two-dimensional) spherical polar
coordinates (¢, 8) then we obtain a particularly neat stereographic formula.

First recall” that & measuresanglearoundthe Z-axis, withé = 0 beingassigned
to the vertical half-plane through the positive X-axis: thusfor apoint z in C, the
angle8 issimply the usual anglefrom the positiverea axisto z. Thedefinitionof
¢ isillustrated in [23b]—it is the angle subtended at the centredf X by the points
N and Z: for example, the equator correspondsto ¢ = (/2). By convention,
0<¢=<m.

If z isthe stereographic projection of the point? having coordinates (¢, 6),
then dlearly z = r ¢?, and so it only remainsto find r as afunction of ¢. From
[23b]itisclear[exercise] that thetrianglesN Z S and NO z aresimilar, and because
theangle /NS7Z = (¢/2), it follows[exercise] that r = cot(¢/2). Thus our new
stereographicformulais

z =cot(¢/2) €'°. (1)

We will now illustratethis formulawith two applications. In Ex. 8 we aso show
how thisformulamay be used to establish a beautiful aternativeinterpretation of
stereographic projection, due to Sir Roger Penrose.

As our first application, let us rederive the result (18). As above, letZ bea
general point of = having coordinates (¢, ), and let z be the point to whichiitis
carried when we rotate T by 7 about the real axis. Check for yoursdlf (perhaps
with the aid of an orange) that the coordinates of z are (w — ¢, —6). Thusif 7 is
the stereographicimage of Z, then

RO EL 2 7 N SR |
Z_°°t[2 2]e o’ 7

aswas to be shown.

TThis is the American convention; in my native England theroles of 6 and ¢ are the reverse
of those stated here.
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For our second application, recall thatif two pointsonaspherearediametrically
opposite each other (such as the north and south poles) then they are said to be
antipodal. Let us show that

If pand ¢ are antipodal pointsof X, then their stereographic pro-
jections p and q are related by the following formula:
(22)
q =—(1/p).

Put differently,q = —Z¢ (p) ,where C isthe unit circle. Notethat therelationship
between p and q isactualy symmetrical (as clearly it should be): p = —(1/9).
To verify (22), first check for yourself that if p has coordinates (¢, 6) then g has
coordinates(w — ¢, + 8). Theremainder of the proof isamost identical to the
previous calculation. For an elementary geometric proof, see Ex. 6.

V Mobius Transformations: Basic Results
1 Preservation of Circles, Angles, and Symmetry

From (3) we know that a general Mobius transformation M(z) = ‘—jf{g can be
decomposed into the following sequence of more elementary transformations. a
trandation, complex inversion, arotation, an expansion, and a second trandation.
Since each of these transformations preserves circles, angles, and symmetry, we

immediately deduce the following fundamental results:

e Mobiustransformations map circlesto circles.
e Mobiustransformations are conformal.

e |ftwo pointsare symmetricwith respect to a circle, then their imagesunder
a Mobiustransformation are symmetricwith respect to theimagecircle. This
iscalled the " Symmetry Principle".

Weknow that acircleC will mapto acircle--of courselinesare now included
as"drdes" —but what will happentothedisc bounded by C?First wegiveauseful
way of thinking about thisdisc. Imagine yourself walking round C moving coun-
terclockwise; your motion gives C what isacalled a positive sense or orientation.
Of thetwo regionsinto which this positively oriented circledividesthe plane, the
disc may now beidentified as the onelying to your left.

Now consider the effect of the four transformationsin (3) on the disc and on
the positively oriented circle bounding it. Trandations, rotations, and expansions
al preserve the orientation of C and map the interior of C to the interior of the
image C of C. However, theeffect of complex inversionon C dependson whether
or not C contains the origin. If C does not contain the origin, then C has the
same orientation as C, and theinterior of C is mapped to the interior of 5.~This
is easily understood by looking at [24]. If C does contain the origin then C has
the opposite orientation and the interior of C is mapped to the exterior of C. If C
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Figure {24]

Figure [25]
passes through the origin then itsinterior is mapped to the half-planelying to the

|eft of the oriented line C. See [25].
To summarize,

A Mobius transformation maps an oriented circle C to an oriented
circle C insuch a way that the region to the left & C is mapped to (23)
theregion to theleft & C.

2 Non-Uniqueness of the Coefficients

To specify aparticular Mobiustransformation M (z) = % it seemsthat we need
to specify thefour complex numbersa, b, ¢, and d, which we call the coefficients
o the Mobiustransformation. In geometric terms, this would mean that to specify
aparticular Mobius transformation we woul d need to know theimages of any four
distinct points. Thisis wrong.

If kisan arbitrary (non-zero) complex number then

az+p M) = kaz + kb
cztd kez T kd’
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Inother words, multiplying the coefficientsby k yieldsoneand the same mapping,
and so only the ratios of the coefficients matter. Since three complex numbers
are sufficient to pin down the mapping—(a/b), (b/c), (c/d), for example—we
conjecture (and later prove) that

There exists a unique Mobius transformation sending any three

points to any other three points. 29

In the course of gradually establishing this one result we shall be led to further
important properties of Mobius transformations.

If you read the last section of Chapter 1, then (24) may be ringing a bell: the
similarity transformations needed to do Euclidean geometry areal sodetermined by
their effect onthree points. Indeed, we saw inthat chapter that such similaritiescan
beexpressed ascomplex functions of theformf (z) = az + b, and so they actually
areMobiustransformations, albeit of aparticularly simplekind. However, for such
a similarity to exist, the image points must form a triangle that is similar to the
triangleformed by the original points. But in the case of Maobius transformations
thereis no such restriction, and this opens the way to moreflexible, non-Euclidean
geometriesin which Mobius transformations play therole of the"motions”. This
isthe subject of Chapter 6.

Let us make a further remark on the non-uniqueness of the coefficients of a
Mobiustransformation. Recall from the beginning of thischapter that theinterest-
ing Mobius transformations are the non-singular ones, for which (ad — bc) # 0.
For if (ad — bc) = 0 then M(2) = zfj;g crushes the entire plane down to the
single point (a/c). If M is non-singular, then we may multiply its coefficientsby
k = +1/4/ad — bc, in which case the new coefficients satisfy

(ad — bc) =1;

the Mobius transformation is then said to be normalized. When investigating the
propertiesof ageneral Mobiustransformation, it turnsout to be very convenientto
work with this normalized form. However, when doing cal cul ations with specific
Mobius transformations, it is usually best not to normalize them.

3 The Group Property
In addition to preserving circles, angles, and symmetry, the mapping

asz

=M =
e @ cz+d

(ad — bc) # 0

is aso one-to-one and onto. This means that if we are given any point w in the
w-plane, thereisone (and only one) point z in the z-plane that is mapped to w. We
can show thisby explicitly finding theinversetransformation w — z = M~ (w).
Solving the aboveequation for z in termsof w, wefind [exercise] that M~! isalso
a Mobius transformation:

Mlgp=—"—. 25)
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Notethat if M is normalized, then thisformulafor M~ isautomatically normal-
ized as wll.

If welook a theinduced mapping on the Riemann sphere, then wefind that a
M obiustransformationactually establishes a one-to-onecorrespondence between
points of the complete z-sphere and points of the complete w-sphere, including
their pointsat infinity. Indeed you may easily convinceyoursdlf that

M(oo) =(a/c) and M(—d/c) = 0.

Using (25), you may check for yourself that M~!(a/c) = co and M~1(00) =
—(d/o).
Next, consider the composition M = (M2 o M;) of two Mobius transforma:

tions.
Ma(z) = et and Mi(2) = azt b
PR P8 N et a
A simplecalculation [exercise] showsthat M isaso a Mobius transformation:

(a2a1 + bac1)z + (az2b; + bady)
(c2a1 + dac1)z + (c2b1 + dadh)

M(z) = (M2 0 M1)(2) = (26)

Itisclear geometrically that if M; and M, are non-singular,then sois M. Thisis
certainly not obvious algebraically, but later in this section we shall introduce a
new algebraic approach that does makeit obvious.

If you have studied "groups”’, or if you read the find section of Chapter 1,
then you will realize that we have now established thefollowing: The set d non-
singular Mobius transformationsforms a group under composition. For, (i) the
identity mapping£(z) = z belongsto the set; (ii) thecompositionof two members
of theset yieldsathird member of the set; (iii) every member of the set possesses
aninversethat asoliesin the set.

4 Fixed Points

Asanother steptowardsestablishing (24), let usshow that ¥ aMobiustransforma-
tion exists mapping threegiven pointsto threeother given points, thenit is unique.
Tothisend, we now introduce the extremely important concept of the fixed points
of aMobiustransformation. Quitegeneraly, p iscalled afixed point of amapping
f if f (p) = p, in which case one may also say that p is " mapped to itself”, or
thatit "remainsfixed". Notethat under theidentity mapping, z +— £(z) = z, every
pointis afixed point.

By definition, then, the fixed pointsof ageneral Mobiustransformation M (z)
are the solutions of
azthb
cz+d’
Sincethisis merely aquadratic in disguise, we deduce that

z=M() =

With theexceptiond theidentity mapping, a Mobiustransformation
has at most two fixed points.
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From the above result it follows that if a Mobius transformation is known
to have more than two fixed points, then it must be the identity. This enables us
to establish the uniqueness part of (24). Suppose that M and N are two Mobius
transformationsthat both map thethree given points(say q, r, S) tothethreegiven
image points. Since (N~! o M) is a Mobius transformation that has g, r, and s
as fixed points, we deduce that it must be the identity mapping,and so N = M.
Done.

We now describe the fixed points explicitly. If M (z) is normalized, then the
twofixed points&,., £ aregiven by [exercise]

_(a—d)x(a+d)? -4
= o .

&+ 1))

In the exceptiona casewhere (a+ d) = £2, thetwofixed points&+ coalesceinto
thesinglefixed point§ = (a — d)/2c¢. In this case the Mobius transformationis
called parabolic.

5 Fixed Points at Infinity

Providedc # 0 then thefixed pointsbothliein thefiniteplane; we now discussthe
fact that if ¢ = 0 then at least onefixed pointisat infinity. If ¢ = 0 then theMobius
transformation takes the form M(z) = Az + B, which represents, as we have
mentioned, the most general "'direct” (i.e., conformal) similarity transformation
of the plane. If we write A = p'® then this may be viewed as the composition
of an origin-centred rotation of a, an origin-centred expansion by p, and findly
atrandation of B. Let us visuaize each of these three transformations on the
Riemann sphere.

With a > 0, figure [26a] illustratesthat the rotation z — ¢/*z in C induces
anequal rotation of £ about the vertical axisthroughitscentre. Horizontal circles
on I rotate (in the direction of the arrows) into themselves and are therefore
called invariant curves of the transformation. This figure makesits vividly clear
that the fixed points of such a rotation are 0 and 00. Note aso that the (great)
circlesthrough these fixed points (which are orthogonal to the invariant circles)
are permuted among themselves. This pure rotation is the smplest, archetypa
exampleof aso-called elliptic Mobiustransformation.

With p > 1, figure [26b] illustratesthe induced transformation on £ corre-
sponding to the origin-centred expansion of C, z — pz. If p < 1 then we have
acontraction of C, and pointson X move due South instead of due North. Again
it isclear that the fixed points are 0 and 00, but the roles of the two familiesd
curvesin [26a] are now reversed: theinvariant curvesare the great circlesthrough
the fixed points at the poles, and the orthogonal horizonta circles are permuted
among themselves. This pure expansion is the simplest, archetypal exampled a
so-called hyperbolic Mobiustransformation.

Figure[26c] shows the combined effect of the rotation and expansionin [26a]
and [26b]. Heretheinvariant curves aretheillustrated" spirds”; however, the two
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elliptic

loxodromic parabolic

[d]

Figure [26]

families of circlesin [26a] (or [26b]) are both invariant as a whole, in the sense
that the members of each family are permuted among themselves. This rotation
and expansion is the archetypal loxodromic Mobius transformation, of which the
liptic and hyperbolic transformations are particularly important special cases.

Finally, [26d] illustrates a trandlation. Since theinvariant curvesin C are the
family of parallel linesin the direction of the trandation, the invariant curves on
X arethefamily of circles whose common tangent at oo is parallel to theinvariant
linesin C. Since oo isthe only fixed point, a pure trandation is an example of a
parabolic Mobius transformation.

Note the following consequence of the above discussion:

A Mobiustransformationhasa fixed pointat co if and onlyif itisa
similarity, M(z) = (az Fb). Furthermore, oo isthe sole fixed point  (28)
if and onlyif M(2) isatrandation,M (2) = (z + b).

Later we will use thisto show that each Mobius transformation is equivalent, in a
certain sense, to one (and only one) of the four types shownin {26].
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6 The Cross-Ratio

Returning to (24), we have aready established that if we can find aMobius trans-
formation M that maps three given pointsq, r, s to three other given points g, 7,
S, then M is unique. It thus remains to show that such an M alwaysexists.

To see this, first let us arbitrarily choose three points ¢, r', s, once andfor
all. Next, suppose we can write down a Mobius transformation mapping three
arbitrary pointsq, r, s tothese particular three points, o, r', s”; let M,(z) denote
this Mobius transformation. In exactly the same way we could also write down
Mz7+(z). By virtueof the group property, it is now easy to see that

-1

M = M= Mgrs
is a Mobius transformation mapping q, r, s to ¢, r', s and thenceto g, 7, 5, as
was desired.

Now the redl trick is to choose ¢, r', s’ in such as way as to make it easy
to write down M,,(z). We don't like to pull rabbits out of hats, but try ¢’ = 0,
r' =1, and s’ = co. Along with this special choice comes a special, standard
notation: the unique Mobius transformation mapping three givenpointsq, r, s to
0, 1, oo (respectively)iswritten [z, q, 1, 9.

Inorder tomap q to g = 0 and s to s’ = oo, the numerator and denom-
inator of [z, q,r,s] must be proportional to (z — q) and (z — s), respectively.

—

Thus [z,q,r,8] = k (zTg) where k is a constant. Finally, since k (;—:—%) =

[r,q,r,s] =1, wededuce that

Z—=q)r—s)

[z,q,1.5] = m

Thisisnot quitesorabbit-likeasit appears. Two hundred yearsprior to Mobius
investigations, Girard Desargues had discovered theimportance of the expression
[z, q, r,s] within the subject of projective geometry, where it was christened the
cross-ratio of z, q, r, s (in this order®). Its significancein that context is briefly
explainedin Ex. 14, but the reader is urged to consult Stillwell [1989, Chap. 7] for
greater detail and background.

We can now restate (24) in a more explicit form:

The unique Mobius transformation z — w = M (z) sending three
pointsg, r, s toany other threepoints g, T, 5 isgiven by

(w—q)F -7%)
(w—5)7F—9q)

8Different orders yield different values; see Ex. 16. Unfortunately, there is no firmconven-
tion as to which of these valuesis "'the”" cross-ratio. For example, our definition agrees with
Carathéodory [1950], Penrose and Rindler [1984], and Jones and Singerman [1987], but it is
different from the equally common definition of Ahlfors{19791.

z—q)r—s)

. 29
(z—95)r—9q) @

=[w,q,7.51=1lz,q,r,5]1 =
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Althoughwe havenot doneso, in any concrete case one could easily goonto solve

this equation for w, thereby obtaining an explicit formulafor w = M(z).
Theresult (29) may be rephrased in various helpful ways. For example, if a

M obiustransformation mapsfour pointsp, g, r, s to p, ¢, 7, 2(respectively) then

thecross-ratioisinvariant: [P, §,7,51=[p, q,r,s]. Conversely,p, q, r, s can be

mapped to p, g, 7, 5 by aMobius transformation if their cross-ratios are equal.
Recalling (23), we also obtain the following:

Let C be the uniquecircle through thepointsq, r, s in the z-plane,
oriented so that thesepoi ntssucceed oneanother in thestated order:
Likewise, let C be the unique oriented circle through §, 7, 5 in the
w-plane. Then theMobius transformation given by (29) maps C to
C, andit maps the region lying to theleft d C to the region lying to
theleftd C.

(30)

Thisisillustrated in [27].

N>

unique
‘ Mobius
transformatio

Figure [27]

Thisin turn gives us a more vivid picture of the cross-ratio: w = [z,q, 1, 9]
istheimage of z under the unique Mobius transformation that maps the oriented
circleC throughq, r, s totherea axisin such away that these three points map to
0,1, 0. If g, r, s induceapositiveorientation on C thentheinterior of C ismapped
to the upper half-plane; if they induce a negativeorientation, then theimageisthe
lower half-plane. Thisisillustrated in {28], from which we immediately deduce a
neat equation for thecircle C:

A point p lieson thecircle C throughq, r, s f andonly f

Im [p,q,r,s]1=0. 31

Furthermore, if g, r, s induce a positive orientation on C (as in
[28]), then p liesinside C if andonly f Im[p,q,r,s] > 0. If the
orientationd C isnegative, then the inequality is reversed.

For a more elementary proof of (31), see Ex. 15.
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[z,q.7 5]

Figure[28]

VI Mobius Transformations as Matrices*
1 Empirical Evidence of a Link with Linear Algebra
As you were reading about the group property of Mobius transformations, you
may well have experienced déja vu, for the results we obtained were remarkably
reminiscent of the behaviour of matricesin linear agebra. Before explaining the
reason for this connection between Mobius transformations and linear algebra,
let us be more explicit about the empirica evidence for believing that such a
connection exists.

We begin by associating with every M obiustransformation M (z) acorrespond-
ing 2 X 2matrix [M}:

b
M(z)=Z§Id —s [M]=[Z Z].

Sincethe coefficientsof the Mobius transformation are not unique, neither is the
corresponding matrix: if k is any non-zero constant, then the matrix k[M1] corre-
spondsto the same Mobiustransformationas[M]. However, if [M]isnormalized
by imposing (ad — bc) = 1, then there are just two possible matrices associated
with a given Mobius transformation: if oneis called [M], the other is —[M]; in
other words, the matrix is determined " uniquely up to Sgn™. This apparently triv-
ia fact turns out to have deep significancein both mathematics and physics; see
Penrose and Rindler [1984, Chap. 1].

At this point there exists a strong possibility of confusion, so we issue the
following WARNING: In linear algebra we are--or should be! —accustomed to
thinking of areal 2 x 2 matrix as representing alinear transformation of R?. For

example, ( ‘1’ "}) ) representsarotation of the planethrough (z/2). Thatis, when

we apply it to a vector (’y‘) in R?, weobtain

(D)6 (2)= () i)

In stark contrast, the matrix [‘é Z] corresponding to a Mobius transformation

generally has complex numbersasitsentries, and so it cannot be interpreted as a
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linear transformationof R2. Evenif theentriesarereal, it must not bethought of in
thisway. For example, thematrix (‘1’ ‘0) correspondsto the Mobius transforma-

tion M (z) = —(1/z), whichiscertainly not alinear transformationof C. Toavoid
confusion, we will adopt the following notational convention: We use (ROUND)
bracketsor a real matrix correspondingto a linear transformationd R ord C,
and we use[SQUARE] bracketsfor a (generally) complex matrix corresponding
toaMobiustransformationd C.

Despite this warning, we have the following striking parallels between the
behaviour of Mobiustransformationsand the matrices that represent them:

e Theidentity Mobius transformation £(z) = z corresponds to the familiar

identity matrix, [5]:[}) o

e The Mobius transformation M (z) with matrix [M] = ‘; Z possesses an

inverseif and only if the matrix possesses an inverse. For recall that [M] is
non-singular if and only if its determinant det{M] = (ad — bc) is non-zero.

o If welook at (25), weseethat thematrix of theinverseM obiustransformation
M~1(z) isthe sameas theinversematrix [M]~L. To put this succinctly,

(M1 =ML

e Inlinear algebrawe composetwo linear transformationsby multiplyingtheir
matrices; indeed, thisis the origin of the multiplication rule. If we multiply
thematrices[ M;] and [ M] corresponding to thetwo M obiustransformations
M>(z) and M;(2), then we abtain

a b ay by | _| aa1+bct axby + bady
¢ d c1 di || ear+daci by +dodr |

Butlook at (26)! Thisissimply the matrix of the composite Mobiustransfor-
mation (M, o M1)(z). Thus multiplication & Mobius matrices corresponds
to composition d Mobiustransformations:

[M3] [M1] = [M3 0 M;].

2 The Explanation: Homogeneous Coordinates

Clearly this cannot all be coincidence, but what is really going on here? The
answer is simple, yet subtle. To see it we must first describe the complex plane
with acompletely new kind of coordinatesystem. Instead of expressingz = x Tiy
intermsof two real numbers, we writeit asthe ratio d two complex numbers, 31
and 32:

31

7= —.
32
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The ordered pair of complex numbers[31, 32] are called homogeneouscoordi-
nates of z. In order that thisratio be well definedwedemand that {31, 32] # [0, O].
To each ordered pair [31 arbitrary, 32 # 0] there corresponds precisely one point
z = (31/32), but to each point z there corresponds an infinite set of homogeneous
coordinates, [k31, k32] = k[31, 321, wherek isan arbitrary non-zero complex hum-
ber.

What about a pair of theform 31, 01?7 By holding 31 fixed as 3; tendsto 0, it
isclear that [31, O] must beidentified with the point at infinity. Thus the totality of
pairs{31, 321 providecoordinatesfor the extended complex plane. Theintroduction
of homogeneous coordinates thereby accomplishes for algebra what the Riemann
sphere accomplishesfor geometry —it does away with the exceptional role of oc.

Just as we use the symbol R? to denote the set of pairs (X, y) of real numbers,
so we use the symbol €2 to denote the set of pairs[31. 2] of complex numbers. To
highlight the distinction between R? and €2, we use conventional round brackets
when writing down an element (x, y) of R?, but we use square brackets for an
element (31, 3] of C2.

Just as alinear transformation of R? is represented by areal 2 X 2 matrix, so
alinear transformation of C2 is represented by acomplex 2 x 2 matrix:

31 wp| | a b 31| _|asa+ba
[32]'_) I:mz]_[ c d ][62]_[ca1+d32]'
But if [31, 32] and [iv1, tv2] are thought of as the homogeneous coordinatesin C?
of the point z = (31/32) in C and itsimage point w = (iv;/tvy), then the above

linear transformation of €2 induces the followi ng (non-linear) transformation of
C:

31 wy  az+bzp aBGi/zp)+b  az+b
== r— w=—= = =

z - - - —_ .
32 wy ca+dzp c@Gi/zp)+d cz+d

Thisis none other than the most general Mobius transformation!

We have thus explained why Moébius transformations in C behave so much
like linear transformations—they are linear transformations, only they act on the
homogeneous coordinatesin €2, rather than directly on the points of C itself.

As with the cross-ratio, homogeneous coordinates first arose in projective ge-
ometry, and for this reason they are often also called projective coordinates. See
Stillwell [1989, Chap. 7] for greater detail on the history of the idea. We cannot
move on without mentioning that in recent times these homogeneous coordinates
have provided the key to great conceptual advances (and powerful new compu-
tational techniques) in Einstein's Theory of Relativity. This pioneering body of
work is due to Sir Roger Penrose. See Penrose and Rindler [1984], particularly
Chapter 1.

3 Eigenvectors and Eigenvalues*

The above representation of Mobius transformations as matrices provides an el-
egant and practical method of doing concrete calculations. More significantly,
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however, it also means that in developing the theory of Mobius transformations
we suddenly have accessto awholerange of new ideas and techniquestakenfrom
linear algebra.

We begin with something very simple. We previously remarked that whileitis
geometrically obvious that the composition of two non-singular Mobius transfor-
mationsis again non-singular, it isfar from obvious algebraically. Our new point
of view rectifiesthis, for recall thefollowing elementary property of determinants:

det{[M>] [M1]} = det[M>] det[M;].

Thus if det[M>] # 0 and det[M;] # O, then det{[M2]IM;1} # 0, as was
to be shown. This also sheds further light on the virtue of working with nor-
malized Mobius transformations. For if det[M>] = 1 and det[M;] = 1, then
det{[M>][M;]} = 1. Thusthe set of normalized 2 x 2 matricesform agroup—a
"subgroup™ of thefull group of non-singular matrices.

For our second example, consider the eigenvectors of alinear transformation

(M] = [‘é z:l of C2. By definition, an eigenvector is a vector 3 = [ g;] whose
"direction" is unaltered by the transformation, in the sense that itsimage is ssim-

ply a multiple hj of the original; this multiple A is called the eigenvalue of the
eigenvector. In other words, an eigenvector satisfiesthe equation

a b || 31
=X .
ERHEEH
In terms of the corresponding Mobius transformation in C, this meansthat z =
(31/32) ismapped to M(z) = (A31/A32) = 2, and so

z = (31/32) isafixed point & M (2) if and only if j = [ g;] isan (35

eigenvector d [M].

Note that oneimmediate benefit of thisapproachisthat thereisnolonger any
real distinction between afinite fixed point and afixed point at oo, for the latter

31
0

how elegantly we may rederive thefact that oo isafixed point if and only if M (z)
isasimilarity transformation. If oo isafixed point then

ksl_ab 31| _|as
0 | ¢ d O (| cal’
Thusc =0, = a, and M (z) = (a/d)z T (b/d).
Recall that if the matrix [M] represents the Mobius transformation M (z), then

so does the matrix k[M] obtained by multiplying the entries by k. The fact that
eigenvectors carry geometric information about M (z) shows up in the fact that

merely corresponds to an eigenvector of the form . For example, consider
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they areindependent of thechoiceof k. Indeed, if 3 isan eigenvector of [M] (with
eigenvalue) then it isalso an eigenvector of k[M], but with eigenvaluekh:

{k[M1} 3 = kA 3.

Since the eigenvaluedoes depend on the arbitrary choice of k, it appearsthat its
value can have no bearing on the geometric nature of the mapping M(z). Vay
surprisingly, however, if [M] is normaized then the exact opposite is true! In
the next section we will show that the eigenvaluesd the normalized matrix [M]
completely determine the geometric nature d the corresponding Mobius trans-
formation M(z). In anticipation of this result, let us investigate the eigenvalues
further.
Recall the fact that the eigenvalues of [M] are the solutions of the so-called
characteristic equation, det{[M] — A[E£]} = 0, where [£] is the identity matrix
[(1) (1)] Using thefact that [M] is normalized, wefind [exercise] that the charac-
teristic equationis
A2—(@@atarti=o,

which (for later use) may be written as
1
A+ S =a+ d. (33)

The firgt thing we notice about this equation is that there are typically two
eigenvalues, A1 and A2, and they are determined solely by thevalueof (a+d). By
inspecting the coefficientsof the quadratic weimmediately deduce that

MAz=1  and A1+A2=(a+4d). (34)

Thusif weknow A1, then A, = (1/A1). We emphasi ze this point becauseit is not
obvious when we simply write down theformulafor the eigenvalues:

Mo =it Via+a? -3,

Aficionadosaf linear algebra will recognize (34) as a specia case of thefol-
lowing general result on the eigenvaluesiy, Az, ..., A, of any n X n matrix N:

MAy... Ay =detN and M+Xr+--+ A, =trN,

wheretr N = (the sum of the diagonal elementsof N) is called the trace of N.
For futureuse, recall thefollowing nice property of thetracefunction: | f N and P
areboth n X n matrices, then

tr{ NP) = tr{ PN). 35)

In the case of 2 X 2 matrices (which is all that we shall ever need) thisis easily
verified by adirect calculation [exercise].
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4 Rotations of the Sphere as Mobius Transformations*

This subsection is optional because its main result is only needed in Chapter 6.
Furthermore, inthat chapter weshall treat the sameresultin amuch better and sim-
pler way; theonly purposeof thissubsectionisto further illustrate the connections
that exist between Mobius transformations and linear algebra.

Let usinvestigate what it might mean to say that two vectors p and q in C?
are" orthogonal™. Two vectorsp and gin R? are orthogonal if and only if their dot
product vanishes:

pP1 q1
. = . = = 0
Pq (pz) (qz) P91 + 292

Thusit would seem natural to say that p and q are " orthogond if p-q = 0. This
will not do. In particular, whereas we would like the dot proruct of anI nonzero

1][1 - 0, for
1 1

example. Asit stands, the dot product is not suitable for usein C2.
The standard solution to this difficulty is to generalize the dot product p - to
theso-called inner product, (p,q) =p-q:

. q) =([§;],[g;]) —Fia 4+

Wecannot gointoal thereasonswhy thisisthe" right'* generalization, but observe
that it shares the following desirable properties of the dot product:

vector with itself to be a positive real number, we find that

(p,p)>=0 and (p,p)=0ifandonlyifp; =0 =p,;
Pp+q.v)=p,v)+(q,v) and (v,p+q)={(v,p)+(v,q).

Note, however, that it is not commutative: (g, p) = (p, q).
We now agree that p and q are " orthogona" if and only if

p.9)=p1a91 +P29, =0.

What does this " orthogonality' mean in terms of the points p = (p;/p,) and
g = (q1/92) whose homogeneous coordinate vectorsare p and q? The answer is
surprising. As you may easily check, the above equation saysthat q = —(1/p),
and so from (22) we deduce that

Two vectors in C2 are orthogonal if and only if they are the homo-
geneous coordinates of antipodal points on the Riemann sphere.

Suppose we could find alinear transformation [ R]of C? that were analogous
to arotation—what transformation of the Riemann sphere ~ would beinduced by
the corresponding Mobius transformation R(z)? By " analogousto arotation™, we
mean that [ R]preservestheinner product:
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([Rlp,[Rlq) =(p.q). (36)

In particular, [R] maps every pair of orthogonal vectorsto another such pair, and
R(z) thereforemapsevery pair of antipodal pointson T to another such pair. We
shall not attempt areal proof, but since the transformation of = isalso known to
be continuous and conformal?, it can only be arotation of C.

Thedesiredinvarianceof theinner product (36) may be neatly rephrased using
anoperationcalled theconjugate transpose, denoted by asuperscript x. Thisopera
tion takesthe complex conjugate of each element inamatrix and theninterchanges
the rows and columns:

* a—
p — a b a
p*:[P;] = [P1,p,] and [R]*:[ c d ]*=[E g]
Since theinner product can now be expressed in terms of ordinary matrix multi-
plication as (p, gq) = p*q, and since [exercisg] {[RIp}* = p*[R]*, wefind that
(36) takestheform
p* {[RI*[R]} q = p*q.
Clearly thisis satisfied if
[RT*[R] = [£], (37

andin linear algebrait is shown that thisis also anecessary condition.

Matrices satisfying equation (37) areextremely important in both mathematics
and physics—they are called unitary matrices. In the present case of normalized
2 X 2 matrices, we can easily find the most general unitary matrix [R] by re-
expressing (37) as[R]* = [R]~!:

[33]-[4 2] — w-[32]

Although we have |eft some unsatisfactory gaps in the above reasoning, we
have nevertheless arrived at an important truth: The most general rotation of the
Riemann sphere can be expressed as a Mobius transformation of the form

R(z) = — . (3%

Thiswasfirst discovered by Gauss, around 1819.

VIl Visualization and Classification*
1 The Main Ildea

Although the decomposition (3) of a general Mobius transformation M (z) hes
provedvaluablein obtaining results, it makes M (z) appear much morecomplicated

91f it were not continuousthen it coul d, for exampl e, exchange pointson two antipodal patches
of T whileleaving theremainder fixed. If it werecontinuous but anticonformal, thenit could mgp
each point to its antipodal point, or to its reflectionin a plane through the centre of .
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thanitis. Inthissection wewill reveal thishidden simplicity by examiningthefixed
pointsin greater detail; thiswill enable usto visualize M obius transformationsina
particularly vividway. Intheprocesswewill clarify our earlier remark that Mobius
transformations can be classified into four types, each M(z) being "equivaent™
to one (and only one) of the four types of transformation illustrated in [26]. The
lovely idea behind this classification schemeisdueto Felix Klein.

Tobeginwith, supposethat M (z) hastwo distinct fixed points, £ and£_. Now
look at the LHS of [29], andin particular at thefamily C; of circles[showndashed]
passing through thefixed points. If wethink of M (z) asamappingz = w = M(2)
o thisfigureto itself, then each member of C; is mapped to another member of
Ci1. Why?

Still withreferencetotheLHSof [29], supposethat p[not shown]isanarbitrary
point on the linethrough & and &, but lying outside the segment connecting the
fixed points. If K isthecircleof radius ./[p§ J[pE_] centredat p, then &, and &
are symmetric with respect to K. Thus K cuts each member of C; at right angles
(cf. [9]). By varying the position of p we thusobtain afamily C; of circles[shown
solid] such that &, and é_ are symmetricwith respect to each member of C2, and
each member of C; is orthogonal to each member of C;.

i

Figure [29]

Now we cometo the main idea: to the LHS of [29] we apply a Mobiustrans-
formation F(2) that sendsone fixed point (say) to0, and the other fixed point
(¢_) to 0o. The RHS of [29] shows the image of the LHS under such a Mobius
transformation, the simplest example of whichis

z—§&4

z—&°

[Note that we have not bothered to write this in normalized form.] Since Fis
a Mobius transformation, it must map the members of C; to the circles passing
through 0 and oo, i.e., to lines through the origin [shown dashed]. Furthermore,
since F is conformal, two such lines must contain the same angle at 0 as the
corresponding C; circles do at £+. We have tried to make this easy to see in our
pictureby drawing C; circles passing through & in evenly spaced directions, each
onemaking an angle of (;r/6) with the next.

F(z) =
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As an aside, observe that we now have a second, simpler explanation of the
existencedf the family C; of circlesorthogonal to C;. Sincetheillustrated set of
origin-centred circles are orthogonal to lines through 0, their images under F~!
must be circles orthogonal to each member of C.

Next, let7 = F(z) and w = F(w) betheimagesunder Fof z and w = M(z).
Wemay now think of Fascarrying theoriginal Mobiustransformationz > w =
M (2) on theleft over to atransformation M on theright, namely? > & = M(Z).
Moreexplicitly,

= Fw) =F M) =F (M[F(D)]).

and so -
M=FoMoF L. (39)

Since M is the composition of three Mdbius transformations, it is itself aMabius
transformation. Furthermore, it follows immediately from the construction that
the fixed points of M are 0 and oo. But we have already seen that if a Mobius
transformation leavesthese pointsfixed, it can only be of theform

M(Z) =m7%,

wherem = pe'Y issimply acomplex number. Geometrically, M isjust arotation
by a combined with an expansion by p.

This complex number m not only constitutes a complete description of the
mapping M but, as we will see shortly, it also completely characterizes the geo-
metric nature of the origind Mobius transformation M. The number mis called
themultiplier of M (2).

2 Elliptic, Hyperbolic,and Loxodromic Transformations

Beforereading on, refresh your memary—of the classification (shownin [26a,b,c])
of Mobiustransformationsof theform M(Z) = m7Z. _

Wecall M(z) an elliptic Mobius transformation if M is elliptic, meaning that
thelatter is a purerotation corresponding to m = €'Y, Since M isarotation if and
only if it mapseach origin-centred circletoitself, M(z) is€llipticif and only if it
maps each C; circletoitself. Witha = (7r/3), theRHS of [29] illustratestheeffect
o M on the point Z. On the LHS you can see the corresponding, unambiguous
effect of M: it movesz adlongitsC; circletill it lieson theCy circle making angle
(rr/3) with theorigina C; through z.

Figure [30]'° isintended to give a more vivid impression of thissameélliptic
transformation. Each shaded "'rectangle” is mapped by M (z) to the next onein
the direction of the arrows—some of these regions have been filled with black to
emphasizethis. Thisfiguremay be viewed astypical, with oneexception. Because
we have chosen a = (7/3), six successive applications of M yield the identity,

10ghading inspired by Ford {1929, p. 19].
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Figure[30]

and one therefore says that M has period 6. More generally, if a = (m/n)2m,
where (m/n) isafraction reduced to lowest terms, then M has period n. Of course
thisis not typical. In general («/27) will beirrational, and no matter how many
timeswe apply M wewill never obtaintheidentity.

Wecall M (z) ahyperbolicMaobius transformation if M ishyperbolic, meaning
that the latter is a pure expansion correspondingtom = p # 1. Since M isan
expangon if and only if it maps each line through the origin to itself, M (z) is
hyperbalic if and only if it maps each C; circle to itself. Figure [31] illustrates
such atransformation with p > 1. Notethat if we repeatedly apply this mapping
then any shape (such as the small black square near (+) isrepelled away from (+,
eventually being sucked into &_. Inthiscase&,. iscaled the repulsive fixed point
and &_ iscdled the attractivefixed point; if m = p < 1thentherolesd &, and
&_ arereversed.

=

Figure[31]
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Findly, if m = pe" hasagenera value, and M isthe composition of both a
rotation and an expansion, then M is called aloxodromic Mobiustransfor mation.
In this case neither the C; circles, nor the C, circles are invariant. The curves
that areinvariant areillustrated in [32], which also shows the effect of successive
applicationsof M to asmall square near £+.. In studying thisfigure, you may find
it helpful to notethat

The loxodromic Mobius transformation with jixed points &+ and
multiplier m = p €'* is the composition (in either order) of (i)the

elliptic Mobius transformationwith multiplier m = €'" and jixed (40)
pointséL, (ii)the hyperbolicMaobiustransformationwith multiplier

m = p and fixed points&.

Just as in the case of a hyperbolic transformation, note that one fixed point
is repulsive while the other is attractive. In this figure we have taken « > 0 and
p > 1; how would it ook if a were negative, or if p werelessthan one?

loxodromic

Figure[32]

3 Local Geometric Interpretation of the Multiplier
In [29] we arbitrarily elected to send &4 to 0, rather than &—. In this sense our
definitionof m isclearly ambiguous. How would the new valuedf m be related to
theold oneif we wereto instead send &_ to O? _

Note that (39) may beexpressedas (Fo M) = (M o F). Writingw = M (z),
and recdling the definition of F, we therefore have

w—§p z—§&4
w—é__m(z—§_)' “41n

[This formula is often called the normal form of the Mobius transformation.]
Interchanging &+ and £— in thisformulais equivaent to sending £- to 0 and &
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to 00, in which case we obtain

w—§ 1 (Z—§+)

w—§&  m\z—&_ )
Thusthe multiplier haschangedfrom m to (1/m), and both of these valuescanlay
equal claimto being called ""the" multiplier. Let us thereforerefine our language
and call thenumber m occurringin (41) the multiplier associated with &4 ; we will
sometimes write it as m to emphasize this. In these terms, we have just shown
that the multipliersassociated with the two fixed pointsare the reciprocals of one
another. Let ustry to understand this more geometrically.

Reconsider [29], in which the multiplier associated with &, ism = /7/3),
We now seek to interpret m directly in terms of [30], without the assistance of
the RHS of [29]. Thecloser we are to &5, the more closaly do the membersof C
resembletiny concentric circlescentred a (+. Thisiseasy to understand: (A) as
we examine smaller and smaller neighbourhoods of (+, theC; circleslook more
and more like their tangent lines at £4; (B) by definition, each C; cuts every Cq
circleorthogonally.

Fromtheseremarks,itisnow clear that thelocal effectof M (inaninfinitesmal
neighbourhoodof £;.) isarotation centred at & through angle (i /3)—this isthe
meaning of the multiplier my = ¢!/ associated with $+. Of course exactly the
same reasoning appliesto theinfinitesima neighbourhoodof £_, but we seefrom
[30] that the positiverotation at &4+ forces an equal and oppositerotation at &_.
Thusthelocal effect of M inthe neighbourhoodof &£-— isarotation of —(rr/3), and
the associated multiplier m_. ise™* /3 = (1/m..), aswasto be explained.

If welook at [31], then we can see the same phenomenon a work in the case
of ahyperbolic transformation. In this figure the multiplier associated with £+ is
m = p > 1, and this can now be interpreted as saying that the local effect of M
in an infinitesimal neighbourhood of £ isan expansion centred a that point—we
will verify in amoment that the"'local expansion factor" is precisdly p. It isalso
clear from the figurethat the local effect of M in an infinitesmal neighbourhood
of £_ isacontraction, so that the multiplier associated with that pointisrea and
less than one. However, it is not so clear that this numberis precisaly (1/p), aswe
know it must be. Thistoo can be demonstrated geometrically, but let us instead
content ourselves with showing how our original agebraic argument may be re-
interpreted geometricallyin termsof the"'local effect' of M in thevicinity of each
of thefixed points.

LetuswriteZ = (z — (+) and W = (w — &4) for the complex numbers
emanatingfrom & connecting that pointto z and toitsimagew = M (2). We have
clamed (and partidly verified) that if Z isinfinitesmal then the effect of M isto
rotate Z by aand to expandit by p: in other words, W = mZ. To verify this, note
that (41) can berewritten as

w (w - 5_)
A m para
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As Z tendsto zero, both z and w tends to &, and so the fraction on theright is
ultimately equa to m. Thus W is ultimately equal to m Z, as wasto be shown.

After you have read the next chapter, you will be able to look back a what
we have just done and recognize it as an example of differentiating a complex
function.

4 Parabolic Transformations

We now possess an excellent understanding of Mobius transformationswith two
fixed points, so al that remainsis to treat the case where M has only one fixed
point &, in which case M is called a parabolic Mobiustransformation.

Consider the LHS of [33], but ignore the arrowsfor the time being. Here we
have drawn two families of circles. the solid ones all pass through the fixed point
S in one dlrectl on, md the dashed ones al pass through £ in the perpend|cular

Figure[33]

direction. Notethat sincethetwo typesof circlesareorthogonal at &, they areaso
(by symmetry) orthogonal at their second intersection point. The RHS illustrates
what happens when we send § to oo by meansof the Mobiustransformation

G(z) = !
7) = L
Clearly [exercisg], the two orthogona families of circles becometwo orthogonal
families of pardlel lines. Conversdy, if we apply G~! to any two orthogonal
families of lines on the right, then on the left we get two orthogonal families of
circlesthrough .
Asbefore, let 7 = G(z) and W = G(w) betheimageson the RHS of Z and
W = M(z). Thusthe Mobiustransformation z > w = M(2) on the LHS induces
another Mobiustransformation — & = M (Z) on the RHS, where

M=GoMoG™.

Since oo isthe sole fixed point of M, wededucethat M can only beatrandation:
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M(Z)=7+T.

Now suppose that the arrows on the RHS of [33] represent the direction of the
trandation T. As illustrated, we now draw a grid aligned with T, each shaded
squarebeingcarried intothenext by M. Onthe LHS of [33] wethusaobtainavivid
picturecf theaction of theoriginal parabolic M obiustransformation M: each solid
circleiscarriedintoitself; each dashed circleis carried into another dashed circle;
and each shaded regionis carried into the next in thedirectionof the arrows.

If M(z) = ‘;;j;’; is normalized, then we know from (27) that it is parabolic if
andonlyif (a+d) = +2, inwhichcase¢ = (a—d)/2¢. Now let usdetermiinethe
correspondingtrandation T intermsof thecoefficients.Since (Go M) = (Mo G),
the so-called normal form of M isgiven by

11
w—§& z-—¢&

+T.

SinceM mapsz = co tow = (a/c), wededucethat

1

= — = *¢,

(ajc)—§
wherethe “+” is the arbitrarily chosen sign of (a+ d).

5 Computing the Multiplier*

We have seen how the multiplier m determinesthe character of aMobiustransfor-
mation, and we now show how we can determine the character of m directly from
the coefficientsof M (z) = %48,

Supposewehavea ready cal culated thefixed pointsé using(27), for example.
SinceM mapsz = oo tow = (a/c), we deducefrom the normal form (41) that
the multiplier associated with &4 is

_a=c (42)
a—cé_

For example, consider complexinversion, Z +— (1/z). Thefixed pointsarethe
solutions of z = (1/z), namely, &+ = 1. Thus the multiplier associated with
& =1lism= —-1=¢'", which happensto be the same as the multiplier (1/m)
associated with 6 = —1. Thus complex inversioniselliptic, and an infinitesimal
neighbourhoodof eitherfixed pointissimply rotated about that point throughangle
N. Try using acomputer to check this prediction.

If desired, we can obtain a completely explicit formulafor m by substituting
(27) into (42). If weonly want to know thecharacter of the M obiustransformation,
then we can proceed asfollows.

It turnsout—we will proveitin amoment—tha misrelated to thecoefficients
of the normalized Mobiustransformation by the equation,
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ﬁ+_}6=a+d. (43)

Note that the symmetry of thisequation impliesthat if misasolution, then sois
(1/m); thisisjust asit should be. Without bothering to solve (43) for m, we now
obtain [exercise] the following algebraic classification: The normalized Mobius
transformation M(z) = %% is
elliptic, iff (a7t d)isreal andja +d| < 2;
parabolic, iff (a1 d) = +2;
hyperbolic, iff (atd)isrea and|a T d| > 2;
loxodromic, iff (a d) iscomplex.

44

Hint: you can get a better fedl for this by sketchingthegraphof y = x + (1/x).
In order to derive (43) elegantly, let us use matrices. Rewriting (39),

[M] = [F][M][F]"! = det[ﬁ]:det{[F][F]—l}det[M]:det[M].

Thus, regardless of whether or not [F] is normalized, [M] is normalized if and
only if [M]is normalized. Since M (z) = mz, its normalized matrix is [exercisg]

(1] = [%)a 1 /S/ﬁ] Recalling (35), we deduce that

1 L . ) )
ﬂ+ﬁ—tr [[F][M][F] }—tr[[F] [F][M]}—tr[M]—a+d,

as was to be shown.

6 Eigenvalue Interpretation of the Multiplier*

If [M] is alinear transformation of C2, then we saw in (32) that its eigenvec-
tors are the homogeneous coordinates of the fixed points of the corresponding
Mobiustransformation M (z). We also claimed that if [M] is normalized then the
eigenvaues completely determine the character of M (z). We can now be maore
precise:

If a fixed point d M (z) isrepresented asan eigenvector (with eigen-
valueA) d the normalized matrix [M], then the multiplier m asso- (45)
ciated with the fixed point isgiven by m = 1/A2.

Before proving thisresult, weillustrateit with the exampleof complex inver-
sion, z — (1/z). We dready know that thefixed pointsare £ 1, that the associated
multipliersare bo givT by m= -1, and we easily find [exercise] that the nor-

, n

malized matrix is | If we choosethe homogeneouscoordinate vector of a

finite point z to be [ f ] , then the eigenvectors corresponding to the fixed points



Visualization and Classification* 171

z==1 are[ii].since

ORI !

we see that the eigenvaluesare given by A = =i, in agreement with (45).

Returning to the general case, comparison of (33) and (43) revedls that /m
and A satisfy the same quadratic, so weimmediately deduce most of (45): the two
reciprocal valuesof m are equal to the two reciprocal valuesof h2. However, this
does not tell uswhich valueof A2 yieldswhich valueof m, nor isthislineof attack
very illuminating. Here, then, isa more transparent approach.

We begin by recalling a standard result of linear algebra, which is valid for
n X N matrices:

If eisan eigenvector of [A] with eigenvalue A, then? = [Bleisan
eigenvector of [A] = [B][A][B]~}, and its eigenvalueisalso A.

Thisis verified easily:
[A]% = {[B][A][B]‘ll [Ble = [BI[Ale = [BlAe = A%.

Let usreturn to [29], in which the fixed point £, of M (with associated mul-
tiplier m+) was mapped to the fixed point 0 of M = (Fo M o F™1) by means of
1 Z=F(@) = i{% In terms of linear transformations of C2, the eigenvector

[E{] of [M] isbeing mapped by [ F] to the eigenvector [:(1)] of
[M]=[F][M][F]".

Thelinear algebraresult now tells usthat if A4 denotes the eigenvalue of [§+ ]

1
t 0 0
[M][l]=x+[l].

Thisistrueirrespective of whether or not any of the matricesin the aboveequation
are normalized.

Now suppose that [M] is normalized, as demanded in (45). Irrespective of
whether or not [ F] is normalized, we have already noted that [M] is normalized
if and only if [M]isnormalized. Since the normalized matrix of M(7Z) = m4+ 7Zis

given by [AFZ] =[ v Om+ l/ﬁn_lg ], we deduce that

S0 v )] =0

Thusm, = 1/A2, aswasto be shown.
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VIl Decompositioninto 2 or 4 Reflections*
1 Introduction

Recall from (4) that the formulafor inversionor "'reflection™ in acircle K hasthe
form _
Az+ B
Cz+D’
It followseasily that the composition of any two reflections(in circlesor lines) is
a Mobius transformation. Since the composition of two Mobius transformations
isanother Mobius transformation, it follows more generally that the composition
of an even number of reflectionsisa Mobius transformation.

Conversely,in this section we will use the Symmetry Principle [see p. 148] to
show that

Ik () =

Every non-loxodromic Mobius transformation can be expressed as
the composition of two reflections, and every loxodromic Mobius
transformation can be expressed as the composition of four reflec-
tions.

In the following, it would be helpful (but not essential) for you to have read the
final section of Chapter 1.

2 Elliptic Case

Consider [34], which depicts the same elliptic transformation shown in [29] and
[30]. Recall that the LHS showsaMobiustransformation M such that after sending
&+ and &- to 0 and oo by meansof F(z) = (z — §+)/(z — §-), the new transfor-
mation on the RHS is a pure rotation M(Z) = €'U7Z. In the illustrated example,
a = (m/3) and the dark “rectangle” abutting the line A is carried into the dark
"rectangle” abutting theline B.

As we discussed in Chapter 1 [see p. 371, this origin-centred rotation of ais
equivalent to successively reflecting in any two lines containing angle (e:/2) at 0,
such astheillustrated lines A and B. In symboals,

M=EREOERX.

Figure [34]
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In particular, % 3 maps the dark "' rectangle™ abutting theline A'to the light "' rect-
angle”, then Ry mapsthisto the dark "rectangl€e'" abutting theline B. Thefigure
triesto makethis clear by also showing the successiveimagesof both a point and
adiagona circular arc of theoriginal dark *'rectangle”.

Now think what this meanson the LHS of [34]. The Symmetry Principletells
us that if two points are symmetric with respect to the line A" then their images
under the Mobius transformation F~! are symmetric with respect to the circle
A = F~1(A) through the fixed points. [Recall that in [29] the family of such
circleswas called Cy.] Thusreflectionin A on the RHS becomesreflection (i.e.,
inversion) in A on the LHS. Of course the same goesfor the second reflection in
B. Thus we have shown thefollowing:

If M isan elliptic Mobius transformation, and the multiplier asso-
ciated with one of the fixed points & ism = &'®, then M =ZpoZ,
where A and B are any two circlesthroughthefixed points such that
theangle from Ato B at &4 is (x/2).

(46)

3 Hyperbolic Case

Figure[35] (cf. {311) illustratesasimilar result in thecaseof ahyperbolicMobius
transformation. Here the multiplier associated with & is a real number m = p,
and the transformation on the RHS is a pureexpansion, M(7) = pZ. As vyjth a
rotation, an expansion can a so be achieved using two reflections: if A and B are
any two origin-centred circles such that

rp _ (radiusof §) =

— = - @47
ra  (radiusof A)

then reflectionin A followed by rejection in B yieldsan origin-centred expansion
by p. In symbals, this result—which isreally the same as (8) —says that

M = IzoIy.
Asin[34], theRHS of [35] illldstratesthewcveeffectof thesetworeflections
on adark rectangleabutting A'. Just as before, the Symmetry Principle applied to

i N \
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F~!tellsusthat the original Mobius transformation on the LHS can be expressed
as
M=71goT,.

Recall from [29] that A and B belong to the family C, of circles orthogonal
to the family C; of circles through the fixed points. At the time, we pointed out
an equivalent property of C,, namely, that the fixed points £+ are symmetric with
respect to each member of Cy; this enables usto explain how itisthat (Zg o Z4)
leavesé, and §_ fixed. Inthe case of [34], thiswasobvious because each reflection
separately | eft those pointsfixed;in the present case, however,Z4 swapsthepoints,
then Zp swapsthem back again, the net effect being to leave them fixed.

Inthecaseof anelliptic transformation, (46) describeshow to pick out apair of
C circles corresponding to any givenanglea. In the present case of a hyperbolic
transformation, how are we to pick out a pair of Cz circles corresponding to any
given valueof p? The answer depends on athird characterizing property of theC,
circles: they are the circles of Apollonius with limit points £+.

This terminology reflects Apollonius' remarkable discovery (c. 250 Bc) that if
apoint z movesin such away that theratio of the distances of z from two fixed
points&, remainsconstant, then z moveson acircle. Figure [35] makesthiseasy to
understand. Asz travelsround A,7Z = F(z) travelsround the origin-centred circle
Aof radiusr4. But thisconstant 4 is none other than the ratio of the distances of
z from two fixed points &4

- ~ |z — &4
ra=17Z|=F(2)| = ——

lz—&-|

Notethat thisalso explainsthe™ limit point™ terminology: astheratio r 4 tends
to 0, the corresponding Apollonian circle A shrinks down towards the limit point
&, asra tendstoinfinity, A shrinksdown towardstheother limit point&_. Another
bonus of our discussion is aresult that is frequently not mentioned in geometry
texts: the limit points defining a family of Apollonian circles are symmetric with
respect to each of thesecircles.

Since the quantitiesr4 and rg occurring in (47) are now expressible purely in
terms of the geometry of the LHS of [35], we have solved the problem of picking
an appropriate pair of C; circles:

If M isa hyperbolic Mobius transformation, and the multiplier as-
sociated with one of the fixed points & ism = p,then M = ZpoZy,,
where A and B are any two circles of Apollonius with limit points
&y suchthat (rg/ra) = /p.

4 Parabolic Case

Figure [36] isamodified copy of [33], and it illustrates how the sameidea applies
to aparabolic transformation. Recall that after we have sent the solitary fixed point
& to oo by means of the Mobius transformation z 7=G(2) =1/(z - &), the
new transformation on the RHSis atranslation, M(Z) =7z T T.
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Figure [36]
Aswed|scussed on p. 3, this trandation can be expressed asM= Ry oRy,

where 4 and B are any two Rarallel lines such that the perpendicular connectl ng
complex number from A to B is (T /2). Applying the Symmetry Principle to the
Mobius transformation G !, we deduce that (on the LHS)

A parabolic Mobius transformation M with fixed point £ can be
expressed as M = Zp o Z4, where A and B are circles that touch
eachother at &.

5 Summary

Lest thedetails obscure the simplicity of what we have discovered, we summarize
our results asfollows:

A non-loxodromicMobiustransformation M can alwaysbe decom-

posed into two regjections in circles A and B that are orthogonal to
theinvariant circlesaf M. Furthermore, M iséelliptic, parabolic, or (48)
hyperbolicaccording as A and B intersect, touch, or do not inter-

sect.

Recalling (40), we a so deduce that a loxodromic Mobius transformation M
can alwaysbe decomposed into four rejections in circles:

={IpoZyto{Ipolat={Ipola}e{lp o1n},

where A and B both pass through the fixed points, and where A' and B' are both
orthogonal to A and B.

We should stress that these results concern the least number of reflectionsinto
which a Mobius transformation can be decomposed. Thusif a particular Mobius
transformation is expressible as the composition of four reflections, this does not
necessarily imply that it is loxodromic--one might be able to reduce the number
of reflectionsfromfour to two. For example, if A and B arelines containing angle
(/12) at 0,and A" and B' arelines containing angle (zr/6) at 0, then the Mobius
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transformation (Mp: o R4 o Rp o R4) representsarotation of (7r/2), which can
be reduced to two reflectionsin lines containing angle (r /4). Asamore extreme
exampleof thisideaof redundant reflections, check for yoursef that (3) represents
adecompositionof ageneral Mobiustransformationinto ten reflections!

IX Automorphisms of the Unit Disc*
1 Counting Degrees of Freedom

An automorphismof aregion R of the complex planeis a one-to-one, conformal
mapping of R toitself. If R isadisc(or ahaf-plane) then clearly wecan mapit to
itself with aMobiustransformation M, and sinceM isone-to-oneand conformal,
itis (by definition) an automorphism. In this subsection we will find all possible
M obiusautomorphismsof the unit disc. These M obiustransformationsare impor-
tant for at least two reasons: (i) in Chapter 6 we will see that they play a centra
rolein non-Euclideangeometry; (ii) in Chapter 7 wewill seethat they aretheonly
automorphismsof the disc!

In the following, let C denote the unit circle, let D denote the unit disc (in-
cluding C), andlet M (z) denoteaMobiustransformationaf D toitself. Beforewe
try tofind aformulafor the most general M, let us see"how many" such Mobius
transformationsthere are. In other words, how many real numbers (parameters)
arerequired to specify aparticular M?

To illustrate how such counting may be done, let us first show that the set of
all Mobiustransformationsformsa''sx parameter family" . Once we have chosen
threepointsin C, thereis a unique M obiustransformation that mapsthem to three
arbitrary image points, and each of these 3 image pointsw = u +iv requires 2
real numbers(u and v) for its specification. If wethink of thethreeoriginal points
as having fixed locations, and the threeimage points as freely movable, then the
total number of parameters needed to specify a particular Mobius transformation
isthus3 x 2 = 6. Another suggestiveway of describing thisfact isto say that the
most general Mobiustransformation has six degrees d freedom.

Returning to the origina problem, it is clear that we will lose some of these
six degreesof freedom when we impose the condition that M (z) map D to itself.
Infact welose hdf of them:

Mobiusautomorphismsd D have threedegrees d freedom. (49)

Figure [37a] gives one way of seeing this. Hereq, r, s may be viewed as having
fixed locationson C, whileg, 7, Fare thought of asfreely movable. Provided (as
illustrated) that g, 7, 5 induce the same orientation of C asq, r, s, we know from
(30) that the unique M obiusautomorphismof D mappingq, r,stog, 7, s, isgiven
by Z+— 7= M(2), where

[Zi 6,7,3] = [Z,q,r,S]-

Sincethreereal numbersare neededto specify g, 7, s—their angles, for example—
this establishes (49).
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[b]

Figure[37]

2 Finding the Formulaviathe Symmetry Principle

Accordingto (49), the specification of aparticular M requires three bits of infor-
mation. However, we are not obliged to givethisinformation in theform of three
pointson C—ay datathat are equivalent to three rea numberswill do equally
well. A particularly useful alternative of thiskind is shown in [37b]. We specify
which point a inside D is to be mapped to the origin, and we a so specify which
point p on C isto betheimage of the point 1 (or of some other definite point on
C). Choosinga uses up two degrees of freedom; choosing p uses up the third and
last degree of freedom.

Beforepursuingthis, wenoteanother consequencedt (49): wecannot generally
find a Maobius automorphism that simultaneously sends the interior point a to 0
and sends another interior point to some other interior point. These requirements
amount to four conditionson M, while(49) tellsusthat only three such conditions
can be accommodated. It is very much as if we were seeking to draw a circle
throughfour arbitrary points—it can't be done! However, supposein thisanaogy
that we are lucky, and that the four points just happen to be concyclic, then the
circlethat passesthrough themis unique. By the sametoken,

If two Mobius automorphisms M and N map two interior pointsto

the same image points, then M = N. (50

Returningto [37b], note that since C is mapped toitself by M, the Symmetry
Principletellsusthat if apair of points are symmetric with respect to C, then so
aretheir images. Now we apply thisto the symmetric pair of points, a and (1/a)
shownin [37b]. Sincea is mapped to 0, (1/a) must be mapped to thereflectionof
0in C, namely, co. Thus M must have theform

M(z)=k(_z—a )
az—

wherek isaconstant. Finally, werequirethat p = M (l) beapoint on C, so

11—al
la — 1]

1=|p|=Ik| =kl = k=¢.

Thus the choice of p is equivdent to the choice of ¢. Using the angle ¢ and
the point a to label the transformation, we have discovered that the most general
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Mobius automorphismaf D is

M3 @) = ei¢< 1-a ) (51)

az—1

Note that Mg (z) = —€'?7 = ¢+, Smply rotates D about its centre 0

throughangle (7 + ¢). Thegeneral Mébius aJtomorphismM,‘f may beinterpreted
as M? followed by arotation of ¢, and fromthis point of view thereally interesting
part of the transformation ist,), which we will now abbreviateto M,. Thisisthe
sameM,, whose propertiesyou wereaskedtoinvestigatea gebraicallyin Chapter 2,
Ex. 3.

3 Interpretingthe Simplest Formula Geometrically*
To find the geometric meaning of

Z— a
az—1’

M,(z) = (52)

we could simply apply our wholearsenal of classification techniques. We ask that
you try thisyoursdf in Ex. 26.

Herewe will instead attempt to make senseof M, "'with our bare hands", asit
were. Thisisprobably moreilluminating, andit certainly providesbetter geometric
sport! Begin by noting that M,, has the property that it swapsa and 0: not only
isM,(a) = 0, but also M,(0) = a. According to (50), thisis the only Mobius
automorphism with this property, so if we can geometrically construct a Mobius
automorphismthat swapsa and O, then it must be M,,.

As was explained earlierin [6] on page 129, thereflectionZ; in any circle J
orthogonal to C will map D toitself, thetworegionsintowhich D isdivided by J
being swapped. See [38]. At this point the obviousthing to doisto find thecircle
J such that Z; swapsa and 0. Clearly the centreq of J must lie on theline L
througha and O, but where?

Figure[38]
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We can answer this question with the same symmetry argument that we used
earlier. Since a and (1/a) are symmetric with respect to C, their images under
Z; are symmetric with respect to Z;(C) = C. Because we want Zj(a) = 0, we
deduce that Z;(1/a) = oo. But the point that is mapped to infinity by Z; isthe
centreof J, soq = (1/a).

Of course Z; is an anticonformal mapping; to obtain a conformal Mobius
automorphism we must compose it with another reflection. However, we have
already successfully swapped a and 0, so this second reflection must |eave these
pointsfixed. The obvious (and only) choiceisthusreflectionin L. Here, then, is
our geometric interpretation of M,:

M, =R oTy.

Incidentally, observe [exerciseg] that the order of these reflections doesn't matter:
wemay alsowrite M, =7y o Ry.

Clearly thefixed points £+ arethe intersection points of J and L, and so they
are symmetric with respect to C. Since the reflectionsoccur in orthogonal circles
through these points, M, is€lliptic, and the multipliersassociated with £+ are both
givenby m = ¢/ = —1. Thustheeffect of M, onaninfinitesimal neighbourhood
d theinterior fixed point &4 isarotation of n. Thefact that M, swapsa and 0 can
now berecognized asaspecial caseof thefactthat M, isi nvol utory: (MgzoM,) = E,
andevery pair of pointsz, M, (z) isswapped by M,. Findly, notethat we can also
express M, as (Zy o Zy), where J and L' are any two circles through &4 that
areorthogonal to C. All thisisillustrated in [39], which also shows some of the
invariant circles, together with the effect of M, on a"' square”.

We will return to the geometry of the general Mobius automorphisrns M2 in
Chapter 6, but we remark here that they can only be elliptic, parabolic, or hyper-
balic. Thisisbecause (by construction) they leave Cinvariant, whilealoxodrornic

Figure [39]
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Mobius transformation has no invariant circles. To be more precise, in Chapter 6
we will use the aboveinterpretation of M, to show geometrically that

If we define ® = 2cos™! |a|, then MZ’ is

(i) elipticif |¢] < @, (53)

(i) parabolicif |¢p| =@
(iiiy hyperbolict |¢| > .

For an algebraic proof, see Ex. 27.

4 Introduction to Riemann's Mapping Theorem

Riemann's doctoral thesis of 1851 contained many profound new results, one of
the most famous being the following, which is now called Riemann's Mapping
Theorem:

Any simply connected region R (other than the entire plane) may be

mapped one-to-one and conformally to any other such region S. (54)

In Chapter 12 we shall discussthisin detail, but for thetime being we merely wish
to point out some connections between Riemann’s result and what we have learnt
concerning automorphisms of thedisc.

First note that to establish (54) in generdl, it is sufficient to establish it in the
special casethat Sistheunitdisc D. For if Fg is aone-to-oneconformal mapping
from Rto D, and Fs islikewise a one-to-one conformal mapping of Sto D, then
FS‘1 o Fpg is aone-to-one conformal mapping of Rto S, asrequired.

If M isan arbitrary automorphism of D, then M o Fr isclearly another one-
to-one conformal mapping from R to D. In fact every such mappl ng must be of
thisform. For if Fg were any other such mapping, then Fgo FR would be some
automorphism M of D, inwhich case Fgr = M o Fg.

Thus the number of one-to-one conformal mappings from R to Sisequal to
thenumberfrom Rto D, whichinturnisequal to the number of automorphisms of
D. Aswehaveadready said, in Chapter 7 we will show that these automorphisms
are the Mébius transformations M2, which form a3-parameter family. Thus (54)
in fact implies that there exists a 3-parameter family of one-to-one conformal
mappingsfrom Rto S.
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X Exercises

1 Ineach of thefiguresbelow, show that p and p are symmetric with respect to
thecircle. Thedashed linesare not strictly part of the constructions, rather they
areintended to be helpful or suggestive.

2 In 1864 aFrench officer named Peaucellier caused a sensation by discoveringa
simple mechanism (Peaucellier's linkage) for transforming linear motion (say
o apiston) into circular motion (say of awhedl). The figure below shows six
rods hinged at the white dots, and anchored at 0. Two of the rods have length
1, and the other four have length r. With the assistance of the dashed circle,
show that » = Zx(p), where K is the circle of radius +/I2 — r2 centred at
0. Construct this mechanism— perhapsusing stripsof fairly siff cardboard for
rods, and drawing pinsfor hinges—and useit to verify propertiesof inversion.
In particular, try moving p along aline.

3 Let S be a sphere, and let p be a point not on S. Explain why Zs(p) may
be constructed as the second intersection point of any three spheres that pass
through p andareorthogonal to S. Explainthepreservationof three-dimensiona
symmetry in termsof this construction.

4 Deduce(22), p. 148directly from (17), p. 143.

5 Consider the following two-stage mapping: first stereographically project C
onto the Riemann sphere X in the usua way; now stereographically project
back to C, butfrom the south pole instead of the north pole. The net effect of
thisis some complex mapping z — f (z) of C toitself. Whatisf ?
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6 Both figuresbelow show vertical cross sections of the Riemann sphere.

() Infigure[a], show that thetriangles pON and NOgq aresimilar. Deduce (22).

(ii) Figure [b] isa modified copy of [21b]. Show that the triangles zON and
NO?Z are similar. Deduce (17).

l N N (b

Y

7 (i) Use a computer to draw the images in C of severa origin-centred circles
under the exponential mapping, z — €Z. Explain the obvious symmetry of
these image curves with respect to the real axis.

(ii) Now use the computer to draw these same image curves on the Riemann
sphere, instead of in C. Note the surprising new symmetry!

(iil) Use (18) to explain this extra symmetry.

8 Thisexercise continuesthe discussion of (2), p. 123. If apoint p in spaceemits
aflash of light, we claimed that each of the light rays could be represented by
acomplex number. Hereis one, indirect method of establishing this correspon-
dence. Onceagain, we choose unitsof space and time so that the speed of light is
1. After one unit of time, the expanding sphere of light emitted by p—made up
of particlesof light calledphotons— formsaunit sphere. Thuseach photon may
beidentified with a point on the Riemann sphere, and hence, via stereographic
projection, with a complex number. Indeed, if the photon has spherical polar
coordinates (¢, 6), then (21) tells us that the corresponding complex number is
z = cot(¢/2) €'B.

Sir Roger Penrose (see Penrose and Rindler [1984, p. 13]) discovered
the following remarkable method of passing from alight ray to the associated
complex number directly, without theassi stance of the Riemann sphere. Imagine
that p isoneunit vertically abovetheorigin of the (horizontal) complex plane. At
theinstant that p emitsitsflash, let C begintotravel straight up (inthedirection
¢ = 0) at the speed of light (= 1) towards p. Decompose the velocity of the
photon F emitted by p in the direction (@, 0) into components perpendicular
and parallel to C. Hence find the time at which F hits C. Deducethat F hitsC
at the point z = cot(¢/2) €'®. Amazingly, we see that Penrose's construction is
equivalent to stereographic projection!
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9 In order to analyse astronomical data, Ptolemy required accurate trigonometric
tables, which he constructed using the addition formulae for sine and cosine.
Thefiguresbelow explain how hediscovered these key addition formulae. Both
the circles have unit radius.

(i) Infigure[a], show that A = 2sin0 and B = 2cos0.

(i) Infigure[b], apply Ptolemy’s Theorem to theillustrated quadrilateral, and
deduce that sin(@ T ¢) = sin8 cos¢ T sin¢ cos8.

"""""""" [a]

[b]

10 Theaim of this question isto understand the following result:

Any two non-intersecting, non-concentric circles can be mapped to
concentric circles by means of a suitable Mobius transformation.

(i) If A and B arethetwo circlesin question, show that there exists a pair of
points &+ that are symmetric with respect to both A and B.

(i) Deducethatif F(z) = (z—&+)/(z—&-),then F(A) and F(B) areconcentric
circles, aswasdesired.

11 Thisexerciseyieldsamoreintuitive proof of theresult of the previousexercise.
Using different colours for each, draw two non-intersecting, non-concentric
circles, A and B, then draw theline L through their centres. Label as p and q
theintersection pointsof B with L.

(i) Using corresponding colours, draw afresh picture showing the images A
B,L,q of A, B, L, q under inversion in any circle centred at p.To get you
started, notethat L = L.

(i) Now add to your figure by drawing thecircle K, centred at 7, which cuts A
at right angles, and let g and h be theintersection pointsof K and L.

(iii)) Now draw a new picture showing theimages K', L', h' of K, L, h under
inversion in any circle centred at g.

(iv) By appealing to theanticonformal natureof inversion, deducethat A", B are
concentric circles centred at h'.

Since the composition of two inversionsis a Mobius transformation, you have

proved the result of the previousexercise.
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12 Figure (i) below shows two non-intersecting, non-concentriccircles A and B,
together with achain of circlesCy, Cy, . .. that touch one another successively,
and that all touch A and B. Asyou would expect, thechain failsto " close up™:
Cs overlaps Cy instead of touchingit. Figure (i) showsthat thisfailureto close
is not inevitable. Given a different pair A, B, it is possible to obtain a closed
chain where C,, touches C1. Heren = 5, but by considering the case where A,
B are concentric, you can easily see that any valuedf n is possible, given the
right A and B.

- ®

Steiner discovered, very surprisingly, that if the chain closesfor one choice of
C, thenit closesfor every choiceof Cy, and theresulting chain awayscontains
the same number of touching circles. Explain thisusing the result of Ex. 10.

13 (i) Let P beasphereresting on thefla surface Q of atable. Let Sy, Sz, ... be
astring of spheres touching one another successively and al the samesize
as P. If each S-spheretouches both P and Q, show that S¢ touches S1, so
that we have a closed "' necklace' of six spheresaround P.

(ii) Let A, B, C bethreespheres(not necessarily of equal size) al touchingone
ancther. Asin the previouspart, let S;, &,... beastring of spheres (now
of unequal size) touching one another successively, and al touching A, B,
C. Astonishingly (cf. previousexercise), S¢ will dwaystouch Sy, forming
aclosed "necklace' of six spheresinterlocked with A, B, C. Prove this by
first applying an inversion centred at the point of contact of A and B, then
appealing to part (i).

Thechain of six spheresin part (ii) is caled Soddy's Hexlet, after the amateur

mathematician Frederick Soddy who discovered it (without inverson!). For

further information on Soddy's Hexlet, see Ogilvy [1969]. Soddy's full timejob

was chemistry —in 1921 he won the Nobel Prizefor his discovery of isotopes!

14 Thefigure below showsfour collinear pointsa, b, ¢, d, together with the (nec-
essarily coplanar) light rays from those points to an observer. Imagine that the
collinear pointsliein thecomplex plane, and that the observer isabovetheplane
looking down. Show that the cross-ratio[a, b, ¢, d] can be expressed purely in
termsof thedirectionsof theselight rays; more precisely, show that
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8
a b c d
snasiny
a,b,C,d -
[ ] sinB siné

Suppose the observer now does aper spective drawing on aglass" canvas plane”
C (arbitrarily positioned betweenhimself and C). That is, for each point pinC he
drawsapoint g wherethelight ray from ptohiseyehits C. Usetheaboveresult
to show that although angles and distances are both distorted in his drawing,
crossratiosof collinear pointsare preserved: [a',b', c',d'] = [a,b,c,4d].

15 Show that in both of the figuresbelow, Arg [z, q,r,s] =6 + ¢. Hence deduce
(31), p. 155.

16 Asinfigure[28], think of thecross-ratio [z, g, r, S] asaMobius transformation.
(i) Explain geometrically why permutingq,r,s,in[z,q, r, sl yieldssix differ-
ent Mobius transformations.

(ii) If I(z) isthe Mobius transformation that leaves 1 fixed and that swaps 0
with oo, explain geometrically why | o [z,g,7, s1 = [z,5,7. q].

(iii) If J(z) isthe Mobius transformation that sends 0, 1, oo to 1, co, 0, respec-
tively, explain geometrically why Jo [ 2,9, 1,51 = [z, g,7].

(iv) Employing the abbreviation x = [z, q,, s] ,explain why the six Mobius
transformationsin part (i) can be expressed as

X, Ioyx, Joyx, IoJoy, Joloyx, IoJolog.
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(v) Show that | (z2) = (1/z) and J(2) = 1/(1 — 2).
(vi) Deducethat the six possible values of the cross-ratioare

1 - x_ x=l
Lo X 1= =X x-1 x -

17 Show geometrically that if a and clieonacircleK, and band d are symmetric
withrespectto K, thenthe point[a, b, c, d] lieson theunit circle. [Hints. Draw
thetwo circlesthrough a, b, d and through b, ¢, d. Now think of [z, b, ¢, d] as
aMobiustransformation.]

18 The curvature k of acircleis defined to be the reciproca of its radius. Let
M(z) = az+h e normalized. Use (3) to show geometrically that M mapsthe
19 Let M(2) = %+ be normalized.

cz+d
d
2¢% Im (—)' .
c
+d

real lineto acircleof curvature

() Using (3), draw diagramsto illustratethe successiveeffects of these trans-
formationson afamily of concentriccircles. Notethat theimagecirclesare
generally not concentric.

K=

(ii) Deducethat theimagecirclesareconcentricif and only if theoriginal family
of circlesare centred at g = —(d/c). Write down the centre of theimage
circlesinthiscase. [Notethat thisisnot theimageof thecentreof theoriginal
circles: M(g) isthe point at infinity!]

(iii) Hence show geometrically that the circle Iy with equation [cz +d| = 1
ismapped by M to acircledf equa size. Furthermore, show that each arc
of Iy ismappedto animagearc of equal size. For thisreason, Iy iscalled
theisometriccircleof M.

For applicationsof theisometric circle, see Ford [1929] and Katok [1992].

20 (i) Show that every Mobiustransformation of theform

pz+q

qz+7p

M@z) = where |p| > |q|

can berewrittenin theform

M) =¢e' (a::—al) ,  Wwhere|a| < L.

[Noticethat theconverseisal sotrue. Inother words, thetwosetsof functions
arethesame]
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(if) Usethe matrix representation of the first equation to show that this set of
Moabius transformationsforms a group under the operation of composition.

(iii) Use the disc-automorphism interpretation of these transformationsto give
ageometric explanation of thefact that they form a group.

21 (i) Usethe matrix representation to show algebraically that the set of Mobius
transformations

az+b

= i 241512 =
R(2) T ¥a with  |a| |b| 1

forms a group under the operation of composition.

(i) Using theinterpretation of these functions given on page 162, explain part
(i) geometrically.

22 Let H betherectangular hyperbolawith Cartesian equation x2 — y2 = 1. Show
that z H w = 72 maps H to the line Re(w) = 1. What is the image of this
line under complex inversion, w — (1/w)? Referring back to figure [9], p. 62,
deduce that complex inversion maps H to alemniscate!

[Hint: Think of complex inversionasz — +/(1/z2).]

23 Fromthesimplefact that z — (1/z) isinvolutory,deducethat itiselliptic, with

multiplier —1.

24 (i) Usethe Symmetry Principleto show that the most general Mobiustransfor-
mation of the upper half-planeto the unit disc hastheform

M@) = & (ﬂ) ,
Z—a

(ii) Themost general M obiustransformation backfrom theunit disc tothe upper
half-planewill therefore betheinverseof M (z). Let's call thisinverse N(z).
Usethe matrix form of M to show that

wherelma > 0.

_ az—ae?
N@ =M@ ="
—e€

(iii) Explain why the Symmetry Principleimpliesthat N(1/z) = N(2).

(iv) Show by direct calculation that the formulafor N in part (ii) does indeed
satisfy the equation in part (iii).
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25 Let M (z) bethe general Mobius automorphismaf the upper half-plane.

(i) Observingthat M maps the real axisinto itself, use (29) to show that the
coefficientsof M arereal.

(i) By considering Im[M (i)], deduce that the only restriction on these red
coefficientsis that they have positivedeterminant: (ad — bc) > 0.

(iii) Explain (bothagebraically and geometrically) why theseMobiustransfor-
mationsform a group under composition.

(iv) How many degrees of freedom does M have? Why does this make sense?
26 Reconsider (52), p. 178.

() Use(44), p. 170to show that M, isdlliptic.

(ii) Use(43), p. 170 to show that both multipliersaregivenby m = —1.

(iii) Calculate the matrix product [M,]1[M,], and thereby verify that M, is
involutory.

(iv) Use(27), p. 152 to calculate thefixed pointsof M,,.
(v) Show that theresult of the previouspart isin accord with figure [38].
27 Use(44), p. 170 to verify (53), p. 180.
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Differentiation: The Amplitwist
Concept

I Introduction

Having studied functionsof complex numbers, we now turnto thecal culusof such
functions.

To know the graph of an ordinary real function is to know the function com-
pletely, and so to understand curvesisto understandreal functions. Thekey insight
of differential calculusisthat if wetakeacommonor gardencurve, placeit undera
microscopeand examineit using lensesof greater and greater magnifying power,
each little piece looks like a straight line. When produced, these infinitesimal
piecesof straightline are the tangentsto the curve, and their directions describe
thelocal behaviour of thecurve. Thinking of thecurveasthegraph of f (x), these
directionsare in turn described by the derivative, f '(x).

Despitethefact that we cannot draw the graph of a complex function, in this
chapter we shall see how it is still possible to describe the local behaviour of a
complex mapping by meansof acomplexanaloguedf the ordinary derivative—the
"arnplitwist".

Il A Puzzling Phenomenon

Throughout Chapter 2 we witnessed a very strange phenomenon. Whenever we
generalized afamiliar real function to acorresponding complex function, the map-
ping sent infinitesmal squaresto infinitesmal squares. At present thisis a purely
empirical observation based on using a computer to draw pictures of the map-
pings. In this chapter we begin to explore the theoretical underpinnings of the
phenomenon.

Let's go back and take a closer look at a simple mapping likez - w = z2.
As we already know, this maps the origin-centred circle |z] = r into the circle
|lw] = r2, and it mapstheray arg(z) = 6 into theray arg(w) = 28. An obvious
consequencedf thisisthat theright angle of intersection between such circlesand
raysin the z-plane is preserved by the mapping, which isto say that their images
inthe w-planealsomeet at right angles. Asillustratedin [1], agrid of infinitesimal
squaresformed from such circles and rays must therefore be mapped to an image
grid composed of infinitesimal rectangles. However, this does not explain why
these image rectangles must again be squares.
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Figure[1]

Aswe will explain shortly, the fact that infinitesimal squares are preservedis
just one consequence of thefact that z — w = 22 isconformal everywhereexcept
at thetwocritical pointsz = 0 and z = oo, whereanglesaredoubled. In particular,
any pair of orthogonal curvesis mapped to another pair of orthogonal curves. In
order to giveanother example of this, wefirst dismember our mappingintoitsreal
and imaginary parts. Writing z = x iy and w = u *iv, we obtain

utiv=w=z>= (x+iy)2=(x2~—y2)+i2xy.
Thusthe new coordinates are givenin terms of the old ones by

= x2-42

v o= 2xy. M

We now forget (temporarily!) that we arein C, and think of (1) assimply repre-
senting a mapping of R? to R2. If we let our point (x, y) slide along any of the
rectangular hyperbolas with equation 2xy = const., then we see from (1) that its
image (u, v) will moveon ahorizontal line v = const. Likewise, the preimages of
thevertical linesu = const. will be another family of rectangular hyperbolaswith
equations (x2 — y%) = const. Since their images are orthogonal, the claimed con-
formality of z — z implies that these two kinds of hyperbolas should themselves
be orthogonal.

