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Theories of the known, which are described by differentphysical ideas, may be equivalent 
in all their predictions and hence scientifically indistinguishable. However, they are not 
psychologically identical when trying to move from that base into the unknown. For dif- 
ferent views suggest different kinds of modifications which might be made and hence are 
not equivalent in the hypotheses one generates from them in one's attempt to understand 
what is not yet understood. 

R. P. Feynman [I9661 

A Parable 

Imagine a society in which the citizens are encouraged, indeed compelled up to 
a certain age, to read (and sometimes write) musical scores. All quite admirable. 
However, this society also has a very curious-few remember how it all started- 
and disturbing law: Music must never be listened to or pe~ormed!  

Though its importance is universally acknowledged, for some reason music is 
not widely appreciated in this society. To be sure, professors still excitedly pore 
over the great works of Bach, Wagner, and the rest, and they do their utmost to 
communicate to their students the beautiful meaning of what they find there, but 
they still become tongue-tied when brashly asked the question, "What's the point 
of all this?!" 

In this parable, it was patently unfair and irrational to have a law forbidding 
would-be music students from experiencing and understanding the subject directly 
through "sonic intuition." But in our society of mathematicians we have such a 
law. It is not a written law, and those who flout it may yet prosper, but it says, 
Mathematics must not be visualized! 

More likely than not, when one opens a random modern mathematics text 
on a random subject, one is confronted by abstract symbolic reasoning that is 
divorced from one's sensory experience of the world, despite the fact that the very 
phenomena one is studying were often discovered by appealing to geometric (and 
perhaps physical) intuition. 

This reflects the fact that steadily over the last hundred years the honour of 
visual reasoning in mathematics has been besmirched. Although the great mathe- 
maticians have always been oblivious to such fashions, it is only recently that the 
"mathematician in the street" has picked up the gauntlet on behalf of geometry. 

The present book openly challenges the current dominance of purely symbolic 
logical reasoning by using new, visually accessible arguments to explain the truths 
of elementary complex analysis. 
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Computers 
In part, the resurgence of interest in geometry can be traced to the mass-availability 
of computers to draw mathematical objects, and perhaps also to the related, some- 
what breathless, popular interest in chaos theory and in fractals. This book instead 
advocates the more sober use of computers as an aid to geometric reasoning. 

I have tried to encourage the reader to think of the computer as a physicist would 
his laboratory-it may be used to check existing ideas about the construction of 
the world, or as a tool for discovering new phenomena which then demand new 
ideas for their explanation. Throughout the text I have suggested such uses of the 
computer, but I have deliberately avoided giving detailed instructions. The reason 
is simple: whereas a mathematical idea is a timeless thing, few things are more 
ephemeral than computer hardware and software. 

Having said this, the program " f (z)" is currently the best tool for visually 
exploring the ideas in this book; a free demonstration version can be downloaded 
directly from Lascaux Graphics [http://www.primenet.com/lascaux/l. On occa- 
sion it would also be helpful if one had access to an all-purpose mathematical 
engine such as Maplem or Mathematicam. However, I would like to stress that 
none of the above software is essential: the entire book can be fully understood 
without any use of a computer. 

Finally, some readers may be interested in knowing how computers were 
used to produce this book. Perhaps five of the 501 diagrams were drawn us- 
ing output from Mathematicam; the remainder I drew by hand (or rather "by 
mouse") using C O ~ ~ ~ D R A W * ~ ,  occasionally guided by output from " f (2)". I 
typeset the book in LA@ using the wonderful Y&Y T$ System for Windows 
[http://www.YandY.com/l, the figures being included as EPS files. The text is 
Times, with Helvetica heads, and the mathematics is principally ~ a t h ~ i m e y  
though nine other mathematical fonts make cameo appearances. All of these 
Adobe Type 1 fonts were obtained from Y&Y, Inc., with the exception of Adobe's 
MathematicalPi-Six font, which I used to represent quaternions. Having typeset 
the book, I used the D V I P S O N E ~ ~  component of the Y&Y TEX System for Win- 
dows to generate a fully page-independent, D ~ ~ - c o r n ~ l i a n t  ~ o s t s c r i ~ t @  file, which 
I transmitted to Oxford via the Internet (using FTP) in the form of a single ZIP 
file. Finally, OUP printed the book directly from this ~ o s t s c r i ~ t @  file. 

The Book's Newtonian Genesis 
In the summer of 1982, having been inspired by Westfall's [I9801 excellent biog- 
raphy, I made an intense study of Newton's [I6871 masterpiece, Philosophiae Nat- 
uralis Principia Mathematica. While the Nobel physicist S. Chandrasekhar [I9951 
has sought to lay bare the remarkable nature of Newton's results in the Principia, 
the present book instead arose out of a fascination with Newton's methods. 

It is fairly well known that Newton's original 1665 version of the calculus 
was different from the one we learn today: its essence was the manipulation of 
power series, which Newton likened to the manipulation of decimal expansions 
in arithmetic. The symbolic calculus-the one in every standard textbook, and 
the one now associated with the name of Leibniz-was also perfectly familiar to 
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Newton, but apparently it was of only incidental interest to him. After all, armed 
with his power series, Newton could evaluate an integral like dx just as 
easily as sin x d x .  Let Leibniz try that! 

It is less well known that around 1680 Newton became disenchanted with both 
these approaches, whereupon he proceeded to develop a third version of calculus, 
based on geometry. This "geometric calculus" is the mathematical engine that 
propels the brilliant physics of Newton's Principia. 

Having grasped Newton's method, I immediately tried my own hand at using it 
to simplify my teaching of introductory calculus. An example will help to explain 
what I mean by this. Let us show that if T  = tan 0 ,  then = 1 + T ~ .  If we 
increase 6 by a small amount do then T  will increase by the amount dT in the 
figure below. To obtain the result, we need only observe that in the limit as d6J tends 
to zero, the black triangle is ultimately similar [exercise] to the shaded triangle. 
Thus, in this limit, 

Only gradually did I come to realize how naturally this mode of thought could 
be applied-almost exactly 300 years later!-to the geometry of the complex 
plane. 

Reading This Book 
In the hope of making the book fun to read, I have attempted to write as though I 
were explaining the ideas directly to a friend. Correspondingly, I have tried to make 
you, the reader, into an active participant in developing the ideas. For example, as 
an argument progresses, I have frequently and deliberately placed a pair of logical 
stepping stones sufficiently far apart that you may need to pause and stretch slightly 
to pass from one to the next. Such places are marked "[exercise]"; they often require 
nothing more than a simple calculation or a moment of reflection. 

This brings me to the exercises proper, which may be found at the end of each 
chapter. In the belief that the essential prerequisite for finding the answer to a 
question is the desire to find it, I have made every effort to provide exercises that 
provoke curiosity. They are considerably more wide-ranging than is common, and 
they often establish important facts which are then used freely in the text itself. 
While problems whose be all and end all is routine calculation are thereby avoided, 
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I believe that readers will automatically develop considerable computational skill 
in the process of seeking solutions to these problems. On the other hand, my 
intention in a large number of the exercises is to illustrate how geometric thinking 
can often replace lengthy calculation. 

Any part of the book marked with a star ("*") may be omitted on a first reading. 
If you do elect to read a starred section, you may in turn choose to omit any starred 
subsections. Please note, however, that a part of the book that is starred is not 
necessarily any more difficult, nor any less interesting or important, than any other 
part of the book. 

Teaching from this Book 
The entire book can probably be covered in a year, but in a single semester course 
one must first decide what kind of course to teach, then choose a corresponding 
path through the book. Here I offer just three such possible paths: 

Traditional Course. Chapters 1 to 9, omitting all starred material (e.g., the 
whole of Chapter 6). 

Vector Field Course. In order to take advantage of the P6lya vector field ap- 
proach to visualizing complex integrals, one could follow the "Traditional Course" 
above, omitting Chapter 9, and adding the unstarred parts of Chapters 10 and 11. 

Non-Euclidean Course. At the expense of teaching any integration, one could 
give a course focused on Mobius transformations and non-Euclidean geometry. 
These two related parts of complex analysis are probably the most important ones 
for contemporary mathematics and physics, and yet they are also the ones that are 
almost entirely neglected in undergraduate-level texts. On the other hand, graduate- 
level works tend to assume that you have already encountered the main ideas as 
an undergraduate: Catch 22! 

Such a course might go as follows: All of Chapter 1; the unstarred parts of 
Chapter 2; all of Chapter 3, including the starred sections but (possibly) omitting 
the starred subsections; all of Chapter 4; all of Chapter 6, including the starred 
sections but (possibly) omitting the starred subsections. 

Omissions and Apologies 
If one believes in the ultimate unity of mathematics and physics, as I do, then 
a very strong case for the necessity of complex numbers can be built on their 
apparently fundamental role in the quantum mechanical laws governing matter. 
Also, the work of Sir Roger Penrose has shown (with increasing force) that com- 
plex numbers play an equally central role in the relativistic laws governing the 
structure of space-time. Indeed, if the laws of matter and of space-time are ever 
to be reconciled, then it seems very likely that it will be through the auspices of 
the complex numbers. This book cannot explore these matters; instead, we refer 
the interested reader to Feynman [1963, 19851, to Penrose [1989, 19941, and to 
Penrose and Rindler [ 19841. 

A more serious omission is the lack of discussion of Riemann surfaces, which I 
had originally intended to treat in a final chapter. This plan was aborted once it be- 
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came clear that a serious treatment would entail expanding the book beyond reason. 
By this time, however, I had already erected much of the necessary scaffolding, 
and this material remains in the finished book. In particular, I hope that the inter- 
ested reader will find the last three chapters helpful in understanding Riemann's 
original physical insights, as expounded by Klein 1188 11. See also Springer [1957, 
Chap. 11, which essentially reproduces Klein7s monograph, but with additional 
helpful commentary. 

I consider the history of mathematics to be a vital tool in understanding both 
the current state of mathematics, and its trajectory into the future. Sadly, however, I 
can do no more than touch on historical matters in the present work; instead I refer 
you to the remarkable book, Mathematics andZts History, by John Stillwell [1989]. 
Indeed, I strongly encourage you to think of his book as a companion to mine: 
not only does it trace and explain the development of complex analysis, but it also 
explores and illuminates the connections with other areas of mathematics. 

To the expert reader I would like to apologize for having invented the word 
"arnplitwi~t'~ [Chapter 41 as a synonym (more or less) for "derivative", as well the 
component terms "amplification" and "twist". I can only say that the need for some 
such terminology was forced on me in the classroom: if you try teaching the ideas 
in this book without using such language, I think you will quickly discover what 
I mean! Incidentally, a precedence argument in defence of "amplitwist" might be 
that a similar term was coined by the older German school of Klein, Bieberbach, 
et al. They spoke of "eine Drehstreckung", from "drehen" (to twist) and "strecken" 
(to stretch). 

A significant proportion of the geometric observations and arguments con- 
tained in this book are, to the best of my knowledge, new. I have not drawn atten- 
tion to this in the text itself as this would have served no useful purpose: students 
don't need to know, and experts will know without being told. However, in cases 
where an idea is clearly unusual but I am aware of it having been published by 
someone else, I have tried to give credit where credit is due. 

In attempting to rethink so much classical mathematics, I have no doubt made 
mistakes; the blame for these is mine alone. Corrections will be gratefully received, 
and then posted, at http://www.usfca.edu/vca. 

My book will no doubt be flawed in many ways of which I am not yet aware, but 
there is one "sin7' that I have intentionally committed, and for which I shall not re- 
pent: many of the arguments are not rigorous, at least as they stand. This is a serious 
crime if one believes that our mathematical theories are merely elaborate mental 
constructs, precariously hoisted aloft. Then rigour becomes the nerve-racking bal- 
ancing act that prevents the entire structure from crashing down around us. But 
suppose one believes, as I do, that our mathematical theories are attempting to 
capture aspects of a robust Platonic world that is not of our making. I would then 
contend that an initial lack of rigour is a small price to pay if it allows the reader to 
see into this world more directly and pleasurably than would otherwise be possible. 

Sun Francisco, California 
June, 1996 
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I Introduction 
1 Historical Sketch 
Four and a half centuries have elapsed since complex numbers were first discov- 
ered. Here, as the reader is probably already aware, the term complex number 
refers to an entity of the form a + i b, where a and b are ordinary real numbers and, 
unlike any ordinary number, i has the property that i2 = - 1. This discovery would 
ultimately have a profound impact on the whole of mathematics, unifying much 
that had previously seemed disparate, and explaining much that had previously 
seemed inexplicable. Despite this happy ending-in reality the story continues to 
unfold to this day-progress following the initial discovery of complex numbers 
was painfully slow. Indeed, relative to the advances made in the nineteenth century, 
little was achieved during thejrst  250 years of the life of the complex numbers. 

How is it possible that complex numbers lay dormant through ages that saw 
the coming and the passing of such great minds as Descartes, Fermat, Leibniz, and 
even the visionary genius of Newton? The answer appears to lie in the fact that, 
far from being embraced, complex numbers were initially greeted with suspicion, 
confusion, and even hostility. 

Girolamo Cardano's Ars Magna, which appeared in 1545, is conventionally 
taken to be the birth certificate of the complex numbers. Yet in that work Car- 
dano introduced such numbers only to immediately dismiss them as "subtle as 
they are useless". As we shall discuss, the first substantial calculations with com- 
plex numbers were carried out by Rafael Bombelli, appearing in his L'Algebra 
of 1572. Yet here too we find the innovator seemingly disowning his discoveries 
(at least initially), saying that "the whole matter seems to rest on sophistry rather 
than truth". As late as 1702, Leibniz described i ,  the square root of - 1, as "that 
amphibian between existence and nonexistence". Such sentiments were echoed 
in the terminology of the period. To the extent that they were discussed at all, 
complex numbers were called "impossible" or "imaginary", the latter term having 
(unfortunately) lingered to the present day1. Even in 1770 the situation was still 
sufficiently confused that it was possible for so great a mathematician as Euler to 
mistakenly argue that a a = A. 

 o ow ever, an "imaginary number" now refers to a real multiple of i, rather than to a general 
complex number. Incidentally, the term "real number" was introduced precisely to distinguish 
such a number from an "imaginary number". 
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The root cause of all this trouble seems to have been a psychological or philo- 
sophical block. How could one investigate these matters with enthusiasm or confi- 
dence when nobody felt they knew the answer to the question, "What is a complex 
number?" 

A satisfactory answer to this question was only found at the end of the eigh- 
teenth century2. Independently, and in rapid succession, Wessel, Argand, and 
Gauss all recognized that complex numbers could be given a simple, concrete, 
geometric interpretation as points (or vectors) in the plane: The mystical quantity 
a + i b  should be viewed simply as the point in the xy-plane having Cartesian 
coordinates (a ,  b ) ,  or equivalently as the vector connecting the origin to that point. 
See [I]. When thought of in this way, the plane is denoted C and is called the 
complex plane3. 

Figure [I] 

The operations of adding or multiplying two complex numbers could now be 
given equally definite meanings as geometric operations on the two corresponding 
points (or vectors) in the plane. The rule for addition is illustrated in [2a]: 

The sum A+ B of two complex numbers is given by the parallelogram 
rule of ordinary vector addition. (1 

Note that this is consistent with [I], in the sense that 4 + 3i (for example) is indeed 
the sum of 4 and 3i. 

Figure [2b] illustrates the much less obvious rule for multiplication: 

The length of A B is the product of the lengths of A and B, and the 
angle of A B is the sum of the angles of A and B. (2) 

This rule is not forced on us in any obvious way by [I], but note that it is at least 
consistent with it, in the sense that 3i (for example) is indeed the product of 3 and 

2 ~ a l l i s  almost hit on the answer in 1673; see Stillwell [1989, p. 1911 for an account of this 
interesting near miss. 

3 ~ l s o  known as the "Gauss plane" or the "Argand plane". 
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Figure [2] 

i. Check this for yourself. As a more exciting example, consider the product of i 
with itself. Since i has unit length and angle (n/2), i2 has unit length and angle 
7 t . ~ h u s i ~  = -1. 

The publication of the geometric interpretation by Wessel and by Argand went 
all but unnoticed, but the reputation of Gauss (as great then as it is now) ensured 
wide dissemination and acceptance of complex numbers as points in the plane. 
Perhaps less important than the details of this new interpretation (at least initially) 
was the mere fact that there now existed some way of making sense of these 
numbers-that they were now legitimate objects of investigation. In any event, the 
floodgates of invention were about to open. 

It had taken more than two and a half centuries to come to terms with complex 
numbers, but the development of a beautiful new theory of how to do calculus 
with such numbers (what we now call complex analysis) was astonishingly rapid. 
Most of the fundamental results were obtained (by Cauchy, Riemann, and others) 
between 1814 and 1851-a span of less than forty years! 

Other views of the history of the subject are certainly possible. For example, 
Stewart and Tall [1983, p. 71 suggest that the geometric interpretation4 was some- 
what incidental to the explosive development of complex analysis. However, it 
should be noted that Riemann's ideas, in particular, would simply not have been 
possible without prior knowledge of the geometry of the complex plane. 

2 Bombelli's "Wild Thought" 

The power and beauty of complex analysis ultimately springs from the multipli- 
cation rule (2) in conjunction with the addition rule (1). These rules were first 
discovered by Bombelli in symbolic form; more than two centuries passed before 
the complex plane revealed figure [2]. Since we merely plucked the rules out of 
thin air, let us return to the sixteenth century in order to understand their algebraic 
origins. 

Many texts seek to introduce complex numbers with a convenient historical 
fiction based on solving quadratic equations, 

4 ~ e  must protest one piece of their evidence: Wallis did not possess the geometric interpretation 
in 1673; see footnote 2. 
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Two thousand years BC, it was already known that such equations could be solved 
using a method that is equivalent to the modern formula, 

But what if m2 + 4c is negative? This was the very problem that led Cardano to 
consider square roots of negative numbers. Thus far the textbook is being histor- 
ically accurate, but next we read that the need for (3)  to always have a solution 
forces us to take complex numbers seriously. This argument carries almost as little 
weight now as it did in the sixteenth century. Indeed, we have already pointed out 
that Cardano did not hesitate to discard such "solutions" as useless. 

It was not that Cardano lacked the imagination to pursue the matter further, 
rather he had a fairly compelling reason not to. For the ancient Greeks mathematics 
was synonymous with geometry, and this conception still held sway in the sixteenth 
century. Thus an algebraic relation such as (3) was not so much thought of as a 
problem in its own right, but rather as a mere vehicle for solving a genuine problem 
of geometry. For example, (3) may be considered to represent the problem of 
finding the intersection points of the parabola y = x2 and the line y = mx + c .  
See [3a]. 

Figure [3] 

In the case of L1 the problem has a solution; algebraically, (m2 + 4c) > 0 
and the two intersection points are given by the formula above. In the case of L2 
the problem clearly does not have a solution; algebraically, (m2 + 4c) < 0 and 
the absence of solutions is correctly manifested by the occurrence of "impossible" 
numbers in the formula. 

It was not the quadratic that forced complex numbers to be taken seriously, it 
was the cubic, 

x3 = 3px + 24. 

[Ex. 1 shows that a general cubic can always be reduced to this form.] This equation 
represents the problem of finding the intersection points of the cubic curve y = x3 

and the line y = 3px + 2q. See [3b]. Building on the work of del Ferro and 
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Tartaglia, Cardano's Ars Magna showed that this equation could be solved by 
means of a remarkable formula [see Ex, 21: 

Try it yourself on x3 = 6x + 6. 
Some thirty years after this formula appeared, Bombelli recognized that there 

was something strange and paradoxical about it. First note that if the line y = 
3px + 2q is such that p3 > q2 then the formula involves complex numbers. For 
example, Bombelli considered x3 = 15x + 4, which yields 

In the previous case of [3a] this merely signalled that the geometric problem had 
no solution, but in [3b] it is clear that the line will always hit the curve! In fact 
inspection of Bombelli's example yields the solution x = 4. 

As he struggled to resolve this paradox, Bombelli had what he called a "wild 
thought": perhaps the solution x = 4 could be recovered from the above expression 
if 7 m  = 2 + ni and v m  = 2 - ni. Of course for this to work he 
would have to assume that the addition of two complex numbers A = a + i z  and 
B = b + i g obeyed the plausible rule, 

Next, to see if there was indeed a value of n for which 7- = 2 + in, he 
needed to calculate (2 + in)3. To do so he assumed that he could multiply out 
brackets as in ordinary algebra, so that 

Using i = - 1, he concluded that the product of two complex numbers would be 
given by 

This rule vindicated his "wild thought", for he was now able to show that (2 & i)3 = 
2 f 1 1 i . Check this for yourself. 

While complex numbers themselves remained mysterious, Bombelli's work 
on cubic equations thus established that perfectly real problems required complex 
arithmetic for their solution. 

Just as with its birth, the subsequent development of the theory of complex 
numbers was inextricably bound up with progress in other areas of mathematics 
(and also physics). Sadly, we can only touch on these matters in this book; for a full 
and fascinating account of these interconnections, the reader is instead referred to 
Stillwell [1989]. Repeating what was said in the Preface, we cannot overstate the 
value of reading Stillwell's book alongside this one. 
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3 Some Terminology and Notation 
Leaving history behind us, we now introduce the modern terminology and notation 
used to describe complex numbers. The information is summarized in the table 
below, and is illustrated in [4]. 

= imaginary 

Name 
modulus of z 
argument of z 
real part of z 

imaginary part of z 
imaginary number 

real axis 
imaginary axis 

complex conjugate of z 

real axis 

x = Re(z) = real part of z 

Meaning 
length r of z 
angle 8 of z 

x coordinate of z 
y coordinate of z 
real multiple of i 

set of real numbers 
set of imaginary numbers 

reflection of z in the real axis 

- 
z = complex conjugate of z = x - iy 
a 

Notation 
14 

art3 (2) 
Re(z) 
Im(z) 

- 
z 

Figure [4] 

It is valuable to grasp from the outset that (according to the geometric view) 
a complex number is a single, indivisible entity-a point in the plane. Only when 
we choose to describe such a point with numerical coordinates does a complex 
number appear to be compound or "complex". More precisely, @ is said to be two 
dimensional, meaning that two real numbers (coordinates) are needed to label a 
point within it, but exactly how the labelling is done is entirely up to us. 

One way to label the points is with Cartesian coordinates (the real part x and 
the imaginary part y), the complex number being written as z = x + iy. This is the 
natural labelling when we are dealing with the addition of two complex numbers, 
because (5) says that the real and imaginary parts of A + B are obtained by adding 
the real and imaginary parts of A and B. 

In the case of multiplication, the Cartesian labelling no longer appears natural, 
for it leads to the messy and unenlightening rule (6). The much simpler geometric 
rule (2) makes it clear that we should instead label a typical point z with its polar 
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coordinates, r = lzl and 8 = arg z. In place of z = x + iy we may now write 
= r LO, where the symbol L serves to remind us that 8 is the angle of z. [Although 

this notation is still used by some, we shall only employ it briefly; later in this 
chapter we will discover a much better notation (the standard one) which will then 
be used throughout the remainder of the book.] The geometric multiplication rule 
(2) now takes the simple form, 

In common with the Cartesian label x + iy , a given polar label r L O  specifies a 
unique point, but (unlike the Cartesian case) a given point does not have a unique 
polar label. Since any two angles that differ by a multiple of 2n correspond to the 
same direction, a given point has infinitely many different labels: 

This simple fact about angles will become increasingly important as our subject 
unfolds. 

The Cartesian and polar coordinates are the most common ways of labelling 
complex numbers, but they are not the only ways. In Chapter 3 we will meet 
another particularly useful method, called "stereographic" coordinates. 

4 Practice 
Before continuing, we strongly suggest that you make yourself comfortable with 
the concepts, terminology, and notation introduced thus far. To do so, try to con- 
vince yourself geometrically (and/or algebraically) of each of the following facts: 

1 1 1  1 Defining , by (1 /z) z = 1, it follows that = - = L (-8) . rL8 

- -- - - 
z 1 + 2 2 = Z + 2 2  21 z2 = Z 1 Z 2  21/22 = ~ 1 1 ~ 2 .  

Lastly, establish the so-called generalized triangle inequality: 
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When does equality hold? 

5 Equivalence of Symbolic and Geometric Arithmetic 

We have been using the symbolic rules (5) and (6) interchangeably with the geo- 
metric rules (1) and (2), and we now justify this by showing that they are indeed 
equivalent. The equivalence of the addition rules (1) and (5) will be familiar to 
those who have studied vectors; in any event, the verification is sufficiently straight- 
forward that we may safely leave it to the reader. We therefore only address the 
equivalence of the multiplication rules (2) and (6). 

First we will show how the symbolic rule may be derived from the geometric 
rule. To do so we shall rephrase the geometric rule (7) in a particularly useful and 
important way. Let z denote a general point in @, and consider what happens to it- 
where it moves to-when it is multiplied by a fixed complex number A = RL@. 
According to (7), the length of z is magnified by R, while the angle of z is increased 
by 6. Now imagine that this is done simultaneously to every point of the plane: 

Geometrically, multiplication by a complex number A = R L@ is a 
rotation of the plane through angle @, and an expansion of the plane (9) 
by factor R. 

A few comments are in order: 

Both the rotation and the expansion are centred at the origin. 

It makes no difference whether we do the rotation followed by the expansion, 
or the expansion followed by the rotation. 

If R < 1 then the "expansion" is in reality a contraction. 

Figure [ S ]  illustrates the effect of such a transformation, the lightly shaded 
shapes being transformed into the darkly shaded shapes. Check for yourself that 
inthisexampleA = 1 + i & =  2 ~ ; .  

It is now a simple matter to deduce the symbolic rule from the geometric 
rule. Recall the essential steps taken by Bombelli in deriving (6): (i) i2 = -1; 
(ii) brackets can be multiplied out, i.e., if A, B, C, are complex numbers then 
A(B + C) = A B + AC. We have already seen that the geometric rule gives 
us (i), and figure [5] now reveals that (ii) is also true, for the simple reason that 
rotations and expansions preserve parallelograms. By the geometric definition of 
addition, B + C is the fourth vertex of the parallelogram with vertices 0, B, C. To 
establish (ii), we merely observe that multiplication by A rotates and expands this 
parallelogram into another parallelogram with vertices 0, AB, AC and A(B + C). 
This completes the derivation of (6). 

Conversely, we now show how the geometric rule may be derived from the 
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Figure [5] 

Figure [6] 

symbolic rule5. We begin by considering the transformation z I+ i z .  According 
to the symbolic rule, this means that (x + iy) H ( - y  + ix), and [6a] reveals 
that iz is z rotated through a right angle. We now use this fact to interpret the 
transformation z H A Z, where A is a general complex number. How this is done 
may be grasped sufficiently well using the example A = 4 + 3i = 5 4 ,  where 

'1n every text we have examined this is done using trigonometric identities. We believe that 
the present argument supports the view that such identities are merely complicated manifestations 
of the simple rule for complex multiplication. 
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4 = tan-I (314). See [6b]. The symbolic rule says that brackets can be multiplied 
out, so our transformation may be rewritten as follows: 

Z H A Z  = (4+3i)z  

= 4z +3(iz) 
= 4z + 3 (z rotated by ;) . 

This is visualized in [6c]. We can now see that the shaded triangles in [6c] and 
[6b] are similar, so multiplication by 514  does indeed rotate the plane by @, and 
expand it by 5. Done. 

II Euler's Formula 
1 Introduction 

It is time to replace the r L0 notation with a much better one that depends on the 
following miraculous fact: 

This result was discovered by Leonhard Euler around 1740, and it is called Euler 's 
formula in his honour. 

Before attempting to explain this result, let us say something of its meaning 
and utility. As illustrated in [7a], the formula says that eiO is the point on the unit 
circle at angle 0. Instead of writing a general complex number as z = r LO, we can 
now write z = r eiO. Concretely, this says that to reach z we must take the unit 
vector eiO that points at z, then stretch it by the length of z .  Part of the beauty of 
this representation is that the geometric rule (7) for multiplying complex numbers 
now looks almost obvious: 

Put differently, algebraically manipulating eie in the same way as the real function 
ex yields true facts about complex numbers. 

In order to explain Euler's formula we must first address the more basic ques- 
tion, "What does eie mean?' Surprisingly, many authors answer this by defining 
eiO, out of the blue, to be (cos 0 + i sin 0) ! This gambit is logically unimpeachable, 
but it is also a low blow to Euler, reducing one of his greatest achievements to a 
mere tautology. We will therefore give two heuristic arguments in support of (10); 
deeper arguments will emerge in later chapters. 

2 Moving Particle Argument 

Recall the basic fact that ex is its own derivative: &ex = ex. This is actually 
a defining property, that is, if & f (x) = f (x), and f (0) = 1, then f (x) = 

ex. Similarly, if k is a real constant, then ekx may be defined by the property 
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e i ~ / 2  = -i 

Figure [7] 

-& f (x) = k f (x). To extend the action of the ordinary exponential function ex 
from real values of x to imaginary ones, let us cling to this property by insisting 
that it remain true if k = i ,  so that 

We have used the letter t instead of x because we will now think of the variable 
as being time. We are used to thinking of the derivative of a real function as the 
slope of the tangent to the graph of the function, but how are we to understand the 
derivative in the above equation? 

To make sense of this, imagine a particle moving along a curve in @. See 
[7b]. The motion of the particle can be described parametrically by saying that at 
time t its position is the complex number Z(t). Next, recall from physics that the 
velocity V(t) is the vector-now thought of as a complex number-whose length 
and direction are given by the instantaneous speed, and the instantaneous direction 
of motion (tangent to the trajectory), of the moving particle. The figure shows the 
movement M of the particle between time t and t + 6, and this should make it 
clear that 

d M 
- ~ ( t )  = lim Z(t + 

- Z(t) = lim - = V ( r ) .  
d t 6+0 6 64-0 8 

Thus, given a complex function Z(t) of a real variable t, we can always visualize 
Z as the position of a moving particle, and $f as its velocity. 

We can now use this idea to find the trajectory in the case Z(t) = eit See [8]. 
According to (1 I), 

velocity = V = i Z = position, rotated through a right angle. 

Since the initial position of the particle is Z(0) = eo = 1, its initial velocity is i, 
and so it is moving vertically upwards. A split second later the particle will have 
moved very slightly in this direction, and its new velocity will be at right angles to 
its new position vector. Continuing to construct the motion in this way, it is clear 
that the particle will travel round the unit circle. 
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Figure [8] 

Since we now know that I Z(t) 1 remains equal to 1 throughout the motion, it 
follows that the particle's speed I V(t)l also remains equal to 1. Thus after time 
t = 6 the particle will have travelled a distance 6 round the unit circle, and so the 
angle of Z(6) = eiO will be 6. This is the geometric statement of Euler's formula. 

3 Power Series Argument 
For our second argument, we begin by re-expressing the defining property $ f (x) = 
f (x) in terms of power series. Assuming that f (x) can be expressed in the form 
a0 + alx + a2x2 + . a ,  a simple calculation shows that 

and further investigation shows that this series converges for all (real) values of x. 
Putting x equal to a real value 6, this infinite sum of horizontal real numbers 

is visualized in [9]. To make sense of eiO, we now cling to the power series and 

As illustrated in [9], this series is just as meaningful as the series for ee, but instead 
of the terms all having the same direction, here each term makes a right angle with 
the previous one, producing a kind of spiral. 

This picture makes it clear that the known convergence of the series for eO 

guarantees that the spiral series for eiO converges to a definite point in @. However, 
it is certainly not clear that it will converge to the point on the unit circle at angle 
6. To see this, we split the spiral into its real and imaginary parts: 

where 
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Figure 191 

At this point we could obtain Euler's formula by appealing to Taylor's Theorem, 
which shows that C(8) and S(8) are the power series for cos 8 and sin 8. However, 
we can also get the result by means of the following elementary argument that 
does not require Taylor's Theorem. 

We wish to show two things about eiO = C(B) + iS(0): (i) it has unit length, 
and (ii) it has angle 8. To do this, first note that differentiation of the power series 
C and S yields 

c '=-S  and s '=C ,  

where a prime denotes differentiation with respect to 8. 
To establish (i), observe that 

which means that the length of eie is independent of 0. Since eio = 1, we deduce 
that leiel = 1 for all 8. 

To establish (ii) we must show that 0(8)  = 8, where 0(8)  denotes the angle 
of eiO. so that 

s(e) tan 0(8)  = - 
c (e>  ' 

Since we already know that c2 + s2 = 1, we find that the derivative of the LHS 
of the above equation is 

and that the derivative of the RHS is 
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Thus 

which implies that O(8) = 0 + const. Taking the angle of eio = 1 to be 0 [would 
it make any geometric difference if we took it to be 2n?], we find that O = 8. 

Although it is incidental to our purpose, note that we can now conclude (without 
Taylor's Theorem) that C(0) and S(8) are the power series of cos 0 and sin 0. 

4 Sine and Cosine in Terms of Euler's Formula 
A simple but important consequence of Euler's formula is that sine and cosine can 
be constructed from the exponential function. More precisely, inspection of [lo] 
yields 

Figure [lo] 
,i0 + ,-i0 = 2cos0 and eiO - e-iO = 2i sin 0, 

or equivalently, 

,i0 + ,-i0 eiO - e-iO 
cos 0 = and sin0 = 

2 2i (12) 

Ill Some Applications 
1 Introduction 
Often problems that do not appear to involve complex numbers are nevertheless 
solved most elegantly by viewing them through complex spectacles. In this section 
we will illustrate this point with a variety of examples taken from diverse areas 
of mathematics. Further examples may be found in the exercises at the end of the 
chapter. 

The first example [trigonometry] merely illustrates the power of the concepts 
already developed, but the remaining examples develop important new ideas. 

2 Trigonometry 
All trigonometric identities may be viewed as arising from the rule for complex 
multiplication. In the following examples we will reduce clutter by using the fol- 
lowing shorthand: C = cos 0, S sin 8, and similarly, c = cos $, s E sin $. 
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Figure [I 11 

To find an identity for cos(8 +4), view it as a component of ei('+@). See [l la]. 
Since 

cos(8 ++)  +isin(@ +@) = ,i (@+@I 
- - eieei@ 

= (C+iS)(c+is)  
= [Cc - Ss] + i [Sc + Cs], 

we obtain not only an identity for cos(8 + +), but also one for sin(8 + 4): 

cos(8 + #) = Cc - Ss and sin(8 + #) = Sc + CS. 

This illustrates another powerful feature of using complex numbers: every complex 
equation says two things at once. 

To simultaneously find identities for cos 38 and sin 38, consider ei3@: 

Using c2 + s2 = 1, these identities may be rewritten in the more familiar forms, 

cos 38 = 4 c 3  - 3C and sin38 = -4s3 + 3s. 

We have just seen how to express trig functions of multiples of 8 in terms of 
powers of trig functions of 8, but we can also go in the opposite direction. For 
example, suppose we want an identity for cos4 8 in terms of multiples of 8. Since 
2 cos 8 = eie + tie, 
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Although Euler's formula is extremely convenient for doing such calculations, 
it is not essential: all we are really using is the equivalence of the geometric and 
symbolic forms of complex multiplication. To stress this point, let us do an example 
without Euler's formula. 

To find an identity for tan 38 in terms of T = tan 8, consider z = 1 + i T. See 
[I lb]. Since z is at angle 8, z3 will be at angle 38, so tan 38 = 1m(z3)/~e(z3). 
Thus, 

3T - T3 
z3 = (1 + iT13 = (1 - 3T2) + i(3T - T3) ==+ tan 38 = 

1 - 3 ~ ~ '  

3 Geometry 
We shall base our discussion of geometric applications on a single example. In 
[12a] we have constructed squares on the sides of an arbitrary quadrilateral. Let 

Figure [12] 

us prove what this picture strongly suggests: the line-segments joining the centres 
of opposite squares are perpendicular and of equal length. It would require a 
great deal of ingenuity to find a purely geometric proof of this surprising result, 
so instead of relying on our own intelligence, let us invoke the intelligence of the 
complex numbers ! 

Introducing a factor of 2 for convenience, let 2a, 2b, 2c, and 2d represent 
complex numbers running along the edges of the quadrilateral. The only condition 
is that the quadrilateral close up, i.e., 

As illustrated, choose the origin of C to be at the vertex where 2a begins. To reach 
the centre p of the square constructed on that side, we go along a,  then an equal 
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distance at right angles to a .  Thus, since ia is a rotated through a right angle, 
p = a + ia = (1 + i )a .  Likewise, 

The complex numbers A = s - q (from q to s )  and B = r - p (from p to r )  are 
therefore given by 

A = ( b + 2 c + d )  + i(d - b)  and B = (a  +2b+c)  +i(c - a ) .  

We wish to show that A and B are perpendicular and of equal length. These 
two statements can be combined into the single complex statement B = i A, which 
says that B is A rotated by (n/2).  To finish the proof, note that this is the same 
thing as A + i B = 0, the verification of which is a routine calculation: 

As a first step towards a purely geometric explanation of the result in [12a], 
consider [12b]. Here squares have been constructed on two sides of an arbitrary 
triangle, and, as the picture suggests, the line-segmentsfrom their centres to the 
midpoint m of the remaining side are perpendicular and of equal length. As is 
shown in Ex. 2 1, [I  2a] can be quickly deduced6 from [12b]. The latter result can, 
of course, be proved in the same manner as above, but let us instead try to find a 
purely geometric argument. 

To do so we will take an interesting detour, investigating translations and 
rotations of the plane in terms of complex functions. In reality, this "detour" is much 
more important than the geometric puzzle to which our results will be applied. 

Let denote a translation of the plane by v, so that a general point z is mapped 
to ?-,(z) = z + v. See [13a], which also illustrates the effect of the translation on 
a triangle. The inverse of 7,, written %-I, is the transformation that undoes it; 
more formally, 5 - I  is defined by i;-' o 7, = E = 7, 7; 5- ' ,  where E is the 
"do nothing" transformation (called the identity) that maps each point to itself: 
E(z) = z. Clearly, 5 - I  = 7-,, . 

If we perform T,, followed by another translation I,, then the composite 
mapping TW o 7, of the plane is another translation: 

This gives us an interesting way of motivating addition itself. If we had introduced 
a complex number v as being the translation TV, then we could have defined the 
"sum" of two complex numbers I, and I, to be the net effect of performing 
these translations in succession (in either order). Of course this would have been 
equivalent to the definition of addition that we actually gave. 

6 ~ h i s  approach is based on a paper of Finney 119701. 
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Figure [13] 

Let 72; denote a rotation of the plane through angle 0 about the point a .  For 

example, R: OR: = R:+', and (R;)-' = R;'. As a first step towards expressing 
rotations as complex functions, note that (9) says that a rotation about the origin 
can be written as R: ( 2 )  = eiez. 

As illustrated in [13b], the general rotation 72: can be performed by translating 
a to 0, rotating 0 about 0, then translating 0 back to a :  

where k = a ( l  - eiB). Thus we find that a rotation about any point can instead 
be expressed as an equal rotation about the origin, followed by a translation: 
R: = ('& o R:). Conversely, a rotation of a about the origin followed by a 
translation of v can always be reduced to a single rotation: 

I, 0 Rt = R:, where c = v/(l - ei"). 

In the same way, you can easily check that if we perform the translation before the 
rotation, the net transformation can again be accomplished with a single rotation: 
R: o I, = R;. what is p? 

The results just obtained are certainly not obvious geometrically [try them], 
and they serve to illustrate the power of thinking of translations and rotations as 
complex functions. As a further illustration, consider the net effect of perform- 
ing two rotations about different points. Representing the rotations as complex 
functions, an easy calculation [exercise] yields 

(R; o RP;) (z) = e i (B+Q)~ + v, where v = aeim(l - eie) + b(l - eim). 

Unless (0 + 4) is a multiple of 2n, the previous paragraph therefore tells us that 

V - aei@(l - eie) + b(l  - eim) 
R; o R: = RLe+@), where c = - 1 - ei(e+4) 1 - ei(e+4) 

[What should c equal if b = a or 4 = O? Check the formula.] This result is 
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Figure [14] 

illustrated in [14a]. Later we shall find a purely geometric explanation of this 
result, and, in the process, a very simple geometric construction of the point c 
given by the complicated formula above. 

If, on the other hand, (8 + q5) is a multiple of 2n, then ei('+@) = 1, and 

~t OR: = &, where v = (1 - e i @ ) ( b  - a ) ,  

For example, putting 8 = (p = n ,  this predicts that Ri 0 RE = z(b-o) is a 
translation by twice the complex number connecting the first centre of rotation to 
the second. That this is indeed true can be deduced directly from [14b]. 

The above result on the composition of two rotations implies [exercise] the 
following: 

Let M = R: o . . o Rz o R:: be the composition of n rotations, 
and let O = 81 + 82 + . + 8, be the total amount of rotation. In 
general, M = 'RF Vor some c), but if 63 is a multiple of 2n then 
M = &, for some v. 

Returning to our original problem, we can now give an elegant geometric 
explanation of the result in [12b]. Referring to [15a], let M = RE o 7ZF12) o 
72rl2). According to the result just obtained, M is a translation. To find out what 
translation, we need only discover the effect of M on a single point. Clearly, 
M(k) = k, so M is the zero translation, i.e., the identity transformation I .  Thus 

If we define s' = RE ( s )  then m is the midpoint of ss'. But, on the other hand, 

Thus the triangle sps' is isosceles and has a right angle at p, so sm and pm are 
perpendicular and of equal length. Done. 
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Figure [15] 

4 Calculus 
For our calculus example, consider the problem of finding the loom derivative of 
ex sin x .  More generally, we will show how complex numbers may be used to find 
the nfh derivative of eax sin bx. 

In discussing Euler's formula we saw that eit may be thought of as the location 
at time t of a particle travelling around the unit circle at unit speed. In the same 
way, eibt may be thought of as a unit complex number rotating about the origin 
with (angular) speed b. If we stretch this unit complex number by eat as it turns, 
then its tip describes the motion of a particle that is spiralling away from the origin. 
See [15b]. 

The relevance of this to the opening problem is that the location of the particle 
at time t is 

Z(t) = eateibt = eat cos bt + i eat sin bt. 

Thus the derivative of eat sin bt is simply the vertical (imaginary) component of 
the velocity V of Z. 

We could find V simply by differentiating the components of Z in the above 
expression, but we shall instead use this example to introduce the geometric ap- 
proach that will be used throughout this book. In [16], consider the movement 
M = Z(t + 6) - Z(t) of the particle between time t and (t + 6). 

Recall that V is defined to be the limit of (M16) as 6 tends to zero. Thus V 
and (M/6) are very nearly equal if 6 is very small. This suggests two intuitive 
ways of speaking, both of which will be used in this book: (i) we shall say that 
"V = (M16) when 6 is infinitesimal" or (ii) that "V and (MIS) are ultimately 
equal" (as 6 tends to zero). 

We stress that here the words "ultimately equal" and "infinitesimal" are being 
used in definite, technical senses; in particular, "infinitesimal" does not refer to 
some mystical, infinitely small quantity7. More precisely, if two quantities X and 

7 ~ o r  more on this distinction, see the discussion in Chandrasekhar [1995]. 
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Y depend on a third quantity 6, then 

X 
lim - = 1 "X = Y for infinitesimal 6". 
S+O Y 

a "X and Y are ultimately equal as S tends to zero". 

It follows from the basic theorems on limits that "ultimate equality" inherits many 
of the properties of ordinary equality. For example, since V and (MIS) are ulti- 
mately equal, so are VS and M. 

We now return to the problem of finding the velocity of the spiralling particle. 
As illustrated in [16], draw rays from 0 through Z(t) and Z(t + S), together with 
circular arcs (centred at 0) through those points. Now let A and B be the complex 
numbers connecting Z(t) to the illustrated intersection points of these rays and 
arcs. If S is infinitesimal, then B is at right angles to A and 2 ,  and M = A + B.  

Figure [16] 

Let us find the ultimate lengths of A and B. During the time interval S, the 
angle of Z increases by bS, so the two rays cut off an arc of length bS on the unit 
circle, and an arc of length IZlbS on the circle through Z. Thus I B I is ultimately 
equal to I Z 1 bS. Next, note that 1 A 1 is the increase in I Z(t) 1 occurring in the time 
interval S. Thus, since 

[A  1 is ultimately equal to I Z la&. 
The shaded triangle at Z is therefore ultimately similar to the shaded right 

triangle with hypotenuse a + i b. Rotating the latter triangle by the angle of Z, you 
should now be able to see that if S is infinitesimal then 
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M = (a + i b) rotated by the angle of Z, and expanded by ( Z  16 

= (a+ib)Z6  

Thus all rays from the origin cut the spiral at the same angle [the angle of (a + i b)], 
and the speed of the particle is proportional to its distance from the origin. 

Note that although we have not yet given meaning to eZ (where z is a general 
complex number), it is certainly tempting to write Z(t) = eateibt = e(a+ib)t. This 
makes the result (13) look very natural. Conversely, this suggests that we should 
define ez = e(X+i~)  to be exeiy; another justification for this step will emerge in 
the next chapter. 

Using (13), it is now easy to take further derivatives. For example, the accel- 
eration of the particle is 

d d 
-2 = -V = (a + ib)2 Z = (a + ib) V. 
dt2 d t  

Continuing in this way, each new derivative is obtained by multiplying the previous 
one by (a + i b). [Try sketching these successive derivatives in [16] .] Writing (a + 
ib) = R ei#, where R = d m  and @ is the appropriate value of tan-'(bja), 
we therefore find that 

Thus 
d 
- [eat sin bt] = (a2 + b2)f eat sin bt + n tan-'(bja)] . (14) 
dtn 

5 Algebra 
In the final year of his life (1716) Roger Cotes made a remarkable discovery that 
enabled him (in principle) to evaluate the family of integrals, 

where n = 1,2 ,3 ,  . . . . To see the connection with algebra, consider the case 
n = 2. The key observations are that the denominator (x2 - 1) can be factorized 
into (x - 1) (x + I), and that the integrand can then be split into partial fractions: 

As we shall see, for higher values of n one cannot completely factorize (xn - 1) 
into linear factors without employing complex numbers-a scarce and dubious 
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commodity in 17 16! However, Cotes was aware that if he could break down (xn - 1) 
into real linear and quadrutic factors, then he would be able to evaluate the integral. 
Here, a "real quadratic" refers to a quadratic whose coefficients are all real numbers. 

For example, (x4 - 1) can be broken down into (x - l)(x + l)(x2 + I), yielding 
a partial fraction expression of the form 

and hence an integral that can be evaluated in terms of in and tan-'. More generally, 
even if the factorization involves more complicated quadratics than (x2 + I), it is 
easy to show that only in and tan-' are needed to evaluate the resulting integrals. 

In order to set Cotes' work on (xn - 1) in a wider context, we shall investigate 
the general connection between the roots of a polynomial and its factorization. 
This connection can be explained by considering the geometric series, 

in which c and z are complex. Just as in real algebra, this series may be summed 
by noting that zG,-l and cGm-1 contain almost the same terms-try an example, 
say m = 4, if you have trouble seeing this. Subtracting these two expressions 
yields 

(Z - c)Gm-l = zm - cm, (1 5) 

and thus 

If we think of c as fixed and z as variable, then (zm - em) is an mm-degree 
polynomial in z, and z = c is a root. The result (15) says that this m"-degree 
polynomial can be factored into the product of the linear term (z - c) and the 
(m - ~ ) ~ - d e ~ r e e  polynomial Gm- 1. 

In 1637 Descartes published an important generalization of this result. Let 
Pn (z) denote a general polynomial of degree n: 

where the coefficients A ,  . . . , E may be complex. Since (15) implies 

we obtain Descartes' Factor Theorem linking the existence of roots to factoriz- 
ability: 

If c is a solution of Pn (z) = 0 then Pn (z) = (z - c) Pn- 1, where 
Pn-1 is of degree (n - 1). 
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If we could in turn find a root cr of Pn-1, then the same reasoning would yield 
Pn = (z - c)(z - cr) Pn-2. Continuing in this way, Descartes' theorem therefore 
holds out the promise of factoring Pn into precisely n linear factors: 

If we do not acknowledge the existence of complex roots (as in the early 18" 
century) then this factorization will be possible in some cases (e.g., z2 - I), and 
impossible in others (e.g., z2 + 1). But, in splendid contrast to this, if one admits 
complex numbers then it can be shown that Pn always has n roots in C, and the 
factorization (16) is always possible. This is called the Fundamental Theorem of 
Algebra, and we shall explain its truth in Chapter 7. 

Each factor (z - ck) in (1 6) represents a complex number connecting the root ck 
to the variable point z. Figure [17a] illustrates this for a general cubic polynomial. 
Writing each of these complex numbers in the form Rk eimk, (16) takes the more 
vivid form 

Pn (z) = Rl R2 . . . Rn ei(ml+@2f ."f h). 

Although the Fundamental Theorem of Algebra was not available to Cotes, let 
us see how it guarantees that he would succeed in his quest to decompose xn - 1 
into real linear and quadratic factors. Cotes' polynomial has real coefficients, and, 
quite generally, we can show that 

Ifa polynomial has real coeficients then its complex roots occur in 
complex conjugate pairs, and it can be factorized into real linear 
and quadratic factors. 

For if the coefficients A ,  . . . , E of Pn(z) are all real then Pn (c)  = 0 implies 
[exercise] Pn ( F ) = 0, and the factorization (16) contains 

which is a real quadratic. 
Let us now discuss how Cotes was able to factorize xn - 1 into real linear and 

quadratic factors by appealing to the geometry of the regular n-gon. [An "n-gon" is 
an n-sided polygon.] To appreciate the following, place yourself in his 18" century 
shoes and forget all you have just learnt concerning the Fundamental Theorem of 
Algebra; even forget about complex numbers and the complex plane! 

For the first few values of n, the desired factorizations of Un (x) = xn - 1 are 
not too hard to find: 

U2(x) = (x - l)(x + I), 

U,(x) = (x - 1)(x2 + + 11, 

U,(x) = (x-  1)(x+1)(x2+1), 
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Figure 

but the general pattern seems elusive. 
To find such a pattern, let us try to visuulize the simplest case, (17). See [17b]. 

Let 0 be a fixed point, and P a variable point, on a line in the plane (which we are 
not thinking of as C), and let x denote the distance 0 P . If we now draw a circle 
of unit radius centred at 0 ,  and let C1 and C2 be its intersection points with the 
line, then clearly8 U2(x) = PC1 PC2. 

To understand quadratic factors in this spirit, let us skip over (1 8) to the simpler 
quadratic in (19). This factorization of U4(x) is the best we could do without 
complex numbers, but ideally we would have liked to have decomposed U~(X)  
into four linear factors. This suggests that we rewrite (19) as 

the last two "factors" being analogous to genuine linear factors. If we are to interpret 
this expression (by analogy with the previous case) as the product of the distances 
of P from four fixed points, then the points corresponding to the last two "factors" 
must be of  the line. More precisely, Pythagoras' Theorem tells us that a point 
whose distance from P is d m  must lie at unit distance from 0 in a direction 
at right angles to the line 0 P. Referring to [18a], we can now see that U4 (x) = 
PC1 PC2 . PC3 . PC4, where C1 C2C3 C4 is the illustrated square inscribed in 
the circle. 

Since we have factorized U4(x) with the regular 4-gon (the square), perhaps 
we can factorize U3(x) with the regular 3-gon (the equilateral triangle). See [18b]. 
Applying Pythagoras' Theorem to this figure, 

PC, . PC2 PC3 = PC1 ( P C ~ ) ~  = (x - 1) ([x + ;12 + [$12) 
= (x-  1)(x2+x+1),  

8 ~ e r e ,  and in what follows, we shall suppose for convenience that x > 1,  so that U, ( x )  is 
positive. 
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Figure [18] 

which is indeed the desired factorization (1 8) of U3 (x) ! 
A plausible generalization for U, now presents itself: 

If C1 C2C3 . . Cn is a regular n-gon inscribed in a circle of unit 
radius centred at  0, and P is the point on OC1 at  distance x from 
0, then U,(x) = PC1 - PC2 . . PC,. 

This is Cotes' result. Unfortunately, he stated it without proof, and he left no clue 
as to how he discovered it. Thus we can only speculate that he may have been 
guided by an argument like the one we have just supplied9. 

Since the vertices of the regular n-gon will always come in symmetric pairs 
that are equidistant from P ,  the examples in [18] make it clear that Cotes' result 
is indeed equivalent to factorizing U, (x) into real linear and quadratic factors. 

Recovering from our feigned bout of amnesia concerning complex numbers 
and their geometric interpretation, Cotes' result becomes simple to understand 
and to prove. Taking 0 to be the origin of the complex plane, and C1 to be 1, the 
vertices of Cotes' n-gon are given by Ck+l = eik(2nln). See [19], which illustrates 
the case n = 12. Since (Ck+l)n = eik2n = 1, all is suddenly clear: The vertices of 
the regular n-gon are the n complex roots of U, (z) = zn - 1. Because the solutions 
of zn - 1 = 0 may be written formally as z = ;/I, the vertices of the n-gon are 
called the nth roots of unity. 

By Descartes' Factor Theorem, the complete factorization of (zn - 1) is there- 
fore 

zn 
- 1 = U,(z) = (z - C1)(z - C2) " ' (z - Cn), 

with each conjugate pair of roots yielding a real quadratic factor, 

Each factor (z - Ck) = Rk ei4k may be viewed (cf. [17a]) as a complex number 
connecting a vertex of the n-gon to z. Thus, if P is an arbitrary point in the plane 

9~tillwell [1989, p. 1951 has instead speculated that Cotes used complex numbers (as we are 
about to), but then deliberately stated his findings in a form that did not require them. 
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Figure [ 1 91 

(not merely a point on the real axis), then we obtain the following generalized form 
of Cotes' result: 

Un(P) = [PCl PC2. . PC.] ei@, 

where @ = ($1 + $Q + . . . + &). If P happens to be a real number (again supposed 
greater than 1) then @ = 0 [make sure you see this], and we recover Cotes' result. 

We did not immediately state and prove Cotes' result in terms of complex 
numbers because we felt there was something rather fascinating about our first, 
direct approach. Viewed in hindsight, it shows that even if we attempt to avoid 
complex numbers, we cannot avoid the geometry of the complex plane! 

6 Vectorial Operations 
Not only is complex addition the same as vector addition, but we will now show 
that the familiar vectorial operations of dot and cross products (also called scalar 
and vector products) are both subsumed by complex multiplication. Since these 
vectorial operations are extremely important in physics-they were discovered 
by physicists!-their connection with complex multiplication will prove valuable 
both in applying complex analysis to the physical world, and in using physics to 
understand complex analysis. 

When a complex number z = x + iy is being thought of merely as a vector, 
we shall write it in bold type, with its components in a column: 

Although the dot and cross product are meaningful for arbitrary vectors in space, 
we shall assume in the following that our vectors all lie in a single plane-the 
complex plane. 

Given two vectors a and b, figure [20a] recalls the definition of the dot product 
as the length of one vector, times the projection onto that vector of the other vector: 
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Figure [20] 

where 8 is the angle between a and b. 
Figure [20b] recalls the definition of the cross product: a x b is the vector 

perpendicular to the plane of a and b whose length is equal to the area A of the 
parallelogram spanned by a and b. But wait, there are two (opposite) directions 
perpendicular to C; which should we choose? 

Writing A = la 1 I b 1 sin 8,  the area A has a sign attached to it. An easy way to 
see this sign is to think of the angle 8 from a to b as lying in range -n to n ;  the 
sign of A is then the same as 8. If A > 0, as in [20b], then we define a x b to point 
upwards from the plane, and if A < 0 we define it to point downwards. It follows 
that a x b = -(b x a). 

This conventional definition of a x b is intrinsically three-dimensional, and it 
therefore presents a problem: if a and b are thought of as complex numbers, a x b 
cannot be, for it does not lie in the (complex) plane of a and b. No such problem 
exists with the dot product because a o b  is simply a real number, and this suggests 
a way out. 

Since all our vectors will be lying in the same plane, their cross products will 
all have equal (or opposite) directions, so the only distinction between one cross 
product and another will be the value of A. For the purposes of this book we will 
therefore rede3ne the cross product to be the (signed) area A of the parallelogram 
spanned by a and b: 

a x b = la1 Ibl sin8 = -(b x a). 

Figure [21] shows two complex numbers a = la 1 eiu and b = I b 1 eip, the angle 
from a to b being 8 = (/3 - a) .  To see how their dot and cross products are related 
to complex multiplication, consider the effect of multiplying each point in C by 
a. This is a rotation of -a and an expansion of la 1 ,  and if we look at the image 
under this transformation of the shaded right triangle with hypotenuse b, then we 
immediately see that 

Zb = sob + i  ( a x  b). (20) 
Of course we could also have got this by simple calculation: 
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Figure [21] 

When we refer to the dot and cross products as "vectorial operations" we 
mean that they are defined geometrically, independently of any particular choice 
of coordinate axes. However, once such a choice has been made, (20) makes it easy 
to express these operations in terms of Cartesian coordinates. Writing a = x + iy 
and b = x' + iy', 

(5)  (", ) = XX' + yy' and (5)  x ($1 = xyf - yx'. 

We end with an example that illustrates the importance of the sign of the area 
(a x b). Consider the problem of finding the area A of the quadrilateral in [22a] 
whose vertices are, in counterclockwise order, a, b, c, and d. Clearly this is just 
the sum of the ordinary, unsigned areas of the four triangles formed by joining the 
vertices of the quadrilateral to the origin. Thus, since the area of each triangle is 

. . .  . . .  . . . , . .  . . 

. . . . .  . 

Figure [22] 
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simply half the area of the corresponding parallelogram, 

A = [ (ax  b) + (b x C) + (c x d) + (d x a)] 

= ~ ~ m [ Z i b + b c + ~ d + ~ a ] .  (2 1) 

Obviously this formula could easily be generalized to polygons with more than 
four sides. 

But what if 0 is outside the quadrilateral? In [22b], A is clearly the sum of 
the ordinary areas of three of the triangles, minus the ordinary area of the striped 
triangle. Since the angle from b to c is negative, i ( b  x c) is automatically the 
negative of the striped area, and A is therefore given by exactly the same formula 
as before! 

Can you find a location for 0 that makes two of the signed areas negative? 
Check that the formula still works. Exercise 35 shows that (21) always works. 

IV Transformations and Euclidean Geometry* 
1 Geometry Through the Eyes of Felix Klein 

Even with the benefit of enormous hindsight, it is hard to introduce complex 
numbers in a compelling manner. Historically, we have seen how cubic equations 
forced them upon us algebraically, and in discussing Cotes' work we saw something 
of the inevitability of their geometric interpretation. In this section we will attempt 
to show how complex numbers arise very naturally, almost inevitably, from a 
careful re-examination of plane Euclidean geometry10. 

As the * following the title of this section indicates, the material it contains 
may be omitted. However, in addition to "explaining" complex numbers, these 
ideas are very interesting in their own right, and they will also be needed for an 
understanding of other optional sections of the book. 

Although the ancient Greeks made many beautiful and remarkable discover- 
ies in geometry, it was two thousand years later that Felix Klein first asked and 
answered the question, "What is geometry?" 

Let us restrict ourselves from the outset to plane geometry. One might begin 
by saying that this is the study of geometric properties of geometric figures in the 
plane, but what are (i) "geometric properties", and (ii) "geometric figures"? We 
will concentrate on (i), swiftly passing over (ii) by interpreting "geometric figure" 
as anything we might choose to draw on an infinitely large piece of flat paper with 
an infinitely fine pen. 

As for (i), we begin by noting that if two figures (e.g., two triangles) have 
the same geometric properties, then (from the point of view of geometry) they 
must be the "same", "equal", or, as one usually says, congruent. Thus if we had 
a clear definition of congruence ("geometric equality") then we could reverse this 

'O~he excellent book by Nikulin and Shafarevich [I9871 is the only other work we know of in 
which a similar attempt is made. 
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observation and dejine geometric properties as those properties that are common 
to all congruent jigures. How, then, can we tell if two figures are geometrically 
equal? 

Consider the triangles in [23], and imagine that they are pieces of paper that 
you could pick up in your hand. To see if T is congruent to T', you could pick up 
T and check whether it could be placed on top of T'. Note that it is essential that 
we be allowed to move T in space: in order to place T on top of T" we must first 
flip it over; we can't just slide T around within the plane. Tentatively generalizing, 
this suggests that a jigure F is congruent to anotherjigure F' if there exists a 
motion of F through space that makes it coincide with F'. Note that the discussion 
suggests that there are two fundamentally different types of motion: those that 
involve flipping the figure over, and those that do not. Later, we shall return to this 
important point. 

Figure [23] 

It is clearly somewhat unsatisfactory that in attempting to define geometry in 
the plane we have appealed to the idea of motion through space. We now rectify 
this. Returning to [23], imagine that T and T' are drawn on separate, transparent 
sheets of plastic. Instead of picking up just the triangle T, we now pick up the 
entire sheet on which it is drawn, then try to place it on the second sheet so as to 
make T coincide with T'. At the end of this motion, each point A on T's sheet 
lies over a point A' of TI'S sheet, and we can now define the motion M to be this 
mapping A I-, A' = M (A) of the plane to itself. 

However, not any old mapping qualifies as a motion, for we must also capture 
the (previously implicit) idea of the sheet remaining rigid while it moves, so that 
distances between points remain constant during the motion. Here, then, is our 
definition: 

A motion M is a mapping of the plane to itself such that the distance 
between any two points A and B is equal to the distance between (22) 
their images A' = M (A) and B' = M (B). 

Note that what we have called a motion is often termed a "rigid motion", or an 
"isometry". 

Armed with this precise concept of motion, our final definition of geometric 
equality becomes 
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F is congruent to F', written F 2 F', if there exists a motion M 
such that F' = M (F). (23) 

Next, as a consequence of our earlier discussion, a geometric property of aJigure 
is one that is unaltered by all possible motions of the figure. Finally, in answer to 
the opening question of "What is geometry?', Klein would answer that it is the 
study of these so-called invariants of the set of motions. 

One of the most remarkable discoveries of the last century was that Euclidean 
geometry is not the only possible geometry. Two of these so-called non-Euclidean 
geometries will be studied in Chapter 6, but for the moment we wish only to 
explain how Klein was able to generalize the above ideas so as to embrace such 
new geometries. 

The aim in (23) was to use a family of transformations to introduce a concept 
of geometric equality. But will this E-type of equality behave in the way we would 
like and expect? To answer this we must first make these expectations explicit. So 
as not to confuse this general discussion with the particular concept of congruence 
in (23), let us denote geometric equality by -. 

(i) A figure should equal itself: F -- F ,  for all F. 

(ii) If F equals F', then F' should equal F: F -- F' =$ Ff -- F. 

(iii) If F and F' are equal, and F' and F" are equal, then F and Ff' should also 
be equal: F - F' & F' - Frf + F -- Ff'. 

Any relation satisfying these expectations is called an equivalence relation. 
Now suppose that we retain the definition (23) of geometric equality, but that 

we generalize the definition of "motion" given in (22) by replacing the family of 
distance-preserving transformations with some other family G of transformations. 
It should be clear that not any old G will be compatible with our aim of defining 
geometric equality. Indeed, (i), (ii), and (iii) imply that G must have the following 
very special structure, which is illustrated1' in [24]. 

(i) The family G must contain a transformation I (called the identity) that maps 
each point to itself. 

(ii) If G contains a transformation M ,  then it must also contain a transformation 
M-' (called the inverse) that undoes M. [Check for yourself that for M-' 
to exist (let alone be a member of G) M must have the special properties of 
being (a) onto and (b) one-to-one, i.e., (a) every point must be the image of 
some point, and (b) distinct points must have distinct images.] 

(iii) If M and JZ/ are members of G then so is the composite transformation 
JZ/ 0 M = ( M  followed by N). This property of G is called closure. 

We have thus arrived, very naturally, at a concept of fundamental importance in the 

' ' ~ e r e  G is the group of projections. If we do a perspective drawing of figures in the plane, 
then the mapping from that plane to the "canvas" plane is called a perspectivity. A projection is 
then defined to be any sequence of perspectivities. Can you see why the set of projections should 
form a group? 
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Figure [24] 

whole of mathematics: a family G of transformations that satisfies these three12 
requirements is called a group. 

Let us check that the motions defined in (22) do indeed form a group: (i) Since 
the identity transformation preserves distances, it is a motion. (ii) Provided it exists, 
the inverse of a motion will preserve distances and hence will be a motion itself. 
As for existence, (a) it is certainly plausible that when we apply a motion to the 
entire plane then the image is the entire plane-we will prove this later-and (b) 
the non-zero distance between distinct points is preserved by a motion, so their 
images are again distinct. (iii) If two transformations do not alter distances, then 
applying them in succession will not alter distances either, so the composition of 
two motions is another motion. 

Klein's idea was that we could first select a group G at will, then define a 
corresponding "geometry" as the study of the invariants of that G. [Klein first 
announced this idea in 1872-when he was 23 years old!-at the University of 
Erlangen, and it has thus come to be known as his Erlangen Program.] For example, 
if we choose G to be the group of motions, we recover the familiar Euclidean 
geometry of the plane. But this is far from being the only geometry of the plane, 
as the so-called projective geometry of [24] illustrates. 

Klein's vision of geometry was broader still. We have been concerned with 
what geometries are possible whenJigures are drawn anywhere in the plane, but 
suppose for example that we are only allowed to draw within some disc D. It 
should be clear that we can construct "geometries of D" in exactly the same way 
that we constructed geometries of the plane: given a group H of transformations 
of D to itself, the corresponding geometry is the study of the invariants of H. If 
you doubt that any such groups exist, consider the set of all rotations around the 
centre of D. 

121n more abstract settings it is necessary to add a fourth requirement of associativity, namely, 
A o (23 o C) = (A o 23) o C. Of course for transformations this is automatically true. 



34 Geometry and Complex Arithmetic 

The reader may well feel that the above discussion is a chronic case of mathe- 
matical generalization running amuck-that the resulting conception of geometry 
is (to coin a phrase) "as subtle as it is useless". Nothing could be further from 
the truth! In Chapter 3 we shall be led, very naturally, to consider a particularly 
interesting group of transformations of a disc to itself. The resulting non-Euclidean 
geometry is called hyperbolic or Lobachevskian geometry, and it is the subject of 
Chapter 6. Far from being useless, this geometry has proved to be an immensely 
powerful tool in diverse areas of mathematics, and the insights it continues to 
provide lie on the cutting edge of contemporary research. 

2 Classifying Motions 

To understand the foundations of Euclidean geometry, it seems we must study its 
group of motions. At the moment, this group is defined rather abstractly as the set 
of distance-preserving mappings of the plane to itself. However, it is easy enough 
to think of concrete examples of motions: a rotation of the plane about an arbitrary 
point, a translation of the plane, or a reflection of the plane in some line. Our aim 
is to understand the most general possible motions in equally vivid terms. 

We begin by stating a key fact: 

A motion is uniquely determined by its eflect on any triangle (i.e., 
on any three non-collinear points). (24) 

By this we mean that knowing what happens to the three points tells us what must 
happen to every point in the plane. To see this, first look at [25]. This shows that 

Figure [25] 

each point P is uniquely determined by its distances from the vertices A, B, C of 
such a biangle13. The distances from A and B yield two circles which (in general) 
intersect in two points, P and Q.  The third distance (from C) then picks out P. 

To obtain the result (24), now look at [26]. This illustrates a motion M mapping 
A, B, C to A', B', C'. By the very definition of a motion, M must map an arbitrary 

1 3 ~ h i s  is how earthquakes are located. Two types of wave are emitted by the quake as it 
begins: fast-moving "P-waves" of compression, and slower-moving "S-waves" of destructive 
shear. Thus the P-waves will arrive at a seismic station before the S-waves, and the time-lag 
between these events may be used to calculate the distance of the quake from that station. Repeating 
this calculation at two more seismic stations, the quake may be located. 
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Figure [26] 

point P to a point P' whose distances from A', B', C' are equal to the original 
distances of P from A, B, C. Thus, as shown, P' is uniquely determined. Done. 

A big step towards classification is the realization that there are two funda- 
mentally different kinds of motions. In terms of our earlier conception of motion 
through space, the distinction is whether or not a figure must be flipped over before 
it can be placed on top of a congruent figure. To see how this dichotomy arises in 
terms of the new definition (22), suppose that a motion sends two points A and 
B to A' and B'. See [27]. According to (24), the motion is not yet determined: 
we need to know the image of any (non-collinear) third point C, such as the one 
shown in [27]. Since motions preserve the distances of C from A and E ,  there are 
just two possibilities for the image of C, namely, C' and its reflection C_in the line 
L through A' and B'. Thus there are precisel~two motions ( M  and M ,  say) that 
map A, B to A', B': M sends C to C', and M sends C to C". 

A distinction can be made between M and M by looking at how they affect 
angles. All motions preserve the magnitude of angles, but we see that M also 
preserves the sense of the angle 8, while M reverses it. The fundamental nature of 
this distinction can be seen from the fact that M must in fact preserve all angles, 
while M must reverse all angles. 

Figure [27] 
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To see this, consider the fate of the angle 4 in the triangle T. If C goes to C' 
(i.e., if the motion is M )  then, carrying out the construction indicated in [26], the 
image of T is T', andLhe angle is preserved. If, on the other hand, C goes to C 
(i.e., if the motion is M )  then the image of T is the reflection T of T' in L, and 
the angle is reversed. Motions that preserve angles are called direct, and those that 
reverse angles are called opposite. Thus rotations and translations are direct, while 
reflections are opposite. Summarizing what we have found, 

There is exactly cne direct motion M (and exactly one 
opposite motion M )  that maps a given line-segment AB 
to another line-segment A'B' of equal length. Furthermore, (25) 

= (M followed by reflection in the line A'B'). 

To understand motions we may thus consider two randomly drawn segments 
A B and A'B' of equal length, then find the direct motion (and the opposite motion) 
that maps one to the other. It is now easy to show that 

Every direct motion is a rotation, or else (exceptionally) a transla- 
tion. (26) 

Note that this result gives us greater insight into our earlier calculations on the 
composition of rotations and translations: since the composition of any two direct 
motions is another direct motion [why?], it can only be a rotation or a translation. 
Conversely, those calculations allow us to restate (26) in a very neat way: 

Every direct motion can be expressed as a complex function of the 
form M ( z )  = eiOz + v. (27) 

We now establish (26). If the line-segment A'B' is parallel to AB then the 
+ 

vectors AB and ~3' are either equal or opposite. If they are equal, as in [28a], 
the motion is a translation; if they are opposite, as in [28b], the motion is a rotation 
of n about the intersection point of the lines AA' and B B'. 

If the segments are not parallel, produce them (if necessary) till they meet at 
M, and let 8 be the angle between the directions of AX and A%'. See [28c]. First 
recall an elementary property of circles: the chord AA' subtends the same angle 8 
at every point of the circular arc AMA'. Next, let 0 denote the intersection point of 
this arc with the perpendicular bisector of AA'. We now see that the direct motion 
carrying AB to A'B' is a rotation of 13 about 0 ,  for clearly A is rotated to A', and 
the direction of AX is rotated into the direction of A%'. Done. 

The sense in which translations are "exceptional" is that if the two segments 
are drawn at random then it is very unlikely that they will be parallel. Indeed, given 
A B, a translation is only needed for one possible direction of A' B' out of infinitely 
many, so the mathematical probability that a random direct motion is a translation 
is actually zero! 

Direct transformations will be more important to us than opposite ones, so we 
relegate the investigation of opposite motions to Exs. 39, 40, 41. The reason for 
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Figure [28] 

the greater emphasis on direct motions stems from the fact that they form a group 
(a subgroup of the full group of motions), while the opposite motions do not. Can 
you see why? 

3 Three Reflections Theorem 
In chemistry one is concerned with the interactions of atoms, but to gain deeper 
insights one must study the electrons, protons, and neutrons from which atoms are 
built. Likewise, though our concern is with direct motions, we will gain deeper 
insights by studying the opposite motions from which direct motions are built. 
More precisely, 

Every direct motion is the composition of two reflections. (28) 

Note that the second sentence of (25) then implies that every opposite motion 
is the composition of three rejections. See Ex. 39. In brief, every motion is the 
composition of either two or three reflections, a result that is called the Three 
Reflections  heo or em'^. 

Earlier we tried to show that the set of motions forms a group, but it was not 
clear that every motion had an inverse. The Three Reflections Theorem settles this 
neatly and explicitly, for the inverse of a sequence of reflections is obtained by 
reversing the order in which the reflections are performed. 

In what follows, let '$IL denote reflection in a line L.  Thus reflection in L1 
followed by reflection in L2 is written '$IL, o ' $ I L l .  According to (26), proving 
(28) amounts to showing that every rotation (and every translation) is of the form 
!ItL2 0 ' $ I L l .  This is an immediate consequence of the following: 

If Ll and L2 intersect at 0, and the angle from L 1 to L2 is 4, then 
'$IL2 o '$IL1 is a rotation of 24 about 0, 

and 

14~esults such as (26) may instead be viewed as consequences of this theorem; see Still- 
well [I9921 for an elegant and elementary exposition of this approach. 
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I f  L1 and L2 are parallel, and V is the perpendicular connecting 
vector from L1 to L2, then !RL2 0 !RL1 is a translation of 2V. 

Both these results are easy enough to prove directly [try it!], but the following is 
perhaps more elegant. 

First, since !RL2 o ' 8 ~ ~  is a direct motion (because it reverses angles twice), 
it is either a rotation or a translation. Second, note that rotations and translations 
may be distinguished by their invariant curves, that is, curves that are mapped into 
themselves. For a rotation about a point 0 ,  the invariant curves are circles centred 
at 0 ,  while for a translation they are lines parallel to the translation. 

. . 

Figure [29] 

Now look at [29a]. Clearly !RL2 0 !RL1 leaves invariant any circle centred at 0 ,  
so it is a rotation about 0. To see that the angle of the rotation is 24, consider the 
image P' of any point P on L 1. Done. 

Now look at [29b]. Clearly !RL2 0 !RL, leaves invariant any line perpendicular 
to L 1 and L2, so it is a translation parallel to such lines. To see that the translation 
is 2V, consider the image P' of any point P on L1. Done. 

Note that a rotation of 8 can be represented as !RL2 0 !RL1, where L1, L2 is 
any pair of lines that pass through the centre of the rotation and that contain an 
angle (812). Likewise, a translation of T corresponds to any pair of parallel lines 
separated by T/2. This circumstance yields a very elegant method for composing 
rotations and translations. 

For example, see [30a]. Here a rotation about a through 8 is being represented 
as !RL2 o !RL1, and a rotation about b through 4 is being represented as !RLt o !RLt . 
To find the net effect of rotating about a and then about b, choose L2 = L; to be 
the line through a and b. If 0 + 4 # 2n, then Ll  and L; will intersect at some 
point c, as in [30b]. Thus the composition of the two rotations is given by 

which is a rotation about c through (8 + 4 )  ! That this construction agrees with our 
calculation on p. 18 is demonstrated in Ex. 36. 



Transformations and Euclidean Geometry* 39 

Figure [30] 

Further examples of this method may be found in Ex. 42 and Ex. 43. 

4 Similarities and Complex Arithmetic 
Let us take a closer look at the role of distance in Euclidean geometry. Suppose we 
have two right triangles T and F-drawn in the same plane, and suppose that Jack 
measures T while Jill measures T. If Jack and Jill both report that their triangles 
have sides 3,4, and 5, then it is tempting to say that the two triangles are the same, 
in the sense that there exists a motion M such that F = M (T). But wait! Suppose 
that Jack's ruler is marked in centimetres, while Jill's is marked in inches. The 
two triangles are similar, but they are not congruent. Which is the "true" 3,4, 5 
triangle? Of course they both are. 

The point is that whenever we talk about distances numerically, we are pre- 
supposing a unit of measurement. This may be pictured as a certain line-segment 
U, and when we say that some other segment has a length of 5, for example, we 
mean that precisely 5 copies of U can be fitted into it. But on our flat15 plane any 
choice of U is as good as any other-there is no absolute unit of measurement, 
and our geometric theorems should reflect that fact. 

Meditating on this, we recognize that Euclidean theorems do not in fact depend 
on this (arbitrary) choice of U, for they only deal with ratios of lengths, which 
are independent of U. For example, Jack can verify that his triangle T satisfies 
Pythagoras' Theorem in the form 

but, dividing both sides by ( 5 ~ m ) ~ ,  this can be rewritten in terms of the ratios of 
the sides, which are pure numbers: 

Try thinking of another theorem, and check that it too deals only with ratios of 
lengths. 

151n the non-Euclidean geometries of Chapter 6 we will be drawing on curved surfaces, and 
the amount of curvature in the surface will dictate an absolute unit of length. 
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Since the theorems of Euclidean geometry do not concern themselves with 
the actual sizes of figures, our earlier definition of geometric equality in terms of 
motions is clearly too restrictive: two figures should be considered the same if they 
are similar. More precisely, we now consider two figures to be the same if there 
exists a similarity mapping one to the other, where 

A similarity S is a mapping of the plane to itselfthat preserves ratios 
of distances. 

It is easy to see [exercise] that a given similarity S expands every distance 
by the same (non-zero) factor r ,  which we will call the expansion of S. We can 
therefore refine our notation by including the expansion as a superscript, so that a 
general similarity of expansion r is written Sr . Clearly, the identity transformation 
is a similarity, Sk o Sr = Skr,  and (Sr)-' = s( ' lr),  so it is fairly clear that the 
set of all similarities forms a group. We thus arrive at the definition of Euclidean 
geometry that Klein gave in his Erlangen address: 

Euclidean geometry is the study of those properties of geometric 
jigures that are invariant under the group of similarities. (29) 

Since the motions are just the similarities S1 of unit expansion, the group of 
motions is a subgroup of the group of similarities; our previous attempt at defining 
Euclidean geometry therefore yields a "subgeometry" of (29). 

A simple example of an Sr is a central dilation Vi. As illustrated in [3 la], this 
leaves o fixed and radially stretches each segment oA by r .  Note that the inverse of 
a central dilation is another central dilation with the same centre: (27;)-' = 27~'"). 
If this central dilation is followed by (or preceded by) a rotation R: with the same 
centre, then we obtain the dilative rotation 

shown in [3 lb]. Note that a central dilation may be viewed as a special case of a 
dilative rotation: DL = 23:'. 

Figure [3 11 
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This figure should be ringing loud bells. Taking o to be the origin of @, (9) 
says that v ; ~  corresponds to multiplication by r ei6: 

Conversely, and this is the key point, the rule for complex multiplication may be 
viewed as a consequence of the behaviour of dilative rotations. 

Concentrate on the set of dilative rotations with a common, fixed centre o, 
which will be thought of as the origin of the complex plane. Each v;' is uniquely 
determined by its expansion r and rotation 0, and so it can be represented by a 
vector of length r at angle 0. Likewise, Vf9%an be represented by a vector of 
length R at angle $. What vector will represent the composition of these dilative 
rotations? Geometrically it is clear that 

so the new vector is obtained from the original vectors by multiplying their lengths 
and adding their angles+omplex multiplication! 

On page 17 we saw that if complex numbers are viewed as translations then 
composition yields complex addition. We now see that if they are instead viewed 
as dilative rotations then composition yields complex multiplication. To complete 
our "explanation" of complex numbers in terms of geometry, we will show that 
these translations and dilative rotations are fundamental to Euclidean geometry as 
defined in (29). 

To understand the general similarity Sr involved in (29), note that if p is an 
arbitrary point, M = Sr OD;") is a motion. Thus any similarity is the composition 
of a dilation and a motion: 

Sr = M O D ; .  (30) 

Our classification of motions therefore implies that similarities come in two kinds: 
if M preserves angles then so will Sr [a direct similarity]; if M reverses angles 
then so will Sr [an opposite similarity]. 

Just as we concentrated on the group of direct motions, so we will now concen- 
trate on the group of direct similarities. The fundamental role of translations and 
dilative rotations in Euclidean geometry finally emerges in the following surprising 
theorem: 

Every direct similarity is a dilative rotation or (exceptionally) a 
translation. 

(3 1) 

For us this fact constitutes one satisfying "explanation" of complex numbers; as 
mentioned in the Preface, other equally compelling explanations may be found in 
the laws of physics. 

To begin to understand (31), observe that (25) and (30) imply that a direct 
similarity is determined by the image A'B' of any line-segment A B. First consider 
the exceptional case in which A'B' are of equal length A B. We then have the three 
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Figure [32] 

cases in [28], all of which are consistent with (3 1). If A'B' and A B are parallel but 
not of equal length, then we have the two cases shown in [32a] and [32b], in both 
of which we have drawn the lines AA' and BB' intersecting in p. By appealing 
to the similar triangles in these figures, we see that in [32a] the similarity is D;', 
while in [32b] it is D2n, where in both cases r = ( p A r / p A )  = ( p B r / p B ) .  

Now consider the much more interesting general case where A' B' and A B are 
neither the same length, nor parallel. Take a peek at [32d], which illustrates this. 
Here n is the intersection point of the two segments (produced if necessary), and 
0 is the angle between them. To establish (31), we must show that we can carry 
AB to A'B' with a single dilative rotation. For the time being, simply note that if 
A B is to end up having the same direction as A'B' then it must be rotated by 0, 
so the claim is really this: There exists a point q, and an expansion factor r ,  such 
that v;' carries A to A' and B to B'. 

Consider the part of [32d] that is reproduced in [32c]. Clearly, by choosing 
r = (nAr /nA) ,  27;' will map A to A'. More generally, you see that we can map A 
to A' with 27;' if and only if AA' subtends angle 0 at q. Thus, with the appropriate 
value of r ,  D;' maps A to A' if and only i f q  lies on the circular arc AnA'. The 
figure illustrates one such position, q  = m. Before returning to [32d], we need to 
notice one more thing: m A  subtends the same angle (marked a) at n and A'. 

Let us return to [32d]. We want D;' to map A to A' and B to B'. According 
to the argument above, q  must lie on the circular arc AnA' and on the circular arc 
Bn B'. Thus there are just two possibilities: q = n or q = m (the other intersection 
point of the two arcs). If you think about it, this is a moment of high drama. We have 
narrowed down the possibilities for q  to just two points by consideration of angles 
alone; for either of these two points we can choose the value of the expansion r so 
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as to make A go to A', but, once this choice has been made, either B will map to 
B' or it won't! Furthermore, it is clear from the figure that if q = n then B does 
not map to B', so q = m is the only possibility left. 

In order for 272' to simultaneously map A to A' and B to B', we need to have 
r = (mAr/mA) = (mBr/mB); in other words, the two shaded triangles need to 
be similar. That they are indeed similar is surely something of a miracle. Looking 
at the angles formed at n, we see that 0 + @ + = n, and the result follows 
immediately by thinking of the RHS as the angle-sum of each of the two shaded 
triangles. This completes our proof16 of (3 1). 

The reader may feel that it is unsatisfactory that (3 1) calls for dilative rotations 
about arbitrary points, while complex numbers represent dilative rotations about 
afied point o (the origin). This may be answered by noting that the images of 
AB under 27;' and 27;' will be parallel and of equal length, so there will exist a 
translation [see Ex. 44 for details] 7, mapping one onto the other. In other words, a 
general dilative rotation differs from an origin-centred dilative rotation by a mere 
translation: 27;' = I, o 27;'. To sum up, 

Every direct similarity Sr can be expressed as a complex function 
of the form S ( z )  = rei6z + v .  

5 Spatial Complex Numbers? 

Let us briefly attempt to generalize the above ideas to three-dimensional space. 
Firstly, a central dilation of space (centred at 0 )  is defined exactly as before, and 
a dilative rotation with the same centre is then the composition of such a dilation 
with a rotation of space about an axis passing through 0. Once again taking (29) 
as the definition of Euclidean geometry, we get off to a flying start, because the 
key result (31) generalizes: Every direct similarity of space is a dilative rotation, 
a translation, or  the composition of a dilative rotation and a translation along its 
rotation axis. See Coxeter [1969, p. 1031 for details. 

It is therefore natural to ask if there might exist "spatial complex numbers" for 
which addition would be composition of translations, and for which multiplication 
would be composition of dilative rotations. With addition all goes well: the position 
vector of each point in space may be viewed as a translation, and composition of 
these translations yields ordinary vector addition in space. Note that this vector 
addition makes equally good sense in four-dimensional space, or n-dimensional 
space for that matter. 

Now consider the set Q of dilative rotations with a common, fixed centre 0 .  
Initially, the definition of multiplication goes smoothly, for the "product" Q 1 0 Q2 
of two such dilative rotations is easily seen to be another dilative rotation (Q3, say) 
of the same kind. This follows from the above classification of direct similarities 
by noting that Ql  0 Q2 leaves 0 fixed. If the expansions of Ql  and Q2 are rl and 

1 6 ~ h e  present argument has the advantage of proceeding in steps, rather than having to be 
discovered all at once. For other proofs, see Coxeter and Greitzer 11967, p. 971, Coxeter [1969, 
p. 731, and Eves [1992, p. 711. Also, see Ex. 45 for a simple proof using complex functions. 
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r2 then the expansion of Q3 is clearly r3 = rl r2, and in Chapter 6 we shall give a 
simple geometric construction for the rotation of Q3 from the rotations of Q 1 and 
Q2. However, unlike rotations in the plane, it makes a difference in what order we 
perform two rotations in space, so our multiplication rule is not commutative: 

We are certainly accustomed to multiplication being commutative, but there is 
nothing inconsistent about (32), so this cannot be considered a decisive obstacle 
to an algebra of "spatial complex numbers". 

However, a fundamental problem does arise when we try to represent these 
dilative rotations as points (or vectors) in space. By analogy with complex mul- 
tiplication, we wish to interpret the equation Q1 o Q2 = Q3 as saying that the 
dilative rotation Ql maps the point Q2 to the point Q3. But this interpretation is 
impossible! The specification of a point in space requires three numbers, but the 
specification of a dilative rotation requires four: one for the expansion, one for the 
angle of rotation, and two17 for the direction of the axis of the rotation. 

Although we have failed to find a three-dimensional analogue of complex 
numbers, we have discovered the four-dimensional space Q of dilative rotations 
(centred at 0) of three-dimensional space. Members of Q are called quaternions, 
and they may be pictured as points or vectors in four dimensions, but the details 
of how to do this will have to wait till Chapter 6. Quaternions can be added by 
ordinary vector addition, and they can be multiplied using the non-commutative 
rule above (composition of the corresponding dilative rotations). 

The discoveries of the rules for multiplying complex numbers and for multiply- 
ing quaternions have some interesting parallels. As is well known, the quaternion 
rule was discovered in algebraic form by Sir William Rowan Hamilton in 1843. It 
is less well known that three years earlier Olinde Rodrigues had published an ele- 
gant geometric investigation of the composition of rotations in space that contained 
essentially the same result; only much later18 was it recognized that Rodrigues' 
geometry was equivalent to Hamilton's algebra. 

Hamilton and Rodrigues are just two examples of hapless mathematicians who 
would have been dismayed to examine the unpublished notebooks of the great Karl 
Friedrich Gauss. There, like just another log entry in the chronicle of his private 
mathematical voyages, Gauss recorded his discovery of the quaternion rule in 
1819. 

In Chapter 6 we shall investigate quaternion multiplication in detail and find that 
it has elegant applications. However, the immediate benefit of this discussion is that 
we can now see what a remarkable property it is of two-dimensional space that it is 
possible to interpret points within it as the fundamental Euclidean transformations 
acting on it. 

1 7 ~ o  see this, imagine a sphere centred at 0. The direction of the axis can be specified by its 
intersection with the sphere, and this point can be specified with two coordinates, e.g., longitude 
and latitude. 

18see Altmann [I9891 for the intriguing details of how this was unravelled. 
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V Exercises 

1 The roots of a general cubic equation in X may be viewed (in the XY-plane) as 
the intersections of the X-axis with the graph of a cubic of the form, 

(i) Show that the point of inflection of the graph occurs at X = - 3. 
(ii) Deduce (geometrically) that the substitution X = (x - $) will reduce the 

above equation to the form Y = x3 + bx + c .  

(iii) Verify this by calculation. 

2 In order to solve the cubic equation x3 = 3px + 2q, do the following: 

(i) Make the inspired substitution x = s + t ,  and deduce that x solves the cubic 
ifst = p ands3 + t3 = 24. 

(ii) Eliminate t between these two equations, thereby obtaining a quadratic 
equation in s 3. 

(iii) Solve this quadratic to obtain the two possible values of s3. By symmetry, 
what are the possible values of t3? 

(iv) Given that we know that s3 + t3 = 2q, deduce the formula (4). 

3 In 1591, more than forty years after the appearance of (4), Franqois Vi&te pub- 
lished another method of solving cubics. The method is based on the identity 
(see p. 15) cos 30 = 4c3  - 3C, where C = cos 0. 

(i) Substitute x = 2 f i  C into the (reduced) general cubic x3 = 3px + 2q to 
obtain 4c3  - 3C = 4 

P J p '  

(ii) Provided that q2 5 p3, deduce that the solutions of the original equation 
are 

where m is an integer and + = cos-' (q/p@). 

(iii) Check that this formula gives the correct solutions of x3 = 3x, namely, 
x = O , f & .  

4 Here is a basic fact about integers that has many uses in number theory: If two 
integers can be expressed as the sum of two squares, then so can their product. 
With the understanding that each symbol denotes an integer, this says that if 
M = a2 + b2 and N = c2 + d2, then MN = p2 + q2. Prove this result by 
considering 1 (a + i b) (c + id) 12. 
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5 The figure below shows how two similar triangles may be used to construct the 
product of two complex numbers. Explain this. 

6 (i) If c is a fixed complex number, and R is a fixed real number, explain with a 
picture why ( z  - c(  = R is the equation of a circle. 

(ii) Given that z  satisfies the equation )z + 3 - 4i I = 2, find the minimum and 
maximum values of 1 z 1, and the corresponding positions of z. 

7 Use a picture to show that if a and b are fixed complex numbers then (z - a ( = 
lz - bl is the equation of a line. 

8 Let L be a straight line in @ making an angle q3 with the real axis, and let d be 
its distance from the origin. Show geometrically that if z  is any point on L then 

[Hint: Interpret e -'6 using (9).] 

9 Let A, B, C, D be four points on the unit circle. If A + B + C + D = 0, show 
that the points must form a rectangle. 

10 Show geometrically that if JzJ  = 1 then 

Apart from the unit circle, what other points satisfy this equation? 

11 Explain geometrically why the locus of z such that 

is an arc of a certain circle passing through the fixed points a and b. 

12 By using pictures, find the locus of z  for each of the following equations: 

z - l -  

Re ( ) = 0  and 
z + l + i  ~ m ( ~ ~ ~ ~ ~ )  =o .  

[Hints: What does Re(W) = 0 imply about the angle of W? Now use the 
previous exercise.] 
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13 Find the geometric configuration of the points a ,  b, and c if 

b - a  (=) = (E) 
[Hint: Separately equate the lengths and angles of the two sides.] 

14 By considering the product (2 + i)  (3 + i), show that 

15 Draw ei"I4, ei"I2, and their sum. By expressing each of these numbers in the 
form (x + iy), deduce that 

16 Starting from the origin, go one unit east, then the same length north, then (1 /2) 
of the previous length west, then (113) of the previous length south, then (1/4) 
of the previous length east, and so on. What point does this "spiral" converge 
to? 

17 If z = eie # - 1, then (z - 1) = (i tan $) (z + 1). Prove this (i) by calculation, 
(ii) with a picture. 

18 Prove that 

(i) by calculation, and (ii) with a picture. 

19 The "centroid" G of a triangle T is the intersection of its medians. If the vertices 
are the complex numbers a ,  b, and c, then you may assume that 

P 
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On the sides of T we have constructed three similar triangles [dotted] of arbitrary 
shape, so producing a new triangle [dashed] with vertices p ,  q ,  r. Using complex 
algebra, show that the centroid of the new triangle is in exactly the same place 
as the centroid of the old triangle! 

20 Gaussian integers are complex numbers of the form rn + in, where rn and n are 
integers-they are the grid points in [I]. Show that it is impossible to draw an 
equilateral triangle such that all three vertices are Gaussian integers. [Hints: You 
may assume that one of the vertices is at the origin; try a proof by contradiction; 
if a triangle is equilateral, you can rotate one side into another; remember that 
2/5 is irrational.] 

21 Make a copy of [12a], draw in the diagonal of the quadrilateral shown in [I 2b], 
and mark its midpoint m.  As in [12b], draw the line-segments connecting m to 
p,  q,  r ,  and s.  According to the result in [12b], what happens to p and to r under 
a rotation of (n/2) about rn? So what happens to the line-segment p r ?  Deduce 
the result shown in [12a]. 

22 Will the result in [12a] survive if the squares are instead constructed on the 
inside of the quadrilateral? 

23 Draw an arbitrary triangle, and on each side draw an equilateral triangle lying 
outside the given triangle. What do you suspect is special about the new triangle 
formed by joining the centroids (cf. Ex. 19) of the equilateral triangles? Use 
complex algebra to prove that you are right. What happens if the equilateral 
triangles are instead drawn on the inside of the given triangle? 

24 From (1 S), we know that 

(i) In what region of C must z lie in order that the injinite series 1 + z + z2 + - . - 
converges? 

(ii) If z lies in this region, to which point in the plane does the infinite series 
converge? 

(iii) In the spirit of figure [9], draw a large, accurate picture of the infinite series 
in the case z = ; ( I+  i), and check that it does indeed converge to the point 
predicted by part (ii). 

25 Let S = cos 0 + cos 38 + cos 50 + . . + cos(2n - 1)0. Show that 

sin 2n0 sin n0 cos n0 s = -  or equivalently S = 
2 sin 0 sin 0 

[Hint: Use Ex. 24, then Ex. 18 to simplify the result.] 
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26 (i) By considering (a + ib) (cos 6 + i sin 6), show that 

b cos 6 + a sin 6 = a 2 + b2 sin 6 + tan-' (bja)] . J---[ 

(ii) Use this result to prove (14) by the method of induction. 

27 Show that the polar equation of the spiral Z(t) = eat eib' in [15b] is r = e('lb)'. 

28 Reconsider the spiral Z(t) = eateib' in [15b], where a and b are fixed real 
numbers. Let t be a variable real number. According to (9), z t-+ Fr(z) = 
(eareibr) z is an expansion of the plane by factor ear, combined with a rotation 
of the plane through angle b t  . 

(i) Show that Fr [Z(t)] = Z(t + t), and deduce that the spiral is an invariant 
curve (cf. p. 38) of the transformations Fr . 

(ii) Use this to give a calculus-free demonstration that all rays from the origin 
cut the spiral at the same angle. 

(iii) Show that if the spiral is rotated about the origin through an arbitrary angle, 
the new spiral is again an invariant curve of each Fr . 

(iv) Argue that the spirals in the previous part are the only invariant curves of 
F r  

29 (i) If V(t) is the complex velocity of a particle whose orbit is Z(t), and d t  is 
an infinitesimal moment of time, then V(t) d t  is a complex number along 
the orbit. Thinking of the integral as the (vector) sum of these movements, 
what is the geometric interpretation of j: V(t) dt?  

(ii) Referring to [15b], sketch the curve Z(t) = ea'eibt . 

(iii) Given the result (13), what is the velocity of the particle in the previous 

Part. 

at ibt 
1 

(iv) Combine the previous parts to deduce that jd ea'eibt d t = [A e e lo ,  

and draw in this complex number in your sketch for part (ii). 

(v) Use this to deduce that 

a(ea cosb-  l ) + b e a  sinb 1' eat cos bt d t  = 
a 2  + b2 

and 
b ( l  - ea cosb) + a e a  sinb 1' eat sinbt dr = 

a2 + b2 
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30 Given two starting numbers S1, S2, let us build up an infinite sequence S1, S2, 
S3, S4, . . . with this rule: each new number is twice the diference of the previous 
two. For example, if S1 = 1 and S2 = 4, we obtain l , 4 , 6 , 4 ,  -4, - 16, -24, . . .. 
Our aim is to find a formula for the nth number Sn . 

(i) Our generating rule can be written succinctly as Sn+2 = 2(Sn+1 - Sn) . Show 
that Sn = zn will solve this recurrence relation if z2 - 22 + 2 = 0. 

(ii) Use the quadratic formula to obtain z = 1 f i ,  and show that if A and B 
are arbitrary complex numbers, Sn = A(l + i)n + B(1 - i)n is a solution 
of the recurrence relation. 

- 
(iii) If we want only real solutions of the recurrence relation, show that B = A, 

and deduce that Sn = 2 Re[A(l + i)n]. 

(iv) Show that for the above example A = -(1/2) - i, and by writing this in 

polar form deduce that Sn = 2n/22/J~os [F + tan-' 21 . 

(v) Check that this formula predicts S34 = 262 144, and use a computer to verify 
this. 

[Note that this method can be applied to any recurrence relation of the form 
sn+2 = pSn+l + 4Sn.I 

31 With the same recurrence relation as in the previous exercise, use a computer 
to generate the first 30 members of the sequence given by S1 = 2 and S2 = 4. 
Note the repeating pattern of zeros. 

(i) With the same notation as before, show that this sequence corresponds to 
A = -i, so that Sn = 2 Re[-i (1 + i)n]. 

(ii) Draw a sketch showing the locations of -i (1 + i)n for n = 1 to n = 8, and 
hence explain the pattern of zeros. 

(iii) Writing A = a + ib, our example corresponds to a = 0. More generally, 
explain geometrically why such a repeating pattern of zeros will occur if 
and only if (alb) = 0, f 1 or b = 0. 

(iv) Show that 2 = [ l  - $1, and deduce that a repeating pattern of zeros 
will occur if and only if S2 = 2S1 (as in our example), S1 = S2, S1 = 0, or 
S2 = 0. 

(v) Use a computer to verify these predictions. 

32 The Binomial Theorem says that if n is a positive integer, 

(a + b)" = 2 (F) an-' br, where 
n ! 

are the binomial coefficients [not vectors!]. The algebraic reasoning leading to 
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this result is equally valid if a and b are complex numbers. Use this fact to show 
that if n = 2m is even then c) - c) + c) - .  - + (-1lm+l ( , ,2~  = 2" sin (yi') . 

33 Consider the equation (z - 1) lo = zlo. 

(i) Without attempting to solve the equation, show geometrically that all 9 
solutions [why not lo?] must lie on the vertical line, Re (z) = 1. [Hint: 
Ex. 7.1 

(ii) Dividing both sides by zlO, the equation takes the form w10 = 1, where 
w = (z - l)/z. Hence solve the original equation. 

(iii) Express these solutions in the form z = x + iy, and thereby verify the result 
in (i). [Hint: To do this neatly, use Ex. 18.1 

34 Let S denote the set of 12" roots of unity shown in [19], one of which is 
6 = ei(n/6). Note that 6 is aprimitive 1 2 ' ~  root of unity, meaning that its powers 
yieldall the 12" roots ofunity: S = {e,e2, t3, .  . . , el2}. 

(i) Find all the primitive 12 '~  roots of unity, and mark them on a copy of [19]. 

(ii) Write down, in the form of (16), the factorization of the polynomial @12(z) 
whose roots are the primitive 1 2 ' ~  roots of unity. [In general, @, (z) is the 
polynomial (with the coefficient of the highest power of z equal to 1) whose 
roots are the primitive n" roots of unity; it is called the n" cyclotomic 
polynomial.] 

(iii) By first multiplying out pairs of factors corresponding to conjugate roots, 
show that Q12(z) = z4 - z2 + 1. 

(iv) By repeating the above steps, show that Qs(z) = z4 + 1. 

(v) For a general value of n, explain the fact that if 5 is a primitive nm root 
of unity, then so is r. Deduce that @, (2) always has even degree and real 
coefficients. 

(vi) Show that if p is a prime number then @, (z) = 1 + z + z2 + . . + ZP-'. 

[Hint: Ex. 24.1 
[In these examples it is striking that @,(z) has integer coefficients. In fact it 
can be shown that this is true for every @,(z)! For more on these fascinating 
polynomials, see Stillwell [1994].] 

35 Show algebraically that the formula (21) is invariant under a translation by k, 
i.e., its value does not change if a becomes a + k, b becomes b + k, etc. Deduce 
from [22a] that the formula always gives the area of the quadrilateral. [Hint: 
Remember, (z + F )  is always real.] 
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36 According to the calculation on p. 1 8 , ~ :  o R: = R:O+~), where 

Let us check that this c is the same as the one given by the geometric construction 
in [30b]. 

(i) Explain why the geometric construction is equivalent to saying that c satisfies 
the two conditions 

C- b  1 ,[-I a - b =;$ and w~[c-Y] b- a  = - T O -  

(ii) Verify that the calculated value of c (given above) satisfies the first of these 
conditions by showing that 

c - b  ei4/2 

[Hint: Use (1 - ein) = -2i sin(a/2) ein12.] 

(iii) In the same way, verify that the second condition is also satisfied. 

37 Deduce (33) directly from [30b]. [Hint: Draw in the altitude through b of the 
triangle abc, and express its length first in terms of sin i ,  then in terms of 

(0+4> sin -2- .] 

38 On page 18 we calculated that for any non-zero a ,  I, o Rt is a rotation: 

% o R i = R : ,  where c = v / ( l - e i U ) .  

However, if a = 0 then i, o 72: = i, is a translation. Try to reconcile these 
facts by considering the behaviour of Rz in the limit that a tends to zero. 

39 A glide reflection is the composition 7, o CrZL = CrZL o 7, of reflection in a line 
L and a translation v in the direction of L. For example, if you walk at a steady 
pace in the snow, your tracks can be obtained by repeatedly applying the same 
glide reflection to a single footprint. Clearly, a glide reflection is an opposite 
motion. 

(i) Draw a line L, a line-segment A B, the image A"B" of the segment under WL, 
and the image A'B' of A B under the glide reflection 7, o WL. 

(ii) Suppose you erased L from your picture; by considering the line-segments 
AA' and B B', show that you can reconstruct L. 

(iii) Given any two segments A B and A'B' of equal length, use the previous 
part to construct the glide reflection that maps the former to the latter. 
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(iv) Deduce that every opposite motion is a glide reflection. 

(v) Express a glide reflection as the composition of three reflections. 

40 Let L be a line making angle 4 (or 4 + n) with the real axis, and let p be the 
point on L that is closest to the origin, so that lpl is the distance to the line. 
Consider the glide reflection [cf. previous exercise] G = 7, o 'illL, where the 
translation is through distance r parallel to L. Let us fix the value of 4 by writing 
v = +r ei#. 

(i) Use a picture to show that p = &i 1 pl ei#, and explain the geometric signif- 
icance of the f. 

(ii) What transformation is represented by the complex function H ( z )  = ?' + r ? 

(iii) Use pictures to explain why G = irp o 72; o H o 72;' o 7-,. 
(iv) Deduce that G (2 )  = ei2% + ei4 (r & 2i I p I). 

(v) Hence describe (in geometric terms) the glide reflection represented by 
G(z) = i ?' + 4i. Check your answer by looking at the images of -2, 
2i, and 0. 

41 Let E ( z )  be the representation of a general opposite motion as a complex 
function. 

CY 

(i) Explain why M (z) is a direct motion, and deduce from (27) that E ( z )  = 
eiff T + w, for some a and w. 

(ii) Using the previous exercise, deduce that every opposite motion is a glide 
reflection. 

42 On p. 19 we calculated that if (8 + 4) = 2rt then 

R~OR:=I, ,  where v=(l-ei"(b-a) .  

(i) Let Q = (b - a)  be the complex number from the first centre of rotation to 
the second. Show algebraically that v has length 2 sin(8/2) 1 Q 1, and that its 
direction makes an angle of ( %$ ) with Q.  

(ii) Give direct geometric proofs of these results by redrawing figure [30b] in 
the case (8 + 4)  = 2n. 

43 On p. 18 we calculated that 

7 2 ,  where c = v / ( l - e i a ) .  

(i) Show algebraically that the complex number from the old centre of rotation 
(the origin) to the new centre of rotation (c) has length -, and that its 
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direction makes an angle of (y) with v. 

(ii) Representing both RE and I, as the composition of two reflections, use the 
idea in [30b] to give direct, geometric proofs of these results. 

44 Just as in [13b], a dilative rotation D:@ centred at an arbitrary point p may be 
performed by translating p to the origin, doing D~O,  then translating o back to 
p.  Representing these transformations as complex functions, show that 

i0 DzO(z) = r e  z + v, where v = p ( l  - rei0).  

Conversely, if v is given, deduce that 

I, o 27;' = DzO, where p = v/(l  - r eiO). 

45 In the previous exercise you showed that an arbitrary dilative rotation or trans- 
lation can be written as a complex function of the form f (z) = az + b, and, 
conversely, that every such function represents a unique dilative rotation or 
translation. 

(i) Given two pairs of distinct points {A, B) and {Ar, B'), show [by finding 
them explicitly] that a and b exist such that f (A) = A' and f (B) = Br. 

(ii) Deduce the result (3 1). 



Complex Functions as 
Transformations 

I Introduction 
A complex function f is a rule that assigns to a complex number z an image 
complex number w = f (z). In order to investigate such functions it is essential 
that we be able to visualize them. Several methods exist for doing this, but (until 
Chapter 10) we shall focus almost exclusively on the method introduced in the 
previous chapter. That is, we shall view z and its image w as points in the complex 
plane, so that f becomes a transformation of the plane. 

Conventionally, the image points w are drawn on a fiesh copy of C, called the 
image plane or the w-plane. This convention is illustrated in [I], which depicts 
the transformation z H w = f (z) = (1 + i&)z (cf. figure [5] ,  p. 9). 

Figure [I] 

Usually, the real and imaginary parts of z are denoted x and y , and those of the 
image point w are denoted u and v,  so that w = f (z) = u ( z )  + i v (z), where u (z) 
and v(z) are real functions of z. The precise forms of these functions will depend 
on whether we describe z with Cartesian or polar coordinates. For instance, writing 
z = x + iy in the above example yields 

U(X + iy) = x - & and v(x + iy) = & X  + y, 

while writing z = r eiO and (1 + i&) = 2eiKI3 yields 
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u(reiB)=2rcos[f3+$]  and v(re iB)=2rsin[f3+$] .  