Figure [2] makesit clear that they are indeed orthogonal. We may verify this
mathematically by recallingthat two curvesareorthogonal at apoint of intersection
if the product of their slopes at that point isequal to —1. Implicitly differentiating
the equations of the hyperbolas, we find that

x—yr=const. = x—yy =0 = y =+(@x/y),

2xy=const. = y+xy =0 = y =—(y/x).

Thusthe product of thesl opesof thetwokindsof hyperbolaat apoint of intersection
is—1, aswasto be shown.
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Figure[2]

Clearly we could carry on in thisway, anaysing the effect of the mapping on
one pair of curves after another, but what we really want is a general argument
showingthat if two curves meet at somearbitrary angle ¢, thentheir imagesunder
(1) will also meet a angle ¢. To obtain such an argument, we shall continue to
pretendthat wearelivingin thelessrich structureof R? (rather than our own home
C) and investigatethelocal propertiesof agenera mapping of the planeto itself.

Il Local Description of Mappings in the Plane
1 Introduction

Referringto [3], it's clear that to find out whether any given mappingisconformal
or not will requireonly alocal investigationof what is happening very near to the
intersection point q. Tomakethisclearer still, recognizethat if wewishto measure
¢, orindeed even defineit, we need to draw thetangents[ dotted] to both curvesand
then measure the angle between them. We could draw avery good approximation
to one of these tangents simply by joining q to any nearby point p on the curve.
Of coursethe nearer p isto q, the better will the chord qp approximatethe actual
tangent. Since we are only concerned here with directions and angles (rather than
positions) wemay dispensewith thetangent itself, and instead usetheinfinitesimal
vector gp that pointsalongit. Likewise, after we have performed the mapping, we

Figure[3]
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are not interested in the positions of theimage @i) nts Q and P themselves; rather,

we want the infinitesimal connecting vector Q P that describes the direction of
—

the new tangent at Q. We will call thisinfinitesimal vector QP the image of the

vector gp. However natural this may seem, note that this really is a new sense of

theword "image”.

L et usnow summarize our strategy. Givenformulae such as(1), which describe
the mapping of the pointsto their image points, we wish to discover the induced
mapping of infinitesimal vectors emanating from a point q to their image vectors
emanating from the image point Q. In principle, we could then apply the latter
mappingto gp and to gs, yielding theirimages QP and QS, and hencetheangle
of intersection of theimage curvesthrough Q.

2 The Jacobian Matrix

Consider [4]. Asdiscussed, thedirection of theillustrated curvethrough g isbeing
described with an infinitesimal vector (j’y‘ ) - theinfinitesimal image vector (jﬁ)
givesthedirection of theimage curvethrough Q. Wecan determine thecomponent

du .
du of (dv) as follows:

du = total change in u due to moving along (iz)

= (changeinu produced by rr_1|9vi ng dx in the x-direction)

(changein u produced by moving dy in the y-direction)

(rate of change of u Wi-'lt-h X) . (change dx inx)
(rate of change of u withy) . (changedy iny)
= (Oxu)dx + (dyu)dy,

where 3, = d/9x etc. Likewise, we find that the vertical component is given by
theformula

dv = (3,v)dx T (3,yv)dy.

Sincetheseexpressionsarelinearindx and dy, it follows (assuming that not all the
partial derivativesvanish) that the infinitesimal vectorsare carried to their images
by alinear transformation.Thegeneral significanceof thiswill be discussed | ater,
but for the moment it means that the local effect of our mapping is completely
described by a matrix J called the Jacobian. Thus,

()~ (@)= (&),
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YA ‘dx ‘ v A
dy) ____.
44 dy . general
e X : :
v ]RZ ,\N\» §R2
- ° - >
0 X O U
Figure [4]
wherethe Jacobian matrix is
_ [0xu Oyu
I= (va ayv> ‘ @

We are now in a position to return to the specific mapping z — z°, or more

precisely to the mapping of R? that we extracted fromit. If weevaluate (2) for the

mapping (1), wefind that
J= 2x 2y
T \2y  2x)°

The geometric effect of this matrix is perhaps more clearly seen if we switch to
polar coordinates. At the point z = r €8--or rather (r cos, r sinf), sincefor the
moment we are till in R>—we have

cosf —sind
J=2r (sin0 cos 0) ’

Theeffect of the 2r is merely to expand all the vectors by thisfactor. Thisclearly
does not affect the angle between any two of them. The remaining matrix is prob-
ably familiar to you as producing arotation of 8, and henceit too does not alter the
angle between vectors. Since both stages of the transformation preserve angles,
we havein fact verified the previousclaim: the net transformation is conformal.

3 The Amplitwist Concept

We have seen that thelocal effect of z — z2 oninfinitesimal vectorsis to expand
them and to rotate them. Transformations of this type (i.e., whose local effect is
produced in these two steps) will play adominating rolefrom now on, and it will
be very much to our advantage to have vivid new words specifically to describe
them.

If all the infinitesimal vectors (gp etc.) emanating from q merely undergo an
equal enlargement to produce their images at Q, then we shall say that the local
effect of the mapping isto amplify the vectors, and that the magnification factor
involved is the amplification of the mapping at the point g. If, on the other hand,
they all undergo an equal rotation, then we shall say that the local effect of the
mappingisto twistthevectors, and that the angleof rotationinvolvedisthetwist of
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the mapping at the point g. More generally, thekind of mapping that will concern
us will locally both amplify and twist infinitesimal vectors—we say that such
a transformation is locally an amplitwist. Thus "an amplitwist" is synonymous
with "a (direct) smilarity", except that the former refersto the transformation of
infinitesimal vectors, whereas''a similarity' has no such connotation.

We can illustrate the new terminology with reference to the concrete case we
have analysed, namely, (1). See[5]. The mappingZ ~ z2 islocally an amplitwist
with amplification2r and twist 6. Quite generally, thisfigure makesit clear that if
amapping is locally an amplitwist then it is automatically conformal —the angle
¢ between vectorsis preserved.

amphfy 2re

— ’\/\N~> o

Figure [5]

Returning to [1] and [2], we now understand why infinitesimal squares were
mapped toinfinitesimal squares. Indeed, aninfinitesimal region of arbitrary shape
located at Z will be " amplitwisted" (amplified and twisted) to a similar shape at
Z2. Note that here we are extending our terminology still further: henceforth we
will freely employ the verb "'to amplitwist™, meaning to amplify and to twist an
infinitesimal geometric object.

All weredly have at the moment is one simple mapping that turned out to be
locally an amplitwist. Inorder to appreciate how truly fundamental thisamplitwist
concept is, we must return to C and begin from scratch to develop the idea of
complex differentiation.

IV The Complex Derivative as Amplitwist
1 The Real Derivative Re-examined

Intheordinary real calculuswe haveapotent meansof visualizingthederivative f'
of afunction f fromR toR, namely, asthesdopeof thegraphy = f(x).See[6a].
Unfortunately, due to our lack of four-dimensional imagination, we can't draw
the graph of a complex function, and hence we cannot generalize this particular
conception of the derivativein any obvious way.

As afirst step towards a successful generalization, we simply split the axes
apart, so that [6a] becomes [6b]. Note that we have drawn both copiesof R ina
horizontal position, in anticipation of their being viewed as merely the real axes
of two complex planes.
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(b]

[a]
. dx
—O Ommppo—— R
@ £ d f
. df = f'dx
& K o
Figure [6]

Next, continuing in the spirit of the previous section, we observe that | f/(x)|
describes how much the initial infinitesimal vector at x must be expanded to obtain
its image at f (x). More algebraically, f’(x) is that real number by which we must
multiply the initial vector to obtain its image:

@) = = —>. 3

If f/(x) > O (as in [6b]) then the image of positive dx is a positive df, but
if f/(x) < O then the infinitesimal image vector df is negative and points to the
left, as illustrated in [7]. In this case, df can be obtained by first expanding dx by
| f'(x)|, then rotating it by 7. If we think of f(x) as a point on the real axis of C,

f rotate 7

R —o—Po N\~ < R

X fx)
df = f'dx | f'| dx

then arg[ f'(x)] = O when f'(x) > 0, and arg[ f'(x)] = 7w when f’'(x) < 0. Thus,
regardless of whether f”(x) is positive or negative, we see that the local effect of
f on an infinitesimal vector dx at x is to expand it by | f/(x)| and to rotate it by
arg[ f'(x)].

With all this fresh in our minds, we now attempt to generalize the notion of
“derivative” to mappings of C.

2 The Complex Derivative

Consider the effect of a complex mapping f (z) on an infinitesimal complex number
emanating from z. Its image (i.e., the connecting complex number between the two
image points) will be an infinitesimal complex number emanating from f(z). The
generalization of [6b] or [7] is now [8]. On the right, we have drawn this image
complex number in black, and we have also drawn a copy [white] at f(z) of the
original arrow at z. To transform the white arrow into the black image arrow now
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Figure[8]

requires not only an expansion, but also arotation. In figure [8] it looks as though
we must expand the whitearrow by 2, and rotateit by (3r/4). Contrast thiswith
the case of areal function, wherethe required rotation angle could only be 0 or 7;
in thecaseof acomplex function we need rotations through arbitrary angles.

Neverthel ess, we can still write down an agebraic equation completely anal-
ogousto (3), because " expand and rotate" is precisely what multiplication by a
complex number means. Thus the complex derivative f' (z) can now beintroduced
as that complex number by which we must multiply theinfinitesimal number at z
toobtainitsimageat f(z):

f@-y =/ @

Inorder to producethecorrect effect, thelengthof f* (z) must be the magnification
factor; and the argument of f' (z) must be the angle of rotation. For example, at
the particular point shown in [8] we would have f'(z) = 2¢/®%/4. Infact,in the
spirit of Chapter 1, we need not even distinguish between theloca transformation
and the complex number that representsit.

NOT
analytic

Figure[9]

Tofind f/(z) we havelooked at theimage of a specificarrow at z, but (unlike
the case of R) there are now infinitely many possible directions for such arrows.
What if we hadlooked at an arrow in adifferent directionfrom theillustrated one?

We are immediately in trouble, because a typical mapping® will do what you
see in [9]. Clearly the magnification factor differs for the various arrows, and
similarly each arrow needs to be rotated a different amount to obtain its image.
While we could still use acomplex number in (4) to describe the transformation
of thearrows, it would have to be adifferent number for each arrow. Therewould

1Shortly we will justify certain details of [9], such as the fact that an infinitesmal circleis
mapped to an infinitesmal ellipse.
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therefore be no single complex number we could assign to this point as being the
derivativeof f at Z. We have arrived at an apparently gloomy impasse: atypica
mapping of C simply cannot be differentiated.

3 Analytic Functions

We get around the above obstaclein Zen-likefashion—weignoreit! That is, from
now on weconcentrate almost exclusively on those very special mappingsthat can
bedifferentiated. Such functions are called analytic. From the previousdiscussion
it followsthat

Analytic mappings are precisely those whose local effect isan am-
plitwist: all the infinitesimal complex numbers emanating from a
single point are amplified and twisted the same amount.

In contrast to [91, the effect of an analytic mapping can be seen in [10]. For such
amapping the derivativeexists, and simply is the amplitwist, or, if you prefer, the
complex number representing the amplitwist.

\d  YTIC

Figure [10}

At this point you might quite reasonably fear that however interesting such
mappings might be, they would be too exotic to include any familiar or useful
functions. However, aray of hope is held out by the humble-looking mapping
z > 72, for we have aready established that it is locally an amplitwist, and so
it now gains admittance into the select set of analytic functions. In fact, quite
amazingly, we will discover in the next chapter that virtualy every function we
havemetinthisbook isanalytic! Of coursewehavealready seen plenty of empirical
evidenceof thisin our many pictures showing small " squares” being mapped to
small "'squares”.

It should perhaps be stressed that all our recent pictures have been concerned
withlocal properties, and hencewith infinitesimal arrowsandfigures. For example,
it's clear from[10] that any anal ytic mapping will sendinfinitesimal circlesto other
infinitesimal circles; however, this does not mean that such mappings typically
send circles to circles. Figure [11] (which contains [10] at its centre) illustrates
thefact that if we start with an infinitesimal circle and then expand it, its image
will generally distort out of al semblance of circularity. Of course, an important
exceptionto thisis provided by the Mobius transformations, for these precisely do
preservecircles of all sizes. Infact it can be shown that the M obiustransformations
are the only ones with this property.
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Figure [11]

4 A Brief Summary

The principal kinds of mapping we wish to study in this book are the analytic
(complex-differentiable)ones. Althoughthesewill turnout toincludeamost all the
useful functions, they are neverthelessvery special. Their effect on aninfinitesimal
disc centred at z is, after trandlation to T (z), simply to amplify and twist it. The
"amplification" isthe expansionfactor, and the" twist'" istheangle of rotation. The
local effect of f isthen completely encoded in the single complex number f'(z),

the derivativeof f, or (aswewill often prefer to call it) the amplitwist of f :

f'(z) = theamplitwistof f atz
= (amplification) ¢/®¥ish

= |f@|¢ arg[f' ()]

To obtain the image at f (z) of an infinitesimal complex number at z, you just
multiply it by f’(z).

Two last points. We have introduced the word "amplitwigt" (in addition-to
"derivative') because it is suggestive, and because it will make later reasoning
easier toexplain. However, the student meeting this subject for thefirst timeshould
be made aware of thefact that in al other books only the word derivativeis used.
Also, notethat thetwo wordsare synonymousonly totheextent (cf. Chapter 1) that
acomplex number can be identified with the similarity transformation it produces
when each point is multiplied by it. Thus, for example, "to differentiate’ will
not mean the same as "to amplitwist": the former refers to the act of finding
the derivative of afunction, while the latter refers to the act of "amplifying and
twigting' an infinitesimal geometric figure.
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V  Some Simple Examples

In the following examples we have superimposed the image copy of C on the
original one.

>z +c.

Thisrepresents a trandation of the points by c. Aswe seein [12a], thelength
of complex numbers emanating from z is preserved, and hence the amplification
is unity. Equaly clearly, since no rotation is induced, it follows that the twist is
zero. Hence .

(z T ¢y = amplitwistof (z +c)=1e"=1.

Noticehow thisisincompleteaccord withthefamiliar ruleof real calculus, namely,
that &£ (x tc)=1.

[a] o gy

Figure [12]

Z > Az,

If A =ae”, then thisrepresents the combination of an origin-centred expan-
sion by a, and arotation by a. It isclear in [12b] that any arrow at z (in particular
an infinitesimal one) will suffer precisely the same amplification and twist as do
the points of the plane themselves. Hence

(Az)' = amplitwist of (Az) = A.

While the meaning is richer, thisis once again formally identical to the familiar
result 4 (Ax) = A.
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zZHZ2

Our earlier investigation reveaed that at the point z = r el® this mapping is
locally an amplitwist with amplification 2r and twist 6. Hence

(z2) = amplitwist of (z2) = (amplification) ¢! Vi) = 2, i€ =27,

Onceagain, notethat this result isformally identical to theformula (x2)’ = 2x of
ordinary calculus. In the next chapter we obtain a directly complex and pictorial
demonstration of thisfact.

= Z.

Since this mappingisanticonformal, it clearly cannot be analytic, for we have
aready observedthat if amappingislocally an amplitwist, thenitisautomatically
conformal. Figure [13a] pinpoints the trouble. From the picture we see that the
image at z of any complex number emanating from z has the same length as the
original, and hence the amplificationis unity. The problem liesin the fact that an
arrow at angle ¢ must be rotated by —24 to obtain itsimage arrow at angle —¢.
Thusdifferent arrows must be rotated different amounts (which isnot atwist) and
hencethereis no amplitwist.

[a]

Figure [13]

VI Conformal = Analytic
1 Introduction

In [5] we saw clearly that any mapping that islocally an amplitwist is also auto-
matically conformal. Intermsof complex differentiation, wecan now rephrasethis
by saying that all analytic functions are conformal. The question then naturally
arises as to whether the converse might also be true. Is every conformal mapping
analytic, or, in other words, isthelocal effect of every conformal mapping nothing
more complicated than an amplitwist? If this were the case then the two concepts
would be equivalent and we would have a new way of recognizing, and perhaps
reasoning about, analytic functions. A tempting prospect!
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To dismiss this as a possibility would only require the discovery of asingle
function that is conformal and yet whose local effect is not an amplitwist. The
example of complex conjugation, illustrated in [13b], shows how important it is
that wetakeinto account thefact that themapping preservesnot only the magnitude
of angles, but also their sense. For z ~ 7 is not analytic, but it is also not a
counterexampleto the conjecture, because it isanticonformal.

We have seen that although conjugation does possess an amplification, it fails
tobeanalytic becauseit doesn't haveatwist. L et usnow consider instead afunction
that does possess a twist, but which again fails to be analytic, this time by virtue
of not having an amplification. The effect of such a mapping at a particular point
isillustrated in [14]. The three curves on the LHS intersect at equa angles of

. £
%

Figure [14]

(r/3), and on the RHS their images do too. But the picture clearly showsthat we
arenot dealing with an amplitwist. Imagine that theinfinitesimal tangent complex
numbers to the curves are first twisted, but then rather than being amplified, as
they would be by an analytic function, they are expanded by different factors.
Despite this, however, theinitial twist ensures that the angle between two curves
is preserved both in magnitude and sense: the mapping is genuinely conformal at
this point.

2 Conformality Throughout a Region

If weonly insist on conformality at isolated pointsthen such counterexamplesdo
indeed exist (we've drawn one!), but if we require the mapping to be conformal
throughout a region then this nonanalytic behaviour cannot occur. Imagine that
we have a region throughout which the mapping is (i) conformal, and (ii) suffi-
ciently non-pathological that an infinitesimal line-segment is mapped to another
infinitesimal line-segment. In fact, re-examination of [3] reveasthat (ii) must be
presupposed in order for (i) even to make sense. For if the infinitesimal straight
piece of curve from g to p did not map to ancther of the same kind at Q, then
we could not even speak of an angle of intersection at Q, let alone of its possible
equality with ¢.

Now look at [15]. In our conformal region we have drawn a large (i.e., not
infinitesimal) triangleabc, along withitsimageA BC. Noticethat whilethestraight
edges of abc are completely distorted to produce the curvilinear edges of ABC,
the angles of this'triangular' image are identical with those of the original. Now
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conformal

A

Figure [15]

imagine shrinking abc down towardsan arbitrary point in theregion. Aswedo so,
thesides of itsshrinking image will increasingly resemble straight lines [by virtue
of (ii)], and all the while the angles will remain the same asthe origina's. Thus,
any infinitesimal triangle in this region is mapped to another infinitesimal similar
triangle. Since theimage triangle merely has adifferent size and alignment on the
page, it isindeed obtained by amplitwisting the original.

We have thus established the sought-after equivalence of conformal and ana-
lytic mappings.

A mapping is locally an amplitwist at a point p if it is conformal
throughout an infinitesimal neighbourhood of p.

For this reason, the conventional definition of f being "analytic" at pisthat f’
existat pand at al pointsin aninfinitesimal neighbourhood of p.

From this result we can immediately deduce, for example, that complex in-
version z = (1/z) isanalytic, for we have aready demonstrated geometrically
that it isconformal. By the same token, it follows more generally that all Maobius
transformations are analytic.

For no extra charge, we can obtain a further equivalence smply by concen-
trating on distances rather than angles. What we have just seen is that a mapping
cannot possess a twist throughout a region without also having an amplification.
In order to investigate the converse, suppose that a mapping is only known’ to
possess an amplification throughout a region. Re-examine [15] from this point of
view. Unlikethe previouscase, thereisnolonger any a priori reason for theimage
ABC to betray any features common to the original. However, aswecarry out the
same shrinking process as before, the local existence of amplifications begins to
reveal itself.

As the triangle becomes very small, we may consider two of its sides, for
exampleab and ac, to beinfinitesimal arrowsemanating from a vertex. Whilewe
may not yet know anything of angles, we do know that these arrows both undergo
the same amplification to produce their images AB and AC. But if we now apply
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thisreasoning at one of the other vertices, we immediately find that in order to be
consistent, all three sides must undergo the same? amplification. Once again we
have been able to deduce that theimage triangle is similar to the original.

However, this time al we know is that the magnitude of the angles in the
infinitesimal image triangle arethe same asthosein the original. If the sense of the
anglesalso agree, then theimage is obtained by amplitwisting the original, just as
before. But if the angles are reversed, then we must flip the original triangle over
aswell as amplitwisting it. This"flip" may be accomplished by reflectingin any
line; in particular, we may employ reflectionin thereal axis, z — z. Thusif f(z)
isamapping that is known to possess an amplification throughout an infinitesimal
neighbourhoodof apoint p,theneither f (z)isanalyticat p,orelse T (z) isanalytic
ap.

It isinteresting to note that the use of triangles in the above arguments was
not incidental, but instead crucial. Rectangles, for example, would simply not
have sufficed. Take the first argument. Certainly conformality still guarantees us
that an infinitesimal rectangle maps to another infinitesimal rectangle. However,
thisimage rectangle could in principle have very different proportions from the
original, and hence not be obtainable viaan amplitwist. Try the second argument
for yourself and see how it too fails.

For acomputational approach to the above results, see Ahlfors[1979, p. 73].

3 Conformality and the Riemann Sphere

In the previous chapter we addressed a twin question: ""How are we to visualize
the effect of a mapping on infinitely remote parts of the complex plane, or the
effect of a mapping that hurls finite pointsinto the infinite distance?"' Our answer
was to replace both complex planes (original and image) with Riemann spheres.
We could then visualize the mapping as taking place between the two spheres,
rather than between the two planes. To a large extent the success of this merely
depended upon thefact that we had gathered up theinfinite reaches of the planeto
asingle point on the sphere. It did not depend on the precise manner in which we
chose to do this. Why then the insi stence on accomplishing this with stereographic
projection, rather thanin some other way? Several reasonsemerged in the previous
chapter, but the present discussion shows that another compelling reason is that
stereographic projection is conformal.

Only now can we fully appreciate this point, for we have seen that analytic
functions are the conforma mappings of the plane. As illustrated in [16], the
conformality of stereographic projection now enables us to trandlate this directly
into a statement about Riemann spheres:

A mapping between spheres represents an analytic function if and
only if it is conformal.

2We only mean "same" in the sense that the variationsin amplification are of the samein-
finitesimal order as the dimensions of abc. If the amplifications were precisely the same, then
extending our argument to a whole network of closely spaced vertices, we would conclude that
the amplification was constant throughout the region.
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Figure[16]

We have drawn the spheres separate from the planes to reinforce the idea
that we are entitled to let the plane fade from our minds, and to adopt instead the
sphereasalogically independent base of operations. Indeed, at thisstagewecould
consider complex analysis to be nothing more than the study of conformal maps
between spheres. But in works on Riemann surfacesit is shown that in order to
embrace the globa aspects of many-onefunctionsand their inverses, one must
extend this conception to conformal mappings between more genera surfaces,
such as doughnuts.

VIl Critical Points
1 Degrees of Crushing

We return to the mapping z2 and note that & z = 0, (z%)' = 2z = 0. A place
such asthis, wherethe derivativevanishes,iscaled acritical point. Recall that in
the previous chapter we defined the term " critical point' differently, as a point at
which the conformality of an otherwise conformal mapping breaks down. These
two definitions are not at odds with one another. If the derivative f’(z) of -an
analyticmapping f isnot zeroa z = p, then we know that f isconformal at p,
so conformality can only break down at points where f /(z) = 0. Althoughiit is
not obvious, later we will be able to provethe conversefact that if f'(p) = 0 then
f cannot be conformal at p. Thus the two definitionsare equiva ent.

Intermsaf theamplitwist concept acritical point could equally well bedefined
asapointof zeroamplification. Thissuggeststhat theeffect of an analytic mapping
on aninfinitesimal disc centred at a critical pointisto " crush it down to asingle
image point"*. The statement in quotesis not to be taken literally, rather itisto be
understoodin thefollowing sense.
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Imaginethat thedisc (radiuse) issotiny that it must be placed under a micro-
scopein order to be seen. Supposethat we have availableawholefamily of lenses
of increasing power with which to view it: Lo, L1, L2, L3, .. .. For example, Lo
has magnification1/€? = 1, so that it's really no better than using the naked eye.
Ontheother hand L 1 hasmagnification1/e!, and it isthus so powerful that wecan
actually seethedisc with it. Thelens L, is even moreremarkablein that it mag-
nifiesby 1/€2, so that even asmall part of our microscopic disc now completely
fills the viewing screen®.

Let's switch back to L; so that we can see the whole disc again, and watch
what happens to it when we apply the transformation z +> z2. It disappears! At
best we might seea single dot sitting at theimage of thecritical point. Itisinthis
sensethat the mappingis crushing. However, if we now attach L5 instead, we can
see our mistake: the dot isn't adot, infact it's another disc of radiuse?.

For this particular mapping, L, was sufficient to see that the disc had not
been completely crushed. However, a a critical point of another mapping, even
this might not provide sufficient magnification, and we would require a stronger
lens, say Ly, to revedl that theimage of thediscisn't just apoint. Theinteger m
measuresthe degree of crushing at the critical point.

2 Breakdown of Conformality

In addition to being locally crushing, we have stated (but not yet proved) that the
conformality of an analytic function breaksdown at its critical points. We can see
thisin our example. When the z2 mappingactson apair of raysthroughthecritical
point z = 0, it failsto preservethe angle between them; in fact it doublesit. Thus,
just at the critical point, the conformality of z? breaks down. This is a general
property. In fact we will show later that the behaviour of a mapping very near to
acritical point is essentialy given by z™, m > 2. Rather than being conserved,
angles at thecritical point z = 0 are consequently multiplied by m. We quantify
the degree® of this strange behaviour by saying that z = 0 is a critical point of
order (m — 1). Noticethat thism isthe sameone asin the previous paragraph: in
order to seetheimage we haveto usethe L, lens.

Despite the fact that conformality breaks down at critical points, we shall
continueto makesuch bald statements as, “z* is conformal*'. Thetacit assumption
isthat critical points are being excluded. Indeed we were making this assumption
throughout the previoussection,for weonly concerned ourselvestherewith typical
points. Later wewill see that critical pointsare, in amathematically precisesense,
"few andfar between', and thisisour excusefor thescant attentionweare presently
paying them. Nevertheless, we may safely skirt around thisissue only solong as

3In terms of this analogy we could say that most of the diagramsiin this chapter, indeed in
therest of the book, show viewsof theimagecomplex planetaken through L. For example[10]
depictsatiny circlebeing amplitwisted to produce ancther circle. However, if we viewed part of
thisimage'circle’ with Lj instead of L1, then deviationsfrom circularity would becomevisible.
Of course the smaller we makethe preimagecir cle, the smaller these deviations will be.

4The reason wedefineit tobe (m — 1), rather thanm, isthat thisproperlyr eflectsthemultiplicity
of theroot of thederivative.
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wefocus on theeffect of thefunction on separate chunks of itsdomain. When one
studies Riemann surfaces, one triesto fit al this partial information into a global
picture of the mapping, and in achieving this the critical pointswill play acrucial
role. They do so by virtue of yet another aspect of the peculiar behaviour of a
mapping in the vicinity of such points, and it isto thisfeature that we now turn.

In the previous chapter we discussed the possibility of critical points being
located at infinity. In particular, we considered z — z™. On the Riemann sphere
we drew two straight lines passing through the origin, and we thereby saw that
anglesat both z = 0 and z = oo were multiplied by m. Wetherefore conclude that
oo isacritical point of z" of order (m — 1), just like the origin. Actually, except
for m = 2, wedon't yet know if z™ is conformal anywhere! However, in the next
chapter wewill seethat it isconformal everywhereexcept at thetwo critical points
we havejust discussed.

3 Branch Points

First consider the case of area function R(x) from R to R. In solving problems
on maxima and minima, we learn from an early age the importance of finding
the places where R’(x) = 0. Figure [17] shows an ordinary graph of y = R(x),
emphasizing a different aspect of the behaviour of R near to a " critical point” ¢
where R’(¢) = 0. Aboveatypical point t, for which R’(¢) # 0, thegraphiseither
going up or going down, so the function islocally one-to-one. However, near c it
isclearly two-to-one.

YA y=RX) -

Figure[17]

An analogous significance holdsfor complex mappings. Typically f '(z) # 0,
and so an infinitesimal neighbourhood of z is amplitwisted to an infinitesimal
image neighbourhood of w = f (z), and the two neighbourhoods are clearly in
one-to-one correspondence. However, if f(zg) = 0 then (according to our earlier
claim) near to zq the function behaveslike z™. Thus, if a pointisin aclose orbit
around zg, itsimagewill orbit wy m-timesasfast, and corresponding to each point
near wo there will be m preimages near zo. Thus wo is a branch point of order

(m - 1). Weconcludethat a critical point d a given order maps to a branch point
d the same order.
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We began this idea by using an analogy with real functions, but we should
also note an important difference. A real function R(x) is necessarily one-to-one
when R'(x) # 0, but (unlike the complex case) it need not be many-to-onewhen
R’(x) = 0. The graph of x3, for example, is flat at the origin and yet it is still
one-to-onein an infinitesimal neighbourhood of that point. In contrast to this, the
complex mapping z ~ z* isthree-to-one near the origin, due to the existence of
complex cube roots.

VIl The Cauchy-Riemann Equations
1 Introduction

To end this chapter we will try to gain a better perspective on where the analytic
functions lie within the hierarchy of mappings of the plane. A benefit of thiswill
be the discovery of another way (the third!) of characterizing analytic functions,
thistimein terms of their real and imaginary parts.

Thefirstthing todoisrealizethat the' generad' mappings (x, y) ~ (u, v) that
we considered earlier were not really as general as they could have been. Picture
part of the plane asbeing arolled out piece of pastry on atable. A general mapping
corresponds to " doing something™ to the pastry, thereby moving its pointsto new
locations (the images) on the table. For example, we might cut the pastry in half
and move the two pieces away from each other. Thisis much more general than
anything we contemplated earlier, for it does not even possess the rudimentary
quality of continuity. That is, if two points are on either side of the cut, then no
matter how close we move them together, their images will remain far apart.

Evenif wedoinsist on continuity, theresulting mappingsarestill moregenera
than those we have considered. For example, imagine pressing down the rolling-
pin somewhere in the middle of the pastry, and, in a single roll, stretching the
far side to twice its former size. This certainly is continuous, for bringing two
points together always brings their images together. The problem now liesin the
fact that if two infinitesimal, diametrically opposed arrows emanate from a point
beneath the starting position of the pin, then they each undergo a quite different
transformation. Thus, in an obvious sense (not a subtle complex-differentiation
sense) the mapping isn't differentiable at this point. Nevertheless, provided we
stay away from thisline, the mappingisdifferentiablein thereal sense, and hence
subject to our earlier analysis using the Jacobian matrix.

Another interesting kind of mapping arises from the commonplace operation
of folding the pastry. Suppose we fold it like aletter being placed in an envelope
[two creases]. Three different points will end up above a single point of the table,
and the mapping is thus three-to-one. However, at the creases themselves the
mapping is only one-to-one, and furthermore, differentiability also breaks down
there. Nevertheless, provided that we only look at the fold-free portions of the
pastry, such many-onefunctions are still subject to our previousanalysis.

Suppose we play with the pastry in an ordinary way, rolling it (not necessarily
evenly) now in this direction, now in ancther, then turning it, folding it, rolling
it again, and so forth; then, provided we suitably restrict the domain, we can still
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apply our old analysis. While such amappingisindeed very general, we hopethat
this discussion has reveaed that (being continuous and differentiable in the real
sense) itis, in fact, already quite high up the evolutionary ladder. 1t will therefore
not come as such a surprise to learn that the local geometric effect of such a
mapping isremarkably simple, though naturally not as simple as an amplitwist.

2 The Geometry of Linear Transformations

Wepick upour earlierinvestigationwherewel eftit. Thelocal effect of themapping
isto perform the linear transformation encoded in the Jacobian matrix (2). If we
can firgt understand the effect of a uniform linear transformation-corresponding
to aconstant matrix —then we shall be finished. For we need only then remember
that our analysisisonly applicablelocally, theactual linear transformationvarying
asit doesfrom one place to the next.

Consider theeffect of auniformlinear transformationon acircle C. Sincethe
Cartesianequation of C is quadratic, thelinear change of coordinatesinduced by
the transformation will lead to another quadratic equation for the image curve.
Theimagecurve E isthusaconic section, and sincethefinite pointsof C are not
sent toinfinity, this conic must be an ellipse. See [18], and compare thisalso with
[9], where the local consequence of this result wasillustrated for a non-uniform
transformationacting on an infinitesimal circle.

We have just used an algebraic statement of linearity. The fundamenta geo-
metric fact is that it makes no differenceif we add two vectors and then map the
result, or if we map the vectorsfirst and then add them. Convinceyourself of these
two simpl e consequences:

e Parallel linesmapto parallel lines.

e The midpoint of a line-segment maps to the midpoint of the image line-
segment.

We now apply thesefactsto E.

Since dl the diameters of C are bisected by the centre of C, it follows that
the image chords of E mugt al pass through a common point of bisection. Thus
the centreof C is mapped to the centredf E. Drawn in the same heavy lineasits
imageisthe particular diameter d of thecirclethat is mapped to the mgjor axis D
of thelipse. Now consider the chords of C [dashed] that are perpendiculartod.
Sincethese are all bisected by d, their images must be afamily of paralel chords
of E such that D is their common bisector. They must therefore be the family
perpendicular to D. All thisis summarizedin [18].

Itisnow clear that

The local linear transformation is a stretch in the direction of d,
another stretch perpendicular to it, and finally a twist.

Thisresult also makes sense at the level of counting degrees of freedom. Just as
the matrix hasfour independent entries, so the specificationof our transformation
also requiresfour bits of information: the direction of d, the stretch factor in this
direction, the perpendicular stretch factor, and the twist.
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Figure [18]

The ultimate specialization to analytic functions now simply requires that the
two stretch factors be put equal. This apparently reduces the number of degrees
of freedom from four to three. However, since we are now producing an equal
expansion in all directions, the direction chosen for d becomesirrelevant, and we
areleft with only two genuine degrees of freedom: theamplification and the twist.

Notethat we now have the following:

An orientation preserving mapping is conformal if and only if it
sends infinitesimal circlesto infinitesimal circles.

If amapping preservescirclesin general, then, in particular, it must send infinites-
imal circles to infinitesimal circles, and hence it must be conformal®. Bypassing
the detailed investigation of the previous chapter, we now see that the confor-
mality/analyticity of Mobius transformationsfollowsfrom the mere faci that they
preservecircles.

3 The Cauchy-Riemann Equations

We obtain another characterization of analytic functions if we now ask how we
may recognize a Jacobian matrix for which both expansion factors are equal.
Thisis most easily answered by considering what kind of matrix corresponds to
multiplication by a complex number, for we aready know that this produces the
desired type of linear transformation. Multiplyingz =(x +iy)by (atib),we
get

(xtiy)—(a Tib)x Tiy)=(ax —by) Ti(bx tTay).

This corresponds to the multiplication of a vector in R? by the matrix

a —b
(5 =) )

SFor adifferent proof of thisfact, see Sommerville[1914, p. 237].
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Compare this with the Jacobian matrix (2),
_ [ Oxu Byu
I = (3xv 3yv) ’

In order for the effect of J to reduce to an amplitwist, it must havethe same form

as (5), and thus
Oxlt
OxV

+0yv,
—0dyu.

(6

These are the celebrated Cauchy-Riemanneguations. They provide uswith athird
way of recognizing an analytic function. However, as with the underlying am-
plitwist concept, these equations must be satisfied throughout an infinitesimal
neighbourhood of apointin order that the mapping be analytic there [see Ex. 12].

Since (atib) isplaying therole of the amplitwist, comparison of (5)and (2)
now yields two formulae for the derivative:

[ =8u+idv=20f, @)

and
f =0 —idu=—idf. ®)

By way of example, consider z — z3. Multiplying this out we obtain arather
haphazard |ooking mess:

u+iv=(x>=3xy>) +iGBx%y — y%).
However, differentiating the real and imaginary parts, we obtain

3x2 —3y?
6xy

Ox U
x ¥

+3yv,
—dyu,

[t

and so the Cauchy-Riemann equations are satisfied. Thus, far from being haphaz-
ard, the special forms of u and v have ensured that the mapping isanalytic. Using
(7) we can cal culate the amplitwist:

() =32 —y?) +i6xy =322,

just asin ordinary calculus. Check that (8) givesthe same answer.

In the next chapter we will sever our umbilical cord to R? and discover how
the above results can be better understood by directly appealing to the geometry
of the complex plane.
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IX Exercises

1 Use the Cauchy-Riemann equationsto verify that z — 7z is not anaytic.

2 Themappingz +> z> actson aninfinitesimal shapeand theimageisexamined. It
isfound that the shape hasbeenrotated by n, and itslinear dimensionsexpanded
by 12. Where wasthe shape originally located? [ There are two possibilities.]

3 Consider z > Q(z) = z2/z. By writing z in polar form, find out the geometric
effect of 2. Using two colours, draw two very small arrows of equal length
emanating from a typica point z: one parallel to z; the other perpendicular to
z. Draw their images emanating from €2 (z). Deduce that €2 fails to produce an
amplitwist. [Your picture should show thisin two ways.]

4 The picture shows the shaded interior of acurve being mapped by an analytic
function to the exterior of theimage curve. If z travelsround the curve counter-
clockwise, then which way does its image w travel round the image curve?
[Hint: Draw some infinitesimal arrows emanating from z, including one in the
direction of motion.]

5 Consider f (x +iy) = (x2+ y?) +i (y/x). Find and sketch the curves that are
mapped by f into (a) horizontal lines, and (b) vertical lines. Notice from your
answersthat f appearsto be conformal. Show that it is not in two ways: (i) by
explicitly finding some curves whose angle of intersection isn't preserved; and
(ii) by using the Cauchy-Riemann equations.

6 Continuing from the previous exercise, show that no choice of v can make
f (x Tiy) = (x2+y?) Tiv andytic.
7 () Ifgzy=3 + 2i then explain geometrically why g’(z) = 0.

(i) Show that if theamplificationof an analyticfunctionisidentically zero(i.e.,
f/(z) = 0) on some connected region, then the function is constant there.

(iii) Giveasimplecounterexampleto show that thisconclusion does not follow
if the region isinstead made up of disconnected components.
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8 Usepicturesto explainwhy if f (z) isanaytic on someconnected region, each
of thefollowing conditionsforcesit to reduce to a constant.

(i) Ref (z) =0
(i) {f (2)| = const.
(iii) Notonly isf (z) analytic, but f (z) istoo.

9 Use the Cauchy-Riemann equations to give rigorous computational proofs of
theresultsof the previoustwo exercises.

10 Instead of writinga mappingin termsof itsreal and imaginary parts(i.e. f =
u+iv),itissometimesmoreconvenienttowriteitin termsof length and angle:
f@=ReY,

where Rand ¥ arefunctions of z. Show that the equations that characterize an
analyticf are now

;R = R, and 3,R = —R 3, V.

11 Let's agreeto say that “f = u T iv satisfiesthe Cauchy-Riemann equations’
if # and v do. Show that if f (z) and g(z) both satisfy the Cauchy-Riemann
equations, then their sum and their product do also.

12 For nonzeroz, letf (z) = f (x +iy) = xy/z.

(i) Show that f (z) approaches0 asz approachesany point on thereal or imag-
inary axis, including theorigin.

(i) Having established that f = 0 on both axes, deduce that the Cauchy-
Riemann equations are satisfied at the origin.

(iii) Despitethis, show that f is not even differentiable at 0, let alone anaytic
there! To do so, find theimage of an infinitesmal arrow emanating from 0
and pointing in the direction ¢’¢. Deduce that while f does have a twist at
0, it failsto have an amplificationthere.

13 Veify that z > €2 satisfiesthe Cauchy-Riemannequations, and find (€7)'.

14 By sketching the image of an infinitesmal rectangle under an analytic map-
ping, deduce that the local magnificationfactor for areais the square of the
amplification. Rederive thisfact by looking at the determinant of the Jacobian
matrix.

15 Let usdefine S to bethe squareregion given by

a—b<Re)<a+b and —b<Im®) <h
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(i) Sketch atypical S for which b < a. Now sketch its image S under the
mapping z +> eZ.

(ii) Deduce the area of S from your sketch, and write down theratio
A= areaof S .
areaof S

(i) Using the results of the previous two exercises, what limit should A ap-
proach as b shrinks to nothing?

(iv) Find limp_0 A from your expression in part (ii), and check that it agrees
with your geometric answer in part (iii).

16 Consider the complex inversion mapping | (z) = (1/z). Since | is conformal,
itslocal effect must be an amplitwist. By considering theimage of an arc of an
origin-centred circle, deduce that |(1/z)'| = 1/ 1z|%.

17 Consider the complex inversion mapping | (z2) = (1/z).
(i) fz=x+iyand | =u Tiv, expressu and vintermsof x and y.

(if) Show that the Cauchy-Riemann equations are satisfied everywhere except
theorigin, so that | isanalytic except at this point.

(iii) Find the Jacobian matrix, and by expressingitintermsof polar coordinates,
find the local geometric effect of 1.

(iv) Use(7) toshow that theamplitwistis —(1/z2), just asin ordinary calculus,
and in accord with the previous exercise. Use this to confirm the result of
part (iii).
18 Recall Ex. 19, p. 186, where you showed that a general Mobius transformation
_az+b
T cz+d’

M(z)

maps concentric circles to concentric circles if and only if the original family
(call it F)iscentredat g = —(d/c). Let p = |z — g| be thedistance from g to
z, S0 that the members of F are p = const.

(i) By considering orthogona connecting vectors from one member of F to
an infinitesimally larger member of F, deduce that the amplification of M
is constant on each circle of F. Deduce that |M’| must be a function of p
alone.

(ii) By considering the image of an infinitesimal shape that starts far from q
and then travelsto a point very close to q, deduce that at some point in the
journey the image and preimage are congruent.
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(iii) Combinetheaboveresultstodeducethat thereisaspecia member Iy of F
such that infinitesimal shapeson Iy are mappedto congruent image shapes
ontheimagecircle M (Ipr). Recal that Iy is called theisometric circle of
M.

(iv) Usethepreviouspart toexplain why M (Ips) hasthesameradiusas Iy.
(V) Explainwhy Ip;-1 = M (Ip).

(vi) Suppose that M is normalized. Using the ideain Ex. 16, show that the
amplificationof M is

IM'(2)| = 2

I ,
n fp)

A
4
ol ] ,V\Z""’ B 0>

19 Consider the mapping f (z) = z*, illustrated above. On theleft is a particle p
travelling upwardsalong a segment of thelinex = 1, whileon theright isthe
image path traced by T (p).

(i) Copy thisdiagram, and by considering thelength and angle of p asit con-
tinuesits upward journey, sketch the continuation of the image path.

(ii) Show that A =i sec*(/8).

(iii) Find and mark on your picturethetwo positions(call them b1 and b2) of p
that map to the sl f-intersection point B of theimage path.

(iv) Assumingtheresult f’(z) = 4z°, find the twist at by and alsoat b2.

(V) Using the previous part, show that (asindicated at B) the image path cuts
itself at rightangles.

20 Thefigurebelow isacopy of [9], p. 62.

(i) Show geometrically that if z moves distance ds along the lemniscate, in-
creasing 6 by d@, then w = z2 movesadistance 4d6 aongthecircle.

(i) Usingthefact that (z2)’ = 2z, deducegeometricaly that ds = 2d6/r.
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(i) Using thefact that r2 = 2cos26, show by calculation that

rdr=2/1- (r*/4) db.

(iv) Let s represent the length of the segment of the lemniscate connecting the
origin to the point z. Deduce from the previoustwo parts that

r dr
’ _/0 J1= (4/4)’

hence the name, lemniscatic integral.

21 (i) By extending the argument giveninthetext, show that in three-dimensiona
spacetheeffect of alinear transformationistostretch spacein threemutually
perpendicular directions (generally by three different factors), thento rotate
it.

(ii) Deduce that a mapping of three-dimensional space to itself is localy a

three-dimensional amplitwist if and only if it mapsinfinitesimal spheresto
infinitesimal spheres.

(iii) Deduce that inversion in a sphere preserves the magnitude of the angle
contained by two intersecting curvesin space.

(iv) Deduce that stereographic projection is conformal.
Remark: In stark contrast to the bountiful conforma mappings of the plane,
Liouvilleand Maxwell independently discovered that the only angle-preserving

transformation of space is an inversion, or perhaps the composition of severa
inversions.
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Further Geometry of Differentiation

| Cauchy-Riemann Revealed
1 Introduction

In the previous chapter we began to investigate the remarkable nature of analytic
functionsin C by studying mappingsin theless structured realm of R2. In particu-
lar the Jacobian provided us with apainlessway of deriving the Cauchy-Riemann
characterization of analytic functions, and also of computing their amplitwists.
However, this approach was rather indirect. In this chapter we will instead study
differentiationdirectly inthecomplex plane, primarily throughthe use of infinites-
imal geometry. Our first application of thisapproach will betherederivationof the
Cauchy-Riemann (henceforth "' CR) equations, and the discovery of new forms
that they can take on.

2 The Cartesian Form

Consider a very fine mesh of squares aligned with the real and imaginary axes.
See the top left of [1]. Under an analytic mapping each infinitesimal square will
be amplitwisted to produce an image that i s al so square. We will show that the CR
equations are nothing more than a symbolic restatement of this geometric fact.
Zoomin on anindividual square and itsimage, as depicted in the bottom half

Ay v

Figure[1]
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of [1]. Suppose, as drawn, that the initial square has side €. If we start at Z and
then move a distance € in the x-direction, the image will move along a complex
number given by

(changein x)-(rate of change withx of theimagef) = € a f-.

Similarly, if the point movesalong the vertical edge by going € in the y-direction,
then itsimage will movealong € 3, f . Now since these two image vectorsspan a
square they must be related by a simple rotation of /2, that is by multiplication
withi. After cancelling €, we thus obtain

ioy f =0yf,

et voila! That thisisindeed acompact form of the CR eguations may be seen by

insertingf =u tiv:
id,(utiv) =a,(uTtiv),

and then equating real and imaginary partsto yield
u=23v and v = —dyu, (D

just as before. To obtain the amplitwist itself, we recall that each infinitesimal
arrow is taken to itsimage by multiplication with f’. Now, since we know what
theimages are for the two sides of the square, we can deduce

er—ef = €dyf
=>f, = axf
and
ie—ief' = €d,f
= f = —id,f

3 The Polar Form

Equation (1) isthe most common way of writing CR, but itisn't theonly way. It
took thisform because we chose to describe both complex planesin termsof their
real and imaginary parts, that is with Cartesian coordinates. Thus we could briefly
describe (1) as being the Cart.-Cart. form. In Ex. 10, p. 212 we retained Cartesian
coordinatesfor thefirst plane but employed polar coordinates in theimage plane;
thisled to another form (Cart.-Polar) of CR. Asthe next example of our geometric
method we will derive the Polar-Cart. form of the equations.

In order to do this, we begin with an infinitesmal square adapted to polar
coordinates. See [2]. If we start at z and increase r by dr, then we obtain ¢¢ dr
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e
©

Figure[2]
astheradia edge. If, on the other hand, we increase 0 by dé, then the point will
movein the perpendicular direction given by ie'B. Asd#@ tends to zero, this edge
is ultimately equal to an infinitesimal arc of circle of length r d6; the complex
number describing it will therefore bei e® »d@ =i zd#. It's also clear from our
picture that
initially square dr =rde. 2

Now look at the image. Just as before, if weincrease r by dr then the image
will movedongdr - 3.f ; likewise, changing 6 by d will move theimage aong
do - 3T .1f the mappingisanalytic then these again span asquare, and so the latter
must bei timesthe former:

df - f =idr-o,f.
Substituting (2) into this, and cancelling d6, we obtain
df =ird, f 3)

as the new compact form of CR. By inserting f =« +iv, the reader may verify
that (3) isequivaent to thefollowing pair of Polar-Cart. equations:

Ogv = +r O,u 4y

dgu = —r d,v. &)

By examining theamplitwist that carries each arrow toitsimage wecan alsoobtain
two expressionsfor the derivative:

i

O drv— &0dr- f' dr - o, f
=f = e"af 6)

izd0r—izd0-f = do-3f
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= f = —(/2)3f @)
Asasimple examplelet's take z3 = r3 ¢3¢, From (6)we obtain
(23)/ — e—i9 3r2 e3i9 — 3’,2 e2i0 — 3Z2
while from (7) we obtain
(z3)’ =—(i/2) r33iedf = —(i/2)3i 2 =372,

In obtaining the same answer from both these expressions we have aso verified
that z> actually was analytic in the first place.

Of thefour possible ways of writing CR, only one now remainsto be found,
namely the Polar-Polar form. We leave it to the reader to verify that if we write
f = Re'¥ (cf. Ex. 10, p. 212) then CR takes theform

BR=-rRo,¥Y and R»HY =roR.

Il An Intimation of Rigidity

A recurring theme in complex analysisisthe"rigidity" of analytic functions. By
thiswe mean that their highly structured nature (everywherelocally an amplitwist)
enables usto pin down their precise behaviour from very limited information. For
example, evenif weareonly told theeffect of ananalyticfunctiononasmall region,
thenits definition can be extended beyond these confinesin a unique way —like a
crystal grown from a seed. In fact, given even the meagre knowledge of how an
analytic mapping affects a closed curve (just the points on the curve mind you),
we can predict precisely what happensto each point inside! See [31. Later we will
justify these wild claims, and in Chapter 9 we will even find an explicit formula
(due to Cauchy) for w in termsof A, B, C, etc. For the moment, though, we will

is etc
-s‘h‘

!
& MUST GO HERE!

Figure[3]
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obtain our first glimpse of this rigidity by considering a different kind of partial
information.

Consider [4]. Origin-centred circles are being mapped to vertical lines, and the
larger thecircle, thefurther to theright istheimage, but with no restriction on how
thelinesare spaced. How much information do you think we can gather about an
analytic mapping possessing this property? Try meditating on this before reading
further.

Well, weknow that f isconformal andthat itslocal effectisjust an arnplitwist.
Considertheraysemanating fromtheorigin. Since these cut through all thecircles
at right angles, their images must cut through the vertical lines at right angles, and
they arethushorizontal lines. Infact, if weswing theray around counter-clockwise,
we can even tell whether itsimageline will move up or down. Look at [S], which
depictsthefate of ainfinitesimal square bounded by two circles and two rays. We
know that the infinitesimal radial arrow connecting the two circles must maptoa
connecting arrow between the lines going from left to right. But since the square
isto be amplitwisted, its image must be positioned as shown. Thus we find that a
positiverotation of the ray will translate the image line upwards.

S 4

o

Figure [4]

We have made some good progress, but that we cannot yet havefully captured
the consequences of analyticity can be seen from Ex. 5, p. 211. Despite not being
analytic, the mapping (x Tiy) — (x2F y2) +i (y/x) wasthere shown to possess
al the above desiderata. Indeed it would be easy to write down an infinity of
nonanalytic functions that would be consistent with the known facts. In stark
contrast to this, when we havefinished our investigation we will be left with only
one analytic function possessing property [4]. To show this we must turn to the
CR equations.

In [ 4]we are mapping natural polar objects to natural Cartesian objects, soit's
clear that we should employ the Polar-Cart. form, namely (4)and (5).In order to
put them to use, we must first trans ate [ 4]into 'Equationspeak’. Wecould describe
the figure by saying that rotating the point only moves the image up and down,
not side to side; in other words, varying 6 produces no changein u: dgu = 0. It
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Figure [5]
follows from (5) that 8,v = 0. This says that moving the point radially outwards
does not affect the height of the image, and thus that rays are mapped to horizontal

lines. This is old news to us seasoned geometers, but fortunately we have another
equation left:

V(O =rdUr). 8)

Here we have written v = V(6) to stress that it is known to depend only on 8;
similarly for u = U(r).

Now (8) looks like an impossible equation, for the LHS quite explicitly depends
only on 8, while the RHS is equally emphatic about only depending on r. The only
way out of this is for both of these real quantities to equal a constant, say A.
Dispensing with the superfluous partial derivatives, we thereby obtain

du dv
—=A d — =A
r dr an de
Integrating these equations we find that
U = Alnr + const. and V = A6 + const.,

and hence
U+iV=A(nr+i6)+ B,

where B = const. But we recognize this special combination as none other than
the complex logarithm! Thus

f(z) =Alogz+ B. ()]

Suppose, more generally, that an analytic function g(z) is known to send circles
with centre c to parallel lines making a fixed angle ¢ with the imaginary axis. That
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thereis no fundamental difference between this and the previous case may be seen
by considering
z+> e i® g(z + c);

foryou may convinceyourself that thispossessesproperty [4], and henceit too must
equal (9). Therigidity of analytic functions has thus led to the rather remarkable
conclusion that the complex logarithm is uniquely defined (up to constants) asthe
conformal mapping sending concentric circles to parallel lines.

Il Visual Differentiation of log(z)

A fringe benefit of the previous section was the discovery that log(z) actualy is
analytic. Since this multifunction finds its simplest representation in Polar-Cart.
form, namely

logz = Inr +i@ +2mm),

we can easily find its derivative using (6) or (7). For purposes of illustration, we
will now use them both:

(ogz) =e 08, logz=e"9(1/r)=1/z,

and
(logz) = —(i/2) 9 logz = —(i/2)i = 1/z. (10

You notice, of course, how this isformally identical to the case of the ordinary,
real logarithm.

You may be wondering how our previous discussion of the branches of this
multifunction affects al this. For example, it's interesting how m (which labels
the different branches) does not appear in the result (10). The basic philosophy of
thisbook is that while it often takes more imagination and effort to find a picture
thanto do acalculation, the picture will alwaysreward you by bringing you nearer
to the Truth. In this spirit, we now find a visual explanation of (10)that will also
makeit clear that the answer does not depend on m.

Equations (6) and (7) were derived by examining the infinitesimal geometry
of ageneral analytic mapping. Why not then apply this idea to the geometry of a
specific mapping, and thereby evaluateits amplitwist directly?

Consider [6], which shows a typical point z and a few of its infinitely many
images under log. In order to find the amplitwist we need only find theimage of a
single arrow emanating from z. The easiest oneto find is shown in [6], namely an
arrow perpendicular to z. Notice how if z makes an angle & with the horizontal,
then the perpendicular vector will make an angle 6 with the vertical. Also, if it
subtends an infinitesimal angle 6 at the origin, then—becauseitislikeasmall arc
of a circle—its length will be »§. Now look at the images of z. Since we have
purely rotated z, itsimages will all movevertically up through a distance equal to
the angle of rotation 6. To makeit easier to see what amplitwist carries the arrow
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i(0 —27) ?V\r

Figure [6]

at z intoitsimage, we havedrawn copies of theoriginal arrow at each image point.
Itis now evident from the picture that

amplification = 1/r
twit = -6
= amplitwist = (1/r) e =1/z.

Although all the image vectors emanate from different points in the different
branches, they are all identical as vectors, and so it is clear that the amplitwist
does not depend on which branch we look at.

IV Rules of Differentiation

Wealready know how to differentiate z2 and alsolog z, so how would you usethis
knowledge to find, for example, the derivativeof log(z? logz)? Your immediate
reaction (chain and product rules) is quite correct, and in this section we merely
verify that all the familiar rules of real differentiation carry over into the complex
realm without any changes, at least in appearance.

1 Composition

The compositefunction (g o f) (z) = g[f (2)] of course just means 'do f , thendo
g’.If both f and g are analytic then each of these two steps conservesangles, and
therefore the composite mapping doestoo. Wededuce that g[f (z)] isanalytic,and
we now show that the net amplitwist it produces is correctly given by the chain
rule.

Let f'(z) = Ae'® and g'(w) = Be”, wherew = f (Z).Consider [7]. An
infinitesimal arrow at z is amplitwisted by f to produce animage at w ; then this,
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gof
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Figure[7]

initsturn, isamplitwisted by g to producethefinal image at g(w). It isclear from
the picturethat

net amplification = AB
nettwiss = atg
= netamplitwiss = ABe'@th),

and thus we obtain thefamiliar chain rule:
{Blf @} =g'w) - (). (11)

As an example of thiswe may put g(z) = kz. In thelast chapter we showed that
g'(z) =k, and so we now conclude from (11) that

k f@Y =k f'(2.

2 Inverse Functions

Providedwearenot at acritical point (wherethe derivativevanishes), aninfinitesi-
mal disc at z will bearnplitwistedto producean imagediscat w = f (z), and these
two discs will bein one-to-one correspondence. See[8]. An analytic function thus
aways possesses alocal inversein this sense, and we wish to know its derivative.,

Figure [8]



Rules of Differentiation 225

Clearly, the amplitwist that returns the image disc to its origina state has
reciprocal amplification, and opposite twist:

amplificationof f ~'atw = 1/(amplification of f atz) = 1/|f"(2)]
twistof f~latw = — (twistof f atz) = arg[1/f'(z)]
=W’ = Uf@. (12)

By way of example, consider w = f (z) = logz, for whichz = f ~(w) =e".
From (12) wefind that

(€”) =1/(logz) =z =e¢", (13)

in agreement with your calculation in Ex. 13, p. 212. Later we will giveavisual
derivation of (13).

Both (11) and (12) could havebeen derivedevenmorequickly if wehad directly
employed the algebraic idea of theimage arrow being f ' times the original one.
We chose instead to keep the geometry to the fore, and reserved the agebra of
multiplication for the final encoding of the results as (11) and (12). However, to
derivethe next two rules by pure geometry would be cumbersome, so we will use
alittle algebra.

3 Addition and Multiplication

Onthefar left of [9] weseeaninfinitesimal arrow & connecting z to aneighbouring
point. The images of these two points under f and (separately) g, are shownin
the middle of the figure. Lastly, we either add or multiply these points to obtain
the two points on the far right. By examining the image vector connecting these
final points we can deduce the amplitwists of (f + g) and f g, respectively. From
[9] wefind

Ao

= O

e MO e e B

Figure[9]
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A=a+&f ad B=b+i&g,
s0 that
(A+B)=(a+b)+£(f' +g),
— e’
imageof &
and hence we obtain the addition rule:

(f+e)=rf+¢. (14)
Likewise, ignoring £2, we find

AB=ab+Et(f'b+ag),
———
imageof §

and thus deduce the product rule:

(fe) =fg+fg. (15)

V Polynomials, Power Series, and Rational Functions
1 Polynomials

We can look at the rules of the previous section from a dightly different point of
view. Takerule (15), for example. In away, what is on the RHS is less important
than the fact that there isa RHS. By this we mean that we have here a recipe for
creating new analytic functions. 'given two such functions, form their product'.
Likewise, each of our other rules can be thought of asa means of producing new
analyticfunctionsfromold. Theanalytic functions areindeed the aristocrats of the
complex plane, but provided they only mate with their own kind, and only in ways
sanctioned by the rules (which allow many forms of incest!), their offspring will
also be aristocrats. For example, suppose we start with only the magpi ngzm z,
which is known to be analytic. Our rules now quickly generate z .23, ..., and
thence any polynomial.
Consider atypical polynomial of degreen:

Si(z) =ao+arz+arzt+-- +an "

We have just seen that thisis analytic, and thus it maps an infinitesmal disc at p
to another at S, (p). Furthermore, the amplitwist that transforms the former into
thelatter is, according to (14),

Si(2) = (ao) + (@1 2) +(@z®) +--+ (an ")

We aready know how to differentiate the first four terms, and in the next section
we will confirmthat in general (z*)’ = m z™~!, asyou no doubt anticipated. Thus

SI(z) =ay +2a2z+3a32% + - +na, "L (16)
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2 Power Series

Thisdiscussion of polynomialsnaturally leadsto theinvestigationof power series.
In Chapter 2 we discussed how a convergent power seriest

S@Q=a+arz+m+azzd+--- (17)

could be approximated by a polynomia S,. We explained how the effect of S
within its circle of convergence could be mimicked by S,, with arbitrarily high
accuracy, simply by taking a sufficiently high value of n.

Of course the question we now face is whether power series are analytic, and
if they are, how are weto calculate their derivatives?We will see that the answers
to these questions are "'yes"* and “(16)”.

Consider aninfinitesimal disc D with centre p. If pisinside thecircle of con-
vergenceof S, then soisasufficientlysmall D. Theseries(17) thereforeconverges
at al pointsof D, and thus S mapsthe disc to some infinitesimal unknown shape
S(D) covering S(p). Now look at theleft of [10]. This showsamagnifiedview of

Figure [10]

the successiveimagesof D [itself not showninthefigure] under S10, S100, S1000,
etc. Sinceeach of these polynomialsisknown to be analytic, each imageisadisc.
However,itisalso knownthat theseimageswill coincide, ever moreperfectly,with
S(D). Thus S sendsinfinitesimal discsto other discs, and it is therefore analytic.

We havetried to make this plainer still on theright of [10]. Since we are now
only interested in arnplitwists, the actual image points are unimportant compared
with the connecting arrows between them. To make it easier to watch what is

IFor simplicity's sakeweshall usea power seriescentred at theorigin. However, aswe pointed
out in Chapter 2, thisdoes not involveany loss of generality.
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happening to these arrows we have trand ated the discs—which doesn't affect the
vectors—so that their centresall coincideat S(p). By way of illustration, we now
consider thefate, as n increases, of threeequally spaced vectorsfrom p to three
equally spaced points(a, b, ¢c) on therim of D. Each of the anaytic mappings S
amplitwiststhese vectorsto threeequally spaced image vectors. Thefigureshows
the gradual evolution?of theseimagestowardstheir final state (given by S) aswe
successively apply Sio. Sioo. €tc. Theamplitwist that carriesthearrowsof D into
theseimagestherefore undergoesa corresponding evolution towards afinal value.
TheamplitwistS that carriesthe original vectorsof D to their ultimateimagesis
thus mimicked with arbitrarily high accuracy by S;,, asn increases. Therefore

S'@) =a1+2az+3a32* +4as’ + -+ (18)

We havereached avery important conclusion. Any power seriesisanalytic within
itsradiusaf convergence,anditsderivativeisobtainedsimply by differentiatingthe
seriesterm by term. Sincetheresult of this process(18) isyet another convergent
power series, thereis nothing to stop us differentiating again. Continuing in this
manner, wediscover that a power seriesisinfinitely differentiablewithinitsradius
o convergence. Thereasonthisis soimportantisthat wewill be ableto show later
that every analytic function can be represented locally as a power series, and thus
analytic functions are infinitely differentiable.

Thisresult isin sharp contrast to the case of rea functions. For example, the
mileage displayed on the dash of your car is a differentiablefunction of thetime
displayedon theclock. Infact thederivativeisitself displayed onthespeedometer.
However,in theinstant that you hit the brakes, the second derivative(accel eration)
doesnot exist. Moregenerally, consider thereal function that vanishesfor negative
x, anhd that equals x™ for non-negativex. Thisis differentiable (m — 1) times
everywhere, but not m times at the origin. Our complex aristocrats will be shown
to be quiteincapable of stooping to thissort of behaviour.

3 Rational Functions

Earlier we established that the product rule appliesto complex analytic functions,
but we neglected to check the quotient rule. Weinviteyou to verify thisnow, using
thesamekind of reasoning that led to (15). If you get stuck, thereisahintin Ex. 9.
In any event, the important point is that the quotient of two analytic functionsis
also analytic except at the points where it has singularities. In particular, if we
apply this result to polynomia s then we can conclude that the rational functions
areanalytic.

Thefact that the quotient of two analytic functionsis again analytic can be
looked a in a rather more geometric way. Let 1(z) = (1/z) be the complex
inversion mapping. Aswediscussed at suchlengthin Chapter 3, I (z) isconformal,
and henceitisanaytic. Itfollowsthat if g(z) isanalytic,thensois[1/g(z)], because

ZFor ease of visualization, we have taken both the amplificationand the twist to be steadily
increasingwith n. In general they could exhibit damped oscillations as they settled down to their
final values.
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thisisthecomposition (7 og) of two analytic functions. Finally, if f (z) isanaytic,
the product ruletellsusthat T (z) - [1/g(2)] = [f (z)/g(z)] istoo.

VI Visual Differentiation of the Power Function

We saw in the last section that z2, z3, z*, ... wereall analytic. Composing with
complex inversion, it follows that z72, z73, z7#, ... are too. Since the inverse
functions (in the sense of [8]) are branches of the multifunctionsz*1/2, z£1/3, .
discussed in Chapter 2, it follows that these too are analytic. Composing z? with
214 (p, q integers), it follows that any rational power is analytic. Furthermore,
since the geometric effect of any real power can be reproduced with arbitrary
accuracy by rational powers, it follows that these real powersare also analytic.

The calculation of the derivativeof areal power z? is similar to the example
z* givenon p. 219. Wefind that

(Za)l — aza—l, (19)

just asin ordinary calculus. Infact thereal formula (x?)’ = a x?~! can bethought
of asthe specialization of (19) that results when both z and theinfinitesimal arrow
emanating from it are taken to be on the real axis (cf. [7], p. 195).

Figure[11]

Just asin the case of the complex logarithm, we do not rest at the result (19) of
acalculation, but rather westalk thething toitsgeometriclair. Since theamplitwist
isthe same for al arrows, we need only find the image of a single arrow in the
direction of our choice. As afirst (ill-fated) attempt, consider {11}, in which we
havechosen an arrow parallel to z. Tofacilitate comparison, we havedrawn acopy
of theinitial arrow at theimage point. You can seefrom the picture that

twiss=(a—1)¢ BUT amplification = 27?7?77
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We are thus half-thwarted, for we cannot see how long theimage arrow is. In fact
to figure this out would require precisely the same calculation (general Binomial
Theorem) asis neededin thereal case. Oh well, "If at first you don't succeed, ...”

"Try, try an arrow perpendicular to z!” From [12], we see that this arrow
originally makes an angle 8 with the vertical, and so after magnifying the angle
of z by a, it will make an angle a8 with the vertical. Once again we see that the
twist = (a — 1)8. However, this time we can see the amplification, simply by
recognizingthat each arrow isaninfinitesimal arc of acircle. The angle subtended
by thearc hasbeen magnifiedby a, whiletheradiusof thecircle hasbeen magnified
by 7*~1. The net amplification of thearcisthereforea r®~1. Thus

Figure [12]
amplification = ar®!
twiss = (a—1)8
- amp]1tw1st = a ra'_1 gita—1)0 =a Za—l.

Intheabovefiguresa = 3, and sothereis no ambiguity in the meaning of z# or
2%~ Butif aisafraction, for example, then both z2 and z#~! are multifunctions
possessing many different branches. We urge you to redraw {12] in such a case.
For example, if a = (1/3) then the infinitessmal arrow on the left will have three
images on the right, one for each branch of the cube root function. Unlike the
case of the multifunction log(z) (illustrated in [6]) these images are obtained by
amplitwisting the original arrow by three different amounts: each branch of z4 has
adifferent amplitwist. However, your figurewill show you [exercise] that

The amplitwist d each branch d 22 isgiven by (2% = az%/z,
provided that the same branch d z# is used on both sides d the (20)
equation.
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Tothe best of our knowledge thereisno® direct, intuitiveway of understanding
the real result (x#)’ = ax®~L. It is therefore particularly pleasing that with the

greater generality of the complex result (20) comes the richer geometry of [12]
needed to seeitstruth.

VIl Visual Differentiation of exp(z)

We have already seen that (€7)' = €* by calculation, and we will now explain it
pictorially. In [13] we have written a typical point z = X + i6 to make it easier
to remember that w = €2 = eXei® has angle 6. Moving z vertically up through a
distance 6 will rotate the image through an angle 6. Being an infinitesimal arc of
circleof radiuse*, theimagevector haslength ¢*6; itsdirectionisé tothevertical.

As usual, we have copied the origina arrow at the image so that we may more
clearly see the amplitwist:

o)
s\
N

. R T

Figure [13]

amplification = ¢*
twist = ¢
= amplitwist = ¢*¢i® = ¢?.

Actually, we have been alittle hasty. We haven't really shown yet (at |east not
geometrically) that € is anaytic: we don't know if al arrows undergo an equal
amplitwist. Figure [13] tells us that if it's analytic, then (€2)' = €. To establish
analyticity we need only seethat one other arrow is affected in the same way.

In [14] we move z aninfinitesimal distance 6 in the x-direction, thereby mov-
ing the image radially outwards. Now, from ordinary calculus, the amplification

31n special casesthereare ways. For example, consider acube of sidex. It iseasy to visudize

that if weincrease the separation of one of the three pairsof faces by 6, we add alayer of volume
x26. Theresult (x3)' = 3x2 follows.
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produced by ¢* along thereal axisise* (cf. [6], p. 195), sothelength of thisimage
vector is e* §. It is now clear that this new arrow in [14] has indeed undergone
precisely the same amplification and twist as that in [13], thus establishing the
analyticity of e’.

VIII. Geometric Solutionof E' = E

Up to now we have motivated the definition of the exponential mapping in rather
ad hoc ways. We are now in a position to do so in alogically more satisfying
manner, athough the most compelling explanation will have to wait till later.
Consider first the ordinary real function that we write as e*. As we discussed
in Chapter 2, one way of characterizing thisfunction isto say that the slope of its
graphisawaysequal toitsheight. An equivalent dynamicinterpretation would be
that if thedistance of aparticleat timet ise?, thenits speed equal sitsdistancefrom
us. In either event, thisamountsto saying that the function satisfiesthe differential
equation
E'=E. 21

Of course this doesn't quite pin it down since A e* aso obeys (21); however, if
we insist that the real solution of (21) also satisfy E(0) = 1, then no ambiguity
remains.

The object of this section is to show that the complex exponential function
can be characterized in exactly the same way. If acomplex-analyticfunction E(2)
isto generaize e* then it must satisfy (21) on the real axis. We will now show
geometrically that (21) uniquely propagates ¢* off the real axisinto the plane to
produce the familiar complex exponential mapping. The plan will be essentially
to reversethe flow of logic associated with [13] and [14].

A typical point z isbeing mapped to an unknownimage w, wherew = E(z) is
subject to (21). Decoding thisequation, wefind that it says that vectorsemanating
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from z undergo an amplitwist equal to the image point w. From this alone we
will figure out where w must be! In what follows, try to free your mind from
assumptions based on your previous knowledge of €?.

Consider what happensto thelittle (ultimately infinitesimal) square of side e
shownin[15]. Becauseit's twisted by theangle of w;, its horizontal edge becomes
paralel to w, while its vertical edge becomes orthogonal to w. Thus horizontal
movement of z resultsin radial movement of theimage, while vertical movement
resultsin rotation of theimage. The question that now remainsisexactly how swift
theseradial and rotational motions are. Having used the twist, we now turn to the
amplification.

A A

4

Figure [15]

If z moves at unit speed in the x-direction, then since the amplificationisr,
theimage movesradially with speed equal to its distance from the origin. But this
is just the familiar property of the ordinary exponential function. Thus E maps
horizontal lines exponentialy onto rays. If we now insist that E(0) = 1, then the
real axis maps to the real axis, and we thereby recover the ordinary exponentia
function. We also know that translating a horizontal line upwards will rotate its
image ray counter-clockwise, but we don't yet know how fast. In {15] 46 isthe
infinitesimal rotation produced by moving z through adistance e along the vertical
edge of the square. But sincetheamplificationisr, we know that theimage of this
edge haslength re, and consequently df = €. In other words,

An infinitesimal vertical translation produces a numerically equal

. 22
rotation. @2

We can now completely describe the mapping produced by E(z). Imagine
watching the image as we move from the origin to atypical pointz =x + i ina
two-legged journey: first along the real axisto x, then straight up to z. See [16].
As we move to X, the image moves along the real axis from 1 to ¢*. Repeated
application of (22) then tells us that moving up adistance ¢ will rotate theimage
through an angle 6. For example, we find that E(z) wraps the imaginary axis
around the unit circlein such away that

E@i0) = cosf +isinb.
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Figure [16]

Thisisour old friend, the celebrated Euler Formula. It also follows directly from
this geometry that the mapping has the property

E(a+b) = E(a) - E(b).

Itisnow entirely logical to define™ €% ” to be E(z), and our work is done.

As we indicated at the start of this section, there is in fact an even more
compelling explanation than theabove, Wehavejust used avery natural differential
equation to propagate ¢* off the real axis, however, it will turn out that even
this equation is superfluous. The rigidity of anaytic functions is so great that
merely knowingthe valuesof e* on thereal axis uniquely determinesits™ anaytic
continuation" into the complex realm.

IX An Application of Higher Derivatives: Curvature*
1 Introduction

Earlier we aluded to the remarkable fact that analytic functions are infinitely
differentiable. In other words, if f isanalytic then f” exists. In this section we
seek to shed geometric light on the meaning and existence of thissecond derivative
f”. We shall do so by answering the following question:

If an analytic mapping f actson a curve K of known—curvature «
at p, thenwhat isthe curvaturex of theimagecurve K at f(p)?

In the next section we shall see that the solution to this problem provides a novel
insight into (of al things!) the elliptical orbits of the planetsround the sun at one
focus.

At therisk of ruining the suspense, hereis the answer to our question:

s 1 f(pPE
= I s
=T (m[ 0 ]”) @)
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Figure[17]

where?denotes the unit complex number tangent totheoriginal curveat p. Before
explaining this result, let ussimply test it on an example.

On the left of {17] we have drawn three line-segments, and on the right their
imagesunder f (z) = 2. The segments are distinguished by the value of theangle
¢ that each makes with the horizontal: ¢ = 0 for the dotted one; ¢ = (7/2) for
the dashed one; and the solid one represents ageneral valueof ¢. Now look at the
curvature of their images: ¥ = 0 for the dotted one; ¥ = ¢~ for the dashed one;
and on the solid image, ¥ starts out large and then dies away as we spira out from
theorigin.

In order to compare these empirical observations with our formula, write the
unit tangent as & = ¢/¢ and note that if f (z) = € thenf" = f' = eZ With
z=x tiy, formula (23) therefore reduces to

K=e*(sing t).

Using the fact that k = 0 for our line-segments, and that ¢ is constant on each,
you may now easily check the accord between thisformula and figure [17].

2 Analytic Transformation of Curvature

We now turn to the explanation of (23). The presence of an imaginary part in
thisrather daunting formula would seem to bodeill for a purely geometric attack.
Surprisingly, thisisn't the case. Consider [18]. On the left is the curve K, with
curvaturex at p. Notethat we havearbitrarily assigned asense to K soastogivex
adefinitesign. At thetop of thefigureistheimage curve K under the mapping f ;
notethat its senseis determined by that of K. Itisthecurvatureof K at p =f (p)
that (23) purports to describe.

Asillustrated, & isasmall (ultimately infinitesimal) complex number tangent
toK at p. Withcentre at p we havedrawn acircle through the tip of & cutting K
inqg.Atqg wehavedrawn another small (ultimately infinitesimal) tangent complex
number ¢, and we have marked the angle € of rotation from & to ¢ . Recall that the
curvaturek at p is, by definition, the rate of rotation of the tangent with respect to
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Figure[18]
distanceadong K. Sincefor infinitesimal & thearc pq equals|£], the curvature a
pistherefore
€

= —. 24
&1
Likewise, at the image points p and g on the image curve K we have drawn
the image complex numbers and Z, the rotation from £ to 7 being €. Thus the
image curvatureis

| me

=2
It

(25)

)
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Our problem thereforereducesto finding € and E].
Since|&| isthelength of the amplitwisted image of £,

£ = (amplification). &l = |/ (P! . & (26)

The moreinteresting and difficult part of the problemis tofind €.

If £ and ¢ both underwent precisely the same twist, then the turning angle €
for the images would equal the original turning angle . However, the twist at q
will differ very dightly, say by a, fromthat at p. Thus

¢=cT (extratwist) = ¢ ta 27

This ishow f” entersthe picture, for it describes how the amplitwist varies.

Thefunction f ' isa perfectly respectable mapping inits own right, and it may
be drawn like any other. The right-hand side of [18] is precisely such a picture.
Each point z is mapped to the complex number that amplitwists infinitesimal
complex numbers emanating from z. In particular, we have drawn the images
f/(p) and f'(q)of p and g. Thestatement about infinite differentiability can now
berecast in a more blatantly astonishing form: iff islocally an amplitwigt, then
f ' automatically istoo. We have indicated this in the picture by showingthedisc
at p being mapped by f* toanotherdiscat f ' (p). This startlingfact will now yield
tousthevauedf a.

The amplitwist that carries the disc at p to the disc at f'(p) is " (p). In
particular, & isamplitwisted to

x=f"(p&.

But looking at thetriangle on theright, thesidesof which are the known quantities
f'(p) and x, we seethat the angle at the origin is precisely the extratwist o that
we seek.

It is easier to obtain an expression for this angle if we first rotatethe triangle
to the real axis. This rotation is achieved quite naturaly (see the bottom figure)
by dividing by f'(p); thesides of thetriangle now becomeland v = [x /f '(p)].
Because a equals the (ultimately) vertical arc through 1, thefiguretells us that

X f(p)&
= = = —= | =1 .
a=ac=Im@) lm[f’(p)] m[ f’(p)]

Thus, from(25), (26), and (27), and taking evaluation at p asunderstood, weobtain
"
(Im I:ff’s] + 6)
L1151 °

Finally, using (24) and noting that & = (£/|€]) is the unit tangent at p, we do
indeed obtain formula(23).

K=
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3 Complex Curvature
Let ustakeacloser look at formula (23), which may be written

- f// E Py

c=tm [f’lf’ ] T
The presence of the second term can be understood asfollows. If the plane were
to undergo a uniform expansion by factor R then acircle of radius (1/«) would
becomeacircle of radius (R/x), thatisof curvature (x/R). But asmall pieceof a
general curve resembles an arc of itscircled curvature?, and the principal local
effectof f (apartfromacurvature-preserving twist) isan expansion by factor |f'|.
In addition to this phenomenon, thefirst term says that the mapping will intro-

duce curvature even when noneis originally present: the curvature of the image
of astraight line (asafunction of itsdirection) is

7iril

Now consider the fate of all the curves that pass through p in the direction E
The general formula says that f will not only scale their curvatures by (1/|f'])
(as previously explained), but it will also increase their curvatures by the fixed
amount k(§). In this sense the first term corresponds to an intrinsic property of
the mapping f .

However, k(s) is not readlly intrinsic to f since it retains a vestige of the
origina curves, namely, their direction &. It would appear that the most natural
intrinsic quantity that can be abstracted from &( s )is

k(g):lm[

i tll
s
We propose to call this complex function £ (which does not appear to have been
investigated previously) the complex curvatureof f .

To see that the complex curvatureisindeed a natural quantity, picture K(p) as
a vector emanating from p. We will show that

K

(28)

Theprojection d X(p) ontoa line through p isthecurvatured the

imaged that lineat f (p). (29

See [19], in which K has aso been drawn at two additional points. Note how the
increasing length of the projection of K onto the line corresponds to increasing
curvature along theimage.

To prove (29), recall how the scalar product in R? can be expressed in terms
of complex multiplication:

“4The circle that touches the curve at the point in question, and whosecurvaturex = 1/radius
agrees with that of the curve at that point.
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Figure [19]

—~

f"g

7C-2= Re[f?]:lm[iﬁ?]:lm[ ] =k(g),

VA
aswasto be shown. This result yields a neater and more intelligible form of (23):

L
L

To see how K(p) may be determined geometrically, imagine a short, directed
line-segment S rotating about p. Theimage f (S) rotates with equal speed about
f (p), andits curvatureoscillatessinusoidally: it reachesitsmaximumvalue| K (p)|
when S points in the direction of K(p), whileit vanisheswhen S is perpendicular
to K(p).

Infact, toreconstruct K(p) itissufficient to know theimage curvaturesk; and
k2 forjust twopositions S1 and S» of theline-segment. Figure[20] illustrates thisin
the particularly simple casethat S and $; are horizontal and vertical, respectively.
We then have

F=K-€+ (30)

K=« +iK2.

We conclude this section with a different way of looking at X. On the left of
[21]is aninfinitesimal black shape Q, together with copies obtained by translating
Q afixedamount |£] in various directions &. Under an analytic mapping f , Q is
amplitwisted to thesimilar black shape Q on theright. As Q translatesby &, Q not
only transates by f £, but it also rotates and expands. More precisely, therotation
of Qis justtheangleaontheRHSof [18]. Thisrotationisclearly greatest when x
is perpendicular to f’(p), pointing counterclockwisealongthecircle|f '| = const.
This occurs when £ isin the direction of i, for then

x < f"Koci/f «if'.
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Figure [20]

If weturn thedirection of motion o Q by —(r/2), then x asoturnsby —(/2)
to point radialy outwards along theray arg f' = const., thereby producing the
greatestincreasein |f /).

We now understand [21] in greater detail:

Let Q bean infinitesimal shape, and let é beitsimage under anan-
alyticmapping f. Then Q rotatesmost rapidly, and its size remains
constant, when Q movesin the directionof XK. On the other hand, 31

QO expandsmost rapidly, and does not rotate, when Q movesin the
orthogonal direction—iX.

In still greater detail, as Q begins to trandate in an arbitrary direction EletR
denotetherate of rotation of Q with respect to the distance it moves. Then

R = K-E.
This achievesits maximum value Rmax = |K| when Q movesin the direction of

K. Similarly, consider theexpansionof Q. Let £ denotethe rate of increaseaf the

Figure[21]
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sze® of Q (again with respect to the distance it moves) asafraction of @’s initial
size. Then [exercise] N
E=€¢(xK.

Thisachievesits maximum vaue&pax = |K| when Q movesin thedirection —i K.
Thesetwo results may be viewed as two facets of the singlecomplex equation

=<

EK=R+iE.

In Chapter 12, having developed the physical concepts of "'flux and "circu-
lation™, we shall return to the complex curvature and see that it has other el egant
propertiesand applications.

X Celestial Mechanics*
1 Central Force Fields

If aparticlep, moving throughspace, isconstantly being pulledtowards(or pushed
away from) afixed point o with aforce that dependsonly on its distancer from
othen wesay that it isin acentral force field and that o is the centred force. No
matter how the forcevarieswithr, itisnot hard to show [exercise] that the orbit
of p will awaysliein aplanethrougho.

Another featureof motionin any central forcefieldisthat theradiusop sweeps
out area at a constant rate A, called the areal speed. A proof of thisis givenin
Ex. 24. If themassof p ismthen [exercise] theangular momentumh of pis2m.A.
Thefact that A is constant is thus a manifestation of the conservation of angular
momentum.

In additiontotheangular momentum, thetotal energy E of the particleremains
constant asit orbits. Henceforth, we shall dwaysusea particleof unit mass. Thus
if theparticle's speedis v thenthekinetic energy contributionhasthedefinitevaue
%vz, while the potentia energy contribution is only defined up to a constant. We
shall restrict ourselvesto force fieldsthat vary as a power of r, and we may then
fix the constant by arbitrarily assigning zero potentia energy to the point where
thefidd vanishes: if theforce grows as a positive power of r, at the origin; if the
force dies away as a negative power of r, at infinity.

2 Two Kinds of Elliptical Orbit

Consider theattractivelinear forcefield in which, by definition, theforcetowards
o is proportional to r. This linear force law is extremely important in physics,
for if aimost any physica system is dightly disturbed from equilibrium then the
restoringforceisprecisaly of thiskind. Hereisasimpleexampleof what wemean;
it will enableyou to experimentally investigatemotionin alinear forcefidd. You
are encouraged to do the following, not merely toimagineit.

Teake a small weight W and suspend it just above a point o of a horizontal
table using severa feet of thread, perhaps attached to the ceiling. If you pull W

S5Here we mean the linear dimensionsof 6 For example, if (5 wereadisc then we could take
its" 5ize" tobeitsradius.
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to the side by just an inch or two then, because the thread islong, W barely rises
above the table's surface and we may idealize this to a movement on the table.
Furthermore, althoughtheforcesactingon W in thisdisplaced positionareactually
gravity and the tension in the thread, the net effect [exercise] is as though o were
magically pulling W towardsit with aforce proportional to r, aswasrequired. To
avoid the possihility of confusion later, we stress that gravity is playing absolutely
no essential role here; it is merely providing one particularly convenient way o
simulating alinear force field.

Now pull W a little bit away from o and give it a gentle flick in a random
direction. You seethat theorbit of W isaclosed curvetraversed again and again—
abeautifully symmetrical oval shape centred at o. But exactly what isthisoval?

It is an ellipse! To demonstrate this, take the tabletop to be C with o asiits
origin. Once again take W to have unit mass, and let itslocation at timet be z(¢).
For simplicity's sake, let the force directed towards the origin equal the distance
|z|. Thedifferential equation governing the motion of W will thereforebez = —z,
the two basic solutions of which are z = e**. These represent counter-rotating
motions of unit speed around the unit circle. [Try launching W so as to produce
these solutions.] The general solution is then obtained as alinear combination of
these motions:

z=Ppet +qe7, (32)

where p and g may, without any real loss of generdlity, be taken as real and
satisfying p > q.

Asisillustrated in [22], the superposition of such circular motions resultsin
elliptical motion with the attracting point at the centre. This becomes clear if we

Figure [22]
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rewrite(32) as
z=acost+ibsint,

wherea = p+q and b = p —q. Each of these numbershasadouble significance:
aishboth the semimajor axis and the point of launch; bis both the semiminor axis
and the speed of launch. Note that thefoci are at £+/a? — b? = +2./pq.

Finally, for future use, let us calculate the constant energy E of a particle
orbitingin thisfield. The potential energy is the work needed to pull the particle
away from the origin out to adistance of r, namely, [exercise] (r%/2). Thus

E= %(v2 +r?).

Asthe particle orbits round the ellipse in [22], we see that this expression dways
equals 3 (a2 T b?).

We now turn to asecond, morefamousexampleof dliptical motioninacentral
force field: the orbits of the planets around the sun. There are two fundamental
differencesbetween this phenomenon and the one above. First, instead of theforce
o attractionincreasing linearly with distance, heretheforceof gravity diesaway as
the square of the distance from the sun. Second, instead of the centre of attraction
being at the centre of the elliptical orbit, here the sunisat one of thefoci.

The ancient Greeks discovered that the ellipse has beautiful mathematical
properties; two thousand years|ater Newton revealed that it has equally beautiful
physical significance. Hediscovered that if, and only® if, theforce field islinear or
inverse-sguare, thenliptical orbitsresult. Inthe Principia Newtonexplicitly drew
attention to this coincidence, calling it "'very remarkable™. As the Nobel physicist
S. Chandrasekhar [1995, p. 287] observed, ""nowhere else in the Principia has
Newton allowed himself a similar expression of surprise."

Weareleft with something of amystery. There appears to be some special con-
nection between thelinear and inverse-squareforce fiel ds, but what could it possi-
bly be? Newton himself was able to find a connection, and we shall use complex
analysisto find another. For more on both these connections, see Arnol’d [1990],
Needham [1993], and Chandrasekhar [1995].

3 Changing the Firstinto the Second

The geometry of complex nhumberswas not yet understood in the time of Newton;
had it been, he would surely have discovered the following surprising fact. If we
apply the mapping z + z* to an origin-centred ellipse, then the image is not
some strange ugly shape, as one might expect, but rather another perfect ellipse;
furthermore, thisellipse automatically hasonefocus at theorigin. See[23]. Before
exploring the implications, let us verify thisfact: squaring (32),

—it)2= 2 12t —i2t

z)—)zzz(pei’—i-qe +q e +2pg.

SNewton assumed that theforce variesasa power of the distance, but it hassince been discov-
ered that theresult is still trueif we drop this requirement.
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Figure[23]

Thefirst two termscorrespond to an origin-centred el lipsewith foci at +-2pq; the
last term therefore trand ates the | eft-hand focusto the origin.

Expressedin dynamical terms, thisgeometric result saysthat whileleaving the
attracting point fixed at the origin, z — z? transforms an orbit of the linear field
into an orbit of theinversesquarefied. However, weareonly in apositionto state
the result in this way because we aready know what the orbitsin the two fields
look like. Is there instead some a priori reason why z +> z2 should map orbits of
thelinearfield to orbits of the gravitationalfield? If therewere such areason then
[23] could be viewed asanovel derivation, or explanation, of theelliptical motion
of planetsabout the sun asfocus.

Thatthereisindeed such areason wasdiscoveredaroundtheturn of thecentury.
Severa peopledeservecreditfor this beautiful result which, at thetimeof writing,
istill not widely known. Apparently K. Bohlin [1911] was thefirst to publishit,
not knowing that E. Kasner [1913] had aready discoveredamore genera resultin
1909. Finally, knowing only of Bohlin’s work, V. I. Arnol’d [1990] rediscovered
Kasner’s general theorem.

Before embarking on the details of the explanation, here (following Need-
ham [1993]) is our plan of attack. In the absence of force a particle will move
in astraight line; bending is therefore the manifestation of force, and this can be
quantified in terms of the curvatureof the orbit. Since the mapping z + 2% is
anaytic, we may use the results of the previous section to find the relationship
between the curvatureof an orbit and the curvatureof theimage orbit produced by
the mapping. This will enable us to find the relationship between the forces that
hold the preimageand imagein their respectiveorbits.

4 The Geometry of Force

Given an orbit and acentredf force, our aimisto find a purely geometricformula
for the magnitude F of the force F that holds the particlein that orbit. Consider
figure [24]. Asillustrated, it is conceptualy very helpful to decompose F into
componentsFr and Fy that are tangential and normal to the orbit, respectively.
The effect of thecomponent Fr isto changethe speed v of p without atering its
course. Theeffect of the component Fy isto bend the orbit of p without altering
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Figure[24]

its speed.

From elementary mechanics we know that if a particle of unit mass movesat
constantspeed v round acircleof radiusp thentheforcedirected towardsthecentre
is (v?/p). Thusif thecurvatureof theorbitisk (asillustrated) then Fy = kv2. If
we call the acute angle between the radius and the normal y, then it follows that
thetotal forceactingon pis

F= Fy secy =« v’secy.

Inordertofully reducethisformulato geometricterms, weneed toexpressvin
geometricterms. Thisismade possibleby theconstancy of theangular momentum
h = 2.A. If we decompose the velocity v into radial and transverse components
v, and v,, then clearly only the latter generates area. More precisdly,h = 24 =
Fvy=rvcosy,so

_ secy
v="h( - ). (33)
Substituting for v in the previousresult, we obtain the desired geometric formula
for theforce: 3
F=w (K sec V). (34)
r

Thisresultisessentialy dueto Newton[1687, Prop. V11]. Observethat the concept
of timehasamost disappearedin thisformula, theonly vestige being the constant
h that specifieshow fast the orbit is traversed.

5 An Explanation

Asz describes an arbitrary orbit, (34) tells us theforce F needed to hold it in that
orbit. Now apply the mappingz — 72, and |et atilde denote aquantity associated
with theimage, e.g., 7 = r2. Theforce F needed to hold theimagein its orhit is
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~ 3~
~ ~p[Ksec’y
Feir (S5,

and we now seek to relate thisto the original force F.
First, tofind ¥, smply put f (z) = z* into (23) and thereby obtain [exercise]

K==

2

‘1rcosy «
(5 +7]
Next, observe that since the ray from 0 to z maps to the ray from 0 to z2, the
conformality of the mapping impliesthat ¥ = y.
Putting these facts into the formula for F, and substituting for the original
speed and force from (33) and (34), we get

F= (E) M (35)

n 72

Evenif Fisasimple power law, generaly this F will not be. However, if and
only if the original force field is linear”, the numerator in the above expression
magically becomes the constant total energy E of the particlein theoriginal fidd:

~\ 2
~ (W E
F=(Z>7—2 ! (36)

Theimage therefore movesin afield that isinverse-square, as wasto be shown.

Hereis afact which may have been bothering you aready. The only gravita-
tional orbits we have managed to explainin thisway aretheéllipses, wherearethe
hyperbolic orbits which we know are also possiblein agravitationa field?In fact
the geometry of z — z2 does explain these, the resolution being that gravitational
orbits arise not only as the images of orbitsin alinear field that is attractive, but
also of orbitsinalinear fieldthat isrepulsive, F = —r. Theorbitsin thisfield are
hyperbolae with centre (i.e., intersection of asymptotes) at the origin, and z + z2
maps these to hyperbolae with onefocus at the origin.

The dynarnical explanation is almost unchanged: the constant total energy of
the particlein the original repulsivelinear fieldis now givenby E = %(v2 -3,
soinserting F = —r in (35) onceagain yields (36). See Needham [1993] for more
on this, aswell asthe general result we are about to state, which may be provedin
exactly the same way as the special case above.

6 The Kasner—Arnol’d Theorem

Thepowerlaws F o r and Fo7? areexamplesof what Arnol’d callsdual force
laws, and both he and Kasner discovered that they constitute just one example of
duality. Hereisthe general result:

THowever, as we shall seein amoment, it could bethe repulsivelinear field F = —r instead
of the attractiveone F = +r.



Analytic Continuation* 247

Associated with each power law F o rA there is precisely one

power law F « 74 that isdual in the sensethat orbitsof the former
are mapped to orbitsof the latter by z > z™, and the relationships
betweenthe forcesand the mapping are:

(A+3)
2
To their result we add the following point of clarification on the role of energy:

(A+3)A+3)=4 and m=

In general, positiveenergy orbitsin either theattractiveor repulsive

field F o r* mapto attractiveorbitsin thedual field, while negative
energy orbits map to repulsive ones. However, if —3 < A < -1
(e.g., gravity)thentheserolesare reversed. Inall cases, zeroenergy
orbitsmap to forcefree rectilinear orbits.

Xl Analytic Continuation*
1 Introduction

Throughout this book we have stressed how functions may be viewed as geometric
entities that need not be expressed (nor even be expressible) in terms of formulae.
Asanillustration of the limitations of formulae, consider

G =14z+22+22+---.

This power series convergesinside the unit circle |z} = 1, and consequently it is
analytic there. Figure [25] shows a grid of little squares inside this circle being
amplitwisted to another such grid lying to the right of the vertical linex = (1/2),
which itself is theimage of the circle. Now thiscircleiscertainly abarrier to the
formula, for G clearly divergesat 1; geometrically, theimage of thecircle extends
to co. However, thecircle is not a barrier to the geometric entity that the formula
is unsuccessfully attempting to describe.
Consider a somewhat different-looking power series centred at —1:

1 z+1 2+ 1)\?
H(z)—2[1+( ) )+( 2 ) + - } .

This seriesis analytic inside a larger circle of convergence |z 1| = 2. Despite
the apparent difference, H(z) maps the previously considered solid grid inside
|z] = 1 to precisely the same grid on theright of x = (1/2) asG did: H = G
inside |z| = 1. But now the grid may be extended to the dotted one lying outside
]zl =1, and H amplitwistsit to the dotted grid lying to the left of x = (1/2). We
say that H isan analyticcontinuationof G to thelarger disc. An obviousquestion
iswhether H istheonly analytic continuation of G to thisregion. Aswe hope[25]
makes palpable, the rigidity imposed by being locally an amplitwist does indeed
force the mapping to grow in a unique way.
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SINGULARITY

Figure [25]

The object of thisfinal section will be to makethisrigidity clearer, and alsoto
describe one method (dueto Schwarz) of explicitly finding the mapping in regions
beyond its original definition. Before doing this, however, we will complete our
discussion of [25].

Thefiguremakesit plainthat H isno moretheend of thelinethan G was: it too
can be continued. But if wecling to power seriesthen the scope of our description
of themapping that underliesboth G and H will be strictly limited. Thisisbecause
such series only convergeinsidediscs, and if wetry to expand any disc thenit will
eventualy hit the singularity at z = 1 and then be unable to go round it. Thus
any power series will necessarily miss out at least half of the potential domain of
the mapping. On the other hand, as you may have aready noticed, the Maobius
transformation 1/(1 — z) isanalytic everywhereexcept z = 1, and it agrees with
both G and H withintheir circles of convergence; it thus constitutes the complete
analytic continuation of the mapping. [We encourage you to use thisfact to check
the details of the figure.] The simplicity of this example is perhaps miseading.
Usually one cannot hope to capture the entire geometric mapping within asingle
closed expression such as 1/(1 — z).

When one stares at afigurelike [25] one starts to sense therigid growth of the
mapping due to the analytic requirement that an expanding mesh of tiny squares
must map to another such mesh. It also becomes clear how the mapping itself is
oblivioustothedifferent formul ae with which wetry to describeit. Indeed we have
seen that the two circles—such formidable and impenetrable barriersto the power
series—have only a dight significance for the mapping itself: both hit z = 1, so
both images extend to co.
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2 Rigidity
The essential character of analytic rigidity is captured in thefollowing result:

If even an arbitrarily small segment d curve is crushed to a point
by an analytic mapping, then its entire domain will be collapsed
down to that point.

Thetheory of integration to be developed in thefollowing chapters will providea
convincing explanation of thisfact. For the present, though, we can obtain agood
measure of insight into its truth by extending our previous discussion of critical
points (page 204). Thismay givetheillusion of dispensing withintegration theory,
but aswe pointed out at thetime, that discussion al so had to draw on future results.
We now recap the relevant facts concerning critical points.

The amplification vanishesat acritical point p, leading to theimpression that
an infinitesimal disc centred there is crushed down to a point. However, thisis
merely a 'trick of the light' due to low magnification of the image plane. If the
order of pis(m— 1), sothat themappinglocally resemblesz™, thenaninfinitesimal
disc at p of radius € will be mapped [m-fold] onto a vastly smaller disc of radius
€™. In terms of the microscope analogy this means that we must usethe L,, lens
to see that the image isn't a perfect point. The greater the order, the greater the
degree of crushing at p, and the greater the power of thefirst lens that will reved
the nonpointlike image.

Now observe that, calculationally speaking, the role of theincreasingly high-
powered lenses that fail to resolve the image is taken over by the increasingly
high-order derivativesthat vanish at p:

L1, ..., Lyu—1 show nothing, but image visible with L,,
f(p) =0,f(p) =0,..., F™D(p) =0,butf™(p) #0

In short, the higher the derivative that vanishes at p, the greater the degree of
crushing a p.

We now apply thisinsight to the given situation. Let s be the (possibly) tiny
segment that is crushed by f (z). The amplification of f at a point of s may be
read off by looking in any direction. By choosing tolook along s wefind that the
amplification vanishesat each point of s. The entire segment i s therefore made up
of critical pointsfor which f* = 0. Now think of f asan analytic mappinginits
ownright, just aswedidin [18]. Wehavejust seen that this mapping automatically
possessesthe same property as f did: it crushes s to a point. We conclude that its
derivativemust also vanishon s. Clearly thereisno end to this; all the derivatives
of f must vanish, and, correspondingly, infinitesimal discs centred on s must be
totally crushed.

This means that there is at least a sheathlike region surrounding s which is
completely crushed by f. But if we take a new curve lying in this region, the
wholeline of thought may be repeated to deduce that f must crush a till larger
region. The collapse of the function therefore proceeds outwards (at the speed of
thought!) to the entire domain.

f(z)~z'"<=>{
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3 Unigueness

Suppose that A(z) and B(z) are both analytic functions defined on a region that
happens to be the same size and shape as California. Suppose, further, that A
and B both happen to have the same effect on atiny piece of curve, say afalen
eyelash lying in a San Francisco street. This tiny measure of agreement instantly
forces them into total agreement, even hundreds of miles away in Los Angeles!
For (A — B) isanalytic throughout California, and sinceit crushes the eyelash to
0, it must do the same to the entire state.

We can express this dlightly differently. If we arbitrarily specify the image
points of asmall piece of curves, then in genera there will not exist an analytic
function that sends s to thisimage. However, the previous paragraph assures us
that if we can find such afunction on adomain including s, thenit is unique.

Thisisthe" compelling reason we referred to earlier in connection with the
uniquenessof the generalization of ¢* to complex values. For if an analytic gener-
aization E(z) exists, then we seethat it will be uniquely determined by the values
of ¢* onevenasmall pieceof thereal axis. Of course knowing thisdoes not helpin
theleast tofind out what E(z) actualy is. The valueof our previousderivationsof
explicit expressions for E(z) therefore remains undiminished. On the other hand,
the new knowledgeis not without practical implications. Consider thesethree very
different-looking expressions:

. Z\" X i 2 3
nll)rgo(l+n) , €e*(cosy+isiny), 1+z4+2z°/21+27/31+ - .
They are al analytic, and they all agree with ¢* when z is real. Thus, without
further calculation, we know they must all beequal to each other, for they can only
be different ways of expressing the unique analytic continuation of eX.

New and important aspects of uniqueness emerge when we consider domains
that merely overlap, rather than coincide. Let g(z) and k(z) be analytic functions
defined on the sets P and Q shownin [26a]. If they agree on even asmall segment
s in PN Q then they will agree throughout PN Q. If weimagine that weinitialy
only know about g on P, then we may think of h asdescribing the same geometric
mapping asg but with thedomain P extended to encompass Q. Weare encouraged
in this view by the fact that g uniquely determines this analytic continuation. For
suppose h* were another continuation of g into Q. On s we would then have
h* = g = h, but thisforces h* = h throughout their common domain Q.

The functions G(z) and H(z) of the introduction furnish a concrete example
of the above, where P happens to lie wholly within Q. The function 1/(1 — 2)
then constitutes the analytic continuation of H to therest of the plane.

Just as g wascontinued from P to Q, so we may continue the processalong a
wholechain of overlapping sets P, Q, R, ..., S, asin [26b]. We thereby obtain a
unique analytic continuation of g to S. But what if we chose an alternative route
suchasP, Q, R, ..., S? Onceagain thecontinuation of g to Sisunique, but there
isabsolutely no reason why thisshould agree with the first continuation. Theidea
of analytic continuation has thus led very naturally to theidea of multifunctions.
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Figure [26]

Consider [27]. In P we can define a single-valued branch of logz given by
f(x=Inr +i0, where—7 <0 < 7. The figure shows how 1 mapsto O, and
how P maps to the surrounding region f (P). If wedefine g(z) = Inr +i® (with
—73<0=< 3—2’1)thensinceg =T on PN Q, it must be theana ytic continuation of
f to Q. Likewiseitscontinuationto (~3 isg(z) =Inr-+i ®, where—%” <0 <7z
for example. In theregion surrounding —1 we now havetwo unique continuations
of one and the same function f . But despite this common ancestry, they clearly

disagree with each other: g(—1) =in, whileg(—1) = —in.

Figure [27]

4 Preservation of Identities

In this subsection wewill show that any identities that hold for real functions must
continue to hold for their analytic generalizationsto C (assuming such exist). This
iseasiest to explain through examples.

First we consider an important example dealing with power series. Suppose
that the real function f (x) can be represented by a convergent power series

f@ =a+bx+cx?+dx>+---.

We therefore know that the complex series
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F@)=a+bz+c?+dz> +---.

isconvergentand henceanalytic. But since F(x) = f (x) onthereal axis, itfollows
that Fisthe uniqueanalytic continuation of f to complex values. In other words,
the transition from f to its analytic continuation does not change the formula
(series).

For our next example we consider a real identity involvingtwo variables:
e* . e¥ = 1Y, It will help to appreciate the argument if you can be temporarily
strickenwith amnesia, so that the complex function e and its associated geometry
suddenly mean nothing to you. Suppose that an analytic continuation of &* to
complex valuesexists, and cal it E(z). We can now show that E must be subject
to precisely the same law, and without even knowing what E is!

Let F; (z) = E(¢) - E(2), and let G, (2) = E(¢ T 2). First note that for fixed
¢ both F(z) and G(z) are analytic functions of z. Now suppose that ¢ isreal, so
that E(¢) = €. If z now moves on a segment of the real axis then it follows
from thereal identity that F(z) = G(z); but from our recent results we know this
impliesthat they are equal everywhere. If we hold z fixed instead, then analogous
reasoning yields F; = G, and we conclude that

E@)-E(x)=E( +2)

for complex valuesof both ¢ and z. It should be clear that this reasoning extends
to any identity, even oneinvolving more than two variables.

5 Analytic Continuation via Reflections

Quitedistinct from questionsof existence and uniquenessisthe problem of actually
finding an analytic continuation. The above ideas and results are mute on this
issue, although it could reasonably be claimed that the persistence of identitiesis
a practical help. We next explain a Symmetry Principle (due to Schwarz) which
enables oneto find acontinuation easily and explicitly, abeit under rather special
circumstances.

We firgt describe how it is possible to use two reflections to construct a new
analytic function from an old one. Suppose an anaytic function f is defined on
aregion P, theimage of whichis Q (see [28]). Let P and Q be the reflections
of these regions across the real axis. We can now use f to construct an analytic
mapping from P to Q, namely

'@ =7@.

The figure explains why f * is conformal, and hence analytic. All three stages,
amraw— f@ — f(2), preserve the magnitude of an angle at a; the first
reflection reversesthe sense, then f preserves the reversed sense, and finally the
second reflection undoes the damage, restoring the angle to pristine condition at
f*(a).

In general this mapping f * will not be acontinuation of f in any sense, rather
itisan entirely new mapping. This should become clear if you imagine moving
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0]

Figure [28]

P downwardsuntil some of it crossesthe real axis. P and P now overlap so that
P N P congtitutes acommon domainfor f and f *, but we hope you can see that
thereis no reason for them to agree with each other. Thisis clearer till if wetake
an example:

exercise

f = (rotation of ¢) f* = (rotation of —¢).
Althoughit is generally not a continuation of f, this new mapping f * (together
with its soon to be introduced generdization to circles) is very useful in itsown
right. In Chapter 12 wewill show that it isintimately connected with the so-called
method d imagesof electrostatics and fluid dynamics.

We now turn to the special circumstance under which f * istheanalytic contin-
uation of f . Supposethat f isitself thecomplex generalization of area function,
and let P have apart L of its boundary along the real axis, asin [29]. Sincef is
real on L, the image set Q will also border on the rea axis. Unlike the general
situation previoudly considered, f and f * will now automatically agree on their

Figure[29]
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common domain PN P = L, for if z isreal then

ff@Q=f@=1fc=r@.

Wecannowthinkoff andf * asbeingtwo partsof asingleanalytic mapping F
on PUP. Indeed, by considering what happensto thetwo halvesof aninfinitesimal
disc centred on L, it's clear that F is analytic there, for the image is another
infinitessmal disc. [What happensif weare at acritical point?] Once again, notice
how different thisisfrom the case of real functions, for we could easily join two
pieces of graph together with a kink at the join; their values would then agree,
whiletheir derivativeswould not.

Of courseif f isalready definedin P (aswell as P) then f * must simply repro-
duce the mapping that's already there. For example, the formulafor the complex
generalization sinz is valid everywhere, so it should be subject to the symmetry
f *(z) = £ (2).Indeed if we follow the three steps of a > f* (a)then we do find
thet ~a e—ia e—ia _ eia ]

arar> 5 A — =sna.

We can rephrase our result in a more symmetric and slightly generalized [ex-
ercise] form. If f maps aline-segment L (not necessarily real) to another line-
segment L, then we can analytically continue from one side of L to the other by
using the fact that points symmetricin L map to points symmetricin L.

This sounds very reminiscent of the conservation of symmetry by Mobius
transformations that we discovered in Chapter 3, and indeed by fusing these two
symmetry principles we can obtain asignificant generalization of our result. Sup-
posethat instead of mapping aparticular® linetoaline, f sendsapart C of acircle
to a part C of another circle. We can reduce this to the previous case by using
two Mobius transformationsto send C — L, and C — L. We deduce that points
symmetricin C map to points symmetricin C.

As a mixed example, imagine that f maps part of the unit circle to part of
thereal axis. If f isonly known inside the circle then the above result tells us
[exercise] that there is an analytic continuation to the exterior given by

fl@=f (i) .
Z

The complete analytic function Fisthen definedtobef insidethecircle, and f
outside the circle. By construction, this function sends symmetric pairs of points
to conjugateimages: F'(z) = F(z).

Using what is now known as Schwarzianreflection,H.A. Schwarz [1870] was
ableto generalize his Reflection Principle beyond lines and circlesto more general

8We stress” particular”, becauseif a general line were sent to a line then the mapping could
only belinear. Similarly,in thenew case, if ageneral cir cleweresent toacirclethen themapping
would haveto be a Mobiustransfor mation.
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curves. Weend this chapter with adescription of thissimple, yet fascinating, idea.
Thekey isto use an analytic function to fake conjugation.

We know that reflecting every point across the real axis (z — z) isnot an
analytic function. However, given asufficiently smooth® curve K , it is possibleto
find an analytic function Sk (z) that selectively sends just the points of K to their
conjugates:

zeK Skx)=7.

Davis and Pollak [1958] christened Sk the Schwarz function of K. We can now
definethe Schwarzian reflection of z across K to beZ = Rk (z), where

Rk (z) =Sk (@) .

To see why thisis a good idea, consider [30]. First note that pointson K are

Figure [30]
unaffected, in accord with the ordinary notion of reflection, e.g.,

i=Sk@=@=q.
Next, observe that since Sk is analytic, an infinitesimal disc centred at g isam-

plitwisted (@t reflected) to a disc centred at ?. Furthermore, by noting how ¢p is
mapped to gp, it follows that on K

amplification=1 and twist=-2¢ — S’K:e—i2¢,

9The curve must in fact be "anaytic”. On this point see Davis [1974], which also contains
many interesting applicationsof the Schwarz function. A more advanced work is Shapiro [1992].
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where ¢ istheanglethat thetangent to K makeswiththehorizontal. Itis now clear
from the symmetry of the figure that if the point a is on the infinitesimal circle,
then@ isindeedits reflection across the tangent of K. Thus, at least very closeto
K, z = 7 is areasonable generalization of the reflection concept. Furthermore,
reflectingin K twice yields the identity mapping, as it should. For since Rk is
anticonformal, R o R isconformal, i.e., anaytic. But sincethisfunction maps
each pointof K toitself, and sincean analytic functionisdetermined by itsvalues
onacurve, Rg o Rx must be theidentity mapping.

Weleaveit to theexercisesfor you to show that if K isalineor acirclethenz
isjust the ordinary reflection, evenif Zisfar from K. For example, theunit circle
C may be written aszz = |z|?> = 1, so that on C we havez = (1/z). Thusits
SchwarzfunctionisSc(z) = (1/z), and soR¢ (z) = (1/z), whichisjustinversion
inC.

Let us give a less triviad example, namely, reflection in the ellipse E with
equation (x/a)2 *+ (y/b)? = 1. Writingx = Lz +2) andy = 2 (z — 2), then
solving for Z in terms of z, wefind [exercise] that

= 1 2 2y, _ 2 2 _ 42
SE(z)—az_bz[(a + b)Yz —2abvVz2+ b2 —a ]
Witha =2 and b = 1, for example, Schwarzian reflectionis given by
%E(z)=%[52—4 22—3],

which is illustrated in [31]. We encourage you to verify this figure with your
computer, as well as to examine theeffect of R g on other shapes.
Withthe proper concept of reflectionin hand, wemay now generalizetheabove

Figure{31]
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method of analytic continuation across lines and circles to more general curves.
Let f bean analytic mapping definedin aregion P bordering on acurvel thatis
smooth enough to possess a Schwarz function, and let L = f (L) be theimage of
L under f. Much asin figures[28] and [29], we may now analytically continue f

acrossL by demanding that pointsthat are symmetricin L map to points that are
symmetricin L. Thus[draw apicture!] thecontinuation f ¥ of f to P = %, (P) is

fHr=Rpo foRy.

By the same argument asin [28], thisisindeed analyticin 2, for itisthe composi-
tion of one conformal mapping with two anticonformal mappings. Also, f =
on L. The complete analytic function F given by f in P and f* in P is then
subject to the symmetry F* = F. Thisis Schwarz's Symmetry Principle.

Our previous resultsarejust special cases of this construction. For example, if
L and L are segments of the real linethen R1.(z) = Ry(z) =z, s0f t=f* as
before. Similarly, if L isan arc of the unit circle (sothat %.(z2) = 1/7) and Lisa
segment of thereal line (so that ;> = 7), then f t=f1, asbefore
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Xl Exercises

1 Show that if f = u Fiv isanalytic then (Vu) - (Vv) = 0, where V is the
"gradient operator' of vector calculus. Explain this geometrically.

2 Show that the real and imaginary parts of an analytic function are harmonic,
i.e., they both automatically satisfy Laplace's equation:

AP =0,

where A (whichis often instead written V) isdefinedby A = 82 + 82 andis
called the Laplacian. [In Chapter 12 we will see that this equation represents a
crucial link between analytic functions and physics.]

3 Usethe previous exercise (not calculation) to show that each of the following
is"*harmonic™.
(i) e* cosy.
(i) e**= cos2xy.
(iii) In|f(z)|, where f(z) isanalytic.

4 What is the most general function u = ax2+ bxy + ¢ y? that isthe real part
of an analyticfunction? Construct thisanalytic function, and expressit in terms
of z.

5 Which of thefollowing are analytic?
(i) e (cosx Tisinx).
(ii) cosx —isiny.
(iii) r3+i36.
(iv) [r e oose] i (@+r cos0)

6 SolvethePolar CR equations giventhat 9y v = 0. Express your answer interms
of afamiliar function, and interpret everything you have done geometrically.

7 Use the Cartesian CR equations to show that the only analytic mapping that
sends parallel lines to parallel lines is the linear mapping. [Hint: Begin with
the case of horizontal lines being mapped to horizontal lines. How does this
trandate into ‘Equationspeak’? Now solve CR]

8 Calculate, then draw on a picture, a possible location for log(1 + i). Draw a
small shapeat 1 +i. Usethe amplitwist of log(z) to draw itsimage. Verify this
using your computer.

9 Derivethequotient rulein an analogous way to the product rule (see page 226).
[Hint: Multiply top and bottom of (A/B) by (b — £g').]

10 Consider the polynomia P(z) = (z — a1)(z — a2) ... (z — an).
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(i) Show that the critical pointsof P(z) are the solutions of

1 1 1
+ -+
i—m I—a Z—ap

=0.

(ii) LetK beacirclewithcentre p. By considering the conjugate of theequation
in (i), deduce that p isacritical point if and only if it isthe centre of mass
of theinverted points Zk (a;).

(iii) Show that the equation in (i) isequivalent to

Z—ai Z—a Z—ay

lz—ail?  |z—a2l? lz—anl?

and by interpreting the LHS as a (positively) weighted sum of the vectors
from z to theroots of P(z), deduce Lucas’ Theorem: The critical points d
apolynomial in C must all lie within the convex hull d its zeros. Thisisa
complex generalization of Rolle's Theorem in ordinary calculus. [Hint: Use
thefact that (32) on page 104 isstill valideven if the masses are not equal.]

11 Use(e?)’ = € to show that thederivativesof all the trig functions are given by
thefamiliar rules of real anaysis.

12 Provided it is properly interpreted, show that (z#) = wz*~ ! isstill true even
if wiscomplex.

13 (i) If aisanarbitrary constant, show that the series

a@—1) , al@a—1@-2) ;3
X 4+ 3 7+

convergesinside the unit circle.
(i) Showthat (1t 2)f =af.
(iii) Deducethat [(1+2)~*f) =0.
(iv) Concludethat f (z) = (1 z)°.

f@=1+az+

14 Aswe pointed out in Chapter 3, stereographic projection has a very practica
use in drawing a conforma map of the world. Once we have this map we can
goontogenerate further conformal maps, smply by applying different analytic
functionstoit. One particularly useful one was discovered (using other means)
by Gerhard Mercator in 1569. We can describe it (though he could not have) as
the result of applying log(z) to the stereographic map.

(i) Look up both astereographic map and aMercator mapin an atlas, and make
sure you can relate the changes in shape you see to your understanding of
the complex logarithm.
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(i) Imagineplottingastraight-linecourse on aMercator map and then actually
travelling it on the high seas. Show that as you sail, the reading of your
compass never changes.

15 (i) By noting that the unit tangent (in the counterclockwise direction) to an
origin-centredcirclecan bewritten asé = i(z/|z|), show that formula(23)
for the curvatureof theimage of such acirclecan be writtenas

1+Re[%ﬁ]
lz fl

K=

(if) What should thisformulayieldif f (z) =logz? Check that it does.

(iii) What should thisformulayield if f (z) = z™? Check that it does. What
is the significance of the negative value of ¥ when m is negative? [Hint:
Which way does the velocity complex number of the image rotate as z
travelscounterclockwiseround theoriginal circle?]

16 Asillustratedbelow,aregioniscalled convex if al of itisvisiblefromanarbitrary
vantage point inside. Let an analytic mapping f act on an origin-centredcircle
C to produceasimpleimagecurve f (C), theinterior of whichisconvex.

(i) Fromtheformulaof Ex. 15, deducethat if f mapstheinterior of C tothe
interior of f (C), then thefollowing inequality holdsat all pointsz of C:

Re [7‘1{"] > 1.

4

(ii) What is the analogous inequality when f maps the interior of C to the
exterior of f (C). [Hint:Ex. 4, p. 211.]

CONVEX NON-CONVEX

17 Let Sheadirected line-segment throughapoint p = x +iy.

(i) Letf (z) = e?. Without calculation, decide which direction of Syieldsan
image f (S) having vanishing curvatureat f (p).
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(ii) Thecomplex curvature X must thereforepoint in oneof the two orthogonal
directions. Which? By considering the image of S when it pointsin this
direction, deduce the valueof ||, and thereby concludethat X (p) = ie™".

(iii) Use(28) to verify thisformula

(iv) Repeat asmuch aspossibleof theaboveanalysisinthecasest (z) = log(z)
and f (z) = z™, wherem is apositiveinteger. [In neither of thesecases will
you be able to seethe exact vaue of |[K(p)|]

(v) According to the geometric reasoning in Ex. 18, p. 213, the amplification

of aMobiustransformation M (z) = % is constant on each circle centred

a —(d/c). Thus the complex curvature of M should be tangent to these
concentric circles. Verify thisby caculating .
(vi) Useacomputer to verify figure[21] for all four mappings above.

18 Let two curves Cy and C, emerge from a point p in the same direction. Two
examples are illustrated below. Although in both casesthe angle at p is zero,

C

‘ 1 .
v o

thereis a great temptation to say that the curveson theright meet at a smaller
"angle” than those on the left. Any putative definition of such an "angle” ©
should (presumably) be conformally invariant: if the curves are mapped to Cy
and C> by amapping f that preservesordinary angles(i.e., ananalyticmapping),
then the new ""angle”” ® should equal the old "angle’ ®.

(i) Newton[1670] attempted to definesuch a ® asthedifferenceof thecurva
turesof C; and C; a p: © = k1 — k2. Use (30) to show that this definition
is not quite conformally invariant: ® = ®/|f'(p) .

(if) Consider aninfinitesimaldisc D (radius ¢) centred at p. Let ¢; and ¢; be
the centres of curvatureof C; and C,, and let D be the difference between
the angular sizes of D as seen from¢; and ¢. Show that D = €@. If a
conformal mapping f is applied to Cy, C3, and D, deducethat D = V.
[Of coursethisisnot what we were after: D is (a) infinitesimal, and (b) not
defined by the curvesaone. Thediscovery of atrue conformal invariant had
to await Kasner [1912]. SeeEx. 10, p. 571]
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19 In more advanced work on Mobius transformations (e.g., Nehari [1952] and
Beardon [1984]), animportant roleisplayed by theso-called Schwarzianderiva
tive{f (2), z} of an anaytic function f (z) with respect to z:

_ fl/ ! 1 f// 2
vo0=(%) -3 (%)

(i) Show that the Schwarzian derivativemay also be written as

_ f/// 3 f/l 2
{(f@,z} = 72 (?) :

(i) Show that{az t b, z} =0={(1/2), z}.

@iii) Let f and g be andytic functions, and writew = f (z). Show that the
Schwarzian derivativeof the composite function g[f (z)] = g[w] is given
by thefollowing " chainrule™:

{gw), 2} = [f @1 {g(w), w} + {f (), 2).

(iv) Use the previous two parts to show that all Mobius transformations have
vanishing Schwarzian derivative. [Hint: Recall that the mappingsin part (ii)
generate (viacomposition) the set of all Mobius transformations.] Remark:
Ex. 19, p. 424 shows that the converseis aso true: If {f (z),z} = 0 then
f = Mobius. Thus Mabius transformations are completely characterized
by their vanishing Schwarzian derivative.

(v) Usethe previoustwo partsto show that the Schwarzian derivativeis" invari-
ant under Mobiustransformations'™ ,in thefollowing sense: if M isaMobius
transformation, and f isanalytic, then

MLf(2)), 2} = {f(2), 2}.

20 Think of thereal axisasrepresenting timet, andlet amoving particlew = f (t)
(where f (2) isanalytic) trace an orbit curve C. The velocity isthen v = w =

f'®.
(i) Use (23) to show that the curvatureof C is

= _ ImGo/v)
[v]

(if) Arguethat this result does not in fact depend on C being produced by an
analytic mapping, but isinstead true of any motion for which the velocity v
and acceleration v are well-defined.
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(iii) Show that the formula may be rewritten as

Im (3 )
lv]3

K=

(iv) Deducethat it may also be written vectoriadly as

|[vxv|
Ivi3

K=

By considering C to bethe' osculatingplane” (see Hilbert {1932]) of acurve
in 3-dimensional space, we seethat thisformula holdsin that case al so.

21 In 3-dimensional space, let (X, Y, Z) be the coordinates of a moving particle.
If X =a coswt, Y = ashwt, Z = bt, then the path traced by the particleis
ahdlix.

(i) Giveinterpretationsfor the numbersa, w, and b.

(i) If a and @ remain fixed, what does the helix look like in the two limiting
cases of b becoming very small or very large? What if a and b remain fixed
while @ becomes very small or very large?

(ili) What limiting valueswould you anticipatefor the curvature of the helix for
each of thelimiting cases considered in (ii)?
(iv) UseEx. 20(iv) to show that the curvature of the helix is
~ a w2
TR rao
and use thisto confirm your hunchesin (iii).

22 Continuing from Ex. 20, take f (z) to be a general Mobius transformation:

at+b
ct+d’

w=f()=
where A = (ad — bc) # 0. Show that the curvature of this pathis

[(2)m (2

in agreement with Ex. 18, p. 186. The fact that thisis constant provides a new
proof that theimageisacircle, for only circles have constant curvature.

’

23 As another continuation of Ex. 20, let us see how the Schwarzian derivative
{f (2), z} of Ex. 19 arises rather naturally in the context of curvature.
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(i) Show that
dk
dr | 11
[This formula was discovered by G. Pick. For elegant applications, see
Beardon [1987]. For another connection between curvature and Schwarzian
derivatives, see Ex. 28(iii).]

(i) UseEx 19, part (iv) to deduce that if f (z) isaMaobius transformation then
E/c = (0. Why isthisresult geometrically obvious?

Im{f(z), 7.

24 Let the position at timet of amoving particlein C bez(z) = r(t) @,

(i) Show that the acceleration of the particleis
7= [f — réz] & + [2f6‘ + ré] ie'?

(il) What aretheradial and transverse components of the acceleration?

(iii) If the particleis moving in a central force field, with the centre of force
at the origin, deduce that the areal speed A = (r26/2) is constant. For a
beautiful geometric proof of this fact,see Newton [1687, p. 40].

25 Sometimes the circle of convergence of a power seriesis so densely packed
with singularities that it becomes a genuine barrier for the geometric mapping,
beyond which it cannot be continued. This is called a natural boundary. An
example of thisisfurnished by

f@=z+2 4+ +8+%+.-,

which convergesinside the unit circle. Show that every point of |z| = 1iseither
asingularity itself, or else has singularities arbitrarily near toit. [Hint: What is
f (1)? Now notethat f(z) = z + f(z%), and deduce that f is singular when
7> = 1. Conti nuing in this manner, show that the 2”-th roots of unity are all
singular.]

26 Unlikeinversioninacircle, show that Schwarzian reflectionin an ellipse E (see
figure[31]) does not interchange theinterior and the exterior. Indeed, how does
R (2) behavefor large vauesof |z|?

27 (i) If L isaline passing through thereal point X, and making an angle a with
the horizontal, then show that its Schwarz functionis

S1(x) =ze 7+ X (I - e7%),

(i) If Cisacirclewithcentre p and radiusr, show that its Schwarz functionis
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Sc@ =P+

(iii) Verify theclaimthatin boththesecasesz — %(z) istheordinary reflection,
evenif z isfar fromthecurve.

28 Let a beapoint ona(directed) curve K having Schwarz function S(z).
(i) Show that thecurvaturedf K atais
i S+(a)

Y23 @

K

i

where¢ istheanglein [30], and the dot denotes differentiation with respect
todistancelaong K (in the given sense). Deduce that

k| = 18" /2|.

[Hints: SinceSisanalytic,soisS . ThustocdculateS” = dS /dz weneed
only find the change dS’ in S produced by an infinitesimal movement dz
of z, taken inany onedirectiond our choosing. At a let uschoosedz along
K, so that dz = ¢'%dl. The corresponding changein S is then determined
solely by theshapedf K, for thevaluesof S on K aregivenby S = e~2%¢.]

(i) Deducethat thecentreof curvaturedf X atais (a ¥ 2[S'(a)/S"(a)1}.

(iii) Show thattherateof changeof thecurvatureof K isgivenby the" Schwarzian
derivative'" [Ex. 19] of the Schwarz function:
i

kK= 55 {S(), z}.

29 Check theresult of Ex. 28 (i) by applyingit to the results of Ex. 27.

30 Let a be a point on a curve K having Schwarz function S(z). By the still
unproven result on theinfinitedifferentiability of analytic functions, S(z) may
be expandedinto a Taylor seriesin the vicinity of a:

S@=8@+S8@z—a)+ 48" @)z-a + 18" @z —a)®+ .

(i) Show that the Schwarz function of the tangent lineto K at a is given by
the first two terms of the series above. This reconfirms something we saw
in [30]: very closeto a, reflectionin the tangent is agood approximationto
Schwarzian reflection.

(i) It is natural to suspect that a better approximation to R x (z) would bein-
versionin thecircleaof curvature(call it C) of K ata. Let's verify this. Use
Ex. 28(ii) and Ex. 27(ii) to find S¢, and show that it may be writtenas
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SC(Z)=5+?+T —2—S,(Z—¢1)

25 2«8 [ i ]—1
whereit is understood that the derivativesare all evaluated at a. Show that
thefirst threetermsin the binomial expansion of S¢ agree with those of S,
but that they generally differ thereafter. [Hint: You will need the fact that
(S'/8"y = —(8")2/S" on K. Provethis]

(iii) If the curvature ¢ of K were constant then K would be identical to its
circle of curvature. The fact that S and S¢ disagree beyond the third term
thus reflects the fact that k does change. One is thus led to guess that the
faster k changes, the greater the discrepancy between Rg and inversionin
C. Continuing from the last part, use Ex. 28(iii) to verify this hunch in the
following precise form:

Sc@) — 8@) ~ (i /3)[S' Pk (z — a)’.

31 Let C and D beintersecting circles. Let us say that" D is symmetricin C” if
reflection (inversion) in C maps D into itself. We know this occursif and only
if D isorthogonal to C, so

D issymmetricin C <= Cissymmetricin D.

Briefly, we may simply say that "C and D are symmetric™. Let's see wha
happens if we generalize C and D to intersecting arcs possessing Schwarz
functions, and generalize inversion to Schwarzian reflection.

(i) Explainwhy thestatement” D issymmetricin C” isthesameas'if the point
d lieson D then Rp [Re (d)] = Re(d). Must the arcs be orthogonal ?

(i) If Dissymmetricin C, deduce that the mappings (ip o fic) and (R o Rp)
areegud at pointsof D.

(iif) Using thefact that these two mappings are analytic (why?), deduce that C
must also be symmetricin D. Thus, aswith circles, we may simply say that
C and D are symmetric.
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Non-Euclidean Geometry*

| Introduction
1 The Parallel Axiom

We have previously alluded to the remarkabl e discovery (madein thelast century)
that thereexist geometries other than Euclid's. In thisoptional chapter webegin to
explorethe beautiful connectionsthat exist between these so-called non-Euclidean
geometriesand the complex numbers. Since this Introduction summarizes many
o the key ideas and results, you may wish to read it even if you cannot afford the
timeto read the entire chapter.

One way to approach Euclidean geometry isto begin with definitionsof such
thingsas" points™ and "'lines", together with afew assumptions (axioms) concern-
ing their properties. From there one goes on, using nothing but logic, to deduce
further properties of these objects that are necessary consequences of the initial
axioms. Thisis the path followed in Euclid's famous book, The Elements, which
was published around 300 Bc.

Of course Euclidean geometry did not suddenly spring into existenceasafully
formedlogical system of axioms and theorems. It wasinstead devel opedgradually
as an idealized description of physical measurements performed on physically
constructed lines, triangles, circles, etc. Though the ancients did not think of it
in this way, Euclidean geometry is thus not simply mathematics, it is a physical
theory of space—afantastically accurate theory of space.

Euclidean geometry is not, however, a perfect theory: modern experiments
have revealed extremely small discrepancies between the predictionsof Euclidean
geometry and the measured geometric propertiesof figuresconstructedin physical
space. These departuresfrom Euclidean geometry are now known to be governed,
in a precise mathematical way, by the distribution of matter and energy in space.
Thisis the essence of arevolutionary theory of gravity (General Relativity) dis-
covered by Einsteinin 1915.

It turns out that the larger the figures examined, the larger the deviationsfrom
the predictions of Euclidean geometry. However, it’s important to realize just how
small these deviations typically are for figures of reasonable size. For example,
suppose we measure the circumference of a circle having aradius of one meter.
Even if our measuring device were capable of detecting a discrepancy the size of
asingle atom of matter, no deviation from Euclidean geometry would be found!
Littlewonder, then, that for two thousand years mathematicians were seduced into
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believing that Euclidean geometry wasthe only logically possible geometry.

Itisamarvelloustributetothe power of human mathematical thought that non-
Euclidean geometry wasdiscovered afull century beforeEinsteinfound thatit wes
needed to describe gravity. Tolocate the seeds of this mathematical discovery, let
us return to ancient Greece.

Euclid began with just five axioms, the first four of which never aroused con-
troversy. Thefirst axiom, for example, merely statesthat there existsa uniqueline
passing through any two given points. However, the status of the fifth axiom (the
so-calledparallel axiom)waslessclear, and it becamethesubject of investigations
that ultimately led to the discovery of non-Euclidean geometry:

Paralld Axiom. Throughany point p not on the line L thereexists

precisely oneline L' that does not meet L. M

Figure [1a] illustrates the parallel axiom, and it also explains why this axiom
cannot be experimentally tested, at least as stated. Astheline M rotates towards
L', theintersection point g movesfurther and further away along L. Our geometric
intuitionisbased on figuresdrawn in afinite portion of the plane, but to verify that
L' never meetsL, we need an infinite plane. We can certainly try to imagine what
an infinite plane would be like, but we have no first hand experience to back up
our hunches.

Theseare very modern doubts we are expressing. Historically, mathematicians
fervently believed in (1), so much so that they thought it must be a logicaly
necessary property of straight lines. But in that case they ought to be able to prove
it outright, instead of merely assuming it as Euclid had done.

Many attempts were made to deduce (1) from thefirst four axioms, one of the
most penetrating being that of Girolamo Saccheri in 1733. Hisidea wasto show
that if (1) were not true, then a contradiction would necessarily arise. He divided
the denial of (1) into two alternatives:

Spherical Axiom. Thereisno linethrough pthatdoesnotmeetL. (2

or

Hyperbolic Axiom. There are at least two lines through p that do 3)
not meet L.

" [a] )

L

Figure[1]



Introduction 269

Our naming of (2) will become clear shortly, but the use of ""hyperbolic' in con-
nection with (3) is obscure, though standard.

In thecaseof (2), Saccheri wasindeed ableto obtain acontradiction, provided
"lines" are assumed to haveinfinite length. If we drop this requirement, then we
obtainanon-Euclidean geometry called spherical geometry. Thisisthe subject of
the following section.

Inthecasedf (3), Saccheri and later mathematicianswere ableto derive very
strange conclusions, but they were not able to find a contradiction. As we now
know, this is because (3) yields another viable non-Euclidean geometry, called
hyperbolic geometry. Of the two non-Euclidean geometries obtained from (2)
and (3), hyperbolic geometry is by far the more intriguing and important: it is
an essential tool in many areas of contemporary research. Furthermore, thereis
even asense (to be discussed later) in which hyperbolic geometry subsumes both
Euclidean and spherical geometry.

2 Some Facts from Non-Euclidean Geometry

Let's take our first look at how these new geometriesdiffer from Euclid's. A very
familiar theorem of Euclidean geometry statesthat in any triangle T,

(Anglesumof T) = .

Asindicated in [Ib], this result is actually equivaent to the paralld axiom. It
followsthat in non-Euclidean geometry the angle sum of atriangle differsfrom
7. To measurethis difference, weintroduce the so-called angular excess E:

E(T) = (Anglesumof T) — =.

Euclidean geometry is thus characterized by the vanishingof E(T).

Notethat, unlike the original formulation of the parallel axiom, this statement
can bechecked against experiment: construct atriangle, measureitsangles, and see
if they add up to 7. Gauss was thefirst person to ever conceive of the possibility
that physical space might not be Euclidean, and he even attempted the above
experiment, using three mountain tops as the vertices of his triangle, and using
light raysfor itsedges. Within the accuracy permitted by his equipment, he found
E = 0. Quite correctly, Gauss did not conclude that physical space is definitely
Euclideanin structure, but rather that if it isnot Euclidean then itsdeviationfrom
Euclidean geometry is extremely small.

Let us return from physics to mathematics. Using purelogic to work out the
consequences of (2) and (3), both Gauss and Johann Heinrich Lambert indepen-
dently discovered that the two non-Euclidean geometries departed from Euclid's
in opposite ways:.

e In spherical geometry theanglesumisgreater than z: E > 0.
¢ In hyperbolic geometry theangle sumislessthan n: E < O.

Furthermore, they discovered the striking fact that E(T') is completely determined
by the size of thetriangle. Moreprecisaly, E(T) issimply proportional to thearea
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A(T) of thetriangle T:

E(T) =k A(T),

where k is a congtant that is positive in spherical geometry, and @)

negativein hyperbolic geometry.

Several interesting points can be made in connection with this result:

Although there are no qualitative differences between them, there are never-
thelessinfinitely many different spherical geometries, depending on thevalue
of thepositiveconstant k. Likewise, each negativevaueof k yieldsadifferent
hyperbolic geometry.

Since the angle sum of a triangle cannot be negative, E > —r. Thusin
hyperbolicgeometry (k < 0) notrianglecan havean areagreater than | (st /k)|.

In non-Euclidean geometry, similar triangles do not exist! Thisisbecause (4)
tellsus that two triangles of different size cannot have the same angles.

Closely related to the previous point, in non-Euclidean geometry thereexists
an absol ute unit of length. For exampl e, in spherical geometry wecould define
it to betheside of theequilateral triangle having angle sum 1.01z. Similarly,
in hyperbolic geometry we could define it to be the side of the equilateral
triangle having angle sum 0.997.

A somewhat more natural way of defining the absolute unit of length isin
termsof the constant k. Since theradian measure of angleisdefined asaratio
of lengths, E is a pure number. On the other hand, the area A has units o
(length)?. It follows that k has units of 1/(length)? and so it can be written
as follows in terms of a length R: k = +(1/R?) in spherical geometry;
k = —(1/R?) in hyperbolic geometry. Later we will see that this length R
can be given avery intuitive interpretation.

The smaller the triangle, the harder it is to distinguish it from a Euclidean
triangle: only when the linear dimensions are a significant fraction of R will
the difference become obvious. Thisis why Gauss chose the biggest triangle
he could in his experiment. Einstein's theory explains why Gauss' triangle
was nevertheless much too small: the weak gravitational field in the space
surrounding the earth corresponds to a microscopic value of k and hence to
an enormous value of R. It would have been a different story if Gauss had
been able to perform his experiment in the vicinity of a black hole!

3 Geometry on a Curved Surface

We began this book by discussing how the complex numbers met with enormous
initial resistance, and how they werefinaly accepted only after they weregivena
concreteinter pretation,viathe complex plane. The story of non-Euclidean geom-
etry isremarkably similar.
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Gauss never published hisrevol utionary ideas on non-Euclidean geometry, and
the two men who are usually credited for their independent discovery of hyper-
bolic geometry are Janos Bolyai (1832) and Nikolai Lobachevsky (1829). Indeed,
hyperbolic geometry is frequently also called Lobachevskian geometry, perhaps
because L obachevsky's investigationswent somewhat deeper than Bolyai's. How-
ever, in the decades that followed their discoveries, Bolyai's work wascompletely
ignored, and Lobachevsky's met only with vicious attacks.

The decisive figurein the acceptance of non-Euclidean geometry was Euge-
nio Beltrami. In 1868 he discovered that hyperbolic geometry could be given a
concrete interpretation, via' differential geometry"'. For our purposes, differential
geometry is the study of curved surfaces by means of ideas from calculus. What
Beltrami discovered was that there exists a surface (the so-called pseudosphere
shown in [2]) such that figures drawn on it automatically obey the rules of hy-

Figure[2]

perbolic geometry!. Psychologically, Beltrarni's pseudosphere was to hyperbolic
geometry as the complex plane had been to the theory of complex numbers.

Toexplain what wemean by this, let usfirstdiscusshow we may ' do geometry"'
on amore general surface, such as the surface of the strange looking vegetable?
shown in [3]. The idea of doing geometry on such a surface is essentially dueto
Gauss and (in greater generality) to Riemann.

Thefirst thing we must do is to replace the concept of a straight line with that
of ageodesic. Just asaline-segment in aflat plane may be defined as the shortest
route between two points, so ageodesi ¢ segment connecting two pointson acurved
surface may be defined (provisionally) as the shortest connecting route within the

IThis oversimplificationdoes not do justiceto Beltrami's accomplishments. L ater in thischap-
ter we shall see what Beltrami really did!

2European readers may think this an imaginary vegetable, but Americans can buy it in the
supermarket.
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surface. For example, if you werean antlivingon thesurfacein [3], and you wanted
to travel froma to b as quickly as possible, then you would follow theillustrated
geodesi c segment. Thefigureal so showsthegeodesi ¢ segment connecting another
pair of points,¢c and d.

Hereisasimpleway you can actualy construct such geodesi c segments: take
a thread and dtretch it tightly over the surface to connect the points a and b.
Provided that the thread can slide around on the surface easily, the tension in the
thread ensures that the resulting path is as short as possible. Note that in the case
o cd, we mustimaginethat the thread runs over theinsideof the surface. In order
to deal with all possible pairs of pointsin a uniform way, it is therefore best to
imagine the surface as made up of two thinly separated layers, with the thread
trapped between them.

Figure[3]

Itis now obvioushow we should define distancein thisgeometry: the distance
betweena and b is the length of the geodesic segment connecting them. Figure
[3] shows how we can then define, for example, acircle of radius» and centre p
asthelocus of pointsat distance r from p. To construct this circle we may take
a piece of thread of length r, hold one end fixed at p, then (keeping the thread
taught) drag the other end round on the surface.

Given three points on the surface, we may join them with geodesics to form
atriangle; [3] shows two such triangles, 71 and T;. Now look at the anglesin T7.
Clearly E(T1) > 0, like atrianglein spherical geometry, whileE(T2) < 0, likea
trianglein hyperbolic geometry.
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4 Intrinsic versus Extrinsic Geometry

Clearlyitisthecurvatureof thesurfacethat causesE(T7) and E(T3) to differ from
their Euclidean value E = 0. However, it cannot be the preci se shape of the surface
in space that isinvolved here. To see this, imagine that from the vegetablein [3]
we were to cut out a patch of the skin containing 7. Suppose that this patchis
made of fairly stiff materia that does not stretch if we try to bend it alittle. [As
it happens, the skin of this vegetableis actualy like thisl] We can now gently
bend the patch intoinfinitely many dightly different shapes: its so-called extrinsic
geometry has been changed by our stretch-free bending. For example, the curves
in space making up the edges of T; are no longer the same shape as before.

Ontheother hand, if you wereanintelligentantliving onthispatch, nogeomet-
ric experiment you could perform within the surface would reveal that any change
had taken place whatsoever. We say that the intrinsic geometry has not changed.
For example, the curvesinto which the edges of 71 have been deformed are still
the shortest routes on the surface. Correspondingly, the value of E is unaffected
by stretch-freebending: E is governed by intrinsic (not extrinsic) curvature.

To highlight thisfact, consider [4]. On theleftisaflat pieceof paper on which

Figure[4]

we havedrawnatriangle T withangles (ir/2), (x/6), (zr/3). Of course E(T) = 0.

Clearly we can bend such aflat pieceof paper intoeither of thetwo (extrinsicaly)
curved surfaceson theright3. However, intrinsically thesesurfaceshaveundergone
no changeat dl —they are both asflat as a pancake! Theillustrated triangleson

these surfaces (into which T is carried by our stretch-free bending of the paper)
areidentical to theonesthat intelligent ants would construct using geodesics, and

in both cases E = 0: geometry on these surfacesis Euclidean.

5 Gaussian Curvature

In 1827 Gausspublishedabeautiful analysisof theintrinsicand extrinsic geometry
of surfaces, in which he revealed that remarkable connections exist between the
two. Herewewill s mply statesomeof hismostimportant conclusions,intheirmost
general form. For explanations of these general results we refer you to works on
differential geometry; seetherecommendationsat theend of thischapter. However,

3Can theoneon thefar right be obtained by bendingarectangle?
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only special cases of the general results are needed to understand non-Euclidean
geometry, and these will be separately verified in the course of this chapter.

For asurfacesuch as[3], itisclear that some partsare more curved than others.
Furthermore, the kind of bending also variesfrom place to place. To quantify the
amount (and type) of bending of the surface at a point p, Gauss introduced a
quantity k(p). This function k(p), whose precise definition will be givenin a
moment, is called the Gaussian curvature®. The greater the magnitude of k(p),
the more curved the surfaceis at p. The sign of k(p) tells us qualitatively what
the surfaceislikein the immediate neighbourhood of p. See[5]. If k(p) < 0 then
the neighbourhood of p resembles a saddle: it bends upwardsin some directions,
and downwardsin others. If k(p) > 0 thenit bendsthe same way in al directions,
like a piece of asphere.

k(p) <0 k(p) >0 k(p) =0

Figure[5]

Aswe will now start to explain, it is no accident that we have used the same
symbol to represent Gaussian curvature as we earlier used for the constant occur-
ring in (4) —they are the same thing!

Gauss originaly defined k(p) as follows. Let IT be a plane containing the
normal vector n tothe surfaceat p, andlet « bethe (signed) curvatureat p of the
curve in which TT intersects the surface. The sign of kK depends on whether the
centre of curvatureisin the direction n or —n. The so-called principal curvatures
are the minimum K min and the maximum & ¢ valuesof « as IT rotates about
n. [Incidentally, Euler had previously made the important discovery that these
principa curvatures occur in two perpendicular directions.] Gauss defined k as
the product of the principal curvatures:

= Kmin Kmax-

Notethat this definitionisin termsof the precise shape of the surfacein space
(extrinsic geometry). However, Gauss [1827] went on to make the astonishing
discovery that k(p) actually measures the intrinsic curvature of the surface, that
is, k isinvariant under bending! Gauss wasjustifiably proud of this result, calling
it Theorema Egregium (remarkable theorem). As an example of the result, you

4Other namesareintrinsic curvature, total curvature, or just plain curvature.



Introduction 275

may visually convinceyourself that k = 0 everywhereon each of theintrinsically
flat surfacesin [4].

Theintrinsic significanceof k isexhibited in thefoll owing fundamental result:
If A isan infinitesimal triangle of area d A located at the point p, then

E(A) = k(p) dA. &)

Since E and dA are defined by the intrinsic geometry, soisk = (E/dA). Once
again, we refer you to works on differential geometry for a proof of (5).

It follows from (5) [see Ex. 1] that the angular excess of a non-infinitesimal
triangle T isobtained by adding up (i.e., integrating) the Gaussian curvature over
theinterior of T:

E(T) = j fT K(p)dA. ©)

As Beltrami recognized, and as we now explain, this lovely result of differential
geometry brings us very close to a concrete interpretation of the non-Euclidean
geometries.

6 Surfaces of Constant Curvature

Consider a surface such that k(p) has the same valuek at every point p; we call
thisasurface of constant curvature. For example, a planeis a surface of constant
curvature k = 0, as are the other surfacesin [4]; a sphere is an example (not the
only one) of asurface of constant positive curvature; and the pseudospherein [2]
isan example (not the only one) of a surface of constant negativecurvature.

In the case of a surface of constant curvature (and only in this case) we find
that (6) takes the form,

ET) =k /f dA =k A(T).
T

But thisisidentical to the fundamental formula (4) of non-Euclidean geometry!
Thus, as Beltrami realized,

Euclidean, spherical, and hyperbolic geometry canall beinterpreted
concretely astheintrinsic geometry of surfaces of constant vanish-
ing, positive, or negative cuwature.

Figure [6] illustrates this using the simplest surfaces of each type. To obtain an
added bonus, recall that we previously associated an absol ute unit of length R with
anon-Euclidean geometry by writing k = +(1/R?). The bonusisthat thislength
R now takes on vivid meaning: in spherical geometry R is simply the radius of
the sphere, whilein hyperbolic geometry it isthe radius of the circular base of the
pseudosphere (called the radius of the pseudosphere). These two interpretations
will be justifiedlater.

The requirement of constant curvature can be understood moreintuitively by
reconsidering the discussion at the end of Chapter 1. There we saw that a central
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k=0 k>0

Euclidean Spherical HyboI ic
Figure[6]

ideain Euclidean geometry is that of a group d motions of the plane: one-to-one
mappingsthat preservethe distancebetween al pairsof points. For example, two
figures are congruent if and only if thereexists amotion that carriesthefirstinto
coincidencewiththesecond. In orderthat thisbasi c concept of equality beavailable
in non-Euclideangeometry, werequirethat our surfaceadmits an analogousgroup
of motions. If we takeone of thetriangleson the surfacein [3], it's clear that we
cannot dideit to anew location and still haveit fit the surface snugly, becausethe
way in which the surfaceis curved a the new location isdifferent: variationin the
curvatureis the obstruction to motion.

This intuitive explanation can be clarified by appealing to (5). First, though,
we wish to eliminate a possible confusion. The triangle on the flat planein [6]
can clearly be did about and rotated freely, but what about the triangles on the
(extrinsically) curved surfacesin [4]? After all, these surfacesareintrinsically flat,
and so Beltrami would have us believethey are therefore just as good asthe plane
for doing Euclidean geometry. If we imagine these triangles as completely rigid
then it's clear that if we try to move them to another location on the surface, they
will no longer fit snugly against the surface. But if the triangleis instead cut out
of apiecedf ordinary (bendable but unstretchable) paper, then it can be did about
and rotated freely, alwaysfitting perfectly against the surface. Thisis the kind of
motion we are concerned with.

In order to clarify the connection between constant curvatureand theexistence
o motions, consider an infinitesimal (bendabl e but unstretchable) trianglelocated
at p. If itsangular excessis Eand itsareaisdA, then (5) tells us that the Gaussian
curvatureof thesurfaceat p isgiven by k(p) = (E/dA). Now supposethat there
exists a motion that carries this triangle to an arbitrary point q on the surface.
We may have to bend the triangle to make it fit against the surface at q, but
since we are not alowed to dtretch it, the values of E and dA do not dter. Thus
k(g) = (E/dA) = k(p), and the surface has constant curvature.

Finally,letusreturntothespecificmodel sof spherica and hyperbolicgeometry
shownin [6]. Clearly thetriangle on the sphere can bedid about and rotated fredly.
In fact here, as on the plane, no bending is needed at all, because the sphere not
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only has constant intrinsic curvature, it also has constant extrinsic curvature.

What about hyperbolic geometry on the pseudosphere? It is certainly much
less obvious, but the fact [to be proved later] that the pseudosphere has constant
curvature guarantees that a bendable but unstretchable triangle can be dlid about
and rotated freely, alwaysfitting perfectly snugly against the surface. Exercise 15
shows how you can build your own pseudosphere; once built, you can verify this
surprising claim experimentally.

7 The Connection with Mobius Transformations

As we established in Chapter 1, if the Euclidean plane is identified with C then
its motions (and similarities) are represented by the particularly ssimple Maobius
transformations of theformM (z) = az+b. Oneof the principal miracleswewish
toexplainin thischapter isthat the motions of spherical and hyperbolic geometry
are also Mobius transformations!

The most general (direct) motion of the sphere is a rotation about its centre.
Stereographic projection onto C yields a conforma map of the sphere, and the
rotations of the sphere thus become complex functions acting on this map. As
we showed algebraically in Chapter 3, they are the Mobius transformations of the
form

Thiswasfirst discovered by Gauss, around 1819. In the next section we will red-
erive thisresultinamoreilluminating way, and wewill al soexplore theconnection
with Hamilton's " quaternions™.

Following the same pattern, it isal so possible to construct conformal maps(in
C) of the pseudosphere, thereby transforming its motionsinto complex functions.
Oneof themost convenient of these conformal mapsisconstructed in the unit disc.
Themotionsof hyperbolic geometry then turn out to bethe M obius automorphisms
of this circular map:

M@ =2+
bz+a

This beautiful discovery was made by Henri Poincaré [1882].

It seems magical enough that the motions of al three of the two-dimensional
geometriesarerepresented by special kindsof Mobiustransformations, but there's
more! In Chapter 3 we saw that the general Mobius transformation

_az+b

M
@ cz+d

hasdeep significancefor physics: it corresponds to the most general Lorentztrans-
formation of space-time. Might it also have significancein non-Euclideangeome-
try? Aswewill explain at theend of thischapter, Poincaré [ 1883] madethestartling
discovery that it represents the most general (direct) motion of three-dimensional
hyperbolic space!
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Il Spherical Geometry
1 The Angular Excess of a Spherical Triangle

The geodesics on the sphere are the great circles, that is the intersections of the
spherewith planesthroughitscentre. Thusif you werean ant living on the sphere,
these great circles are what you would call "'lines”.

Figure [7a] illustrates a general triangle T on a sphere of radius R obtained
by joining three points using such "lines". Without appealing to (6), which is a
deep result in differential geometry, let us show directly that the angular excess
E(T) obeysthelaw (4), and that the constant k isindeed the Gaussian curvature,
k = (1/R?). The elegant argument that follows is usually attributed to Euler, but
it wasin fact discovered by Thomas Harriot in 1603.

Prolongingthe sidesof T dividesthe surface of the sphereinto eight triangles,
thefour triangles labelled T, T, Tg, T, each being paired with a congruent an-
tipodal triangle. Thisis clearer in [7b]. Since the area of the sphere is 4w R2, we
deduce that

(a]

Figure[7]
A(T) + A(Ty) + A(Tg) + A(T,) = 2 R%. @)

On the other hand, itisclear in [7b] that T and T, together form a wedge whose
areais (a/2m) timesthe area of the sphere:

A(T) +A(T,) = 2aR>

Similarly,

2BR?,
2yR2.

A(T) + A(Tp)
A(T) + A(Ty)

Adding theselast three equations, wefind that

3A(T) + A(Ty) + A(Tg) + A(Ty) = 2(a + B + ¥)R>. 8)
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Finally, subtracting (7) from (8), we get
A(T)=(a+B8+ty—m)R%
In other words,
E(T) =kA(T), where k= (1/R?), ©))

as was to be shown.

2 Motions of the Sphere: Spatial Rotations and Reflections

Inorder to understand the motions(i.e., one-to-one, distance-preserving mappings)
of the sphere, we must first clarify theidea of " distance” . If two pointsa and b are
not antipodal then there existsa unique line (great circle) L passing through them,
and a and b divide L into two arcs of unequal length. The "'distance™ between
the points can now be defined as the length of the shorter arc. But if the points
are antipodal then every line through a automatically passes through b, and the
distance between the pointsisdefinedtobethelength 7 R of any of thesemicircular
arcs connecting them.

We can now generalize the Euclidean arguments given in the final section of
Chapter 1. There we saw that a motion of the planeis uniquely determined by the
images &, b, ¢ of any three points a, b, ¢ not on aline: theimage of P isthe
unigue point P* whose distancesfrom a, b, ¢ equal the distances of P from a,
b, c. Weleaveit to you to check that this result (and the reason for it) is till true
on the sphere.

Onthesphere, asontheplane, wemay consistently attributeasenseto angles—
by convention an angle is positive if it is counterclockwise when viewed from
outside the sphere. As happened in the plane, this leads to a division of spher-
ical motions into two types: direct (i.e., conformal) motions, and opposite (i.e.,
anticonformal) motions.

Asin the plane, the simplest opposite motion of the sphere is reflection iy,
inaline L. This may be thought of as the transformation induced on the sphere
by reflection iy of spacein the plane IT containing L. See[8a], whichillustrates
how the positiveangle 6 in theillustrated spherical triangleisreversed by Ry.

If you were an intelligent ant living on the sphere, the above construction of
R, astherestriction of R to the sphere would be meaninglessto you. However,
itisnot hard to re-express R, inintrinsically spherical terms. See [8b]. To reflect
ain L, firstdraw the uniqueline M through a that cuts L at right angles®. If d is
the distance we must crawl along M froma toreach L, then %, (a) isthe point we
reach after crawling a further distance of d. Of course M actually intersectsL in
two antipodal points, but we will arrive at the same %1, (a) irrespective of which
of these two pointsis used in the construction.

SIf L is thought of as the equator, then when a is one of the poles there are infinitely many
M's—pick any one youlike.



280 Non-Euclidean Geometry*

Figure [8]

We now turn to direct motions. The obvious example of a direct motionisa
rotationof thesphereabout anaxisV passingthroughitscentre. L essobviousisthe
fact (to be proved shortly) that theserotations aretheonly direct motions. To avoid
ambiguity in thedescription of suchrotations,weintroducethefollowingstandard
convention. First note that specifying theaxis V is equivalent to specifying either
of itsantipodal intersection points (say p and q) with the sphere. Now pick oneof
these, say p. Supposethat theeffect of therotationonasmall line-segmentissuing
from p isapositiverotation of 8—recall that thismeanscounterclockwise asseen

from outside the sphere. In this case the motion can be unambiguoudy described
asa'"'postiverotation of 8 about p"; see [9b]. We will write this rotation ast,.
Check for yourself that RY, = R .

In Chapter 1 wesaw that every direct motion of the plane wasthe composition
of two reflections: arotation if thelinesintersected; atrandation if thelineswere
paralel. We will now see that a similar phenomenon occurs on the sphere, but
becauseevery pair of linesintersect, the composition of two reflectionsisaways
arotation—the sphere has no motions analogousto trand ations.

Figure[9a] illustratesthecomposition (R, oRy,) of tworeflectionsof space.
Here the planes IT; and I, intersectin a line with direction vector v, and the
angle from IT; to I, is (6/2). Redtricting attention to any one of the shaded
planesorthogonal to v, we see that the transformationinduced by (11, o %) is
By, o Ry, ), wherel; and I arethelinesin which Iy and Iz intersect the plane.
Since (R, o Ry,) isarotation of the plane through 8 about the intersection point
of Iy and I, itis now clear that (R, o R,) isarotation of space through angle
6 about the axis V.

Figure [9b] trand atesthisideainto spherical terms. If IT; and I, passthrough
the centre of the sphere, and the lines (great circles) in which they intersect the
sphereare L1 and L3, then

0
Re, o R, =R,

In other words,
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[b]

Figure[9]
A rotation Rf, of the sphere about a point p through angle O may

be expressed as the composition of reflectionsin any two spherical (10)
lines that pass through p and contain the angle (6/2).

Notethat thereis precisely oneline P that is mapped into itself by Rf,. If we
orient Pin agreement with therotation (asillustrated) then we obtain aone-to-one
correspondence between oriented lines and points: Piscalled the polar lineof p,
and piscaledthe pole of P.

Inthecasedf the planeweused theanalogueof (10) to show that thecomposi-
tion of two rotations about different points was equivaent (in generd) toasingle
rotation about athird point; exceptionally, however, tworotationscould resultin a
trandation. Asyou might guess, in the case of the sphere there are no exceptions:

The composition of any two rotations of the sphere is equivalent to
a single rotation. Thusthe set of all rotations of the sphere formsa (11)

group.

Figure [10a] shows how thismay be established using exactly the same argument
that was used in the plane. In order to find the net effect of (Rf; o Rf,), draw the
linesL, M, N in theillustrated manner. Then

Ry o Ry = By o %p) o (Ray o Rp) = Ry o Ry = RY.

This beautiful geometric method of composing spatial rotations was discovered
by Olinde Rodriguesin 1840.

Note that in the plane the total amount of rotation produced by rotationsdf 6
and ¢ issimply thesum (O + ¢), but on the sphere we have a more complicated
rule. If A istheareacf thewhitespherical triangle, and k = (1/R?) istheGaussian
curvatureof the sphere, then theformulafor the angular excessimpliesthat
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[a]

Figure [10]

Y =6+¢ — KA.

We may now complete the classification of the motions of the sphere. Aswe
have remarked, there is precisely one motion of the sphere that carries a given
spherical triangle abc to a given congruent image triangle. Figure [10b] helpsto
refinethis result. Using the same logic as was used in the plane, we see [exercise]
that

There is exactly onedirect motion M (and exactly one opposite mo-
tion M ) that maps a given line-segment ab to another line-segment
@'’ of equal length. Furthermore, M = (R, o M), whereL isthe
linethroughd and b'.

12)

Figure [10b] also shows how we may construct M . Draw the line P through
aanda’', andlet pbeitspole. With the appropriate value of 6, it's clear that ’R‘I’,
will carry the segment ab along P to a segment of equal length emanating from
a'; findly, an appropriate rotation Rf, about & will carry this segment into a’#’.
ThusM = (Rfl’, o Rf,), which isequivalent to asingle rotation by virtue of (11).
Combining this fact with (12), we deduce that

Every direct motion of the sphereis a rotation, and every opposite 13
motion isthe compositionof a rotationand a reflection. (13)

As asimple test of this result (and your grasp of it) consider the antipodal
mapping that sends every point on the sphere to itsantipodal point. Clearly thisis
amotion, but how does it accord with the above result?
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3 A Conformal Map of the Sphere

The sphere merely providesone particularly simple model of what we havecalled
spherical geometry. AsMinding (1839) discovered, any surfaceof constant® Gaus-
sian curvature k = (1/R?) has exactly the same intrinsic geometry as a sphere of
radius R. To seethat such surfacesexist, take aPing-Pong ball and cutitin half: as
you gently flex oneof the hemispheres you obtain infinitely many surfaces whose
intrinsic geometry isidentical to the origina sphere.

Figure[11]illustrates that evenif werestrict attention just to surfacesof revo-
[ution, the sphere is not the only one of constant positive curvature. Though they
hardly look like spheres, an intelligent ant living on either of these surfaces would
never know that he wasn't living on a sphere. Well, that's almost true: eventually
he might discover points at which the surface is not smooth, or else he might run
into an edge. In 1899 H. Liebmann proved that if a surface of constant positive
curvature does not suffer from these defects then it can only be a sphere.

Figure[11]

The sphere aso has the advantage of making it obvious that itsintrinsic ge-
ometry admits a group of motions: in [11] it's certainly not clear that figurescan
be freely moved about and rotated on the surface without stretching them. Never-
theless, the above discussion shows that the actual shape of asurfacein spaceisa
distraction, and it would be better to have amore abstract model that captured the
essence of all possible surfaces having the same intrinsic geometry.

By the" essence" we mean knowledge of the distance between any two points,
for this and this alone determines the intrinsic geometry. In fact—and thisis a
fundamental insight of differential geometry —it is sufficient to havearulefor the
infinitesimal distance between neighbouring points. Given this, we may determine
thelength of any curveasaninfinitesum i.e., integral) of theinfinitesimal segments
into which it may be divided. Consequently, we may also identify the "'lines” of

S1f thecurvatureisnot constant, two surfacescan haveequal curvatureat correspondingpoints
and yet have different intrinsic geometry.
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the geometry as shortest routes from one point to another, and we can likewise
[exercise] determineangles.