Of course we may also describe the w-plane with polar coordinates so that 
w = f (z) = R ei#, where R(z) and q5(z) are real functions of z .  With the same 
example as before, the transformation becomes 

~ ( r e " ) = 2 r  and q5(reie)=f3+$. 

We shall find that we can gain considerable insight into a given f by drawing 
pictures showing its effect on points, curves, and shapes. However, it would be 
nice if we could simultaneously grasp the behaviour of f for all values of z. One 
such method is to instead represent f as a vectorjeld, whereby f (z) is depicted 
as a vector emanating from the point z; for more detail, the reader is invited to read 
the beginning of Chapter 10. 

Yet other methods are based on the idea of a graph. In the case of a real function 
f (x) of a real variable x we are accustomed to the convenience of visualizing the 
overall behaviour of f by means of its graph, i.e., the curve in the two-dimensional 
xy-plane made up of the points (x, f (x)). In the case of a complex function this 
approach does not seem viable because to depict the pair of complex numbers 
(z, f (z)) we would need four dimensions: two for z = x + iy and two for f (z) = 
u + iv. 

Actually, the situation is not quite as hopeless as it seems. First, note that al- 
though two-dimensional space is needed to draw the graph of a real function f ,  the 
graph itself [the set of points (x, f (x))] is only a one-dimensional curve, meaning 
that only one real number (namely x) is needed to identify each point within it. 
Likewise, although four-dimensional space is needed to draw the set of points with 
coordinates (x, y , u, v) = (z, f (z)), the graph itself is two-dimensional, mean- 
ing that only two real numbers (namely x and y) are needed to identify each 
point within it. Thus, intrinsically, the graph of a complex function is merely a 
two-dimensional surface (a so-called Riemann sur3race), and it is thus susceptible 
to visualization in ordinary three-dimensional space. This approach will not be 
explored in this book, though the last three chapters in particular should prove 
helpful in understanding Riemann's original physical insights, as expounded by 
Klein [1881]. See also Springer [1957, Chap. 11, which essentially reproduces 
Klein's monograph, but with additional helpful commentary. 

There is another type of graph of a complex function that is sometimes useful. 
The image f (z) of a point z may be described by its distance I f  (z)l from the 
origin, and the angle arg[ f (z)] it makes with the real axis. Let us discard half 
of this information (the angle) and try to depict how the modulus I f  (z)l varies 
with z. To do so, imagine the complex z-plane lying horizontally in space, and 
construct a point at height I f  (z) 1 vertically above each point z in the plane, thereby 
producing a surface called the modular sur3race of f .  Figure [2] illustrates the 
conical modular surface of f (z) = z, while [3] illustrates the paraboloid modular 
surface of f (z) = z2. 
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Figure [2] 

Figure [3] 

A note on computers. Beginning in this chapter, we will often suggest that you 
use a computer to expand your understanding of the mathematical phenomenon 
under discussion. However, we wish to stress that the specific uses of the computer 
that we have suggested in the text are only a beginning. Think of the computer as a 
physicist would his laboratory-you may use it to check your existing ideas about 
the construction of the world, or as a tool for discovering new phenomena which 
then demand new ideas for their explanation. In the Preface we make concrete 
suggestions (probably of only fleeting relevance) as to how your laboratory should 
be equipped. 

II Polynomials 
1 Positive Integer Powers 
Consider the mapping z H w = zn , where n is a positive integer. Writing z = r eiB 
this becomes w = rn eins, i.e., the distance is raised to the nm power and the angle 
is multiplied by n. Figure [4] is intended to make this a little more vivid by showing 
the effect of the mapping on some rays and arcs of origin-centred circles. As you 
can see, here n = 3. 

On page 27 we saw that the n solutions of zn = 1 are the vertices of the regular 
n-gon inscribed in the unit circle, with one vertex at 1. This can be understood 
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Figure [4] 

more vividly from our new transformation point of view. If w = f (z) = zn then 
the solutions of zn = 1 are the points in the z-plane that are mapped by f to 
the point w = 1 in the w-plane. Now imagine a particle in orbit round the unit 
circle in the z-plane. Since In = 1, the image particle w = f ( z )  will also orbit 
round the unit circle (in the w-plane), but with n times the angular speed of the 
original particle. Thus each time z executes ( l l n )  of a revolution, w will execute 
a complete revolution and return to the same image point. The preimages of any 
given w on the unit circle will therefore be successive positions of z as it repeatedly 
executes ( l l n )  of a revolution, i.e., they will be the vertices of a regular n-gon. 
With w = 1, figure [5] illustrates this idea for the mapping w = f (z) = z3. 

Figure [5] 

More generally, [6] shows how to solve z3 = c = R ei# by inscribing an 
equilateral triangle in the circle lzl = m. By the same reasoning, it is clear that 
the solutions of zn = c are the vertices of the regular n-gon inscribed in the circle 
lz 1 = *, with one vertex at angle ($In). 

To arrive at the same result symbolically, first note that if 6 is one value of arg c, 
then the complete set of possible angles is (@ + 2mn), where m is an arbitrary 
integer. Setting z = r eiB, 

,.n cine = zn = c = R ei(#+2mn> =j r n  = R and no = $ +2mn,  
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Figure [6] 

so the solutions are zm = -ei(4+ 2 m n ) / n .  Each time we increase m by 1, z ,  is 
2n i - 

rotated by ( l l n )  of a revolution (because zm+l = e n  zm), producing the vertices 
of a regular n-gon. Thus the complete set of solutions will be obtained if we let rn 
take any n consecutive values, say rn = 0, 1,2,  . . . , (n - 1). 

2 Cubics Revisited* 
As an instructive application of these ideas, let us reconsider the problem of solving 
a cubic equation in x. For simplicity, we shall assume in the following that the 
coefficients of the cubic are all real. 

In the previous chapter we saw [Ex. 11 that the general cubic could always be 
reduced to the form x3 = 3px + 2q. We then found [Ex. 21 that this could be 
solved using Cardano's formula, 

x = s + t ,  where s 3 = q +  t 3 = q -  J Y ' ,  q 2 - -  3 and s t  = p.  

Once again, observe that if q2  < p3 then this formula involves complex numbers. 
On the other hand, we also saw [Ex. 31 that the cubic could be solved using 

Vikte's formula: 

if q2 5 p3, then x = 2ficos [;(+ + 2rnrr)] , 

where rn is an integer and $ = cos-'(qlpfi). At the time of its discovery, 
Vikte's "angle trisection" method was a breakthrough, because it solved the cubic 
(using only real numbers) precisely when Cardano's formula involved "impossi- 
ble", complex numbers. For a long time thereafter, Vikte's method was thought 
to be entirely different from Cardano's, and it is sometimes presented in this way 
even today. We shall now take a closer look at these two methods and see that they 
are really the same. 

1f q2  5 p3, then in Cardano's formula s3 and t3 are complex conjugates: 

These complex numbers are illustrated on the RHS of [7]. By Pythagoras' Theorem, 
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Figure [7] 

they both have length Is3 I = p a ,  and so the angle @ occurring in Vi&te7s formula 
is simply the angle of s3. 

Since s3 and t3 lie on the circle of radius their preimages under the 
mapping z H z3 will lie on the circle of radius a. The LHS of [7] shows these 
preimages; note that the three values of t are the complex conjugates of the three 
values of s. 

According to the Fundamental Theorem of Algebra, the original cubic should 
have three solutions. However, by combining each of the three values of s with 
each of the three values of t, it would seem that Cardano's formula x = s + t 
yields nine solutions. 

The resolution lies in the fact that we also require st = p. Since p is real, this 
means s and t must have equal and opposite angles. In the formula x = s + t, each 
of the three values of s must therefore be paired with the conjugate value of t .  We 
can now see how Cardano's formula becomes Victe's formula: 

In Ex. 4 the reader is invited to consider the case q2 > p3. 

3 Cassinian Curves* 
Consider [gal. The ends of a piece of string of length I are attached to two fixed 
points a1 and a2 in @, and, with its tip at z, a pencil holds the string taut. The figure 
illustrates the well known fact that if we move the pencil (continuing to keep the 
string taut) it traces out an ellipse, with foci a1 and a2. Writing rl,2 = lz - al,2 1, 
the equation of the ellipse is thus 

By choosing different values of 1 we obtain the illustrated family of confocal 
ellipses. 

In 1687 Newton published his great Principia, in which he demonstrated that 
the planets orbit in such ellipses, with the sun at one of the foci. Seven years earlier, 
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Figure [8] 

however, Giovanni Cassini had instead proposed that the orbits were curves for 
which the product of the distances is constant: 

These curves are illustrated in [8b]; they are called Cassinian curves, and the points 
a1 and a2 are again called foci. 

The following facts will become clearer in a moment, but you might like to 
think about them for yourself. If k is small then the curve consists of two separate 
pieces, resembling small circles centred at a1 and a2. As k increases, these two 
components of the curve become more egg shaped. When k reaches a value equal 
to half the distance between the foci then the pointed ends of the egg shapes meet 
at the midpoint of the foci, producing a figure eight [shown solid]. Increasing the 
value of k still further, the curve first resembles an hourglass, then an ellipse, and 
finally a circle. 

Although Cassinian curves turned out to be useless as a description of planetary 
motion, the figure eight curve proved extremely valuable in quite another context. 
In 1694 it was rediscovered by James Bernoulli and christened the lemniscate- 
it then became the catalyst in unravelling the behaviour of the so-called elliptic 
integrals and ellipticjknctions. See Stillwell [1989, Chap. 111 and Siege1 [I9691 
for more on this fascinating story. 

Cassinian curves arise naturally in the context of complex polynomials. A 
general quadratic Q(z) = z2 + pz + q will have two roots (say, a1 and a2) and so 
can be factorized as Q(z) = (z - a1 ) (z - a2). In terms of [8b], this becomes 

Therefore, by virtue of (I), z I+ w = Q(z) will map each curve in [8b] to an 
origin-centred circle, 1 w 1 = k2, and it will map the foci to the origin. 

If we follow this transformation by a translation of c, i.e., if we change z I-+ 

Q(z) to z H Q(z) + c, then the images will instead be concentric circles centred 
at c = (image of foci). Conversely, given any quadratic mapping z H w = Q (z) , 
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the preimages of a family of concentric circles in the w-plane centred at c will be 
the Cassinian curves whose foci are the preimages of c. 

In particular, consider the case c = 1 and w = Q(z) = z2. The preimages of 
w = 1 are z = f 1, so these are the foci, and the Cassinian curves are thus centred 
at the origin. See [9]. Since Q leaves the origin fixed, the lemniscate must be 
mapped (as illustrated) to the circle of radius 1 passing through the origin. Writing 
z = re ie , ,  = r2ei28 , and so we see from the figure that the polar equation of 
the lemniscate is 

r2 = 2cos 28. (2) 

Figure [9] 

Returning to [8b], the form of the Cassinian curves may be grasped more 
intuitively by sketching the modular surface of Q(z) = (z - a l )  (z - a2). First 
observe that as z moves further and further away from the origin, Q(z) behaves 
more and more like z2. Indeed, since the ratio [Q(z)/z2] is easily seen [exercise] 
to tend to unity as lzl tends to infinity, we may say that Q(z) is ultimately equal 
to z2 in this limit. Thus, for large values of 121, the modular surface of Q will look 
like the paraboloid in [3]. 

Next, consider the behaviour of the surface near a l .  Writing D = lal - a2 1 
for the distance between the foci, we see [exercise] that I Q(z) I is ultimately equal 
to Drl as z tends to a l .  Thus the surface meets the plane at a1 in a cone like that 
shown in [2]. Of course the same thing happens at a2. 

Combining these facts, we obtain the surface shown in [lo]. Since a Cassinian 
curve satisfies lQ(z)l = r1r2 = k2, it is the intersection of this surface with a 
plane parallel to (C, and at height k2 above it. As k increases from 0 to a large 
value, it is now easy to follow the evolution of the curves in [8b] by looking at 
how this intersection varies as the plane moves upward in [lo]. Thus the Cassinian 
curves may be viewed as a geographical contour map of the modular surface of 
the quadratic. 

Interestingly, Cassinian curves were already known to the ancient Greeks. 
Around 150 BC, Perseus considered the intersection curves of a torus [obtained 
by rotating a circle C about an exterior line I in its plane] with planes parallel to 
1. It turns out that if the distance of the plane from I equals the radius of C then 
the resulting spiric section of Perseus is a Cassinian curve. See [ l l ] ;  in particular, 
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Figure [lo] 

note how the lemniscate [dashed] makes its surprise appearance when the plane 
touches the inner rim of the torus. We have adapted this figure from Brieskorn and 
Knorrer [1986, p. 171, to which the reader is referred for more details. 

Returning to the complex plane, there is a natural way to define Cassinian 
curves with more than two foci: A Cassinian curve with n foci, a l ,  a2, . . . , a,, 
is the locus of a point for which the product of the distances to the foci remains 
constant. A straightforward extension of the above ideas shows that these curves 
are the preimages of origin-centred circles 1 w 1 = const. under the mapping given 
by the nth degree polynomial whose roots are the foci: 

Equivalently, the Cassinian curves are the cross-sections of the modular surface 
of Pn (2 ) .  This surface has n cone-like legs resting on @. at al ,  a2, . . . , a,, and for 
large values of lz I it resembles the axially symmetric modular surface of zn. 

Figure [ l  11 
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Ill Power Series 
1 The Mystery of Real Power Series 

Many real functions F (x) can be expressed (e.g., via Taylor's Theorem) as power 
series: 

00 

where the cj 's are real constants. Of course, this infinite series will normally only 
converge to F (x) in some origin-centred interval of convergence - R < x < R. 
But how is R (the radius of convergence) determined by F(x)? 

It turns out that this question has a beautifully simple answer, but only ifwe in- 
vestigate it in the complexplane. If we instead restrict ourselves to the real line-as 
mathematicians were forced to in the era in which such series were first employed- 
then the relationship between R and F (x) is utterly mysterious. Historically, it was 
precisely this mystery1 that led Cauchy to several of his breakthroughs in complex 
analysis. 

To see that there is a mystery, consider the power series representations of the 
functions 

1 1 
G(x) = - and H (x) = - 

1 -x2 1 + x2' 

The familiar infinite geometric series, 

immediately yields 

- - 

G(x) = x2j  and H(x) = ( - l ) ~  x2j,  

where both series have the same interval of convergence, - 1 < x < 1. 
It is easy to understand the interval of convergence of the series for G(x) if we 

look at the graph [12a]. The series becomes divergent at x = f 1 because these 
points are singularities of the function itself, i.e., they are places where IG(x)l 
becomes infinite. But if we look at y = I H(x) 1 in [12b], there seems to be no 
reason for the series to break down at x = f 1. Yet break down it does. 

To begin to understand this, let us expand these functions into power series 
centred at x = k (instead of x = 0), i.e., into series of the form CEO C j  ~ j ,  where 
X = (x - k) measures the displacement of x from the centre k. To expand G we 
first generalize (3) by expanding l / (a  - x) about k: 

lcauchy was investigating the convergence of series solutions to Kepler's equation, which 
describes where a planet is in its orbit at any given time. 
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b 
X 

- 1 convergent 1 

Figure [12] 
1 1 1 1 -- - - - 

a - x  a - ( X + k )  (a- k) 1 -  -& [ ( a - 4 1 '  

and so 

To apply this result to G, we factorize (1 - x2) = (1 - x) (1 + x )  and then 
decompose G into partial fractions: 

where 1x1 < 11 - kl and 1x1 < (1 + k l .  Thus the interval of convergence 1x1 < R 
is given by 

R = min {I 1 - k 1, ( 1 + k I} = (distance from k to the nearest singularity of G). 

This readily comprehensible result is illustrated in [13a]; ignore the shaded disc 
for the time being. 

In the case of H (x) , I cannot think of an elegant method of finding the expansion 
using only real numbers, but see Ex. 9 for an attempt. Be that as it may, it can be 
shown that the radius of convergence of the series in X is given by the strange 
formula R = d m .  As with Cotes' work in the previous chapter, we have 
here a result about real functions that is trying to tell us about the existence of the 
complex plane. 

If we picture the real line as embedded in a plane then Pythagoras' Theorem 
tells us that R = d m  should be interpreted as the distance from the centre 
k of the expansion to either of the fixed that lie off the line, one unit from 0 
in a direction at right angles to the line. See [13b]. If the plane is thought of as (C, 
then these points are f i, and 

R = (distance from k to f i). 
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convergent 

Figure [13] 

The mystery begins to unravel when we turn to the complex function h(z) = 
1/(1 + z2), which is identical to H(x) when z is restricted to the real axis of the 
complex plane. In fact there is a sense-we cannot be explicit yet-in which h(z) 
is the only complex function that agrees with H on this line. 

While [12b] shows that h(z) is well-behaved for real values of z, it is clear 
that h(z) has two singularities in the complex plane, one at z = i and the other 
at z = -i; these are shown as little explosions in [13b]. Figure [14] tries to make 
this more vivid by showing the modular surface of h(z), the singularities at f i 
appearing as "volcanoes" erupting above these points. We will sort through the 
details in a moment, but the mystery has all but disappeared: in both [13a] and 

Figure [14] 
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[13b], the radius of convergence is the distance to the nearest singularity. 
If we intersect the surface in [14] with a vertical plane through the real axis 

then we recover the deceptively tranquil graph in [12b], but if we instead slice the 
surface along the imaginary axis then we obtain the graph in [12a]. That this is 
no accident may be seen by first noting that G ( x )  is just the restriction to the real 
axis of the complex function g (z) = 1 / (1 - z2). Since g (z) = h (iz), h and g are 
essentially the same: if we rotate the plane by (n/2) and then do h, we obtain g. In 
particular the modular surface of g is simply [14] rotated by (n/2), the volcanoes 
at f i being rotated to f 1. 

2 The Disc of Convergence 
Let us consider the convergence of complex power series, leaving aside for the 
moment the question of whether a given complex function can be expressed as 
such a series. 

A complex power series P(z) (centred at the origin) is an expression of the 
form 

where the cj 's are complex constants, and z is a complex variable. The partial sums 
of this infinite series are just the ordinary polynomials, 

For a given value of z = a ,  the sequence of points Pl (a), P2 (a), P3 (a), . . . 
is said to converge to the point A if for any given positive number E, no matter 
how small, there exists a positive integer N such that I A - P, (a) 1 < E for every 
value of n greater than N .  Figure [15a] illustrates that this is much simpler than 
it sounds: all it says is that once we reach a certain point PN (a) in the sequence 
Pl (a), P2 (a), P3 (a), . . . , all of the subsequent points lie within an arbitrarily small 
disc of radius E centred at A. 

In this case we say that the power series P(z) converges to A at z = a ,  and we 
write P (a) = A. If the sequence Pl (a), P2(a), P3 (a), . . . does not converge to a 

Figure [15] 
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particular point, then the power series P ( z )  is said to diverge at z = a. Thus for 
each point z ,  P(z)  will either converge or diverge. 

Figure [15b] shows a magnified view of the disc in [15a]. If n > m > N then 
Pm (a)  and Pn (a)  both lie within this disc, and consequently the distance between 
them must be less than the diameter of the disc: 

Conversely, it can be shown [exercise] that if this condition is met then P(a) 
converges. Thus we have a new way of phrasing the definition of convergence: 
P(a) converges if and only if there exists an N such that inequality (6) holds Cfor 
arbitrarily small 6) whenever m and n are both greater than N.  

The complex power series P ( z )  is said to be absolutely convergent at z = a if 
the real series 

converges there. Absolute convergence is certainly different from ordinary con- 
vergence. For example, [exercise] P ( z )  = z j  / j  is convergent at z = - 1, but it 
is not absolutely convergent there. On the other hand, 

If P ( z )  is absolutely convergent at some point, then it will also be 
convergent at that point. (7) 

Thus absolute convergence is a stronger requirement than convergence. 
To establish (7),  suppose that P(z)  is absolutely convergeg at z = a,  so that (by 

definition) P(a) is convergent. In terms of the partial sums Pn ( z )  = Icj z j  1 -. 
of the real s$es ~(9, this says that for sufficiently large values of m and n we 
can make [Pn (a)  - Pm (a)]  as small as we please. But, referring to [15b], we see 
that 

pn(a) - Fm(a) = I C ~ + ~ U " + ' I  + l ~ ~ + ~ a ~ + ~ l  + - - - + lcnanl 

is the total length of the roundabout journey from Pm (a)  to Pn (a)  that goes via 
Pm+' (a) ,  Pm+2(a), etc. Since I Pn (a)  - Pm (a )  I is the length of the shortest journey 
from Pm (a)  to Pn (a) ,  

Thus I P, (a)  - Pm (a)  1 must also become arbitrarily small for sufficiently large m 
and n. Done. 

We can now establish the following fundamental fact: 

If P(z )  converges at z = a, then it will also converge everywhere 
inside the disc lzl < la[. (8) 

See [16a]. In fact we will show that P ( z )  is absolutely convergent in this disc; the 
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Figure [16] 

result then follows 'directly from (7). 
If P (a) converges then the length Icn a n  I of each term must die away to zero 

as n goes to infinity [why?]. In particular, there must be a number M  such that 
Icn anI < M  for all n. If lzl < la1 then p = Izlllal < 1 and so Icn znI < M p n.  
Thus, 

where the RHS is as small as we please for sufficiently large m and n. Done. 
If P(z) does not converge everywhere in the plane then there must be at least 

one point d where it diverges. Now suppose that P(z) were to converge at some 
point p further away from the origin than d. See [16a]. By (8) it would then 
converge everywhere inside the disc lz 1 < 1 p 1, and in particular it would converge 
at d, contradicting our initial hypothesis. Thus, 

If P(z) diverges at z = d, then it will also diverge everywhere 
outside the circle lz 1 = Id 1. (10) 

At this stage we have settled the question of convergence everywhere except 
in the "ring of doubt", la 1 5 lzl 5 Id 1, shown in [16a]. Suppose we take a point 
q half way across the ring of doubt (i.e., on the circle (zl = v), then check 
whether P (q) converges or not. Regardless of the outcome, (8) and (10) enable us 
to obtain a new ring of doubt that is half as wide as before. For example, if P(q) 
is convergent then P (z) is convergent for lz 1 < 1q 1, and the new ring of doubt is 
1q 1 5 lzl 5 Idl. Repeating this test procedure in the new ring will again halve its 
width. Continuing in this manner, the ring of doubt will narrow to a definite circle 
lzl = R (called the circle of convergence) such that P(z) converges everywhere 
inside the circle, and diverges everywhere outside the circle. See [16b]. The radius 
R is called the radius of convergence-at last we see where this name comes 
from!-and the interior of the circle is called the disc of convergence. 

Note that this argument tells us nothing about the convergence of P(z) on the 
circle of convergence. In principle, we can imagine convergence at all, some, or 
none of the points on this circle, and one can actually find examples of power series 
that realize each of these three possibilities. See Ex. 11. 
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All of the above results immediately generalize to a power series centred at an 
arbitrary point k, that is to a series of the form P (z) = cj Z j  , where Z = (z - k) 
is the complex number from the centre k to the point z. Thus, restating our main 
conclusion (due to Niels Abel) in general form, 

Given a complex power series P (z) centred at k, there exists a circle 
lz - kl = R centred at k such that P (z) converges everywhere inside (1 1) 
the circle, and P (z) diverges everywhere outside the circle. 

Of course one can also have a series that converges everywhere, but this may be 
thought of as the limiting case in which the circle of convergence is infinitely large. 

Returning to figures [13a] and [13b], we now recognize the illustrated discs as 
the discs of convergence of the series for 1 /(1 z2). 

3 Approximating a Power Series with a Polynomial 

Implicit in the definition of convergence is a simple but very important fact: if 
P (a)  converges, then its value can be approximated by the partial sum Pm (a) ,  
and by choosing a sufficiently large value of m we can make the approximation as 
accurate as we wish. Combining this observation with (1 I), 

At each point z in the disc of convergence, P (z) can be approximated 
with arbitrarily high precision by a polynomial Pm (z) of suficiently 
high degree. 

For simplicity's sake, let us investigate this further in the case that P(z) is 
centred at the origin. The error Em(z) at z associated with the approximation 
Pm (z) can be defined as the distance Em (z) = I P (z) - Pm (z) 1 between the exact 
answer and the approximation. For a fixed value of m, the error Em (z) will vary as 
z moves around in the disc of convergence. Clearly, since Em (0) = 0, the error will 
be extremely small if z is close to the origin, but what if z approaches the circle 
of convergence? The answer depends on the particular power series, but it can 
happen that the error becomes enormous! [See Ex. 12.1 This does not contradict 
the above result: for any fixed z, no matter how close to the circle of convergence, 
the error Em (z) will become arbitrarily small as m tends to infinity. 

This problem is avoided if we restrict z to the disc lzl 5 r ,  where r c R, 
because this prevents z from getting arbitrarily close to the circle of convergence, 
lzl = R. In attempting to approximate P(z) within this disc, it turns out that we 
can do the following. We first decide on the maximum error (say E) that we are 
willing to put up with, then choose (once and for all) an approximating polynomial 
Pm (z) of sufficiently high degree that the error is smaller than c throughout the 
disc. That is, throughout the disc, the approximating point Pm (z) lies less than E 

away from the true point, P (z). One describes this by saying that P (z) is uniformly 
convergent on this disc: 

If P (z) has disc of convergence lzl < R, then P (z) is uniformly 
convergent on the closed disc lzl 5 r, where r < R. (12) 
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Although we may not have uniform convergence on the whole disc of conver- 
gence, the above result shows that this is really a technicality: we do have uniform 
convergence on a disc that almost fills the complete disc of convergence, say 
r = (0.999999999) R. 

To verify (12), first do Ex. 12, then have a good look at (9). 

4 Uniqueness 
If a complex function can be expressed as a power series, then it can only be done 
so in one way-the power series is unique. This is an immediate consequence of 
the Identity Theorem: 

for all z in a neighbourhood (no matter how small) of 0, then the 
power series are identical: cj = dj. 

Putting z = 0 yields co = do, so they may be cancelled from both sides. Dividing 
by z and again putting z = 0 then yields cl = dl,  and so on. [Although this 
was easy, Ex. 13 shows that it is actually rather remarkable.] The result can be 
strengthened considerably: If the power series merely agree along a segment of 
curve (no matter how small) through 0, or  if they agree at  every point of an injnite 
sequence ofpoints that converges to 0, then the series are identical. The verification 
is essentially the same, only instead of putting z = 0, we now take the limit as z 
approaches 0, either along the segment of curve or through the sequence of points. 

We can perhaps make greater intuitive sense of these results if we first recall that 
a power series can be approximated with arbitrarily high precision by apolynomial 
of sufficiently high degree. Given two points in the plane (no matter how close 
together) there is a unique line passing through them. Thinking in terms of a 
graph y = f (x), this says that a polynomial of degree 1, say f (x) = co + clx, is 
uniquely determined by the images of any two points, no matter how close together. 
Likewise, in the case of degree 2, if we are given three points (no matter how close 
together), there is only one parabolic graph y = f (x) = co + clx + c2x2 that can 
be threaded through them. This idea easily extends to complex functions: there is 
one, and only one, complex polynomial of degree n that maps a given set of (n + 1) 
points to a given set of (n + 1) image points. The above result may therefore be 
thought of as the limiting case in which the number of known points (together with 
their known image points) tends to infinity. 

Earlier we alluded to a sense in which h(z) = 1/(1 + z2) is the only complex 
function that agrees with the real function H(x) = 1/(1 + x2) on the real line. 
Yet clearly we can easily write down infinitely many complex functions that agree 
with H (x) in this way. For example, 
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Then in what sense can h(z) be considered the unique generalization of H (x)? 
We already know that h (z) can be expressed as the power series C E O ( -  1) j z2j, 

and this fact yields [exercise] a provisional answer: h (z) is the only complex func- 
tion that (i) agrees with H (x) on the real axis, and (ii) can be expressed as a power 
series in z. This still does not completely capture the sense in which h(z) is unique, 
but it's a start. 

More generally, suppose we are given a real function F (x) that can be expressed 
as a power series in x on a (necessarily origin-centred) segment of the real line: 
F (x) = xFo C j  x j . Then the complex power series f (z) = xFo cj z j  with the 
same coefficients can be used to define the unique complex function f (z) that 
(i) agrees with F on the given segment of the real axis, and (ii) can be expressed 
as a power series in z. 

For example, consider the complex exponentialfunction, written eZ, the geom- 
0 0 .  etry of which we will discuss in the next section. Since ex = x j = o  xJ / j ! ,  

Note that our heuristic, power-series approach to Euler's formula [Chapter 11 is 
starting to look more respectable! 

5 Manipulating Power Series 

The fact that power series can be approximated with arbitrarily high precision by 
polynomials implies [see Ex. 141 that 

Two power series with the same centre can be added, multiplied, 
and divided in the same way as  polynomials. (13) 

If the two series P(z) and Q(z) have discs of convergence Dl and D2, then the 
resulting series for [ P  + Q] and P Q will both converge in the smaller of Dl and 
D2, though they may in fact converge within a still larger disc. No such general 
statement is possible in the case of ( P I  Q) = P (1 / Q), because the convergence 
of the series for ( l /Q)  is limited not only by the boundary circle of D2, but also 
by any points inside D2 where Q (z) = 0. 

Let us illustrate (13) with a few examples. Earlier we actually assumed this 
result in order to find the series for 1 / (1 - z2) centred at k. Using the partial fraction 
decomposition 

we obtained two power series for the functions on the RHS, and then assumed that 
these power series could be added like two polynomials, by adding the coefficients. 

In the special case k = 0 we can check that this procedure works, because we 
already know the correct answer for the series centred at the origin: 
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Since 

1 
and - - - 1 - z + z ~ - z ~ + z ~ - z ~ + . . - ,  

l + z  

we see that adding the coefficients of these series does indeed yield the correct 
series for 1/(1 - z2). 

Since 
1 

c - 2  = [A] [A] , 

we can recycle this example to illustrate the correctness of multiplying power 
series as if they were polynomials: 

which is again the correct series for 1/(1 - z2). 
Next, let's use (13) to find the series for 1/(1 - z ) ~ :  

and so (1 - z ) - ~  = CFO(j + 1) zj. 
You may check for yourself that the above series for (1 - z)-I and (1 - z ) - ~  

are both special cases of the general Binomial Theorem, which states that if n is 
any real number (not just a positive integer), then within the unit disc, 

Historically, this result was one of Newton's key weapons in developing calculus, 
and later it played an equally central role in the work of Euler. 

In Exs. 16, 17, 18, we show how manipulation of power series may be used 
to demonstrate the Binomial Theorem, first for all negative integers, then for all 
rational powers. Although we shall not discuss it further, the case of an irrational 
power p may be treated by taking an infinite sequence of rational numbers that 
converges to p. Later we shall use other methods to establish a still more general 
version of (14) in which the power n is allowed to be a complex number! 

Next we describe how to divide two power series P (z) and Q(z). In order to 
find the series P (z) / Q (z) = cj z j , one multiplies both sides by Q (z) to obtain 
P (z) = Q (z) cj z j  , and then multiplies the two power series on the right. By the 
uniqueness result, the coefficients of this series must equal the known coefficients 
of P(z), and this enables one to calculate the cj's. An example will make this 
process much clearer. 
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In order to find the coefficients cj in the series l/ez = x cj zJ ,  we multiply 
both sides by eZ to obtain 

By the uniqueness result, we may equate coefficients on both sides to obtain an 
infinite set of linear equations: 

Successively solving the first few of these equations [exercise] quickly leads to the 
guess c, = (-l)n/n!, which is then easily verified [exercise] by considering the 
binomial expansion of (1 - l)m, where rn is a positive integer. Thus we find that 

just as with the real function ex. 

6 Finding the Radius of Convergence 

Given a complex power series P (z) = C cj z j  , there are several ways of determin- 
ing its radius of convergence directly from its coefficients. Since they are formally 
identical to the methods used on real series, we merely state them, leaving it to 
you to generalize the standard real proofs. 

The ratio test says that 

provided this limit exists. For example, if 

then 

R = lim 'In2 = lim (1 + !)2 = 1. 
n-00 l/(n + 112 

If Icn/cn+l I tends to infinity then (formally) R = oo, corresponding to convergence 
0 0 .  everywhere in the plane. For example, ez = xjZo zJ / j  ! converges everywhere, 

because 
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l l n !  
R = lim = lim (n + 1) = 00. 

n+oo l/(n + l)! n+m 

When the ratio test fails, or becomes difficult to apply, we can often use the 
root test, which says that 

1 
R = lim - 

n+m m' 
provided this limit exists. For example, if we first recall [we will discuss this later] 
that the real function ex may be written as 

then applying the root test to the series 

yields [exercise] R = e3. 
On occasion both the ratio and root tests will fail, but there exists a slightly 

refined version of the latter which can be shown to work in all cases. It is called 
the Cauchy-Hadamard Theorem, and it says that 

R = 
1 

lirn sup ' 

We will not discuss this further since it is not needed in this book. 
The above examples of power series were plucked out of thin air, but often 

our starting point is a known complex function f (z) which is then expressed as a 
power series. The problem of determining R then has a conceptually much more 
satisfying answer. ~ o u ~ h l ~ ~ ,  

Iff (z) can be expressed as a power series centred at k, then the 
radius of convergence is the distance from k to the nearest singularity (1 5) 
o f f  (z). 

Figure [17a] illustrates this, the singularities of f ( z )  being represented as explo- 
sions. To understand which functions can be expanded into power series we need 
deep results from later in the book, but we are already in a position to verify that 
a rational function [the ratio of two polynomials] can be, and that the radius of 
convergence for its expansion is given by (15). 

To begin with, reconsider [13a] and [13b], both of which are examples of (15). 
Recall that in [13b] we merely claimed that R = 4- for the series expansion 

2 ~ a t e r  [p. 961 we shall have to modify the statement in the case that f ( z )  is a "multifunction", 
having more than one value for a given value of z. 
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Figure [17] 

of h(z)  = 1 / ( 1  + z2)  centred at the real point k. We now verify this and explicitly 
find the series. 

To do so, first note that (4) easily generalizes to 

1 zj -=c if and only if IZI < la - kl, 
a  - z  j=o (a  - k ) j + l '  

(16) 

where a  and k  are now arbitrary complex numbers, and Z = ( z  - k)  is the complex 
number connecting the centre of the expansion to z .  The condition lz - k  I < la - kl 
for convergence is that z  lie in the interior of the circle centred at k  and passing 
through a .  See [17b], which also shows the discs of convergence when we instead 
choose to expand l / ( a  - z )  about kl or k2. Since the function l / ( a  - z )  has just 
one singularity at z  = a ,  we have verified (15) for this particular function. 

Earlier we found the expansion of 1 / ( 1  - x2)  by factorizing the denominator and 
using partial fractions. We are now in a position to use exactly the same approach 
to find the expansion of h ( z )  = 1 / ( 1  + z2)  centred at an arbitrary complex number 

Applying (16) to both terms then yields 

The series for 1 / ( f  i - z )  converge inside the concentric circles lz - k 1 = I f  i - kl 
centred at k  and passing through the points ~ i ,  which are the singularities of 
h(z) .  But (17) will only converge when both these series converge, i.e., in the disc 
lz - kl < R where R is the distance from the centre k  to the nearest singularity of 
h ( 2 ) .  Thus we have confirmed ( 1  5 )  for h ( 2 ) .  

In particular, if k  is real then (17) converges in the disc shown in [13b]. If z  
is restricted to the real axis then h(z)  reduces to the real function l / ( l  + x2),  and 
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the expansion of this function into powers of X = (x - k) can be deduced easily 
from (17). Since k is now real, li - kl = dm, and we may write (i - k) = 
4- ei< where #I = arg(i - k) is the appropriate value of tan-' (-I/ k). Thus 
[exercise] 

Again, we have here a result concerning real functions that would be very difficult 
to obtain using only real numbers. 

The above analysis of 1/(1+ z2) can easily be generalized [exercise] to show 
that any rational function can be expressed as a power series, with radius of con- 
vergence given by (1 5). 

7 Fourier Series* 

On the 2 1 st of December 1807, Joseph Fourier announced to the French Academy 
a discovery so remarkable that his distinguished audience found it literally incred- 
ible. His claim was that any3 real periodic function F (8), no matter how capricious 
its graph, may be decomposed into a sum of sinusoidal waves of higher and higher 
frequency. For simplicity's sake, let the period be 2n; then the Fourier series is 

where [see Ex. 201 

2x 
an= ' /  F(8) cosne d8 and bn = F(8) sinne do. (19) 

n 0 

This optional section is addressed primarily to readers who have already en- 
countered such series. For those who have not, we hope that this brief discussion 
(together with the exercises at the end of the chapter) may whet your appetite for 
more on this fascinating subject4. 

In the world of the real numbers there appears to be no possible connection 
between the concepts of Fourier series and Taylor series, but when we pass into 
the complex realm a beautiful and remarkable fact emerges: 

Taylor series and Fourier series of real functions are merely two 
different ways of viewing complex power series. 

We will explain this cryptic pronouncement by means of an example. 

3~ater  it was found that some restrictions must be placed on F, but they are astonishingly 
weak. 

4 ~ n  many areas of mathematics it is hard to find even one really enlightening book, but Fourier 
analysis has been blessed with at least two: Lanczos [1966], and Korner [1988]. 
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Consider the complex function f (z) = 1 / (1 - z). Writing z = r eiB , one finds 
[exercise] that the real and imaginary parts of f (r eiB) are given by 

[ 
r sin 0 

f (r eiB) = u(r eiO)+i v(r eiO) = 
l r c O s o  ] + i [ 1 + r 2 - 2 r c o s ~  1 + r 2  - 2r coso 1. 

Let's concentrate on just one of these real functions, say v. 
If z moves outward from the origin along a ray 0 = const. then v(r eiO) 

becomes a function of r alone, say Ve (r). For example, 

Vn (r) = 
4 &(I + r2) - 2r ' 

If z instead travels round and round a circle r = const. then v becomes a function 
of 0 alone, say Vr (0). For example, 

- 2 sin 8 
Vi (0) = 

Z 5 - 4coso '  

Note that this is a ~er iodic  function of 0, with period 2n. The reason is simple 
and applies to any Vr (0) arising from a (single-valued) function f (2): each time z 
makes a complete revolution and returns to its original position, f (z) travels along 
a closed loop and returns to its original position. 

Now, to see the unity of Taylor and Fourier series, recall that (within the unit 
disc) f (z) = 1/(1 - z) can be expressed as a convergent complex power series: 

In particular, 

If we put 0 = (n/4), we immediately obtain the Taylor series for Vn (r): 
4 

Once again, consider how difficult this would be to obtain using only real numbers. 
From this we find, for example, that 

- If we instead put r = (1/2), we immediately obtain the Fourier series for 
VI (0): 

Z 
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2 sin 8 - 
= Vl(8) = ; s ine+ $sin28+ &sin38 + $s in48+ . . .  . 

5 - 4 ~ 0 ~ 8  2 

The absence of cosine waves in this series correctly reflects the fact that fL (8) is 
L 

an odd function of 8. 
This connection between complex power series and Fourier series is not merely 

aesthetically satisfying,it can also be very practical. The conventional derivation 
of the Fourier series of V; (8) requires that we evaluate the tricky integrals in (19), 

L 

whereas we have obtained the result using only simple algebra! Indeed, we can 
now use our Fourier series to do integration: 

Further examples may be found in Exs. 21,37,38. 
We end with a premonition of things to come. The coefficients in a Taylor 

series may be calculated by differentiation, while those in a Fourier series may be 
calculated by integration. Since these two types of series are really the same in 
the complex plane, this suggests that there exists some hidden connection between 
differentiation and integration that only complex numbers can reveal. Later we 
shall see how Cauchy confirmed this idea in spectacular fashion. 

IV The Exponential Function 
1 Power Series Approach 

We have seen that the only complex function expressible as a power series that 
generalizes the real function ex to complex values is 

which converges everywhere in C. We now investigate the geometric nature of this 
function. 

Figure [18] visualizes the above series as a spiral journey, the angle between 
successive legs of the journey being fixed and equal to arg z. In the special case 
where this angle is a right angle, we saw in Chapter 1 that the spiral converges to a 
point on the unit circle given by Euler's formula, ezy = cos y + i sin y. In fact this 
special spiral enables us to figure out what happens in the case of the general spiral 
in [18]: for an arbitrary value of z = x + iy, the spiral converges to the illustrated 
point at distance ex and at angle y. In other words, 

This is a consequence of the fact that if a and b are arbitrary complex numbers, 
then ea eb = ea+b. To verify this we just multiply the two series: 
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Figure [18] 

Here we have left it to you to show that the general term in the penultimate line is 
indeed (a + b)n / n ! . 

2 The Geometry of the Mapping 

Figure [19] illustrates the essential features of the mapping z H w = eZ. Study it 
carefully, noting the following facts: 

If z travels upward at a steady speed s, then w rotates about the origin at 
angular speed s. After z has travelled a distance of 2n, w returns to its starting 
position. Thus the mapping is periodic, with period 2rt i . 

If z travels westward at a steady speed, w travels towards the origin, with 
ever decreasing speed. Conversely, if z travels eastward at a steady speed, w 
travels away from the origin with ever increasing speed. 

Combining the previous two facts, the entire w-plane (with the exception of 
w = 0) will be filled by the image of any horizontal strip in the z-plane of 
height 2rt. 

A line in general position is mapped to a spiral of the type discussed in the 
previous chapter. 
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Figure [19] 

Euler's formula eiJ' = cos y + i sin y can be interpreted as saying that eZ wraps 
the imaginary axis round and round the unit circle like a piece of string. 

The half-plane to the left of the imaginary axis is mapped to the interior of 
the unit circle, and the half-plane to the right of the imaginary axis is mapped 
to the exterior of the unit circle. 

The images of the small squares closely resemble squares, and (related to 
this) any two intersecting lines map to curves that intersect at the same angle 
as the lines themselves. 

The last of these observations is not intended to be self-evident-in Chapter 4 
we will begin to explore this fundamental property and to see that it is shared by 
many other important complex mappings. 

3 Another Approach 
The advantage of the power series approach to eZ is that it suggests that there is 
something unique about this generalization of ex to complex values. The disad- 
vantage is the amount of unillurninating algebra needed to decipher the geometric 
meaning of the series. We now describe a different approach in which the geometry 
lies much closer to the surface. The idea is to generalize the real result, 

Here is one way of understanding (20). As we discussed in Chapter 1, f (x) = 
ex may be defined by the property f '(x) = f (x). Figure [20a] interprets this in 
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terms of the graph of y = f (x). Drawing a tangent at an arbitrary point, the base 
of the shaded triangle is always equal to 1. As you see from the figure, it follows 
that if the height is yold at some point x,  then moving x an infinitesimal distance 6 
to the right yields a new height given by 

Ynew = (1 + 6) yold. 

To find the height ex at x,  we divide the interval [0, x] into a large number n 

- 
1 + 6  

Figure [20] 

of very short intervals of length (x/n). Since the height at x = 0 is 1, the height 
at (x/n) will be approximately [ l  + (x/n)] - 1, and so the height at 2(x/n) will 
be approximately [I + (x/n)] . [I + (x/n)] . 1, and so ......., and so the height at 
x = n(x/n) will be approximately [ l  +(x/n)ln . [For clarity's sake, [20b] illustrates 
this geometric progression with the small (hence inaccurate) value n = 3 .] It is now 
plausible that the approximation [1+ (x/n)ln becomes more and more accurate as 
n tends to infinity, thereby yielding (20). Try using a computer to verify empirically 
that the accuracy does indeed increase with n. 

Generalizing (20) to complex values, we may define eZ as 

First we should check that this is the same generalization of ex that we obtained 
using power series. Using the Binomial Theorem to write down the first few terms 
of the n" degree polynomial [ l  + (z/n)ln, we get 
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which makes it clear that we do recover the original power series as n tends to 
infinity. 

Next we turn to the geometry of (21). In deciphering the power series for eZ 

we felt free to assume Euler's formula, because in Chapter 1 we used the power 
series to derive that result. However, it would smack of circular reasoning if we 
were to assume Euler's formula while following our new approach to eZ, based on 
(21). Temporarily, we shall therefore revert to our earlier notation and write r L8 
instead of r eie; the fact we wish to understand is therefore written eX+'y = ex L y. 

With n = 6, figure [21] uses Ex. 5, p. 46, to geometrically construct the succes- 
sive powers of a - [1 + (zln)] for a specific value of z. [All six shaded triangles 

Figure [21] 

are similar; the two kinds of shading merely help to distinguish one triangle from 
the next.] Even with this small value of n, we see empirically that in this particular 
case [1+ (z/n)ln is close to ex L y. To understand this mathematically, we will try 
to approximate a = [ l  + (zln)]. 

Let E be a small, ultimately infinitesimal, complex number. Consider the length 
r and angle 8 of the number (1 + E) = rL8 shown in [22]. The origin-centred 
circular arc [not shown] connecting (1 + E) to the point r on the real axis almost 
coincides with the illustrated perpendicular from (1 + E) to the real axis. Thus r is 
approximately equal to [1+ Re(€)], and is ultimately equal to it as E tends to zero. 
Similarly, we see that the angle 8 (the illustrated arc of the unit circle) is ultimately 
equal to Im(E). Thus 

Figure [22] 
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with equality holding for infinitesimal E .  

Now set E = (z/n) = (X + iy)/n. With the same values of z and n as in [21], 
figure [23] shows the approximation b = (1 + 9) L (i) to a,  together with its 
successive powers. 

Figure [23] 

Returning to the general case, the geometry of (21) should now be clear. If n 
is large, 

[ I +  ; In  = [(I + X )  L ( ; ) I n  = (1 + X ) n  L y. 

Taking the limit as n tends to infinity, and using (20), we deduce that 

as was to be shown. In particular, if we put x = 0 then we recover Euler's formula, 
e i y  = 1 L y, and so we are entitled to write ex+" = ex e i y .  

For a slightly different way of looking at (21), see Ex. 22. 

V Cosine and Sine 
1 Definitions and Identities 

In the previous chapter Euler's formula enabled us to express cosine and sine in 
terms of the exponential function evaluated along the imaginary axis: 

,ix + e-ix ,ix - e-ix 
cos X = 

2 
and sinx = 

2i ' 

Now that we understand the effect of eZ on arbitrary points (not merely points on 
the imaginary axis), it is natural to extend the definitions of cosine and sine to the 
complex functions 
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,iz - e-iz 
COS Z E 

2 2i . (22) 

Of course another way of generalizing cosx and sinx would be via their power 
series, discussed in the previous chapter. This leads to the alternative definitions, 

However, by writing down the series for ekiz you can easily check that these two 
approaches both yield the same complex functions. 

From the definitions (22) we see that cos z and sin z have much in common 
with their real ancestors. For example, cos(-z) = cos z ,  and sin(-z) = - sin z. 
Also, since eZ is periodic with period 2ni,  it follows that cos z and sin z are also 
periodic, but with period 2n. The meaning of this periodicity will become clearer 
when we examine the geometry of the mappings. 

Other immediate consequences of (22) are the following important general- 
izations of Euler's formula: 

eiz = cosz + i sinz and eViz = cosz - i sinz. 

WARNING: cos z and sin z are now complex numbers-they are not the real and 
imaginary parts of elz. 

It is not hard to show that all the familiar identities for cos x and sin x continue 
to hold for our new complex functions. For example, we still have 

2 2 cos z +sin z = (cosz + i sinz)(cosz - i sinz) = e i ze - '~  = eo = 1, 

despite the fact that this identity no longer expresses Pythagoras' Theorem. Simi- 
larly, we will show that if a and b are arbitrary complex numbers then 

cos(a + b) = cos a cos b - sin a sin b (23) 

sin(a + b) = sina cosb+cosa sinb, (24) 

despite the fact that these identities no longer express the geometric rule for mul- 
tiplying points on the unit circle. First, 

cos(a + b) + i sin(a + b) = ei(a+b) = eiaeib 

= (cosa +isina)(cosb+isinb) 
= (cos a cos b - sin a sin b) + i (sin a cos b + cos a sin b), 

exactly as in the previous chapter. However, in view of the warning above, we 
do not obtain (23) and (24) simply by equating real and imaginary parts. Instead 
[exercise] one first finds the analogous identity for cos(a + b) - i sin(a + b), then 
adds it to (or subtracts it from) the one above. 
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2 Relation to Hyperbolic Functions 
Recall the definitions of the hyperbolic cosine and sine functions: 

- e-X 

coshx = and s i n h x ~  
2 2 .  

By interpreting each of these as the average (i.e., midpoint) of ex and f e-x, it is 
easy to obtain the graphs y = cosh x and y = sinh x shown in [24a] and [24b]. 

Figure [24] 

As you probably know, cosh x and sinh x satisfy identities that are remarkably 
similar to those satisfied by cos x and sin x,  respectively. For example, if rl and r2 
are arbitrary real numbers, then [exercise] 

cosh(r1 + r2) = cosh rl cosh r2 + sinh rl sinh r2 (25) 

sinh(r1 + r2) = sinh rl cosh r2 + cosh rl sinh r2. (26) 

Nevertheless, [24] shows that the actual behaviour of the hyperbolic functions is 
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quite unlike the circular functions: they are not periodic, and they become arbi- 
trarily large as x tends to infinity. It is therefore surprising and pleasing that the 
introduction of complex numbers brings about a unification of these two types of 
functions. 

We begin to see this if we restrict z = iy to the imaginary axis, for then 

cos(iy) = cosh y and sin(iy) = i sinh y . 

This connection becomes particularly vivid if we consider the modular surface of 
sin z. Since I sin z I is ultimately equal to lz 1 as z approaches the origin, it follows that 
the surface rises above the origin in the form of a cone. Also, I sin(z + n )  I = I sin z 1, 
so there is an identical cone at each multiple of n along the real axis. These are the 
only points [exercise] at which the surface hits the plane. Figure [25]-which we 
have adapted from Markushevich [1965, p. 1491-shows a portion of the surface. 
Notice that this surface also yields the cosh graph, for if we restrict z = (3x12) + iy 

Figure [25] 

to the line x = (3n/2), for example, then I sin z 1 = cosh y . 
A practical benefit of this unification is that if you can remember (or quickly 

derive using Euler's formula) a trig identity involving cosine and sine, then you can 
immediately write down the corresponding identity for the hyperbolic functions. 
For example, if we substitute a = irl and b = ir2 into (23) and (24), then we 
obtain (25) and (26). 

The connection between the circular and hyperbolic functions becomes stronger 
still if we generalize the latter to complex functions in the obvious way: 

Since we now have 

C O S ~  z = cos(iz) and sinh z = - i  sin(iz), 
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the distinction between the two kinds of function has all but evaporated: cosh is 
the composition of a rotation through (n/2), followed by cos; also, sinh is the 
composition of a rotation through (n/2), followed by sin, followed by a rotation 
through - (n/2). 

3 The Geometry of the Mapping 
Just as in the real case, sin z = cos(z - %), which means that we may obtain sin 
from cos by first translating the plane by - (n/2). It follows from the preceding 
remarks that it is sufficient to study just cosz in order to understand all four 
functions, cos z, sin z, cosh z, and sinh z. We now consider the geometric nature 
of the mapping z H w = cos z. 

We begin by finding the image of a horizontal line y = -c lying below the 
real axis. It is psychologically helpful to picture the line as the orbit of a particle 
moving eastward at unit speed, whose position at time t is z = t - ic. See [26], in 
which the line is shown heavy and unbroken. As z traces this line, -z traces the 

Figure [26] 

line y = c, but in the opposite direction. Applying the mapping z H iz (which is a 
rotation of F), the image particles trace the vertical lines x = f c, again with unit 
speed and in opposite directions. Finally applying z H kez, the image particles 
orbit with equal and opposite angular speeds in origin-centred circles of radii e*'. 

The image orbit under z H w = cos z of the original particle travelling on 
the line y = -c is just the sum of these counter-rotating circular motions. This 
is clearly some kind of symmetrical oval hitting the real and imaginary axes at 
a = cosh c and ib = i sinh c. It is also clear that cos z executes a complete orbit 
of this oval with each movement of 2n by z; this is the geometric meaning of the 
periodicity of cos z. 

I haven't found a simple geometric explanation, but it's easy to show symboli- 
cally that the oval traced by cos z is a perfect ellipse. Writing w = u + i v ,  we find 
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from the figure [exercise] that u = a cost and v = b sin t, which is the familiar 
parametric representation of the ellipse ( ~ j a ) ~  + ( ~ j b ) ~  = 1. Furthermore, 

so the foci are at Al, independent of which particular horizontal line z travels 
along. 

Try mulling this over. How does the shape of the ellipse change as we vary c? 
How do we recover the real cosine function as c tends to zero? What is the orbit of 
cos z as z travels eastward along the line y = c, above the real axis? What is the 
image of the vertical line x = c under z H cosh Z? What is the orbit of sin z as z 
travels eastward along the line y = c; how does it differ from the orbit of cos z; 
and is the resulting variation of ( sin z 1 consistent with the modular surface shown 
in [25]? 

Before reading on, try using the idea in [26] to sketch for yourself the image 
under z t-+ cos z of a vertical line. 

As illustrated in 1271, the answer is a hyperbola. We can show this using the 

cos z 
2l\l\r* 

Figure [27] 

addition rule (23), which yields 

u + iv = cos(x + iy) = cosx coshy - i sinx sinhy. 

On a horizontal line, y is constant, so (u j cosh y)2 + (v j  sinh y)2 = 1, as before. 
On a vertical line, x is constant, so (u/ C O S X ) ~  - (v j   sin^)^ = 1, which is the 
equation of a hyperbola. Furthermore, since cos2 x + sin2 x = 1, it follows that the 
foci of the hyperbola are always f 1, independent of which vertical line is being 
mapped. 

Figure [27] tries to make these results more vivid by showing the image of a 
grid of horizontal and vertical lines. Note the empirical fact that each small square 
in the grid is mapped by cosz to an image shape that is again approximately 
square. This is the same surprising (and visually pleasing) phenomenon that we 
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observed in the case of z H eZ. 
We hope your curiosity is piqued-later chapters are devoted to probing this 

phenomenon in depth. In the present case of z H cosz we can at least give a 
mathematical explanation of part of the result, namely, that the sides of the image 
"squares" do indeed meet at right angles; in other words, each ellipse cuts each 
hyperbola at right angles. 

This hinges on the fact that these ellipses and hyperbolas are confocal. To 
prove the desired result [exercise], think of each curve as a mirror, then appeal to 
the familiar reflection property of the conic sections: a ray of light emitted from a 
focus is reflected directly towards the other focus by the ellipse, and it is reflected 
directly away from the other focus by the hyperbola. See [27]. 

VI Multifunctions 
1 Example: Fractional Powers 

Thus far we have considered a complex function f to be a rule that assigns to 
each point z (perhaps restricted to lie in some region) a single complex number 
f (z). This familiar conception of a function is unduly restrictive. Using examples, 
we now discuss how we may broaden the definition of a function to allow f (z) 
to have many different values for a single value of z. In this case f is called a 
"many-valued function", or, as we shall prefer, a multifunction. 

We have, in effect, already encountered such multifunctions. For example, we 
know that has three different values (if z is not zero), so it is a three-valued 
multifunction. In greater detail, [28] recalls how we can find the three values of ~ using the mapping z H z3. Having found one solution a ,  we can find the 

Figure [28] 

other two (b and c) using the fact that as z = r eie orbits round an origin-centred 
circle, z3 = r 3  ei3' orbits with three times the angular speed, executing a complete 
revolution each time z executes one third of a revolution. Put differently, reversing 
the direction of the mapping divides the angular speed by three. This is an essential 
ingredient in understanding the mapping z t-+ @, which we will now study in 
detail. 

Writing z = r eie, we have @ = 5 ei('I3). Here is uniquely defined as 
the real cube root of the length of z; the sole source of the three-fold ambiguity in 



Multifunctions 91 

the formula is the fact that there are infinitely many different choices for the angle 
8 of a given point z. 

Think of z as a moving point that is initially at z = p. If we arbitrarily choose 
8 to be the angle $ shown in [28], then f i  = a .  As z gradually moves away from 
p, 8 gradually changes from its initial value 4, and @ = *ei('l3) gradually 
moves away from its initial position a ,  but in a completely determined way-its 
distance from the origin is the cube root of the distance of z, and its angular speed 
is one third that of z. 

Figure [29] illustrates this. Usually we draw mappings going from left to right, 
but here we have reversed this convention to facilitate comparison with [28]. 

Figure [29] 

As z travels along the closed loop A (finally returning to p), @ travels along 
the illustrated closed loop and returns to its original value a. However, if z instead 
travels along the closed loop B, which goes round the origin once, then f i  does 
not return to its original value but instead ends up at a different cube root of p, 
namely b. Note that the detailed shape of B is irrelevant, all that matters is that 
it encircles the origin once. Similarly, if z travels along C, encircling the origin 
twice, then ends up at c, the third and final cube root of p. Clearly, if z were 
to travel along a loop [not shown] that encircled the origin three times, then f i  
would return to its original value a. 

The premise for this picture of z I--+ @ was the arbitrary choice of @ = a, 
rather than b or c.  If we instead chose @ = b, then the orbits on the left of [29] 
would simply be rotated by (2x13). Similarly, if we chose f i  = c, then the orbits 
would be rotated by (4x13). 

The point z = 0 is called a branch point of fi. More generally, let f (z) be a 
multifunction and let a = f (p) be one of its values at some point z = p. Arbitrarily 
choosing the initial position of f (z) to be a ,  we may follow the movement off ( z )  
as z travels along a closed loop beginning and ending at p. When z returns to p, 
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f (z) will either return to a or it will not. A branch point z = q of f is a point such 
that f (z) fails to return to a as z travels along any loop that encircles q once. 

Returning to the specific example f (z) = fi, we have seen that if z executes 
three revolutions round the branch point at z = 0 then f (z) returns to its original 
value. If f (z) were an ordinary, single-valued function then it would return to its 
original value after only one revolution. Thus, relative to an ordinary function, two 
extra revolutions are needed to restore the original value of f (2). We summarize 
this by saying that 0 is a branch point of fi of order two. 

More generally, if q is a branch point of some multifunction f (z), and f (z) 
first returns to its original value after N revolutions round q,  then q is called an 
algebraic branch point of order (N - 1); an algebraic branch point of order 1 is 
called a simple branch point. We should stress that it is perfectly possible that f (z) 
never returns to its original value, no matter how many times z travels round q. 
In this case q is called a logarithmic branch point-the name will be explained in 
the next section. 

By extending the above discussion of fi, check for yourself that if n is an 
integer then z('/") is an n-valued multifunction whose only (finite) branch point is 
at z = 0, the order of this branch point being (n - 1). More generally, the same is 
true for any fractional power dm/"), where (m/n) is a fraction reduc~d to lowest 
terms. 

2 Single-Valued Branches of a Multifunction 

Next we will show how we may extract three ordinary, single-valued functions 
from the three-valued multifunction fi. First, [30] introduces some terminology 
which we need for describing sets of points in (C. 

A set S is said to be connected (see [30a]) if any two points in S can be 
connected by an unbroken curve lying entirely within S .  Conversely, if there exist 
pairs of points that cannot be connected in this way (see [30b]), then the set is 
disconnected. Amongst connected sets we may single out the simply connected 
sets (see [30c]) as those that do not have holes in them. More precisely, if we 

simply connected 

disconnected multiply connected 

Figure [30] 
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picture the path connecting two points in the set as an elastic string, then this string 
may be continuously deformed into any other path connecting the points, without 
any part of the string ever leaving the set. Conversely, if the set does have holes 
in it then it is multiply connected (see [30d]) and there exist two paths connecting 
two points such that one path cannot be deformed into the other. 

Now let us return to [29]. By arbitrarily picking one of the three values of D 
at z = p, and then allowing z to move, we see that we obtain a unique value of 

associated with any particular path from p to Z. However, we are still dealing 
with a multifunction: by going round the branch point at 0 we can end up at any 
one of the three possible values of z. 

On the other hand, the value of z does not depend on the detailed shape 
of the path: if we continuously deform the path without crossing the branch point 
then we obtain the same value of z. This shows us how we may obtain a single- 
valued function. If we restrict z to any simply connected set S that contains p but 
does not contain the branch point, then every path in S from p to Z will yield the 
same value of z ,  which we will call fl(Z). Since the path is irrelevant, fl is 
an ordinary, single-valued function of position on S; it is called a branch of the 
original multifunction @. 

Figure [3 11 illustrates such a set S, together with its image under the branch fl 
of 3. Here we have reverted to our normal practice of depicting the mapping going 
from left to right. If we instead choose D = b then we obtain a second branch 
f2 of @, while f i  = c yields the third and final branch f3. Notice, incidentally, 
that all three branches display the by now ubiquitous (yet mysterious) preservation 
of small squares. 

We now describe how we may enlarge the domain S of the branches so as to 
obtain the cube roots of any point in the plane. First of all, as illustrated in [32], we 
draw an arbitrary (but not self-intersecting) curve C from the branch point 0 out 

Figure [3 11 
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Figure [32] 

to infinity; this is called a branch cut. Provisionally, we now take S to be the plane 
with the points of C removed-this prevents any closed path in S from encircling 
the branch point. We thereby obtain on S the three branches f l ,  f2, and f3. For 
example, the figure shows the cube root f (d) of d.  

What about a point such as e on C? Imagine that z is travelling round an origin- 
centred circle through e. The figure illustrates the fact that fl (z) approaches two 
different values according as z arrives at e with positive or negative angular speed. If 
we (arbitrarily) define f (e) to be the value of f (z) when z travels counterclockwise 
round the circle, then fl ( z )  is well defined on the whole plane. Similarly for the 
other two branches. 

Of course the branch cut C is the work of man-the multifunction f i  is 
oblivious to our desire to dissect it into three single-valued functions. As we have 
just seen, this shows up in the fact that the resulting branches are discontinuous 
on C, despite the fact that the three values of f i  always move continuously as 
z moves continuously. As z crosses C travelling counterclockwise then we must 
switch from one branch to the next in order to maintain continuous motion of G: 
for example, f switches to f2. If z executes three counterclockwise revolutions 
round the branch point, then the branches permute cyclically, each finally returning 
to itself: using an arrow to denote a crossing of C, 

A common choice for C is the negative real axis. If we do not allow z to cross 
the cut then we may restrict the angle 0 = arg(z) to lie in the range -n < 0 5 n. 
This is called the principal value of the argument, written Arg (z); note the capital 
first letter. With this choice of 0, the single-valued function ei(8/3) is called the 
principal branch of the cube root; let us write it as [ 1. Note that the principal 
branch agrees with the real cube root function on the positive real axis, but not on 
the negative real axis; for example, [m] = 2 ei("/3). Also note that the other 
two branches associated with this choice of C can be expressed in terms of the 
principal branch as ei(2z/3) [ f i  ] and ei(4"/3) [ @ 1. 



Multifunctions 95 

It should be clear how the above discussion extends to a general fractional 
power. 

3 Relevance to Power Series 

Earlier we explained the otherwise mysterious interval of convergence for a real 
function such as 1/(1 + x2) by extending the function off the real line and into 
the complex plane: the obstruction to convergence was the existence of points at 
which the complex function became infinite (singularities). We now discuss the 
more subtle fact that branch points also act as obstacles to the convergence of 
power series. 

The real Binomial Theorem says that if n is any real number (not just a positive 
integer), then 

If n is a positive integer then the series terminates at xn and the issue of convergence 
does not arise. If n is not a positive integer then the ratio test tells us that the 
interval of convergence of the power series is - 1 < x < 1. This interval is 
easily understood when n is negative, because the function then has a singularity 
at x = - 1. But how, for example, are we to explain this interval of convergence 
in the case n = (1/3)? 

1 
Figure [33a] shows the graph y = (1 +x) 3 of the real function f (x) = (I +x) 4, 

which is well defined for all x since every real number has a unique real cube root. 
Looking at this graph, there seems to be no good reason for the series to break 
down at f 1, yet break down it does. This is illustrated rather vividly by the dashed 
curve, which is the graph of the 3om degree polynomial obtained by truncating the 
binomial series at x30. As you can see, this curve follows y = f (x) very closely 
(actually more closely than illustrated) between f 1, but just beyond this interval 
it suddenly starts to deviate wildly. 

Unlike the case of 1/(1 + x2), observe that the mystery does not disappear 

when we extend the real function f (x) to the complex function f ( z )  = (1 + z )  i, 
because f ( z )  does not have any singularities. 

Figure [33] 
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We have already discussed the fact [see (14) and Exs. 16, 17, 181 that the 
Binomial Theorem extends to the complex plane. In the present case it says that 

with convergence inside the unit disc shown in [33b]. In common with all power 
series, the RHS of the above equation is a single-valued function. For example, at 
z = 0 the series equals 1. But while f (x) was an ordinary single-valued function 
of x,  the LHS of the above equation is a three-valued multifunction of z, with a 
second order branch point at z = - 1. For example, f (0) takes three values: 1, 

2n - 2n 
el 3, and e - l - ~ .  We now recognize that the power series represents just one branch 
of f (z), namely the one for which f (0) = 1. 

This solves the mystery. For suppose that the series were to converge inside 
the larger circle in [33b], and in particular at the illustrated point z .  Starting at 
z = 0 with the value f (0) = 1, then travelling along the two illustrated paths 
to z, we clearly end up with two divferent values of f (z), because together the 
two paths enclose the branch point at -1. But the power series cannot mimic 
this behaviour since it is necessarily single-valued-its only way out is to cease 
converging outside the unit disc. We have demanded the impossible of the power 
series, and it has responded by committing suicide! 

This example shows that a branch point is just as real an obstacle to conver- 
gence as a singularity. Quite generally, this argument shows that if a branch of a 
multifunction can be expressed as a power series, the disc of convergence cannot 
be large enough to contain any branch points of the multifunction. This strongly 
suggests a further generalization of the (unproven) statement (15): 

Ifa complexfunction or  a branch of a multifunction can be expressed 
as  a power series, the radius of convergence is the distance to the (27) 
nearest singularity or branch point. 

Much later in the book we will develop the tools necessary to confirm this conjec- 
ture. 

4 An Example with Two Branch Points 

Choosing the positive value of the square root, [34a] illustrates the graph y = 
f (x) = d w ,  which is a hyperbola. Again, the Binomial Theorem yields a 
power series that mysteriously only converges between f 1, namely, 

f (x) = (1 + x2): = 1 + 1x2 - ;x4 + &x6 - A x 8  + . .  . . 
The divergence of the series beyond this interval is vividly conveyed by the dashed 
curve, which is the graph of the 2 0 ~  degree polynomial obtained by truncating the 
binomial series at x20. 

As before, the explanation lies in (C, where f (x) becomes the two-valued 
multifunction f (z) = d m .  This can be rewritten as f (2) = ,/(z - i)(z + i), 
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:- 1 convergent 1 : x [a1 ; I 

Figure [34] 

which makes it clear that f (z) has two simple branch points, one at i and the other 
at -i . These branch points obstruct the convergence of the corresponding complex 
series, limiting it to the unit disc shown in [34b]. 

In greater detail, the notation of [34b] enables us to write 

Here we must bear in mind that the figure illustrates only one possibility (out of 
infinitely many) for each of the angles Q1 and 82. To see that i is indeed a branch 
point, suppose we start with the value of f (z) given by the illustrated values of 81 
and 02. Now let z travel round the illustrated loop L. As it does so, (z + i)  rocks 
back and forth, so O2 merely oscillates, finally returning to its original value. But 
( z  - i)  undergoes a complete revolution, and so 81 increases by 2n. Thus when z 
returns to its original position, (28) shows that f (z) does not return to its original 
value, but rather to 

Of course the same thing happens if z travels along a loop that goes once round 
-i, instead of round +i . 

In order to dissect f (z) into two single-valued branches, we appear to need 
two branch cuts: one cut C1 from i to infinity (to prevent us encircling the branch 
point at i), and another cut C2 from -i to infinity, for the same reason. Figure [35a] 
illustrates a particularly common and important choice of these cuts, namely, rays 
going due west. If we do not allow z to cross the cuts then we may restrict the 
angle 81 = arg(z - i)  to its principal value, in the range -n < 81 ( n. For 
example, the angle in [34b] is not the principal value, while the one in [35a] is. If 
02 is likewise restricted to its unique principal value then (28) becomes the single- 
valued principal branch of f (z), say F (z). The other branch of f (z) is simply 
-F(z). 

Let us return to the previous situation in which we allowed O1 and 82 to take 
general values rather than their principal values. Figure [35b] illustrates the fact 
that it is possible to define two branches of f (z) using only a single branch cut 
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Figure [35] 

C that connects the two branch points. If z is restricted to the shaded, multiply- 
connected region S, then it cannot loop around either branch point singly. It can, 
however, travel along a loop such as L that encircles both branch points together. 
But in this case both 01 and 82 increase by 2n,  so (28) shows that f (z) returns to 
its original value. Thus we can define two single-valued branches on S. Finally, 
we may expand S until it borders on C. 

VII The Logarithm Function 
1 Inverse of the Exponential Function 
The complex logarithm function log(z) may be introduced as the "inverse" of eZ. 
More precisely, we define log(z) to be any complex number such that elOg(~) = z. 
It follows [exercise] that 

Since arg(z) takes infinitely many values, differing from each other by multiples 
of 2n, we see that log(z) is a multifunction taking infinitely many values, differing 
from each other by multiples of 2ni .  For example, 

where n is an arbitrary integer. 
The reason we get infinitely many values is clear if we go back to the expo- 

nential mapping shown in [19], p. 8 1 : each time z travels straight upward by 2n i, 
eZ executes a complete revolution and returns to its original value. Figure [36] 
rephrases this using the above example of log(2 + 2i). If we arbitrarily choose the 
initial value w = ln 22/2 + i (n/4) for log(2 + 2i), then as z travels along a loop 
that encircles the origin v times in the counterclockwise direction, log(z) moves 
along a path from w to w + 2vn i . Check that you understand (roughly) the shapes 
of the illustrated image paths. 

Clearly log(z) has a branch point at z = 0. However, this branch point is quite 
unlike that of z('In), for no matter how many times we loop around the origin (say 
counterclockwise), log(z) never returns to its original value, rather it continues 
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Figure [36] 

moving upwards forever. You can now understand the previously introduced term, 
"logarithmic branch point". 

Here is another difference between the branch points of z('/") and log(z). As z 
approaches the origin, say along a ray, lz(l/") 1 tends to zero, but I log(z)l tends to 
infinity, and in this sense the origin is a singularity as a well as a branch point. On 
the other hand, algebraic branch points can also be singularities; consider (1 /&). 

To define single-valued branches of log(z) we make a branch cut from 0 out 
to infinity. The most common choice for this cut is the negative real axis. In this 
cut plane we may restrict arg(z) to its principal value Arg (2); remember, this is 
defined by -n < Arg (z) 5 n . This yields the principal branch or principal value 
of the logarithm, written Log (z), and defined by 

Log (z) = In lzl + i Arg (2). 

For example, Log ( - a - i )  = In 2-i (5n/6), Log (i) = i (n/2), andLog (- 1) = 
in .  Note that if z = x is on the positive real axis, Log ( x )  = ln(x). 

Figure [37] illustrates how the mapping z I-+ w = Log (2) sends rays to 
horizontal lines, and circles to vertical line-segments connecting the horizontal 
lines at heights f n ;  the entire z-plane is mapped to the horizontal strip of the w- 
plane bounded by these lines. Study this figure until you are completely at peace 
with it. You can see the price we pay for forcing the logarithm to be single-valued: it 
becomes discontinuous at the cut. As z crosses the cut travelling counterclockwise, 
the height of w suddenly jumps from n to -n. If we wish w to instead move 
continuously, then we must switch to the branch Log ( z )  + 2ni  of the logarithm. 

Another problem with restricting ourselves to the principal branch is that the 
familiar rules for the logarithm break down. For example, Log (ab) is not always 
equal to Log (a) + Log (b); try a = - 1 and b = i, for example. However, if we 
keep all values of the logarithm in play then it is true [exercise] that 
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Figure [37] 

log(ab) = log(a) + log@) and log(a/b) = log(a) - log@), 

in the sense that every value of the LHS is contained amongst the values of the 
RHS, and vice versa. 

2 The Logarithmic Power Series 
If we wish to find a power series for the complex logarithm, two problems irnme- 
diately arise. First, since a power series is single-valued, the best we can hope for 
is to represent a single branch of log(z); let's choose the principal branch, Log (2). 
Second, the origin is both a singularity and a branch point of Log (z) so we cannot 
have a power series centred there (i.e., in powers of z); let us therefore try an ex- 
pansion centred at z = 1, i.e., in powers of (z - 1). [Of course any other non-zero 
point would be equally suitable.] Writing Z = (z - I), our problem, then, is to 
expand Log (1 + Z) in powers of Z. 

Let us use the abbreviation L (z) = Log (1 + z). Since the branch point of L (z) 
is z = - 1, the largest disc of convergence we can have is the unit disc. To find the 
series we will use the fact that e L ( ~ )  = (1 + 2). Recall from (21) [on p. 821 that 
by taking n to be a sufficiently large positive integer, we can approximate eL as 
precisely as we wish using [I + (L/n)ln. Thus 

There are n branches of (1 + z) within the unit disc, but since L (0) = 0 we need 
the branch of (1 + z) that equals 1 when z = 0. Appealing to the Binomial series 
for this principal branch, we obtain 
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and hence 

Finally, since this becomes exact in the limit that n tends to infinity, we obtain the 
following logarithmic power series: 

For other approaches to this series, see Exs. 3 1,32. 
Using the ratio test, you can check for yourself that this series does indeed 

converge inside the unit circle. In fact it can be shown [see Ex. 111 that the series 
also converges everywhere on the unit circle, except obviously at z = -1. This 
yields some very interesting special cases. For example, putting z = i and then 
equating real and imaginary parts, we get 

7t - - - 1 1 1 1 1  
and I - - + - - - + - - -  + a * . .  

4 3 5 7 9 1 1  

Try checking the first series by noting that if z = 1, then in = 1 ln(1 + z). 
For interesting applications of the logarithmic series, see Exs. 36,37,38. 

3 General Powers 
If x is a real variable then we are accustomed to being able to express x3, for 
example, as e3 lnX. Let's see whether we can do the same thing using the complex 
exponential and logarithm. That is, let us investigate the possibility of writing 

Let z = r eiO, where 0 is chosen to be the principal value, Arg (z). Then 

But the most general branch of log(z) is simply Log (z) + 2nni, where n is an 
integer, so 

e3 log(z) = e6nni e3 Log (z) = e6nni Z 3 = Z  3 

is true irrespective of which branch of the logarithm is chosen. Clearly, by the 
same argument, (30) is true for all integer values of k. 

Next, consider the three branches of zf . Recalling that the principal branch 
[Z f ] of this function is 3 ei(6/3), where 0 again represents the principal angle, you 
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can easily check that ef  = [zf 1. Thus the general branch of the logarithm 
yields 

. 2 n r  1 e f  log(') = ezT[ZJ ] .  

Thus we have again confirmed (30), in the sense that the infinitely many branches 

of log(z) yield precisely the three branches of the cube root: [zf 1, ei(2n13)[zf 1, 

and ei(4n/3)[zf 1. By the same reasoning, if (plq)  is a fraction reduced to lowest 

terms then e fi 10g(z) yields precisely the q branches of zg . 
Finally, note that the RHS of (30) is still meaningful if k = (a +i b) is a complex 

number. Emboldened by the above successes, we now take (30) as the dejnition of 
a complex power. If we use Log (z) in (30) then we find that the principal branch 
of ~ ( ~ ~ ' ~ 1  is given by [exercise] 

rZ(a+ib)] _ e(a+ib) Log (z) = rae-bO ei(aO+blnr) 

If z now travels along a closed loop encircling the origin n times, then log(z) moves 
along a path from Log (z) to Log (z) + 2nni, and z("+'~) moves along a path from 
[Z(a+ib)] to 

Z(a+ib) = ei2nnae-2nnb [Z(a+ib)l. 

If b # 0 then the factor e-2nnb makes it obvious that z("+'~) never returns to 
its original value, no matter how many times we go round the origin. Thus z = 0 
is a logarithmic branch point in this case. This is still true even if b = 0, provided 
[exercise] that the real power a is irrational. Only when a is a rational number 
does za return to its original value after a finite number of revolutions, and only 
when a is an integer does za become single-valued. 

We end with an important observation on the use of "eZ" to denote the single- 
valued exponential mapping. Reversing the roles of the constant and variable in 
(30), we are forced to define f (z) = kZ to be the "multifunction" [see Ex. 291 
f (z) = ez But if we now put k = e = 2.7 18 . . . then we are suddenly 
in hot water: the exponential mapping "eZ" is merely one branch [what are the 
others?] of the newly defined multifunction (2.718 . . .)Z. To avoid this confusion, 
some authors always write the exponential mapping as exp(z). However, we shall 
retain the notation "eZ", which is both convenient and rooted in history, with the 
understanding that eZ always refers to the single-valued exponential mapping, and 
never to the multifunction (2.7 18 . . .)Z. 

Vlll Averaging over Circles* 
1 The Centroid 

This entire section is optional because the chief result to which we shall be led 
("Gauss' Mean Value Theorem") will be derived again later, in fact more than 
once. It is nevertheless fun and instructive to attempt to understand the result using 
only the most elementary of methods. 
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Consider a set of n point particles in @, located at zl, z2, . . ., zn. If the mass 
of the particle at zj is mj then the centroid Z of the set of particles (also called the 
"centre of mass") is defined to be 

If we imagine the plane to be massless, Z is the point at which we could rest the 
plane on a pin so as to make it balance. 

Throughout this section we shall take the musses of the particles to be equal, 
in which case the centroid becomes the average position of the particles: 

This is the case depicted in [38a]. An immediate consequence of this definition is 

Figure 1381 

that (zj - Z )  = 0. In other words, the complex numbers from Z to the particles 
cancel. This vanishing sum is illustrated in [38b]. Conversely, if some point Z has 
the property that the complex numbers connecting it to the particles cancel, then 
Z must be the centroid. 

Another immediate result is that if we translate the set of points by b, then the 
centroid will translate with them, i.e., the new centroid will be Z + b. The same 
thing happens if we rotate the set of points about the origin-the centroid rotates 
with them. In general, 

If Z is the centroid of { z j ) ,  then the centroid of {azj + b)  is aZ + b. (3 1 )  

Given a second set of n points Ej} (with centroid z), we may add pairs from 
the two sets to obtain the set {zj + 51, and it is easy to see that the centroid of the 
latter is Z + 2. In particular, the centroid Z of {zj = xj + iy j )  is the sum X + i Y of 
the centroid X of the points {x j )  on the real axis and the centroid i Y of the points 
{iyj) on the imaginary axis. 

Our next result will play a minor role at the end of this section, but later we 
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shall see that it has other interesting consequences. The convex hull H of the set of 
particles { z j }  is defined to be the smallest convex polygon such that each particle 
lies on H or inside it. More intuitively, first imagine pegs sticking out of the plane 
at each point zj , then stretch an imaginary rubber band so as to enclose all the pegs. 
When released, the rubber band will contract into the desired polygon H shown 
in [39a]. We can now state the result: 

The centroid Z must lie in the interior of the convex hull H .  (32) 

For if p is outside this set, we see that the complex numbers from p to the particles 
cannot possibly cancel, as they must do for 2. More formally, we take it as visually 
evident that through any exterior point p we may draw a line L such that H and 
its shaded interior lie entirely on one side of L. The impossibility of the complex 
numbers cancelling now follows from their lying entirely on this side of L, for 
they all must have positive components in the direction of the illustrated complex 
number N normal to L. Except when the particles are collinear (in which case H 
collapses to a line-segment), the same reasoning forbids Z from lying on H. 

Figure [39] 

As illustrated in [39b], an immediate consequence of (32) is that 

If all the particles lie within some circle then their centroid also lies 
within the circle. (33) 

The main result we wish to derive in this section is based on the following fact. 
Defining the "centre" of a regular n-gon to be the centre of the circumscribing 
circle, 

The centre of a regular n-gon is the centroid of its vertices. (34) 

By virtue of (31), we may as well choose the n-gon to be centred at the origin, 
in which case the claim is that the sum of the vertices vanishes. As illustrated in 
[40a], this is obvious if n is even since the vertices then occur in opposite pairs. 

The explanation is not quite so obvious when n is odd; see [40b], which illus- 
trates the case n = 5. However, if we draw C zj systematically, taking the vertices 
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Figure [40] 

zj  in counterclockwise order, then we obtain [40c], and the answer is suddenly 
clear: the sum of the vertices of the regular 5-gon forms another regular 5-gon. 
The figure explains why this happens. Since the angle between successive vertices 
in [40b] is (2n/5), this is also the angle between successive terms of the sum in 
[40c]. Clearly this argument generalizes to arbitrary n (both odd and even), thereby 
establishing (34). For a different approach, see Ex. 40. 

2 Averaging over Regular Polygons 

If a complex mapping z H w = f (z) maps the set of points {zj} to the set 
{q = f (zj)), then the centroid W of the image points may be described as the 
average off (z) over the set { ~ j )  of n points. Writing this average as (f (z)),, 

Note that if f (z) = c is constant, then its average over any set of points is equal 
to c. 

Henceforth, we shall restrict ourselves to the case where {zj} are the vertices of 
a regular n-gon; correspondingly, ( f (z)), will be understood as the average of f (z) 
over the vertices of such a regular n-gon. Note that if we write f (z) = u (z) + i v (z), 
then 

(f (z)>n = (~(z) )n  + i (v(z))n. (35) 

Initially, we consider only origin-centred polygons. 
Consider, then, the average of f (z) = zm over the vertices of such a regular 

n-gon. Figure [41] illustrates the case n = 6. In the centre of the figure is a shaded 
regular hexagon, and on the periphery are the images of its vertices under the 
mappings z, z2, . . ., z6. Study this figure carefully, and see if you can understand 
what's going on. If we take still higher values of m, then this pattern repeats 
cyclically: z7 is like zl, z8 is like z2, and so on. 

For us the essential feature of this figure is that unless m is a multiple of 6, 
the image under zm of the regular 6-gon is another regular polygon. [Note that 
we count two equal and opposite points as a regular 2-gon, but we do not count a 
single point as a regular polygon.] More precisely, and in general, 
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Figure [4 11 
Unless m is a multiple of n, the image under zm of an origin- 
centred regular n-gon is an origin-centred regular N-gon, where 
N = (n divided by the highest common factor of m and n). If m is (36) 

a multiple of n, then the image is a single point. 

Check that this agrees with [41]. Try to establish the result on your own, but see 
Ex. 41 if you get stuck. 

Combining this result with (34), we obtain the following key fact: I f n  > m 
then ( z m ) ,  = 0. This is easy to generalize. If 

is a general polynomial of degree m, then its average over the vertices of the n-gon 
is 

If the number n of vertices is greater than the degree m of the polynomial, we 
therefore obtain 

(Pm(z))n = ( c o ) ~  = CO = Pm(0). 

In other words, the centroid of the image points is the image of the centroid. 
Expressing this result in the language of averages, 

I fn > m then the average of an mth degree polynomial Pm ( z )  over 
the vertices of an origin-centred regular n-gon is its value Pm (0) at (37) 
the centre of the n-gon. 

Finally, let us generalize to regular n-gons that are centred at an arbitrary point 
k, instead of the origin. Of course when we apply zm to the vertices of such a 
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z4 

0 

Figure [42] 

regular polygon, the image points do not form a regular polygon. See [42], which 
shows the effect of z4 on the vertices of a regular hexagon H centred at k, together 
with the image of the entire circle on which these vertices lie. Nevertheless, the 
figure also illustrates the surprising and beautiful fact that, once again, the centroid 
of the image points is the image of the centroid of H .  Figure [43a] confirms this 
empirically by showing that the sum of complex numbers connecting k4 to the 
image points is indeed zero. 

Extending our notation slightly, we may write the average of z4 over the vertices 
of H as (zm) H, SO what we must show is that (z4) = k4. It is no harder to treat 
the general case of zm acting on the vertices of a regular n-gon H centred at k. 
First note that H can be obtained by translating an origin-centred n-gon H by k. 
See the example in [43b]. Since a vertex z j  of translates to a vertex z j  + k of 
H, it follows that 

But (Z + k)m = x;=O (';)zj km-j is just an mth degree polynomial which maps 
0 to km. Using (37), we conclude that if n > m then (zm)* = km, as was to be 
shown. 

Figure [43] 
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Generalizing the argument that led to (37), we see that (37) is a special case of 
the following result: 

I fn > m then the average of an mm degree polynomial Pm ( z )  over 
the vertices of a regular n-gon centred at k is its value Pm (k )  at the (38) 
centre of the n -gon. 

3 Averaging over Circles 
Since at least the time of Archimedes, mathematicians have found it fruitful to 
think of a circle as the limit of a regular n-gon as n tends to infinity. We will now 
use this idea to investigate the average of a complex function over a circle. 

Inscribing a regular n-gon in a given circle, and taking the limit as n tends to 
infinity, (38) shows that 

The average over a circle C of a polynomial of arbitrarily high 
degree is equal to the value of the polynomial at the centre of C. (39) 

By ( 3 3 ,  the average ( f ( z ) )  of a complex function f ( z )  = u ( z )  + i v ( z )  over 
a circle C may be expressed as ( f  ( z ) )  = (u ( z ) )  + i (v  ( z ) )  c. Using a familiar 
idea from ordinary calculus, the averages of the two real functions u and v may be 
expressed as integrals. If C has centre k and radius R, then as 8 varies between 0 
and 2n, z = k + R eiO traces out C. Thus, 

2n 
u(k+ R eiO) d8 and ( v ( z ) ) c  = & 1 v(k+ R eiO) do. 

More compactly, we may write 

in which it is understood that the complex integral may be evaluated in terms of 
the real integrals above. 

Once again denoting a general mm degree polynomial by Pm(z), (39) can 
therefore be expressed as an integral formula: 

For example, if C is centred at the origin and Pm ( z )  = zm, then 

~m ,ime [cos m8 + i sin me] d8 = 0 ,  

in agreement with (40). 
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The fact that (40) holds for polynomials of arbitrarily high degree immediately 
suggests that it might also hold for power series. We shall show that it does. 

As usual we will only give the details for origin-centred power series, the gen- 
eralization to arbitrary centres being straightforward. Let P(z) = CEO C j  z j  be 
the power series, so that Pm (z) = ~ ~ ! o  C j  z j  are its approximating polynomials. 
If the circle C lies inside the disc of convergence of P(z), then (12) implies the 
following. No matter how small we choose a real number 6, we can find a suffi- 
ciently large m such that Pm (z) approximates P (z) with accuracy 6 throughout C 
and its interior. If we write E(z) for the complex number from the approximation 
Pm (z) to the exact answer P (z), then 

for all z on and inside C, and in particular at the centre k of C. 
At this point we could immediately study (P(z))c in terms of its integral 

representation, but it is more instructive to first consider the average (P(z)), of 
P(z) over a regular n-gon inscribed in C. Once this is done, we may let n tend to 
infinity to obtain ( P  (z)) c .  

First note that E(z) maps the vertices of the n-gon to points lying inside an 
origin-centred disc of radius 6. By (33), or directly from the generalized triangle 
inequality (8) on p. 8, the centroid (E(z)), of these points must also lie in this disc. 
Choosing n greater than m, say n = (m + I), (38) yields 

The term in square brackets is the connecting complex number from £(k) to 
( £ ( z ) ) ~ + ~ ,  and since both these points lie within a disc of radius 6, their con- 
necting complex number must be shorter than 26. Finally, since the term in square 
brackets may also be interpreted as the connecting complex number from P (k) to 
( P (z))m+l, we have the following result: 

Let m be chosen so that Pm (z) approximates the power series P (z) 
with accuracy 6 on and within a circle C centred at k. Ifa regular 
(m + 1)-gon is inscribed in C, then the average ( P  (z)),+l of P (z) (41) 

over its vertices will approximate P(k) with accuracy 26. 

We have thus transformed an exact result concerning the approximation Pm(z) 
into an approximation result concerning the exact mapping P (2). 

For example, let C be the unit circle, and let P (z) = e Z.  If we desire an accuracy 
of E = 0.004 everywhere on the unit disc then it turns out that m = 5 is sufficient, 
i.e., the approximating polynomial of lowest degree that has this accuracy is 
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Figure [44] 

Figure [44] shows the image under z I+ eZ of C, and in particular it shows 
the images of the vertices of a regular hexagon inscribed in C. According to the 
result, the centroid of these image points should differ from eo = 1 by no more 
than 0.008-an indiscernible discrepancy in a drawing done to this scale. This 
prediction is convincingly borne out in [45], which shows the sum of the complex 
numbers connecting 1 to the images of the vertices of the hexagon. To within the 
accuracy of the drawing, the sum is indeed zero! 

Figure [45] 

In the limit that E tends to zero and m tends to infinity, (41) yields a form of 
Gauss' Mean Value Theorem: 

Ifa complexfinction f (z) can be expressed as apower series, and a 
circle C (radius R and centre k )  lies within the disc of convergence 
of that power series, then 

In addition to its theoretical importance, this formula can sometimes be used to 
evaluate difficult real integrals. For example, the exact version of [44] is (eZ)C = 

eo = 1, and this implies [exercise] that eCoS cos[sin 01 d0 = 2n. See Ex. 43 
for another example of this idea. 
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IX Exercises 

1 Sketch the circle lz - 1 I = 1. Find (geometrically) the polar equation of the 
image of this circle under the mapping z H z2. Sketch this image curve, which 
is called a cardioid. 

2 Consider the complex mapping z H w = (z - a)/(z - b). Show geometrically 
that if we apply this mapping to the perpendicular bisector of the line-segment 
joining a and b, then the image is the unit circle. In greater detail, describe the 
motion of w round this circle as z travels along the line at constant speed. 

3 Consider the family of complex mappings 

z- a  
z M ~ ( z )  = 7 (a constant). 

a z - 1  

[These mappings will turn out to be fundamental to non-Euclidean geometry.] 
Do the following problems algebraically; in the next chapter we will provide 
geometric explanations. 

(i) Show that Ma [Ma (z)] = z. In other words, Ma is self-inverse. 

(ii) Show that Ma (z) maps the unit circle to itself. 

(iii) Show that if a lies inside the unit disc then Ma(z) maps the unit disc to 
itself. 
Hint: Use l q  l2 = q to verify that 

4 In figure [7] we saw that if q2 5 p3 then the solutions of x3 = 3px + 2q are 
all real. Draw the corresponding picture in the case q2 > p3, and deduce that 
one solution is real, while the other two form a complex conjugate pair. 

5 Show that the mapping z I-+ z2 doubles the angle between two rays coming 
out of the origin. Use this to deduce that the lemniscate (see [9] on p. 62) must 
self-intersect at right angles. 

6 This question refers to the Cassinian curves in [9] on p. 62. 

(i) On a copy of tEiis figure, sketch the curves that intersect each Cassinian curve 
at right angles; these are called the orthogonal trajectories of the original 
family of curves. 

(ii) Give an argument to show that each orthogonal trajectory hits one of the 
foci at f 1. 

(iii) If the Cassinian curves are thought of as a geographical contour map of the 
modular surface (cf. [lo]) of (z2 - I), then what is the interpretation of the 
orthogonal trajectories in terms of the surface? 
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(iv) In Chapter 4 we will show that if two curves intersect at some point p # 
0, and if the angle between them at p is 4,  then the image curves under 
z H w = z2 will also intersect at angle 4,  at the point w = p2. Use this 
to deduce that as z travels out from one of the foci along an orthogonal 
trajectory, w = z2 travels along a ray out of w = 1. 

(v) Check the result of the previous part by using a computer to draw the images 
under w I-+ f i  of (A) circles centred at w = 1 ; (B) the radii of such circles. 

(vi) Writing z = x + iy and w = u + iv, find u and v as functions of x and 
y. By writing down the equation of a line in the w-plane through w = 1, 
show that the orthogonal trajectories of the Cassinian curves are actually 
segments of hyperbolas. 

7 Sketch the modular surface of C (z) = (z + 1) (z - 1) (z + 1 + i). Hence sketch the 
Cassinian curves I C(z) / = const ., then check your answer using a computer. To 
answer the following questions, recall that if R(z) is a real function of position 
in the plane, then R(p) is a local minimum of R if R(p) < R(z) for all z in the 
immediate neighbourhood of p. A local maximum is defined similarly. 

(i) Referring to the previous exercise, what is the significance of the orthogonal 
trajectories of the Cassinian curves you have just drawn? 

(ii) Does I C (z) 1 have any local maxima? 

(iii) Does I C (z) 1 have any non-zero local minima? 

(iv) If D is a disc (or indeed a more arbitrary shape), can the maximum of I C (z) I 
on D occur at a point inside D, or must the maximum occur at a boundary 
point of D? What about the minimum of I C (z) 1 on D? 

(v) Do you get the same answers to these questions if C(z) is replaced by an 
arbitrary polynomial? What about a complex function that is merely known 
to be expressible as a power series? 

8 On page 62 we saw that the polar equation of the lemniscate with foci at f 1 is 
r 2  = 2 cos 20. In fact James Bernoulli and his successors worked with a slightly 
different lemniscate having equation r2  = cos 20. Let us call this the standard 
lemniscate. 

(i) Where are the foci of the standard lemniscate? 

(ii) What is the value of the product of the distances from the foci to a point on 
the standard lemniscate? 

(iii) Show that the Cartesian equation of the standard lemniscate is 
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9 Here is an attempt [ultimately doomed] at using real methods to expand H (x) = 
1/(1 + x2) into a power series centred at x = k, i.e., into a series of the form 
H (x) = xEo C j  ~ j ,  where X = (x - k). According to Taylor's Theorem, 

C j  = ~ ( j ) ( k ) / j ! ,  where H(j)(k) is the jm derivative of H.  

(i) Show that co = 1/(1+ k2) and cl = -2k/(l+ k2)2, and find c2. ~ o t e  how 
it becomes increasingly difficult to calculate the successive derivatives. 

(ii) Recall (or prove) that the nm derivative of a product AB of two functions 
A (x) and B(x) is given by Leibniz's rule: 

By applying this result to the product (1 + x2) H (x), deduce that 

Because the coefficients in this recurrence relation depend on n, we cannot 
solve it using the technique of Ex. 30 on p. 50. 

(iii) Deduce from the previous part that the recurrence relation for the cj 's is 

which does have constant coefficients. 

(iv) Solve this recurrence relation, and hence recover the result (17) on p. 76. 

10 Reconsider the series (18) on p. 77. 

(i) Show that we recover the correct series (missing the odd powers of x )  when 
the centre k of the series is at the origin. 

(ii) Find a value of k such that the series is missing all the powers Xn, where 
n = 2,5,8, 11, 14, . . .. Check your answer using a computer. 

11 Show that each of the following series has the unit circle as its circle of con- 
vergence, then investigate the convergence on the unit circle. You can guess the 
correct answers by "drawing the series" in the manner of [18] on p. 80. 

[By virtue of (29), note that the second series is -Log (1 - z).] 

12 Consider the geometric series P (z) = z j , which converges to 1 / (1 - z) 
inside the unit disc. The approximating polynomials in this case are P,(z) = zj"=, z' . 
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(i) Show that the error Em (z) - I P(z) - P m  (z) 1 is given by 

(ii) If z is any fixed point in the disc of convergence, what happens to the error 
as m tends to infinity? 

(iii) If we fix m, what happens to the error as z approaches the boundary point 
z = l ?  

(iv) Suppose we want to approximate this series in the disc lzl 0.9, and further 
suppose that the maximum error we will tolerate is E = 0.01. Find the lowest 
degree polynomial Pm (z) that approximates P ( 2 )  with the desired accuracy 
throughout the disc. 

13 We have seen that if we set Pn(z) = zn, then the representation of a com- 
plex function f (z) as an infinite series x s  en Pn(z) (i.e., a power series) is 
unique. This is not true, however, if Pn (z) is just any old set of polynomials. The 
following example is taken (and corrected) from Boas [1987, p. 331. Defining 

Po(z) = -1,  and Pn(z) = L - 5  (n = 1,2 ,3 ,  ...), 
(n - 1 n! 

show that 

14 Consider two power series, P (z) = CEO pj  z j  and Q (z) = qj z j  , 
which have approximating polynomials Pn (z) = C;=o p j  z j  and Qm (z) = 
xy=o qj z J . If the radii of convergence of P (z) and Q (z) are R1 and R2 then 
both series are uniformly convergent in the disc lz 1 5 r , where r c min{R1, R2). 
Thus if E is the maximum error we will tolerate in this disc, we can find a suffi- 
ciently large n such that 

where the (complex) errors E1,2(z) both have lengths less than E .  Use this to 
show that by taking a sufficiently high value of n we can approximate [P(z) + 
Q(z)] and P (z) Q(z) with arbitrarily high precision using [Pn (z) + Qn (z)] and 
P n  (z) Qn (z), respectively. 

15 Give an example of a pair of origin-centred power series, say P (z) and Q (z), 
such that the disc of convergence for the product P (z) Q(z) is larger than either 
of the two discs of convergence for P (z) and Q(z). [Hint: think in terms of 
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rational functions, such as [z2/(5 - z ) ~ ] ,  which are known to be expressible as 
power series.] 

16 Our aim is to give a combinatorial explanation of the Binomial Theorem (14) 
for all negative integer values of n. The simple yet crucial first step is to write 
n = -m and to change z to -2. Check that the desired result (14) now takes 
the form (1 - z ) - ~  = xEo Cr zr, where cr is the binomial coefficient 

[Note that this says that the coefficients c, are obtained by reading Pascal's tri- 
angle diagonally, instead of horizontally.] To begin to understand this, consider 
the special case m = 3. Using the geometric series for (1 -z)- ' ,  we may express 
(1 - z ) - ~  as 

where a simply denotes multiplication. Suppose we want the coefficient c9 of 
z9. One way to get z9 is to take z3 from the first bracket, z4 from the second, 
and z2 from the third. 

(i) Write this way of obtaining z9 as the sequence zzzazzzzazz of 9 z's and 2 a's, 
where the latter keep track of which power of z came from which bracket. [I 
got this nice idea from my friend Paul Zeitz.] Explain why c9 is the number 
of distinguishable rearrangements of this sequence of 11 symbols. Be sure 
to address the meaning of sequences in which a a comes first, last, or is 
adjacent to the other a. 

(ii) Deduce that c9 = ( y ) ,  in agreement with (42). 

(iii) Generalize this argument and thereby deduce (42). 

17 Here is an inductive approach to the result of the previous exercise. 

(i) Write down the first few rows of Pascal's triangle and circle the numbers 
(:) , (;) , (:) , (i) . Check that the sum of these numbers is (:) . Explain this. 

(ii) Generalize your argument to show that 

(iii) Assume that (1 ---z)-~ = xzo (M+:-l) zr holds for some positive integer 
M. Now multiply this series by the geometric series for (1 - 2)-' to find 
(1 - z) - (~+ ' ) .  Deduce that the binomial series is valid for all negative 
integer powers. 



1 16 Complex Functions as Transformations 

18 The basic idea of the following argument is due to Euler. Initially, let n be any 
real (possibly irrational) number, and define 

B ,  n) = ( )  zr where 
n(n - l)(n - 2). . . (n - r + 1) 

7 

r =O 
r !  

and (:) -- 1. We know from elementary algebra that if n is a positive integer 
then B(z, n) = (1 + z ) ~ .  To establish the Binomial Theorem (14) for rational 
powers, we must show that if p and q are integers then B(z, f )  is the principal 

e 
branch of (1 + z) 4 . 

(i) With a fixed value of n, use the ratio test to show that B(z, n) converges in 
the unit disc, lz 1 < 1. 

(ii) By multiplying the two power series, deduce that 

(iii) If m and n are positive integers, then show that 

and deduce that Cr (n, m) = ("Tm). But Cr (n, m) and ("Tm) are simply 
polynomials in n and m, and so the fact that they agree at infinitely many 
values of m and n [positive integers] implies that they must be equal for all 
real values of m and n. Thus the key formula (43) is valid for all real values 
of m and n. 

(iv) By substituting n = -m in (43), deduce the Binomial Theorem for negative 
integer values of n. 

(v) Use (43) to show that if q is an integer then [B(z, i ) ] q  = (1 + z). Deduce 

that B (z, $) is the principal branch of (1 + z) . 

(vi) Finally, show that if p and q are integers, then B(z, f ) is indeed the principal 

branch of (1 + z) $. 

19 Show that the ratio test cannot be used to find the radius of convergence of the 
power series (18) on p. 77. Use the root test to confirm that R = d m .  

20 Show that if m and n are integers, then cos mB cos n0 dB vanishes un- 
less m = n, in which case it equals n. Likewise, establish a similar result for 
~,2" sin me sin nB dB. Use these facts to verify (19), at least formally. 
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21 Do the following problems by first substituting z = r eie into the power series 
for eZ, then equating real and imaginary parts. 

(i) Show that the Fourier series for [cos(sin e)] eCoSe is xzO 9, and write 

down the Fourier series for [sin(sin 8)] eCoS e .  

(ii) Deduce that J? ecoS [cos(sin e)] cos me dB = (nlm !), where m is a pos- 
itive integer. 

(iii) By writing x = (r/z/Z), find the power series for f (x) = ex sin x .  

(iv) Check the first few terms of the series for f ( x )  by multiplying the series 
for ex and sin x. 

(v) Calculate the nm derivative f tn)(0) using (14) on p. 22 of Chapter 1. By 
using these derivatives in Taylor's Theorem, verify your answer to part (iii). 

22 Reconsider the formula, 

ez = lim Pn (z), where Pn (z) = (1 + 4)n . 
n+oo n 

(i) Check that P,(z) is the composition of a translation by n, followed by a 
contraction by (1 In), followed by the power mapping z I+ zn . 

(ii) Referring to figure [4] on p. 58, use the previous part to sketch the images 
under Pn (z) of circular arcs centred at -n, and of rays emanating from -n. 

(iii) Let S be an origin-centred square (say of unit side) in the z-plane. With a 
large value of n, sketch just those portions of the arcs and rays (considered 
in the previous part) that lie within S .  

(iv) Use the previous two parts to qualitatively explain figure [19] on p. 81. 

23 If you did not do so earlier, sketch the image of a vertical line x = k under 
z H w = cos z by drawing the analogue of [26]. Deduce that the asymptotes of 
this hyperbola are arg w = f k. Check this using the equation of the hyperbola. 

24 Consider the multifunction f (z) = Jz-1 V G .  
(i) Where are the branch points and what are their orders? 

(ii) Why is it not possible to define branches using a single branch cut of the 
type shown in [35b]? 

(iii) How many values does f (z) have at a typical point z? Find and then plot 
all the values of f (0). 

(iv) Choose one of the values of f (0) which you have just plotted, and label 
it p. Sketch a loop L that starts and ends at the origin such that if f (0) is 
initially chosen to be - 1, then as z travels along L and returns to the origin, 
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f (z) travels along a path from -1 to p. Do the same for each of the other 
possible values of f (0). 

25 Describe the branch points of the function f (z) = l/Jm. What is the 
smallest number of branch cuts that may be used to obtain single-valued branches 
of f (z)? Sketch an example of such cuts. [Remark: This function is historically 
important, owing to the fact (Ex. 20, p. 214) that 1 f (x) dx represents the 
arc length of the lemniscate. This integral (the lemniscatic integral) cannot be 
evaluated in terms of elementary functions-it is an example of a new kind of 
function called an elliptic integral. See Stillwell [1989, Chap. 1 11, for more 
background and detail.] 

26 For each function f (z) below, find and then plot all the branch points and 
singularities. Assuming that these functions may be expressed as power series 
centred at k [in fact they can be], use the result (27) on p. 96 to verify the stated 
value of the radius of convergence R. 

(i) If f(z) = l/(enz - 1) andk = (1 +2i),  then R = 1. 

(ii) If f (z) is a branch of 7- and k = 3i, then R = 2. 

(iii) If f (z) is a branch of 4x1 (z - 1) and k = - 1, then R = &. 
27 Until Euler cleared up the whole mess, the complex logarithm was a source 

of tremendous confusion. For example, show that log(z) and log(-z) have no 
common values, then consider the following argument of John Bernoulli: 

What is wrong with this argument?! 

28 What value does zi take at z = - 1 if we start with the principal value at z = 1 
(i.e., l1 = l), and then let z travel one and a half revolutions clockwise round 
the origin? 

29 In this exercise you will see that the "multifunction" kZ is quite different in 
character from all the other multifunctions we have discussed. For integer values 
of n, define 1, - [Log (k) + 2nn i]. 

(i) Show that the "branches" of kZ are eln z. 

(ii) Suppose that z travels along an arbitrary loop, beginning and ending at 
z = p. If we initially choose the value eZ2 P for kz, then what value of kz do 
we arrive at when z returns to p?  Deduce that kZ has no branch points. 

Since we cannot change one value of kZ into another by travelling round a loop, 
we should view its 'branches" {. . . , el-1 ', e'oZ, e'l z,  . . .) as an infinite set of 
completely unrelated single-valued functions. 
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30 Show that all the values of i1 are real! Are there any other points z such that zz 
is real? 

31 In the case of a real variable, the logarithmic power series was originally dis- 
covered [see next exercise] as follows. First check that ln(1 + X) can be written 
as fox [I /(I + x)] dx, and then expand [1/(1 + x)] as a power series in x. Fi- 
nally, integrate your series term by term. [Later in the book we will be able to 
generalize this argument to the complex plane.] 