This leads to the following strategy for capturing the essence of any curved
surface S (not necessarily one of constant curvature). To avoid the distraction of
the shape of the surfacein space, we draw a map (in the sense of a geographical
alas) of Son aflat piece of paper. That is we set up a one-to-one correspondence
between pointsz on S and points z on the plane, which we will think of as the
complex plane.

Now consider the distanced s separating two neighbouring pointsz and g on
S. In the map, these points will be represented by z and q = z + dz, separated
by (Euclidean) distanceds = |dz|. Once we have arulefor calculating the actua
separationd s on S from the apparent separationdsin themap, then (in principle)
we know everything thereis to know about theintrinsicgeometry of S.

Therulegivingds in termsof dsiscalled the metric. In general d's depends
on thedirection of dz aswell asitslength ds: writingdz = € ds,

ds = Az, ) ds. (14)

According to thisformula, A(z, ¢) is the amount by which we must expand the
apparent separationds in the map—Ilocated at z, and in thedirection ¢—to obtain
the true separation d s on the surface S.

Wewill now carry out the abovestrategy for thesphere. It followsfrom (9) that
it isimpossible [exercise] to draw a map of the sphere that faithfully represents
every aspect of itsintrinsic geometry. How we choose to draw our map therefore
depends on which features we wish to faithfully represent. For example, if we
want lines (great circles) on the sphere to be represented by straight linesin the
map, then we may employ the so-called central projection, in which points are
projected from the centre of the sphere onto one of its tangent planes. Thisyields
the so-called projective map or projective model of the sphere. See[12]. Here, the
pricethat we pay for preservingtheconcept of linesisthat anglesare not faithfully
represented: the angle at which two curves meet on the sphereis not (in genera)

Figure[12]
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the angle at which they meet on the map.

For most purposes it is much better to sacrifice straight lines in favour of
preserving angles, thereby obtaining a conformal map of the surface. In terms of
(14), amapisconformal if and only if the expansion factor A does not depend on
the direction ¢ of theinfinitesimal vector dz emanating from z:

ds = A(z)ds. (15)

[Recall that we established this fact in Chapter 4.] The great advantage of such
amap is that an infinitesimal shape on the surface is represented in the map by
a similar shape that differsfrom the original only in size: theoneon S isjust A
times bigger.

In the case of the sphere we already know of a simple method of construct-
ing aconformal map, namely, via stereographic projection. For smplicity's sake,
henceforthwe shall take the sphere to have unit radiusso that it may beidentified
with the Riemann sphere £ of Chapter 3. Unlike [12], the"'lines" of this confor-
mal map do not appear as straight lines. In fact it's not too hard to see [exercise]
that great circles on X are mapped to circlesin C that intersect the unit circle at
opposite points.

Formula (15) may be paraphrased as saying that a map is conformal if in-
finitesimal circleson S are represented in the map by infinitesimal circles (rather
than ellipses). Of course stereographic projection satisfiesthis requirement since
it preservescircles of al sizes. Figure [13a] illustrates this with an infinitesimal
circle of radius 45 on X being mapped to an infinitesimal circle of radius ds in
C. To complete the stereographic map we must find its associated metric function
A —tha istheratio of thetwo radii in {13a].

Consider the vertical cross section of [13a] shownin [13b], and recall that we
showed in Chapter 3 [see p. 142] that stereographic projection is a special case of
inversion:

If K is the sphere of radius +/2 centred at N, then stereographic
projectionisthe restrictionto C or X of inversionin K.

Next, consider (6) on p. 126, which describes the effect of inversion on the sepa-
ration of two points. By taking thelimit in which the two points coal esce, we may

! {
(FF=Ads) K!
; /

Figure [13]
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apply thisresult to [13b] to obtain [exercise]
ds=—=ds.
[Nz]?

Thiscan also be obtained more directly, without using (6), by [exercise] choosing
ds parallel to C. Finally, applying Pythagoras' Theorem to the triangle Nz 0, we

obtain
2

— ds.
1+z2 "

Thisflat conforma map with metric (16) is the desired abstract depiction of
all possible surfaces of constant Gaussian curvature k = +1.

ds = (16)

4 Spatial Rotations as Mobius Transformations

Quitegenerally, supposethat Sisasurfaceof constant Gaussian curvature (so that
it possesses a group of motions) and suppose we have drawn a conformal map of
Swith metric (15). Any motion of S will induce a corresponding transformation
of thismap in C. Since direct motions of the curved surface are conformal, the
conformality of the map implies that theinduced complex functions must also be
conformal and hence analytic. Purely in terms of C, we may thereforeidentify a
function f (z) asamotioniif it isanaytic and it ' preservesthe metric™ (15). That
is, suppose that the analytic function z + 7 = f (z) sends two infinitesimally
separated points z and (z + dz) to Z and (Z + dZ). Then f (2) is a motion if
and only if the image separation ds = |d 7| is related to the original separation
ds = |dz} by
A(Z)dT = A(z)ds.

[Likewise, opposite mations of S correspond to the anticonformal mappings of C
that satisfy this equation.] Since d7 = f’(z) dz, thisis equivalent to demanding
that f satisfy the following differential equation:

/ _ A(2)
@ = 3o

Returning to the particular case S = X, and to the particular conforma map
obtained by stereographic projection, thedirect motionsof all possible surfacesof
constant Gaussian curvaturek = +1 becomethe set of anal ytic complex functions
that satisfy

1+ f@@PF
1+ |zf?

In principle, we could find these complex functions without ever leaving C. How-
ever, it issimpler and moreilluminating to return to the motions of X, described
by (10) and (13). When we apply stereographic projection to these motions, what
complex functions areinduced in C?

The first step is clearly to find the complex function induced by a reflection
M of T inaline L. Consider [14a], which shows a new intrinsic method of

fl@= an



Spherical Geometry 287

Figure [14]

constructing the reflection %7(z) of a poi ntzon %, namely [exercisg], as the
second intersection point of any two circles centred on L and passing through
7. Note that these two circles are orthogonal to L. Figure [14b] shows what this
construction looks like in the stereographic map. Since stereographic projection
preserves circles and angles, the two circles orthogonal to L and passing through
Z are mapped to two circles orthogonal to L and passing through z. The second
intersection point of these circlesisthusthereflectionZy (z) of zinL! To sum up,

Rejection of T inalineinducesrejection (inversion)aof C inthe (18)
stereographicimage of that line.

[For adifferent proof of (18), one that is perhaps even more natural than the one
above, see Ex. 2.] Asan important special case, note that if Listhei intersection of
% with the vertical plane through the real axis, then reflection of % in L induces
complex conjugation, Z — Z.

Now let's find the complex functions corresponding to rotations of X. Figure
[15] illustrates a rotation RA of T through angle v about the point @. Let b be
the antipodal point to @, so that b = —(1/a) [see (22), p. 148]. These pointsa
and b lie on the axis of the rotation and remain fixed:; correspondingly, a and b
will be the fixed points of the induced transformation of C. Furthermore, it is
clear geometricaly that the effect of the induced transformation on an infinites-
imal neighbourhood of a is a rotation about a [exercise], and, by virtue of our
conventions, the rotation angleis negative .

According to (10),

Y _ e o m
R~ =%y oRp,
where L, and L, are any two lines passing through @ (and hence also through

b) such that the angle between them is (y//2). Since stereographic projection
preserves circles and angles, theimagesin C of theselines will betwocirclesL
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Figure[15]

and L, passingthrough thefixed pointsa and b, and containing angle (1/2) there.
It followsfrom (18) that the transformation R f,/’ induced by the rotation R?"’ is

RY =T1,01p,.

Thus Ra'/’ isaMobius transformation! See[16], whichillustratesarotationof ¢ =
(7 /3). Referringback to (46) on p. 173, and recalling that the" multiplier" describes
the local effect of a Mobiustransformation in the immediate neighbourhood of a
fixed point, we havefound that

A rotation R,a'/i of X stereographically induces an dliptic Mobius

transformation RZ’ of C. Thefixed points of RZ’ area and —(1/a),
and the multiplier m associated with a ism = e~#¥.

A straightforward matrix calculation [see Ex. 4] based on (41), p. 166, yields
thefollowing explicit formulafor the matrix of R :,” :

e V/Dia2 4 ¢~/ 2i asin(y/2)
[R¥]= ‘ . .9
didsin(/2) e~ WD) 4 W/

Note that thisis in agreement with (38), p. 162: rotations of 3 induce Mobius
transformationsof theform
Az+ B
RY(z) = ———. 20
a @ —Bz+ A 0)
By virtueof (13), thisformularepresentsthe most general direct motion of . We
have aready noted that z — Zz corresponds to areflection of =, and it follows



Spherical Geometry 289

Figure[16]
[exercisg] that the most genera opposite motion is represented by a function of

theform

( AZ+B )
> 1.
—-BZ+ A

Figure[10b] providedavery € egant geometric method of composingrotations
of space. The aboveanalysis now opensthe way to an equaly elegant method of
computing the net rotation produced by (R% o Rai) All we need do iscompose

the corresponding Mobiustransformations:
[ReorY] =[R2 [RY].

An otherwise tricky problem has been reduced to multiplying 2 x 2 matrices!

In practice, rotationsarefrequently expressedin termsaof aunit vector v point-
ingalongtheaxisof rotation, with @ at itstip. However, (19) iscurrently expressed
in terms of the stereographicimage a of the point @. Let us therefore re-express

[R Z’] in terms of the components/, m, n of the unit vector

=li+mj+nk, P4+m?+n?=1.
Referring back to (19) on p. 146, we seethat a and v are related asfollows:

a=10 g ep= 7
1—n 1—n
Substitutingtheseexpressionsinto(19), and removingthecommonfactor of 2/ (1-
n), we obtain [exercise]

cos(¥/2) Tinsin(y/2) (=m Fil) sin(y/2)
[ R 3] _ O3
mTtil)sin(y/2)  cos(¥/2) — insin(y/2)
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You may check for yourself that this matrix is' normalized: det [R z] =1.This

makes|ifethat much easier, for when we multiply two such matricesthe resulting
matrix will beof precisely the sameform. Thus, by comparing theresult with (21),
we may read off the net rotation.

For example, suppose we perform a rotation of (x/2) about i, followed by a
rotation of (;r/2) about j. The Mobius matrix of the net rotation will therefore be

111 -t} p1r | _ 17 1-i —1+4i 22)

V2Ll 1 yapi 1] 2 14+ 146 |
Comparing this with (21), we see [exercisg] that thisisrotation of ¢ = (27/3)
about the axisv = —%(i +j-k).

5 Spatial Rotations and Quaternions

This is dl rather elegant, but in fact the above method of composing rotations
can be streamlined still further. To see how, let us resume the story of Hamilton's
guaternions, which wereintroduced at the close of Chapter 1.

On the morning of Monday, 16 October 1843, Hamilton went for a walk with
his wife. In the back of his mind was a problem with which he had wrestled
fruitlessly for more than ten years—the search for a three-dimensional analogue
of the complex numbers, one that would permit vectorsin space to be multiplied
and divided. As we indicated in Chapter 1, Hamilton was unable to solve this
problemfor the simpl e reason that no such analogue exists. However, as he passed
Brougham Bridge, he suddenly realized that the prize which had eluded himin
three-dimensional space was indeed attainable infour-dimensiona space!

In the two-dimensiona complex plane, we may think of 1 and i as unit basis
"vectors" in terms of which a general complex number may be expressed asz =
al * bi. The algebra of C amounts to stipulating that multiplication distributes
over addition, that 1 istheidentity Gi.e., 1z = z1 = z), and that i2 = —1.

In four-dimensional space, Hamilton introduced four basis vectors 1, I, J, K
in terms of which ageneral vector V (which Hamilton called a quaternion) could
be expressed as

V=vl+vI+vJ+uvkK, (23)

where the coefficients are al real numbers. To define the product of two such
guaternions, Hamilton took 1 to be the identity, and he took 1, J, K to be three
different square roots of —1, each analogoustoi:

P=)JP=K=-1. (24)

Asin ordinary algebra, Hamilton insisted that multiplication distribute over ad-
dition, but in order to render division possible he was forced to make a leap that
was revolutionary in its time: non-commutative multiplication. More precisely,
Hamilton postulated that

D=K=-JI, JK=I=-KJ, KI=]J=-IK. (25)
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Theserelations probably ook familiar: they areformally identical tothe vector
products of the basis vectorsi, j, k in three-dimensiona space. For example,
i x j =k =—jxi.Wecan usethisanalogy betweeni, j, kand I, J, K to express
the product of two quaternionsin a particularly simple way.

First, let's usetheanal ogy tosimplify the notation (23). Asin ordinary algebra,
we suppress the identity 1 in the first term and write v1 = v, which Hamilton
called the scalar part of V. Next we collect the remaining threetermsinto V =
vy 1+ v, It v3 K, which Hamilton called the vectorpart of V. Thus (23) becomes

V=v+V.

Inthe special case wherethe scalar part v vanishes, Hamiltoncalled V = V apure
quaternion. Historically, the concept of a pure quaternion was the forerunner of
theidea of an ordinary vector in space. In fact the very word "' vector" was coined
by Hamilton in 1846 as asynonym for a"*pure quaternion™.

If wemultiply V by another quaternion W = w+ W, then (24) and (25) imply
[exercise] that

VW =(vw -V-W)+@0W+wV+VxW),. (26)
In particular, if Vand W are pure (i.e., v =0 = w) then this reducesto
VW =-V-W4+VxW, @27

Historically, this formula constituted the very first appearance in mathematics of
theconceptsof thedot and cross products. Thus, initialy, thesevectorial operations
were viewed asmerely twofacets (the scalar and vector parts) of quaternion multi-
plication. However, it did not take physicistslong to realize that the scalar product
and the vector product were each important in their own right, independently of
the quaternions from which they had both sprung.

Further results on quaternions will be derived in the exercises; here we wish
only to explain the connection between quaternions and rotations of space. This
connection hingeson theideaof abinary rotation, which meansarotation of space
though an angle of n. The appropriateness of the word "'binary" stems from the
fact that if the same binary rotation is applied twice then the result is the identity.

According to (21), the Mobius transformation corresponding to the binary
rotation about the axisv =1i + mj * nkis

[R$]=[ in —m+ili|.

m+il —in
Now, forgetting about quaternionsfor amoment, let usredefine1to betheidentity
matrix, and |, J, K to be the binary rotation matrices about i, j, k, respectively.
Thus

N R A HE S H ) S P
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As a simple check, note that the Mobius transformation corresponding to the
Mabius matrix K is K (z) = —z. Make sure you can see why thisis asit should
be.

Now we can state the surprising connection with quaternions: under matrix
multiplication, these binary rotation matrices obey [exercise] exactly the same
laws(24)and (25)as Hamilton's |, J, K. It followsthat quaternion multiplication
isequivaentto multiplyingthecorresponding 2 x 2 matricesobtained by replacing
Hamilton's 1, I, J, K with the matrices above. Conversdly, the genera rotation

matrix [R ﬁ] in (21) can be expressed [exercise] asthe quaternion

= cos(¥/2) + V sin(y/2), (28)

whereV = 11 *+m J +n K. Thiselegant formulais much easier to remember than
QD!

To compose two rotations of space, we need only multiply the corresponding
quaternions. For example, thecal culation (22) —in whicharotationof (r/2) about
i wasfollowed by arotation of (r/2) about j—how becomes

1 1 =1 -
51+ 50+D=3;0+1+]-K).

Once again, but more easily than before, we deduce that thisis rotation of ¢ =
(27 /3) about theaxisv = %(i +j =K.

Quaternions also yield a very compact forrnulafor the effect of R$ on the
position vector P= X ityjtzko apointin space. Supposethat R$ rotates P
toP. If we represent Pby the purequaternion ® = X | TY J+ Z K, and likewise

represent Pas P, then
P=RYPRyY. 29

Thisresult wasfirst published by Arthur Cayley in 1845, though helater conceded
priority toHamilton. Not only i stheresultelegant, itisal sopractical. For example,
S. G. Hoggar [1992] discusses how (29) can be used to smooth the motion of a
rotating object in acomputer animation, while B. K. P. Horn [1991] hasuseditin
research connected with robotic vision!

Here we will give the most intuitive explanation of (29) that we have been
ableto think of; Exs. 7, 8 givetwo—more Begin by noting that any multipleof P
is rotated to the same multiple of P. To establish (29) in generd, it is therefore
sufficient to establish it for the case where P and Pare unit vectors whoseti psp
and 7 lie on the unit sphere. As before, let @ be the point at the tip of v

Consider the following composition of threerotations: (R;/i p Rg_‘”)
Certainly thisis equivalent to a single rotation, and [17] helps us to see what it
is. Let C be the invariant circle of RA png through p and p. 7, and let w be
an infinitesimal vector emanating from p and tangent to C. Note that any vector
emanating from a point on C will be carried by ’Ra into a vector making the
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%
R&

Figure[17]

same angle with C. Thisjudtifiestheillustrated effect w — w’ > w” +> w”’ of
the threerotations. Thusthe net effect w — w'™ isarotation of 0 about ?;

Rﬁb = 'R,jk o 'R,Q\o R;w
P a p a
Thisgeometricfact may beexpressedintermsof Mobiusmatrices, or equivalently
intermsof quaternions:
R =RY Rp Ry

Finally,if weput 0 = = then the binary rotationsR § and R% aresmply the pure
quaternionsP and P, so we are done.

Further Reading. For more on the historical significance of (29), see Alt-
mann [1989]; for the details of how Hamilton wasled to quaternions, see van der

Waerden [1985]; for discussion of the connectionswith modern mathematicsand
physics, see Penrose and Rindler [1984], Yaglom [1988], and Stillwell [1992].

lll Hyperbolic Geometry
1 The Tractrix and the Pseudosphere

Having studied the intrinsic geometry of surfaces of constant positive Gaussian
curvature, we now turn to the intrinsic geometry of surfaces of constant nega-
tive curvature. Just as there are infinitely many surfaces with k > 0, so thereare
infinitely many with k < 0. Beltrami called such surfaces pseudospherical. Ac-
cording to the previoudly stated result of Minding, al pseudospherical surfaces
having the same negative value of k possessthe sameintrinsic geometry. To begin
to understand hyperbolic geometry, it is therefore sufficient to examineany pseu-
dospherical surface. For our purposes, the smplest oneisthe pseudosphere, solet
us explain how this surface may be constructed.

Try thefollowingexperiment. Takeasmall heavy object, suchasapaperweight,
and attach alength of string toit. Now place the object on atable and drag it by
moving the free end of the string along the edge of the table. You will see that
the object movesalong acurvelike that in [18a], wherethe Y-axis representsthe



294 Non-EuclideanGeometry*

Figure[18]

edgeof thetable. Thiscurveiscalled thetractrix, and the Y-axis (which the curve
approachesasymptoticaly)iscaled theaxis. Thetractrix wasfirstinvestigatedby
Newton, in 1676.

If thelength of thestringis R, then it followsthat the tractrix hasthefollowing
geometric property: the segment of the tangent from the point of contact to the
Y-axis has congtant length R. This was Newton's definitionof the tractrix. Asan
interesting aside, it follows[exercise] that the tractrix can be constructed as shown
in [18b], namely, asan orthogonal trajectory through thefamily of circlesof radius
R centred on the axis. This provides agood method of quickly sketching afairly
accuratetractrix.

Returning to [18a], let a represent arc length aong the tractrix, witha = 0
correspondingto the starting position X = Rof theobject wearedragging. Just as
the object is about to pass through (X, Y) ,let d X denote theinfinitessmal change
in X that occurswhilethe object moves adistance da along the tractrix. From the
similarity of theillustrated triangles, we deduce that

X __X -
o - R = X =Re . (30)

The pseudosphereof radius R may now be simultaneously defined and con-
structed as the surface obtained by rotating the tractrix about its axis. Remarkably,
this surface was investigated as early as 1693 (by Christiaan Huygens), two cen-
turiesprior to its catalytic rolein the acceptance of hyperbolic geometry.




Hyperbolic Geometry 295

2 The Constant Negative Curvature of the Pseudosphere*

In this optional section we offer a purely geometric proof that the pseudosphere
does indeed have constant Gaussian curvature. More precisely, we will use the
extrinsic definition of k asthe product of the principal curvaturesto show that the
pseudosphere of radius R has constant curvature k = —(1/R?). Later we will
give a purely intrinsic demonstration of this fact, so you won't miss much if you
skip thefollowing argument.

Let r and 7 bethetwo principal radii of curvatureof the pseudosphereof radius
R. Aswith any surface of revolution, it follows by symmetry [exercise] that

7 = radiusof cuwature o the generating tractrix,

r = thesegment of the normal from the surface to the axis,

asillustrated in [19a]. The problem of determining the Gaussian curvature

1

rr

k=-

isthereby reduced to a problem in plane geometry, which is solvedin [19b].

1
1
t

<
i N
H ~
1

Figure [19]
By definition, the tractrix in this figure has tangents of constant length R. At
the neighbouring points P and Q, figure [19b] illustrates two such tangents, PA
and QB, containing angle . The corresponding normals PO and QO therefore
contain the same angle a. Note that AC has been drawn perpendicular to QB.
Now let’s watch what happens as Q coalesces with P, which itself remains
fixed. In thislimit, O isthe centre of thecircle of curvature, PQ isan arc of this
circle, and AC isan arc of acircle of radius R centred at P. Thus,

PQ_.

_AC & AC R
OP R PQ F

F=0P and
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Next we gpped to the defining property PA = R = QB of thetractrix to deduce
[exercisg] that as Q coalesceswith P,

BC = PQ.

Findly, using thefact that as Q coalesces with P thetriangle ABC is ultimately
similar to thetriangle T AP, we deduce that

Behold!

3 A Conformal Map of the Pseudosphere

Our next step is to congtruct a conforma map of the pseudosphere. Recall the
benefits of such amap in the case of asphere: (1) it simultaneoudy describes al
surfacesof curvaturek = +1; (2) it providesan elegant and practical description
o the motions as Mobius transformations. Both of these benefits persist in the
present case of negatively curved surfaces; in particular, the (direct) motions of
hyperbolic geometry again turn out to be Mobiustransformations!

For smplicity's sake, henceforth we shall take the radiusaf the pseudosphere
to be R = 1, so our map will represent pseudospherical surfaces of curvature
k = —1. Asafirg step towards aconformal map, [20a] introduces afairly natural
coordinate system (X, a) on the pseudosphere.

Thefirst coordinate x measuresanglearound theaxisof the pseudosphere, say
restricted to 0 < X < 2x. The second coordinate a measures arc length along
each tractrix generator (asin [18a]). Thus the curves x = const. are the tractrix
generators of the pseudosphere [note that these are clearly geodesics], and the
curvesa = const. arecircular cross sections of the pseudosphere[note that these
areclearly not geodesics]. Sincetheradiusd such acircleisthesamething asthe
X-coordinatein [18a], it followsfrom (30) that

The radius X of the circle a = const. passing through the point
(x,a)isgivenby X =¢™°,

In our map, let uschoosetheanglex asour horizonta axis, so that the tractrix
generatorsaf the pseudospherearerepresented by vertical lines. See{20b]. Thusa
point on the pseudospherewith coordinates (x, a) will be representedin the map
by a point with Cartesian coordinates (X, y), which we will soon think of as the
complex number Z = x +iy.

If our map were not required to be specia in any way, then we could simply
choosey = y(x, a) to be an arbitrary function of x and a. In stark contrast to
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Figure [20]

this, our requirement that the map be conformal leaves (virtualy) no freedomin
the choice of the y-coordinate. Let's try to understand this.

Firstly, the tractrix generators x = const. are orthogonal to the circular cross
sections a = const., o the same must be true of their images in our conformal
map. Thus the image of a = const. must be represented by a horizontal line
y = const., and from this we deduce that y = y(a) must be a function solely of
a.

Secondly, on the pseudosphere consider the arc of the circle a = const. (of
radius X) connecting the points (x, a) and (x + dx, a). By the definition of x,
these points subtend angle dx at the centre of the circle, so their separation on the
pseudosphereis X dx, asillustrated. In the map, these two points have the same
height and are separated by distance dx. Thusin passing from the pseudosphere
to the map, this particular line-segment is shrunk by factor X. [We say “shrunk”
because we're dividing by X, but since X < 1 thisis actually an expansion.]
However, since the map is conformal, an infinitesimal line-segment emanating
from (x, a) in any direction must be multiplied by the same factor (1/X) = €°.
In other words, the metricis

ds = Xds.

Thirdly, consider the uppermost black disc on the pseudosphere shown in
[20a]. Think of this disc as infinitesimal, say of diameter €. In the map, it will
be represented by another disc, whose diameter (e/X) may be interpreted more
vividly as the angular width of the original disc as seen by an observer on the
pseudosphere's axis. Now supposewerepeatedly translatetheoriginal disctowards
the pseudosphere's rim, moving it adistance € each time. Figure [20a] illustrates
the resulting chain of touching, congruent discs. As the disc moves down the
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pseudosphere, it recedesfrom the axis, and itsangular width as seenfrom theaxis
therefore diminishes. Thus theimage disc in the map appears to gradually shrink
asit moves downward, and the equal distances 8¢ between the successive black
discscertainly do not appear equal in the map.

Having developed a feel for how the map works, let's actually calculate the
y-coordinate corresponding to the point (x, @) on the pseudosphere. From the
above observations (or directly from the requirement that theillustrated triangles
be similar) we deduce that

dy _ 1 s s
da-X_e - y =e€ + const.
The standard choice of this constant is0, so that
y=¢€" =(1/X).

Thus the entire pseudosphereis represented in the map by the shaded regionlying
above theline y = 1 (which itself represents the pseudosphere's rim), and the
metric associated with the mapis

ds /dx*+dy?

ds=—"=¥Y"" "% 31
y y

For future use, also note that an infinitesimal rectangle in the map with sides dx
and dy representsasimilar infinitesimal rectangle on the pseudosphere with sides
(dx/y) and (dy/y). Thusthe apparent areadx dy in the mapisrelated to thetrue
areadA on the pseudosphere by

dxdy

dA = .
y2

(32)

4 Beltrami's Hyperbolic Plane

In the Introduction we gave the impression that Beltrami had succeeded in inter-
preting abstract hyperbolic geometry astheintrinsic geometry of thepseudosphere.
Thisisreally not possible, and it is not what Beltrami claimed.

The abstract hyperbolic geometry discovered by Gauss, Bolyai, and Loba-
chevsky is understood to take place in a hyperbolic plane that is exactly like the
Euclidean plane, except that lines within it obey the hyperbolic axiom (3):

Givenaline L andapoint p not on L, thereare at least two lines
through p that do not meet L.

The constant negativecurvature of the pseudosphere ensuresthat it faithfully rep-
resents all consequences of this axiom that deal only with a finite region of the
hyperbolic plane. An example of such a consequence is the theorem that the an-
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gular excess of atriangle is a negative multiple of its area, and this does indeed
hold on the pseudosphere.

However, the pseudosphere will not do as a model of the entire hyperbolic
plane, because it departs from the Euclidean planein two unacceptable ways.

e The pseudosphere is akin to a cylinder instead of a plane. For example, a
closed loop in the plane can aways be shrunk to a point, but a loop on the
pseudosphere that wraps around the axis cannot be.

e In the hyperbalic plane, as in the Euclidean plane, a line-segment can be
extended indefinitely in either direction. We have already remarked that the
tractrix generators of the pseudosphere are clearly geodesic, and we would
thereforeliketointerpret themashyperboliclines. But although suchatractrix
extends indefinitely up the pseudosphere, in the other direction it terminates
when it hitstherim.

Beltrami pointed out that thefirst of these problemscan beresolved asfollows.
Imagine the pseudosphere covered by athin stretchable sheet. To obtain the map
in [20b], we cut this sheet along atractrix generator and unwrap it onto the shaded
region. Of courseto makeit lieflat andfitinto thisrectangular region, the sheet must
be stretched —the metric (31) tells us how much stretching must be applied to each
part. But now imagine the sheet as wrapping round and round the pseudosphere
infinitely many times’, like an endless roll of cling film®. By unwrapping this
infinitely long sheet (stretching aswego) we can now cover theentireregionabove
y = 1. Accordingto thisinterpretation, aparticletravelling along ahorizontal line
in the map would correspond to a particle travelling round and round a circle
a = const. on the pseudosphere, executing one complete revolution for each
movement of 2sr along the line.

Now let us explain how the conformal map solves our second problem—the
pseudosphere's edge. Intermsof extrinsicgeometry, thisedgeisaninsurmountable
obstacle: we cannot extend the pseudosphere smoothly beyond this edge while
preservingits constant curvature. However, we only care about the pseudosphere's
intrinsic geometry, and we have seen that if we measure distance usingds = Q‘%
thisisidentical totheregiony > 1in[21].

Imagining yourself as a tiny two-dimensional being living in [21], walking
down aline x = const. is exactly the same thing as walking down a tractrix on
the pseudosphere. Of course on the pseudosphere your walk is rudely interrupted
at some point p on therim (a = 0), corresponding to a point p ontheliney = 1.
But in the map this point p isjust like any other, and there is absolutely nothing
preventing you from continuing your walk all the way down to the point g on
y=0.

7Stillwell [1996] points out that thisis probably the very first appearancein mathematics of
what topol ogists now call auniversal cover.

8For Americans, read " plasticwrap".
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infinitely remote horizon: y =0

Figure [21]

Why stop at gq? The answer isthat you will never even get that far, becauseq
isinfinitely far from p! Suppose that you are theillustrated small disc on theline
y = 2,andthat | am standing outside your hyperbolic world, watching as you wak
at asteady pacetowardsy = 0. Of course you remain the same hyperbolic sizeas
you walk, but to me you appear to shrink. Thisis made particularly vivid by the

illustrated Euclidean interpretation [exercise] of your hyperbolic sizeds = 4}73:
The hyperbolic diameter d an infinitesimal disc centred at (x + iy) 33)

istheangle it subtends at thepoint x on the real axis.

Thus your apparent size must shrink so that you subtend a constant angle, and
athough all your hyperbolic strides are the same length, to me they look shorter
and shorter, and you appear to be travelling more and more slowly.

For example, suppose you are walking at a steady speed of In 2. Asillustrated,
integration of (dy/y) shows[exercise] that you reach y = 1 after ong unit of time,
y = (1/2) after two units of time, y = (1/4) after three units of time, etc. Thus,
viewed from outside your world, each successive unit of time only halves your
distance from y = 0, and therefore you will never reach it. [An appropriate name
for this phenomenon might be “Zeno’s Revenge'!]

We now possess a concrete model of the hyperbolic plane, namely, the entire
shaded half-planey > 0 with metric ds = % The points on the real axis are
infinitely far from ordinary points and are not (strictly speaking) considered part
of the hyperbolic plane. They are called ideal points, or points at infinity. The
completeliney = 0 of pointsat infinity will becalled the horizon®.

Studying hyperbolic geometry by meansof thismapislike studying spherical
geometry viaa stereographic map, without ever having seen an actual sphere. This
isnot as bad as it sounds. After al, by constructing geographical maps through
terrestrial measurements, man developed a good understanding of the surface of
the Earth centuries before venturing into space and gazing down on its roundness!

9For reasonsthat will beclear shortly, ancther nameisthecircleat infinity.
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Still, it would be niceto have the analogue of a globeinstead of a mere atlas.
The pseudosphereonly modelsa portion of the hyperbolic plane, but might there
exist a different surface that is isometric to the entire hyperbolic plane? Sadly,
Hilbert [1901] proved that every pseudospherical surface necessarily has an edge
beyond which it cannot be smoothly extended while preserving its constant nega
tive curvature. Thus the upper haf-plane with metric (31) is as good a depiction
of the hyperbolic plane as we are going to get.

However,just asan atlasusesdifferentkinds of mapsto represent the surfaceof
theEarth, sowecanand will usedifferent typesaf mapsto represent the hyperbolic
plane. The particular map wehaveobtainediscalled the Poincaré upper half-plane,
but there is also one called the Poincaré disc, and another called the Klein disc.
Poincaré obtained the first two modelsin 1882, while Klein obtained the third in
1871.

We cannot | et the names of these model s pass without comment. Anyonewith
even a passing interest in the history of mathematics will know that ideas are
frequently (usually?) named after the wrong person. In fact!9, the three models
above wereall discovered by Beltrami! Aswe shall see, Beltrami obtained these
three models, in a beautifully unified way, from a fourth model consisting of a
map drawn on a hemisphere. And in case you're wondering, yes, the hemisphere
model is Beltrami's too!

5 Hyperbolic Lines and Reflections

Beforeweget going, let's indi catewherewe are going, focusing just on direct mo-
tions. In Euclidean geometry, every direct motion isthe composition of reflections
in two lines. We have seen that the same is true in spherical geometry, and we
will soon show that it is again truein hyperbolic geometry. Sincetwo Euclidean
lines must intersect or be parallel, there are just two kinds of direct Euclidean
motions: rotations and trandations. The absence of paralel lines on the sphere
impliesthat its direct motions can only be rotations. Conversdly, the multitude of
paralel linesin thehyperbolic planeyieldsageometry that is richer than Euclid’s,
contai ning rotations, trand ations, and athird kind of motionthat has no Euclidean
counterpart.

Toavoid confusion, let ususethe prefix “h-" to distinguish hyperbolicconcepts
from their Euclidean descriptionsin the map. For example, an" h-line"” will meana
"hyperbolicline” (i.e., ageodesic), whilea"line" will refer to an ordinary straight
linein the map. Let usalso define H{z1, z2} to be the h-distance (measured using

ds= Qy—g) between z; and z». For example, if dz isinfinitesimal, then

_ ldz]

H{z T dz, 2} e

Finaly, let us define an h-circle of h-radius p and h-centre ¢ to be the locus of
points z such that H{z, c) = p.

10gee Milnor [1982], and Stillwell's [1996] trand ations of Beltrami {1868, 1868'].
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Since tractrix generators of the pseudosphere are clearly geodesic, vertical
linesin the map should also be geodesic, i.e., they should be examples of h-lines.
Figure [22a] confirmsthis directly by showing that

The (unique) shortest route between two vertically separated points (34)
isthe vertical line-segment L connecting them.

Toseethis, compare L with any other route, suchas M. Let ds; beaninfinitesimal
segment of L at height y, and let ds2 be the corresponding element of M cut off
by horizontal lines through the ends of ds;. Since

~ d d —~
ds1=ﬂ<£=dsz,
y y

the total hyperbolic length of L isless than M’s. Done. From this we can deduce
that

H{(x +iy1), (& +iy2)} = |In(y1/y2)!. (35)

Through a given point of the pseudosphere we obviously havegeodesicsin al
directions, not just tractrix generators; what do these more genera h-lines look
like in the map? The answer is very beautiful and unexpected:

Every h-line is either a half-line orthogonal to the horizon, or else
- . (36)
asemicircle orthogonal to the horizon.

Before we prove this, it's important to realize that if you were an inhabitant
of the hyperbolic plane, there would be no way for you to distinguish between
the semicircular h-lines and the vertical h-lines. every line is exactly like every
other, it's just our map that makesthem look different. What about thefact that the
semicircles have two ends on the horizon, whereas the vertical h-lines appear to
only have one? The answer is that, in addition to the pointson thereal axis, there
is one more point at infinity, and al the vertical h-lines meet there. According to
(31), as we move upward along two neighbouring, vertical h-lines, the h-distance
between them diesaway like (1/y), and they convergeto asingle point at infinity;

n

— "hdﬁion‘ T g
Figure [22]

horizon
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thisis particularly vivid on the pseudosphere. Finally, note that even in terms of
the map, a vertical h-line may be viewed as just a specia case of a semicircular
h-line by allowing the radius to tend to infinity.

We will prove (36) by first establishing another equally beautiful fact, onethat
isfundamental to all that follows:

Inversion in a semicircle orthogonal to the horizon is an opposite

motion d the hyperbolic plane. @D

Toseewhy thisistrue, consider theinversionz i~ Z = Zg (z) illustrated in [22b].
We need to show that Zx (z) does not ater the h-length d's of any infinitesimal
line-segment d s emanating from z. However, because our model of the hyperbolic
planeis conformal, we need only show that Zx (z) preserves the h-length of any
singleds, in adirection of our choosing. Choosing ds orthogonal to theradius gz
of K (asillustrated), the anticonformality of inversionimplies that theimaged s
isalso orthogonal tothisradius. Thus, by virtue of theillustrated similar triangles,
it follows [exercise] that

as was to be shown.

Toestablish (36), consider [23a]. First, thefigureshowsthat two pointsa and b
{Re(a) # Re(b)] canawaysbejoined by auniquearc L of asemicircleorthogonal
to thereal axis: to construct the centre ¢, smply draw the perpendicular bisector
of ab. Asillustrated, let g be one of the ends of this semicircle. Now we need to
show that L isthe shortest (smallest h-length) route from a to b.

We show this by applying aninversion z — 7 = Tk (z), where K isany circle
centred at g. Thiscarriesthearc L into avertical line-segment L, and (37) tellsus
that £ and L have equal h-length. More generally, any route M from a to b has
the same h-length as the routeM Ix(M)froma to b. Thusif L were not the
shortest route froma to b, then L would not be the shortest route from @ to b, in
violation of (34). Done.

Incidentally, note that this construction also enables us (in principle) to calcu-
late the h-distance between any two pointsin the hyperbolic plane:

( Im5>
In{ —
Imb

by virtue of (35). Later we shall be able to derive a more explicit formula.
The fact that a semicircle orthogonal to the real axis is an h-line strongly
suggests thefollowing re-interpretation of (37):

H{a, b} = H{d@, b} =

’

Inversioninasemicircle K orthogonal to the horizonisa reflection

Mg d the hyperbolicplane in the h-line K. 38)

In symbols, Rk (z) = Tk (z). Before proving this, let's be clear what we mean by
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Figure[23]

reflection. Just as we would in Euclidean and spherical geometry, we begin the
construction of Rk (z) by drawing the h-line P that passes through Z and cuts K
perpendicularly,say at m. Then R (z) is defined to be the point on P that is the
same h-distancefrommas z.

To prove (38), consider [23b], in which 7 = Zk(z). First recall that every
circlethrough z and 7 is automatically orthogonal to K. In particular, the unique
h-linethrough z and 7 must be orthogonal to K, and henceit is the desired "' P"
of the previousparagraph. Finally, recall that Zx maps P intoitself, swapping the
segmentszm and 7 m. Thus, sinceZx isamotion, these two h-line ssgmentshave
equa h-length, as wasto be shown.

Conversdly, if we are given any two points z and Z, then we may draw the
perpendicularh-bisector K , and i x swapsz and?. Alsonotethatz anditsreflection
7 = Rk (z) are the same h-distancefrom every point k on K, just asin Euclidean
and spherical geometry. This is easily proved: since T is a motion, and k =
Ik (k) =k, it followsthat H{z, k} = HE, k} = H{zZ, k}.

It is becoming clear that hyperbolic geometry has much in common with Eu-
clidean geometry. However, now that we know what h-lineslook like, [24] shows
that hyperbolicgeometry really is non-Euclidean: thereareinfinitely many h-lines

Figure[24]




Hyperbolic Geometry 305

be ultra-parallel to L.

Separating the ultra-parallelsfrom the h-lines that do intersect L, we see that
there are precisely two h-linesthat fail to meet L anywhere within the hyperbolic
plane proper, but that do meet it on the horizon. These two h-lines are caled
asymptoticl!,

Asin Euclidean geometry, thefigure makesit clear that thereis precisely one
h-line M passing through p that cutsL at right angles(say at g). Infact [exercise]
M may be constructed as the unique h-line through p and Rz (p). The existence
o M makesit possibleto definethedistanceof apoint p fromalineL intheusua
way, namdly, asthe h-length of the segment pq of M.

SinceM and L are orthogonal, Ry = Ty maps L into itself, swapping the
two ends on the horizon. It follows [exercise] that R swaps the two asymptotic
lines, and that M bisects the angle at p contained by the asymptotic lines. The
angle between M and either asymptoticlineiscalled theangle d parallelism, and
isusualy denoted I'l. Asonerotatestheline M about p, itsintersection point on
L moves off towards infinity, and I tellsyou how far you can rotate M beforeit
startsmissing L entirely.

Findly, [25] merely servesto illustratethe same concepts and terminology as
[24], but in the case where the h-line L happens to be represented as a vertica
half-lineinstead of asemicircle.

>
>
»
Ll

" asymptotic

Figure[25]

6 The Bolyai-Lobachevsky Formula*

Thisbrief, optional subsection nicely illustrateshow the preceding ideas may be
used to solve a significant, concrete problem: finding the angle of parallelism, IT.

In Euclidean geometry the analogue of the two asymptatic linesis the unique
paraldl line through p, and sincethisis perpendicular to M, the analogue of 1
is aright angle. On the other hand, in hyperbolic geometry it is clear that I is
awaysacute, and that its value decreases as thedistance D = H{p, g} of p from
L increases. More precisely, both Bolyai and Lobachevsky showed that

1 Another commonly used nameis parallel.
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tan(I1/2) = ¢~ 2,

and from this they were able to derive many of their other results. We now give
asimple geometric proof of this so-called Bolyai-Lobachevsky Formula. Green-
berg [1993, p. 391} has called this ""one of the most remarkable formulasin the
wholeof mathematics™, but for usit will be of only incidental interest.

First note that it is sufficient to establish the formula using [25], rather than
[24]. Thisis becausewe may transform [24] into [25] by performing an inversion
(i.e., ahyperbolicreflection) in any semicircle centred at one of theendsof L.

Figure [26] reproduces the essential elements of [25]. In order to find the h-
length D of thearc pq, let us apply the h-reflectionz > 7 = R () ,where C is
theillustrated semicirclethat is centred at theend ¢ of M, and that passesthrough
g. Thiscarries the arc pqg into theillustrated vertical line-segment pg. By virtue
o (35), it only remainsto find theratio of the y-coordinatesof ¢ and p, i.c., the
ratio of the Euclidean distances[gm] and [ pm].

BT

asymptotic

Figure [26]

From the fact that the radius pm is orthogonal to the circle M it follows
[exercise] that the angle pmc equals 1. It then follows [exercisg] that the angle
cpm equas (T1/2), asillustrated. Thus

D= ‘ln ([i:ﬂ). = ‘ln ( [im])’ = |Intan(I1/2)| = — Intan(I1/2),
[pm] [pm]

where the last equality follows from the fact that tan(IT/2) < 1, because I is
acute, Thustan(I1/2) = e~ P, aswasto be shown.

7 The Three Types of Direct Motion

As we have pointed out, the “Poincaré upper half-plane” was first discovered by
Beltrami. What Poincaré does deserve credit for--enormouscredit! —is thereal-
ization that hyperbolic geometry is intimately connected with complex analysis.
The cornerstone of this connection is the fact that the (direct) motions of the hy-
perbolic plane are Mobiustransformations. Let us outlinehow this comes about.
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If L1 and Ly are two h-lines, then the composition
M =R, o Ry,

of h-reflectionin theselines will be adirect motion of the hyperbolic plane. Since
every h-reflectionisrepresentedinthemap by inversioninacircle, weimmediately
deducethat any direct motion of theform AM isrepresented by a(non-loxodromic)
Mobiustransformation M (z). Furthermore, later wewill show that every direct mo-
tionisof theform M ;indeed, we will even givean explicit geometric construction
for decomposing an arbitrary direct motion into two h-reflections. Supposing this
aready done, we seethat every direct motionis represented asa (non-loxodromic)
Mobius transformation.

Conversely,supposethat M (z) isanarbitrary Mobiustransformationthat maps
the upper half-planetoitself. Thenit followsthat M (z) must map thereal axis (the
horizon) into itself. But aloxodromic Mobius transformation cannot possess such
an invariant line: its strangely shaped invariant curves wereillustrated in [32] on
p. 166. Thus M (z) is non-loxodromic, and from (48), p. 175, we deduce that M (z)
is the composition of inversionin two circles orthogonal to the real axis. Thus the
most general Mobius transformation d the upper half-plane to itself representsa
direct hyperbolic motion d the type M above.

One way to discover the algebraic form of these Mobius transformationsisto
use the formula (4), p. 125: inversionin acircle K centred at the point g on the
real axis, and of radius R, is given by

Composing two such functions, wefind [exercise] that amotion of type M corre-
sponds to a Mobius transformation

az+b
cz+d’

M(z) = wherea, b, c,d arereal, and (ad — bc) > 0. (39)
Recall that in Ex. 25, p. 188, you showed that thisis the form of the most general
Mobius transformation of the upper half-plane to itself. Thus we have agreement
with the conclusion of the previous paragraph.

So much for the overview —now let's look in detail at the direct motions M .
We know from [24] or [25] that there are just three possible configurationsfor
the h-lines L1 and L, and correspondingly M = %R, o %, is one of three
fundamentally different types:

(i) If the h-linesintersect, then M iscalled a hyperbolic rotation.

(i) If the h-lines are asymptotic, then M is a new kind of motion (peculiar to
hyperbolic geometry) called a limit rotation.

(iii) If the h-linesare ultra-parallel, then M iscalled a hyperbolic trand ation.
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Wecan now reap therewardsof all our hard work in Chapter 3, for thesethree
typesdf motion arejust thethreetypesof non-loxodromicM obiustransformation:
(i) h-rotationsare the"dliptic" ones; (ii) limit rotations are the " parabolic" ones;
and (iii) h-trandationsare the “hyperbolic”!? ones. At this point, you might find
it helpful to reread the discussion of these Mobius transformations at the end of
Chapter 3.

Wealready understandthese M obi ustransformations, soit only remainstolook
at them afresh, through hyperbolic spectacles. That is, imagine that you belong to
therace of Poincarites—tiny, intelligent, two-dimensional beingswho inhabit the
hyperbolic plane. To you and your fellow Poincarites, h-lines really are straight
lines, theredl axisredly isinfinitely far away, etc. What will you seeif the above
motions are applied to your world?

i

h-rotation

Figure[27]

Let usbegin with h-rotations. Figure [27] illustratesthe elliptic M obiustrans-
formation—let's call it RE—that arisesin the case where the h-linesintersect at
a, andtheanglefrom L to Ly is(¢/2). [Wehavechosentoillustrateg = (/3) ]
ThusRY hasfixed pointsa and @, and themultiplier associatedwithaism = ei®.
As in Chapter 3, each shaded "'rectangle” is mapped by ’Rﬁ to the next one in
the direction of the arows—some of these regions have been filled with black to
emphasizethis.

Consider how all thislooks to you and your fellow Poincarites. For example,
you see each black "'rectangle” as being exactly the same shape and size as every
other. To understand R? better, we begin by noting that (in terms of the map)
its effect on an infinitesimal neighbourhood of a is just a Euclidean rotation of ¢
about a. But sincethe map is conformal, thisimpliesthat a Poincarite standing at
a will also see hisimmediate neighbourhood undergoingarotation of ¢.

More remarkably, however, the Poincariteat a will seethe entire hyperbolic

12Try not to be confused by thisunrelated use of theword " hyperbolic” .
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plane undergoing a perfect rotation of ¢. Every h-line segment ap he constructs
emanating from a istransformed by z > 7 = Rﬁ (z) into another h-line segment
ap of equal length, making angle ¢ with the original. If the Poincarite gradually
increases ¢ from 0 to 27, then he sees p tracing out an h-circle centred at a,
whilein the map we see p’ miraculously tracing out a Euclidean circle! Thusthe
illustrated Euclidean circles orthogonal to the h-lines through a are al genuine
hyperbalic circles, and a is their common h-centre. Let us record this remarkable
result, adding a detail that is not too hard to prove [exercise]:

Every h-circleis represented in the map by a Euclidean circle, and
its h-centre is the intersection of any two h-lines orthogonal to it.
Algebraically, the h-circle with h-centrea = (x +iy) and h-radius
p isrepresented by the Euclidean circlewith centre (x + iy cosh p)
and radius y sinhp.

Asa stepping stone to thelimit rotations, [28] introduces a new type of curve
in the hyperbolic plane. On aline L in Euclidean geometry, let p be afixed point,
let a be amoveable point, and let C be the circle centred at a that passes through
p. If we let a recede to infinity along L, then the limiting form of C isaline
(through p and perpendicular to L). Figure [28a] shows that it's a different story
in the hyperbolic plane. As a recedestowards theinfinitely remote point A on the

' [a]

horocycle p

Figure [28]

real axis, the limiting form of C isa (Euclidean) circle that touches the real axis
a A.Thisis neither an ordinary h-circle, nor an h-line: itis a new type of curve
called a horocycle. Figure [28b] shows that horizontal (Euclidean) lines are also
horocycles. Notethat if K isany circlecentred at Athentheh-reflectionfix = Zx
transforms[28a] into {28b]. Thusthe Poincarites cannot distinguish betweenthese
two types of horocycle.

Now consider [29], whichillustrates the parabolic M obius transformation that
results from h-reflectionin h-lines L1 and L, that are asymptotic at A. Referring
to [27] and [28], you can now understand why thisis called a limit rotation: it
may be viewed as the limit of the h-rotation RY asa tendsto the point A on the
horizon. Note some of theinteresting features of this picture: the invariant curves
are horocycles touching at A; each such horocycleis orthogona to every h-line
that ends at A; and any two such horocycles cut off the same h-length on every
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limit rotation

Figure [29]

h-linethat ends at A.

In terms of the map, the simplest limit rotation occurs when the asymptotic
h-lines L; and L, are represented as vertical Euclidean half-lines, say separated
by Euclidean distance («/2). In thiscase, M = (R, o R,) is represented in
the map by the composition of two Euclidean reflectionsin parallel lines. Thus
M isjust a Euclidean translation z — (z + a) of the upper half-plane, and the
invariant curves are horizontal lines, which are again horocycles, but now of the
form shown in [28b]. Note that this Euclidean trandation is not an h-translation.
Thisis particularly clear if we visualize the effect of M on the pseudosphere,
whereit becomes a rotation through angle a about the pseudosphere's axis.

Figure [30] illustrates the third and final type of motion, the h-trandlation (hy-
perbolic Mabius transformation) resulting from h-reflectionin two ultra-parallel
h-lines. First note that there is precisely one h-line L that is orthogonal to both
Ly and L2. Unlike a Euclidean tranglation, this h-line L is the only h-line that is
mappedinto itself; it iscalled theaxis of the h-translation. Despite thisdifference,
the name " h-trandation" is appropriate, for every point on the h-line L is moved
the same h-distance (say 6) along L. If we assume that the axis L has adirection
assigned to it, then we may unambiguously denote this h-trandation by TL‘S

In Euclidean geometry, the invariant curves of a trandation are the parallel
lines in the direction of the translation. However, [30] shows that the invariant
curves of 7 are not h-lines, but rather arcs of Euclidean circles connecting the
ends e; and e; of L. These are called the equidistant curves of L, because every
point on such acurveisthe same h-distancefrom the h-line L. Make sure you can
seethis.

In terms of the map, the simplest h-tranglation occurs when the ultra-parallel
h-lines L1 and L, arerepresented by concentric Euclidean semicircles, say centred
at the origin for convenience. In this case, the two h-reflections(i.e., inversions)
yield a centra dilation z — kz, where k is the real expansion factor. The axis
of this h-trandation is the vertical line through the origin (the y-axis), and the
equidistant curves are all other (Euclidean) lines through the origin (cf. {20] and
[211). Notethat thisEuclidean expansionisasimilarity transformation of the map,
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h-translation

Figure [30]

but it is not asimilarity transformation of the hyperbolic plane—there are none!

Having completed our survey of these threetypesof direct motion, it's impor-
tant to notethat they not only look very differentintermsof their effect on the map,
but they al so have uniquefingerprintsin termsof theintrinsic hyperbolic geometry.
To put this another way, Poincarites can tell these motionsapart. For example, of
the three, only h-rotations haveinvariant h-circles, and only h-translationshavean
invariant h-line.

8 Decomposing an Arbitrary Direct Motion into Two Reflections

We will now show that the h-rotations, limit rotations, and h-trandations are the
only direct motions of the hyperbolic plane. That is, anarbitrary direct motion M
can always be decomposed into two h-reflections: M = (R, o Rr)).

The first step is a familiar lemma: an arbitrary hyperbolic motion M (not
necessarily direct) is uniquely determined by its effect on any three non-collinear
points. Asin Euclidean geometry, this will be established if we can show that the
location of apoint p isuniquely determined by its h-distancesfrom any three non-
collinear pointsa, b, c. Consider [31a], in whichwehavesupposed (for smplicity's
sake only) that the h-line L through a and bisrepresented by avertical linein the
map. Through the point p, draw h-circles centred at a, b, and c. Since ¢ does not
lieon L (by assumption), we seethat p istheonly point at which the threecircles
intersect. Done.

Now suppose that an arbitrary motion carries two pointsa and b to the points
a' and b' in [31b]. By the above result, the motion will be determined once we
know theimageof any third point p not onthelineL througha and b. Drawingthe
illustrated h-circleswith h-centresa’ and b' and with h-radii H{a, p) and H{b, p),
we see that the two intersection points p’ and p are the only possible imagesfor
p. Furthermore, since the h-line L' through @' and b’ is necessarily orthogonal to
the h-circles centred at those points, we also seethat p' and p are symmetric with
respectto L', i.e., p =Zp(p') = R/ (p’). Thuswe have shown that
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Figure [31]
There is_exactly one direct motion M (and exactly one opposite
motion M ) that maps a given h-line segment ab to another h-line
segment a’d’ d equal h-length. Furthermore, M = (R o M),
where L’ isthe h-line through a' and b.

(40)

We shall now give an explicit geometric construction for decomposing an
arbitrary direct motion M into two h-reflections. First note that (40) implies that
M is determined by its effect on any two points, no matter how close together
they are. Though it is not essential, thefollowing constructionis particularly clear
if we choose the pointsto beinfinitesimally separated.

Let ustherefore take the two given pointsto be z and (z + dz), and their given
images under M to bew = M () and (w + dw) = M(z * dz). Figure [32]
illustrates thisidea. Our task is to find two h-reflectionsthat will simultaneously
carry z to w, and dz to dw. [Incidentally, since M must be conforma, it can be
thought of an analytic function, so we may writedw = M’(z) dz.]

First, carry z to w using the h-translation 72, where 8 = H{z, w}, and L is
the unique h-linefrom z to w. Note that since 7, isconformal, it carries dz to an
infinitesimal vector d 7 (of equal h-length) making the same angle with L as dz.
Next, apply the h-rotation RS, where 6 is the angle from 47 to dw. This leaves
w whereitis, and it rotates d 7 to dw. Since the net transformation carries z to w,
anddz todw, it must be M :

M=RE TP,

Implicitly, thisformuladecomposes M intofour h-reflections, bet:aus;eT,jS and
R,’; can both be decomposed into two h-reflections. However, [32] illustrates that
we can awaysarrange for two of thefour h-reflectionsto cancel. Definingm to be
theh-midpoint of theh-linesegment zw, draw h-lines A and B orthogonal to L and
passing through m and w, respectively. Then Tf = (RpoNRy). If wenow draw an
h-line C through w making angle (6/2) with B, then R‘,’;, = Rc o Rp). Thus, as
we set out to show, every direct motion can be decomposed into two h-reflections:

M = R oRp) o Rp oRa) = Rc o Ry




Hyperbolic Geometry 313

Figure [32]

In theillustrated example, it so happensthat the h-lines A and C intersect, and
so the motionis an h-rotation: M = RZ, where a istheintersection of A andC,
and (¢/2) is the angle between them. However, it is clear that this construction
may just aseasily yieldan A and aC that are asymptotic or ultra-parallel,in which
case M isalimit rotation or an h-trand ation.

Summarizing what we have shown, and recalling (39),

Every direct motion of the hyperbolic plane is the composition of
two h-reflections, and is thus an h-rotation, a limit rotation, or an
h-trandlation. Inthe Poincaré upper half-plane,all suchmotionsare
presented by Mobius transfor mationsof the form

az+b

M(z)= cZrd wherea,b,c,d arereal, and (ad — bc) > 0.
cz

Finally, returning to {32} and appealing to (40), the unique opposite motion M
carrying z to w and dz to dw is given by three h-reflections:

M =R oRe oRa.

Here L' is the illustrated h-line passing through w and (w + dw), i.e., passing
through w in the direction dw. This decomposition does not, however, yield the
simplest geometric interpretation of M ; for that, and for the formula describing
the general opposite motion, see Ex. 24.

9 The Angular Excess of a Hyperbolic Triangle

Joining three pointsin the hyperbolic plane with h-line segments yields (by defi-
nition) ahyperbolictriangle. Our objectivewill be to show that the angular excess
E(T) of such ahyperbolic triangle T isgiven by
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E(T) = (= DA(T). @1)

As we pointed out in the Introduction, this says (amongst other things) that the
anglesof T alwaysadd up to less than &, and that no matter how large we make
T, its area can never exceed = . Referring to the differential geometry result (6),
we also see that in establishing this formula we will have provided an intrinsic!3
proof of thefact that the hyperbolic planeisasurfaceof constant negativecurvature
k=-1

We have already remarked that Christiaan Huygens investigated the pseudo-
sphereasearly as 1693, and to get acquai nted with hyperbolicareawewill now con-
firmoneof hissurprisingresults: the pseudospherehas finite area. |ntheupper half-
planethe pseudosphereis represented by the shaded region {0 ¢ X < 27,y > 1)
shown in [20], and (32) implies that this region of infinite Euclidean area does
indeed havefinite hyperbolic area:

o 4 d 2 00
A(pseudosphere) = // dA = / / xdy / dx f d—‘z = 2m,
=0 y=1DY

as Huygens discovered.

cos(m — ) 0 cos B

Figure[33]

Figure [33a] illustrates a triangle on the pseudosphere. If the uppermost ver-
tex moves up the pseudosphere indefinitely, then the angle at that vertex tendsto
zero, and the edges meeting at that vertex tend to asymptotic lines, namely, tractrix
generators meeting at infinity. Such a limiting triangle, two of whose edges are
asymptotic, iscalled an asymptotic triangle. In order to establish (41) for ordinary
triangles, wefirst establishit for asymptotic triangles. Figure [33b] illustrates such
atriangle T in the upper half-plane, the asymptotic tractrix generators becoming
vertical half-lines. By Huygens' result, T clearly has afinite area A(T'), and be-
cause the asymptotic edges meet at angle zero, the result we wish to establishis
A(T) = (r — a— B).

13Recall that earlier we used the pseudosphereto give an extrinsic proof.
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To simplify the derivation of thisresult, [33b] supposes that the finite edge of
T isan arc of the unit circle. Thisdoes not involveany loss of generality, because
an arc of acircle of radius r centred at x = X may be transformed into an arc
of the unit circle by applying the limit rotation z — (z — X), followed by the
h-trandation z — (z/r). From [33b] we now deduce that

cos B e} d cos 8 d
A(T)=/ [ %] dx=/ =
x=cos(r—a) LJ/y=~/1-x2 Y x=cos(m—a) v/ 1 — x2

and writing x = cosO0 then yields the desired resullt:

ﬁ _ .
A(T)=/ —sinbdd o _a—p.
_a sin 6

On theleft of [34] isageneral triangle, say of area A. By applying a suitable
h-rotation about one of the vertices, we can bring one of the edgesinto a vertical
position, as illustrated on the right of [34]. This makesit clear that the area A
of the triangle may be viewed as the difference of the areas of two asymptotic
triangles: one with angles a and (8 + 0); the other with angles (x — y) and 0.
Finally, applying the above result for asymptotic triangles, we deduce (41):

Figure [34]
A= r-a-B+0)]—-[r~-@~y)-—10]
m—a—f-y
—E.

10 The Poincare Disc

In addition to the upper half-plane model, Beltrami [1868’] constructed another
extremely useful conformal map of the hyperbolic plane, this timeinside the unit
disc. Fourteen yearslater Poincaré rediscovered thismap, whichisnow universally
(and wrongly) known as the Poincaré disc.
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Figure [35a] illustrates the first step of the construction, which isto map the
entire upper half-planeinto the unit disc by means of theinversion

2> 7 =TIk (2),

whereK istheillustrated circle centred at —i and passing through £1. In order for
this disc to represent the hyperbolic plane, its metric must be inherited from the
upper half-plane. That is, we must definethe h-separation H{a, b) of two pointsin
the disc to be the h-separation H{a, b) of their preimagesin the upper half-plane.
Notethat thisimplies[exercise] that theh-linesof thedisc are precisely theimages
of h-linesin the upper half-plane.

Beforemovingon, try staring at [35a] until thefollowing details becomeclear:
(i) £1 remain fixed and i is mapped to 0; (ii) the entire shaded part of the upper
half-planeis mapped to the shaded bottom half of the unit disc; (iii) theremaining
part of the upper half-plane (i.e., the top half of the unit disc) is mapped into
itself; (iv) h-linesin the disc are the images of h-lines in the upper half-plane,
and these are arcs of circles orthogonal to the unit circle; (v) the entire horizon of
the hyperbolic planeis represented by the unit circle, with the common point at
infinity of vertical h-linesin the upper half-plane being represented by —i.

=

~

Figure [35]

At this point we have obtained a map of the hyperbolic plane within the unit
disc. However, since Zk (z) is anticonformal, so is our map: anglesin the upper
half-plane are currently represented by equal but opposite anglesin the disc. If
we now apply z +— Zz, which reflects the disc across the real axisinto itself, then
angles are reversed a second time, and we obtain the conformal Poincark disc.

The net transformation from the Poincark upper half-plane to the Poincark
disc is thus the composition of z H Zk(z) and z — Z, and thisis a Mobius
transformation, say D(z). Since D(z) mapsi to 0 and —i to oo, it is clear that
D(z) must be proportiona to (z — i)/(z + i). Finaly, recalling that a Mabius
transformationisuniquely determined by itseffect on three points, and noting that
+1 remain fixed, we deduce [exercisg] that



Hyperbolic Geometry 317

iz+1
D(z) = part 42)
Alternatively, this may be derived by brute force [exercise] using the formulafor
inversion, (4), p. 125.

Since D(z) preservesanglesand circles, it iseasy to transfer the basic typesof
curvein the hyperbolic planefrom the PoincarC upper half-plane to the PoincarC
disc. Figure[35b] illustratesthat h-linesare represented by arcsof circlesorthogo-
nal totheunitcircle(suchasL, A, U),includingdiameterssuch as | . Incidentally,
since the horizon is now represented by the unit circle, you can understand why
the horizonisaso cdled thecircleat infinity.

Theterminology for h-linesisthe sameas before: | intersects L, A isasymp-
toticto L, U isultra-parale to L, and a Euclidean circular arc E connecting the
endsof L isanequidistant curveof L. It isalso easy to seethat aEuclideancircle
C lying strictly inside the unit disc represents an h-circle, though its h-centre a
does not generaly coincide with its Euclidean centre. Finaly, the horocyclesin
[28a] and [28b] arerepresentedin the PoincarCdisc by circlessuch as H that touch
theunit circle.

Now let usfind the metricin the PoincarCdisc. Ex. 19 showshow thismay be
done by brute calculation, but the following geometric approach!'* is much more
enlightening and powerful. First, [36a] recallstheearlier observation (33): if dsis
theinfinitessmal Euclidean length of ahorizonta line-element emanating from z,
then the angle between L and E isits hyperboliclength d5 = [ds/ Im(z)].

Note that in purely hyperbolic terms, L is an h-line orthogonal to ds, and E
is an equidistant curve of L. If we apply an h-rotation R‘Z” then L iscarried into
another h-lineL', and E iscarriedintoan equidistant curve E' of L', and theangle
between L’ and E' is the same as before. Thus we have the following general
construction:

Through one end d ds, draw the h-line 1 orthogonal to ds, and
through the other end d ds draw the equidistant curve e. Then the
h-length d 5 of dsis theangle d intersection (on the horizon) d 1
ande

(43)

Now the beauty of interpreting d§ as an angle in this way is that the Mobius
transformation D to the PoincarCdiscis conformal, and so the above construction
of d¥is vdid theretoo!

Figure [36b] illustratesan infinitesimal disc of Euclidean radiusds centred at
z = r€l® in the PoincarC disc. Because the map is conformal, the h-length 4 5 of
dsisindependent of thedirection of ds, so we may simplify the construction (43)
by choosing ds orthogond to the diameter 1 through z. The equidistant curveeis
then theillustrated arc of a Euclidean circlethrough theends of 1

Toturnthis pictureof d5 into aformula, begin by noting that if p istheradius
of thecirclecontaining the arc e, then [draw a picture!]

14We merely rediscoveredthisidea, whichwebelieveoriginateswith Thurston[1997]. However,
our usesof theideadiffer somewhat from Thurston's.
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| angle = d’s —

Figure [36]
pds=1.

Next recall (or prove) the familiar property of circlesillustrated in [36¢], namely,
that all chords passing through a fixed interior point are divided into two parts
whose lengths have constant product: AB = A B. Applying this result to the
copy of [36b] shownin [36d], we obtain [exercise]

2pds=1—r)1+r)=1-|z%
Thus the metric of the Poincaré disc is
(44)
Note the remarkable similarity to (16)!

Since the Euclidean line-segment connecting 0 to z is also an h-line segment,
we can now find the h-separation of these points by simple integration along the

line-segment:
2l 2dr lhr 1 1
H{0, z} = = dr,
0.2} fo 1—1r2 /(‘) [l+r+l——rj| r

H(0, 2) =ln(1 + 'Z'). @5)

and so
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Asasimple check of thisformula, note that as z movestoward the unit circle (the
horizon), H{0, z) tends to infinity, asit should.

11 Motions of the Poincare Disc

In the upper half-plane we found that every direct motion was the composition
of two h-reflections, and every opposite motion was the composition of three h-
reflections. Since the intrinsic geometry of the Poincaré disc is identical to the
upper half-plane, this result must still be true, so it only remains to find out what
h-reflection meansin the disc. In the upper half-plane we saw that h-reflectionin
an h-line K meant geometricinversionin K, and the sameistrue in the Poincaré
disc!

Thisis easy to understand. In the upper half-plane, g is the h-reflection of p
in K meansthat p and g are symmetric (in the sense of inversion) in K. In order
to make the Poincaré disc isometric to the upper half-plane, we insisted that the
mapping z +> Z = D(z) preserve hyperbolic distance. In particular, g is the h-
reflectionof pin K. But D(z) isaMobius transformation, and so the Symmetry
Principle[seep. 148] impliesthat p and § aresymmetricin K , aswasto beshown.

Thus every direct motion M of the PoincarC disc has the form
M = EﬁLz OERLI =IL2 OILI,

where L and L; are h-lines, namely, arcs of circles orthogonal to the unit circle.
As in the upper haf-plane, every direct motion is therefore a non-loxodromic
Mobius transformation. We aready know that there are just three hyperbolically
distinguishable types of direct motion, and the distinction between them in terms
of L1 and L, is the same as before: we get an h-rotation when they intersect,
a limit rotation when they are asymptotic, and an h-trandation when they are
ultra-parallel. We will discuss the formula for these Mobius transformationsin a
moment, but first let's draw pictures of them.

Figure[37a] shows atypical h-rotation; note the appearance of h-circles with

Figure [37]
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acommon h-centre. Figure [37b] illustratesthe pleasant fact that if L; and L in-
tersect a the origin (in which case they are Euclidean diameters) then theresulting
h-rotation manifestsitself as a Euclidean rotation.

In this connection, we offer aword of warning. As Euclidean beings, we suffer
from an almost overwhel mingtemptation to regard the centreof the Poincaré disc
as being specia in some way. One must therefore constantly remind oneself that
to the Poincariteswhoinhabit the disc, every pointisindistinguishablefrom every
other point. In particular, the Poincarites do not see any difference between [37a]
and [37b].

Figure[38a] illustratesa typical limit rotation generated by an L1 and an L2
that are asymptoticat apoint A on the horizon. Once again note that theinvariant
curves are horocyclestouchingat A, and that these are orthogonal to thefamily of
h-linesthat are asymptoticat A.

Figure[38]

Finally, [38b] illustratesa typical h-trandation. Once again, note that thereis
precisely one invariant h-line [shown in bold], and that the invariant equidistant
curvesare arcs of circlesthrough the ends of thisaxis.

From our work in the upper half-plane we know that the three types of motion
pictured above are the only direct motions of the Poincaré disc, and we now turn
to theformulathat describesthem. We know that every direct motionisaMobius
transformationsthat mapsthe unit discintoitself, and at theend of Chapter 3, with
malice aforethought, we investigated these " Mobius automorphisms” of the unit
disc. We found [see (51), p. 178] that the formula representing the most genera

one Mf 2is

MIQ) = M), where  Ma(@) = .

Thus MZ’ isthe composition of M, and arotation of ¢ about the origin.

Recall that M, swapsa and O: M(a) = 0 and M(0) = a. More generdly,
M, swapsevery pair of points z, M, (z): the transformationis involutory. Thisis
explained by [39a], which recallstheresult illustrated in [39], p. 179:
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M, =Tpg o1y,

where B isthe diameter through a, and where A isthecircle centred at (1/a) that
isorthogona to the unit circle.

Hyperbolic geometry givesusafresh perspectiveon thisresult: theintersection
point m of A and B isthe h-midpoint of 0 and a, and A itself isthe perpendicular
h-bisector of Oa Furthermore, the inversionsin A and B are h-reflections. Thus
M, isthecomposition of two h-reflectionsin perpendicular h-linesthroughm, and
SO

The unique Mobius automorphism M, that swaps a and 0 is the
h-rotation R7, through anglem about the h-midpointm d the h-line
segment Oa

Animmediate benefit of thisinsight isthat we can now easily find theformula
for the h-separation of any two points, a and z. The h-rotation M, bringsa to the

origin, and we aready know the formula (45) for the h-distance of a point from
there:

1+ M,
H{a, z} = H{M,(a), M,(z)} = H{0, M,(z)} = In (%M_%_:) ’
and so
] w0
laz — Il — |z —a]

Now | et usresume and compl ete our discussion of Mjf . Asillustrated in [37b],
the Euclidean rotation z + /®z represents the h-rotation R. Thus the most

general Mobius automorphism of the disc may be interpreted as the composition
of two h-rotations:

M? =REoRE.

Figure [39]



322 Non-Euclidean Geometry*

Figure [39b] shows how to compose these h-rotations, using the same idea
as was used in both Euclidean and spherical geometry. The h-rotation ’Rf)’ isthe
composition of h-reflectionsin any two h-lines through 0 (diameters) containing
angle (¢/2). Thus, choosing thefirst h-lineto be B, and calling the second h-line
C, we deduce that

M? = (%ic o Rp) o Bp o Ra) = Re o Ra.

Thus Mff isan h-rotation, limit rotation, or h-trandation accordingas A and C are
intersecting, asymptotic, or ultra-parallel.

Thinking of a asfixed and ¢ as variable, the critical value¢ = ® separating
the h-rotationsfrom the h-trandlationsoccurs when C isin the position C’ [shown
dashed] asymptoticto Aat p. It is not hard to see [exercise] that the triangle pa0
isright angled, and so it followsthat cos(®/2) = |al, or

® =2cos™! lal.

This explains the result (53), p. 180, which you proved agebraicdly in Ex. 27,
p. 188. To sum up,

The most general Mobiusautomorphisme of thediscisadirect
hyperbolic motion, and itis(i)an h-rotationif ¢ < ®; (ii)alimit
rotation if ¢ = ®; and (iii)an h-trandationif ¢ > .

Findly, recall from Ex. 20, p. 186, that the set of Mobius transformations of
theform M,‘f isidentical to the set of theform
Az+ B

M(z) = = —, where |A| > |B|.
Bz+ A

Comparing this with (20), we see that there are striking formal similarities not
only between the metricsof the sphere and the hyperbolic plane, but al so between
the Mobiustransformationsthat represent their direct motions.

12 The Hemisphere Model and Hyperbolic Space

Figure [40a] illustrates how we may obtain two new models of the hyperbolic
plane. Following Beltrami [1868'], et us stereographically project the Poincaré
disc from the south pole S of the Riemann sphere onto the northern hemisphere.
Defining the h-separation of two pointsto be the h-separation of their preimages
in the disc, we have a new conformal map of the hyperbolic plane, called the
hemisphere model. The h-linesof thismode aretheimages of h-linesin the disc,
and since stereographic projection preservescirclesas well as angles, we deduce
[exercise] that h-linesare (semi-circular)vertical sectionsdf the hemisphere.What
do equidistant curves and horocycleslook like?

The hemisphere was Beltrami's primary model of the hyperbolic plane, and
it was by applying the above stereographic projection to this hemisphere that he
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discovered the Poincaré disc. In fact by projecting his hemisphere in different
ways, Beltrami obtained (in a unified way) almost all the modelsin current use.

For example, by projecting the hemisphere vertically down onto the complex
plane (see [40a]) he obtained a new model of the hyperbolic planeinside the unit
disc. Thisis now called the Klein model or the projective model. Since a small
circle on the hemisphere is clearly projected to an ellipse in the disc, the Klein
model is not conformal. Thisis a serious disadvantage, but it is compensated for
by thefact that the vertical sections of the hemisphere are projected to (Euclidean)
straight lines: h-lines in the Klein model are straight Euclidean chords of the unit
circle. Note the analogy with figure [12], in which geodesics on the sphere are
represented by straight lines in the map. Ex. 14 revealsthat thisanalogy is more
than superficial.

Other properties of the Kleinmodel will be exploredin the exercises, but right
now we have bigger fish to fry! Up to this point we have focused on developing
the geometry of the hyperbolic plane, the negatively curved counterpart of the
Euclidean plane. The geometry of this Euclidean plane may be thought of as
being inherited from the geometry of three-dimensional Euclidean space. That is,
if (X,Y, Z) are Cartesian coordinates in this space, then the Euclidean distance
ds between two infinitesimally separated pointsis given by

ds =VdX2 +dY? +dZz2,

and two-dimensional Euclidean geometry is obtained by restricting this formula
to the points of an ordinary plane.

The question therefore arises whether there might exist a negatively curved
(whatever that might mean) counterpart of three-dimensional Euclidean space,
such that the geometry induced on each "plane” within this space would auto-
matically be the geometry of the hyperbolic plane. We shall now show that this
three-dimensional hyperbolic space doesindeed exist.

To do so, let usfind the metric of the hemisphere model. Because the stereo-
graphic projection of thePoincaré disc onto the hemisphereisconformal, itfollows
that d 5"is once again given by theconstruction (43). Sinced 5'is independent of the
direction of ds on the hemisphere, we may once again simplify the construction
by choosing ds in an auspicious direction. In the Poincaré disc the best choice of
ds wasorthogonal to the diameter through the point of interest, and the best choice
on the hemisphere is simply the stereographic projection of this configuration.

Thus in [40b] we have chosen the h-line 1 to be the vertical section of the
hemi sphere passing through the north pole and the point from whichds emanates.
Thus1 and e are both halves of great circles. the plane of 1isvertical, the planeof
eisinclined at angle d’s to the vertical, and the intersection of these planesis the
illustrated diameter of the unit circle lying directly beneath 1.

Now let the coordinates of the point at which we havedrawn ds be (X, Y, Z),
wherethe X and Y axes coincide with the real and imaginary axesof C, sothat Z
measures the height of the point above C. Since ds is orthogonal to /, and since
thevertical planeof lisorthogonal to the hemisphere, we seethat dsishorizontal.
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Figure [40]

Thustheanglethat ds subtends at thepoint (X, Y, 0) directly beneathitis (ds/Z).
But this angleis just the angle between the planes of 1 and e! Thus the metric of

the hemispheremodd is g
S

ds = Z (¢

Thisformulaonly describesthe h-separation of pointson the hemisphere, but
there is nothing preventing us from using it to define the h-separation of any two
infinitesimallyseparated pointsin thethree-dimensional region Z > 0. Thisregion
lying above C, with h-distance defined by (47), is cdled the half-space model of
three-dimensional hyperbolic space. Withoutgoingintodetail, it isclear from (47)
that the points of C are infinitely h-distant from points that lie strictly above C.
Thus C representsthe two-dimensional horizon or sphere at infinity of hyperbolic
space.

At the moment it is a mere tautology that the geometry induced on the hemi-
sphereby (47) isthat of a hyperbolic plane. To begin to seethat thereis real meat
on thisidea, let us consider some simple motions of hyperbolic space. Clearly
ds is unaltered by atranslation parallel to C, so thisisamotion. It is also clear
that d5'is unatered by adilation (X, Y, Z) — (kX, kY, kZ) centred at the origin.
More generally, adilation centred at any point o C will preserved’s, so thistoo
isamotion.

By applying these two types of motion to the origin-centred unit hemisphere
that we have been studying, we see that

In the half-space model, every hemisphere orthogonal to C is a
hyperbolic plane. (48)

In Euclideangeometry theintersection of two planesisaline, and thissuggeststhat
an h-line should be theintersection of two hyperbolic planes. Thus we anticipate
that every semicircle orthogonal to C isan h-line, for every such semicircleisthe
intersection of two hemispheresorthogonal to C. Note that this agrees with what
we aready know: the h-lines of the hemisphere modd are semicirclesorthogona
toC.
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L et usreturntotwo-dimensional geometry foramoment. Figure[41]illustrates
how Beltrami obtained the upper half-plane model from his hemisphere model.
From apoint g on therim of the hemisphere, we stereographically project onto the
tangent plane at the point antipodal to g—actualy, any plane tangent to thisone
woulddo equally well. Since this preservescirclesand angles, we seethat atypical
h-line of the hemisphereis mapped to a semicircle orthogonal to the bottom edge
of the half-plane, while an h-line passing through g is mapped to a vertical line.

Well, since these are the h-lines, it certainly looks like we have obtained the
Poincaré upper half-plane, but to make sure, let's check that its metric is redly
given by (31). Since stereographic projection is conformal, we may yet again use
the construction (43). Choosing 1 to be theimage of an h-linethrough g, thefigure
immediately reveals that the metric is d’s = (ds/Z). Apart from a change of
notation, thisisindeed the same as (31).

=

—===""\X

Figure [41]

We have thus returned to the half-plane that began our journey, but we have
returned wiser than when weleft. Looking at (47) we now recognizethishalf-plane
orthogonal to € as a hyperbolic plane within hyperbolic space. This revealsthe
truerole of the stereographic projectionin [41].

We know that stereographic projection from q is just the restriction to the
hemisphere of inversionZx in asphere K centred at . Using the same argument
(figure [22b]) asin the plane, we see that g preservesthe metric (47), soitisa
motion of hyperbolic space, carrying h-linesinto h-linesand carrying h-planesinto
h-planes. Furthermore, (48) tellsusthat K isahyperbolic planein this hyperbolic
space, and we therefore suspect that Zx is rejection in this h-plane. This can be
confirmed [exercise] by generdizing the argument in [23b]. Thus we have the
following generalization of (38):

Inversion in a hemisphere K orthogonal to the horizon is reflection
R of hyperbolic space in the h-plane K.
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Itisbeyond thescopeof thisbook to explorethe motionsof hyperbolicspace!”.
However, let us at |east describe one particularly beautiful result.

Just as an arbitrary direct motion of an h-plane is the composition of two h-
reflectionsin h-lineswithinit, so an an arbitrary direct motion of hyperbolic space
isthecomposition of four reflectionsin h-planeswithinit. Thus, in the half-space
model with horizon C, such a motion is the composition of four inversionsin
spheres centred on C. If we restrict attention to the points of C theninversionin
such asphere K isequivalent to two-dimensional inversionof C in the equatorial
circlein which K intersects C. Conversely, inversion of C in acircle k extends
uniquely to aninversion of space: simply construct the sphere with equator k.

Finally, then, every direct motion of hyperbolic space can be uniquely repre-
sented in terms of C (the horizon) as the composition of inversionin four circles,
and thisis none other than the most general Mobiustransformation

az+b
cz+d

z> M(2) =

of the complex plane! Poincaré discovered this wonderful fact in 1883.

We have seen that the direct motions of the hyperbolic plane, the Euclidean
plane and the sphere are subgroups of this group of general Mobius transforma-
tions. Aswe shall now see, thisfact has a remarkable geometric explanation.

Hilbert’s result on surfaces of constant negative curvature shows that three-
dimensional Euclidean geometry cannot accommodate a model of the hyperbolic
plane. Amazingly, however, three-dimensional hyperbolic space does contain sur-
faces whose intrinsic geometry is Euclidean! In fact these surfaces are the horo-
spheresthat generalize the horocycles. Analogously to [28], horospheres are Eu-
clidean spheres that touch C, as well as planes Z = const. that are parallel to
C.