32 Here is another approach to the logarithmic power series. As before, let L(z) = 
Log (1 + z). Since L (0) = 0, the power series for L(z) must be of the form 
L(z) = az + bz2 + cz3 + dz4 + . . -. Substitute this into the equation 

then find a, b, c, and d by equating powers of z. [Historically the logarithmic 
series came first-both Mercator and Newton discovered it using the method 
in the previous exercise-then Newton reversed the reasoning of the present 
exercise to obtain the series for ex. See Stillwell [1989, p. 1081. ] 

33 (i) Use [26] to discuss the branch points of the multifunction cos-' (z). 

(ii) Rewrite the equation w = cos z as a quadratic in elz. By solving this equa- 
tion, deduce that cos-'(2) = -i log[z + d n ] .  [Why do we not need 
to bother to write f in front of the square root?] 

(iii) Show that as z travels along a loop that goes once round either 1 or - 1 (but 
not both), the value of [z + d n  ] changes to 1 /[z + d m  1. 

(iv) Use the previous part to show that the formula in part (ii) is in accord with 
the discussion in part (i). 

34 Write down the origin-centred power series for (1 - cos z). Use the Binomial 
Theorem to write down the power series (centred at Z = 0) for the principal 
branch of d m ,  then substitute Z = (1 - cos z). Hence show that if we 
choose the branch of JCOSZ that maps 0 to 1, then 

z2 z4 igz6 d - = l - - - - - - - . . . .  cos z 
4 96 5760 

Verify this using a computer. Where does this series converge? 

35 What value does (z/ sin z) approach as z approaches the origin? Use the series 
for sin z to find the first few terms of the origin-centred power series for (z/ sin z) . 
Check your answer using a computer. Where does this series converge? 

36 By considering Log (1 +ix), where x is a real number lying between f 1, deduce 
that 
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In what range does this value of tan-'(x) lie? Give another derivation of the 
series using the idea in Ex. 3 1. 

37 (i) Show geometrically that as z = eie goes round and round the unit circle (with 
ever increasing 0), Im   LO^ (1 + z)] = (O/2), where O is the principal 
value of 0, i.e., -n < O 5 n. 

(ii) Consider the periodic "saw tooth" function F(0) whose graph is shown 
below. By substituting z = eie in the logarithmic series (29), use the previous 
part to deduce the following Fourier series: 

sin 20 sin 30 sin40 
F (8) = sin 0 - - +- - -+... 

2 3 4 

(iii) Check this Fourier series by directly evaluating the integrals (19). 

(iv) Use a computer to draw graphs of the partial sums of the Fourier series. As 
you increase the number of terms, observe the magical convergence of this 
sum of smooth waves to the jagged graph above. If only Fourier could have 
seen this on the screen, not just in his mind's eye! 

38 As in the previous exercise, let O = Arg (2). 

(i) Use (29) to show that 

(ii) Show geometrically that as z = eie goes round and round the unit circle, 

Im (1 ~ o g  [z] } = (sign of O) [:I . 

(iii) Consider the periodic "square wave" function G(0) whose graph is shown 
below. Use the previous two parts to deduce that its Fourier series is 

sin 30 sin 50 sin78 
G(8) = sin0 + - +- + - + . a s .  

3 5 7 
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Finally, repeat parts (iii) and (iv) of the previous exercise. 

39 Show that (32) is still true even if the (positive) masses of the particles are not 
all equal. 

40 Here is another simple way of deriving (34). If the vertices of the origin-centred 
regular n-gon are rotated by 4 ,  then their centroid Z rotates with them to ei@Z. 
By choosing 4 = (2n/n), deduce that Z = 0. 

41 To establish (36), let zo, zl, z2, . . . , zn-1 be the vertices (labelled counterclock- 
wise) of the regular n-gon, and let C be the circumscribing circle. Also, let 
wj = zy be the image of vertex zj under the mapping z I+ z = zm. Think of 
z as a particle that starts at zo and orbits counterclockwise round C ,  so that the 
image particle w = zm starts at wo and orbits round another circle with rn times 
the angular speed of z. 

(i) Show that each time z travels from one vertex to the next, w executes (mln) 
of a revolution. Thus as z travels from zo to zk, w executes k(rn/n) revolu- 
tions as it travels from wo to wk. 

(ii) Let wk be the first point in the sequence w 1, w2, etc., such that wk = WO. 

Deduce that if (MIN) is (rnln) reduced to lowest terms, then k = N. Note 
that N = (n divided by the highest common factor of rn and n). 

(iii) Explain why w ~ + 1  = wl, WN+2 = w2, etc. 

(iv) Show that wo, wl, . . . , W N - ~  are distinct. 

(v) Show that wo, wl, . . . , WN-1 are the vertices of a regular N-gon. 

42 Consider the mapping z I-, w = P, (z), where Pn (z) is a general polynomial 
of degree n > 2. Let Sq be the set of points in the z-plane that are mapped to a 
particular point q in the w-plane. Show that the centroid of Sq is independent 
of the choice of q, and is therefore a property of the polynomial itself. [Hint: 
This is another way of looking at a familiar fact about the sum of the roots of a 
polynomial.] 

43 Use Gauss' Mean Value Theorem [p. 1 101 to find the average of cos z over the 
circle 1 z 1 = r . Deduce (and check with a computer) that for all real values of r,  

1'" cos[r cos 81 cosh[r sin 01 do = 2n. 



Mobius Transformations and 
Inversion 

I Introduction 
1 Definition and Significance of Mobius Transformations 
A Mobius transformation1 is a mapping of the form 

where a ,  b, c, d are complex constants. These mappings have many beautiful 
properties, and they find very varied application throughout complex analysis. 
Despite their apparent simplicity, Mobius transformations lie at the heart of several 
exciting areas of modern mathematical research. This is due in large part to their 
intimate and somewhat miraculous connection with the non-Euclidean geometries 
alluded to in Chapter 1. [This connection is the subject of Chapter 6.1 Moreover, 
these transformations are also intimately connected2 with Einstein's Theory of 
Relativity! This connection has been exploited with remarkable success by Sir 
Roger Penrose; see Penrose and Rindler [I 9841. 

Thus, although more than 150 years have passed since August Ferdinand 
Mobius first studied the transformations that now bear his name, it is fair to say 
that the rich vein of knowledge which he thereby exposed is still far from being 
exhausted. For this reason, we shall investigate Mobius transformations in consid- 
erably greater depth than is customary. 

2 The Connection with Einstein's Theory of Relativity* 
Clearly it would be neither appropriate nor feasible for us to explore this connection 
in detail, but let us at least briefly indicate how Mobius transformations are related 
to Einstein's Theory of Relativity. 

In that theory, the time T and the 3-dimensional Cartesian coordinates (X, Y, 2) 
of an event are combined into a single $-vector (T, X, Y, 2) in 4-dimensional 
space-time. Of course the spatial components of this vector have no aJso_luE sig- 
nificance: rotating the coordinate axes yields different coordinates (X, Y, 2) for 
one and the same point in space. But if two people choose different axes, they 

'Also known as a "linear", "bilinear", "linear-fractional", or "homographic" transformation. 
2~ccording to Coxeter [1967], this connection was first recognized by H. Liebmann in 1905. 
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will nevertheless agree on the value of z2 + F2 + z2 = x2 + y2 + z2 ,  for this 
represents the square of the distance to the point. 

In contrast to this, we are accustomed to thinking that the time component 
T does have an absolute significance. However, Einstein's theory--confirmed by 
innumerable experiments-tells us that this is wrong. If two (momentarily co- 
incident) observers are in relative motion, they will disagree about the times at 
which events occul: Furthermore, they will no longer agree about the value of 
(x2  + y2 + Z2)-this is the famous Lorentz contraction. Is there any aspect of 
space-time that has absolute significance and on which two observers in relative 
motion must agree? Yes: making a convenient choice of units in which the speed 
of light is equal to 1, Einstein discovered that both observers will agree on the 
value of 

f2  - ( z 2  + Y2 + z 2 )  = T~ - ( x 2  + y 2 +  z2).  

A Lorentz transformation L is a linear transformation of space-time (a 4 x 4 
matrix) that maps one oJserv~'s-description (T, X, Y, 2) of an event to another 
observer's description (T , X, Y, 2) of the same event. Put differently, L is a linear 
transformation that preserves the quantity T~ - (x2  + y2 + Z2), upin which both 
observers must agree. 

Now imagine that the space-time coordinate origin emits a flash of light-an 
origin-centred sphere whose radius increases at the speed of light. It turns out 
that any given L is completely determined by its effect on the coordinates of 
the light rays that make up this flash. Here is the next crucial idea: in Ex. 8 we 
explain how we may set up a one-to-one correspondence between these light rays 
and complex numbers. Thus each Lorentz transformation of space-time induces a 
definite mapping of the complex plane. What kinds of complex mappings do we 
obtain in this way? The miraculous answer turns out to be this: 

The complex mappings that correspond to the Lorentz transforma- 
tions are the Mobius transformations! Conversely, every Mobius 
transformation of @ yields a unique Lorentz transformation of (2) 

space-time. 

Even among professional physicists, this "miracle" is not as well known as it 
should be. 

The connection exhibited in (2) is deep and powerful. Just for starters, it means 
that any result we establish concerning Mobius transformations will immediately 
yield a corresponding result in Einstein's Theory of Relativity. Furthermore, these 
Mobius transformation proofs turn out to be considerably more elegant than direct 
space-time proofs. 

To really understand the above claims, we strongly recommend that you consult 
Penrose and Rindler [1984, Chap. 11 after reading this chapter. 

3 Decomposition into Simple Transformations 
As a first step towards making sense of (I), let us decompose M ( z )  [exercise] into 
the following sequence of transformations: 
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(i) z H z + $, which is a translation; 1 
(ii) Z H  (11~);  

(ad - bc) (iii) z H - 7 z, which is an expansion and a rotation; 

(iv) z H z + :, which is another translation. J 
Note that if (ad - bc) = 0 then M (z) is an uninteresting constant mapping, sending 
every point z to the same image point (alc); in this exceptional case M (z) is called 
singular. In discussing Mobius transformations we shall therefore always assume 
that M(z) is non-singular, meaning that (ad - bc) # 0. 

Of the four transformations above, only the second one has not yet been inves- 
tigated. This mapping z H (1 /z) holds the key to understanding Mobius transfor- 
mations; we shall call it complex inversion. The next section examines its many 
remarkable and powerful properties. 

II lnversion 
1 Preliminary Definitions and Facts 
The image of z = r eie under complex inversion is l / ( r  eie) = ( l l r )  e-ie : the 
new length is the reciprocal of the original, and the new angle is the negative of 
the original. See [la]. Note how a point outside the unit circle C is mapped to a 
point inside C, and vice versa. 

. -  z = ZK (z) 

Figure [I] 

Figure [la] also illustrates a particularly fruitful way of decomposing complex 
inversion into a two-stage process: 

(i) Send z = r eie to the point that is in the same direction as z but that has 
reciprocal length, namely the point (1 / r )  eie = (112). 

(ii) Apply complex conjugation (i.e., reflection in the real axis), which sends 
(112) to (112) = (l/z). 

Check for yourself that the order in which we apply these mappings is immaterial. 
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While stage (ii) is geometrically trivial, we shall see that the mapping in stage 
(i) is filled with surprises; it is called3 geometric inversion, or simply inversion. 
Clearly, the unit circle C plays a special role for this mapping: the inversion inter- 
changes the interior and exterior of C, while each point on C remains fixed (i.e., 
is mapped to itself). For this reason we write the mapping as z H Zc (z) = (1 /Z), 
and we call Zc (a little more precisely than before) "inversion in C". 

This added precision in terminology is important because, as illustrated in [I b], 
there is a natural way of generalizing Zc to inversion in an arbitrary circle K (say 
with centre q and radius R). Clearly, this "inversion in K ", written z H ? = ZK (z), 
should be such that the interior and exterior of K are interchanged, while each point 
on K remains fixed. If p is the distance from q to z, then we deJine ? = ZK (z) 
to be the point in the same direction from q as z, and at distance (R21p) from q. 
[Check for yourself that this definition does indeed perform as advertised.] 

As usual, we invite you to use a computer to verify empirically the many 
results we shall derive concerning inversion. However, in the case of this particular 
mapping, you can also construct (fairly easily) a mechanical instrument that will 
carry out the mapping for you; see Ex. 2. 

Although we shall not need it for a while, it is easy enough to obtain a formula 
for ZK (z). Because the connecting complex numbers from q to z and to ? both 
have the same direction, and their lengths are p and (R2/p), it follows that (? - 
q) (2 - q) = R2. Solving for ?, 

For example, if we put q = 0 and R = 1, then we recover Zc (z) = (1 /Z). 
There is a very interesting similarity (which will deepen as we go on) between 

inversion ZK (z) in a circle K and reflection !RL (z) in a line L. See [2a] and [2b]. 
First, L divides the plane into two pieces, or "components", which are interchanged 
by TriL (z); second, each point on the boundary between the components remains 
fixed; third, !RL (z) is involutory or self-inverse, meaning that !RL o!RL is the identity 
mapping, leaving every point fixed. To put this last property differently, consider 
a point z and its reflection ? = !RL(z) in L. Such a pair are said to be "mirror 
images", or to be "symmetric with respect to L". The involutory property says that 
the reflection causes such a pair of points to swap places. 

Check for yourself that ZK (z) shares all three of these properties. Furthermore, 
the black triangle in [2b] illustrates the fact that if K is large then the effect of ZK 
on a small shape close to K looks very much like ordinary reflection. [We will 
explain this later, but you might like to check this empirically using a computer.] 
For these reasons, and others still to come, ZK (z) is often also called rejection 
in a circle, and the pair of points z and Y = ZK (z) are said to be symmetric with 
respect to K .  

3 ~ n  older works it is often called "transformation by reciprocal radii". 
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Figure [2] 

We end this subsection with two simple properties of inversion, the first of 
which will serve as the springboard for the investigations that follow. Let us use 
the symbol [cd] to stand for the distance )c - dl between two points c and d. 
We hope that no confusion will arise from this, the square brackets serving as a 
reminder that [cd] is not the product of the complex numbers c and- d. 

In [2c], a and b are two arbitrary points, and ii = ZK (a)  and b = ZK (b)  are 
their images under inversion in K. By definition, [qa] [q;i] = R2 = [q b] [qb 1, 
and so 

[qallIqbl = [qgl l rq~l .  

Noting the common angle i a q  b = L Z ~ ~ ,  we deduce that 

If inversion in a circle centred at 9 maps two points a and b to ii 
and b, then the triangles aqb and bqz  are similal: (5)  

Lastly, let us find the relationship between the separation [ab] of two points, 
and the separation [$I of their images under inversion. Using (5) ,  

and so the separation of the image points is given by 

R2 
[iig] = (---) [ab]. 

[qal[qbl 

2 Preservation of Circles 

Let us examine the effect of ZK on lines and then on circles. If a line L passes 
through the centre q of K, then clearly ZK maps L to itself, which we may write 
as ZK (L) = L. Of course we don't mean that each point of L remains fixed, for 
ZK interchanges the portions of L interior and exterior to K;  the only points of L 
that remain fixed are the two places where it intersects K. 
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Matters become much more interesting when we consider a general line L that 
does not pass through q. Figure [3] provides the surprising answer: 

If a line L does not pass through the centre q of K ,  then inversion 
in K maps L to a circle that passes through q. (7) 

Here b is an arbitrary point on L, while a isthe intersection of L with-the perpen- 
dicular line through q. By virtue of (5) ,  LqbZ = Lqab = (n/2), so b lies on the 
circle having the line-segment qZ as diameter. Done. Notice, incidentally, that the 
tangent at q of the image circle is parallel to L. 

Figure [3] 

Note that (7) makes no mention of the radius R of K .  You may therefore be 
concerned that in [3] we have chosen R so that K does not intersect L; what 
happens if K does intersect L? Check for yourself that, while the picture looks 
somewhat different in this case, the geometric argument above continues to apply 
without any modification. 

We now give a less direct, but more instructive way of understanding why (7) 
does not depend on the size of K .  We will show that if the result holds for one 
circle K1 (radius R1) centred at q, then it will hold for any other circle K2 (radius 
R2) centred at q. 

Let z be an arbitrary point, and let y1 = ZK1 (z) and y2 = ZK2 (z). Obviously 
N 

zl and y2 are both in the same direction from q as z, and you can easily check that 
the ratio of their distances from q is independent of the location of z: 

where the "central dilation" V: [see p. 401 is an expansion (centred at q) of the 
plane by a factor of k. It follows [exercise] that if (7) holds for K1 then it also holds 
for K2.  
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Look again at 131. Since ZK is involutory, it simply swaps the line and circle, 
and so the image of any circle through q is a line not passing through q .  But what 
happens to a general circle C that does not pass through q? Initially, suppose that 
C does not contain q in its interior. Figure [4] provides the beautiful answer: 

Ifa circle C does not pass through the centre q of K ,  then inversion 
in K maps C to another circle not passing through q.  (9) 

This fundamental result is often described by saying that inversion "preserves 
circles". 

It follows from (8) that if (9) is true for one choice of K, then it will be true for 
any choice of K. We may therefore conveniently choose K so that C lies inside 
it, as illustrated. Here a and b  are the ends of a diameter of C, and they therefore 

Figure [4] 

subtend a right angle at a general point c on C. To understand (9), first use (5) 
to check that both the shaded angles are equal, and that both the black angles are 
equal. Next look at the triangle abc, and observe that the external shaded angle at 
a is the sum of the two illustrated internal angles: the right angle at c and the black 
angle at b. It follows that i i i z b  = (n /2 ) ,  and hence that ;i and are the ends of a 
diameter of a circle through F. Thus we have demonstrated (9) in the case where 
C does not contain q .  We leave it to you to check that the same line of reasoning 
establishes the result in the case where C does contain q .  

The result (7) is in fact a special limiting case of (9). Figure [5] shows a line L, 
the point p on L closest to the centre q of the inversion, and a circle C tangent to L 
at p. As its radius tends to infinity, C tends to L, and the image circle C" = ZK (C) 
tends to a circle through q .  

Later we will be able to give a much cleaner way of seeing that (7) and (9) are 
two aspects of a single result. 

3 Constructing Inverse Points Using Orthogonal Circles 

Consider [6a]. The circle C cuts the circle of inversion K at right angles at a and 
b. In other words, the tangent T to C at a (for example) passes through q. Under 
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Figure [5] 

inversion in K, a and b remain fixed, and T is mapped into itself. Thus the image 
of C must be a circle that again passes through a and b and that is again orthogonal 
to K. But clearly there is only one circle with these properties, namely C itself. 
Thus, 

Under inversion in K, every circle orthogonal to K is mapped to 
itsel$ (10) 

Figure [6a] illustrates two immediate consequences of this result. First, the disc 
bounded by C is also mapped to itself, the shaded and hatched regions into which 
K divides it being swapped by the inversion. Second, a line from q through a point 
z on C intersects C for the second time at the inverse point ?. 

. . . . . .  . . . . . . .  

. . . . . . . . . 

Figure [6] 

Another consequence (the key result of this subsection) is the geometric con- 
struction shown in [6b], the verification of which is left to you. 

The inverse ? of z in K is the second intersection point of any two 
circles that pass through z and are orthogonal to K. 

Note that the construction of Y in [6a] is the special limiting case in which the 
radius of one of the circles tends to infinity, and so becomes a line through q .  For 
other, less important, geometric constructions of inversion, see Ex. 1. 

The previously mentioned analogy between inversion in K and reflection in a 
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Figure [7] 

line L now deepens, for the reflection ? = !RL (z) of z in L can be obtained using 
precisely the same construction; see [7a]. Note that the line-segment joining z and - 
z is orthogonal to L, and that its intersection p with L is equidistant from z and 2 
[PzI/[PYI = 1. 

As illustrated in [7b], the segment of L in the vicinity of p can be approximated 
by an arc of a large circle K tangent to L at p.  Here ?' = ZK (z) is the image under 
inversion in K of the same point z as before. As you can see, there is virtually 
no difference between the two figures. More precisely, as the radius of K tends to 
infinity, inversion in K becomes reflection in L. In particular, [pz]/[p Y] tends to 
unity, or equivalently, [ p  ?'I is "ultimately equal" to [pz]. We can now understand 
what was happening in figure [2b]. 

We can also check this result algebraically. First, though, observe that from 
the geometric point of view it is sufficient to demonstrate the result for a single 
choice of the line L and a single point p on it. Let us therefore choose L to be the 
real axis, and let p be the origin. The circle K of radius R centred at q = i R is 
therefore tangent to L at p .  Using (4), we obtain [exercise] 

Thus as R tends to infinity we find that ZK (z) is ultimately equal to !RL (z) = Z, 
as was to be shown. 

Here is another way of looking at the result. Instead of making K larger and 
larger, let z move closer and closer to an arbitrary point p on a circle K of fixed 
size. As z approaches p from any direction, ZK (z) is ultimately equal to !RT (z), 
where T is the tangent to K at p .  

Again, we can also get this algebraically using the above equation. If R isJixed 
and I z 1 < R , then [exercise] 

Thus as z approaches p = 0, ZK (z) is ultimately equal to RL (z) = z, which is 
reflection in the tangent to K at p.  

4 Preservation of Angles 
Let us begin by discussing what is meant by "preservation of angles". In the centre 
of [8] are two curves S1 and S2 intersecting at a point p.  Provided these curves 
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c. I \  

anticonformal 

Figure [8] 

are sufficiently smooth at p, then, as illustrated, we may draw their tangent lines 
TI and T2 at p. We now define the "angle between S1 and S2" at p to be the 
acute angle 8 from Tl  to T2. Thus this angle 8 has a sign attached to it: the angle 
between S2 and S1 is minus the illustrated angle between S1 and S2. If we now 
apply a sufficiently smooth transformation to the curves, then the image curves 
will again possess tangents at the image of p, and so there will be a well-defined 
angle between these image curves. 

If the angle between the image curves is the same as the angle between the 
original curves through p, then we say that the transformation has "preserved 
the angle at p. It is perfectly possible that the transformation preserves the angle 
between one pair of curves through p,  but not every pair through p. However, if 
the transformation does preserve the angle between every pair of curves through 
p, then we say that it is conformal at p. We stress that this means that both the 
magnitude and the sign of the angles are preserved; see the right of [8]. If every 
angle at p is instead mapped to an angle of equal magnitude but opposite sign, then 
we say that the mapping is anticonformal at p; see the left of [8]. If the mapping 
is conformal at every point in the region where it is defined, then we call it a 
conformal mapping; if it is instead anticonformal at every point, then we call it an 
anticonformal mapping. Finally, if a mapping is known to preserve the magnitude 
of angles, but we are unable to say whether or not it preserves their sense, then we 
call it an isogonal mapping. 

It is easy enough to think of concrete mappings that are either conformal 
or anticonformal. For example, a translation z H (z + c) is conformal, as is a 
rotation and expansion of the plane given by z H az. On the other hand, z I+ 2 is 
anticonformal, as is any reflection in a line. The analogy between such a reflection 
and inversion in a circle now gets even deeper, for 

Inversion in a circle is an anticonformal mapping. 

To see this, first look at [9]. This illustrates the fact that given any point z not 
on K,  there is precisely one circle orthogonal to K that passes through z in any 
given direction. [Given the point and the direction, can you think how to construct 
this circle?] 

As in [8], suppose that two curves S1 and S2 intersect at p,  and that their 
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Figure [9] 

tangents there are Tl and T2, the angle between them being 8. To find out what 
happens to this angle under inversion in K, let us replace Sl and S2 with the unique 
circles orthogonal to K that pass through p in the same directions as directions S1 
and S2, i.e., circles whose tangents at p are Tl and T2. See [loa]. Since inversion 
in K maps each of these circles to themselves, the new angle at = ( p )  is -8. 
Done. 

Figure [lob] illustrates the effect of z H (l/z) on angles. Since this mapping 
is equivalent to reflection (i.e., inversion) in the unit circle followed by reflection 
in the real axis (both of which are anticonformal), we see that their composition 
reverses the angle twice, restoring it to its original value: 

Complex inversion, z I+ (l/z), is conformal. 

By the same reasoning, it follows more generally that 

The composition of an even number of rejections (in lines or circles) 
is a conformal mapping, while the composition of an odd number of 
such rejections is an anticonformal mapping. 

Figure [lo] 
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5 Preservation of Symmetry 
Consider [I la], which shows two points a and b that are symmetri_c with respect 
to a line L. If reflecti0n.n a line M maps a to ;i, b to b, and L to L, then cl@y 
the image points Z and b are again symmetric with respect to the image line L. In 
brief, reflection in lines "preserves symmetry" with respect to lines. 

We now show that reflection in circles also preserves symmetry with respect 
to circles: 

Ifa and-b are symmetric with respect to a circle K, then their images - 
a and b under inversEn in any circle J are again symmetric with 
respect to the image K of K. 

To understand this, first note that, since inversion is anticonformal, (10) is just a 
special case of the following more general result: 

Inversion maps any pair of orthogonal circles to another pair of 
orthogonal circles. 

Of course if one of the circles passes through the centre of inversion then its image 
will be a line. However, if we think of lines as merely being circles of infinite 
radius then the result is true without qualification. 

The preservation of symmetry result is now easily understood. See [I lb]. Since 
the two dashed circles through a and b are orthogonal to K, their images under 
inversion in J are likewise orthogonal to K, and they therefore intersect in a pair 
of points that are symmetric with respect to K. 

6 Inversion in a Sphere 
Inversion Zs of three-dimensional space in a sphere S (radius R and centre q) is 
defined in the obvious way: if p is a point in space at distance p from q, then Zs ( p )  
is the point in the same direction from q as p, and at distance ( ~ ~ / p )  from q. We 
should explain that this is not generalization for its own sake; soon we will see how 
this three-dimensional inversion sheds new light on two-dimensional inversion in 
c. 

Without any additional work, we may immediately generalize most of the 
. . .  . . . . . . . . . . . , . . . . . . . . . . . . 

Figure [ l  11 
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Figure [12] 

above results on inversion in circles to results on inversion in spheres. For example, 
reconsider [3]. If we rotate this figure (in space) about the line through q and a,  
then we obtain [12], in which the circle of inversion K has swept out a sphere of 
inversion S, and the line has swept out a plane ll. Thus we have the following 
result: 

Under inversion in a sphere centred at q, a plane ll that does not 
contain q is mapped to a sphere that contains q and whose tangent 
plane there is parallel to ll. Conversely, a sphere containing q is (1 1) 
mapped to a plane that is parallel to the tangent plane of that sphere 
at q. 

By the same token, if we rotate figure [4] about the line through q and a,  then 
we find that 

Under inversion in a sphere, the image of a sphere that does not con- 
tain the centre of inversion is another sphere that does not contain 
the centre of inversion. 

This result immediately tells us what will happen to a circle in space under inversion 
in a sphere, for such a circle may be thought of as the intersection of two spheres. 
Thus we easily deduce [exercise] the following result: 

Under inversion in a sphere, the image of a circle C that does not 
pass through the centre q of inversion is another circle that does not 
pass through q. If C does pass through q then the image is a line (12) 

parallel to the tangent of C at q. 
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The close connection between inversion in a circle and reflection in a line also 
persists: reflection in a plane is a limiting case of inversion in a sphere. For this 
reason, inversion in a sphere is also called "reflection in a sphere". Of particu- 
lar importance is the fact that such three-dimensional reflections again preserve 
symmetry: 

Let K be a plane or sphere, and let a and b be symmetric points with 
respect to K. Under a three-dimensional reflection in any plane or 
sphere, the images of a and b are again symmetric with respect to (13) 

the image of K. 

We now describe the steps leading to this result; they are closely analogous to the 
steps leading to the two-dimensional preservation of symmetry result. 

If we rotate figure [6a] about the line joining the centres of K and C ,  we deduce 
that 

Under inversion in a sphere K, every sphere orthogonal to K is 
mapped to itsel$ (14) 

When we say that spheres are "orthogonal" we mean that their tangent planes 
are orthogonal at each point of their circle of intersection. However, in order to 
be able to easily draw on previous results, let us rephrase this three-dimensional 
description in two-dimensional terms: 

Let S1 and S2 be intersecting spheres, and let C1 and C2 be the great 
circles in which these spheres intersect a plane lJ passing through 
their centres. Then S1 and S2 are orthogonal if and only if Cl and 
C2 are orthogonal. 

See [13]. This figure is also intended to help you see that if we restrict attention to 
ll then the three-dimensional inversion in S1 is identical to the two-dimensional 
inversion in C1. This way of viewing inversion in spheres allows us to quickly 
generalize earlier results. 

For example, referring back to [6b], we find-make sure you see this-that if 
p lies in ll then = &, ( p )  may be constructed as the second intersection point 
of any two circles like C2 that (i) lie in lJ, (ii) are orthogonal to C1, and (iii) pass 

Figure [13] 
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through p. 
Next, suppose that S1 and S2 in [13] are subjected to inversion in a third sphere 

K . Choose ll to be the unique plane passing through the centres of S1, S2, K, and 
let C be the great circle in which K intersects ll. Since Zc maps C1 and C2 to 
orthogonal circles, we deduce [exercise] that (14) is a special case of the following 
result: 

Orthogonal spheres invert to orthogonal spheres. (15) 

Here we are considering a plane to be a limiting case of a sphere. 
Putting these facts together, you should now be able to see the truth of (13). 

Ill Three Illustrative Applications of lnversion 
1 A Problem on Touching Circles 

Figure [14] 

For our first problem, consider [14], in which we imagine that we are given two 
circles A and B that touch at q. As illustrated, we now construct the circle Co that 
touches A and B and whose centre lies on the horizontal line L through the centres 
of A and B. Finally, we construct the chain of circles C1, C2, etc., such that Cn+l 
touches C,, A, and B. 

The figure illustrates two remarkable results about this chain of circles: 

a The points of contact of the chain Co, C1, C2, etc., all lie on a circle [dashed] 
touching A and B at q. 

a If the radius of C, is r,, then the height above L of the centre of C, is 2nrn. 
The figure illustrates this for C3. 

Before reading further, see if you can prove either of these results using conven- 
tional geometric methods. 

Inversion allows us to demonstrate both these results in a single elegant swoop. 
In [14], we have drawn the unique circle K centred at q that cuts C3 at right angles. 
Thus inversion in K will map C3 to itself, and it will map A and B to parallel 
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Figure [15] 

vertical lines; see [15]. Check for yourself that the stated results are immediate 
consequences of this figure. 

2 A Curious Property of Quadrilaterals with Orthogonal Diagonals 

Figure [16] 

Figure [16] shows a shaded quadrilateral whose diagonals intersect orthogonally 
at q. If we now reflect q in each of the edges of the quadrilateral, then we obtain 
four new points. Very surprisingly, these fourpoints lie on a circle4. As with the 
previous problem, see if you can prove this by ordinary means. 

To demonstrate the result using inversion, we first use the construction in [7a] 
to represent the reflection of q in an edge as the second intersection point of any 
two circles through q whose centres lie on that edge. More precisely, let us choose 
the centres of these circles to be the vertices of the quadrilateral; see the LHS of 
[17]. Note that, because the diagonals are orthogonal, a pair of these circles centred 
at the ends of an edge will intersect orthogonally both at q and at the reflection of 
q in that edge. 

It follows that if we now apply an inversion in any circle centred at q ,  then a 
pair of such orthogonal circles through q will be mapped to a pair of orthogonal 

4~ am grateful to my friend Paul Zeitz for challenging me with this problem, which appeared 
in the USA Mathematical Olympiad. 
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inversion 
-wb+ 

Figure [17] 

lines (parallel to the diagonals of the original quadrilateral); see the RHS of [17]. 
Thus the images of the four reflections of q are the vertices of a rectangle, and they 
therefore lie on a circle. The desired result follows immediately. Why? 

3 Ptolemy's Theorem 

Figure [18a] shows a quadrilateral abcd inscribed in a circle. Ptolemy (c. AD 125) 
discovered the beautiful fact that the sum of the product of the opposite sides is the 
product of the diagonals. In symbols, 

[ad]  [bc] + [ab] [cd] = [ac] [bd] .  

We note that for Ptolemy this was not merely interesting, it was a crucial tool 
for doing astronomy! See Ex. 9. His original proof (which is reproduced in most 
geometry texts) is elegant and simple, but it is very difficult to discover on one's 
own. On the other hand, once one has become comfortable with inversion, the 
following proof is almost mechanical. 

Figure [ I  81 
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Inverting figure [18a] in a circle K centred at one of the vertices (say a), we 
obtain [18b], in which 

[%I + [ Z ]  = [ E l .  

Recalling that (6) tells us how the separation of two inverted points is related to 
the separation of the original points, we deduce that 

[bcl [cdl - [bdl +--- 
Lab1 Lac1 Lac1 [ad] Lab1 [ad] ' 

Multiplying both sides by ([ab] [ac] [ad]), we deduce Ptolemy's Theorem. 

IV The Riemann Sphere 
1 The Point at Infinity 

In discussing inversion we saw that results about lines could always be understood 
as special limiting cases of results about circles, simply by letting the radius tend 
to infinity. This limiting process is nevertheless tiresome and clumsy; how much 
better it would be if lines could literally be described as circles of infinite radius. 

Here is another, related inconvenience. Inversion in the unit circle is a one-to- 
one mapping of the plane to itself that swaps pairs of points. The same is true of the 
mapping z r-, (l/z). However, there are exceptions: no image point is presently 
associated with z = 0, nor is 0 to be found among the image points. 

To resolve both these difficulties, note that as z moves further and further away 
from the origin, (1 /z) moves closer and closer to 0. Thus as z travels to ever greater 
distances (in any direction), it is as though it were approaching a single point a t  
infinity, written oo, whose image is 0. Thus, by definition, this point oo satisfies 
the following equations: 

The addition of this single point at infinity turns the complex plane into the so- 
called extended complex plane. Thus we may now say, without qualification, that 
z H (l/z) is a one-to-one mapping of the extended plane to itself. 

If a curve passes through z = 0 then (by definition) the image curve under 
z H ( 1 1 ~ )  will be a curve through the point at infinity. Conversely, if the image 
curve passes through 0 then the original curve passed through the point oo. Since 
z I+ (112) swaps a circle through 0 with a line, we may now say that a line is 
just a circle that happens to pass through the point at infinity, and (without further 
qualification) inversion in a "circle" sends "circles" to "circles". 

This is all very tidy, but it leaves one feeling none the wiser. We are accustomed 
to using the symbol oo only in conjunction with a limiting process, not as a thing 
in its own right; how are we to grasp its new meaning as a definite point that is 
infinitely far away? 
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2 Stereographic Projection 

Riemann's profoundly beautiful answer to this question was to interpret complex 
numbers as points on a sphere I:, instead of as points in a plane. Throughout the 
following discussion, imagine the complex plane positioned horizontally in space. 
In order to be definite about which way up the plane is, suppose that when we 
look down on @ from above, a positive (i.e., counterclockwise) rotation of ( ~ 1 2 )  
carries 1 to i. Now let Z be the sphere centred at the origin of @, and let it have 
unit radius so its "equator9' coincides with the unit circle5. 

We now seek to set up a correspondence between points on I: and points in @. If 
we think of I: as the surface of the Earth, then this is the ancient problem of how to 
draw a geographical map. In an atlas you will find many different ways of drawing 
maps, the reason for the variety being that no single map can faithfully represent 
every aspect of a curved6 surface on a flat piece of paper. Although distortions of 
some kind are inevitably introduced, different maps can "preserve" or "faithfully 
represent" some (but not all) features of the curved surface. For example, a map 
can preserve angles at the expense of distorting areas. 

Ptolemy (c. AD 125) was the first to construct such a map, which he used to 
plot the positions of heavenly bodies on the "celestial sphere". His method is 
called stereographic projection, and we will soon see how perfectly it is adapted 
to our needs. Figure [19] illustrates its definition. From the north pole N of the 

Figure [19] 

sphere I:, draw the line through the point p in @; the stereographic image of p 
on I: is the point j? where this line intersects . Since this gives us a one-to-one 
correspondence between points in @ and points on I:, let us also say that p is the 
stereographic image of p? No confusion should arise from this, the context making 
it clear whether we are mapping @ to I:, or vice versa. 

Note the following immediate facts: (i) the interior of the unit circle is mapped 

'some works instead define C to be tangent to the complex plane at its south pole. 
 his concept of "curvature" will be defined more precisely in Chapter 6. 
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to the southern hemisphere of X, and in particular 0 is mapped to the south pole, 
S; (ii) each point on the unit circle is mapped to itself, now viewed as lying on 
the equator of Z;  (iii) the exterior of the unit circle is mapped to the northern 
hemisphere of C, except that N is not the image of any finite point in the plane. 

However, it is clear that as p moves further and further away from the origin 
(in any direction), Fmoves closer and closer to N. This strongly suggests that N 
is the stereographic image of the point at infinity. Thus stereographic projection 
establishes a one-to-one correspondence between every point of the extended com- 
plex plane and every point of Z. Instead of merely speaking of a "correspondence" 
between complex numbers and points of 123, we can imagine that the points of Z 
are the complex numbers. For example, S = 0 and N = oo. Once stereographic 
projection has been used to label each point of I: with a complex number, C is 
called the Riemann sphere. 

We have already discussed the fact that a line in C may be viewed as a circle 
passing through the point at infinity. The Riemann sphere now transforms this 
abstract idea into a literal fact: 

The stereographic image of a line in the plane is a circle on Z 
passing through N = oo. (16) 

To see this, observe that as p moves along the line shown in [19], the line connecting 
N to p sweeps out a plane through N. Thus Fmoves along the intersection of this 
plane with Z,  which is a circle passing through N. Done. In addition, note that the 
tangent to this circle at N is parallel to the original line. Why? 

From this last fact it follows that stereographic projection preserves angles. 
Consider [20], which shows two lines intersecting at p, together with their circular, 
stereographic projections. By symmetry, the magnitude of the angle of intersection 
between the circles is the same at their two intersection points, and N. Since 
their tangents at N are parallel to the original lines in the plane, it follows that the 
illustrated angles at p and j? are of equal magnitude. But before we can say that 

Figure [20] 
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stereographic projection is "conformal", we must assign a sense to the angle on 
the sphere. 

According to our convention, the illustrated angle at p (from the black curve 
to the white one) is positive, i.e., it is counterclockwise when viewed from above 
the plane. From the perspective from which we have drawn [20], the angle at p̂  
is negative, i.e., clockwise. However, if we were looking at this angle from inside 
the sphere then it would be positive. Thus 

I f  we define the sense of an angle on C by its appearance to an 
observer inside C, then stereographic projection is conformal. 

Clearly, any origin-centred circle in the plane is mapped to a horizontal circle 
on C, but what happens to a general circle? The startling answer is that it too 
is mapped to a circle on the Riemann sphere! This is quite difficult to see if we 
stick to our original definition of stereographic projection, but it suddenly becomes 
obvious if we change our point of view. Look again at [12], and observe how closely 
it resembles the definition of stereographic projection. 

I \ 

Figure [2 11 

To make the connection precise, let K be the sphere centred at the north pole N 
of C that intersects C along its equator (the unit circle of C). Figure [21a] shows 
a vertical cross section (through N and the real axis), of K, C, and C. The full 
three-dimensional picture is obtained by rotating this figure about the line through 
N and S. We now see that 

If K is the sphere of radius centred at N ,  then stereographic 
projection is the restriction to @ or C of inversion in K. 

In other words, if a is a point of @ and Z is its stereographic projection on C, then 
h 

a = ZK ( a )  and a = ZK (2) .  
Appealing to our earlier work on inversion in spheres, (12) confirms our claim 

that 
Stereographic projection preserves circles. 

Note that (16) could also have been derived from (12) in this way. 
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3 Transferring Complex Functions to the Sphere 

Stereographic projection enables us to transfer the action of any complex function 
to the Riemann sphere. Given a complex mapping z I+ w = f (z) of C to itself, 
we obtain a corresponding mapping? I+ w^ of X to itself, where? and $ are the 
stereographic images of z and w.  We shall say that z I+ w induces the mapping 
?I+ $of X. 

For example, consider what happens if we transfer f (z) = T to I3. Clearly 
[exercise], 

Complex conjugation in C induces a rejection of the Riemann sphere 
in the vertical plane passing through the real axis. 

For our next example, consider z t+ ? = (l/?), which is inversion in the unit 
circle C. Figure [21b] shows a vertical cross section of X taken through N and the 
point z in C. This figure also illustrates the very surprising result of transferring 
this inversion to X : 

Inversion of C in the unit circle induces a rejection of the Riemann 
sphere in its equatorial plane, C. (17) 

Here is an elegant way of seeing this. First note that not only are the pair of points 
z and ? symmetric (in the two-dimensional sense) with respect to C, but they 
are also symmetric (in the three-dimensional sense) with respect to the sphere X. 
Now apply the three-dimensional preservation of symmetry result (13). Since z 
and ?! are symmetric with respect to X , their stereographic images ? = ZK (z) and 
e z = ZK (?) will be symmetric with respect to ZK (X). But ZK (X) = C. Done! A 
more elementary (but less illuminating) derivation may be found in Ex. 6. 

By combining the above results, we can now find the effect of complex in- 
version on the Riemann sphere. In @, we know that z t+ (l/z) is equivalent to 
inversion in the unit circle, followed by complex conjugation. The induced map- 
ping on X is therefore the composition of two rejections in perpendicular planes 
through the real axis--one horizontal, the other vertical. However, it is not hard to 
see (perhaps with the aid of an orange) that the net effect of successively reflecting 
C in any two perpendicular planes through the real axis is a rotation of X about 
the real axis through angle n. Thus we have shown that 

The mapping z (l/z) in C induces a rotation of the Riemann 
sphere about the real axis through an angle of n. (18) 

Recall that the point oo was originally defined by the property that it be swapped 
with 0 under complex inversion, z H (112). The result (1 8) vividly illustrates 
the correctness of identifying N with the point at infinity, for the point 0 in C 
corresponds to the south pole S of X, and the rotation of n about the real axis does 
indeed swap S with N. 
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4 Behaviour of Functions at Infinity 

Suppose two curves in (C extend to arbitrarily large distances from the origin. 
Abstractly, one would say that they meet at the point at infinity. On I: this becomes 
a literal intersection at N, and if each of the curves arrives at N in a well defined 
direction, then one can even assign an "intersection angle at oo". For example, 
[20] illustrates that if two lines in @. intersect at a finite point and contain an angle 
a there, then they intersect for a second time at oo and they contain an angle -a! 
at that point. 

Transferring a complex function to the Riemann sphere enables one to examine 
its behaviour "at infinity" exactly as one would at any other point. In particular, 
one can look to see if the function preserves the angle between any two curves 
passing through oo. For example, the result (1 8) shows that complex inversion does 
preserve such angles at N, and it is therefore said to be "conformal at infinity". 
By the same token, this rotation of Z will also preserve the angle between two 
curves that pass through the singularity z = 0 of z I+ (l/z), so complex inversion 
is conformal there too. In brief, complex inversion is conformal throughout the 
extended complex plane. 

In this chapter we have found it convenient to depict z I+ w as a mapping 
of (C to itself, and in the above example we have likewise interpreted the induced 
mapping ? I+ 67 as sending points on the sphere to other points on the same 
sphere. However, it is often better to revert to the convention of the previous 
chapter, whereby the mapping sends points in the z-plane to image points residing 
in a second copy of @, the w-plane. In the same spirit, the induced mapping? I-+ 67 
may be viewed as mapping points in one sphere (the z-sphere) to points in a second 
sphere (the w-sphere). We illustrate this with an example. 

Consider z I-+ w = zn, where n is a positive integer. The top half of [22] 
illustrates the effect of the mapping (in the case n = 2) on a grid of small "squares" 
abutting the unit circle and two rays containing an angle 6 .  Very mysteriously, the 
images of these "squares" in the w-plane are again almost square. In the next 
chapter we will show that this is just one consequence of a more basic mystery, 
namely, that z I+ w = zn is conformal. Indeed, we will show that if a mapping is 
conformal, then any infinitesimal shape is mapped to a similar infinitesimal shape. 

Since stereographic projection is known to be conformal, we would therefore 
anticipate that when we transfer the grid from the z-plane to the z-sphere, the result 
will again be a grid of "squares". That this does indeed happen can be seen at the 
bottom left of [22]; the bottom right of [22] illustrates the same phenomenon as 
we pass from the image grid in the w-plane to the image grid on the w-sphere. 
Quite generally, any conformal mapping of @ will induce a conformal mapping 
of X that will (as one consequence) map a grid of infinitesimal squares to another 
grid of infinitesimal squares. 

Figure [22] not only manifests the conformality of z I-+ w = z2, but it also 
illustrates that there exist points at which this conformality breaks down. Clearly, 
the angle 6 at the origin is doubled; more generally, z t-+ w = zn multiplies angles 
at 0 by n. Quite generally, if the conformality of an otherwise conformal mapping 
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Figure 1221 

breaks down at a particular point p ,  then p is called a critical point of the mapping. 
Thus we may say that 0 is a critical point of z I+ w = zn. 

If we restrict ourselves to @ then this is the only critical point of this mapping. 
However, if we look at the induced mapping of X, then the figure makes it clear 
that in the extended complex plane there is a second critical point at infinity: angles 
there are multiplied by n, just as they were at 0. Thus, more precisely than before, 
the claim is that z I-+ w = zn is a conformal mapping whose only critical points 
are 0 and oo. 

Next, we discuss how the behaviour of a complex mapping at infinity may be 
investigated algebraically. Complex inversion rotates X so that a neighbourhood 
of N = oo becomes a neighbourhood of S = 0. Thus to examine behaviour near 
infinity we may first apply complex inversion and then examine the neighbourhood 
of the origin. Algebraically, this means that to study f (z) at infinity we should 
study F(z) = f (112) at the origin. For example, f ( z )  is conformal at infinity if 
and only if F (z) is conformal at the origin. 

For example, if f ( z )  = (z + ~ ) ~ / ( z ~  - z), then F (z) = z2(1 + ~ ) ~ / ( 1  - z4), 
which has a double root at 0. Thus instead of merely saying that f ( 2 )  "dies away 
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to zero like (1/z2) as z tends to infinity", we can now say (more precisely) that 
f (z) has a double root at z = oo. 

This process can also be used to extend the concept of a branch point of a 
multifunction to the point at infinity. For example, if f (z) = log(z) then F(z) = 
- log(z). Thus f (z) not only has a logarithmic branch point at z = 0, it also has 
one at z = oo. 

5 Stereographic Formulae* 

In this subsection we derive explicit formulae connecting the coordinates of a point 
z in C and its stereographic projection? on C. These formulae will prove useful 
in investigating non-Euclidean geometry, but if you don't plan to study Chapter 6 
then you should feel free to skip this subsection. 

To begin with, let us describe z with Cartesian coordinates: z = x + iy. 
Similarly, let (X, Y, Z) be the Cartesian coordinates of 7 on C; here the X- and 
Y-axes are chosen to coincide with the x- and y-axes of C, so that the positive 
Z-axis passes through N. To make yourself comfortable with these coordinates, 
check the following facts: the equation of C is x2 + y2 + z2 = 1, the coordinates 
of N are (0,0, I), and similarly S = (0,0, -I), 1 = (1,0,O), i = (0, 1, O), etc. 

Now let us find the formula for the stereographic projection z = x + iy of the 
point 7 on C in terms of the coordinates (X, Y, Z) of ?. Let z' = X + i Y be the 
foot of the perpendicular from? to C. Clearly, the desired point z is in the same 
direction as z', so 

Now look at [23a], which shows the vertical cross section of C and C taken 
through N a n d z  note that this vertical plane necessarily also contains z' and z. 
From the similarity of the illustrated right triangles with hypotenuses N7and Nz, 
we immediately deduce [exercise] that 

and so we obtain our first stereographic formula: 

Let us now invert this formula to find the coordinates of?in terms of those of 
z. Since [exercise] 

2 1 + z  
IzI = - 

1 - 2 '  
we obtain [exercise] 
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Figure [23] 

Although it is often useful to describe the points of C with the three coordinates 
(X, Y, Z), this is certainly unnatural, for the sphere is intrinsically two dimensional. 
If we instead describe? with the more natural (two-dimensional) spherical polar 
coordinates (4, 8) then we obtain a particularly neat stereographic formula. 

~ i r s t  recall7 that 8 measures angle around the Z-axis, with 8 = 0 being assigned 
to the vertical half-plane through the positive X-axis: thus for a point z in C, the 
angle 8 is simply the usual angle from the positive real axis to z .  The definition of 
4 is illustrated in [23b]-it is the angle subtended at the centre of I: by the points 
N and 2 for example, the equator corresponds to $ = (n/2). By convention, 
O i $ ~ n .  

If z is the stereographic projection of the point? having coordinates ($,8), 
then clearly z = r e i6 ,  and so it only remains to find r as a function of 4. From 
[23b] it is clear [exercise] that the triangles N?S and NO z are similar, and because 
the angle L N S? = ($/2), it follows [exercise] that r = cot ($12). Thus our new 
stereographic formula is 

z = cot(4/2) ei6 . (21) 

We will now illustrate this formula with two applications. In Ex. 8 we also show 
how this formula may be used to establish a beautiful alternative interpretation of 
stereographic projection, due to Sir Roger Penrose. 

As our first application, let us rederive the resulL(l8). As above, let be a 
general point of C having coordinates (4, 8), and let 7 be the point to which it is 
carried when we rotate C by n about the real axii. Check for yourself (perhaps 
with the aid of an orange) ga t  the coordinates of ? are (n - $ , -8). Thus if ? is 
the stereographic image o f 2  then 

as was to be shown. 

7 ~ h i s  is the American convention; in my native England the roles of 8 and 4 are the reverse 
of those stated here. 
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For our second application, recall that if two points on a sphere are diametrically 
opposite each other (such as the north and south poles) then they are said to be 
antipodal. Let us show that 

If p̂  and are antipodal points of C ,  then their stereographic pro- 
jections p and q are related by the following formula: 

Put differently, q = -Zc ( p ) ,  where C is the unit circle. Note that the relationship 
between p and q is actually symmetrical (as clearly it should be): p = -(l/q). 
To verify (22), first check for yourself that if p̂  has coordinates (@,8)  then has 
coordinates (n - 4, n + 0). The remainder of the proof is almost identical to the 
previous calculation. For an elementary geometric proof, see Ex. 6. 

V Mobius Transformations: Basic Results 
1 Preservation of Circles, Angles, and Symmetry 

From (3) we know that a general Mobius transformation M(z)  = can be 
decomposed into the following sequence of more elementary transformations: a 
translation, complex inversion, a rotation, an expansion, and a second translation. 
Since each of these transformations preserves circles, angles, and symmetry, we 
immediately deduce the following fundamental results: 

Mobius transformations map circles to circles. 

Mobius transformations are conformal. 

I f  two points are symmetric with respect to a circle, then their images under 
a Mobius transformation are symmetric with respect to the image circle. This 
is called the "Symmetry Principle". 

We know that a circle C will map to a circle--of course lines are now included 
as "circles"-but what will happen to the disc bounded by C? First we give a useful 
way of thinking about this disc. Imagine yourself walking round C moving coun- 
terclockwise; your motion gives C what is a called a positive sense or orientation. 
Of the two regions into which this positively oriented circle divides the plane, the 
disc may now be identified as the one lying to your left. 

Now consider the effect of the four transformations in (3) on the disc and on 
the positively oriented circle bounding it. Translations, rotations, and expansions 
all preserve the orientation of C and map the interior of C to the interior of the 
image C" of C. However, the effect of complex inversion on C depends on whether 
or not C contains the origin. If C does not contain the origin, then C" has the 
same orientation as C, and the interior of C is mapped to the interior of C". This 
is easily understood by looking at [24]. If C does contain the origin then C" has 
the opposite orientation and the interior of C is mapped to the exterior of C". If C 
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Figure [24] 

Figure [25] 

passes through the origin then its interior is mapped to the half-plane lying to the 
left of the oriented line C. See [25]. 

To summarize, 

A Mob@ transformation maps an oriented circle C to an oriented 
circle C in such a way e a t  the region to the left of C is mapped to (23) 
the region to the left of C.  

2 Non-Uniqueness of the Coefficients 
To specify a particular Mobius transformation M (z) = it seems that we need 
to specify the four complex numbers a ,  b, c, and d,  which we call the coeficients 
of the Mobius transformation. In geometric terms, this would mean that to specify 
a particular Mobius transformation we would need to know the images of any four 
distinct points. This is wrong. 

If k is an arbitrary (non-zero) complex number then 

-- a'' - M(z) = kaz + kb 

cz + d kcz + kd ' 
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In other words, multiplying the coefficients by k yields one and the same mapping, 
and so only the ratios of the coefficients matter. Since three complex numbers 
are sufficient to pin down the mapping-(a/b), (blc), (c/d), for example-we 
conjecture (and later prove) that 

There exists a unique Mobius transformation sending any three 
points to any other three points. (24) 

In the course of gradually establishing this one result we shall be led to further 
important properties of Mobius transformations. 

If you read the last section of Chapter 1, then (24) may be ringing a bell: the 
similarity transformations needed to do Euclidean geometry are also determined by 
their effect on three points. Indeed, we saw in that chapter that such similarities can 
be expressed as complex functions of the form f ( z )  = az  + b, and so they actually 
are Mobius transformations, albeit of a particularly simple kind. However, for such 
a similarity to exist, the image points must form a triangle that is similar to the 
triangle formed by the original points. But in the case of Mobius transformations 
there is no such restriction, and this opens the way to more flexible, non-Euclidean 
geometries in which Mobius transformations play the role of the "motions". This 
is the subject of Chapter 6. 

Let us make a further remark on the non-uniqueness of the coefficients of a 
Mobius transformation. Recall from the beginning of this chapter that the interest- 
ing Mobius transformations are the non-singular ones, for which (ad - bc) # 0. 
For if (ad - bc) = 0 then M(z) = crushes the entire plane down to the 
single point (alc). If M is non-singular, then we may multiply its coefficients by 
k = f lid-, in which case the new coefficients satisfy 

(ad - bc) = 1; 

the Mobius transformation is then said to be normalized. When investigating the 
properties of a general Mobius transformation, it turns out to be very convenient to 
work with this normalized form. However, when doing calculations with specijic 
Mobius transformations, it is usually best not to normalize them. 

3 The Group Property 
In addition to preserving circles, angles, and symmetry, the mapping 

+ 

(ad - bc) # 0 Z I + W = M ( Z ) = -  
cz + d  

is also one-to-one and onto. This means that if we are given any point w in the 
w-plane, there is one (and only one) point z in the z-plane that is mapped to w. We 
can show this by explicitly finding the inverse transformation w H z = M-' (w). 
Solving the above equation for z in terms of w, we find [exercise] that M-' is also 
a Mobius transformation: 
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Note that if M is normalized, then this formula for M-' is automatically normal- 
ized as well. 

If we look at the induced mapping on the Riemann sphere, then we find that a 
Mobius transformation actually establishes a one-to-one correspondence between 
points of the complete z-sphere and points of the complete w-sphere, including 
their points at infinity. Indeed you may easily convince yourself that 

M(oo)=(a/c) and M(-d/c)=oo. 

Using (25), you may check for yourself that M-' (alc) = oo and M-l (oo) = 
- (dlc). 

Next, consider the composition M - (M2 0 M1) of two Mobius transforma- 
tions. 

alz + bl a2z + b2 and MI (z) = -----. M2(z) = - 
c2z + d2 ciz + dl 

A simple calculation [exercise] shows that M is also a Mobius transformation: 

It is clear geometrically that if M1 and M2 are non-singular, then so is M. This is 
certainly not obvious algebraically, but later in this section we shall introduce a 
new algebraic approach that does make it obvious. 

If you have studied "groups", or if you read the final section of Chapter 1, 
then you will realize that we have now established the following: The set of non- 
singular Mobius transformations forms a group under composition. For, (i) the 
identity mapping £(z) = z belongs to the set; (ii) the composition of two members 
of the set yields a third member of the set; (iii) every member of the set possesses 
an inverse that also lies in the set. 

4 Fixed Points 
As another step towards establishing (24), let us show that if a Mobius transforma- 
tion exists mapping three given points to three other given points, then it is unique. 
To this end, we now introduce the extremely important concept of thefiedpoints 
of a Mobius transformation. Quite generally, p is called a fixed point of a mapping 
f if f (p) = p, in which case one may also say that p is "mapped to itself ', or 
that it "remains fixed". Note that under the identity mapping, z I-+ E(z) = z, every 
point is a fixed point. 

By definition, then, the fixed points of a general Mobius transformation M(z) 
are the solutions of 

az + b 
z = M(z) = - 

c z + d '  
Since this is merely a quadratic in disguise, we deduce that 

With the exception of the identity mapping, a Mobius transformation 
has at most two fied points. 
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From the above result it follows that if a Mobius transformation is known 
to have more than two fixed points, then it must be the identity. This enables us 
to establish the uniqueness part of (24). Suppose that M  and N are two Mobius 
transformations that both map the three given points (say q, r , s) to the three given 
image points. Since (N-I o M )  is a Mobius transformation that has q ,  r ,  and s 
as fixed points, we deduce that it must be the identity mapping, and so N = M .  
Done. 

We now describe the fixed points explicitly. If M(z) is normalized, then the 
two fixed points C+, 6- are given by [exercise] 

In the exceptional case where (a + d )  = f 2, the two fixed points (* coalesce into 
the single fixed point 6 = (a - d)/2c. In this case the Mobius transformation is 
called parabolic. 

5 Fixed Points at Infinity 

Provided c # 0 then the fixed points both lie in the finite plane; we now discuss the 
fact that if c = 0 then at least one fixed point is at infinity. If c = 0 then the Mobius 
transformation takes the form M(z) = Az + B, which represents, as we have 
mentioned, the most general "direct" (i.e., conformal) similarity transformation 
of the plane. If we write A = p elff then this may be viewed as the composition 
of an origin-centred rotation of a ,  an origin-centred expansion by p, and finally 
a translation of B. Let us visualize each of these three transformations on the 
Riemann sphere. 

With a > 0, figure [26a] illustrates that the rotation z I+ eiffz in @ induces 
an equal rotation of C about the vertical axis through its centre. Horizontal circles 
on X rotate (in the direction of the arrows) into themselves and are therefore 
called invariant curves of the transformation. This figure makes its vividly clear 
that the fixed points of such a rotation are 0 and oo. Note also that the (great) 
circles through these fixed points (which are orthogonal to the invariant circles) 
are permuted among themselves. This pure rotation is the simplest, archetypal 
example of a so-called elliptic Mobius transformation. 

With p > 1, figure [26b] illustrates the induced transformation on C corre- 
sponding to the origin-centred expansion of @, z H pz. If p < 1 then we have 
a contraction of @, and points on E move due South instead of due North. Again 
it is clear that the fixed points are 0 and oo, but the roles of the two families of 
curves in [26a] are now reversed: the invariant curves are the great circles through 
the fixed points at the poles, and the orthogonal horizontal circles are permuted 
among themselves. This pure expansion is the simplest, archetypal example of a 
so-called hyperbolic Mobius transformation. 

Figure [26c] shows the combined effect of the rotation and expansion in [26a] 
and [26b]. Here the invariant curves are the illustrated "spirals"; however, the two 
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Figure [26] 

families of circles in [26a] (or [26b]) are both invariant as a whole, in the sense 
that the members of each family are permuted among themselves. This rotation 
and expansion is the archetypal loxodromic Mobius transformation, of which the 
elliptic and hyperbolic transformations are particularly important special cases. 

Finally, [26d] illustrates a translation. Since the invariant curves in C are the 
family of parallel lines in the direction of the translation, the invariant curves on 
E are the family of circles whose common tangent at oo is parallel to the invariant 
lines in C. Since oo is the only fixed point, a pure translation is an example of a 
parabolic Mobius transformation. 

Note the following consequence of the above discussion: 

A Mobius transformation has a fixed point at 00 i f  and only if it is a 
similarity, M(z) = (az + b). Furthermore, oo is the sole Jixedpoint (28) 
if and only i f  M (z) is a translation, M (z) = (z + b). 

Later we will use this to show that each Mobius transformation is equivalent, in a 
certain sense, to one (and only one) of the four types shown in [26]. 
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6 The Cross-Ratio 

Returning to (24), we have already established that if we can find a Mobius trans- 
formation M that maps three given points q,  r ,  s to three other given points g,  7, 
N 

s,  then M is unique. It thus remains to show that such an M always exists. 
To see this, first let us arbitrarily choose three points q', r', s', once and for 

all. Next, suppose we can write down a Mobius transformation mapping three 
arbitrary points q,  r ,  s to these particular three points, q', r', s f ;  let Mqrs (z) denote 
this Mobius transformation. In exactly the same way we could also write down 
MT(Z). By virtue of the group property, it is now easy to see that 

is a Mobius transformation mapping q, r ,  s to q', r', s' and thence to F, r, 7, as 
was desired. 

Now the real trick is to choose q', r', s' in such as way as to make it easy 
to write down MqrS (2). We don't like to pull rabbits out of hats, but try q' = 0, 
r' = 1, and s' = oo. Along with this special choice comes a special, standard 
notation: the unique Mobius transformation mapping three given points q, r, s to 
0, 1, oo (respectively) is written [z, q ,  r, s]. 

In order to map q to q' = 0 and s to s' = oo, the numerator and denom- 
inator of [z, q ,  r, s ]  must be proportional to (z - q) and (z - s), respectively. 

Thus [z, q ,  r, s] = k (s), where k is a constant. Finally, since k (z) = 

[r, q ,  r, s ]  - 1, we deduce that 

This is not quite so rabbit-like as it appears. Two hundred years prior to Mobius' 
investigations, Girard Desargues had discovered the importance of the expression 
[z, q ,  r, s ]  within the subject of projective geometry, where it was christened the 
cross-ratio of z, q ,  r ,  s (in this order8). Its significance in that context is briefly 
explained in Ex. 14, but the reader is urged to consult Stillwell [1989, Chap. 71 for 
greater detail and background. 

We can now restate (24) in a more explicit form: 

The unique Mobius transformation z H w = M(z) sending three 
N N N  

points q, r, s to any other three points q, r, s is given by 

8~ifferent orders yield different values; see Ex. 16. Unfortunately, there is no firm conven- 
tion as to which of these values is "the" cross-ratio. For example, our definition agrees with 
CarathCodory [1950], Penrose and Rindler [1984], and Jones and Singerman [1987], but it is 
different from the equally common definition of Ahlfors [1979]. 



Mobius Transformations: Basic Results 155 

Although we have not done so, in any concrete case one could easily go on to solve 
this equation for w, thereby obtaining an explicit formula for w = M (2). 

The result (29) may be rephrased in various helpful ways. For example, if a 
Mobius transformation maps four points p,  q,  r ,  s to p ,  q ,  7, ?(respectively) then 

N N N  

the cross-ratio is invariant: [p, q ,  r ,  3 = [p,  q ,  r, s]. Conversely, p,  q ,  r ,  s can be 
mapped to p ,  q ,  F, ?by a Mobius transformation if their cross-ratios are equal. 

Recalling (23), we also obtain the following: 

Let C be the unique circle through the points q, r, s in the z-plane, 
oriented so that these points succeed one another in the stated order: 
Likewise, let C" be the unique oriented circle through q, F, ? in the 
w-plane. -. Then the Mobius transformation given by (29) maps C to (30) 

c, and it maps the region lying to the lefr of C to the region lying to 
the lefr of ?. 

This is illustrated in [27]. 

Figure [27] 

This in turn gives us a more vivid picture of the cross-ratio: w = [z, q ,  r, s]  
is the image of z under the unique Mobius transformation that maps the oriented 
circle C through q, r ,  s to the real axis in such a way that these three points map to 
0,1, oo. If q,  r ,  s induce a positive orientation on C then the interior of C is mapped 
to the upper half-plane; if they induce a negative orientation, then the image is the 
lower half-plane. This is illustrated in [28], from which we immediately deduce a 
neat equation for the circle C: 

A point p lies on the circle C through q, r, s if and only if 

Furthermore, if q, r, s induce a positive orientation on C (as in 
[28]), then p lies inside C if and only if Im [p,  q ,  r, s]  > 0. If the 
orientation of C is negative, then the inequality is reversed. 

For a more elementary proof of (3 I), see Ex. 15. 
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I 

Figure [28] 

VI Mobius Transformations as Matrices* 
1 Empirical Evidence of a Link with Linear Algebra 
As you were reading about the group property of Mobius transformations, you 
may well have experienced de'jh vu, for the results we obtained were remarkably 
reminiscent of the behaviour of matrices in linear algebra. Before explaining the 
reason for this connection between Mobius transformations and linear algebra, 
let us be more explicit about the empirical evidence for believing that such a 
connection exists. 

We begin by associating with every Mobius transformation M (z) a correspond- 
ing 2 x 2 matrix [MI: 

Since the coefficients of the Mobius transformation are not unique, neither is the 
corresponding matrix: if k is any non-zero constant, then the matrix k[M] corre- 
sponds to the same Mobius transformation as [MI. However, if [MI is normalized 
by imposing (ad - bc) = 1, then there are just two possible matrices associated 
with a given Mobius transformation: if one is called [MI, the other is -[MI; in 
other words, the matrix is determined "uniquely up to sign". This apparently triv- 
ial fact turns out to have deep significance in both mathematics and physics; see 
Penrose and Rindler [1984, Chap. 11. 

At this point there exists a strong possibility of confusion, so we issue the 
following WARNING: In linear algebra we are--or should be!-accustomed to 
thinking of a real 2 x 2 matrix as representing a linear transformation of lX2. For 
example, ( y  -A) represents a rotation of the plane through ( ~ 1 2 ) .  That is, when 

we apply it to a vector c) in EX2, we obtain 

( -A ) (:) = (-:) = ((1;) rotated by (n/2) . I 
In stark contrast, the matrix 1; corresponding to a Mobius transformation 

L J 

generally has complex numbers as its entries, and so it cannot be interpreted as a 
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linear transformation of EX2. Even if the entries are real, it must not be thought of in 
this way. For example, the matrix ( y  -A) corresponds to the Mobius transforma- 

tion M (z) = - (1 /z), which is certainly not a linear transformation of @. To avoid 
confusion, we will adopt the following notational convention: We use (ROUND) 
brackets for a real matrix corresponding to a linear transformation of EX2 or of C, 
and we use [SQUARE] brackets for a (generally) complex matrix corresponding 
to a Mobius transformation of @. 

Despite this warning, we have the following striking parallels between the 
behaviour of Mobius transformations and the matrices that represent them: 

The identity Mobius transformation £(z) = z corresponds to the familiar 

identity matrix, [El = 

The Mobius transformation M(z) with matrix [MI =[: :] possesses an 

inverse if and only if the matrix possesses an inverse. For recall that [MI is 
non-singular if and only if its determinant det[M] = (ad - bc) is non-zero. 

If we look at (25), we see that the matrix of the inverse Mobius transformation 
M-' (z) is the same as the inverse matrix [MI-'. To put this succinctly, 

In linear algebra we compose two linear transformations by multiplying their 
matrices; indeed, this is the origin of the multiplication rule. If we multiply 
the matrices [M2] and [MI] corresponding to the two Mobius transformations 
M2(z) and Ml (z), then we obtain 

But look at (26)! This is simply the matrix of the composite Mobius transfor- 
mation (M2 o Ml) ( z ) .  Thus multiplication of Mobius matrices corresponds 
to composition of Mobius transformations: 

2 The Explanation: Homogeneous Coordinates 
Clearly this cannot all be coincidence, but what is really going on here?! The 
answer is simple, yet subtle. To see it we must first describe the complex plane 
with a completely new kind of coordinate system. Instead of expressing z = x + iy 
in terms of two real numbers, we write it as the ratio of two complex numbers, 31 

and 32: 
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The ordered pair of complex numbers [a1, 321 are called homogeneous coordi- 
nates of z. In order that this ratio be well defined we demand that [al, 321 # [O, 01. 
To each ordered pair [al arbitrary, 32 # 0] there corresponds precisely one point 
z = (a1 /a2), but to each point z there corresponds an infinite set of homogeneous 
coordinates, [ka 1, kd2] = k[a 1,  321, where k is an arbitrary non-zero complex num- 
ber. 

What about a pair of the form [a1, O]? By holding 31 fixed as 82 tends to 0, it 
is clear that [al, 0] must be identified with the point at infinity. Thus the totality of 
pairs [31, 321 provide coordinates for the extended complex plane. The introduction 
of homogeneous coordinates thereby accomplishes for algebra what the Riemann 
sphere accomplishes for geometry-it does away with the exceptional role of oo. 

Just as we use the symbol EX2 to denote the set of pairs (x, y)  of real numbers, 
so we use the symbol c2 to denote the set of pairs [al, 321 of complex numbers. To 
highlight the distinction between IEt2 and c 2 ,  we use conventional round brackets 
when writing down an element (x, y)  of It2, but we use square brackets for an 
element [a 1 ,821 of c2. 

Just as a linear transformation of JR2 is represented by a real 2 x 2 matrix, so 
a linear transformation of c2 is represented by a complex 2 x 2 matrix: 

But if [al, 321 and [m 1, m2] are thought of as the homogeneous coordinates in c2 
of the point z = (al /a2) in C and its image point w = (ml /b2),  then the above 
linear transformation of c2 induces the following (non-linear) transformation of 
c :  

This is none other than the most general Mobius transformation! 
We have thus explained why Mijbius transformations in C behave so much 

like linear transformations-they are linear transformations, only they act on the 
homogeneous coordinates in c 2 ,  rather than directly on the points of C itself. 

As with the cross-ratio, homogeneous coordinates first arose in projective ge- 
ometry, and for this reason they are often also called projective coordinates. See 
Stillwell [1989, Chap. 71 for greater detail on the history of the idea. We cannot 
move on without mentioning that in recent times these homogeneous coordinates 
have provided the key to great conceptual advances (and powerful new compu- 
tational techniques) in Einstein's Theory of Relativity. This pioneering body of 
work is due to Sir Roger Penrose. See Penrose and Rindler [1984], particularly 
Chapter 1. 

3 Eigenvectors and Eigenvalues* 
The above representation of Mobius transformations as matrices provides an el- 
egant and practical method of doing concrete calculations. More significantly, 
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however, it also means that in developing the theory of Mobius transformations 
we suddenly have access to a whole range of new ideas and techniques taken from 
linear algebra. 

We begin with something very simple. We previously remarked that while it is 
geometrically obvious that the composition of two non-singular Mobius transfor- 
mations is again non-singular, it is far from obvious algebraically. Our new point 
of view rectifies this, for recall the following elementary property of determinants: 

Thus if det[M2] # 0 and det[M1] # 0, then det{[M2] [MI]} # 0, as was 
to be shown. This also sheds further light on the virtue of working with nor- 
malized Mobius transformations. For if det[M2] = 1 and det[M1] = 1, then 
det{[M2] [MI]) = 1. Thus the set of normalized 2 x 2 matrices form a group-a 
"subgroup" of the full group of non-singular matrices. 

For our second example, consider the eigenvectors of a linear transformation 
A .  ., 

[MI = i ]  of e 2 .  By definition, an eigenvector is a vector j = 1 whose 
L J L J 

"direction" is unaltered by the transformation, in the sense that its image is sim- 
ply a multiple h j  of the original; this multiple h is called the eigenvalue of the 
eigenvector. In other words, an eigenvector satisfies the equation 

In terms of the corresponding Mobius transformation in @, this means that z = 
(31 132) is mapped to M(z) = (ha1 lha2) = z, and so 

z = (al /a2) is a fixed point of M (z) if and only if j = [ is an 
(32) 

eigenvector of [MI. 

Note that one immediate benefit of this approach is that there is no longer any 
real distinction between a finite fixed point and a fixed point at oo, for the latter 

merely corresponds to an eigenvector of the form 1 t1. For example, consider 
L -I 

how elegantly we may rederive the fact that GQ is a fixed point if and only if M(z) 
is a similarity transformation. If oo is a fixed point then 

Thus c = 0, h = a ,  and M (2) = (a/d)z + (bld). 
Recall that if the matrix [MI represents the Mobius transformation M (z), then 

so does the matrix k[M] obtained by multiplying the entries by k. The fact that 
eigenvectors carry geometric information about M(z) shows up in the fact that 
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they are independent of the choice of k. Indeed, if a is an eigenvector of [MI (with 
eigenvalue A) then it is also an eigenvector of k[M], but with eigenvalue kh: 

Since the eigenvalue does depend on the arbitrary choice of k, it appears that its 
value can have no bearing on the geometric nature of the mapping M(z). Very 
surprisingly, however, if [MI is normalized then the exact opposite is true! In 
the next section we will show that the eigenvalues of the normalized matrix [MI 
completely determine the geometric nature of the corresponding Mobius trans- 
formation M(z). In anticipation of this result, let us investigate the eigenvalues 
further. 

Recall the fact that the eigenvalues of [MI are the solutions of the so-called 
characteristic equation, det{[M] - A[£]) = 0, where [ I ]  is the identity matrix 

~ 1 .  Using the fact that [MI is normalized, we find [exercise] that the charac- 
L -I 

teristic equation is 
h2 - (a + d)A + 1 = 0, 

which (for later use) may be written as 

The first thing we notice about this equation is that there are typically two 
eigenvalues, h 1 and ha, and they are determined solely by the value of (a + d). By 
inspecting the coefficients of the quadratic we immediately deduce that 

h i h 2 = 1  and h l + h 2 = ( a + d ) .  (34) 

Thus if we know h 1, then h2 = (1 /A 1). We emphasize this point because it is not 
obvious when we simply write down the formula for the eigenvalues: 

hl, A2 = [(a + d) f J-} . 

Aficionados of linear algebra will recognize (34) as a special case of the fol- 
lowing general result on the eigenvalues hl, h2, . . . , An of any n x n matrix N: 

hlh2 ... An =de tN  and h l + h 2 + . - - + A n  = t r N ,  

where tr N r (the sum of the diagonal elements of N) is called the trace of N. 
For future use, recall the following nice property of the trace function: I f  N and P 
are both n x n matrices, then 

tr {NP) = tr {PN). (35) 

In the case of 2 x 2 matrices (which is all that we shall ever need) this is easily 
verified by a direct calculation [exercise]. 
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4 Rotations of the Sphere as Mobius Transformations* 
This subsection is optional because its main result is only needed in Chapter 6. 
Furthermore, in that chapter we shall treat the same result in a much better and sim- 
pler way; the only purpose of this subsection is to further illustrate the connections 
that exist between Mobius transformations and linear algebra. 

Let us investigate what it might mean to say that two vectors p and q in c2 
are "orthogonal". Two vectors p and q in IR2 are orthogonal if and only if their dot 
product vanishes: 

Thus it would seem natural to say that p and q are "orthogonal" if p q = 0. This 
will not do. In particular, whereas we would like the dot product of any nonzero 

vector with itself to be a positive real number, we find that [ i ] [ i ]= 0, for 

example. As it stands, the dot product is not suitable for use in c2. 
The standard solution to this difficulty is to generalize the dot product p q to 

the so-called inner product, (p , q) = ji* q: 

We cannot go into all the reasons why this is the "right" generalization, but observe 
that it shares the following desirable properties of the dot product: 

( p , p ) ~ O  and ( p , p ) = O i f a n d o n l y i f p l = O = p 2 ;  

Note, however, that it is not commutative: (q , p )  = (p , q). 
We now agree that p and q are "orthogonal" if and only if 

What does this "orthogonality" mean in terms of the points p = (p1/p2) and 
q = (q /q2) whose homogeneous coordinate vectors are p and q? The answer is 
surprising. As you may easily check, the above equation says that q = -(I@), 
and so from (22) we deduce that 

Two vectors in c2 are orthogonal if and only i f  they are the homo- 
geneous coordinates of antipodal points on the Riemann sphere. 

Suppose we could find a linear transformation [ R ]  of c2 that were analogous 
to a rotation-what transformation of the Riemann sphere X would be induced by 
the corresponding Mobius transformation R(z)? By "analogous to a rotation", we 
mean that [ R ]  preserves the inner product: 
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In particular, [R] maps every pair of orthogonal vectors to another such pair, and 
R(z) therefore maps every pair of antipodal points on C to another such pair. We 
shall not attempt a real proof, but since the transformation of C is also known to 
be continuous and conformal9, it can only be a rotation of C. 

The desired invariance of the inner product (36) may be neatly rephrased using 
an operation called the conjugate transpose, denoted by a superscript *. This opera- 
tion takes the complex conjugate of each element in a matrix and then interchanges 
the rows and columns: 

P* = [;;I* - - 
= [p, , p2] and [RI* = [ 

I *  = [ ; ] - 
Since the inner product can now be expressed in terms of ordinary matrix multi- 
plication as (p , q) = p* q, and since [exercise] {[RIP)* = p* [RI*, we find that 
(36) takes the form 

P* {[RI*[RI] q = 4*q. 

Clearly this is satisfied if 
[Rl*[Rl = [El, 

and in linear algebra it is shown that this is also a necessary condition. 
Matrices satisfying equation (37) are extremely important in both mathematics 

and physics-they are called unitary matrices. In the present case of normalized 
2 x 2 matrices, we can easily find the most general unitary matrix [R] by re- 
expressing (37) as [R]* = [R]-' : 

Although we have left some unsatisfactory gaps in the above reasoning, we 
have nevertheless arrived at an important truth: The most general rotation of the 
Riemann sphere can be expressed as a Mobius transformation of the form 

This was first discovered by Gauss, around 1819. 

VII Visualization and Classification* 
1 The Main Idea 
Although the decomposition (3) of a general Mobius transformation M(z) has 
proved valuable in obtaining results, it makes M (z) appear much more complicated 

9 ~ f  it were not continuous then it could, for example, exchange points on two antipodal patches 
of C while leaving the remainder fixed. If it were continuous but anticonformal, then it could map 
each point to its antipodal point, or to its reflection in a plane through the centre of E. 
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than it is. In this section we will reveal this hidden simplicity by examining the fixed 
points in greater detail; this will enable us to visualize Mobius transformations in a 
particularly vivid way. In the process we will clarify our earlier remark that Mobius 
transformations can be classified into four types, each M(z) being "equivalent" 
to one (and only one) of the four types of transformation illustrated in [26]. The 
lovely idea behind this classification scheme is due to Felix Klein. 

To begin with, suppose that M (z) has two distinct fixed points, :+ and 6-. Now 
look at the LHS of [29], and in particular at the family C1 of circles [shown dashed] 
passing through the fixed points. If we think of M (z) as a mapping z I+ w = M (z) 
of this figure to itself, then each member of Cl is mapped to another member of 
C1. Why? 

Still with reference to the LHS of [29], suppose that p [not shown] is an arbitrary 
point on the line through :+ and :-, but lying outside the segment connecting the 
fixed points. If K is the circle of radius ,/[pij+][p:-] centred at p ,  then (+ and 6- 
are symmetric with respect to K. Thus K cuts each member of C1 at right angles 
(cf. [9]). By varying the position of p we thus obtain a family C2 of circles [shown 
solid] such that 6+ and 6- are symmetric with respect to each member of C2, and 
each member of C2 is orthogonal to each member of C1. 

Figure [29] 

Now we come to the main idea: to the LHS of [29] we apply a Mobius trans- 
formation F (z) that sends one fixed point (say :+) to 0, and the otherJixed point 
(&) to oo. The RHS of [29] shows the image of the LHS under such a Mobius 
transformation, the simplest example of which is 

[Note that we have not bothered to write this in normalized form.] Since F is 
a Mobius transformation, it must map the members of Cl to the circles passing 
through 0 and oo, i.e., to lines through the origin [shown dashed]. Furthermore, 
since F is conformal, two such lines must contain the same angle at 0 as the 
corresponding C1 circles do at (+. We have tried to make this easy to see in our 
picture by drawing C1 circles passing through :+ in evenly spaced directions, each 
one making an angle of (n/6) with the next. 
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As an aside, observe that we now have a second, simpler explanation of the 
existence of the family C2 of circles orthogonal to C1. Since the illustrated set of 
origin-centred circles are orthogonal to lines through 0, their images under F-I 

must be circles orthogonal to each member of C1. 
Next, let ? = F (z) and .iij = F (w) be the images under F of z and w = M (2). 

We may now think of F as carrying the oniinal Mobius transformation z H- w = 
M (z) on the left over to a transformation M on the right, namely? I+ il = M ( i ) .  
More explicitly, 

and so 
& = F ~ M ~ F - ~ .  

Since & is the composition of three Mobius transformations, it is itself a Mobius 
transformation. Furthermore, it follows immediately from the construction that 
the fixed points of & are 0 and oa. But we have already seen that if a Mobius 
transformation leaves these points fixed, it can only be of the form 

&(?) = m i ,  

N 

where m = p eiu is simply a complex number. Geometrically, M is just a rotation 
by a combined with an expansion by p. 

This complex number m not only constitutes a complete description of the 
mapping M but, as we will see shortly, it also completely characterizes the geo- 
metric nature of the original Mobius transformation M. The number m is called 
the multiplier of M (z) . 

2 Elliptic, Hyperbolic, and Loxodromic Transformations 

Before reading on, refresh your memory-of the classification (shown in [26a,b,c]) 
of Mobius transformations of the form M ( i )  = m i .  

We call M(z) an elliptic Miibius transformation if & is elliptic, meaning that 
the latter is a pure rotation corresponding to rn = eiu . Since M is a rotation if and 
only if it maps each origin-centred circle to itself, M(z) is elliptic if and only if it 
maE each C2 circle to itself. With a = (n/3), the RHS of [29] illustrates the effect 
of M on the point ?. On the LHS you can see the corresponding, unambiguous 
effect of M: it moves z along its C2 circle till it lies on the C1 circle making angle 
(n/3) with the original C1 through z. 

Figure [30]1° is intended to give a more vivid impression of this same elliptic 
transformation. Each shaded "rectangle" is mapped by M(z) to the next one in 
the direction of the arrows-some of these regions have been filled with black to 
emphasize this. This figure may be viewed as typical, with one exception. Because 
we have chosen a = (n/3), six successive applications of M yield the identity, 

loshading inspired by Ford [1929, p. 191. 
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Figure [30] 

and one therefore says that M has period 6. More generally, if a = (rn/n)2n, 
where (rnln) is a fraction reduced to lowest terms, then M has period n. Of course 
this is not typical. In general (a/2n) will be irrational, and no matter how many 
times we apply M we will never obtain the identity. 

We call M ( z )  a hyperbolic Miibius transformation if $ is hyperbolic, meaning 
that the latter is a pure expansion corresponding to rn = p # 1. Since M is an 
expansion if and only if it maps each line through the origin to itself, M(z) is 
hyperbolic if and only if it maps each C1 circle to itself. Figure [31] illustrates 
such a transformation with p > 1. Note that if we repeatedly apply this mapping 
then any shape (such as the small black square near (+) is repelled away from (+, 
eventually being sucked into 6-. In this case (+ is called the repulsivefied point 
and 6- is called the attractive fixed point; if m = p < 1 then the roles of (+ and 
6- are reversed. 

Figure [3 11 
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Finally, if m = p ein has a general value, and fi is the composition of both a 
rotation and an expansion, then M is called a loxodromic Mobius transformation. 
In this case neither the C1 circles, nor the C2 circles are invariant. The curves 
that are invariant are illustrated in [32], which also shows the effect of successive 
applications of M to a small square near c+. In studying this figure, you may find 
it helpful to note that 

The loxodromic Mobius transformation with jixed points & and 
multiplier m = p eln is the composition (in either order) of (i)  the 
elliptic Mobius transformation with multiplier m = ein and jixed (40) 
points e*; (ii) the hyperbolic Mobius transformation with multiplier 
rn = p and fixed points &. 

Just as in the case of a hyperbolic transformation, note that one fixed point 
is repulsive while the other is attractive. In this figure we have taken a! > 0 and 
p > 1; how would it look if a were negative, or if p were less than one? 

Figure [32] 

3 Local Geometric Interpretation of the Multiplier 
In [29] we arbitrarily elected to send f+ to 0, rather than c-. In this sense our 
definition of m is clearly ambiguous. How would the new value of m be related to 
the old one if we were to instead send c- to O? 

Note that (39) may be expressed as ( F  o M) = ( f i  o F). Writing w = M(z), 
and recalling the definition of F, we therefore have 

[This formula is often called the normal form of the Mobius transformation.] 
Interchanging t+ and c- in this formula is equivalent to sending 6- to 0 and e+ 
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to oo, in which case we obtain 

Thus the multiplier has changed from m to (1 /m ), and both of these values can lay 
equal claim to being called "the" multiplier. Let us therefore refine our language 
and call the number m occurring in (41) the multiplier associated with (+ ; we will 
sometimes write it as m+ to emphasize this. In these terms, we have just shown 
that the multipliers associated with the twoJixed points are the reciprocals of one 
anothel: Let us try to understand this more geometrically. 

Reconsider [29], in which the multiplier associated with $+ is m = ei("13). 
We now seek to interpret m directly in terms of [30], without the assistance of 
the RHS of [29]. The closer we are to 6+, the more closely do the members of C2 
resemble tiny concentric circles centred at (+. This is easy to understand: (A) as 
we examine smaller and smaller neighbourhoods of (+, the C1 circles look more 
and more like their tangent lines at t+;  (B) by definition, each C2 cuts every C1 
circle orthogonally. 

From these remarks, it is now clear that the local effect of M (in an infinitesimal 
neighbourhood of 6+) is a rotation centred at C+ through angle (n/3)-this is the 
meaning of the multiplier m+ = ei("/3) associated with $+. Of course exactly the 
same reasoning applies to the infinitesimal neighbourhood of 6-, but we see from 
[30] that the positive rotation at 6+ forces an equal and opposite rotation at (-. 
Thus the local effect of M in the neighbourhood of c- is a rotation of - (n/3), and 
the associated multiplier m- is e-i(n/3) = (1 /m+ ), as was to be explained. 

If we look at [31], then we can see the same phenomenon at work in the case 
of a hyperbolic transformation. In this figure the multiplier associated with $+ is 
m = p > 1, and this can now be interpreted as saying that the local effect of M 
in an infinitesimal neighbourhood of (+ is an expansion centred at that point-we 
will verify in a moment that the "local expansion factor" is precisely p. It is also 
clear from the figure that the local effect of M in an infinitesimal neighbourhood 
of $- is a contraction, so that the multiplier associated with that point is real and 
less than one. However, it is not so clear that this number is precisely (llp),  as we 
know it must be. This too can be demonstrated geometrically, but let us instead 
content ourselves with showing how our original algebraic argument may be re- 
interpreted geometrically in terms of the "local effect" of M in the vicinity of each 
of the fixed points. 

Let us write Z = (z - (+) and W = (w - c+) for the complex numbers 
emanating from 6+ connecting that point to z and to its image w = M (z). We have 
claimed (and partially verified) that if Z is infinitesimal then the effect of M is to 
rotate Z by a and to expand it by p:  in other words, W = mZ. To verify this, note 
that (41) can be rewritten as 
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As Z tends to zero, both z and w tends to C+, and so the fraction on the right is 
ultimately equal to m. Thus W is ultimately equal to m Z, as was to be shown. 

After you have read the next chapter, you will be able to look back at what 
we have just done and recognize it as an example of diflerentiating a complex 
function. 

4 Parabolic Transformations 

We now possess an excellent understanding of Mobius transformations with two 
fixed points, so all that remains is to treat the case where M has only one fixed 
point e,  in which case M is called a parabolic Mobius transformation. 

Consider the LHS of [33], but ignore the arrows for the time being. Here we 
have drawn two families of circles: the solid ones all pass through the fixed point 
,$ in one direction, and the dashed ones all pass through 6 in the perpendicular 

Figure [33] 

direction. Note that since the two types of circles are orthogonal at 6, they are also 
(by symmetry) orthogonal at their second intersection point. The RHS illustrates 
what happens when we send e to oo by means of the Mobius transformation 

Clearly [exercise], the two orthogonal families of circles become two orthogonal 
families of parallel lines. Conversely, if we apply G-' to any two orthogonal 
families of lines on the right, then on the left we get two orthogonal families of 
circles through e. 

As before, let Y = G(z)  and Z = G(w) be the images on the RHS of z and 
w = M(z). Thus the Mobius transformationz I+ w = M (z) on the LHS induces 
another Mobius transformation 7 I+ E = M ( ?) on the RHS, where 

Since oo is the sole fixed point of f i ,  we deduce that fi can only be a translation: 
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Now suppose that the arrows on the RHS of [33] represent the direction of the 
translation T. As illustrated, we now_ draw a grid aligned with T, each shaded 
square being carried into the next by M. On the LHS of [33] we thus obtain a vivid 
picture of the action of the original parabolic Mobius transformation M: each solid 
circle is carried into itself; each dashed circle is carried into another dashed circle; 
and each shaded region is carried into the next in the direction of the arrows. 

If M(z) = is normalized, then we know from (27) that it is parabolic if 
and only if (a + d) = f 2 ,  in which case 6 = (a - d)/2c. Now let us determiine the 
corresponding translation T in terms of the coefficients. Since (G o M) = (M o G), 
the so-called normal form of M is given by 

Since M maps z = oo to w = (alc), we deduce that 

where the "f" is the arbitrarily chosen sign of (a + d). 

5 Computing the Multiplier* 

We have seen how the multiplier m determines the character of a Mobius transfor- 
mation, and we now show how we can determine the character of m directly from 
the coefficients of M(z) = s. 

Suppose we have already calculated the fixed points ek using (27), for example. 
Since M maps z = oo to w = (ale), we deduce from the normal form (41) that 
the multiplier associated with :+ is 

For example, consider complex inversion, z H (l/z). The fixed points are the 
solutions of z = (l/z), namely, t* = f 1. Thus the multiplier associated with 
t+ = 1 is m = - 1 = eln, which happens to be the same as the multiplier (l/m) 
associated with t- = - 1. Thus complex inversion is elliptic, and an infinitesimal 
neighbourhood of either fixed point is simply rotated about that point through angle 
n. Try using a computer to check this prediction. 

If desired, we can obtain a completely explicit formula for m by substituting 
(27) into (42). If we only want to know the character of the Mobius transformation, 
then we can proceed as follows. 

It turns out-we will prove it in a moment-that m is related to the coefficients 
of the normalized Mobius transformation by the equation, 



170 Mijbius Transformations and Inversion 

Note that the symmetry of this equation implies that if m is a solution, then so is 
(l/m); this is just as it should be. Without bothering to solve (43) for m, we now 
obtain [exercise] the following algebraic classification: The normalized Mobius 
transformation M(z) = 3 is 

elliptic, iff (a + d) is real and Ja  + d 1 < 2; 
parabolic, iff (a + d) = f 2; 
hyperbolic, iff (a + d) is real and la + dl > 2; 
loxodromic, iff (a + d) is complex. 1 

Hint: you can get a better feel for this by sketching the graph of y = x + (llx). 
In order to derive (43) elegantly, let us use matrices. Rewriting (39), 

det[&] = det {[F][F]-' } det[M] = det[M]. 

Thus, rewdless of whether or not [F] is normalized, [MI is normalized if and 
only if [MI is normalized. Since k ( z )  = mz, its normalized matrix is [exercise] 

[ k ]  = [T ,,>] Recalling (33, we deduce that 

as was to be shown. 

6 Eigenvalue Interpretation of the Multiplier* 
If [MI is a linear transformation of c 2 ,  then we saw in (32) that its eigenvec- 
tors are the homogeneous coordinates of the fixed points of the corresponding 
Mobius transformation M (z). We also claimed that if [MI is normalized then the 
eigenvalues completely determine the character of M(z). We can now be more 
precise: 

Ifafuedpoint of M(z) is represented as an eigenvector (with eigen- 
value A) of the normalized matrix [MI, then the multiplier m asso- (45) 
ciated with the fuedpoint is given by m = 1/A2. 

Before proving this result, we illustrate it with the example of complex inver- 
sion, z H (1 12). We already know that the fixed points are f 1, that the associated 
multipliers are both given by m = - 1, and we easily find [exercise] that the nor- 

malized matrix is [: ;]. If we choose the homogeneous coordinate vector of a 

finite point z to be , then the eigenvectors corresponding to the fixed points 
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z = *I are [ ' : I  since 

0 i 
[ i  o ] [ : ] = i [ t ]  and [: : I [ : ] = - i [ - : I ,  

we see that the eigenvalues are given by h = f i ,  in agreement with (45). 
Returning to the general case, comparison of (33) and (43) reveals that ,/% 

and h satisfy the same quadratic, so we immediately deduce most of (45): the two 
reciprocal values of m are equal to the two reciprocal values of h2. However, this 
does not tell us which value of h2 yields which value of m, nor is this line of attack 
very illuminating. Here, then, is a more transparent approach. 

We begin by recalling a standard result of linear algebra, which is valid for 
n x n matrices: 

If e is an eigenvector of [A] with eigenvalue A, then? E [B]e is an 
eigenvector of [A] = [B] [A] [B]- ', and its eigenvalue is also A. 

This is verified easily: 

Let us return to [29], in which the fixed poi% t+ of M (with associated mul- 
tiplier m+) was mapped to the fixed point 0 of M = ( F  o M o F- l ) by means of 
z H ? = F (I) = 3. In terms of linear transformations of c2, the eigenvector 

- ,  

[ I ; ]  of [MI is being mapped by [F]  to the eigenvector 

[GI  = [F]  [MI [F]-'. 

The linear algebra result now tells us that if A+ denotes the eigenvalue of , [ ' [ I  
then 

This is true irrespective of whether or not any of the matrices in the above equation 
are normalized. 

Now suppose that [MI is normalized, as demanded in (45). Irrespective of 
whether or not [F]  is normalized, we have already noted that [MJ is normalized 
if and only if [&I is normalized. Since the normalized matrix of M (?) = m+ ? is - - 

givenby [ G I  =[F 
O I , we deduce that 

Thus m+ = llh:, as was to be shown. 
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Vlll Decomposition into 2 or 4 Reflections* 
1 Introduction 
Recall from (4) that the formula for inversion or "reflection" in a circle K has the 
form 

It follows easily that the composition of any two reflections (in circles or lines) is 
a Mobius transformation. Since the composition of two Mobius transformations 
is another Mobius transformation, it follows more generally that the composition 
of an even number of reflections is a Mobius transformation. 

Conversely, in this section we will use the Symmetry Principle [see p. 1481 to 
show that 

Every non-loxodromic Mobius transformation can be expressed as 
the composition of two reflections, and every loxodromic Mobius 
transformation can be expressed as the composition of four reJec- 
tions. 

In the following, it would be helpful (but not essential) for you to have read the 
final section of Chapter 1. 

2 Elliptic Case 
Consider [34], which depicts the same elliptic transformation shown in [29] and 
[30]. Recall that the LHS shows a Mobius transformation M such that after sending 
(+ and 6- to 0 and oo by means of F(Q = (z - (+)/(z - (-), the new transfor- 
mation on the RHS is a pure rotation M(?) = eiu ?. In-the illustrated example, 
a = (n/3) and the dark "rec_tagle" abutting the line A is carried into the dark 
"rectangle" abutting the line B. 

As we discussed in Chapter 1 [see p. 371, this origin-centred rotation of a is 
equivalent to successively rejecting in any two lines containing angle (a/2) at 0, 
such as the illustrated lines A and B. In symbols, 

Figure [34] 
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In particular, W z  maps the dark "rectangle" abutting the line A" to the light "rect- 
angle", then %z maps this to the dark "rectangle" abutting the line B". The figure 
tries to make this clear by also showing the successive images of both a point and 
a diagonal circular arc of the original dark "rectangle". 

Now think what this means on the LHS of [34]. The Symmetry Principle tells 
us that if two points are symmetric with respect to the line A" then their images 
under the Mobius transformation F-' are symmetric with respect to the circle 
A = F-' (x) through the fixed points. [Recall that in [29] the family of such 
circles was called C1 .] Thus reflection in A" on the RHS becomes reflection (i.e., 
&version) in A on the LHS. Of course the same goes for the second reflection in 
B. Thus we have shown the following: 

If M is an elliptic Mobius transformation, and the multiplier asso- 
ciated with one of theJixedpoints c+ is m = ela, then M = ZB o ZA 
where A and B are any two circles through the Jixed points such that (46) 

the angle from A to B ate+ is (a/2). 

3 Hyperbolic Case 
Figure [35] (cf. [3 11) illustrates a similar result in the case of a hyperbolic Mobius 
transformation. Here the multiplier associated with c+ i s 2  real number rn = p, 
and the transformation on the RHS is a pure expansion, M(?) = p z  As with a 
rotation, an expansion can also be achieved using two reflections: if A and B" are 
any two origin-centred circles such that 

rB - (radius of B") - - - =a, 
rA (radius of A) 

then reflection in followed by rejection in B" yields an origin-centred expansion 
by p. In symbols, this result-which is really the same as (8)-says that 

As in [34], the RHS of [35] illustrates the successive effect of these two reflections 
on a dark rectangle abutting A". Just as before, the Symmetry Principle applied to 

Figure [35] 
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F-' tells us that the original Mobius transformation on the LHS can be expressed 

Recall from [29] that A and B belong to the family C2 of circles orthogonal 
to the family C1 of circles through the fixed points. At the time, we pointed out 
an equivalent property of C2, namely, that the fixed points e* are symmetric with 
respect to each member of C2; this enables us to explain how it is that (ZB o ZA) 
leaves (+ and ,$- fixed. In the case of [34], this was obvious because each reflection 
separately left those points fixed; in the present case, however, ZA swaps the points, 
then ZB swaps them back again, the net effect being to leave them fixed. 

In the case of an elliptic transformation, (46) describes how to pick out a pair of 
C1 circles corresponding to any given angle a. In the present case of a hyperbolic 
transformation, how are we to pick out a pair of C2 circles corresponding to any 
given value of p? The answer depends on a third characterizing property of the C2 
circles: they are the circles of Apollonius with limit points e*. 

This terminology reflects Apollonius' remarkable discovery (c. 250 ~ c )  that if 
a point z moves in such a way that the ratio of the distances of z from two fixed 
points eh remains constant, then z moves on a circle. Figure [35] makes this easy to 
tnderstand. As z travels round A, Z = F (z) travels round the origin-centred circle 
A of radius rA. But this constant T A  is none other than the ratio of the distances of 
z from two fixed points c*: 

Note that this also explains the "limit point" terminology: as the ratio rA tends 
to 0, the corresponding Apollonian circle A shrinks down towards the limit point 
c+; as rA tends to infinity, A shrinks down towards the other limit point 6-. Another 
bonus of our discussion is a result that is frequently not mentioned in geometry 
texts: the limit points defining a family of Apollonian circles are symmetric with 
respect to each of these circles. 

Since the quantities rA and Y B  occurring in (47) are now expressible purely in 
terms of the geometry of the LHS of [35], we have solved the problem of picking 
an appropriate pair of C2 circles: 

I f  M is a hyperbolic Mobius transfornation, and the multiplier as- 
sociated with one of thejixedpoints e+ is m = p, then M = ZB o x A ,  

where A and B are any two circles of Apollonius with limit points 
,$* such that (rB / r A )  = ,@. 

4 Parabolic Case 
Figure [36] is a modified copy of [33], and it illustrates how the same idea applies 
to a parabolic transformation. Recall that after we have sent the solitary fixed point 
6 to rn by means of the Mobius transformation z-+- Z = G (z) = 1 /(z - ,$), the 
new transformation on the RHS is a translation, M ( Z) = Z + T . 
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Figure [36] 

As we discussed on p. 3, this translation can be expressed as = '8; o W,: 
where and B" are anytwo earallel lines such that the perpendicular connecting 
complex number from A to B is ( T / 2 ) .  Applying the Symmetry Principle to the 
Mobius transformation G-l ,  we deduce that (on the LHS) 

A parabolic Mobius transformation M with fixed point ( can be 
expressed as M = ZB o ZA, where A and B are circles that touch 
each other at 6. 

5 Summary 
Lest the details obscure the simplicity of what we have discovered, we summarize 
our results as follows: 

A non-loxodromic Mobius transformation M can always be decom- 
posed into two rejections in circles A and B that are orthogonal to 
the invariant circles of M.  Furthermore, M is elliptic, parabolic, or (48) 
hyperbolic according as A and B intersect, touch, or do not inter- 
sect. 

Recalling (40), we also deduce that a loxodromic Mobius transformation M 
can always be decomposed into four rejections in circles: 

where A and B both pass through the fixedpoints, and where A' and B' are both 
orthogonal to A and B. 

We should stress that these results concern the least number of reflections into 
which a Mobius transformation can be decomposed. Thus if a particular Mobius 
transformation is expressible as the composition of four reflections, this does not 
necessarily imply that it is loxodromic--one might be able to reduce the number 
of reflections from four to two. For example, if A and B are lines containing angle 
(n/12) at 0, and A' and B' are lines containing angle ( ~ 1 6 )  at 0, then the Mobius 
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transformation ('illB! 0 o 'illB 0 %A) represents a rotation of (n/2), which can 
be reduced to two reflections in lines containing angle (n/4). As a more extreme 
example of this idea of redundant reflections, check for yourself that (3) represents 
a decomposition of a general Mobius transformation into ten reflections! 

IX Automorphisms of the Unit Disc* 
1 Counting Degrees of Freedom 
An automorphism of a region R of the complex plane is a one-to-one, conformal 
mapping of R to itself. If R is a disc (or a half-plane) then clearly we can map it to 
itself with a Mobius transformation M, and since M is one-to-one and conformal, 
it is (by definition) an automorphism. In this subsection we will find all possible 
Mobius automorphisms of the unit disc. These Mobius transformations are impor- 
tant for at least two reasons: (i) in Chapter 6 we will see that they play a central 
role in non-Euclidean geometry; (ii) in Chapter 7 we will see that they are the only 
automorphisms of the disc! 

In the following, let C denote the unit circle, let D denote the unit disc (in- 
cluding C), and let M (z) denote a Mobius transformation of D to itself. Before we 
try to find a formula for the most general M, let us see "how many" such Mobius 
transformations there are. In other words, how many real numbers (parameters) 
are required to specify a particular M? 

To illustrate how such counting may be done, let us first show that the set of 
all Mobius transformations forms a "six parameter family". Once we have chosen 
three points in C, there is a unique Mobius transformation that maps them to three 
arbitrary image points, and each of these 3 image points w = u + i v requires 2 
real numbers (u and v) for its specification. If we think of the three original points 
as having fixed locations, and the three image points as freely movable, then the 
total number of parameters needed to specify a particular Mobius transformation 
is thus 3 x 2 = 6. Another suggestive way of describing this fact is to say that the 
most general Mobius transformation has six degrees of freedom. 

Returning to the original problem, it is clear that we will lose some of these 
six degrees of freedom when we impose the condition that M(z) map D to itself. 
In fact we lose half of them: 

Mobius automorphisms of D have three degrees of freedom. (49) 

Figure [37a] gives one way of seeing this. Here q, r ,  s may be viewed as having 
fixed locations on C, while g, 7, Fare thought of as freely movable. Provided (as 
illustrated) that q", 7, F induce the same orientation of C as q, r ,  s, we know from 
(30) that the unique Mobius automorphism of D mapping q, r ,  s to q, 7,?, is given 
by z I-+ F = M (z), where 

Since three real numbers are needed to specify g, 7, F-their angles, for example- 
this establishes (49). 



Automorphisms of the Unit Disc* 177 

Figure [37] 

2 Finding the Formula via the Symmetry Principle 
According to (49), the specification of a particular M requires three bits of infor- 
mation. However, we are not obliged to give this information in the form of three 
points on C-any data that are equivalent to three real numbers will do equally 
well. A particularly useful alternative of this kind is shown in [37b]. We specify 
which point a inside D is to be mapped to the origin, and we also specify which 
point p on C is to be the image of the point 1 (or of some other definite point on 
C). Choosing a uses up two degrees of freedom; choosing p uses up the third and 
last degree of freedom. 

Before pursuing this, we note another consequence of (49): we cannot generally 
find a Mobius automorphism that simultaneously sends the interior point a to 0 
and sends another interior point to some other interior point. These requirements 
amount to four conditions on M, while (49) tells us that only three such conditions 
can be accommodated. It is very much as if we were seeking to draw a circle 
through four arbitrary points-it can't be done! However, suppose in this analogy 
that we are lucky, and that the four points just happen to be concyclic, then the 
circle that passes through them is unique. By the same token, 

If two Mobius automorphisms M and N map two interior points to 
the same image points, then M = N .  (50) 

Returning to [37b], note that since C is mapped to itself by M, the Symmetry 
Principle tells us that if a pair of points are symmetric with respect to C, then so 
are their images. Now we apply this to the symmetric pair of points, a and (llii) 
shown in [37b]. Since a is mapped to 0, (llii) must be mapped to the reflection of 
0 in C, namely, oo. Thus M must have the form 

where k is a constant. Finally, we require that p = M(l) be a point on C, so 

Thus the choice of p is equivalent to the choice of $. Using the angle $ and 
the point a to label the transformation, we have discovered that the most general 



178 Mobius Transformations and Inversion 

Mobius automorphism of D is 

+ Note that M, (z) = -ei+z = ei("+")z simply rotates D about its centre 0 

through angle (n + 4). The general Miibius automorphism M? may be interpreted 
as M: followed by a rotation of 4,  and from this point of view the really interesting 
part of the transformation is M:, which we will now abbreviate to Ma. This is the 
same Ma whose properties you were asked to investigate algebraically in Chapter 2, 
Ex. 3. 

3 Interpreting the Simplest Formula Geometrically* 

To find the geometric meaning of 

Z- a  
Ma(z) = 7 

a z -  1 '  

we could simply apply our whole arsenal of classification techniques. We ask that 
you try this yourself in Ex. 26. 

Here we will instead attempt to make sense of Ma "with our bare hands", as it 
were. This is probably more illuminating, and it certainly provides better geometric 
sport! Begin by noting that Ma has the property that it swaps a and 0: not only 
is Ma (a) = 0, but also Ma (0) = a .  According to (50), this is the only Mobius 
automorphism with this property, so if we can geometrically construct a Mobius 
automorphism that swaps a and 0, then it must be Ma. 