Vertica planesorthogonal to C look flatin our model of hyperbolic space, but
in reality they are intrinsically curved hyperbolic planes. However, a horosphere
Z = const. not only looks flat, it really isflat. For its metric, inherited from the
metric (47) of the surrounding space, isjust

d’s = (constant) ds,

and thisis the metric of a Euclidean plane!

The motionsof Euclidean plane geometry may now be viewed as the motions
of hyperbolic space that map thisintrinsicaly flat horosphere into itself. Clearly,
these are the composition of reflections in vertical planes, i.e., h-reflectionsin
h-planes orthogonal to the horosphere. In this manner, the direct motions of the
Euclidean planemanifest themsel veson the horizon C asasubgroup of the Mobius
transformations.

As for spherical geometry, we begin by defining an h-sphere as the set of
pointsat constant h-distancefrom agiven point (the h-centre). Itis not hard to see

15 Thurston [1997] isan excellent source of information on these motions.
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that these h-spheresare represented in the half-space model by Euclideanspheres,
though their h-centres do not coincide with their Euclidean centres.

Though it is not immediately obvious in this model, it can be shown [see
Ex. 27] that the intrinsic geometry of such an h-sphereis the same asthat of an
ordinary sphere (of different radius) in Euclidean space. As with the horosphere,
the motions of this h-sphere may be viewed as the motions of hyperbolic space
that map the h-sphereintoitself. Again, these are the composition of h-reflections
in h-planes orthogonal to the h-sphere, and again we arrive a a subgroup of the
Mobius transformations.

Clearly themotionsof the hyperbolic planemay also beviewed in thisway, so
we haveafitting high point with which to end thischapter: two-dimensional hyper-
bolic, Euclidean, and spherical geometry are all subsumed by three-dimensional
hyperbolic geometry.

Further Reading. For amasterful overview of differential geometry, see Pen-
rose [1978]; for the nuts and bolts, see McCleary [1994], do Carmo [1994], or
O’Neill [1966]. For more on hyperbolic geometry itself, see the excellent works
o Stillwell [1989, 1992, 1996] and Thurston [1997].
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IV Exercises

1 Draw ageodesictriangle A on the surface of a suitablefruit or vegetable. Now

draw a geodesic segment from one of the vertices to an arbitrary point of the
oppositeside. Thisdivides A into two geodesic triangles, say A1 and A2. Show
that theangular excessfunction E isadditive, i.e., E(A) = E(A1) + E(A7). By
continuing this process of subdivision, deduce that (5) implies (6).

2 Explain (18) by generalizing the argument that was used to obtain the special

4

case(17), on p. 143. That is, think of reflection of the spherein termsreflection
of spaceinaplane I, asin [8], p. 280. Also, think of stereographic projection
astherestriction to the sphere of the three-dimensional inversion Zx, where K
isthe sphere of radius +/2 centred at the north pole of C (see[13b]). Now leta
beapoint on C, and consider the effect of Zx ona, I, and R (a).

Let C beacirclein C, and let C beit stereographicimageon C. If C isa great
circle, then (18) says that Z¢ stereographically induces reflection of X in o}

but what transformation isinduced if C is an arbitrary circle? Generaize the
argument of figure [14] to show that Z¢ becomesprojectionfrom the vertex v
d thecone that touches £ along C. Thati is,if w = Z¢(z) then w is the second
intersection point of £ with the line in space that passes through the vertex v
and the point?. Explain how (18) may be viewed as alimiting case of thismore
genera resullt.

Use(41), p. 166 to show that if theMobiustransformation M (z) hasfixed points
&4, and the multiplier associated with £, ism, then

|l &m0 1 &
|1 £ 0 1/y/m 1 —&. |
By putting &, = a, m = e~*¥, and £_ = —(1/a), deduce (19), p. 288. [Hint:
Remember that you are free to multiply a Mobius matrix by a constant.]

5 Show that the Mobius transformations (20) do indeed satisfy the differentia

6

equation (17).

(i) The conjugate V of aquaternionV = v + V isdefined to be the conjugate
transpose V* of the corresponding matrix. Show that V = V* = v — V,
and deduce that V is a pure quaternion (analogous to a purely imaginary
complex number) if and only if V= —V.

(i) The length |V| of V is defined (by analogy with complex numbers) by
V]2 = VV. Show that [V|2 = v2 T V|2 = [V|2.

(i) If V] =1, then Viscalled a unit quaternion. Verify that R$ [see (28)1is
aunit quaternion, and that RY = R ] R_””



Exercises 329

(iv) Show that VW = W V and deducethat [V W | = [V||W | Thus, for
example, the product of two unit quaternionsisanother unit quaternion.

(v) Show that A isa pure, unit quaternion if and only if A2 = —1.

(vi) Show that any quaternion Q2 can beexpressedas @ = |Q | R"’,’ for somev
and someyr.

(vii) Supposewegeneraizethetransformation(29)toP P= QP Q ,where
Q is an arbitrary quaternion. When interpreted in this way, deduce that Q
represents a dilative rotation of space, and the product of two quaternions
represents the composition of the corresponding dilative rotations. [This
confirmsthe claim at the end of Chapter 1]

7 [Dothe previousexercisebeforethisone.] Thefollowing proof of (29) isbased
on apaper of H. S. M. Coxeter [1946].

(i) Use (27) to show that the pure quaternions P and A are orthogonad if and
onlyif PA+ AP =0.

(i) If A has unit length, so that A> = —1, deducethat the previous equation
may beexpressedasP =APA.

(iii) Now keepthepure, unit quaternion A fixed, but let P represent an arbitrary
pure quaternion. Let It 4 denote the plane with normal vector A that passes
through the origin, so that its equation is P+A = 0. Now consider the
transformation

P> P =APA. (49)

Show that (a) P’ isautomatically pure, and |P’'| = |P|, sothat (49) represents
a motion of space; (b) every point on IT4 remains fixed; (C) every vector
orthogonal to I 4 isreversed. Deducethat (49) represents rejection R, of
space in the planeI1,4.

(iv) Deduce that if the angle from IT4 to a second plane Ip is (¥/2), and
the unit vector aong the intersection of the planesis V, then the rotation

RY = (Rn, o Rm,) isgiven by

P~P=BAPAB) =(-BA)P(-BA).

(V) Use(27) toshow that —B A = cos(/2) +V sin(y/2), thereby simultane-
ously proving (29) and (28).

8 Hereisanother proof of (29). Asinthetext, weshall assumethat Pisaunit vector
with itstip at the point p’ on the unit sphere. If we represent the stereographic
images p and p of p and p by their homogeneous coordinate vectorsp and p
in C2, then we know that therotation is represented as
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whereR z isbeingthought of asa2 x 2 matrix.
(i) Show that in homogeneouscoordinates, (20), p. 146, becomes

. 20, [p11? — Ip|?
X+i¥=—P2 g z=HL — W2
Ip112 + Ip2|? [p11? + Ip,|?

(i) To simplify this, recall that all multiplesof p describe the same point pin
C. We can therefore choose the " length” of p to be +/2:

P.p)=Ip>+Ipl* =2.

With this choice, show that the above equations can be written as

1+Z2 X+iv ] _[mb pb2 =[P1]—— — pp*.
[X—iY 1-Z ]_[pzv_l ’Pzp_z] P2 [P P2 =ve

(iii) Verify that

1+Z X+iV]_, .o
X—i¥ 1-Z

(iv) Deducethat
~ * [
1-iP=RY (1-iP) [RY] =1-iRY PR,
from which (29) followsimmediately.

9 (i) Figure[40a] gave a two-step processfor carrying a point z in the Poincaré
disc to the corresponding point z’ in the Klein model. Explain why the net
mapping z — 7z’ of the discto itsdlf is the one shown in figure[a] beow,
where C is an arbitrary circle passing through z and orthogonal to the unit
circleU.

(ii) Figure[b] isavertical cross section of [40a] through z and z’. Deduce that

12|

! a 2
a b

= and p -3

. . . ] 22
By multiplying these two equations, deducethat z’ = T

[ Thus we have a geometric explanation of theresult (20), p. 146.]



Exercises 331

(iil) Thisformulacan bederiveddirectly fromfigure[a], without the assistance
of the hemisphere. Redraw the figure with C chosen orthogonal to 0z. Ex-
plain geometrically why the centre of C may be viewed as either Zy (), or
asthe midpoint of z and Zy;(z). Conclude that

1/7 =Ty(@) = e + Ty @] = § [z + (1/2)],

from which the result followsimmediately.

10 Think of the sphere as the surface of revolution generated by a semicircle.
Construct aconformal map of the sphere by strict analogy with the construction

of the map of the pseudospherein [20]. Show that thisisthe Mercator map that
you obtained in Ex. 14, p. 259.

11 (i) In the hyperbolic plane, show that the h-circumference of an h-circle of
h-radius p is 2z sinh p. [ H nt :Represent the h-circle as an origin-centred
Euclidean circlein the Poincaré disc.]

(ii) Let the inhabitants of the sphere of radius R draw a circle of (intrinsic)
radius p. Use elementary geometry to show that the circle's circumference
is27 R sin(p/R). Show that if wetaketheradiusof the spheretobe R =i,
then this becomes theformulain part (i)! [Compare this with Ex. 14.]

12 LetL and M betwo intersecting chords of theunit circle, and let . and m bethe
intersection pointsof thepairsof tangentsdrawn at theends of thesechords. See
figure[a] below. In the Klein model, show that L and M represent orthogonal
h-linesif and only if I lieson M (produced) and m lieson L (produced).
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13 Letz =rel8 denote a point in the Klein model of the hyperbolic plane.

(i) On the hemisphere model lying above the Klein model, sketch theimages
under vertical upward projection of somecirclesr = const. and somerays
6 = const. Although angles are generdly distorted in the Klein model,
deduce that these circlesand rays really are orthogonal, as they appear to
be. Also, notethat the Euclidean circlesr = const. areaso h-circles.

(ii) Figure[b] aboveshowsavertical cross section of thehemispheremode and
Klein model taken though aray 6 = const. If the point z moves outward
adong thisray by dr, let ds denote the movement of its vertical projection
on the hemisphere. Explain why the two shaded triangles are similar, and
deducethat ds = (dr/Z).

(iii) Usethemetric(47) of the hemisphereto concludethat theh-separationds,
of thepointsin the Klein model with polar coordinates (r, ) and (r +dr, 6)

isgiven by
dr

%= .

[Remarkably,thismeansthat theformulafor H{0, z} differsfromtheformula
(45) in the Poincaré disc by a merefactor of twol!]

(iv) Use the same idea (of projecting onto the hemisphere) to show that the
h-separation d s of the points (r,8) and (r, 6 + d6) isgiven by

a5 rdo

Sp = ————.

¢ V1 =712

(v) Deducethat the h-separation d s of the points (r, &) and (r +dr,6tdo)is
given by thefollowing formulacdf Beltrami [1868]:

532 dr? r2do?
52

= aomt i (50)
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14 (i) Thefigureabovesuperimposesthe stereographicand projective[seep. 284]
images of a great circle on the unit sphere. Let z; and z, be the stereo-
graphic and projectiveimages of the point whose spherical-polar coordi-
nates are (@, 6). Referring to (21), p. 147, z; = cot(¢/2) €. Show that
zp = [ tan$1€'€, and deducethat

fp=
P 1—|Zs|2‘

Compare this with Ex. 9!

(i) Sketchthecurvesonthehemispherethat arecentrally projectedtothecircles
lzp| = const. andtotheraysargz, = const. Althoughanglesaregenerally
distorted in the projective moddl, observe that these circlesand raysreally
are orthogonal, as they appear to be.

(iii) Now let the sphere have radius R, and writez, = r el® for the projective
image of the point (¢, 8). Thusr = —R tan¢. Show that if z, movesa
distancedr alongtheray 8 = const., then the corresponding point on the
sphere moves adistanced’s; given by

dr

AT

(iv) Likewise, show that the separation d’sg of the points on the sphere corre-
sponding to the points (r, 6) and (r, 8 + d6) in the mapis given by

rdo

T+ @/R?

(v) Deduce that the spherical separation d's” corresponding to the points (r, )
and (r +dr, 6 + do) isgiven by

dse =
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~ dr? + r2do?
T A+ @/RHE T 14+ (r/R?F

(vi) Hereis a crazy idea: perhaps we can get a surface of constant negative
curvaturek = —(1/R?) = +1/(iR)? by dlowing theradius R of the sphere
totakeon theimaginary valuei R. Verify that if wesubstitute R =i intothe
aboveformula, then it becomes the Beltrami metric (50) of the hyperbolic
plane! [To maketrue sense of thisidea, one must turn to Einstein's relativity
theory; see Thurston [1997].]

15 Takeastack of ten sheetsof paper and staplethem together, placing staplesalong
three of the edges. Useapair of compasses to draw thelargest circle that will fit
comfortably inside the top sheet. Pierce through al ten sheets in the centre of
thecircle. With heavy scissors, cut along the circle to obtain tenidentical discs,
say of radius R. Repeat this whole process to double the number of discsto 20.

(i) Cut a narrow sector out of the first disc, and tape the edges together to
form a shallow cone. Repeat this process with the remaining discs, steadily
increasing the angle of the sector each time, so that the cones get sharper
andtaller. Ensure that by theend of the process you are making very narrow
cones, using only a quarter disc or less.

(i) Stack theseconesintheorder you madethem. Explainhow itisthat you have
created a model of a portion of a pseudosphere of radius R. Create weird
new (extrinsically asymmetric) surfaces of constant negative curvature by
holding the tip of your structure and moving it from side to side!

(ili) Usethesameideato create adisc-like piece of " hyperbolicpaper', such as
you would get if you could simply cut out a disc from your pseudosphere.
Pressit against the pseudosphereand verify that you can freely moveit about
and rotateit on the surface.

16 By holding afairly short piece of string against the surface of the toy pseudo-
sphere of the previous exercise, draw a segment of a typical geodesic. Extend
this segment in both directions, one string-length at a time. Note the surpris-
ing way the geodesic only spirals afinite distance up the pseudosphere before
spiraling down again.

(i) Usetheupper haf-planeto verify mathematically that thetractrix generators
are the only geodesicsthat extend all the way up to the top.

(i) Let L be atypical geodesic, and let a be the angle between L and the
tractrix generator at the point where L hits the rim a = 0. Show that the
maximum distance oy,4x that L travels up the pseudosphere is given by
omax = |Insinal.
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17 Suppose we havea conformal map of asurfacein the xy-plane, with the metric

given by (15):
ds = Ads = A(x, y)y/dx? + dy?.

An elegant result from differential geometry states that the Gaussian curvature
at any point on the surfaceis given by

1
k=——5A0nA),

where A = (32 t 93) is the Laplacian. Try this out on the metric (16) of
the stereographic map of the sphere, and on the metrics (31) and (44) of the
half-plane and disc models of the hyperbolic plane.

18 Usethe Poincaré disc to rederive the formulatan(I1/2) = e~ for the angle of
parallelism. [ H nt Let one of the h-lines be a diameter.]

19 To derivethe metric (44), consider the mapping (42) z +> w = D(z) from the
upper half-planetothePoincaré disc. Aninfinitesimal vector dz emanatingfrom
z isamplitwisted to an infinitesimal vector dw = D’(z) dz emanating from w,
and (by definition) the h-length d5 of dw isthe h-length of dz. Verify (44) by
showing that
2 |dw| _ ldz| _ as
1—|w? Imz

20 Consider the mapping z —> w = Mff (z) of the Poincaré disc to itself. Use
the calculational approach of the previous exercise to show that z — wisa
hyperbolic mation, i.e., it preserves the metric:

2 |dw| i 2dz]

= S = .
1—|w? 1—|z2

21 In the upper half-plane, the h-rotation Rf’ through angle ¢ about the point i is
given by the following Mobius transformation:

R?(2) = ﬁ . wherec = cos(¢/2) and s = sin(¢/2).

Provethisin three ways:

/ .
(i) Show that R? (i) =i and {R"’} (i) = €. Why does this prove the resuilt?
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(i) Use the formula for inversion [(4), p. 125] to calculate the composition

Rf’ = (Mp o R4), whereA and B are h-linesthroughi, and theanglefrom
AtoBis(¢/2). [Hint: Take A to betheimaginary axis, and use adiagram
to show that the semicircle B hascentre —(c/s) and radius (1/s) ]

(iii) Describeand explainthegeometrical effect of applying (D o Rf’ oD Hto
the Poincaré disc, where D is the mapping (42) from the upper half-plane
to the Poincaré disc. Deduce that

(DoR? o D™H)(2) = €? 2.

Re-expressthisequationin termsof productsof Mobiusmatrices, and solve

for the matrix [’R‘f].
) D)
Fa
A B

12 (i) Referringtofigure[a] above, show that the h-separation of two pointsin the
upper half-plane may be expressed in terms of a cross-ratio as

H{a, b} =1n[a, B, b, A].

[Hint: Apply an h-rotation centred at a to bring b into a position verticdly
abovea.]

(ii) Show that the sameformulaappliesto the Poincaré discin figure[b].

13 (i) Let@ andZ be two point on £, and let a and z be their stereographicimages
in C. If S{a, z} isthedistance (on the sphere) betweena and?, show that

Z—a
S , = —' .
{a,z} =2 tan 'az+1)

[Hint: Use(20) to bring a to the origin.]

(ii) Show that the h-distance formula (46) in the Poincaré disc can be re-
expressed as
z—a

az—

H{a, z} = 2 tanh™!
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24 (i) Useasimple sketchto show that z — f (z) = —Z isan opposite motion of
the Poincaré upper half-plane.

(ii) Let Mbean arbitrary opposite motion. By considering (f o .A7t), show that
—~ az+b

M) = =Td wherea, b, c,d arered, and (ad — bc) > O.

(iii) Usethisformulato show that M has two fixed points on the horizon (the
real axis). If L isthe h-line whose ends are these two points, explain why L
isinvariant under M.

(iv) Deducethat Mi sawaysadglidereflection: h-translationalong L, followed
by (or preceded by) h-reflectionin L.

25 Givenapoint p not ontheh-lineL, draw an h-circle C of h-radius p centred at
p. Draw the h-line orthogonal to L through p, cutting L in g. Draw an h-circle
C’ of h-radius p centred at g, and let  be one of the intersection points with
L. Through ' draw the h-line orthogonal to L, cutting C at a and b. Show that
the h-lines joining p to a and b are the two asymptotic lines! [Hint: Take L
to be avertical linein the upper half-plane.] What happens if we perform this
construction in the Euclidean plane?

26 Sketch a hyperbolic triangle A with vertices (in counterclockwise order) a, b,
and c. Let & be an infinitesimal vector emanating from a and pointing along
the edge ab. Carry & to b by h-trandating it along this edge. Now carry it to ¢
along bc, and finally carry it hometo a, along ca. In Euclidean geometry these
threetrandationswould simply cancel, and & would return home unaltered. Use
your sketch to show that in hyperbolic geometry the compositiond these three
h-translationsisan h-rotation about vertex a through angle E(A).

[Suppose that A isinstead a geodesic triangle on an arbitrary surface S of
variable curvature. If an inhabitant of S wantsto trandate £ along a " straight
line" (ageodesic), al hehastodoiskeepitslength constant, and keep theangle
it makes with theline constant. Thisis caled parallel transport in differential
geometry. Theaboveargument still applies, and sowhen§ isparallel transported
round A, it returns home rotated through E(A). By virtue of (6), this angle of
rotation is the total amount of curvatureinside A.]

27 Generalize the transformation from the upper half-plane to the Poincaré disc to
obtain amodel of hyperbolic spacein theinterior of the unit sphere. Describe
the appearance of h-lines, h-planes, h-spheres, and horospheres in this model,
and explain why an h-sphereisintrinsically the same as a Euclidean sphere of
different radius.



7
Winding Numbers and Topology

Inthischapter we shall investigatea simple butimmensely powerful concept —the
number of timesaloop windsaround apoint. In Chapter 2 we saw that thisconcept
was heeded to understand multifunctions, and in the next chapter wewill seethat it
playsan equally crucia rolein understanding complex integration. However, only
the first two sections [up to (2)] of the present chapter are actually a prerequisite
for that work; the rest may be read at any time. If you arein arush to learn about
integration, you may wish to skip therest of the chapter and return to it later.

| Winding Number
1 The Definition

As the name suggests, the winding number v(L, 0) of aclosed loop L about the
origin 0 is simply the net number of revolutions of the direction of z asit traces
out L onceinits given sense. A nut on a bolt admirably illustrates the concept of
"net rotation™: spin the nut this way and that way for awhile; thefinal distance of
the nut from its starting point measures the net rotation it has undergone.

Figure [1] showssix loops and their corresponding winding numbers. You can
verify theseval uesby starting at arandom point on each curveand tracingit out with
your finger: starting with zero, add one after each positive (= counterclockwise)
revolution of the vector connecting the origin to your finger, and subtract one after

v=1 v=-—1 v=1

=0

Figure[1]
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each negative (= clockwise) revolution. When you have returned to your starting
point, thefina count is the winding number of the loop.

Itisoften useful to consider the winding number of aloop about apoint p other
than the origin, and this is correspondingly written v(L, p). Instead of counting
therevolutionsof z, we now count those of (z — p). For example, the shadedregion
in[1] can bedefined asal the positionsof p for which v(L, p) # 0. Try shading
this set for the other loops.

2 What does "inside" mean?

A loopiscaled simpleif it does not intersect itself; for example, circles, ellipses,
and triangles are al simple. Although a simple loop can actually be very compli-
cated [see Ex. 1] it seems clear, though it is hard to prove, that it will divide the
planeinto just two sets, itsinsideand itsoutside. However, inthecase of aloop that
isnot simple, such as[2], itisnolonger obvious which pointsare to be considered

Dy

Figure[2]

inside the loop, and which outside. The winding number concept alows us make
the desired distinction clearly.

A typical loopsuch as L will partition the planeinto anumber of sets D; (four
in thiscase). If the point p wanders around within one of these setsthen it seems
plausiblethat the winding number v(L, p) remains constant. Let's check this.

Concentrate on just a short segment of L. As z traversesit, the rotation of
(z — p) will depend continuously on p unless® p crosses L. In other words, if we
move p atiny bit then the rotation angle will likewise only change atiny bit. Since
the winding number of L isjust the sum of the rotationsdueto all its segments, it
followsthat it too depends continuously on the location of p: atiny movement of
p to P can only produceatiny change[v (L, p) — v(L, p)] in thewinding number.
But since this small differenceisan integer, it must be exactly 0. Done.

Since L winds round each point of D; the same number of times, it follows
that we can attach a winding number v; to the set as awhole. Verify the values of
vj givenin thefigure.

1Consider the behaviour of the rotation due to ashort segment of L as p crossesit.
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Theinside" can now bedefined toconsist of those D; for whichv; # 0, while
theremaining D; constitutethe* outside””. Thusin [2] wefind that Dy U D3 isthe
inside, while D U Dq4 isthe outside.

The" correctness™ of this definition will become apparent in the next chapter.

3 Finding Winding Numbers Quickly

In[2] wefound the winding numbers directly from the definition: we strenuously
followed the curve with our finger (or eye) and counted revolutions. For a really
complicated loop this could literally become a headache. We now derive a much
quicker and more elegant method of visually computing winding numbers.

If a point » moves around without crossing aloop K then v(K, r) remains
constant, but what happens when the point does cross K ? Consider [3]. On thefar
left, close to the loop K, isthe point r; the rest of K is off the picture, and the
number of timesit windsroundr isv(K, r).Thetime-lapse picturesin [ 3] show r
moving towardstheloop, whichitself deformsso asto avoid being crossed, finaly
ending up at the point s.

K

Y

Figure[3]
Now since the moving point never crosses the loop, the winding number re-

mains constant throughout the process. But on the far right, the new loop can be
thought of as the union of the old loop K, together with the new circle L. Thus,

v(K,r)y = v(K,s)+v(L,s)=v(K,s)—1
=>v(K,s) = vK,r)+1.

Imagining ourselves at r, looking towards K as we approach it, we may express
thisresult in the form of the following very useful crossing rule:

If K ismoving fromour left to our right [our right to our |eft] aswe
crossit, itswinding number around usincreases|decreases] by one.

(D

Using this result, it is incredibly quick and easy to find the v;’s for even the
most complicated loop. Try it out on [2]. Starting your journey well outside L,
where you know that the winding humber is zero, move from region to region,
using crossing rule (1) to add or subtract one at each crossing of L.

Animmediate consequence of thisideais aconnection betweenn = v(K, p)
and the number of intersection pointsof K with aray emanating from p. Suppose
that theray isin general position in the sense that it doesn't pass through any self-
intersection pointsof K, norisittangent to K. If apoint q onthisray issufficiently
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Figure [4]

distant from p then clearly K cannot wind around it; thus as we move along the
ray from p to g the winding number changes by n. But the winding number only
changeswhen we cross K, and only one unit per crossing. The ray must therefore
intersect K at least |n| times. However,in addition to these |n| necessary crossings
theremay be additional cancelling pairsof crossings. In general, then, the number
of intersection pointswill be|r|, or |r|+2, or |n|+4, etc. Figure[4] illustratesthese
possibilitiesfor a casein which n = 2, each intersection point being marked with
@ or & according as the winding number increases or decreases asit is crossed.

Il Hopf's Degree Theorem
1 The Result

We havediscussed the fact that for afixed loop and a continuously moving point,
the winding number only changes when the point crosses theloop. But it is clear
that the same must be true of afixed point and a continuously moving loop: the
winding number of the evolving loop can only change if it crosses the point, and
it changes by £1 according to the same crossing rule as before. Thusif aloop K
can be continuously deformed into another loop L without ever crossing a point
p, thewinding numbersof K and L around p will be equal.

Itisnatural toask if theconverseisalsotrue: if K and L windround p thesame
number of times, isit alwayspossibletodeform K into L without ever crossing p?
Thisiscertainly amore subtle question, but by drawing examples you will beled
to suspect that it istrue. In this section we will confirmthis hunch, so establishing
that

Aloop K maybe continuously deformed intoanother loop L, without
ever crossing the point p, if and only if K and L have the same (2
winding number round p.

At theend of the next chapter, thiswill turn out to bethe key to understandingone
of the central results of complex anaysis.
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The result in (2) is the simplest example of a remarkable topological fact,
caled Hopf's Degree Theorem, that is valid in any number of dimensions. In
the 2-dimensional complex plane, a point can be surrounded using a closed 1-
dimensional curve—a loop. In 3-dimensiona space, a point can be surrounded
using a closed 2-dimensional surface. Just as a circle in the plane winds once
arounditscentre, so aspherein space enclosesitscentre just once. More generaly,
self-intersectingloops in the plane may enclose a point several times, and thisis
precisely what v counts. Similarly, it is possible to define a more general concept
(degree) that counts the number of times a surface surrounds a point in space.
Hopf's Theorem now says that one closed surface may be continuously deformed
into another, without ever crossing p, if and only if they enclose p the same number
of times. Indeed, Hopf's Theorem says the sameistrue of n-dimensional surfaces
enclosing pointsin (n + 1)-dimensional space!

2 Loops as Mappings of the Circle*

Asalfirst step to understanding (2), we will look at loopsin anew way. Let C bea
rubber band in the shape of the unit circle. We may now deform C into the shape
of any desired loop L. At theend of the deformation process, each point z of C
has been brought to a definiteimage point w on L, and thus L may be thought of
astheimage of C under a continuous mapping w = £L(z). See[5].

Figure[5]

As# variesfrom 0 to 27, z = ¢ movesround C onceand w movesround L
once, thelength R and angle @ of w varying continuously with 8. We may write

w = L) = R(6) £*D |

where R(8) and ® (@) are continuous functions. By rotating L (if necessary) we
can ensure that £(e'?) is a positive real number, so that we may set ®(0) = 0.
The net rotation of w after it has returned to its starting point is then given by
OQ2r) =2mv.

Clearly, the varyinglength of w issomething of ared herring whenit comesto
understanding winding numbers, and we now remove this distraction by pulling
each pointw of L radially ontothe pointw = w/|w| ontheunitcircle, soobtaining
a standardized representation L. We can even give an explicit prescription for
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gradually deforming L into L. See [6a]. Since (W — w) is the complex number
from a point on L to its destination on L, the point that isafraction s of the way
thereis

L) =W+s@—-w). 3

Ass variesfrom0to 1, £;(C) gradualy (and reversibly) changes from L into L.
Figure [6b] shows £;(C) for avalueof sclose to 1. Finaly, note the obviousfact
that as we gradually pull L radially onto L, the originis not crossed.

[a] \)““ cer] e

Figure[6]

With lengths disposed of in this way, we arr now dealing with a mapping 3
from the unit circle C to the standardized loop L on the unit circle, where

= L) = O “)

In this context, it is common to speak of the degree of the mapping L which
produces L, rather than of the' ‘winding number” of C (or L). The single real
function ®(¢) completely describes the mapping £, and [7] shows how we can
immediately read off the degree of £ (i.e. v) from the graph of ©(8). Make sure
you are comfortable with the meaning of such agraph. For example, if z movesat
unit speed round C, what doesthe slope (including thesign) of thegraph represent?

3 The Explanation*

The archetypal mapping of degree v is j,(z) = z", for which ®(0) = v6. Its
straight-line graph is shown in [7]. As z travels once round C at unit speed, &
travels once round J,, with speed |v|, completing |v| circuits of the unit circle
[counterclockwiseif v > 0; clockwiseif v < 0].

To seehow a typical standardized |oop L of wi nding number visrelated to the
archetypal loop Jv, we return to the example in [6b], for which v = 2. Thinking
of the unit circle as the boundary of a solid cylinder, and recalling that the loop
is an elastic band that wishes to contract, what will happen if we release L2The
slack will be taken up, and L will automatical ly contract itself into the archetypal
loop 32. This convinci ng mental image of the rubber band contracting into J, can
beformalized to show that
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2wy

Figure[7]
Any Ld winding number v can be continuously deformed into the
archetypal loop J,, and vice versa.

The process of "taking up the slack” can be explicitly described in terms of
the graph of the ® that describes L. Ast variesfrom 0 to 1, the graph of

D, (0) = ®O) +t[vo — P(H)]

continuously and reversibly evolves from the graph of the general @ into the
straight-line graph of the archetype. Thedashed curvein[7] isthegraph of ®; for
avalueof t close to one. Defining

Z?t(eiQ) — ei@,(@) , (5)

L, (o)therefore evolves continuously and reversibly from L into 7, ast varies
fromO to 1.

Theexplicit two-stagedeformation given above [(3) followed by (5)] allowsus
to deform any loop of winding number v into the archetypal loop J,, and without
the origin ever being crossed. Conversely, by reversing these steps, J,, may be
deformed into any loop of winding number v. Thisdemonstrates (2), for if K and
L both have winding number v, we may first deform K into J,, and then deform
JyintoL.

Il Polynomials and the Argument Principle
Let A, B, and C be the complex numbersfrom the fixed points a, b, and ¢ to the
variable point z. Figure [8] shows acircle I" and itsimage f (I") under the cubic
mapping

f(zy=(z-a)z-b)(z-c)=ABC.
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= ABC

Figure [8]
Notice that I encircles two zeros of the mapping, while f (I') has a winding
number of 2 about zero. Thisis no accident. Since angles add when we multiply
complex numbers, the number of revolutionsexecuted by ABC isjust the sum of
therevolutionsexecuted separately by each of A, B, and C. But asz goesround I’
once, A and B both execute acomplete revolution, whilethedirection of C merely
oscillates. Thus v[f (I"), 0] = 2.

If weenlarged T so that it encircled c, then C would also execute a complete
revolution, and the winding number would increase to 3. Once again, the number
of pointsinside I' that are mapped to 0 isthe winding number of theimage about
that point.

It is clear that this result is independent of the circularity of I', and that it
generalizesto the case of apolynomial P(z) of arbitrary degree: If a smpleloop
" windsonce around m rootsof P(z2), thenv[ P(I"),0] = m.

Roots are simply preimages of 0, and from the geometric viewpoint thereis
nothing special about this particular image point. Consequently, in future we will
look at the preimagesof ageneral point p and wewill call these preimages p-points
of the mapping.

The Argument Principleis a tremendous extension of the above result. Not
only does it apply to general analytic mappings but it also contains the converse
statement that the winding number tells us the number of preimages:

If f (2) isanalytic inside and on a smpleloop I', and N is the
number of p-points| countedwiththeir multiplicities]insideT’, then ()
N =v[f({D), pl

Themeaning of theexpression™ countedwiththeir multiplicities" will beexplained
in the next section.

Wewishtostressthat thisresult isonly peripherally connected withtheconfor-
mality that has been so central to al our previousthinking. In fact the Argument
Principle is a consequence of a still more general topological fact concerning
mappings that are merely continuous. Our main effort will therefore be directed
towardsunderstanding the general result (dueto Poincaré), of whichthe Argument
Principleis merely a specia case.
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IV A Topological Argument Principle*
1 Counting Preimages Algebraically

Even in the simple case of {8] we find that we must be careful how we count
preimages. If we move the root b towards the one at a, zero continues to have
two preimagesinsideI", whiletheimage of I" continues to wind round zero twice.
However, when b actually arrives at a there is apparently only a single O-point
insideT" (namely a) despite the fact that f (I") winds round 0 twice. Thus a must
now be counted twiceif (6) isto remain true.

Algebraically, the resolution liesin thefact that a is now a" double-root™, the
factored form of f (z) = ABC = A2C containing the square of A = (Z— a).
Moregeneraly,if thefactorization of a polynomial containsthe term A" then we
say that the root a is a 0-point of algebraic multiplicity n, and we must count it
with this multiplicity in (6).

Whenn > 1thereisafurther significanceto the point a—it isacritical point
of the polynomial. In the cubic mapping f (z) = ABC, let a, b, and ¢ be red,

Figure[9]

graphof f inthiscase. Asb movestowardsa, the slopeat a isforced to decrease,
finally vanishing at the moment of &’s arrival.

In general this vanishing of the derivative (now amplitwist) must occur wher-
ever two or more roots of a polynomial coalesce. Look againat [9]. If f'(a) # 0
then the graph is not flat at a and so neighbouring points cannot map to zero; but
thisis precisely what we insist on when we merge b into a. Essentially the same
thing happens when we return to C, for if f/(a) # 0 then an infinitessimal disc
centred at a is amplitwisted to an infinitesimal disc centred at 0, so that points
close to a cannot map to 0.

This conclusion can be refined. If the root a of a polynomial P(z) has mul-
tiplicity » then P may be factorized as A" ©(z), where ©2(a) # 0. It follows by
simple calculation [exercise] that thefirst (n — 1) derivativesof P vanishat a, so
that aisacritical point of order at least (n — 1). We shall seein a moment that the
order actualy is (n — 1).

We next seek to extend the idea of counting preimages "' with algebraic mul-
tiplicities" to analytic mappings in general. Suppose that a is a p-point of an
analytic mapping f (2), i.e., itisa0-point of f (zZ) — p. What should thealgebraic
multiplicity of thisroot be? It isonly possibleto answer this question because of
the remarkable fact that an analytic f can always be represented as a convergent
Taylor seriesin the neighbourhood of a non-singular point. Thusif A = (z — a)
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is the small complex number from a to a nearby point z, we may write

f’(a)AJr (@) A2

f@-p=fla+d) - fl@)="=— X

R

Thefirst nonzero termon theright i s the one that dominates the local behaviour of
T (z) — p and decides what the multiplicity of a should be. Typically a will not be
acritical point [f '(a) # 0] and sothislocal behaviourislike A to thefirst power;
we say that a is asimpleroot with multiplicity +1.

Now consider therarer casein which a is acritical point. If the order of the
critical pointis (n — 1), so that f ™ is the first nonvanishing derivativeat a, then
the dominant first termis proportional to A", and we correspondingly definethe
algebraic multiplicity? of a to be n. The analogy between this definition and that
for polynomials may be brought to thefore by setting

_ f®@) 4 f(n-H)(a)A D)

&= aF DT wEpr At

where f ™ (a) isthefirst nonvanishing derivative. The previous equation can now
be writtenin ' factorized form as

f@—p=Q(@) A", O]

where S (a) # 0. From this point of view, the only difference between a genera
analytic mapping and apolynomial isthat thelatter hasasingle, ""onceand for al"
factorization, while the former generally requires a different factorization of type
(7) in the neighbourhood of each p-point.

2 Counting Preimages Geometrically

Recall that we wishto explain (6) asaspecial caseof amoregeneral result dealing
with mappings that are merely continuous. But since the very notion of algebraic
multiplicity is meaninglessfor such general mappings, how can we even frame a
proposition of type (6)?

What is needed is ageometric way of counting preimages that will agree with
thepreviousalgebraic definitionif we specialize to analytic mappings. To discover
the appropriate definition we should therefore return to analytic mappingsand ask,
"What isthe geometric fingerprint of a p-point of given agebraic multiplicity?

Consider the effect of an analytic f on an infinitesimal circle C, centred at a
simple p-point a. Since f'(a) # 0, C, isamplitwisted to an infinitessimal circle
centred at p. We see that the winding number (4-1) of thisimage round p isthe
same as the algebraic multiplicity of a. In fact, quite generally, if the algebraic
multiplicity is n then the winding number of theimage will also be n. Thisisthe
sought-after geometric fingerprint.

2 Also known as order or valence.
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To verify this statement, remember that the local behaviour of f neartoais
given by (7):
f@=fatr=ptewa
with ©(a) # 0. Thus the basic explanation is that as A revolvesround C, once,
A" rotatesn-timesasfast, and therefore f (z) completesn revolutionsround p. If
52 were a constant then this argument would be beyond reproach, and we can now
do alittlecalculation to show that a variable €2 does not disturb the conclusion:

v[f(Ca), Pl = VIf(Ca)—p, 0] = v[A"Q(Co), 0]
= nv[A, 0] +v[Q(Cy), 0]. ®

Asweshrink C, downtowardsa, $2(Cgz) will shrink down towards$2 (a), but since
Q(a) # 0thisimpliesthat theimage of asufficiently small C, will not wind round
0: v[Q(C,), 0] = 0. Since v[A, 0] = 1, we conclude that v[f (C,),p]l =n, as
claimed.

We may now broaden our horizon and use the aboveideato define" multiplic-
ity"" for amapping h(z) that ismerely continuous. Let I'; be any simpleloop round
a that does not contain other p-points. Figure [10] shows such aloop as well as

Figure[10]

some other p-pointsb, ¢, etc. If wecontinuously deform T, into another suchloop
I'q without crossing a (or any other p-point) then h(I's) will continuously deform
into ~(I',) without ever crossing p, and so

v[h(Ty), p1=v[A(TyL), p1.

Thus, without specifying I', further, we may unambiguously definethe topological
multiplicity® of a to be

v(a) = v[h(T), P|.
In the case of the mapping in [10] we see that v(a) = —2. If h happened to be
analytic then a would also possess an algebraic multiplicity n, but by deforming
I, into theinfinitesima circle C,, wefind that the two kinds of multiplicity must
agree: v(a) = n.

3 Also known asthe local degreeof h at a.
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3 What's Topologically Special About Analytic Functions?

From the geometric point of view, conformal (analytic) mappings are infinitely
richer in structure than mappingsthat are merely continuous. However, from the
point of view of topologica multiplicity there are only a few distinctions, the
following being one of the most striking:

v(a) isalwayspositivefor analyticfunctions,whileitcan be negative
for nonanalyticunctions.

For example, the mapping in [10] cannot possibly be analytic. The positivity of
v(a) for analytic functions has already been established, so we need only look
moreclosely at the possibility of negative multiplicitiesfor nonanalyticfunctions.

Sincegenera continuousmappingscan actually behavein rather wild ways, let
usrestrict ourselvesto nonanal ytic mappingsthat are at |east differentiablein the
real sense. For example, consider A(z) = z. Theunique preimagedf p isa = p,
and any smpleloop T, round thispointisreflected by h into aloop that goesonce
round p in theoppositedirection. Thusv(a) = —1.

More generaly, recall [see p. 208] that the local effect of such a mapping at
ap-point a is (after trandation to p) a stretch by somefactor &, in one direction,
another stretch by some factor 7, in the perpendicular direction, and finaly a
rotation through some angle ¢,. For example, conjugation has (taking the first
expansion to be horizonta) &, = +1, n, = -1, ¢, = 0. Of course these values
of &, 14, and ¢, are only independent of a because h(x Fiy) = x — iy depends
linearly on x and y; most mappings have vauesthat do depend on the point a.

AninfinitesmalcircleC, centredataisgeneraly distortedintoaninfinitesmal
ellipse E,, centred at p, and if the two expansion factors have the same sign then
the mapping preserves orientation so that E, circulates in the same sense as C,
and v(a) = +I. However, if &, and 5, have opposite signs then the mapping is
orientationreversing:it turnsC, insideout, sothat E, goesround p intheopposite
direction and v(a) = —1. Our previousexample of conjugationwas of thistype.
In summary, we have

v(a) =thesign of (§,74)-

Thelocd linear transformation at a is encoded by the Jacobian matrix J (a),
and we can useits determinant det[J (a)] to give a more practical formulafor the
topological multiplicity. We know from linear algebra that the determinant of a
congtant 2 X 2 matrix isthefactor (including asign for orientation) by which the
area of afigureis expanded. Likewise, det[J(a)] measures the local expansion
factor for areaat a, and thisisjust (§,47n,). Thus

v(a) =thesignof det[J(a)]. &)

Of coursethisformulais vacuousif det[J(a)] = 0. Geometrically this means
that thetransformationislocally crushing at a; just asfor analytic mappings, such
aplaceis caled acritical point. However, while the loca crushing at a critical
point of an analytic mappingis perfectly symmetrical in all directions, thisis not
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true of the more general mappings presently under consideration. For example, if
f (xTiy) = x — iy? then [exercise] det[J] = —3y2, so although f leavesthe
horizontal separation of points alone, al the points on the real axis are critical
pointsas aresult of crushingin the vertical direction.

Thisexamplealso servesto illustrate another difference:

The critical points of an analytic mapping can be distinguished
purely onthebasisof topological multiplicity; thoseof anonanalytic
mapping cannot.

For analytic functions we have seen that v(a)= +1if and only if aisnot critical.

In the nonanalytic case v(a) = +£1 if aisnot critical, but it isalso possible for a

critical point to have one of these multiplicities. Indeed, you can check [exercise]

that the above example yields v(a) = —1 for noncritical and critical pointsalike.
Onefinal difference:

v(a) isnever zero for analytic mappings, but it can vanish for non-
analytic mappings.

In the next section we will provide a smple example of a nonanalytic mapping
possessing such p-points of vanishing topological multiplicity. Can you think of
an example for yourself?

4 A Topological Argument Principle

Let ' be asimple loop, and let A(z) be a continuous mapping such that only a
finite number of its p-pointslieinside I'. We will show that

Thetotal number of p-pointsinsideI” (countedwiththeir topological (10)
multiplicities)is equal to the winding number of A(I") round p.

If hisanalyticthisreducesto (6).Therest of the chapter will be devotedto mining
and extending this simple yet profound result*.

Before explaining (10), let usdescribe one of itsimmediate consequences. As
in[2], A(I") will generally partition the planeinto a number of sets, and the above
result then says that every point in D; has the same number of preimages lying
inside I", namely, v;. For example, if (") is asimple loop then it partitions the
plane into just two sets, namely, itsinterior and its exterior. If p isin theinterior
then the result says that the total number of p-pointsinside I' is 1. But if h is
analytic then these p-points must have strictly positive multiplicities, and so there
isexactly one preimagefor each pointinside h(I"). In other words, we have shown
that

4When interpreted in terms of vector fields (as we shall doin Chapter 10) thisisthekey toa
very surprising and beautiful fact called the Poincaré-Hopf Theorem.
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Figure[11]

If an analyticfunction h maps I onto A(I") in one-to-onefashion,
then it also maps the interior & T onto theinterior d A(I") in one-
to-onefashion.

Thisis Darboux’s Theorem.

Toexplain(10), consider [11]. Thisshowsthree p-pointsa, b, and ¢ lyinginside
" while others lie scattered outside. The essentia idea is that we can gradually
deform I" (as shown) into the doubly-pinched loop By 8y Ba, which we will call
[". Since no p-points were crossed in the deformation process, A(T") will wind
round p the same number of timesas A(I"). Therest is almost obvious: I" ismade
upof I'y = aBa, 'y = ByB, I'c = y8Y, and thewinding numbers of theirimages
round p are, by definition, the topological multiplicitiesof a, b, and c.

We will spell thisout in perhaps unnecessary detail. Let K be a path that is
not necessarily closed, and define R(K) to be the net rotation of (z) round p as
z traverses K. For example, if K isclosed then R(K) = 2nv[h(K), p 1. Then,

20 v[h(), pl1 = 2w v[h(@), p]
= TR(aBydyBa)
= R(ep) +R(By) +R(yd) + R(@y) + R(yB) + R(Ba)
= R(apa) +R(ByB) + R(ydy)
= R +RTp) +R(TL)
2xv(a) + v(d) + v(d)].

Clearly thisideaextendsto any number of p-pointsay, as, etc. lying insideT:

vh(T), pl= Y vig). an

insdeT
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5 Two Examples
Let usimmediatelyillustrate the result with a concrete mapping:

hix Fiy) =x Filyl.

In terms of our pastry analogy [p. 207] this correspondsto making a crease dong
thereal axisandfolding the bottom half of theplaneontothetophalf. If Im(p) > 0
then p hastwopreimages. a; = pandaz = p. Figure[12] showsthatv(a;) = +1
and v(az) = —1, and in accord with (11), it also showsthat if T' containsa; and
a then v[h(I"), p] =0.

7o) *
@ %

Figure[12]

In generd, note that v[A(I"), p] = 0 merely implies that either there are
no preimagesinsideI" or the preimages have cancelling multiplicities, as above.
However,if f isanayticand v[f (T"), p ] = 0 thentheconclusionisquitedefinite:
thereare no preimagesinsideI’. Later we shall return to thisimportant point.

Returning to theexample, observethat if p = X isreal then thereisonly one
preimage, namely X, and v(X) = 0. We can look at thisin a nice way: as we
move p towards X, the two preimagesa; and a; also movetowards X, and when
they finaly coalesceat X their oppositemultiplicitiesannihilate. Aswe previoudy
pointed out, such points of vanishing multiplicity can only exist for nonanalytic
mappings.

Figure[13] showsasecond moreel aborateexample, in which wesubject aunit
disc of pastry to athree-stage transformation H that leaves the boundary I" (the
unit circle) fixed: H(I™) = I'. Hereare thethreestages: (A) forma''hat" by lifting
W the part of thedisc lying insidethe dashed circle, some of the pastry outsidethe
dashed circle being stretched to form the side of the cylinder; (B) radialy stretch
the disc forming the top of this™hat" till itsradiusis greater than one; (C) press
Jown flat, i.e., project each point vertically down onto the plane.

If we pick a point p from the image set [bottom left] then the number of
preimages (counted naively) lyingin the original discis the number of layers of
sastry lying over p. In thefina picture[bottom left] we have used the degree of
shading to indicatethe number of these layers: one over the lightly shaded inner

h(T)
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Figure [13]

disc; two over the darkly shaded outer ring; three over the black ring. Make sure
you can seerthis.

We can now check (11). For example, if pliesin thedarkly shaded outer ring,
v[H(T"), p] = v[I', p] = 0 and so the multiplicities of the preimages of such
points should sum to zero. By following the effect of the transformation on little
loopsround each of the two preimages, we confirm this prediction: one preimage
has multiplicity +1 while the other has multiplicity—1.

Check for yourself that (11) continues to work if p instead liesin the inner
disc or in the black ring.

V Rouche's Theorem
1 The Result

Imagine walking a dog round and round a tree in a park, both you and the dog
finally returning to your starting points. Further imagine that the dog is on one of
thoseleashes of variable length, similar to a spring-loaded tape measure. On one
suchwalk you keep theleash short, so that the dog stays at your heel. Itisthenclear
that the dog is forced to walk round the tree the same number of times that you
do. On another walk, though, you decide to | et out the leash somewhat so that the
dog may scamper about, perhaps even running circles around you. Nevertheless,
provided that you keep the leash short enough so that the dog cannot reach the
tree, then again the dog must circle the tree the same number of times as you.

Let thetree be the origin of C, and let your walk be the image path traced by
f (2) asz traversesasimpleloop . Also, let the complex number from you to the
dog be g(z),s0 that the dog's position is f (z) T g(z). The requirement that the
leash not stretch to the treeis therefore

18| < |f(2)|onT.

Under these circumstances, the previous paragraph states that
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vI(f +&)(T), 0] =v[f(T),0].
But the Argument Principle then informs us that

Iflg(2)| < |f@]onT, then (f T g) must have the same number
of zerosinsideI” asf.

Thisis Rouché’s Theorem.
Notethat while|g(2)| < |f (z)| isasufficientconditionfor (f + g) tohavethe
same number of rootsas f , it isnot a necessary condition. For example, consider

g8(2) =2f(2).

2 The Fundamental Theorem of Algebra

A classicillustration of Rouché’s Theorem is the Fundamental Theorem of Alge-
bra, which states that a polynomial

PR =7"+Az"'+B"%+...+E

of degree n always has n roots. The basic explanation is simple: if |z] is large,
the first term dominates the behaviour of P(z) and the image of a sufficiently
large origin-centred circle C will therefore wind n times round O; the Argument
Principle then saysthat P(z) must haven rootsinside C.

Rouché’s Theorem merely alows usto makethe aboveideamore precise. Let
f (z) = 7" bethefirstterm of P(z) and let g(z) bethe sum of al therest, so that
f + g = P. Nowlet C bethecircle|z] =1+ |4| T |B|+..-+|E|. Using the
fact that |z] > 1on C, itisnot hard to show [exercise] that |g(z)| < | f(z)l on C,
and sincef hasn rootsinside C (all at the origin), Rouché saysthat P must too.

Notice that we have not only confirmed the existence of the n roots, but have
aso narrowed down their location: they must all lie inside C. In the exercises
you will see how Rouché’s Theorem can often be used to obtain more precise
information on thelocation of the roots of an equation.

3 Brouwer's Fixed Point Theorem*

Sprinkle talcum powder on a cup of coffee and giveit agtir. Thelittle white specks
will swirl around and eventually come to rest, the speck that was originaly at z
finally ending up at g(z). If westir itin anice symmetrical way then the speckin
the centre will remain motionless and its final position will be identical with its
starting position. Such a place, for which g(z) = z, iscalled a fixed point of g.

Now stir the coffeein areally complicated way and let it again come to rest.
Incredible asit may seem, at least one speck will have ended up exactly whereit
started! Thisisan example of Brouwer's Fixed Point Theorem, which assertsthat
any continuous mapping of the disc to itself will have a fixed point. Exercise 15
showsthisto betrue, but for themoment wewish to demonstrateaslightly different
result: there must be afixed point if the disc is mapped intoits interior and there
are at most afinite number of fixed points.

Let thedisc D be|z| < 1; thecondition that g map D into theinterior of D is
then |g(z)| < 1fordl zin D. Let m(z) be the movement of z under the mapping,
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i.e., the connecting complex number from z to its destination g(z):

m(z) =g@) —z.

A fixed point then corresponds to no movement: m(z) = 0. Now letf (2) = —z.
On the boundary of D (the unit circle) we have

1@ <1=]f(2)

and so Rouché’s Theorem says that m (z) = g(z) +f (z) has the same number of
rootsinside D asf has, namely, one.

If g ismerely continuous then there can actually be several fixed points, some
of which will necessarily have negative multiplicities, while if g isanalytic then
therecan literaly only be one.

VI Maximaand Minima
1 Maximum-Modulus Theorem

Take another look at the nonanalytic mapping H of [131, and note how the image
of the disc " spills over' the image of its boundary: pointsinside I' end up in the
darkly shaded ring outside H (I"). The central observation of this section is that
such spilling over is quite impossible in the case of an analytic mapping:

[ff isanalyticinsde and ona simpleloop I then no point outside

f (I') canhavea preéimageinsideT. (12)

Let's see why. The Argument Principle saysthat the sum of the multiplicities
V(a;) of those p-points that lieinsideT" isv[f (T"), p ], butif p isoutsidef (') then
(by definition) thisis zero. Since v(a;) isstrictly positivefor an analytic function,
we conclude that points outside f (I") have no preimagesinside I'. On the other
hand, if pliesinsidef (I') thenv [f ("), p] # 0 and so there must be at |east one
preimageinside I". [Unlike (12), thisis also true of nonanalytic mappings.]

Figure[14]illustratesan analyticf sending the shaded interior of " strictly to
the shaded interior of f (I"). Sincef (I") winds round the darker region twice, its
points have two preimagesin I'; we can think of this as arising from the overlap
of two lightly shaded regions, one preimage per lightly shaded point.

One aspect of the" overspill" produced by H in {13] isthat the pointsz which
end up furthest from the origin (i.e., for which the modulus |H ()| is maximum)
lieinside I". Conversely, the absence of overspill for an analyticf meansthat

The maximumdf | f (z)| on a region wheref isanalyticis always
achieved by points on the boundary, never onesinside.

This is called the Maximum-Modulus Theorem and it is illustrated in [14]: the
maximumof | f(z)|is|T| = |f(t)|, wheret liesonT.

The only exception to this result is the trivial analytic mapping z — const.
which sends every point to a singleimage point. To put this more positively, if we
know that |f | achievesits maximum at aninterior point thenf (z) = const.
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As a smple example, consider this problem. Let B(z) be the product of the
distances from z to the verticesa, b, ¢, d of asguare. If z liesinside or on the
edge of the square, where does the maximum value of B occur? It is certainly
temptingto guessthat the maximumwill occur at the centre of the square, but this
iswrong. Since B(z) = [(z —a) (z — b) (z — ¢) (z — d)| isthe modulus of an
anaytic mapping, the maximum must in fact occur somewhereon theedge of the
sguare. The exact location can now be found [exercise] using nothing more than
ordinary calculus.

Returningto mattersof theory, recall from Chapter 2 that the' modul ar surface™
of T isthe surface obtained by lifting each point z vertically to a height | f(z)|
above the complex plane. If we look at the portion of this surface lying above I’
and itsinterior, the result says that the highest point awayslies on theedge, never
inside.

Althoughtheabsol ute maximum of the height alwaysoccursontheedge, could
there perhapsbe alocal maximumof | £ at an interior point a, so that the surface
would have a peak above a? No! For if we cut out the piece of the surface lying
above theinterior of any small loop y round a, the highest point will fail to lie
on the edge. Thusamodular surface has no peaks. Further aspectsof the modular
surface areinvestigatedin the exercises.

Thisabsenceof local maximaisre-explainedin [14]. The Argument Principle
saysthat sincey containsa, f (y) mustwind round A = f (a) at least once. This
makes it clear that there are aways points on y which have imageslying further
from the origin than A. Moreformally (cf. [4]), any ray emanating from A must
intersect T (y), and by choosing the ray to point directly away from the origin,
theintersection point is guaranteed to liefurther from theorigin than A. Thus| f|
cannot have aloca maximum.



The Schwarz-PickLemma* 357

2 Related Results

As[14] illustrates, the Maximum-Modulusresult isonly one of several that follow
from (12). For example, unless thereis a 0-point inside I', at which | f(z)| = O,
the point Q closest to the origin (for which | f(z)| is minimum) must aso be the
image of a point g lying on the boundary I". Naturally enough, thisis called the
Minimum-ModulusTheorem.

Thus if we cut out the piece of the modular surface lying above I' and its
interior, the lowest point will alwayslie on the edge, unless, that is, the surface
actualy hits the complex plane at an interior O-point of f . By the same token,
there can beno pitsin the surface [local minimaof |f |} except at O-points.

Asbefore, theonly exceptionto al thisisthe mapping z + const., for which
every point yields the smallest (and only) value of | f|. Thusif we know that | f}
achievesa positive minimum at an interior point then f (z) = const.

If f =u+ivisanayticthen [cf. Ex. 2, p. 258] u and v are automatically
"harmonic™. As we shall see in Chapter 11, this means that these functions are
intimately connected with numerous physical phenomena: heat flow, €l ectrostatics,
hydrodynamics,to namebut afew. Itisthereforeof significancethat [14] showsthat
u and v are also subject to the principle that their maximaand (nonzero) minima
canonly occur on T, never inside I'. Asbefore, if amaximum or minimum occurs
at aninterior point, the harmonic function must be constant.

VII The Schwarz-Pick Lemma*
1 Schwarz's Lemma

Thinking of theunit disc asPoincaré’s model for non-Euclidean geometry, we saw
in Chapter 6 that a specia role was played by the Mobius transformations of the

form

MP@) = (;Z“_“l) = ' Ma(2), (13)

wherea liesinside the disc. These one-to-one mappings of the disc toitself act as
rigid motions, for they preserve non-Euclidean distance.

Apart from a digression on Liouville's Theorem, this section continues the
work (begun in Chapter 6) of exhibiting the beautiful pre-existing harmony that
exists between non-Euclidean geometry and the theory of conformal mappings.
Our first new piece of evidence that these two disciplines somehow ""know' about
each other isthefollowing:

Rigid mations of the hyperbolic plane are the only one-to-one ana-

lytic mappings d thedisc to itself. (14)

There are of course many other kinds of analytic mapping of the disc to itself, but
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according to (14) they must al fail to be one-to-one. For example, z — z maps
thedisc toitself, butit is three-to-one.

Observe that this result establishes a claim we previously made [see p. 180]
in connection with Riemann’s Mapping Theorem. There we explained that there
are as many mappingsof oneregion to another as there are automorphisms of the
disc. We already knew that these automorphismsincluded 3-parameter's worth of
Mobius mappings, and (14) now tells usthat there are no more.

To verify (14) we will first establish alemma (of great interest initself) dueto
Schwarz:

| f an analytic mapping d thedisc to itsdf leaves the centrefixed,
then either every interior point moves nearer to the centre, or else
the transformation isa simple rotation.

The example f (z) = z2 shows that the mapping need not be a rotation in order
for boundary pointsto keep their distance from the centre. However, at an interior
point we have|z| < 1, and so |f (2)| = 1z|% < |z], in accord with the result.

Let f beany analytic mapping of thedisc to itself leaving the centre fixed, so
that |f (z)| < 1onthedisc, and f (0) = 0. Wewishtoshow that either | £ (z)| < |zl
atinterior points, or ese f (z) = €% z. Tothisend, consider theratio F of image
to preimage:

F() = &
b4
At firgt sight this may look undefined at O, but a moment's thought shows that as
z approachesthe origin, F(z) approaches f'(0).

From the previoussection we know that the maximum modulus of an analytic
function on the disc can only occur at aninterior point if the function is constant,
otherwiseit's on the boundary circle |z| = 1. Thusif p isaninterior point and z
variesover the unit circle C, then

|F(p)| < (max |F(z)| on C) = (max || (z)] onC) < 1.

Thusit is certainly true that no interior point can end up further from the centre.
But if even asingleinterior point g remains at the same distance from the centre
then |F(q)] = 1, which means that F has achieved its maximum modulus at an
interior point. In this case F must map the entire disc to a single point of unit
modulus, say e @so that f (z) = /¢ zisarotation. Done.

Theresult isillustrated in [15]. If T is not a rotation then every point z on a
circle such as K is mapped to a point w = f (z) lying strictly inside K, and the
shaded region is compressed as shown. If we shrink K down towards the origin
then £ will amplitwist it to another infinitesimal circle centred at the origin, but
having asmaller radius. Thusthe amplificationof f at the origin must belessthan
one. Wecan only have | f'(0)| equal to onein the case of arotation.

We can now return to (14). As in Schwarz's Lemma, first suppose that the
mapping f leavesthecentrefixed, but now takef to beone-to-one, sothat it hasa
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Figure[15]
well-defined analyticinversef ~! which also mapsthedisc toitself and leavesthe
centrefixed. By Schwarz's Lemma, f sendsaninterior point pto apointq thatis
no further from centre than p. But f ~! isalso subject to Schwarz's Lemma, and
so p = f ~1(qg) must be no further from the centre than q. These two statements
areonly compatible if |1g| = | f(p)| = |p|. Thus f must be arotation, whichis
indeed arigid motion of type (13).

Finally, suppose that the one-to-one mapping f does not leavethe centrefixed,
but instead sendsiit to c. We can now compose f with the rigid motion M, which
sends ¢ back to 0. We thereby obtain a one-to-one mapping (M. o f) of the disc
toitself which does leavethe centre fixed, and which must therefore be arotation
Mg . But this means[exercisg] that

f=M.oM}

isthe composition of two rigid motions, and so isitself arigid motion. Done.

2 Liouville's Theorem

Theconstant mapping f (z) = ¢ crushes theentire plane down to the singleimage
point c. We now ask whether it is possible for an analytic mapping to compress
the entire plane down to aregion lying inside afinitecircle, without going to the
extreme of completely crushing it to a point.

If we merely demand that the mapping be continuous then this can happen.
For example,

h(z)

=1+|z|

maps the entire plane to the unit disc. Returning to analytic mappings, we notice
that complex inversion, z = w = (1/z), manages to conformally compress the
infiniteregionlying outside the unit circle of the z-planeinto the unit disc of the w-
plane. Thislooks quite hopeful: of theoriginal plane only apuny unit discremains
to be mapped.

To think like thisis to completely forget the rigidity of analytic mappings.
Having decided to use complex inversion to map theregion outside the unit circle,
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we cannot change the rules when it comes to mapping the remaining disc: the
mapping z — (1/z) actingin theexterior can only beanalytically continued to the
interior in one way, namely as z — (1/z). Therequirement of analyticity thereby
forcesthe'" puny" disc to explode, producing an image o infinitesize.

We will now show that

An anal ytic mapping cannot compressthe entireplane intoa region
lying insidea disc d finite radius without crushing it all the way
down to apoint.

Thisis Liouville's Theorem. To understand this we must generdize Schwarz's
Lemma dightly. Suppose that an analytic functionw = f (z) leavesthe origin
fixed and compressesthedisc {z| < N toaregionlyinginsidethedisc |w| < M.
By the same reasoning as before, we find that if p liesinside the original disc
(boundary circle K) then

|F(p)| < [max |F(2)| on K] = max (lf_(NZﬂ) on K < %—

Hence, Mipl
p
[f(pl < N

Butif f compressesthewhole planeto aregionlyinginsidethedisc of radius M,
then the above result will continueto hold true no matter how large we make N.
Therefore f (p) = 0 for al p, and we aredone.

Finaly, if f does not leave the origin fixed, but instead sendsit to ¢, we may
apply the previousargument to thefunction [f (z) — c]. Thisisthecompositiond
f with the trand ation which sendsc back to 0. Sincetheimage of the plane under
f liesinsidethedisc|w| < M, thetrandation of —c will producearegion lying
insidethedisc |w| < 2M. The previousinequdity then becomes

\f(p) — ) < 2M1PL

Onceagain letting N tend to infinity, we concludethat f (p) = ¢ for al p. Done.

3 Pick's Result

We now turn to a second, rather beautiful piece of evidence that non-Euclidean
geometry isintimately connected with the theory of conforma mapping. Recon-
sider [15]. Schwarz's Lemmainforms usthat (with the exception of rotations) the
distance between interior points and the origin is decreased. This result has two
blemishes, both related to an exaggerated emphasis on the origin: (i) we require
that the mapping leave the origin fixed; (ii) only distances from the origin are
shown to decrease.

Consider (ii) first,and for themomentlet ussimply put up with (i) by continuing
to assumethat our analytic mapping leavesthe originfixed. Although we did not
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demongtrateit, perhapsa more symmetrical result holds true—with the exception
o arotation, will the mapping automatically decrease the distance between any
pair d interior points?

Sadly, no. Consider the effect of f (z) = z? (which leaves the origin fixed)
on the two interior pointsa = (3/4) and b = (1/2). The original separationis
la — b| = 0.25, while the separation of theimagesis|f(a) — f (b)] = 0.3125.
The distance between the pair of pointshasincreased.

But now consider the effect of exactly the same mapping on exactly the same
two points from the point of view of the Poincarites®. When they measure the
distance betweena and b, itisfound [see (46), p. 321] toequal H{a, b} = 0.8473,
while the separation of theimagesis H{f (a), f (b)) = 0.7621. The hyperbolic
distance has decreased! Choose any other pair of pointsfor yourself and examine
theeffect of z — z2 on their hyperbolic separation.

Pick's splendid discovery was that even if we drop the requirement that the
origin be a fixed point, this decreasein hyperbolic distance is a universal phe-
nomenon:

Unlessan analytic mappingd thedisctoitsf isa rigid motion, the (s)
hyperbolicseparation d every pair d interior points decreases.

Because this result contains Schwarz's Lemmaas a special case[we shall clarify
thisshortly] it is sometimescalled the Schwarz-Pick Lemma. Despite the startling
nature of the result, we can actually understand its essence very simply; we need
only ask the question, ""How do the Poincaritesview [15]7”

Becausetheir concept of angleisidentical to oursit followsthat their concept
o an andytic function is also the same as ours—f appears conformal both to us
and to them. In addition, we both agree that rays emanating from the origin are
straight linesa ong which wemay measuredistance. Consequently, the Poincarites
willingly concede that w is closer to 0 than z is, although they violently disagree
with our quantitative determination of exactly how much closer it is. Now recall
that thereisasmall flaw in thePoincaré model: 0 appearsspecia to usbecauseitis
thecentreof thedisc, but to the Poincarites who inhabit an infinite, homogeneous
plane is utterly indistinguishabldrom any other point d their world.

The above explanation isformalized in [16]. In the top left figure we see that
the Poincarites have marked an arbitrary point a, drawn afew concentric circles
centred there, and on the outermost of these they have marked a second point b.
They (and we) now consider the effect of an analytic mapping f of their world to
itself. The pointa issent to someimage point A = f (&) [topright] and likewiseb
issentto B = f (b). In order to comparethe separation of A and B with that of a
and b, the Poincarites performarigid motion (M4 o M, would do) that movesthe
circlescentred at a tocircles(of equal hyperbolicsize) centred at A . Consequently,
the hyperbolic separation of a and b will have been decreased [increased] by f
according as B liesinside[outside] the outermost of these circles. In anticipation

SRecall from Chapter 6 that thisis the race of beings who inhabit Poincaré’s model of the
hyperbolic plane.
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Mpo foM,

Figure [16]

of Pick's result we havedrawn it inside, corresponding to adecreasein hyperbolic
separation. However, observe that as in our previous numerical example, to us
Euclideansit looks as though the separation has been increased.

In order to show us poor blind Euclideans that the circles centred at a and
A really are concentric and of equal sizes (so enabling us to see that B really
has gotten closer) the Poincarites perform the illustrated rigid motions M, and
M 4. These respectively movea and A to the origin [bottom left and bottom right
figureg], yielding circles that are as concentric to us as they always were to them.
M, movesbto z = M, (b), while M4 movesB to

w = Ms(B) = (Mo f)(b) = (Mao f oM.

We shall abbreviate (M4 of o M,) toF, sothatw = F(z2).
We can now see that the following are all equivalent:

H{A, B} < H{a, b} < H{0, w} < H{0, z} < |w| = |F (2)| < |z|.

But F is an analytic mapping of the disc to itself which leaves the origin fixed,
and so it is subject to Schwarz’s Lemma. Thus unless F is a rotation—in which
casef = (My o F o M,) is arigid motion—we must have |w| = |F(2)| < |z], as
depicted. Done.

Finally, let us express the Schwarz-Pick Lemmain symbolic form. If f isnot
arigid motion then | F(z)| < |z|, which may be written out more explicitly as
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[((Ma o foMy)(2)| < |zl
whichin turn can be written as
[(Ma o f)(B)| < [My(b)|.

Thus

B- A b— a
AB-1 ab-1
If we move b closer and closer to a, thenda = (b — a) becomes an infinitesimal

vector emanating from a whose image under f is an infinitesimal vector dA =
(B — A) emanating from A. The aboveinequality now becomes

<

Al _ _lda|
[—1AP = T—laP’

which we may interpret [cf. (44), p. 318] as saying that, provided f isnotarigid
motion, the hyperbolic length of dA isless than that of its preimageda. Thisis
theinfinitesmal version of (15).

VIl The Generalized Argument Principle
1 Rational Functions

We have now seen that there are many powerful and surprising consequences of
the Topological Argument Principle as restricted to analytic functions. Still others
are described in the exercises. However, in al our previous work we have only
examined mappings which are free of singularitiesin the region under considera-
tion. We now lift thisrestriction and find that thereis a generalization of (6) which
appliesto this case also.

We began our discussion of the Argument Principle by looking at the pro-
totypica analytic functions without singularities—the polynomials. In order to
understand the generalization to analytic functionswth singularities, we should
correspondingly begin with rational functions.

Asin [8], let A, B, and C be the complex numbers from the fixed pointsa,
b, and ¢ to the variable point z. The left-hand side of [17] shows an expanding
circleT" at three successive stages of its growth: I't, I'2, and I's. The right-hand
side showsthe evolution of theimage of I under the rational mapping

_G-az=b 1
f@=" s =AB G (16)

By thetimeI" hasgrowninto I'; it hasenclosed a, and v [f (I'1), 0] = 1,in
accordwiththe ordinary Argument Principle. AST" continuesto grow it crossesthe
other O-point at b, and the winding number of f (I") correspondingly increasesto

v [f (I'2), 0] = 2. Now comes the new phenomenon. AsI" crossesthe singularity
at ¢ the winding number of itsimage decreases by one so that v [f (I'3), 0] = 1.
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Figure[17]

The explanationis smple. As z traverses I's, the winding number of f (z) is
the sum of the revolutionsexecuted separately by A, B, and (1/C). Thefirst two
go round once, but as C rotates counterclockwise, (1/ C) rotates in the opposite
direction, findly executing one complete negative revolution. By the same token,
if the denominator of f instead contained C™ then (1/C™) would execute —m
revolutions, and the winding number would become

v[f(I3),0l=2—m.

Aswith counting zeros, we could say in this casethat c wasasingularity [or pole,
aswe shall now call such places] of multiplicity m.
The previousequation is an exampleof the Generalized Argument Principle:

Let f be analytic on a smple loop I and analytic inside except
for a finite number of poles. If N and M are the number of inte
rior p-points and poles, both counted with their multiplicities, then
v[f),pl=N-M.

an

Simply by allowing an arbitrary number of factors on the top and bottom of (16)
we see that thisresultis certainly true when f isany rational function.

Before explaining why it worksin general, let us develop a more vivid under-
standing of how it worksin thecase of our example (16). We have certainly shown
that as T crossesc the winding number dropsfrom 2 to 1, but exactly how does
this unwinding occur?

If welook at theimage planejust asT" crossesc then f (I') undergoesasudden
and violent changedf shapeasit leapstoinfinity and then returns, but thisleavesus
nonethewiser. However, if weinstead watch its evolutionon the Riemann sphere
then we gain anew and delightful insight into the process.

Figure [18] (which should be scanned like a comic strip) illustratesthis. At
thetimeof thefirst picture [topleft] I has already enclosed the two roots, and its
image is seen to wind round the origin twice. Now follow the evolution of f (T")
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Figure[18]

through the remaining pictures. AsT" crossesc [top right] thereis no longer any
excitement— f (I') merely dides across the north pole, and thisis how the un-
winding is achieved. Try using acomputer to animate the evolution of theimage
f (I") ontheRiemannsphereasT" expandsthroughtherootsand polesof arationa
functionf of your choosing.

2 Poles and Essential Singularities

In generalizing the ordinary Argument Principle we had to ask ourselves how
we should count p-points of a genera analytic function. The factorization (7)
brought out the anal ogy with polynomialsand gave us a satisfactory definition of
the algebraic (and topol ogical) multiplicity of a p-point.

The method of extending (17) from rational functions to analytic functions
with singularitiesis essentialy the same. The only complication is that there are
actualy two possible kinds of singularity for an otherwiseanalytic function.

Thefirst kind of singularity iscalled a pole. It is by far the most commonly
encountered type in gpplications of complex analysis, and it is the only typeto
which (17) applies. Here's the definition. If f(z) approaches oo as z approaches
afromanydirection thenaisapoleof f.We can understand theterminology by
thinking of the modular surface of f , for there will be an infinitely high spikeor
"pole" abovethe point a. Figure[14] on p. 66is an exampleof this.

Sincef isanalytic, it followsthat F(z) = [1/f (z)]isalsoandyticand hasa
root a a. If thisroot has multiplicity m then thefactorization (7) of Fis

F(z)=(z-a)" Q(), 18)
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where Q isanalytic and nonzero at a; in fact we know that (a) = F™ (a)/m!.
Theloca behaviour of f near a is therefore given by

S~2(z)
(z—ay™’

where S~2(z) = [1/52(z)] isanalytic and nonzero at a. This expression brings out
the analogy with rational functions and enables us to identify m as the algebraic
multiplicity or order of the pole at a. We call a pole smple, double, triple, etc.,
accordingasm=1, 2, 3, etc.

Notethat we havealso found away of calculating the order of apole, namely,
astheorder of thefirst nonvanishingderivativeof (1/f). Onceyou haveidentified
thelocations of the poles, you may use this method [exercise] to find the orders of
the poles of the following functions:

f@)=

19)

1 COSZ. 1
P(Z) = SWZ ; Q(Z) = 22 , R(Z) = (ez — 1)3
You should have found that P has a simple pole at each multiple of 7; Q hasa
double pole at 0; and R has atriple pole at each multiple of 2.

One more piece of terminology. If the only singularitiesin some region of an
otherwise analytic function are poles, the function is called meromorphicin that
region.

In addition to poles, it is also possible for an otherwise analytic function to
possess what are called essential singularities. We shall postpone detailed discus-
sion of such placesto alater chapter, but it isclear that the behaviour of afunction
f inthe vicinity of an essential singularity s must be very strange and wild. If f
were bounded in the vicinity of s then s would not be a singularity at al, but on
the other hand f (z) cannot approach oo as z approaches s from all directions, for
then s would only be a pole.

Consider the standard example g(z) = e'/Z, which clearly hasasingularity of
some type at the origin. If we writez = r el® then

cos8
lg(@)| =e T,

Figure [19] depicts the modular surface. If z approaches 0 along the imaginary
axisthen |g(z)| = 1. But if the approach isinstead made along a path lying to the
left of the imaginary axis (where cosé < 0) then g(z) tendsto 0. Finaly, if the
approach path liesto theright of theimaginary axisthen g(z) tendsto co. In fact,
not only will |g(z)| becomeinfinitein this case, but the rate at which it zooms off
to oo is quite beyond the ken of any pole.

Toseethis, reconsider (19). The greater theorder m, thefaster the growth of f
asthe poleat a is approached. However, no matter how great the order happensto
be, we know that (z — a)™ dies away fast enough to kill this growth, in the sense
that itsproduct with f remains bounded. Indeed, theorder of apole can bedefined
asthe smallest power of (z — a) which will curb the growth of f in thisway.
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Figure[19]

Comparethiswiththe growthof g(z) asitsessential singularity isapproached,
say along the positivereal x-axis. To confirm that g grows faster than any mero-
morphic function, we need only recall from ordinary calculus that

A

. . e
lim x™ e!/* = lim — = oo,
x—=0 A—o00 AM

no matter how great the value of m.

3 The Explanation*

In order to explain (17) let usreturn to theinterpretation of (19). If wethink of f
,$ mapping into the Riemann sphere C, then the north pole (00) is animage point
like any other, and the polesof f are simply its preimages, oo-pointsif you will.
Aswe now explain, this meansthat the topological multiplicity of an oo-point can
be defined in exactly the same way as that of any other p-point, namely, as the
number of times that the image of asmall loop round a windsround f (a).
Reconsider themapping Fin (18). By virtueof (8), weknow that asufficiently
small circle C, centred at a will be mapped to asmall loop F(C,) winding round
the origin m times. On C, the stereographic projection of F(C,) therefore winds
round the south pole = times, counterclockwise as seen from inside X. Because
complex inversion (which sends F(C,) to f(C,) = 1/[F(C,)]) rotates C about
the real axis by , thereby swapping 0 and oo, this means that f(C,) will bea
small loop winding m times round oo. Since it winds counterclockwise as seen
frominside C, its stereographic projection in the plane is therefore a very large
loop winding m times clockwisearound theorigin, i.e., with winding number —m.
Asan aside, observe that it now makes sense to rewrite (19) as
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f@=G-a)™R0),

and to correspondingly think of a pole of order m as being a root d negative
multiplicity —m.

Shiftingour attention away from theorigin, we now consider winding numbers
around an arbitrary (finite) point p. By making C, sufficiently small, we can be
certainthat f (C,) will be so large that it will wind —m timesround p. But if we
expand C, into any simpleloop I', without crossing any p-points or other poles,
then the winding number of theimage round p cannot change. In other words,

Ifaisapoled order m and ', isany simpleloop containinga but 20)
no p-pointsand no other poles, then v[f (I'y), p] = —m.

Finally, reconsider figure[11]. You may now easily convince yourself that the
argument leading to (11) remains vaid if some of the a;’s are poles instead of
p-points. Let's call these singular pointss;. Thus

VM), pl= Y vIfTa).pl + Y. vIFTs). pl.

p—points poles
Using (20), thisimplies that
v[f (I"), p] = [number of p-pointsinside I'} — [number of polesinside I'],

aswasto be shown.
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IX Exercises

1 A"smple'" loop can get very complicated (seediagram). However, if weimag-
inecreating thiscomplicatedl oop by gradually deformingacircle,itisclear that
it will wind rounditsinterior pointsprecisely once. Let N(p) be the number of
intersectionpointsof thesimpleloop with aray emanatingfrom p (cf. [4]). What
distinguishesthe possible values of N (interior point) from those of N (exterior
point)?In place of the crossing rule (1), you now possess (for smpleloops) a
much more rapid method of determining whether a point isinside or outside.

—

Yaucanusethisresulttoplay atrick onafriend F: (1)Sothat foul play cannot be
suspected, get F to draw avery convoluted ssmpleloopfor himself; (2) choose
arandom pointin thethick of thingsand ask Fif it'sinsideor naot, i.e., starting
a this point, can one escape through the maze to the outside?; (3) after F has
been forced to recognize thetimeand effort required to answer the question, get
himto choosea point for you; (4) choosing aray in your mind's eye, scanaong
it and count theintersection points. Amaze F with your virtually instantaneous
answer!

2 Reconsider the mapping Lin (4) of the unit circleto itself, and the associated
graphof () in[7]. If @'(a) > 0 thenthegraphisrisingabovethepointd = a,
and small movement of z will produce a small movement of thew having the
samesense. We say that @ isorientation-preservingat a and that thetopological
multiplicity v (a)of z = €@ asapreémageof w = ¢/*@ is+1. Similarly, if
@'(a) < 0 then the mappingis orientation-reversingand v (a) = —1. In other
words,

v(a)=thesignof @'(a).

Comparethis with the 2-dimensiona formula(9).

(i) In[71, explain how the complete set of preimagesof w = € can befound
by drawing thefamily of horizontal lines® = A, A £ 2z, A £ 4, etc.

(i) If the set of preimagesistypica in the sensethat &' # 0 at any of them,
what do we obtain if we sum their topological multiplicities? Thus to say
that thedegreeof £ (the winding number of L) is visessentially to say that
L isv-to-one. [Hint: In [4], consider aray as describing the location of w.]



370 Winding Numbers and Topology

3 For each of thefollowing functions f (z), find al the p-pointslying inside the
specified disc, determine their multiplicities, and by using a computer to draw
theimageof the boundary circle, verify the Argument Principle.

(i) f(2) =2 and p =i, for thedisc |z| < (4/3).
(ii) f (z) =coszand p =1, forthedisc |z|] < 5.

(iii) f (2) =sinz* and p =0, for thedisc |z| < 2.
4 Reconsider [8].

(i) Useacomputer to draw the image under a cubic mapping
f@=0z-a)z-b)(z-c)

of an expanding circle I', and observe the manner in which the winding
number increases as ' passes through the roots a, b, and c. In particular,
observe that the shape that marksthe birth of a new loop isthis. <.

(i) 1ff '(p) # Othenalittlepieceof I" passingthrough p ismerely amplitwisted
toanother amost straight pieceof curvethrough f (p).Deducethat < shapes
canonly occur when T hitsacritical point. Explain why the particular shape
< isconsistent with acritical point of order 1.