As was explained earlier in [6] on page 129, the reflection Zj in any circle J 
orthogonal to C will map D to itself, the two regions into which D is divided by J 
being swapped. See [38]. At this point the obvious thing to do is to find the circle 
J such that Zj swaps a and 0. Clearly the centre q of J must lie on the line L 
through a and 0, but where? 

Figure [38] 
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We can answer this question with the same symmetry argument that we used 
earlier. Since a and (l/Z) are symmetric with respect to C, their images under 
ZJ are symmetric with respect to Zj(C) = C. Because we want ZJ(a) = 0, we 
deduce that Z j  (l/Z) = oo. But the point that is mapped to infinity by Z j  is the 
centre of J ,  so q = (1 /a). 

Of course Z j  is an anticonformal mapping; to obtain a conformal Mobius 
automorphism we must compose it with another reflection. However, we have 
already successfully swapped a and 0, so this second reflection must leave these 
points fixed. The obvious (and only) choice is thus reflection in L. Here, then, is 
our geometric interpretation of Ma : 

Incidentally, observe [exercise] that the order of these reflections doesn't matter: 
we may also write Ma = Z j  0 9 t ~ .  

Clearly the fixed points ,$& are the intersection points of J and L, and so they 
are symmetric with respect to C. Since the reflections occur in orthogonal circles 
through these points, Ma is elliptic, and the multipliers associated with .$& are both 
given by m = ei" = - 1. Thus the effect of Ma on an infinitesimal neighbourhood 
of the interior fixed point t+ is a rotation of n. The fact that Ma swaps a and 0 can 
now be recognized as a special case of the fact that Ma is involutory: (Ma o Ma) = E, 
and every pair of points z ,  Ma ( z )  is swapped by Ma. Finally, note that we can also 
express Ma as (ZLf o Zj!), where J' and L' are any two circles through .$+ that 
are orthogonal to C. All this is illustrated in [39], which also shows some of the 
invariant circles, together with the effect of Ma on a "square". 

We will return to the geometry of the general Mobius automorphisrns M$ in 
Chapter 6, but we remark here that they can only be elliptic, parabolic, or hyper- 
bolic. This is because (by construction) they leave C invariant, while a loxodrornic 

Figure [39] 
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Mobius transformation has no invariant circles. To be more precise, in Chapter 6 
we will use the above interpretation of Ma to show geometrically that 

I f  we defrne @ = 2 cos-' la 1, then M$ is 

(i) elliptic if I @  1 < @, 

(ii) parabolic if = @, 

(iii) hyperbolic if 1@1 > @. 

For an algebraic proof, see Ex. 27. 

4 Introduction to Riemann's Mapping Theorem 

Riemann's doctoral thesis of 185 1 contained many profound new results, one of 
the most famous being the following, which is now called Riemann's Mapping 
Theorem: 

Any simply connected region R (other than the entire plane) may be 
mapped one-to-one and conformally to any other such region S. (54) 

In Chapter 12 we shall discuss this in detail, but for the time being we merely wish 
to point out some connections between Riemann's result and what we have learnt 
concerning automorphisms of the disc. 

First note that to establish (54) in general, it is sufficient to establish it in the 
special case that S is the unit disc D. For if FR is a one-to-one conformal mapping 
from R to D, and Fs is likewise a one-to-one conformal mapping of S to D, then 
FF' o FR is a one-to-one conformal mapping of R to S, as required. 

If M is an arbitrary automorphism of D, then M o FR is clearly another one- 
to-one conformal_mapping from R to D. In fact every such mapping must be of 
this form. For if FR were any other such mapping, then FR o F;' would be some 
automorphism M of D, in which case FR = M 0 FR. 

Thus the number of one-to-one conformal mappings from R to S is equal to 
the number from R to D, which in turn is equal to the number of automorphisms of 
D. As we have already said, in Chapter 7 we will show that these automorphisms 
are the Miibius transformations M$, which form a 3-parameter family. Thus (54) 
in fact implies that there exists a 3-parameter family of one-to-one conformal 
mappings from R to S. 
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X Exercises 

1 In each of the figures below, show that p and are symmetric with respect to 
the circle. The dashed lines are not strictly part of the constructions, rather they 
are intended to be helpful or suggestive. 

(ii) P 

2 In 1864 a French officer named Peaucellier caused a sensation by discovering a 
simple mechanism (Peaucellier's linkage) for transforming linear motion (say 
of a piston) into circular motion (say of a wheel). The figure below shows six 
rods hinged at the white dots, and anchored at o. Two of the rods have length 
1, and the other four have length r.  With the assistance of the dashed circle, 
show that p" = TK(p), where K is the circle of radius 4- centred at 
o. Construct this mechanism-perhaps using strips of fairly stiff cardboard for 
rods, and drawing pins for hinges-and use it to verify properties of inversion. 
In particular, try moving p along a line. 

3 Let S be a sphere, and let p be a point not on S. Explain why Ts(p) may 
be constructed as the second intersection point of any three spheres that pass 
through p and are orthogonal to S .  Explain the preservation of three-dimensional 
symmetry in terms of this construction. 

4 Deduce (22), p. 148 directly from (17), p. 143. 

5 Consider the following two-stage mapping: first stereographically project C 
onto the Riemann sphere X in the usual way; now stereographically project C 
back to C, but from the south pole instead of the north pole. The net effect of 
this is some complex mapping z H f (z) of @ to itself. Wiat is f ?  
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6 Both figures below show vertical cross sections of the Riemann sphere. 

(i) In figure [a], show that the triangles pO N and NOq are similar. Deduce (22). 

(ii) Figure [b] is a modified copy of [21b]. Show that the triangles zON and 
NO ? are similar. Deduce (17). 

7 (i) Use a computer to draw the images in @ of several origin-centred circles 
under the exponential mapping, z I+ eZ. Explain the obvious symmetry of 
these image curves with respect to the real axis. 

(ii) Now use the computer to draw these same image curves on the Riemann 
sphere, instead of in @. Note the surprising new symmetry! 

(iii) Use (18) to explain this extra symmetry. 

8 This exercise continues the discussion of (2), p. 123. If a point p in space emits 
a flash of light, we claimed that each of the light rays could be represented by 
a complex numbel: Here is one, indirect method of establishing this correspon- 
dence. Once again, we choose units of space and time so that the speed of light is 
1. After one unit of time, the expanding sphere of light emitted by p-made up 
of particles of light calledphotons-forms a unit sphere. Thus each photon may 
be identified with a point on the Riemann sphere, and hence, via stereographic 
projection, with a complex number. Indeed, if the photon has spherical polar 
coordinates (4, O), then (2 1) tells us that the corresponding complex number is 
z = cot(@/2) eiB. 

Sir Roger Penrose (see Penrose and Rindler [1984, p. 131) discovered 
the following remarkable method of passing from a light ray to the associated 
complex number directly, without the assistance of the Riemann sphere. Imagine 
that p is one unit vertically above the origin of the (horizontal) complex plane. At 
the instant that p emits its flash, let @ begin to travel straight up (in the direction 
@ = 0) at the speed of light (= 1) towards p. Decompose the velocity of the 
photon F emitted by p in the direction (@, 0) into components perpendicular 
and parallel to @. Hence find the time at which F hits @. Deduce that F hits @ 
at the point z = cot(@/2) eiB. Amazingly, we see that Penrose's construction is 
equivalent to stereographic projection! 



Exercises 183 

9 In order to analyse astronomical data, Ptolemy required accurate trigonometric 
tables, which he constructed using the addition formulae for sine and cosine. 
The figures below explain how he discovered these key addition formulae. Both 
the circles have unit radius. 

(i) In figure [a], show that A = 2 sin 0 and B = 2 cos 0. 

(ii) In figure [b], apply Ptolemy's Theorem to the illustrated quadrilateral, and 
deduce that sin(8 + 4 )  = sin 8 cos 4 + sin 4 cos 8. 

10 The aim of this question is to understand the following result: 

Any two non-intersecting, non-concentric circles can be mapped to 
concentric circles by means of a suitable Mobius transformation. 

(i) If A and B are the two circles in question, show that there exists a pair of 
points ck that are symmetric with respect to both A and B. 

(ii) Deduce that if F ( z )  = (z (z -6-), then F (A) and F (B) are concentric 
circles, as was desired. 

11 This exercise yields a more intuitive proof of the result of the previous exercise. 
Using different colours for each, draw two non-intersecting, non-concentric 
circles, A and B, then draw the line L through their centres. Label as p and q 
the intersection points of B with L. 

(i) U_si~g corresponding colours, draw a fresh picture showing the images A", 
B, L, q" of A, B, k, q under inversion in any circle centred at p. To get you 
started, note that L = L. 

(ii) Now add to your figure by drawing the circle K,  centred at q", which cuts A" 
at right angles, and let g and h be the intersection points of K and L. 

(iii) Now draw a new picture showing the images K', L', h' of K, L, h under 
inversion in any circle centred at g . 

(iv) By appealing to the anticonformal nature of inversion, deduce that A", B" are 
concentric circles centred at h'. 

Since the composition of two inversions is a Mobius transformation, you have 
proved the result of the previous exercise. 
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12 Figure (i) below shows two non-intersecting, non-concentric circles A and B, 
together with a chain of circles C1, C2, . . . that touch one another successively, 
and that all touch A and B. As you would expect, the chain fails to "close up": 
Cg overlaps C1 instead of touching it. Figure (ii) shows that this failure to close 
is not inevitable. Given a different pair A, B, it is possible to obtain a closed 
chain where C, touches C1. Here n = 5, but by considering the case where A, 
B are concentric, you can easily see that any value of n is possible, given the 
right A and B. 

Steiner discovered, very surprisingly, that if the chain closes for one choice of 
C1, then it closes for every choice of C1, and the resulting chain always contains 
the same number of touching circles. Explain this using the result of Ex. 10. 

13 (i) Let P be a sphere resting on the flat surface Q of a table. Let Sl, S2, . . . be 
a string of spheres touching one another successively and all the same size 
as P. If each S-sphere touches both P and Q, show that Sg touches S1, so 
that we have a closed "necklace" of six spheres around P. 

(ii) Let A, B, C be three spheres (not necessarily of equal size) all touching one 
another. As in the previous part, let S1, S2, . . . be a string of spheres (now 
of unequal size) touching one another successively, and all touching A, B, 
C. Astonishingly (cf. previous exercise), S6 will always touch S1, forming 
a closed "necklace" of six spheres interlocked with A, B, C. Prove this by 
first applying an inversion centred at the point of contact of A and B, then 
appealing to part (i). 

The chain of six spheres in part (ii) is called Soddy's Hexlet, after the amateur 
mathematician Frederick Soddy who discovered it (without inversion!). For 
further information on Soddy's Hexlet, see Ogilvy [1969]. Soddy's full time job 
was chemistry-in 1921 he won the Nobel Prize for his discovery of isotopes! 

14 The figure below shows four collinear points a ,  b, c, d, together with the (nec- 
essarily coplanar) light rays from those points to an observer. Imagine that the 
collinear points lie in the complex plane, and that the observer is above the plane 
looking down. Show that the cross-ratio [a, b, c, dl can be expressed purely in 
terms of the directions of these light rays; more precisely, show that 
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sin a sin y 
[a,  b, c, dl = - 

sin sin 6 ' 

Suppose the observer now does aperspective drawing on a glass "canvas plane" 
C (arbitrarily positioned between himself and C). That is, for each point p in C he 
draws a point p' where the light ray from p to his eye hits C. Use the above result 
to show that although angles and distances are both distorted in his drawing, 
cross-ratios of collinear points are preserved: [a', b', c', d'] = [a, b ,  c ,  dl. 

15 Show that in both of the figures below, Arg [z ,  q ,  r, s]  = 0 + 4. Hence deduce 
(31), p. 155. 

16 As in figure [28], think of the cross-ratio [z ,  q ,  r, s]  as a Mobius transformation. 

(i) Explain geometrically why permuting q ,  r ,  s ,  in [z ,  q , r, s ]  yields six differ- 
ent Mobius transformations. 

(ii) If I(z) is the Mobius transformation that leaves 1 fixed and that swaps 0 
with oo, explain geometrically why I 0 [z ,  q ,  r, sl = [z ,  s ,  r, q ] .  

(iii) If J ( z )  is the Mobius transformation that sends 0, 1, oo to 1, oo, 0, respec- 
tively, explain geometrically why J 0 [ z ,  q , r, s ]  = [z ,  s ,  q , r ] .  

(iv) Employing the abbreviation x E [z ,  q ,  r, s ] ,  explain why the six Mobius 
transformations in part (i) can be expressed as 
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(v) Show that I (z) = (1 /z) and J (z) = 1/(1 - z). 

(vi) Deduce that the six possible values of the cross-ratio are 

17 Show geometrically that if a and c lie on a circle K, and b and d are symmetric 
with respect to K,  then the point [a, b, c, dl lies on the unit circle. [Hints: Draw 
the two circles through a,  b, d and through b, c, d. Now think of [z, b, c, dl as 
a Mobius transformation.] 

18 The curvature K of a circle is defined to be the reciprocal of its radius. Let 
M(z) = be normalized. Use (3) to show geometrically that M maps the 
real line to a circle of curvature 

19 Let M (z) = be normalized. 

(i) Using (3), draw diagrams to illustrate the successive effects of these trans- 
formations on a family of concentric circles. Note that the image circles are 
generally not concentric. 

(ii) Deduce that the image circles are concentric if and only if the original family 
of circles are centred at q = -(d/c). Write down the centre of the image 
circles in this case. [Note that this is not the image of the centre of the original 
circles: M(q) is the point at infinity!] 

(iii) Hence show geometrically that the circle IM with equation (c  z + dl = 1 
is mapped by M to a circle of equal size. Furthermore, show that each arc 
of IM is mapped to an image arc of equal size. For this reason, IM is called 
the isometric circle of M. 

For applications of the isometric circle, see Ford [I9291 and Katok [1992]. 

20 (i) Show that every Mobius transformation of the form 

can be rewritten in the form 

Z - a  
M )  = e i  ( )  , where la1 < 1. 

a z - 1  

[Notice that the converse is also true. In other words, the two sets of functions 
are the same.] 
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(ii) Use the matrix representation of the first equation to show that this set of 
Mobius transformations forms a group under the operation of composition. 

(iii) Use the disc-automorphism interpretation of these transformations to give 
a geometric explanation of the fact that they form a group. 

21 (i) Use the matrix representation to show algebraically that the set of Mobius 
transformations 

+ with la12 + lb12 = 1 R(z) = - 
-bz + Z 

forms a group under the operation of composition. 

(ii) Using the interpretation of these functions given on page 162, explain part 
(i) geometrically. 

22 Let H be the rectangular hyperbola with Cartesian equation x2 - y2 = 1. Show 
that z H w = z2 maps H to the line Re(w) = 1. What is the image of this 
line under complex inversion, w H ( l lw)? Referring back to figure [9], p. 62, 
deduce that complex inversion maps H to a lemniscate! 
[Hint: Think of complex inversion as z t+ Jm.1 

23 From the simple fact that z H (l/z) is involutory, deduce that it is elliptic, with 
multiplier - 1. 

24 (i) Use the Symmetry Principle to show that the most general Mobius transfor- 
mation of the upper half-plane to the unit disc has the form 

where Im a > 0. 

(ii) The most general Mobius transformation back from the unit disc to the upper 
half-plane will therefore be the inverse of M (z). Let's call this inverse N (z) . 
Use the matrix form of M to show that 

(iii) Explain why the Symmetry Principle implies that N (1 IF) = N (z). 

(iv) Show by direct calculation that the formula for N in part (ii) does indeed 
satisfy the equation in part (iii). 
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25 Let M ( 2 )  be the general Mobius automorphism of the upper half-plane. 

(i) Observing that M maps the real axis into itself, use (29) to show that the 
coefficients of M are real. 

(ii) By considering Im[M(i)], deduce that the only restriction on these real 
coefficients is that they have positive determinant: (ad - bc) > 0. 

(iii) Explain (both algebraically and geometrically) why these Mobius transfor- 
mations form a group under composition. 

(iv) How many degrees of freedom does M have? Why does this make sense? 

26 Reconsider (52), p. 178. 

(i) Use (44), p. 170 to show that Ma is elliptic. 

(ii) Use (43), p. 170 to show that both multipliers are given by m = - 1. 

(iii) Calculate the matrix product [Ma] [Ma], and thereby verify that Ma is 
involutory. 

(iv) Use (27), p. 152 to calculate the fixed points of Ma. 

(v) Show that the result of the previous part is in accord with figure [38]. 

27 Use (44), p. 170 to verify (53), p. 180. 



Differentiation: The Amplitwist 
Concept 

I Introduction 
Having studied functions of complex numbers, we now turn to the calculus of such 
functions. 

To know the graph of an ordinary real function is to know the function com- 
pletely, and so to understand curves is to understand real functions. The key insight 
of differential calculus is that if we take a common or garden curve, place it under a 
microscope and examine it using lenses of greater and greater magnifying power, 
each little piece looks like a straight line. When produced, these infinitesimal 
pieces of straight line are the tangents to the curve, and their directions describe 
the local behaviour of the curve. Thinking of the curve as the graph of f (x), these 
directions are in turn described by the derivative, f '(x). 

Despite the fact that we cannot draw the graph of a complex function, in this 
chapter we shall see how it is still possible to describe the local behaviour of a 
complex mapping by means of a complex analogue of the ordinary derivative-the 
"arnplitwist". 

I I  A Puzzling Phenomenon 
Throughout Chapter 2 we witnessed a very strange phenomenon. Whenever we 
generalized a familiar real function to a corresponding complex function, the map- 
ping sent infinitesimal squares to infinitesimal squares. At present this is a purely 
empirical observation based on using a computer to draw pictures of the map- 
pings. In this chapter we begin to explore the theoretical underpinnings of the 
phenomenon. 

Let's go back and take a closer look at a simple mapping like z I-+ w = z2. 
As we already know, this maps the origin-centred circle lzl = r into the circle 
Iw 1 = r 2,  and it maps the ray arg(z) = 8 into the ray arg(w) = 28. An obvious 
consequence of this is that the right angle of intersection between such circles and 
rays in the z-plane is preserved by the mapping, which is to say that their images 
in the w-plane also meet at right angles. As illustrated in [I], a grid of infinitesimal 
squares formed from such circles and rays must therefore be mapped to an image 
grid composed of infinitesimal rectangles. However, this does not explain why 
these image rectangles must again be squares. 
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Figure [I] 

As we will explain shortly, the fact that infinitesimal squares are preserved is 
just one consequence of the fact that z H w = z2 is conformal everywhere except 
at the two critical points z = 0 and z = oo, where angles are doubled. In particular, 
any pair of orthogonal curves is mapped to another pair of orthogonal curves. In 
order to give another example of this, we first dismember our mapping into its real 
and imaginary parts. Writing z = x + iy and w = u + iv, we obtain 

Thus the new coordinates are given in terms of the old ones by 

We now forget (temporarily!) that we are in C, and think of (1) as simply repre- 
senting a mapping of IE2 to IE2. If we let our point (x, y) slide along any of the 
rectangular hyperbolas with equation 2xy = const., then we see from (1) that its 
image (u , v) will move on a horizontal line v = const. Likewise, the preimages of 
the vertical lines u = const. will be another family of rectangular hyperbolas with 
equations (x2 - Y2) = const. Since their images are orthogonal, the claimed con- 
formality of z I+ z2 implies that these two kinds of hyperbolas should themselves 
be orthogonal. 

Figure [2] makes it clear that they are indeed orthogonal. We may verify this 
mathematically by recalling that two curves are orthogonal at a point of intersection 
if the product of their slopes at that point is equal to - 1. Implicitly differentiating 
the equations of the hyperbolas, we find that 

Thus the product of the slopes of the two kinds of hyperbola at a point of intersection 
is - 1, as was to be shown. 
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Figure [2] 

Clearly we could carry on in this way, analysing the effect of the mapping on 
one pair of curves after another, but what we really want is a general argument 
showing that if two curves meet at some arbitrary angle 4,  then their images under 
(1) will also meet at angle 4. To obtain such an argument, we shall continue to 
pretend that we are living in the less rich structure of IEt2 (rather than our own home 
C) and investigate the local properties of a general mapping of the plane to itself. 

Ill Local Description of Mappings in the Plane 
1 Introduction 

Referring to 131, it's clear that to find out whether any given mapping is conformal 
or not will require only a local investigation of what is happening very near to the 
intersection point q. To make this clearer still, recognize that if we wish to measure 
4,  or indeed even define it, we need to draw the tangents [dotted] to both curves and 
then measure the angle between them. We could draw a very good approximation 
to one of these tangents simply by joining q to any nearby point p on the curve. 
Of course the nearer p is to q, the better will the chord qp approximate the actual 
tangent. Since we are only concerned here with directions and angles (rather than 
positions) we may dispense with the tangent itself, and instead use the infinitesimal 
vector qT that points along it. Likewise, after we have performed the mapping, we 

Figure [3] 
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are not interested in the positions of the image points Q and P themselves; rather, 
+ 

we want the infinitesimal connecting vector Q P  that describes the direction of 
+ 

the new tangent at Q. We will call this infinitesimal vector Q P the image of the 
vector q3. However natural this may seem, note that this really is a new sense of 
the word "image". 

Let us now summarize our strategy. Given formulae such as (I), which describe 
the mapping of the points to their image points, we wish to discover the induced 
mapping of infinitesimal vectors emanating from a point q to their image vectors 
emanating from the image point Q. In principle, we could then apply the latter 

+ + 
mapping to q? and to qT, yielding their images Q P and QS, and hence the angle 
of intersection of the image curves through Q. 

2 The Jacobian Matrix 

Consider [4]. As discussed, the direction of the illustrated curve through q is being 

described with an infinitesimal vector (::) ; the infinitesimal image vector (::) 
gives the direction of the image curve through Q. We can determine the component 

du of (::) as follows: 

total change in u due to moving along (3 
= (change in u produced by moving dx in the x-direction) 

+ 
(change in u produced by moving dy in the y-direction) 

(rate of change of u with x) . (change dx in x) 
+ 

(rate of change of u with y) . (change dy in y) 

where a, = a lax  etc. Likewise, we find that the vertical component is given by 
the formula 

dv = (aXv) dx + ( a , ~ )  dy. 

Since these expressions are linear in dx  and dy , it follows (assuming that not all the 
partial derivatives vanish) that the infinitesimal vectors are carried to their images 
by a linear transformation. The general significance of this will be discussed later, 
but for the moment it means that the local effect of our mapping is completely 
described by a matrix J called the Jacobian. Thus, 

(g) " (::) = J (g) , 
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general 

21\1\-* 

where the Jacobian matrix is 

0 

We are now in a position to return to the specific mapping z H z2, or more 
precisely to the mapping of IR2 that we extracted from it. If we evaluate (2) for the 
mapping (I), we find that 

J = (;; -;;). 
The geometric effect of this matrix is perhaps more clearly seen if we switch to 
polar coordinates. At the point z = r ei8--or rather (r cos 6, r sin 8), since for the 
moment we are still in w 2 w e  have 

Figure [4] 

X 0 1 

The effect of the 2r is merely to expand all the vectors by this factor. This clearly 
does not affect the angle between any two of them. The remaining matrix is prob- 
ably familiar to you as producing a rotation of 8, and hence it too does not alter the 
angle between vectors. Since both stages of the transformation preserve angles, 
we have in fact verified the previous claim: the net transformation is conformal. 

h 
U 

3 The Amplitwist Concept 
We have seen that the local effect of z I+ z2 on infinitesimal vectors is to expand 
them and to rotate them. Transformations of this type (i.e., whose local effect is 
produced in these two steps) will play a dominating role from now on, and it will 
be very much to our advantage to have vivid new words specifically to describe 
them. 

If all the infinitesimal vectors (qT etc.) emanating from q merely undergo an 
equal enlargement to produce their images at Q,  then we shall say that the local 
effect of the mapping is to amplify the vectors, and that the magnification factor 
involved is the amplijication of the mapping at the point q. If, on the other hand, 
they all undergo an equal rotation, then we shall say that the local effect of the 
mapping is to twist the vectors, and that the angle of rotation involved is the twist of 
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the mapping at the point q. More generally, the kind of mapping that will concern 
us will locally both amplify and twist infinitesimal vectors-we say that such 
a transformation is locally an amplitwist. Thus "an amplitwist" is synonymous 
with "a (direct) similarity", except that the former refers to the transformation of 
infinitesimal vectors, whereas "a similarity" has no such connotation. 

We can illustrate the new terminology with reference to the concrete case we 
have analysed, namely, (1). See [ S ] .  The mapping z H z2 is locally an amplitwist 
with amplification 2r and twist 8. Quite generally, this figure makes it clear that if 
a mapping is locally an amplitwist then it is automatically conformal-the angle 
4 between vectors is preserved. 

Figure [5] 

Returning to [I]  and [2], we now understand why infinitesimal squares were 
mapped to infinitesimal squares. Indeed, an infinitesimal region of arbitrary shape 
located at z will be "amplitwisted" (amplified and twisted) to a similar shape at 
z2. Note that here we are extending our terminology still further: henceforth we 
will freely employ the verb "to amplitwist", meaning to amplify and to twist an 
infinitesimal geometric object. 

All we really have at the moment is one simple mapping that turned out to be 
locally an amplitwist. In order to appreciate how truly fundamental this amplitwist 
concept is, we must return to @ and begin from scratch to develop the idea of 
complex differentiation. 

IV The Complex Derivative as Amplitwist 
1 The Real Derivative Re-examined 

In the ordinary real calculus we have a potent means of visualizing the derivative f' 
of a function f from R to R, namely, as the slope of the graph y = f ( x ) .  See [6a]. 
Unfortunately, due to our lack of four-dimensional imagination, we can't draw 
the graph of a complex function, and hence we cannot generalize this particular 
conception of the derivative in any obvious way. 

As a first step towards a successful generalization, we simply split the axes 
apart, so that [6a] becomes [6b]. Note that we have drawn both copies of R in a 
horizontal position, in anticipation of their being viewed as merely the real axes 
of two complex planes. 
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Figure [8] 

requires not only an expansion, but also a rotation. In figure [8] it looks as though 
we must expand the white arrow by 2, and rotate it by (3n/4). Contrast this with 
the case of a real function, where the required rotation angle could only be 0 or n ;  
in the case of a complex function we need rotations through arbitrary angles. 

Nevertheless, we can still write down an algebraic equation completely anal- 
ogous to (3), because "expand and rotate" is precisely what multiplication by a 
complex number means. Thus the complex derivative f' (z) can now be introduced 
as that complex number by which we must multiply the infinitesimal number at z 
to obtain its image at f ( 2 ) :  

In order to produce the correct effect, the length of f '  (z) must be the magnijication 
factor; and the argument o f f '  (2 )  must be the angle of rotation. For example, at 
the particular point shown in [8] we would have f '(2) = 2 ei(3"/4). In fact, in the 
spirit of Chapter 1, we need not even distinguish between the local transformation 
and the complex number that represents it. 

NOT 
analy t ic  

w- 

Figure [9] 

To find f' ( 2 )  we have looked at the image of a specific arrow at z, but (unlike 
the case of R) there are now infinitely many possible directions for such arrows. 
What if we had looked at an arrow in a different direction from the illustrated one? 

We are immediately in trouble, because a typical mapping1 will do what you 
see in [9]. Clearly the magnification factor differs for the various arrows, and 
similarly each arrow needs to be rotated a different amount to obtain its image. 
While we could still use a complex number in (4) to describe the transformation 
of the arrows, it would have to be a diferent number for each arrow. There would 

lShortly we will justify certain details of [9], such as the fact that an infinitesimal circle is 
mapped to an infinitesimal ellipse. 
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therefore be no single complex number we could assign to this point as being the 
derivative of f at z. We have arrived at an apparently gloomy impasse: a typical 
mapping of C simply cannot be differentiated. 

3 Analytic Functions 

We get around the above obstacle in Zen-like fashion-we ignore it! That is, from 
now on we concentrate almost exclusively on those very special mappings that can 
be differentiated. Such functions are called analytic. From the previous discussion 
it follows that 

Analytic mappings are precisely those whose local eflect is an am- 
plitwist: all the in.nitesima1 complex numbers emanating from a 
single point are amplijied and twisted the same amount. 

In contrast to [9], the effect of an analytic mapping can be seen in [lo]. For such 
a mapping the derivative exists, and simply is the amplitwist, or, if you prefer, the 
complex number representing the amplitwist. 

ANALYTIC c 

Figure [lo] 

At this point you might quite reasonably fear that however interesting such 
mappings might be, they would be too exotic to include any familiar or useful 
functions. However, a ray of hope is held out by the humble-looking mapping 
z I+ z2, for we have already established that it is locally an amplitwist, and so 
it now gains admittance into the select set of analytic functions. In fact, quite 
amazingly, we will discover in the next chapter that virtually every function we 
have met in this book is analytic! Of course we have already seen plenty of empirical 
evidence of this in our many pictures showing small "squares" being mapped to 
small "squares". 

It should perhaps be stressed that all our recent pictures have been concerned 
with local properties, and hence with inJinitesima1 arrows and figures. For example, 
it's clear from [lo] that any analytic mapping will send infinitesimal circles to other 
infinitesimal circles; however, this does not mean that such mappings typically 
send circles to circles. Figure [ l l ]  (which contains [lo] at its centre) illustrates 
the fact that if we start with an infinitesimal circle and then expand it, its image 
will generally distort out of all semblance of circularity. Of course, an important 
exception to this is provided by the Mobius transformations, for these precisely do 
preserve circles of all sizes. In fact it can be shown that the Mobius transformations 
are the only ones with this property. 
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Figure [ l  11 

4 A Brief Summary 
The principal kinds of mapping we wish to study in this book are the analytic 
(complex-differentiable) ones. Although these will turn out to include almost all the 
useful functions, they are nevertheless very special. Their effect on an infinitesimal 
disc centred at z is, after translation to f (z), simply to amplify and twist it. The 
"amplification" is the expansion factor, and the "twist" is the angle of rotation. The 
local effect of f is then completely encoded in the single complex number f '(z), 
the derivative of f ,  or (as we will often prefer to call it) the amplitwist of f :  

f '(2) = the amplitwist of f at z 

= (amplification) ei(twist) 

To obtain the image at f (z) of an infinitesimal complex number at z, you just 
multiply it by f '(2). 

Two last points. We have introduced the word "amplitwist" (in addition-to 
"derivative") because it is suggestive, and because it will make later reasoning 
easier to explain. However, the student meeting this subject for the first time should 
be made aware of the fact that in all other books only the word derivative is used. 
Also, note that the two words are synonymous only to the extent (cf. Chapter 1) that 
a complex number can be identified with the similarity transformation it produces 
when each point is multiplied by it. Thus, for example, "to differentiate" will 
not mean the same as "to amplitwist": the former refers to the act of finding 
the derivative of a function, while the latter refers to the act of "amplifying and 
twisting" an infinitesimal geometric figure. 
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V Some Simple Examples 
In the following examples we have superimposed the image copy of C on the 
original one. 

This represents a translation of the points by c. As we see in [12a], the length 
of complex numbers emanating from z is preserved, and hence the amplification 
is unity. Equally clearly, since no rotation is induced, it follows that the twist is 
zero. Hence 

(Z + c)' = amplitwist of (z + c) = 1 eio = 1. 

Notice how this is in complete accord with the familiar rule of real calculus, namely, 
that &(x + C) = 1. 

amplification = a 

twist = a 

Figure [12] 

z - Az. 

If A = a eia , then this represents the combination of an origin-centred expan- 
sion by a ,  and a rotation by a. It is clear in [12b] that any arrow at z (in particular 
an infinitesimal one) will suffer precisely the same amplification and twist as do 
the points of the plane themselves. Hence 

(AZ)' = amplitwist of (Az) = A. 

While the meaning is richer, this is once again formally identical to the familiar 
result & (AX) = A. 
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2 Z H Z .  

Our earlier investigation revealed that at the point z = r eie this mapping is 
locally an amplitwist with amplification 2r and twist 8. Hence 

(z2)' = amplitwist of (z2) = (amplification) ei(twist) = 2r eie = 22 .  

Once again, note that this result is formally identical to the formula (x2)' = 2x of 
ordinary calculus. In the next chapter we obtain a directly complex and pictorial 
demonstration of this fact. 

2 I+ 2. 

Since this mapping is anticonformal, it clearly cannot be analytic, for we have 
already observed that if a mapping is locally an amplitwist, then it is automatically 
conformal. Figure [13a] pinpoints the trouble. From the picture we see that the 
image at T of any complex number emanating from z has the same length as the 
original, and hence the amplification is unity. The problem lies in the fact that an 
arrow at angle 4 must be rotated by -24 to obtain its image arrow at angle -4. 
Thus different arrows must be rotated different amounts (which is not a twist) and 
hence there is no amplitwist. 

Figure [13] 

VI Conformal = Analytic 
1 Introduction 

In [S] we saw clearly that any mapping that is locally an amplitwist is also auto- 
matically conformal. In terms of complex differentiation, we can now rephrase this 
by saying that all analytic functions are conformal. The question then naturally 
arises as to whether the converse might also be true. Is every conformal mapping 
analytic, or, in other words, is the local effect of every conformal mapping nothing 
more complicated than an amplitwist? If this were the case then the two concepts 
would be equivalent and we would have a new way of recognizing, and perhaps 
reasoning about, analytic functions. A tempting prospect! 
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To dismiss this as a possibility would only require the discovery of a single 
function that is conformal and yet whose local effect is not an amplitwist. The 
example of complex conjugation, illustrated in [13b], shows how important it is 
that we take into account the fact that the mapping preserves not only the magnitude 
of angles, but also their sense. For z I-+ ? is not analytic, but it is also not a 
counterexample to the conjecture, because it is anticonformal. 

We have seen that although conjugation does possess an amplification, it fails 
to be analytic because it doesn't have a twist. Let us now consider instead a function 
that does possess a twist, but which again fails to be analytic, this time by virtue 
of not having an amplification. The effect of such a mapping at a particular point 
is illustrated in [14]. The three curves on the LHS intersect at equal angles of 

Figure [14] 

(n/3), and on the RHS their images do too. But the picture clearly shows that we 
are not dealing with an amplitwist. Imagine that the infinitesimal tangent complex 
numbers to the curves are first twisted, but then rather than being amplified, as 
they would be by an analytic function, they are expanded by diferent factors. 
Despite this, however, the initial twist ensures that the angle between two curves 
is preserved both in magnitude and sense: the mapping is genuinely conformal at 
this point. 

2 Conformality Throughout a Region 
If we only insist on conformality at isolated points then such counterexamples do 
indeed exist (we've drawn one!), but if we require the mapping to be conformal 
throughout a region then this nonanalytic behaviour cannot occur. Imagine that 
we have a region throughout which the mapping is (i) conformal, and (ii) suffi- 
ciently non-pathological that an infinitesimal line-segment is mapped to another 
infinitesimal line-segment. In fact, re-examination of [3] reveals that (ii) must be 
presupposed in order for (i) even to make sense. For if the infinitesimal straight 
piece of curve from q to p did not map to another of the same kind at Q, then 
we could not even speak of an angle of intersection at Q, let alone of its possible 
equality with 4. 

Now look at [15]. In our conformal region we have drawn a large (i.e., not 
infinitesimal) triangle abc, along with its image A BC. Notice that while the straight 
edges of abc are completely distorted to produce the curvilinear edges of A BC, 
the angles of this "triangular" image are identical with those of the original. Now 
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conformal 

Figure [15] 

imagine shrinking abc down towards an arbitrary point in the region. As we do so, 
the sides of its shrinking image will increasingly resemble straight lines [by virtue 
of (ii)], and all the while the angles will remain the same as the original's. Thus, 
any infinitesimal triangle in this region is mapped to another infinitesimal similar 
triangle. Since the image triangle merely has a different size and alignment on the 
page, it is indeed obtained by amplitwisting the original. 

We have thus established the sought-after equivalence of conformal and ana- 
lytic mappings: 

A mapping is locally an amplitwist at a point p if it is conformal 
throughout an injinitesimal neighbourhood of p. 

For this reason, the conventional definition of f being "analytic" at p is that f' 
exist at p and at all points in an infinitesimal neighbourhood of p. 

From this result we can immediately deduce, for example, that complex in- 
version z I+ (112) is analytic, for we have already demonstrated geometrically 
that it is conformal. By the same token, it follows more generally that all Mobius 
transformations are analytic. 

For no extra charge, we can obtain a further equivalence simply by concen- 
trating on distances rather than angles. What we have just seen is that a mapping 
cannot possess a twist throughout a region without also having an amplification. 
In order to investigate the converse, suppose that a mapping is only known'to 
possess an amplification throughout a region. Re-examine [15] from this point of 
view. Unlike the previous case, there is no longer any a priori reason for the image 
A BC to betray any features common to the original. However, as we carry out the 
same shrinking process as before, the local existence of amplifications begins to 
reveal itself. 

As the triangle becomes very small, we may consider two of its sides, for 
example a b  and ac, to be infinitesimal arrows emanating from a vertex. While we 
may not yet know anything of angles, we do know that these arrows both undergo 
the same amplification to produce their images A B and AC. But if we now apply 
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this reasoning at one of the other vertices, we immediately find that in order to be 
consistent, all three sides must undergo the same2 amplification. Once again we 
have been able to deduce that the image triangle is similar to the original. 

However, this time all we know is that the magnitude of the angles in the 
infinitesimal image triangle are the same as those in the original. If the sense of the 
angles also agree, then the image is obtained by amplitwisting the original, just as 
before. But if the angles are reversed, then we must flip the original triangle over 
as well as amplitwisting it. This "flip" may be accomplished by reflecting in any 
line; in particular, we may employ reflection in the real axis, z I+ T. Thus if f (z) 
is a mapping that is known to possess an amplification throughout an infinitesimal 
neighbourhood of a point p, then either f ( z )  is analytic at p, or else f (z) is analytic 
at p. 

It is interesting to note that the use of triangles in the above arguments was 
not incidental, but instead crucial. Rectangles, for example, would simply not 
have sufficed. Take the first argument. Certainly conformality still guarantees us 
that an infinitesimal rectangle maps to another infinitesimal rectangle. However, 
this image rectangle could in principle have very different proportions from the 
original, and hence not be obtainable via an amplitwist. Try the second argument 
for yourself and see how it too fails. 

For a computational approach to the above results, see Ahlfors [1979, p. 731. 

3 Conformality and the Riemann Sphere 

In the previous chapter we addressed a twin question: "How are we to visualize 
the effect of a mapping on infinitely remote parts of the complex plane, or the 
effect of a mapping that hurls finite points into the infinite distance?" Our answer 
was to replace both complex planes (original and image) with Riemann spheres. 
We could then visualize the mapping as taking place between the two spheres, 
rather than between the two planes. To a large extent the success of this merely 
depended upon the fact that we had gathered up the infinite reaches of the plane to 
a single point on the sphere. It did not depend on the precise manner in which we 
chose to do this. Why then the insistence on accomplishing this with stereographic 
projection, rather than in some other way? Several reasons emerged in the previous 
chapter, but the present discussion shows that another compelling reason is that 
stereographic projection is conformal. 

Only now can we fully appreciate this point, for we have seen that analytic 
functions are the conformal mappings of the plane. As illustrated in [16], the 
conformality of stereographic projection now enables us to translate this directly 
into a statement about Riemann spheres: 

A mapping between spheres represents an analytic function if and 
only if it is conformal. 

2 ~ e  only mean "same" in the sense that the variations in amplification are of the same in- 
finitesimal order as the dimensions of abc. If the amplifications were precisely the same, then 
extending our argument to a whole network of closely spaced vertices, we would conclude that 
the amplification was constant throughout the region. 
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conformal - 
Figure [ 161 

We have drawn the spheres separate from the planes to reinforce the idea 
that we are entitled to let the plane fade from our minds, and to adopt instead the 
sphere as a logically independent base of operations. Indeed, at this stage we could 
consider complex analysis to be nothing more than the study of conformal maps 
between spheres. But in works on Riemann surfaces it is shown that in order to 
embrace the global aspects of many-one functions and their inverses, one must 
extend this conception to conformal mappings between more general surfaces, 
such as doughnuts. 

VII Critical Points 
1 Degrees of Crushing 

We return to the mapping z2 and note that at z = 0, (z2)' = 22 = 0. A place 
such as this, where the derivative vanishes, is called a critical point. Recall that in 
the previous chapter we defined the term "critical point" differently, as a point at 
which the conformality of an otherwise conformal mapping breaks down. These 
two definitions are not at odds with one another. If the derivative f ' ( 2 )  of -an 
analytic mapping f is not zero at z = p, then we know that f is conformal at p, 
so conformality can only break down at points where f ' ( 2 )  = 0. Although it is 
not obvious, later we will be able to prove the converse fact that if f '(p) = 0 then 
f cannot be conformal at p. Thus the two definitions are equivalent. 

In terms of the amplitwist concept a critical point could equally well be defined 
as a point of zero amplification. This suggests that the effect of an analytic mapping 
on an infinitesimal disc centred at a critical point is to "crush it down to a single 
image point". The statement in quotes is not to be taken literally, rather it is to be 
understood in the following sense. 
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Imagine that the disc (radius c) is so tiny that it must be placed under a micro- 
scope in order to be seen. Suppose that we have available a whole family of lenses 
of increasing power with which to view it: Lo, L 1, L2, L3, . . .. For example, Lo 
has magnification 1 /co = 1, so that it's really no better than using the naked eye. 
On the other hand L 1 has magnification 1 /c ' , and it is thus so powerful that we can 
actually see the disc with it. The lens L2 is even more remarkable in that it mag- 
nifies by 1/c2, so that even a small part of our microscopic disc now completely 
fills the viewing screen3. 

Let's switch back to L1 so that we can see the whole disc again, and watch 
what happens to it when we apply the transformation z I+ z2. It disappears! At 
best we might see a single dot sitting at the image of the critical point. It is in this 
sense that the mapping is crushing. However, if we now attach L2 instead, we can 
see our mistake: the dot isn't a dot, in fact it's another disc of radius c2. 

For this particular mapping, L2 was sufficient to see that the disc had not 
been completely crushed. However, at a critical point of another mapping, even 
this might not provide sufficient magnification, and we would require a stronger 
lens, say L,, to reveal that the image of the disc isn't just a point. The integer m 
measures the degree of crushing at the critical point. 

2 Breakdown of Conformality 

In addition to being locally crushing, we have stated (but not yet proved) that the 
conformality of an analytic function breaks down at its critical points. We can see 
this in our example. When the z2 mapping acts on a pair of rays through the critical 
point z = 0, it fails to preserve the angle between them; in fact it doubles it. Thus, 
just at the critical point, the conformality of z2 breaks down. This is a general 
property. In fact we will show later that the behaviour of a mapping very near to 
a critical point is essentially given by zm, m 2 2. Rather than being conserved, 
angles at the critical point z = 0 are consequently multiplied by m. We quantify 
the degree4 of this strange behaviour by saying that z = 0 is a critical point of 
order (m - 1). Notice that this m is the same one as in the previous paragraph: in 
order to see the image we have to use the L, lens. 

Despite the fact that conformality breaks down at critical points, we shall 
continue to make such bald statements as, "z2 is conformal". The tacit assumption 
is that critical points are being excluded. Indeed we were making this assumption 
throughout the previous section, for we only concerned ourselves there with typical 
points. Later we will see that critical points are, in a mathematically precise sense, 
"few and far between", and this is our excuse for the scant attention we are presently 
paying them. Nevertheless, we may safely skirt around this issue only so long as 

3 ~ n  terms of this analogy we could say that most of the diagrams in this chapter, indeed in 
the rest of the book, show views of the image complex plane taken through L1. For example [lo] 
depicts a tiny circle being amplitwisted to produce another circle. However, if we viewed part of 
this image 'circle' with L2 instead of L1, then deviations from circularity would become visible. 
Of course the smaller we make the preimage circle, the smaller these deviations will be. 

4 ~ h e  reason we define it to be (rn - I), rather than in, is that this properly reflects the multiplicity 
of the root of the derivative. 
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we focus on the effect of the function on separate chunks of its domain. When one 
studies Riemann surfaces, one tries to fit all this partial information into a global 
picture of the mapping, and in achieving this the critical points will play a crucial 
role. They do so by virtue of yet another aspect of the peculiar behaviour of a 
mapping in the vicinity of such points, and it is to this feature that we now turn. 

In the previous chapter we discussed the possibility of critical points being 
located at infinity. In particular, we considered z H zm. On the Riemann sphere 
we drew two straight lines passing through the origin, and we thereby saw that 
angles at both z = 0 and z = oo were multiplied by m. We therefore conclude that 
oo is a critical point of zm of order (m - I), just like the origin. Actually, except 
for m = 2, we don't yet know if zm is conformal anywhere! However, in the next 
chapter we will see that it is conformal everywhere except at the two critical points 
we have just discussed. 

3 Branch Points 
First consider the case of a real function R(x) from R to R. In solving problems 
on maxima and minima, we learn from an early age the importance of finding 
the places where R' (x) = 0. Figure [17] shows an ordinary graph of y = R(x), 
emphasizing a different aspect of the behaviour of R near to a "critical point" c 
where Rt(c) = 0. Above a typical point t, for which Rt(t) # 0, the graph is either 
going up or going down, so the function is locally one-to-one. However, near c it 
is clearly two-to-one. 

Figure [17] 

An analogous significance holds for complex mappings. Typically f '(z) # 0, 
and so an infinitesimal neighbourhood of z is amplitwisted to an infinitesimal 
image neighbourhood of w = f (z), and the two neighbourhoods are clearly in 
one-to-one correspondence. However, if f '(zo) = 0 then (according to our earlier 
claim) near to zo the function behaves like zm. Thus, if a point is in a close orbit 
around zo, its image will orbit wo m-times as fast, and corresponding to each point 
near w0 there will be m preimages near zo. Thus wo is a branch point of order 
(m - 1). We conclude that a critical point of a given order maps to a branch point 
of the same ordel: 
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We began this idea by using an analogy with real functions, but we should 
also note an important difference. A real function R(x) is necessarily one-to-one 
when R'(x) # 0, but (unlike the complex case) it need not be many-to-one when 
R'(x) = 0. The graph of x3, for example, is flat at the origin and yet it is still 
one-to-one in an infinitesimal neighbourhood of that point. In contrast to this, the 
complex mapping z I+ z3 is three-to-one near the origin, due to the existence of 
complex cube roots. 

The Cauchy-Riemann Equations 
1 Introduction 

To end this chapter we will try to gain a better perspective on where the analytic 
functions lie within the hierarchy of mappings of the plane. A benefit of this will 
be the discovery of another way (the third!) of characterizing analytic functions, 
this time in terms of their real and imaginary parts. 

The first thing to do is realize that the "general" mappings (x, y) I+ (u, v) that 
we considered earlier were not really as general as they could have been. Picture 
part of the plane as being a rolled out piece of pastry on a table. A general mapping 
corresponds to "doing something" to the pastry, thereby moving its points to new 
locations (the images) on the table. For example, we might cut the pastry in half 
and move the two pieces away from each other. This is much more general than 
anything we contemplated earlier, for it does not even possess the rudimentary 
quality of continuity. That is, if two points are on either side of the cut, then no 
matter how close we move them together, their images will remain far apart. 

Even if we do insist on continuity, the resulting mappings are still more general 
than those we have considered. For example, imagine pressing down the rolling- 
pin somewhere in the middle of the pastry, and, in a single roll, stretching the 
far side to twice its former size. This certainly is continuous, for bringing two 
points together always brings their images together. The problem now lies in the 
fact that if two infinitesimal, diametrically opposed arrows emanate from a point 
beneath the starting position of the pin, then they each undergo a quite different 
transformation. Thus, in an obvious sense (not a subtle complex-differentiation 
sense) the mapping isn't differentiable at this point. Nevertheless, provided we 
stay away from this line, the mapping is differentiable in the real sense, and hence 
subject to our earlier analysis using the Jacobian matrix. 

Another interesting kind of mapping arises from the commonplace operation 
of folding the pastry. Suppose we fold it like a letter being placed in an envelope 
[two creases]. Three different points will end up above a single point of the table, 
and the mapping is thus three-to-one. However, at the creases themselves the 
mapping is only one-to-one, and furthermore, differentiability also breaks down 
there. Nevertheless, provided that we only look at the fold-free portions of the 
pastry, such many-one functions are still subject to our previous analysis. 

Suppose we play with the pastry in an ordinary way, rolling it (not necessarily 
evenly) now in this direction, now in another, then turning it, folding it, rolling 
it again, and so forth; then, provided we suitably restrict the domain, we can still 
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apply our old analysis. While such a mapping is indeed very general, we hope that 
this discussion has revealed that (being continuous and differentiable in the real 
sense) it is, in fact, already quite high up the evolutionary ladder. It will therefore 
not come as such a surprise to learn that the local geometric effect of such a 
mapping is remarkably simple, though naturally not as simple as an amplitwist. 

2 The Geometry of Linear Transformations 
We pick up our earlier investigation where we left it. The local effect of the mapping 
is to perform the linear transformation encoded in the Jacobian matrix (2). If we 
can first understand the effect of a uniform linear transformation-corresponding 
to a constant matrix-then we shall be finished. For we need only then remember 
that our analysis is only applicable locally, the actual linear transformation varying 
as it does from one place to the next. 

Consider the effect of a uniform linear transformation on a circle C. Since the 
Cartesian equation of C is quadratic, the linear change of coordinates induced by 
the transformation will lead to another quadratic equation for the image curve. 
The image curve E is thus a conic section, and since the finite points of C are not 
sent to infinity, this conic must be an ellipse. See [18], and compare this also with 
[9], where the local consequence of this result was illustrated for a non-uniform 
transformation acting on an infinitesimal circle. 

We have just used an algebraic statement of linearity. The fundamental geo- 
metric fact is that it makes no difference if we add two vectors and then map the 
result, or if we map the vectors first and then add them. Convince yourself of these 
two simple consequences: 

Parallel lines map to parallel lines. 
a The midpoint of a line-segment maps to the midpoint of the image line- 

segment. 

We now apply these facts to E. 
Since all the diameters of C are bisected by the centre of C, it follows that 

the image chords of E must all pass through a common point of bisection. Thus 
the centre of C is mapped to the centre of E. Drawn in the same heavy line as its 
image is the particular diameter d of the circle that is mapped to the major axis D 
of the ellipse. Now consider the chords of C [dashed] that are perpendicular to d .  
Since these are all bisected by d ,  their images must be a family of parallel chords 
of E such that D is their common bisector. They must therefore be the family 
perpendicular to D. All this is summarized in [18]. 

It is now clear that 

The local linear transformation is a stretch in the direction of d,  
another stretch perpendicular to it, andjnally a twist. 

This result also makes sense at the level of counting degrees of freedom. Just as 
the matrix has four independent entries, so the specification of our transformation 
also requires four bits of information: the direction of d ,  the stretch factor in this 
direction, the perpendicular stretch factor, and the twist. 
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Figure [ 1 81 

The ultimate specialization to analytic functions now simply requires that the 
two stretch factors be put equal. This apparently reduces the number of degrees 
of freedom from four to three. However, since we are now producing an equal 
expansion in all directions, the direction chosen for d becomes irrelevant, and we 
are left with only two genuine degrees of freedom: the amplification and the twist. 

Note that we now have the following: 

An orientation preserving mapping is conformal i f  and only if it 
sends infinitesimal circles to infinitesimal circles. 

If a mapping preserves circles in general, then, in particular, it must send infinites- 
imal circles to infinitesimal circles, and hence it must be conformal5. Bypassing 
the detailed investigation of the previous chapter, we now see that the confor- 
malitylanalyticity of Mobius transformations follows from the mere fact that they 
preserve circles. 

3 The Cauchy-Riemann Equations 

We obtain another characterization of analytic functions if we now ask how we 
may recognize a Jacobian matrix for which both expansion factors are equal. 
This is most easily answered by considering what kind of matrix corresponds to 
multiplication by a complex number, for we already know that this produces the 
desired type of linear transformation. Multiplying z = (x + i y )  by (a + ib) ,  we 
get 

(X + i y )  H (a + ib)  (x + i y )  = (ax - by) + i (bx + ay). 

This corresponds to the multiplication of a vector in IR2 by the matrix 

S ~ o r  a different proof of this fact, see Sommerville [1914, p. 2371. 
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Compare this with the Jacobian matrix (2), 

In order for the effect of J to reduce to an amplitwist, it must have the same form 
as (3, and thus 

These are the celebrated Cauchy-Riemann equations. They provide us with a third 
way of recognizing an analytic function. However, as with the underlying am- 
plitwist concept, these equations must be satisfied throughout an infinitesimal 
neighbourhood of a point in order that the mapping be analytic there [see Ex. 121. 

Since (a + ib) is playing the role of the amplitwist, comparison of (5) and (2) 
now yields two formulae for the derivative: 

and 
f ' =  aYv - i aYu = -i ayf. 

By way of example, consider z t+ z3. Multiplying this out we obtain a rather 
haphazard looking mess: 

However, differentiating the real and imaginary parts, we obtain 

and so the Cauchy-Riemann equations are satisfied. Thus, far from being haphaz- 
ard, the special forms of u and v have ensured that the mapping is analytic. Using 
(7) we can calculate the amplitwist: 

just as in ordinary calculus. Check that (8) gives the same answer. 
In the next chapter we will sever our umbilical cord to IR2 and discover how 

the above results can be better understood by directly appealing to the geometry 
of the complex plane. 
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IX Exercises 

1 Use the Cauchy-Riemann equations to verify that z F+ T is not analytic. 

2 The mapping z I-+ z3 acts on an infinitesimal shape and the image is examined. It 
is found that the shape has been rotated by n, and its linear dimensions expanded 
by 12. Where was the shape originally located? [There are two possibilities.] 

3 Consider z I+ Q (z) = T2/z. By writing z in polar form, find out the geometric 
effect of Q. Using two colours, draw two very small arrows of equal length 
emanating from a typical point z:  one parallel to z; the other perpendicular to 
z. Draw their images emanating from SZ ( z ) .  Deduce that SZ fails to produce an 
amplitwist. [Your picture should show this in two ways.] 

4 The picture shows the shaded interior of a curve being mapped by an analytic 
function to the exterior of the image curve. If z travels round the curve counter- 
clockwise, then which way does its image w travel round the image curve? 
[Hint: Draw some infinitesimal arrows emanating from z, including one in the 
direction of motion.] 

analytic 

w- 

5 Consider f (x + iy) = (x2 + y2) + i (y/x). Find and sketch the curves that are 
mapped by f into (a) horizontal lines, and (b) vertical lines. Notice from your 
answers that f appears to be conformal. Show that it is not in two ways: (i) by 
explicitly finding some curves whose angle of intersection isn't preserved; and 
(ii) by using the Cauchy-Riemann equations. 

6 Continuing from the previous exercise, show that no choice of v can make 
f (x + iy) = (x2 + y2) + iv analytic. 

7 (i) If g(z) = 3 + 2i then explain geometrically why gr(z) -- 0. 

(ii) Show that if the amplification of an analytic function is identically zero (i.e., 
f '(z) -- 0) on some connected region, then the function is constant there. 

(iii) Give a simple counterexample to show that this conclusion does not follow 
if the region is instead made up of disconnected components. 
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8 Use pictures to explain why if f (z) is analytic on some connected region, each 
of the following conditions forces it to reduce to a constant. 

(i) Ref (z) = 0 

(ii) I f (z) 1 = cons t . 
(iii) Not only is f (z) analytic, but f (z) is too. 

9 Use the Cauchy-Riemann equations to give rigorous computational proofs of 
the results of the previous two exercises. 

10 Instead of writing a mapping in terms of its real and imaginary parts (i.e. f = 
u + i v), it is sometimes more convenient to write it in terms of length and angle: 

where R and @ are functions of z. Show that the equations that characterize an 
analytic f are now 

a , ~  = R a,* and a , ~  = -R a,*. 

11 Let's agree to say that " f = u + iv satisfies the Cauchy-Riemann equations7' 
if u and v do. Show that if f (z) and g(z) both satisfy the Cauchy-Riemann 
equations, then their sum and their product do also. 

12 For nonzero z, let f (z) = f (x + iy) = XY 

(i) Show that f ( z )  approaches 0 as z approaches any point on the real or imag- 
inary axis, including the origin. 

(ii) Having established that f = 0 on both axes, deduce that the Cauchy- 
Riemann equations are satisfied at the origin. 

(iii) Despite this, show that f is not even differentiable at 0, let alone analytic 
there! To do so, find the image of an infinitesimal arrow emanating from 0 
and pointing in the direction ei$. Deduce that while f does have a twist at 
0, it fails to have an amplification there. 

13 Verify that z H eZ satisfies the Cauchy-Riemann equations, and find (eZ)'. 

14 By sketching the image of an infinitesimal rectangle under an analytic map- 
ping, deduce that the local magnification factor for area is the square of the 
amplification. Rederive this fact by looking at the determinant of the Jacobian 
matrix. 

15 Let us define S to be the square region given by 

a - b ~ R e ( z )  ~ a + b  and - b Im(z) 5 b. 
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(i) Sketch a typical S for which b -c a .  Now sketch its image under the 
mapping z I-+ e Z.  

(ii) Deduce the area of $ from your sketch, and write down the ratio 

area of S 
area of S 

(iii) Using the results of the previous two exercises, what limit should A ap- 
proach as b shrinks to nothing? 

(iv) Find limb,o A from your expression in part (ii), and check that it agrees 
with your geometric answer in part (iii). 

16 Consider the complex inversion mapping I (z) = (1 /z). Since I is conformal, 
its local effect must be an amplitwist. By considering the image of an arc of an 
origin-centred circle, deduce that 1 (1 12)' 1 = 1 / 1 z 1 2. 

17 Consider the complex inversion mapping I (z) = (1 12). 

(i) If z = x + iy and I = u + iv, express u and v in terms of x and y. 

(ii) Show that the Cauchy-Riemann equations are satisfied everywhere except 
the origin, so that I is analytic except at this point. 

(iii) Find the Jacobian matrix, and by expressing it in terms of polar coordinates, 
find the local geometric effect of I. 

(iv) Use (7) to show that the amplitwist is - (l/z2), just as in ordinary calculus, 
and in accord with the previous exercise. Use this to confirm the result of 
part (iii). 

18 Recall Ex. 19, p. 186, where you showed that a general Mobius transformation 

maps concentric circles to concentric circles if and only if the original family 
(call it F )  is centred at q = - (dlc). Let p = lz - q 1 be the distance from q to 
z, so that the members of F are p = const. 

(i) By considering orthogonal connecting vectors from one member of F to 
an infinitesimally larger member of F ,  deduce that the amplification of M 
is constant on each circle of F. Deduce that I M'I must be a function of p 
alone. 

(ii) By considering the image of an infinitesimal shape that starts far from q 
and then travels to a point very close to q,  deduce that at some point in the 
journey the image and preimage are congruent. 
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(iii) Combine the above results to deduce that there is a special member IM of F 
such that infinitesimal shapes on IM are mapped to congruent image shapes 
on the image circle M (IM). Recall that IM is called the isometric circle of 
M. 

(iv) Use the previous part to explain why M (IM) has the same radius as IM. 

(v) Explain why IM-1 = M (IM). 

(vi) Suppose that M is normalized. Using the idea in Ex. 16, show that the 
amplification of M is 

1 
IMr(z)l = - 

lcI2 p2 ' 

19 Consider the mapping f (z) = z4, illustrated above. On the left is a particle p 
travelling upwards along a segment of the line x = 1, while on the right is the 
image path traced by f (p). 

(i) Copy this diagram, and by considering the length and angle of p as it con- 
tinues its upward journey, sketch the continuation of the image path. 

(ii) Show that A = i sec4 (n/8). 

(iii) Find and mark on your picture the two positions (call them bl and b2) of p 
that map to the self-intersection point B of the image path. 

(iv) Assuming the result f '(z) = 4z3, find the mist at bl and also at b2. 

(v) Using the previous part, show that (as indicated at B) the image path cuts 
itself at right angles. 

20 The figure below is a copy of [9], p. 62. 

(i) Show geometrically that if z moves distance ds along the lemniscate, in- 
creasing B by dB, then w = z2 moves a distance 4 dB along the circle. 

(ii) Using the fact that (z2)' = 2z, deduce geometrically that ds = 2dBlr. 
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(iii) Using the fact that r 2  = 2 cos 26, show by calculation that 

(iv) Let s represent the length of the segment of the lemniscate connecting the 
origin to the point z. Deduce from the previous two parts that 

hence the name, lemniscatic integral. 

21 (i) By extending the argument given in the text, show that in three-dimensional 
space the effect of a linear transformation is to stretch space in three mutually 
perpendicular directions (generally by three different factors), then to rotate 
it. 

(ii) Deduce that a mapping of three-dimensional space to itself is locally a 
three-dimensional amplitwist if and only if it maps infinitesimal spheres to 
infinitesimal spheres. 

(iii) Deduce that inversion in a sphere preserves the magnitude of the angle 
contained by two intersecting curves in space. 

(iv) Deduce that stereographic projection is conformal. 
Remark: In stark contrast to the bountiful conformal mappings of the plane, 
Liouville and Maxwell independently discovered that the only angle-preserving 
transformation of space is an inversion, or perhaps the composition of several 
inversions. 
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I Cauchy-Riemann Revealed 
1 Introduction 

In the previous chapter we began to investigate the remarkable nature of analytic 
functions in @ by studying mappings in the less structured realm of EX2. In particu- 
lar the Jacobian provided us with a painless way of deriving the Cauchy-Riemann 
characterization of analytic functions, and also of computing their amplitwists. 
However, this approach was rather indirect. In this chapter we will instead study 
differentiation directly in the complex plane, primarily through the use of infinites- 
imal geometry. Our first application of this approach will be the rederivation of the 
Cauchy-Riemann (henceforth " CR)  equations, and the discovery of new forms 
that they can take on. 

2 The Cartesian Form 

Consider a very fine mesh of squares aligned with the real and imaginary axes. 
See the top left of [I]. Under an analytic mapping each infinitesimal square will 
be amplitwisted to produce an image that is also square. We will show that the CR 
equations are nothing more than a symbolic restatement of this geometric fact. 

Zoom in on an individual square and its image, as depicted in the bottom half 

Figure [I] 
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of [I]. Suppose, as drawn, that the initial square has side E .  If we start at z and 
then move a distance E in the x-direction, the image will move along a complex 
number given by 

(change in x).(rate of change with x of the image f )  = E ax f. 

Similarly, if the point moves along the vertical edge by going E in the y-direction, 
then its image will move along E ay f .  Now since these two image vectors span a 
square they must be related by a simple rotation of n/2, that is by multiplication 
with i. After cancelling E, we thus obtain 

et voilh! That this is indeed a compact form of the CR equations may be seen by 
inserting f = u + iv: 

iaX(u + iv) = aY(u + iv), 

and then equating real and imaginary parts to yield 

aXu =aYv  and aXv =-ayu, (1) 

just as before. To obtain the amplitwist itself, we recall that each infinitesimal 
arrow is taken to its image by multiplication with f '. Now, since we know what 
the images are for the two sides of the square, we can deduce 

and 

3 The Polar Form 

Equation (1) is the most common way of writing CR, but it isn't the only way. It 
took this form because we chose to describe both complex planes in terms of their 
real and imaginary parts, that is with Cartesian coordinates. Thus we could briefly 
describe (1) as being the Cart.-Cart. form. In Ex. 10, p. 212 we retained Cartesian 
coordinates for the first plane but employed polar coordinates in the image plane; 
this led to another form (Cart.-Polar) of CR. As the next example of our geometric 
method we will derive the Polar-Cart. form of the equations. 

In order to do this, we begin with an infinitesimal square adapted to polar 
coordinates. See [2]. If we start at z and increase r by dr ,  then we obtain eiB dr 
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Figure [2] 

as the radial edge. If, on the other hand, we increase 0 by d0, then the point will 
move in the perpendicular direction given by ie iB. As d0 tends to zero, this edge 
is ultimately equal to an infinitesimal arc of circle of length r d0; the complex 
number describing it will therefore be i eiB r d0 = i  z dB. It's also clear from our 
picture that 

initially square d r  = r d0. (2) 

Now look at the image. Just as before, if we increase r by d r  then the image 
will move along d r  - 8, f ;  likewise, changing 0 by do will move the image along 
d0 de f. If the mapping is analytic then these again span a square, and so the latter 
must be i  times the former: 

Substituting (2) into this, and cancelling d0, we obtain 

as the new compact form of CR. By inserting f = u + iv, the reader may verify 
that (3) is equivalent to the following pair of Polar-Cart. equations: 

By examining the amplitwist that carries each arrow to its image we can also obtain 
two expressions for the derivative: 

and 
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As a simple example let's take z3 = r3 e3". From (6 )  we obtain 

while from (7) we obtain 

In obtaining the same answer from both these expressions we have also verified 
that z3 actually was analytic in the first place. 

Of the four possible ways of writing CR, only one now remains to be found, 
namely the Polar-Polar form. We leave it to the reader to verify that if we write 
f = R ei" (cf. Ex. 10, p. 212) then CR takes the form 

deR=-rRa,\TC and Rae\TC=rd,R. 

I1 An lntimation of Rigidity 
A recurring theme in complex analysis is the "rigidity" of analytic functions. By 
this we mean that their highly structured nature (everywhere locally an amplitwist) 
enables us to pin down their precise behaviour from very limited information. For 
example, even if we are only told the effect of an analytic function on a small region, 
then its definition can be extended beyond these confines in a unique way-like a 
crystal grown from a seed. In fact, given even the meagre knowledge of how an 
analytic mapping affects a closed curve (just the points on the curve mind you), 
we can predict precisely what happens to each point inside! See [3]. Later we will 
justify these wild claims, and in Chapter 9 we will even find an explicit formula 
(due to Cauchy) for w in terms of A ,  B, C ,  etc. For the moment, though, we will 

Figure [3] 
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obtain our first glimpse of this rigidity by considering a different kind of partial 
information. 

Consider [4]. Origin-centred circles are being mapped to vertical lines, and the 
larger the circle, the further to the right is the image, but with no restriction on how 
the lines are spaced. How much information do you think we can gather about an 
analytic mapping possessing this property? Try meditating on this before reading 
further. 

Well, we know that f is conformal and that its local effect is just an arnplitwist. 
Consider the rays emanating from the origin. Since these cut through all the circles 
at right angles, their images must cut through the vertical lines at right angles, and 
they are thus horizontal lines. In fact, if we swing the ray around counter-clockwise, 
we can even tell whether its image line will move up or down. Look at [5],  which 
depicts the fate of a infinitesimal square bounded by two circles and two rays. We 
know that the infinitesimal radial arrow connecting the two circles must map to a 
connecting arrow between the lines going from left to right. But since the square 
is to be amplitwisted, its image must be positioned as shown. Thus we find that a 
positive rotation of the ray will translate the image line upwards. 

Figure [4] 

We have made some good progress, but that we cannot yet have fully captured 
the consequences of analyticity can be seen from Ex. 5, p. 21 1. Despite not being 
analytic, the mapping (x + i y )  I+ ( x 2  + y2)  + i ( y / x )  was there shown to possess 
all the above desiderata. Indeed it would be easy to write down an infinity of 
nonanalytic functions that would be consistent with the known facts. In stark 
contrast to this, when we have finished our investigation we will be left with only 
one analytic function possessing property [4]. To show this we must turn to the 
CR equations. 

In [4] we are mapping natural polar objects to natural Cartesian objects, so it's 
clear that we should employ the Polar-Cart. form, namely (4 )  and (5). In order to 
put them to use, we must first translate [4] into 'Equationspeak'. We could describe 
the figure by saying that rotating the point only moves the image up and down, 
not side to side; in other words, varying 8 produces no change in u: aeu = 0. It 
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there is no fundamental difference between this and the previous case may be seen 
by considering 

z H e-'# g (z + c )  ; 

for you may convince yourself that this possesses property [4], and hence it too must 
equal (9). The rigidity of analytic functions has thus led to the rather remarkable 
conclusion that the complex logarithm is uniquely defined (up to constants) as the 
conformal mapping sending concentric circles to parallel lines. 

Ill Visual Differentiation of log@) 
A fringe benefit of the previous section was the discovery that log(z) actually is 
analytic. Since this multifunction finds its simplest representation in Polar-Cart. 
form, namely 

logz = l n r  + i(0 + 2mn), 

we can easily find its derivative using (6) or (7). For purposes of illustration, we 
will now use them both: 

and 
(logz)' = -(i/z) a6 logz = -(i/z) i = l /z.  (10) 

You notice, of course, how this is formally identical to the case of the ordinary, 
real logarithm. 

You may be wondering how our previous discussion of the branches of this 
multifunction affects all this. For example, it's interesting how rn (which labels 
the different branches) does not appear in the result (10). The basic philosophy of 
this book is that while it often takes more imagination and effort to find a picture 
than to do a calculation, the picture will always reward you by bringing you nearer 
to the Truth. In this spirit, we now find a visual explanation of (10) that will also 
make it clear that the answer does not depend on m. 

Equations (6) and (7) were derived by examining the infinitesimal geometry 
of a general analytic mapping. Why not then apply this idea to the geometry of a 
speciJic mapping, and thereby evaluate its amplitwist directly? 

Consider [6], which shows a typical point z and a few of its infinitely many 
images under log. In order to find the amplitwist we need only find the image of a 
single arrow emanating from z. The easiest one to find is shown in [6], namely an 
arrow perpendicular to z. Notice how if z makes an angle 0 with the horizontal, 
then the perpendicular vector will make an angle 0 with the vertical. Also, if it 
subtends an infinitesimal angle 6 at the origin, then-because it is like a small arc 
of a circle-its length will be r6. Now look at the images of z. Since we have 
purely rotated z, its images will all move vertically up through a distance equal to 
the angle of rotation 6. To make it easier to see what amplitwist carries the arrow 
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Figure [6] 

at z into its image, we have drawn copies of the original arrow at each image point. 
It is now evident from the picture that 

amplification = l / r  

twist = -6 

+ amplitwist = ( l l r )  e-'@ = l /z.  

Although all the image vectors emanate from different points in the different 
branches, they are all identical as vectors, and so it is clear that the amplitwist 
does not depend on which branch we look at. 

IV Rules of Differentiation 
We already know how to differentiate z2 and also log z, so how would you use this 
knowledge to find, for example, the derivative of log(z2 log z)? Your immediate 
reaction (chain and product rules) is quite correct, and in this section we merely 
verify that all the familiar rules of real differentiation carry over into the complex 
realm without any changes, at least in appearance. 

1 Composition 

The composite function (g 0 f )  (z) = g [ f (z)] of course just means 'do f , then do 
g'. If both f and g are analytic then each of these two steps conserves angles, and 
therefore the composite mapping does too. We deduce that g [ f (z)] is analytic, and 
we now show that the net amplitwist it produces is correctly given by the chain 
rule. 

Let ff(z) = A eia and gf(w) = B eip, where w = f ( z ) .  Consider [7]. An 
infinitesimal arrow at z is amplitwisted by f to produce an image at w ;  then this, 
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Figure [7] 

in its turn, is amplitwisted by g to produce the final image at g(w). It is clear from 
the picture that 

net amplification = A B 

net twist = a + /3 
j net amplitwist = A B ei , 

and thus we obtain the familiar chain rule: 

As an example of this we may put g(z) = kz .  In the last chapter we showed that 
gr(z) = k ,  and so we now conclude from (1 1) that 

2 Inverse Functions 
Provided we are not at a critical point (where the derivative vanishes), an infinitesi- 
mal disc at z  will be arnplitwisted to produce an image disc at w = f (z), and these 
two discs will be in one-to-one correspondence. See [8]. An analytic function thus 
always possesses a local inverse in this sense, and we wish to know its derivative., 

Figure [8] 
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Clearly, the amplitwist that returns the image disc to its original state has 
reciprocal amplification, and opposite twist: 

amplification of f -' at w = 1 /(amplification of f at z) = 1 / 1 f '  (z) 1 
twistoff- 'a tw = -(twistoff atz)=arg[l/f '(z)] 

By way of example, consider w = f (z) = log z, for which z = f -' (w) = ew . 
From (12) we find that 

in agreement with your calculation in Ex. 13, p. 212. Later we will give a visual 
derivation of (1 3). 

Both (1 1) and (1 2) could have been derived even more quickly if we had directly 
employed the algebraic idea of the image arrow being f '  times the original one. 
We chose instead to keep the geometry to the fore, and reserved the algebra of 
multiplication for the final encoding of the results as (1 1) and (12). However, to 
derive the next two rules by pure geometry would be cumbersome, so we will use 
a little algebra. 

3 Addition and Multiplication 

On the far left of [9] we see an infinitesimal arrow 6 connecting z to a neighbouring 
point. The images of these two points under f and (separately) g, are shown in 
the middle of the figure. Lastly, we either add or multiply these points to obtain 
the two points on the far right. By examining the image vector connecting these 
final points we can deduce the amplitwists of (f + g) and f g, respectively. From 
[9] we find 

Figure [9] 
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~ = a + t f '  and B = b + t g ' ,  

so that 
( A + B )  = ( a + b ) + t ( f r + g ' ) ,  - 

image of 6 
and hence we obtain the addition rule: 

Likewise, ignoring t 2 ,  we find 

image of 6 

and thus deduce the product rule: 

V Polynomials, Power Series, and Rational Functions 
1 Polynomials 
We can look at the rules of the previous section from a slightly different point of 
view. Take rule (15), for example. In a way, what is on the RHS is less important 
than the fact that there is a RHS. By this we mean that we have here a recipe for 
creating new analytic functions: 'given two such functions, form their product'. 
Likewise, each of our other rules can be thought of as a means of producing new 
analytic functions from old. The analytic functions are indeed the aristocrats of the 
complex plane, but provided they only mate with their own kind, and only in ways 
sanctioned by the rules (which allow many forms of incest!), their offspring will 
also be aristocrats. For example, suppose we start with only the mapping z I+ z, 
which is known to be analytic. Our rules now quickly generate z2, z3, . . ., and 
thence any polynomial. 

Consider a typical polynomial of degree n: 

We have just seen that this is analytic, and thus it maps an infinitesimal disc at p 
to another at Sn (p). Furthermore, the amplitwist that transforms the former into 
the latter is, according to (14), 

We already know how to differentiate the first four terms, and in the next section 
we will confirm that in general (zm)' = m zm-', as you no doubt anticipated. Thus 
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2 Power Series 
This discussion of polynomials naturally leads to the investigation of power series. 
In Chapter 2 we discussed how a convergent power series1 

could be approximated by a polynomial S,. We explained how the effect of S 
within its circle of convergence could be mimicked by S,, with arbitrarily high 
accuracy, simply by taking a sufficiently high value of n. 

Of course the question we now face is whether power series are analytic, and 
if they are, how are we to calculate their derivatives? We will see that the answers 
to these questions are "yes" and "(16)". 

Consider an infinitesimal disc D with centre p.  If p is inside the circle of con- 
vergence of S, then so is a sufficiently small D. The series (17) therefore converges 
at all points of D, and thus S maps the disc to some infinitesimal unknown shape 
S(D) covering S(p). Now look at the left of [lo]. This shows a magnified view of 

Figure [lo] 

the successive images of D [itself not shown in the figure] under Slo, Sloe, Slooo, 
etc. Since each of these polynomials is known to be analytic, each image is a disc. 
However, it is also known that these images will coincide, ever more perfectly, with 
S(D). Thus S sends infinitesimal discs to other discs, and it is therefore analytic. 

We have tried to make this plainer still on the right of [lo]. Since we are now 
only interested in arnplitwists, the actual image points are unimportant compared 
with the connecting arrows between them. To make it easier to watch what is 

 or simplicity's sake we shall use a power series centred at the origin. However, as we pointed 
out in Chapter 2,  this does not involve any loss of generality. 
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happening to these arrows we have translated the discs-which doesn't affect the 
vectors-so that their centres all coincide at S(p). By way of illustration, we now 
consider the fate, as n increases, of three equally spaced vectors from p to three 
equally spaced points (a, b, c )  on the rim of D. Each of the analytic mappings S, 
amplitwists these vectors to three equally spaced image vectors. The figure shows 
the gradual evolution2 of these images towards their final state (given by S) as we 
successively apply Slo, Sloe, etc. The amplitwist that carries the arrows of D into 
these images therefore undergoes a corresponding evolution towards a final value. 
The amplitwist S' that carries the original vectors of D to their ultimate images is 
thus mimicked with arbitrarily high accuracy by Sh, as n increases. Therefore 

We have reached a very important conclusion. Any power series is analytic within 
its radius of convergence, and its derivative is obtained simply by differentiating the 
series term by term. Since the result of this process (18) is yet another convergent 
power series, there is nothing to stop us differentiating again. Continuing in this 
manner, we discover that a power series is infinitely differentiable within its radius 
of convergence. The reason this is so important is that we will be able to show later 
that every analytic function can be represented locally as a power series, and thus 
analytic finctions are inJinitely digerentiable. 

This result is in sharp contrast to the case of real functions. For example, the 
mileage displayed on the dash of your car is a differentiable function of the time 
displayed on the clock. In fact the derivative is itself displayed on the speedometer. 
However, in the instant that you hit the brakes, the second derivative (acceleration) 
does not exist. More generally, consider the real function that vanishes for negative 
x ,  and that equals xffl for non-negative x. This is differentiable (m - 1) times 
everywhere, but not m times at the origin. Our complex aristocrats will be shown 
to be quite incapable of stooping to this sort of behaviour. 

3 Rational Functions 
Earlier we established that the product rule applies to complex analytic functions, 
but we neglected to check the quotient rule. We invite you to verify this now, using 
the same kind of reasoning that led to (15). If you get stuck, there is a hint in Ex. 9. 
In any event, the important point is that the quotient of two analytic functions is 
also analytic except at the points where it has singularities. In particular, if we 
apply this result to polynomials then we can conclude that the rational functions 
are analytic. 

The fact that the quotient of two analytic functions is again analytic can be 
looked at in a rather more geometric way. Let I(z) = (112) be the complex 
inversion mapping. As we discussed at such length in Chapter 3,Z ( z )  is conformal, 
and hence it is analytic. It follows that if g (z) is analytic, then so is [1 / g  (z)], because 

 or ease of visualization, we have taken both the amplification and the twist to be steadily 
increasing with n. In general they could exhibit damped oscillations as they settled down to their 
final values. 
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this is the composition ( I  0 g) of two analytic functions. Finally, if f (z) is analytic, 
the product rule tells us that f (z) [ l  /g (z)] = [ f (z)/g (z)] is too. 

VI Visual Differentiation of the Power Function 
We saw in the last section that z2, z3, z4, . . . were all analytic. Composing with 
complex inversion, it follows that z - ~ ,  zW3, z - ~ ,  . . . are too. Since the inverse 
functions (in the sense of [8]) are branches of the multifunctions zk1I2, zk1l3, . . . 
discussed in Chapter 2, it follows that these too are analytic. Composing zp with 
2'14 ( p ,  q integers), it follows that any rational power is analytic. Furthermore, 
since the geometric effect of any real power can be reproduced with arbitrary 
accuracy by rational powers, it follows that these real powers are also analytic. 

The calculation of the derivative of a real power za is similar to the example 
z3 given on p. 219. We find that 

just as in ordinary calculus. In fact the real formula (xu)' = a xu-' can be thought 
of as the specialization of (19) that results when both z and the infinitesimal arrow 
emanating from it are taken to be on the real axis (cf. [7], p. 195). 

Figure [ l  11 

Just as in the case of the complex logarithm, we do not rest at the result (19) of 
a calculation, but rather we stalk the thing to its geometric lair. Since the amplitwist 
is the same for all arrows, we need only find the image of a single arrow in the 
direction of our choice. As a first (ill-fated) attempt, consider [ l l ] ,  in which we 
have chosen an arrow parallel to z. To facilitate comparison, we have drawn a copy 
of the initial arrow at the image point. You can see from the picture that 

twist = (a - 1)e BUT amplification = ??????? 
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We are thus half-thwarted, for we cannot see how long the image arrow is. In fact 
to figure this out would require precisely the same calculation (general Binomial 
Theorem) as is needed in the real case. Oh well, "If at first you don't succeed, . . . " 

"Try, try an arrow perpendicular to z !" From [12], we see that this arrow 
originally makes an angle 8 with the vertical, and so after magnifying the angle 
of z by a ,  it will make an angle a9  with the vertical. Once again we see that the 
twist = (a - 1)8. However, this time we can see the amplification, simply by 
recognizing that each arrow is an infinitesimal arc of a circle. The angle subtended 
by the arc has been magnified by a ,  while the radius of the circle has been magnified 
by ra-'. The net amplification of the arc is therefore a ra-'. Thus 

Figure [12] 

amplification = ara- '  

twist = (a - 1)8 
amplitwist = a ra-l e i(a-l)O = a za-l. 

In the above figures a = 3, and so there is no ambiguity in the meaning of za or 
za-'. But if a is a fraction, for example, then both za and za-' are multifunctions 
possessing many different branches. We urge you to redraw [12] in such a case. 
For example, if a = (113) then the infinitesimal arrow on the left will have three 
images on the right, one for each branch of the cube root function. Unlike the 
case of the multifunction log(z) (illustrated in [6]) these images are obtained by 
amplitwisting the original arrow by three different amounts: each branch of za has 
a different amplitwist. However, your figure will show you [exercise] that 

The amplitwist of each branch of za is given by (za)' = a za/z, 
provided that the same branch of za is used on both sides of the (20) 
equation. 
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To the best of our knowledge there is no3 direct, intuitive way of understanding 
the real result (xu)' = a xu-'. It is therefore particularly pleasing that with the 
greater generality of the complex result (20) comes the richer geometry of [12] 
needed to see its truth. 

VII Visual Differentiation of exp(z) 
We have already seen that (eZ)' = eZ by calculation, and we will now explain it 
pictorially. In [13] we have written a typical point z = x + i0 to make it easier 
to remember that w = eZ = eXeie has angle 0. Moving z vertically up through a 
distance 6 will rotate the image through an angle 6. Being an infinitesimal arc of 
circle of radius ex, the image vector has length ex 6; its direction is 0 to the vertical. 
As usual, we have copied the original arrow at the image so that we may more 
clearly see the amplitwist: 

Figure [13] 

amplification = ex 

twist = 0 

amplitwist = exeie = eZ. 

Actually, we have been a little hasty. We haven't really shown yet (at least not 
geometrically) that eZ is analytic: we don't know if all arrows undergo an equal 
amplitwist. Figure [13] tells us that if it's analytic, then (eZ)' = eZ. To establish 
analyticity we need only see that one other arrow is affected in the same way. 

In [14] we move z an infinitesimal distance 6 in the x-direction, thereby mov- 
ing the image radially outwards. Now, from ordinary calculus, the amplification 

3 ~ n  special cases there are ways. For example, consider a cube of side x. It is easy to visualize 
that if we increase the separation of one of the three pairs of faces by 6, we add a layer of volume 
x26. The result (x3)' = 3x2 follows. 
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Figure [14] 

produced by ex along the real axis is ex (cf. [6], p. 195), so the length of this image 
vector is ex 6 .  It is now clear that this new arrow in [14] has indeed undergone 
precisely the same amplification and twist as that in [13], thus establishing the 
analyticity of e Z.  

Vlll Geometric Solution of E' = E 
Up to now we have motivated the definition of the exponential mapping in rather 
ad hoc ways. We are now in a position to do so in a logically more satisfying 
manner, although the most compelling explanation will have to wait till later. 

Consider first the ordinary real function that we write as ex .  As we discussed 
in Chapter 2, one way of characterizing this function is to say that the slope of its 
graph is always equal to its height. An equivalent dynamic interpretation would be 
that if the distance of a particle at time t is et , then its speed equals its distance from 
us. In either event, this amounts to saying that the function satisfies the differential 
equation 

E ' = E .  (21) 

Of course this doesn't quite pin it down since A ex also obeys (21); however, if 
we insist that the real solution of (21) also satisfy E(0) = 1, then no ambiguity 
remains. 

The object of this section is to show that the complex exponential function 
can be characterized in exactly the same way. If a complex-analytic function E (z) 
is to generalize ex then it must satisfy (21) on the real axis. We will now show 
geometrically that (21) uniquely propagates ex off the real axis into the plane to 
produce the familiar complex exponential mapping. The plan will be essentially 
to reverse the flow of logic associated with [13] and [14]. 

A typical point z is being mapped to an unknown image w, where w = E (2) is 
subject to (21). Decoding this equation, we find that it says that vectors emanating 
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from z undergo an amplitwist equal to the image point w. From this alone we 
will figure out where w must be! In what follows, try to free your mind from 
assumptions based on your previous knowledge of eZ . 

Consider what happens to the little (ultimately infinitesimal) square of side 6 

shown in [15]. Because it's twisted by the angle of w, its horizontal edge becomes 
parallel to w, while its vertical edge becomes orthogonal to w. Thus horizontal 
movement of z results in radial movement of the image, while vertical movement 
results in rotation of the image. The question that now remains is exactly how swift 
these radial and rotational motions are. Having used the twist, we now turn to the 
amplification. 

Figure [15] 

If z moves at unit speed in the x-direction, then since the amplification is r ,  
the image moves radially with speed equal to its distance from the origin. But this 
is just the familiar property of the ordinary exponential function. Thus E maps 
horizontal lines exponentially onto rays. If we now insist that E (0) = 1, then the 
real axis maps to the real axis, and we thereby recover the ordinary exponential 
function. We also know that translating a horizontal line upwards will rotate its 
image ray counter-clockwise, but we don't yet know how fast. In [15] dI3 is the 
infinitesimal rotation produced by moving z through a distance e along the vertical 
edge of the square. But since the amplification is r ,  we know that the image of this 
edge has length re,  and consequently dI3 = e. In other words, 

An infinitesimal vertical translation produces a numerically equal 
rotation. (22) 

We can now completely describe the mapping produced by E (2). Imagine 
watching the image as we move from the origin to a typical point z = x + iI3 in a 
two-legged journey: first along the real axis to x, then straight up to z. See [16]. 
As we move to x,  the image moves along the real axis from 1 to ex. Repeated 
application of (22) then tells us that moving up a distance I3 will rotate the image 
through an angle 8. For example, we find that E(z) wraps the imaginary axis 
around the unit circle in such a way that 
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Figure [I 61 

This is our old friend, the celebrated Euler Formula. It also follows directly from 
this geometry that the mapping has the property 

It is now entirely logical to define "eZ " to be E(z), and our work is done. 
As we indicated at the start of this section, there is in fact an even more 

compelling explanation than the above, We have just used a very natural differential 
equation to propagate ex off the real axis; however, it will turn out that even 
this equation is superfluous. The rigidity of analytic functions is so great that 
merely knowing the values of ex on the real axis uniquely determines its "analytic 
continuation" into the complex realm. 

IX An Application of Higher Derivatives: Curvature* 
1 Introduction 

Earlier we alluded to the remarkable fact that analytic functions are infinitely 
differentiable. In other words, if f is analytic then f " exists. In this section we 
seek to shed geometric light on the meaning and existence of this second derivative 
f ". We shall do so by answering the following question: 

If an analytic mapping f acts on a curve K of known-curvature K 

at p, then what is the curvature Z of the image curve K at f ( p )  ? 

In the next section we shall see that the solution to this problem provides a novel 
insight into (of all things!) the elliptical orbits of the planets round the sun at one 
focus. 

At the risk of ruining the suspense, here is the answer to our question: 
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Figure [ 171 

whererdenotes the unit complex number tangent to the original curve at p.  Before 
explaining this result, let us simply test it on an example. 

On the left of [17] we have drawn three line-segments, and on the right their 
images under f (z) = eZ. The segments are distinguished by the value of the angle 
4 that each makes with the horizontal: 4 = 0 for the dotted one; 4 = (n/2) for 
the dashed one; and the solid one represents a general value of 4. Now look at the 
curvature of their images: Z = 0 for the dotted one; Z = e-a for the dashed one; 
and on the solid image, i? starts out large and then dies away as we spiral out from 
the origin. 

In order to c_ompare these empirical observations with our formula, write the 
unit tangent as = e i b d  note that if f (z) = ez then f" = f '  = ez. With 
z = x + iy, formula (23) therefore reduces to 

N 

K = e-X (sin 4 + K )  . 

Using the fact that K = 0 for our line-segments, and that 4 is constant on each, 
you may now easily check the accord between this formula and figure [17]. 

2 Analytic Transformation of Curvature 

We now turn to the explanation of (23). The presence of an imaginary part in 
this rather daunting formula would seem to bode ill for a purely geometric attack. 
Surprisingly, this isn't the case. Consider [18]. On the left is the curve K, with 
curvature K at p. Note that we have arbitrarily assigned a se_nse to K so as to give K 

a definite sign. At the top of the figure is the image curve K under the mapping f ;  
note that its sense is determined by that of K. It is the curvature of K" at p" = f (p) 
that (23) purports to describe. 

As illustrated, 6 is a small (ultimately infinitesimal) complex number tangent 
to K at p.  With centre at p we have drawn a circle through the tip of 6 cutting K 
in q .  At q we have drawn another small (ultimately infinitesimal) tangent complex 
number <, and we have marked the angle E of rotation from 6 to (. Recall that the 
curvature K at p is, by definition, the rate of rotation of the tangent with respect to 
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Figure [ 1 81 

distance along K . Since for infinitesimal 6 the arc pq equals 1 ij 1, the curvature at 
p is therefore 

Likewise, at the image points F-md q" on the imagecurve- K" we have drawn 
the image complex numbers f and 5 ,  the rotation from ij to 5 being ii: Thus the 
image curvature is 
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Our problep therefore reduces to finding 7 and lFl. 
Since 16 I is the length of the amplitwisted image of 6, 

= (amplification). 161 = I fr(p)l . 161. (26) 

The more interesting and difficult part of the problem is to find 7. 
If 6 and < both underwent precisely the same twist, then the turning angle 7 

for the images would equal the original turning angle E .  However, the twist at q 
will differ very slightly, say by a ,  from that at p. Thus 

N 

E = E + (extra twist) = E + a. (27) 

This is how f" enters the picture, for it describes how the amplitwist varies. 
The function f '  is a perfectly respectable mapping in its own right, and it may 

be drawn like any other. The right-hand side of [18] is precisely such a picture. 
Each point z is mapped to the complex number that amplitwists infinitesimal 
complex numbers emanating from z. In particular, we have drawn the images 
f '(p) and f '  (q )  of p and q .  The statement about infinite differentiability can now 
be recast in a more blatantly astonishing form: iff is locally an amplitwist, then 
f '  automatically is too. We have indicated this in the picture by showing the disc 
at p being mapped by f '  to another disc at f '  (p). This startling fact will now yield 
to us the value of a. 

The amplitwist that carries the disc at p to the disc at f '(p) is f "(p). In 
particular, 6 is amplitwisted to 

But looking at the triangle on the right, the sides of which are the known quantities 
f '(p) and X ,  we see that the angle at the origin is precisely the extra twist a that 
we seek. 

It is easier to obtain an expression for this angle if we first rotate the triangle 
to the real axis. This rotation is achieved quite naturally (see the bottom figure) 
by dividing by f '  (p) ; the sides of the triangle now become 1 and v = [X / f '(p)]. 
Because a equals the (ultimately) vertical arc through 1, the figure tells us that 

a = arc = Im(v) = Im 

Thus, from (25), (26), and (27), and taking evaluation at p as understood, we obtain 

Finally, using (24) and noting that = (6/161) is the unit tangent at p, we do 
indeed obtain formula (23). 
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3 Complex Curvature 
Let us take a closer look at formula (23), which may be written 

The presence of the second term can be understood as follows. If the plane were 
to undergo a uniform expansion by factor R then a circle of radius ( 1 1 ~ )  would 
become a circle of radius (R/K), that is of curvature (KIR). But a small piece of a 
general curve resembles an arc of its circle of curvature4, and the principal local 
effect of f (apart from a curvature-preserving twist) is an expansion by factor ( f '  1. 

In addition to this phenomenon, the first term says that the mapping will intro- 
duce curvature even when none is originally present: the curvature of the image 
of a straight line (as a function of its direction) is 

f ''T n ( ~ ,  - r, [-I . 
f '  If'l 

Now consider the fate of all the curves that pass through p in the direction 
The general formula says that f will not only scale their curvatures by (111 f '  1) 
(as previously explained), but it will also increase their curvatures by the fued 
amount k (e  ). In this sense the first term corresponds to an intrinsic property of 
the mapping f .  A 

However, k (e  ) is not really intrinsg to f since it retains a vestige of the 
original curves, namely, their direction 6.  It wo_uld appear that the most natural 
intrinsic quantity that can be abstracted from k(  ( ) is 

i f "  
I C - w .  

f '  If'l 

We propose to call this complex function K: (which does not appear to have been 
investigated previously) the complex curvature of f .  

To see that the complex curvature is indeed a natural quantity, picture K:(p) as 
a vector emanating from p. We will show that 

The projection of K:(p) onto a line through p is the curvature of the 
image of that line at  f (p). (29) 

See [19], in which K: has also been drawn at two additional points. Note how the 
increasing length of the projection of K: onto the line corresponds to increasing 
curvature along the image. 

To prove (29), recall how the scalar product in It2 can be expressed in terms 
of complex multiplication: 

4 ~ h e  circle that touches the curve at the point in question, and whose curvature K = l/radius 
agrees with that of the curve at that point. 
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Figure [19] 

as was to be shown. This result yields a neater and more intelligible form of (23): 

- A K 
K = K = < + - .  

I f'l 

To see how IC(p) may be determined geometrically, imagine a short, directed 
line-segment S rotating about p. The image f ( S )  rotates with equal speed about 
f (p), and its curvature oscillates sinusoidally: it reaches its maximum value IIC(p) I 
when S points in the direction of IC(p), while it vanishes when S is perpendicular 
to U P ) .  

In fact, to reconstruct IC(p) it is sufficient to know the image curvatures ~1 and 
~2 for just two positions S1 and S2 of the line-segment. Figure 1201 illustrates this in 
the particularly simple case that S1 and S2 are horizontal and vertical, respectively. 
We then have 

K: = ~1 + i ~ 2 .  

We conclude this section with a different way of looking at K. On the left of 
[21] is an infinitesimal black shape Q, together with copies obtained by translating 
Q a fixed amount 16 1 in various directio_ns 6. Under an analytic mapping f ,-Q is 
amplitwisted to the similar black shape Q on the right. As Q translates by 6, Q not 
onlx translates by f '6, but it also rotates and expands. More precisely, the rotation 
of Q is just the angle a on the RHS of [18]. This rotation is clearly greatest when x 
is perpendicular to f' (p), pointing counterclockwise along the circle I f '  1 = const. 
This occurs when 6 is in the direction of IC, for then 

x cc f"IC cc ilf cc if'. 
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Figure [20] 

If we turn the direction of motion of Q by -(n/2), then x also turns by -(n/2) 
to point radially outwards along the ray arg f' = const., thereby producing the 
greatest increase in ) f ' 1. 

We now understand [21] in greater detail: 

Let Q be an injnitesimalphape, and let be its image under an an- 
alytic mapping f .  Then Q rotates most rapidly, and its size remains 
constant, when Q moves in the direction of K. On the other hand, (3 1) 

expands most rapidly, and does not rotate, when Q moves in the 
orthogonal direction -i K. 

In still greater detail, as Q b ~ i n s  to translate in an arbitrary direction r, let 72 
denote the rate of rotation of Q with respect to the distance it moves. Then 

This achieves its maximum value _= 1 Kl when Q moves in the direction of 
K. Similarly, consider the expansion of Q.  Let E denote the rate of increase of the 

Figure [21] 
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size5 of 3 (again with respect to the distance it moves) as a fraction of 5 ' s  initial 
size. Then [exercise] 

& = z x  lc. 

This achieves its maximum value Em, = 1x1 when Q moves in the direction -iK. 
These two results may be viewed as two facets of the single complex equation 

In Chapter 12, having developed the physical concepts of "flux" and "circu- 
lation", we shall return to the complex curvature and see that it has other elegant 
properties and applications. 

X Celestial Mechanics* 
1 Central Force Fields 
If a particle p, moving through space, is constantly being pulled towards (or pushed 
away from) a fixed point o with a force that depends only on its distance r from 
o then we say that it is in a central forcefield and that o is the centre of force. No 
matter how the force varies with r ,  it is not hard to show [exercise] that the orbit 
of p will always lie in a plane through o. 

Another feature of motion in any central force field is that the radius op sweeps 
out area at a constant rate A, called the areal speed. A proof of this is given in 
Ex. 24. If the mass of p is m then [exercise] the angular momentum h of p is 2mA. 
The fact that A is constant is thus a manifestation of the conservation of angular 
momentum. 

In addition to the angular momentum, the total energy E of the particle remains 
constant as it orbits. Henceforth, we shall always use a particle of unit mass. Thus 
if the particle's speed is v then the kinetic energy contribution has the definite value 
iv2, while the potential energy contribution is only defined up to a constant. We 
shall restrict ourselves to force fields that vary as a power of r ,  and we may then 
fix the constant by arbitrarily assigning zero potential energy to the point where 
the field vanishes: if the force grows as a positive power of r ,  at the origin; if the 
force dies away as a negative power of r ,  at infinity. 

2 Two Kinds of Elliptical Orbit 
Consider the attractive linear force field in which, by definition, the force towards 
o is proportional to r .  This linear force law is extremely important in physics, 
for if almost any physical system is slightly disturbed from equilibrium then the 
restoring force is precisely of this kind. Here is a simple example of what we mean; 
it will enable you to experimentally investigate motion in a linear force field. You 
are encouraged to do the following, not merely to imagine it. 

Take a small weight W and suspend it just above a point o of a horizontal 
table using several feet of thread, perhaps attached to the ceiling. If you pull W 

5 ~ e r e  we mean the linear dimensions of 5. For example, if 5 were a disc then we could take 
its "size" to be its radius. 
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to the side by just an inch or two then, because the thread is long, W barely rises 
above the table's surface and we may idealize this to a movement on the table. 
Furthermore, although the forces acting on W in this displaced position are actually 
gravity and the tension in the thread, the net effect [exercise] is as though o were 
magically pulling W towards it with a force proportional to r, as was required. To 
avoid the possibility of confusion later, we stress that gravity is playing absolutely 
no essential role here; it is merely providing one particularly convenient way of 
simulating a linear force field. 

Now pull W a little bit away from o and give it a gentle flick in a random 
direction. You see that the orbit of W is a closed curve traversed again and again- 
a beautifully symmetrical oval shape centred at o. But exactly what is this oval? 

It is an ellipse! To demonstrate this, take the tabletop to be @ with o as its 
origin. Once again take W to have unit mass, and let its location at time t be z(t). 
For simplicity's sake, let the force directed towards the origin equal the distance 
lz 1. The differential equation governing the motion of W will therefore be 2 = -z, 
the two basic solutions of which are z = e"'. These represent counter-rotating 
motions of unit speed around the unit circle. [Try launching W so as to produce 
these solutions.] The general solution is then obtained as a linear combination of 
these motions: 

z = p eit + q e-" , (32) 

where p and q may, without any real loss of generality, be taken as real and 
satisfying p > q. 

As is illustrated in [22], the superposition of such circular motions results in 
elliptical motion with the attracting point at the centre. This becomes clear if we 

Figure [22] 
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rewrite (32) as 

where a = p + q and b = p - q. Each of these numbers has a double significance: 
a is both the semimajor axis and the point of launch; b is both the semiminor axis 
and the speed of launch. Note that the foci are at f 4- = f 2 a .  

Finally, for future use, let us calculate the constant energy E of a particle 
orbiting in this field. The potential energy is the work needed to pull the particle 
away from the origin out to a distance of r ,  namely, [exercise] (r2/2). Thus 

As the particle orbits round the ellipse in [22], we see that this expression always 
equals (a2 + b2). 

We now turn to a second, more famous example of elliptical motion in a central 
force field: the orbits of the planets around the sun. There are two fundamental 
differences between this phenomenon and the one above. First, instead of the force 
of attraction increasing linearly with distance, here the force of gravity dies away as 
the square of the distance from the sun. Second, instead of the centre of attraction 
being at the centre of the elliptical orbit, here the sun is at one of the foci. 

The ancient Greeks discovered that the ellipse has beautiful mathematical 
properties; two thousand years later Newton revealed that it has equally beautiful 
physical significance. He discovered that if, and only6 if, the force field is linear or 
inverse-square, then elliptical orbits result. In the Principia Newton explicitly drew 
attention to this coincidence, calling it "very remarkable". As the Nobel physicist 
S. Chandrasekhar [1995, p. 2871 observed, "nowhere else in the Principia has 
Newton allowed himself a similar expression of surprise." 

We are left with something of a mystery. There appears to be some special con- 
nection between the linear and inverse-square force fields, but what could it possi- 
bly be? Newton himself was able to find a connection, and we shall use complex 
analysis to find another. For more on both these connections, see Arnol'd [1990], 
Needham [1993], and Chandrasekhar [1995]. 

3 Changing the First into the Second 

The geometry of complex numbers was not yet understood in the time of Newton; 
had it been, he would surely have discovered the following surprising fact. If we 
apply the mapping z H z2 to an origin-centred ellipse, then the image is not 
some strange ugly shape, as one might expect, but rather another perfect ellipse; 
furthermore, this ellipse automatically has one focus at the origin. See [23]. Before 
exploring the implications, let us verify this fact: squaring (32), 

6 ~ e w t o n  assumed that the force varies as a power of the distance, but it has since been discov- 
ered that the result is still true if we drop this requirement. 
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Figure [23] 

The first two terms correspond to an origin-centred ellipse with foci at f 2pq; the 
last term therefore translates the left-hand focus to the origin. 

Expressed in dynamical terms, this geometric result says that while leaving the 
attracting point fixed at the origin, z I+ z2 transforms an orbit of the linear field 
into an orbit of the inverse square field. However, we are only in a position to state 
the result in this way because we already know what the orbits in the two fields 
look like. Is there instead some a priori reason why z I+ z2 should map orbits of 
the linearfield to orbits of the gravitationalfield? If there were such a reason then 
[23] could be viewed as a novel derivation, or explanation, of the elliptical motion 
of planets about the sun as focus. 

That there is indeed such a reason was discovered around the turn of the century. 
Several people deserve credit for this beautiful result which, at the time of writing, 
is still not widely known. Apparently K. Bohlin [I91 11 was the first to publish it, 
not knowing that E. Kasner [19 131 had already discovered a more general result in 
1909. Finally, knowing only of Bohlin's work, V. I. Arnol'd [I9901 rediscovered 
Kasner's general theorem. 

Before embarking on the details of the explanation, here (following Need- 
ham [1993]) is our plan of attack. In the absence of force a particle will move 
in a straight line; bending is therefore the manifestation of force, and this can be 
quantified in terms of the curvature of the orbit. Since the mapping z H z2 is 
analytic, we may use the results of the previous section to find the relationship 
between the curvature of an orbit and the curvature of the image orbit produced by 
the mapping. This will enable us to find the relationship between the forces that 
hold the preimage and image in their respective orbits. 

4 The Geometry of Force 

Given an orbit and a centre of force, our aim is to find a purely geometric formula 
for the magnitude F of the force F that holds the particle in that orbit. Consider 
figure [24]. As illustrated, it is conceptually very helpful to decompose F into 
components FT and FN that are tangential and normal to the orbit, respectively. 
The effect of the component FT is to change the speed v of p without altering its 
course. The effect of the component FN is to bend the orbit of p without altering 
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Figure [24] 

its speed. 
From elementary mechanics we know that if a particle of unit mass moves at 

constant speed v round a circle of radius p then the force directed towards the centre 
is (v2/p). Thus if the curvature of the orbit is K (as illustrated) then FN = K V ~ .  If 
we call the acute angle between the radius and the normal y, then it follows that 
the total force acting on p is 

F = FN sec y = K v2 sec y. 

In order to fully reduce this formula to geometric terms, we need to express v in 
geometric terms. This is made possible by the constancy of the angular momentum 
h = 2A. If we decompose the velocity v into radial and transverse components 
v, and vt, then clearly only the latter generates area. More precisely, h = 2A = 

sec y 
v=h(--). 

Substituting for v in the previous result, we obtain the desired geometric formula 
for the force: 

This result is essentially due to Newton [1687, Prop. VII]. Observe that the concept 
of time has almost disappeared in this formula, the only vestige being the constant 
h that specifies how fast the orbit is traversed. 

5 An Explanation 
As z describes an arbitrary orbit, (34) tells us the force F needed to hold it in that 
orbit. Now apply the mapping z n z2,  a_nd let a tilde denote a quantity associated 
with the image, e.g., 7 = r2. The force F needed to hold the image in its orbit is 
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and we now seek to relate this to the original force F. 
First, to find r ,  simply put f (z) = z2 into (23) and thereby obtain [exercise] 

Next, observe that since the ray from 0 10 z maps to the ray from 0 to z2, the 
conformality of the mapping implies that y" =-y . 

l t t i n g  these facts into the formula for F, and substituting for the original 
speed and force from (33) and (34), we get 

Even if F is a simple power law, generally this F will not be. However, if and 
only if the original force field is linear7, the numerator in the above expression 
magically becomes the constant total energy E of the particle in the original field: 

The image therefore moves in a field that is inverse-square, as was to be shown. 
Here is a fact which may have been bothering you already. The only gravita- 

tional orbits we have managed to explain in this way are the ellipses; where are the 
hyperbolic orbits which we know are also possible in a gravitational field? In fact 
the geometry of z H z2 does explain these, the resolution being that gravitational 
orbits arise not only as the images of orbits in a linear field that is attractive, but 
also of orbits in a linear field that is repulsive, F = -r. The orbits in this field are 
hyperbolae with centre (i.e., intersection of asymptotes) at the origin, and z I--+ z2 
maps these to hyperbolae with one focus at the origin. 