(iii) Observe that there are only two point in the evolution of T at which a <
shapeis produced. Explain this algebraically in terms of the degreeof f'.

(iv) Let T be the triangle with vertices a, b, and c. There are many dlipses
which can beinscribed in T so asto touch all three sides, but show that there
isonly one(cal it | ) that touches T at the midpointsof the sides.

(v) [Hard] Show that the two critical pointsof f arethefoci of 1 !

5 Asinthetext, let &,, nq, ¢, denote thetwo perpendicular expansion factorsand
the rotation angle used to describe thelocal linear transformation at a produced
by a mapping. By considering the case of a rotation by (zz/4), for which Jis
constant, show that £ and n are generally not the eigenvalues 1y and A, of the
Jacobian J. However, confirmfor this example that det(J) = A1Ap = &n.

6 Evenin three or more dimensions thelocal linear transformation induced by a
mapping f at apointa can till be represented by the Jacobian matrix J(a),ad
if aisnot acritical point then its topological multiplicity v (a) as a preimage
of f (a) isstill given by (9). If nisthe number of real negative eigenvalues of
J (a), counted with their algebraic multiplicities, show that
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v(a) = (="

[Hint: Sincethecharacteristicequationdet[ J(a) — A 1] = 0 hasreal coefficients,
any complex eigenvaluesmust occur in conjugate pairs.]

7 Consider the nonanalytic mapping #(z) = |z|> — i Z.
(i) Findtherootsof h.
(i) Calculate the Jacobian J, and hencefind det (J)
(iii) Use (9) to calculate the multiplicities of therootsin (i).

(iv) Findtheimage curvetracedby h(z) asz = 2¢'? traversesthecircle|z| = 2,
and confirm the prediction of the Topological Argument Principle.

(v) Gain a better understanding of the above facts by observing that h(z) =
Z(z — i), and then mimicking the analysis of [8].

(vi) Usetheinsight of the previous part to find v (i/2), which cannot be done
with (9).

8 Let Q(z) beareal function of timet, subject to the differential equation

an dn—lQ

aQ
Cn—c—ll‘T_l_cn_l +ot+cr—+cQ=0.

din-1 dt

Recall that one solves this equation by taking alinear superposition of special
solutions of the form Q;(r) = e%*. Substitution into the previous equation
showsthat the s;j's are the roots of the polynomial

F(@s)=cps" +cna sl

+---+c1 5+ co.

Notethat Q;(t) will decay with timeif s; has a negativereal part. Theissue of
whether or not the general solution of thedifferential equation decaysaway with
timetherefore reduces to the problem of determining whether or not al n roots
of F(s) liein the half-planeRe(s) < 0. Let R bethe net rotation of F(s) ass
traverses the imaginary axis from bottom to top. Explain the following result:
The general solution d the differential equation will die away if and only If

R =nm.
ThisiscalledtheNyquist Stability Criterion, and an Fthat satisfiesthiscondition

iscalled aHurwitz polynomial. [Hints: Apply the Argument Principletotheloop
consisting of the segment of theimaginary axisfrom —i R to +iR, followed by



372 Winding Numbers and Topology
one d thetwo semicircleshaving this segment as diameter. Now let R tend to
infinity.]

9 Referring to the previousexercise, consider the differentia equation

9
de3

~-Q=0.

() Find R for thisequation. Doesit satisfy the Nyquist Stability Criterion?

(i) Confirm your conclusion by explicitly solving the differentia equation.

10 If aisrea and greater than 1, use RouchC's Theorem to show that the equation

has n solutionsinsidethe unit circle.
11 (i) ApplyingRouchC's Theoremto f (z) = 2z° and g(z) = 8z — 1, show that
al five solutions of theequation 2z°> + 8z — 1 = 0 lieinthedisc|z| < 2.

(ii) By reversingtherolesof f and g, show that thereis only one root in the
unit disc. Deducethat thereare four rootsinthering 1 < {z| < 2.

12 Wecanformalize, and dightly generalize, our explanation of RouchC's Theorem
asfollows:

() If p(z) and q(z) are nonzeroon asmplecurveI’, and T istheimagecurve
under z = p(2) q(2), show that

[T, 0] = v [p(T), 0] + v[g(T), 0].
(i) Write

F@+g@ = F@ [1 + @] - FQ HQ.
f@)

If [g(2)| < I ()| on T, sketch atypical H (I'). Deducethat
v[H(),0] =0.

Using the previous part, obtain RouchC's Theorem.

(iii) If we only stipulatethat |g(z)| < |f ()| on T, then parts of H (') could
actually coincidewiththecircle|z — 1| = 1, rather than lying strictly insde
it, and v[H(T"), 0] might not be well-defined. However, show that if we
further stipulatef + g # 0 on T, then v [H(T"), 0] = 0 as before. Deduce
that v[(f + g)(I), 0] = v[f(T"), 0].
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13 Letw = f (z) beandyticinsideand on asimpleloop I', and supposethat f (I")
isan origin-centred circle.

(i) If Aisaninfinitesma movement of z along I" and ¢ isthecorrespondingly
infinitesimal rotation of w, show geometrically that

%A—=i¢.

(ii) AsztraversesT’, explainwhy v[A, 0] = landv [i¢, 0] =0.

(iii) Referringto (i) of the previousexercise, show that

v[f(I),0]1=v[f(T),0]+1.

(iv) Deducefromthe Argument Principlethat f hasonemorerootinsideI” than
f ' has. Thisis sometimescalled Macdonal d's Theorem, though| believeits
essencegoes back asfar as Riemann.

(v) From this we deduce, in particular, that f has a least one root inside I'.
Derivethisfact directly by considering the portion of the modular surface
lying aboveI" and itsinterior.

14 In contrast to analytic mappings, it is perfectly possiblefor a continuous non-
analytic mapping to completely crush pieces of curve or even areas without
crushing therest of itsdomain. Let usgive aconcrete exampleto show that the
Topological Argument Principle does not apply to this case. Withr = |z|, the
mapping h(z) = ¢ (r) z will be acontinuousfunction of z if ¢(r) isacontinu-
ousfunction of r. Consider the continuous mapping h of the unit disc to itself
corresponding to

o) =0, 0<r<(1/2);
¢(r)y=2r—1, a2 <r<1.

(i) Describethis mappingin visualy vivid terms.

(if) Teking T to bethecircle|z| = (3/4) and letting p = 0O, try (and fail) to
make sense of (11).

15 Theversionof Brouwer's Fixed Point Theorem established in the text fell short
of thefull result in two ways: (A) we assumed that |g| < 1 on D rather than
lgl < 1; (B) we essentialy used the Topological Argument Principle, which
the previous exercise shows to be usdlessin the genera case of a continuous
mapping havinginfinitely many p-pointsin afiniteregion. Let's remove these
blemishes. Onceagainlet m(z) = g(z) — z be the movement of z, and suppose
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16

17

18

19

that Brouwer’s resultisfalse, sothat m # 0 throughout thedisc [z| < 1. Obtain
the desired contradiction asfollows:

(i) By assumption, m(z) = g(z) —z = g(z) + £ (z) does not vanishon the unit
circle C. Use Ex. 12(iii) to show that if [g] < 1 then v [m(C),0] = 1.

(i) Let C, bethecircle|z] =r, sothat C; = C. By considering the evolution

of v[m(C,), Q] asr increasesfrom 0 to 1, obtain a contradiction with (i).
Thekey fact v[m(C), 0] = 1 can be obtained more intuitively. Draw a typical
movement vector m(z) emanating from z and note that it makes an acute angle
with the inward unit normal vector (—z) to C, also drawn emanating from z.
But clearly this normal vector undergoes one positive revolution as z tracesC.
Deduce that the vector mis aso dragged round one revolution.

Let f (2) be an odd power of z, and consider its effect on the unit circle C.
Note two facts: (1) if p ison C then f (—p) pointsin the opposite direction
to f(p); (@ v[f(C),0] = odd, in particular it cannot vanish. This is only
one example of agenera result. Show that (1) alwaysimplies (2), evenif f is
merely continuous. [Hints: If f issubject to (1), what can we deduce about the
net rotation R of f (z) as zZ traversesthe semicircle from p to —p? How isthe
rotation produced by the remaining semicirclerelated to R 7]

Consider aspherical balloon Sresting on aplane. If wegradually deflate S, each
point will end up on the plane so that we havea continuous mapping H of Sinto
the plane. Observe that the north and south poles, which are antipodal , havethe
sameimage. The Borsuk-Ulam Theorem says that any continuous mapping H
of Sinto the plane will map some pair of antipodal points to the same image.
Consider the mapping F(p) = H(p) — H(p*), where p* isantipodal to p. The
theorem then amountsto showing that F hasaroot somewhereon S. Provethis.
[Hints: It issufficientto examine theeffect of Fon just the northern hemisphere.
By taking the boundary of this hemisphere (the equator) to be the circle C o
the previousexercise, deduce that v[ H(C), 0] # 0.]

Let f beanaytic on asimpleloop I", and let p be a preimage of a point on
f (') at which | f| is maximum. If & is a tangent complex number to T" & p,
and in the same counterclockwise sense as I', show geometrically that £f '(p)
pointsin the same direction asif (p). What isthe analogous result at a positive
minimum of | f] ?

(i) If pisnotacritica point of an anayticfunction f , show geometrically that
the modulusof f increases most rapidly inthedirection [f (p)/f'(p)].

(i) Intermsof the modular surface above p, thisdirection liesdirectly beneath
the tangent line to the surface having the greatest "'dope” (i.e., tan of the
angleit makes with the complex plane). Show that the slope of this steepest
tangent planeis| f'(p) |, and note the anal ogy with the slope of the ordinary
graph of area function.
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(iii) What does the modular surface look like at aroot of order n ?

(iv) What does the modular surfacelook like above a critical point of order m ?
Using the case m = 1, explain why such places are called saddle points.

(v) Rephrase Macdonald's Theorem [Ex. 13] in terms of the number P of pits
and the number S of saddle pointsin the portion A of the modular surface
lying aboveTI anditsinterior.

(vi) It is a beautiful fact that, expressed in this form, Macdonald's Theorem
can be explained almost purely topologically. Thefollowing explanationis
adapted from Pélya [1954], though | believe the basic idea goes back to
Maxwell and Cayley. Since | f| is constant on T, the boundary of A isa
horizontal curve K, and since f isanalytic, K is higher than therest of A.
Also, recall that there are no peaks. Suppose for simplicity that f and '
have only simple roots (P and S in number) so that the pits are cone-like,
and the saddle points really look like saddles or (more geographically) like
mountain passes.

Now imagine a persistent rain falling on the surface A. The pits gradually
fill with water and so become P lakes, thedepths of which we shall imagine
are alwaysequal to each other. What happens to the number of lakes asthe
water successively rises past each of the S passes? How many lakes areleft
by the time that the water has finally risen to the level of K? Asrequired,
deduce that

P=S+1.

(vii) Generalize the above argument to roots and critical points that are not
simple.

20 Let f (z) and g(z) be analytic inside and on a simple loop I". By applying the
Maximum Modulus Theoremto (f — g),show thatif f =gonT thenf =g
throughout the interior.

21 Let R(L) be the net rotation of f (z) round p as z traverses a loop L. For
example, if L does not contain p then

1
= — R(L).
v[L,p] o (L)
By taking thisformulato be thedefinitionof v, make sense of the statement that
the Generalized Argument Principle (17) remains valid even if there are some
poles and p-points on I, provided that we count these points with half their
multiplicities.

22 In[11] we used the idea of deformation to derive the argument principle. The
figure below shows another method. The interior of I', containing various p-
points and poles, has been crudely partitioned into cells C; in such a way that
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each one contains no more than asingle p-point or asingle pole. Now think of
each cell as being aloop traversed in the conventional direction; this senseis
indicated for two adjacent cellsin thefigure.

(i) Whatisthevdued v[f (C;), plif C; (1)isempty; (2) contains a p-point
of order m; (3) containsapoleaf order n ?

(ii) Obtainthe Argument Principleby showingthat

D vIf(C), pl=vIf(D), Pl

J

[Hint: If an edgeof acell does not form part of T' then it isalso an edge of an
adjacent cell, but traversedin the opposite direction. What isthe net rotation of
T (2) round p asz traversesthisedge oncein onedirection, then in the opposite
direction?]

KEY |

Lo = p-point“!

¥ = pole

_______________________




8

Complex Integration: Cauchy's
Theorem

| Introduction

In the last few chapters our efforts to extend theidea of differentiation to complex
mappingshave been amply rewarded. By innocently attempting to generalize the
real derivativewe were quickly led to the amplitwist concept, and the subject then
cameto life with a character all its own. While many of the results cast familiar
shadows onto the world of the reals, many did not, and striking indeed was the
flavour of the arguments used to grasp them. The ability of z to freely roam the
plane unleashedin usadegree of visua imagination that had to remain dormant so
longaswecould only watchthereal number x forlornly pacing itsone-dimensional
prison.

This little hymn to the glory of the complex plane can be sung again in the
context of integration, only louder. If differentiation breathed life into the subject,
then integration could be said to giveit its soul. Only after we have understood
this soul will we be able to demonstrate such fundamental facts as the infinite
differentiability of analytic mappingst.

In ordinary calculus the symbol fab has a clear meaning. However, if we wish
to generalize this to C then the need for new ideas is immediately apparent, for
how are weto get from a to b? In R there was only one way, but a and b are now
pointsin the plane, so we must specify some connecting path (called a contour)
"aongwhichtointegrate'. Itisthen natural to ask whether thevalueof theintegral
depends upon the choice of this contour.

In general the value of the integral will depend on the route chosen. For ex-
ample, we will shortly meet an integral of a complex mapping that yields, when
evauated for a closed contour, the area enclosed by the contour—a flagrant de-
pendence of value on contour. It should be made clear from the outset that while
differentiation only made sense for the strictly limited set of analytic functions,
this is not the case for integration. Indeed, the example just cited involves the
integration of a non-analyticfunction.

The principal aim of thischapter (beyond the mere construction of an integral
calculus) will be the discovery of conditions under which the value of an integral

1Since the 1960's it hasactually become possibleto do such thingswithout integration, thanks
to pioneeringwork by G. T. Whyburn, and others. Nevertheless,integrationstill appearsto provide
the simplest approach.
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does not depend on the choice of contour. One such result is an analogue of the
Fundamental Theorem of real analysis, andin deference to that subject it bearsthe
same hame. However, in the complex realm thisis actually a misnomer, for there
existsa still deeper result which has no counterpart in the world of thereals. Itis
called Cauchy's Theorem.

As we have said, it is not only possible, but sometimes useful to integrate
non-analytic functions. However, it should come as no surprise to learn that new
phenomenaarise if we concentrate on theintegrals of mappingsthat are analytic.
Cauchy's Theorem isthe essence of these new phenomena. Essentially it saysthat
any twointegralsfrom a to b will agree, provided that the mappingis analytic ev-
erywhereinthe region lying between thetwo contours. Almost all the fundamental
resultsof the subject (including some already stated) flow from this single horn of
plenty.

Il The Real Integral
1 The Riemann Sum

Aswe did with differentiation, we begin by re-examining the more familiar idea
of integrating a real function. The historical origin of this process, and still the
principal means of visualizing it, is the problem of evaluating the area under the
graph of afunction.

We first approximate the sought-after area with rectangles. See [1]. Dividing
the interval of integration into n line-segments A; (the bases of the rectangles),
we randomly select one point x; from each segment, and take the height of the
corresponding rectangle to be the height of the curve above the point, namely,
f (x;). The areaof each rectangleisthen f (x;) A;, and thus the total rectangular
approximation to the areaunder f is

R=) f@x)Ai. (1)
i=1

The quantity Riscalled a Riemann sum. Finaly, by simultaneously letting » tend
toinfinity while each A; shrinksto nothing, R will tend to the desired area.

In {1] we could afford to beindifferent to the precise choice of x; within each
A; because we had our eye on thisfinal limiting process. Aseach A; shrinks, the
freedom in the choice of x; becomes more and more limited, and the influence of
the choice on the area of the rectangle likewise diminishes. However, if we are
unwilling or unable to actually carry out the limiting process, then, as we shall
now see, we can ill afford to be so blasé in our choice of x;.

You probably dimly remember some professor showing you (1) before, and
perhaps you even evaluated a couple of examples by means of it. However, this
was no doubt quickly forgotten once you set eyes upon the Fundamental Theorem
of Calculus. In order to integrate x*, why bother with taking the limit of some
complicated series when we know that the answer must be that function which
differentiatesto x4, namely, 1x3?
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YA y=fx)

Xi A;

Figure[1]

The Fundamental Theorem isawonderful thing, but one must remember that
many quite ordinary functions simply do not possess an antiderivativethat is ex-
pressiblein terms of elementary functions. To take a simple example, the Normal
Distribution of statistics requires a knowledge of the area under the curve e"‘z,
and this can only be computed numerically, perhaps viaa Riemann sum.

When doing a numerical calculation with (1), it would require an infinite
amount of time to find even a single area with perfect precision. It is therefore
important to be able to obtain good approximations to lim,_, . R while using
only afinitevalueof n. Several such methodsexist: Simpson's rule and the Trape-
zoidal rule, to name just two that may be familiar. Since the Trapezoidal rule will
most readily lend itself to complex generalization, we will now review it.

2 The Trapezoidal Rule

Asthe name suggests, we now usetrapezoidsinstead of rectanglesto approximate
the area. Though not strictly necessary, it is convenient to make all the A; the
same length. See [2]. Itisclear from thefigurethat even avery modest valueof n
will yield a quite accurate estimate. Since [2] is not of the same form as [1], the
associated Trapezoidal Formula (which we won't bother to state) is not quite of
the type (1). Nevertheless, if we wish to continue to use (1), it is not hard to find
a Riemann sum that closely mimicsthe trapezoidal sum, and hence which retains
the latter's accuracy.

First note that the shaded trapezoidal estimate shownin [2] isidentical to the
rectangular onein [3], in which we have taken the height of each rectangle to be
the height of the chord at the midpoint of A;. Finaly, to recover a Riemann sum,
we can replace the height of the chord by the height of the curve at that point. See
[4]. In other words, the Riemann sum (1) will yield an accurate approximation to
theintegral, using only a modest valueof n, provided that we choose each x; to be
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Trapezoidal Rule

Figure[2]

T Trapezoidal Rule

Figure[3]

at the midpointd its A;. Wewill call this the Midpoint Riemann Sum, and write
itas Ry.

3 Geometric Estimation of Errors

Wehavesaid that using midpointsin (1) will yield accurateresults, but how accurate
is"accurate” ?First reconsider the case where the x; were chosen randomly, and
supposethat all the A;’s have the same length. Re-examination of [1] revealsthat
the difference between the actual area lying above each A;, and the area of the
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Midpoint Riemann Sum

Figure[4]

approximatingrectangle, will beof order A2. Sincethetotal number of rectangles
is of order 1/A4, it follows that the total error will be of order A, and thus, as
claimed, it will die avay as n increases and A shrinks. We will now show that
using R, or the amost equivaent Trapezoida rule, produces a much smaller
totd error—in fact an error that diesaway as the square of A.

This standard result on the decay of the error can be found in many advanced
calculus books, but rather than repeat the standard cal culation, we will supply a
novel geometric? account. Figure[Sa] showsamagnified view of thetop of one of
therectanglesused in Rys. Shown arethe chord AB bounding thetrapezoid used
in {2], and the line-segment DC boundi ng the rectangle used in Rys. Noticethat
P and Q (the midpointsof these line-segments) will lie directly above the point
x; thatisbeingusedin Ryy.

Visudly, it is easy to compare the area under AB [the Trapezoidal rule] with
the actual areaunder the curve, but the same i+t be said of the areaunder DC
[the Ry rule]. However, notethat if werotate D C about P (keeping theendsglued
to the verticals) until it becomestangent at DC, the area beneath it will remain
constant [why?]. Thus we are instead free to visualize each term of Ry, as being
thearealying beneath atangent suchas DC. It isnow clear that the actual arealies
between the two values furnished by AB and DC, and that the error induced by
using either rule cannot exceed the areaof the small quadrilateral ABCD, namely
[exercise], (PQ) - A. Inorder tofind thisareawewill usetheelementary property
o circlesthat isillustrated in [5b]: As the chord PQR revolves about the fixed
point Q, the product PQ - QR remainsconstant.

ZWhile many of theargumentsin thisbook weremer ely inspir edby Newton'smodeof thought
in the Principia, we have here an examplethat is very close to hisactual methods.
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PQ-OR=AQ QB

Figure [5]

Over a sufficiently tiny distance we can consider any segment of curve to be
interchangeable with its tangent. However, over somewhat larger distances (or if
we simply require greater accuracy) we must instead replace it by a segment of
itscircled curvature, that is, the circle whose curvature k agrees with that of the
curve at the point in question. In [6] we have drawn this circle for the segment at
P. The aboveresult now informs us that

PO -OR = (AQ)>. )

As A shrinks, both (A Q/D P) and (QR/PR) tend to unity, soin thislimit we may
substitute D P for AQ and PR for QR. But if the tangent at P makes an angle
¢ with the horizontal (in which case O P makes angle 6 with the vertical) then
DP= %A sec8, and PR = (2/«) cos8. Substituting these into (2) we obtain the
result

area (ABCD) = PQ - A = (%K sec’ 9) A3 3)

If M denotes the maximum of (%K sec3 9) over the integration range (which we

take to be of length L) then each such error will be less than M A3. Since the
number of theseerror termsis (L/A), we conclude that

total error < (LM) A2,

and thisindeed dies away in the manner originally claimed. [At this point you may
caretolook at Ex. 1]

Because the order of theinduced error isthe samefor both Ry and the Trape-
zoidal rule, we will tend not to distinguish between them when it comes to their
complex generalizations. This said, there remains one curious pedagogical point
still to be made. Figure [Sa] makesit clear that curves deviate less from their tan-
gents than from their chords, and thus one would anticipate that while the order
of the error isthe samefor both rules, Ry would actually yield the more accurate
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Figure[6]

valueaf thetwo. Thisisindeed the case, and in fact [see Ex. 2] one can show that
it is twice as accurate. In addition to this accuracy, Ry is, if anything, easier to
remember and use than the Trapezoidal formula. It is therefore doubly puzzling
that the Trapezoidal formulaistaught in every introductory cal culus course, while
it appearsthat the midpoint Riemann sum Ry is seldom even mentioned.

Il The Complex Integral
1 Complex Riemann Sums

In the case of real integration we began with a clear geometric objective ("Find
the areal"") and then invented the integral as a means to this end. In the complex
casewe will reversethisprocess, that is, we will first blindly attempt to generalize
rea integrals (via Riemann Sums) and only afterwards will we ask ourselves
what we have created. First, in this chapter, we will find one way of picturing an
integral as a single complex number; then, in Chapter 11, we will use an entirely
different point of view to seethat, separately, the real and theimaginary partsof an
integral each possess a vivid geometric (and physical) significance. But to guess
therelevant geometric entities in advance, and then to invent the complex integral
asthe appropriate tool with which to find them, would require a prodigiousleap of
imagination--one that historically never took place. A moment's thought reveals
that thisissimilar to the case of differentiation, for there we began with the slope
concept, and through an initially blind process of extrapolation we arrived at the
very different (but no lessintuitive) idea of the amplitwist.

Consider [7]. Inorder tointegrateacomplex mapping f (z) betweenthepointsa
and b, we havespecifiedaconnecting curvea ong whichto performtheintegration.
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\ 4

B ”Figu;e [7]

Thiscurve (call it K) now playstherole of theinterval of integration, and just as
in (1], we break it down into small steps A;, which we may conveniently choose
to be of equal length. The difference between thisand [1] isthat now the stepsare
not all in the same direction. In order to construct a Riemann sum, we randomly
pick one point z; from each little segment of K, and then we form the sum of
theproducts f (z;) A;. Finaly, asweincrease their number, the A; will follow K
ever more perfectly, and the Riemann sum will tend to alimiting value (provided
only that the mapping is continuous) that serves as our definition of the complex
integral, written

f f@dz.
K

Just asin the real case, we may obtain an accurate estimate of the integral
without passing to the limit, simply by choosing the z; to be at the midpoints of
the segments of K, rather than at random points. In fact thisis the choice that we
haveillustrated in [7]. Once again, this especially accurate Riemann sum will be
denoted Rys.

Tobegintounderstand thegeometry of Rys, consider [8]. Thisshowstheimage
of K under the mapping z = w = f (), and in particular the image w; of the z;
that was singled out in [7]. The corresponding term of Rys isthen A; = w; A;,
and wewill choosetothink of thisasthe arrow that results when w; ""actson™ A;,
expandingit by |w; | and rotating it by arg(w;).

Having abtained each A; inthismanner, wegoontojoinal theselittlearrows
together (tail totip), asin [9]. Thevalueof Ry, and hence the approximate value
o theintegral, is then the connecting complex number between the start and the
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Figure [8]

FINISH

b=+

START

Figure[9]

finish3. Notice that since the answer is a connecting arrow, the point at which we
begin drawing Rz isirrelevant.

While[9] isintended primarily to convey the general idea, itisinfact afaithful
evaluation of the specific Ry corresponding to[7] and [8], and you may now begin
to convinceyourself of this. Thisis perhaps most easily achieved by concentrating
on the lengths of the A; separately from their angles. As w traces out the image
curve in [8], itslength diminishes, and this produces a corresponding shrinking of
the A; in [9]. Likewise, theincreasing angle of w resultsin progressively greater
rotationsof the A;.

3The great physicist Richard Feynman used a similar kind of picture to explain his quantum-
mechanical " path integrals', which are also complex, though they differ from contour integrals.
See Feynman [1985].
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2 A Visual Technique

Whileitisnot strictly necessary tochoosethesamelengthfor all the A;, the benefit
of thischoiceis probably clear: the lengths of the A; are ssimply proportional to
|w;|, and it is therefore easy to follow the evolution of |Z,~| by eye. On the other
hand, it is not so easy to visually follow the evolution of theangle of A;.

Aswetravel aong the A; in [7], we pass through a sequence of sharp bends.
Theturning angle at atypical bend isdrawn in [7], and is denoted ¢;. What will
be the turning angle ¢; at the corresponding bend of the Riemann sum? If, for
example, w;4+1 pointed in the same direction as w;, then A;4; and A; would both
suffer the samerotation, and theturning angle ; of the Riemann sum would equal
theoriginal turning angle ¢;. More generally, if theangle of wincreasesby z; (see
[8]), then the turning angle will also increase by ;. Thus,

b =i + 1. @

This simple observation helps to reduce the difficulty of visualizing Ry,. Itis
no longer necessary to look at the angle of each w; (which may be large and hard
to gauge by eye) and to try and imagine the direction of the rotated A. In fact we
need now only do thisonce, to find A, thereby ensuring that Ry, heads off in the
correct initial direction. Thereafter, each successive A islaid down at an angle ¢
to its predecessor, and these ¢; may be readily estimated by eye, using (4).

Let us spell thisout in detail with reference to the concrete exampl e furnished
by [7] and [8]. In [9], we get Ry started in the right direction by rotating A by
a, thereby obtaining A; which points at angle a T 8. We can now draw the rest
of Ry using only (4). To lay down the next A we need to know ¢ = ¢; + 7;.
The small positive ; clearly kills off just afraction of the negative ¢, resulting
in adlightly smaller negative bend in Ry Much the same happens when we lay
down A,. The angle ¢3 at the next bend is positive, and it is therefore increased
by 73, whichitself is about twice as big as 7; and 7, were. You should now bein
aposition to follow the rest of Ry’s progressin far greater detail than you could
before.

Although the above idea will shortly proveits worth on atheoretical leve, it
is clearly not terribly practical. However, in Chapter 11 we will use an entirely
different approach to obtain asecond, less strenuous, meansof visualizing complex
integrals. Wewill thereby makeadoublefallacy of an assertionthat isto befoundin
most texts—assuming they even consider it worthy of notel —namely, that complex
integrals possess no geometric interpretation. Perhaps the mere frequency with
which this myth has been reiterated goes some way to explaining how it hes
acquired the status of fact.

3 A Useful Inequality

Infigure[9] itisclear that if wewereto straighten out all the bendsin Ry, then it
would get longer. Furthermore, the length of the straightened version would just
be the sum of the |A;|. Thus
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IRyl < lwil - A,

with equality if* and only if all $,- = 0. If M denotes the maximum distance from
the origin to the image curvein [8], it follows that

IRl < M)A

But the sum on theright is just the length of the polygonal approximation to K,
and hence it cannot exceed the actual length of K. Passing to thelimit where Ry
becomes theintegral, we deduce that

U f(2)dz
K

For example, if f (z) = (1/2)? and K isthecircle|z| = r, then (5) impliesthat
|f¢ f (@dz| < @n/r). In paticular thisimplies that lim, o0 [ f (z)dz = 0.
Thisis atypical (abeit ssimplistic) application of (5): quite often one wishesto
demonstrate the ultimate vanishing of an integral as K evolves through some
family, such as circles of increasing radius. Without knowing the exact value of
any of theintegrals, (5) showsthat it issufficientto demonstrate that the maximum
sizeof T (z) on K dies away faster than the length of K grows.

< M - (length of K) . )

4 Rules of Integration

Because the complex integral has been defined in complete analogy with the real
one, it follows that the former will inherit many of the properties of the latter. We
now list some of these shared properties:

/ ¢ f(2) dz
K
f[f(z)+g(z)]dz
K

c/ f2)dz
K

ff(z)dz+/ g(z)dz

K K

f@dz = /f(z)dz+/f(z)dz
K L

K+L

/;Kf(z)dz = —/Kf(z)dz.

Themeaning of thefirst two equationsisself-evident, but thelast two requiresome
clarification.

If L beginswhere K left off (see[10a]), then to integrate along K + L means
to integrate along K and then to continue integrating along L, and the resulting
integral isthen just the sum of the two separate integrals. Notice that the contour
isalowed to haveakink init. In fact the definition of " contour'™ merely requires
that the number of such kinks not be infinite.

4The method of visualizing complex integralsin Chapter 11 enables one to express thiscon-
dition for equality in a particularly simple form. See Ex. 6, p. 505.
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[a]

Figure[10]

Ladlly, thefourth rule is anaogous to swapping the limitson areal integral,
for — K isdefined to bethesameas K, but traversedin the oppositedirection (see
[10b]).

However familiar you may be with these rulesin real calculus, and however
readily they may lend themselves to complex generalization, we would never-
theless urge you to make a new and separate peace with each of these resuilts,
preferably in termsof picturessuch as[7], [8], and [9].

Recall from the Introduction that our main objectiveis the discovery of con-
ditions under which an integral between two pointsin the plane does not depend
on the connecting route chosen. The last two rules above may be used to recast
thisprobleminto aneater forrn. Supposethat thetwo paths X and X in[10c] both
yield the same valuefor theintegral betweena and b. It followsthat

0=/ f(z)dz—f~f(z)dz=j f(z)dz+/~f(z)dz=[ _f@dz
K K K -K K-K

Thus equality of the two integras is equivalent to the vanishing of the integral
taken dong the closed loop (K — K) = (K followed by — K). Conversdly, if
the integral vanishesfor all closed loops then all curves between a and b will
yield the same vauefor theintegral. In brief: path independence is equivalent to
vanishing loop integrals. The centrepiece of complex analysisisthelink between
this phenomenonand analyticity. Cauchy's Theorem consistsin recognizing that
the vanishingof loopintegralsis the nonlocal manifestation of alocal property of
the mapping, namely, that it is an amplitwist everywhereinside the loop.

IV Complex Inversion
1 A Circular Arc

Probably the single most important integral in complex analysis is that of the
complex inversion mapping z + 1/z. While the truth of this statement will only
emergegradually, thisis the reason for the great attention we will now lavish on
this particular example.

We begin with the simplest case, namely, where the path of integration K is
anarcof theorigin-centredcircledf radiusA (seef114d]). Asin {7], wedividethis
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pathinto small (ultimately infinitesimal) steps of equal length. Theturning angles
¢; clearly al havethe same value, say ¢. Since the angle that each A subtends at
theoriginisalsogivenby ¢, itfollowsthat |A| = A$. Asztravelsroundthecircle
itsimage w = 1/z travelsround acircle of radius 1/A in the opposite direction
(see[11b]), and thus w shrinks each A to produce a A of length ¢.

Since A1 and w; are ultimately vertical and horizontal respectively, it follows
that Rys (which we choose to begin drawing at the originin [11c]) initially heads
off inavertical direction. But now weobservethat r = —¢, and consequently that
¢ = 0. In other words Ry has no bends, and so it continues on in the imaginary
direction®. Thus, irrespective of the radius, the integral equals i times the total
angle W through which z turned on its journey along K. Convince yourself that
thisformulation of the result remains valid even if K begins at a random point of
thecircleinstead of on the real axis.

In particular, and of crucial importance, is the case where z continues al the
way round the circle to form a closed loop. The value of the integral isthen 2xi.
The alert reader will immediately be perplexed by this result. Why? Because it
appearstofly intheface of Cauchy's Theorem. We have previously demonstrated
geometrically that complex inversionis analytic, so how can itsloop integral fail

5We haveused theturning angleideain order to makethe subsequent gener alization to other
power sof z sraightforward, but thereisactually noneedfor it in the present case. The A; located
a angle8 on thecircle will itsdlf point at 6 to the vertical, and sow rotatesit to the vertical.
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tovanish? Theresolutionliesin thefact that Cauchy's Theorem requires that the
mapping be analytic everywhereinside theloop. But our loop enclosesthe origin,
and just at thisone point the analyticity of complex inversion breaks down.

2 General Loops

The above discussion not only explains why our loop integral failed to vanish, but
it also leads us to anticipate that if the loop does not enclose the origin, then the
integral will vanish. We will now show that thisisthe case, thereby lending some
credenceto Cauchy's Theorem.

The ease withwhich wewere able to evaluatetheintegral in [11] resulted from
thefact that the A; wereall orthogonal tothez;. Figure[12 g showsamoretypical

[b]

dr/r

o

>t

(Not to scale)

ow

Figure[12]

A possessing a radial component in addition to a transverse one. As you see, A
can be decomposed into a transverse component r d6 making an angle 6 with
the vertical, and an orthogonal radial component dr. To obtain the corresponding
piece A of R (see [12b]) we multiply by w, thereby rotating these components
into the vertical and horizontal directions, aswell as shrinking their lengths to 46
and (dr/r), respectively. N

L et us now see what happensif westick all these A; together for a closed loop
such asL (see[13a]) that does not encircle theorigin. In order to accomplishthis
we will forsake our previous choice of equal lengths for all the A;, and instead
divide the path up, as shown, using closely spaced concentric circles centred at
the origin®. Consider the illustrated pair Aj, Ag lying between adjacent circles.
That the A's always do occur in such pairsis a consequence of L being aloop.
Forif L passesfromtheinterior of acircle to the exterior, thenin order to join up
with itself back in the interior, it must recross the circle in the opposite direction
somewhereelse. Of course L may weave back and forth acrossacircle many times

S5This only failsif part of L coincideswith such acircle, butin that event we already know that
the contributionto theintegral isiW.
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[b]

FINISH = START

Figure [13]
(e.g.ata, a*, b, b*, ¢, c*),but thecrucia pointisthat these crossings alwaysoccur
in oppositely directed pairs.

In [13b] we see the consequence of thisfor R. From [12b] it's clear that for a
pair suchas 4 ; and Ay, thehorizontal components cancel. Sincewe have seen that
every A belongstosuchapair,itfollowsthat R will haveno horizontal component
for any closed loop, whether or not the origin is encircled. It also follows from
[12b] that the height of this vertical Riemann sum is obtained by adding up all
the signed angles that the A's subtend. For aloop such as [13a], which does not
encircletheorigin, thissumiszero: asz tracesout L itsdirection merely oscillates,
rather than executing acomplete revolution. Thus, asillustrated in [13b], R closes
uponitself. Ontheother hand, if wetranslated L toany location whereit encircled
the origin then z would execute a complete revolution, and [13b} would change
into [13c].

3 Winding Number

Let'srecap. If aclosed |loopdoes not encircle theorigin then thecomplexinversion
mapping is analytic everywhereinside it, and in accord with Cauchy’s Theorem
the integral dutifully vanishes. If the origin isencircled, then the integral is no
longer required to vanish by the theorem: the enclosed region now containsa point
a which the mapping is not analytic. Indeed we found that for an origin-centred
circle the answer was not zero, but 2ni. Furthermore, the general investigation
revealed that we would have obtained exactly the same answer if we had instead
used an elliptical loop, or even a square loop. For if wedistort thecircle into one
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of these more general shapes, then all that happensto R isthat it meanders about
(illustratedin [13c]) onitsnet vertical journey to 2sri, instead of marching straight
thereasitdidin[11c].

We see that what really matters is not the shape of the loop, but rather its
winding number about the origin. Thus we may summarize our findingstidily as
follows: If L isany closed loop, then

f 1dz =2miv(L,0), 6)
L<Z

wheretheintegral sign with acircle throughit (whichisastandard symbol) serves
to remind us that we are integrating around a closed contour. Figure [14] shows
variousloops and the corresponding value of the integral of (1/z) round each of
them. Finally, note that (6) can easily be generalized [exercisg] to

l 1 dz=2riv(L, p). @)

V Conjugation
1 Introduction

In the introduction we stressed that integration makes sense for any continuous
complex mapping, regardless of whether or not it is analytic. However, the rel-
atively lawless non-analytic functions give rise to integrals that behave less pre-
dictably than their analytic counterparts. In particular, Cauchy's Theorem has no
jurisdiction here, and we therefore have no reason to anticipate path independence
or, equivalently, vanishingloop integrals. Asan example of thistype of behaviour,
we will show presently that theloopintegral of the non-analytic conjugation map-
ping z — 7 yields the area enclosed by the loop. Assuming this result for the
moment, let us use the examples z and (1/z) to spell out more clearly the differ-
ences between the non-analytic and analytic cases.
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Intheanalytic case, providedthat thespecia point z = 0 was not enclosed, the
loopintegral vanished. Even when theintegral of (1/z) did not vanish, itspossible
vaueswerestill neatly quantized in unitsof 27i ; oneunit for each timethe specia
pointz = 0 wasenclosed by theloop. Aswewill seelater, thisbehaviouristypical,
athoughamoregenera mappingmay well possessseveral special points(at which
analyticity breaks down) dotted about in the plane. Once again, theintegral is not
sengitiveto the precise shape of theloop. Provided that none of the specia points
areenclosed by theloop, thentheintegral vanishes. However, if someaf the points
are enclosed, then each one makesits own distinctive contribution (generally not
2ni) to theintegral,one unit for each timeit's encircled. The valueof theintegral
isjust the sum of these discrete contributions.

Contragt all this with our non-analytic example. The area of the loop (and
hence the integral of z) will almost never vanish. Furthermore, instead of being
determined by stabletopological properties, the vaue of theintegral is sensitive
to the detailed geometry of theloop. Finally, the valueis not neatly quantized, but
instead variescontinuously as the loop changes shape.

2 Arealnterpretation

Let usnow verify theareainterpretation of theintegral of z. Recall from Chapter 1
that Im(ab) isjust twicethearea of thetrianglespanned by a and b. Asz tracesthe
loop L in[15a], think of theareait sweepsout as being decomposedintotriangular
eements, asillustrated. Thus

- [al

A (L

Figure[15]

2 (lement of area) = Im[(z T A)z] = Im[ZA].

Adding these elementstogether, we obtain theimaginary part of the Riemann sum
correspondingto theintegral of z. Thus we conclude that

Im ?§ zdz = 2 (areaenclosed) .
L

This result can be further simplified by noticing that 7 and (1/z) both pointin
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thesamedirection. It followsthat we could draw a picture very similar to [12], the
only differencebeing that to obtain A we would multiply by r instead of dividing
by it. Theargumentthat followed from[12] thereforeremainsvalid, and we deduce
that theintegral of z around a closed loopis purely imaginary. Thus

f Zdz = 2i (areaenclosed) . 8)
L

Next weask how thisformulawould changeif theorigin wereoutside theloop.
Figure [15b] shows that the pleasing answer is, "'Not at dl!"" The point is that the
integral adds up the signed areas subtended by the A's at the origin. On the far
side, A carries z counterclockwise, yielding a positive element of area; but on the
near side z is moving clockwise, yielding a negativeelement of area. When these
are added, the unwanted area lying outside the contour simply cancels, leaving
behind just the area enclosed.

Asasimpleexample, consider acircle C of radius r centred at a, the equation
of whichisr2 = |z — a|?> = (z — a) (z — @). Solving thisfor z, and using (7), we

find that
— _ 5 1
zdz = a @ dz+r dz
C C ci—a

0+r22mi
= 2i (areaenclosed).

From what we have done so far you might beinclined to think that theintegral
of z could never vanish for a nontrivial loop. That this isfalse can be seen from
thefigureeight loopin [16a]. This may be thought of asthe union of two separate
loops. The top oneis traversed in a positive sense and correspondingly yieldsits
ordinary area Ai; but the bottom one is traversed in a negative sense and yields
the negative (—A3) of itsordinary area. Thus theintegra is 2i (A1 — A»), and if
theloop were symmetrical then this would vanish.

: o] o -

L

Figure [16]
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3 General Loops

To finish off this example we will explain how the winding number concept can
be used to evaluate theintegral for morecomplicated loops. A typical loop suchas
[16b] will partition the plane into a number of sets D;, and in the last chapter we
defined the "'inside™ to consist of those D; for which the corresponding winding
number v; # O; the remaining D; constitute the " outside™. We can now state the
general result and leave you to ponder its truth:

zdz =2 A, 9
yngz IZVJ J 9

inside

where A; denotes the area of D;. For example, in the case of [16b] we obtain
fL zdz = 2i[2A; T A3 Theexpl anation of the general formula (9) will be given
later in this chapter.

VI Power Functions
1 Integrationalonga Circular Arc

Having understood the integral of (1/z) itis easy to understand the integrals of
other powers. Once again let us begin by integrating along the circular arc K that
was usedin [11]. Theresult we will obtain isformally identical to the real result

B 1
f xMdx = —— [Bm+l _ Am—H] (m ;é _1)’
A

m+1

but the differenceis that in the complex case we can actually see it

Figure[17a] showsacontour likethat in [1la], whilethetransitionfrom [11b]
to [17b] represents the change from complex inversionto ageneral integer power
w = z™. Although the primary purpose of [17] isto convey the general argument,
you will better understand itsdetailsif | tell you that it actually depictsthe specia
casem=2.

Asz travelsalong K, w travelsround an image circle of radius A™, and with
an angular speed that is m times as great. Thus

|A] = A™(Ag) = A™ g,

and _
p=t1+¢=mdp+¢=m+1)¢.

Since all the A’s have the same length and the same turning angle, it followsthat
Ry isapolygonal approximationto an arc of acircle, the centre of whichwe have
chosen to place at theoriginin [17c]. We will now determine the angle subtended
by thisarc, and alsoitsradius.

The angle that each A subtends at the origin is the same as the turning angle
b, namely, (m F 1) times the angle subtended by each A . Thus
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FINISH

Figure[17]
angleof FINISH = (m + 1)w.

Also, if pistheradius, we seefrom thefigurethat

~ ~ Am+1
= |A =
pop=1Al = p e
We therefore concludethat if m # —1 then
Ry = FINISH - START
_ 1 [Am-H Pm+DY _ Am+1]
m+1
1
— — [Bm+1 _ Am-l-l] (10)

which, as promised, isformally identical to thereal result. We hope you will agree
that it's rather fascinating how we have been able to visualizethisresult in away
that would not have been possiblein thereal case.

As we have said, [17] actually depicts the concrete case m = 2, and before
continuing you may careto sketch another casefor yourself; m = —2 might bea
funone.
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2 Complex Inversion as a Limiting Case*

Asin ordinary calculus, we seethat the casem = —1 (complex inversion) stands
out from the crowd. Nevertheless, we can still understand the behaviour of this
specid power asalimiting casedf other powers. With alittlecare about branches,
the above result can be seen to persist even if werelax the requirement that m be
aninteger. Asm gradually approaches —1 the radius p_grows, and so Ry, looks
lessand less curved; at thesametimethe lengthsof the A's tend to ¢. Thusin the
limit that m tendsto —1 we see that Ry will go straight up theimaginary axisto
iW. Thisisillustrated in [18]. The variablen = m T 1 measures the difference
betweenm and —1, and it is thereforea good label for the Riemann sums shown
inthefigure.

Figure[18]

Returning to the case of integer powers, we next observe that for acomplete
circular loop, there is a striking and fundamental difference between complex
inverson and all others powers: if m # —1 then the integral vanishes. Thisis
because Rys will now go round in acompletecircle|n| times[clockwiseif n < 0;
counterclockwiseif n > 0], thereby returning to its beginning.

3 General Contours and the Deformation Theorem

Thusfar wehaveonly established (10) for thecase where A and B areconnected by
asimplearc, butinfactitistruefor amost any contour. Takethecasen > O first.
Sincez™ is then analytic throughout the plane, it follows directly from Cauchy's
Theorem that al contours will yield the same value. However, when n < 0 the
stuationisalittle bit more subtle.

Just as complex inversion suffers a breskdown of analyticity at the origin,
S0 too do all the other negative powers of z. Therefore Cauchy's Theorem only
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guaranteesthat two connecting pathsyield the sameintegral provided that together
they do not enclosethe origin. For aloop that does enclose the origin, theintegral
is not requiredto vanish, and indeed in the case of z~! it equals 2ni.

Nevertheless, our direct evaluation reveals that for all other negative powers
theintegral round a circular |oop does vanish, despite not being required to”. We
will now deriveanew form of Cauchy's Theorem that enables usto show that the
vanishing of theintegral is not aflukeresulting from the special circular shape of
theloop.

Il b

J

Figure[19]

Consider [19a]. Thetwoloops Jand L bothencircleasingularity of some map-
ping, and so neither integral isrequired to vanish by Cauchy's Theorem. However,
if the mapping is analytic in the shaded region lying between the loops, then we
will now show that the two integrals must be equal. First consider the contribution
to theintegral round L that comesfrom the piece between p and g. Suppose that
we deform L dlightly by replacing this segment by the bump in the figure. Since
the mapping isanalytic between the two paths connecting pand q, it followsfrom
Cauchy's Theorem that both integrals are equal. Also, since the rest of L hasn't
changed, it followsthat integral with bump = integral without bump. All we need
do now, to obtain the stated result, is to let the bump grow and change shape (see
[19b]) until L hasevolvedinto J.

The crucial ideaisthat

| fa contour sweeps only through analytic points as it is deformed,

the value of the integral does not change. (an

We shall call this the Deformation Theorem. Thus, if you imagine the contour to
be arubber band, and the singularity to be a peg sticking out of the plane (thereby
obstructing motion past it), theintegral hasthe samevaluefor all shapesinto which
the rubber band can be deformed.

We can immediately apply this Deformation Theorem to our problem. For if
the mapping is a negative power of z other than z~! then the established fact that
theintegral vanishesfor acircular loop impliesit continues to vanishfor any loop
intowhichthecircle can bedeformed without crossing the singularity at theorigin.
Thusformula (10) is path independent even for negative powers.

TIn Chapter 11 wewill givea physical explanation for thisdifference between complexinver-
sion and therest of the negative powers.
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The Deformation Theorem also provides us with a much simpler derivation
d the result (6) governing the general loop integral of the complex inversion
mapping. Imaginetaking alength of elastic string and winding it around an origin-
centred circle v times, finaly joining the ends together to form a closed loop.
From our earlier work, it follows that the value of the integral isthen 2ziv. But
the Deformation Theorem says that this will be the value of the integral for any
loop into which the elastic string may be deformed without being forced over the
peg (singularity) at the origin. Finally, by the Hopf Degree Theorem, the loops
into whichit can so be deformed are those with winding number v.

4 A Further Extension of the Theorem

Our 'dynamic' version of Cauchy's Theorem can befurther extended to embrace
mappings that haveseveral singularities. Consider aloop L (see [20a]) encircling

oY
e

Figure [20]

two singularities (pegs) of some mapping; the generalization to more singularities
will beobvious. If wedeform L without forcing it over apeg then weknow that the
integral will remain constant. The process [20a}— [20b]—[20c] is an example of
such a deformation. The situation in [20c] is now rather interesting. The contour
has become pinched together at g, and the value of the integral can be thought
o asthe sum of the two separate integrals taken round the touching circles. But
now, by the same reasoning as usual, we may separately distort these circles so
that [20c]—[20d]. Thus we conclude that

ff(z)dz=%f(z)dz+¢ f(@)dz. (12)
L J K

Toillustrate(12), consider f (z) = 2/(22+ 1) whichhassingularitiesatz = =£i.
Wecan evaluatetheintegral round any loop C by noting thisalternativeexpression:
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1

f@) = — —

z4+i z—i

Applying (7) thereforeyields
?g f(2)dz =2n[v(C,i) - v(C, —D].
c

Assuming (asin [20a]) that L enclosesbothsingularities, usethisformulato verify
(22) for this particular function.

5 Residues

Since we now possess a fairly complete understanding of the loop integrals of
power functions, itisrelatively easy tointegrate simplerational functions: we need
onlyfind thedecompositioninto so-call edparti alf ractions, and then integrateterm
by term. Indeed, thisis precisely what wedid intheexampleof thelast paragraph.

Figure[21]

Hereisasdlightly morecomplicatedexample: theintegralof f (z) = z°/(z+1)2
taken round the contour K in [21]. By writing the numerator as[(z + 1) — 11°, we
quickly find that

1

1
+5[z+1]—10+10(z+1)—5(z+1)2+(z+1)3.

But we know that the loop integral of powersother than —1 is zero, and so only
the complex inversion term [in square brackets] can contribute. In detail,

j) f()dz=5-27i v(K, —1) = —20mi.
K

Thusthevaueof theintegral hasbeen determined by just twofactors: thewinding
number of theloop, and theamount (i.e. coefficient) of complexinversioncontained
in the decompositionof the mapping. Becausethislatter numberistheonly part of
thefunction that remains after weintegrate, it is called the residue of thefunction
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at the singularity. Quite generaly, the residuecf f (2) at asingularity s isdenoted
Res[f (z), s]. Thusin the above example, R&e[z /(z+1)?% -1]=5.

Infact theres due concept hasasignificancethat extendsfar beyond simplera
tional functions,asour nextexamplewill illustrate.We haveprevioudy[page228]
alluded to the remarkablefact that analytic functions are infinitely differentiable,
or equivalently, that they can always be represented by a power series (Taylor's)
inthevicinity of anonsingular point. For example, the Taylor series centred at the
originforsinzis

1, 1.5 1
s1nz—z——3——|z +§Tz _FZ +-

Clearly no such expansion can be possibleat asingular point of amapping. Never-
theless, we may recover an analogous result near singularitiessimply by broaden-
ing our notion of a power seriestoincludenegativepowers. Such aseriesiscalled
alaurent series.

Consider (sinz)/z8. Thisissingular at theorigin, but by simpledivisionof the
above Taylor series we abtain the following Laurent seriesin the vicinity of the
singularity:

% 5 313 5!

sinz 11 1[1] 1 1,

Once again, the residue of the function is defined to be the coefficient of the
complexinversionterm: Res[(sinz)/z®, 0] = (1/5) inthiscase. If apower series
convergesat every point on a contour, then we may accept for the moment that
it makes sense to integrate the series term by term. Once again we see that for
a closad loop the sole contribution to the integral comes from the residue. For
example, if K isthecontourin [21] then

i
f—sﬂdz_—zmv(x 0) = ”".
K 5!

The above examples of evaluating loop integralsin terms of residuesarein-
stances of Cauchy's Residue Theorem. We will return to these matters at the end
of thischapter, and, in greater detail, in thefollowing chapter. For the moment we
simply remark that if amapping possesses several singularities, then aresiduecan
be attributed to each one.

VIl The Exponential Mapping

Inthecasedf the exponential mappingtheeasiest contour along which tointegrate
isavertical line-segment, say L (see[22a]). Once again we will find theresult to
beformally identical toits rea counterpart:

jL erdz = e — oA (13)
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[a] N ¢ A

if1t

of
N N

Figure {22]

Asz travelsfrom A upto B in [22a], itsimage under w = € will travel round
the arc shown in [22b]. In order to verify (13), we will now show that (provided
we choose to begin drawing Ry, at e?) thisarc is also the precise path taken by
the Riemann sum.

First note that since A1 and w; are effectively vertical and horizontal, respec-
tively, it follows that Ry will head off in the required vertical direction. Also
observethat al the A’s havethe same length, namely, |A| =~eA |A|. Finaly,since
L has no bends (i.e. ¢ = 0), ¢ = t = |A|. Because the A's al have the same
length and turning angle, R will follow an arc of acircle. It only remainsto show
that if we begin drawingit at e?, then thisisthe same arc asin [22b].

The next section will reveal the simplest way of seeing this, but the following
direct argument is quite straightforward. Wefirst verify that the two arcs havethe
same radius. The angle that each A subtends at the centre of itscircle will bethe
same asitsturning angle ¢. Therefore

ange ~ &

asrequired. Lastly, thetotal angle subtended by thearc at its centreisjust the sum

of dl the¢; = |A;|, namely 6. Theidentity of thetwo arcs isthus established.
Since €? issingularity-free, Cauchy's Theorem assures usthat itsloop integral

always vanishes. Thus (13) must in fact be valid for any path from A to B.

VIII The Fundamental Theorem
1 Introduction

Through specific geometric constructions, combined with the use of Cauchy's
Theorem, we have already learnt a good deal about the integrals of some of the
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most important functions. However, there are two immediate problems still to be
resolved: oneis pragmatic, while the other is aesthetic.

The pragmaticoneisthat theformulae (10) and (13) areonly known to holdfor
certainspecial configurationsof the points A and B: thederivationof (10) assumes
that they are equidistant from the origin; while for (13) they are assumed to be
vertically separated. To be sure, our variousformsof Cauchy's Theorem guarantee
us that the integrals in question will continue to be path independent, no matter
what the locations of A and B. But the problem is that we haven't yet established
that these path independent values will continue to be given by the same formulae
as before. In this section we shall see that they are.

Theaestheticconcernliesinthemanner in whichwederived path-independence
for negative powersof z. Recall that we were only able to apply Cauchy's Theo-
rem after having explicitly produced an example (acircle) of aloop integral that
vanishesin spite of enclosing the singularity. Although this was neat enough in
itself, oneisleft with thefedling that Cauchy's Theorem cannot be the most direct
way of understanding a loop integral that continues to vanish in the presence of
singularities.

A resolution of both these problemsi's provided by the so-called Fundamental
Theoremd Contour Integration— aresult that isformally identical toitssimilarly
named counterpart in ordinary calculus. The naming of thistheoremisnot entirely
appropriate, at least in the context of complex analysis. After all, so far we have
managed quite well without it, suggesting that if this theorem is ' Fundamental",
then Cauchy's must be " Super-Fundamental"'!

2 An Example

As our first example of this theorem, let us return to the exponential mapping of
thelast sectionin order to discover why (13) isvalidfor any pair of points, not just
onesthat are vertically separated. As so often happensin mathematics, all that is
required isa very dight shift in viewpoint.

Figure [23] depicts acurve K (connecting a pair of typical points A and B)
being mapped by € to the curve K connecti ng e” and eB. Now let usforget (for
amoment) all about integration and Riemann sums, and instead look at thefigure
from the point of view of differentiation.

All the little arrows emanating from a point on K will be mapped to images
emanating from a point on K. In particular, if the arrow A is a little chord of
K [tangent, in the limit that it shrinks], then itsimage A will likewise be alittle
directed chord of X . But for ananal ytic mapping, such asweare now considering,
the original arrows are sent to their images by a simple amplitwist:

= (amplitwist of €2) - A =€ A. (14)

If wenow add up all these vector chords of K thenwe obtain the connecti ng vector
V between its start and itsfinish. But (14) tells us that this vector V may aso be
interpreted as the Riemann sum corresponding to the integral of €2 along K. We
have thus established the continued validity of (13) for all positionsof A and B:
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Figure[23]
/ fdz=V =€l —eh.
K

To emphasizethe path-independencedf the construction, imagine choosing adif-
ferent contour from A to B. The image curve (i.e., the new Riemann sum) will
then take a different routefrom e to eB, but of course the vector V will be quite
unaffected.

3 The Fundamental Theorem

The Fundamental Theorem amountsto a restatement of the aboveideain generd
terms. Suppose that we wish to evaluate i f (z) dz by the method above. We
must seek an analytic mapping F(z) whose amplitwist F'(z) is given by f (z).
Assuming that such an F has been found [whether this animal even exists will
be discussed shortly], we may then draw [24], which depicts theimage curve K
under the mapping F. With the same terminol ogy as before, (14) now becomes

A = [amplitwistof F(z)].A =f (2) A.

Just as before, we concludethat X is actual ly the path taken by the Riemann aum
of f, and that thevector V isonceagainthe path-independentvalueof theintegral:

/f(z)dz:V:F(B)—F(A). (15)
K

Asin ordinary calculus, thefunction F cannot be unique, for F = F+const.
shares the same amplitwist. In terms of afigurelike [24] this correspondsto the
fact that theeffect of Fonly differsfromthat of F by atrandation; but thishasno
effect on the connecting arrow V.
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F(A)

o o

Figure [24]

Inordinary calculus, areal continuousfunction f (x) alwayspossessesan anti-
derivative F(x) for which F” = f . Of courseit may not beeasy tofind, and it may

not even be expressiblein terms of elementary functions (e.g. f (x) = e—"z), but
at least it exists. In the complex realm, on the other hand, we know that analytic
functions are very special, and so we should not be surprised if the existence of
such afunction is no longer assured. Remember that when such an F exists, the
integral of f is path-independent. It follows, for example, that no such function
can exist for the non-analytic mapping f (z) = z. Indeed, we may fall back on the
till unprovenresult concerninginfinitedifferentiability to seethat, quitegeneraly,
analyticity of f isanecessary condition for theexistenceof F.Forif Fisanalytic,
thensotooisitsderivative F', namely f .

When presented with the integral of a non-analytic function, it is therefore
hopeless to seek an anti-derivativefor use in (15)—no such function can exist.
For the special case z — 7 it is possible to extend the area interpretation (hence
evaluation) to contours that are not closed, but for a general non-analytic map-
ping no such interpretation will be available. Although such integralsare of much
less interest to us than those of analytic functions, in the next section we shall
neverthelessfind a method of evaluating them.

Before returning to more general considerations, let us give a couple more
examples of the theorem in action. Consider f (2) = z If we define F(2) = 12°
then F’ = f, and thus the path taken by the Riemann sum as we integrate dong
a contour will just be its image under z +— %z3. This allows us to look at the
construction [17] inanew light. Recall that whilethisfigureisconcerned with the
integration of ageneral power, it actually depicts the special case z2. In agreement
with our new general result, we seethat z — %z3 does indeed map the contour in
[17a] toits Riemannsumin [17c].

As an example of how the theorem also resolves our aesthetic concern over
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path-independencefor negativepowersof z, reconsider f (z) = (1/z%), for which
we hopeyou did actually draw theanalogue of [17], assuggested. Without appeal -
ing to Cauchy's Theorem (thus avoiding the attendant anxiety over the singularity
at theorigin), we seethat since (—1/z) = (1/z?), al contours® between A and B
will yield the same valuefor theintegral:

B 1 1
[[La-il
A 2 A B
Notice,incidentally, that path-independencehasallowed ustoreinstate thefamiliar
symbol | f without fear of ambiguity.
Instead of having to use Cauchy's Theorem to extrapolate from the vanishing

of theintegral for acircle toits vanishing for more general loops, the conclusion
isnow immediate: since B = A for aclosed loop, the above expression vanishes.

4 The Integral as Antiderivative

We have seen that the existence of an antiderivative F (defined by F/ = f)
implies path-independence for the integral of f . We will nhow show, conversely,
that path-independenceimplies the existence of F.

Let usfirst give another smple example of the Fundamental Theorem. Since
(sinz)’ = cosz, theintegral of cosz will be path-independent, and if weintegrate
from the origin, for example, to a variable endpoint Z, then we obtain a well-
definedfunction of Z:

z
F(Z) =f coszdz=sinZ.
0

We note, without surprise, that thisfunction is the antiderivativeof cosZ. If we
began our integration at an arbitrary point, instead of at the origin, then the re-
sult would only differ by a constant, and so it would still be a perfectly good
antiderivative.

In order to establish the claim of the first paragraph, it is only necessary for
us to show that the above example is typical. If the integral of a mapping f is
known to be path-independent, and A is an arbitrary fixed starting point, then we
will show that

zZ
F(Z) — fA F(2)dz (16)

istheantiderivativewhoseexistenceissought. Thatis, wewill verify thatinfinites-
imal arrows emanating from a point P are merely amplitwisted to produce their
images under this mapping F, and that the amplitwist at Pisjust f (P).

First we shall need asimple observation on differencesof integrals. See [25a].
Two paths L and M are shown connecting the point A to thedistinct points P and
Q. We know that for any function f (2),

8We exclude contoursthat actually pass through the singularity.
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b [a].,, . .
S
L 0 0
M “L+M
A
Figure [25]

/ f(z)dz—ff(z)dz=f f@dz.
M L —L+M

The path (—L + M) for the right-hand integral is the round-about route from P
to Q shownin [25b]. But if theintegral is known to be path-independent then we

may replace this path with the straight one S. Returning to the notation of (16), we
thus have

F(Q) - F(P) =/Sf(z)dz.

Inthelimit that Q coalesces with P, S becomes (with aminor abuse of termi-
nology) an infinitesimal 'vector' A emanating from P, and itsimage A under F
will be given by theleft-hand side of the above equation. Thus

F:AHZ:/f(z)dz.
A

Butif Aisinfinitesimal thentheaboveintegral equalsf (P) A, thereby establishing
theorigina claim:

F:AHA=f(P)A.

We may now appeal to Cauchy’s Theorem to relate the required path-indepen-
dencetoanayticity. If f isanalytic throughout someregionthenitsintegral issure
to be path-independent, and therefore F will exist. In other words, every analytic
mapping must itself be the derivatived another analytic mapping.

We conclude this subsection with an interesting application of the analyticity
of F. In the previous subsection we completely ignored our previous geometric
constructions, and instead appealed to the Fundamental Theorem to show, for
example, that

B 1
/ 2dz = =(B® — A%,
A 3

for all positions of A and B. This was apparently a clear improvement on [17]
where such formulae were merely established in the special case that A and B
were equidistant fromtheorigin. However, we will now seethat analyticity makes
it possible, paradoxically, for this specia caseto contain the general case.
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Consider these two functions:
z 1
F(Z) = / 22 dz G(Z) = },'(23 - A%,
A

both of which we now recognize as being anaytic. From [17] we know that if Z
moves aong the origin-centred circle passing through A then

F(Z) = G(2).

But by the uniquenessproperty of analytic functions[page250] thisidentity must
continueto hold evenif Z wandersoff thecircle, thereby establishing the genera
result.

By applying exactly similar reasoning to the exponential mapping, we may
likewiseextrapolatethevalidity of (13) for vertically separated points (established
by [22]) to deduce that

z
/ fdz=e? —ef,

A
evenif Z wandersoff the vertical linethrough A.

5 Logarithm as Integral

Inthelight of the Fundamental Theorem, weareinclined to jumpto theconclusion
that because (logz)' = (1/z),

Z1
/ —-dz=1logZ, amn
1 Z

just asin red analysis. In asense, thisiscorrect, but alittlecareis required.

Thesubtlety is, of course, that the singularity at the origin causestheintegral
of (1/z) not to be single-valued. Thus we must specify the contour K from 1 to
Z before theintegral in (17) becomes well defined. On the other hand, until we
chooseonedf theinfinitely many values8(Z) for theangleof Z, the RHSof (17)
is also not well defined. These two difficulties now cancel each other out in the
following way.

In [26] we have drawn three different contours for the specific case Z =
1+i /3. If welet 8k (Z) stand for the net rotation as wefollow K, then

Ok, (Z2) = (7/3)
Ok, (Z) = (mw/3)+2m
0k, (Z) = (@/3)+4rm.

In asense, including the contour in the definition of angle has rendered it single-
valued. Noticethat this definition does not depend on the precise shape of K, but
only on how many timesthe originisencircled.
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1+iv/3 143

Figure [26]

In this way, we may absorb the means of reaching Z into the definition of
log(Z) in order to obtain a single-valued answer:

logg (Z) = In|Z| +i6k(Z).

The unambiguously correct version of (17) then reads,

1
/ —dz =logg(2).
K 2

Of course, the multiple-valued nature of log has merely been disguised, not
doneaway with. Neverthel ess, by pursuing theaboveideaoneisled to consider so-
called Riemann surfaces, whereby multifunctions can be rendered single-valued.
But that is a story for another day.

IX Parametric Evaluation

When moreelegant meansarenot availableitisneverthelesspossible (in principle)
to evaluate a contour integral by expressing it in terms of ordinary real integrals.
We shall now briefly describe and illustrate this method.

Thebasicideaisto think of thecontour L asbeing traced by amoving particle
whose position at timet isz(z). Next, instead of building the Riemann sum (hence
theintegral) from very small vectorsthat arechordsof L, wemay equally well use
very small vectorsthat are tangent to L. Thisisdone using the tangential complex
velocity v = %: the chord representing the movement during the instant of time
8¢t may replaced by the tangential vector v §¢. Thusif L istraced out during the
timeinterval a <t < b, then

b
ff[Z]dZ=/ flz(t)]vdr.
L a

For example, supposethat L isone counterclockwise circuit of the circlewith
radius p and centre g, and that f [z] = z. We know from our earlier work that the
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answer should be2ip?. Sincez(t) = qtpe (0 <t <2m)andv =i pe't, we
obtain

2 .
/Edz = @G@+peNipedt
L 0
2 27
= ipg (cost+isint)dt+ip2/ dt
0 0
= 27rip2,
as anticipated.

Naturally, the point of this method is not to confirm previously known results,
but rather to evaluateintegral sthat we couldn't do before. For example, with the
samecontour, but with f [z] = z2, theanswer can no longer be guessed. However,
you should now find it easy to discover that the answer is4migp?.

By way of contrast with the non-anaytic examplesabove, and asfurther prac-
tice with this method, confirm (using the same contour L) that f, 22dz =0, &
predicted by either Cauchy's Theorem or the Fundamenta Theorem. Likewise,
confirm that [ zdz = 0, where E is an origin-centred ellipse. [Hint: recall that
z(t) = p€’ + qe** moveson such an ellipse]

For our last examples, take the contour to be a section of the parabolay = x?
between 0 and 14 ;intemporal termsthiscan berepresentedasz (t) = t+it2(0 <
t < 1).Integrate z along this contour, first using the Fundamental Theorem, then
parametrically. Likewise, use the Fundamental Theorem to evaluate the integral
for eZ. By equating theimaginary part of your answer with theimaginary part of
the parametric eva uation, deducethat

1
/ (2t cost?+ dns?) e dt = e snl.
0

Thisresult can be verified easily [exercise] without using complex numbers. L ater,
though, we shall meet real integralsthat cannot readily be evaluated by such ordi-
nary means, but which suddenly do become easy when viewed as arising from a
complex integral.

X Cauchy's Theorem
1 Some Preliminaries

Having repeatedly witnessed the utility of Cauchy's Theorem in this chapter, it
is perhapstimethat we checked that it is true We begin with the case wherethe
contour C isa"'smple" closed curve, i.e., without self-intersections. See [27].
We havefilled theinterior of C withagrid of small squares, of sidelength e,
aignedwith thereal andimaginary axes. We havethen shaded all thosesquaresthat
liewhally within C, and taken thecontour K to bethe boundary of this shaded re-
gion, traversed counterclockwise. Becausewe have drawn relatively large squares
(in order to make the picture clear), K is presently only acrude approximationto
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Figure [27]

C. However, aswelet € shrink, the shaded region fillstheinterior of C ever more
completely, and K follows C ever more precisely. Thus, in order to see whether
or not the integral of a mapping f along C vanishes, it is sufficient to instead
investigate the behaviour of theintegral of f along K, ase shrinksto zero. [This
isjustifiedin greater detail in Ex. 20.]

Next we seek to relate thisintegral along K to the behaviour of the mapping
inside the shaded region that it bounds. Consider the sum of all the integrals
of £ taken counterclockwise round each of theinfinitesimal shaded squares. This
counterclockwisesenseof integrationisillustrated in [27] for two adjacent squares.
When we add theintegral sfrom these two squares, their common edgeistraversed
twice, once in each direction, and hence the integrals along it cancel. But thisis
true of every edgethat liesin the shaded region, so that when we sum theintegrals
for al the shaded squares, the only edges that do not self-destruct in this manner
are those that make up K:

ﬁf(z)dz = Y fgf(z)dz. (18)

shaded squares

Theinvestigation of theintegral of f along C has thus been reduced to the study
of thelocal effect of f oninfinitesimal squaresin the interior region.

It should be stressed that the discussion thus far is equally applicable to non-
anaytic and analytic mappings. For example, with f (z) = z, (18) simply says
[see (8)] that the areainside K is the sum of the areas of the shaded squares. In
order to understand Cauchy's Theorem, we must speciaize to the case (illustrated
in [27]) where thelocal effect of T isan amplitwist throughout the interior of C.
First, though, let us try to guess how the magnitude of a typical integral in the
above summation will depend on ¢ (as the squares shrink) for ageneral mapping.

Experience with real integration, as well as theinequality (5), might lead one
to guess that the integral round an infinitesimal square would die away at the
same rate as its perimeter, that is, ase. Thisisfalse. Thefact that the squareisa
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closed contour, together with thefact that complex integrationisatypeof vectorial
summation,impliesthat theintegral must decay muchfaster than this. In theabove
exampleof conjugation, we know that the exact value of each term is 2ic2, and
thisleads usto the correct guess, namely, that the termsdie away as the square of
€. We shall verify thisin detail shortly, but for the moment the following rough
argument will suffice.

We know that for a general mapping, the integral round K —hence the sum-
mationin (18)—will be nonzero and finite. Thisleads usto believethat each term
must die away with the reciprocal dependence on € as governs the growth of the
number of termsin the series. But the number of termsgrowsas(' ed areainside
C, divided by thearea d each square), that is as (1/c?). Thus the magnitude of
each termisexpected to die away ase2. If our original guess had been correct, the
order of the sum in (18) would have been € (1/c?), yielding an infinite result as
the squares shrunk. Conversely, any contributions to the terms involving powers
of e greater than two, cannot have any influence on the final resuilt.

2 The Explanation

Let us return to [27] and to the explanation of Cauchy's Theorem. The analytic
mapping f amplitwists theinfinitesimal shaded squares on theleft totheinfinites-
imal squares on theright, and [28] showsamagnified view of atypical such square
and itsimage (the black onesin [27]). According to our especially accurate mid-
point Riemann sum (Ryy), the integral along the bottom edge of this square can
be approximated by the single term A €: the image of the midpoint a, times the
number aong this edge. This conforms to our first, wrong guess concerning the
dependence on € of the completeintegral round the square. But if we now add this
totheintegral aong the opposite edge, the answer is

Ace+C(—e)=(A—-C)e=pe.

Even if f is merely differentiable in the real sense, rather than locally an am-
plitwist, | p| will still be proportional to e, and the magnitude of pe will therefore
be proportional to€?, asanticipated. Likewise, the contributionfromtheremaining
two edges is also of order €2, namely, (B — D) ie = iqe.

Cc

Figure [28]
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Perhapsyou havealready seenthelight: if T islocally an amplitwist, theimage
isasguare, and so

iq = q rotated through a rightangle = —p

== %f(z)dz:e(p—i—iq)zo. (19)
O

We conclude from (18) that the vanishing of loop integralsfor analytic mappings
isindeed the nonlocal manifestation of their local amplitwist property!

Figure[29]

Contrast thiswith non-analytic mappings. See [29]. Provided that a mapping
is differentiablein the real sense, we know [see page 208] that itslocal effect is
expansion (by different factors) in two perpendicular directions, followed by a
twist. Thustheimage of an infinitesimal squarewill generally bea parallelogram;
p and g will not have equal length, nor will they be orthogonal. Aswe see, p and
iq no longer cancel, and € (p T iq) is of order €2. When we add up the terms of
(18), of order (1/€2) in number, the answer will therefore be nonzero and finite.

Conjugation provides a particularly striking example of this noncancellation
for non-analytic mappings. See [30]. In the terms of the previous paragraph we
could say that its expansion factors are everywhere 1 and —1 (in the horizontal
and vertical directions), and that itstwist is zero. Theimage of thesquareisagain
a square, but there is a crucial difference between [28] and [30]. Because this
mappingisanticonformal, it reversesthe orientation of the square, and we seethat

. c
, z

B Bb D
}‘ >

Figure[30]
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55zdz=e(p+iq)=e(ir+ie)=2ie2.
O

Returningto questions of analyticity, and comparing (19) with [29], we obtain
aconverseto Cauchy's Theorem. If all theloopintegralsof f areknownto vanish,
then, in particular, they will vanish for infinitesimal squares, such as the one on
the left of [29]. Thus, p Tiq = 0. But it isclear that this can only happen if the
imageisanother infinitesimal square with the same orientation asthe original (cf.
[30]). Thus the local effect of f must be an amplitwist. This converseis called
Morera’s Theorem.

As with other new ideas in this book, we have not attempted to present the
argumentsin rigorousform; "insight™, not " proof" , isever our watchword. For ex-
ample, consider these objections (ascending in severity) to the geometric argument
of [27] and [28]: no matter how small the square, the sides of theimage will not be
perfectly straight (though they will meet in perfect right angles); the midpoint a
will not be mapped to the exact midpoint of theimage; and despite the undoubted
accuracy of Ry for a very small contour, it will not yield the exact value of the
integral.

Nevertheless, it seems plausible that [281 and its associated reasoning remain
unimpeached when it comes to the evaluation of the dominant €2 contribution.
Indeed, the example of [30] lends at least some credence to the irrelevance of the
aboveobjections, for in that case we know the answer is correct to this order of e.
[Infact it comes out exactly right, but that is a fluke.] More generally, recall that
parametric evaluation reveaed that the real and imaginary parts of any contour
integral can be expressed as ordinary real integrals. This meansthat we may carry
over to the complex realm our previous determination (3) of the error induced by
Ry inred analysis. Thus each of theintegrals along the four edges of the square
will differ from their Ras-values by an amount that dies away at least asfast ase
cubed [cf. Ex. 21 and Ex. 22]. But as we have previously argued, as € shrinks to
zero, such contributions can have no effect on the sumin (18). Although we shall
not dwell on them, other objections can be treated in asimilar way.

Xl The General Cauchy Theorem
1 The Result

Consider amapping f thatisanalyticexcept at thesingularity markedin[31]. Must
theintegral of f round K vanish, or not? You see the problem. For asimple loop
without self-intersections(suchasin[27]) itisperfectly clear whether asingularity
islurkinginside, and consequently whether Cauchy’s Theoremapplies. Butin[31],
itisnotevenclear what"inside'" means, | et a one how thismight relate to Cauchy's
Theorem.

Recall that we encountered such problems before when trying to integrate z
round complicated loops[see(9), aswell asthediscussion on p. 339]. Our solution
was to definetheinside™ to be all the pointsfor which the winding number does
not vanish, and conversely, the "outside to be all the points for which it does
vanish.
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Figure [31]
With these definitionsin place, the completely general version of Cauchy's
Theorem isstunning in its simplicity:

If an analytic mapping has no singularities"inside" a loop, its

integral round the loop vanishes. (20)

This section is devoted to understanding this beautiful result.

First let us answer our opening question. In [31], K does not wind around the
singularity, and therefore (according to the theorem) theintegral should vanish. In
the process of understanding this particular instance of the theorem we shall be
led to acompletely general argument for its validity.

2 The Explanation

Asin [16b], the contour K in [31] partitions the plane into a number of digoint
regions; in particular, theinside of K is made up of Dy, D;, and D3. See [32].
Let C; bethe boundary of D;, traversed counterclockwise. So as not to clutter up
the picture, instead of actually drawing these contours in {32], we have merely
indicated (with ellipses) their common counterclockwise sense. Also shown (in
boxes) are the winding numbers of K around each of the regions D;. Since there
are no singularitiesinside the D; that make up theinside of K, our basic version
aof Cauchy's Theorem applies to each of the simple contours C;, and we have

% f@dz=0. @2n
Cj

Now comes the crucial observation. Theintegral round K can be expressed as
alinear combination of theintegrals round the C;’s that bound the interior D;’s.
In the case of [32],

?gf(z)dz=¢ f(z)dz—% f(z)dz+2f f(@)dz. (22)
K C Cy C3
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“x

Figure [32]

Consider,for example, thecontour Cs, for which the counterclockwisesensehap-
pensto agree with thedirection of K. On theother hand, C; traversesthis portion
of K intheopposite direction. Consequently,in (22), weend up integrating twice
in the correct direction, and once in the opposite direction; the net result is to
integrate along thispart of K oncein the correct direction. You should check for
yoursdlf that all of K is correctly accounted for in thisway. Substituting(21) into
(22), we have confirmed the prediction of the general theorem for this particular
contour.

Since(22) isclearly truefor any function f , we may abstract it away and write
the equation as

K=C—-C,+2C3.

Noticethat the coefficientof C; in thissumis noneother than thewinding number
v; of K about D;, and that we may therefore rewrite the previous equation as

K=Y vC. (23)
j

From the above example, it is clear that to provethe genera version of Cauchy's
Theorem we need only show that (23) is truefor any K.

Consider [33], which shows a portion of an arbitrary contour K sandwiched
between two of the regions (D; and Dy) into which it partitions the plane; dso
shown is the counterclockwise sense of their boundaries (C; and Ci). Using the
"crossing rule” (1) on page 340, wededucethat v; = v +1. Thus, in (23), wefind
that thecontour C; inthedirection of X will alwaysoccur precisely onemoretime
than the contour Cy, in the oppositedirection—the net result isthat K istraversed
oncein thecorrect direction. Done.

Asprevioudyexplained, in establishing(23) wehavea so deduced the Genera
Cauchy Theorem (20).
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Figure [33]

3 A Simpler Explanation

The Deformation Theorem (11) was al so deduced from the basic Cauchy theorem
[unproven at that time], and we will now useit to giveasimpler and moreintuitive
explanation of the General Cauchy Theorem.

Suppose that a contour can be deformed and shrunk down to a point without
ever crossing asingularity of an otherwise analytic function. By inequality (5), the
value of the integral will be zero at the end of this shrinking process. But by the
Deformation Theorem, the value of theintegral remains constant throughout this
process. In other words,

If a closed contour can be shrunk to a point without crossing a

singularity, the integral round it vanishes. (24)

Towrapthis up, weclearly need away of recognizing when this shrinking process
ispossible. For example, isit possiblefor thecontour K in[31]? Figure[34] shows
that it is. Therefore (24) implies that the integral along K vanishes, in agreement

Figure [34]
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with the general theorem.

Thetwo theoremsare clearly very closely related. In fact we can now deduce
the General Cauchy Theorem from (24) by observing that the winding number of
thefina shrunkenloop vanishes; Hopf’s Degree Theorem then tells us that

The shrinking processin (24) ispossible if and only if the contour
does not wind around any singularities.

Xl The General Formula of Contour Integration

Consider the general problem of evaluating ¢, f (z) dz, where K is a genera
(possibly self-intersecting) loop, and where f possesses severd singularitiessi,
52, €fc., inside K. Figure[35] illustratessuch a situation.

Figure[35]

Here theinside of K consists of two smply connected regions, D [lightly
shaded] and D, [darkly shaded)], with boundariesCy and C,. Since K windsonce
round pointsin the lightly shaded region (vi = 1) and twice round pointsin the
darkly shaded region (v = 2), the general result (23) correctly predictsthat

K=Y vCi=1-Ci+2-C. (25)
j

Asillustrated,|et o; be asimple (counterclockwise) contour containing s; but
no other singularitiesof f, and let usdefine

=9 f(@)dz.
gj

By virtue of the Deformation Theorem (11), we know that the integral I; has a
characteristic value that does not depend on the size or shape of o;. Furthermore,
aswesaw in [20], if asimpleloop contains several singularities, then theintegral
roundthatloopisthesumaf | -valuesaf thesingularitiesit contains. |nourexample,
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f@dz=hL+hL+1I5 and f@dz=1+14.
C1 Cy

Finally, using (25), we deduce that
f f@dz=1-1I1+ L+ Is]1+2-[13+ 14],
K

in which each | -value has been multiplied by the number of times K winds round
the corresponding singularity. Since (23) isvalidfor arbitrary loopsit follows that
thisconclusionistoo. Asthe grand finaleto thischapter, we havethus obtained the
following completely general formulafor theloopintegral of an analyticfunction:

ﬁf(z)dz= Z v(K,s) 1.