The dynarnical explanation is almost unchanged: the constant total energy of 
the particle in the original repulsive linear field is now given by E = $ (v2 - r2), 
so inserting F = -r in (35) once again yields (36). See Needham [I9931 for more 
on this, as well as the general result we are about to state, which may be proved in 
exactly the same way as the special case above. 

6 The Kasner-Arnol'd Theorem 
The power laws F oc r and F" a y-2 are examples of what Arnol'd calls dual force 
laws, and both he and Kasner discovered that they constitute just one example of 
duality. Here is the general result: 

7~owever, as we shall see in a moment, it could be the repulsive linear field F = -r instead 
of the attractive one F = t r .  
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Associated with each power law F cx r A  there is precisely one 
N 

- 
power law F cx F A  that is dual in the sense that orbits of the former 
are mapped to orbits of the latter by z I-+ zm, and the relationships 
between the forces and the mapping are: 

( ~ + 3 ) ( A " + 3 )  = 4  and (A + 3) m = -  
2 .  

To their result we add the following point of clarification on the role of energy: 

In general, positive energy orbits in either the attractive or repulsive 
jield F cx r A map to attractive orbits in the dual$eld, while negative 
energy orbits map to repulsive ones. Howevel; if -3 < A < - 1 
(e.g., gravity) then these roles are reversed. In all cases, zero energy 
orbits map to force-free rectilinear orbits. 

XI Analytic Continuation* 
1 Introduction 
Throughout this book we have stressed how functions may be viewed as geometric 
entities that need not be expressed (nor even be expressible) in terms of formulae. 
As an illustration of the limitations of formulae, consider 

This power series converges inside the unit circle lzl = 1, and consequently it is 
analytic there. Figure [25] shows a grid of little squares inside this circle being 
amplitwisted to another such grid lying to the right of the vertical line x = (1/2), 
which itself is the image of the circle. Now this circle is certainly a barrier to the 
formula, for G clearly diverges at 1 ; geometrically, the image of the circle extends 
to oo. However, the circle is not a barrier to the geometric entity that the formula 
is unsuccessfully attempting to describe. 

Consider a somewhat different-looking power series centred at - 1 : 

This series is analytic inside a larger circle of convergence ) z  + 1)  = 2. Despite 
the apparent difference, H(z)  maps the previously considered solid grid inside 
lzl = 1 to precisely the same grid on the right of x = (1/2) as G did: H = G 
inside lzl = 1. But now the grid may be extended to the dotted one lying outside 
lz I = 1, and H amplitwists it to the dotted grid lying to the left of x = (1/2). We 
say that H is an analytic continuation of G to the larger disc. An obvious question 
is whether H is the only analytic continuation of G to this region. As we hope [25] 
makes palpable, the rigidity imposed by being locally an amplitwist does indeed 
force the mapping to grow in a unique way. 
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Figure [25] 

The object of this final section will be to make this rigidity clearer, and also to 
describe one method (due to Schwarz) of explicitly finding the mapping in regions 
beyond its original definition. Before doing this, however, we will complete our 
discussion of [25]. 

The figure makes it plain that H is no more the end of the line than G was: it too 
can be continued. But if we cling to power series then the scope of our description 
of the mapping that underlies both G and H will be strictly limited. This is because 
such series only converge inside discs, and if we try to expand any disc then it will 
eventually hit the singularity at z = 1 and then be unable to go round it. Thus 
any power series will necessarily miss out at least half of the potential domain of 
the mapping. On the other hand, as you may have already noticed, the Mobius 
transformation 1/(1 - z) is analytic everywhere except z = 1, and it agrees with 
both G and H within their circles of convergence; it thus constitutes the complete 
analytic continuation of the mapping. [We encourage you to use this fact to check 
the details of the figure.] The simplicity of this example is perhaps misleading. 
Usually one cannot hope to capture the entire geometric mapping within a single 
closed expression such as 1/(1 - z). 

When one stares at a figure like [25] one starts to sense the rigid growth of the 
mapping due to the analytic requirement that an expanding mesh of tiny squares 
must map to another such mesh. It also becomes clear how the mapping itself is 
oblivious to the different formulae with which we try to describe it. Indeed we have 
seen that the two circles-such formidable and impenetrable barriers to the power 
series-have only a slight significance for the mapping itself: both hit z = 1, so 
both images extend to oo. 
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2 Rigidity 
The essential character of analytic rigidity is captured in the following result: 

If even an arbitrarily small segment of curve is crushed to a point 
by an analytic mapping, then its entire domain will be collapsed 
down to that point. 

The theory of integration to be developed in the following chapters will provide a 
convincing explanation of this fact. For the present, though, we can obtain a good 
measure of insight into its truth by extending our previous discussion of critical 
points (page 204). This may give the illusion of dispensing with integration theory, 
but as we pointed out at the time, that discussion also had to draw on future results. 
We now recap the relevant facts concerning critical points. 

The amplification vanishes at a critical point p ,  leading to the impression that 
an infinitesimal disc centred there is crushed down to a point. However, this is 
merely a 'trick of the light' due to low magnification of the image plane. If the 
order of p is (m - I), so that the mapping locally resembles zm , then an infinitesimal 
disc at p of radius E will be mapped [m-fold] onto a vastly smaller disc of radius 
em. In terms of the microscope analogy this means that we must use the Lm lens 
to see that the image isn't a perfect point. The greater the order, the greater the 
degree of crushing at p ,  and the greater the power of the first lens that will reveal 
the nonpointlike image. 

Now observe that, calculationally speaking, the role of the increasingly high- 
powered lenses that fail to resolve the image is taken over by the increasingly 
high-order derivatives that vanish at p: 

L 1, . . . , L,-l show nothing, but image visible with Lm 
f f( p )  = 0, f ff(p )  = 0 , .  . . , f(m-l)(p) = 0, but f m(p)  # 0 

In short, the higher the derivative that vanishes at p, the greater the degree of 
crushing at p. 

We now apply this insight to the given situation. Let s be the (possibly) tiny 
segment that is crushed by f (2). The amplification of f at a point of s may be 
read off by looking in any direction. By choosing to look along s we find that the 
amplification vanishes at each point of s.  The entire segment is therefore made up 
of critical points for which f '  = 0. Now think of f' as an analytic mapping in its 
own right, just as we did in [18]. We have just seen that this mapping automatically 
possesses the same property as f did: it crushes s to a point. We conclude that its 
derivative must also vanish on s.  Clearly there is no end to this; all the derivatives 
of f must vanish, and, correspondingly, infinitesimal discs centred on s must be 
totally crushed. 

This means that there is at least a sheathlike region surrounding s which is 
completely crushed by f .  But if we take a new curve lying in this region, the 
whole line of thought may be repeated to deduce that f must crush a still larger 
region. The collapse of the function therefore proceeds outwards (at the speed of 
thought!) to the entire domain. 
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3 Uniqueness 

Suppose that A(z) and B(z)  are both analytic functions defined on a region that 
happens to be the same size and shape as California. Suppose, further, that A 
and B both happen to have the same effect on a tiny piece of curve, say a fallen 
eyelash lying in a San Francisco street. This tiny measure of agreement instantly 
forces them into total agreement, even hundreds of miles away in Los Angeles! 
For (A - B) is analytic throughout California, and since it crushes the eyelash to 
0, it must do the same to the entire state. 

We can express this slightly differently. If we arbitrarily specify the image 
points of a small piece of curve s ,  then in general there will not exist an analytic 
function that sends s to this image. However, the previous paragraph assures us 
that if we can find such a function on a domain including s ,  then it is unique. 

This is the "compelling reason" we referred to earlier in connection with the 
uniqueness of the generalization of ex to complex values. For if an analytic gener- 
alization E (z) exists, then we see that it will be uniquely determined by the values 
of ex on even a small piece of the real axis. Of course knowing this does not help in 
the least to find out what E (z) actually is. The value of our previous derivations of 
explicit expressions for E (z) therefore remains undiminished. On the other hand, 
the new knowledge is not without practical implications. Consider these three very 
different-looking expressions: 

lim ( I+: )~  , e X( cosy+ i s iny ) ,  l + z + ~ ~ / 2 ! + ~ ~ / 3 ! + . - - .  
n+oo 

They are all analytic, and they all agree with ex when z is real. Thus, without 
further calculation, we know they must all be equal to each other, for they can only 
be different ways of expressing the unique analytic continuation of ex. 

New and important aspects of uniqueness emerge when we consider domains 
that merely overlap, rather than coincide. Let g(z) and h(z) be analytic functions 
defined on the sets P and Q shown in [26a]. If they agree on even a small segment 
s in P n Q then they will agree throughout P n Q. If we imagine that we initially 
only know about g on P ,  then we may think of h as describing the same geometric 
mapping as g but with the domain P extended to encompass Q. We are encouraged 
in this view by the fact that g uniquely determines this analytic continuation. For 
suppose h* were another continuation of g into Q. On s we would then have 
h* = g = h, but this forces h* = h throughout their common domain Q. 

The functions G(z) and H (z) of the introduction furnish a concrete example 
of the above, where P happens to lie wholly within Q. The function 1/(1 - z) 
then constitutes the analytic continuation of H to the rest of the plane. 

Just as g was continued from P to Q, so we may continue the process along a 
whole chain of overlapping sets P ,  Q, R,  . . . , S, as in [26b]. We thereby obtain a 
unique ana&tic_continuation of g to S. But what if we chose an alternative route 
such as P ,  Q, R, . . . , S ? Once again the continuation of g to S is unique, but there 
is absolutely no reason why this should agree with thejirst continuation. The idea 
of analytic continuation has thus led very naturally to the idea of multifunctions. 
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Figure [26] 

Consider [27]. In P we can define a single-valued branch of log z given by 
f (z) = In r + i 0, where -n < 0 5 n. The figure shows how 1 maps to 0, and 
how P maps to the surrounding region f (P).  If we define g (z) = In r + i O (with 
n - < O 5 F) then since g = f on P n Q, it must be the analytic continuation of - - N 

f to Q. Likewise its continuation to Q is g (z) = In r + i O, where - < O 5 F ,  
for example. In the region surrounding - 1 we now have two unique continuations 
of one and the same function f .  But despite this common ancestry, they clearly 
disagree with each other: g(- 1) = i n ,  while g(- 1) = - in. 

Figure [27] 

4 Preservation of Identities 

In this subsection we will show that any identities that hold for real functions must 
continue to hold for their analytic generalizations to C (assuming such exist). This 
is easiest to explain through examples. 

First we consider an important example dealing with power series. Suppose 
that the real function f (x) can be represented by a convergent power series 

We therefore know that the complex series 
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is convergent and hence analytic. But since F (x) = f (x) on the real axis, it follows 
that F is the unique analytic continuation of f to complex values. In other words, 
the transition from f to its analytic continuation does not change the formula 
(series). 

For our next example we consider a real identity involving two variables: 
ex . ey = eX+Y. It will help to appreciate the argument if you can be temporarily 
stricken with amnesia, so that the complex function eZ and its associated geometry 
suddenly mean nothing to you. Suppose that an analytic continuation of ex to 
complex values exists, and call it E(z). We can now show that E must be subject 
to precisely the same law, and without even knowing what E is! 

Let F3. (z) = E(<) - E (z), and let Gy (z) = E (5 + z). First note that for fixed 
< both F(z) and G(z) are analytic functions of z. Now suppose that < is real, so 
that E(<)  = eC. If z now moves on a segment of the real axis then it follows 
from the real identity that F (z) = G (z); but from our recent results we know this 
implies that they are equal everywhere. If we hold z fixed instead, then analogous 
reasoning yields FC = Gc, and we conclude that 

for complex values of both { and z. It should be clear that this reasoning extends 
to any identity, even one involving more than two variables. 

5 Analytic Continuation via Reflections 
Quite distinct from questions of existence and uniqueness is the problem of actually 
finding an analytic continuation. The above ideas and results are mute on this 
issue, although it could reasonably be claimed that the persistence of identities is 
a practical help. We next explain a Symmetry Principle (due to Schwarz) which 
enables one to find a continuation easily and explicitly, albeit under rather special 
circumstances. 

We first describe how it is possible to use two reflections to construct a new 
analytic function from an old one. Suppose an analytic function f is defined on 
a region P, the image of which is Q (see [28]). Let P and 2 be the reflections 
of these regions across the real axis. We can now use f to construct an analytic 
mapping from to 2 ,  namely 

The figure explains why f * is conformal, and hence analytic. All three stages, 
a I+ Z I+ f (Z) I+ f (Z), preserve the magnitude of an angle at a;  the first 
reflection reverses the sense, then f preserves the reversed sense, and finally the 
second reflection undoes the damage, restoring the angle to pristine condition at 
f *(a). 

In general this mapping f * will not be a continuation of f in any sense, rather 
it is an entirely new mapping. This should become clear if you imagine moving 
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Figure [28] 

P downwards until some of it crosses the real axis. P and 7 now overlap so that 
P n 7 constitutes a common domain for f and f *, but we hope you can see that 
there is no reason for them to agree with each other. This is clearer still if we take 
an example: 

exerc se 
f = (rotation of 4) ==$ f * = (rotation of -4). 

Although it is generally not a continuation of f ,  this new mapping f * (together 
with its soon to be introduced generalization to circles) is very useful in its own 
right. In Chapter 12 we will show that it is intimately connected with the so-called 
method of images of electrostatics and fluid dynamics. 

We now turn to the special circumstance under which f * is the analytic contin- 
uation of f . Suppose that f is itself the complex generalization of a real function, 
and let P have a part L of its boundary along the real axis, as in [29]. Since f is 
real on L, the image set Q will also border on the real axis. Unlike the general 
situation previously considered, f and f * will now automatically agree on their 

Figure [29] 
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common domain P f l  P = L, for if z is real then 

We can now think off and f * as being two parts of a single analytic mapping F 
on PUP. Indeed, by considering what happens to the two halves of an infinitesimal 
disc centred on L, it's clear that F is analytic there, for the image is another 
infinitesimal disc. [What happens if we are at a critical point?] Once again, notice 
how different this is from the case of real functions, for we could easily join two 
pieces of graph together with a kink at the join; their values would then agree, 
while their derivatives would not. 

Of course if f is already defined in P (as well as P )  then f * must simply repro- 
duce the mapping that's already there. For example, the formula for the complex 
generalization sin z is valid everywhere, so it should be subject to the symmetry 
f "(z) = f ( z ) .  Indeed if we follow the three steps of a H f *(a) then we do find 
that .- .- ,~a 

A 
e-la e-ia - 

a ~ Z w  H = sin a . 
2i -2i 

We can rephrase our result in a more symmetric and slightly generalized [ex- 
ercise] fop. If f maps a line-segment L (not necessarily real) to another line- 
segment L, then we can analytically continue from one side of L to the other by 
using the fact that points symmetric in L map to points symmetric in 2. 

This sounds very reminiscent of the conservation of symmetry by Mobius 
transformations that we discovered in Chapter 3, and indeed by fusing these two 
symmetry principles we can obtain a significant generalization of our result. Sup- 
pose that instead of mapping a particular8 line to a line, f sends a part C of a circle 
to a part C  ̂of another circle. We can reduce thisto the-previous case by using 
two Mobius transformations to send C H L, and C H L. We deduce that points 

h 

symmetric in C map to points symmetric in C. 
As a mixed example, imagine that f maps part of the unit circle to part of 

the real axis. If f is only known inside the circle then the above result tells us 
[exercise] that there is an analytic continuation to the exterior given by 

The complete analytic function F is then defined to be f inside the circle, and f 
outside the circle. By construction, this function sends symmetric pairs of points 
to conjugate images: F? (z) = F (2). 

Using what is now known as Schwarzian reflection, H.A. Schwarz [I8701 was 
able to generalize his Reflection Principle beyond lines and circles to more general 

w e  stress "particular", because if a general line were sent to a line then the mapping could 
only be linear. Similarly, in the new case, if a general circle were sent to a circle then the mapping 
would have to be a Mobius transformation. 
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curves. We end this chapter with a description of this simple, yet fascinating, idea. 
The key is to use an analytic function to fake conjugation. 

We know that reflecting every point across the real axis ( z  I+ T) is not an 
analytic function. However, given a sufficiently smooth9 curve K, it is possible to 
find an analytic function SK (z) that selectively sends just the points of K to their 
conjugates: 

Z E  K S K ( Z ) = Z .  

Davis and Pollak [I9581 christened SK the Schwarzfunction of K. We can now 
define the Schwarzian reflection of z across K to be 7 = 91K (z), where 

To see why this is a good idea, consider [30]. First note that points on K are 

Figure [30] 

unaffected, in accord with the ordinary notion of reflection, e.g., 

Next, observe that since SK is analytic, an infinitesimal disc centred at q is am- 
plitwisted (not reflected) to a disc centred at ?. Furthermore, by noting how qT is 
mapped to 6, it follows that on K 

amplification = 1 and twist = -24 j S k = e-i24, 

9 ~ h e  curve must in fact be "analytic". On this point see Davis [1974], which also contains 
many interesting applications of the Schwarz function. A more advanced work is Shapiro [1992]. 
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where 4 is the angle that the tangent to K makes with the horizontal. It is now clear 
from the symmetry of the figure that if the point a is on the infinitesimal circle, 
then Z is indeed its reflection across the tangent of K. Thus, at least very close to 
K, z H ? is a reasonable generalization of the reflection concept. Furthermore, 
reflecting in K twice yields the identity mapping, as it should. For since %K is 
anticonformal, RK o RK is conformal, i.e., analytic. But since this function maps 
each point of K to itself, and since an analytic function is determined by its values 
on a curve, o !JiK must be the identity mapping. 

We leave it to the exercises for you to show that if K is a line or a circle then ? 
is just the ordinary reflection, even if z is far from K. For example, the unit circle 
C may be written as Zz = lz12 = 1, so that on C we have Z = (l/z). Thus its 
Schwarz function is Sc (z) = (l/z), and so (z) = (l/T), which is just inversion 
in C. 

Let us give a less trivial example, namely, reflection in the ellipse E with 
1 equation (x/a12 + (y/b)2 = 1. Writing x = (z + Z) and y = (z - a, then 

solving for T in terms of z, we find [exercise] that 

With a = 2 and b = 1, for example, Schwarzian reflection is given by 

which is illustrated in [31]. We encourage you to verify this figure with your 
computer, as well as to examine the effect of 9tE on other shapes. 

With the proper concept of reflection in hand, we may now generalize the above 

Figure [3 11 
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method of analytic continuation across lines and circles to more general curves. 
Let f be an analytic mapping defined in a region P bordering on a curve L that is 
smooth enough to possess a Schwarz function, and let L = f (L) be the image of 
L under f .  Much as in figures [28] and [29], we may now analytically continue f 
across L by demanding that points that are symmetric in L map to ~o in t s  that are 
symmetric in L. Thus [draw a picture!] the continuation f of f to P = !RL (P)  is 

By the same argument as in [28], this is indeed analytic in P", for it is the composi- 
tion of one conformal mapping with two anticonformal mappings. ~ l s o l f t  = f 
on L. The complete analytic function F given by f in P and f in P is then 
subject to the symmetry F* = F. This is Schwarz's Symmetry Principle. 

Our_revious results are just special cases of this construction. For example, if 
L and L are segments of the real line then !RL (z) = !R~(z )  = T, SO f = f *, as 
before. Similarly, if L is an arc of the unit circle (so that !RL (z) = 1/T) and is a 
segment of the real line (so that !Rx = T), then f = f ?, as before. 
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XI1 Exercises 

1 Show that if f = u + iv is analytic then (Vu) - (Vv) = 0, where V is the 
"gradient operator" of vector calculus. Explain this geometrically. 

2 Show that the real and imaginary parts of an analytic function are harmonic, 
i.e., they both automatically satisfy Laplace's equation: 

where A (which is often instead written v2 )  is defined by A = a: + 3; and is 
called the Laplacian. [In Chapter 12 we will see that this equation represents a 
crucial link between analytic functions and physics.] 

3 Use the previous exercise (not calculation) to show that each of the following 
is "harmonic". 

(i) ex cos y . 

(ii) e(x2-y2) cos 2xy. 

(iii) In (f (z) 1, where f (z) is analytic. 

4 What is the most general function u = a x2 + b xy + c y2 that is the real part 
of an analytic function? Construct this analytic function, and express it in terms 
of z. 

5 Which of the following are analytic? 

(i) e-Y (cos x + i sin x) . 
(ii) cos x - i sin y . 
(iii) r3 + i30. 

(iv) er cos 0 1  (0+r cos 0) 

6 Solve the Polar CR equations given that ae v = 0. Express your answer in terms 
of a familiar function, and interpret everything you have done geometrically. 

7 Use the Cartesian CR equations to show that the only analytic mapping that 
sends parallel lines to parallel lines is the linear mapping. [Hint: Begin with 
the case of horizontal lines being mapped to horizontal lines. How does this 
translate into 'Equationspeak'? Now solve CR.] 

8 Calculate, then draw on a picture, a possible location for log(1 + i). Draw a 
small shape at 1 + i. Use the amplitwist of log(z) to draw its image. Verify this 
using your computer. 

9 Derive the quotient rule in an analogous way to the product rule (see page 226). 
[Hint: Multiply top and bottom of ( A I B )  by (b - cg') . ]  

10 Consider the polynomial P(z) = (z - al)(z - a2) . . . (z - a,). 
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(i) Show that the critical points of P(z) are the solutions of 

(ii) Let K be a circle with centre p.  By considering the conjugate of the equation 
in (i), deduce that p is a critical point if and only if it is the centre of mass 
of the inverted points ZK (aj). 

(iii) Show that the equation in (i) is equivalent to 

and by interpreting the LHS as a (positively) weighted sum of the vectors 
from z to the roots of P ( z )  , deduce Lucas ' Theorem: The critical points of 
a polynomial in C must all lie within the convex hull of its zeros. This is a 
complex generalization of Rolle7s Theorem in ordinary calculus. [Hint: Use 
the fact that (32) on page 104 is still valid even if the masses are not equal.] 

11 Use (eZ)' = eZ to show that the derivatives of all the trig functions are given by 
the familiar rules of real analysis. 

12 Provided it is properly interpreted, show that (z")' = p 2"-' is still true even 
if p is complex. 

13 (i) If a is an arbitrary constant, show that the series 

converges inside the unit circle. 

(ii) Show that (1 + z)fr  = af .  

(iii) Deduce that [(I + 2)-' f]' = 0. 

(iv) Conclude that f (z) = (1 + z)'. 

14 As we pointed out in Chapter 3, stereographic projection has a very practical 
use in drawing a conformal map of the world. Once we have this map we can 
go on to generate further conformal maps, simply by applying different analytic 
functions to it. One particularly useful one was discovered (using other means) 
by Gerhard Mercator in 1569. We can describe it (though he could not have) as 
the result of applying log(z) to the stereographic map. 

(i) Look up both a stereographic map and a Mercator map in an atlas, and make 
sure you can relate the changes in shape you see to your understanding of 
the complex logarithm. 
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(ii) Imagine plotting a straight-line course on a Mercator map and then actually 
travelling it on the high seas. Show that as you sail, the reading of your 
compass never changes. 

15 (i) By noting that the unit tangent (in the counterclockwise direction) to an 
origin-centred circle can be written as = i (z/ 1 z I), show that formula (23) 
for the curvature of the image of such a circle can be written as 

(ii) What should this formula yield if f (z) = log z? Check that it does. 

(iii) What should this formula yield if f (z) = zm? Check that it does. What 
is the significance of the negative value of Z when m is negative? [Hint: 
Which way does the velocity complex number of the image rotate as z 
travels counterclockwise round the original circle?] 

16 As illustrated below, a region is called convex if all of it is visible from an arbitrary 
vantage point inside. Let an analytic mapping f act on an origin-centred circle 
C to produce a simple image curve f (C), the interior of which is convex. 

(i) From the formula of Ex. 15, deduce that if f maps the interior of C to the 
interior of f (C), then the following inequality holds at all points z of C :  

(ii) What is the analogous inequality when f maps the interior of C to the 
exterior of f (C). [Hint: Ex. 4, p. 21 1.1 

C O N V E X  N O N - C O N V E X  

17 Let S be a directed line-segment through a point p = x + i y .  

(i) Let f (z) = e Z.  Without calculation, decide which direction of S yields an 
image f ( S )  having vanishing curvature at f (p). 
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(ii) The complex curvature K must therefore point in one of the two orthogonal 
directions. Which? By considering the image of S when it points in this 
direction, deduce the value of 1x1, and thereby conclude that K(p) = ieWx. 

(iii) Use (28) to verify this formula. 

(iv) Repeat as much as possible of the above analysis in the cases f (2 )  = log(z) 
and f ( z )  = zm, where rn is a positive integer. [In neither of these cases will 
you be able to see the exact value of (K(p) 1 .] 

(v) According to the geometric reasoning in Ex. 18, p. 213, the amplification 
of a Mobius transformation M (z) = is constant on each circle centred 
at -(d/c). Thus the complex curvature of M should be tangent to these 
concentric circles. Verify this by calculating K. 

(vi) Use a computer to verify figure [21] for all four mappings above. 

18 Let two curves C1 and C2 emerge from a point p in the same direction. Two 
examples are illustrated below. Although in both cases the angle at p is zero, 

there is a great temptation to say that the curves on the right meet at a smaller 
"angle" than those on the left. Any putative definition of such an "angle" O 
should (presumably) be confomZZy invariant: if the curves are mapped to 
and e2 by a mapping fthat preserves ordinary angles (i.e., an analytic mapping), 
then the new "angle" O should equal the old "angle" O. 

(i) Newton [I6701 attempted to define such a O as the difference of the curva- 
tures of C1 and C2 at p: O E ~1 - ~ 2 .  Use (30) to show that this definition 
is not quite conformally invariant: 6 = O / 1 f '(p) 1. 

(ii) Consider an infinitesimal disc D (radius E )  centred at p. Let cl and c2 be 
the centres of curvature of C1 and C2, and let V be the difference between 
the angular sizes of D as seen from cl and c2. Show that V = E_O. If a 
conformal mapping f is applied to Cl, C2, and D, deduce that 2) = V. 
[Of course this is not what we were after: V is (a) infinitesimal, and (b) not 
defined by the curves alone. The discovery of a true conformal invariant had 
to await Kasner [1912]. See Ex. 10, p. 571 .] 
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19 In more advanced work on Mobius transformations (e.g., Nehari [I9521 and 
Beardon [1984]), an important role is played by the so-called Schwarzian deriva- 
tive { f (z), z) of an analytic function f (z) with respect to z: 

(i) Show that the Schwarzian derivative may also be written as 

(ii) Show that {az + b, z) = 0 = {(l/z), 2). 

(iii) Let f and g be analytic functions, and write w = f ( 2 ) .  Show that the 
Schwarzian derivative of the composite function g[ f (z)] = g[w] is given 
by the following "chain rule": 

(iv) Use the previous two parts to show that all Mobius transformations have 
vanishing Schwarzian derivative. [Hint: Recall that the mappings in part (ii) 
generate (via composition) the set of all Mobius transformations.] Remark: 
Ex. 19, p. 424 shows that the converse is also true: If { f (z), z) = 0 then 
f = Mobius. Thus Mobius transformations are completely characterized 
by their vanishing Schwarzian derivative. 

(v) Use the previous two parts to show that the Schwarzian derivative is "invari- 
ant under Mobius transformations", in the following sense: if M is a Mobius 
transformation, and f is analytic, then 

20 Think of the real axis as representing time t, and let a moving particle w = f (t) 
(where f (z) is analytic) trace an orbit curve C .  The velocity is then v = zi ,  = 

f '(0. 

(i) Use (23) to show that the curvature of C is 

(ii) Argue that this result does not in fact depend on C being produced by an 
analytic mapping, but is instead true of any motion for which the velocity v 
and acceleration v are well-defined. 
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(iii) Show that the formula may be rewritten as 

(iv) Deduce that it may also be written vectorially as 

By considering C to be the "osculating plane" (see Hilbert [1932]) of a curve 
in 3-dimensional space, we see that this formula holds in that case also. 

21 In 3-dimensional space, let (X, Y, Z) be the coordinates of a moving particle. 
If X = a cos wt, Y = a sin o t ,  Z = bt, then the path traced by the particle is 
a helix. 

(i) Give interpretations for the numbers a ,  w, and b. 

(ii) If a and w remain fixed, what does the helix look like in the two limiting 
cases of b becoming very small or very large? What if a and b remain fixed 
while w becomes very small or very large? 

(iii) What limiting values would you anticipate for the curvature of the helix for 
each of the limiting cases considered in (ii)? 

(iv) Use Ex. 20(iv) to show that the curvature of the helix is 

and use this to confirm your hunches in (iii). 

22 Continuing from Ex. 20, take f (z) to be a general Mobius transformation: 

where A (ad - bc) # 0. Show that the curvature of this path is 

in agreement with Ex. 18, p. 186. The fact that this is constant provides a new 
proof that the image is a circle, for only circles have constant curvature. 

23 As another continuation of Ex. 20, let us see how the Schwarzian derivative 
{ f (z), z) of Ex. 19 arises rather naturally in the context of curvature. 
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(i) Show that 
d ?  1 - = - Im{ f  (z), z}. 
d t  I f ' l  

[This formula was discovered by G. Pick. For elegant applications, see 
Beardon [1987]. For another connection between curvature and Schwarzian 
derivatives, see Ex. 28(iii).] 

(ii) Use Ex. 19, part (iv) to deduce that if f  (z) is a Mobius transformation then 
2: = 0. Why is this result geometrically obvious? 

24 Let the position at time t of a moving particle in C be z(t) = r (t) eiB(') . 
(i) Show that the acceleration of the particle is 

(ii) What are the radial and transverse components of the acceleration? 

(iii) If the particle is moving in a central force field, with the centre of force 
at the origin, deduce that the areal speed A = (r28/2) is constant. For a 
beautiful geometric proof of this fact,see Newton [1687, p. 401. 

25 Sometimes the circle of convergence of a power series is so densely packed 
with singularities that it becomes a genuine barrier for the geometric mapping, 
beyond which it cannot be continued. This is called a natural boundary. An 
example of this is furnished by 

which converges inside the unit circle. Show that every point of (z ( = 1 is either 
a singularity itself, or else has singularities arbitrarily near to it. [Hint: What is 
f  ( l )?  Now note that f  (z) = z + f  (z2), and deduce that f  is singular when 
z2 = 1. Continuing in this manner, show that the 2"-th roots of unity are all 
singular.] 

26 Unlike inversion in a circle, show that Schwarzian reflection in an ellipse E (see 
figure [3 11) does not interchange the interior and the exterior. Indeed, how does 
%E (z) behave for large values of 1 z 1 ? 

27 (i) If L is a line passing through the real point X, and making an angle a with 
the horizontal, then show that its Schwarz function is 

SL (z) = z e-i20 + X( l  - e P i 2 ~ )  . 

(ii) If C is a circle with centre p and radius r ,  show that its Schwarz function is 



Exercises 265 

(iii) Verify the claim that in both these cases z I+ %(z) is the ordinary reflection, 
even if z is far from the curve. 

28 Let a be a point on a (directed) curve K having Schwarz function S(z). 

(i) Show that the curvature of K at a is 

. i Sff(a) 
K = q ) = - .  

2 [S f  (a) l3I2 ' 

where q) is the angle in [30], and the dot denotes differentiation with respect 
to distance 1 along K (in the given sense). Deduce that 

[Hints: Since S is analytic, so is S f.  Thus to calculate Sf' = dSf /dz we need 
only find the change dS' in Sf produced by an infinitesimal movement dz 
of z, taken in any one direction of our choosing. At a let us choose dz along 
K, so that dz = eibdl. The corresponding change in Sf is then determined 
solely by the shape of K, for the values of Sf on K are given by Sf = e-"+ -1 

(ii) Deduce that the centre of curvature of K at a is (a + 2[~'(a) /~"(a)]] .  

(iii) Show that the rate of change of the curvature of K is given by the "Schwarzian 
derivative" [Ex. 191 of the Schwarz function: 

29 Check the result of Ex. 28 (i) by applying it to the results of Ex. 27. 

30 Let a be a point on a curve K having Schwarz function S(z). By the still 
unproven result on the infinite differentiability of analytic functions, S(z) may 
be expanded into a Taylor series in the vicinity of a: 

(i) Show that the Schwarz function of the tangent line to K at a is given by 
the first two terms of the series above. This reconfirms something we saw 
in [30]: very close to a ,  reflection in the tangent is a good approximation to 
Schwarzian reflection. 

(ii) It is natural to suspect that a better approximation to 9tK (z) would be in- 
version in the circle of curvature (call it C )  of K at a .  Let's verify this. Use 
Ex. 28(ii) and Ex. 27(ii) to find Sc, and show that it may be written as 
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where it is understood that the derivatives are all evaluated at a.  Show that 
the first three terms in the binomial expansion of Sc agree with those of S, 
but that they generally differ thereafter. [Hint: You will need the fact that 
(S1/S") = -(s')~/s" on K. Prove this.] 

(iii) If the curvature K of K were constant then K would be identical to its 
circle of curvature. The fact that S and Sc disagree beyond the third term 
thus reflects the fact that K does change. One is thus led to guess that the 
faster K changes, the greater the discrepancy between !RK and inversion in 
C. Continuing from the last part, use Ex. 28(iii) to verify this hunch in the 
following precise form: 

31 Let C and D be intersecting circles. Let us say that "D is symmetric in C" if 
reflection (inversion) in C maps D into itself. We know this occurs if and only 
if D is orthogonal to C, so 

D is symmetric in C (=. C is symmetric in D. 

Briefly, we may simply say that "C and D are symmetric". Let's see what 
happens if we generalize C and D to intersecting arcs possessing Schwarz 
functions, and generalize inversion to Schwarzian reflection. 

(i) Explain why the statement "D is symmetric in C" is the same as "if the point 
d lies on D then !RD [!Rc (d)] = !Re (d)". Must the arcs be orthogonal? 

(ii) If D is symmetric in C, deduce that the mappings (!RD o !Rc) and (!Rc o !RD) 
are equal at points of D. 

(iii) Using the fact that these two mappings are analytic (why?), deduce that C 
must also be symmetric in D. Thus, as with circles, we may simply say that 
C and D are symmetric. 
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I Introduction 
1 The Parallel Axiom 

We have previously alluded to the remarkable discovery (made in the last century) 
that there exist geometries other than Euclid's. In this optional chapter we begin to 
explore the beautiful connections that exist between these so-called non-Euclidean 
geometries and the complex numbers. Since this Introduction summarizes many 
of the key ideas and results, you may wish to read it even if you cannot afford the 
time to read the entire chapter. 

One way to approach Euclidean geometry is to begin with definitions of such 
things as "points" and "lines", together with a few assumptions (axioms) concern- 
ing their properties. From there one goes on, using nothing but logic, to deduce 
further properties of these objects that are necessary consequences of the initial 
axioms. This is the path followed in Euclid's famous book, The Elements, which 
was published around 300 BC. 

Of course Euclidean geometry did not suddenly spring into existence as a fully 
formed logical system of axioms and theorems. It was instead developed gradually 
as an idealized description of physical measurements performed on physically 
constructed lines, triangles, circles, etc. Though the ancients did not think of it 
in this way, Euclidean geometry is thus not simply mathematics, it is a physical 
theory of space-a fantastically accurate theory of space. 

Euclidean geometry is not, however, a perfect theory: modern experiments 
have revealed extremely small discrepancies between the predictions of Euclidean 
geometry and the measured geometric properties of figures constructed in physical 
space. These departures from Euclidean geometry are now known to be governed, 
in a precise mathematical way, by the distribution of matter and energy in space. 
This is the essence of a revolutionary theory of gravity (General Relativity) dis- 
covered by Einstein in 19 15. 

It turns out that the larger the figures examined, the larger the deviations from 
the predictions of Euclidean geometry. However, it's important to realize just how 
small these deviations typically are for figures of reasonable size. For example, 
suppose we measure the circumference of a circle having a radius of one meter. 
Even if our measuring device were capable of detecting a discrepancy the size of 
a single atom of matter, no deviation from Euclidean geometry would be found! 
Little wonder, then, that for two thousand years mathematicians were seduced into 
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believing that Euclidean geometry was the only logically possible geometry. 
It is a marvellous tribute to the power of human mathematical thought that non- 

Euclidean geometry was discovered a full century before Einstein found that it was 
needed to describe gravity. To locate the seeds of this mathematical discovery, let 
us return to ancient Greece. 

Euclid began with just five axioms, the first four of which never aroused con- 
troversy. The first axiom, for example, merely states that there exists a unique line 
passing through any two given points. However, the status of the fifth axiom (the 
so-calledparallel axiom) was less clear, and it became the subject of investigations 
that ultimately led to the discovery of non-Euclidean geometry: 

Parallel Axiom. Through any point p not on the line L there exists 
precisely one line L' that does not meet L. (1) 

Figure [la] illustrates the parallel axiom, and it also explains why this axiom 
cannot be experimentally tested, at least as stated. As the line M rotates towards 
L', the intersection point q moves further and further away along L. Our geometric 
intuition is based on figures drawn in a finite portion of the plane, but to verify that 
L' never meets L, we need an infinite plane. We can certainly try to imagine what 
an infinite plane would be like, but we have no first hand experience to back up 
our hunches. 

These are very modern doubts we are expressing. Historically, mathematicians 
fervently believed in (I), so much so that they thought it must be a logically 
necessary property of straight lines. But in that case they ought to be able to prove 
it outright, instead of merely assuming it as Euclid had done. 

Many attempts were made to deduce (1) from the first four axioms, one of the 
most penetrating being that of Girolamo Saccheri in 1733. His idea was to show 
that if (1) were not true, then a contradiction would necessarily arise. He divided 
the denial of (1) into two alternatives: 

Spherical Axiom. There is no line through p that does not meet L. (2) 

Hyperbolic Axiom. There are at least two lines through p that do 
not meet L. (3) 

Figure [I] 
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Our naming of (2) will become clear shortly, but the use of "hyperbolic" in con- 
nection with (3) is obscure, though standard. 

In the case of (2), Saccheri was indeed able to obtain a contradiction, provided 
"lines" are assumed to have infinite length. If we drop this requirement, then we 
obtain a non-Euclidean geometry called spherical geometry. This is the subject of 
the following section. 

In the case of (3), Saccheri and later mathematicians were able to derive very 
strange conclusions, but they were not able to find a contradiction. As we now 
know, this is because (3) yields another viable non-Euclidean geometry, called 
hyperbolic geometry. Of the two non-Euclidean geometries obtained from (2) 
and (3), hyperbolic geometry is by far the more intriguing and important: it is 
an essential tool in many areas of contemporary research. Furthermore, there is 
even a sense (to be discussed later) in which hyperbolic geometry subsumes both 
Euclidean and spherical geometry. 

2 Some Facts from Non-Euclidean Geometry 
Let's take our first look at how these new geometries differ from Euclid's. A very 
familiar theorem of Euclidean geometry states that in any triangle T, 

(Angle sum of T) = n.  

As indicated in [lb], this result is actually equivalent to the parallel axiom. It 
follows that in non-Euclidean geometry the angle sum of a triangle differs from 
n .  To measure this difference, we introduce the so-called angular excess E: 

E (T) = (Angle sum of T) - n.  

Euclidean geometry is thus characterized by the vanishing of E(T). 
Note that, unlike the original formulation of the parallel axiom, this statement 

can be checked against experiment: construct a triangle, measure its angles, and see 
if they add up to n .  Gauss was the first person to ever conceive of the possibility 
that physical space might not be Euclidean, and he even attempted the above 
experiment, using three mountain tops as the vertices of his triangle, and using 
light rays for its edges. Within the accuracy permitted by his equipment, he found 
E = 0. Quite correctly, Gauss did not conclude that physical space is definitely 
Euclidean in structure, but rather that if it is not Euclidean then its deviation from 
Euclidean geometry is extremely small. 

Let us return from physics to mathematics. Using pure logic to work out the 
consequences of (2) and (3), both Gauss and Johann Heinrich Lambert indepen- 
dently discovered that the two non-Euclidean geometries departed from Euclid's 
in opposite ways: 

In spherical geometry the angle sum is greater than n : E > 0. 
In hyperbolic geometry the angle sum is less than n :  E < 0. 

Furthermore, they discovered the striking fact that E(T) is completely determined 
by the size of the triangle. More precisely, E(T) is simply proportional to the area 
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A(T) of the triangle T: 

where k is a constant that is positive in spherical geometry, and (4) 

negative in hyperbolic geometry. 

Several interesting points can be made in connection with this result: 

Although there are no qualitative differences between them, there are never- 
theless injnitely many different spherical geometries, depending on the value 
of the positive constant k. Likewise, each negative value of k yields a different 
hyperbolic geometry. 

Since the angle sum of a triangle cannot be negative, E 2 -n. Thus in 
hyperbolic geometry (k < 0) no triangle can have an area greater than I (nlk) I .  

In non-Euclidean geometry, similar triangles do not exist! This is because (4) 
tells us that two triangles of different size cannot have the same angles. 

Closely related to the previous point, in non-Euclidean geometry there exists 
an absolute unit of length. For example, in spherical geometry we could define 
it to be the side of the equilateral triangle having angle sum 1.01n. Similarly, 
in hyperbolic geometry we could define it to be the side of the equilateral 
triangle having angle sum 0.99n. 

A somewhat more natural way of defining the absolute unit of length is in 
terms of the constant k. Since the radian measure of angle is defined as a ratio 
of lengths, E is a pure number. On the other hand, the area A has units of 
(length)2. It follows that k has units of l/(length12 and so it can be written 
as follows in terms of a length R: k = + ( 1 / ~ ~ )  in spherical geometry; 
k = - (11 R ~ )  in hyperbolic geometry. Later we will see that this length R 
can be given a very intuitive interpretation. 

The smaller the triangle, the harder it is to distinguish it from a Euclidean 
triangle: only when the linear dimensions are a significant fraction of R will 
the difference become obvious. This is why Gauss chose the biggest triangle 
he could in his experiment. Einstein's theory explains why Gauss' triangle 
was nevertheless much too small: the weak gravitational field in the space 
surrounding the earth corresponds to a microscopic value of k and hence to 
an enormous value of R. It would have been a different story if Gauss had 
been able to perform his experiment in the vicinity of a black hole! 

3 Geometry on a Curved Surface 
We began this book by discussing how the complex numbers met with enormous 
initial resistance, and how they were finally accepted only after they were given a 
concrete interpretation, via the complex plane. The story of non-Euclidean geom- 
etry is remarkably similar. 
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Gauss never published his revolutionary ideas on non-Euclidean geometry, and 
the two men who are usually credited for their independent discovery of hyper- 
bolic geometry are Jinos Bolyai (1832) and Nikolai Lobachevsky (1829). Indeed, 
hyperbolic geometry is frequently also called Lobachevskian geometry, perhaps 
because Lobachevsky's investigations went somewhat deeper than Bolyai's. How- 
ever, in the decades that followed their discoveries, Bolyai's work was completely 
ignored, and Lobachevsky's met only with vicious attacks. 

The decisive figure in the acceptance of non-Euclidean geometry was Euge- 
nio Beltrami. In 1868 he discovered that hyperbolic geometry could be given a 
concrete interpretation, via "differential geometry". For our purposes, differential 
geometry is the study of curved surfaces by means of ideas from calculus. What 
Beltrami discovered was that there exists a surface (the so-called pseudosphere 
shown in [2]) such that figures drawn on it automatically obey the rules of hy- 

Figure [2] 

perbolic geometry1. Psychologically, Beltrarni's pseudosphere was to hyperbolic 
geometry as the complex plane had been to the theory of complex numbers. 

To explain what we mean by this, let us first discuss how we may "do geometry" 
on a more general surface, such as the surface of the strange looking vegetable2 

shown in [3]. The idea of doing geometry on such a surface is essentially due to 
Gauss and (in greater generality) to Riemann. 

The first thing we must do is to replace the concept of a straight line with that 
of a geodesic. Just as a line-segment in a flat plane may be defined as the shortest 
route between two points, so a geodesic segment connecting two points on a curved 
surface may be defined (provisionally) as the shortest connecting route within the 

' ~ h i s  oversimplification does not do justice to Beltrami's accomplishments. Later in this chap- 
ter we shall see what Beltrami really did! 

2~uropean readers may think this an imaginary vegetable, but Americans can buy it in the 
supermarket. 
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sur$ace. For example, if you were an ant living on the surface in [3], and you wanted 
to travel from a to b as quickly as possible, then you would follow the illustrated 
geodesic segment. The figure also shows the geodesic segment connecting another 
pair of points, c and d. 

Here is a simple way you can actually construct such geodesic segments: take 
a thread and stretch it tightly over the surface to connect the points a and b. 
Provided that the thread can slide around on the surface easily, the tension in the 
thread ensures that the resulting path is as short as possible. Note that in the case 
of cd, we must imagine that the thread runs over the inside of the surface. In order 
to deal with all possible pairs of points in a uniform way, it is therefore best to 
imagine the surface as made up of two thinly separated layers, with the thread 
trapped between them. 

Figure [3] 

It is now obvious how we should define distance in this geometry: the distance 
between a and b is the length of the geodesic segment connecting them. Figure 
[3] shows how we can then define, for example, a circle of radius r and centre p 
as the locus of points at distance r from p. To construct this circle we may take 
a piece of thread of length r, hold one end fixed at p, then (keeping the thread 
taught) drag the other end round on the surface. 

Given three points on the surface, we may join them with geodesics to form 
a triangle; [3] shows two such triangles, Tl and T2. Now look at the angles in TI. 
Clearly E(Tl) > 0, like a triangle in spherical geometry, while E(T2) < 0, like a 
triangle in hyperbolic geometry. 
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4 Intrinsic versus Extrinsic Geometry 

Clearly it is the curvature of the surface that causes E(Tl) and E(T2) to differ from 
their Euclidean value E = 0. However, it cannot be the precise shape of the surface 
in space that is involved here. To see this, imagine that from the vegetable in [3] 
we were to cut out a patch of the skin containing TI. Suppose that this patch is 
made of fairly stiff material that does not stretch if we try to bend it a little. [As 
it happens, the skin of this vegetable is actually like this!] We can now gently 
bend the patch into infinitely many slightly different shapes: its so-called extrinsic 
geometry has been changed by our stretch-free bending. For example, the curves 
in space making up the edges of Tl are no longer the same shape as before. 

On the other hand, if you were an intelligent ant living on this patch, no geomet- 
ric experiment you could perform within the surface would reveal that any change 
had taken place whatsoever. We say that the intrinsic geometry has not changed. 
For example, the curves into which the edges of Tl have been deformed are still 
the shortest routes on the surface. Correspondingly, the value of E is unaffected 
by stretch-free bending: E is governed by intrinsic (not extrinsic) curvature. 

To highlight this fact, consider [4]. On the left is a flat piece of paper on which 

Figure [4] 

we have drawn a triangle T with angles (n/2), (n/6), (n/3). Of course E(T) = 0. 
Clearly we can bend such a flat piece of paper into either of the two (extrinsically) 
curved surfaces on the right3. However, intrinsically these surfaces have undergone 
no change at all-they are both as flat as a pancake! The illustrated triangles on 
these surfaces (into which T is carried by our stretch-free bending of the paper) 
are identical to the ones that intelligent ants would construct using geodesics, and 
in both cases E = 0: geometry on these surfaces is Euclidean. 

5 Gaussian Curvature 

In 1827 Gauss published a beautiful analysis of the intrinsic and extrinsic geometry 
of surfaces, in which he revealed that remarkable connections exist between the 
two. Here we will simply state some of his most important conclusions, in their most 
general form. For explanations of these general results we refer you to works on 
differential geometry; see the recommendations at the end of this chapter. However, 

3 ~ a n  the one on the far right be obtained by bending a rectangle? 
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only special cases of the general results are needed to understand non-Euclidean 
geometry, and these will be separately verified in the course of this chapter. 

For a surface such as [3], it is clear that some parts are more curved than others. 
Furthermore, the kind of bending also varies from place to place. To quantify the 
amount (and type) of bending of the surface at a point p ,  Gauss introduced a 
quantity k(p). This function k(p), whose precise definition will be given in a 
moment, is called the Gaussian curvature4. The greater the magnitude of k(p), 
the more curved the surface is at p.  The sign of k(p) tells us qualitatively what 
the surface is like in the immediate neighbourhood of p.  See [5].  If k(p) < 0 then 
the neighbourhood of p resembles a saddle: it bends upwards in some directions, 
and downwards in others. If k(p) > 0 then it bends the same way in all directions, 
like a piece of a sphere. 

Figure [5] 

As we will now start to explain, it is no accident that we have used the same 
symbol to represent Gaussian curvature as we earlier used for the constant occur- 
ring in (4)-they are the same thing! 

Gauss originally defined k(p) as follows. Let l7 be a plane containing the 
normal vector n to the surface at p ,  and let K be the (signed) curvature at p of the 
curve in which l7 intersects the surface. The sign of K depends on whether the 
centre of curvature is in the direction n or -n. The so-called principal curvatures 
are the minimum Kmin and the maximum K,, values of K as ll rotates about 
n. [Incidentally, Euler had previously made the important discovery that these 
principal curvatures occur in two perpendicular directions.] Gauss defined k as 
the product of the principal curvatures: 

Note that this definition is in terms of the precise shape of the surface in space 
(extrinsic geometry). However, Gauss [I8271 went on to make the astonishing 
discovery that k(p) actually measures the intrinsic curvature of the surface, that 
is, k is invariant under bending! Gauss was justifiably proud of this result, calling 
it Theorema Egregium (remarkable theorem). As an example of the result, you 

40ther names are intrinsic curvature, total curvature, or just plain curvature. 
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may visually convince yourself that k = 0 everywhere on each of the intrinsically 
flat surfaces in [4]. 

The intrinsic significance of k is exhibited in the following fundamental result: 
If A is an injnitesimal triangle of area d A  located at the point p, then 

Since E and d A  are defined by the intrinsic geometry, so is k = (EIdA).  Once 
again, we refer you to works on differential geometry for a proof of (5). 

It follows from (5) [see Ex. 11 that the angular excess of a non-infinitesimal 
triangle T is obtained by adding up (i.e., integrating) the Gaussian curvature over 
the interior of T : 

(6) 

As Beltrami recognized, and as we now explain, this lovely result of differential 
geometry brings us very close to a concrete interpretation of the non-Euclidean 
geometries. 

6 Surfaces of Constant Curvature 

Consider a surface such that k(p) has the same value k at every point p; we call 
this a surjGace of constant curvature. For example, a plane is a surface of constant 
curvature k = 0, as are the other surfaces in [4]; a sphere is an example (not the 
only one) of a surface of constant positive curvature; and the pseudosphere in [2] 
is an example (not the only one) of a surface of constant negative curvature. 

In the case of a surface of constant curvature (and only in this case) we find 
that (6) takes the form, 

But this is identical to the fundamental formula (4) of non-Euclidean geometry! 
Thus, as Beltrami realized, 

Euclidean, spherical, and hyperbolic geometry can all be interpreted 
concretely as the intrinsic geometry of surjGaces of constant vanish- 
ing, positive, or negative cuwature. 

Figure [6] illustrates this using the simplest surfaces of each type. To obtain an 
added bonus, recall that we previously associated an absolute unit of length R with 
a non-Euclidean geometry by writing k = f (1 / R ~ ) .  The bonus is that this length 
R now takes on vivid meaning: in spherical geometry R is simply the radius of 
the sphere, while in hyperbolic geometry it is the radius of the circular base of the 
pseudosphere (called the radius of the pseudosphere). These two interpretations 
will be justified later. 

The requirement of constant curvature can be understood more intuitively by 
reconsidering the discussion at the end of Chapter 1 .  There we saw that a central 
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k = O  

Euclidean Spherical Hyperbolic 

Figure [6] 

idea in Euclidean geometry is that of a group of motions of the plane: one-to-one 
mappings that preserve the distance between all pairs of points. For example, two 
figures are congruent if and only if there exists a motion that carries the first into 
coincidence with the second. In order that this basic concept of equality be available 
in non-Euclidean geometry, we require that our surface admits an analogous group 
of motions. If we take one of the triangles on the surface in [3], it's clear that we 
cannot slide it to a new location and still have it fit the surface snugly, because the 
way in which the surface is curved at the new location is different: variation in the 
curvature is the obstruction to motion. 

This intuitive explanation can be clarified by appealing to (5). First, though, 
we wish to eliminate a possible confusion. The triangle on the flat plane in [6] 
can clearly be slid about and rotated freely, but what about the triangles on the 
(extrinsically) curved surfaces in [4]? After all, these surfaces are intrinsically flat, 
and so Beltrami would have us believe they are therefore just as good as the plane 
for doing Euclidean geometry. If we imagine these triangles as completely rigid 
then it's clear that if we try to move them to another location on the surface, they 
will no longer fit snugly against the surface. But if the triangle is instead cut out 
of a piece of ordinary (bendable but unstretchable) paper, then it can be slid about 
and rotated freely, always fitting perfectly against the surface. This is the kind of 
motion we are concerned with. 

In order to clarify the connection between constant curvature and the existence 
of motions, consider an infinitesimal (bendable but unstretchable) triangle located 
at p. If its angular excess is E and its area is dA, then (5) tells us that the Gaussian 
curvature of the surface at p is given by k(p) = (E/dA). Now suppose that there 
exists a motion that carries this triangle to an arbitrary point q on the surface. 
We may have to bend the triangle to make it fit against the surface at q, but 
since we are not allowed to stretch it, the values of E and dA do not alter. Thus 
k(q) = (E/dA) = k(p), and the surface has constant curvature. 

Finally, let us return to the specific models of spherical and hyperbolic geometry 
shown in [6]. Clearly the triangle on the sphere can be slid about and rotated freely. 
In fact here, as on the plane, no bending is needed at all, because the sphere not 
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only has constant intrinsic curvature, it also has constant extrinsic curvature. 
What about hyperbolic geometry on the pseudosphere? It is certainly much 

less obvious, but the fact [to be proved later] that the pseudosphere has constant 
curvature guarantees that a bendable but unstretchable triangle can be slid about 
and rotated freely, always fitting perfectly snugly against the surface. Exercise 15 
shows how you can build your own pseudosphere; once built, you can verify this 
surprising claim experimentally. 

7 The Connection with Mobius Transformations 

As we established in Chapter 1, if the Euclidean plane is identified with @ then 
its motions (and similarities) are represented by the particularly simple Mobius 
transformations of the form M (z) = az + b. One of the principal miracles we wish 
to explain in this chapter is that the motions of spherical and hyperbolic geometry 
are also Mobius transformations! 

The most general (direct) motion of the sphere is a rotation about its centre. 
Stereographic projection onto @ yields a conformal map of the sphere, and the 
rotations of the sphere thus become complex functions acting on this map. As 
we showed algebraically in Chapter 3, they are the Mobius transformations of the 
form 

This was first discovered by Gauss, around 1819. In the next section we will red- 
erive this result in a more illuminating way, and we will also explore the connection 
with Hamilton's "quaternions". 

Following the same pattern, it is also possible to construct conformal maps (in 
@) of the pseudosphere, thereby transforming its motions into complex functions. 
One of the most convenient of these conformal maps is constructed in the unit disc. 
The motions of hyperbolic geometry then turn out to be the Mobius automorphisms 
of this circular map: 

This beautiful discovery was made by Henri Poincark [1882]. 
It seems magical enough that the motions of all three of the two-dimensional 

geometries are represented by special kinds of Mobius transformations, but there's 
more! In Chapter 3 we saw that the general Mobius transformation 

has deep significance for physics: it corresponds to the most general Lorentz trans- 
formation of space-time. Might it also have significance in non-Euclidean geome- 
try? As we will explain at the end of this chapter, Poincare [ I  8831 made the startling 
discovery that it represents the most general (direct) motion of three-dimensional 
hyperbolic space! 
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II Spherical Geometry 
1 The Angular Excess of a Spherical Triangle 
The geodesics on the sphere are the great circles, that is the intersections of the 
sphere with planes through its centre. Thus if you were an ant living on the sphere, 
these great circles are what you would call "lines". 

Figure [7a] illustrates a general triangle T on a sphere of radius R obtained 
by joining three points using such "lines". Without appealing to (6), which is a 
deep result in differential geometry, let us show directly that the angular excess 
E(T) obeys the law (4), and that the constant k is indeed the Gaussian curvature, 
k = (11 R2). The elegant argument that follows is usually attributed to Euler, but 
it was in fact discovered by Thomas Harriot in 1603. 

Prolonging the sides of T divides the surface of the sphere into eight triangles, 
the four triangles labelled T, T,, Tg , Ty each being paired with a congruent an- 
tipodal triangle. This is clearer in [7b]. Since the area of the sphere is 4n R2, we 
deduce that 

Figure [7] 

On the other hand, it is clear in [7b] that T and T, together form a wedge whose 
area is (a/2n) times the area of the sphere: 

Similarly, 

Adding these last three equations, we find that 
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Finally, subtracting (7) from (8), we get 

A(T) = (a +/3 + y -n)R2.  

In other words, 

E(T) = k A(T), where k = (11 R2), 

as was to be shown. 

2 Motions of the Sphere: Spatial Rotations and Reflections 

In order to understand the motions (i.e., one-to-one, distance-preserving mappings) 
of the sphere, we must first clarify the idea of "distance". If two points a and b are 
not antipodal then there exists a unique line (great circle) L passing through them, 
and a and b divide L into two arcs of unequal length. The "distance" between 
the points can now be defined as the length of the shorter arc. But if the points 
are antipodal then every line through a automatically passes through b, and the 
distance between the points is defined to be the length n R of any of the semicircular 
arcs connecting them. 

We can now generalize the Euclidean arguments given in the final section of 
Chapter 1. There we saw that a motion of the plane is uniquely determined by the 
images a', b', c' of any three points a ,  b, c not on a line: the image of P is the 
unique point P' whose distances from a', b', c' equal the distances of P from a ,  
b, c. We leave it to you to check that this result (and the reason for it) is still true 
on the sphere. 

On the sphere, as on the plane, we may consistently attribute a sense to angles- 
by convention an angle is positive if it is counterclockwise when viewed from 
outside the sphere. As happened in the plane, this leads to a division of spher- 
ical motions into two types: direct (i.e., conformal) motions, and opposite (i.e., 
anticonformal) motions. 

As in the plane, the simplest opposite motion of the sphere is reflection !ItL 
in a line L. This may be thought of as the transformation induced on the sphere 
by reflection !Itn of space in the plane II containing L. See [gal, which illustrates 
how the positive angle 9 in the illustrated spherical triangle is reversed by !ItL. 

If you were an intelligent ant living on the sphere, the above construction of 
ZriL as the restriction of !Itn to the sphere would be meaningless to you. However, 
it is not hard to re-express ZriL in intrinsically spherical terms. See [8b]. To reflect 
a in L, first draw the unique line M through a that cuts L at right angles5. If d is 
the distance we must crawl along M from a to reach L, then !ItL (a) is the point we 
reach after crawling a further distance of d.  Of course M actually intersects L in 
two antipodal points, but we will arrive at the same !ItL(a) irrespective of which 
of these two points is used in the construction. 

5 ~ f  L is thought of as the equator, then when a is one of the poles there are infinitely many 
M's-pick any one you like. 
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Figure [8] 

We now turn to direct motions. The obvious example of a direct motion is a 
rotation of the sphere about an axis V passing through its centre. Less obvious is the 
fact (to be proved shortly) that these rotations are the only direct motions. To avoid 
ambiguity in the description of such rotations, we introduce the following standard 
convention. First note that specifying the axis V is equivalent to specifying either 
of its antipodal intersection points (say p and q )  with the sphere. Now pick one of 
these, say p. Suppose that the effect of the rotation on a small line-segment issuing 
from p is a positive rotation of 8-recall that this means counterc2ockwise as seen 
from outside the sphere. In this case the motion can be unambiguously described 
as a "positive rotation of 8 about p"; see [9b]. We will write this rotation as R;. 
Check for yourself that R; = %Lie. 

In Chapter 1 we saw that every direct motion of the plane was the composition 
of two reflections: a rotation if the lines intersected; a translation if the lines were 
parallel. We will now see that a similar phenomenon occurs on the sphere, but 
because every pair of lines intersect, the composition of two reflections is always 
a rotation-the sphere has no motions analogous to translations. 

Figure [9a] illustrates the composition (Rn2 o Rnl )  of two reflections of space. 
Here the planes I l l  and 112 intersect in a line with direction vector v, and the 
angle from Ill to II2 is (012). Restricting attention to any one of the shaded 
planes orthogonal to v, we see that the transformation induced by (Rn, o Wnl) is 
(81, o %I,), where ll and 12 are the lines in which II 1 and I l 2  intersect the plane. 
Since (W12 0 R1,) is a rotation of the plane through 8 about the intersection point 
of 11 and 12, it is now clear that (!Rn2 o Rnl )  is a rotation of space through angle 
0 about the axis v. 

Figure [9b] translates this idea into spherical terms. If 111 and II2 pass through 
the centre of the sphere, and the lines (great circles) in which they intersect the 
sphere are L 1 and L2, then 

In other words, 
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Figure [9] 

A rotation 72; of the sphere about a point p through angle 0 may 
be expressed as the composition of reflections in any two spherical (10) 
lines that pass through p and contain the angle (012). 

Note that there is precisely one line P that is mapped into itself by 72;. If we 
orient P in agreement with the rotation (as illustrated) then we obtain a one-to-one 
correspondence between oriented lines and points: P is called the polar line of p, 
and p is called the pole of P . 

In the case of the plane we used the analogue of (10) to show that the composi- 
tion of two rotations about different points was equivalent (in general) to a single 
rotation about a third point; exceptionally, however, two rotations could result in a 
translation. As you might guess, in the case of the sphere there are no exceptions: 

The composition of any two rotations of the sphere is equivalent to 
a single rotation. Thus the set of all rotations of the sphere forms a (1 1) 
group. 

Figure [lOa] shows how this may be established using exactly the same argument 
that was used in the plane. In order to find the net effect of (72: o R;), draw the 
lines L,  M, N in the illustrated manner. Then 

This beautiful geometric method of composing spatial rotations was discovered 
by Olinde Rodrigues in 1840. 

Note that in the plane the total amount of rotation produced by rotations of 8 
and 4 is simply the sum (0 + $), but on the sphere we have a more complicated 
rule. If A is the area of the white spherical triangle, and k = (1 / R ~ )  is the Gaussian 
curvature of the sphere, then the formula for the angular excess implies that 
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Figure [lo] 

We may now complete the classification of the motions of the sphere. As we 
have remarked, there is precisely one motion of the sphere that carries a given 
spherical triangle abc to a given congruent image triangle. Figure [lob] helps to 
refine this result. Using the same logic as was used in the plane, we see [exercise] 
that 

Thereis exactly one direct motion M (and exactly one opposite mo- 
tion M )  that maps a given line-segm~nt ab to another line-segment 
arb' of equal length. Furthermore, M = (!RL o M ) ,  where L is the (12) 

line through a' and b'. 

Figure [lob] also shows how we may construct M .  Draw the line P through 
a and a', and let p be its pole. With the appropriate value of 8,  it's clear that R: 
will carry the segment ab along P to a segment of equal length emanating from 
a'; finally, an appropriate rotation 72$ about a' will carry this segment into arb'. 

Thus M = (R$ o R;), which is equivalent to a single rotation by virtue of (1 1). 
Combining this fact with (12), we deduce that 

Every direct motion of the sphere is a rotation, and every opposite 
motion is the composition of a rotation and a reflection. (13) 

As a simple test of this result (and your grasp of it) consider the antipodal 
mapping that sends every point on the sphere to its antipodal point. Clearly this is 
a motion, but how does it accord with the above result? 
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3 A Conformal Map of the Sphere 

The sphere merely provides one particularly simple model of what we have called 
spherical geometry. As Minding (1 839) discovered, any surface of constant6 Gaus- 
sian curvature k = (11 R ~ )  has exactly the same intrinsic geometry as a sphere of 
radius R. To see that such surfaces exist, take a Ping-Pong ball and cut it in half: as 
you gently flex one of the hemispheres you obtain infinitely many surfaces whose 
intrinsic geometry is identical to the original sphere. 

Figure [ l  11 illustrates that even if we restrict attention just to surfaces of revo- 
lution, the sphere is not the only one of constant positive curvature. Though they 
hardly look like spheres, an intelligent ant living on either of these surfaces would 
never know that he wasn't living on a sphere. Well, that's almost true: eventually 
he might discover points at which the surface is not smooth, or else he might run 
into an edge. In 1899 H. Liebmann proved that if a surface of constant positive 
curvature does not suffer from these defects then it can only be a sphere. 

Figure [I 11 

The sphere also has the advantage of making it obvious that its intrinsic ge- 
ometry admits a group of motions: in [ l  l ]  it's certainly not clear that figures can 
be freely moved about and rotated on the surface without stretching them. Never- 
theless, the above discussion shows that the actual shape of a surface in space is a 
distraction, and it would be better to have a more abstract model that captured the 
essence of all possible surfaces having the same intrinsic geometry. 

By the "essence" we mean knowledge of the distance between any two points, 
for this and this alone determines the intrinsic geometry. In fact-and this is a 
fundamental insight of differential geometry-it is sufficient to have a rule for the 
inJinitesima1 distance between neighbouring points. Given this, we may determine 
the length of any curve as an infinite sum (i.e., integral) of the infinitesimal segments 
into which it may be divided. Consequently, we may also identify the "lines" of 

6 ~ f  the curvature is not constant, two surfaces can have equal curvature at corresponding points 
and yet have different intrinsic geometry. 
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the geometry as shortest routes from one point to another, and we can likewise 
[exercise] determine angles. 

This leads to the following strategy for capturing the essence of any curved 
surface S (not necessarily one of constant curvature). To avoid the distraction of 
the shape of the surface in space, we draw a map (in the sense of a geographical 
atlas) of S on a flat piece of paper. That is we set up a one-to-one correspondence 
between points ?on S and points z on the plane, which we will think of as the 
complex plane. 

Now consider the distance d F separating two neighbouring points ?and $ on 
S.  In the map, these points will be represented by z and q = z + dz, separated 
by (Euclidean) distance ds = Idzl. Once we have a rule for calculating the actual 
separation d?on S from the apparent separation ds in the map, then (in principle) 
we know everything there is to know about the intrinsic geometry of S .  

The rule giving d ?in terms of ds is called the metric. In general d?depends 
on the direction of dz as well as its length ds: writing dz = ei@ ds, 

According to this formula, A(z, $) is the amount by which we must expand the 
apparent separation ds in the map--located at z, and in the direction $-to obtain 
the true separation d 7 on the surface S .  

We will now carry out the above strategy for the sphere. It follows from (9) that 
it is impossible [exercise] to draw a map of the sphere that faithfully represents 
every aspect of its intrinsic geometry. How we choose to draw our map therefore 
depends on which features we wish to faithfully represent. For example, if we 
want lines (great circles) on the sphere to be represented by straight lines in the 
map, then we may employ the so-called central projection, in which points are 
projected from the centre of the sphere onto one of its tangent planes. This yields 
the so-called projective map or projective model of the sphere. See [12]. Here, the 
price that we pay for preserving the concept of lines is that angles are not faithfully 
represented: the angle at which two curves meet on the sphere is not (in general) 

Figure [12] 
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the angle at which they meet on the map. 
For most purposes it is much better to sacrifice straight lines in favour of 

preserving angles, thereby obtaining a conformal map of the surface. In terms of 
(14), a map is conformal if and only if the expansion factor A does not depend on 
the direction $ of the infinitesimal vector dz emanating from z:  

d?= A(z)  ds. (15) 

[Recall that we established this fact in Chapter 4.1 The great advantage of such 
a map is that an infinitesimal shape on the surface is represented in the map by 
a similar shape that differs from the original only in size: the one on S is just A 
times bigger. 

In the case of the sphere we already know of a simple method of construct- 
ing a conformal map, namely, via stereographic projection. For simplicity's sake, 
henceforth we shall take the sphere to have unit radius so that it may be identified 
with the Riemann sphere C of Chapter 3. Unlike 1121, the "lines" of this confor- 
mal map do not appear as straight lines. In fact it's not too hard to see [exercise] 
that great circles on C are mapped to circles in cC that intersect the unit circle at 
opposite points. 

Formula (15) may be paraphrased as saying that a map is conformal if in- 
finitesimal circles on S are represented in the map by infinitesimal circles (rather 
than ellipses). Of course stereographic projection satisfies this requirement since 
it preserves circles of all sizes. Figure [13a] illustrates this with an infinitesimal 
circle of radius dF on E being mapped to an infinitesimal circle of radius ds in 
@. To complete the stereographic map we must find its associated metric function 
A-that is the ratio of the two radii in [13a]. 

Consider the vertical cross section of [13a] shown in [13b], and recall that we 
showed in Chapter 3 [see p. 1421 that stereographic projection is a special case of 
inversion: 

If K is the sphere of radius centred at N ,  then stereographic 
projection is the restriction to cC or Z of inversion in K .  

Next, consider (6) on p. 126, which describes the effect of inversion on the sepa- 
ration of two points. By taking the limit in which the two points coalesce, we may 

Figure [I 31 



286 Non-Euclidean Geometry* 

apply this result to [13b] to obtain [exercise] 

This can also be obtained more directly, without using (6), by [exercise] choosing 
d F parallel to C. Finally, applying Pythagoras' Theorem to the triangle Nz 0, we 
obtain 

This flat conformal map with metric (16) is the desired abstract depiction of 
all possible surfaces of constant Gaussian curvature k = + 1. 

4 Spatial Rotations as Mobius Transformations 

Quite generally, suppose that S is a surface of constant Gaussian curvature (so that 
it possesses a group of motions) and suppose we have drawn a conformal map of 
S with metric (15). Any motion of S will induce a corresponding transformation 
of this map in C. Since direct motions of the curved surface are conformal, the 
conformality of the map implies that the induced complex functions must also be 
conformal and hence analytic. Purely in terms of C, we may therefore identify a 
function f (z) as a motion if it is analytic and it "preserves the metric" (15). That 
is, suppose that the analytic function z I+ Y = f (z) sends two infinitesimally 
separated points z and (z + dz) to Y and (Y + d z ) .  Then f (z) is a motion if 
and only if the image separation d T = ( d  Yl is related to the original separation 
ds  = ldzl by 

A(?) d T = A(z) ds. 

[Likewise, opposite motions of S correspond to the anticonformal mappings of @. 
that satisfy this equation.] Since d ?  = f '(2) dz, this is equivalent to demanding 
that f satisfy the following differential equation: 

Returning to the particular case S = Z,  and to the particular conformal map 
obtained by stereographic projection, the direct motions of all possible surfaces of 
constant Gaussian curvature k = + 1 become the set of analytic complex functions 
that satisfy 

In principle, we could find these complex functions without ever leaving C. How- 
ever, it is simpler and more illuminating to return to the motions of Z ,  described 
by (10) and (13). When we apply stereographic projection to these motions, what 
complex functions are induced in C? 

The first step is clearly to find the complex function induced by a reflection 
of X in a line r. Consider [14a], which shows a new intrinsic method of 
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Figure [14] 

constructing the reflection %r@ of a point T o n  X, namely [exercise], as the 
h 

second intersection point of any two circles centred on L and passing through 
h z. Note that these two circles are orthogonal to L. Figure [14b] shows what this 
construction looks like in the stereographic map. Since stereographic projection 
preserves circles and angles, the two circles orthogonal to L and passing through 
7 are mapped to two circles orthogonal to L and passing through z .  The second 
intersection point of these circles is thus the reflection ZL (z) of z in L ! To sum up, 

Rejection of Z in a line induces rejection (inversion) of @ in the 
stereographic image of that line. (18) 

[For a different proof of (la), one that is perhaps even more natural than the one 
above, see Ex. 2.1 As an important special case, note that if L is the intersection of 
X with the vertical plane through the real axis, then reflection of X in L induces 
complex conjugation, z I+ 7. 

Now let's find the complex functions corresponding to rotations of Z. Figure 
[15] illustrates a rotation R: of C through angle @ about the point i?. Let be 
the antipodal point to 2, so that b = -(l/Z) [see (22), p. 1481. These points 2 
and b lie on the axis of the rotation and remain fixed; correspondingly, a and b 
will be the fixed points of the induced transformation of @. Furthermore, it is 
clear geometrically that the effect of the induced transformation on an infinites- 
imal neighbourhood of a is a rotation about a [exercise], and, by virtue of our 
conventions, the rotation angle is negative @ . 

According to (lo), 

where Zl and E 2  are any two lines passing through i? (and hence also through 
h 

b) such that the angle between them is ($12). Since stereographic projection 
preserves circles and angles, the images in @ of these lines will be two circles L 1 
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Figure [15] 

and L2 passing through the fixed points a and b, and containing angle (+/2) there. 
It follows from (18) that the transformation R z induced by the rotation R: is 

Thus R is a Miibius transformation! See [16], which illustrates a rotation of + = 
(7t/3). Referring back to (46) on p. 173, and recalling that the "multiplier" describes 
the local effect of a Mobius transformation in the immediate neighbourhood of a 
fixed point, we have found that 

A rotation 72: of C stereographically induces an elliptic MGbius 

transformation R z of @. The fuedpoints of R $ are a and - (1 /E ) ,  
and the multiplier m associated with a is m = e- i@.  

A straightforward matrix calculation [see Ex. 41 based on (41), p. 166, yields 
the following explicit formula for the matrix of R z : 

Note that this is in agreement with (38), p. 162: rotations of C induce Mobius 
transformations of the form 

By virtue of (13), this formula represents the most general direct motion of C. We 
have already noted that z I+ T corresponds to a reflection of Z,  and it follows 
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Figure [16] 

[exercise] that the most general opposite motion is represented by a function of 
the form 

Figure [lob] provided a very elegant geometric method of composing rotations 
of space. The above analysis now opens the way to an equally elegant method of 

computing the net rotation produced by (R? o R;) . All we need do is compose 

the corresponding Mobius transformations: 

An otherwise tricky problem has been reduced to multiplying 2 x 2 matrices! 
In practice, rotations are frequently expressed in terms of a unit vector v point- 

ing along the axis of rotation, withsat its tip. However, (19) is currently expressed 
in terms of the stereographic image a of the point Z. Let us therefore re-express 

[R $1 in terms of the components 1 ,  m, n of the unit vector 

Referring back to (19) on p. 146, we see that a and v are related as follows: 

I +im a = --- l + n  
and la1 = -. 

1 - n  1 - n  

Substituting these expressions into (19), and removing the common factor of 2/ (1 - 
n), we obtain [exercise] 

cos(+/2) + in sin(+/2) (-m + il) sin(+/2) [.:I = [ I (21) 
(m + il) sin(+/2) cos(+/2) - in sin(+/2) 
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You may check for yourself that this matrix is "normalized: det R @ = 1. This [ v l  
makes life that much easier, for when we multiply two such matrices the resulting 
matrix will be of precisely the same form. Thus, by comparing the result with (21), 
we may read off the net rotation. 

For example, suppose we perform a rotation of (n/2) about i, followed by a 
rotation of (n/2) about j. The Mobius matrix of the net rotation will therefore be 

Comparing this with (21), we see [exercise] that this is rotation of I) = (2x13) 
about the axis v = l ( i +  j - k). & 

5 Spatial Rotations and Quaternions 
This is all rather elegant, but in fact the above method of composing rotations 
can be streamlined still further. To see how, let us resume the story of Hamilton's 
quaternions, which were introduced at the close of Chapter 1. 

On the morning of Monday, 16 October 1843, Hamilton went for a walk with 
his wife. In the back of his mind was a problem with which he had wrestled 
fruitlessly for more than ten years-the search for a three-dimensional analogue 
of the complex numbers, one that would permit vectors in space to be multiplied 
and divided. As we indicated in Chapter 1, Hamilton was unable to solve this 
problem for the simple reason that no such analogue exists. However, as he passed 
Brougham Bridge, he suddenly realized that the prize which had eluded him in 
three-dimensional space was indeed attainable in four-dimensional space! 

In the two-dimensional complex plane, we may think of 1 and i as unit basis 
"vectors" in terms of which a general complex number may be expressed as z = 
a 1  + b i. The algebra of @ amounts to stipulating that multiplication distributes 
over addition, that 1 is the identity (i.e., l z  = z l  = z), and that i2 = -1. 

In four-dimensional space, Hamilton introduced four basis vectors 1, I, J, K 
in terms of which a general vector V  (which Hamilton called a quaternion) could 
be expressed as 

V= v l + v l I + v 2 J + v 3 K ,  (23) 

where the coefficients are all real numbers. To define the product of two such 
quaternions, Hamilton took 1 to be the identity, and he took I, J, K to be three 
different square roots of -1, each analogous to i: 

As in ordinary algebra, Hamilton insisted that multiplication distribute over ad- 
dition, but in order to render division possible he was forced to make a leap that 
was revolutionary in its time: non-commutative multiplication. More precisely, 
Hamilton postulated that 
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These relations probably look familiar: they are formally identical to the vector 
products of the basis vectors i, j, k in three-dimensional space. For example, 
i x j = k = -j x i. We can use this analogy between i, j, k and I, J, K to express 
the product of two quaternions in a particularly simple way. 

First, let's use the analogy to simplify the notation (23). As in ordinary algebra, 
we suppress the identity 1 in the first term and write v 1 = v, which Hamilton 
called the scalar part of V. Next we collect the remaining three terms into V = 
v l  I + v2 J + v3 K, which Hamilton called the vectorpart of V. Thus (23) becomes 

In the special case where the scalar part v vanishes, Hamilton called V = V apure 
quaternion. Historically, the concept of a pure quaternion was the forerunner of 
the idea of an ordinary vector in space. In fact the very word "vector" was coined 
by Hamilton in 1846 as a synonym for a "pure quaternion". 

If we multiply V by another quaternion W = w + W, then (24) and (25) imply 
[exercise] that 

In particular, if V and W are pure (i.e., v = 0 = w) then this reduces to 

Historically, this formula constituted the very first appearance in mathematics of 
the concepts of the dot and cross products. Thus, initially, these vectorial operations 
were viewed as merely two facets (the scalar and vector parts) of quaternion multi- 
plication. However, it did not take physicists long to realize that the scalar product 
and the vector product were each important in their own right, independently of 
the quaternions from which they had both sprung. 

Further results on quaternions will be derived in the exercises; here we wish 
only to explain the connection between quaternions and rotations of space. This 
connection hinges on the idea of a binary rotation, which means a rotation of space 
though an angle of n. The appropriateness of the word "binary" stems from the 
fact that if the same binary rotation is applied twice then the result is the identity. 

According to (21), the Mobius transformation corresponding to the binary 
rotation about the axis v = 1 i + m j + n k is 

Now, forgetting about quaternions for a moment, let us redefine 1 to be the identity 
matrix, and I, J, K to be the binary rotation matrices about i, j, k, respectively. 
Thus 
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As a simple check, note that the Mobius transformation corresponding to the 
Mobius matrix K is K ( z )  = -2. Make sure you can see why this is as it should 
be. 

Now we can state the surprising connection with quaternions: under matrix 
multiplication, these binary rotation matrices obey [exercise] exactly the same 
laws (24) and (25) as Hamilton's I ,  J ,  K .  It follows that quaternion multiplication 
is equivalent to multiplying the corresponding 2 x 2 matrices obtained by replacing 
Hamilton's 1, I, J, K with the matrices above. Conversely, the general rotation 
matrix [R $1 in (21) can be expressed [exercise] as the quaternion 

where V = 1 I + m J + n K .  This elegant formula is much easier to remember than 
(21)! 

To compose two rotations of space, we need only multiply the corresponding 
quaternions. For example, the calculation (22)-in which a rotation of (n/2) about 
i was followed by a rotation of (n/2) about j-now becomes 

Once again, but more easily than before, we deduce that this is rotation of + = 
( 2 ~ 1 3 )  about the axis v = 3 (i + j - k). 

Quaternions also yield a very compact forrnula for the effect of R $ on the 
position vector P = X i + Y j + Z k of a point in space. Suppose that R $ rotates P 
to "P If we_represent P by the pure quaternion P = X I + Y J + Z K, and likewise 
represent P as P, then 

N 

P = R $  PR;*. (29) 

This result was first published by Arthur Cayley in 1845, though he later conceded 
priority to Hamilton. Not only is the result elegant, it is also practical. For example, 
S. G. Hoggar [I9921 discusses how (29) can be used to smooth the motion of a 
rotating object in a computer animation, while B. K. P. Horn [I9911 has used it in 
research connected with robotic vision! 

Here we will give the most intuitive explanation of (29) that we have been 
able to think of; Exs. 7, 8 give two-more. Begin by noting that any multiple of P 
is rotated to the same multiple of P. To e~tablish~(29) in general, it is therefore 
sufficjent to establish it for the case where P and P are unit vectors whose tips 
and p" lie on the unit sphere. As before, let Z be the point at the tip of v. 

Consider the following composition of three rotations: (@ o R $ o 72,s'). 
Certainly this is equivalent to a single rotation, and [17] helps us to see what it 
is. Let C be the invariant circle of 72' passing through and F, and let w be 

an infinitesimal vector emanating fro:? and tangent to C. Note that any vector 
emanating from a point on C will be carried by R;' into a vector making the 
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Figure [17] 

same angle with C. This justifies the illustrated effect w H w' H w" H w"' of 
the three rotations. Thus the net effect w H w"' is a rotation of 0 about 

This geometric fact may be expressed in terms of Mobius matrices, or equivalently 
in terms of quaternions: 

Rf = R $  R $  R;'. 

Finally, if we put 0 = n then the binary rotations R and R$ are simply the pure 

quaternions P and p, so we are done. 
Further Reading. For more on the historical significance of (29), see Alt- 

mann [1989]; for the details of how Hamilton was led to quaternions, see van der 
Waerden [1985]; for discussion of the connections with modern mathematics and 
physics, see Penrose and Rindler [ 19841, Yaglom [1988], and Stillwell [1992]. 

Ill Hyperbolic Geometry 
1 The Tractrix and the Pseudosphere 

Having studied the intrinsic geometry of surfaces of constant positive Gaussian 
curvature, we now turn to the intrinsic geometry of surfaces of constant nega- 
tive curvature. Just as there are infinitely many surfaces with k > 0, so there are 
infinitely many with k < 0. Beltrami called such surfaces pseudospherical. Ac- 
cording to the previously stated result of Minding, all pseudospherical surfaces 
having the same negative value of k possess the same intrinsic geometry. To begin 
to understand hyperbolic geometry, it is therefore sufficient to examine any pseu- 
dospherical surface. For our purposes, the simplest one is the pseudosphere, so let 
us explain how this surface may be constructed. 

Try the following experiment. Take a small heavy object, such as a paperweight, 
and attach a length of string to it. Now place the object on a table and drag it by 
moving the free end of the string along the edge of the table. You will see that 
the object moves along a curve like that in [18a], where the Y-axis represents the 
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Figure [18] 

edge of the table. This curve is called the tractrix, and the Y-axis (which the curve 
approaches asymptotically) is called the axis. The tractrix was first investigated by 
Newton, in 1676. 

If the length of the string is R, then it follows that the tractrix has the following 
geometric property: the segment of the tangent from the point of contact to the 
Y-axis has constant length R. This was Newton's definition of the tractrix. As an 
interesting aside, it follows [exercise] that the tractrix can be constructed as shown 
in [18b], namely, as an orthogonal trajectory through the family of circles of radius 
R centred on the axis. This provides a good method of quickly sketching a fairly 
accurate tractrix. 

Returning to [18a], let a represent arc length along the tractrix, with a = 0 
corresponding to the starting position X = R of the object we are dragging. Just as 
the object is about to pass through (X, Y ) ,  let dX denote the infinitesimal change 
in X that occurs while the object moves a distance da along the tractrix. From the 
similarity of the illustrated triangles, we deduce that 

The pseudosphere of radius R may now be simultaneously defined and con- 
structed as the surface obtained by rotating the tractrix about its axis. Remarkably, 
this surface was investigated as early as 1693 (by Christiaan Huygens), two cen- 
turies prior to its catalytic role in the acceptance of hyperbolic geometry. 
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2 The Constant Negative Curvature of the Pseudosphere* 

In this optional section we offer a purely geometric proof that the pseudosphere 
does indeed have constant Gaussian curvature. More precisely, we will use the 
extrinsic definition of k as the product of the principal curvatures to show that the 
pseudosphere of radius R has constant curvature k = - ( 1 / ~ ~ ) .  Later we will 
give a purely intrinsic demonstration of this fact, so you won't miss much if you 
skip the following argument. 

Let r and 7 be the two principal radii of curvature of the pseudosphere of radius 
R. As with any surface of revolution, it follows by symmetry [exercise] that 

- 
r = radius of cuwature of the generating tractrix, 

r = the segment of the normal from the su$ace to the axis, 

as illustrated in [19a]. The problem of determining the Gaussian curvature 

is thereby reduced to a problem in plane geometry, which is solved in [19b]. 

Figure [19] 

By definition, the tractrix in this figure has tangents of constant length R. At 
the neighbouring points P  and Q, figure [19b] illustrates two such tangents, P A  
and Q B, containing angle 0.  The corresponding normals P 0 and Q 0 therefore 
contain the same angle a. Note that AC has been drawn perpendicular to Q B. 

Now let's watch what happens as Q coalesces with P ,  which itself remains 
fixed. In this limit, 0 is the centre of the circle of curvature, P  Q is an arc of this 
circle, and AC is an arc of a circle of radius R centred at P. Thus, 

- pQ - r = O P  and - 
AC -.=- AC R - - 

O P  R 
* - -  

P Q  F
a  
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Next we appeal to the defining property PA = R = Q B of the tractrix to deduce 
[exercise] that as Q coalesces with P ,  

BC = PQ. 

Finally, using the fact that as Q coalesces with P the triangle ABC is ultimately 
similar to the triangle T A P , we deduce that 

Behold! 

3 A Conformal Map of the Pseudosphere 

Our next step is to construct a conformal map of the pseudosphere. Recall the 
benefits of such a map in the case of a sphere: (1) it simultaneously describes all 
surfaces of curvature k = + 1 ; (2) it provides an elegant and practical description 
of the motions as Mobius transformations. Both of these benefits persist in the 
present case of negatively curved surfaces; in particular, the (direct) motions of 
hyperbolic geometry again turn out to be Mobius transformations! 

For simplicity's sake, henceforth we shall take the radius of the pseudosphere 
to be R = 1, so our map will represent pseudospherical surfaces of curvature 
k = - 1. As a first step towards a conformal map, [20a] introduces a fairly natural 
coordinate system (x, a )  on the pseudosphere. 

The first coordinate x measures angle around the axis of the pseudosphere, say 
restricted to 0 5 x < 2n. The second coordinate a measures arc length along 
each tractrix generator (as in [18a]). Thus the curves x = const. are the tractrix 
generators of the pseudosphere [note that these are clearly geodesics], and the 
curves a = const. are circular cross sections of the pseudosphere [note that these 
are clearly not geodesics]. Since the radius of such a circle is the same thing as the 
X-coordinate in [I 8a], it follows from (30) that 

The radius X of the circle a = const. passing through the point 
(x , a )  is given by X = eWa. 

In our map, let us choose the angle x as our horizontal axis, so that the tractrix 
generators of the pseudosphere are represented by vertical lines. See [20b]. Thus a 
point on the pseudosphere with coordinates (x, a )  will be represented in the map 
by a point with Cartesian coordinates (x, y), which we will soon think of as the 
complex number z = x + iy . 

If our map were not required to be special in any way, then we could simply 
choose y = y (x , a )  to be an arbitrary function of x and a. In stark contrast to 
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Figure [20] 

this, our requirement that the map be conformal leaves (virtually) no freedom in 
the choice of the y-coordinate. Let's try to understand this. 

Firstly, the tractrix generators x = const. are orthogonal to the circular cross 
sections a = const., so the same must be true of their images in our conformal 
map. Thus the image of a = const. must be represented by a horizontal line 
y = const ., and from this we deduce that y = y (a )  must be a function solely of 
a .  

Secondly, on the pseudosphere consider the arc of the circle a = const. (of 
radius X) connecting the points (x, a )  and (x + dx, a ) .  By the definition of x, 
these points subtend angle dx at the centre of the circle, so their separation on the 
pseudosphere is X dx, as illustrated. In the map, these two points have the same 
height and are separated by distance dx. Thus in passing from the pseudosphere 
to the map, this particular line-segment is shrunk by factor X. [We say "shrunk" 
because we're dividing by X, but since X 5 1 this is actually an expansion.] 
However, since the map is conformal, an infinitesimal line-segment emanating 
from (x, a )  in any direction must be multiplied by the same factor (1 / X) = ea . 
In other words, the metric is 

d F =  Xds.  

Thirdly, consider the uppermost black disc on the pseudosphere shown in 
[20a]. Think of this disc as infinitesimal, say of diameter 6 .  In the map, it will 
be represented by another disc, whose diameter (€1 X) may be interpreted more 
vividly as the angular width of the original disc as seen by an observer on the 
pseudosphere's axis. Now suppose we repeatedly translate the original disc towards 
the pseudosphere's rim, moving it a distance E each time. Figure [20a] illustrates 
the resulting chain of touching, congruent discs. As the disc moves down the 
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pseudosphere, it recedes from the axis, and its angular width as seen from the axis 
therefore diminishes. Thus the image disc in the map appears to gradually shrink 
as it moves downward, and the equal distances 86 between the successive black 
discs certainly do not appear equal in the map. 

Having developed a feel for how the map works, let's actually calculate the 
y-coordinate corresponding to the point (x, a) on the pseudosphere. From the 
above observations (or directly from the requirement that the illustrated triangles 
be similar) we deduce that 

The standard choice of this constant is 0, so that 

Thus the entire pseudosphere is represented in the map by the shaded region lying 
above the line y = 1 (which itself represents the pseudosphere's rim), and the 
metric associated with the map is 

For future use, also note that an infinitesimal rectangle in the map with sides dx 
and dy represents a similar infinitesimal rectangle on the pseudosphere with sides 
(dxly) and (dyly). Thus the apparent area dx dy in the map is related to the true 
area d A  on the pseudosphere by 

4 Beltrami's Hyperbolic Plane 
In the Introduction we gave the impression that Beltrami had succeeded in inter- 
preting abstract hyperbolic geometry as the intrinsic geometry of the pseudosphere. 
This is really not possible, and it is not what Beltrami claimed. 

The abstract hyperbolic geometry discovered by Gauss, Bolyai, and Loba- 
chevsky is understood to take place in a hyperbolic plane that is exactly like the 
Euclidean plane, except that lines within it obey the hyperbolic axiom (3): 

Given a line L and a point p not on L, there are a t  least two lines 
through p that do not meet L. 

The constant negative curvature of the pseudosphere ensures that it faithfully rep- 
resents all consequences of this axiom that deal only with a finite region of the 
hyperbolic plane. An example of such a consequence is the theorem that the an- 
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gular excess of a triangle is a negative multiple of its area, and this does indeed 
hold on the pseudosphere. 

However, the pseudosphere will not do as a model of the entire hyperbolic 
plane, because it departs from the Euclidean plane in two unacceptable ways: 

The pseudosphere is akin to a cylinder instead of a plane. For example, a 
closed loop in the plane can always be shrunk to a point, but a loop on the 
pseudosphere that wraps around the axis cannot be. 

In the hyperbolic plane, as in the Euclidean plane, a line-segment can be 
extended indefinitely in either direction. We have already remarked that the 
tractrix generators of the pseudosphere are clearly geodesic, and we would 
therefore like to interpret them as hyperbolic lines. But although such a tractrix 
extends indefinitely up the pseudosphere, in the other direction it terminates 
when it hits the rim. 

Beltrami pointed out that the first of these problems can be resolved as follows. 
Imagine the pseudosphere covered by a thin stretchable sheet. To obtain the map 
in [20b], we cut this sheet along a tractrix generator and unwrap it onto the shaded 
region. Of course to make it lie flat and fit into this rectangular region, the sheet must 
be stretched-the metric (3 1) tells us how much stretching must be applied to each 
part. But now imagine the sheet as wrapping round and round the pseudosphere 
infinitely many times7, like an endless roll of cling film8. By unwrapping this 
infinitely long sheet (stretching as we go) we can now cover the entire region above 
y = 1. According to this interpretation, a particle travelling along a horizontal line 
in the map would correspond to a particle travelling round and round a circle 
a = const. on the pseudosphere, executing one complete revolution for each 
movement of 2n along the line. 

Now let us explain how the conformal map solves our second problem-the 
pseudosphere's edge. In terms of extrinsic geometry, this edge is an insurmountable 
obstacle: we cannot extend the pseudosphere smoothly beyond this edge while 
preserving its constant curvature. However, we only care about the pseudosphere's 

d s intrinsic geometry, and we have seen that if we measure distance using d? = -, 
Y 

this is identical to the region y > 1 in [2 11. 
Imagining yourself as a tiny two-dimensional being living in [21], walking 

down a line x = const. is exactly the same thing as walking down a tractrix on 
the pseudosphere. Of course on the pseudosphere your walk is rudely interrupted 
at some point ?on the rim ( a  = 0), corresponding to a point p on the line y = 1. 
But in the map this point p is just like any other, and there is absolutely nothing 
preventing you from continuing your walk all the way down to the point q on 
y = 0. 

7~tillwell [I9961 points out that this is probably the very first appearance in mathematics of 
what topologists now call a universal cover. 

 or Americans, read "plastic wrap". 
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Figure [21] 

Why stop at q? The answer is that you will never even get that far, because q 
is infinitely far from p! Suppose that you are the illustrated small disc on the line 
y = 2, and that I am standing outside your hyperbolic world, watching as you walk 
at a steady pace towards y = 0. Of course you remain the same hyperbolic size as 
you walk, but to me you appear to shrink. This is made particularly vivid by the 
illustrated Euclidean interpretation [exercise] of your hyperbolic size d ? = $ : 

The hyperbolic diameter of an infinitesimal disc centred at (x + iy) 
is the angle it subtends at  the point x on the real axis. (33) 

Thus your apparent size must shrink so that you subtend a constant angle, and 
although all your hyperbolic strides are the same length, to me they look shorter 
and shorter, and you appear to be travelling more and more slowly. 

For example, suppose you are walking at a steady speed of In 2. As illustrated, 
integration of (dyly) shows [exercise] that you reach y = 1 after ong unit of time, 
y = (112) after two units of time, y = (114) after three units of time, etc. Thus, 
viewed from outside your world, each successive unit of time only halves your 
distance from y = 0, and therefore you will never reach it. [An appropriate name 
for this phenomenon might be "Zeno's Revenge"!] 

We now possess a concrete model of the hyperbolic plane, namely, the entire 
shaded half-plane y > 0 with metric d? = &. The points on the real axis are Y 
infinitely far from ordinary points and are not (strictly speaking) considered part 
of the hyperbolic plane. They are called ideal points, or points a t  infinity. The 
complete line y = 0 of points at infinity will be called the horizon9. 

Studying hyperbolic geometry by means of this map is like studying spherical 
geometry via a stereographic map, without ever having seen an actual sphere. This 
is not as bad as it sounds. After all, by constructing geographical maps through 
terrestrial measurements, man developed a good understanding of the surface of 
the Earth centuries before venturing into space and gazing down on its roundness! 

 or reasons that will be clear shortly, another name is the circle at injnity. 
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Still, it would be nice to have the analogue of a globe instead of a mere atlas. 
The pseudosphere only models a portion of the hyperbolic plane, but might there 
exist a different surface that is isometric to the entire hyperbolic plane? Sadly, 
Hilbert [I9011 proved that every pseudospherical surface necessarily has an edge 
beyond which it cannot be smoothly extended while preserving its constant nega- 
tive curvature. Thus the upper half-plane with metric (3 1) is as good a depiction 
of the hyperbolic plane as we are going to get. 

However, just as an atlas uses different kinds of maps to represent the surface of 
the Earth, so we can and will use different types of maps to represent the hyperbolic 
plane. The particular map we have obtained is called the Poincare' upper half-plane, 
but there is also one called the Poincare' disc, and another called the Klein disc. 
Poincark obtained the first two models in 1882, while Klein obtained the third in 
1871. 

We cannot let the names of these models pass without comment. Anyone with 
even a passing interest in the history of mathematics will know that ideas are 
frequently (usually?) named after the wrong person. In factlo, the three models 
above were all discovered by Beltrami! As we shall see, Beltrami obtained these 
three models, in a beautifully unified way, from a fourth model consisting of a 
map drawn on a hemisphere. And in case you're wondering, yes, the hemisphere 
model is Beltrami's too! 

5 Hyperbolic Lines and Reflections 

Before we get going, let's indicate where we are going, focusing just on direct mo- 
tions. In Euclidean geometry, every direct motion is the composition of reflections 
in two lines. We have seen that the same is true in spherical geometry, and we 
will soon show that it is again true in hyperbolic geometry. Since two Euclidean 
lines must intersect or be parallel, there are just two kinds of direct Euclidean 
motions: rotations and translations. The absence of parallel lines on the sphere 
implies that its direct motions can only be rotations. Conversely, the multitude of 
parallel lines in the hyperbolic plane yields a geometry that is richer than Euclid's, 
containing rotations, translations, and a third kind of motion that has no Euclidean 
counterpart. 

To avoid confusion, let us use the prefix "h-" to distinguish hyperbolic concepts 
from their Euclidean descriptions in the map. For example, an "h-line" will mean a 
"hyperbolic line" (i.e., a geodesic), while a "line" will refer to an ordinary straight 
line in the map. Let us also define H{zl, z2) to be the h-distance (measured using 

d s d r  = y) between 11 and 22. For example, if dz is infinitesimal, then 

ldz l 
H{z + dz, z) = - 

Imz ' 

Finally, let us define an h-circle of h-radius p and h-centre c to be the locus of 
points z such that H{z, c) = p. 

'Osee Milnor [1982], and Stillwell's [I9961 translations of Beltrami [1868, 1868'1. 
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Since tractrix generators of the pseudosphere are clearly geodesic, vertical 
lines in the map should also be geodesic, i.e., they should be examples of h-lines. 
Figure [22a] confirms this directly by showing that 

The (unique) shortest route between two vertically separated points 
is the vertical line-segment L connecting them. (34) 

To see this, compare L with any other route, such as M. Let dsl be an infinitesimal 
segment of L at height y, and let ds2 be the corresponding element of M cut off 
by horizontal lines through the ends of dsl . Since 

the total hyperbolic length of L is less than M's. Done. From this we can deduce 
that 

H{(x + iyl), (x + iy2)) = I ~ ~ ( Y ~ I Y ~ ) I .  (35) 

Through a given point of the pseudosphere we obviously have geodesics in all 
directions, not just tractrix generators; what do these more general h-lines look 
like in the map? The answer is very beautiful and unexpected: 

Every h-line is either a half-line orthogonal to the horizon, or  else 
a semicircle orthogonal to the horizon. (36) 

Before we prove this, it's important to realize that if you were an inhabitant 
of the hyperbolic plane, there would be no way for you to distinguish between 
the semicircular h-lines and the vertical h-lines: every line is exactly like every 
other, it's just our map that makes them look different. What about the fact that the 
semicircles have two ends on the horizon, whereas the vertical h-lines appear to 
only have one? The answer is that, in addition to the points on the real axis, there 
is one more point at infinity, and all the vertical h-lines meet there. According to 
(3 I), as we move upward along two neighbouring, vertical h-lines, the h-distance 
between them dies away like (l/y), and they converge to a single point at infinity; 

horizon horizon 4 

Figure [22] 
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this is particularly vivid on the pseudosphere. Finally, note that even in terms of 
the map, a vertical h-line may be viewed as just a special case of a semicircular 
h-line by allowing the radius to tend to infinity. 

We will prove (36) by first establishing another equally beautiful fact, one that 
is fundamental to all that follows: 

Inversion in a semicircle orthogonal to the horizon is an opposite 
motion of the hyperbolic plane. (37) 

To see why this is true, consider the inversion z I-+ O?' = ZK (2 )  illustrated in [22b]. 
We need to show that ZK (z) does not alter the h-length d r  of any infinitesimal 
line-segment ds  emanating from z. However, because our model of the hyperbolic 
plane is conformal, we need only show that ZK (z) preserves the h-length of any 
single ds,  in a direction of our choosing. Choosing ds  orthogonal to the radius qz  
of K (as illustrated), the anticonformality of inversion implies that the image d Y 
is also orthogonal to this radius. Thus, by virtue of the illustrated similar triangles, 
it follows [exercise] that 

as was to be shown. 
To establish (36), consider [23a]. First, the figure shows that two points a and b 

[Re(a) # Re(b)] can always be joined by a unique arc L of a semicircle orthogonal 
to the real axis: to construct the centre c, simply draw the perpendicular bisector 
of ab. As illustrated, let q be one of the ends of this semicircle. Now we need to 
show that L is the shortest (smallest h-length) route from a to b. 

We show this by applying an inversion z H Z = ZK (z), where K is any circle 
centred at q. This carries the arc L into a vertical line-segment L, and (37) tells us 
that L and L have equal h-lengg. More generally, anyroute M from a to b has 
the same h-length as the route M_ = ZK ( M )  from ii to b. Thus if L were not-the 
shortest route from a to b, then L would not be the shortest route from ii to b, in 
violation of (34). Done. 

Incidentally, note that this construction also enables us (in principle) to calcu- 
late the h-distance between any two points in the hyperbolic plane: 

by virtue of (35). Later we shall be able to derive a more explicit formula. 
The fact that a semicircle orthogonal to the real axis is an h-line strongly 

suggests the following re-interpretation of (37): 

Inversion in a semicircle K orthogonal to the horizon is a reflection 
!RK of the hyperbolic plane in the h-line K. (38) 

In symbols, !RK (z) = ZK (2). Before proving this, let's be clear what we mean by 
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Figure [23] 

reflection. Just as we would in Euclidean and spherical geometry, we begin the 
construction of !RK (z) by drawing the h-line P that passes through z and cuts K 
perpendicularly, say at m. Then !RK (z) is defined to be the point on P that is the 
same h-distance from m as z. 

To prove (38), consider [23b], in which ? = ZK(z). First recall that every 
circle through z and ? is automatically orthogonal to K. In particular, the unique 
h-line through z and ? must be orthogonal to K, and hence it is the desired "P" 
of the previous paragraph. Finally, recall that ZK maps P into itself, swapping the 
segments zm and Yrn. Thus, since ZK is a motion, these two h-line segments have 
equal h-length, as was to be shown. 

Conversely, if we are given any two points z and Z, then we may draw the 
perpendicular h-bisector K, and 'illK swaps z and?. Also note that z and its reflection 
N 

z = !RK (2) are the same h-distance from every point k on K, just as in Eucligean 
and spherical geometry. This is easily proved: since ZK is a motion, and k = 
ZK (k) = k, it follows that H{z, k} = HE, k) = HE, k}. 

It is becoming clear that hyperbolic geometry has much in common with Eu- 
clidean geometry. However, now that we know what h-lines look like, [24] shows 
that hyperbolic geometry really is non-Euclidean: there are infinitely many h-lines 
through p [shown dashed] that do not meet the h-line L. Such h-lines are said to 

Figure [24] 
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be ultra-parallel to L. 
Separating the ultra-parallels from the h-lines that do intersect L, we see that 

there are precisely two h-lines that fail to meet L anywhere within the hyperbolic 
plane proper, but that do meet it on the horizon. These two h-lines are called 
asymptotic1 l . 

As in Euclidean geometry, the figure makes it clear that there is precisely one 
h-line M passing through p that cuts L at right angles (say at q). In fact [exercise] 
M may be constructed as the unique h-line through p and 'BL (p). The existence 
of M makes it possible to define the distance of a point p from a line L in the usual 
way, namely, as the h-length of the segment pq of M. 

Since M and L are orthogonal, 'BM = ZM maps L into itself, swapping the 
two ends on the horizon. It follows [exercise] that !XM swaps the two asymptotic 
lines, and that M bisects the angle at p contained by the asymptotic lines. The 
angle between M and either asymptotic line is called the angle of parallelism, and 
is usually denoted Il. As one rotates the line M about p, its intersection point on 
L moves off towards infinity, and Il tells you how far you can rotate M before it 
starts missing L entirely. 

Finally, [25] merely serves to illustrate the same concepts and terminology as 
[24], but in the case where the h-line L happens to be represented as a vertical 
half-line instead of a semicircle. 

Figure [25] 

6 The Bolyai-Lobachevsky Formula* 
This brief, optional subsection nicely illustrates how the preceding ideas may be 
used to solve a significant, concrete problem: finding the angle of parallelism, ll. 

In Euclidean geometry the analogue of the two asymptotic lines is the unique 
parallel line through p, and since this is perpendicular to M, the analogue of ll 
is a right angle. On the other hand, in hyperbolic geometry it is clear that ll is 
always acute, and that its value decreases as the distance D = H{p, q} of p from 
L increases. More precisely, both Bolyai and Lobachevsky showed that 

  not her commonly used name is parallel. 
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and from this they were able to derive many of their other results. We now give 
a simple geometric proof of this so-called Bolyai-Lobachevsky Formula. Green- 
berg [1993, p. 3911 has called this "one of the most remarkable formulas in the 
whole of mathematics", but for us it will be of only incidental interest. 

First note that it is sufficient to establish the formula using [25], rather than 
[24]. This is because we may transform 1241 into [25] by performing an inversion 
(i.e., a hyperbolic reflection) in any semicircle centred at one of the ends of L.  

Figure [26] reproduces the essential elements of [25]. In order to find the h- 
length D of the arc pq, let us apply the h-reflection z I+ ? = 8Ic ( z ) ,  where C is 
the illustrated semicircle that is centred at the end c of M, and that passes through 
q. This carries the arc pq into the illustrated vertical line-segment Eq. By virtue 
of (35), it only remains to find the ratio of the y-coordinates of q and F, i.e., the 
ratio of the Euclidean distances [qm] and [Em]. 

Figure [26] 

From the fact that the radius pm is orthogonal to the circle M it follows 
[exercise] that the angle pmc equals n. It then follows [exercise] that the angle 
cFm equals (n/2), as illustrated. Thus 

where the last equality follows from the fact that tan(n/2) c 1, because l l  is 
acute. Thus tan(n/2) = eVD, as was to be shown. 