J

Thefinal icing on the cakeis an efficient method of computing the Z;’s. In the
next chapter we will verify our previousclaim that in the neighbourhood of each s;
there exists a unique Laurent series [see page 401], the coefficient of the complex
inversion term being (by definition) the residue Res[ f (z), s;]. Granted this, we
seethat I; = 2ni Res[ f(z), s;]. Thus

f f@dz=2mi Y v(K,sp)Res[f(2),s;]. (26)
K

J

This is the General Residue Theorem. Note that it contains the General Cauchy
Theorem as the special casein which each v(K, s;) = 0.

Wewill also seein the next chapter that it is possibleto find theresiduesin this
formula directly, without going to the trouble of finding the whole Laurent series.
Thus, even before exemplifying its use, it should be clear that in (26) we have a
result of great practical and theoretical power.



420 Complex Integration: Cauchy's Theorem

Xl Exercises

1 Thinkingof X asrepresentingtime, z(x) = x +if (x) isaparametricdescription
of the ordinary graph, y = f (x).

(i) Show that the complex velocity is v = 1+ i tand, where 6 is the angle
between thehorizontal and thetangent to thegraph. Also, show that complex
accelerationisa =i f”.

(ii) Recall from Ex. 20 on page 262 that the curvature of the orbit is x =
[Im (av)1/|v]3. Deducefrom (i) that

ksec’d = f'(x).
(i) From (ii), deduce that the error equation (3) can be written as
1
aea (ABCD) = ¢ f(x) A3,

2 In[6], show that

tim ( areabetween thechord AB and thecurvee) >
A—0 \area between thetangent CD and thecurve/

In other words, Ry istwice as accurateas the Trapezoida formula.

3 In theintegration of an ordinary rea function f (x), let L denote the length of
theintegrationrange, andlet M denotethemaximumsizeof f”(x) inthisrange.
From the previoustwo exercises, deduce the standard resuilt,

totel Trapezoidal error < ;LM AZ,
Likewise, deduce the somewhat lessfamiliar result,

total Ry error < LLMAZ.

4 Write down the values of fc(l/z) dz for each of the following choices of C,
then confirm the answers the hard way, using parametric evaluation.

@ |zl =1.
(i) |z — 2| = 1.
(i) 1z - 1]=2

5 Evauate parametricaly the integral of (1/z) round the square with vertices
+1 +i, and confirm that the answer isindeed 2i.

6 Confirm by parametricevaluationthat theintegral of z” round an origin-centred
circlevanishes, except whenm = —1.
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7 Hold acoin (of radius A) down on aflat surface and roll another one (of radius
B) round it. The path traced by a point on the rim of the rolling coinis called
an epicycloid, and itisaclosed curveif A = nB, wheren isaninteger.

(i) Withthe centre of the fixed coin at the origin, show that the epicycloid can
be represented parametrically as

z) =B [(n +1) et — ei(n+1)¢] .

(i) By evauatingtheintegra in (8) parametrically, show that

areaof epicycloid=nB>(n+1) (n +2).

8 Thefigure below showsfour simple loops, and in each case we haveindicated
how much shaded areaisenclosed. Use parametric evaluation to verify equation
(8) for each of thefour loops.

@ (i) (iii) (iv)
iR ib iR R+iR

9 What isthe generalization of (8) to the case where the contour is not closed?
10 Use (23) to verify (9).

11 Theperfect symmetry of figure[18] resultsfromintegrationroundtheunitcircle.
Roughly how wouldthisfigurelook if weinstead used asomewhat |arger circle?

12 Let K bethe contour in [21].

() Evauatethefollowingintegral by factoring thedenominator and putting the
integrand into partial fractions:

Z
= Vdz.
f}(zz—iz—l—i) ‘

(if) Writedown the Laurent series (centred at the origin) for (cosz/z!!). Hence

find
COS Z
ﬁ( (——Z“ ) dz.
13 Thisexerciseillustrates how onetype of difficultreal integral may be evaluated
easily using a complex integral.



422 Complex Integration: Cauchy's Theorem

Let L bethe straight contour along the real axisfrom —R to +R, and let J be
the semi-circular contour (in the upper half plane) back from +R to —R. The
complete contour L + Jisthusaclosed loop.

(i) Usingthepartia fractionideaof the previousexercise, show that theintegral

f dz
L+J @+

vanishesif R < 1, and find itsvalueif R > 1.

(i) Using thefact that z* + 1 isthe complex number from —1 to z*, write down
the minimumvalueof |z* + 1] asz travelsround J. Now think of R aslarge,
and useinequality (5) to show that theintegral round J dies away to zeroas
R growsto infinity.

(iii) From the previous parts, deduce the value of

+00 dx
/oo G+

/ Too dx
) (x2 +1)
iseasily found by ordinary means, but evaluateit instead by the method of
the previousexercise.
f+oo dx
oo (x241)2

by ordinary means and then by contour integration. [ H nt ‘The quickest way
to find the partia fraction decomposition for this function is to square the
decomposition of 1/(z% + 1).]

14 (i) Theintegral

(i) Likewise, evaluate

15 (i) UsetheFundamental Theorem to write down the value of

a+ib
/ etdz.
0

(i) Equate the answer with the one obtained by parametric evaluation alongthe
straight contour from 0 to (a + i b), and deduce that

! a(e? cosb — 1) + be? sinb
X —
'/0 cosbxdx = 2F 2 ,
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and
b(l — € cosh) +ae? sinb
a? T2

1
f e™ snbxdx =
0

(iil) Provetheresultsin (ii) by ordinary methods.
16 (i) Show that whenintegrating a product of analytic functions, we may usethe
ordinary method of "'integrationby parts”.
(i) Let L beacontour from the real number —6 to +0. Show that

/ Ze'?dz=2 (sn0 - 0 cosh),
L

and verify this by taking L to be aline-segment and integrating parametri-

caly.
f(z)=1 (z+l> ,
b4 z

17 Let
wheren isapositiveinteger.

(i) Usethe Binomia Theorem to find theresidueof f a theoriginwhennis
even and when n is odd.

(i) If nisodd, what isthevalueof theintegral of f round any loop?

(i) If n = 2miseven and C is asmpleloop winding once round the origin,
deducefrom part (i) that

2m)!

yg f@dz =2rwi —= ™ e

(iv) By taking C to betheunit circle, deducethefollowing result dueto Wallis:

2n ]
2 _ (2m)!
/(; cos“™ @ do = W)—z (4

(v) Similarly, by consideringfunctionsof theform z* f (z) wherek isaninteger,
evaluate

2 2
f cos" 0 -coskf d9  and / cos'0 snkd dé
0 0

18 Let E betheelliptical orhit z(t) = a cost +ib sint, wherea and b are positive
and t variesfrom O to 2z. By considering theintegral of (1/z) round E, show
that
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fZ” dt 2
o a2cos?t+b2sin’t ab’

19 Let us verify the claim of Ex. 19, p. 262, that if a function has vanishing
Schwarzian derivative, then it must be a Mobius transformation. Following
Beardon [1984, p. 77], supposethat {f (2), z} = O, and define F = (f " /f ).

(i) Showthat 1/F(z) — 1/F(w) = —(z — w)/2.
(ii) Deducethat j—z logf’(z) = —2/(z — &), for some constant a.

(i) Perform two further integrations to conclude that f (z) is a Mobius trans-
formation.

20 In[27], consider the whitefragments of squares sandwiched between K and C.

(i) Show that the sum of the integrals round these fragments equals the differ-
ence between the integralsround C and K.

(ii) Ase shrinks, what isthe approximatesize of each termin the above series?

(iii) Roughly how many termsaretherein the series?

(iv) Fromthepreviousparts, what doyou concludeabout thedifferencebetween
theintegralsround C and K, as € shrinksto nothing?

21 Let K be the straight contour froma — (¢/2) toa + (e/2), wheree isashort
complex number in an arbitrary direction.

(i) UsetheFundamental Theoremtointegratez? along K , and then writedown
thevalueobtained by usingasingletermin Rj;. Show that theerror induced
by Ry is % €,

(ii) Asinpart (i), findboth the exact valueand the Rys valuefor theintegral o
e? along K. By expanding e€/? as a power series, deduce that the error in
this caseis roughly » e? r3.

(iii) Repeat theerror analysisaf the previouspartsfor the non-analyticfunction
z2. ['You will need to use parametriceval uation to find the exact valued the
integral ]

22 Let K betheshort contour of the previousexercise. Supposethat f (z) possesses
aTaylor series centred a a that converges at pointsof K:

fatn =@+ LD p s L@ )2 D s

4
[The existence of such a seriesfor any analytic function is derived in the next
chapter]

(i) Byintegratingthisseriesalong K, show that thedifferencebetweentheexact
integral and the Ry, valueis roughly ilz "' (a) r3. Veify that the results of
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thefirst two parts of the previousexercise arein accord with thisfinding.

(i) Use the series to show that the complex number from the image of the
midpoint of K to the midpoint of the images of the ends of K is roughly
% f(a) €2. As ¢ shrinks, are these two types of midpoint distinguishable
under the magnifying lensthat producesfigure[28]?

(iii) From the Fundamental Theorem, deducethat the existenceof such aseries
impliesthe vanishing of the integral of f round loops within the disc of
convergence.

23 Let f (2) beandytic throughout aregion which containsatriangle with vertices
a, b, ¢, and hencewithedgesA = (c— b),B=(a—c¢),C = (b-a).Givena
pair of point p and q, let us define wp, asakind of averageof f (z) along the

line-segment pgq: : .
Wpg = —— (z)dz.
P4 (g - p) /,, f

Show that this complex average mapping sends the sidesof thetriangleabc to
the vertices wgp, wpe, we, Of asimilar triangle! We merely rediscovered this
result, which is apparently due to Echols[1923].

[Hint: Show that Awpe T Bweo T Cwap =0, anduse AT B+ Cc=0]

24 Let K beaclosed contour, and let v be its winding number about the point a.

Show that
eZ
%( )dz:Zn’ivea.
K \Z—a

[Hint: Writee? ase? e~ andexpande>~*) asapower series] Thisisaspecial
caseof Cauchy's Integral Formula(explainedin the next chapter), which states
that if f isanalyticinsideK, then

f M-dz=27n‘vf(a).
K

z—a)

25 Consider theimage of thedisc |z| < R under the mapping z — kz™. Asthe
radius sweeps round the disc once, itsimage sweepsm times round the image
disc of radius |k| R™. Thuswe may sensibly define theareaof theimageto be
mm (|k] R™)2. Withthisunderstanding, show that if amapping hasaconvergent
power series

f@Q=a+bz+c+d3+---,

thentheareaof theimageisjust the sum of the areas of theimages under each
of the separate terms of the series:

areaofimage = n (b2 R2+2(c2 R* T3 142 RS T ...

ThisisBieberbach's Area Theorem.



426 Complex Integration: Cauchy's Theorem

Hint: Recall that thelocal areaexpansionfactoris|f'|?, so theimage areais

R 2n L —
ff Tl dxdy:/ [ f/re®f/(re® do
lz|<R 0 0

26 (i) Showthatif f isananayticfunction without singularitiesor p-pointsona
loop L, then

rdr.

_ 1 f'(@)
v[f(L)’P]—EE Lf—(Z_)TI;dZ

(ii) Now let
Foy= @ aA (z —ap)? - (z —an)™
T @=bD)B @~ b)Br (2~ b))’
and by considering (logf)', find (f’/f).

(iii) Inpart (i) put p = 0 and take L to be asimpleloop containing theroots a
to a, and containing the poles b; to b,. Thereby obtain a calculation proof
of the Generalized Argument Principlein the case of rationa functions:

r §
D A B
j=1 Jj=1

= (number of interior roots) — (number of interior poles).

vIf(L),0]
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Cauchy's Formula and Its
Applications

| Cauchy's Formula
1 Introduction

One of the principal objectivesaf this brief chapter isto tie up variousloose ends
from previous chapters. In particular, we have previously claimed (but have not
yet explained) three important properties of an analytic function f (2):

e We can differentiate T (z) as many times as we please—it is "infinitely dif-
ferentiable™.

e Inthevicinity of an ordinary point, f (z) can be expressed asaTaylor series.

e Inthevicinity of asingularity, f (z) can be expressed as a Laurent series.

Theclassical explanation? of thesefacts hingeson thefollowing result. If f (z)
isanalyticonandinsideasimpleloop L, andif aisapointinside L, then

1 f @)

2ni Jpz—a

dz="(a). ¢Y)

Thisiscalled Cauchy’s Formula—it constitutes the preci se statement of the''rigid-
ity" of analytic functionsthat we depicted in [3], p. 219. That is, the formula says
that the valuesof f on L rigidly determine its valueseverywhereinside L.

We will give two explanations of (1), both of which are firmly rooted in
Cauchy's Theorem.

2 First Explanation

Sincef (z) isassumed analyticinsideL, thefunction [f (z)/(z— a)]isasoanalytic
there, except that it has a single singularity at z = a. Thusit follows from (11),
p. 398, that the value of theintegral in (1) will not changeif L isdeformedintoits
interior without crossing a.

n thelate 1950sanew approach wasdevel opedusing topol ogical ideaslikethosein Chapter 7,
and it was our original intention to employ that approach here. However, having lacked both the
timeand theimagination to reducetheideatoits visua essentials, we havereluctantly fallen back
on an integral-based approach. For more on the topol ogical approach, see Whyburn [1955, 1964]
and Beardon [1979].
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Let C, beacircleof radiusr, centredat a, andlying strictly insideL . Referring
to[la], wemay deform L into such acirclewithout crossing a, and hence without
altering the value of theintegral:

1 f @, 1 f @, o

2ri Jpz—a 2rni Je, z—a

The virtue of thistransformation is that the integral round C, turnsout to havea
simpleand helpful interpretation.

First recall that the average value(f )¢, of f (z9) asze = a + r ¢ travels
round thecircle C, isdefined by

2

(fle, = L A f(z9)doO.

Figure[1]

In the previouschapter we saw geometrically that if 6 increasesby dé, causing
z¢ to movedz along thecircle, thendz/(z — a) =i df. Substitutingthisinto (2),
wefindthat the original integral round L may beinterpreted as the average vdue
of f onany of thecirclesC,:

1 f@

2ni Jpz—a

dz=(f)c,-

Notein particularthat (f )¢, isindependent of theradiusr of thecircle. Tocomplete
thederivationof (1), it thereforeonly remainsto show that this radius-independent
averageisthevaueof f a thecentrea.

To better grasp the meaning of the average value( f)c,, imaginen equaly
spaced pointszi, 22, ..., 2, ONC,, and let w1, wz, ..., W, betherimages under
z>w=f (z). Theordmary averageW, = - Y7, w, of theseimage pointsis
their centroid, and (f)¢, isthelimiting postlonofl W, asn tendsto infinity. [For
amore detailed discussion of averagesand centroids, consult the final section of
Chapter 2.]
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Now shrink thecircle C, towardsitscentrea, asillustrated in[1a]. Evenif f is
merely continuous (rather than analytic), f (C,) will shrink to f (a), asindicated
in[Ib]. Since theimages w1, wa, ..., w, of any n pointson C, will al converge
tof (a), sowill their centroid W,,. Thus

lim (f)c, = f(@,

and this completes our first explanation of Cauchy's Formula.

3 Gauss' Mean Value Theorem

In the course of the above investigation we have also picked up an interesting
bonus result:

If f (z) isanalytic on and inside a circle C centred at a, then the
average vaueoff on Cisitsvaueat thecentre: (f)c =f (a).

If we go on to split f into real and imaginary partsas f = u + iv, then we
immediately deduce that (u)c +i (V)c = u(a) +iv(a), and so

(uyc=u(@ and (v)c=v(a).

Thusif area function @ is either the real or the imaginary part of an analytic
complex function, thenits averageon acircleisits value at the centre.

But if we are given a function ®, how can we tell whether there exists an
analytic function whose real or imaginary part is equal to ®? In Ex. 2, p. 258
you showed that a hecessary condition is that ® be harmonic, i.e., that it satisfy
Laplace's equation,

A= @}t ohHo =0

Infact in Chapter 12 we will see that thisis also a sufficient condition, yielding
Gauss Mean Vdue Theorem:

Theaverage valued a harmonicfunction ona circleisequal tothe
valued thefunction at the centred thecircle.

4 A Second Explanation and the General Cauchy Formula

What will happen to Cauchy's Formulaif theloop L isnot required to be simple?
Asin the previous chapter, it is now important to carefully definethe"insde” of
L asthe set of points about which L has non-vanishing winding number:

"indde" ={plVv[L,p] #0}.

Supposein [2] that T has no singularities"'inside L. Then the only interior
singularity of [f (z)/(z — a)] will betheone at z = a. Here, L winds round a
twice, and it is clear that L may be deformed into a small circle centred at a and
traversed v[L, a] = 2 times. By virtue of Cauchy's Formulafor simple loops, we
deduce that 51 ¢, L2 gz = 2 (a).

Z—a
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More generally, thisline of reasoning suggests the following General Cauchy
Formula: [ ff (z) isanalytic onand "inside" a general loop L, then

L_ L(Q dz =v[L, a] f(a). 3)
2wi Jp z—a

That thisisalwaystrueisnot quiteclear fromtheabovelineof reasoning. Certainly
Hopf’s Theorem [(2), p. 341] guarantees that without crossing the singularity at a,
L may be deformed into acircle centred at a and traversed v[L, a] times. But the
singularities of f may be scattered in the midst of L, athough (by assumption)
nonelie"insde" L. Soisit clear that this deformation can always be performed
without crossing any of these singularities?

Figure[2]

We encourage you to pursue this idea, but we shall now present a different
approach which yields (3) cleanly and directly. Consider the mapping z +> Z =
f (2) in[2], and let us define

f@) = f@ _ 7—a

Z— a zZ—a

Fo(z) =

If V = (z— a)ispictured asavectoremanatingfroma, and V = Z—a) ispictured
as its image emanating from @, then F,(z) describes the anount of rotation and
expansion that carries V into V. = F,(z) V. Thus F,(z) is the non-infinitesimal
analogueof theamplitwist /(@) that carriesaninfinitesimal vector € intoitsimage
£ =f'(a)§, and

Fa(a) e lim F,(z) = f'(a).
Z—a
Since f (2) is assumed to be analytic and to have no singularities "inside™ L,

it followsthat the sameistrue of F,(z). ThustheGenera Cauchy Theorem [(20),
p. 415] implies that

1
———36 Fa(z2)dz = 0.
2mi L

In other words,
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1
0 = — f(Z)d—f()——fL dz

2ni Jpz—a 2mi z—a

- L 4I9 e f@,

2ni Jz—a

as was to be shown.

Il Infinite Differentiability and Taylor Series
1 Infinite Differentiability

Returning to the case where L isasimpleloop, let us show that if f (z) isanalytic
insideL thensois f/(z). Fromthisitwill follow by induction that f (z) isinfinitely
differentiable.

What we must show is that if f is conformal, then sois f’. In other words,
if £’ isthought of asamapping z — Z = f’(z), then each infinitesimal vector &
emanating from a must be rotated and expanded the same amount to obtain the
image vector £ emanating froma a.Thatis, thereisasingle complex number f” (a)
(the amplitwist of f”) such that E_ ¢ ‘(8.

Our first step isto obtain aneat expression for f'(a) in terms of the values of
f (2) on L. Applying Cauchy's Formulato theanalytic function F, (z), we deduce
that
I RO,

2ni Jp z—a

! f@ , _ 1@ dz

f'(@) = Fa(a)

2ri Ji (z — a)? 27i JI (z —a)?’

Since the second integral vanishes,

fl@) =— A

27i J1 (z —a)?

“

Now let's use thisto find the imageg under z = 7 = f/(z) of ashort vector
& emanating from a. Ignoring a term proportional to £2, wefind [exercise] that

T gl _ 2 f(Z)
F=fern-ro=|md — L0 e

Allowing & to becomeinfinitesimal, we deduce the desired result: every infinites-
imal § emanating from a isamplitwisted tos =f"(a) &, where

@ == f L2 4, ®)

2ni Jp (z-a)d

Observe that since
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d_[l]__l and cﬁ[l_z
dalz—al (z- da? |z—-a|
both (4) and (5)are precisely what we would get if we simply differentiated the
formula ) )

f@=-—¢ L=X

with respect to a. Continuing in this way, we are led to conjecturethat the n
derivativef ™ may be represented as

f(”)(a) — ﬂ_% __f_(Z)_dZ (6)

2xi Jp (z—a)rtl
Thisisindeed true, as we shall seein a moment.

2 Taylor Series
Now let us show that if f (Z)isanalytic on and insidean origin-centred circle C
of radiusR, then f (z) may be expressed as a power seriesthat convergesinside
thisdisc:

f@=co+crz+ar?+ca+---.

Aswe saw in Chapter 5, such a power seriesisinfinitely differentiable within
its disc of convergence. Thus the existence of the power series expansion will
provideasecond proof of theinfinitedifferentiability of analyticfunctions.|t also
followsthat the coefficientsc,, may beexpressed as

A

n!

Cp =

, @)
so the power seriesis actually a Taylor series, and the coefficientsdo not depend

onR:
1 (3)
f@=10+ 7@+ LR 24 L0y

To establish the existence of this series, we return to Cauchy's Formula (1).
With a changeof notation, this may be rewritten as

L f@ 1 @] 1
F@ =50 cz—zdz_zm'fgc Z [1—(2/2)]dz

See[3]. Sincezisinsidethecircleonwhich Z lies,|z| < |Z] = R,and|(z/Z)| < 1.
ThusT;/Z) may be viewed as the sum of an infinite geometric series, and

_ 1 LD 2 3.
f(z)—2m.y£ > [1+(z/Z)+(z/Z) +/Z) + ]dz.

Provided it makes sense to integratethisinfinite series term by term, we deduce
that T (z)can indeed be expressed as a power series:
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divergent \

*

divergent *

Figure[3]

S 1 (2
f@= Z=[:)c,. 7" where ¢, = i . o dZ. ®)

Furthermore, comparing thisformula with (7), we also deduce (6).

To verify that this term-by-term integration is legitimate, consider the sum
fu(z) = YN enz® of thefirst N terms of the series (8). The result will be
establishedif we can show that fx(z) tendsto f (z) as N tendsto infinity.

Since

L4 2 p s @zpN = YD
= G/2) M+@/2)+@/2) + -+ (z/Z2)" ] = G/2)’
it followsthat
1 @/DY f(2)
f(z)—fN(z)——zm. C~———~(Z_z) dZ.

Finaly recall [see (5), p. 387] that the modulus of an integral cannot exceed the
product of the length of the path and the maximum modulus of the integrand at
pointson the path. If M stands for the maximum valueof | f(Z)/(Z — z)| on C,
then it follows that

1) — fn(@)] < RMI(z/ ).

Thuslimy_ o fn(z) = T (), aswasto be shown.

What is the radius of convergence of the series we have obtained? We know
that if T isanalytic inside C then the series (8) convergesto f (z) in that disc.
Thus, referring to [3], C may be expanded up to the dashed circle, where it first
encountersasingularity of f .Moregenerally, f (z) may beasingle-valued branch
of amultifunction, and aswelearnt in Chapter 2, branch pointsthen act asobstacles
just as much as singularities. Thus the radius d convergenceis the distancefrom
thecentre d the expansion to the nearest singularity or branch point.

One final point. We chose the origin as the centre of the expansion in order
to avoid algebraic clutter, but this choicereally involvesno loss of generality. For
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suppose we instead choose the centreto be at a, meaning that we wish to expand
f (@) inpowersof & = (z—a).If f(z)isanalyticata then F(§) = f(a+&) = f(2)
isanalyticat theorigin of the&-plane, and so it possessesan origin-centred Taylor
expansion,

® Fm O £
F(S)=Z_(:) n!()s" = f(z)=§fn!(a)(z—a)".

Alternatively[exercise], theexistenceof thisseriesmay bededuced by directly
generalizing the argument leading to the origin-centred series. Either way, we
conclude that

Iff (z) isanalytic,anda isneitherasingularity nor a branchpoint,
then T () may be expressed as thefollowing power series, which
convergesto T (z) within the disc whose radiusis the distancefrom
a to the nearest singularity or branchpoint;

ad )
f@2= %cn (z—a)*, where f n!(a) = 1 _f@

== ooy

il Calculus of Residues
1 Laurent Series Centred at a Pole

Suppose that a isa pole of an analytic function f (z), i.e., lim,_,, f (z) = oco. In
Chapter 7 weinvestigated poles by assuming theexistence of Taylor series (which
we havejust proven), and wefound [see (19), p. 366] that near a we could express

S ¢(2)
z
f(Z) - (Z—a)m’
where ¢ (z) isanalytic, and ¢ (a) # 0. Recall that the positiveinteger m is cdled
the " order" of the pole, and that the greater the order of the pole, the faster f (z)

approaches oo as z approachesa.
We know that ¢ (z) can be expressed as a Taylor series centred at a:

- (n)
o) = ;Ocn (z—a)*, where c¢n= ¢ n!(a).

Hence we deduce that

If an analyticfunction f (z) hasapoled order m at a, then in the
vicinity d thispole, f (z) possessesa Laurent seriesd theform

_ (&) C1 . Cm—1
f@ = (z —a)" * (z —a)ym—1! o (z—a)

+emtemp1@—a)+---




Calculus of Residues 435

Recall that the coefficient of 1/(z — a) is called the “residue” of f (2) at a,
denoted Res[f, a]. Alsorecall thecrucia significanceof theresiduein evaluating
integrals.if L isasimpleloop containing a but no other singularitiesof f, then

'% f(@)dz =2miRes[f, al.
L

More generally, suppose that L is not required to be simple, and that f (z) has
severa poles, at a;, az, etc. The existence of the Laurent series was the missing
ingredient in our discussion of this situation in the previous chapter. Having es-
tablished that f does indeed possess a Laurent expansion in the vicinity of each
o its poles, we haveal so verified the General Residue Theorem [(26), p. 4191]:

yﬂ f@)dz=2mi Y vIL,ay]Res[f, ay]. )
L

n

2 A Formulafor Calculating Residues

Itis easy enough to find an explicit formula for the residue at a pole. Looking at
the derivation of the Laurent series above, we see that

¢V (a)

ReS[f, a] =Cmpm—-1 = m

Since ¢ (z) = (z — a)™f (z), we deduce that

If aisan m™ order poled f (z), then

1 d m—1 "
Res[f(2),a] = =D [d-z] [ -a)"f(2)] (10)

z=a

From this general result one can derive other results that speed up the calcu-
lation of residuesin commonly encountered special cases. For example, suppose
thatf = (P/Q) hasa"simple"” (i.e., order 1) pole at a as aresult of Q having a
simpleroot at that point. In that case,

Res[f (2),a] = hm (z —-a)f (2 =

Thus, Iff (z) = SEZ; andaisasimplerootd Q,then

a)
Q'(a)

Res[f(z),a] = (11
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For example, consider f (z) = €%/(z* — 1), which has simple poles at z =
%1, £i. If L isthecirclejz — 1| = 1thenz = 1listheonly poleinsideL, so (11)
yields

[ el

eZ Z
ﬁz4_ldz—27rlRes[f 1]—21114 3 = smie.

We can actually check thisusing Cauchy's Formula S| nce
G -D=G-DA+z+22+7),

we may write f (2) = F(z)/(z — 1), where F(z) = €Z/(l + z + 22 T 2°). Since
F(z) isandyticinsideL,

Z
f ¢ _dz =f FQ@ 4y =27 F() = Lnie,
L L

#-1 z—1

just as before.

3 Application to Real Integrals

Intheexercisesaf the previouschapter we saw how certain kindsof real integrals
could be expressed in terms of complex contour integrals. According to (9), the
evauationof contour integrals amounts to calculating residues, and we have just
seen that thisis straightforward. Thus the Residue Theorem leads to a powerful
method of evaluating real integrals.

Historicaly, Cauchy's success in evaluating previoudly intractable real inte-
grals was one of the first tangible signs of the power of his discoveries. Many
modern texts (e.g., Marsden [1973]) continue to celebratethis success with very
detailed discussionsof how the Residue Theorem may be applied to redl integrals.
However, therecan belittledoubt that thisapplicationislessimportant thanit used
to be. Today, when faced with a tricky integral, a physicist, engineer, or mathe-
maticianislesslikely to start calculating residues, and is morelikely to reach for
a computer. We will thereforeonly do a couple of illustrative examples, though
further examples may be found in the exercises.

In Ex. 14, p. 422 we evaluated [ (x2 + 1)~2dx using partia fractions.
To redo this problem using residues, weintegratef (z) = 1/(z2 + 1) dong the
simpleloop (L F J) shown in [4a]. Here L is the segment of the real axis from
—Rto+R, and Jisthesemi-circular contour (|n the upper half plane) back from
+R to —R. Rewriting f (z) asf (2) = 1/(z T i)%(z — i)%, we see that the only
singularities are the second order polesat z = £i. Thusif R > 1 (asillustrated)
then (10) yields

-2 b4

f(@)dz=2miRes[f,i]= 2711'—(21_—)3:5,

L+J dZ (z+ 1)2

+R
f/);Hf(Z)dZ ./R (2+1)2+/f(z)dz,

But
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Figure [4]
and, as you showed in the original exercise, theintegral along J tends to zero as

R tendsto infinity. Thus

/+°° dx n
oo 24+ 1D2 7 27

Thefamousphysicist Richard Feynman once bet? his colleagues, *'I can do by
other methods any integral anybody else needs contour integration to do." Itisa
tributeto complex analysisthat Feynman lost this bet. Nevertheless, we can check
the above integral using a trick that frequently did enable Feynman to dispense
with residues: differentiation of asimpler integral with respect to a parameter.

Consider the elementary result,

/+°° dx 1 tan-] (x) o0 7
oo X2+a?  |a a T a’
Differentiating this with respect to a yields

+oo 2a T
T X = 5
—0 (x*4a) a

and substituting a = 1 then confirms our residue cal culation.
For our second example, we will evaluate

2 do
I = _— Y a>1,
o cosf+a
by rewritingit asacontour integral round the unit circle C . See[4b]. Asillustrated,

cosé isthe midpoint of z and (1/z), and dz is perpendicular to z and has length
df:in symbals, cosé = %[z + (1/z)] and dz = izd6. Substituting into I,

=?§ _("Z_/LZ)_=_2,7§ dz
ciz+ (/D)) +a cZZ+2az+1

2Feynman [1985, p. 195].
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Since the singularities p and g of theintegrand satisfy pq = 1, only one of them
liesinside C—in fact p and q are geometric inverses. Thus[exercise],

1 A 2

J—dnRes| Y _ 4 _ .
Lz=p)z—q) "] (@—-pP) +a2-1

4 Calculating Residues using Taylor Series

In order to calculate aresidue using (10), one must first know the order m of the
pole. If  (2) isbuilt out of simple functions whose Taylor series are known, then
the quickest method of finding m is by manipulating these series. Furthermore,
this approach may be used to calculate the residue itself, often more easily than
viaformula (10). A few examples should sufficeto explain the method.

For our first example, let f (z) = (sin®z/z%), which clearly has a singularity
of somekind at the origin. For small valuesof z, sinz ~ z, 0 f (z) & (1/2%), ad
theorder of the poleistherefore m = 3. By taking more terms of the Taylor series
for sinz we can find more termsin the Laurent expansion of f (z), and hence find
theresidue:

1 2 2 23
R A (Y P VO
11

___.._.+...
2 3z

= Res[f,0] = —%.

In order to appreciate how efficient thisis, try checking the result using formula
(10) instead.

Our next examplewill haveval uableconsequences. Let g (z) = (1/z%) cot(nz),
whichisclearly singular at theorigin. Tofind theorder of thispole, anditsresidue,
we begin by calculating the Laurent series of cot(rz). When doing such a calcu-
lation, itisimportant to remember that we are not trying to find the whole Laurent
series. Wejust want the (1/z) term of g, which will comefromthez termof cot nz,
so that's asfar as we need go:

(2)
cosnz [1‘ 2 "‘]
sin-~ [ﬂz_(i%ﬂ'ﬁ.k...]

1 (rz)? (m2)? -
E= ;Z-[l_ > +...][1_ o +]

1 (m2)? (2)?
= Jt_z[l_ > +...][1+ 5 +]

1 b4

nz 3

cotmz
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In particular, note for future use that Res[cot(rrz), 0] = (1/7).
Returning to the original function g, we find that

1 b4
8@ = v B PR
and so the origin is a triple pole with Res[g, 0] = —(xr/3). Again, try checking
thisusing formula (10) instead.

Continuing with thisexample, it's clear that g(z) also hasasingularity at each
integer n. To find the residue at n, we could writez = n + & and expand g as
aLaurent series in powers of £. However, this is unnecessary. Since (1/29) is
non-singular at n, and since cot[ (n + &)] =cotrg,

Res[(1/z%) cot(rz),n] = (I/n?) Res[cot(rz),n]
= (1/n®) Res[cot(rz), 0]
= 1/(7m2).

Moregeneraly, notethat if  (z) isany analytic function that is non-singular at n,
then

Res [f (z) cot(rz), n] = Lf (n). (12)
Thismay aso be verified [exercise] using (11).

5 Application to Summation of Series

Historically, 1+ 55 + & + % + ... wasthefirst series that mathematicians were
unableto sum using elementary algebraic methods. After the Bernoulli family had
triedandfailed, Euler finally cracked theproblemin 1734 by meansof abrilliantly
unorthodox argument®. The answer he found was as unexpected as his methods:

Today such results can be derived in a systematic way using residues. Recon-
sider the function g(z) = (1/z%) cot(rz) above. With N a positiveinteger, let S
be the origin-centred square with vertices (N + 1 3)(£1+1i) shownin[5]. Adding
up theresidues of theillustrated singularitiesinsi de S,

g(z)dz = Res[g(2),0]+ Z Res [g(2), n]+ZRes [g(z), n]
n=—N

b 1 2 1
= -3 ;Zn—z'

As we will now see, theintegral on the LHS tends to zero as N tendsto infinity,
and from thisfact weimmediately deduce Euler’s result.

27i

w

3See Ex. 13 and Stillwell [1989, p. 124].
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< QN + A +i)
A
0
e P e e e
—1%1 2 N4 5
Sy
Figure[5]

To show that theintegral of g(z) = (1/z ) cot(rz) doesindeed tend to zero as
S expands, we must show that the size of theintegrand dies away faster than the
perimeter (8N T 4) of S grows. First theeasy part: 1g(z)| = |1/2%} . | cot(rr2)l,
and on S wedlearly have lz] > N, s0 |1/22| < (1/N?).

Next we must examinethesize of

lJTZ + e—mz
|cot(mz)| =

elﬂZ —_ e—mz

on thefour edges of S. We begin with the horizontal edges,y = +(N + %). Since

le*i72| = ¥, itisnot hard to see [exercise] that if N is reasonably large then

| cot(mz)| isvery closeto 1. Thusfor sufficientlylargeN, | cot(rrz)| will certainly

belessthan 2, for example.

Finally, on the vertical edges we have z = £(N t 1) Fiy, and it follows
[exercise] that

— o 2my

|cot(mz)| = ' ¢

[ te2o|=

For sufficiently large N, we have established that | cot(rz)| < 2 everywhere
on S, so by virtueof (5), p. 387,

f gx)dz
S

Sincethe RHStendsto zero as N tendsto infinity, we are done.

Moregeneraly,letf (z) beananalyticfunctionsuchthat |f (z)| < (const.)/|z|?
for sufficiently large |z|. Thenit is clear that the above argument applies equaly
well to theintegral of f (z) cot(mz):

2
< (Max g on S) (perimeter of S) < m(SN +4).

0 = lim 2L f()eot(rz)dz
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= z Res [f (z) cot(mrz)]

al poles

Z Res [ f(z) cot(mz), n] + Z Res [ f(2) cot(mz)]

n=—00 poleso f f(z)

= 2 Y tmt Y Resif@cot(ra),
T poleso T f(z)

wherethelast equality follows from (12).
Thus

If f (z) isan analyticfunction such that |f ()| < (const.)/|z|*for
sufficiently large |z|, then

[ee]

Y. fm=-n Y Res[f(x)cot(ra)]. (13)
n=—00 poleso f f(z)

Of courseif any of the polesof f (z) happen to beintegers, then thesevalues of n

are understood to be excluded from the LHS of (13).

Note that while symmetry enables usto calculate sumslike Yo7 | (1/n?) and
>0 1 (1/n%*) using (13), we cannot use (13) to calculateasumlike Y%, (1/n3).
What, you might ask, is the sum of thislast series? The answer is that nobody
knowd

As a further interesting illustration of (13), consider f (z) = 1/(z — w)?,
where w is an arbitrary (non-integer) complex number, Geometricaly, |z — w]| is
thedistance wto z, and thismakesit easy toseethat | f (z)| satisfiestherequirement
o thetheorem. Sincethe only singularity of f (z) isadoublepoleat z = w,

i 1 — 2 Res [ cot(rrz)
= (n—w)? z-w?'w

Using formula(10),
cot(mz) ] d 1
Res ,w| = —cot(rz = ——.
[(Z —w)? dz () —w sin®(rw)
Thus we obtain the remarkabl e result,
s = ! + 1 + ! + ! + ! +
sin?(mw) C+w? (A+w)? w? (Q1-w? @Q-w)?

Such series werefirst discovered by Eulerin 1748. What is remarkable about
such a formulais that the periodicity of the function on the LHS is explicitly
exhibited by the serieson the RHS. That is, if you changew to (w + 1), the series
isclearly unaltered.
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IV Annular Laurent Series
1 An Example

We have seen that the Laurent series is the natural generdization of the Taylor

serieswhen the centre of the expansionis a polerather than a non-singular point.

However, thisisby no meanstheonly situationin which Laurent seriesare needed.
For example, consider

1
(1-22-2)
whosesimplepolesareillustratedin [6a]. Since F isanalytic within theunit disc,
it possesses a Taylor series in powers of z. This may be found most easily by
splitting F into partial fractions:
| 1
1-2 @-2

F(2) =

F(z) =

forjzf < 1 for |z} <2
»—-/_\ /——’_q

1 n
= -2 2[1—(z/2)] ZZ "Z(Z/z)

=ttt - apt]et e, o<t
Thepoleat z = 1 meansthat outsidethe unit disc F cannot be expressed asa
power seriesin z. However, in theshaded annulus 1 < |z| < 2it can beexpressed

asalaurent seriesin z:

fdlzl>1 fd|ﬁ<2
1 o0
F - _ 1 n+l 2\
@) YA T (Z e Z( /2) ,;0(2/ )

————————————————————— , forl<]|z|<?2.

Finaly,intheregion|z| > 2 beyond theannulusweobtain[exercise] adifferent
Laurent series:

Fo= 4+ +34 4@ D a2
z ¢z z"

2 Laurent's Theorem
What we have just seenisanillustrationof ageneral phenomenon. See [6b].

If f(z)isanalytic everywhere within an annulus A centred at a,
then f (z) can be expressed asa Laurent serieswithin A. In fact, if
K isany simple loop lying within Aand winding once round a,
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Figure[6]

- 1 f(Z)
= - n; n = a3 Z'
f@ n;m =), whete o=y ZTordZ. (14)
Before establishing this result, which is called Laurent's Theorem, we make the
following observations regarding its significance:

a The surprising thing about the result is the existence of a Laurent series, not
the fact that it convergesin an annulus. Since we know that a power series
in (z — a) will convergeinside adisc centred at a, it follows [exercise] that
apower seriesin 1/(z — a) will converge outside a disc centred at a. Since
aLaurent seriesis (by definition) the sum of a power seriesin (z — a) anda
power seriesin 1/(z — a), it follows that it will convergein an annulus.

a Previously we were able to deduce the existence of a Laurent seriesonly in
thevicinity of apole. The present result is much more powerful: asindicated
by the question marksin [6b], we make no assumptionsat all concerning the
behaviour of f (2) in the disc D bounded by the inner edge of the annulus.
In practice, the outer edge of the annulus may be expanded until it hits a
singularity s of f (z), and the inner edge may likewise be contracted until it
hits the outermost singularity lying in D.

a If thereare no singularitiesin D, then the inner edge of the annulus may be
completely collapsed, thereby transforming the annulus into a disc. In this
case, (14) does not contain any negative powers. For if n is negative then
f@)/z-a)tis analytic everywhere inside K, and so ¢, = 0. In this
way werecover the existence of Taylor's series as a special case of Laurent's
Theorem.

a Supposethat aisasingularity and that for asufficiently small valueof € there
areno other singularitieswithinadistancee of a. Inthiscaseonesaysthatais
an isolated singularity of f (z). Applying Laurent's Theorem to the annulus
0 < |z — a| < g, we find that there are just two fundamentally different
possibilities: the principal part of the Laurent series either has finitely many
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terms, or infinitely many terms. Recall that in the latter case we have (by
definition) an "essential singularity™. See p. 366, where we considered the
example

1 1 1

-1 —
T 1!z 2!z2 3173
To sum up,

An isolated singularity of an analytic function iseither a pole or an
essential singularity.

Now let us establish (14). In order to simplify the calculations, we will only
treat thecasea = 0, illustrated in [7a). Here, z isagenera point in the annulus,
C and D are counterclockwise circles such that z lies between them, and £ isa
simpleloop round z, lying within the annulus.

Firgt, by Cauchy's Formula,

1 f(V) f(Z) f(W)
f@ =352 2m f T 2mi %

2mi EV—Z

where the second equdity follows from the fact that £ may be deformed within
theannulusinto (C) + (—D), asindicated in [7b].
Next, we rewritethe above equation as

_ 1 @[ 1 L giamr_ 1
f@)=-— . Z |:1-—(Z/Z)]dz+2m'£p z [1—(W/Z)]dw

The significancedf thisisthat [(z/Z)| < 1 and [(W/z)| < 1, so both integrands
on the RHS can be expanded into geometric series, very much as we did in the
exampleof [6a].

Referring back to the derivation of the Taylor series(8), theintegral round C
can be expressed as

' [a]

Figure[7]
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1 [ f(2) 1 &1 [ @ "
Zﬁ?i z [1_(2/2)]”_;[% (.»Z"HdZ]z

Essentially identical reasoning[exercise] a sojustifiesterm-by-termintegrationin

the casedf theintegral round D:
n—1 1 "
W f(Wyaw .
b4

_L_ff(W)[ 1 }m:
2mi D Z 1—-(W/Z)

Thus theexistence of the Laurent seriesis established:

n=1

d dy d
f@O=tFH+g+ T tatartal +
where
1 f(Z)
wml f(w)dw d =— ¢ 2247
m me FW) an = ox o Zn+l

Finally, thefollowing two observationsenable usto tidy up theresult. First, by
the Deformation Theorem [p. 398], theintegral sdefiningd,, and ¢, do not change
their valuesif weallow C tocontractand D toexpandtill they coal esceintothesame
circle. Indeed, wemay replaceboth C and D by any smpleloop K containedin the
annulusand winding round it once. Second, if we writem = —n then theintegral
defining the coefficientd_, of z" hasintegrand W—""1f (w) = f (W)/ w"*1,
which is the same as the integrand for the c,’s. Thus, as was to be shown, the
Laurent series may be expressed in the compact form of (14):

S 1 [ f2)
f@= ) 7", where = omi $ Zo

n=—0o0

dZ.
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V Exercises

1 If C istheunit circle, show that

/2” dt _}5 idz
o l1+a2—-2acost Joc (z—a)(az—1)

Use Cauchy's Formulato deduce that if 0 < a < 1, then

/‘2” dt 2
o 1+a2—-2acost 1—ga?2
2 Letf (z) beanalyticonandinside acircle K definedby |z —a| = p, and let M
be the maximum of |f (z)] on K.
(i) Use (6)to show that
]
|f(”)(a)’ < n_ll{
o
(if) Suppose that | f(z)| < M for al z, where M is some constant. By putting
n = linthe aboveinequality, rederive Liouville’s Theorem [p. 360].

(iii) Suppose |f(z)| < M|z|" for all Z, where n is some positive integer. Show
that f #*+D(z) = 0, and deduce that f (z) must be a polynomia whose
degree does not exceed n.

3 (i) Show thatif C isany simpleloop round the origin, then
ny 1 (1+Z)”d
r)  2miJo z7H! &

(il) By taking C to bethe unit circle, deduce that

(Zn) <4

n

For other interesting applications of complex analysis to problems involving
binomial coefficients, see Bak and Newman [1982, Chap. 11].

4 The Legendre polynomials P, (z) are defined by

n

a7 [(z2 - 1)"] .

Fa(@) = 2"nldz"

These polynomials are important in many physical problems, including the
guantum mechanical description of the hydrogen atom.



Exercises 447

(i) Cdculate Pi(z) and P,(z), and explain why P, has degreen.
(il) Use(6)to show that

1 VA
PO = 50§, iz =y 4

where K isany simpleloop round z.

(iii) By taking K to beacircle of radius /|z% — 1| centred at z, deduce that

1 n
Pu(z) = ;/ (z+ V72— 1cos)" de.
0

(iv) Check that thislast formulayieldsthesame Py (z) and P2 (z) asyou obtained
in part (i).

5 If C denotes the unit circle, show that

/2” sin’ 0 d9=—-i—¢‘ (2 —1)? dz=".
o S—4cos6 4 Jo 22z=2)(2z—1) 4

6 Let f (z) be an analytic function with no poles on the real axis, and such that
If ()| < (const.)/|z|? for sufficiently large |z|. By integrating f (z) e’ along
the contour (L + J) shownin [4a], deduce that

+o00 +00

fx)cosxdx + i/ f (x)sinxdx = 2ni Z Res[f (z) %].

—0 —00 upper half-plane

[Hint: First show that if y > 0, then |ef?| < 1]

7 Use the result of the previous exercise to do the following problems, in which
we assumethata > 0.

(i) Show that

+00
CosX n _
/ TraTae "
—_oo X“ta a

(ii) Evaluate
oo xs€inx p
oo x2 + a2)2 X
8 Let F,(z) = 1/(1 T z"), whereniseven.
(i) Use(12) to show that if p isapoleaof F, then Res[F,, p]l = —(p/n).
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(i) Withthehelpof part (i), show that thesum of theresiduesof F,, inthe upper
half-planeis a geometric serieswith sum 1/[in sin(zr/n)].

(iii) By applying the Residue Theorem to the contour (L + J) shown in [4al,

deduce that .
X b4
/0 1+x"  nsin(t/n)’ (15

(iv) Although the above derivation breaks down when » is odd [why?], use a
computer to verify that (15) is neverthelesstill true.

9 Continuing from the previous question, consider the wedge-shaped contour K
shown below.

(i) Usethe Residue Theorem to show that if n =2,3,4,...,and R > 1(as

illustrated), then .
7{ dz_ _ 278 ey
K 1+2z" n ’

(if) Show that

lim = [1 —ei<2n/n>] f w_dx
R—oo Jg 142" o 1+x"
(iii) Deducethat (15) isindeed vaid for odd » aswell asevenn.

10 Use(13) toshow that 322, (1/n%) = (r*/90).

11 Show that if f (2) is an analytic function such that |f (z)| < (const.)/|z|* for
sufficiently large |z|, then

Z D" f(r)y=—= Z Res | f(z) cosec(mz)].
n=—00 polesoff (z)

In thisformula, it is understood that if any of the polesof f (z) happen to be
integers, then these values of n areexcluded from the LHS.
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12 Usetheresult of the previousquestion to do thefollowing:
(i) Show that

(ii) Findthesum of the series

1 1+1 1+ + (—1)"+1+
2 5 10 17 n2+1
13 (i) Show that
— 1  mcotnz
Ly 2_.2° 7z
n=-o00 *~ i

(ii) Show that the previousequation can be rewritten as
1 o0
tz = —
cotz= 43 o

(iii) Show that the previousequation can be rewritten as

g; [In(sinz/z)] = Z 4 In(z2 — n?n?).

o dz

(iv) By integrating along any path from O to z that avoids integers, and then
exponentiating both sides of the resulting equation, deduce that

2 2 2
. Z Z Z
S‘“”(“ﬁ)(“m)(l‘ﬁ)““

[Hint: Recdl that lim,—,o(sinz/z) = 1]
Thisfamous formulais dueto Euler, who used it to evaluate Y 22, (1/n?).
See Stillwell [1989, p. 124].
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Vector Fields: Physics and Topology

I Vector Fields
1 Complex Functions as Vector Fields

Throughout thecourse of this book wehaverelied onasingle meansof visudizing
acomplex function, namely, asamapping of pointsin onecomplex planeto points
in another. This idea has proved to be extremely powerful, for in terms of it the
complex derivativeisnothing morecomplicated than alocal amplitwist. Despiteits
many virtues, in thischapter weshall abandon themapping paradigm and introduce
acompletely new oneinits place, thereby gaining a host of fresh insightsinto the
subject and revealing surprising connections with physics.
The new picture of a complex function f(z) involvesonly a single complex
plane. As before, the variable z is thought of as a point in this plane, but now
comes the new idea: the value of f (Z) is pictured as a vector emanating fromz.
Theresulting diagram of points with attached vectorsis called the vector field of
f. Figures[la] and [Ib] illustrate the vector fields of z% and (1/z), respectively;
before reading further you should study them carefully and convince yoursdf of
their correctness. Try doing asketch of the vector fieldsof some other powers, then
compare them with accurate ones done by your computer. Also use the computer
to examine the vector fieldsof eZ, logz, and sin z.

: al 4__‘\ \ - " ; Lo

Figure [1]
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The vector field concept remedies a significant defect in the mapping point of
view. Although we can learn alot about a mapping by looking at the images of
specific shapes, wedo not get afeel for itsoverall behaviour. But if welet our eyes
roam over the vector field of acomplex function we do get such a view, in much
the same way as we can survey the behaviour of areal function by scanning its
graph.

Just as a complex mapping determines a vector field, so a vector field deter-
mines a mapping—the two concepts are equivalent. More explicitly, given the
vector V issuing fromthe point z, wetrandatethetail of V tothe origin and define
theimage of z to be the point at thetip.

Consider theexamplesin [2a] and [2b]. If z lieson acircle of radiusr thenthe
vector fieldin[2a]isradia andhaslength (r/2); in[2b] thevector fidld hasthesame
length but is tangential instead of radial. Check that when viewed as mappings,
[2a] corresponds to an expansion of the plane by (1/2), while [2b] correspondsto
the same expansion followed by (or preceded by) a rotation through aright angle.

RV Y

Figure[2]

If the vectorsin [2a] were instead directed inwards, what would the corre-
sponding mapping be?

2 Physical Vector Fields

Since a vast range of physical phenomena find their most natural description as
vector fields, the potential utility of the new way of looking at complex mappings
should be obvious.

For example, consider the astonishingly complex array of electromagneticdis-
turbances zipping through the space around you. The visible light carrying these
words to your retina, the totality of television and radio programs simultaneously
being broadcast to your home—al this constitutes only a small part of the fren-
zied activity. But it is a remarkable fact that this great tangle of signalsisin fact
completely described by just two vector fields! At each instant of timet thereisan
electric vector E(p, t) and a magnetic vector B(p, t) emanating from each point



452 Vector Fields: Physics and Topology

p in space, and these two vector fields constitutethe complete description of the
electromagneticfield.

If we are to describe such physical vector fieldswith complex mappings, two
problemsimmediately present themselves. A television set is fixed in space, ad
the way in whichit producesits pictureis by monitoring how the el ectromagnetic
vector fields & its location vary in time. But a complex mapping is a timeless
thing—it assignsthe vector f (z) tothe point Z onceandfor all. Thisisthefirst o
our two problems. Thusif wearenot toradically ater our conception of acomplex
mapping, the only types of physical vector fields we can describe in this manner
are those that do not vary with time. We shall call such vector fiel dssteady.

Fortunately, steady vector fields are both common and important in physics.
For example, the unwavering character of the orbits of the planets reflects the
fact that the gravitational field of the sun does not vary with time. Infact Newton
informs us that this time-independent force on a particle of unit masslocated a a
point p in space may berepresented by avector emanatingfrom p, directed to the
centre ¢ of the sun, and with alengthequal to M /[cp]z, where M isthe mass d
the sun. Drawing these vectors throughout space we obtain a steady vector field.

The above examples of the electromagnetic and gravitationa vector fidds
illustrateour second problem—they existin three-dimensional space, whereasthe
complex planecan only accommodatea two-dimensional vector field. Thereisro
getting around this problem, but once again it is fortunate that there are certain
important types of physical phenomenawhich are intrinsically two-dimensiona
in nature, and which can therefore be described in the complex plane. Let usbegin
with theflow of electricity within a sheet of conducting material.

Taketwo wiresand connect them to abattery, then touch theendsto two paoints
A and B of athin copper plate. AlImost instantly a steady flow of electric current
from one electrode to the other will be set up in the plate. See{3]. At each point
z of the plate we now represent this flowing current by atime-independent vector

Figure[3]
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in the direction of the flow, and with alength equal to the strength of the current
there. Picturing the plateasaportion of C, theflow isthusexpressed asacomplex
function V(z).

Rather than drawing the actual vector field in [3] we have instead shown the
paths a ong which the el ectricity flows. Such apictureis called the phase portrait
o the vector field, and the directed curves aong which the flow occurs are called
theintegral curvesor streamlinesof thevector fied. Asillustrated,the streamlines
of thisexamplearein fact arcs of circlesconnecting the two electrodes. We shall
judtify this shortly.

Phase portraits are easy to take in visualy and are thus a common way of
representing vector fields. By definition the vector field is everywheretangent to
thestreamlines, and thusitsdirection can be recoveredfrom the phase portrait. On
theother hand, it would seem that a phase portrait would necessarily fail toinclude
the information about the lengths of the vectors. Thisis true in general, but for
many vector fieldsthat arisein physicsit will be shown that there exists a special
way of drawing the phase portrait so that the strength of the flow is manifested as
the crowding together of the streamlines: the closer together the streamlines, the
stronger the flow!. Later we shall explain thisideain detail, but for the moment
weremark that [ 3] has actualy been drawnin this specia way. For example, aswe
approachtheline-segment connecting the el ectrodes the streamlinesbecomemore
and more crowded together, corresponding to a stronger and stronger current.

3 Flows and Force Fields

Oneand thesamevectorfied (or phase portrait) can represent many quitedifferent
physical phenomena. For exampl e, reconsider the copper platein [3], and imagine
that it is now sandwiched between two layers of material which do not conduct
heat. Remove the electrodes and instead of supplying electricity a aconstant rate
a A, let us supply heat. Likewise, et us remove hesat at the same constant rate at
B. After ashort timeasteady pattern of heat flow from A to B will be established
within the copper plate. In this steady state we may assign to each point a vector
in the direction that the heat is flowing there, and having a length equa to the
intensity of the heat flow.

Remarkably, in this steady state the physical laws governing the behaviour of
the heat areidentical to those which previously described the el ectricity, and thus
the phase portrait [3] for theelectric current is also the phase portrait for the new
hest flow.

Hereis yet ancther interpretation of [3]. In attempting to understand the flow
of real liquids, such as water, it is helpful to consider an idealized fluid with the
properties of being frictionless, incompressible, and “irrotational”—the precise
meaning of the last term will be explained later. Imagine a thin layer of such an
ideal fluid sandwiched between two horizontal plates, one of which hastwo smdl
holes, A and B. If we now connect the holeswith afine tubethat passesthrough a

I Faraday wasthefirst to conceive of vector fieldsin thisway; Maxwell then rendered theidea
mathematically preciseand exploited it to the hilt.
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pump, a steady flow will be set upin the layer of fluid, and at each point we may
draw its vel ocity vector. The phase portrait of this steady vector fieldisonce again
given by [3]!

Although there are certainly important differences between these three inter-
pretations of [3], we may nevertheless lump them together in one class, for they
aredl flowsof something. Whether itiselectricity, heat, or liquid, in each case the
vector field can bethought of asthevelocity of flowing " stuff", and the streamlines
are the paths along which this stuff flows.

A physicaly quite distinct class is comprised of force fields. For example,
although we previously discussed how the gravitational field of the sun could be
represented as a steady vector field, the vector at a point in spaceis no longer the
velocity of some flowing substance, rather, it represents the forceexperienced by a
unit mass placed there. In the context of forcefields,integral curvesarecalled lines
o forcerather than streamlines. Here the lines of force are rays corning out of, or
rather entering, thecentre of the sun. Although thisforcefieldisthree-dimensional,
spherical symmetry? meansthat it will bethe same on any plane drawn through the
centre of the sun. It can therefore be completely described by a complex function.

Although there is nothing actually flowing along the lines of force, we can
switchback totheflow point of view bypretending that thereis, thereby interpreting
aforcefied asthevelocity field of aflowingsubstance. Thisisnot mere sophistry:
itisaremarkable fact that for the most common and important force fields (e.g.,
gravitational and electrostatic) this imaginary Jlowing substance behaves exactly
likeour previously considered ideal fluid.

To illustrate this, we turn to an example in electrostatics. equal and opposite
charges(per unitlength) areinduced ontwolong wireswhich arethen held parallel
to each other in empty space. To each point in space we now attach the force
vector that a unit electric charge would experience there; this force field is (by
definition) the electric field E, and its phase portrait is the same on each plane
drawn perpendicular to the wires. Taking [3] to be such a plane, with the wires
piercingthrough at A and B, the phase portrait of thisforcefieldisexactly the one
shown there for the flow of ideal fluid.

4 Sources and Sinks

In order to make aquantitative analysis of [3], weintroduce the concepts of (two-
dimensional) sources and sinks. Thinking in terms of our layer of ided fluid, a
source of strength Sis a point at which we pump in S units of fluid per unit of
time. Figure[4a] illustrates the symmetric velocity vector field V (z) of anisolated
source at the origin.

Given a curve (open or closed) in agenera flow, the amount of fluid flowing
acrossit in each unit of timeiscalled the flux. Clearly the flux across an element
of the curveisjust its length times the component of the velocity perpendicular
to the curve. The total flux across the curve is then the sum (i.e. integral) of
these elementary fluxes. Returning to the specific case of [4a], our assumption of

2This isan idealization —likethe earth, the sun is somewhat flattened at the poles.
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incompressibility says that the flux across any simple loop round 0 must be the
same as the amount of fluid S being pumped in at 0. Since theflow is orthogonal
to the origin-centred circle C of radius r, we deduce that

2nr|V|=S.

Writing z = » €8, wefind that the vector field of the source is therefore

. i0 S 1
V) = |V]e = > (e——) =2 (;)
2 r 2w \Z

[We note without proof that thisis also the electric field on aplane at right angles
to avery long wire carrying auniform charge of S per unit length.] The sourcein
[3] isat A instead of at theorigin, and so it is described by

S 1
Vo) = o7 (Z—Z)'

A sink may be thought of as a source with a negative strength: it is a place
wherefluid is pumped out rather than in. In each of the flow experiments which
[3] purportsto describe, thesink at B hasthe same strength asthe sourceat A, and

soitsvector fieldis P :

We now know the vector fields Vg (z) and Vg (z) which would be produced by
the source or the sink in [3] if each were present on its own, but what is the flow
when they are both present together? [Incidentally, this combination of a source

[a]

: N B A
oS )
V(Z):o; ::‘i\ I ///r/:/;
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Figure [4]
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and asink of equal strength is called a doublet.] The answer is perhaps dightly
clearer if we switch to the equivaent electrostatic problem of parallel charged
wiresthrough A and B. A unit charge at z isrepelled by A with force Vg (z), ad
atracted by B withforce Vg(z). The net force D(z) of the doublet acting on the
chargeisthen smply the vector sum of the two separate forces:

_ _ S 11 _ S (A—-B)
D(z) = Vg(2) + Vo (z) = 5 (E—Z Z—E)’ % G—A)E—D) M

We will now show geometrically that, as claimed in [3], the net forceat p is
tangenttothecirclethrough A, p, and B. Consider [4b]. It iseasy to see[exercise]
that D will be tangent to the circleif and only if the angles marked a and © are
egual, so thisis what we must demonstrate. As illustrated, the angles ApB ad
pst areclearly equd. But we also have

ts Vgl _Bp
ps Vol Ap’

Thusthetwo shadedtrianglesaresimilar, and thereforea = ©, aswasto be shown.

I Winding Numbers and Vector Fields*
1 Thelndex of a Singular Point

Let us confineall our discussions to vector fieldsfor which the direction is wdl-
defined and continuous at al but a finite number of points. These exceptiona
places, where the vector field vanishes or becomes infinite, are called singular
points®. They areeasy to spot in aphase portrait, usually as theintersection points
of distinct streamlines. Figure[5] showsthe phase portraitsin the vicinity of some
simpletypes of singular points, together with their names and their "'indices’—a
term which we must now explain.

Figure [6] is a magnified view of the simple crosspoint (also called a saddle
point) shown in [5]. Round thissingular point s we havedrawnasimpleloop Iy,
and at some of its points we have also drawn the vectors V. Since I'; does nat
passthrough any singular points, thedirection of V iswell-definedand continuous
everywhereon it. Thus we can count the net number of revolutionsof V(z) asz
traversesI's. We call this number theindex 4v [I's] of theloop I's with respect to
thevector field V. Whenit isclear which vector field is being considered, we may
simplify thisnotationto 4 [T's]. For example,in [6] weseethat $ [I's] = —1. Note
that we have drawn the vectors on I's only to make it easier to see the vdue d
theindex; actualy, sinceonly thedirectionsof the vectorsare required, the phase
portrait is sufficient on its own.

If we continuously deform I's without crossing s (or any other singular point)
then the value of 4 [I's] will also vary continuoudly, and sinceit's an integer, it

30therwise known ascritical pointsor singularities—termstowhichwehavealr eady attached
different meanings.
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Simple Crosspoint Vortex Sink

Double Crosspoint Dipole

Figure[5]

Figure[6]

will therefore remain constant. Thus we may unambiguously define the index of
a singular point s to be the index of any loop that winds round s once, but does
not wind round any other singular points. It should not cause any confusion if we
abuse our notation dlightly and call this index $(s). Applying this definition to
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loops of your choosing, you may now verify each of the givenvaluesof ¢ in [5].
Before moving on, we observe three properties of the index:

(i) Thereis nothing to stop us applying the above definition to a non-singular
point, but in this case the index must vanish. Choosing T's to be avery small
loop, the non-singular nature of s impliesthat all the vectorson 'y will point
in roughly the same direction, and so $(s) = 0.

(i) If V undergoesacertain rotation as we traverse a piece of curve, then (—V)
undergoes the same rotation. Thusif we reverse the direction of the flow in
each of theabovephaseportraits, theindex will remain the same. For exampl e,
asource must have the sameindex asasink, namely, $ = 1.

(iii) Just asthe index isinsensitive to the precise shape of Iy, soitisinsensitive
to the precise shape of the streamlines. Imagine that [6] isdrawn on arubber
sheet whichwegradually stretch, so producing anew distorted phase portrait.
Thedirection of V at each point of 'y will undergo a continuous change, and
S0 its net revolutions upon traversing I's will likewise vary continuously. The
index must therefore remain constant.

Clearly, our new concept of "index" is related to our old concept of "winding
number", but how? If we instead think of V as a mapping, sending the points of
I’ to those of anew loop V(T's), then amoment of thought revealsthat the index
of ['s isjust a new interpretation of the winding number of itsimage loop:

Iy [Is] =v[V(Ty), 0]. @

This makesit clear [see p. 348] that theindex $(s) of apoint s isthesamething as
its topological muttiplicity v(s) asa preimage of 0. In particular, if V isanalytic
then

$ (rootof ordern)=n and  $(poleof order m) = —m.

Check thisfor theexamplesin [1] .

If you have not done so yet, we urge you to use a computer to draw the
vector fieldsof some simple polynomials and rational functions. Notice how roots
and poles show up just as vividly as the corresponding x-intercepts and vertical
asymptotes occurring in the graph of areal function. Notice how easy it isto zoom
in on the vector field to find their precise locations.

In fact a vector field is more vivid than an ordinary graph, as the following
exampleillustrates. If we sketch the graphs of

(x=1)? _ -
F(x) = (x_‘l'?,T and G(x) = m

theresultswill be qualitatively the same: both ook something like a parabolanear
x = 1; both have branches going to opposite ends of the vertical asymptote a
x = —2; both look something like (1/x) for large x.
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Now use the computer to draw the corresponding vector fields when x is
replaced by z. Striking indeed are the differences! As we traverse a small loop
around theroot at z = 1, F makes two positive revolutions while G makesfour;
doing the same at the pole z = —2, F makes three negative revolutions while
G makes seven; and on a very large origin-centred circle, F makes one negative
revolution while G makesthree.

Returning to the general significance of (2), consider the ordinary winding
number v[L, O] of aloop L. This can now be viewed as the index of L with
respect to the vector field of the identity mapping:

v[L, 0] = $,[L].

Figure[7] illustrates thisresult with $, [L] = 1. Thewinding number of L around
ageneral point a islikewisejust itsindex with respect to the vector field (z — a):

vI[L, al= 9o [L]

,:,gurem D

2 Thelndex Accordingto Poincare

Figure [8a] shows aloop L and a vector field V evaluated on it. Let us use this
simpleexample (for whichitisobviousthat $v [L] = 1) toexplain aquick method
(due to Poincar€) of finding the index in more complicated cases.

Consider all theplacesonL (a, b, cinour case) where V pointsinonearbitrarily
chosendirection. Let P be the number of these placesat which V (z) rotatesin the
positive sense as z passes through it, and let N be the number at which it rotates
in the negative sense. Even in relatively complicated cases, P and N are usudly
quick and easy to find. We now obtain the index as the difference of these two
numbers:

$v[L1=P —N. 3)
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Figure [8]

Inour case P = 2 becausedf the positiverotation at a and ¢, and N = 1 because
of the negative rotation at b. Thus $y [L] = 1, asit should. Try out thisformula
on the examplesin [5].

Althoughthetruth of (3) isprobably clear at anintuitivelevel,itisnevertheless
instructiveto deduceit fromthe" crossing rule' (1), p. 340, for computing winding
numbers.

Figure[8b] showstheimage V (L) of L when V isviewed asamapping. [Check
that it realy istheimage!] In these terms, the required index isjust v [V (L), 0].
Draw theray from 0 in the previously chosen direction, and let the point q travd
dong it (starting far away), ending up at the origin. In its journey, g will thus
cross V(L) at thepoints V(c), V(b) and V(a). Inthevector fidd picture[8a], the
positiverotation of V a ¢ now implies(in [8b]) that q sees V(L) directed from
left to right as it approaches the first crossing at V (¢). Conversely, the negdtive
rotation at bimpliesthat V(L) isdirected fromright toleft asq approachesV (b).
But as we previoudly arguedin Chapter 7, v [V (L), Q] is the number of points P
a which V(L) isdirected from left to right (as seen by q asit approaches), minus
the number of points N at whichit is directed from right to left. Done.

3 Thelndex Theorem

With the connection betweenindicesand winding numbersestablished, the Topo-
logical Argument Principlecan bereinterpretedin termsof vectorfields: Theindex
d asimpleloopisthesum d theindicesd thesingular pointsit contains. Usnga
neater argument than the one given in Chapter 7, we can now extend this theorem
to multiply connected regions. Asillustrated in [9], recall that this meansthat the
region has holesin it; twoin our case.

Theshaded region consistsof the pointswhich areinside C and outside B; ad
B;. In general there could be more holes, say g of them, with counterclockwise
boundary curves By, B2, ..., Bg. Asillustrated, suppose that we have a vector
field on such aregion, and let sq, 52, ..., s, be the singular points within the
region. In our case thereare only two: s; isadipole, and s; is asaddle point. The



Winding Numbers and Vector Fields* 461

Figure[9]
generalizationof the Argument Principleisthis:

g n
4[Cl-) 9[B1=) 9Is;l.

It iscalled thelndex Theorem.
Perhaps using (3), verify that in our example, 4[C] = 2, 4[B;] = 0, and
$[B3] =1, sothatthe LHS of (3) equals1. ButtheRHS is

4 (dipole) + 4 (saddlepoint) =2+ (-1) =1,

50 confirmingthe prediction of the theoremin thiscase.
To understand this result, consider [10]. Using the dashed curves, break the
region into curvilinear polygonsin such away that each one containsat most one

Figure[10]
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singular point, and let their counterclockwise boundaries be K. If we sum the
indices of &l the K;’s then we obtain the RHS of the Index Theorem. For if K;
does not contain a singular point then itsindex vanishes, whileif it does contain
onethenitsindex is (by definition) theindex of that singular point.

Ontheother hand, theindex of asingle K isobtained by looking at how much
the vector field rotates as one travels along each edge of K, then adding up these
net rotation angles. But when wesum theindices of all the K;’s, eachinterior edge
[dashed] is traversed twice, once in each direction, and the associated angles of
rotation therefore cancel. The remaining edges of the K;’s together make up C
and —B;, — By, etc. Summing the associated angles of rotation (divided by 2x)
thereforeyieldsthe LHS of the Index Theorem. Done.

Il Flows on Closed Surfaces*
1 Formulation of the Poincare-Hopf Theorem

If acurved surface S in spaceis' smooth” in the sense that there exists a tangent
plane at each of its points, then it makes sense to speak of a vector field that is
everywhere tangent to S. Intuitively, we may picture such a vector field as the
velocity of afluid that isflowingover S.

Figure [11] shows the streamlines of two such flows on the sphere. Notice
that both possesssingular points: [11a] has two vortices, while[11b] hasadipole.
In fact there can be no vector field on the sphere that is free of singular points.
Thisisone consequence of an extremely beautiful result called the Poincaré-Hopf
Theorem, the formulation of which we will now sketch.

It is not immediately obvious how to give a precise definition of the "index"
of asingular point on a curved surface, but for the moment let us accept that this
integer exists, and that its valueis the same as for an analogous singular point in
the plane. Thusif wesum all theindicesin [11a] we obtain

(a]

Figure[11]
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$ (vortex) T $ (vortex) =1+ 1=2,
whileif we do thesamefor [11b] we obtain
$ (dipole) = 2.

Try drawing your own streamlines on an orange, then sum the indices of the
singular points. Is this a coincidence??

There are no coincidences in mathematics! In the case of the sphere, the
Poincaré-Hopf Theorem statesthat if we sum theindices of any vector field onits
surface, we will dwaysget 2 for the answer. Indeed, it says that we will get this
answer for any surfacethat istopol ogically asphere, that isto say, any surfaceinto
which the sphere may be changed by a continuous and invertible transformation.
If we imaginethe sphereto be made of rubber, examplesof such transformations
and surfaces are given by stretchingwithout tearing. Thesurfacesdf the plum and
thewineglassin [12a] are two examples of such topological spheres.

The sphere is the boundary of a solid ball, and other closed surfaces may
likewise be obtained as the boundaries of other solid objects. For example, the
surfaceof adoughnutiscalled atorus (top of [12b]), and itisclear that thissurface
istopol ogically the same asthe beach toy at the bottom. But it seemsequally clear
that no amount of stretching and bending can turn these surfaces into a sphere—
[12a] and [12b] aretopologically distincttypesof surface. Figure[12¢] showsyet a
third topologically distinct class. Obviously we could continuethislistindefinitely
just by adding more holes.

al [b] e

Figure[12]
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We shall not develop the topological ideas* necessary to proveit, but once
againit seemsclear that these classesof topologically distinct closed surfacescan
beclassified purely on the basis of their number of holes. This number g iscaled
the genus of the surface (see{12]). We can now formulatethe general result:

I'f a vector field on a smoath surface of genus g has only a finite @
number of singularpoints, then the sumof their indicesis (2 — 2g).

Thenumber x = (2- 2g) occurringin thistheoremiscalled the Euler charac-
teristic of the surface, and it crops up in many other important topological results.
Itistherefore morenatura to classify our surfacesusing x rather than g. See[12].

An immediate consequence of (4) is that a vector field without any sngular
points can exist only on surfaces of vanishing Euler characteristic,i.e., the topo-
logica doughnuts. Even then, the theorem does not actually guarantee that sucha
vector field exists, it merely saysthat if thereare singular pointsthen their indices
must cancel. However, you can seefor yourself [draw it!] that on adoughnut there
do exist vector fieldswithout any singular points.

2 Defining the Index on a Surface

In order to givea precisedefinition of the"'index" of one of the singular pointsin
[11], we should presumably draw aloop round it on the surface, then find the net
rotation of the vector field as the loop is traversed. But wait, rotation relative to
what?

To answer thisquestion, wefirst re-examinethefamiliar concept of rotationin
the plane. Figure [13a] showsthat (in the plane) therotation of V' (z) dongL can
be thought of as taking place relative to a fiducial vectorjield having horizonta
streamlines, say U(z) = 1. If wedefine LUV to be the angle between U and V,
and let §;, (ZUV) bethe net changein thisangle aong L, then our old definition
of theindexis

1
Fy[L] = 5oL (LUV). ©)

If wecontinuoudly deform the horizonta streamlinesof U in[13a] to produce
thosein [13b] then, by the usual reasoning, the RHS of (5) will not change. Thus
we conclude that this formula yields the correct value of theindex if we replace
U with any vector fidd that is nonsingular on and inside L.

Now imaginethat [13b] is drawn on arubber sheet. If we continuoudly stretch
it into the form of the curved surface in [13¢] then not only will the RHS of (5)
remain well-defined, but its valuewill not change. To summarize: if sisasngular
point of avector field V on asurface S, we defineitsindex asfollows. Draw ay
nonsingular vectorfield U on apatchof S that coverss but noother singular points;
on this patch, draw asimpleloop L going round s; findly, apply (5), that iscount
the net revolutionsaf V relativeto U aswe traverseL.

4See " Further Reading", at the end of thischapter.
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Figure [13]

3 An Explanation of the Poincare-Hopf Theorem

We can now give a very elegant derivation of theorem (4), due to Hopf [1956]
himself. The argument proceeds in two steps. First, we show that on a surface of
given genus, all vector fields yield the same value for the sum of their indices;
second, we produce a concrete example of avector field for which the sum equals
the Euler characteristic. This provesthe resuilt.

Supposethat V and W are two different vector fieldson a given closed surface
S. See[14]. If v; arethe singular points of V (marked o) and w; are those of W
(marked ©®), we must show that

D Svlvl=)_ $wlwl.

Much as we did in [10], wedivide up S into curvilinear polygons (dashed) such
that each one contains at most one v; and one w;.

Now concentrate on just one of these polygons and its boundary K;, taken
counterclockwise as viewedfrom outside S. Tofind theindicesof V and W aong
K;, draw any nonsingular vector field U on the polygon and then use (5). The
difference of theseindicesisthen
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Figure [14]
1
$v [Kj1-SwlKjl = E [0k, (LUV) — 8k, (LUW)]
1
whichisexplicitly independent of thelocal vector fildU.
From this we deduce that
va [v;] - Z~¢W (wjl] = Z (9v [K;] — $w [K;])
dl polygons
= L Y s uwv
2 all polygons
= 0,

becauseevery edge of every polygonistraversed oncein each direction, producing
equal and opposite changes in L WYV. We have thus completed the first step: the
sum of theindicesisindependent of the vector field.

Sincetheindex sumfor theexamplein [11a] is 2, we now know that thisisthe
valuefor any vector field on a topological sphere. The second step of the generd
argument is likewise to produce an example on a surface of arbitrary genus g,
such that thesumis x = (2 — 2g). Figure [15] is such an examplefor g = 3, the
generalization to higher genus being obvious. Here weimagine that syrupisbeing
poured onto the surface at the top—it then flowsover the surface, finally streaming
off at the very bottom. Asthefigureexplains, and as was required, the sum of the
indicesisindeed equal to .

Further Reading. These topological ideass—in combination with ideasin the
next two chapters—open the door to theimportant subject of Riemann surfaces. In
particular, we hope you will find it easier to read Klein [1881], which champions
Riemann’s origina approach to multifunctions in terms of fluid flowing over a
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&(source) =+1 ]

(2 9 (saddle point) = —2 )

( 2 9 (saddle point) = ~2 )

[ 2 ¥ (saddle point) = —2)

9 (sink) = +1

Figure [15]

surfacein space. See also Springer [1957, Chap. 1], which essentially reproduces
Klein’s monograph, but with additional helpful commentary. For agood introduc-
tion to the more abstract, modern view of Riemann surfaces, see Jonesand Singer-
man [1987]. Finally, for more on topology itself we recommend Hopf [1956],
Prasolov [1995], Stillwell [1980, 1989], and particularly Fulton [1995].
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IV Exercises

1 Show both algebraicaly and geometrically that the streamlines of the vector
fidd z2 arecirclesthat are tangent to the real axis at theorigin. Explain why the
same must be true of the vector field 1/z2.

2 Use a computer to draw the vector field of 1/(zsi n2 2). Use this picture to
determinethe location and order of each pole.

3 Useacomputer to draw the vector field of
P() =22+ (=1 +5) 22 + (=9 = 2i) z + (1 = 7i).

Use this picture to factorize P(z), and check your answer by multiplying out
the brackets.

4 Supposethat one of the streamlines of a vector field V isasimple closed loop
L. Explain why L must containasingular pointof V.

5 Find theindex of each of thethreesu ngular points shown below.

6 Observe that the neighbourhood of every singular point we have examined in
thischapter is made up of sectorsof one of the three types shown below, caled
liptic, parabolic, and hyperbolic. Let e, p, and h denote the number of eech
type of sector surrounding asingular point.

eliptic parabolic hyperbolic

(i) Veify that the index of each of the three singular points in the previous
question is correctly (and painlessly) predicted by Bendixson's Formula:

$=1+2%(—n).

(ii) Explainthisformula.
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7 Givenavectorfield V, defined on acircleC, let avector field W be constructed
on Cinthemannerillustrated below. If $y[C] = n, find $w[C]. [Thisproblem
istaken from Prasolov [1995, Chap. 6], and the answer may befound theretoo.]

8 If f and g are continuous, one-to-one mappingsof the sphere S to itself, then
their composition f o g istoo. Let us prove that at least one d these three
mappingsmustpossessa fixed point. \We proceed by the method of contradiction.

(i) Show if theresult is false then, for each point p of S, the points p, f (p),
and [f o g](p) must bedistinct.

(ii) In this case, deduce that thereis aunique, directed circle Cp, on S passing
through these three pointsin the stated order.

(iii) Imagineaparticleorbitingon C, at unit speed, and let V(p) beits velocity
vector asit passesthrough p. Since p wasarbitrary, V isavector fiedldon S.

(iv) By appedling to thePoincaré-Hopf Theorem, obtain the desired contradic-
tion.

9 Continuing from the previousexercise, apply theresult asfollows:

(i) By takingg =f, deducethat (f of) hasafixed point.

(ii) By taking g = (antipodal mapping), deducethat either f has afixed point,
or f mapssome point to itsantipodal point.

10 Arbitrarily choose acollection of pointssi, sz, ..., s, on aclosed, smooth sur-
face S. By attempting to draw examples on the surface of a suitable fruit or
vegetable, investigatethefollowing claim: Thereexistsaflow on S whose only
singular points are s1, 52, ..., S», and the type of singular behaviour (dipole,
vortex, etc.) at al but one of these points may be chosen arbitrarily.

11 Imaginethe surfaceof the unit spheredivided upinto F polygons, theedgesall
being "' straight lines on the sphere”, i.e., great circles. Let E and V bethetotal
number of edgesand verticesthat result from dividing up the spherein thisway.

(i) Let 2, be an n-gon on the unit sphere. Use (9), p. 279, to show that

A@,) = [anglesumof @,] — (N — 2)m.
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[Hint: Join the verticesof 9, to a point in itsinterior, thereby dividing it
into n triangles.]