7 The Three Types of Direct Motion 
As we have pointed out, the "Poincar6 upper half-plane" was first discovered by 
Beltrami. What Poincar6 does deserve credit for--enormous credit!-is the real- 
ization that hyperbolic geometry is intimately connected with complex analysis. 
The cornerstone of this connection is the fact that the (direct) motions of the hy- 
perbolic plane are Mobius transformations. Let us outline how this comes about. 
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If L1 and La are two h-lines, then the composition 

of h-reflection in these lines will be a direct motion of the hyperbolic plane. Since 
every h-reflection is represented in the map by inversion in a circle, we immediately 
deduce that any direct motion of the form M is represented by a (non-loxodromic) 
Mobius transformation M (2). Furthermore, later we will show that every direct mo- 
tion is of the form M; indeed, we will even give an explicit geometric construction 
for decomposing an arbitrary direct motion into two h-reflections. Supposing this 
already done, we see that every direct motion is represented as  a (non-loxodromic) 
Mobius transformation. 

Conversely, suppose that M ( z )  is an arbitrary Mobius transformation that maps 
the upper half-plane to itself. Then it follows that M (z) must map the real axis (the 
horizon) into itself. But a loxodromic Mobius transformation cannot possess such 
an invariant line: its strangely shaped invariant curves were illustrated in [32] on 
p. 166. Thus M (z) is non-loxodromic, and from (48), p. 175, we deduce that M (2) 
is the composition of inversion in two circles orthogonal to the real axis. Thus the 
most general Mobius transformation of the upper half-plane to itself represents a 
direct hyperbolic motion of the type M above. 

One way to discover the algebraic form of these Mobius transformations is to 
use the formula (4), p. 125: inversion in a circle K centred at the point q on the 
real axis, and of radius R,  is given by 

Composing two such functions, we find [exercise] that a motion of type M corre- 
sponds to a Mobius transformation 

where a ,  b, c, d are real, and (ad - bc) > 0. (39) M(z) = - 
c z + d '  

Recall that in Ex. 25, p. 188, you showed that this is the form of the most general 
Mobius transformation of the upper half-plane to itself. Thus we have agreement 
with the conclusion of the previous paragraph. 

So much for the overview-now let's look in detail at the direct motions M. 
We know from [24] or [25] that there are just three possible configurations for 
the h-lines L1 and L2, and correspondingly M - BL2 0 !RL2 is one of three 
fundamentally different types: 

(i) If the h-lines intersect, then M is called a hyperbolic rotation. 

(ii) If the h-lines are asymptotic, then M is a new kind of motion (peculiar to 
hyperbolic geometry) called a limit rotation. 

(iii) If the h-lines are ultra-parallel, then M is called a hyperbolic translation. 
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We can now reap the rewards of all our hard work in Chapter 3, for these three 
types of motion are just the three types of non-loxodromic Mobius transformation: 
(i) h-rotations are the "elliptic" ones; (ii) limit rotations are the "parabolic" ones; 
and (iii) h-translations are the "hyperbolic"12 ones. At this point, you might find 
it helpful to reread the discussion of these Mobius transformations at the end of 
Chapter 3. 

We already understand these Mobius transformations, so it only remains to look 
at them afresh, through hyperbolic spectacles. That is, imagine that you belong to 
the race of Poincarites-tiny, intelligent, two-dimensional beings who inhabit the 
hyperbolic plane. To you and your fellow Poincarites, h-lines really are straight 
lines, the real axis really is infinitely far away, etc. What will you see if the above 
motions are applied to your world? 

Figure [27] 

Let us begin with h-rotations. Figure [27] illustrates the elliptic Mobius trans- 
formation-let's call it Rt-that arises in the case where the h-lines intersect at 
a ,  and the angle from L 1 to L2 is ($12). [We have chosen to illustrate $ = (n/3) .] 
Thus R$ has fixed points a and a, and the multiplier associated with a is rn = ei# . 
As in Chapter 3, each shaded "rectangle" is mapped by Rt to the next one in 
the direction of the arrows-some of these regions have been filled with black to 
emphasize this. 

Consider how all this looks to you and your fellow Poincarites. For example, 
you see each black "rectangle" as being exactly the same shape and size as every 
other. To understand R: better, we begin by noting that (in terms of the map) 
its effect on an infinitesimal neighbourhood of a is just a Euclidean rotation of $ 
about a .  But since the map is conformal, this implies that a Poincarite standing at 
a will also see his immediate neighbourhood undergoing a rotation of 4. 

More remarkably, however, the Poincarite at a will see the entire hyperbolic 

1 2 ~ r y  not to be confused by this unrelated use of the word "hyperbolic". 



Hyperbolic Geometry 309 

plane undergoing a perfect rotation of 4. Every h-line segment up he constructs 
emanating from a is transformed by z H ? = R$ ( z )  into another h-line segment 
up" of equal length, making angle 4 with the original. If the Poincarite gradually 
increases 4 from 0 to 2n, then he sees tracing out an h-circle centred at a ,  
while in the map we see p" miraculously tracing out a Euclidean circle! Thus the 
illustrated Euclidean circles orthogonal to the h-lines through a are all genuine 
hyperbolic circles, and a is their common h-centre. Let us record this remarkable 
result, adding a detail that is not too hard to prove [exercise]: 

Every h-circle is represented in the map by a Euclidean circle, and 
its h-centre is the intersection of any two h-lines orthogonal to it. 
Algebraically, the h-circle with h-centre a = (x + i y )  and h-radius 
p is represented by the Euclidean circle with centre (x + iy cosh p) 
and radius y sinh p. 

As a stepping stone to the limit rotations, [28] introduces a new type of curve 
in the hyperbolic plane. On a line L in Euclidean geometry, let p be a fixed point, 
let a be a moveable point, and let C be the circle centred at a that passes through 
p. If we let a recede to infinity along L, then the limiting form of C is a line 
(through p and perpendicular to L). Figure [28a] shows that it's a different story 
in the hyperbolic plane. As a recedes towards the infinitely remote point A on the 

______---- -----__ 

horocycle P 

Figure [28] 

real axis, the limiting form of C is a (Euclidean) circle that touches the real axis 
at A. This is neither an ordinary h-circle, nor an h-line: it is a new type of curve 
called a horocycle. Figure [28b] shows that horizontal (Euclidean) lines are also 
horocycles. Note that if K is any circle centred at A then the h-reflection 'illK = ZK 
transforms [28a] into [28b]. Thus the Poincarites cannot distinguish between these 
two types of horocycle. 

Now consider [29], which illustrates the parabolic Mobius transformation that 
results from h-reflection in h-lines L1 and L2 that are asymptotic at A. Referring 
to [27] and [28], you can now understand why this is called a limit rotation: it 
may be viewed as the limit of the h-rotation R$ as a tends to the point A on the 
horizon. Note some of the interesting features of this picture: the invariant curves 
are horocycles touching at A; each such horocycle is orthogonal to every h-line 
that ends at A; and any two such horocycles cut off the same h-length on every 
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Figure [29] 

h-line that ends at A. 
In terms of the map, the simplest limit rotation occurs when the asymptotic 

h-lines L1 and L2 are represented as vertical Euclidean half-lines, say separated 
by Euclidean distance (a/2). In this case, M = (%L2 o RL1)  is represented in 
the map by the composition of two Euclidean reflections in parallel lines. Thus 
M is just a Euclidean translation z t-+ (z + a )  of the upper half-plane, and the 
invariant curves are horizontal lines, which are again horocycles, but now of the 
form shown in [28b]. Note that this Euclidean translation is not an h-translation. 
This is particularly clear if we visualize the effect of M on the pseudosphere, 
where it becomes a rotation through angle a about the pseudosphere's axis. 

Figure [30] illustrates the third and final type of motion, the h-translation (hy- 
perbolic Mobius transformation) resulting from h-reflection in two ultra-parallel 
h-lines. First note that there is precisely one h-line L that is orthogonal to both 
L1 and L2. Unlike a Euclidean translation, this h-line L is the only h-line that is 
mapped into itself; it is called the axis of the h-translation. Despite this difference, 
the name "h-translation" is appropriate, for every point on the h-line L is moved 
the same h-distance (say 6) along L. If we assume that the axis L has a direction 
assigned to it, then we may unambiguously denote this h-translation by q. 

In Euclidean geometry, the invariant curves of a translation are the parallel 
lines in the direction of the translation. However, [30] shows that the invariant 
curves of are not h-lines, but rather arcs of Euclidean circles connecting the 
ends el and e2 of L. These are called the equidistant curves of L, because every 
point on such a curve is the same h-distance from the h-line L. Make sure you can 
see this. 

In terms of the map, the simplest h-translation occurs when the ultra-parallel 
h-lines L 1 and L2 are represented by concentric Euclidean semicircles, say centred 
at the origin for convenience. In this case, the two h-reflections (i.e., inversions) 
yield a central dilation z I-+ kz, where k is the real expansion factor. The axis 
of this h-translation is the vertical line through the origin (the y-axis), and the 
equidistant curves are all other (Euclidean) lines through the origin (cf. [20] and 
[21]). Note that this Euclidean expansion is a similarity transformation of the map, 
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Figure [30] 

but it is not a similarity transformation of the hyperbolic plane-there are none! 
Having completed our survey of these three types of direct motion, it's impor- 

tant to note that they not only look very different in terms of their effect on the map, 
but they also have unique fingerprints in terms of the intrinsic hyperbolic geometry. 
To put this another way, Poincarites can tell these motions apart. For example, of 
the three, only h-rotations have invariant h-circles, and only h-translations have an 
invariant h-line. 

8 Decomposing an Arbitrary Direct Motion into Two Reflections 

We will now show that the h-rotations, limit rotations, and h-translations are the 
only direct motions of the hyperbolic plane. That is, an arbitrary direct motion M 
can always be decomposed into two h-reflections: M = (YtL2 0 YtL1). 

The first step is a familiar lemma: an arbitrary hyperbolic motion M (not 
necessarily direct) is uniquely determined by its efect on any three non-collinear 
points. As in Euclidean geometry, this will be established if we can show that the 
location of a point p is uniquely determined by its h-distances from any three non- 
collinear points a ,  b, c. Consider [3 la], in which we have supposed (for simplicity's 
sake only) that the h-line L through a and b is represented by a vertical line in the 
map. Through the point p,  draw h-circles centred at a ,  b, and c. Since c does not 
lie on L (by assumption), we see that p is the only point at which the three circles 
intersect. Done. 

Now suppose that an arbitrary motion carries two points a and b to the points 
a' and b' in [31b]. By the above result, the motion will be determined once we 
know the image of any third point p not on the line L through a and b. Drawing the 
illustrated h-circles with h-centres a' and b' and with h-radii H{a, p )  and H{b, p), 
we see that the two intersection points p' and F are the only possible images for 
p.  Furthermore, since the h-line L' through a' and b' is necessarily orthogonal to 
the h-circles centred at those points, we also see that p' and F are symmetric with 
respect to L', i.e., = ZLt (p') = 9tL' (p'). Thus we have shown that 
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Figure [3 1 ] 
There isexactly one direct motion M (and exactly one opposite 
motion M )  that maps a given h-line segment ab-to another h-line 
segment arb' of equal h-length. Furthermore, M = (WLt o M ) ,  (40) 

where L' is the h-line through a' and b'. 

We shall now give an explicit geometric construction for decomposing an 
arbitrary direct motion M into two h-reflections. First note that (40) implies that 
M is determined by its effect on any two points, no matter how close together 
they are. Though it is not essential, the following construction is particularly clear 
if we choose the points to be infinitesimally separated. 

Let us therefore take the two given points to be z and (z + dz), and their given 
images under M to be w = M (z) and (w + d w) = M ( z  + dz). Figure [32] 
illustrates this idea. Our task is to find two h-reflections that will simultaneously 
carry z to w, and dz to dw. [Incidentally, since M must be conformal, it can be 
thought of an analytic function, so we may write dw = Mt(z)  dz.] 

First, carry z to w using the h-translation 1 8 ,  where 6 = H{z, w}, and L is 5 the unique h-line from z to w. Note that since TL is conformal, it carries dz to an 
infinitesimal vector d ?  (of equal h-length) making the same angle with L as dz. 
Next, apply the h-rotation R;, where 0 is the angle from d ?  to dw. This leaves 
w where it is, and it rotates d Y to d w. Since the net transformation carries z to w, 
and dz to dw, it must be M :  

Implicitly, this formula decomposes M into four h-reflections, because 7; and 
72; can both be decomposed into two h-reflections. However, [32] illustrates that 
we can always arrange for two of the four h-reflections to cancel. Defining m to be 
the h-midpoint of the h-line segment z w, draw h-lines A and B orthogonal to L and 
passing through m and w, respectively. Then = (WB 0 %A). If we now draw an 
h-line C through w making angle (012) with B, then 72; = (aC o WB). Thus, as 
we set out to show, every direct motion can be decomposed into two h-reflections: 
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Figure [32] 

In the illustrated example, it so happens that the h-lines A and C intersect, and 
so the motion is an h-rotation: M = R:, where a is the intersection of A and C ,  
and ($/2) is the angle between them. However, it is clear that this construction 
may just as easily yield an A and a C that are asymptotic or ultra-parallel, in which 
case M is a limit rotation or an h-translation. 

Summarizing what we have shown, and recalling (39), 

Every direct motion of the hyperbolic plane is the composition of 
two h-reflections, and is thus an h-rotation, a limit rotation, or an 
h-translation. In the Poincare' upper half-plane, all such motions are 
presented by Mobius transformations of the form 

az + b 
M ( z )  = - where a ,  b ,  c ,  d are real, and (ad - bc) > 0. 

c z + d '  

Finally, returning to [32] and appealing to (40), the unique opposite motion 
carrying z to w and dz to d w is given by three h-reflections: 

Here L' is the illustrated h-line passing through w and (w + dw) ,  i.e., passing 
through w in the direction dw. This d~composition does not, however, yield the 
simplest geometric interpretation of M; for that, and for the formula describing 
the general opposite motion, see Ex. 24. 

9 The Angular Excess of a Hyperbolic Triangle 

Joining three points in the hyperbolic plane with h-line segments yields (by defi- 
nition) a hyperbolic triangle. Our objective will be to show that the angular excess 
E(T) of such a hyperbolic triangle T is given by 
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As we pointed out in the Introduction, this says (amongst other things) that the 
angles of T always add up to less than n ,  and that no matter how large we make 
T, its area can never exceed 7t. Referring to the differential geometry result (6), 
we also see that in establishing this formula we will have provided an intrinsic13 
proof of the fact that the hyperbolic plane is a surface of constant negative curvature 
k =  -1. 

We have already remarked that Christiaan Huygens investigated the pseudo- 
sphere as early as 1693, and to get acquainted with hyperbolic area we will now con- 
firm one of his surprising results: the pseudosphere hasJinite area. In the upper half- 
plane the pseudosphere is represented by the shaded region (0 ( x < 2n, y 3 1) 
shown in [20], and (32) implies that this region of infinite Euclidean area does 
indeed have finite hyperbolic area: 

as Huygens discovered. 

Figure [33] 

Figure [33a] illustrates a triangle on the pseudosphere. If the uppermost ver- 
tex moves up the pseudosphere indefinitely, then the angle at that vertex tends to 
zero, and the edges meeting at that vertex tend to asymptotic lines, namely, tractrix 
generators meeting at infinity. Such a limiting triangle, two of whose edges are 
asymptotic, is called an asymptotic triangle. In order to establish (41) for ordinary 
triangles, we first establish it for asymptotic triangles. Figure [33b] illustrates such 
a triangle T in the upper half-plane, the asymptotic tractrix generators becoming 
vertical half-lines. By Huygens' result, T clearly has a finite area A(T), and be- 
cause the asymptotic edges meet at angle zero, the result we wish to establish is 
A(T) = (n - a  - p ) .  

13~ecal l  that earlier we used the pseudosphere to give an extrinsic proof. 
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To simplify the derivation of this result, [33b] supposes that the finite edge of 
T is an arc of the unit circle. This does not involve any loss of generality, because 
an arc of a circle of radius r centred at x = X may be transformed into an arc 
of the unit circle by applying the limit rotation z t+ (Z - X), followed by the 
h-translation z I-+ (zlr). From [33b] we now deduce that 

and writing x = cos 0 then yields the desired result: 

On the left of [34] is a general triangle, say of area A. By applying a suitable 
h-rotation about one of the vertices, we can bring one of the edges into a vertical 
position, as illustrated on the right of [34]. This makes it clear that the area A 
of the triangle may be viewed as the difference of the areas of two asymptotic 
triangles: one with angles a and (/? + 0); the other with angles (n - y)  and 0. 
Finally, applying the above result for asymptotic triangles, we deduce (4 1): 

Figure [34] 

10 The Poincare Disc 
In addition to the upper half-plane model, Beltrami [I  868'1 constructed another 
extremely useful conformal map of the hyperbolic plane, this time inside the unit 
disc. Fourteen years later Poincar6 rediscovered this map, which is now universally 
(and wrongly) known as the Poincare' disc. 
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Figure [35a] illustrates the first step of the construction, which is to map the 
entire upper half-plane into the unit disc by means of the inversion 

where K is the illustrated circle centred at -i and passing through f 1. In order for 
this disc to represent the hyperbolic plane, its metric must be inherited from the 
upper half-plane. That is, we must define the h-separation H{z, b)  of two points in 
the disc to be the h-separation H{a, b)  of their preimages in the upper half-plane. 
Note that this implies [exercise] that the h-lines of the disc are precisely the images 
of h-lines in the upper half-plane. 

Before moving on, try staring at [35a] until the following details become clear: 
(i) f 1 remain fixed and i is mapped to 0; (ii) the entire shaded part of the upper 
half-plane is mapped to the shaded bottom half of the unit disc; (iii) the remaining 
part of the upper half-plane (i.e., the top half of the unit disc) is mapped into 
itself; (iv) h-lines in the disc are the images of h-lines in the upper half-plane, 
and these are arcs of circles orthogonal to the unit circle; (v) the entire horizon of 
the hyperbolic plane is represented by the unit circle, with the common point at 
infinity of vertical h-lines in the upper half-plane being represented by -i. 

Figure [35] 

At this point we have obtained a map of the hyperbolic plane within the unit 
disc. However, since ZK (z) is anticonformal, so is our map: angles in the upper 
half-plane are currently represented by equal but opposite angles in the disc. If 
we now apply z H 2, which reflects the disc across the real axis into itself, then 
angles are reversed a second time, and we obtain the conformal Poincark disc. 

The net transformation from the Poincark upper half-plane to the Poincark 
disc is thus the composition of z H ZK(Z) and z I+ F ,  and this is a Mobius 
transformation, say D(z). Since D(z) maps i to 0 and -i to oo, it is clear that 
D(z) must be proportional to (z - i)/(z + i). Finally, recalling that a Mobius 
transformation is uniquely determined by its effect on three points, and noting that 
f 1 remain fixed, we deduce [exercise] that 
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Alternatively, this may be derived by brute force [exercise] using the formula for 
inversion, (4), p. 125. 

Since D(z) preserves angles and circles, it is easy to transfer the basic types of 
curve in the hyperbolic plane from the PoincarC upper half-plane to the PoincarC 
disc. Figure [35b] illustrates that h-lines are represented by arcs of circles orthogo- 
nal to the unit circle (such as L, A, U), including diameters such as I. Incidentally, 
since the horizon is now represented by the unit circle, you can understand why 
the horizon is also called the circle at infinity. 

The terminology for h-lines is the same as before: I intersects L, A is asymp- 
totic to L, U is ultra-parallel to L, and a Euclidean circular arc E connecting the 
ends of L is an equidistant curve of L. It is also easy to see that a Euclidean circle 
C lying strictly inside the unit disc represents an h-circle, though its h-centre a 
does not generally coincide with its Euclidean centre. Finally, the horocycles in 
[28a] and [28b] are represented in the PoincarC disc by circles such as H that touch 
the unit circle. 

Now let us find the metric in the PoincarC disc. Ex. 19 shows how this may be 
done by brute calculation, but the following geometric approach14 is much more 
enlightening and powerful. First, [36a] recalls the earlier observation (33): if ds is 
the infinitesimal Euclidean length of a horizontal line-element emanating from z, 
then the angle between L and E is its hyperbolic length d? = [dsl Im(z)]. 

Note that in purely hyperbolic terms, L is an h-line orthogonal to ds, and E 
4 is an equidistant curve of L. If we apply an h-rotation Rz then L is carried into 

another h-line L', and E is carried into an equidistant curve E' of L', and the angle 
between L' and E' is the same as before. Thus we have the following general 
construction: 

Through one end of ds, draw the h-line 1 orthogonal to ds, and 
through the other end of ds draw the equidistant curve e. Then the 
h-length d?of ds is the angle of intersection (on the horizon) of 1 (43) 

and e. 

Now the beauty of interpreting d? as an angle in this way is that the Mobius 
transformation D to the PoincarC disc is conformal, and so the above construction 
of d ?is valid there too! 

Figure [36b] illustrates an infinitesimal disc of Euclidean radius ds centred at 
z = r eie in the PoincarC disc. Because the map is conformal, the h-length d?of 
ds is independent of the direction of ds, so we may simplify the construction (43) 
by choosing ds orthogonal to the diameter 1 through z. The equidistant curve e is 
then the illustrated arc of a Euclidean circle through the ends of 1. 

To turn this picture of d?into a formula, begin by noting that if p is the radius 
of the circle containing the arc e ,  then [draw a picture!] 

14we merely rediscovered this idea, which we believe originates with Thurston [1997]. However, 
our uses of the idea differ somewhat from Thurston's. 
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Figure [36] 

p d F =  1. 

Next recall (or prove) the familiar property of circles illustrated in [36c], namely, 
that all chords passing through a fixed interior point are divided into two parts 
whose lengths have constant product: AB = A

f

B
f

.  Applying this result to the 
copy of [36b] shown in [36d], we obtain [exercise] 

2 2pds = (1 - r ) ( l  + r )  = 1 - 121 . 

Thus the metric of the Poincar6 disc is 

h 2  
d s  = - ds. 

1 - 1212 

Note the remarkable similarity to (16)! 
Since the Euclidean line-segment connecting 0 to z is also an h-line segment, 

we can now find the h-separation of these points by simple integration along the 
line-segment: 

and so 
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As a simple check of this formula, note that as z moves toward the unit circle (the 
horizon), H{O, z )  tends to infinity, as it should. 

11 Motions of the Poincare Disc 
In the upper half-plane we found that every direct motion was the composition 
of two h-reflections, and every opposite motion was the composition of three h- 
reflections. Since the intrinsic geometry of the PoincarC disc is identical to the 
upper half-plane, this result must still be true, so it only remains to find out what 
h-reflection means in the disc. In the upper half-plane we saw that h-reflection in 
an h-line K meant geometric inversion in K,  and the same is true in the Poincare' 
disc! 

This is easy to understand. In the upper half-plane, q is the h-reflection of p 
in K means that p and q are symmetric (in the sense of inversion) in K. In order 
to make the Poincare disc isometric to the upper half-plane, we insisted that the 
mapping z I+ 7 =_ D(z) preserve hyperbolic distance. In particular, q" is the h- 
reflection of p" in K. But D(z)  is a Mobius transfonnation,_and so the Symmetry 
Principle [see p. 1481 implies that p" and q" are symmetric in K,  as was to be shown. 

Thus every direct motion M of the PoincarC disc has the form 

where L1 and L2 are h-lines, namely, arcs of circles orthogonal to the unit circle. 
As in the upper half-plane, every direct motion is therefore a non-loxodromic 
Mobius transformation. We already know that there are just three hyperbolically 
distinguishable types of direct motion, and the distinction between them in terms 
of L1 and L2 is the same as before: we get an h-rotation when they intersect, 
a limit rotation when they are asymptotic, and an h-translation when they are 
ultra-parallel. We will discuss the formula for these Mobius transformations in a 
moment, but first let's draw pictures of them. 

Figure [37a] shows a typical h-rotation; note the appearance of h-circles with 

Figure 1371 
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a common h-centre. Figure [37b] illustrates the pleasant fact that if L1 and L2 in- 
tersect at the origin (in which case they are Euclidean diameters) then the resulting 
h-rotation manifests itself as a Euclidean rotation. 

In this connection, we offer a word of warning. As Euclidean beings, we suffer 
from an almost overwhelming temptation to regard the centre of the PoincarC disc 
as being special in some way. One must therefore constantly remind oneself that 
to the Poincarites who inhabit the disc, every point is indistinguishable from every 
other point. In particular, the Poincarites do not see any difference between [37a] 
and [37b]. 

Figure [38a] illustrates a typical limit rotation generated by an L1 and an L2 
that are asymptotic at a point A on the horizon. Once again note that the invariant 
curves are horocycles touching at A, and that these are orthogonal to the family of 
h-lines that are asymptotic at A. 

Figure [38] 

Finally, [38b] illustrates a typical h-translation. Once again, note that there is 
precisely one invariant h-line [shown in bold], and that the invariant equidistant 
curves are arcs of circles through the ends of this axis. 

From our work in the upper half-plane we know that the three types of motion 
pictured above are the only direct motions of the Poincar6 disc, and we now turn 
to the formula that describes them. We know that every direct motion is a Mobius 
transformations that maps the unit disc into itself, and at the end of Chapter 3, with 
malice aforethought, we investigated these "Mobius automorphisms" of the unit 
disc. We found [see (51), p. 1781 that the formula representing the most general 
one M$ (z) is 

z - a  
M," ( z )  = ei%a (z), where Ma (z) = 7 

a z -  1 '  

Thus M$ is the composition of Ma and a rotation of c$ about the origin. 
Recall that Ma swaps a and 0: M(a) = 0 and M(0) = a. More generally, 

Ma swaps every pair of points z, Ma (2 ) :  the transformation is involutory. This is 
explained by [39a], which recalls the result illustrated in [39], p. 179: 
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where B is the diameter through a ,  and where A is the circle centred at (l/Z) that 
is orthogonal to the unit circle. 

Hyperbolic geometry gives us a fresh perspective on this result: the intersection 
point m of A and B is the h-midpoint of 0 and a ,  and A itself is the perpendicular 
h-bisector of Oa. Furthermore, the inversions in A and B are h-reflections. Thus 
Ma is the composition of two h-reflections in perpendicular h-lines through m, and 
SO 

The unique Mobius automorphism Ma that swaps a and 0 is the 
h-rotation Rz through angle n about the h-midpoint m of the h-line 
segment Oa. 

An immediate benefit of this insight is that we can now easily find the formula 
for the h-separation of any two points, a and z. The h-rotation Ma brings a to the 
origin, and we already know the formula (45) for the h-distance of a point from 
there: 

and so 
a z -  11 + lz-a1 

H{a, z} = ln ( I-  
llEz - ll - lz - a1 

Now let us resume and complete our discussion of M$'. As illustrated in [37b], 
the Euclidean rotation z I+ ei" represents the h-rotation R:. Thus the most 
general Mobius automorphism of the disc may be interpreted as the composition 
of two h-rotations: 

M$' =R:~R;. 

Figure [39] 
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Figure [39b] shows how to compose these h-rotations, using the same idea 
as was used in both Euclidean and spherical geometry. The h-rotation R: is the 
composition of h-reflections in any two h-lines through 0 (diameters) containing 
angle (412). Thus, choosing the first h-line to be B, and calling the second h-line 
C, we deduce that 

Thus M$ is an h-rotation, limit rotation, or h-translation according as A and C are 
intersecting, asymptotic, or ultra-parallel. 

Thinking of a as fixed and 4 as variable, the critical value 4 = @ separating 
the h-rotations from the h-translations occurs when C is in the position Cr [shown 
dashed] asymptotic to A at p. It is not hard to see [exercise] that the triangle pa0 
is right angled, and so it follows that cos(@/2) = la/,  or 

This explains the result (53), p. 180, which you proved algebraically in Ex. 27, 
p. 188. To sum up, 

4 The most general Mobius automorphism Ma of the disc is a direct 
hyperbolic motion, and it is (i) an h-rotation if4 < @; (ii) a limit 
rotation if4 = @; and (iii) an h-translation if4 > @. 

Finally, recall from Ex. 20, p. 186, that the set of Mobius transformations of 
the form M$ is identical to the set of the form 

Comparing this with (20), we see that there are striking formal similarities not 
only between the metrics of the sphere and the hyperbolic plane, but also between 
the Mobius transformations that represent their direct motions. 

12 The Hemisphere Model and Hyperbolic Space 
Figure [40a] illustrates how we may obtain two new models of the hyperbolic 
plane. Following Beltrami [1868/], let us stereographically project the Poincar6 
disc from the south pole S of the Riemann sphere onto the northern hemisphere. 
Defining the h-separation of two points to be the h-separation of their preimages 
in the disc, we have a new conformal map of the hyperbolic plane, called the 
hemisphere model. The h-lines of this model are the images of h-lines in the disc, 
and since stereographic projection preserves circles as well as angles, we deduce 
[exercise] that h-lines are (semi-circular) vertical sections of the hemisphere. What 
do equidistant curves and horocycles look like? 

The hemisphere was Beltrami's primary model of the hyperbolic plane, and 
it was by applying the above stereographic projection to this hemisphere that he 
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discovered the Poincar6 disc. In fact by projecting his hemisphere in different 
ways, Beltrami obtained (in a unified way) almost all the models in current use. 

For example, by projecting the hemisphere vertically down onto the complex 
plane (see [40a]) he obtained a new model of the hyperbolic plane inside the unit 
disc. This is now called the Klein model or the projective model. Since a small 
circle on the hemisphere is clearly projected to an ellipse in the disc, the Klein 
model is not conformal. This is a serious disadvantage, but it is compensated for 
by the fact that the vertical sections of the hemisphere are projected to (Euclidean) 
straight lines: h-lines in the Klein model are straight Euclidean chords of the unit 
circle. Note the analogy with figure [12], in which geodesics on the sphere are 
represented by straight lines in the map. Ex. 14 reveals that this analogy is more 
than superficial. 

Other properties of the Klein model will be explored in the exercises, but right 
now we have bigger fish to fry! Up to this point we have focused on developing 
the geometry of the hyperbolic plane, the negatively curved counterpart of the 
Euclidean plane. The geometry of this Euclidean plane may be thought of as 
being inherited from the geometry of three-dimensional Euclidean space. That is, 
if (X, Y, Z) are Cartesian coordinates in this space, then the Euclidean distance 
ds between two infinitesimally separated points is given by 

and two-dimensional Euclidean geometry is obtained by restricting this formula 
to the points of an ordinary plane. 

The question therefore arises whether there might exist a negatively curved 
(whatever that might mean) counterpart of three-dimensional Euclidean space, 
such that the geometry induced on each "plane" within this space would auto- 
matically be the geometry of the hyperbolic plane. We shall now show that this 
three-dimensional hyperbolic space does indeed exist. 

To do so, let us find the metric of the hemisphere model. Because the stereo- 
graphic projection of the Poincar6 disc onto the hemisphere is conformal, it follows 
that d ?is once again given by the construction (43). Since d ?is independent of the 
direction of ds on the hemisphere, we may once again simplify the construction 
by choosing ds in an auspicious direction. In the Poincar6 disc the best choice of 
ds was orthogonal to the diameter through the point of interest, and the best choice 
on the hemisphere is simply the stereographic projection of this configuration. 

Thus in [40b] we have chosen the h-line 1 to be the vertical section of the 
hemisphere passing through the north pole and the point from which ds emanates. 
Thus 1 and e are both halves of great circles: the plane of 1 is vertical, the plane of 
e is inclined at angle d z t o  the vertical, and the intersection of these planes is the 
illustrated diameter of the unit circle lying directly beneath 1. 

Now let the coordinates of the point at which we have drawn ds be (X, Y ,  Z), 
where the X and Y axes coincide with the real and imaginary axes of C, so that Z 
measures the height of the point above C. Since ds is orthogonal to 1, and since 
the vertical plane of 1 is orthogonal to the hemisphere, we see that ds is horizontal. 
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Figure [40] 

Thus the angle that ds  subtends at the point (X, Y, 0) directly beneath it is (ds/Z) . 
But this angle is just the angle between the planes of 1 and e !  Thus the metric of 
the hemisphere model is 

d s  
d T =  - z ' 

This formula only describes the h-separation of points on the hemisphere, but 
there is nothing preventing us from using it to dejne the h-separation of any two 
infinitesimally separated points in the three-dimensional region Z > 0. This region 
lying above C, with h-distance defined by (47), is called the half-space model of 
three-dimensional hyperbolic space. Without going into detail, it is clear from (47) 
that the points of C are infinitely h-distant from points that lie strictly above C. 
Thus C represents the two-dimensional horizon or sphere at injnity of hyperbolic 
space. 

At the moment it is a mere tautology that the geometry induced on the hemi- 
sphere by (47) is that of a hyperbolic plane. To begin to see that there is real meat 
on this idea, let us consider some simple motions of hyperbolic space. Clearly 
d r i s  unaltered by a translation parallel to C, so this is a motion. It is also clear 
that d r i s  unaltered by a dilation (X, Y, Z) I+ (kX, kY, kZ) centred at the origin. 
More generally, a dilation centred at any point of C will preserve d x  so this too 
is a motion. 

By applying these two types of motion to the origin-centred unit hemisphere 
that we have been studying, we see that 

In the half-space model, every hemisphere orthogonal to C is a 
hyperbolic plane. (48) 

In Euclidean geometry the intersection of two planes is a line, and this suggests that 
an h-line should be the intersection of two hyperbolic planes. Thus we anticipate 
that every semicircle orthogonal to C is an h-line, for every such semicircle is the 
intersection of two hemispheres orthogonal to C. Note that this agrees with what 
we already know: the h-lines of the hemisphere model are semicircles orthogonal 
to C. 
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Let us return to two-dimensional geometry for a moment. Figure [41] illustrates 
how Beltrami obtained the upper half-plane model from his hemisphere model. 
From a point q on the rim of the hemisphere, we stereographically project onto the 
tangent plane at the point antipodal to q-actually, any plane tangent to this one 
would do equally well. Since this preserves circles and angles, we see that a typical 
h-line of the hemisphere is mapped to a semicircle orthogonal to the bottom edge 
of the half-plane, while an h-line passing through q is mapped to a vertical line. 

Well, since these are the h-lines, it certainly looks like we have obtained the 
Poincar6 upper half-plane, but to make sure, let's check that its metric is really 
given by (3 1). Since stereographic projection is conformal, we may yet again use 
the construction (43). Choosing 1 to be the image of an h-line through q ,  the figure 
immediately reveals that the metric is d? = (ds/Z). Apart from a change of 
notation, this is indeed the same as (31). 

Figure [4 1 ] 

We have thus returned to the half-plane that began our journey, but we have 
returned wiser than when we left. Looking at (47) we now recognize this half-plane 
orthogonal to C as a hyperbolic plane within hyperbolic space. This reveals the 
true role of the stereographic projection in [4 11. 

We know that stereographic projection from q is just the restriction to the 
hemisphere of inversion ZK in a sphere K centred at q. Using the same argument 
(figure [22b]) as in the plane, we see that ZK preserves the metric (47)' so it is a 
motion of hyperbolic space, carrying h-lines into h-lines and carrying h-planes into 
h-planes. Furthermore, (48) tells us that K is a hyperbolic plane in this hyperbolic 
space, and we therefore suspect that ZK is rejection in this h-plane. This can be 
confirmed [exercise] by generalizing the argument in [23b]. Thus we have the 
following generalization of (38): 

Inversion in a hemisphere K orthogonal to the horizon is reflection 
8 of hyperbolic space in the h-plane K .  
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It is beyond the scope of this book to explore the motions of hyperbolic space15. 
However, let us at least describe one particularly beautiful result. 

Just as an arbitrary direct motion of an h-plane is the composition of two h- 
reflections in h-lines within it, so an an arbitrary direct motion of hyperbolic space 
is the composition of four reflections in h-planes within it. Thus, in the half-space 
model with horizon C, such a motion is the composition of four inversions in 
spheres centred on C. If we restrict attention to the points of @. then inversion in 
such a sphere K is equivalent to two-dimensional inversion of C in the equatorial 
circle in which K intersects C. Conversely, inversion of C in a circle k extends 
uniquely to an inversion of space: simply construct the sphere with equator k. 

Finally, then, every direct motion of hyperbolic space can be uniquely repre- 
sented in terms of C (the horizon) as the composition of inversion in four circles, 
and this is none other than the most general Mobius transformation 

of the complex plane! Poincark discovered this wonderful fact in 1883. 
We have seen that the direct motions of the hyperbolic plane, the Euclidean 

plane and the sphere are subgroups of this group of general Mobius transforma- 
tions. As we shall now see, this fact has a remarkable geometric explanation. 

Hilbert's result on surfaces of constant negative curvature shows that three- 
dimensional Euclidean geometry cannot accommodate a model of the hyperbolic 
plane. Amazingly, however, three-dimensional hyperbolic space does contain sur- 
faces whose intrinsic geometry is Euclidean! In fact these surfaces are the horo- 
spheres that generalize the horocycles. Analogously to [28], horospheres are Eu- 
clidean spheres that touch C, as well as planes Z = const. that are parallel to 
C. 

Vertical planes orthogonal to C look flat in our model of hyperbolic space, but 
in reality they are intrinsically curved hyperbolic planes. However, a horosphere 
Z = const. not only looks flat, it really is flat. For its metric, inherited from the 
metric (47) of the surrounding space, is just 

d? = (constant) ds,  

and this is the metric of a Euclidean plane! 
The motions of Euclidean plane geometry may now be viewed as the motions 

of hyperbolic space that map this intrinsically flat horosphere into itself. Clearly, 
these are the composition of reflections in vertical planes, i.e., h-reflections in 
h-planes orthogonal to the horosphere. In this manner, the direct motions of the 
Euclidean plane manifest themselves on the horizon C as a subgroup of the Mobius 
transformations. 

As for spherical geometry, we begin by defining an h-sphere as the set of 
points at constant h-distance from a given point (the h-centre). It is not hard to see 

15~hurston [I9971 is an excellent source of information on these motions. 
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that these h-spheres are represented in the half-space model by Euclidean spheres, 
though their h-centres do not coincide with their Euclidean centres. 

Though it is not immediately obvious in this model, it can be shown [see 
Ex. 271 that the intrinsic geometry of such an h-sphere is the same as that of an 
ordinary sphere (of different radius) in Euclidean space. As with the horosphere, 
the motions of this h-sphere may be viewed as the motions of hyperbolic space 
that map the h-sphere into itself. Again, these are the composition of h-reflections 
in h-planes orthogonal to the h-sphere, and again we arrive at a subgroup of the 
Mobius transformations. 

Clearly the motions of the hyperbolic plane may also be viewed in this way, so 
we have a fitting high point with which to end this chapter: two-dimensional hyper- 
bolic, Euclidean, and spherical geometry are all subsumed by three-dimensional 
hyperbolic geometry. 

Further Reading. For a masterful overview of differential geometry, see Pen- 
rose [1978]; for the nuts and bolts, see McCleary [1994], do Carmo [1994], or 
O'Neill [1966]. For more on hyperbolic geometry itself, see the excellent works 
of Stillwell [1989, 1992, 19961 and Thurston [1997]. 
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IV Exercises 

1 Draw a geodesic triangle A on the surface of a suitable fruit or vegetable. Now 
draw a geodesic segment from one of the vertices to an arbitrary point of the 
opposite side. This divides A into two geodesic triangles, say A1 and A2. Show 
that the angular excess function E is additive, i.e., E(A) = E(A1) + E(A2). By 
continuing this process of subdivision, deduce that (5) implies (6). 

2 Explain (18) by generalizing the argument that was used to obtain the special 
case (17), on p. 143. That is, think of reflection of the sphere in terms reflection 
of space in a plane l l ,  as in [8], p. 280. Also, think of stereographic projection 
as the restriction to the sphere of the three-dimensional inversion ZK, where K 
is the sphere of radius centred at the north pole of C (see [13b]). Now let a 
be a point on C,  and consider the effect of ZK on a ,  l l ,  and 'iRn (a). 

3 Let C be a circle in @, and let C  ̂be it stereographic image on C. If C^ is a great 
circle, then (18) says that Zc stereographically induces reflection of I: in C, 
but what transformation is induced if C is an arbitrary circle? Generalize the 
argument of figure [14] to show that Zc becomes projection from the vertex v 
of the cone that touches C along C. That is, if w = Zc(z) then 67 is the second 
intersection point of C with the line in space that passes through the vertex v 
and the point?. Explain how (1 8) may be viewed as a limiting case of this more 
general result. 

4 Use (41), p. 166 to show that if the Mobius transformation M (z) has fixed points 
ck, and the multiplier associated with c+ is m, then 

By putting c+ = a ,  m = e-'@, and c- = - (l/Z), deduce (19), p. 288. [Hint: 
Remember that you are free to multiply a Mobius matrix by a constant.] 

5 Show that the Mobius transformations (20) do indeed satisfy the differential 
equation (17). 

6 (i) The conjugate v of a quaternion V = v + V is defined to be the conjugate 
transpose V* of the corresponding matrix. Show that v -- V* = v - V, 
and deduce that V is a pure quaternion (analogous to a purely imaginary 
complex number) if and only if = -V. 

(ii) The length IVI of V is defined (by analogy with complex numbers) by 
1Vl2 = V v .  Show that 1Vl2 = v2 + lv12 = 1Vl2. 

(iii) If IVI = 1, then V is called a unit quaternion. Verify that R $ [see (28)] is 

a unit quaternion, and that = [R $1 * = R ;+. 
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- -- 
(iv) Show that V W = W V and deduce that IV W I = IVI IW I .  Thus, for 

example, the product of two unit quaternions is another unit quaternion. 

(v) Show that A is a pure, unit quaternion if and only if A2 = - 1. 

(vi) Show that any quaternion Q can be expressed as Q = IQ ( R $ for some v 
and some +. 

(vii) Suppose we generalize the transformation (29) to P t+ = Q P a , where 
Q is an arbitrary quaternion. When interpreted in this way, deduce that Q 
represents a dilative rotation of space, and the product of two quaternions 
represents the composition of the corresponding dilative rotations. [This 
confirms the claim at the end of Chapter 1 .] 

7 [Do the previous exercise before this one.] The following proof of (29) is based 
on a paper of H. S. M. Coxeter [1946]. 

(i) Use (27) to show that the pure quaternions P and A are orthogonal if and 
onlyif P A + A P  = O .  

(ii) If A has unit length, so that A2 = -1, deduce that the previous equation 
may be expressed as P = A P A. 

(iii) Now keep the pure, unit quaternion A fixed, but let P represent an arbitrary 
pure quaternion. Let HA denote the plane with normal vector A that passes 
through the origin, so that its equation is P*A = 0. Now consider the 
transformation 

P W P ' = A P A .  (49) 

Show that (a) P' is automatically pure, and 1 P' 1 = 1 P 1, so that (49) represents 
a motion of space; (b) every point on IIA remains fixed; (c) every vector 
orthogonal to IIA is reversed. Deduce that (49) represents rejection 8tnA of 
space in the plane Il A.  

(iv) Deduce that if the angle from HA to a second plane IIB is (+/2), and 
the unit vector along the intersection of the planes is V, then the rotation 
R$ = (8tn, 0 8tnA) is given by 

(v) Use (27) to show that -B A = COS(+/~) + V sin(+/2), thereby simultane- 
ously proving (29) and (28). 

8 Here is another proof of (29). As in the text, we shall assume that P is a unit vector 
with its tip at the point Ton the unit sphere. If we represent the stereographic 
images p and p" of j? and p" by their homogeneous coordinate vectors p and 5 
in c 2 ,  then we know that the rotation is represented as 
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where R $ is being thought of as a 2 x 2 matrix. 

(i) Show that in homogeneous coordinates, (20), p. 146, becomes 

(ii) To simplify this, recall that all multiples of p describe the same point p in 
@. We can therefore choose the "length" of p to be a: 

With this choice, show that the above equations can be written as 

(iv) Deduce that 

from which (29) follows immediately. 

9 (i) Figure [40a] gave a two-step process for carrying a point z in the PoincarC 
disc to the corresponding point z' in the Klein model. Explain why the net 
mapping z H z' of the disc to itself is the one shown in figure [a] below, 
where C is an arbitrary circle passing through z and orthogonal to the unit 
circle U .  

(ii) Figure [b] is a vertical cross section of [40a] through z and z'. Deduce that 

lz'l 1 - - - a 2 
- - 7 and - - 

a b lzl b' 

22 By multiplying these two equations, deduce that z' = - 
1 + 1z12 ' 

[Thus we have a geometric explanation of the result (20), p. 146.1 
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(iii) This formula can be derived directly from figure [a], without the assistance 
of the hemisphere. Redraw the figure with C chosen orthogonal to Oz. Ex- 
plain geometrically why the centre of C may be viewed as either Zu (z'), or 
as the midpoint of z and Zu (z ) .  Conclude that 

from which the result follows immediately. 

10 Think of the sphere as the surface of revolution generated by a semicircle. 
Construct a conformal map of the sphere by strict analogy with the construction 
of the map of the pseudosphere in [20]. Show that this is the Mercator map that 
you obtained in Ex. 14, p. 259. 

11 (i) In the hyperbolic plane, show that the h-circumference of an h-circle of 
h-radius p is 27r sinh p. [Hint: Represent the h-circle as an origin-centred 
Euclidean circle in the Poincar6 disc.] 

(ii) Let the inhabitants of the sphere of radius R draw a circle of (intrinsic) 
radius p. Use elementary geometry to show that the circle's circumference 
is 27r R sin@/ R). Show that if we take the radius of the sphere to be R = i, 
then this becomes the formula in part (i)! [Compare this with Ex. 14.1 

12 Let L and M be two intersecting chords of the unit circle, and let I and m be the 
intersection points of the pairs of tangents drawn at the ends of these chords. See 
figure [a] below. In the Klein model, show that L and M represent orthogonal 
h-lines if and only if I lies on M (produced) and m lies on L (produced). 
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13 Let z = r ei6 denote a point in the Klein model of the hyperbolic plane. 

(i) On the hemisphere model lying above the Klein model, sketch the images 
under vertical upward projection of some circles r = const. and some rays 
6 = const. Although angles are generally distorted in the Klein model, 
deduce that these circles and rays really are orthogonal, as they appear to 
be. Also, note that the Euclidean circles r = const. are also h-circles. 

(ii) Figure [b] above shows a vertical cross section of the hemisphere model and 
Klein model taken though a ray 6 = const. If the point z moves outward 
along this ray by dr ,  let ds denote the movement of its vertical projection 
on the hemisphere. Explain why the two shaded triangles are similar, and 
deduce that ds = (dr/Z). 

(iii) Use the metric (47) of the hemisphere to conclude that the h-separation d & 
of the points in the Klein model with polar coordinates (r, 6) and (r + dr, 8 )  
is given by 

[Remarkably, this means that the formula for H{O, z )  differs from the formula 
(45) in the PoincarC disc by a mere factor of two!] 

(iv) Use the same idea (of projecting onto the hemisphere) to show that the 
h-separation d$ of the points (r, 6) and (r, 6 + do) is given by 

(v) Deduce that the h-separation d?of the points (r, 6) and (r + dr, 6 + do) is 
given by the following formula of Beltrami [1868]: 
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14 (i) The figure above superimposes the stereographic and projective [see p. 2841 
images of a great circle on the unit sphere. Let z, and zp be the stereo- 
graphic and projective images of the point whose spherical-polar coordi- 
nates are (@, 8). Referring to (21), p. 147, z, = cot(@/2) eie. Show that 
zp = [- tan @I eie, and deduce that 

Compare this with Ex. 9! 

(ii) Sketch the curves on the hemisphere that are centrally projected to the circles 
Izp I = const. and to the rays arg zp = const. Although angles are generally 
distorted in the projective model, observe that these circles and rays really 
are orthogonal, as they appear to be. 

(iii) Now let the sphere have radius R, and write zp = r eie for the projective 
image of the point (@, 8). Thus r = - R tan @. Show that if zp moves a 
distance d r  along the ray 0 = const., then the corresponding point on the 
sphere moves a distance d s  given by 

(iv) Likewise, show that the separation d G  of the points on the sphere corre- 
sponding to the points (r, 0) and (r, 0 + do) in the map is given by 

(v) Deduce that the spherical separation d? corresponding to the points (r, 0) 
and (r + dr, 0 + do) is given by 
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(vi) Here is a crazy idea: perhaps we can get a surface of constant negative 
curvature k = - (1 / R ~ )  = + 1 / ( i  R ) ~  by allowing the radius R of the sphere 
to take on the imaginary value i R. Verify that if we substitute R = i into the 
above formula, then it becomes the Beltrami metric (50) of the hyperbolic 
plane! [To make true sense of this idea, one must turn to Einstein's relativity 
theory; see Thurston [I9971 .] 

15 Take a stack of ten sheets of paper and staple them together, placing staples along 
three of the edges. Use a pair of compasses to draw the largest circle that will fit 
comfortably inside the top sheet. Pierce through all ten sheets in the centre of 
the circle. With heavy scissors, cut along the circle to obtain ten identical discs, 
say of radius R. Repeat this whole process to double the number of discs to 20. 

(i) Cut a narrow sector out of the first disc, and tape the edges together to 
form a shallow cone. Repeat this process with the remaining discs, steadily 
increasing the angle of the sector each time, so that the cones get sharper 
and taller. Ensure that by the end of the process you are making very narrow 
cones, using only a quarter disc or less. 

(ii) Stack these cones in the order you made them. Explain how it is that you have 
created a model of a portion of a pseudosphere of radius R. Create weird 
new (extrinsically asymmetric) surfaces of constant negative curvature by 
holding the tip of your structure and moving it from side to side! 

(iii) Use the same idea to create a disc-like piece of "hyperbolic paper", such as 
you would get if you could simply cut out a disc from your pseudosphere. 
Press it against the pseudosphere and verify that you can freely move it about 
and rotate it on the surface. 

16 By holding a fairly short piece of string against the surface of the toy pseudo- 
sphere of the previous exercise, draw a segment of a typical geodesic. Extend 
this segment in both directions, one string-length at a time. Note the surpris- 
ing way the geodesic only spirals a finite distance up the pseudosphere before 
spiralling down again. 

(i) Use the upper half-plane to verify mathematically that the tractrix generators 
are the only geodesics that extend all the way up to the top. 

(ii) Let L be a typical geodesic, and let a be the angle between L and the 
tractrix generator at the point where L hits the rim a = 0. Show that the 
maximum distance amax that L travels up the pseudosphere is given by 
amax = I In sin a 1. 
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17 Suppose we have a conformal map of a surface in the xy-plane, with the metric 
given by (1 5): 

d F =  ~ d s  = ~ ( x ,  y )  Jdx2fdyZ. 
An elegant result from differential geometry states that the Gaussian curvature 
at any point on the surface is given by 

1 
k = --A(1n A), 

A2 

where A = (a: + a;) is the Laplacian. Try this out on the metric (16) of 
the stereographic map of the sphere, and on the metrics (31) and (44) of the 
half-plane and disc models of the hyperbolic plane. 

18 Use the Poincar6 disc to rederive the formula tan(ll/2) = e-D for the angle of 
parallelism. [Hint: Let one of the h-lines be a diameter.] 

19 To derive the metric (44), consider the mapping (42) z I-+ w = D(z) from the 
upper half-plane to the Poincar6 disc. An infinitesimal vector dz emanating from 
z is amplitwisted to an infinitesimal vector dw = Dr(z) dz emanating from w, 
and (by definition) the h-length d? of d w is the h-length of dz. Verify (44) by 
showing that 

2 ldwl - ldzl 
7 - = d? 

1-lwI2 Imz 

20 Consider the mapping z n w = M$(z) of the Poincare disc to itself. Use 
the calculational approach of the previous exercise to show that z n w is a 
hyperbolic motion, i.e., it preserves the metric: 

21 In the upper half-plane, the h-rotation R? through angle @ about the point i is 
given by the following Mobius transformation: 

4 c z + s  Ri (z )  = , where c = cos(#/2) and s = sin(@/2). 
- s z + c  

Prove this in three ways: 

{ I' (i) Show that R: (i) = i and R: (i) = eiO. Why does this prove the result? 
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(ii) Use the formula for inversion [(4), p. 1251 to calculate the composition 
72; = (!RB 0 %*), where A and B are h-lines through i, and the angle from 
A to B is (412). [Hint: Take A to be the imaginary axis, and use a diagram 
to show that the semicircle B has centre - (cis) and radius (1 1 s )  .] 

(iii) Describe and explain the geometrical effect of applying (D o 72; o D-') to 
the Poincare disc, where D is the mapping (42) from the upper half-plane 
to the Poincark disc. Deduce that 

Re-express this equation in terms of products of Mobius matrices, and solve 
for the matrix [R!]. 

12 (i) Referring to figure [a] above, show that the h-separation of two points in the 
upper half-plane may be expressed in terms of a cross-ratio as 

H{a, b} = ln[a, B, b, A]. 

[Hint: Apply an h-rotation centred at a to bring b into a position vertically 
above a .] 

(ii) Show that the same formula applies to the PoincarC disc in figure [b]. 

!3 (i) Let 2 andzbe two point on C, and let a and z be their stereographic images 
in @. If S{a, z} is the distance (on the sphere) between and?, show that 

S{a, z}  = 2 tan-' - I :;-I 1 - 

[Hint: Use (20) to bring a to the origin.] 

(ii) Show that the h-distance formula (46) in the Poincar6 disc can be re- 
ex~ressed as 



Exercises 337 

24 (i) Use a simple sketch to show that z I+ f ( z )  = -2 is an opposite motion of 
the Poincark upper half-plane. 

(ii) Let fi be an arbitrary opposite motion. By considering (f 0 f i ) ,  show that 

- a T + b  
M (z) = - where a ,  b, c, d are real, and (ad - be) > 0. 

c 2 + d '  

(iii) Use this formula to show that has two fixed points on the horizon (the 
real axis). If L is thzh-line whose ends are these two points, explain why L 
is invariant under M. 

(iv) Deduce that fi is always a glide refection: h-translation along L, followed 
by (or preceded by) h-reflection in L. 

25 Given a point p not on the h-line L, draw an h-circle C of h-radius p centred at 
p .  Draw the h-line orthogonal to L through p, cutting L in q. Draw an h-circle 
C' of h-radius p centred at q, and let q' be one of the intersection points with 
L. Through q' draw the h-line orthogonal to L, cutting C at a and b. Show that 
the h-lines joining p to a and b are the two asymptotic lines! [Hint: Take L 
to be a vertical line in the upper half-plane.] What happens if we perform this 
construction in the Euclidean plane? 

26 Sketch a hyperbolic triangle A with vertices (in counterclockwise order) a ,  b, 
and c. Let 6 be an infinitesimal vector emanating from a and pointing along 
the edge ab. Carry 6 to b by h-translating it along this edge. Now carry it to c 
along be, and finally carry it home to a ,  along ca. In Euclidean geometry these 
three translations would simply cancel, and 6 would return home unaltered. Use 
your sketch to show that in hyperbolic geometry the composition of these three 
h-translations is an h-rotation about vertex a through angle E(A). 

[Suppose that A is instead a geodesic triangle on an arbitrary surface S of 
variable curvature. If an inhabitant of S wants to translate 6 along a "straight 
line" (a geodesic), all he has to do is keep its length constant, and keep the angle 
it makes with the line constant. This is called parallel transport in differential 
geometry. The above argument still applies, and so when 6 is parallel transported 
round A, it returns home rotated through E(A). By virtue of (6),  this angle of 
rotation is the total amount of curvature inside A.] 

27 Generalize the transformation from the upper half-plane to the Poincark disc to 
obtain a model of hyperbolic space in the interior of the unit sphere. Describe 
the appearance of h-lines, h-planes, h-spheres, and horospheres in this model, 
and explain why an h-sphere is intrinsically the same as a Euclidean sphere of 
different radius. 
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In this chapter we shall investigate a simple but immensely powerful concept-the 
number of times a loop winds around a point. In Chapter 2 we saw that this concept 
was needed to understand multifunctions, and in the next chapter we will see that it 
plays an equally crucial role in understanding complex integration. However, only 
the first two sections [up to (2)] of the present chapter are actually a prerequisite 
for that work; the rest may be read at any time. If you are in a rush to learn about 
integration, you may wish to skip the rest of the chapter and return to it later. 

I Winding Number 
1 The Definition 

As the name suggests, the winding number v(L, 0) of a closed loop L about the 
origin 0 is simply the net number of revolutions of the direction of z as it traces 
out L once in its given sense. A nut on a bolt admirably illustrates the concept of 
"net rotation": spin the nut this way and that way for a while; the final distance of 
the nut from its starting point measures the net rotation it has undergone. 

Figure [1] shows six loops and their corresponding winding numbers. You can 
verify these values by starting at a random point on each curve and tracing it out with 
your finger: starting with zero, add one after each positive (= counterclockwise) 
revolution of the vector connecting the origin to your finger, and subtract one after 

Figure [I]  
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each negative (= clockwise) revolution. When you have returned to your starting 
point, the final count is the winding number of the loop. 

It is often useful to consider the winding number of a loop about a point p other 
than the origin, and this is correspondingly written v(L , p). Instead of counting 
the revolutions of z, we now count those of ( z  - p). For example, the shaded region 
in [I] can be defined as all the positions of p for which v (L, p) # 0. Try shading 
this set for the other loops. 

2 What does "inside" mean? 

A loop is called simple if it does not intersect itself; for example, circles, ellipses, 
and triangles are all simple. Although a simple loop can actually be very compli- 
cated [see Ex. 11 it seems clear, though it is hard to prove, that it will divide the 
plane into just two sets, its inside and its outside. However, in the case of a loop that 
is not simple, such as [2], it is no longer obvious which points are to be considered 

Figure [2] 

inside the loop, and which outside. The winding number concept allows us make 
the desired distinction clearly. 

A typical loop such as L will partition the plane into a number of sets Dj (four 
in this case). If the point p wanders around within one of these sets then it seems 
plausible that the winding number v(L, p) remains constant. Let's check this. 

Concentrate on just a short segment of L. As z traverses it, the rotation of 
(Z - p) will depend continuously on p unless1 p crosses L. In other words, if we 
move p a tiny bit then the rotation angle will likewise only change a tiny bit. Since 
the winding number of L is just the sum of the rotations due to all its segments, it 
follows that it too depends continuously on the location of p: a tiny movement of 
p to can only produce a tiny change [v (L , a - v (L , p)] in the winding number. 
But since this small difference is an integer, it must be exactly 0. Done. 

Since L winds round each point of Dj the same number of times, it follows 
that we can attach a winding number vj to the set as a whole. Verify the values of 
v j  given in the figure. 

'consider the behaviour of the rotation due to a short segment of L as p crosses it. 
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The "inside" can now be deJined to consist of those Dj for which vj # 0, while 
the remaining Dj constitute the "outside". Thus in [2] we find that Dl U D3 is the 
inside, while D2 U D4 is the outside. 

The "correctness" of this definition will become apparent in the next chapter. 

3 Finding Winding Numbers Quickly 
In [2] we found the winding numbers directly from the definition: we strenuously 
followed the curve with our finger (or eye) and counted revolutions. For a really 
complicated loop this could literally become a headache. We now derive a much 
quicker and more elegant method of visually computing winding numbers. 

If a point r moves around without crossing a loop K then v(K, r )  remains 
constant, but what happens when the point does cross K?  Consider [3]. On the far 
left, close to the loop K,  is the point r ;  the rest of K is off the picture, and the 
number of times it winds round r is v(K, r ) .  The time-lapse pictures in [3] show r 
moving towards the loop, which itself deforms so as to avoid being crossed, finally 
ending up at the point s .  

Figure [3] 

Now since the moving point never crosses the loop, the winding number re- 
mains constant throughout the process. But on the far right, the new loop can be 
thought of as the union of the old loop K,  together with the new circle L. Thus, 

Imagining ourselves at r ,  looking towards K as we approach it, we may express 
this result in the form of the following very useful crossing rule: 

I f  K is moving from our left to our right [our right to our left] as we 
cross it, its winding number around us increases [decreases] by one. (1) 

Using this result, it is incredibly quick and easy to find the vj's for even the 
most complicated loop. Try it out on [2]. Starting your journey well outside L, 
where you know that the winding number is zero, move from region to region, 
using crossing rule (1) to add or subtract one at each crossing of L. 

An immediate consequence of this idea is a connection between n = v(K, p )  
and the number of intersection points of K with a ray emanating from p. Suppose 
that the ray is in general position in the sense that it doesn't pass through any self- 
intersection points of K, nor is it tangent to K. If a point q on this ray is sufficiently 
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Figure [4] 

distant from p then clearly K cannot wind around it; thus as we move along the 
ray from p to q the winding number changes by n.  But the winding number only 
changes when we cross K,  and only one unit per crossing. The ray must therefore 
intersect K at least In 1 times. However, in addition to these In 1 necessary crossings 
there may be additional cancelling pairs of crossings. In general, then, the number 
of intersection points will be In I, or In 1 +2, or In 1 +4, etc. Figure [4] illustrates these 
possibilities for a case in which n = 2, each intersection point being marked with 
@ or 8 according as the winding number increases or decreases as it is crossed. 

II Hopf's Degree Theorem 
1 The Result 
We have discussed the fact that for a fixed loop and a continuously moving point, 
the winding number only changes when the point crosses the loop. But it is clear 
that the same must be true of a fixed point and a continuously moving loop: the 
winding number of the evolving loop can only change if it crosses the point, and 
it changes by f 1 according to the same crossing rule as before. Thus if a loop K 
can be continuously deformed into another loop L without ever crossing a point 
p, the winding numbers of K and L around p will be equal. 

It is natural to ask if the converse is also true: if K and L wind round p the same 
number of times, is it always possible to deform K into L without ever crossing p? 
This is certainly a more subtle question, but by drawing examples you will be led 
to suspect that it is true. In this section we will confirm this hunch, so establishing 
that 

A loop K may be continuously deformed into another loop L, without 
ever crossing the point p, if and only if K and L have the same (2) 
winding number round p. 

At the end of the next chapter, this will turn out to be the key to understanding one 
of the central results of complex analysis. 
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The result in (2) is the simplest example of a remarkable topological fact, 
called Hopf's Degree Theorem, that is valid in any number of dimensions. In 
the 2-dimensional complex plane, a point can be surrounded using a closed 1- 
dimensional curve-a loop. In 3-dimensional space, a point can be surrounded 
using a closed 2-dimensional surface. Just as a circle in the plane winds once 
around its centre, so a sphere in space encloses its centre just once. More generally, 
self-intersecting loops in the plane may enclose a point several times, and this is 
precisely what v counts. Similarly, it is possible to define a more general concept 
(degree) that counts the number of times a surface surrounds a point in space. 
Hopf's Theorem now says that one closed surface may be continuously deformed 
into another, without ever crossing p, if and only if they enclose p the same number 
of times. Indeed, Hopf's Theorem says the same is true of n-dimensional surfaces 
enclosing points in (n + 1)-dimensional space! 

2 Loops as Mappings of the Circle* 
As a first step to understanding (2), we will look at loops in a new way. Let C be a 
rubber band in the shape of the unit circle. We may now deform C into the shape 
of any desired loop L. At the end of the deformation process, each point z of C 
has been brought to a definite image point w on L, and thus L may be thought of 
as the image of C under a continuous mapping w = ,C(z). See [5 ] .  

Figure [5] 

As 8 varies from 0 to 2n,  z = eiO moves round C once and w moves round L 
once, the length R and angle @ of w varying continuously with 8. We may write 

where R(0) and @(O) are continuous functions. By rotating L (if necessary) we 
can ensure that ,C(eio) is a positive real number, so that we may set @(0) = 0. 
The net rotation of w after it has returned to its starting point is then given by 
@(2n) = 2nv. 

Clearly, the varying length of w is something of a red herring when it comes to 
understanding winding numbers, and we now remove this distraction by pulling 
each point w of L radially onto the point G = w /  1 w I on the unit circle, so obtaining 
a standardized representation L. We can even give an explicit prescription for 
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gradually deforming L into 2. See [6a& Since (G - w) is the complex number 
from a point on L to its destination on L, the point that is a fraction s of the way 
there is 

Ls(z) = w + s  (G - w ) .  (3) 

As s varies from 0 to 1, L, (C) gradually (and reversibly) changes from L into 2. 
Figure [6b] shows L, (C) for a value of s close to 1. Finally, note the obvious fact 
that as we gradually pull L radially onto x, the origin is not crossed. 

Figure [6] 

With lengths disposed of in this way, we arr now dealing with a mapping 13̂  
from the unit circle C to the standardized loop L on the unit circle, where 

In this context, it is common to speak of the degree ~ l f  the mapping ,?which 
produces z, rather than of the "winding number2f  L (or L). The single real 
function @(@) completely describes2he mapping L, and [7] shows how we can 
immediately read off the degree of L (i.e. v) from the graph of @ (8). Make sure 
you are comfortable with the meaning of such a graph. For example, if z moves at 
unit speed round C, what does the slope (including the sign) of the graph represent? 

3 The Explanation* 
The archetypal mapping of degree v is z ( z )  = zV, for which Q(8) = v8. Its 
straight-line graph isshown in [7]. As z travels once round C at unit speed, 67 
travels once round Jv with speed I vl, completing I vl circuits of the unit circle 
[counterclockwise if v > 0; clockwise if v2 01. 

To see how aiypical standardized loop L of winding number v is related to the 
archetypal loop Jv,  we return to the example in [6b], for which v = 2. Thinking 
of the unit circle as the boundary of a solid cylinder, and recalling that th_e loop 
is an elastic band that wishes to contract, what will happen if we release L? The 
slack_will be taken up, and L will automatically contract itself into the archetypal 
loop J2. This convincing mental image of the rubber band contracting into Jv can 
be formalized to show that 
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Figure [7] 

Any of windingnumber v can be continuously deformed into the 
archetypal loop J,, and vice versa. 

The process of "taking up the-slack" can be explicitly described in terms of 
the graph of the that describes L. As t varies from 0 to 1, the graph of 

continuously and reversibly evolves from the graph of the general @ into the 
straight-line graph of the archetype. The dashed curve in [7] is the graph of at for 
a value of t close to one. Defining 

h 

(c) therefore evolves continuously and reversibly from into J,, as t varies 
from 0 to 1. 

The explicit two-stage deformation given above [(3) followed bl(5)] allows us 
to deform any loop of winding number v into the archetypal loop J,, an_d without 
the origin ever being crossed. Conversely, by reversing these steps, J, may be 
deformed into any loop of winding number v. This demonstrates (2), for if K and 
L both have winding number v, we may first deform K into J,, and then deform 

into L. 

Ill Polynomials and the Argument Principle 
Let A, B, and C be the complex numbers from the fixed points a ,  b, and c to the 
variable point z. Figure [8] shows a circle r and its image f ( r )  under the cubic 
mapping 

f ( z )  = (Z - a )  ( Z  - b) (z - c) = A B C .  
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\ f (i) = ABC / 

Figure [8] 

Notice that I' encircles two zeros of the mapping, while f ( r )  has a winding 
number of 2 about zero. This is no accident. Since angles add when we multiply 
complex numbers, the number of revolutions executed by A BC is just the sum of 
the revolutions executed separately by each of A, B, and C .  But as z goes round r 
once, A and B both execute a complete revolution, while the direction of C merely 
oscillates. Thus v[ f ( r ) ,  01 = 2. 

If we enlarged I' so that it encircled c, then C would also execute a complete 
revolution, and the winding number would increase to 3. Once again, the number 
of points inside I' that are mapped to 0 is the winding number of the image about 
that point. 

It is clear that this result is independent of the circularity of r ,  and that it 
generalizes to the case of a polynomial P (z) of arbitrary degree: Ifa simple loop 
I' winds once around m roots of P (z), then v [P (I' ) , 0] = m . 

Roots are simply preimages of 0, and from the geometric viewpoint there is 
nothing special about this particular image point. Consequently, in future we will 
look at the preimages of a general point p and we will call these preimages p-points 
of the mapping. 

The Argument Principle is a tremendous extension of the above result. Not 
only does it apply to general analytic mappings but it also contains the converse 
statement that the winding number tells us the number of preimages: 

If f (z) is analytic inside and on a simple loop r ,  and N is the 
number of p-points [counted with their multiplicities] inside r, then (6) 
N = v [ f  ( r ) ,  P I .  

The meaning of the expression "counted with their multiplicities" will be explained 
in the next section. 

We wish to stress that this result is only peripherally connected with the confor- 
mality that has been so central to all our previous thinking. In fact the Argument 
Principle is a consequence of a still more general topological fact concerning 
mappings that are merely continuous. Our main effort will therefore be directed 
towards understanding the general result (due to Poincare), of which the Argument 
Principle is merely a special case. 
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IV A Topological Argument Principle* 
1 Counting Preimages Algebraically 

Even in the simple case of [8] we find that we must be careful how we count 
preimages. If we move the root b towards the one at a ,  zero continues to have 
two preimages inside r ,  while the image of l-' continues to wind round zero twice. 
However, when b actually arrives at a there is apparently only a single 0-point 
inside l? (namely a )  despite the fact that f ( r )  winds round 0 twice. Thus a must 
now be counted twice if (6) is to remain true. 

Algebraically, the resolution lies in the fact that a is now a "double-root", the 
factored form of f (z) = A B C = c containing the square of A = ( z  - a ) .  
More generally, if the factorization of a polynomial contains the term An then we 
say that the root a is a 0-point of algebraic multiplicity n, and we must count it 
with this multiplicity in (6). 

When n > 1 there is a further significance to the point a-it is a critical point 
of the polynomial. In the cubic mapping f (z) = ABC, let a ,  b, and c be real, 
so that f (z) is real-valued on the real axis. The far left of [9] shows the ordinary 

Figure [9] 

graph of f in this case. As b moves towards a ,  the slope at a is forced to decrease, 
finally vanishing at the moment of b's arrival. 

In general this vanishing of the derivative (now amplitwist) must occur wher- 
ever two or more roots of a polynomial coalesce. Look again at [9]. If f '(a) # 0 
then the graph is not flat at a and so neighbouring points cannot map to zero; but 
this is precisely what we insist on when we merge b into a .  Essentially the same 
thing happens when we return to C, for if f'(a) # 0 then an infinitesimal disc 
centred at a is amplitwisted to an infinitesimal disc centred at 0, so that points 
close to a cannot map to 0. 

This conclusion can be refined. If the root a of a polynomial P(z) has mul- 
tiplicity n then P may be factorized as An (z), where (a) # 0. It follows by 
simple calculation [exercise] that the first (n - 1) derivatives of P vanish at a ,  so 
that a is a critical point of order at least (n - 1). We shall see in a moment that the 
order actually is (n - 1). 

We next seek to extend the idea of counting preimages "with algebraic mul- 
tiplicities" to analytic mappings in general. Suppose that a is a p-point of an 
analytic mapping f (z), i.e., it is a 0-point of f (z) - p. What should the algebraic 
multiplicity of this root be? It is only possible to answer this question because of 
the remarkable fact that an analytic f can always be represented as a convergent 
Taylor series in the neighbourhood of a non-singular point. Thus if A = (z - a)  
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is the small complex number from a to a nearby point z, we may write 

The first nonzero term on the right is the one that dominates the local behaviour of 
f ( z )  - p and decides what the multiplicity of a should be. Typically a will not be 
a critical point [ f '  (a) # 01 and so this local behaviour is like A to the first power; 
we say that a is a simple root with multiplicity + 1. 

Now consider the rarer case in which a is a critical point. If the order of the 
critical point is (n - I), so that f (n) is the first nonvanishing derivative at a ,  then 
the dominant first term is proportional to An, and we correspondingly define the 
algebraic multiplicity2 of a to be n. The analogy between this definition and that 
for polynomials may be brought to the fore by setting 

f(n)(a) + f(n+l) (a) A + f (n+2)(a) 2 
52 ( z )  = A + . a .  , 

n. (n + I)! (n + 2)! 

where f ("1 (a) is the first nonvanishing derivative. The previous equation can now 
be written in "factorized form as 

where St (a) # 0. From this point of view, the only difference between a general 
analytic mapping and a polynomial is that the latter has a single, "once and for all" 
factorization, while the former generally requires a different factorization of type 
(7) in the neighbourhood of each p-point. 

2 Counting Preimages Geometrically 

Recall that we wish to explain (6) as a special case of a more general result dealing 
with mappings that are merely continuous. But since the very notion of algebraic 
multiplicity is meaningless for such general mappings, how can we even frame a 
proposition of type (6)? 

What is needed is a geometric way of counting preimages that will agree with 
the previous algebraic definition if we specialize to analytic mappings. To discover 
the appropriate definition we should therefore return to analytic mappings and ask, 
"What is the geometricJingerprint of a p-point of given algebraic multiplicity?' 

Consider the effect of an analytic f on an infinitesimal circle Ca centred at a 
simple p-point a .  Since f '(a) # 0, Ca is amplitwisted to an infinitesimal circle 
centred at p.  We see that the winding number (+I) of this image round p is the 
same as the algebraic multiplicity of a .  In fact, quite generally, if the algebraic 
multiplicity is n then the winding number of the image will also be n. This is the 
sought-after geometric fingerprint. 

2 ~ l s o  known as order or valence. 
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To verify this statement, remember that the local behaviour of f near to a is 
given by (7): 

f(z) = f ( a  + A) = p + Q(z)An, 

with 52 (a) # 0. Thus the basic explanation is that as A revolves round Ca once, 
An rotates n-times as fast, and therefore f (z) completes n revolutions round p. If 
52 were a constant then this argument would be beyond reproach, and we can now 
do a little calculation to show that a variable Q does not disturb the conclusion: 

As we shrink Ca down towards a ,  SJ (Ca) will shrink down towards Q (a), but since 
G? (a) # 0 this implies that the image of a sufficiently small Ca will not wind round 
0: v [Q (Ca), 0] = 0. Since v [A, 0] = 1, we conclude that v[ f (Ca), p ] = n, as 
claimed. 

We may now broaden our horizon and use the above idea to define "multiplic- 
ity" for a mapping h (z) that is merely continuous. Let ra be any simple loop round 
a that does not contain other p-points. Figure [lo] shows such a loop as well as 

Figure [lo] 

some other p-points b, c, etc. If we continuously deform I?, into another such loop 
Fa without crossing a (or any other p-point) then h (Fa) will continuously deform 
into h(Fa) without ever crossing p, and so 

Thus, without specifying ra further, we may unambiguously define the topological 
multiplicity3 of a to be 

v(a) = vCh(ra), P I - 
In the case of the mapping in [lo] we see that v(a) = -2. If h happened to be 
analytic then a would also possess an algebraic multiplicity n, but by deforming 
Pa into the infinitesimal circle Ca, we find that the two kinds of multiplicity must 
agree: v(a) = n. 

3 ~ l s o  known as the local degree of h at a .  
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3 What's Topologically Special About Analytic Functions? 
From the geometric point of view, conformal (analytic) mappings are infinitely 
richer in structure than mappings that are merely continuous. However, from the 
point of view of topological multiplicity there are only a few distinctions, the 
following being one of the most striking : 

v (a) is always positive for analyticfunctions, while it can be negative 
for nonanalytic functions. 

For example, the mapping in [lo] cannot possibly be analytic. The positivity of 
v(a) for analytic functions has already been established, so we need only look 
more closely at the possibility of negative multiplicities for nonanalytic functions. 

Since general continuous mappings can actually behave in rather wild ways, let 
us restrict ourselves to nonanalytic mappings that are at least differentiable in the 
real sense. For example, consider h(z) = T.  The unique preimage of p is a = F,  
and any simple loop ra round this point is reflected by h into a loop that goes once 
round p in the opposite direction. Thus v (a) = - 1. 

More generally, recall [see p. 2081 that the local effect of such a mapping at 
a p-point a is (after translation to p) a stretch by some factor ta in one direction, 
another stretch by some factor qa in the perpendicular direction, and finally a 
rotation through some angle 4,. For example, conjugation has (taking the first 
expansion to be horizontal) ta = +1, qa = - 1, = 0. Of course these values 
of ca, qa, and $a are only independent of a because h(x + iy) = x - iy depends 
linearly on x and y; most mappings have values that do depend on the point a .  

An infinitesimal circle Ca centred at a is generally distorted into an infinitesimal 
ellipse Ep centred at p, and if the two expansion factors have the same sign then 
the mapping preserves orientation so that Ep circulates in the same sense as C, 
and v(a) = +l. However, if ta and qa have opposite signs then the mapping is 
orientation reversing: it turns Ca inside out, so that Ep goes round p in the opposite 
direction and v(a) = - 1. Our previous example of conjugation was of this type. 
In summary, we have 

v (a) = the sign of (ta qa). 

The local linear transformation at a is encoded by the Jacobian matrix J(a), 
and we can use its determinant det[J(a)] to give a more practical formula for the 
topological multiplicity. We know from linear algebra that the determinant of a 
constant 2 x 2 matrix is the factor (including a sign for orientation) by which the 
area of a figure is expanded. Likewise, det[J(a)] measures the local expansion 
factor for area at a ,  and this is just (ta qa). Thus 

v (a) = the sign of det[J(a)] . (9) 

Of course this formula is vacuous if det[J(a)] = 0. Geometrically this means 
that the transformation is locally crushing at a ;  just as for analytic mappings, such 
a place is called a critical point. However, while the local crushing at a critical 
point of an analytic mapping is perfectly symmetrical in all directions, this is not 
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true of the more general mappings presently under consideration. For example, if 
f (x  + i y) = x - i y  then [exercise] det[ J] = -3y2, so although f leaves the 
horizontal separation of points alone, all the points on the real axis are critical 
points as a result of crushing in the vertical direction. 

This example also serves to illustrate another difference: 

The critical points of an analytic mapping can be distinguished 
purely on the basis of topological multiplicity; those of a nonanalytic 
mapping cannot. 

For analytic functions we have seen that v (a)  = + 1 if and only if a is not critical. 
In the nonanalytic case v(a)  = f 1 if a is not critical, but it is also possible for a 
critical point to have one of these multiplicities. Indeed, you can check [exercise] 
that the above example yields v(a)  = - 1 for noncritical and critical points alike. 

One final difference: 

v(a)  is never zero for analytic mappings, but it can vanish for non- 
analytic mappings. 

In the next section we will provide a simple example of a nonanalytic mapping 
possessing such p-points of vanishing topological multiplicity. Can you think of 
an example for yourself? 

4 A Topological Argument Principle 

Let r be a simple loop, and let h(z)  be a continuous mapping such that only a 
finite number of its p-points lie inside r.  We will show that 

The total number of p-points inside r (counted with their topological 
multiplicities) is equal to the winding number of h ( r )  round p. (10) 

If h is analytic this reduces to (6). The rest of the chapter will be devoted to mining 
and extending this simple yet profound result4. 

Before explaining (lo), let us describe one of its immediate consequences. As 
in [2], h ( r )  will generally partition the plane into a number of sets, and the above 
result then says that every point in Dj has the same number of preimages lying 
inside r ,  namely, v j .  For example, if h ( r )  is a simple loop then it partitions the 
plane into just two sets, namely, its interior and its exterior. If p is in the interior 
then the result says that the total number of p-points inside I' is 1. But if h is 
analytic then these p-points must have strictly positive multiplicities, and so there 
is exactly one preimage for each point inside h (r) .  In other words, we have shown 
that 

4 ~ h e n  interpreted in terms of vector fields (as we shall do in Chapter 10) this is the key to a 
very surprising and beautiful fact called the Poincark-Hopf Theorem. 
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Figure [l 11 

If an analytic function h maps r onto h ( r )  in one-to-one fashion, 
then it also maps the interior of r onto the interior of h ( r )  in one- 
to-one fashion. 

This is Darboux's Theorem. 
To explain (lo), consider [l 11. This shows three p-points a ,  b, and c lying inside 

while others lie scattered outside. The essential idea is that we can gradually 
deform l7 (as shown) into the doubly-pinched loop y 6 ypa ,  which-we will call 
F. Since no p-points were crossed in the deformation process, h ( r )  _will wind 
round p the same number of times as h ( r ) .  The rest is almost obvious: r is made 
up of Fa = spa, r b  = /3 yB, rc = y6 y , and the winding numbers of their images 
round p are, by definition, the topological multiplicities of a ,  b, and c. 

We will spell this out in perhaps unnecessary detail. Let K be a path that is 
not necessarily closed, and define R(K)  to be the net rotation of h(z) round p as 
z traverses K. For example, if K is closed then R(K)  = 2nv[h(K), p 1. Then, 

Clearly this idea extends to any number of p-points a l ,  a2, etc. lying inside r :  

inside r 
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5 Two Examples 
Let us immediately illustrate the result with a concrete mapping: 

h(x + iy) = x + ilyl . 

In terms of our pastry analogy [p. 2071 this corresponds to making a crease along 
the real axis and folding the bottom half of the plane onto the top half. If Im(p) > 0 
then p has two preimages: a1 = p and a2 = p. Figure [12] shows that v(al) = +1 
and v(a2) = - 1, and in accord with (1 I), it also shows that if r contains a1 and 
a2 then v[h(r), p ]  = 0. 

Figure [12] 

In general, note that v[h(r), p ] = 0 merely implies that either there are 
no preimages inside r or the preimages have cancelling multiplicities, as above. 
However, if f is analytic and v[ f ( r ) ,  p ] = 0 then the conclusion is quite definite: 
there are no preimages inside . Later we shall return to this important point. 

Returning to the example, observe that if p = X is real then there is only one 
preimage, namely X, and v(X) = 0. We can look at this in a nice way: as we 
move p towards X, the two preimages a1 and a2 also move towards X, and when 
they finally coalesce at X their opposite multiplicities annihilate. As we previously 
pointed out, such points of vanishing multiplicity can only exist for nonanalytic 
mappings. 

Figure [13] shows a second more elaborate example, in which we subject a unit 
disc of pastry to a three-stage transformation H that leaves the boundary r (the 
unit circle) fixed: H (r) = r . Here are the three stages: (A) form a "hat" by lifting 
up the part of the disc lying inside the dashed circle, some of the pastry outside the 
dashed circle being stretched to form the side of the cylinder; (B) radially stretch 
the disc forming the top of this "hat" till its radius is greater than one; (C) press 
Jown flat, i.e., project each point vertically down onto the plane. 

If we pick a point p from the image set [bottom left] then the number of 
preimages (counted naively) lying in the original disc is the number of layers of 
3ast1-y lying over p. In the final picture [bottom left] we have used the degree of 
shading to indicate the number of these layers: one over the lightly shaded inner 
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Figure [I 31 

disc; two over the darkly shaded outer ring; three over the black ring. Make sure 
you can see this. 

We can now check (1 1). For example, if p lies in the darkly shaded outer ring, 
v [ H  ( r ) ,  p ] = v[r,  p ] = 0 and so the multiplicities of the preimages of such 
points should sum to zero. By following the effect of the transformation on little 
loops round each of the two preimages, we confirm this prediction: one preimage 
has multiplicity + 1 while the other has multiplicity- 1. 

Check for yourself that (1 1) continues to work if p instead lies in the inner 
disc or in the black ring. 

V Rouche's Theorem 
1 The Result 

Imagine walking a dog round and round a tree in a park, both you and the dog 
finally returning to your starting points. Further imagine that the dog is on one of 
those leashes of variable length, similar to a spring-loaded tape measure. On one 
such walk you keep the leash short, so that the dog stays at your heel. It is then clear 
that the dog is forced to walk round the tree the same number of times that you 
do. On another walk, though, you decide to let out the leash somewhat so that the 
dog may scamper about, perhaps even running circles around you. Nevertheless, 
provided that you keep the leash short enough so that the dog cannot reach the 
tree, then again the dog must circle the tree the same number of times as you. 

Let the tree be the origin of @, and let your walk be the image path traced by 
f (z) as z traverses a simple loop r. Also, let the complex number from you to the 
dog be g ( z ) ,  so that the dog's position is f (z) + g (2) .  The requirement that the 
leash not stretch to the tree is therefore 

Under these circumstances, the previous paragraph states that 
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But the Argument Principle then informs us that 

Iflg(z)l < I f  (z)l on r, then (f + g )  must have the same number 
of zeros inside r as f .  

This is Rouchk's Theorem. 
Note that while I g (z) 1 < I f (z) I is a sufficient condition for (f + g) to have the 

same number of roots as f ,  it is not a necessary condition. For example, consider 
g(z> = 2f (z). 

2 The Fundamental Theorem of Algebra 
A classic illustration of Rouch6's Theorem is the Fundamental Theorem of Alge- 
bra, which states that a polynomial 

of degree n always has n roots. The basic explanation is simple: if lzl is large, 
the first term dominates the behaviour of P(z) and the image of a sufficiently 
large origin-centred circle C will therefore wind n times round 0; the Argument 
Principle then says that P(z) must have n roots inside C. 

Rouch6's Theorem merely allows us to make the above idea more precise. Let 
f (z) = zn be the first term of P(z) and let g(z) be the sum of all the rest, so that 
f + g = P .  Now let C be the circle lzl = 1 + IAl + IBI + . - -  + IEI. Using the 
fact that lzl > 1 on C, it is not hard to show [exercise] that (g(z)l < I f  (z)I on C, 
and since f has n roots inside C (all at the origin), Rouch6 says that P must too. 

Notice that we have not only confirmed the existence of the n roots, but have 
also narrowed down their location: they must all lie inside C. In the exercises 
you will see how Rouch6's Theorem can often be used to obtain more precise 
information on the location of the roots of an equation. 

3 Brouwer's Fixed Point Theorem* 
Sprinkle talcum powder on a cup of coffee and give it a stir. The little white specks 
will swirl around and eventually come to rest, the speck that was originally at z 
finally ending up at g(z). If we stir it in a nice symmetrical way then the speck in 
the centre will remain motionless and its final position will be identical with its 
starting position. Such a place, for which g(z) = z, is called ahedpoint of g. 

Now stir the coffee in a really complicated way and let it again come to rest. 
Incredible as it may seem, at least one speck will have ended up exactly where it 
started! This is an example of Brouwer's Fixed Point Theorem, which asserts that 
any continuous mapping of the disc to itself will have a fixed point. Exercise 15 
shows this to be true, but for the moment we wish to demonstrate a slightly different 
result: there must be a fixed point if the disc is mapped into its interior and there 
are at most a finite number of fixed points. 

Let the disc D be lzl 5 1; the condition that g map D into the interior of D is 
then Ig(z) 1 < 1 for all z in D. Let m (z) be the movement of z under the mapping, 
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i.e., the connecting complex number from z to its destination g(z): 

A fixed point then corresponds to no movement: m(z) = 0. Now let f (z) = -z. 
On the boundary of D (the unit circle) we have 

and so Rouche's Theorem says that m (z) = g (z) + f (z) has the same number of 
roots inside D as f has, namely, one. 

If g is merely continuous then there can actually be several fixed points, some 
of which will necessarily have negative multiplicities, while if g is analytic then 
there can literally only be one. 

VI Maxima and Minima 
1 Maximum-Modulus Theorem 
Take another look at the nonanalytic mapping H of [13], and note how the image 
of the disc "spills over" the image of its boundary: points inside end up in the 
darkly shaded ring outside H ( r ) .  The central observation of this section is that 
such spilling over is quite impossible in the case of an analytic mapping: 

Iff is analytic inside and on a simple loop r then no point outside 
f ( r )  can have a preimage inside r. (12) 

Let's see why. The Argument Principle says that the sum of the multiplicities 
v (aj) of those p-points that lie inside r is v [ f ( r ) ,  p 1, but if p is outside f (I') then 
(by definition) this is zero. Since v (aj) is strictly positive for an analytic function, 
we conclude that points outside f ( r )  have no preimages inside r. On the other 
hand, if p lies inside f ( r )  then v [ f ( r ) ,  p ] # 0 and so there must be at least one 
preimage inside I'. [Unlike (12), this is also true of nonanalytic mappings.] 

Figure [14] illustrates an analytic f sending the shaded interior of I' strictly to 
the shaded interior of f ( r ) .  Since f ( r )  winds round the darker region twice, its 
points have two preimages in r ;  we can think of this as arising from the overlap 
of two lightly shaded regions, one preimage per lightly shaded point. 

One aspect of the "overspill" produced by H in [13] is that the points z which 
end up furthest from the origin (i.e., for which the modulus I H (z) 1 is maximum) 
lie inside r. Conversely, the absence of overspill for an analytic f means that 

The maximum of ( f (z) I on a region where f is analytic is always 
achieved by points on the boundary, never ones inside. 

This is called the Maximum-Modulus Theorem and it is illustrated in [14]: the 
maximum of If (z)l is IT1 = If (t)l, where t lies on r .  

The only exception to this result is the trivial analytic mapping z H const. 
which sends every point to a single image point. To put this more positively, if we 
know that ) f 1 achieves its maximum at an interior point then f (z) = const. 
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Figure [14] 

As a simple example, consider this problem. Let B(z) be the product of the 
distances from z to the vertices a ,  b, c, d of a square. If z lies inside or on the 
edge of the square, where does the maximum value of B occur? It is certainly 
tempting to guess that the maximum will occur at the centre of the square, but this 
is wrong. Since B(z) = l(z - a)  (z - b) (z - c) (z - d)l is the modulus of an 
analytic mapping, the maximum must in fact occur somewhere on the edge of the 
square. The exact location can now be found [exercise] using nothing more than 
ordinary calculus. 

Returning to matters of theory, recall from Chapter 2 that the "modular surface" 
of f is the surface obtained by lifting each point z vertically to a height I f  (z)l 
above the complex plane. If we look at the portion of this surface lying above r 
and its interior, the result says that the highest point always lies on the edge, never 
inside. 

Although the absolute maximum of the height always occurs on the edge, could 
there perhaps be a local maximum of I f  1 at an interior point a ,  so that the surface 
would have a peak above a?  No! For if we cut out the piece of the surface lying 
above the interior of any small loop y round a,  the highest point will fail to lie 
on the edge. Thus a modular surface has no peaks. Further aspects of the modular 
surface are investigated in the exercises. 

This absence of local maxima is re-explained in [14]. The Argument Principle 
says that since y contains a ,  f (y) must wind round A = f (a) at least once. This 
makes it clear that there are always points on y which have images lying further 
from the origin than A. More formally (cf. [4]), any ray emanating from A must 
intersect f (y), and by choosing the ray to point directly away from the origin, 
the intersection point is guaranteed to lie further from the origin than A. Thus I f  1 
cannot have a local maximum. 



The Schwarz-Pick Lemma* 357 

2 Related Results 

As [14] illustrates, the Maximum-Modulus result is only one of several that follow 
from (12). For example, unless there is a 0-point inside r ,  at which I f  (z)l = 0, 
the point Q closest to the origin (for which I f  (z)I is minimum) must also be the 
image of a point q lying on the boundary r. Naturally enough, this is called the 
Minimum-Modulus Theorem. 

Thus if we cut out the piece of the modular surface lying above r and its 
interior, the lowest point will always lie on the edge, unless, that is, the surface 
actually hits the complex plane at an interior 0-point of f .  By the same token, 
there can be no pits in the surface [local minima of \ f (1 except at 0-points. 

As before, the only exception to all this is the mapping z t+ const ., for which 
every point yields the smallest (and only) value of I f  1 .  Thus if we know that (f 1 
achieves a positive minimum at an interior point then f (z) = const. 

If f = u + i v  is analytic then [cf. Ex. 2, p. 2581 u and v are automatically 
"harmonic". As we shall see in Chapter 11, this means that these functions are 
intimately connected with numerous physical phenomena: heat flow, electrostatics, 
hydrodynamics, to name but a few. It is therefore of significance that [14] shows that 
u and v are also subject to the principle that their maxima and (nonzero) minima 
can only occur on r, never inside r. As before, if a maximum or minimum occurs 
at an interior point, the harmonic function must be constant. 

VII The Schwarz-Pick Lemma* 
1 Schwarz's Lemma 

Thinking of the unit disc as Poincark's model for non-Euclidean geometry, we saw 
in Chapter 6 that a special role was played by the Mobius transformations of the 
form 

where a lies inside the disc. These one-to-one mappings of the disc to itself act as 
rigid motions, for they preserve non-Euclidean distance. 

Apart from a digression on Liouville's Theorem, this section continues the 
work (begun in Chapter 6) of exhibiting the beautiful pre-existing harmony that 
exists between non-Euclidean geometry and the theory of conformal mappings. 
Our first new piece of evidence that these two disciplines somehow "know" about 
each other is the following: 

Rigid motions of the hyperbolic plane are the only one-to-one ana- 
lytic mappings of the disc to itsel$ (14) 

There are of course many other kinds of analytic mapping of the disc to itself, but 
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according to (14) they must all fail to be one-to-one. For example, z H z3 maps 
the disc to itself, but it is three-to-one. 

Observe that this result establishes a claim we previously made [see p. 1801 
in connection with Riemann's Mapping Theorem. There we explained that there 
are as many mappings of one region to another as there are automorphisms of the 
disc. We already knew that these automorphisms included 3-parameter's worth of 
Mobius mappings, and (14) now tells us that there are no more. 

To verify (14) we will first establish a lemma (of great interest in itself) due to 
Schwarz: 

I f  an analytic mapping of the disc to itself leaves the centre fixed, 
then either every interior point moves nearer to the centre, or  else 
the transformation is a simple rotation. 

The example f (z) = z2 shows that the mapping need not be a rotation in order 
for boundary points to keep their distance from the centre. However, at an interior 
point we have lzl < 1, and so 1 f (z)l = lz12 < lzl, in accord with the result. 

Let f be any analytic mapping of the disc to itself leaving the centre fixed, so 
that 1 f (z) 1 5 1 on the disc, and f (0) = 0. We wish to show that either I f  (z) I < lzl 
at interior points, or else f (z) = ei@ z. To this end, consider the ratio F of image 
to preimage: 

At first sight this may look undefined at 0, but a moment's thought shows that as 
z approaches the origin, F (z) approaches f '  (0). 

From the previous section we know that the maximum modulus of an analytic 
function on the disc can only occur at an interior point if the function is constant, 
otherwise it's on the boundary circle lz 1 = 1. Thus if p is an interior point and z 
varies over the unit circle C, then 

IF(p)l I (max I F(z)l on C) = (max I f  (z)l on C) 5 1. 

Thus it is certainly true that no interior point can end upfirther from the centre. 
But if even a single interior point q remains at the same distance from the centre 
then IF (q) 1 = 1, which means that F has achieved its maximum modulus at an 
interior point. In this case F must map the entire disc to a single point of unit 
modulus, say ei@, so that f (z) = ei@ z is a rotation. Done. 

The result is illustrated in [15]. If f is not a rotation then every point z on a 
circle such as K is mapped to a point w = f (z) lying strictly inside K, and the 
shaded region is compressed as shown. If we shrink K down towards the origin 
then f will amplitwist it to another infinitesimal circle centred at the origin, but 
having a smaller radius. Thus the amplification of f at the origin must be less than 
one. We can only have I f  '(0) I equal to one in the case of a rotation. 

We can now return to (14). As in Schwarz's Lemma, first suppose that the 
mapping f leaves the centre fixed, but now take f to be one-to-one, so that it has a 
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Figure [15] 

well-defined analytic inverse f -' which also maps the disc to itself and leaves the 
centre fixed. By Schwarz's Lemma, f sends an interior point p to a point q that is 
no further from centre than p. But f -' is also subject to Schwarz's Lemma, and 
so p = f -' (q) must be no further from the centre than q. These two statements 
are only compatible if Iq ( = I f  (p) I = lp  1. Thus f must be a rotation, which is 
indeed a rigid motion of type (13). 

Finally, suppose that the one-to-one mapping f does not leave the centre fixed, 
but instead sends it to c. We can now compose f with the rigid motion Mc which 
sends c back to 0. We thereby obtain a one-to-one mapping (Mc o f )  of the disc 
to itself which does leave the centre fixed, and which must therefore be a rotation 
M!. But this means [exercise] that 

is the composition of two rigid motions, and so is itself a rigid motion. Done. 

2 Liouville's Theorem 

The constant mapping f (z) = c crushes the entire plane down to the single image 
point c. We now ask whether it is possible for an analytic mapping to compress 
the entire plane down to a region lying inside a finite circle, without going to the 
extreme of completely crushing it to a point. 

If we merely demand that the mapping be continuous then this can happen. 
For example, 

?' 

maps the entire plane to the unit disc. Returning to analytic mappings, we notice 
that complex inversion, z I+ w = (l/z), manages to conformally compress the 
infinite region lying outside the unit circle of the z-plane into the unit disc of the w- 
plane. This looks quite hopeful: of the original plane only a puny unit disc remains 
to be mapped. 

To think like this is to completely forget the rigidity of analytic mappings. 
Having decided to use complex inversion to map the region outside the unit circle, 
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we cannot change the rules when it comes to mapping the remaining disc: the 
mapping z I--+ (112) acting in the exterior can only be analytically continued to the 
interior in one way, namely as z I+ (112). The requirement of analyticity thereby 
forces the "puny" disc to explode, producing an image of infinite size. 

We will now show that 

An analytic mapping cannot compress the entire plane into a region 
lying inside a disc of jnite radius without crushing it all the way 
down to a point. 

This is Liouville's Theorem. To understand this we must generalize Schwarz's 
Lemma slightly. Suppose that an analytic function w = f (z) leaves the origin 
fixed and compresses the disc lzl 5 N to a region lying inside the disc I w 1 5 M. 
By the same reasoning as before, we find that if p lies inside the original disc 
(boundary circle K) then 

Hence, 

But if f compresses the whole plane to a region lying inside the disc of radius M, 
then the above result will continue to hold true no matter how large we make N. 
Therefore f (p) = 0 for all p, and we are done. 

Finally, if f does not leave the origin fixed, but instead sends it to c, we may 
apply the previous argument to the function [ f (z) - c]. This is the composition of 
f with the translation which sends c back to 0. Since the image of the plane under 
f lies inside the disc I w 1 5 M, the translation of -c will produce a region lying 
inside the disc I w 1 5 2M. The previous inequality then becomes 

Once again letting N tend to infinity, we conclude that f (p) = c for all p. Done. 

3 Pick's Result 

We now turn to a second, rather beautiful piece of evidence that non-Euclidean 
geometry is intimately connected with the theory of conformal mapping. Recon- 
sider [15]. Schwarz's Lemma informs us that (with the exception of rotations) the 
distance between interior points and the origin is decreased. This result has two 
blemishes, both related to an exaggerated emphasis on the origin: (i) we require 
that the mapping leave the origin fixed; (ii) only distances from the origin are 
shown to decrease. 

Consider (ii) first, and for the moment let us simply put up with (i) by continuing 
to assume that our analytic mapping leaves the origin fixed. Although we did not 
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demonstrate it, perhaps a more symmetrical result holds true-with the exception 
of a rotation, will the mapping automatically decrease the distance between any 
pair of interior points? 

Sadly, no. Consider the effect of f (z) = z2 (which leaves the origin fixed) 
on the two interior points a = (314) and b = (112). The original separation is 
la - bl = 0.25, while the separation of the images is I f  (a) - f (b) 1 = 0.3 125. 
The distance between the pair of points has increased. 

But now consider the effect of exactly the same mapping on exactly the same 
two points from the point of view of the ~oincarites~. When they measure the 
distance between a and b, it is found [see (46), p. 3211 to equal H{a, b) = 0.8473, 
while the separation of the images is H{ f (a), f (b)) = 0.7621. The hyperbolic 
distance has decreased! Choose any other pair of points for yourself and examine 
the effect of z I+ z2 on their hyperbolic separation. 

Pick's splendid discovery was that even if we drop the requirement that the 
origin be a fixed point, this decrease in hyperbolic distance is a universal phe- 
nomenon: 

Unless an analytic mapping of the disc to itself is a rigid motion, the 
hyperbolic separation of every pair of interior points decreases. (15) 

Because this result contains Schwarz's Lemma as a special case [we shall clarify 
this shortly] it is sometimes called the Schwarz-Pick Lemma. Despite the startling 
nature of the result, we can actually understand its essence very simply; we need 
only ask the question, "How do the Poincarites view [15]?" 

Because their concept of angle is identical to ours it follows that their concept 
of an analytic function is also the same as ours- f appears conformal both to us 
and to them. In addition, we both agree that rays emanating from the origin are 
straight lines along which we may measure distance. Consequently, the Poincarites 
willingly concede that w is closer to 0 than z is, although they violently disagree 
with our quantitative determination of exactly how much closer it is. Now recall 
that there is a small flaw in the Poincare model: 0 appears special to us because it is 
the centre of the disc, but to the Poincarites who inhabit an infinite, homogeneous 
plane 0 is utterly indistinguishable from any other point of their world. 

The above explanation is formalized in [16]. In the top left figure we see that 
the Poincarites have marked an arbitrary point a ,  drawn a few concentric circles 
centred there, and on the outermost of these they have marked a second point b. 
They (and we) now consider the effect of an analytic mapping f of their world to 
itself. The point a is sent to some image point A = f (a) [top right] and likewise b 
is sent to B = f (b). In order to compare the separation of A and B with that of a 
and b, the Poincarites perform a rigid motion (MA o Ma would do) that moves the 
circles centred at a to circles (of equal hyperbolic size) centred at A. Consequently, 
the hyperbolic separation of a and b will have been decreased [increased] by f 
according as B lies inside [outside] the outermost of these circles. In anticipation 

5 ~ e c a l l  from Chapter 6 that this is the race of beings who inhabit PoincarC's model of the 
hyperbolic plane. 
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Figure [16] 

of Pick's result we have drawn it inside, corresponding to a decrease in hyperbolic 
separation. However, observe that as in our previous numerical example, to us 
Euclideans it looks as though the separation has been increased. 

In order to show us poor blind Euclideans that the circles centred at a and 
A really are concentric and of equal sizes (so enabling us to see that B really 
has gotten closer) the Poincarites perform the illustrated rigid motions Ma and 
MA. These respectively move a and A to the origin [bottom left and bottom right 
figures], yielding circles that are as concentric to us as they always were to them. 
Ma moves b to z = Ma (b), while MA moves B to 

We shall abbreviate (MA 0 f 0 Ma) to F ,  so that w = F (z). 
We can now see that the following are all equivalent: 

But F is an analytic mapping of the disc to itself which leaves the origin fixed, 
and so it is subject to Schwarz's Lemma. Thus unless F is a rotation-in which 
case f = (MAo F ~ M ~ ) i ~ a r i g i d m ~ t i ~ n - ~ e m ~ ~ t h a ~ e I ~ l  = IF(z)l < lzl,as 
depicted. Done. 

Finally, let us express the Schwarz-Pick Lemma in symbolic form. If f is not 
a rigid motion then IF (z) 1 < lz 1, which may be written out more explicitly as 
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which in turn can be written as 

Thus 
B - A  b - a  

If we move b closer and closer to a ,  then d a  = (b - a )  becomes an infinitesimal 
vector emanating from a whose image under f is an infinitesimal vector dA = 
(B - A) emanating from A. The above inequality now becomes 

which we may interpret [cf. (44), p. 3181 as saying that, provided f is not a rigid 
motion, the hyperbolic length of dA is less than that of its preimage da. This is 
the infinitesimal version of (15). 

Vlll The Generalized Argument Principle 
1 Rational Functions 

We have now seen that there are many powerful and surprising consequences of 
the Topological Argument Principle as restricted to analytic functions. Still others 
are described in the exercises. However, in all our previous work we have only 
examined mappings which are free of singularities in the region under considera- 
tion. We now lift this restriction and find that there is a generalization of (6) which 
applies to this case also. 

We began our discussion of the Argument Principle by looking at the pro- 
totypical analytic functions without singularities-the polynomials. In order to 
understand the generalization to analytic functions with singularities, we should 
correspondingly begin with rational functions. 

As in [8], let A, B, and C be the complex numbers from the fixed points a ,  
b, and c to the variable point z. The left-hand side of [17] shows an expanding 
circle I' at three successive stages of its growth: r l ,  r2,  and r 3 .  The right-hand 
side shows the evolution of the image of I' under the rational mapping 

By the time r has grown into rl it has enclosed a ,  and v [ f ( r l ) ,  0] = 1, in 
accord with the ordinary Argument Principle. As r continues to grow it crosses the 
other 0-point at b, and the winding number of f ( r )  correspondingly increases to 
v [ f (r2) ,  01 = 2. Now comes the new phenomenon. As r crosses the singularity 
at c the winding number of its image decreases by one so that v [ f (r3),  0] = 1. 
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Figure [17] 

The explanation is simple. As z traverses r3 ,  the winding number of f (z) is 
the sum of the revolutions executed separately by A, B, and (l/C). The first two 
go round once, but as C rotates counterclockwise, (1/ C) rotates in the opposite 
direction, finally executing one complete negative revolution. By the same token, 
if the denominator of f instead contained Cm then ( l /Cm) would execute -m 
revolutions, and the winding number would become 

As with counting zeros, we could say in this case that c was a singularity [or pole, 
as we shall now call such places] of multiplicity m.  

The previous equation is an example of the Generalized Argument Principle: 

Let f be analytic on a simple loop r and analytic inside except 
for a jinite number of poles. If N and M are the number of inte- 
rior p-points and poles, both counted with their multiplicities, then (17) 

v [ f ( l - ) , p I = N - M .  

Simply by allowing an arbitrary number of factors on the top and bottom of (16) 
we see that this result is certainly true when f is any rational function. 

Before explaining why it works in general, let us develop a more vivid under- 
standing of how it works in the case of our example (16). We have certainly shown 
that as r crosses c the winding number drops from 2 to 1, but exactly how does 
this unwinding occur? 

If we look at the image plane just as I' crosses c then f ( r )  undergoes a sudden 
and violent change of shape as it leaps to infinity and then returns, but this leaves us 
none the wiser. However, if we instead watch its evolution on the Riemann sphere 
then we gain a new and delightful insight into the process. 

Figure [18] (which should be scanned like a comic strip) illustrates this. At 
the time of the first picture [top left] I' has already enclosed the two roots, and its 
image is seen to wind round the origin twice. Now follow the evolution of f ( r )  



The Generalized Argument Principle 365 

Figure [I 81 

through the remaining pictures. As r crosses c [top right] there is no longer any 
excitement- f (I?) merely slides across the north pole, and this is how the un- 
winding is achieved. Try using a computer to animate the evolution of the image 
f ( r )  on the Riemann sphere as I' expands through the roots and poles of a rational 
function f of your choosing. 

2 Poles and Essential Singularities 

In generalizing the ordinary Argument Principle we had to ask ourselves how 
we should count p-points of a general analytic function. The factorization (7) 
brought out the analogy with polynomials and gave us a satisfactory definition of 
the algebraic (and topological) multiplicity of a p-point. 

The method of extending (17) from rational functions to analytic functions 
with singularities is essentially the same. The only complication is that there are 
actually two possible kinds of singularity for an otherwise analytic function. 

The first kind of singularity is called a pole. It is by far the most commonly 
encountered type in applications of complex analysis, and it is the only type to 
which (17) applies. Here's the definition. If f (z) approaches oo as z approaches 
a from any direction then a is a pole of f .  We can understand the terminology by 
thinking of the modular surface of f ,  for there will be an infinitely high spike or 
"pole" above the point a.  Figure [14] on p. 66 is an example of this. 

Since f is analytic, it follows that F (z) = [ l /  f (z)] is also analytic and has a 
root at a.  If this root has multiplicity m then the factorization (7) of F is 

F ( z )  = (z - a)m (z) , (18) 
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where 52 is analytic and nonzero at a ;  in fact we know that 52 (a) = ~ ( ~ ) ( a ) / m ! .  
The local behaviour of f near a is therefore given by 

where 6 (z) = [ I /  52 (z)] is analytic and nonzero at a .  This expression brings out 
the analogy with rational functions and enables us to identify m as the algebraic 
multiplicity or order of the pole at a .  We call a pole simple, double, triple, etc., 
according as m = 1,2,3,  etc. 

Note that we have also found a way of calculating the order of a pole, namely, 
as the order of the first nonvanishing derivative of (11 f ) .  Once you have identified 
the locations of the poles, you may use this method [exercise] to find the orders of 
the poles of the following functions: 

1 cos z . 1 
P(z) = - ; Q<z) = - 

z2 ' 
R(z) = 

sin z (e" ' 

You should have found that P has a simple pole at each multiple of n; Q has a 
double pole at 0; and R has a triple pole at each multiple of 2n i . 

One more piece of terminology. If the only singularities in some region of an 
otherwise analytic function are poles, the function is called meromorphic in that 
region. 

In addition to poles, it is also possible for an otherwise analytic function to 
possess what are called essential singularities. We shall postpone detailed discus- 
sion of such places to a later chapter, but it is clear that the behaviour of a function 
f in the vicinity of an essential singularity s must be very strange and wild. If f 
were bounded in the vicinity of s then s would not be a singularity at all, but on 
the other hand f (z) cannot approach oo as z approaches s from all directions, for 
then s would only be a pole. 

Consider the standard example g(z) = ellz, which clearly has a singularity of 
some type at the origin. If we write z = r eie then 

cos e - 
Ig(z)l = e . 

Figure [19] depicts the modular surface. If z approaches 0 along the imaginary 
axis then I g (z) 1 = 1. But if the approach is instead made along a path lying to the 
left of the imaginary axis (where cos 8 < 0) then g(z) tends to 0. Finally, if the 
approach path lies to the right of the imaginary axis then g(z) tends to oo. In fact, 
not only will Ig(z) I become infinite in this case, but the rate at which it zooms off 
to oo is quite beyond the ken of any pole. 

To see this, reconsider (19). The greater the order m, the faster the growth of f 
as the pole at a is approached. However, no matter how great the order happens to 
be, we know that (z - a)m dies away fast enough to kill this growth, in the sense 
that its product with f remains bounded. Indeed, the order of a pole can be dejned 
as the smallest power of (z - a )  which will curb the growth of f in this way. 
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Figure [19] 

Compare this with the growth of g ( z )  as its essential singularity is approached, 
say along the positive real x-axis. To confirm that g grows faster than any mero- 
morphic function, we need only recall from ordinary calculus that 

no matter how great the value of m. 

3 The Explanation* 
In order to explain (17) let us return to the interpretation of (19). If we think of f 
, .s mapping into the Riemann sphere C , then the north pole (oo) is an image point 
like any other, and the poles of f are simply its preimages, oo-points if you will. 
As we now explain, this means that the topological multiplicity of an oo-point can 
be defined in exactly the same way as that of any other p-point, namely, as the 
number of times that the image of a small loop round a winds round f (a) .  

Reconsider the mapping F in (1 8). By virtue of (8), we know that a sufficiently 
small circle Ca centred at a will be mapped to a small loop F (Ca) winding round 
the origin m times. On C,  the stereographic projection of F(Ca) therefore winds 
round the south pole m times, counterclockwise as seen from inside C .  Because 
complex inversion (which sends F (Ca) to f (Ca) = 1/[F (C,)]) rotates C about 
the real axis by n, thereby swapping 0 and oo, this means that f (C,) will be a 
small loop winding m times round oo. Since it winds counterclockwise as seen 
from inside C,  its stereographic projection in the plane is therefore a very large 
loop winding m times clockwise around the origin, i.e., with winding number -m. 

As an aside, observe that it now makes sense to rewrite (19) as 
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and to correspondingly think of a pole of order m as being a root of negative 
multiplicity -m. 

Shifting our attention away from the origin, we now consider winding numbers 
around an arbitrary (finite) point p. By making Ca sufficiently small, we can be 
certain that f (C,) will be so large that it will wind -m times round p. But if we 
expand Ca into any simple loop ra without crossing any p-points or other poles, 
then the winding number of the image round p cannot change. In other words, 

Ifa is a pole of order m and ra is any simple loop containing a but 
no p-points and no other poles, then v [ f (r,), p ] = -m. (20) 

Finally, reconsider figure [ l  11. You may now easily convince yourself that the 
argument leading to (1 1) remains valid if some of the aj's are poles instead of 
p-points. Let's call these singular points s j .  Thus 

p-points poles 

Using (20), this implies that 

v[ f ( r ) ,  p ] = [number of p-points inside r ]  - [number of poles inside F], 

as was to be shown. 
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IX Exercises 

1 A "simple" loop can get very complicated (see diagram). However, if we imag- 
ine creating this complicated loop by gradually deforming a circle, it is clear that 
it will wind round its interior points precisely once. Let N (p) be the number of 
intersection points of the simple loop with a ray emanating from p (cf. [4]). What 
distinguishes the possible values of N(interior point) from those of N(exterior 
point)? In place of the crossing rule (I), you now possess (for simple loops) a 
much more rapid method of determining whether a point is inside or outside. 

You can use this result to play a trick on a friend F: (1) So that foul play cannot be 
suspected, get F to draw a very convoluted simple loop for himself; (2) choose 
a random point in the thick of things and ask F if it's inside or not, i.e., starting 
at this point, can one escape through the maze to the outside?; (3) after F has 
been forced to recognize the time and effort required to answer the question, get 
him to choose a point for you; (4) choosing a ray in your mind's eye, scan along 
it and count the intersection points. Amaze F with your virtually instantaneous 
answer! 

2 Reconsider the mapping Z i n  (4) of the unit circle to itself, and the associated 
graph of @ (0) in [7]. If @'(a) > 0 then the graph is rising above the point 0 = a,  
and small movement of z will produce a small movement of the w having the 
same sense. We say that @ is orientation-preserving at a and that the topological 
multiplicity v (a)  of z = eia as a preimage of w = ei"(') is + 1. Similarly, if 
@'(a) < 0 then the mapping is orientation-reversing and v (a) = - 1. In other 
words, 

v (a)  = the sign of @'(a). 

Compare this with the 2-dimensional formula (9). 

(i) In [7], explain how the complete set of preimages of w = ei A can be found 
by drawing the family of horizontal lines @ = A, A f 2n, A f 4n, etc. 

(ii) If the set of preimages is typical in the sense that @' # 0 at any of them, 
what do we obta i~ i f  we sum their topological multiplicities? Thus to say 
that the degree of L (the winding number of L) is v is essentially to say that 
L is v-to-one. [Hint: In [4], consider a ray as describing the location of w .] 



370 Winding Numbers and Topology 

3 For each of the following functions f (z), find all the p-points lying inside the 
specified disc, determine their multiplicities, and by using a computer to draw 
the image of the boundary circle, verify the Argument Principle. 

(i) f (z) = e 3 " ~  and p = i , for the disc lz 1 5 (413). 

(ii) f (z) = cosz and p = 1, forthedisc lzl 5 5. 

(iii) f (z) = sin z4 and p = 0, for the disc lzl 5 2. 

4 Reconsider [a]. 
(i) Use a computer to draw the image under a cubic mapping 

f (z) = (Z - a )  (Z - b) ( z  - c) 

of an expanding circle r ,  and observe the manner in which the winding 
number increases as r passes through the roots a ,  b, and c. In particular, 
observe that the shape that marks the birth of a new loop is this: 4. 

(ii) Iff  '(p) # 0 then a little piece of r passing through p is merely amplitwisted 
to another almost straight piece of curve through f (p). Deduce that 4 shapes 
can only occur when r hits a critical point. Explain why the particular shape 
4 is consistent with a critical point of order 1. 

(iii) Observe that there are only two point in the evolution of r at which a < 
shape is produced. Explain this algebraically in terms of the degree of f '. 

(iv) Let T be the triangle with vertices a ,  b, and c. There are many ellipses 
which can be inscribed in T so as to touch all three sides, but show that there 
is only one (call it I )  that touches T at the midpoints of the sides. 

(v) [Hard] Show that the two critical points of f are the foci of I ! 

5 As in the text, let ca, Va, @a denote the two perpendicular expansion factors and 
the rotation angle used to describe the local linear transformation at a produced 
by a mapping. By considering the case of a rotation by (n/4), for which J is 
constant, show that c and r]  are generally not the eigenvalues hl and ha of the 
Jacobian J. However, confirm for this example that det(J) = A1 h2 = 6 r ] .  

6 Even in three or more dimensions the local linear transformation induced by a 
mapping f at a point a can still be represented by the Jacobian matrix J (a ) ,  and 
if a is not a critical point then its topological multiplicity v (a) as a preimage 
of f (a) is still given by (9). If n is the number of real negative eigenvalues of 
J(a) ,  counted with their algebraic multiplicities, show that 
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v (a) = (-l)n. 

[Hint: Since the characteristic equation det [ J (a) - h I ]  = 0 has real coefficients, 
any complex eigenvalues must occur in conjugate pairs.] 

7 Consider the nonanalytic mapping h(z) = lz l 2  - i 2. 

(i) Find the roots of h. 

(ii) Calculate the Jacobian J ,  and hence find det (J) . 

(iii) Use (9) to calculate the multiplicities of the roots in (i). 

(iv) Find the image curve traced by h(z) as z = 2 eiB traverses the circle lz I = 2, 
and confirm the prediction of the Topological Argument Principle. 

(v) Gain a better understanding of the above facts by observing that h(z) = 
- z (z - i), and then mimicking the analysis of [8]. 

(vi) Use the insight of the previous part to find v (i/2), which cannot be done 
with (9). 

8 Let Q(t) be a real function of time t, subject to the differential equation 

Recall that one solves this equation by taking a linear superposition of special 
solutions of the form Qj(t) = eSj '. Substitution into the previous equation 
shows that the sj  's are the roots of the polynomial 

Note that Qj (t) will decay with time if sj  has a negative real part. The issue of 
whether or not the general solution of the differential equation decays away with 
time therefore reduces to the problem of determining whether or not all n roots 
of F (s) lie in the half-plane Re(s) < 0. Let R be the net rotation of F(s) as s 
traverses the imaginary axis from bottom to top. Explain the following result: 
The general solution of the differential equation will die away if and only if 

R = nn.  

This is called the Nyquist Stability Criterion, and an F that satisfies this condition 
is called a Hunvitzpolynornial. [Hints: Apply the Argument Principle to the loop 
consisting of the segment of the imaginary axis from -i R to +i R, followed by 
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one of the two semicircles having this segment as diameter. Now let R tend to 
infinity.] 

9 Referring to the previous exercise, consider the differential equation 

(i) Find R for this equation. Does it satisfy the Nyquist Stability Criterion? 

(ii) Confirm your conclusion by explicitly solving the differential equation. 

10 If a is real and greater than 1, use RouchC's Theorem to show that the equation 

has n solutions inside the unit circle. 

11 (i) Applying RouchC's Theorem to f (z) = 2z5 and g(z) = 82 - 1, show that 
all five solutions of the equation 2z5 + 8z - 1 = 0 lie in the disc lzl < 2. 

(ii) By reversing the roles of f and g, show that there is only one root in the 
unit disc. Deduce that there are four roots in the ring 1 < lzl < 2. 

12 We can formalize, and slightly generalize, our explanation of RouchC's Theorem 
as follows: 

(i) If p(z) and q (z) are nonzero on a simple curve I', and is the image curve 
under z I+ p (z) q (z), show that 

(ii) Write 

If I g (z) 1 < I f (z) I on r , sketch a typical H (r) . Deduce that 

Using the previous part, obtain RouchC's Theorem. 

(iii) If we only stipulate that I g (z) 1 5 I f (z) 1 on I' , then parts of H ( r  ) could 
actually coincide with the circle lz - 1 I = 1, rather than lying strictly inside 
it, and v [H(r) ,  0] might not be well-defined. However, show that if we 
further stipulate f + g # 0 on I', then v [H (I?), 0] = 0 as before. Deduce 
that v[(f + g)(r) ,  01 = v[f 01. 
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13 Let w = f (z) be analytic inside and on a simple loop r, and suppose that f ( r )  
is an origin-centred circle. 

(i) If A is an infinitesimal movement of z along r and @ is the correspondingly 
infinitesimal rotation of w, show geometrically that 

(ii) As z traverses r ,  explain why v [A, 01 = 1 and v [i$, 0] = 0. 

(iii) Referring to (i) of the previous exercise, show that 

(iv) Deduce from the Argument Principle that f has one more root inside r than 
f '  has. This is sometimes called Macdonald's Theorem, though I believe its 
essence goes back as far as Riemann. 

(v) From this we deduce, in particular, that f has at least one root inside r .  
Derive this fact directly by considering the portion of the modular surface 
lying above r and its interior. 

14 In contrast to analytic mappings, it is perfectly possible for a continuous non- 
analytic mapping to completely crush pieces of curve or even areas without 
crushing the rest of its domain. Let us give a concrete example to show that the 
Topological Argument Principle does not apply to this case. With r = lz 1, the 
mapping h (z) = @ (r) z will be a continuous function of z if @ (r) is a continu- 
ous function of r.  Consider the continuous mapping h of the unit disc to itself 
corresponding to 

(i) Describe this mapping in visually vivid terms. 

(ii) Taking r to be the circle lzl = (314) and letting p = 0, try (and fail) to 
make sense of (1 1). 

15 The version of Brouwer's Fixed Point Theorem established in the text fell short 
of the full result in two ways: (A) we assumed that Igl < 1 on D rather than 
JgJ _( 1; (B) we essentially used the Topological Argument Principle, which 
the previous exercise shows to be useless in the general case of a continuous 
mapping having infinitely many p-points in a finite region. Let's remove these 
blemishes. Once again let m(z) = g (z) - z be the movement of z, and suppose 
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that Brouwer's result is false, so that m # 0 throughout the disc lzl 5 1. Obtain 
the desired contradiction as follows: 

(i) By assumption, m (z) = g (z) - z = g(z) + f (z) does not vanish on the unit 
circle C. Use Ex. 12(iii) to show that if I g 1 5 1 then v [m (C) , 0] = 1. 

(ii) Let Cr be the circle lz 1 = r ,  so that C1 = C. By considering the evolution 
of v [m (C,), 0] as r increases from 0 to 1, obtain a contradiction with (i). 

The key fact v [m (C), 0] = 1 can be obtained more intuitively. Draw a typical 
movement vector m ( z )  emanating from z and note that it makes an acute angle 
with the inward unit normal vector (-z) to C, also drawn emanating from z. 
But clearly this normal vector undergoes one positive revolution as z traces C. 
Deduce that the vector m is also dragged round one revolution. 

16 Let f (z) be an odd power of z, and consider its effect on the unit circle C. 
Note two facts: (1) if p is on C then f (-p) points in the opposite direction 
to f (p); (2) v [ f (C), 0] = odd, in particular it cannot vanish. This is only 
one example of a general result. Show that (1) always implies (2), even if f is 
merely continuous. [Hints: If f is subject to (I), what can we deduce about the 
net rotation R of f (z) as z traverses the semicircle from p to -p? How is the 
rotation produced by the remaining semicircle related to R ?] 

17 Consider a spherical balloon S resting on a plane. If we gradually deflate S ,  each 
point will end up on the plane so that we have a continuous mapping H of S into 
the plane. Observe that the north and south poles, which are antipodal, have the 
same image. The Borsuk-Ulam Theorem says that any continuous mapping H 
of S into the plane will map some pair of antipodal points to the same image. 
Consider the mapping F (p) = H(p)  - H(p*), where p* is antipodal to p. The 
theorem then amounts to showing that F has a root somewhere on S. Prove this. 
[Hints: It is sufficient to examine the effect of F on just the northern hemisphere. 
By taking the boundary of this hemisphere (the equator) to be the circle C of 
the previous exercise, deduce that v [ H  (C), 0] # 0.1 

18 Let f be analytic on a simple loop r ,  and let p be a preimage of a point on 
f ( r )  at which I f  1 is maximum. If is a tangent complex number to r at p, 
and in the same counterclockwise sense as r ,  show geometrically that 6 f '(p) 
points in the same direction as if (p). What is the analogous result at a positive 
minimum of I f  1 ? 

19 (i) If p is not a critical point of an analytic function f ,  show geometrically that 
the modulus of f increases most rapidly in the direction [ f (p)/ f '(p)]. 

(ii) In terms of the modular surface above p,  this direction lies directly beneath 
the tangent line to the surface having the greatest "slope" (i.e., tan of the 
angle it makes with the complex plane). Show that the slope of this steepest 
tangent plane is I f  '(p) 1, and note the analogy with the slope of the ordinary 
graph of a real function. 
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(iii) What does the modular surface look like at a root of order n ? 

(iv) What does the modular surface look like above a critical point of order m ? 
Using the case m = 1, explain why such places are called saddle points. 

(v) Rephrase Macdonald's Theorem [Ex. 131 in terms of the number P of pits 
and the number S of saddle points in the portion A of the modular surface 
lying above and its interior. 

(vi) It is a beautiful fact that, expressed in this form, Macdonald's Theorem 
can be explained almost purely topologically. The following explanation is 
adapted from P6lya [1954], though I believe the basic idea goes back to 
Maxwell and Cayley. Since I f  1 is constant on r ,  the boundary of A is a 
horizontal curve K,  and since f is analytic, K is higher than the rest of A. 
Also, recall that there are no peaks. Suppose for simplicity that f and f '  
have only simple roots ( P  and S in number) so that the pits are cone-like, 
and the saddle points really look like saddles or (more geographically) like 
mountain passes. 
Now imagine a persistent rain falling on the surface A. The pits gradually 
fill with water and so become P lakes, the depths of which we shall imagine 
are always equal to each other. What happens to the number of lakes as the 
water successively rises past each of the S passes? How many lakes are left 
by the time that the water has finally risen to the level of K? As required, 
deduce that 

P = S + l .  

(vii) Generalize the above argument to roots and critical points that are not 
simple. 

20 Let f (z) and g(z) be analytic inside and on a simple loop r .  By applying the 
Maximum Modulus Theorem to (f - g ) ,  show that if f = g on r then f = g 
throughout the interior. 

21 Let R(L) be the net rotation of f (z) round p as z traverses a loop L. For 
example, if L does not contain p then 

1 
v [L, p ]  = -R(L). 

2n 

By taking this formula to be the definition of v, make sense of the statement that 
the Generalized Argument Principle (17) remains valid even if there are some 
poles and p-points on r ,  provided that we count these points with half their 
multiplicities. 

22 In [ l l ]  we used the idea of deformation to derive the argument principle. The 
figure below shows another method. The interior of r ,  containing various p- 
points and poles, has been crudely partitioned into cells Cj in such a way that 
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each one contains no more than a single p-point or a single pole. Now think of 
each cell as being a loop traversed in the conventional direction; this sense is 
indicated for two adjacent cells in the figure. 

(i) What is the value of v [ f (Cj), p ] if Cj (1) is empty; (2) contains a p-point 
of order m; (3) contains a pole of order n ? 

(ii) Obtain the Argument Principle by showing that 

[Hint: If an edge of a cell does not form part of r then it is also an edge of an 
adjacent cell, but traversed in the opposite direction. What is the net rotation of 
f (z) round p as z traverses this edge once in one direction, then in the opposite 
direction?] 
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Complex Integration: Cauchy's 
Theorem 

I Introduction 
In the last few chapters our efforts to extend the idea of differentiation to complex 
mappings have been amply rewarded. By innocently attempting to generalize the 
real derivative we were quickly led to the amplitwist concept, and the subject then 
came to life with a character all its own. While many of the results cast familiar 
shadows onto the world of the reals, many did not, and striking indeed was the 
flavour of the arguments used to grasp them. The ability of z to freely roam the 
plane unleashed in us a degree of visual imagination that had to remain dormant so 
long as we could only watch the real number x forlornly pacing its one-dimensional 
prison. 

This little hymn to the glory of the complex plane can be sung again in the 
context of integration, only louder. If differentiation breathed life into the subject, 
then integration could be said to give it its soul. Only after we have understood 
this soul will we be able to demonstrate such fundamental facts as the infinite 
differentiability of analytic mappings1. 

b In ordinary calculus the symbol has a clear meaning. However, if we wish 
to generalize this to C then the need for new ideas is immediately apparent, for 
how are we to get from a to b? In R there was only one way, but a and b are now 
points in the plane, so we must specify some connecting path (called a contour) 
"along which to integrate". It is then natural to ask whether the value of the integral 
depends upon the choice of this contour. 

In general the value of the integral will depend on the route chosen. For ex- 
ample, we will shortly meet an integral of a complex mapping that yields, when 
evaluated for a closed contour, the area enclosed by the contour-a flagrant de- 
pendence of value on contour. It should be made clear from the outset that while 
differentiation only made sense for the strictly limited set of analytic functions, 
this is not the case for integration. Indeed, the example just cited involves the 
integration of a non-analytic function. 

The principal aim of this chapter (beyond the mere construction of an integral 
calculus) will be the discovery of conditions under which the value of an integral 

'since the 1960's it has actually become possible to do such things without integration, thanks 
to pioneering work by G. T. Whyburn, and others. Nevertheless, integration still appears to provide 
the simplest approach. 
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does not depend on the choice of contour. One such result is an analogue of the 
Fundamental Theorem of real analysis, and in deference to that subject it bears the 
same name. However, in the complex realm this is actually a misnomer, for there 
exists a still deeper result which has no counterpart in the world of the reals. It is 
called Cauchy 's Theorem. 

As we have said, it is not only possible, but sometimes useful to integrate 
non-analytic functions. However, it should come as no surprise to learn that new 
phenomena arise if we concentrate on the integrals of mappings that are analytic. 
Cauchy's Theorem is the essence of these new phenomena. Essentially it says that 
any two integrals from a to b will agree, provided that the mapping is analytic ev- 
erywhere in the region lying between the two contours. Almost all the fundamental 
results of the subject (including some already stated) flow from this single horn of 
plenty. 

II The Real Integral 
1 The Riemann Sum 

As we did with differentiation, we begin by re-examining the more familiar idea 
of integrating a real function. The historical origin of this process, and still the 
principal means of visualizing it, is the problem of evaluating the area under the 
graph of a function. 

We first approximate the sought-after area with rectangles. See [I]. Dividing 
the interval of integration into n line-segments Ai (the bases of the rectangles), 
we randomly select one point xi from each segment, and take the height of the 
corresponding rectangle to be the height of the curve above the point, namely, 
f (xi). The area of each rectangle is then f (xi) Ai, and thus the total rectangular 
approximation to the area under f is 

The quantity R is called a Riemann sum. Finally, by simultaneously letting n tend 
to infinity while each Ai shrinks to nothing, R will tend to the desired area. 

In [I]  we could afford to be indifferent to the precise choice of xi within each 
Ai because we had our eye on this final limiting process. As each Ai shrinks, the 
freedom in the choice of xi becomes more and more limited, and the influence of 
the choice on the area of the rectangle likewise diminishes. However, if we are 
unwilling or unable to actually carry out the limiting process, then, as we shall 
now see, we can ill afford to be so blas6 in our choice of xi. 

You probably dimly remember some professor showing you (1) before, and 
perhaps you even evaluated a couple of examples by means of it. However, this 
was no doubt quickly forgotten once you set eyes upon the Fundamental Theorem 
of Calculus. In order to integrate x4, why bother with taking the limit of some 
complicated series when we know that the answer must be that function which 
differentiates to x4, namely, $x5? 
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Figure [I] 

The Fundamental Theorem is a wonderful thing, but one must remember that 
many quite ordinary functions simply do not possess an antiderivative that is ex- 
pressible in terms of elementary functions. To take a simple example, the Normal 
Distribution of statistics requires a knowledge of the area under the curve e - ~ ~ ,  
and this can only be computed numerically, perhaps via a Riemann sum. 

When doing a numerical calculation with (I), it would require an infinite 
amount of time to find even a single area with perfect precision. It is therefore 
important to be able to obtain good approximations to lim,,, R while using 
only a finite value of n. Several such methods exist: Simpson's rule and the Trape- 
zoidal rule, to name just two that may be familiar. Since the Trapezoidal rule will 
most readily lend itself to complex generalization, we will now review it. 

2 The Trapezoidal Rule 
As the name suggests, we now use trapezoids instead of rectangles to approximate 
the area. Though not strictly necessary, it is convenient to make all the Ai the 
same length. See [2]. It is clear from the figure that even a very modest value of n 
will yield a quite accurate estimate. Since [2] is not of the same form as [I], the 
associated Trapezoidal Formula (which we won't bother to state) is not quite of 
the type (1). Nevertheless, if we wish to continue to use (I), it is not hard to find 
a Riemann sum that closely mimics the trapezoidal sum, and hence which retains 
the latter's accuracy. 

First note that the shaded trapezoidal estimate shown in [2] is identical to the 
rectangular one in [3], in which we have taken the height of each rectangle to be 
the height of the chord at the midpoint of Ai. Finally, to recover a Riemann sum, 
we can replace the height of the chord by the height of the curve at that point. See 
[4]. In other words, the Riemann sum (1) will yield an accurate approximation to 
the integral, using only a modest value of n, provided that we choose each xi to be 
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Figure [2] 

Figure [3] 

at  the midpoint of its Ai. We will call this the Midpoint Riemann Sum, and write 
it as RM. 

3 Geometric Estimation of Errors 

We have said that using midpoints in (1) will yield accurate results, but how accurate 
is "accurate"? First reconsider the case where the xi were chosen randomly, and 
suppose that all the Ai's have the same length. Re-examination of [I] reveals that 
the difference between the actual area lying above each Ai, and the area of the 
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Midpoint Riemann Sum 

Figure [4] 

approximating rectangle, will be of order h2 .  Since the total number of rectangles 
is of order 1/A, it follows that the total error will be of order A, and thus, as 
claimed, it will die away as n increases and A shrinks. We will now show that 
using RM, or the almost equivalent Trapezoidal rule, produces a much smaller 
total error-in fact an error that dies away as the square of A. 

This standard result on the decay of the error can be found in many advanced 
calculus books, but rather than repeat the standard calculation, we will supply a 
novel geometric2 account. Figure [5a] shows a magnified view of the top of one of 
the rectangles used in RM. Shown are the chord A B bounding the trapezoid used 
in [2], and the line-segment E e  bounding the rectangle used in RM. Notice that 
P and Q (the midpoints of these line-segments) will lie directly above the point 
xi that is being used in RM. 

Visually, it is easy to compare the area under AB [the Trapezoidal rule] !it. 
the actual area under the curve, but the same can-not be said of the area under DC 
[the RM rule]. However, note that if we rotate DC about P (keeping the ends glued 
to the verticals) until it becomes tangent at DC, the area beneath it will remain 
constant [why?]. Thus we are instead free to visualize each term of RM as being 
the area lying beneath a tangent such as DC. It is now clear that the actual area lies 
between the two values furnished by AB and DC, and that the error induced by 
using either rule cannot exceed the area of the small quadrilateral A B C D, namely 
[exercise], ( P  Q) A. In order to find this area we will use the elementary property 
of circles that is illustrated in [5b]: As the chord P Q R revolves about the Jixed 
point Q, the product P Q Q R remains constant. 

while many of the arguments in this book were merely inspired by Newton's mode of thought 
in the Principia, we have here an example that is very close to his actual methods. 
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Figure [5] 

Over a sufficiently tiny distance we can consider any segment of curve to be 
interchangeable with its tangent. However, over somewhat larger distances (or if 
we simply require greater accuracy) we must instead replace it by a segment of 
its circle of curvature, that is, the circle whose curvature K agrees with that of the 
curve at the point in question. In [6] we have drawn this circle for the segment at 
P .  The above result now informs us that 

As A shrinks, both (A Q /  D P )  and (Q R/ P R) tend to unity, so in this limit we may 
substitute D P for A Q and P R for Q R. But if the tangent at P makes an angle 
8 with the horizontal (in which case 0 P makes angle 8 with the vertical) then 
D P = 1 A sec 8, and P R = ( 2 1 ~ )  cos 8. Substituting these into (2) we obtain the 
result 

area(ABCD) = P Q - A  = (3) 

If M denotes the maximum of over the integration range (which we 

take to be of length L) then each such error will be less than M A ~ .  Since the 
number of these error terms is (LIA), we conclude that 

total error < (L M) A2, 

and this indeed dies away in the manner originally claimed. [At this point you may 
care to look at Ex. 11 

Because the order of the induced error is the same for both RM and the Trape- 
zoidal rule, we will tend not to distinguish between them when it comes to their 
complex generalizations. This said, there remains one curious pedagogical point 
still to be made. Figure [5a] makes it clear that curves deviate less from their tan- 
gents than from their chords, and thus one would anticipate that while the order 
of the error is the same for both rules, RM would actually yield the more accurate 
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Figure [6] 

value of the two. This is indeed the case, and in fact [see Ex. 21 one can show that 
it is twice as accurate. In addition to this accuracy, RM is, if anything, easier to 
remember and use than the Trapezoidal formula. It is therefore doubly puzzling 
that the Trapezoidal formula is taught in every introductory calculus course, while 
it appears that the midpoint Riemann sum RM is seldom even mentioned. 

Ill The Complex Integral 
1 Complex Riemann Sums 

In the case of real integration we began with a clear geometric objective ("Find 
the area!") and then invented the integral as a means to this end. In the complex 
case we will reverse this process, that is, we will first blindly attempt to generalize 
real integrals (via Riemann Sums) and only afterwards will we ask ourselves 
what we have created. First, in this chapter, we will find one way of picturing an 
integral as a single complex number; then, in Chapter 11, we will use an entirely 
different point of view to see that, separately, the real and the imaginary parts of an 
integral each possess a vivid geometric (and physical) significance. But to guess 
the relevant geometric entities in advance, and then to invent the complex integral 
as the appropriate tool with which to find them, would require a prodigious leap of 
imagination--one that historically never took place. A moment's thought reveals 
that this is similar to the case of differentiation, for there we began with the slope 
concept, and through an initially blind process of extrapolation we arrived at the 
very different (but no less intuitive) idea of the amplitwist. 

Consider [7]. In order to integrate a complex mapping f ( z )  between the points a 
and b, we have specified a connecting curve along which to perform the integration. 
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Figure [7] 

This curve (call it K)  now plays the role of the interval of integration, and just as 
in [I], we break it down into small steps Ai, which we may conveniently choose 
to be of equal length. The difference between this and [I] is that now the steps are 
not all in the same direction. In order to construct a Riemann sum, we randomly 
pick one point zi from each little segment of K,  and then we form the sum of 
the products f (zi) Ai. Finally, as we increase their number, the Ai will follow K 
ever more perfectly, and the Riemann sum will tend to a limiting value (provided 
only that the mapping is continuous) that serves as our definition of the complex 
integral, written 

Just as in the real case, we may obtain an accurate estimate of the integral 
without passing to the limit, simply by choosing the zi to be at the midpoints of 
the segments of K, rather than at random points. In fact this is the choice that we 
have illustrated in [7]. Once again, this especially accurate Riemann sum will be 
denoted RM. 

To begin to understand the geometry of RM, consider [8]. This shows the image 
of K under the mapping z I+ w = f (z), and in particular the image-wi of the zi 

that was singled out in [7]. The corresponding term of RM is then Ai = Wi Ai, 
and we will choose to think of this as the arrow that results when wi "acts on" Ai, 
expanding it by 1 wi 1 and rotating it by arg(wi). 

Having obtained each Ai in this manner, we go on to join all these little arrows 
together (tail to tip), as in [9]. The value of RM, and hence the approximate value 
of the integral, is then the connecting complex number between the start and the 
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Figure [8] 

F I N I S H  

START 

Figure [9] 

finish3. Notice that since the answer is a connecting arrow, the point at which we 
begin drawing RM is irrelevant. 

While [9] is intended primarily to convey the general idea, it is in fact a faithful 
evaluation of the specific RM corresponding to [7] and [8], and you may now begin 
to convince yourself ofthis. This is perhaps most easily achieved by concentrating 
on the lengths of the Ai separately from their angles. As w traces out the image 
curv,e in [8], its length diminishes, and this produces a corresponding shrinking of 
the Ai in [9]. Likewise, the increasing angle of w results in progressively greater 
rotations of the Ai.  

3 ~ h e  great physicist Richard Feynman used a similar kind of picture to explain his quantum- 
mechanical "path integrals", which are also complex, though they differ from contour integrals. 
See Feynman [1985]. 
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2 A Visual Technique 

While it is not strictly necessary to choose the same length for all the Ai, the benefit 
of this choice is probably clear: the lengths of the Xi are simply proportional to 
I wi 1, and it is therefore easy to follow the evolution of 1 Xi 1 by eye. On the other 
hand, it is not so easy to visually follow the evolution of the angle of Xi. 

As we travel along the Ai in [7], we pass through a sequence of sharp bends. 
The turning angle at a typical bend is drawn in [7], and is denoted @i. What will 
be the turning angle $i at the corresponding bend of the Riemann sum? If, for 
example, Wi+l  pointed in the same direction as wi, then Ai+l and Ai would both 
suffer the same rotation, and the turning angle Ti of the Riemann sum would equal 
the original turning angle @i. More generally, if the angle of w increases by t i  (see 
[8]), then the turning angle will also increase by ti. Thus, 

This simple observation helps to reduce the difficulty of visualizing RM. It is 
no longer necessary to look at the angle of each wi (which may be large and hard 
to gauge by eye) and to try and ima@ne the direction of the rotated A. In fact we 
need now only do this once, to find A 1, thereby ensuring that RM heads off in the 
correct initial direction. Thereafter, each successive x is laid down at an angle 6 
to its predecessor, and these $i may be readily estimated by eye, using (4). 

Let us spell this out in detail with reference to the concrete example furnished 
by [7] and [8]. In [9], we get RM started in the right direction by rotating A1 by 
a ,  thereby obtaining x 1  which points at angle a + /3. We can now draw the rest 
of RM using only (4). To lay down the next we need to know = + rl.  

The small positive t l  clearly kills off just a fraction of the negative resulting 
in a slightly smaller negative bend in RM. Much the same happens when we lay 
down x2. The angle $3 at the next bend is positive, and it is therefore increased 
by t3, which itself is about twice as big as t l  and t 2  were. You should now be in 
a position to follow the rest of RM7s progress in far greater detail than you could 
before. 

Although the above idea will shortly prove its worth on a theoretical level, it 
is clearly not terribly practical. However, in Chapter 11 we will use an entirely 
different approach to obtain a second, less strenuous, means of visualizing complex 
integrals. We will thereby make a double fallacy of an assertion that is to be found in 
most texts-assuming they even consider it worthy of note!-namely, that complex 
integrals possess no geometric interpretation. Perhaps the mere frequency with 
which this myth has been reiterated goes some way to explaining how it has 
acquired the status of fact. 

3 A Useful Inequality 

In figure [9] it is clear that if we were to straighten out all the bends in RM then it 
would get longer. Furthermore, the length of the straightened version would just 
be the sum of the / Xi I. Thus 
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with equality ifl and only if all &i = 0. If M denotes the maximum distance from 
the origin to the image curve in [8], it follows that 

But the sum on the right is just the length of the polygonal approximation to K, 
and hence it cannot exceed the actual length of K. Passing to the limit where RM 
becomes the integral, we deduce that 

1 f ( z  5 M - (length of K) . 

For example, if f (z) = (1 /z12 and K is the circle 1 z 1 = r , then (5) implies that 
IjK f (z) dz I 5 (2nlr ) .  In particular this implies that lim,,, & f (z) dz = 0. 
This is a typical (albeit simplistic) application of (5): quite often one wishes to 
demonstrate the ultimate vanishing of an integral as K evolves through some 
family, such as circles of increasing radius. Without knowing the exact value of 
any of the integrals, (5) shows that it is sufficient to demonstrate that the maximum 
size of f ( z )  on K dies away faster than the length of K grows. 

4 Rules of Integration 
Because the complex integral has been defined in complete analogy with the real 
one, it follows that the former will inherit many of the properties of the latter. We 
now list some of these shared properties: 

The meaning of the first two equations is self-evident, but the last two require some 
clarification. 

If L begins where K left off (see [lea]), then to integrate along K + L means 
to integrate along K and then to continue integrating along L, and the resulting 
integral is then just the sum of the two separate integrals. Notice that the contour 
is allowed to have a kink in it. In fact the definition of "contour" merely requires 
that the number of such kinks not be infinite. 

4 ~ h e  method of visualizing complex integrals in Chapter 11 enables one to express this con- 
dition for equality in a particularly simple form. See Ex. 6, p. 505. 
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Figure [lo] 

Lastly, the fourth rule is analogous to swapping the limits on a real integral, 
for -K is defined to be the same as K, but traversed in the opposite direction (see 
[lob]). 

However familiar you may be with these rules in real calculus, and however 
readily they may lend themselves to complex generalization, we would never- 
theless urge you to make a new and separate peace with each of these results, 
preferably in terms of pictures such as [7], [8], and [9]. 

Recall from the Introduction that our main objective is the discovery of con- 
ditions under which an integral between two points in the plane does not depend 
on the connecting route chosen. The last two rules above may be used to recast 
this problem into a neater forrn. Suppose that the two paths K and K" in [lOc] both 
yield the same value for the integral between a and b. It follows that 

Thus equality of the two integrals isequivalent to the vanishing of the integral 
taken along the closed loop (K - K) = (K followed by - K). Conversely, if 
the integral vanishes for all closed loops then all curves between a and b will 
yield the same value for the integral. In brief: path independence is equivalent to 
vanishing loop integrals. The centrepiece of complex analysis is the link between 
this phenomenon and analyticity. Cauchy's Theorem consists in recognizing that 
the vanishing of loop integrals is the nonlocal manifestation of a local property of 
the mapping, namely, that it is an amplitwist everywhere inside the loop. 

IV Complex Inversion 
1 A Circular Arc 
Probably the single most important integral in complex analysis is that of the 
complex inversion mapping z I+ l/z. While the truth of this statement will only 
emerge gradually, this is the reason for the great attention we will now lavish on 
this particular example. 

We begin with the simplest case, namely, where the path of integration K is 
an arc of the origin-centred circle of radius A (see [ l  1 a]). As in [7], we divide this 
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Figure [ 1 1 ] 

path into small (ultimately infinitesimal) steps of equal length. The turning angles 
$i clearly all have the same value, say $. Since the angle that each A subtends at 
the origin is also given by @, it follows that 1 A 1 = A$. As z travels round the circle 
its image w = l /z  travels round a circle of radius 1LA in the opposite direction 
(see [I lb]), and thus w shrinks each A to produce a A of length 4. 

Since A1 and wl are ultimately vertical and horizontal respectively, it follows 
that RM (which we choose to begin drawing at the origin in [I  lc]) initially heads 
off in a vertical direction. But now we observe that t = -4, and consequently that 
6 = 0. In other words RM has no bends, and so it continues on in the imaginary 
direction5. Thus, irrespective of the radius, the integral equals i times the total 
angle @ through which z turned on its journey along K. Convince yourself that 
this formulation of the result remains valid even if K begins at a random point of 
the circle instead of on the real axis. 

In particular, and of crucial importance, is the case where z continues all the 
way round the circle to form a closed loop. The value of the integral is then 2ni. 
The alert reader will immediately be perplexed by this result. Why? Because it 
appears to fly in the face of Cauchy's Theorem. We have previously demonstrated 
geometrically that complex inversion is analytic, so how can its loop integral fail 

w e  have used the turning angle idea in order to make the subsequent generalization to other 
powers of z straightforward, but there is actually no need for it in the present case. The Ai located 
at angle 8 on the circle will itself point at 8 to the vertical, and so w rotates it to the vertical. 



390 Complex Integration: Cauchy's Theorem 

to vanish?! The resolution lies in the fact that Cauchy's Theorem requires that the 
mapping be analytic everywhere inside the loop. But our loop encloses the origin, 
and just at this one point the analyticity of complex inversion breaks down. 

2 General Loops 
The above discussion not only explains why our loop integral failed to vanish, but 
it also leads us to anticipate that if the loop does not enclose the origin, then the 
integral will vanish. We will now show that this is the case, thereby lending some 
credence to Cauchy's Theorem. 

The ease with which we were able to evaluate the integral in [I 11 resulted from 
the fact that the Ai were all orthogonal to the zi . Figure [12 a] shows a more typical 

(Not to scale) 

Figure [ 121 

A possessing a radial component in addition to a transverse one. As you see, A 
can be decomposed into a transverse component r do making an angle 0 with 
the vertical, and an orthogonal radial component d r .  To obtain the corresponding 
piece x of R (see [12b]) we multiply by w ,  thereby rotating these components 
into the vertical and horizontal directions, as well as shrinking their lengths to d% 
and (drlr) ,  respectively. 

Let us now see what happens if we stick all these xi  together for a closed loop 
such as L (see [13a]) that does not encircle the origin. In order to accomplish this 
we will forsake our previous choice of equal lengths for all the Ai, and instead 
divide the path up, as shown, using closely spaced concentric circles centred at 
the origin6. Consider the illustrated pair A,, Ak lying between adjacent circles. 
That the A's always do occur in such pairs is a consequence of L being a loop. 
For if L passes from the interior of a circle to the exterior, then in order to join up 
with itself back in the interior, it must recross the circle in the opposite direction 
somewhere else. Of course L may weave back and forth across a circle many times 

6 ~ h i s  only fails if part of L coincides with such a circle, but in that event we already know that 
the contribution to the integral is i Q. 
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Figure [13] 

(e.g. at a ,  a*, b, b*, c ,  c*), but the crucial point is that these crossings always occur 
in oppositely directed pairs. 

In [13b] we see tJe consequence of this for R. From [12b] it's clear that for a 
pair such as Zj  and Ak, the horizontal components cancel. Since we have seen that 
every A belongs to such a pair, it follows that R will have no horizontal component 
for any closed loop, whether or not the origin is encircled. It also follows from 
[12b] that the height of this vertical Riemann sum is obtained by adding up all 
the signed angles that the A's subtend. For a loop such as [13a], which does not 
encircle the origin, this sum is zero: as z traces out L its direction merely oscillates, 
rather than executing a complete revolution. Thus, as illustrated in [13b], R closes 
up on itself. On the other hand, if we translated L to any location where it encircled 
the origin then z would execute a complete revolution, and [13b] would change 
into [13c]. 

3 Winding Number 
Let's recap. If a closed loop does not encircle the origin then the complex inversion 
mapping is analytic everywhere inside it, and in accord with Cauchy's Theorem 
the integral dutifully vanishes. If the origin is encircled, then the integral is no 
longer required to vanish by the theorem: the enclosed region now contains a point 
at which the mapping is not analytic. Indeed we found that for an origin-centred 
circle the answer was not zero, but 2ni. Furthermore, the general investigation 
revealed that we would have obtained exactly the same answer if we had instead 
used an elliptical loop, or even a square loop. For if we distort the circle into one 
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Figure [14] 

of these more general shapes, then all that happens to R is that it meanders about 
(illustrated in [13c]) on its net vertical journey to 2ni ,  instead of marching straight 
there as it did in [ 1 1 c] . 

We see that what really matters is not the shape of the loop, but rather its 
winding number about the origin. Thus we may summarize our findings tidily as 
follows: If L is any closed loop, then 

where the integral sign with a circle through it (which is a standard symbol) serves 
to remind us that we are integrating around a closed contour. Figure [14] shows 
various loops and the corresponding value of the integral of (l/z) round each of 
them. Finally, note that (6) can easily be generalized [exercise] to 

1 I, d z  = 2ni  v(L, p). 

V Conjugation 
1 Introduction 
In the introduction we stressed that integration makes sense for any continuous 
complex mapping, regardless of whether or not it is analytic. However, the rel- 
atively lawless non-analytic functions give rise to integrals that behave less pre- 
dictably than their analytic counterparts. In particular, Cauchy's Theorem has no 
jurisdiction here, and we therefore have no reason to anticipate path independence 
or, equivalently, vanishing loop integrals. As an example of this type of behaviour, 
we will show presently that the loop integral of the non-analytic conjugation map- 
ping z I+ 2 yields the area enclosed by the loop. Assuming this result for the 
moment, let us use the examples ;i and (112) to spell out more clearly the differ- 
ences between the non-analytic and analytic cases. 
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In the analytic case, provided that the special point z = 0 was not enclosed, the 
loop integral vanished. Even when the integral of (l/z) did not vanish, its possible 
values were still neatly quantized in units of 2n i ; one unit for each time the special 
point z = 0 was enclosed by the loop. As we will see later, this behaviour is typical, 
although a more general mapping may well possess several special points (at which 
analyticity breaks down) dotted about in the plane. Once again, the integral is not 
sensitive to the precise shape of the loop. Provided that none of the special points 
are enclosed by the loop, then the integral vanishes. However, if some of the points 
are enclosed, then each one makes its own distinctive contribution (generally not 
2ni) to the integral, one unit for each time it's encircled. The value of the integral 
is just the sum of these discrete contributions. 

Contrast all this with our non-analytic example. The area of the loop (and 
hence the integral of F )  will almost never vanish. Furthermore, instead of being 
determined by stable topological properties, the value of the integral is sensitive 
to the detailed geometry of the loop. Finally, the value is not neatly quantized, but 
instead varies continuously as the loop changes shape. 

2 Area Interpretation 
Let us now verify the area interpretation of the integral of Z. Recall from Chapter 1 
that 1m(a6) is just twice the area of the triangle spanned by a and b. As z traces the 
loop L in [15a], think of the area it sweeps out as being decomposed into triangular 
elements, as illustrated. Thus 

Figure [15] 

2 (element of area) = Im[(z + A)Z] = Im[TiA]. 

Adding these elements together, we obtain the imaginary part of the Riemann sum 
corresponding to the integral of Ti. Thus we conclude that 

Im I dz = 2 (area enclosed) . 

This result can be further simplified by noticing that Z and (112) both point in 
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the same direction. It follows that we could draw a picture very similar to [12], the 
only difference being that to obtain 2 we would multiply by r instead of dividing 
by it. The argument that followed from [12] therefore remains valid, and we deduce 
that the integral of T around a closed loop is purely imaginary. Thus 

z dz = 2i (area enclosed) . h- 
Next we ask how this formula would change if the origin were outside the loop. 

Figure [15b] shows that the pleasing answer is, "Not at all!" The point is that the 
integral adds up the signed areas subtended by the A's at the origin. On the far 
side, A carries z counterclockwise, yielding a positive element of area; but on the 
near side z is moving clockwise, yielding a negative element of area. When these 
are added, the unwanted area lying outside the contour simply cancels, leaving 
behind just the area enclosed. 

As a simple example, consider a circle C of radius r centred at a ,  the equation - 
of which is r 2  = lz - a12 = (z - a )  (T - a). Solving this for Z and using (7), we 
find that 

= 2i (area enclosed). 

From what we have done so far you might be inclined to think that the integral 
of T could never vanish for a nontrivial loop. That this is false can be seen from 
the figure eight loop in [16a]. This may be thought of as the union of two separate 
loops. The top one is traversed in a positive sense and correspondingly yields its 
ordinary area A1; but the bottom one is traversed in a negative sense and yields 
the negative (-A2) of its ordinary area. Thus the integral is 2i (A1 - A2), and if 
the loop were symmetrical then this would vanish. 

Figure [16] 
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3 General Loops 

To finish off this example we will explain how the winding number concept can 
be used to evaluate the integral for more complicated loops. A typical loop such as 
[16b] will partition the plane into a number of sets Dj, and in the last chapter we 
defined the "inside" to consist of those Dj for which the corresponding winding 
number vj # 0; the remaining Dj constitute the "outside". We can now state the 
general result and leave you to ponder its truth: 

k r d z  = 2i vj Aj9 
inside 

where Aj denotes the area of Dj. For example, in the case of [16b] we obtain 
jL T dz = 2i [2A1 + A,]. The explanation of the general formula (9) will be given 
later in this chapter. 

VI Power Functions 
1 Integration along a Circular Arc 

Having understood the integral of (l/z) it is easy to understand the integrals of 
other powers. Once again let us begin by integrating along the circular arc K that 
was used in [ l  11. The result we will obtain is formally identical to the real result 

but the difference is that in the complex case we can actually see it! 
Figure [17a] shows a contour like that in [1 la], while the transition from [I lb] 

to [17b] represents the change from complex inversion to a general integer power 
w = zm. Although the primary purpose of [17] is to convey the general argument, 
you will better understand its details if I tell you that it actually depicts the special 
case m = 2. 

As z travels along K,  w travels round an image circle of radius Am, and with 
an angular speed that is m times as great. Thus 

and 
N 

@ = t + @ = m @ + @ = ( m + l ) @ .  

Since all the 2 's  have the same length and the same turning angle, it follows that 
RM is a polygonal approximation to an arc of a circle, the centre of which we have 
chosen to place at the origin in [17c]. We will now determine the angle subtended 
by this arc, and also its radius. 

The angle that each subtends at the origin is the same as the turning angle 
8, namely, (m + 1) times the angle subtended by each A. Thus 
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Figure [17] 

angle of FINISH = (rn + I)*. 

Also, if p is the radius, we see from the figure that 

We therefore conclude that if rn # - 1 then 

RM = FINISH - START 

which, as promised, is formally identical to the real result. We hope you will agree 
that it's rather fascinating how we have been able to visualize this result in a way 
that would not have been possible in the real case. 

As we have said, [17] actually depicts the concrete case rn = 2, and before 
continuing you may care to sketch another case for yourself; rn = -2 might be a 
fun one. 
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2 Complex Inversion as a Limiting Case* 
As in ordinary calculus, we see that the case rn = - 1 (complex inversion) stands 
out from the crowd. Nevertheless, we can still understand the behaviour of this 
special power as a limiting case of other powers. With a little care about branches, 
the above result can be seen to persist even if we relax the requirement that rn be 
an integer. As rn gradually approaches -1 the radius psrows, and so RM looks 
less and less curved; at the same time the lengths of the A's tend to 4. Thus in the 
limit that rn tends to - 1 we see that RM will go straight up the imaginary axis to 
iq. This is illustrated in [la]. The variable n = rn + 1 measures the difference 
between rn and - 1, and it is therefore a good label for the Riemann sums shown 
in the figure. 

.. . . . . .  

n = O  

0 

Figure [I 81 

Returning to the case of integer powers, we next observe that for a complete 
circular loop, there is a striking and fundamental difference between complex 
inversion and all others powers: if rn # -1 then the integral vanishes. This is 
because RM will now go round in a complete circle In I times [clockwise if n < 0; 
counterclockwise if n > 01, thereby returning to its beginning. 

3 General Contours and the Deformation Theorem 
Thus far we have only established (10) for the case where A and B are connected by 
a simple arc, but in fact it is true for almost any contour. Take the case n > 0 first. 
Since zm is then analytic throughout the plane, it follows directly from Cauchy's 
Theorem that all contours will yield the same value. However, when n < 0 the 
situation is a little bit more subtle. 

Just as complex inversion suffers a breakdown of analyticity at the origin, 
so too do all the other negative powers of z .  Therefore Cauchy's Theorem only 
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guarantees that two connecting paths yield the same integral provided that together 
they do not enclose the origin. For a loop that does enclose the origin, the integral 
is not required to vanish, and indeed in the case of z-' it equals 2ni .  

Nevertheless, our direct evaluation reveals that for all other negative powers 
the integral round a circular loop does vanish, despite not being required to7. We 
will now derive a new form of Cauchy's Theorem that enables us to show that the 
vanishing of the integral is not a fluke resulting from the special circular shape of 
the loop. 

Figure [19] 

Consider [19a]. The two loops J and L both encircle a singularity of some map- 
ping, and so neither integral is required to vanish by Cauchy's Theorem. However, 
if the mapping is analytic in the shaded region lying between the loops, then we 
will now show that the two integrals must be equal. First consider the contribution 
to the integral round L that comes from the piece between p and q. Suppose that 
we deform L slightly by replacing this segment by the bump in the figure. Since 
the mapping is analytic between the two paths connecting p and q,  it follows from 
Cauchy's Theorem that both integrals are equal. Also, since the rest of L hasn't 
changed, it follows that integral with bump = integral without bump. All we need 
do now, to obtain the stated result, is to let the bump grow and change shape (see 
[19b]) until L has evolved into J. 

The crucial idea is that 

Ifa contour sweeps only through analytic points as it is deformed, 
the value of the integral does not change. (1 1) 

We shall call this the Deformation Theorem. Thus, if you imagine the contour to 
be a rubber band, and the singularity to be a peg sticking out of the plane (thereby 
obstructing motion past it), the integral has the same value for all shapes into which 
the rubber band can be deformed. 

We can immediately apply this Deformation Theorem to our problem. For if 
the mapping is a negative power of z other than z-' then the established fact that 
the integral vanishes for a circular loop implies it continues to vanish for any loop 
into which the circle can be deformed without crossing the singularity at the origin. 
Thus formula (10) is path independent even for negative powers. 

7 ~ n  Chapter 11  we will give a physical explanation for this difference between complex inver- 
sion and the rest of the negative powers. 
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The Deformation Theorem also provides us with a much simpler derivation 
of the result (6) governing the general loop integral of the complex inversion 
mapping. Imagine taking a length of elastic string and winding it around an origin- 
centred circle v times, finally joining the ends together to form a closed loop. 
From our earlier work, it follows that the value of the integral is then 2niv. But 
the Deformation Theorem says that this will be the value of the integral for any 
loop into which the elastic string may be deformed without being forced over the 
peg (singularity) at the origin. Finally, by the Hopf Degree Theorem, the loops 
into which it can so be deformed are those with winding number v. 

4 A Further Extension of the Theorem 

Our 'dynamic' version of Cauchy's Theorem can be further extended to embrace 
mappings that have several singularities. Consider a loop L (see [20a]) encircling 

Figure [20] 

two singularities (pegs) of some mapping; the generalization to more singularities 
will be obvious. If we deform L without forcing it over a peg then we know that the 
integral will remain constant. The process [20a]+ [20b]-+ [20c] is an example of 
such a deformation. The situation in [20c] is now rather interesting. The contour 
has become pinched together at q ,  and the value of the integral can be thought 
of as the sum of the two separate integrals taken round the touching circles. But 
now, by the same reasoning as usual, we may separately distort these circles so 
that [20c]+ [20d]. Thus we conclude that 

To illustrate (12), consider f (z) = 2/(z2+ 1) which has singularities at z = k i  . 
We can evaluate the integral round any loop C by noting this alternative expression: 
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1 1 
f(z) = - - -. 

z + i  z - i  

Applying (7) therefore yields 

f (z) dz = 2n[v(C, i) - v(C. -ill. 

Assuming (as in [20a]) that L encloses both singularities, use this formula to verify 
(12) for this particular function. 

5 Residues 
Since we now possess a fairly complete understanding of the loop integrals of 
power functions, it is relatively easy to integrate simple rational functions: we need 
only find the decomposition into so-calledpartial fractions, and then integrate term 
by term. Indeed, this is precisely what we did in the example of the last paragraph. 

Figure [21] 

Here is a slightly more complicated example: the integral of f (z) = z5 / (z + 112 
taken round the contour K in [2 11. By writing the numerator as [(z + 1) - 115, we 
quickly find that 

But we know that the loop integral of powers other than -1 is zero, and so only 
the complex inversion term [in square brackets] can contribute. In detail, 

fK f (z) dz = 5 . 2 a i  v(K, -1) = -20ni. 

Thus the value of the integral has been determined by just two factors: the winding 
number of the loop, and the amount (i.e. coefficient) of complex inversion contained 
in the decomposition of the mapping. Because this latter number is the only part of 
the function that remains after we integrate, it is called the residue of the function 
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at the singularity. Quite generally, the residue of f (z) at a singularity s is denoted 
Res [ f (z) , s] . Thus in the above example, Res [z5 / (z + 1) 2, - 11 = 5. 

In fact the residue concept has a significance that extends far beyond simple ra- 
tional functions, as our next example will illustrate. We have previously [page 2281 
alluded to the remarkable fact that analytic functions are infinitely differentiable, 
or equivalently, that they can always be represented by a power series (Taylor's) 
in the vicinity of a nonsingular point. For example, the Taylor series centred at the 
origin for sin z is 

Clearly no such expansion can be possible at a singular point of a mapping. Never- 
theless, we may recover an analogous result near singularities simply by broaden- 
ing our notion of a power series to include negative powers. Such a series is called 
a Laurent series. 

Consider (sin z)/z6. This is singular at the origin, but by simple division of the 
above Taylor series we obtain the following Laurent series in the vicinity of the 
singularity: 

sinz 1 -- - 1 --- 
z6 25 3!23 

Once again, the residue of the function is defined to be the coefficient of the 
complex inversion term: Res [(sin z)/z6, 01 = (1/5!) in this case. If a power series 
converges at every point on a contour, then we may accept for the moment that 
it makes sense to integrate the series term by term. Once again we see that for 
a closed loop the sole contribution to the integral comes from the residue. For 
example, if K is the contour in [21] then 

The above examples of evaluating loop integrals in terms of residues are in- 
stances of Cauchy's Residue Theorem. We will return to these matters at the end 
of this chapter, and, in greater detail, in the following chapter. For the moment we 
simply remark that if a mapping possesses several singularities, then a residue can 
be attributed to each one. 

VII The Exponential Mapping 
In the case of the exponential mapping the easiest contour along which to integrate 
is a vertical line-segment, say L (see [22a]). Once again we will find the result to 
be formally identical to its real counterpart: 
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Figure [22] 

As z travels from A up to B in [22a], its image under w = eZ will travel round 
the arc shown in [22b]. In order to verify (13), we will now show that (provided 
we choose to begin drawing RM at e A )  this arc is also the precise path taken by 
the Riemann sum. 

First note that since Al and wl are effectively vertical and horizontal, respec- 
tively, it follows that RM will head off in the required vertical direction. Also 
observe that all the 2 ' s  have thesame length, namely, 1 x 1 =-eA 1 A 1 .  Finally, since 
L has no bends (i.e. 6 = O), 6 = t = 1 A 1. Because the A's all have the same 
length and turning angle, RM will follow an arc of a circle. It only remains to show 
that if we begin drawing it at e A,  then this is the same arc as in [22b]. 

The next section will reveal the simplest way of seeing this, but the following 
direct argument is quite straightforward. We first verify that the two arcs have the 
same radius. The angle that each x subtends at the centre of its circle will be the 
same as its turning angle $. Therefore 

arc 1x1 - radius = - - - - - e A ,  
angle $ 

as required. Lastly, the total angle subtended by the arc at its centre is just the sum - 
of all the $i = I Ai I, namely 8 .  The identity of the two arcs is thus established. 

Since eZ is singularity-free, Cauchy's Theorem assures us that its loop integral 
always vanishes. Thus (13) must in fact be valid for any path from A to B. 

Vlll The Fundamental Theorem 
1 Introduction 

Through specific geometric constructions, combined with the use of Cauchy's 
Theorem, we have already learnt a good deal about the integrals of some of the 
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most important functions. However, there are two immediate problems still to be 
resolved: one is pragmatic, while the other is aesthetic. 

The pragmatic one is that the formulae (10) and (13) are only known to hold for 
certain special configurations of the points A and B: the derivation of (10) assumes 
that they are equidistant from the origin; while for (13) they are assumed to be 
vertically separated. To be sure, our various forms of Cauchy's Theorem guarantee 
us that the integrals in question will continue to be path independent, no matter 
what the locations of A and B. But the problem is that we haven't yet established 
that these path independent values will continue to be given by the same formulae 
as before. In this section we shall see that they are. 

The aesthetic concern lies in the manner in which we derived path-independence 
for negative powers of z .  Recall that we were only able to apply Cauchy's Theo- 
rem after having explicitly produced an example (a circle) of a loop integral that 
vanishes in spite of enclosing the singularity. Although this was neat enough in 
itself, one is left with the feeling that Cauchy's Theorem cannot be the most direct 
way of understanding a loop integral that continues to vanish in the presence of 
singularities. 

A resolution of both these problems is provided by the so-called Fundamental 
Theorem of Contour Integration-a result that is formally identical to its similarly 
named counterpart in ordinary calculus. The naming of this theorem is not entirely 
appropriate, at least in the context of complex analysis. After all, so far we have 
managed quite well without it, suggesting that if this theorem is "Fundamental", 
then Cauchy's must be "Super-Fundamental"! 

2 An Example 

As our first example of this theorem, let us return to the exponential mapping of 
the last section in order to discover why (13) is valid for any pair of points, not just 
ones that are vertically separated. As so often happens in mathematics, all that is 
required is a very slight shift in viewpoint. 

Figure [23] depicts a curve K-(connecting a pair of typical points A and B) 
being mapped by ez to the curve K connecting eA and eB. Now let us forget (for 
a moment) all about integration and Riemann sums, and instead look at the figure 
from the point of view of diflerentiation. 

All the little arrows emanating from a point on K will be mapped to images 
emanating from a point on K". In particular, if the arrow A is a little chord of 
K [tangent, in the limit that it shrinks], then its image will likewise be a little 
directed chord of K". But for an analytic mapping, such as we are now considering, 
the original arrows are sent to their images by a simple amplitwist: 

- 
A = (amplitwist of eZ) A = eZ A . (14) 

If we now add up all these vector chords of K" then we obtain the connecting vector 
V between its start and its finish. But (14) tells us that this vector V may also be 
interpreted as the Riemann sum corresponding to the integral of eZ along K. We 
have thus established the continued validity of (13) for all positions of A and B: 
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Figure [23] 

To emphasize the path-independence of the construction, imagine choosing a dif- 
ferent contour from A to B. The image curve (i.e., the new Riemann sum) will 
then take a different route from eA to eB, but of course the vector V will be quite 
unaffected. 

3 The Fundamental Theorem 

The Fundamental Theorem amounts to a restatement of the above idea in general 
terms. Suppose that we wish to evaluate jK f (2) dz by the method above. We 
must seek an analytic mapping F (z) whose amplitwist F' (z) is given by f (2). 
Assuming that such an F has been found [whether this animal even exists will 
be discussed shortly], we may then draw [24], which depicts the image curve K 
under the mapping F. With the same terminology as before, (14) now becomes 

= [amplitwist of F(z)] . A = f (z) A .  

Just as before, we conclude that k is actually the path taken by the Riemann sum 
of f ,  and that the vector V is once again the path-independent value of the integral: 

h 

As in ordinary calculus, the function F cannot be unique, for F = F + const. 
shares the same amplgwist. In terms of a figure like [24] this corresponds to the 
fact that the effect of F only differs from that of F by a translation; but this has no 
effect on the connecting arrow V. 
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Figure [24] 

In ordinary calculus, a real continuous function f (x) always possesses an anti- 
derivative F (x) for which F' = f . Of course it may not be easy to find, and it may 
not even be expressible in terms of elementary functions (e.g. f (x) = e - ~ ~ ) ,  but 
at least it exists. In the complex realm, on the other hand, we know that analytic 
functions are very special, and so we should not be surprised if the existence of 
such a function is no longer assured. Remember that when such an F exists, the 
integral of f is path-independent. It follows, for example, that no such function 
can exist for the non-analytic mapping f (z) = T.  Indeed, we may fall back on the 
still unproven result concerning infinite differentiability to see that, quite generally, 
analyticity of f is a necessary condition for the existence of F. For if F is analytic, 
then so too is its derivative F', namely f .  

When presented with the integral of a non-analytic function, it is therefore 
hopeless to seek an anti-derivative for use in (15)-no such function can exist. 
For the special case z I+ T it is possible to extend the area interpretation (hence 
evaluation) to contours that are not closed, but for a general non-analytic map- 
ping no such interpretation will be available. Although such integrals are of much 
less interest to us than those of analytic functions, in the next section we shall 
nevertheless find a method of evaluating them. 

Before returning to more general considerations, let us give a couple more 
examples of the theorem in action. Consider f (z) = z2. If we define F (z) = f z3 

then F' = f ,  and thus the path taken by the Riemann sum as we integrate along 
a contour will just be its image under z H iz3.  This allows us to look at the 
construction [17] in a new light. Recall that while this figure is concerned with the 
integration of a general power, it actually depicts the special case z2. In agreement 
with our new general result, we see that z H i z 3  does indeed map the contour in 
[17a] to its Riemann sum in [17c]. 

As an example of how the theorem also resolves our aesthetic concern over 
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path-independence for negative powers of z, reconsider f (z) = (1/z2), for which 
we hope you did actually draw the analogue of [17], as suggested. Without appeal- 
ing to Cauchy's Theorem (thus avoiding the attendant anxiety over the singularity 
at the origin), we see that since (-l/z)' = (l/z2), all contours8 between A and B 
will yield the same value for the integral: 

Notice, incidentally, that path-independence has allowed us to reinstate the familiar 
symbol 1; without fear of ambiguity. 

Instead of having to use Cauchy's Theorem to extrapolate from the vanishing 
of the integral for a circle to its vanishing for more general loops, the conclusion 
is now immediate: since B = A for a closed loop, the above expression vanishes. 

4 The Integral as Antiderivative 

We have seen that the existence of an antiderivative F (defined by F' = f )  
implies path-independence for the integral of f .  We will now show, conversely, 
that path-independence implies the existence of F. 

Let us first give another simple example of the Fundamental Theorem. Since 
(sin z)' = cos z, the integral of cos z will be path-independent, and if we integrate 
from the origin, for example, to a variable endpoint 2, then we obtain a well- 
defined function of 2 :  

We note, without surprise, that this function is the antiderivative of cos 2. If we 
began our integration at an arbitrary point, instead of at the origin, then the re- 
sult would only differ by a constant, and so it would still be a perfectly good 
antiderivative. 

In order to establish the claim of the first paragraph, it is only necessary for 
us to show that the above example is typical. If the integral of a mapping f is 
known to be path-independent, and A is an arbitrary fixed starting point, then we 
will show that z 

F ( Z )  = f ~ )  dz (16) 

is the antiderivative whose existence is sought. That is, we will verify that infinites- 
imal mows emanating from a point P are merely amplitwisted to produce their 
images under this mapping F ,  and that the amplitwist at P is just f (P).  

First we shall need a simple observation on differences of integrals. See [25a]. 
Two paths L and M are shown connecting the point A to the distinct points P and 
Q. We know that for any function f (z), 

w e  exclude contours that actually pass through the singularity. 
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Figure [25] 

The path (-L + M) for the right-hand integral is the round-about route from P 
to Q shown in [25b]. But if the integral is known to be path-independent then we 
may replace this path with the straight one S .  Returning to the notation of (16), we 
thus have 

r 

F(Q) - F ( P )  = f (z) dz . 
!s 

In the limit that Q coalesces with P ,  S becomes (with a minor abuse of terrni- 
nology) an infinitesimal 'vector' A emanating from P ,  and its image A under F 
will be given by the left-hand side of the above equation. Thus 

But if A is infinitesimal then the above integral equals f (P)  A, thereby establishing 
the original claim: 

F :  A H  x= f ( P ) A .  

We may now appeal to Cauchy's Theorem to relate the required path-indepen- 
dence to analyticity. If f is analytic throughout some region then its integral is sure 
to be path-independent, and therefore F will exist. In other words, every analytic 
mapping must itself be the derivative of another analytic mapping. 

We conclude this subsection with an interesting application of the analyticity 
of F .  In the previous subsection we completely ignored our previous geometric 
constructions, and instead appealed to the Fundamental Theorem to show, for 
example, that 

for all positions of A and B. This was apparently a clear improvement on [17] 
where such formulae were merely established in the special case that A and B 
were equidistant from the origin. However, we will now see that analyticity makes 
it possible, paradoxically, for this special case to contain the general case. 



408 Complex Integration: Cauchy's Theorem 

Consider these two functions: 

both of which we now recognize as being analytic. From [17] we know that if Z 
moves along the origin-centred circle passing through A then 

But by the uniqueness property of analytic functions [page 2501 this identity must 
continue to hold even if Z wanders 08 the circle, thereby establishing the general 
result. 

By applying exactly similar reasoning to the exponential mapping, we may 
likewise extrapolate the validity of (1 3) for vertically separated points (established 
by [22]) to deduce that 

~ e z d i = r z - e * ,  

even if Z wanders off the vertical line through A. 

5 Logarithm as Integral 

In the light of the Fundamental Theorem, we are inclined to jump to the conclusion 
that because (log z)' = (1 /z), 

just as in real analysis. In a sense, this is correct, but a little care is required. 
The subtlety is, of course, that the singularity at the origin causes the integral 

of (l/z) not to be single-valued. Thus we must specify the contour K from 1 to 
Z before the integral in (17) becomes well defined. On the other hand, until we 
choose one of the infinitely many values O(2) for the angle of Z, the RHS of (17) 
is also not well defined. These two difficulties now cancel each other out in the 
following way. 

In [26] we have drawn three different contours for the specific case Z = 
1 + i A. If we let OK (2) stand for the net rotation as we follow K, then 

In a sense, including the contour in the definition of angle has rendered it single- 
valued. Notice that this definition does not depend on the precise shape of K, but 
only on how many times the origin is encircled. 



Parametric Evaluation 409 

Figure [26] 

In this way, we may absorb the means of reaching Z into the definition of 
log(Z) in order to obtain a single-valued answer: 

The unambiguously correct version of (17) then reads, 

Of course, the multiple-valued nature of log has merely been disguised, not 
done away with. Nevertheless, by pursuing the above idea one is led to consider so- 
called Riemann sudaces, whereby multifunctions can be rendered single-valued. 
But that is a story for another day. 

IX Parametric Evaluation 
When more elegant means are not available it is nevertheless possible (in principle) 
to evaluate a contour integral by expressing it in terms of ordinary real integrals. 
We shall now briefly describe and illustrate this method. 

The basic idea is to think of the contour L as being traced by a moving particle 
whose position at time t is z(t). Next, instead of building the Riemann sum (hence 
the integral) from very small vectors that are chords of L, we may equally well use 
very small vectors that are tangent to L. This is done using the tangential complex 
velocity v = 2: the chord representing the movement during the instant of time 
6t may replaced by the tangential vector v 6t. Thus if L is traced out during the 
time interval a 5 t 5 b, then 

f Izl dz = lb /[z(t)I v dt  

For example, suppose that L is one counterclockwise circuit of the circle with 
radius p and centre q ,  and that f [z] = T. We know from our earlier work that the 
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answer should be 2n ip2. Since z (t) = q + p eit (0 5 t 5 2n) and v = i p eit , we 
obtain 

= ipq 12n (COs t + i sin t) dt + iP2 dt  1'" 
as anticipated. 

Naturally, the point of this method is not to confirm previously known results, 
but rather to evaluate integrals that we couldn't do before. For example, with the 
same contour, but with f [z] = T ~ ,  the answer can no longer be guessed. However, 
you should now find it easy to discover that the answer is 4niqp2. 

By way of contrast with the non-analytic examples above, and as further prac- 
tice with this method, confirm (using the same contour L) that JL z2 dz = 0, as 
predicted by either Cauchy's Theorem or the Fundamental Theorem. Likewise, 
confirm that fE z dz = 0, where E is an origin-centred ellipse. [Hint: recall that 
~ ( t )  = p ei + q e-it moves on such an ellipse.] 

For our last examples, take the contour to be a section of the parabola y = x2 

between 0 and 1 +i ; in temporal terms this can be represented as z (t) = t + it2 (0 5 
t 5 1). Integrate z along this contour, first using the Fundamental Theorem, then 
parametrically. Likewise, use the Fundamental Theorem to evaluate the integral 
for e Z.  By equating the imaginary part of your answer with the imaginary part of 
the parametric evaluation, deduce that 

l1 (21 cos t2 + sin t2) et dt  = r sin 1 . 

This result can be verified easily [exercise] without using complex numbers. Later, 
though, we shall meet real integrals that cannot readily be evaluated by such ordi- 
nary means, but which suddenly do become easy when viewed as arising from a 
complex integral. 

X Cauchy's Theorem 
1 Some Preliminaries 
Having repeatedly witnessed the utility of Cauchy's Theorem in this chapter, it 
is perhaps time that we checked that it is true! We begin with the case where the 
contour C is a "simple" closed curve, i.e., without self-intersections. See [27]. 

We have filled the interior of C with a grid of small squares, of side length 6 ,  

aligned with the real and imaginary axes. We have then shaded all those squares that 
lie wholly within C, and taken the contour K to be the boundary of this shaded re- 
gion, traversed counterclockwise. Because we have drawn relatively large squares 
(in order to make the picture clear), K is presently only a crude approximation to 



Cauchy's Theorem 41 1 

Figure [27] 

C. However, as we let E shrink, the shaded region fills the interior of C ever more 
completely, and K follows C ever more precisely. Thus, in order to see whether 
or not the integral of a mapping f along C vanishes, it is sufficient to instead 
investigate the behaviour of the integral of f along K, as c shrinks to zero. [This 
is justified in greater detail in Ex. 20.1 

Next we seek to relate this integral along K to the behaviour of the mapping 
inside the shaded region that it bounds. Consider the sum of all the integrals 
of f taken counterclockwise round each of the infinitesimal shaded squares. This 
counterclockwise sense of integration is illustrated in [27] for two adjacent squares. 
When we add the integrals from these two squares, their common edge is traversed 
twice, once in each direction, and hence the integrals along it cancel. But this is 
true of every edge that lies in the shaded region, so that when we sum the integrals 
for all the shaded squares, the only edges that do not self-destruct in this manner 
are those that make up K: 

jK f (z)dz = C jD f (z) d z .  
shaded squares 

The investigation of the integral of f along C has thus been reduced to the study 
of the local effect of f on infinitesimal squares in the interior region. 

It should be stressed that the discussion thus far is equally applicable to non- 
analytic and analytic mappings. For example, with f ( z )  = ?, (18) simply says 
[see (8)] that the area inside K is the sum of the areas of the shaded squares. In 
order to understand Cauchy's Theorem, we must specialize to the case (illustrated 
in [27]) where the local effect of f is an amplitwist throughout the interior of C. 
First, though, let us try to guess how the magnitude of a typical integral in the 
above summation will depend on E (as the squares shrink) for a general mapping. 

Experience with real integration, as well as the inequality (5) ,  might lead one 
to guess that the integral round an infinitesimal square would die away at the 
same rate as its perimeter, that is, as E .  This is false. The fact that the square is a 
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closed contour, together with the fact that complex integration is a type of vectorial 
summation, implies that the integral must decay much faster than this. In the above 
example of conjugation, we know that the exact value of each term is 2ic2, and 
this leads us to the correct guess, namely, that the terms die away as the square of 
c. We shall verify this in detail shortly, but for the moment the following rough 
argument will suffice. 

We know that for a general mapping, the integral round K-hence the sum- 
mation in (18)-will be nonzero and finite. This leads us to believe that each term 
must die away with the reciprocal dependence on r as governs the growth of the 
number of terms in the series. But the number of terms grows as ( ' e d  area inside 
C, divided by the area of each square), that is as (1/c2). Thus the magnitude of 
each term is expected to die away as E ~ .  If our original guess had been correct, the 
order of the sum in (18) would have been c (l/c2), yielding an infinite result as 
the squares shrunk. Conversely, any contributions to the terms involving powers 
of E greater than two, cannot have any influence on the final result. 

2 The Explanation 

Let us return to [27] and to the explanation of Cauchy's Theorem. The analytic 
mapping f amplitwists the infinitesimal shaded squares on the left to the infinites- 
imal squares on the right, and [28] shows a magnified view of a typical such square 
and its image (the black ones in [27]). According to our especially accurate mid- 
point Riemann sum (RM), the integral along the bottom edge of this square can 
be approximated by the single term A c: the image of the midpoint a ,  times the 
number along this edge. This conforms to our first, wrong guess concerning the 
dependence on c of the complete integral round the square. But if we now add this 
to the integral along the opposite edge, the answer is 

Even if f is merely differentiable in the real sense, rather than locally an am- 
plitwist, Ipl will still be proportional to c, and the magnitude of pc will therefore 
be proportional to c2, as anticipated. Likewise, the contribution from the remaining 
two edges is also of order c2, namely, (B - D) ic  = iq c. 

Figure [28] 
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Perhaps you have already seen the light: if f is locally an amplitwist, the image 
is a square, and so 

iq = q rotated through a right angle = -p 

We conclude from (1 8) that the vanishing of loop integrals for analytic mappings 
is indeed the nonlocal manifestation of their local amplitwist property! 

Figure [29] 

Contrast this with non-analytic mappings. See [29]. Provided that a mapping 
is differentiable in the real sense, we know [see page 2081 that its local effect is 
expansion (by different factors) in two perpendicular directions, followed by a 
twist. Thus the image of an infinitesimal square will generally be a parallelogram; 
p and q will not have equal length, nor will they be orthogonal. As we see, p and 
iq no longer cancel, and c (p  + iq) is of order c2. When we add up the terms of 
(18), of order (1/c2) in number, the answer will therefore be nonzero and finite. 

Conjugation provides a particularly striking example of this noncancellation 
for non-analytic mappings. See [30]. In the terms of the previous paragraph we 
could say that its expansion factors are everywhere 1 and -1 (in the horizontal 
and vertical directions), and that its twist is zero. The image of the square is again 
a square, but there is a crucial difference between [28] and [30]. Because this 
mapping is anticonformal, it reverses the orientation of the square, and we see that 

Figure [30] 
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i d r  = r  ( p  + iq) = r  (ir  + i r )  = 2i r 2 .  

Returning to questions of analyticity, and comparing (19) with [29], we obtain 
a converse to Cauchy's Theorem. If all the loop integrals of f are known to vanish, 
then, in particular, they will vanish for infinitesimal squares, such as the one on 
the left of [29]. Thus, p + iq = 0. But it is clear that this can only happen if the 
image is another infinitesimal square with the same orientation as the original (cf. 
[30]). Thus the local effect of f must be an amplitwist. This converse is called 
Morera's Theorem. 

As with other new ideas in this book, we have not attempted to present the 
arguments in rigorous form; "insight", not "proof", is ever our watchword. For ex- 
ample, consider these objections (ascending in severity) to the geometric argument 
of [27] and [28]: no matter how small the square, the sides of the image will not be 
pe$ectly straight (though they will meet in perfect right angles); the midpoint a 
will not be mapped to the exact midpoint of the image; and despite the undoubted 
accuracy of RM for a very small contour, it will not yield the exact value of the 
integral. 

Nevertheless, it seems plausible that [28] and its associated reasoning remain 
unimpeached when it comes to the evaluation of the dominant r2  contribution. 
Indeed, the example of [30] lends at least some credence to the irrelevance of the 
above objections, for in that case we know the answer is correct to this order of 6. 
[In fact it comes out exactly right, but that is a fluke.] More generally, recall that 
parametric evaluation revealed that the real and imaginary parts of any contour 
integral can be expressed as ordinary real integrals. This means that we may carry 
over to the complex realm our previous determination (3) of the error induced by 
RM in real analysis. Thus each of the integrals along the four edges of the square 
will differ from their RM-values by an amount that dies away at least as fast as r  
cubed [cf. Ex. 21 and Ex. 221. But as we have previously argued, as r  shrinks to 
zero, such contributions can have no effect on the sum in (18). Although we shall 
not dwell on them, other objections can be treated in a similar way. 

XI The General Cauchy Theorem 
1 The Result 
Consider a mapping f that is analytic except at the singularity marked in [3 11. Must 
the integral of f round K vanish, or not? You see the problem. For a simple loop 
without self-intersections (such as in [27]) it is perfectly clear whether a singularity 
is lurking inside, and consequently whether Cauchy 's Theorem applies. But in [3 11, 
it is not even clear what "inside" means, let alone how this might relate to Cauchy's 
Theorem. 

Recall that we encountered such problems before when trying to integrate Z 
round complicated loops [see (9), as well as the discussion on p. 3391. Our solution 
was to define the "inside" to be all the points for which the winding number does 
not vanish, and conversely, the "outside" to be all the points for which it does 
vanish. 
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Figure [3 11 

With these definitions in place, the completely general version of Cauchy's 
Theorem is stunning in its simplicity: 

If an analytic mapping has no singularities "inside" a loop, its 
integral round the loop vanishes. (20) 

This section is devoted to understanding this beautiful result. 
First let us answer our opening question. In [31], K does not wind around the 

singularity, and therefore (according to the theorem) the integral should vanish. In 
the process of understanding this particular instance of the theorem we shall be 
led to a completely general argument for its validity. 

2 The Explanation 
As in [16b], the contour K in [31] partitions the plane into a number of disjoint 
regions; in particular, the inside of K is made up of Dl ,  D2, and D3. See [32]. 
Let Cj be the boundary of Dj, traversed counterclockwise. So as not to clutter up 
the picture, instead of actually drawing these contours in [32], we have merely 
indicated (with ellipses) their common counterclockwise sense. Also shown (in 
boxes) are the winding numbers of K around each of the regions Dj. Since there 
are no singularities inside the Dj that make up the inside of K,  our basic version 
of Cauchy's Theorem applies to each of the simple contours Cj, and we have 

Now comes the crucial observation. The integral round K can be expressed as 
a linear combination of the integrals round the Cj's that bound the interior Dj's. 
In the case of [32], 
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Figure [32] 

Consider, for example, the contour C3, for which the counterclockwise sense hap- 
pens to agree with the direction of K. On the other hand, C1 traverses this portion 
of K in the opposite direction. Consequently, in (22), we end up integrating twice 
in the correct direction, and once in the opposite direction; the net result is to 
integrate along this part of K once in the correct direction. You should check for 
yourself that all of K is correctly accounted for in this way. Substituting (21) into 
(22), we have confirmed the prediction of the general theorem for this particular 
contour. 

Since (22) is clearly true for any function f ,  we may abstract it away and write 
the equation as 

Notice that the coefficient of Cj in this sum is none other than the winding number 
V j  of K about Dj, and that we may therefore rewrite the previous equation as 

From the above example, it is clear that to prove the general version of Cauchy's 
Theorem we need only show that (23) is true for any K. 

Consider [33], which shows a portion of an arbitrary contour K sandwiched 
between two of the regions (Dj and Dk) into which it partitions the plane; also 
shown is the counterclockwise sense of their boundaries (Cj and Ck). Using the 
"crossing rule" (1) on page 340, we deduce that v j  = vk + 1. Thus, in (23), we find 
that the contour Cj in the direction of K will always occur precisely one more time 
than the contour Ck in the opposite direction-the net result is that K is traversed 
once in the correct direction. Done. 

As previously explained, in establishing (23) we have also deduced the General 
Cauchy Theorem (20). 
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Figure [33] 

3 A Simpler Explanation 
The Deformation Theorem (1 1) was also deduced from the basic Cauchy theorem 
[unproven at that time], and we will now use it to give a simpler and more intuitive 
explanation of the General Cauchy Theorem. 

Suppose that a contour can be deformed and shrunk down to a point without 
ever crossing a singularity of an otherwise analytic function. By inequality (3, the 
value of the integral will be zero at the end of this shrinking process. But by the 
Deformation Theorem, the value of the integral remains constant throughout this 
process. In other words, 

I f  a closed contour can be shrunk to a point without crossing a 
singularity, the integral round it vanishes. (24) 

To wrap this up, we clearly need a way of recognizing when this shrinking process 
is possible. For example, is it possible for the contour K in [3 l]? Figure [34] shows 
that it is. Therefore (24) implies that the integral along K vanishes, in agreement 

K 

Figure [34] 
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with the general theorem. 
The two theorems are clearly very closely related. In fact we can now deduce 

the General Cauchy Theorem from (24) by observing that the winding number of 
the final shrunken loop vanishes; Hopf's Degree Theorem then tells us that 

The shrinking process in (24) is possible if and only if the contour 
does not wind around any singularities. 

XI1 The General Formula of Contour Integration 
Consider the general problem of evaluating fK f (z) dz, where K is a general 
(possibly self-intersecting) loop, and where f possesses several singularities sl, 
s2, etc., inside K. Figure [35] illustrates such a situation. 

Figure [35] 

Here the inside of K consists of two simply connected regions, Dl [lightly 
shaded] and D2 [darkly shaded], with boundaries C1 and C2. Since K winds once 
round points in the lightly shaded region (vl = 1) and twice round points in the 
darkly shaded region (v2 = 2), the general result (23) correctly predicts that 

As illustrated, let oj be a simple (counterclockwise) contour containing sj but 
no other singularities of f ,  and let us define 

By virtue of the Deformation Theorem (1 I), we know that the integral Ij has a 
characteristic value that does not depend on the size or shape of aj. Furthermore, 
as we saw in [20], if a simple loop contains several singularities, then the integral 
round that loop is the sum of I -values of the singularities it contains. In our example, 
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Finally, using (25), we deduce that 

in which each I -value has been multiplied by the number of times K winds round 
the corresponding singularity. Since (23) is valid for arbitrary loops it follows that 
this conclusion is too. As the grand finale to this chapter, we have thus obtained the 
following completely general formula for the loop integral of an analytic function: 

The final icing on the cake is an efficient method of computing the Ij 's. In the 
next chapter we will verify our previous claim that in the neighbourhood of each sj 
there exists a unique Laurent series [see page 4011, the coefficient of the complex 
inversion term being (by definition) the residue Res [ f (z), sj]. Granted this, we 
see that Ij = 21s i Res [ f (z) , s j ] .  Thus 

This is the General Residue Theorem. Note that it contains the General Cauchy 
Theorem as the special case in which each v ( K ,  sj) = 0. 

We will also see in the next chapter that it is possible to find the residues in this 
formula directly, without going to the trouble of finding the whole Laurent series. 
Thus, even before exemplifying its use, it should be clear that in (26) we have a 
result of great practical and theoretical power. 
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Xlll Exercises 

1 Thinking of x as representing time, z(x) = x + if (x) is a parametric description 
of the ordinary graph, y = f (x). 

(i) Show that the complex velocity is v = 1 + i tan 8 ,  where 8 is the angle 
between the horizontal and the tangent to the graph. Also, show that complex 
acceleration is a = i f " .  

(ii) Recall from Ex. 20 on page 262 that the curvature of the orbit is K = 
[Im (a F)]/ 1 v 1 3. Deduce from (i) that 

(iii) From (ii), deduce that the error equation (3) can be written as 

1 
area (ABCD) = - fM(x) A 3 .  

8 

2 In [6] ,  show that 

lim ( area between the chord A B and the curve ) = 2 .  
A+O area between the tangent CD and the curve 

In other words, RM is twice as accurate as the Trapezoidal formula. 

3 In the integration of an ordinary real function f (x), let L denote the length of 
the integration range, and let M denote the maximum size of f r r  (x) in this range. 
From the previous two exercises, deduce the standard result, 

total Trapezoidal error c L M . 

Likewise, deduce the somewhat less familiar result, 

total RM error c & L M A2 . 

4 Write down the values of &(l/z)  d z  for each of the following choices of C, 
then confirm the answers the hard way, using parametric evaluation. 

(i) 121 = 1. 

(ii) ( z  - 21 = 1. 

(iii) lz - 11 = 2. 

5 Evaluate parametrically the integral of (l/z) round the square with vertices 
f 1 f i, and confirm that the answer is indeed 2ni. 

6 Confirm by parametric evaluation that the integral of zm round an origin-centred 
circle vanishes, except when rn = - 1 .  
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7 Hold a coin (of radius A) down on a flat surface and roll another one (of radius 
B) round it. The path traced by a point on the rim of the rolling coin is called 
an epicycloid, and it is a closed curve if A = n B, where n is an integer. 

(i) With the centre of the fixed coin at the origin, show that the epicycloid can 
be represented parametrically as 

(ii) By evaluating the integral in (8) parametrically, show that 

area of epicycloid = n B~ (n + 1) (n + 2) . 

8 The figure below shows four simple loops, and in each case we have indicated 
how much shaded area is enclosed. Use parametric evaluation to verify equation 
(8) for each of the four loops. 

(0  (ii) (iii) (iv) 

9 What is the generalization of (8) to the case where the contour is not closed? 

10 Use (23) to verify (9). 

11 The perfect symmetry of figure [I  81 results from integration round the unit circle. 
Roughly how would this figure look if we instead used a somewhat larger circle? 

12 Let K be the contour in [21]. 

(i) Evaluate the following integral by factoring the denominator and putting the 
integrand into partial fractions: 

(ii) Write down the Laurent series (centred at the origin) for (cos z / z  'I). Hence 
find 

13 This exercise illustrates how one type of difficult real integral may be evaluated 
easily using a complex integral. 
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Let L be the straight contour along the real axis from - R to +R, and let J be 
the semi-circular contour (in the upper half plane) back from + R to - R. The 
complete contour L + J is thus a closed loop. 

(i) Using the partial fraction idea of the previous exercise, show that the integral 

vanishes if R < 1, and find its value if R > 1. 

(ii) Using the fact that z4 + 1 is the complex number from - 1 to z4, write down 
the minimum value of lz4 + 1 I as z travels round J. Now think of R as large, 
and use inequality (5) to show that the integral round J dies away to zero as 
R grows to infinity. 

(iii) From the previous parts, deduce the value of 

14 (i) The integral 

is easily found by ordinary means, but evaluate it instead by the method of 
the previous exercise. 

(ii) Likewise, evaluate 
dx 

by ordinary means and then by contour integration. [Hint: The quickest way 
to find the partial fraction decomposition for this function is to square the 
decomposition of 1 / (z2 + 1) .] 

15 (i) Use the Fundamental Theorem to write down the value of 

(ii) Equate the answer with the one obtained by parametric evaluation along the 
straight contour from 0 to (a + i b), and deduce that 

a (ea cosb - 1) + bea sinb 1leaX cosbxdx = 
a 2  + b2 9 
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and 
b ( l  - ea cosb) + a e a  sinb 1' eax sin bx dx = 

a2 + b2 

(iii) Prove the results in (ii) by ordinary methods. 

16 (i) Show that when integrating a product of analytic functions, we may use the 
ordinary method of "integration by parts". 

(ii) Let L be a contour from the real number -0 to +O. Show that 

L z eiz dz = 2i (sin 0 - 0 cos 0), 

and verify this by taking L to be a line-segment and integrating parametri- 
cally. 

17 Let 

where n is a positive integer. 

(i) Use the Binomial Theorem to find the residue of f at the origin when n is 
even and when n is odd. 

(ii) If n is odd, what is the value of the integral of f round any loop? 

(iii) If n = 2m is even and C is a simple loop winding once round the origin, 
deduce from part (i) that 

(iv) By taking C to be the unit circle, deduce the following result due to Wallis: 

(v) Similarly, by considering functions of the form zk f (z) where k is an integer, 
evaluate 

2n 1 coin 0 - cos k0 d0 and lZn cosn 0 sin 

18 Let E be the elliptical orbit z (t) = a cos t + i b sin t , where a and b are positive 
and t varies from 0 to 2n. By considering the integral of (l/z) round E, show 
that 
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19 Let us verify the claim of Ex. 19, p. 262, that if a function has vanishing 
Schwarzian derivative, then it must be a Mobius transformation. Following 
Beardon 11984, p. 771, suppose that { f (z), z }  = 0, and define F - (f "/ f '). 
(i) Show that 1/ F (z) - 1/ F (w) = - (z - w)/2. 

(ii) Deduce that $ log f '(2) = -2/(2 - a), for some constant a. 

(iii) Perform two further integrations to conclude that f (z) is a Mobius trans- 
formation. 

20 In [27], consider the white fragments of squares sandwiched between K and C. 

(i) Show that the sum of the integrals round these fragments equals the differ- 
ence between the integrals round C and K. 

(ii) As E shrinks, what is the approximate size of each term in the above series? 

(iii) Roughly how many terms are there in the series? 

(iv) From the previous parts, what do you conclude about the difference between 
the integrals round C and K, as r shrinks to nothing? 

21 Let K be the straight contour from a - (€12) to a + (r/2), where r is a short 
complex number in an arbitrary direction. 

(i) Use the Fundamental Theorem to integrate z2 along K, and then write down 
the value obtained by using a single term in RM. Show that the error induced 

1 3  b y R M i s E r .  

(ii) As in part (i), find both the exact value and the RM value for the integral of 
ez along K. By expanding eel2 as a power series, deduce that the error in 
this case is roughly & ea r3. 

(iii) Repeat the error analysis of the previous parts for the non-analytic function 
- z2. [You will need to use parametric evaluation to find the exact value of the 
integral.] 

22 Let K be the short contour of the previous exercise. Suppose that f (z) possesses 
a Taylor series centred at a that converges at points of K: 

[The existence of such a series for any analytic function is derived in the next 
chapter.] 

(i) By integrating this series along K,  show that the difference between the exact 
integral and the RM value is roughly & f "(a) r3. Verify that the results of 
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the first two parts of the previous exercise are in accord with this finding. 

(ii) Use the series to show that the complex number from the image of the 
midpoint of K to the midpoint of the images of the ends of K is roughly 
$ f "(a) c2. AS E shrinks, are these two types of midpoint distinguishable 
under the magnifying lens that produces figure [28]? 

(iii) From the Fundamental Theorem, deduce that the existence of such a series 
implies the vanishing of the integral of f round loops within the disc of 
convergence. 

23 Let f (z) be analytic throughout a region which contains a triangle with vertices 
a,  b, c, and hence with edges A = (c - b), B = (a - c), C = (b - a). Given a 
pair of point p and q ,  let us define wp, as a kind of average of f (z) along the 

Show that this complex average mapping sends the sides of the triangle abc to 
the vertices Wab, wbc, Wca of a similar triangle! We merely rediscovered this 
result, which is apparently due to Echols [1923]. 
[Hint: Show that AwbC + BwCa + Cwab = 0, and use A + B + C = 0.1 

24 Let K be a closed contour, and let v be its winding number about the point a.  
Show that 

[Hint: Write ez as ea e(~-'), and expand e(~-') as apower series.] This is a special 
case of Cauchy 's Integral Formula (explained in the next chapter), which states 
that if f is analytic inside K, then 

25 Consider the image of the disc lzl 5 R under the mapping z I-+ k zm. AS the 
radius sweeps round the disc once, its image sweeps m times round the image 
disc of radius I kl Rm . Thus we may sensibly define the area of the image to be 
m n (I k 1 Rm12. With this understanding, show that if a mapping has a convergent 
power series 

f(z) = a + b z + c z 2 + d z 3 + - - .  , 

then the area of the image is just the sum of the areas of the images under each 
of the separate terms of the series: 

areaofimage = n (1bl2 R2 + 21c12 R4 + 3 [dl2 R6 + -..). 

This is Bieberbach 's Area Theorem. 
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Hint: Recall that the local area expansion factor is 1 f' 1 2 ,  so the image area is 

/izIsR f ' 1 2  dx dy = lR [i2n f '(r eie) f '(r eie) do r dr. 
- I 

26 (i) Show that if f is an analytic function without singularities or p -points on a 
loop L,  then 

(ii) Now let 

and by considering (log f)', find (ff/f). 

(iii) In part (i) put p = 0 and take L to be a simple loop containing the roots a1 
to a, and containing the poles bl to b,. Thereby obtain a calculation proof 
of the Generalized Argument Principle in the case of rational functions: 

= (number of interior roots) - (number of interior poles). 



Cauchy's Formula and Its 
Applications 

I Cauchy's Formula 
1 Introduction 
One of the principal objectives of this brief chapter is to tie up various loose ends 
from previous chapters. In particular, we have previously claimed (but have not 
yet explained) three important properties of an analytic function f (z): 

We can differentiate f (z) as many times as we please-it is "infinitely dif- 
ferentiable". 

In the vicinity of an ordinary point, f (z) can be expressed as a Taylor series. 

In the vicinity of a singularity, f (z) can be expressed as a Laurent series. 

The classical explanation1 of these facts hinges on the following result. If f (z) 
is analytic on and inside a simple loop L, and if a is a point inside L, then 

f dz = f (a) .  
2ni  L Z - a  

This is called Cauchy 's Fomzula-it constitutes the precise statement of the "rigid- 
ity" of analytic functions that we depicted in [3], p. 219. That is, the formula says 
that the values of f on L rigidly determine its values everywhere inside L. 

We will give two explanations of (I), both of which are firmly rooted in 
Cauchy's Theorem. 

2 First Explanation 

Since f (z) is assumed analytic inside L, the function [ f (z)/(z - a)] is also analytic 
there, except that it has a single singularity at z = a.  Thus it follows from (1 I), 
p. 398, that the value of the integral in (1) will not change if L is deformed into its 
interior without crossing a .  

'1n the late 1950s a new approach was developed using topological ideas like those in Chapter 7, 
and it was our original intention to employ that approach here. However, having lacked both the 
time and the imagination to reduce the idea to its visual essentials, we have reluctantly fallen back 
on an integral-based approach. For more on the topological approach, see Whyburn [1955, 19641 
and Beardon [1979]. 
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Let C, be a circle of radius r  , centred at a ,  and lying strictly inside L. Referring 
to [la], we may deform L into such a circle without crossing a ,  and hence without 
altering the value of the integral: 

The virtue of this transformation is that the integral round C, turns out to have a 
simple and helpful interpretation. 

First recall that the average value (f )cr of f ( ze )  as zs = a  + r  ei* travels 
round the circle C, is defined by 

Figure [I] 

In the previous chapter we saw geometrically that if 8 increases by d0,  causing 
ze to move dz along the circle, then d z / ( z  - a )  = i d0.  Substituting this into (2), 
we find that the original integral round L may be interpreted as the average value 
of f on any of the circles C,: 

Note in particular that ( f ) cr is independent of the radius r  of the circle. To complete 
the derivation of ( 1 ) ,  it therefore only remains to show that this radius-independent 
average is the value of f at the centre a .  

To better grasp the meaning of the average value (f )c,, imagine n equally 
spaced points z l ,  22,  . . . , zn on C,, and let w l ,  w2, . . . , W ,  be their images under 
z  H w = f ( 2 ) .  The ordinary average W, = xT=l wj of these image points is 
their centroid, and (f )cr is the limiting position of W, as n tends to infinity. [For 
a more detailed discussion of averages and centroids, consult the final section of 
Chapter 2.1 
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Now shrink the circle C, towards its centre a ,  as illustrated in [1 a]. Even if f is 
merely continuous (rather than analytic), f (C,) will shrink to f (a), as indicated 
in [lb]. Since the images wl, w2, . . ., w, of any n points on C, will all converge 
to f (a), so will their centroid Wn. Thus 

and this completes our first explanation of Cauchy's Formula. 

3 Gauss' Mean Value Theorem 
In the course of the above investigation we have also picked up an interesting 
bonus result: 

If f ( z )  is analytic on and inside a circle C centred at  a, then the 
average value off on C is its value at  the centre: ( f )c = f (a). 

If we go on to split f into real and imaginary parts as f = u + iv, then we 
immediately deduce that (u) + i (v) c = u (a) + i v(a), and so 

(u)c  = u (a) and (v)c  = v(a). 

Thus if a real function <P is either the real or the imaginary part of an analytic 
complex function, then its average on a circle is its value at the centre. 

But if we are given a function <P, how can we tell whether there exists an 
analytic function whose real or imaginary part is equal to cP? In Ex. 2, p. 258 
you showed that a necessary condition is that <P be harmonic, i.e., that it satisfy 
Laplace's equation, 

A<P = (a: + a;)@ = o. 
In fact in Chapter 12 we will see that this is also a suficient condition, yielding 
Gauss' Mean Value Theorem: 

The average value of a harmonic function on a circle is equal to the 
value of the function at  the centre of the circle. 

4 A Second Explanation and the General Cauchy Formula 
What will happen to Cauchy's Formula if the loop L is not required to be simple? 
As in the previous chapter, it is now important to carefully define the "inside" of 
L as the set of points about which L has non-vanishing winding number: 

"inside" = { p / v[L, p] # 0). 

Suppose in [2] that f has no singularities "inside" L. Then the only interior 
singularity of [ f (z)/(z - a)] will be the one at z = a.  Here, L winds round a 
twice, and it is clear that L may be deformed into a small circle centred at a and 
traversed v[L, a ]  = 2 times. By virtue of Cauchy's Formula for simple loops, we 
deduce that & $L dz = 2 f (a). 
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More generally, this line of reasoning suggests the following General Cauchy 
Formula: Iff (z) is analytic on and "inside" a general loop L, then 

That this is always true is not quite clear from the above line of reasoning. Certainly 
Hopf's Theorem [(2), p. 3411 guarantees that without crossing the singularity at a,  
L may be deformed into a circle centred at a and traversed v[L , a]  times. But the 
singularities of f may be scattered in the midst of L, although (by assumption) 
none lie "inside" L. So is it clear that this deformation can always be performed 
without crossing any of these singularities? 

Figure [2] 

We encourage you to pursue this idea, but we shall now present a different 
approach which yields (3) cleanly and directly. Consider the mapping z I-+ ? = 
f (z) in [2], and let us define 

- .  , 
z - a  Z - a  

N 

If V E ( z  -a) is pictured as a vector emanating from a ,  and V = G-z) is pictured 
as its image emanating from ii, then Fa (z) describes the amount of rotation and 
expansion that carries V into V = Fa(z) V. Thus Fa(z) is the non-infinitesimal 
analogue of the amplitwist f '  (a) that carries an infinitesimal vector 6 into its image 
N 

6 = f ' ( 4  t ,  and 
Fa(a) E lim Fa(z) = fr(a).  

z+a 

Since f (z) is assumed to be analytic and to have no singularities "inside" L, 
it follows that the same is true of Fa (2). Thus the General Cauchy Theorem [(20), 
p. 4151 implies that 

In other words, 
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as was to be shown. 

II lnfinite Differentiability and Taylor Series 
1 Infinite Differentiability 
Returning to the case where L is a simple loop, let us show that if f (z) is analytic 
inside L then so is f '  (z). From this it will follow by induction that f (z) is injinitely 
differentiable. 

What we must show is that if f is conformal, then so is f '. In other words, 
if f '  is thought of as a mapping z I+ ?' = f '(z), then each infinitesimal vector 6 
emanating from a must be rotated and expanded the same amount to obtain the 
image vector emanating from ;i. That is, there is a single complex number f" (a) 
(the arnplitwist of f ') such that = f "(a) 6. 

Our first step is to obtain a neat expression for f '(a) in terms of the values of 
f (z) on L. Applying Cauchy 's Formula to the analytic function Fa (z), we deduce 
that 

Since the second integral vanishes, 

Now let's use this to find the image under z I+ ? = f '(z) of a short vector 
6 emanating from a.  Ignoring a term proportional to t 2 ,  we find [exercise] that 

- 
ij - f r (a  +t) - f ' ( 4  = 

f (z) [& [i - (a + b)12(z - a )  
dz] 6. 

Allowing 6 to become infinitesimal, we dedu_ce the desired result: every infinites- 
imal 6 emanating from a is amplitwisted to 6 = f "(a) 6, where 

f "(a) = - ! ---- f(z) d l .  
2ni  L (Z - a)3 

Observe that since 
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1 d2 1  
and - - 

2 
do2 [ z  - a ]  = 

both (4) and (5)  are precisely what we would get if we simply differentiated the 
formula 

with respect to a. Continuing in this way, we are led to conjecture that the nm 
derivative f may be represented as 

This is indeed true, as we shall see in a moment. 

2 Taylor Series 
Now let us show that if f ( z )  is analytic on and inside an origin-centred circle C 
of radius R, then f ( z )  may be expressed as a power series that converges inside 
this disc: 

As we saw in Chapter 5, such a power series is infinitely differentiable within 
its disc of convergence. Thus the existence of the power series expansion will 
provide a second proof of the infinite differentiability of analytic functions. It also 
follows that the coefficients cn may be expressed as 

so the power series is actually a Taylor series, and the coefficients do not depend 
on R: 

To establish the existence of this series, we return to Cauchy's Formula (1). 
With a change of notation, this may be rewritten as 

See [3]. Since z is inside the circle on which Z  lies, ( z  1 < 1 Z  ( = R, and 1 ( z / Z )  I < 1. 
Thus & may be viewed as the sum of an infinite geometric series, and 

Provided it makes sense to integrate this infinite series term by term, we deduce 
that f ( z )  can indeed be expressed as a power series: 
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Figure [3] 

Furthermore, comparing this formula with (7), we also deduce (6). 
To verify that this term-by-term integration is legitimate, consider the sum 

fN(z) = Cn zn of the first N terms of the series (8). The result will be 
established if we can show that fN (z) tends to f (z) as N tends to infinity. 