(if) By summing over all polygons, deduce that
F—-E+4+V =2

[This argument is due to Legendre (1794); the result itself is a special cased
theresult in the following exercise]

12 Let S be asmooth closed surface of genus g, so that its Euler characteristicis
x(S) =2-2g. Asin[14], let usdivide Sinto F polygons, and let E and V be
the total number of edges and vertices, respectively.

(i) Draw asimple example on the surface of an orange and convince yoursdlf
(by drawing it) that we may obtain a consistent flow over the entire surface
whose only singular points are (1) a source inside each of the F polygons;
(2) asimple saddle point on each of the E edges; (3) asink at each of the V
vertices.

(i) By applying the Poincaré-Hopf Theorem to such a flow on the genera
surface S, deduce the following remarkable result, called Euler's Formula:

F—E+V =yx().

(i) Verify thisresult for your examplein (i), then try it out on a doughnut.

13 Thefigurebelow showsall the normalsthat may drawn from the point p to the
smooth surface S. Let R(g) be the distance from p toapoint g of S, and let us
say that g isacritical point of R if therate of change of R vanishesasq begins
to move within S; we need not specify the direction in which g beginsto move
because we are assuming that S has a tangent plane at q.
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(i) Explain why pgisnormal to S if and only if q isacritical point of R.

(ii) Thelevel curvesof R on S are theintersections of S with the "onion" of
concentric spheres centred at p. Sketch these level curves in the vicinity
of theillustrated critical pointsof R. Notice the distinction between points
where R has a local maximum or minimum, versus points where R may
increase or decrease depending on the direction (within S) in which one
moves away from the critical point.

(iii) Imaginethat p generatesan attractiveforcefield, so that every point particle
in space experiences aforce F directed towards p. For example, we could
imaginethat pisthecentreof theEarth, andthat F isthe Earth's gravitational
field. If a particle is constrained to move on S, then the only part of F to
whichit canrespondisthe projectionFs of F onto S. Sketch the streamlines
of Fs. How are they related to the level curvesof R in (ii)?

(iv) Youhavejust seen that thecritical pointsof R arethesingular pointsof Fg.
How does theindex $(g) of asingular point of Fg distinguish between the
types of critical point discussed in (ii)?

(v) Letusdefinethe multiplicity of anormal pq to bethisindex $(q).Usethe
Poincaré-Hopf Theorem to deduce that

The total number of normals (counted with their multiplicities) that
may be drawn to S from any point p is independent of both the
location of p and the precise shapeof S, and isequal to x(S).

[This lovely result is essentially due to Reech [1858], though he did not
expressitintermsof x (S), nor did he use an argument like the one above.
With hindsight, Reech's work is a clear harbinger of Morse Theory, which
it predates by some 70 years.]

(vi) Verify Reech's theorem for a couple of positions of p in the case where S
isatorus (doughnut).



11

Vector Fields and Complex
Integration

I Flux and Work

We promised long ago that there wasamore vivid way of understanding complex
integrals than the geometric Riemann sum of Chapter 8. In this section welay the
foundations for this elegant new approach. If you are already familiar with vector
calculus then you can skip this section and go directly to Section II.

1 Flux

X-N

Figure [1]

In order to definetheflux alittle more carefully than before, consider [1]. At each
point of the directed path K we introduce a unit tangent vector T in the direction
of the path, and aunit normal vector N pointing to our right aswetravel dong K.
In terms of the corresponding complex numbers, this convention amountsto

T =iN.

Thefigurea so showshow avector field X (which we will first think of asthe
velocity of afluidflowingover the plane) can be decomposed into tangential and
normal components:

X=(X-T)T+X-N)N.
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Only the second of these components carries fluid across K, and the amount
flowingacross an infinitesimal segment ds of the path in unit time (i.e. itsflux) is
thus (X+N) ds. Thisis arefinement over our previous definition in that the flux
now hasasign: it is positiveor negative according as the flow isfrom left to right
or from right to left. The total flux F[X, K] of X across K isthen theintegral of
the fluxes acrossits elements:

FIX, K] :fK(X-N)ds.

Check for yoursalf that the flux satisfies
F[-X, K] = F[X, -K] = =F[X, K].

Theflux concept isfurther illustrated in [2] for the case where K isasimple
closed loop bounding the shaded region R. Figure [2a] shows the normal compo-
nentsof X, the signed magnitudesaof which we must integrateto obtain F[X, K].
Figure [2b] shows how we might make an estimateadf thisflux. WereplaceK by
apolygonal approximation with directed edges A;, and at the midpoint of each
onewedraw the normal component of X. Theflux isthen approximately given by
the algebraic sum of thesigned areas of the shaded rectangles. Inthiscasethereis
clearly more positiveareathan negative, so theflux ispositive. Asthe A ;’s become
shorter and more numerous, the approximation of course gets better and better.

In the case of the simpleloop K in [2a] there is another interesting way of
looking at the flux:

F[X, K] = [fluid leaving R per unit time] — [fluid entering R per unit time].

Henceforth we will always take our fluid to be incompressible. Thus, provided
thereare no sourcesor sinksin R, what flowsinto R must also flow out of R:

FIX, K]=0.

Indeed, we may turn this around and definea flow to be sourceless in aregion if

<
SN

Figure[2]
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all smpleloopsin that region have vanishing flux. The simplest example of such
aflow without any (finite) sources or sinksis X = const. If theloop does contain
asource, for example, thenincompressibility saysthat the flux equalsthe strength
of the source.

Although we will only concern ourselves with two-dimensiona flows, we
should at least mention the concept of flux in threedimensions. If afluidisflowing
through ordinary space, it no longer makes sense to speak of the flux acrossa
curve, but it does make sense to speak of the rate at which the fluid crosses a
surface. If N now stands for the normal to this surface, then the flux across an
infinitesimal element of areadA isonceagain given by (X-N) dA. Thetotal flux
is then obtained by integrating this quantity over the whole surface. Just asin
two dimensions, theincompressibility of athree-dimensiona flow isequivalentto
the statement that all closed surfaces (that do not contain sources or sinks) have
vanishing flux.

Lastly, we should point out that although the word "flux* is Latin for "flow",
itisstandard practice to retain this terminology when applying our mathematical
definitionto any vector field X, regardless of whether it actualy isthe velocity of
aflowing substance. For example, the electric field represents aforce, but one of
the four fundamental laws of electromagnetism says that we can think of it asan
incompressible flow in which positive and negativeel ectric charges act as sources
and sinks, so that its flux through a closed surface in space equals the net charge
enclosed.

2 Work

So far we have only studied the norma component of X; we turn next to its
tangential component. To do so, let us now imagine that X is aforce field rather
than aflow.

If a particle on which a force actsis displaced infinitesmally then we know
fromelementary physicsthat the work done by thefield (i.e. the energy it expends)
is the component of theforcein the direction of displacement, times the distance
moved. Thusif the particle movesan amount ds along K then the work done by X
is(X-T)ds. Aswithflux, this definition contains asign, the physical significance
of which we will explain shortly. If the particle is moved along the entire length
of K, thetotal work done by the fieldisthen

WIX, K] = /K(X-T)ds.

Figure[3a] illustratesthetangential componentsof X on K, the signed magnitudes
of which we must add up to obtain W.
Just asfor F, check that W satisfies

W[-X, K] = W[X, — K] = —W[X, K].

Notethat, unlike F, no modification of W is needed if we wish to extend theidea
to three-dimensional force fields: it still makes perfectly good sense to consider
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T [l fo s [b]

Figure [3]

the work done by the field as a particle is moved along a curve in space, and the
formulais as before.

Figure [3b] illustrates a simple thought-experiment for interpreting both the
magnitude and the sign of W. We imagine that the plane in which the force field
actsis made of ice on which a very small ice-puck of mass m can slide without
friction. We now construct a narrow frictionless channel in the shape of K, just
wideenough to accommaodate the puck which wefireinto it with speed v;,. Onthe
initial leg of the journey we seethat theforce opposes the motion, and thusif v, is
not sufficiently great, the puck will sow, stop, and return whenceit came. Clearly,
though, if we fire the puck with sufficient speed it will overcome all resistance
and emerge at the end of the channel, say with speed vou. Let theinitial and fina
kinetic energies of the puck be &, and &, so that

2

out*

mv?

En = and & = %mv

ST

One of the most sacred principles of physicsisthe " conservationof energy",
which states that energy can never becreated or destroyed, only transformedfrom
one kind into another. Thus the energy W expended by the force field on the puck
does not disappear but instead is transformed into the changein the puck's kinetic
energy:

WIX,K] = &Eu—6&
[m Vout + M Vin

5 ] (Vout — Vin)

= [average momentum] (changein speed).

Thisformula also givesclear meaning to the sign of the work: itisthe sign of the
change in speed. Thusif W is positive the field expends energy speeding up the
puck and increasing its kinetic energy, whileif W is negativethen the puck hasto
give up some of its kinetic energy in doing work against thefield.

Next, imagine that we bend K round so that the ends almost join to form
a closed loop. When the puck travels along the corresponding channel it will
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therefore emerge at essentially the same place that it entered. Supposeit wereto
emergewith greater speed than it entered. Joining the ends of thechannel together,
the puck would therefore go round the loop faster and faster, gaining energy with
each circuit--energy that could be harnessed to solve the world's energy crisis!
Although we may construct mathematical examples for which this happens,
if no energy is supplied from outside the puck/field system then a physical force
fidd will not behavein thisway; it will conserve energy so that the puck returnsto
its starting point with exactly the same speed with which it was launched!. Such
afieldiscalled conservative. Mathematically, X is conservativeif and only if

WX, any closed loop] = 0. (1)

Just aswe applied the concept of flux to vector fieldsthat were not flows, sowe
may apply theconcept of work to vector fieldsthat do not represent force. However,
in thisgeneral setting it is standard practice to call W[X, K] the circulation of X
along K rather than the work. As with "flux", this terminology originates from
thinking of X as representing a flow. To see why, take K to be a closed loop and
consider the following thought-experiment of Feynman [1963]. Imagine that the
fluid flowing over the plane with velocity X isinstantaneously frozen everywhere
except within the narrow strip where our channel used to be. The " circulation™ is
then [exercise] the speed with which the unfrozen fluid flows (or circul ates) round
K, timesthelength of K.

If this circulation vanishes for every closed loop then the flow is said to be
irrotational. Just as "circulation' means W|[X, K], irrespective of the physical
nature of X, so with equal generality "irrotational’ is short for the mathematical
statement (1). Thusaconservativeforcefieldcoul d al sobedescribed asirrotational .

3 Local Flux and Local Work
At present our definition of asourcelessand irrotational vector field X isthat

F[X,anyclosedloop] =0 and W[X,anyclosedloop] =0. (2)

Our next objectiveisto show that there are two very simple local propertiesof X
that are equivalent to the non-local ones above.

To do thiswe must calculate limiting behaviour of the flux and the work for a
small loop that shrinksto nothing, i.e., for an"'infinitesimalloop™. Though itisnot
entirely obvious, later we will show that this limiting behaviour isindependent of
the shape of the infinitessimal loop. We are thus free to simplify the calculations
by choosing the loop to be a small square centred at the point of interest, say z,
and having horizontal and vertical edges of length €. See [4].

Accurate estimates of F and W can now be found by evaluating X at the
midpoints (a, b, ¢, d) of the sides, then summing the appropriate components. In

11f ener gy can be supplied from outsidethe system, then the work need not vanish for aclosed
loop. In fact the operation of all eectrical machines dependson the ability of a moving magnet
to create an eectric field that can speed up our puck. However, there is still no violation of
ener gy-conser vation sincework is being done to movethe magnet. See Feynman [1963].
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Figure[4]
thelimit that e shrinks to nothing, this approximation becomes exact, as does the
following equation, which we will need in a moment:
P(a) — P(c) = €3 P(2),

where 8, P(z) meansd, P evaluated at Z.
For theflux wefind

FIX, O] €P(a)+€ Q) —€P(c) —€Q(d)
€[{P(a) — P(O)} +{Q(®) — Q@}]

= € [3:P(2) +3,0(2)]

This expression can be simplified by considering the formal dot product of the
gradient operator V with the vector fidd:

&\ (P _
VX = (ay) . (Q) =P +3,0.

Thisquantity V <X iscalled the divergence of X, and in termsof it we have
F[X,O1=[V-X(z)] (areacf HI). 3)

In the next section we will seethat (3) istrueif O is replaced by an infinitesimal

loop of arbitrary shape. Thisimportant result explainsthe term " divergence™,for

it saysthat V - X isthelocal flux per unit areaflowing away from z, i.e., diverging

from z. In futurewe will abbreviate™loca flux per unit area” to "'flux dengty"'.
Repeating the above analysisfor the work, wefind [exercise]

WIX, O] =[V x X(2)] (areadf H), C))

wherethe formal cross product is defined by

3y P\ _ .,
vax= (%) (B)=n0-sr
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The quantity V x X is called the curl of X. Geometrically, it measures the
extent to which X ‘curls around' the point z. Physically, in terms of force fidds,
the aboveresult saysthat the curl isthelocal work per unit area, or work density.
Thereis also a vivid interpretation in terms of flows. If we drop a small disc of
paper onto the surface of the flowing liquid at z, in genera it will not only start
to move (translate) along the streamline through z with speed |X(z)|, but it will
alsorotate about its centre with some angular speed w (z). It can be shown that the
aspect of X which determines the rate of rotation w is none other than the curl:

0(2) = 3 [V xX(@@)].

For thisreason "curl" is sometimes denoted "'rot", which is short for "' rotation™.

4 Divergence and Curl in Geometric Form*

The above expression for the divergence was obtained by considering the flux
out of a shape having no connection with the flow. Greater insight is gained by
considering the flux out of an infinitesimal "'rectangle R, two sides of which are
segmentsof streamlinesof X, whilethe other two sides are segmentsof orthogonal
trajectories through the streamlines. See [5].

Here z is the point down to which R will ultimately be collapsed in order to
find the divergence there, S and P are the streamline and orthogonal trgjectory
through z, and s and p are arc-length along S and P, the direction of increasing p
being chosen to make a positiveright angle with X.

Thenet flux out of R isthedifference between thefluxesentering and leaving.
Theflux enteringis|X|dp, whiletheflux leaving isthe same expression eval uated
on the opposite side of R. It isnow clear that two factors contribute to more fluid
leaving than entering: (1) greater fluid speed | X| as the fluid exits; (2) greater
separation dp of the streamlines as the fluid exits.

Thesecond factor isclearly governed by how much thedirection of X changes
aongdp, inother words, by thecurvaturekxp of Pat z. More precisely, if § denotes
the increase in a quantity as we move ds aong the streamline, then [exercise]

Figure[5]
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§(dp) = kp dsdp. Thus

(Net flux out of R) 3{|1X|dp)
G|1X)ydp +1X|8(dp)

(35X + kp|X]) (area of R).

Theflux density istherefore
VX = l|X|+ kp|X|. 3)

In fact [exercise] this formula is still true for a three-dimensional vector field,
provided that there exists? a surface P orthogonal to the streamlines, and «p is
taken to be the sum of its principa curvatures.

Turning to the circulation round R, identical reasoning yields [exercise] an
equally neat formulafor the curl:

V xX = -0, (X[ + k5| X], ©)

whereky isthecurvature at z of the streamline S.

Although we suspect that (5) and (6) must have been known to the likes of
Maxwell, Kelvin, or Stokes, we have not found any reference to theseformulaein
modern literature.

5 Divergence-Free and Curl-Free Vector Fields

From the definition (2) and the results (3) and (4) it followsthat if X is sourceless
and irrotational throughout some region R, then at each point of R we have

V.X=0 and VxX=0.

The vector field is then said to be divergence-free and curl-freein R.
For example, consider the vector field of a point source with strength S:

_5 _ S (x/(E+yh)

Thisshould havezeroflux density (i.e. divergence) everywhereexcept at theorigin,
where it should be undefined. Check that this is so. Recall that we previoudy
claimed that this was aso the electrostatic field of a long, uniformly charged
wire. We can now see that this makes physical sense in that the field is locally
conservative. Thus if we fire our puck (which must now carry electric chargein
order to experience the force) round an infinitessimal loop, it will return to its
starting point with itskinetic energy unchanged. To verify this statement you need
only check that thefield is curl-free.

2The condition for existenceisthat the curl either vanish or be orthogonal to the vector field.
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Wehaveseenthat asourcelessandirrotational fieldisdivergence-freeand curl-
free. Toend this section we wish to establish the converseresult: if the divergence
and curl vanish throughout aregion, theflux and work vanishfor al smpleloops
in that region. We will then have,

A vector field is sourcelessand irrotational in a simply connected
region if and only if it isdivergencefree and curl-freethere.

To understand thisconverse, consider [6] which essentially reproduces part o
[27], p. 411. Let usnow recyclethelined reasoning associated with that figure. We
begin by noting that as thegrid getsfiner and finer, theflux or work for K becomes
the flux or work for C. Next we relate these quantitiesto the divergenceand curl
inside K. Check for yourself that exactly the same mathematical reasoning which
previously yielded

fo(z)dz = Y ff(z)dz,

shaded squares
now yields
FIX,K1= ) FX,0O
shaded squares
and

WIX,Kl= )  wix,0Ol.
shaded squares
However, in the present context these results become accessible to physical intu-
ition. The first says that the total amount of fluid flowing out of X is the sum of
fluxesout of the interior squares. What does the second one say?

Figure [6]
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Now let the squares of the grid shrink so asto completely fill theinterior R of
C. Using (3) and (4) and replacing the sum over squares by adouble integral over
infinitesimal areasd A, we obtain Gauss' Theorem,

F[X,C]= ffR [V-X]dA, (7

and Stokes’ Theorem,
WIX, C]l= /j [V xX] dA. 8
R

From these we seethat if thedivergence and curl vanisheverywherein R then the
flux and work for C also vanish, as wasrequired.

Again following the logic in Chapter 8, consider what happens to the flux
and work as we continuously deform a closed contour, or an open contour with
fixed end points. You should be able to seethat (7) and (8) imply two deformation
theorems:

| f the contour sweeps only through points at which the divergence

vanishes, the flux does not change. ©)

If the contour sweepsonly through pointsat whichthecurl vanishes,

the work does not change. (10)

Il Complex Integration in Terms of Vector Fields
1 The Polya Vector Field
Consider

f H(z)dz
K

from the vector field point of view. See [7]. In forming a Riemann sum with terms
H dz we now have the minor advantage that H = |H| e and dz = €'V ds are
not drawn in separate planes, asthey werein Chapter 8. However, we still facethe
problemthat H dz = |H| ¢!©@*P) ds involvesthe addition of angles, whichis not
easy tovisualize. Just asit is more natural to subtract vectors[yielding connecting
vectors] than to add them, so it is aso more natura to subtract angles, for this
yieldsthe angle contained between two directions.

The simple and elegant solution to our problem isto consider a new vector
fidld: instead of drawing H(z) at z we draw its conjugate H(z) = |H|e~#. We
shall call this the Pélya vector field of H. Before showing how this solves our
problem, let us offer (i) acaution and (ii) areassurance:

(i) The Pélya vector field of H is not obtained by reflecting the picture of the
ordinary vector field for H in the real axis, for this would attach H(z) toz
instead of z. Thiswill become very clear if you (or your computer) draw the
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Pélya vector fields of z and z2, for example. Comparison with [1], p. 450,
reveal sthat the resulting phase portraits (not the vector fiel dsthemsel ves) are
identical to those of (1/z) and (1/z2). Thisis because z pointsin the same
direction as (1/z").

(ii) Aswewill seein amoment, muchisgained by representing H by its Pélya
vector field, but we also wish to stress that nothing is lost: the new fidd
contains exactly the same information asthe old one. For example, itisclear
that the index of aloop L merely changes sign when we switch to the Pélya
vector field:

9Ll = —9u[L].

Thus an n'" order root of an analytic H till shows up clearly in its Pélya
vector field asasingular point, but now withindex —» instead of n. Likewise,
apole of order m produces asingular point of index m instead of —m.

Figure[7]

Returning to integration, the great advantage of the Pélya vector field is that
theangle @ that it makes with the contour (see[7]) isgivenby 8 =a— (—8), ad
thisis precisely the angle we weretrying to visualize—the angle of theterm H dz
in the Riemann sum. Better till, wefind that

Hdz = [H|é?ds
[IH]| cos6 +i [H| sine] ds
[H-T+i H-N]ds.

Thus the real and imaginary parts of each term in the Riemann sum are the work
and flux of the Pélya vector fieldfor the corresponding element of the contour. \We
have thus discovered avividinterpretation (due to Pélya?) of the complex integral
of H intermsof the work and flux of its Pélya vector field along the contour:

2See Pélya and Latta[1974].
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f H(z)dz =WI[H, K] i F[H, K]. an
K

This interpretation is rendered particularly useful by the fact that a computer
caninstantly draw the Pélya vector field of any function you wishtointegrate. You
canthenquickly get afeel for thevalueof theintegral by looking at how much the
field flows along and across the contour. For example, theintegral of (z2 z) long
theline-segmentfroml1 —itol +i isclearly apositive multiple of i. Why? For
more on the nitty-gritty of estimating integrals with (11), see Braden [1987].

Our interestin (11) will belessin this practical aspect, and moreinitstheoreti-
cal import: ideas about flowsand forcefiel dscan shed light on complexintegration,
and vice versa. In what follows we shall give examplesin both directions.

2 Cauchy'sTheorem

Givenapictureof the vector field of acomplex mapping H(z) =u +iv, how can
we tell whether or not H is analytic? To my knowledge there is no satisfactory
answer to this question as posed. However, there is an answer if we instead look
a the Pélya vector field, and it is an answer that exhibits a beautiful connection
between physics and complex anaysis.

The Pélya vector fidd of H isdivergence-freeand curl-freeif and

only if H isanalytic. 12)

The verificationisasimple calculation:

= a u
vii=(%)-(4)=nu-a
— Oy u
VxH= (3y) X (—v) = —(0x v+ dy u).

Thus the divergence and curl of H will both vanish if and only if the Cauchy-
Riemann equations are satisfied. Note for future use that these two equations are
really two aspects of a single complex equation,

and

idH—3,H=VxH+iV-H, (13)

the vanishing of the LHS being the compact form of the CR equations.

With this connection established, we now have a second, physical explanation
o Cauchy's Theorem which is scarcely less intuitive than the geometric one in
Chapter 8. For if H is analytic everywhere inside a simple loop K bounding a
region R, its Pélya vector fieldin R will have (asaflow) zero flux density and (as
aforcefield) zero work density. This meansthat thereis no net flux of fluid out of
R, and that a puck fired round X returns withitskinetic energy unchanged. From
(11) we seethat theintegral of H round K must vanish.
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A more mathematical version of this physical explanation was given a the
end of the last section in terms of the theorems of Gauss and Stokes. Restating
that argument in the present context, for asimple loop K bounding a region R,
substitution of (7) and (8) into (11) yields

fﬂ(z)dm// [V xH]dA +i ff [V-H] dA, (14)
K R R

which vanishesif H is curl-free and divergence-freein R.

3 Example: Area as Flux
Asafun and instructiveexamplelet us reconsider the result

f Zdz = 2IA (15)
K

inthelight of the physicdly intuitive theoremsof Gauss and Stokes.

Observe that the Pélya vector field of H(z) = 7 is H(z) = z, which flows
radially outwards from the origin, like a source. However, unlike a source, here
the speed of theflow increaseswith distance, making it clear that thisflow cannot
be divergence-free. Indeed, calculatingits flux density, we find that

ea-(3)-() >

In other words, in each unit of time, 2 units of fluid are being pumped into eech
unit of area. Theflux of fluid out of K istherefore 2A. On the other hand the flow

iscurl-free:
Vxﬁ:(ax) X O =0,
a)’

so thereis no circulation round K. Inserting thesefactsinto (14) weobtain (15).

Figure[8]
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Figure[8]isaconcreteexampleof thisnew way of looking at (15), the shapeof
K having been chosen so asto makethevauesaf thecirculationand flux obvious.

Clearly H(z) = z hasnocirculation along either of the arcs, and it has equal
and opposite circulations along the line-segments. The total circulation round K
thereforevanishes. Equally clearly, thereis no flux across the line-segments, but
there is across the arcs. The larger arc has length a¢ and the speed of the fluid
crossingitisa, so theflux acrossitisa?@:similarly, for the smaller arcit isb?4.
Thus,

Flz, K] = (fluid out) — (fluid in) = 2 [% a’¢ — 1 b?@)= 2 (shaded areq).

Before moving on, let us clear up a paradoxicd featureof the vector fidd z:
fluid is being pumped in uniformly throughout the plane, and yet the flow appears
to radiatefrom one specia place, namely, the origin. The resolution (see [9]) lies
inthetrivia identity z = zo + (z - 20), which saysthat theflow from theoriginis
the superposition of the sourceless, irrotational field zo and a copy of the original
flow, but now centred on the arbitrary point zg instead of the origin.

| 7 V1t
- / / zoE . ‘\‘\'.&\XZI jf(‘.;:v{:'
o ; poee:: ) oemg
s -2 B R G

4 Example: Winding Number as Flux

Next, let us see how the Pdlya vector field also breathes fresh meaning into the
fundamentally important formula

f ldz =2mivI[L,0]. (16)
Lz

Accordingto (11),
f %dz — WI(1/2), L]+ F[(1/2), L1.
L

But the Pdlya vector field (1/z) is an old friend—it is a source of strength 2z
located at the origin.

Figure [10] illustratesthe intuitive nature of the result from the new point of
view. If aloop does not enclose the source, just as much fluid flows out asin; if a
simpleloopdoesenclosethesource, it interceptsthefull 27 of fluid being pumped
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Figure [10]
in at the origin; more generally, aloop will accrue 2 of flux eachtimeit encircles
the source.

To finish the explanation of (16) we must show that a source is pure flux, i.e.
every loop has vanishing work or circulation. Since asourceis curl-free except &
the origin, Stokes Theorem guarantees vanishing work for simple loops that do
not contain 0. If the loop does contain O then it's not so obvious. However, it is
obviousfor an origin-centred circle. You can now finish the argument for yourself
by appealing to the Deformation Theorem (10).

In connection with another matter, consider the shaded sector in[10]. Thesame
amount of fluid will cross each segment of a contour which passes throughit, but
the sign of the flux will depend on the direction of the contour. Try meditating an
the connection between this fact and the crossing rule for winding numbers[(1),
p. 340].

5 Local Behaviour of Vector Fields*

We previously showed that V -H and V x H represent the flux density and work
density of H for infinitesimal squares. However, in order for the formulae (7)
and (8) to really make sense it is necessary that these interpretations persist for
infinitesimal loopsof arbitrary shape. L et usnow place (7) and (8) on firmer ground
by verifying the shape-independent significance of the divergenceand curl. To do
so we will first analyse the local behaviour of a general Pélya vector field H in
the neighbourhood of the origin. The generalization to points other than the origin
will be obvious.

Atany pointz = x + iy closeto theorigin, agood approximation to H (z) will
be given by the following formula, in which the partial derivativesare evauated
at0:

H@)—HO) = x&H+ydH = 3c+200%H-5z—-2)H

= soH—idyH]z+3[0:H +id,H]z.
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This will becomeexact in the limit that |z{ shrinksto nothing.
Turning to the Pélya vector field itself, and substituting (13), wefind

H(z)

H(O)+(V~ﬁ)§ +(Vxﬁ)£2£+CZ, a7

whee C = 1[8,H —id,H]. Note that if H is analytic, in which case H is
sourceless and irrotational, then (17) correctly reduces to the first two terms of
Taylor's series: H(z) = HO) T H'(0)z T ... -.

Ny
~ /
/ : .=
+ Vv-H H;*;%:XE::H
TR
VEZAANN
/ AN
///5;'%@\\ . /J \.X -
/'////f \\:\*'.\\\\ — / / \\\’\.A\\. ;
X IIII; i1 — o
R ”5///} RN
SEE O 0

Figure[11]

Themeaningaf thedecomposition(17)isillustratedin[11]. UnlessH(0) =0,
the constant first term dominates: vectors near the origin differ little from the
vector at the origin. The remaining threeterms correct this crude approximation.
The second term describes avector field (cf. figure[8]) that isirrotational and has
constant divergence, equal to that of H at the origin. The third term describes a
vector field that i s sourcelessand has constant curl, equal tothat of H at theorigin.
Thefinal termis both irrotational and sourceless.

Notethat this decompositionis geometrically meaningful because the appear-
ance of each of the component vector fields is qualitatively unaffected by the
vaueof its coefficient. We hope these observations make the formula (17) both
plausible and meaningful.

Now let us return to the origina problem. Let K be a small smple loop of
arbitrary shaperound theorigin,and let A betheareait encloses. We wish to show
that the divergenceand curl of H at 0 are thelimiting values of the flux per unit

3This i s obvious for the source and vortex terms, but not for the last term; see Ex. 10.
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areaand work per unit areaas K shrinksto the origin. Using (17) in (11) wefind
WIH, K] i F[H, K]

=¢ H(z)dz
K

= H(0) f dz+1[V-H-iVxH] f zdz+6f zdz.
K K K

Thisbecomesexact as K shrinks to nothing. But evenif K is not small, we know
that the exact values of these threeintegralsare

fdz:O, fidz:ZiA, f zdz =0.
K K K

WIH, K]+ iF[H, K] =[V xH+i V-H]A.

Thus

Equating real and imaginary parts, we obtain the desired resuilts.

6 Cauchy's Formula

The Pdlya vector fidd also allows us to cast the mathematical explanation d
Cauchy's Formulainto aform that i s more accessibleto physicd intuition.
Consider thefunction
HG) = f @)

z-p)

where f () isanalytic. Since H is analytic except at p, its Pélya vector fidd H
will havevanishingflux and circulationdensitiesexcept at p. Thusif Cisasmple
loop round p, al of its flux and circulation must have originated at p. To find
W/H, C] and F[H, C] weshould thereforeexamine H in theimmediatevicinity
of p.
If f (p) = At iB, then very closeto p the Pdlya vector field H will be
indistinguishablefrom

s ]-s [)
z—p Z—p z—p
Figure [12] illustratesthis field for positive A and B, as wdll as showing the
geometric significanceof the algebraic decomposition above.
Thefirsttermisfamiliar asasourceat p of strength 27 A, anegative valuefor
A correspondingto asink. The second termisamultiple of thelessfamiliar fidd

i /(Z— P) which representsavortex* a p. It iseasy toseethat thecircul ationround
onedf itscircular streamlinesis 2, so this will also beits valuefor any smple

4 We are now using this term in a narrow sense—previously " vortex" referred to all vector
fieldsof thistopological form.
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Figure[12]
loop round p—we say that the vortex has strength 2. On the other hand its flux
vanishesfor all loops. While a sourceis pureflux, avortex is purecirculation.

These observations give us a dightly different way of looking a Cauchy’s
Formula:

?{ f@ 4. = WIH, Cl1+iFA, C]
c(z—p)

= —2mB+i2nA
= 2mi f(p).

7 Positive Powers

If nisapositiveinteger then 2" isanalyticeverywhereand its Pélya vector field 2"
iscorrespondingly divergence-freeand curl-free.Our physical versionaf Cauchy’s
Theorem thereforegives

fz"dz::W[_",C]+iF[E",C]=O.
C

Atleastin thecaseof an origin-centred circlewecan make this much morevivid®.
Figure [13] illustratesthe behaviour of z and Z? on such acircle. It now seems
clear that as much fluid flows into each shaded disc as flows out, so that F = 0,
and also (when viewed asforce fields) that no net work is donein transporting a
particle round the boundary of each disc, sothat W = 0.

We can makethisideaprecise. First notethat for any vector field on thecircle,
thework and flux will not change their valuesif we perform an arbitrary rotation
of the diagram about the centre of the circle. Next, let us exploit the attractive
symmetries of these particular vector fields. Rotating the picture of z through
(7 /2) clearly yields the negative of the original field and, correspondingly, the
negative of the original work and flux. Since Wand F aresimultaneously required
to remain the same and to reverse sign, they must both vanish.

The same argument appliesto Z2 under arotation of (rr/3), and to z” under a
rotation of 7/(n F 1). Use your computer to check thisfor n = 3. To understand
this symmetry better, consult Ex. 10.

5In the particular case of z2 thishas also been observed by Braden [19911, though he did nat
supply the general argument which follows.
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Figure [13]

8 Negative Powers and Multipoles

Consider the negativepower functions (1/z™), wherem isapositiveinteger. Their
Pélya vector fields (1/z) will be divergence-free and curl-free except a the
singularity at the origin. Thusif a simple loop C does not enclose the origin, its
circulation and flux will vanish. However, since we know fromthe casem = 1that
singularities are capable of generating flux and circulation, it remains something
of amystery that (except for m = 1) Wand F aso vanishif C does enclosethe
singularity.

In the case of an origin-centred circle wecan visualizethisresult exactly asfor
positive powers. Figure [14a] illustrates this for the so-called dipole field (1/z2).
Theargumentisal sothesameasbefore: thisvectorfiel disreversed under arotation
of 7, andfor (1/z) itisreversed under arotation of 7/ (m — 1). Knowingthat W
and F vanishfor the circle tells us[see (9), (10)] that they will continue to vanish
for any loop into which we may deform the circle without crossing the origin.

Let us now go beyond this geometric explanation in search of a compelling
physical explanation. Figure [14b] shows the phase portrait of the dipole (1/z2),
the streamlines of which are apparently circular; a simple geometric argument
[exercise] confirmstheir perfect circularity. Where have we seen something like
this before? Answer: the doublet field consisting of a source and sink of equd
strength S (see [3], p. 452). It therefore looks as though we can obtain the dipole
simply by coalescing the source and sink. This solves our mystery in a surprising
and el egant fashion: neither the source nor the sink generate circul ation, and aloop
enclosing both receivesequal and opposite fluxes.

This explanation is essentialy correct. However, as the sink and source move
closer and closer together, a greater and greater proportion of the fluid from the
sourceis swallowed up by the sink beforeit can go anywhere, and at the moment
of coalescence the source and sink annihilate each other, leaving no field &t dl.
Let usinvestigatethis algebraically using (1), p. 456.

Suppose that the source and sink approach the origin aong a fixed line L
making an angle ¢ with the real axis. Thisline of symmetry L is called the axis
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Figure [14]
of the doublet. Putting A = € € @= —B, the doublet field (1) becomes

2¢S e—i¢] 1

- , 1
o2 (Z?2 — 2 e7i29) (18)

D(z) = [

which dies away as the source/sink separation 2¢ tends to zero. The solution is
to increase the strength S in inverse proportion to the separation 2e, so that 2¢ S
remains constant. If we call thisreal constant 2k, the limiting doublet field (as
E— 0)is
ke i®

z2

D(z) =

i.e. the general dipole field obtained by rotating [14] by +¢ and scaling up the
speed of theflow by k, which we may think of asthe" strength” of thedipole. Thus
the Pélya vector field of (d/z?) isadipole whose axis pointsin the direction of d,
and whose strength is |d]. The complex number d is called the dipole moment.
We created the dipole by coalescing equal and opposite sources, increasing
their strength so as to avoid mutual annihilation. Continuing this game, we ask,
"What will happen if we coalesce equal and opposite dipoles, increasing their
strength so as to avoid mutual annihilation?” Figure {15] reveals the pleasing
answer. Figure [15a] represents a pair of equal and opposite dipoleslocated at e
and having real dipole moments +d, while[15b] isthe Pélya vector field of (1/23).
The resemblance is striking, and we can show algebraically that [15b], whichis
called aquadrupole, isindeed the appropriate limiting case of [15a].
Thefieldfor [15a] is

1 1 z
@-o? (z+e)2] —Megr—ap

0@) =d [ (19)
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Figure[15]

Once again letting the strength d grow in inverse proportion to the separation,
so that k = 4de remains constant, the coaescence of the dipoles yields the
quadrupole;

k
Q@) = =

In general, the Pélya vector field of (¢/z°) iscalled aquadrupolewith quadrupole
moment g. _

We havethusexplained thevanishingcircul ationand flux of (1/z3): eachdf the
dipolesin [15a] isknown not to generateany circulation or flux, so the quadrupole
in [15b] won't either. You areinvited to continue thisline of thought by showing
(geometrically and algebraically) that the fusion of two quadrupoles yields the
so-called octupole field, (1/z4), and so on.

Dipoles, quadrupoles, octupoles, etc., are collectively known as multipoles.
Similarly, dipole moments, quadrupole moments, etc., are collectively known as
multipole moments.

9 Multipoles at Infinity

Although thereis no mystery surrounding the vanishing circulation and flux for
positive powers, it would still be niceto find a physical explanation analogousto
the onefor negative powers. To seehow this can be done, we begin by considering
theconstantfunctionf (z) = a, thePélya vectorfield of whichisaflow of constant
speed |a| inthedirectiona.

Standing in the midst of this flow, the fluid seems to originate far over the
horizon in the direction —a and to disappear over the horizon in the opposite
direction, as though both a source and a sink were present at infinity. To meke
sense of this idea, stereographically project the streamlines onto the Riemann
sphere. Sincethe streamlines are parallel linesin the directiona, their projections
are circles which all pass through the north pole in the same direction. We thus
obtain apicturesimilar to [11b], p. 462: adipoleat infinity!
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L et usanalysethisfurther. If wewerestanding at the midpoint of thesourceand
sink of thedoubletin [3], p. 452, theflow in our vicinity would have approximately
constant speed and direction. Asthesourceand sink recedefromustowardsinfinity,
ultimately coal escing thereto form adipole, the approximation to aconstant field
gets better and better. The snagisthat in this processthe magnitudeof thefidd at
any finite point dies away to nothing.

We seethisalgebraically in (18): D(z) — 0 ase — oo. However, if welet S
grow in proportion to the separation, so that (S/€) = const. = km, say, then as
¢ — oo thedoublet fidld tendsto the constant fidd D(z) = —k €%.

Given that z° yidldsadipoleat infinity, what might the Pélya vector field of z!
correspond to? Use your computer to seethat it is aquadrupoleat infinity. Verify
thisagebraically using (19). Continuing in this fashion, one finds[exerciseg] that
z% corresponds to an octupole at infinity, and so on.

10 Laurent's Series as a Multipole Expansion

The above ideas shed new light on the Laurent series and the Residue Theorem.
Suppose that an otherwise analytic function f (z) has atriple pole at the origin.
We know from Chapter 9 that f (z) will have aLaurent seriesof the form

d p

f(Z)='c‘13‘+—§+—

4 Z Z

D —
P(2)

+a+bz+c? 4. (20)

In the vicinity of the singularity, the behaviour of f is governed by its principal
part P, thePglya vector field of whichis

P(z) = +

a
23

RN
.+
NI)"O\

Figure[16]
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This we now recognize to be the superposition of a quadrupole, a dipole, and a
source/vortex combination of the type shown in [12]. Thus the principal part of
the Laurent series amounts to what a physicist would call a multipole expansion.

Tovisually grasp the meaning of such an expansion, consider [16] whichillus
tratesatypical P. Very close to the singularity the field is completely dominated
by the quadrupole with its characteristic four loops, but as we move dightly fur-
ther away the quadrupole’s influence wanes relative to the dipole. Indeed, at this
intermediate range weclearly seethe characteristic two loops of adipole. Findly,
at still greater distances, both the quadrupole and the dipole become insignificant
relativeto the source/vortex, the preciseform of whichisdetermined solely by the
residue p. Compare with [12], in whichp = A+ iB.

Continuing our outward journey, now well beyond the unit circle, the entire
principal part becomes negligible relative to the remaining terms of (20). Firsta
becomes important, then bz takes over, and so on. Thus as we approach infinity
thefield at first resembles adipole, then aquadrupole, and so on. However, unlike
the approach to the pole, on thejourney to infinity we may experience multipoles
of greater and greater order, without end.

Of coursein general f may possess other singularities and (20) will ceaseto
be meaningful when |z| increases to the distance of the nearest one. Nevertheless,
in the region where it is valid, we may still think of the non-negative powers as
representing multipoles at infinity.

To recap, Laurent's series and the Residue Theorem may be conceived o
physically as follows. The only term capable of generating circulation and flux is
(p/z), which may itself be decomposed into avortex of strength W = —27 Im(p)
andasourceof strength F = 27 Re(p). All theother termscorrespond to multipoles
which generate neither circulation nor flux; afinitecollection of thesereside at the
pole, whiletherest are at infinity.

Il The Complex Potential
1 Introduction

Phaseportraits are so convenient that it iseasy toforget that in general they cannot
represent the lengths of the vectors. In this section we shall see that if a vector
field iseither sourcelessor irrotationa (or both) then there exists a special way o
drawing the phase portrait so that the lengths are represented.

Although we shall ultimately be concerned with the Pélya vector fieldsof an-
alytic functions, which are both sourceless and irrotational, it is more instructive
to analyse the implications for sourcelessness and irrotationality separately. Nev-
ertheless, in view of the final objective, we shall continue to write the vector fidd
asH.

2 The Stream Function

Firstlet H beasourcelessflow of fluid. The Deformation Theorem (9) tellsusthat
the flux across a curve connecting two given pointsis independent of the choice
of thecurve. Thusif K isany contour from an arbitrary fixed point a to avariable
point z, the flux acrossit, namely
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v (z) = F[H, K],

will be a well-defined function of z, called the stream function. If we choose a
different point a then the new stream function will only differ from the old one by
an additive constant.

Suppose that z lies anywhere on the streamline through a. See [17]. Choosing
K to bethe portion of the streamlinefrom a to z, we seethat ¥ (z) = 0. Similarly,
suppose that g lies anywhere on a streamline through another point p. Taking K
tobeapathfromato p, followed by the section of the streamline from p toq, we
seethat W (q) = ¥ (p). In other words,

The streamlinesare the level curves of the stream function W.

Instead of constructing the phase portrait by drawing random streamlines,
suppose we do it as follows: choose a number k and draw just those streamlines
for whichw =0, £k, +2k, £3k, ... See[17]. Having drawn the phase portraitin
this special way, the speed of the flow is represented by the crowding together of
the streamlines. Let's justify this claim and make it more precise.

Since nofluidcrossesthestreamlines, wemay think of theregionlying between
two adjacent ones as atube down which fluid flows. Any curve connecting thetwo
sides will have the same flux, namely k. Adapting the language of Faraday and
Maxwell, we may thus describe the tube more quantitatively as a k-flux tube.

The shaded areain [17] is part of one such tube, the initial and final cross-
sections (lengths €1 and €2) having been drawn perpendicular to the flow. If kK is
chosen small, thespeed v = |H | of theflow will be approximately constant across
theseends, say v1 and v2. Thusthefluxesinto and out of the shaded region (which
must both equal k) are approximately €1v; and eavz. As Kk is chosen smaller and
smaller, these expressions become more and more accurate:

vl=_k— and v2=—k—. @1
€1 €

Figure [17]
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In order to maintainaconstant flux k, the speed must decrease as the tube widens.
To summarize:

Let the phase portrait of a sourceless vector field be constructed

using k-flux tubes. If k is chosen small, the speed of the flow at any

point will be approximately given by k divided by the width of the (22)
tubes in the vicinity of the point. For infinitesimal k, the result is

exact.

However, since the number of k-flux tubes passing through a given region will
vay inversely with k, our phase portrait will get very clutteredif k is chosen too
small. In practice (cf. [31, p. 452) we get agood feel for the speed of theflow with
relatively few streamlines.

Let's apply theseideasto the simple (hon-analytic) example H(z) =i z. The
Pélya vector fiddisthen

He—iz ﬁ:( y),
—X
the streamlines of which are clockwisecirclesround the origin, the speed of the
flow round each one being equal to itsradius. See [18].

Although this vector field is not irrotational [V x H = 2], it is sourceless
[V -H = 0], and thusit possesses a stream function. For convenience's sake, let's
choosea = 0. We dready know that the streamlines are origin-centred circles, o
to find the valueof ¥ on the streamline of radius R we must find the flux for any
path from theorigin to any point on thiscircle. Choosing the path to be the portion
of the positivereal axisfrom 0 to R, we seethat

ds=dx and N=(_(1)).

Thus

Figure[18]
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R
= (ﬁ-N)dSZ/ xdx = R
0

Knowingthestreamfunction wearenow in aposition to draw thespecial phase
portrait. Choosing k = (1/2) wefind that the radii of the streamlinesare+/1, /2,
V3, ... Figure [18] illustratesthese streamlines, and qualitatively confirms the
prediction of (22).As we move outward from the origin the streamlines become
more crowded together, reflecting theincreasing speed of theflow.

3 The Gradient Field

We have seen in geometrical terms how it is possible to reconstruct a sourceless
vector field H from aknowledgedf itsstreamfunction W. In order tofind asimple
formulafor H in termsof ¥, we need the concept of the gradient field V. This
isdefined to be the vector field

(% _ [ x¥ _ ;
vy = (ay)\ll = (ayql) = V¥ =3,¥+idW.

The gradient fidd VW has a smple geometric interpretation in terms of the
streamlinesof [17]. To seethis, we express theinfinitesimalchanged W resulting
from an infinitesmal movement dz = dx + i dy asadot product:

o dx\ _
dv = (0, ¥)dx + (0,¥)dy = (8y\11) . (dy) =VV¥.dz.
If dz istangent to a streamlinethen d¥ = 0, so V¥ has vanishing dot product

with this direction. Also, ¥ increases when dz makes an acute angle with V.
Thus

Thedirection of VW istheone that is orthogonal to the streamlines
and along which W increases. Thus —i V¥ points in the direction (23)
of H.

Se(19].

Figure[19]
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So much for the direction of V Q; what about its magnitude?In {19] (whichis
basically acopy of [17]) weimagine that k isinfinitesimal. Choosing dz = &€ds
in thedirection of V¥, wefindd¥ = |[VW¥|ds. In particular, if welet ds equal ¢
(the width of the k-flux tube) then dW¥ will equal k. Thus

VY| = (k/e).

But thisis precisely the formula we previously obtained for the speed v = [H| o
theflow! Thus V| = |H]|.

Combining thisresult with (23) we obtain thefollowing simpleformulafor H
intermsof w:

= _ = [ 3V
H=—iVV¥ <= H‘(—am)‘ 4

Try this out on our previous example H(z) =i z, the Pélya vector field of which
had stream function ¥ = (x2 + y2)/2.
Now consider the question, **What additional condition must be satisfied by
W if H is aso required to be irrotational?” The answer is that it must satisfy
Laplace’s equation:
AV =37V + 097 W =0.

Solutions of this equation are called harmonic, so we may restate the result as
follows:

A sourceless field isirrotational if andonly f itsstreamfunction is
harmonic.

The verificationis asimple calculation:
v xH Ox oy _

4 The Potential Function

Next supposethat H isaforcefieldwhichisknowntobeconservative(irrotational).
In this case it is the work rather than the flux which must be path-independent.
Thusif K isany contour from an arbitrary fixed point a to a variable point z, the
work done by the field in moving the particle along K is a well-defined function
of z,

d(z) = WIH, K].

Thisiscalled thepotentialfunction, though there are several pseudonymsdepend-
ing on the context: e.g., in electrostaticsit iscalled the™ electrostatic potentid ™, in
hydrodynamicsit iscalled the''velocity potentia*, and in the case of flowing heat
itisaready familiar asthe temperature. Aswith the stream function, changing the
choice of a merely changes ® by an additive constant.
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Figure (20]

Let's investigate ® as we did V. The level curves ® = const. are caled
equipotentials; what istheir geometric significance? As[20] illustrates, the answer
isthat

The equipotentials are the orthogonal trajectoriesthroughthelines
(25)

of force.

Thereason should beclear. A certain amount of work ® (p)isdonein movingthe

particlefrom a to p, but then no additional energy is expended in movingit toq

along the orthogonal trgjectory through p. Thus ®(q)= ®(p).

Instead of illustrating random equipotential's, [20] mimicsthespecial construc-
tion used in [17]: we draw just those equipotentials for which ® = 0, &I, £21,
+31,... Inthis picturethe same amount of work 1isrequired to move the particle
from each equipotential to the next. Let ustherefore call the region lying between
two such adjacent equipotentials an 1-work tube.

Supposethat 1ischosen small, and consider the work donein movingaparticle
along the correspondingly short cross-section é in [20]. In thelimit of vanishingl
wefind that

— 1

|H| = <. (26)
Thus the magnitude of the force is represented by the crowding together of the
equipotentials:

Let the equipotentials of a conservative force fidd be constructed

using 1-work tubes. If I is chosen small, the magnitude of the force

at any point will be approximately given by 1 divided by the width ~ (27)
of thetubes in the vicinity of the point. For infinitesimal 1, the result

isexact.
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Sincethe gradient field V@ is automatically orthogonal to the equipotentials
and has magnitude (I/8), we may combine (25) and (27) into the smpleformula

— = (0D
H=Vd < H_(aycp). (28)

Lastly, suppose that H is required to be sourceless. Since

= (8 (89 _
on(3)(38)e

we see that

A conservativeforce field is sourcelessi and only f itspotentia
function is harmonic. (30)

5 The Complex Potential

We now know two things about avector field H that isirrotational and sourceless:
(i) both ® and W exist; (i) itisthePélya vector field of an analyticfunction. Inthis
section we shall attempt to illuminatethe connections between these two facts.

Since ¢ and ¥ both exist, we may superimpose pictures of types [17] and
[20], thereby simultaneoudly dividing the flow into mutually orthogona k-flux
tubesand 1-work tubes. Beforedrawing this picturelet us choosethe incrementd
work to be numerically equal to the increment of flux: 1 = k.

Let us call theintersection of a k-flux tube with a k-work tube a k-cell. We
already know that the sides of each k-cell meet at right angles, so for small k
they will be approximately rectangles. The sides of such a rectangle will be the
previously considered widthse and § of thetwo kindsof tube. But combining the
results (21) and (26) we seethat

k — k
-=|Hl==- = §{é=e.
€ é
Thus
In thelimitd vanishingk, the k-cellsare squares. 3D

TheLHS of [21] illustratessuch adivision into approximately square k-cells. We
havelabelled ® = 11k and ¥ = 3k, but we have l€eft it to you [exerciseg] to label
the remaining streamlines and equi potential s;this can only be donein one way.

Note that once such a special phase portrait (including the equipotentials) has
been drawn with a small value of k, the value of f; Hdz is easy to find. For if
L crossesm equipotentialsand n streamlines, an accurateestimate of theintegral
will bek(m +in). If L crossesan equipotential or streamline more than once, how
should m and n be counted?



The Complex Potential 501

Figure [21]

We mentionin passing that thereisan interesting physical interpretation of the
k-cellswhich is due to Maxwell [1881]. Suppose that the vector field represents
the flow of afluid having unit mass per unit area. In the limit of vanishing k, the
speed v will be constant throughout any particular cell, and the kinetic energy of
thefluidin that cell will be

2
Kinetic energy = 5 (area) V2= 1e? (f) = Li2,

Thus

Each k-cell containsthe same amount of energy, and the total en-
ergy inaregionisthus obtained by counting the number of k-cells
contained withinit.

If we reinterpret the vector field as an electrostatic field, and correspondingly
reinterpret "energy" as electrostatic energy, the result is still valid; this was the
context in which Maxwell discovered it.

The result (31) is intimately connected with ideas of complex analysis. To
see this, let us combine the potential and stream functions into a single complex
function © called the complex potential:

Q@) =) +i¥(2).

Returning to the dominant point of view of this book, think of £ as a mapping.
TheRHS of [21] showstheimage of the special phase portrait under this mapping:

The complex potential maps streamlines to horizontal lines and
equipotentialsto vertical lines. Furthermore, each square k-cell is
mapped to a square of side k. Thus 52 is an analytic mapping.

We may check this symbolically. Equating (24) and (28) we obtain
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uhd\ v

ve)=(-3%).
which are the CR equationsfor 2.

What isthe amplitwist of the complex potential? By considering the effect o
Q ontheblack k-cell in [21] we seethat if the streamline through z makesan angle
6 with the horizontal, the twist of 2 at z is —6, which we recognize as the angle
of H(z). We aso see that the amplification of 2 is (k/€), which we recognizeas
|H| = |H|. Thus
Q' =H.

Since H is the derivative of an analytic function, it must itself be analytic. We
have thus obtained a second, more geometrical proof that the class of sourceless,
irrotational vector fieldsis the same asthe class of Pélya vector fieldsof anaytic
functions.

Theresult ' = H can be checked symbolically. Substituting one of the CR
equationsfor € into (28), we obtain

H=Vd=3P+idy0 =080 —-idV=0Q=Q.

When we thought of an analytic functionf asaconformal mapping, f' repre-
sented itsamplitwist. But since any such function may instead be thought of asthe
complex potential of aflow, we now have another interpretation of differentiation:
f' isthe conjugate of the velocity of the flow described by f . Correspondingly,
we also havea new interpretation of critical points: they are the places wherethe
velocity vanishes. Such places are called stagnation points in the flow.

By analysing theimplications of sourcelessness and irrotationality separately,
we have been able to understand the Pélya vector fields of non-analytic functions
that may possessa stream function or a potential function, but not both. If we hed
instead restricted ourselves from the outset to the Pélya vector fields of analytic
functions, the complex potential could have been obtained more rapidly (but less
revealingly) asfollows.

If L isany contour from an arbitrary fixed point a to avariablepoint z, we may
define

QL(Z):/LH(w)dwzwﬁq‘, L1+iF[H, L]

But, as we saw in Chapter 8, if H isanalytic then thisintegra isindependent o
L, and the well-defined function

Q@) = fz Hw)dw = ®(2) +iV¥(2)

isin fact the antiderivative of H. More explicitly, the image 2(L) of a contour
L from p toq isthe path taken by the Riemann sum for the integral of H dong
L. The value of the integral is then the vector connecting the start of 2 (L) toits
finish, namely, Q(g) — Q(p).
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6 Examples

(1) We previously claimed that the streamlines of the dipole H = (1/z2) were
perfect circles, and we asked you to provide a ssmple geometric proof. A second
demonstration is obtained by finding the complex potential:

— 1 , 1 1
H = _—2— ——1 Q = —2 == Q _ + C.
F4 b4 b4
The streamlines are the images under Q~!(z) = —1/(z — c) of horizontal lines.

Theresultfollowsfromthefact that inversionsendsstraight linestocirclesthrough
theorigin.

(2) A uniform eastward flow has complex potential 2 = z. If we insert adipole

of complex potential & = (1/z) into this flow then the new flow will be the
superposition of the two individua flows and thus will have complex potential

1
Qi)=z+-.
z

Using your computer you may verify that the streamlines and equipotentialsare as
shown in [22]. Note how the streamlines emanating from the dipole are deformed

Figure [22]
out of perfect circularity by the uniform flow, but that this distortion diminishesas
theorigin is approached.

(3) A source of strength 2 at the origin has vector field H = (1/z). If we choose
to measure work and flux along a path L emanating from z = 1 then [see p. 409]
the complex potentia is

Q) =D@)+iV(z) =log;(z) =In|z| +i0L(2).
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Figure [23]
Whilethework @ issingle-valued, theflux ¥ isamultifunctionwhosevauesdiffer
from each other by multiplesof 2. This makes perfect sense sinceeach time L
encirclesthe sourceit interceptsthefull 2z of fluid being pumpedin there. Naote
that the single-valued inversefunction 71 (z) = ¢ doesindeed map horizontal
and vertical lines to the source's streamlines and equipotentials.

If we wish to obtain asingle-valued complex potentia we may do so by con
fining our attention to any simply connected region not contai ning the source. The
shaded region D in [23] is an example. Any two pathsfrom 1 to z that lie whally
within D may be deformedinto each other without ever leaving D, hencewithout
crossing the source, hence without altering the flux. For example, we see that for
the particular choice of D in [23], theuniquevaluesof W at (1+i) andat (2 2i)
are (/4) and (97 /4). However, adifferent choice of D might well yield different
vauesof ¥ at thesetwo points.

More generdly, if D isany simply connected region not containing any sin-
gularities of an otherwise analytic H, the Pélya vector field H will possess a
single-valued complex potential in D.



Exercises 505

IV Exercises

1 For each of thefollowing vector fields X verify that the geometricformulae(5)
and (6) yield the correct vauesfor the divergenceand for the curl:
() X =(1/3).
(i) X =z.
(iii) X = x2, wherez =x Tiy.
(iv) X = y2, wherez =x Tiy.
(v) X =i(1/r?)e'8, wherez =rei8.
2 For each of thefollowing vector fields X, calculate F[ X, C] and W[X, C] for

the given loop C, then check your answers by substituting the results of the

previousquestion into (7) and (8).

(i) X = x?, and C istheedge of therectanglea < x < b, -1 <y <1,
traversed counterclockwise.

(i) X =i(1/r?)€'8, and C istheedgeof theregiona <r < b,0 <6 < m,
traversed counterclockwise.

3 Useacomputer to draw thePélya vector field of f (z) = 1/[z 5inz] and thereby
identify thelocations and orders of the polesof f (z). For each of thefollowing
choicesof C, numerically estimate fc f (2) dz by making on-screen measure-
ments of the vectors, then estimating the flux and circulation round C. In each
case check your estimateby calculating the exact answer using residue theory.

(i) Let C beasmall circlecentred at- n.

(i) Let C beasmall circlecentred at 0.

(iii) Let C beasmall circlecentred at n.

(iv) Let Cbeasmadl circlecentred at 27.

(v) Let C bethe boundary of therectanglel < x <7,-1<y <1

2

4 Repeat parts (i) and (ii) of the previousquestion using f (z) = zcosec“z.

5 Let L be a contour from the real number —8 to +0. By choosing L to be a
line-segment, and then sketching the Pélya vector field at pointsalong L, show
that [, z '% dz ispurely imaginary. Verify thisby calculating the exact value of
theintegral.

6 All complex analysis texts recognize the great utility of theinequality

l]L f(@dz

< /L [f (@) -dz], (32
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but none that we know of have sought to answer the question, "When does
equality hold?" This is probably because no elegant answer is forthcoming
(cf. our attempt in Chapter 7) without the concept of the Pélya vector field.
However, armed withthePélya vector field, wehavewhat weshall call Braden’s
Theorem®:

Equalityholdsin (32) ifand onlyif the contour L cutsthestreamlines
of the Pdlya vector field off at a constantangle.

Explain Braden’s Theorem.
7 Continuing from the previous question, suppose that f (2)=z.

(i) Show that if L isa segment of the spiral with polar equation r = eS, then
the condition of Braden’s Theorem is met.

(if) Verify by explicit calculation that egquality does indeed hold in (32), as
predicted.

8 Consider the flow created by (2n + 1) sources, each of strength 27, located at

0, £n, 2=, ..., £nm.

(i) If £2,(2) denotesthe complex potential of thisflow, show that

Z2 22 Z2
Qn(Z) =In [Z (1 — F) (1 - ﬁ) e (1 — m)] + const.

(i) Ignoring the constant, and referring to Ex. 13 on p. 449, deduce that as the
number of sourcesincreases without limit, 2, (z) tendsto £2(z) = In[sin Z].

(i) Check that thisanswer makessense by usingacomputer todraw thevel ocity
vector field, v =3’

9 (i) Explain why the derivative of the complex potential of a source yields the
complex potential of adipole.

(ii) Referring to the previous question, draw a sketch predicting the appearance
of the flow whose complex potential is Q2(z) = j—z In[sin z]. Check your
answer by getting the computer to draw this flow.

10 Reconsider the term CZ in the local decomposition (17) of a genera vector
fidd. See [11].

(i) Show that thevisual appearance of thevector field C zisessentially indepen-
dent of the valueof C. More precisely, show that if C = ¢'¢ then increasing

6Braden [1987]. We independently recognized thisfact, probably at about the same time as
Braden himself.
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¢ merely causes the entire picture of the vector field CZz to rotate, in fact
exactly half asfast ase'? rotates.

(ii) To make the result vivid, create a computer animation of the vector field
€' 7 as ¢ increasesfrom 0 to 7.

(iii) Moregenerally, show that if nisaninteger and F(z) standsfor either z* or
7", then the vector field of e*¢ F is obtained by rotating the vector field of
F through ¢ /(n + 1). [Note that then = —1 fields (including sources and
vortices) are exceptional .]

11 Consider aflow such that theinversecomplex potential is Q! (w) = w T e".
Use a computer to draw the streamlines, and verify mathematically that the
picture may be interpreted as the flow out of achannel ~7r < Im(z) < =,
Re(z) < -1

12 Consider the flow with complex potential

1Te +1
Q(Z)’—‘E[Zztl]'

Use a computer to draw the streamlines, and verify mathematically that the
picture may beinterpreted astheflow that results when the dipole with complex
potential ©2(z) = (1/z) isconfinedto the channel —7 < Im(z) < =.

13 Continuing from the previous question, what would the new complex potential
beif fluid were flowing down the channel with speed v prior to theinsertion of
the dipole? Check your answer by using acomputer to draw the streamlines.

14 Supposethat thedoubl et consisting of asource of strength2z at z = 1andasink
of equal strength at z = —1isinserted into the uniform flow with real, positive
velocity v. Locate the ' stagnation points” (singular points of zero velocity) of
the net flow, and describe (perhaps with the aid of a computer animation) how
they moveas v variesfrom 0 to 3.

15 If two sources are located at opposite corners of a square, and two sinks are
located at the other two corners, and all four are of equal strength, then show
that the circle through these four pointsis a streamline. Check this by getting
the computer to draw the complete flow.

16 Show that the streamlines produced by two vorticesof equal strength are Cassi-
nian curves (figure[8b], p. 61) whosefoci are thelocations of the two vortices.
[Notethat your reasoningimmediately generalizes: Cassinian curveswithn foci
arethe streamlinesof n equal vortices placed at the foci.]

17 Show that the streamlines [15b] and the equipotentials of a quadrupole are
lemniscates (see [9], p. 62).
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Flows and Harmonic Functions

I Harmonic Duals
1 Dual Flows

Asin the previouschapter, let H = €’ beasteady, sourceless, irrotational vector
field with complex potential 52 = & + iW. If at each point werotate H through
a fixed angle 6 then we obtain the Pélya vector fidd of the anaytic function
Hs = e~ H, namely, Hy = ¢'” H. Thusthisrotated vector fieldisautomatically
sourceless and irrotational, and its complex potentia is Qs = e~*? Q. Writing
Qg = ®s Ti Wy, the potentia and stream functions are therefore

®y = (cos6) D+ (sin6)¥ and Wy = (cos6) ¥ — (Sin6) P.

Henceforth we shall concentrate on the particularly simple and important case
in which 6 = +(7r/2). After rotating H through this right angle we obtain the
Pélya vector field of Hy/2, for which we shall use the special symbol H. Thus
A= ﬁ,,/z = iH. In complex analysis, the standard terminology is to say that
H is"conjugate” to the original flow H. However, | know of no mathematical®
connection between this concept and the familiar one of complex conjugation.
Furthermore, our use of Pélya vector fields (involving genuine complex conjuga
tion) brings these two senses of *'conjugate' into direct conflict, for the complex
conjugateof theorigina flow is not the' conjugate” flow.

Fortunately,in other areasof mathematics(e.g., topol ogy) thereisanother term

that is commonly used to describe thisidea. We therefore propose to call H the
dual of H. Similarly, let uscall the potential and stream functions of the dual flow
thedual potential and the dual streamfunction.

Later we shall seethat the concept of adual flow is very useful. For example,
having found the flow of a fluid round an obstacle, the dua flow represents the
electric field which solves an analogous problem in el ectrostatics.

Asinteresting examples of dual flows, consider what happensin the vicinity
of asingularity. Figure [1}] illustrateshow, as 6 variesfrom 0 to (r/2), a source
gradually evolvesinto adual vortex of equal strength. Nate (c.f. [12], p. 489) that
the intermediate flow may also be viewed as a superposition of the original flow
and itsdual. Indeed, thisistrue quite generaly:

11 inguistically, the common origin of both termsis the Latin word " conjugatus”, meaning
joined together.
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Original Source Dua ortex
=0 6=nmn/4 6=mn/2 A

Figure[1]

Hy = (cosHH T (sno)H.

Check for yoursdlf that thetype of qualitative changeof flow exhibitedin [1] does
not occur inthecase of higher multipoles. For example, thedual of adipoleisjust
another dipole. As® variesfrom 0 to (;r/2), aredl theintermediate flowsdipoles
as well? See Ex. 10 of the previouschapter.

Observethat in passing from aflowtoitsdual theroles of the streamlinesand
equipotentialsareinterchanged: thestreamlinesaof thedual flow aretheequipoten-
tiasof the original,whilethe equipotentials of the dua flow arethe streamlinesof
the original. Symbolically, thisinterchangeof rolesis manifested in the fact that
thedual potential and stream functionsare

d=+v ad U=-0.

The difference of sign in these two equations is easily understood when we
look at {2], which depicts atypical flow and its dua. [Streamlines are solid and

Origina Flow

Figure[2]
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equipotentialsare dashed.] Recall that if wethink of these picturesasforce fields,
workisdoneby thefieldwhen aparticle movesaong alineof force, sotheorigina
and dual potentialsincrease in the illustrated directions. Similarly, when thought
of asafluid flow, the flux across a directed segment of curveis positive when the
fluid crossesit from left toright, so the original and dual stream functionsincrease
intheillustrated directions. We now seeclearly that ¢ and W increasein thesame
direction, while ¥ and ¢ increase in opposite directions.

Given a complex potential 2 = & + i W, we may thus think of W as either
the stream function, or as the dual of the potential function. Likewise, ® may
be thought of as either the potential function, or as minus the dual of the stream
function. Since any analytic function f = « +iv may be thought of asacomplex
potential, we may extend this language and say that visdual to u, and that —u is
dual to v.

Finally, we cannot resist at least mentioning two miracul ous connections be-
tween the above ideas and the study of soap films, also known as minimal sur-
faces. First miracle: Each complex analytic function H( Z) describes the shape of
aminimal surface, and vice versa. Second miracle; Varying 6 causesthe minima
surface corresponding to Hy ( Z) to undergo stretch-free bending: all these minimal
surfaces have identical intrinsic geometry. For example, if H corresponds to the
so-called helicoid, then H correspondstotheso-called catenoid, and [3] illustrates
thestretch-free bending of oneinto theother, eachintermediate surfaceitself being
aminimal surface.

For an elementary introduction to the fascinating subject of minimal surfaces,
seeHildebrandt and Tromba[19841]; for themathematical detail s, see Nitsche[1989].

helicoid

catenoid

H ()

Figure[3]
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2 Harmonic Duals

We know that both the real and the imaginary parts of an analytic function are
automatically harmonic. It is therefore natural to wonder if, conversely, every
harmonicfunctionistherea (orimaginary) part of someanalytic function. Aswe
shall see, thisisindeed thecase. That is, givenaharmonicfunction # we canaways
find another harmonic function v, the harmonicdual of u, such that f = u +iv
isanaytic. [Again, the standard terminology isthat v isthe" harmonic conjugate”
of u]

We make two remarks before proceeding. First, if v isaharmonic dua then
s0 is v + const., and consequently v will only be uniquely determined if we
impose additional conditions, such as v vanishing at a particular point. Second,
theharmonicdual of asingle-valuedfunction may itself beamultifunction. Witness
thecaseu =In|z|, illustrated in [1], for which v = arg(z).

Given an irrotational vector field, we know how to construct a potential func-
tion. But, conversely, if we are given areal function ®(z) then we may construct
anirrotational vector field H for which @ isthe potential function, namely,

H=Vo.

If & is harmonic then we know [(30), p. 5001 that H will be sourceless, and so
it will possess a stream function W. Since H isirrotational, ¥ is harmonic. The
complex potential £ = @ i W will then bean analytic function having asitsreal
part the given harmonic function ®. In other words we have shown that

The harmonic dual of a given harmonic function & is the stream
function of the vector field V ®.

Alternatively, ¥ isthe potential function for the dual of V&.

Thisresult meansthat factsabout anal ytic functions can sometimes berecast as
factsabout harmonicfunctions. For example, in Chapter Qwesawthatiff = u+iv
isanalytic then (f )= f(p), where ( f )denotesthe average of f over any circle
centred at p. It followsthat the harmonic rea part of f obeysthelaw (u)= u(p).
But we now know that if u isany given harmonic function then we may construct
ananalyticfunctionfor whichitisthereal part. Wethus obtain Gauss’ MeanValue
Theorem:

The averagevalue of a harmonicfunctiononacircleisequal tothe
value of the function at the centre of the circle.

We obtain another example by reconsidering [14], p. 356, in which we saw that
if f =uivisanalyticin some region whoseboundary isT", then the maximum
of u occurs on I". The existence of harmonic duals thereforeimplies that

If a function isharmonicin some region, its maximum occursonthe
boundary of that region.

The same goesfor a (nonzero) minimum of a harmonic function.
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Next wegiveexplicitformulaefor theconstruction of harmonic duals. To meke
V¥ unique, let usdemand that it vanish a somepointa. Thenif X isany pathfrom
atop, we havetheflux formula

W(p):f(Vd>)-Nds.
K

Alternatively, in termsof complex integration, we have

¥(p) =Im U (W)dz].
K

Aswe have seen, if werestrict ourselvesto a simply connected region throughout
which @ is harmonic, these integrals are single-valued. However, if the region
is not smply connected, or if ® has singularities, then (in general) ¥ will bea
multifunction.

We illustrate these formulae with the example ® = x3 — 3xy2, which is
easily seen to be harmonic. Choosea = 0, let p = X + i'Y, and choose K to
be the line-segment between them, which may be represented parametricaly as

=x+iy=(X+iY)t,where0 <t < 1. Since

vo- (107 - () v s (LX),
and ds = /X2 + Y2 dt, thefirst formulayields[exercise]
v =3X%Y - Y3,
Alternatively,since
Vo = (3x% — 3y%) +i 6xy = 372,

the second formulayields
X+iY
¥ =Im U 3z2dz] =Im (X +iY)® =3Xx%y - Y3
0

The simplicity of the second method depended crucialy on our ability to
express Vo(x, y) asafunction '(z) of z, butit is not dwaysso obvious how to
do this. However, there does exist a systematic method of doing thisin the case
where & isdefinedin aregion containing a segment of thereal axis.

Let V (x) bethevectorfieldevaluatedonthereal x-axis,i.e., V (x) = V®(x, 0).
If ®(x,y)isanexplicitformulaintermsadf thefamiliar functions (powers, trigono-
metric, exponential) that possess complex anaytic generalizations, then V (x) is
such aformulaalso. Henceif in theformulafor V (x) we now replace the symbol
x with the complex variable z then we obtain an analytic function V (z) which
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agreeswith ©'(z) when z isreal. But, aswe saw in Chapter 5, thisimpliesthat the
two functions must continue to agree when z becomes complex.

Thus our recipe for finding €'(z) as an explicit formulain z is to caculate
Vo(x,y),set y =0, then substitute z for x:

Q' (z) = Vo(z,0). n
For example, if & = cos[cos x sinh y] eSi"* oshY then [exercise]
V&(x,y) = cos[cos x sinh y]e3"* ©hY cosx cosh y+ F,

where F stands for three terms which vanish when y = 0. Using (1) we get
Q/(z) = 9™ cosz, and hence ¥ = Ime"z,

I Conformallnvariance
1 Conformal Invariance of Harmonicity

Let w = f(z) be a complex analytic function of z, which we will think of as
aconformal mapping (rather than as a vector field) from the z-plane to the w-
plane. Using f, any real function ®(z) in the z-plane may be copied over (or
"transplanted")to afunction ®(w) in the w-plane by defining

BLf ()] = D(2). )

In other words, corresponding pointsin the two planesare assigned equal function
vaues. We will now show (first symbolically then geometrically) that

Harmonicityisconformallyinvariant: d(w) isharmonicifand only 3)
if ®(z) isharmonic.

As befor~e, think of 5(w,) as the potential of the vector field v E~V<T>. If
and only if & isharmonic, V possesses an analytic complex potentid — 2(w) =
5(w) +i ¥ (w), where the stream function W isthe harmonic dual of ®. Sincef
isanalytic, so isits composition with :

Q) = QUf )] = D) +iV Q).

Thus ®(z) isthereal part of an analytic function, and so it is harmonic.

Thereisavery simple geometric idea behind thisimportant result. Figure[4]
illustrates a visual means of checking whether or not a given real function @ is
harmonic. Once again, think of ® asthe potential of theforcefieldV = v®. We
know that ® is harmonic if and only if V admits a complex potential. This we
know occurs if and only if the field may be divided into a grid of (infinitesimal)
square k-cells.

To check this we should therefore construct a*'test grid:
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Figure [4]

(i) Withasmall valueof k, draw the equipotentials ® = 0, £k, +2k, £3k,....

(il) Choose one of the resulting k-work tubes [shaded in the figure] and draw
line-segments acrossit in such a way that the tubeis divided into sguares.

(iii) Extend theseline-segmentsinto lines of force[dashed] of V, i.e., orthogonal
trajectories through the equipotentials.

Then @ is harmonic if and only if these lines of force divide each k-work tube
into squares. Figure [4a] illustrates this test for a @ that is harmonic, while [4b]
illustrates it for one that is not. The result (3) can now be seen as nothing more
than a statement of the conformal invariance of this geometric test. Let us spell
this out.

Equation (2) definesthe potentia of each point in the z-plane to be the same
asitsimage point (under f ) inthe w-plane. Thus f mapsthek-work tubesof ¢ to
the k-work tubes of ®. See[5]. Finally, since f isconformal, the constructed test
grid for @ will be composed of squaresif and only if theimage grid is composed
of squares. Figure [5] illustrates the case where the potentials are harmonic.

Figure[5]



Conformal Invariance 515

2 Conformal Invariance of the Laplacian

Theresult (3) ismerely a specia case of thefollowing more general result on the
conformal invariance of the Laplacian operator A:

AD(2) = [ADW)]|f'(2)I%. )

We will givetwo explanations of this result.

For thefirst explanation, we rephrase the result in terms of flux densities. Just
aswedid for @ in the w-plane, let us construct the vector fieldV = V& in the
z-plane. We wish to understand this:

V.V(G) = [V-Vw)llf @ (5)

Now consider [6], whichillustratesatoy model of the phenomenon. The poten-
tia ®(z) = (S/4) |z|*> generates avector field V = (§/2) z of uniform divergence
V.V = S Wwithasmall valueof k, theLHSof [6] showsthe special equipotentials
® =0, £k, £2k, £3k, ..., for which the strength of the fieldisinversely propor-
tional to the separation of the curves. Now apply the mapping w = f (z) = cz,
whichis arotation and an expansion by |c|. By definition, these expanded circles
are equal-valued equipotentials of ¢ (w), so that

P(w) = d(2) = iSz> =}

ThefieldV = V ® therefore has uniform flux density V.V = S/Ici?, proving (5)
for this case.

More intuitively still, in [6] compare the flux leaving the shaded disc on the
left with the flux leaving the shaded image disc on the right. Since the separation
of adjacent equipotentialsis scaled up by (¢, the strength of thefield on therim of
theimage disc is scaled down by |c|, while the circumference of therimis scaled
up by [cl. The net effect isthat the flux of V out of theimage disc is the same as

Figure [6]
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theflux of V out of theorigina disc. Findly, sincethe area of thediscis scded
up by |c|?, thefluxdensity is scaled down by |c|?.

To employ thisideain the generd setting, it is only necessary to recognize
that the local behaviour of agenerd potential is very smilar to our toy potentia,
and that the local effect of ageneral analytic mapping f isvery similar to our toy
mapping, with | f' | playing therole of |c|.

We will not spell this out completely because we will shortly be able to give
a second explanation which is even smpler. However, according to (17), p. 487,
the behaviour of V very near to zg isexpressible as

V&hﬂvwﬁmE%QZ+Yw,

where Y is sourcelessand, of course, irrotational. Correspondingly, the local be-
haviour of the potential is?

®(2) = V-Vl + T(2), 6)

where Y isharmonic, and r = |z — zo] isthesmall distancefrom zg. Having mede
explicit the connection with the toy model, we leave the remaining detailsto the
interested reader.

3 The Meaning of the Laplacian

Given areal function ®(z) in the z-plane, we have seen that its gradient vector
fidd V & isageometric quantity, independent of the coordinates used to describe
z. Wehave a so seen that thedivergenceof avector field measuresits flux-dengty,
S0 it too is geometrically defined. It follows that the Laplacian A® = V:V®
must possess a coordinate-independent interpretation.

In order to state thisinterpretation,recall that if C isacirclecentredat pthen
(@) denotesthe averagevalueof ® on C. Wewill show that

The Laplacianof ® at p measuresthe amount by whichthe average
valueof ® on an infinitesimal circle centred at p exceedsthe value
of ® at p itself More precisely, if r isthe infinitesmal radiusof this %)
circlethen

(@) — ®(p) = ir* A

Note that this result is in accord with Gauss Mean Vaue Theorem, which
says that if @ is harmonic then (®) — ®(p) = 0 for circlesof ay sze, nat
just infinitesimal ones. In fact if you have aready convinced yoursdf of (6) then
[exercise] you may derive(7) by using thefact that the harmonicfunction Y obeys
Gauss Mean Vdue Theorem.

2This may alsobederived directly by takingthe Taylor seriesfor ® and rewritingit in arather
unobviousway.
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Before giving a more direct derivation of (7), let us return to Gauss Mean
Vaue Theorem itself and rederive it without appealing to complex analysis®. Let
V = V& be the vector field of the potentia function ®. Theflux of V out of a
(non-infinitesima) circle C of radiusr isthen [exercisg]

FIV, C] =277 3,(®).

Thusif @ is harmonic, so that V is sourceless, then F = 0, by (7), p. 481. Since
3, (®) = 0, we seethat (@) isindependent of theradius of C. Shrinking C down
to p, we deduce that this radius-independent value must be ¢ (p). Done.

Now suppose that V is not sourceless, but that its flux-density V.V = A®
is constant. Gauss Divergence Theorem [(7), p. 481] then yields F[v, C] =
nr2 A®. Inserting thisinto the previousresult, we find that

3 (®) = 5rAd,

which may beintegrated to yield theformulain (7). To complete the explanation
of (7)itisonly necessary to observethat the Laplacianof anarbitrary ® isconstant
within an infinitesimal circle.

Knowing the meaning of the Laplacian,it isasimple matter to understandits
conformal invarianceas expressedin (4). The analyticmapi)ing f amplitwistsan
infinitesimal circleC centred at p to aninfinitesimal circleC centred at P, thenew
radius being 7 = (f'(p) | r. By definition, d(p) = @ (p). Likewise, the values of
® at points of C arethesame asthose of @ at the preimageson C, so (®)onC
equals () on C. Thus(7) implies

P AD(p) =72 AD(P) = | (P)Ir? AD(P),
from which (4) followsimmediately.

il A Powerful Computational Tool

A zealot might wish for an idea world in which calculation would aways be
relegated to the confirmation of insights provided by geometry. Alas, even this
author must confessto occasional lapsesin which calculation has preceded under-
standing! We now describe a powerful computational tool which in many areas of
complex analysis providesa considerable saving of labour. In the next sectionthe
study of the complex curvature' [cf. Chapter 5] will provideagood showcasefor
itssimplicity and elegance.

The gradient operator V' of vector calculus acts on areal function R(x, y) to
produce the gradient vector field

0 ;R
VR = ")R=<" )
(ay dyR

3Previously wegot it from (f) = f (p),whichin turn came from Cauchy’s formula.
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and wearefree (aswehave previously done) to think of thisasacomplex function
VR =0;R+id,R.

From this we may abstract the complex gradient operator V, together with the
conjugate operator V:

V=0+id, ad V=20 —id.

These two operators open the way to an exciting new method of calculation.
Given avector field
f=("
=1, )

we haveseen how thereal version of V may beformally dotted or crossed withf to
yielditsdivergenceV -f oritscurl V x f. Theinterpretationsof thesequantitiesas
flux and work densities showsthemto betruly geometric, that i sto say, coordinate-
independent. However, there would seem to be no natural way of applying V
directly to f to obtain a new vector field V f. However, if we replace V by its
complex version V, and replace the vector field f by the complex function f =
u T iv, then thereis a natural definition:

Vf=(0x+idy) u+iv) = (0xu — dyv) +i(0xv + dyu).
The equivalent expression
vf =vutiVv=Vvut (Vurotated %)

helpsto seethat VT isgeometrically meaningful (because Vu and Vv both are).
The power of the complex gradient derives from the following fundamental
result [exercise]:

A complex function f isanalytici andonly f Vf =0, in which
case weal