Since 

it follows that 

Finally recall [see (5),  p. 3871 that the modulus of an integral cannot exceed the 
product of the length of the path and the maximum modulus of the integrand at 
points on the path. If M stands for the maximum value of I f  (Z)/(Z - z) 1 on C, 
then it follows that 

If (z) - fN(z)l 5 R M I ( ~ / ~ ) I ~ .  

Thus l i m ~ + ~  f ~ ( z )  = f (z), as was to be shown. 
What is the radius of convergence of the series we have obtained? We know 

that if f is analytic inside C then the series (8) converges to f (z) in that disc. 
Thus, referring to [3], C may be expanded up to the dashed circle, where it first 
encounters a singularity of f .  More generally, f (z) may be a single-valued branch 
of a multifunction, and as we learnt in Chapter 2, branch points then act as obstacles 
just as much as singularities. Thus the radius of convergence is the distance from 
the centre of the expansion to the nearest singularity or  branch point. 

One final point. We chose the origin as the centre of the expansion in order 
to avoid algebraic clutter, but this choice really involves no loss of generality. For 
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suppose we instead choose the centre to be at a ,  meaning that we wish to expand 
f(z)inpowersofc - (z-a).If f(z)isanalyticatathenF(c) = f(a+c) = f(z) 
is analytic at the origin of the e-plane, and so it possesses an origin-centred Taylor 
expansion, 

Alternatively [exercise], the existence of this series may be deduced by directly 
generalizing the argument leading to the origin-centred series. Either way, we 
conclude that 

Iff (z) is analytic, and a is neither a singularity nor a branch point, 
then f (z) may be expressed as the following power series, which 
converges to f (z) within the disc whose radius is the distance from 
a to the nearest singularity or branch point: 

00 f '"' (a) 1 f (z) = C cn (Z - a)", where - - f(z) dz. 
n ! n=O 2ni L (Z - a)n+l 

Ill Calculus of Residues 
1 Laurent Series Centred at a Pole 

Suppose that a is a pole of an analytic function f (z), i.e., lim,,, f (z) = oo. In 
Chapter 7 we investigated poles by assuming the existence of Taylor series (which 
we have just proven), and we found [see (19), p. 3661 that near a we could express 

where 4 (z) is analytic, and 4 (a) # 0. Recall that the positive integer m is called 
the "order" of the pole, and that the greater the order of the pole, the faster f ( z )  
approaches oo as z approaches a .  

We know that $(z) can be expressed as a Taylor series centred at a: 

00 

4'"' (a) 
$ ( ~ ) = C c ~ ( z - a ) " ,  where cn=-. 

n ! n=O 

Hence we deduce that 

If an analytic function f (z) has a pole of order m at a, then in the 
vicinity of this pole, f (z) possesses a Laurent series of the form 
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Recall that the coefficient of l/(z - a )  is called the bbresidue" of f (z) at a ,  
denoted Res [ f, a]. Also recall the crucial significance of the residue in evaluating 
integrals: if L is a simple loop containing a but no other singularities of f ,  then 

More generally, suppose that L is not required to be simple, and that f (z) has 
several poles, at a l ,  a2, etc. The existence of the Laurent series was the missing 
ingredient in our discussion of this situation in the previous chapter. Having es- 
tablished that f does indeed possess a Laurent expansion in the vicinity of each 
of its poles, we have also verified the General Residue Theorem [(26), p. 4191: 

2 A Formula for Calculating Residues 

It is easy enough to find an explicit formula for the residue at a pole. Looking at 
the derivation of the Laurent series above, we see that 

@("-') (a) 
Res [ f, a ]  = c,-1 = 

(m - I)! ' 

Since @ (z) = (z - a)" f (z), we deduce that 

If a is an mth order pole of f (z), then 

From this general result one can derive other results that speed up the calcu- 
lation of residues in commonly encountered special cases. For example, suppose 
that f = ( P I  Q) has a "simple" (i.e., order 1) pole at a as a result of Q having a 
simple root at that point. In that case, 

Res [f (z), a ]  = lim(z - a )  f (z) = lim p (z) 
z+a Z+a r Q < Z > - Q ( ~ > ~  ' 

P(z) and a is a simple root of Q, then Thus, Iff (z) = - 
Q<z)' 

P (a) 
Res[f (z), a ]  = - 

e r ( a )  ' 
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For example, consider f (z) = ez/(z4 - I), which has simple poles at z = 
f 1, f i. If L is the circle /z - 11 = 1 then z = 1 is the only pole inside L, so (11) 
yields 

We can actually check this using Cauchy's Formula. Since 

we may write f (z) = F (z)/(z - I), where F (z) = ez/(l  + z + z2 + z3). Since 
F (z) is analytic inside L, 

just as before. 

3 Application to Real Integrals 
In the exercises of the previous chapter we saw how certain kinds of real integrals 
could be expressed in terms of complex contour integrals. According to (9), the 
evaluation of contour integrals amounts to calculating residues, and we have just 
seen that this is straightforward. Thus the Residue Theorem leads to a powerful 
method of evaluating real integrals. 

Historically, Cauchy's success in evaluating previously intractable real inte- 
grals was one of the first tangible signs of the power of his discoveries. Many 
modern texts (e.g., Marsden [1973]) continue to celebrate this success with very 
detailed discussions of how the Residue Theorem may be applied to real integrals. 
However, there can be little doubt that this application is less important than it used 
to be. Today, when faced with a tricky integral, a physicist, engineer, or mathe- 
matician is less likely to start calculating residues, and is more likely to reach for 
a computer. We will therefore only do a couple of illustrative examples, though 
further examples may be found in the exercises. 

In Ex. 14, p. 422 we evaluated IT," (x2 + dx using partial fractions. 
To redo this problem using residues, we integrate f (z) = 1/(z2 + 112 along the 
simple loop (L + J) shown in [4a]. Here L is the segment of the real axis from 
- R  to + R ,  and J is the semi-circular contour (in the upper half plane) back from 
+ R  to - R.  Rewriting f (z) as f (z) = l/(z + i)*(z - i)2, we see that the only 
singularities are the second order poles at z = f i. Thus if R  > 1 (as illustrated) 
then (10) yields 

But 
+ R  dx 

dz = LR (x2 + + f (z) dz, 
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. . .  . . . .  .. 

Figure [4] 

and, as you showed in the original exercise, the integral along J tends to zero as 
R tends to infinity. Thus 

The famous physicist Richard Feynman once bet2 his colleagues, "I can do by 
other methods any integral anybody else needs contour integration to do." It is a 
tribute to complex analysis that Feynman lost this bet. Nevertheless, we can check 
the above integral using a trick that frequently did enable Feynman to dispense 
with residues: differentiation of a simpler integral with respect to a parameter. 

Consider the elementary result, 

Differentiating this with respect to a yields 

and substituting a = 1 then confirms our residue calculation. 
For our second example, we will evaluate 

by rewriting it as a contour integral round the unit circle C .  See [4b]. As illustrated, 
cos 0 is the midpoint of z and (l/z), and dz is perpendicular to z and has length 
do: in symbols, cos 0 = $ [z + (l/z)] and dz = iz do. Substituting into I, 
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Since the singularities p and q of the integrand satisfy pq = 1, only one of them 
lies inside C-in fact p and q are geometric inverses. Thus [exercise], 

1 4n  2n 
I = 4n Res 

4 Calculating Residues using Taylor Series 
In order to calculate a residue using (lo), one must first know the order m of the 
pole. If f (z) is built out of simple functions whose Taylor series are known, then 
the quickest method of finding m is by manipulating these series. Furthermore, 
this approach may be used to calculate the residue itself, often more easily than 
via formula (10). A few examples should suffice to explain the method. 

For our first example, let f (z) = (sin2 z/z5), which clearly has a singularity 
of some kind at the origin. For small values of z, sin z @ z, so f (z) (1/z3), and 
the order of the pole is therefore m = 3. By taking more terms of the Taylor series 
for sin z we can find more terms in the Laurent expansion of f (z), and hence find 
the residue: 

In order to appreciate how efficient this is, try checking the result using formula 
(10) instead. 

Our next example will have valuable consequences. Let g (z) = (1 /z2) cot (n z), 
which is clearly singular at the origin. To find the order of this pole, and its residue, 
we begin by calculating the Laurent series of cot(nz). When doing such a calcu- 
lation, it is important to remember that we are not trying to find the whole Laurent 
series. We just want the (1 /z) term of g,  which will come from the z term of cot nz, 
so that's as far as we need go: 

[ l -&+ . . . ]  
cos n z  2! 

- cotnz = -- 
s i n ~ ~  [nz-@Q+...] 3! 
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In particular, note for future use that Res [cot(nz), 0] = (1 In ) .  
Returning to the original function g, we find that 

and so the origin is a triple pole with Res [g, 0] = -(n/3). Again, try checking 
this using formula (10) instead. 

Continuing with this example, it's clear that g(z) also has a singularity at each 
integer n. To find the residue at n, we could write z = n + ,$ and expand g as 
a Laurent series in powers of 6. However, this is unnecessary. Since (1/z2) is 
non-singular at n, and since cot[n(n + ,$)I = cot n,$, 

Res [(l/z2) cot(nz), n] = (l/n2) Res [cot(nz), n] 

= ( l /n2)~es[co t (nz) ,0 ]  

= 1/(nn2). 

More generally, note that if f (z) is any analytic function that is non-singular at n, 
then 

Res [ f (z) cot(nz), n] = $ f (n). (12) 

This may also be verified [exercise] using (1 1). 

5 Application to Summation of Series 
Historically, 1 + $ + $ + $ + . . was the first series that mathematicians were 
unable to sum using elementary algebraic methods. After the Bernoulli family had 
tried and failed, Euler finally cracked the problem in 1734 by means of a brilliantly 
unorthodox argument3. The answer he found was as unexpected as his methods: 

Today such results can be derived in a systematic way using residues. Recon- 
sider the function g(z) = (l/z2) cot(nz) above. With N a positive integer, let S 
be the origin-centred square with vertices (N + 1) (& 1 f i) shown in [5]. Adding 
up the residues of the illustrated singularities inside S ,  

As we will now see, the integral on the LHS tends to zero as N tends to infinity, 
and from this fact we immediately deduce Euler's result. 

3 ~ e e  Ex. 13 and Stillwell [1989, p. 1241. 
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Figure [5] 

To show that the integral of g (z) = (1 /z2) cot (nz) does indeed tend to zero as 
S expands, we must show that the size of the integrand dies away faster than the 
perimeter (8N + 4) of S grows. First the easy part: Ig(z) I = 1 1 /z2 1 . I cot(nz) 1, 
and on S we clearly have lz 1 > N, so 1 1 /z2 1 < (1 / N ~ ) .  

Next we must examine the size of 

on the four edges of S. We begin with the horizontal edges, y = f (N + 1). Since 
le*inz I = eTnJ', it is not hard to see [exercise] that if N is reasonably large then 
I cot (nz) 1 is very close to 1. Thus for sufficiently large N, I cot (nz) 1 will certainly 
be less than 2, for example. 

Finally, on the vertical edges we have z = f (N + k) + iy, and it follows 
[exercise] that 

For sufficiently large N, we have established that I cot(nz)l < 2 everywhere 
on S, so by virtue of ( 3 ,  p. 387, 

2 
i g ( z ) d z  5 (Max g onS)(perimeterofS) < -(8N+4). 

~2 

Since the RHS tends to zero as N tends to infinity, we are done. 
More generally, let f (z) be an analytic function such that 1 f (z) 1 < (const .)/ lz l 2  

for sufficiently large lzl. Then it is clear that the above argument applies equally 
well to the integral of f (z) cot(nz) : 

o = lim - f /(z)cot(nz)dz 
N+oo 2ni s 
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= x Res [ f (z) cot(nz)l 
all poles 

= x Res [f (z) cot(rrz), nl + x Res [f (z) cot(nz)l 
n=-00 poles o f f  ( z )  

= f (n) + Res [f (z) cot(nz)], 
n = - m  poles o f f  ( z )  

where the last equality follows from (12). 
Thus 

Zf f (z) is an analytic function such that 1 f (z) 1 c (const .)/ lz12 for 
suficiently large lzl, then 

n=-00 poles o f f  ( z )  

Of course if any of the poles of f (z)  happen to be integers, then these values of n 
are understood to be excluded from the LHS of (13). 

Note that while symmetry enables us to calculate sums like Czl (l/n2) and 
xEl (l/n4) using (13), we cannot use (13) to calculate a sum like Ez, (l/n3). 
What, you might ask, is the sum of this last series? The answer is that nobody 
knows! 

As a further interesting illustration of (1 3), consider f (z) = l/(z - w12, 
where w is an arbitrary (non-integer) complex number, Geometrically, lz - w 1 is 
the distance w to z, and this makes it easy to see that I f  (z) I satisfies the requirement 
of the theorem. Since the only singularity of f (z) is a double pole at z = w, 

1 cot (nz) 
= -n Res [(z - 

w] w)2' 

Using formula (lo), 

Thus we obtain the remarkable result, 

Such series were first discovered by Euler in 1748. What is remarkable about 
such a formula is that the periodicity of the function on the LHS is explicitly 
exhibited by the series on the RHS. That is, if you change w to (w + I), the series 
is clearly unaltered. 
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IV Annular Laurent Series 
1 An Example 
We have seen that the Laurent series is the natural generalization of the Taylor 
series when the centre of the expansion is a pole rather than a non-singular point. 
However, this is by no means the only situation in which Laurent series are needed. 

For example, consider 

whose simple poles are illustrated in [6a]. Since F  is analytic within the unit disc, 
it possesses a Taylor series in powers of z. This may be found most easily by 
splitting F  into partial fractions: 

for Jzl  < 1 for lz l  < 2 
A - 

= 1 + :z + iz2 + . . . + [I - ( 1 / 2 ) ~ + ' ]  zn + - .  , for I Z I  < 1. 

The pole at z = 1 means that outside the unit disc F  cannot be expressed as a 
power series in z. However, in the shaded annulus 1 < lzl < 2 it can be expressed 
as a Laurent series in z:  

for 121 > 1 for 121 c 2 -- 
Finally, in the region 1 z  I > 2 beyond the annulus we obtain [exercise] a diflerent 

Laurent series: 

1 3  (2n-1 - 
F ( z )  = - + - + - + . - .  + 3 } + . . - ,  for lzl > 2. 

Z z2 z3 zn 

2 Laurent's Theorem 
What we have just seen is an illustration of a general phenomenon. See [6b]. 

If f ( z )  is analytic everywhere within an annulus A centred at a, 
then f ( z )  can be expressed as a Luurent series within A. In fact, if 
K is any simple loop lying within A and winding once round a, 
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Figure [6] 
oo 

f ( z ) =  C cn(z-a)" ,  where e n = -  
n=-oo 

f(Z)  dZ.  (14) 
2ni  K (Z - a)n+l 

Before establishing this result, which is called Laurent's Theorem, we make the 
following observations regarding its significance: 

a The surprising thing about the result is the existence of a Laurent series, not 
the fact that it converges in an annulus. Since we know that a power series 
in (z - a )  will converge inside a disc centred at a ,  it follows [exercise] that 
a power series in l/(z - a )  will converge outside a disc centred at a .  Since 
a Laurent series is (by definition) the sum of a power series in (z - a )  and a 
power series in l /(z - a),  it follows that it will converge in an annulus. 

a Previously we were able to deduce the existence of a Laurent series only in 
the vicinity of a pole. The present result is much more powerful: as indicated 
by the question marks in [6b], we make no assumptions at all concerning the 
behaviour of f (z) in the disc D bounded by the inner edge of the annulus. 
In practice, the outer edge of the annulus may be expanded until it hits a 
singularity s of f (z), and the inner edge may likewise be contracted until it 
hits the outermost singularity lying in D. 

a If there are no singularities in D, then the inner edge of the annulus may be 
completely collapsed, thereby transforming the annulus into a disc. In this 
case, (14) does not contain any negative powers. For if n is negative then 
f (z)/(z - a)"+' is analytic everywhere inside K, and so cn = 0. In this 
way we recover the existence of Taylor's series as a special case of Laurent's 
Theorem. 

a Suppose that a is a singularity and that for a sufficiently small value of E there 
are no other singularities within a distance E of a .  In this case one says that a is 
an isolated singularity of f (z). Applying Laurent's Theorem to the annulus 
0 < lz - a1 < E, we find that there are just two fundamentally different 
possibilities: the principal part of the Laurent series either has finitely many 
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terms, or infinitely many terms. Recall that in the latter case we have (by 
definition) an "essential singularity". See p. 366, where we considered the 
example 

To sum up, 

An isolated singularity of an analyticfinction is either a pole or an 
essential singularity. 

Now let us establish (14). In order to simplify the calculations, we will only 
treat the case a = 0, illustrated in [7a]. Here, z is a general point in the annulus, 
C and D are counterclockwise circles such that z lies between them, and L is a 
simple loop round z, lying within the annulus. 

First, by Cauchy's Formula, 

where the second equality follows from the fact that L may be deformed within 
the annulus into (C) + (-D), as indicated in [7b]. 

Next, we rewrite the above equation as 

The significance of this is that I (z/Z) I < 1 and I ( Wlz) 1 < 1, so both integrands 
on the RHS can be expanded into geometric series, very much as we did in the 
example of [6a]. 

Referring back to the derivation of the Taylor series (8), the integral round C 
can be expressed as 

Figure [7] 
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Essentially identical reasoning [exercise] also justifies term-by-term integration in 
the case of the integral round V: 

Thus the existence of the Laurent series is established: 

where 

Finally, the following two observations enable us to tidy up the result. First, by 
the Deformation Theorem [p. 3981, the integrals defining dm and cn do not change 
their values if we allow C to contract and V to expand till they coalesce into the same 
circle. Indeed, we may replace both C and V by any simple loop K contained in the 
annulus and winding round it once. Second, if we write m = -n then the integral 
defining the coefficient d-, of zn has integrand w-"-' f (w) = f (w)/ Wn+', 
which is the same as the integrand for the en's. Thus, as was to be shown, the 
Laurent series may be expressed in the compact form of (14): 
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V Exercises 

1 If C is the unit circle, show that 

Use Cauchy's Formula to deduce that if 0 < a < 1, then 

2n d t - 2n - J, 1 +a2 - 2a cost 1 -a'* 

2 Let f (z) be analytic on and inside a circle K defined by lz - a 1 = p, and let M 
be the maximum of I f (z) ) on K . 

(i) Use (6) to show that 

(ii) Suppose that I f  (z) 1 5 M for all z, where M is some constant. By putting 
n = 1 in the above inequality, rederive Liouville's Theorem [p. 3601. 

(iii) Suppose I f  (z) I 5 M lzln for all z ,  where n is some positive integer. Show 
that f ("+')(z) = 0, and deduce that f ( z )  must be a polynomial whose 
degree does not exceed n. 

3 (i) Show that if C is any simple loop round the origin, then 

(ii) By taking C to be the unit circle, deduce that 

For other interesting applications of complex analysis to problems involving 
binomial coefficients, see Bak and Newman [1982, Chap. 111. 

4 The Legendre polynomials Pn (z) are defined by 

These polynomials are important in many physical problems, including the 
quantum mechanical description of the hydrogen atom. 
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(i) Calculate Pl (z) and P2 (z), and explain why Pn has degree n. 

(ii) Use (6) to show that 

where K is any simple loop round z. 

(iii) By taking K to be a circle of radius J]z2 - 1 I centred at z, deduce that 

(iv) Check that this last formula yields the same P1 (z) and P2 (z) as you obtained 
in part (i). 

5 If C denotes the unit circle, show that 

6 Let f (z) be an analytic function with no poles on the real axis, and such that 
I f (z) 1 < (const .)/ lz l 2  for sufficiently large lz 1. By integrating f (z) eiz along 
the contour (L + J) shown in [4a], deduce that 

+m [, f (x)cosxdx + i  f (x) sinx dx  = 2ni Res [ f ( z )  e iz ] .  
upper half-plane 

[Hint: First show that if y > 0, then lei' 1 < 1 .] 

7 Use the result of the previous exercise to do the following problems, in which 
we assume that a > 0. 

(i) Show that 
+m cos x n j', w d x  = -e-'. 

a 

(ii) Evaluate 
x sin x 

[, (x2 + a2)' 

8 Let Fn (z) = 1/(1 + zn), where n is even. 

(i) Use (1 1) to show that if p is a pole of Fn then Res [F,, p] = -(p/n). 
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(ii) With the help of part (i), show that the sum of the residues of Fn in the upper 
half-plane is a geometric series with sum l/[in sin(n/n)]. 

(iii) By applying the Residue Theorem to the contour (L + J) shown in [4a], 
deduce that 

(iv) Although the above derivation breaks down when n is odd [why?], use a 
computer to verify that (15) is nevertheless still true. 

9 Continuing from the previous question, consider the wedge-shaped contour K 
shown below. 

(i) Use the Residue Theorem to show that if n = 2,3,4, . . ., and R > 1 (as 
illustrated), then 

(ii) Show that 

(iii) Deduce that (15) is indeed valid for odd n as well as even n. 

10 Use (13) to show that x g 1 ( l / n 4 )  = (n4/90). 

11 Show that if f (z) is an analytic function such that 1 f (z)l < (const.)/lz12 for 
sufficiently large lz 1, then 

00 

(-1)" f(n) = -n Res[f(z)cosec(nz)]. 
n=-oo poles off ( z )  

In this formula, it is understood that if any of the poles of f (z) happen to be 
integers, then these values of n are excluded from the LHS. 
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12 Use the result of the previous question to do the following: 

(i) Show that 
1 1 1  n 2  l - - + - - - + . . . = -  
4 9 16 12 ' 

(ii) Find the sum of the series 

13 (i) Show that 
1 n cot nz  

n=-oo z 

(ii) Show that the previous equation can be rewritten as 

(iii) Show that the previous equation can be rewritten as 

(iv) By integrating along any path from 0 to z that avoids integers, and then 
exponentiating both sides of the resulting equation, deduce that 

[Hint: Recall that lirn,,~ (sin z/z) = 1 .] 
This famous formula is due to Euler, who used it to evaluate xzl (l/n2). 
See Stillwell [1989, p. 1241. 
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I Vector Fields 
1 Complex Functions as Vector Fields 
Throughout the course of this book we have relied on a single means of visualizing 
a complex function, namely, as a mapping of points in one complex plane to points 
in another. This idea has proved to be extremely powerful, for in terms of it the 
complex derivative is nothing more complicated than a local amplitwist. Despite its 
many virtues, in this chapter we shall abandon the mapping paradigm and introduce 
a completely new one in its place, thereby gaining a host of fresh insights into the 
subject and revealing surprising connections with physics. 

The new picture of a complex function f (z) involves only a single complex 
plane. As before, the variable z is thought of as a point in this plane, but now 
comes the new idea: the value o f f  ( z )  is pictured as a vector emanating from z. 
The resulting diagram of points with attached vectors is called the vectorJield of 
f .  Figures [la] and [lb] illustrate the vector fields of z2 and (l/z), respectively; 
before reading further you should study them carefully and convince yourself of 
their correctness. Try doing a sketch of the vector fields of some other powers, then 
compare them with accurate ones done by your computer. Also use the computer 
to examine the vector fields of e Z,  log z, and sin z. 

Figure [I]  
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The vector field concept remedies a significant defect in the mapping point of 
view. Although we can learn a lot about a mapping by looking at the images of 
specific shapes, we do not get a feel for its overall behaviour. But if we let our eyes 
roam over the vector field of a complex function we do get such a view, in much 
the same way as we can survey the behaviour of a real function by scanning its 
graph. 

Just as a complex mapping determines a vector field, so a vector field deter- 
mines a mapping-the two concepts are equivalent. More explicitly, given the 
vector V issuing from the point z, we translate the tail of V to the origin and define 
the image of z to be the point at the tip. 

Consider the examples in [2a] and [2b]. If z lies on a circle of radius r then the 
vector field in [2a] is radial and has length (r/2); in [2b] the vector field has the same 
length but is tangential instead of radial. Check that when viewed as mappings, 
[2a] corresponds to an expansion of the plane by (1 /2), while [2b] corresponds to 
the same expansion followed by (or preceded by) a rotation through a right angle. 

Figure [2] 

If the vectors in [2a] were instead directed inwards, what would the corre- 
sponding mapping be? 

2 Physical Vector Fields 

Since a vast range of physical phenomena find their most natural description as 
vector fields, the potential utility of the new way of looking at complex mappings 
should be obvious. 

For example, consider the astonishingly complex array of electromagnetic dis- 
turbances zipping through the space around you. The visible light carrying these 
words to your retina, the totality of television and radio programs simultaneously 
being broadcast to your home-all this constitutes only a small part of the fren- 
zied activity. But it is a remarkable fact that this great tangle of signals is in fact 
completely described by just two vector fields! At each instant of time t there is an 
electric vector E(p, t) and a magnetic vector B(p, t) emanating from each point 
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p in space, and these two vector fields constitute the complete description of the 
electromagnetic field. 

If we are to describe such physical vector fields with complex mappings, two 
problems immediately present themselves. A television set is fixed in space, and 
the way in which it produces its picture is by monitoring how the electromagnetic 
vector fields at its location vary in time. But a complex mapping is a timeless 
thing-it assigns the vector f ( z )  to the point z once and for all. This is the first of 
our two problems. Thus if we are not to radically alter our conception of a complex 
mapping, the only types of physical vector fields we can describe in this manner 
are those that do not vary with time. We shall call such vector fields steady. 

Fortunately, steady vector fields are both common and important in physics. 
For example, the unwavering character of the orbits of the planets reflects the 
fact that the gravitational field of the sun does not vary with time. In fact Newton 
informs us that this time-independent force on a particle of unit mass located at a 
point p in space may be represented by a vector emanating from p, directed to the 
centre c of the sun, and with a length equal to M / [ C ~ ] ~ ,  where M is the mass of 
the sun. Drawing these vectors throughout space we obtain a steady vector field. 

The above examples of the electromagnetic and gravitational vector fields 
illustrate our second problem-they exist in three-dimensional space, whereas the 
complex plane can only accommodate a two-dimensional vector field. There is no 
getting around this problem, but once again it is fortunate that there are certain 
important types of physical phenomena which are intrinsically two-dimensional 
in nature, and which can therefore be described in the complex plane. Let us begin 
with the flow of electricity within a sheet of conducting material. 

Take two wires and connect them to a battery, then touch the ends to two points 
A and B of a thin copper plate. Almost instantly a steady flow of electric current 
from one electrode to the other will be set up in the plate. See [3]. At each point 
z of the plate we now represent this flowing current by a time-independent vector 

Figure [3] 
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in the direction of the flow, and with a length equal to the strength of the current 
there. Picturing the plate as a portion of (C, the flow is thus expressed as a complex 
function V (z) . 

Rather than drawing the actual vector field in [3] we have instead shown the 
paths along which the electricity flows. Such a picture is called the phase portrait 
of the vector field, and the directed curves along which the flow occurs are called 
the integral curves or streamlines of the vector field. As illustrated, the streamlines 
of this example are in fact arcs of circles connecting the two electrodes. We shall 
justify this shortly. 

Phase portraits are easy to take in visually and are thus a common way of 
representing vector fields. By definition the vector field is everywhere tangent to 
the streamlines, and thus its direction can be recovered from the phase portrait. On 
the other hand, it would seem that a phase portrait would necessarily fail to include 
the information about the lengths of the vectors. This is true in general, but for 
many vector fields that arise in physics it will be shown that there exists a special 
way of drawing the phase portrait so that the strength of the flow is manifested as 
the crowding together of the streamlines: the closer together the streamlines, the 
stronger the pow1. Later we shall explain this idea in detail, but for the moment 
we remark that [3] has actually been drawn in this special way. For example, as we 
approach the line-segment connecting the electrodes the streamlines become more 
and more crowded together, corresponding to a stronger and stronger current. 

3 Flows and Force Fields 
One and the same vector field (or phase portrait) can represent many quite different 
physical phenomena. For example, reconsider the copper plate in [3], and imagine 
that it is now sandwiched between two layers of material which do not conduct 
heat. Remove the electrodes and instead of supplying electricity at a constant rate 
at A, let us supply heat. Likewise, let us remove heat at the same constant rate at 
B. After a short time a steady pattern of heat flow from A to B will be established 
within the copper plate. In this steady state we may assign to each point a vector 
in the direction that the heat is flowing there, and having a length equal to the 
intensity of the heat flow. 

Remarkably, in this steady state the physical laws governing the behaviour of 
the heat are identical to those which previously described the electricity, and thus 
the phase portrait [3] for the electric current is also the phase portrait for the new 
heat flow. 

Here is yet another interpretation of [3]. In attempting to understand the flow 
of real liquids, such as water, it is helpful to consider an idealized fluid with the 
properties of being frictionless, incompressible, and "irrotational"-the precise 
meaning of the last term will be explained later. Imagine a thin layer of such an 
ideal fluid sandwiched between two horizontal plates, one of which has two small 
holes, A and B. If we now connect the holes with a fine tube that passes through a 

' ~ a r a d a ~  was the first to conceive of vector fields in this way; Maxwell then rendered the idea 
mathematically precise and exploited it to the hilt. 
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pump, a steady flow will be set up in the layer of fluid, and at each point we may 
draw its velocity vector. The phase portrait of this steady vector field is once again 
given by [3] ! 

Although there are certainly important differences between these three inter- 
pretations of [3], we may nevertheless lump them together in one class, for they 
are all flows of something. Whether it is electricity, heat, or liquid, in each case the 
vector field can be thought of as the velocity of flowing "stuff", and the streamlines 
are the paths along which this stuff flows. 

A physically quite distinct class is comprised of force fields. For example, 
although we previously discussed how the gravitational field of the sun could be 
represented as a steady vector field, the vector at a point in space is no longer the 
velocity of some flowing substance, rather, it represents the force experienced by a 
unit mass placed there. In the context of force fields, integral curves are called lines 
of force rather than streamlines. Here the lines of force are rays corning out of, or 
rather entering, the centre of the sun. Although this force field is three-dimensional, 
spherical symmetry2 means that it will be the same on any plane drawn through the 
centre of the sun. It can therefore be completely described by a complex function. 

Although there is nothing actually flowing along the lines of force, we can 
switch back to the flow point of view bypretending that there is, thereby interpreting 
a force field as the velocity field of a flowing substance. This is not mere sophistry: 
it is a remarkable fact that for the most common and important force fields (e.g., 
gravitational and electrostatic) this imaginary Jlowing substance behaves exactly 
like our previously considered ideal @id. 

To illustrate this, we turn to an example in electrostatics: equal and opposite 
charges (per unit length) are induced on two long wires which are then held parallel 
to each other in empty space. To each point in space we now attach the force 
vector that a unit electric charge would experience there; this force field is (by 
definition) the electric field E, and its phase portrait is the same on each plane 
drawn perpendicular to the wires. Taking [3] to be such a plane, with the wires 
piercing through at A and B, the phase portrait of this force field is exactly the one 
shown there for the flow of ideal fluid. 

4 Sources and Sinks 

In order to make a quantitative analysis of [3], we introduce the concepts of (two- 
dimensional) sources and sinks. Thinking in terms of our layer of ideal fluid, a 
source of strength S is a point at which we pump in S units of fluid per unit of 
time. Figure [4a] illustrates the symmetric velocity vector field V ( z )  of an isolated 
source at the origin. 

Given a curve (open or closed) in a general flow, the amount of fluid flowing 
across it in each unit of time is called theJlux. Clearly the flux across an element 
of the curve is just its length times the component of the velocity perpendicular 
to the curve. The total flux across the curve is then the sum (i.e. integral) of 
these elementary fluxes. Returning to the specific case of [4a], our assumption of 

2 ~ h i s  is an idealization-like the earth, the sun is somewhat flattened at the poles. 
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incompressibility says that the flux across any simple loop round 0 must be the 
same as the amount of fluid S being pumped in at 0. Since the flow is orthogonal 
to the origin-centred circle C of radius r ,  we deduce that 

Writing z = r eiB, we find that the vector field of the source is therefore 

[We note without proof that this is also the electric field on a plane at right angles 
to a very long wire carrying a uniform charge of S per unit length.] The source in 
[3] is at A instead of at the origin, and so it is described by 

A sink may be thought of as a source with a negative strength: it is a place 
where fluid is pumped out rather than in. In each of the flow experiments which 
[3] purports to describe, the sink at B has the same strength as the source at A, and 
so its vector field is 

We now know the vector fields V, ( z )  and Ve (2 )  which would be produced by 
the source or the sink in [3] if each were present on its own, but what is the flow 
when they are both present together? [Incidentally, this combination of a source 

Figure [4] 
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and a sink of equal strength is called a doublet.] The answer is perhaps slightly 
clearer if we switch to the equivalent electrostatic problem of parallel charged 
wires through A and B. A unit charge at z is repelled by A with force V@(z), and 
attracted by B with force Ve (2). The net force D(z) of the doublet acting on the 
charge is then simply the vector sum of the two separate forces: 

We will now show geometrically that, as claimed in [3], the net force at p is 
tangent to the circle through A, p, and B. Consider [4b]. It is easy to see [exercise] 
that D will be tangent to the circle if and only if the angles marked a and are 
equal, so this is what we must demonstrate. As illustrated, the angles ApB and 
pst are clearly equal. But we also have 

Thus the two shaded triangles are similar, and therefore a = a, as was to be shown. 

II Winding Numbers and Vector Fields* 
1 The Index of a Singular Point 

Let us confine all our discussions to vector fields for which the direction is well- 
defined and continuous at all but a finite number of points. These exceptional 
places, where the vector field vanishes or becomes infinite, are called singular 
points3. They are easy to spot in a phase portrait, usually as the intersection points 
of distinct streamlines. Figure [5] shows the phase portraits in the vicinity of some 
simple types of singular points, together with their names and their "indicesv-a 
term which we must now explain. 

Figure [6] is a magnified view of the simple crosspoint (also called a saddle 
point) shown in [5]. Round this singular point s we have drawn a simple loop r,, 
and at some of its points we have also drawn the vectors V. Since r, does not 
pass through any singular points, the direction of V is well-defined and continuous 
everywhere on it. Thus we can count the net number of revolutions of V(z) as z 
traverses r, . We call this number the index 4 [r,] of the loop r, with respect to 
the vector field V. When it is clear which vector field is being considered, we may 
simplify this notation to 4 [r,]. For example, in [6] we see that 9) [r,] = - 1. Note 
that we have drawn the vectors on F, only to make it easier to see the value of 
the index; actually, since only the directions of the vectors are required, the phase 
portrait is sufficient on its own. 

If we continuously deform r, without crossing s (or any other singular point) 
then the value of 4 [r,] will also vary continuously, and since it's an integer, it 

3~thenvise known as critical points or singularities-terms to which we have already attached 
different meanings. 
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Simple Crosspoint 

9 = -1 

9 = -2 

Double Crosspoint 

Vortex Sink 

4, = +2 

Dipole 

Figure [5] 

Figure [6] 

will therefore remain constant. Thus we may unambiguously define the index of 
a singular point s to be the index of any loop that winds round s once, but does 
not wind round any other singular points. It should not cause any confusion if we 
abuse our notation slightly and call this index 9(s). Applying this definition to 



458 Vector Fields: Physics and Topology 

loops of your choosing, you may now verify each of the given values of 4)  in [5]. 
Before moving on, we observe three properties of the index: 

(i) There is nothing to stop us applying the above definition to a non-singular 
point, but in this case the index must vanish. Choosing r, to be a very small 
loop, the non-singular nature of s implies that all the vectors on r, will point 
in roughly the same direction, and so 9(s) = 0. 

(ii) If V undergoes a certain rotation as we traverse a piece of curve, then (- V) 
undergoes the same rotation. Thus if we reverse the direction of the flow in 
each of the above phase portraits, the index will remain the same. For example, 
a source must have the same index as a sink, namely, 4)  = 1. 

(iii) Just as the index is insensitive to the precise shape of I?,, so it is insensitive 
to the precise shape of the streamlines. Imagine that [6] is drawn on a rubber 
sheet which we gradually stretch, so producing a new distorted phase portrait. 
The direction of V at each point of r, will undergo a continuous change, and 
so its net revolutions upon traversing r, will likewise vary continuously. The 
index must therefore remain constant. 

Clearly, our new concept of "index" is related to our old concept of "winding 
number", but how? If we instead think of V as a mapping, sending the points of 
rs to those of a new loop V(r,), then a moment of thought reveals that the index 
of r, is just a new interpretation of the winding number of its image loop: 

This makes it clear [see p. 3481 that the index 9(s) of a point s is the same thing as 
its topological multiplicity v ( s )  as a preimage of 0. In particular, if V is analytic 
then 

4) (root of order n) = n and 4)  (pole of order m) = -m. 

Check this for the examples in [I]  . 
If you have not done so yet, we urge you to use a computer to draw the 

vector fields of some simple polynomials and rational functions. Notice how roots 
and poles show up just as vividly as the corresponding x-intercepts and vertical 
asymptotes occurring in the graph of a real function. Notice how easy it is to zoom 
in on the vector field to find their precise locations. 

In fact a vector field is more vivid than an ordinary graph, as the following 
example illustrates. If we sketch the graphs of 

(X - 112 (X - 114 
F(x) = - 

(X + 213 
and G(x) = - 

(X + 2)7 

the results will be qualitatively the same: both look something like a parabola near 
x = 1; both have branches going to opposite ends of the vertical asymptote at 
x = -2; both look something like (1 lx )  for large x. 
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Now use the computer to draw the corresponding vector fields when x is 
replaced by z. Striking indeed are the differences! As we traverse a small loop 
around the root at z = 1, F makes two positive revolutions while G makes four; 
doing the same at the pole z = -2, F makes three negative revolutions while 
G makes seven; and on a very large origin-centred circle, F makes one negative 
revolution while G makes three. 

Returning to the general significance of (2), consider the ordinary winding 
number v [L, 0] of a loop L. This can now be viewed as the index of L with 
respect to the vector field of the identity mapping: 

v [L, 01 = 9, [L]. 

Figure [7] illustrates this result with 9, [L] = 1. The winding number of L around 
a general point a is likewise just its index with respect to the vector field ( z  - a): 

Figure [7] 

2 The Index According to Poincare 

Figure [gal shows a loop L and a vector field V evaluated on it. Let us use this 
simple example (for which it is obvious that 9 v [L] = 1) to explain a quick method 
(due to Poincar6) of finding the index in more complicated cases. 

Consider all the places on L (a, b, c in our case) where V points in one arbitrarily 
chosen direction. Let P be the number of these places at which V(z) rotates in the 
positive sense as z passes through it, and let N be the number at which it rotates 
in the negative sense. Even in relatively complicated cases, P and N are usually 
quick and easy to find. We now obtain the index as the difference of these two 
numbers: 
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. , 

Figure [8] 

In our case P = 2 because of the positive rotation at a and c, and N = 1 because 
of the negative rotation at b. Thus Siv [L] = 1, as it should. Try out this formula 
on the examples in [5]. 

Although the truth of (3) is probably clear at an intuitive level, it is nevertheless 
instructive to deduce it from the "crossing rule" (I), p. 340, for computing winding 
numbers. 

Figure [8b] shows the image V(L) of L when V is viewed as a mapping. [Check 
that it really is the image!] In these terms, the required index is just v [V(L), 01. 
Draw the ray from 0 in the previously chosen direction, and let the point q travel 
along it (starting far away), ending up at the origin. In its journey, q will thus 
cross V (L) at the points V (c), V (b), and V (a). In the vector field picture [gal, the 
positive rotation of V at c now implies (in [8b]) that q sees V(L) directed from 
left to right as it approaches the first crossing at V(c). Conversely, the negative 
rotation at b implies that V (L) is directed from right to left as q approaches V(b) .  
But as we previously argued in Chapter 7, v [V(L), 0] is the number of points P 
at which V(L) is directed from left to right (as seen by q as it approaches), minus 
the number of points N at which it is directed from right to left. Done. 

3 The Index Theorem 

With the connection between indices and winding numbers established, the Topo- 
logical Argument Principle can be reinterpreted in terms of vector fields: The index 
of a simple loop is the sum of the indices of the singular points it contains. Using a 
neater argument than the one given in Chapter 7, we can now extend this theorem 
to multiply connected regions. As illustrated in [9], recall that this means that the 
region has holes in it; two in our case. 

The shaded region consists of the points which are inside C and outside Bl and 
B2. In general there could be more holes, say g of them, with counterclockwise 
boundary curves B1, B2, . . . , Bg. AS illustrated, suppose that we have a vector 
field on such a region, and let sl, s2, . . ., s, be the singular points within the 
region. In our case there are only two: sl is a dipole, and s2 is a saddle point. The 
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Figure [9] 

generalization of the Argument Principle is this: 

4 [C] - C4 [Bj] = C4 [sj]. 

It is called the Index Theorem. 
Perhaps using (3), verify that in our example, 4 [C] = 2, 4 [B1] = 0, and 

4) [B2] = 1, SO that the LHS of (3) equals 1. But the RHS is 

4 (dipole) + 4 (saddle point) = 2 + (- 1) = 1, 

so confirming the prediction of the theorem in this case. 
To understand this result, consider [lo]. Using the dashed curves, break the 

region into curvilinear polygons in such a way that each one contains at most one 

Figure [lo] 
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singular point, and let their counterclockwise boundaries be Kj. If we sum the 
indices of all the Kj's then we obtain the RHS of the Index Theorem. For if Kj 
does not contain a singular point then its index vanishes, while if it does contain 
one then its index is (by definition) the index of that singular point. 

On the other hand, the index of a single Kj is obtained by looking at how much 
the vector field rotates as one travels along each edge of Kj, then adding up these 
net rotation angles. But when we sum the indices of all the Kj 's, each interior edge 
[dashed] is traversed twice, once in each direction, and the associated angles of 
rotation therefore cancel. The remaining edges of the Kj's together make up C 
and - B1, -B2, etc. Summing the associated angles of rotation (divided by 2rt) 
therefore yields the LHS of the Index Theorem. Done. 

Ill Flows on Closed Surfaces* 
1 Formulation of the Poincare-Hopf Theorem 

If a curved surface S in space is "smooth" in the sense that there exists a tangent 
plane at each of its points, then it makes sense to speak of a vector field that is 
everywhere tangent to S .  Intuitively, we may picture such a vector field as the 
velocity of a fluid that is flowing over S. 

Figure [ l l ]  shows the streamlines of two such flows on the sphere. Notice 
that both possess singular points: [I  la] has two vortices, while [I lb] has a dipole. 
In fact there can be no vector field on the sphere that is free of singular points. 
This is one consequence of an extremely beautiful result called the Poincark-Hopf 
Theorem, the formulation of which we will now sketch. 

It is not immediately obvious how to give a precise definition of the "index" 
of a singular point on a curved surface, but for the moment let us accept that this 
integer exists, and that its value is the same as for an analogous singular point in 
the plane. Thus if we sum all the indices in [I  la] we obtain 

Figure [ l  11 
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4)  (vortex) + 4)  (vortex) = 1 + 1 = 2, 

while if we do the same for [I lb] we obtain 

4) (dipole) = 2. 

Try drawing your own streamlines on an orange, then sum the indices of the 
singular points. Is this a coincidence?? 

There are no coincidences in mathematics! In the case of the sphere, the 
Poincark-Hopf Theorem states that if we sum the indices of any vector field on its 
surface, we will always get 2 for the answer. Indeed, it says that we will get this 
answer for any surface that is topologically a sphere, that is to say, any surface into 
which the sphere may be changed by a continuous and invertible transformation. 
If we imagine the sphere to be made of rubber, examples of such transformations 
and surfaces are given by stretching without tearing. The surfaces of the plum and 
the wineglass in [12a] are two examples of such topological spheres. 

The sphere is the boundary of a solid ball, and other closed surfaces may 
likewise be obtained as the boundaries of other solid objects. For example, the 
surface of a doughnut is called a torus (top of [12b]), and it is clear that this surface 
is topologically the same as the beach toy at the bottom. But it seems equally clear 
that no amount of stretching and bending can turn these surfaces into a sphere- 
[12a] and [12b] are topologically distinct types of surface. Figure [12c] shows yet a 
third topologically distinct class. Obviously we could continue this list indefinitely 
just by adding more holes. 

Figure [12] 
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We shall not develop the topological ideas4 necessary to prove it, but once 
again it seems clear that these classes of topologically distinct closed surfaces can 
be classified purely on the basis of their number of holes. This number g is called 
the genus of the surface (see [12]). We can now formulate the general result: 

I f  a vector jield on a smooth sugace of genus g has only a jinite 
number of singularpoints, then the sum of their indices is (2 - 2g). (4) 

The number x = (2 - 2g) occurring in this theorem is called the Euler charac- 
teristic of the surface, and it crops up in many other important topological results. 
It is therefore more natural to classify our surfaces using x rather than g. See [12]. 

An immediate consequence of (4) is that a vector field without any singular 
points can exist only on surfaces of vanishing Euler characteristic, i.e., the topo- 
logical doughnuts. Even then, the theorem does not actually guarantee that such a 
vector field exists, it merely says that if there are singular points then their indices 
must cancel. However, you can see for yourself [draw it!] that on a doughnut there 
do exist vector fields without any singular points. 

2 Defining the Index on a Surface 

In order to give a precise definition of the "index" of one of the singular points in 
[ l  11, we should presumably draw a loop round it on the surface, then find the net 
rotation of the vector field as the loop is traversed. But wait, rotation relative to 
what? 

To answer this question, we first re-examine the familiar concept of rotation in 
the plane. Figure [13a] shows that (in the plane) the rotation of V(z) along L can 
be thought of as taking place relative to a jiducial vectorjield having horizontal 
streamlines, say U(z) = 1. If we define LUV to be the angle between U and V, 
and let aL ( L  UV) be the net change in this angle along L, then our old definition 
of the index is 

1 
4v [L] = - al; (LUV). 

2n (5) 

If we continuously deform the horizontal streamlines of U in [13a] to produce 
those in [13b] then, by the usual reasoning, the RHS of (5) will not change. Thus 
we conclude that this formula yields the correct value of the index if we replace 
U with any vector field that is nonsingular on and inside L. 

Now imagine that [13b] is drawn on a rubber sheet. If we continuously stretch 
it into the form of the curved surface in [13c] then not only will the RHS of (5) 
remain well-defined, but its value will not change. To summarize: if s is a singular 
point of a vector field V on a surface S, we define its index as follows. Draw any 
nonsingular vector field U on a patch of S that covers s but no other singular points; 
on this patch, draw a simple loop L going round s ;  finally, apply (5), that is count 
the net revolutions of V relative to U as we traverse L. 

4 ~ e e  "Further Reading", at the end of this chapter. 
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Figure [13] 

3 An Explanation of the Poincare-Hopf Theorem 

We can now give a very elegant derivation of theorem (4), due to Hopf [I9561 
himself. The argument proceeds in two steps. First, we show that on a surface of 
given genus, all vector fields yield the same value for the sum of their indices; 
second, we produce a concrete example of a vector field for which the sum equals 
the Euler characteristic. This proves the result. 

Suppose that V and W are two different vector fields on a given closed surface 
S. See [14]. If vj are the singular points of V (marked 0 )  and wj are those of W 
(marked a), we must show that 

Much as we did in [lo], we divide up S into curvilinear polygons (dashed) such 
that each one contains at most one vj and one W j .  

Now concentrate on just one of these polygons and its boundary Kj, taken 
counterclockwise as viewed from outside S .  To find the indices of V and W along 
Kj, draw any nonsingular vector field U on the polygon and then use (5). The 
difference of these indices is then 
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Figure [14] 
1 

Jjv [Kj] - 9 [Kj] = - [SK, (LUV) SKj (L u w)] 
2n 

- 1 
- -S,,(LWV), 

2n 

which is explicitly independent of the local vector field U. 
From this we deduce that 

C J j v [ v j ~ - C J j w [ w j l  = C ( J j ~ [ ~ ~ l - J j w [ ~ ~ l )  
all polygons 

1 - - - C SKj (LWV) 
2n all polygons 

because every edge of every polygon is traversed once in each direction, producing 
equal and opposite changes in L W V. We have thus completed the first step: the 
sum of the indices is independent of the vector field. 

Since the index sum for the example in [I  la] is 2, we now know that this is the 
value for any vector field on a topological sphere. The second step of the general 
argument is likewise to produce an example on a surface of arbitrary genus g, 
such that the sum is x = (2 - 2g). Figure [15] is such an example for g = 3, the 
generalization to higher genus being obvious. Here we imagine that syrup is being 
poured onto the surface at the top-it then flows over the surface, finally streaming 
off at the very bottom. As the figure explains, and as was required, the sum of the 
indices is indeed equal to X .  

Further Reading. These topological ideas-in combination with ideas in the 
next two chapters-open the door to the important subject of Riemann surfaces. In 
particular, we hope you will find it easier to read Klein [1881], which champions 
Riemann's original approach to multifunctions in terms of fluid flowing over a 
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Figure [15] 

surface in space. See also Springer [1957, Chap. 11, which essentially reproduces 
Klein's monograph, but with additional helpful commentary. For a good introduc- 
tion to the more abstract, modern view of Riemann surfaces, see Jones and Singer- 
man [1987]. Finally, for more on topology itself we recommend Hopf [1956], 
Prasolov [1995], Stillwell [ 1980, 19891, and particularly Fulton [1 9951. 
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IV Exercises 

1 Show both algebraically and geometrically that the streamlines of the vector 
field z2 are circles that are tangent to the real axis at the origin. Explain why the 
same must be true of the vector field 1 / ~ ~ .  

2 Use a computer to draw the vector field of l/(z sin2 z). Use this picture to 
determine the location and order of each pole. 

3 Use a computer to draw the vector field of 

Use this picture to factorize P(z), and check your answer by multiplying out 
the brackets. 

4 Suppose that one of the streamlines of a vector field V is a simple closed loop 
L. Explain why L must contain a singular point of V. 

5 Find the index of each of the three singular points shown below. 

6 Observe that the neighbourhood of every singular point we have examined in 
this chapter is made up of sectors of one of the three types shown below, called 
elliptic, parabolic, and hyperbolic. Let e,  p, and h denote the number of each 
type of sector surrounding a singular point. 

elliptic parabolic hyperbolic 

(i) Verify that the index of each of the three singular points in the previous 
question is correctly (and painlessly) predicted by Bendixson's Formula: 

(ii) Explain this formula. 
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7 Given a vector field V, defined on a circle C, let a vector field W be constructed 
on C in the manner illustrated below. If 9 [C] = n, find 9 [C]. [This problem 
is taken from Prasolov [1995, Chap. 61, and the answer may be found there too.] 

8 If f and g are continuous, one-to-one mappings of the sphere S to itself, then 
their composition f o g is too. Let us prove that at least one of these three 
mappings mustpossess afixedpoint. We proceed by the method of contradiction. 

(i) Show if the result is false then, for each point p of S, the points p, f (p), 
and [ f o g](p) must be distinct. 

(ii) In this case, deduce that there is a unique, directed circle Cp on S passing 
through these three points in the stated order. 

(iii) Imagine a particle orbiting on Cp at unit speed, and let V(p) be its velocity 
vector as it passes through p. Since p was arbitrary, V is a vector field on S. 

(iv) By appealing to the Poincar6-Hopf Theorem, obtain the desired contradic- 
tion. 

9 Continuing from the previous exercise, apply the result as follows: 

(i) By taking g = f ,  deduce that (f 0 f )  has a fixed point. 

(ii) By taking g = (antipodal mapping), deduce that either f has a fixed point, 
or f maps some point to its antipodal point. 

10 Arbitrarily choose a collection of points s l ,  s2, . . . , s, on a closed, smooth sur- 
face S. By attempting to draw examples on the surface of a suitable fruit or 
vegetable, investigate the following claim: There exists a flow on S whose only 
singular points are sl , s2, . . . , s,, and the type of singular behaviour (dipole, 
vortex, etc.) at all but one of these points may be chosen arbitrarily. 

11 Imagine the surface of the unit sphere divided up into F polygons, the edges all 
being "straight lines on the sphere", i.e., great circles. Let E and V be the total 
number of edges and vertices that result from dividing up the sphere in this way. 

(i) Let 9, be an n-gon on the unit sphere. Use (9), p. 279, to show that 

A(Yn) = [angle sum of 9,] - (n - 2)n. 



470 Vector Fields: Physics and Topology 

[Hint: Join the vertices of 9, to a point in its interior, thereby dividing it 
into n triangles.] 

(ii) By summing over all polygons, deduce that 

[This argument is due to Legendre (1794); the result itself is a special case of 
the result in the following exercise.] 

12 Let S be a smooth closed surface of genus g, so that its Euler characteristic is 
x (S) = 2 - 2g. As in [14], let us divide S into F polygons, and let E and V be 
the total number of edges and vertices, respectively. 

(i) Draw a simple example on the surface of an orange and convince yourself 
(by drawing it) that we may obtain a consistent flow over the entire surface 
whose only singular points are (1) a source inside each of the F polygons; 
(2) a simple saddle point on each of the E edges; (3) a sink at each of the V 
vertices. 

(ii) By applying the Poincar6-Hopf Theorem to such a flow on the general 
surface S, deduce the following remarkable result, called Euler's Formula: 

(iii) Verify this result for your example in (i), then try it out on a doughnut. 

13 The figure below shows all the normals that may drawn from the point p to the 
smooth surface S. Let R(q) be the distance from p to a point q of S, and let us 
say that q is a critical point of R if the rate of change of R vanishes as q begins 
to move within S; we need not specify the direction in which q begins to move 
because we are assuming that S has a tangent plane at q.  
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(i) Explain why pq is normal to S if and only if q is a critical point of R. 

(ii) The level curves of R on S are the intersections of S with the "onion" of 
concentric spheres centred at p. Sketch these level curves in the vicinity 
of the illustrated critical points of R. Notice the distinction between points 
where R has a local maximum or minimum, versus points where R may 
increase or decrease depending on the direction (within S) in which one 
moves away from the critical point. 

(iii) Imagine that p generates an attractive force field, so that every point particle 
in space experiences a force F directed towards p. For example, we could 
imagine that p is the centre of the Earth, and that F is the Earth's gravitational 
field. If a particle is constrained to move on S, then the only part of F to 
which it can respond is the projection Fs of F onto S. Sketch the streamlines 
of Fs. How are they related to the level curves of R in (ii)? 

(iv) You have just seen that the critical points of R are the singular points of Fs. 
How does the index 9(q) of a singular point of Fs distinguish between the 
types of critical point discussed in (ii)? 

(v) Let us define the multiplicity of a normal pq to be this index 9 ( q ) .  Use the 
Poincar6-Hopf Theorem to deduce that 

The total number of normals (counted with their multiplicities) that 
may be drawn to S from any point p is independent of both the 
location of p and the precise shape of S, and is equal to x (S). 

[This lovely result is essentially due to Reech [1858], though he did not 
express it in terms of x (S), nor did he use an argument like the one above. 
With hindsight, Reech's work is a clear harbinger of Morse Theory, which 
it predates by some 70 years.] 

(vi) Verify Reech's theorem for a couple of positions of p in the case where S 
is a torus (doughnut). 



Vector Fields and Complex 
Integration 

I Flux and Work 
We promised long ago that there was a more vivid way of understanding complex 
integrals than the geometric Riemann sum of Chapter 8. In this section we lay the 
foundations for this elegant new approach. If you are already familiar with vector 
calculus then you can skip this section and go directly to Section 11. 

1 Flux 

Figure [I] 

In order to define the flux a little more carefully than before, consider [I]. At each 
point of the directed path K we introduce a unit tangent vector T in the direction 
of the path, and a unit normal vector N pointing to our right as we travel along K. 
In terms of the corresponding complex numbers, this convention amounts to 

The figure also shows how a vector field X (which we will first think of as the 
velocity of a fluid flowing over the plane) can be decomposed into tangential and 
normal components: 

X = (X-T) T + (X-N) N. 
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Only the second of these components carries fluid across K, and the amount 
flowing across an infinitesimal segment ds  of the path in unit time (i.e. its flux) is 
thus (XoN) d s .  This is a refinement over our previous definition in that the flux 
now has a sign: it is positive or negative according as the flow is from left to right 
or from right to left. The total flux F [X, K] of X across K is then the integral of 
the fluxes across its elements: 

F [X, K] = (X-N) ds .  L 
Check for yourself that the flux satisfies 

F [-X, K] = F [X, - K] = -F [X, K]. 

The flux concept is further illustrated in [2] for the case where K is a simple 
closed loop bounding the shaded region R. Figure [2a] shows the normal compo- 
nents of X, the signed magnitudes of which we must integrate to obtain F [X, K]. 
Figure [2b] shows how we might make an estimate of this flux. We replace K by 
a polygonal approximation with directed edges Aj, and at the midpoint of each 
one we draw the normal component of X. The flux is then approximately given by 
the algebraic sum of the signed areas of the shaded rectangles. In this case there is 
clearly more positive area than negative, so the flux is positive. As the Aj's become 
shorter and more numerous, the approximation of course gets better and better. 

In the case of the simple loop K in [2a] there is another interesting way of 
looking at the flux: 

F [X, K] = [fluid leaving R per unit time] - [fluid entering R per unit time]. 

Henceforth we will always take our fluid to be incompressible. Thus, provided 
there are no sources or sinks in R, what flows into R must also flow out of R: 

Indeed, we may turn this around and define a flow to be sourceless in a region if 

Figure [2] 
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all simple loops in that region have vanishing flux. The simplest example of such 
a flow without any (finite) sources or sinks is X = const. If the loop does contain 
a source, for example, then incompressibility says that the flux equals the strength 
of the source. 

Although we will only concern ourselves with two-dimensional flows, we 
should at least mention the concept of flux in three dimensions. If a fluid is flowing 
through ordinary space, it no longer makes sense to speak of the flux across a 
curve, but it does make sense to speak of the rate at which the fluid crosses a 
su$ace. If N now stands for the normal to this surface, then the flux across an 
infinitesimal element of area dA is once again given by (X-N) dA.  The total flux 
is then obtained by integrating this quantity over the whole surface. Just as in 
two dimensions, the incompressibility of a three-dimensional flow is equivalent to 
the statement that all closed surfaces (that do not contain sources or sinks) have 
vanishing flux. 

Lastly, we should point out that although the word "flux" is Latin for "flow", 
it is standard practice to retain this terminology when applying our mathematical 
definition to any vector field X, regardless of whether it actually is the velocity of 
a flowing substance. For example, the electric field represents a force, but one of 
the four fundamental laws of electromagnetism says that we can think of it as an 
incompressible flow in which positive and negative electric charges act as sources 
and sinks, so that its flux through a closed surface in space equals the net charge 
enclosed. 

2 Work 
So far we have only studied the normal component of X; we turn next to its 
tangential component. To do so, let us now imagine that X is a force Jield rather 
than a flow. 

If a particle on which a force acts is displaced infinitesimally then we know 
from elementary physics that the work done by the field (i.e. the energy it expends) 
is the component of the force in the direction of displacement, times the distance 
moved. Thus if the particle moves an amount ds  along K then the work done by X 
is (X T) ds  . As with flux, this definition contains a sign, the physical significance 
of which we will explain shortly. If the particle is moved along the entire length 
of K,  the total work done by the field is then 

W[X, K] = I (X-T) ds. 

Figure [3a] illustrates the tangential components of X on K,  the signed magnitudes 
of which we must add up to obtain W. 

Just as for F, check that W satisfies 

W [-X, K] = W [X, -K] = -W[X, K]. 

Note that, unlike F, no modification of W is needed if we wish to extend the idea 
to three-dimensional force fields: it still makes perfectly good sense to consider 
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Figure [3] 

the work done by the field as a particle is moved along a curve in space, and the 
formula is as before. 

Figure [3b] illustrates a simple thought-experiment for interpreting both the 
magnitude and the sign of W. We imagine that the plane in which the force field 
acts is made of ice on which a very small ice-puck of mass m can slide without 
friction. We now construct a narrow frictionless channel in the shape of K, just 
wide enough to accommodate the puck which we fire into it with speed vi,. On the 
initial leg of the journey we see that the force opposes the motion, and thus if vin is 
not sufficiently great, the puck will slow, stop, and return whence it came. Clearly, 
though, if we fire the puck with sufficient speed it will overcome all resistance 
and emerge at the end of the channel, say with speed vout. Let the initial and final 
kinetic energies of the puck be Ein and Eout, so that 

1 2  Ein = ~m vin and EOut = $m v:~~. 

One of the most sacred principles of physics is the "conservation of energy", 
which states that energy can never be created or destroyed, only transformed from 
one kind into another. Thus the energy W expended by the force field on the puck 
does not disappear but instead is transformed into the change in the puck's kinetic 
energy: 

= [average momentum] (change in speed). 

This formula also gives clear meaning to the sign of the work: it is the sign of the 
change in speed. Thus if W is positive the field expends energy speeding up the 
puck and increasing its kinetic energy, while if W is negative then the puck has to 
give up some of its kinetic energy in doing work against the field. 

Next, imagine that we bend K round so that the ends almost join to form 
a closed loop. When the puck travels along the corresponding channel it will 
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therefore emerge at essentially the same place that it entered. Suppose it were to 
emerge with greater speed than it entered. Joining the ends of the channel together, 
the puck would therefore go round the loop faster and faster, gaining energy with 
each circuit--energy that could be harnessed to solve the world's energy crisis! 

Although we may construct mathematical examples for which this happens, 
if no energy is supplied from outside the pucWfield system then a physical force 
field will not behave in this way; it will conserve energy so that the puck returns to 
its starting point with exactly the same speed with which it was launched1. Such 
a field is called conservative. Mathematically, X is conservative if and only if 

W [X, any closed loop] = 0. 

Just as we applied the concept of flux to vector fields that were not flows, so we 
may apply the concept of work to vector fields that do not represent force. However, 
in this general setting it is standard practice to call W [X, K] the circulation of X 
along K rather than the work. As with "flux", this terminology originates from 
thinking of X as representing a flow. To see why, take K to be a closed loop and 
consider the following thought-experiment of Feynman [I 9631. Imagine that the 
fluid flowing over the plane with velocity X is instantaneously frozen everywhere 
except within the narrow strip where our channel used to be. The "circulation" is 
then [exercise] the speed with which the unfrozen fluid flows (or circulates) round 
K, times the length of K. 

If this circulation vanishes for every closed loop then the flow is said to be 
irrotational. Just as "circulation" means W [X, K], irrespective of the physical 
nature of X, so with equal generality "irrotational" is short for the mathematical 
statement (1). Thus a conservative force field could also be described as irrotational. 

3 Local Flux and Local Work 
At present our definition of a sourceless and irrotational vector field X is that 

F [X, any closed loop] = 0 and W [X, any closed loop] = 0. (2) 

Our next objective is to show that there are two very simple local properties of X 
that are equivalent to the non-local ones above. 

To do this we must calculate limiting behaviour of the flux and the work for a 
small loop that shrinks to nothing, i.e., for an "infinitesimal loop". Though it is not 
entirely obvious, later we will show that this limiting behaviour is independent of 
the shape of the infinitesimal loop. We are thus free to simplify the calculations 
by choosing the loop to be a small square centred at the point of interest, say z ,  
and having horizontal and vertical edges of length c. See [4]. 

Accurate estimates of F and W can now be found by evaluating X at the 
midpoints (a, b, c, d)  of the sides, then summing the appropriate components. In 

'If energy can be supplied from outside the system, then the work need not vanish for a closed 
loop. In fact the operation of all electrical machines depends on the ability of a moving magnet 
to create an electric field that can speed up our puck. However, there is still no violation of 
energy-conservation since work is being done to move the magnet. See Feynman [1963]. 
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Figure [4] 

the limit that shrinks to nothing, this approximation becomes exact, as does the 
following equation, which we will need in a moment: 

where ax P (z) means ax P evaluated at z. 
For the flux we find 

This expression can be simplified by considering the formal dot product of the 
gradient operator V with the vector field: 

This quantity V OX is called the divergence of X, and in terms of it we have 

F [X, O] = [V .X(z)] (area of El). (3) 

In the next section we will see that (3) is true if is replaced by an infinitesimal 
loop of arbitrary shape. This important result explains the term "divergence", for 
it says that V OX is the local flux per unit area flowing away from z, i.e., diverging 
from z. In future we will abbreviate "local flux per unit area" to "flux density". 

Repeating the above analysis for the work, we find [exercise] 

W[X, U] = [ V  x X(z)] (area of El), (4) 

where the formal cross product is defined by 
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The quantity V x X is called the curl of X. Geometrically, it measures the 
extent to which X 'curls around' the point z. Physically, in terms of force fields, 
the above result says that the curl is the local work per unit area, or work density. 
There is also a vivid interpretation in terms of flows. If we drop a small disc of 
paper onto the surface of the flowing liquid at z, in general it will not only start 
to move (translate) along the streamline through z with speed IX(z)l, but it will 
also rotate about its centre with some angular speed w (z). It can be shown that the 
aspect of X which determines the rate of rotation w is none other than the curl: 

For this reason "curl" is sometimes denoted "rot", which is short for "rotation". 

4 Divergence and Curl in Geometric Form* 

The above expression for the divergence was obtained by considering the flux 
out of a shape having no connection with the flow. Greater insight is gained by 
considering the flux out of an infinitesimal "rectangle" R, two sides of which are 
segments of streamlines of X, while the other two sides are segments of orthogonal 
trajectories through the streamlines. See [5]. 

Here z is the point down to which R will ultimately be collapsed in order to 
find the divergence there, S and P are the streamline and orthogonal trajectory 
through z, and s and p are arc-length along S and P ,  the direction of increasing p 
being chosen to make a positive right angle with X. 

The net flux out of R is the difference between the fluxes entering and leaving. 
The flux entering is I X I dp, while the flux leaving is the same expression evaluated 
on the opposite side of R. It is now clear that two factors contribute to more fluid 
leaving than entering: (1) greater fluid speed 1x1 as the fluid exits; (2) greater 
separation dp  of the streamlines as the fluid exits. 

The second factor is clearly governed by how much the direction of X changes 
along dp, in other words, by the curvature ~p of P at z. More precisely, if 6 denotes 
the increase in a quantity as we move d s  along the streamline, then [exercise] 

Figure [5] 
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6 (dp) = ~p ds  dp. Thus 

(Net flux out of R) = G{JXJ dp) 
= (81x1) dp + 1x1 G(~P) 
= (aslXl +/cplXl)(areaofR). 

The flux density is therefore 

In fact [exercise] this formula is still true for a three-dimensional vector field, 
provided that there exists2 a surface P orthogonal to the streamlines, and ~p is 
taken to be the sum of its principal curvatures. 

Turning to the circulation round R, identical reasoning yields [exercise] an 
equally neat formula for the curl: 

where KS is the curvature at z of the streamline S. 
Although we suspect that (5) and (6) must have been known to the likes of 

Maxwell, Kelvin, or Stokes, we have not found any reference to these formulae in 
modern literature. 

5 Divergence-Free and Curl-Free Vector Fields 

From the definition (2) and the results (3) and (4) it follows that if X is sourceless 
and irrotational throughout some region R, then at each point of R we have 

V*X=O and VxX=O. 

The vector field is then said to be divergence-free and curl-free in R. 
For example, consider the vector field of a point source with strength S: 

This should have zero flux density (i.e. divergence) everywhere except at the origin, 
where it should be undefined. Check that this is so. Recall that we previously 
claimed that this was also the electrostatic field of a long, uniformly charged 
wire. We can now see that this makes physical sense in that the field is locally 
conservative. Thus if we fire our puck (which must now carry electric charge in 
order to experience the force) round an infinitesimal loop, it will return to its 
starting point with its kinetic energy unchanged. To verify this statement you need 
only check that the field is curl-free. 

2 ~ h e  condition for existence is that the curl either vanish or be orthogonal to the vector field. 
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We have seen that a sourceless and irrotational field is divergence-free and curl- 
free. To end this section we wish to establish the converse result: if the divergence 
and curl vanish throughout a region, the flux and work vanish for all simple loops 
in that region. We will then have, 

A vector jeld is sourceless and irrotational in a simply connected 
region i f  and only if it is divergence-free and curl-free there. 

To understand this converse, consider [6] which essentially reproduces part of 
[27], p. 41 1. Let us now recycle the line of reasoning associated with that figure. We 
begin by noting that as the grid gets finer and finer, the flux or work for K becomes 
the flux or work for C .  Next we relate these quantities to the divergence and curl 
inside K. Check for yourself that exactly the same mathematical reasoning which 
previously yielded 

i f ( z ) d z  = C k f ( z ) d z .  
shaded squares 

now yields 

and 

FIX, Kl = C FIX, a1 
shaded squares 

W[X, K] = C W[X, 01. 
shaded squares 

However, in the present context these results become accessible to physical intu- 
ition. The first says that the total amount of fluid flowing out of K is the sum of 
fluxes out of the interior squares. What does the second one say? 

Figure 161 
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Now let the squares of the grid shrink so as to completely fill the interior R of 
C. Using (3) and (4) and replacing the sum over squares by a double integral over 
infinitesimal areas dA, we obtain Gauss' Theorem, 

F [X, C] = /L [ v * X l  dA. 

and Stokes ' Theorem, 

From these we see that if the divergence and curl vanish everywhere in R then the 
flux and work for C also vanish, as was required. 

Again following the logic in Chapter 8, consider what happens to the flux 
and work as we continuously deform a closed contour, or an open contour with 
fixed end points. You should be able to see that (7) and (8) imply two deformation 
theorems: 

I f  the contour sweeps only through points a t  which the divergence 
vanishes, t h e m  does not change. (9) 

Ifthe contour sweeps only through points a t  which the curl vanishes, 
the work does not change. (10) 

II Complex lntegration in Terms of Vector Fields 
1 The Polya Vector Field 

Consider 

H(z) dz 

from the vector field point of view. See [7]. In forming a Riemann sum with terms 
H dz we now have the minor advantage that H = I H I eiB and dz = eiu ds  are 
not drawn in separate planes, as they were in Chapter 8. However, we still face the 
problem that H dz = I H 1 ei@+B) ds  involves the addition of angles, which is not 
easy to visualize. Just as it is more natural to subtract vectors [yielding connecting 
vectors] than to add them, so it is also more natural to subtract angles, for this 
yields the angle contained between two directions. 

The simple and elegant solution to our problem is to consider a new vector 
field: instead of drawing H (z) at z we draw its conjugate H (z) = I H I e-'B. We 
shall call this the Po'lya vector Jield of H .  Before showing how this solves our 
problem, let us offer (i) a caution and (ii) a reassurance: 

(i) The P6lya vector field of H is not obtained by reflecting the picture of the 
ordinary vector field for H in the real axis, for this would attach H(z) to T 
instead of z. This will become very clear if you (or your computer) draw the 
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P6lya vector fields of z and z2, for example. Comparison with [I], p. 450, 
reveals that the resulting phase portraits (not the vector fields themselves) are 
identical to those of (112) and (l/z2). This is because 7 points in the same 
direction as (1 /zn). 

(ii) As we will see in a moment, much is gained by representing H by its P6lya 
vector field, but we also wish to stress that nothing is lost: the new field 
contains exactly the same information as the old one. For example, it is clear 
that the index of a loop L merely changes sign when we switch to the P6lya 
vector field: 

9F [L] = -9jH [L]. 

Thus an nm order root of an analytic H still shows up clearly in its P6lya 
vector field as a singular point, but now with index -n instead of n. Likewise, 
a pole of order m produces a singular point of index m instead of -m. 

Figure [7] 

Returning to integration, the great advantage of the P6lya vector field is that 
the angle 8 that it makes with the contour (see [7]) is given by 8 = a - ( -p) ,  and 
this is precisely the angle we were trying to visualize-the angle of the term H dz 
in the Riemann sum. Better still, we find that 

H dz = eiBds 

= [1p1 cose + i  sine] ds  

= [KT + i H*N] ds. 

Thus the real and imaginary parts of each term in the Riemann sum are the work 
and flux of the P6lya vector field for the corresponding element of the contour. We 
have thus discovered a vivid interpretation (due to p61ya2) of the complex integral 
of H in terms of the work and flux of its P6lya vector field along the contour: 

2 ~ e e  P6lya and Latta [1974]. 
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L H(z) dz = w[H, K] + i F [ a ,  K]. 

This interpretation is rendered particularly useful by the fact that a computer 
can instantly draw the P6lya vector field of any function you wish to integrate. You 
can then quickly get a feel for the value of the integral by looking at how much the 
field flows along and across the contour. For example, the integral of ( T ~  z) along 
the line-segment from 1 - i to 1 + i is clearly a positive multiple of i .  Why? For 
more on the nitty-gritty of estimating integrals with (1 l), see Braden [1987]. 

Our interest in (1 1) will be less in this practical aspect, and more in its theoreti- 
cal import: ideas about flows and force fields can shed light on complex integration, 
and vice versa. In what follows we shall give examples in both directions. 

2 Cauchy's Theorem 

Given a picture of the vector field of a complex mapping H (z) = u + i v, how can 
we tell whether or not H is analytic? To my knowledge there is no satisfactory 
answer to this question as posed. However, there is an answer if we instead look 
at the P6lya vector field, and it is an answer that exhibits a beautiful connection 
between physics and complex analysis: 

The Pdlya vector field of H is divergence-free and curl-free if and 
only if H is analytic. (12) 

The verification is a simple calculation: 

and 

Thus the divergence and curl of H will both vanish if and only if the Cauchy- 
Riemann equations are satisfied. Note for future use that these two equations are 
really two aspects of a single complex equation, 

the vanishing of the LHS being the compact form of the CR equations. 
With this connection established, we now have a second, physical explanation 

of Cauchy's Theorem which is scarcely less intuitive than the geometric one in 
Chapter 8. For if H is analytic everywhere inside a simple loop K bounding a 
region R, its P6lya vector field in R will have (as a flow) zero flux density and (as 
a force field) zero work density. This means that there is no net flux of fluid out of 
R, and that a puck fired round K returns with its kinetic energy unchanged. From 
(1 1) we see that the integral of H round K must vanish. 
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A more mathematical version of this physical explanation was given at the 
end of the last section in terms of the theorems of Gauss and Stokes. Restating 
that argument in the present context, for a simple loop K bounding a region R, 
substitution of (7) and ( 8 )  into ( 1  1) yields 

which vanishes if is curl-free and divergence-free in R. 

3 Example: Area as Flux 
As a fun and instructive example let us reconsider the result 

in the light of the physically intuitive theorems of Gauss and Stokes. 
Observe that the P6lya vector field of H ( z )  = T is H (z) = z, which flows 

radially outwards from the origin, like a source. However, unlike a source, here 
the speed of the flow increases with distance, making it clear that this flow cannot 
be divergence-free. Indeed, calculating its flux density, we find that 

In other words, in each unit of time, 2 units of fluid are being pumped into each 
unit of area. The flux of fluid out of K is therefore 2A. On the other hand the flow 
is curl-free: 

.XR=  (;) x (;) =o,  

so there is no circulation round K. Inserting these facts into (14)  we obtain (15). 

Figure [8 ]  
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Figure [8] is a concrete example of this new way of looking at (15), the shape of 
K having been chosen so as to make the values of the circulation and flux obvious. 

Clearly H(z) = z has no circulation along either of the arcs, and it has equal 
and opposite circulations along the line-segments. The total circulation round K 
therefore vanishes. Equally clearly, there is no flux across the line-segments, but 
there is across the arcs. The larger arc has length a@ and the speed of the fluid 
crossing it is a ,  so the flux across it is a2@; similarly, for the smaller arc it is b2@. 
Thus, 

F [z, K] = (fluid out) - (fluid in) = 2 [i a2 @ - 1 b2@] = 2 (shaded area). 

Before moving on, let us clear up a paradoxical feature of the vector field z: 
fluid is being pumped in uniformly throughout the plane, and yet the flow appears 
to radiate from one special place, namely, the origin. The resolution (see [9]) lies 
in the trivial identity z = zo + (z - zo), which says that the flow from the origin is 
the superposition of the sourceless, irrotational field zo and a copy of the original 
flow, but now centred on the arbitrary point zo instead of the origin. 

Figure [9] 

4 Example: Winding Number as Flux 

Next, let us see how the Pdlya vector field also breathes fresh meaning into the 
fundamentally important formula 

According to (1 I), 

But the Pdlya vector field (113 is an old friend-it is a source of strength 2n 
located at the origin. 

Figure [lo] illustrates the intuitive nature of the result from the new point of 
view. If a loop does not enclose the source, just as much fluid flows out as in; if a 
simple loop does enclose the source, it intercepts the full 2n of fluid being pumped 
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Figure [lo] 

in at the origin; more generally, a loop will accrue 27r of flux each time it encircles 
the source. 

To finish the explanation of (16) we must show that a source is pure flux, i.e. 
every loop has vanishing work or circulation. Since a source is curl-free except at 
the origin, Stokes' Theorem guarantees vanishing work for simple loops that do 
not contain 0. If the loop does contain 0 then it's not so obvious. However, it is 
obvious for an origin-centred circle. You can now finish the argument for yourself 
by appealing to the Deformation Theorem (10). 

In connection with another matter, consider the shaded sector in [I 01. The same 
amount of fluid will cross each segment of a contour which passes through it, but 
the sign of the flux will depend on the direction of the contour. Try meditating on 
the connection between this fact and the crossing rule for winding numbers [(I), 
p. 3401. 

5 Local Behaviour of Vector Fields* 
We previously showed that V *H and V x H represent the flux density and work 
density of for infinitesimal squares. However, in order for the formulae (7) 
and (8) to really make sense it is necessary that these interpretations persist for 
infinitesimal loops of arbitrary shape. Let us now place (7) and (8) on firmer ground 
by verifying the shape-independent significance of the divergence and curl. To do 
so we will first analyse the local behaviour of a general P6lya vector field in 
the neighbourhood of the origin. The generalization to points other than the origin 
will be obvious. 

At any point z = x + iy close to the origin, a good approximation to H(z) will 
be given by the following formula, in which the partial derivatives are evaluated 
at 0: 
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This will become exact in the limit that lzl shrinks to nothing. 
Turning to the P6lya vector field itself, and substituting (13), we find 

where = $ [a, H - i a y ~ ] .  Note that if H is analytic, in which case is 
sourceless and irrotational, then (17) correctly reduces to the first two terms of 
Taylor's series: H (z) = H (0) + H' (0)z + . . .. 

Figure [I 11 

The meaning of the decomposition (17) is illustrated in [ l  11. Unless H (0) = 0, 
the constant first term dominates: vectors near the origin differ little from the 
vector at the origin. The remaining three terms correct this crude approximation. 
The second term describes a vector field (cf. figure [8]) that is irrotational and has 
constant divergence, equal to that of H at the origin. The third term describes a 
vector field that is sourceless and has constant curl, equal to that of at the origin. 
The final term is both irrotational and sourceless. 

Note that this decomposition is geometrically meaningful because the appear- 
ance of each of the component vector fields is qualitatively unaffected by the 
value of its coefficient3. We hope these observations make the formula (17) both 
plausible and meaningful. 

Now let us return to the original problem. Let K be a small simple loop of 
arbitrary shape round the origin, and let A be the area it encloses. We wish to show 
that the divergence and curl of at 0 are the limiting values of the flux per unit 

3 ~ h i s  is obvious for the source and vortex terms, but not for the last term; see Ex. 10. 
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area and work per unit area as K shrinks to the origin. Using (17) in (1 1) we find 

w [ff, K] + i F [H, K] 

= i H(z) dz 

d z + $ [ V * H - i v x f f ]  

This becomes exact as K shrinks to nothing. But even if K is not small, we know 
that the exact values of these three integrals are 

Thus 
w [ H , K ] + ~ F [ H ,  K] = [V x a + i V * f f ] ~ .  

Equating real and imaginary parts, we obtain the desired results. 

6 Cauchy's Formula 

The Pdlya vector field also allows us to cast the mathematical explanation of 
Cauchy's Formula into a form that is more accessible to physical intuition. 

Consider the function 

where f (z) is analytic. Since H is analytic except at p, its P6lya vector field 
will have vanishing flux and circulation densities except at p. Thus if C is a simple 
loop round p, all of its flux and circulation must have originated at p. To find 
w [p, C] and F [%, C ]  we should therefore examine E in the immediate vicinity 
of p. 

If f (p) = A + i B, then very close to p the Pdlya vector field will be 
indistinguishable from 

Figure [12] illustrates this field for positive A and B, as well as showing the 
geometric significance of the algebraic decomposition above. 

The first term is familiar as a source at p of strength 2nA, a negative value for 
A corresponding to a sink. The second term is a multiple of the less familiar field 
i / ( i  - j?) which represents a vortex4 at p. It is easy to see that the circulation round 
one of its circular streamlines is 2n, so this will also be its value for any simple 

We are now using this term in a narrow sense-previously "vortex" referred to all vector 
fields of this topological form. 



Complex Integration in Terms of Vector Fields 489 

Figure [12] 

loop round p-we say that the vortex has strength 2n. On the other hand its flux 
vanishes for all loops. While a source is pure flux, a vortex is pure circulation. 

These observations give us a slightly different way of looking at Cauchy's 
Formula: 

7 Positive Powers 
If n is a positive integer then zn is analytic everywhere and its P6lya vector field ?in 

is correspondingly divergence-free and curl-free. Our physical version of Cauchy 's 
Theorem therefore gives 

At least in the case of an origin-centred circle we can make this much more vivid5. 
Figure [13] illustrates the behaviour of Z and ?i2 on such a circle. It now seems 
clear that as much fluid flows into each shaded disc as flows out, so that F = 0, 
and also (when viewed as force fields) that no net work is done in transporting a 
particle round the boundary of each disc, so that W = 0. 

We can make this idea precise. First note that for any vector field on the circle, 
the work and flux will not change their values if we perform an arbitrary rotation 
of the diagram about the centre of the circle. Next, let us exploit the attractive 
symmetries of these particular vector fields. Rotating the picture of Z through 
(n/2) clearly yields the negative of the original field and, correspondingly, the 
negative of the original work and flux. Since Wand F are simultaneously required 
to remain the same and to reverse sign, they must both vanish. 

The same argument applies to y2 under a rotation of (n/3), and to ?in under a 
rotation of n/(n + 1). Use your computer to check this for n = 3. To understand 
this symmetry better, consult Ex. 10. 

5 ~ n  the particular case of z2 this has also been observed by Braden [1991], though he did not 
supply the general argument which follows. 
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Figure [13] 

8 Negative Powers and Multipoles 

Consider the negative power functions (1 /zm), where rn is a positive integer. Their 
P6lya vector fields (lip) will be divergence-free and curl-free except at the 
singularity at the origin. Thus if a simple loop C does not enclose the origin, its 
circulation and flux will vanish. However, since we know from the case rn = 1 that 
singularities are capable of generating flux and circulation, it remains something 
of a mystery that (except for rn = 1) Wand F also vanish if C does enclose the 
singularity. 

In the case of an origin-centred circle we can visualize this result exactly as for 
positive powers. Figure [14a] illustrates this for the so-called dipole field (117). 
The argument is also the same as before: this vector field is reversed under a rotation 
of n ,  and for (1 /p) it is reversed under a rotation of n/(rn - 1). Knowing that W 
and F vanish for the circle tells us [see (9), (lo)] that they will continue to vanish 
for any loop into which we may deform the circle without crossing the origin. 

Let us now go beyond this geometric explanation in search of a compelling 
physical explanation. Figure [14b] shows the phase portrait of the dipole (I/?), 
the streamlines of which are apparently circular; a simple geometric argument 
[exercise] confirms their perfect circularity. Where have we seen something like 
this before? Answer: the doublet field consisting of a source and sink of equal 
strength S (see [3], p. 452). It therefore looks as though we can obtain the dipole 
simply by coalescing the source and sink. This solves our mystery in a surprising 
and elegant fashion: neither the source nor the sink generate circulation, and a loop 
enclosing both receives equal and opposite fluxes. 

This explanation is essentially correct. However, as the sink and source move 
closer and closer together, a greater and greater proportion of the fluid from the 
source is swallowed up by the sink before it can go anywhere, and at the moment 
of coalescence the source and sink annihilate each other, leaving no field at all. 
Let us investigate this algebraically using (I), p. 456. 

Suppose that the source and sink approach the origin along a fixed line L 
making an angle 4 with the real axis. This line of symmetry L is called the axis 
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Figure [14] 

of the doublet. Putting A = E ei@ = -B, the doublet field (1) becomes 

which dies away as the source/sink separation 26 tends to zero. The solution is 
to increase the strength S in inverse proportion to the separation 26, so that 26s 
remains constant. If we call this real constant 2nk, the limiting doublet field (as 
E -+ 0) is 

i.e. the general dipole field obtained by rotating [14] by +@ and scaling up the 
speed of the flow by k, which we may think of as the "strength" of the dipole. Thus 
the P6lya vector field of (d/z2) is a dipole whose axis points in the direction of d ,  
and whose strength is Id 1. The complex number d is called the dipole moment. 

We created the dipole by coalescing equal and opposite sources, increasing 
their strength so as to avoid mutual annihilation. Continuing this game, we ask, 
"What will happen if we coalesce equal and opposite dipoles, increasing their 
strength so as to avoid mutual annihilation?'Figure [15] reveals the pleasing 
answer. Figure [15a] represents a pair of equal and opposite dipoles located at f 6 

and having real dipole moments &d, while [15b] is the P6lya vector field of (1 /z3). 
The resemblance is striking, and we can show algebraically that [15b], which is 
called a quadrupole, is indeed the appropriate limiting case of [15a]. 

The field for [15a] is 
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Figure [15] 

Once again letting the strength d grow in inverse proportion to the separation, 
so that k = 4de remains constant, the coalescence of the dipoles yields the 
quadrupole: 

In general, the P6lya vector field of (q/z3) is called a quadrupole with quadrupole 
moment q . 

We have thus explained the vanishing circulation and flux of (1 12): each of the 
dipoles in [15a] is known not to generate any circulation or flux, so the quadrupole 
in [15b] won't either. You are invited to continue this line of thought by showing 
(geometrically and algebraically) that the fusion of two quadrupoles yields the 
so-called octupole field, (1 /F), and so on. 

Dipoles, quadrupoles, octupoles, etc., are collectively known as multipoles. 
Similarly, dipole moments, quadrupole moments, etc., are collectively known as 
multipole moments. 

9 Multipoles at Infinity 

Although there is no mystery surrounding the vanishing circulation and flux for 
positive powers, it would still be nice to find a physical explanation analogous to 
the one for negative powers. To see how this can be done, we begin by considering 
the constant function f (z) = a ,  the P6lya vector field of which is a flow of constant 
speed la 1 in the direction Z. 

Standing in the midst of this flow, the fluid seems to originate far over the 
horizon in the direction -5 and to disappear over the horizon in the opposite 
direction, as though both a source and a sink were present at infinity. To make 
sense of this idea, stereographically project the streamlines onto the Riemann 
sphere. Since the streamlines are parallel lines in the direction a, their projections 
are circles which all pass through the north pole in the same direction. We thus 
obtain a picture similar to [I lb], p. 462: a dipole at infinity! 
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Let us analyse this further. If we were standing at the midpoint of the source and 
sink of the doublet in [3], p. 452, the flow in our vicinity would have approximately 
constant speed and direction. As the source and sink recede from us towards infinity, 
ultimately coalescing there to form a dipole, the approximation to a constant field 
gets better and better. The snag is that in this process the magnitude of the field at 
any finite point dies away to nothing. 

We see this algebraically in (18): D(z) -+ 0 as 6 + oo. However, if we let S 
grow in proportion to the separation, so that (S/c) = const. = kn, say, then as 
E -+ oo the doublet field tends to the constant field D(z) = -k ei4. 

Given that z0 yields a dipole at infinity, what might the Wlya vector field of z1 
correspond to? Use your computer to see that it is a quadrupole at infinity. Verify 
this algebraically using (19). Continuing in this fashion, one finds [exercise] that 
z2 corresponds to an octupole at infinity, and so on. 

10 Laurent's Series as a Multipole Expansion 
The above ideas shed new light on the Laurent series and the Residue Theorem. 
Suppose that an otherwise analytic function f (z) has a triple pole at the origin. 
We know from Chapter 9 that f (z) will have a Laurent series of the form 

In the vicinity of the singularity, the behaviour of f is governed by its principal 
part P ,  the P6lya vector field of which is 

Figure [16] 
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This we now recognize to be the superposition of a quadrupole, a dipole, and a 
source/vortex combination of the type shown in [12]. Thus the principal part of 
the Laurent series amounts to what a physicist would call a multipole expansion. 

To visually grasp the meaning of such an expansion, consider [16] which illus- 
trates a typical 7. Very close to the singularity the field is completely dominated 
by the quadrupole with its characteristic four loops, but as we move slightly fur- 
ther away the quadrupole's influence wanes relative to the dipole. Indeed, at this 
intermediate range we clearly see the characteristic two loops of a dipole. Finally, 
at still greater distances, both the quadrupole and the dipole become insignificant 
relative to the source/vortex, the precise form of which is determined solely by the 
residue p. Compare with [12], in which p = A + i B. 

Continuing our outward journey, now well beyond the unit circle, the entire 
principal part becomes negligible relative to the remaining terms of (20). First a 
becomes important, then bz takes over, and so on. Thus as we approach infinity 
the field at first resembles a dipole, then a quadrupole, and so on. However, unlike 
the approach to the pole, on the journey to infinity we may experience multipoles 
of greater and greater order, without end. 

Of course in general f may possess other singularities and (20) will cease to 
be meaningful when lz 1 increases to the distance of the nearest one. Nevertheless, 
in the region where it is valid, we may still think of the non-negative powers as 
representing multipoles at infinity. 

To recap, Laurent's series and the Residue Theorem may be conceived of 
physically as follows. The only term capable of generating circulation and flux is 
(plz), which may itself be decomposed into a vortex of strength W = -2n Im(p) 
and a source of strength F = 2n Re(p). All the other terms correspond to multipoles 
which generate neither circulation nor flux; a finite collection of these reside at the 
pole, while the rest are at infinity. 

Ill The Complex Potential 
1 Introduction 
Phase portraits are so convenient that it is easy to forget that in general they cannot 
represent the lengths of the vectors. In this section we shall see that if a vector 
field is either sourceless or irrotational (or both) then there exists a special way of 
drawing the phase portrait so that the lengths are represented. 

Although we shall ultimately be concerned with the P6lya vector fields of an- 
alytic functions, which are both sourceless and irrotational, it is more instructive 
to analyse the implications for sourcelessness and irrotationality separately. Nev- 
ertheless, in view of the final objective, we shall continue to write the vector field 
as H .  

2 The Stream Function 
First let be a sourceless flow of fluid. The Deformation Theorem (9) tells us that 
the flux across a curve connecting two given points is independent of the choice 
of the curve. Thus if K is any contour from an arbitrary fixed point a to a variable 
point z, the flux across it, namely 
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Q (z) = F [H, Kl, 

will be a well-defined function of z, called the stream function. If we choose a 
different point a then the new stream function will only differ from the old one by 
an additive constant. 

Suppose that z lies anywhere on the streamline through a. See [17]. Choosing 
K to be the portion of the streamline from a to z, we see that Q (z) = 0. Similarly, 
suppose that q lies anywhere on a streamline through another point p. Taking K 
to be a path from a to p,  followed by the section of the streamline from p to q,  we 
see that W (q) = Q (p). In other words, 

The streamlines are the level curves of the stream function W. 

Instead of constructing the phase portrait by drawing random streamlines, 
suppose we do it as follows: choose a number k and draw just those streamlines 
for which W = 0, f k, f 2k, f 3k, . . . See [17]. Having drawn the phase portrait in 
this special way, the speed of the flow is represented by the crowding together of 
the streamlines. Let's justify this claim and make it more precise. 

Since no fluid crosses the streamlines, we may think of the region lying between 
two adjacent ones as a tube down which fluid flows. Any curve connecting the two 
sides will have the same flux, namely k. Adapting the language of Faraday and 
Maxwell, we may thus describe the tube more quantitatively as a k-JEux tube. 

The shaded area in [17] is part of one such tube, the initial and final cross- 
sections (lengths €1 and € 2 )  having been drawn perpendicular to the flow. If k is 
chosen small, the speed v = 121 of the flow will be approximately constant across 
these ends, say v l  and 212. Thus the fluxes into and out of the shaded region (which 
must both equal k) are approximately €1 v l  and € 2 ~ 2 .  AS k is chosen smaller and 
smaller, these expressions become more and more accurate: 

k k 
v l = -  and v 2 = - .  

€1 €2 

Figure [17] 
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In order to maintain a constant flux k, the speed must decrease as the tube widens. 
To summarize: 

Let the phase portrait of a sourceless vector jield be constructed 
using k-flux tubes. If k is chosen small, the speed of the flow at any 
point will be approximately given by k divided by the width of the (22) 
tubes in the vicinity of the point. For infinitesimal k, the result is 
exact. 

However, since the number of k-flux tubes passing through a given region will 
vary inversely with k, our phase portrait will get very cluttered if k is chosen too 
small. In practice (cf. [3], p. 452) we get a good feel for the speed of the flow with 
relatively few streamlines. 

Let's apply these ideas to the simple (non-analytic) example H (2) = i Z. The 
P6lya vector field is then 

the streamlines of which are clockwise circles round the origin, the speed of the 
flow round each one being equal to its radius. See [18]. 

Although this vector field is not irrotational [V x H = -21, it is sourceless 
[V = 01, and thus it possesses a stream function. For convenience's sake, let's 
choose a = 0. We already know that the streamlines are origin-centred circles, so 
to find the value of !? on the streamline of radius R we must find the flux for any 
path from the origin to any point on this circle. Choosing the path to be the portion 
of the positive real axis from 0 to R, we see that 

d s = d x  and N=(-p) .  

Thus 

Figure [I 81 
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R 
W = / ( 8 - ~ ) d s  = x d x  = ; R ~ .  

Knowing the stream function we are now in a position to draw the special phase 
portrait. Choosing k = (112) we find that the radii of the streamlines are A, A, 
a, . . . Figure [18] illustrates these streamlines, and qualitatively confirms the 
prediction of (22). As we move outward from the origin the streamlines become 
more crowded together, reflecting the increasing speed of the flow. 

3 The Gradient Field 
We have seen in geometrical terms how it is possible to reconstruct a sourceless 
vector field H from a knowledge of its stream function W. In order to find a simple 
formula for H in terms of W, we need the concept of the gradient field V W . This 
is defined to be the vector field 

The gradient field VW has a simple geometric interpretation in terms of the 
streamlines of [17]. To see this, we express the infinitesimal change dW resulting 
from an infinitesimal movement d z  = d x  + i d y  as a dot product: 

If d z  is tangent to a streamline then d q  = 0, so VW has vanishing dot product 
with this direction. Also, increases when d z  makes an acute angle with Vq .  
Thus 

The direction of VW is the one that is orthogonal to the streamlines 
and along which W increases. Thus -i VW points in the direction (23) 
of H. 

See [19]. 

Figure [19] 
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So much for the direction of VQ; what about its magnitude? In [19] (which is 
basically a copy of [17]) we imagine that k is infinitesimal. Choosing dz = eie ds 
in the direction of VQ, we find d Q  = 1 VQ 1 ds. In particular, if we let ds  equal 6 

(the width of the k-flux tube) then d Q  will equal k. Thus 

But this is precisely the formula we previously obtained for the speed v = IHI of 
the flow! Thus IVQ I = ~ m .  

Combining this result with (23) we obtain the following simple formula for H 
in terms of Q: 

Try this out on our previous example H (z) = i F, the P6lya vector field of which 
had stream function Q = (x2 + y2)/2. 

Now consider the question, "What additional condition must be satisfied by 
Q if H is also required to be irrotational?'The answer is that it must satisfy 
Laplace's equation: 

~r l r - -a ; r l r+a;r l r=o.  

Solutions of this equation are called harmonic, so we may restate the result as 
follows: 

A sourcelessJield is irrotational if and only if its stream function is 
harmonic. 

The verification is a simple calculation: 

4 The Potential Function 

Next suppose that ?r is a force field which is known to be conservative (irrotational). 
In this case it is the work rather than the flux which must be path-independent. 
Thus if K is any contour from an arbitrary fixed point a to a variable point z ,  the 
work done by the field in moving the particle along K is a well-defined function 
of 2 ,  

O(z) = w[H, K ] .  

This is called the potentialfunction, though there are several pseudonyms depend- 
ing on the context: e.g., in electrostatics it is called the "electrostatic potential", in 
hydrodynamics it is called the "velocity potential", and in the case of flowing heat 
it is already familiar as the temperature. As with the stream function, changing the 
choice of a merely changes O by an additive constant. 
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Figure [20] 

Let's investigate Q, as we did q. The level curves Q, = const. are called 
equipotentials; what is their geometric significance? As [20] illustrates, the answer 
is that 

The equipotentials are the orthogonal trajectories through the lines 
of force. (25) 

The reason should be clear. A certain amount of work @ ( p )  is done in moving the 
particle from a to p, but then no additional energy is expended in moving it to q 
along the orthogonal trajectory through p. Thus Q, ( q )  = Q, ( p ) .  

Instead of illustrating random equipotentials, [20] mimics the special construc- 
tion used in [17]: we draw just those equipotentials for which Q, = 0, f 1, f 21, 
f 31, . . . In this picture the same amount of work 1 is required to move the particle 
from each equipotential to the next. Let us therefore call the region lying between 
two such adjacent equipotentials an 1-work tube. 

Suppose that 1 is chosen small, and consider the work done in moving a particle 
along the correspondingly short cross-section 6 in [20]. In the limit of vanishing 1 
we find that 

Thus the magnitude of the force is represented by the crowding together of the 
equipotentials: 

Let the equipotentials of a conservative force field be constructed 
using 1 -work tubes. If1 is chosen small, the magnitude of the force 
at any point will be approximately given by 1 divided by the width (27) 
of the tubes in the vicinity of the point. For infinitesimal 1, the result 
is exact. 
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Since the gradient field VQ, is automatically orthogonal to the equipotentials 
and has magnitude (1/6), we may combine (25) and (27) into the simple formula 

Lastly, suppose that H is required to be sourceless. Since 

we see that 

A conservative force field is sourceless if and only if its potential 
function is harmonic. (30) 

5 The Complex Potential 
We now know two things about a vector field X that is irrotational and sourceless: 
(i) both Q, and @ exist; (ii) it is the P6lya vector field of an analytic function. In this 
section we shall attempt to illuminate the connections between these two facts. 

Since Q, and @ both exist, we may superimpose pictures of types [17] and 
1201, thereby simultaneously dividing the flow into mutually orthogonal k-flux 
tubes and 1-work tubes. Before drawing this picture let us choose the increment of 
work to be numerically equal to the increment offlux: 1 = k. 

Let us call the intersection of a k-flux tube with a k-work tube a k-cell. We 
already know that the sides of each k-cell meet at right angles, so for small k 
they will be approximately rectangles. The sides of such a rectangle will be the 
previously considered widths 6 and 6 of the two kinds of tube. But combining the 
results (21) and (26) we see that 

Thus 

In the limit of vanishing k, the k-cells are squares. (3 1) 

The LHS of [21] illustrates such a division into approximately square k-cells. We 
have labelled Q, = 1 lk and \I, = 3k, but we have left it to you [exercise] to label 
the remaining streamlines and equipotentials; this can only be done in one way. 

Note that once such a special phase portrait (including the equipotentials) has 
been drawn with a small value of k, the value of lL H dz is easy to find. For if 
L crosses m equipotentials and n streamlines, an accurate estimate of the integral 
will be k(m + in). If L crosses an equipotential or streamline more than once, how 
should m and n be counted? 
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Figure [2 11 

We mention in passing that there is an interesting physical interpretation of the 
k-cells which is due to Maxwell [I88 11. Suppose that the vector field represents 
the flow of a fluid having unit mass per unit area. In the limit of vanishing k,  the 
speed v will be constant throughout any particular cell, and the kinetic energy of 
the fluid in that cell will be 

kinetic energy = 4 (area) v2 = c ( f ) 2  = i k 2 .  

Thus 

Each k-cell contains the same amount of energy, and the total en- 
ergy in a region is thus obtained by counting the number of k-cells 
contained within it. 

If we reinterpret the vector field as an electrostatic field, and correspondingly 
reinterpret "energy" as electrostatic energy, the result is still valid; this was the 
context in which Maxwell discovered it. 

The result (31) is intimately connected with ideas of complex analysis. To 
see this, let us combine the potential and stream functions into a single complex 
function !2 called the complex potential: 

Returning to the dominant point of view of this book, think of S2 as a mapping. 
The RHS of [2 11 shows the image of the special phase portrait under this mapping: 

The complex potential maps streamlines to horizontal lines and 
equipotentials to vertical lines. Furthermore, each square k-cell is 
mapped to a square of side k. Thus 52 is an analytic mapping. 

We may check this symbolically. Equating (24) and (28) we obtain 
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which are the CR equations for S2. 
What is the amplitwist of the complex potential? By considering the effect of 

52 on the black k-cell in [21] we see that if the streamline through z makes an angle 
8 with the horizontal, the twist of 52 at z is -8, which we recognize as the angle 
of H(z). We also see that the amplification of 52 is (klc), which we recognize as 
11?1 = IHI. Thus 

S2' = H. 

Since H is the derivative of an analytic function, it must itself be analytic. We 
have thus obtained a second, more geometrical proof that the class of sourceless, 
irrotational vector fields is the same as the class of P6lya vector fields of analytic 
functions. 

The result 52' = H can be checked symbolically. Substituting one of the CR 
equations for S2 into (28), we obtain 

When we thought of an analytic function f as a conformal mapping, f' repre- 
sented its amplitwist. But since any such function may instead be thought of as the 
complex potential of a flow, we now have another interpretation of differentiation: 
f' is the conjugate of the velocity of the flow described by f .  Correspondingly, 
we also have a new interpretation of critical points: they are the places where the 
velocity vanishes. Such places are called stagnation points in the flow. 

By analysing the implications of sourcelessness and irrotationality separately, 
we have been able to understand the P6lya vector fields of non-analytic functions 
that may possess a stream function or a potential function, but not both. If we had 
instead restricted ourselves from the outset to the P6lya vector fields of analytic 
functions, the complex potential could have been obtained more rapidly (but less 
revealingly) as follows. 

If L is any contour from an arbitrary fixed point a to a variable point z, we may 
define 

Q,(z) = H ( W ) ~ W  = w[H, L] + ~ F [ H ,  L]. 

But, as we saw in Chapter 8, if H is analytic then this integral is independent of 
L, and the well-defined function 

is in fact the antiderivative of H. More explicitly, the image 52 (L) of a contour 
L from p to q is the path taken by the Riemann sum for the integral of H along 
L. The value of the integral is then the vector connecting the start of S2 (L) to its 
finish, namely, Q(q) - 52(p). 
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6 Examples 

(1) We previously claimed that the streamlines of the dipole = (112 2, were 
perfect circles, and we asked you to provide a simple geometric proof. A second 
demonstration is obtained by finding the complex potential: 

The streamlines are the images under a-'(z) = - l /(z - c) of horizontal lines. 
The result follows from the fact that inversion sends straight lines to circles through 
the origin. 

(2) A uniform eastward flow has complex potential C2 = z. If we insert a dipole 
of complex potential = ( l /z)  into this flow then the new flow will be the 
superposition of the two individual flows and thus will have complex potential 

Using your computer you may verify that the streamlines and equipotentials are as 
shown in [22]. Note how the streamlines emanating from the dipole are deformed 

Figure [22] 

out of perfect circularity by the uniform flow, but that this distortion diminishes as 
the origin is approached. 

(3) A source of strength 2n at the origin has vector field X = (l/T). If we choose 
to measure work and flux along a path L emanating from z = 1 then [see p. 4091 
the complex potential is 
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Figure [23] 

While the work @ is single-valued, the flux g is a multifunction whose values differ 
from each other by multiples of 2n. This makes perfect sense since each time L 
encircles the source it intercepts the full 2n of fluid being pumped in there. Note 
that the single-valued inverse function $2-' (z) = eZ does indeed map horizontal 
and vertical lines to the source's streamlines and equipotentials. 

If we wish to obtain a single-valued complex potential we may do so by con- 
fining our attention to any simply connected region not containing the source. The 
shaded region D in [23] is an example. Any two paths from 1 to z that lie wholly 
within D may be deformed into each other without ever leaving D, hence without 
crossing the source, hence without altering the flux. For example, we see that for 
the particular choice of D in [23], the unique values of W at (1 + i) and at (2 + 2i) 
are (n/4) and (9n/4). However, a different choice of D might well yield different 
values of \I, at these two points. 

More generally, if D is any simply connected region not containing any sin- 
gularities of an otherwise analytic H, the P6lya vector field H will possess a 
single-valued complex potential in D. 
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IV Exercises 

1 For each of the following vector fields X verify that the geometric formulae ( 5 )  
and (6) yield the correct values for the divergence and for the curl: 

(i) X = (112). 

(ii) X = 2. 

(iii) X = x2, where z = x + iy. 

(iv) X = y2, where z = x + iy . 
(v) X = i(l/r2)ei8, where z = rei8. 

2 For each of the following vector fields X, calculate F [X, C] and W [X, C] for 
the given loop C, then check your answers by substituting the results of the 
previous question into (7) and (8). 

(i) X = x2, and C is the edge of the rectangle a 5 x 5 b, -1 5 y 5 1, 
traversed counterclockwise. 

(ii) X = i(l/r2)ei8, and C is the edge of the region a r 5 b, 0 5 0 5 x ,  
traversed counterclockwise. 

3 Use a computer to draw the P6lya vector field of f (z) = 1 /[z sin z] and thereby 
identify the locations and orders of the poles of f (z). For each of the following 
choices of C, numerically estimate $c f (z) dz by making on-screen measure- 
ments of the vectors, then estimating the flux and circulation round C. In each 
case check your estimate by calculating the exact answer using residue theory. 

(i) Let C be a small circle centred at -n. 

(ii) Let C be a small circle centred at 0. 

(iii) Let C be a small circle centred at n. 

(iv) Let C be a small circle centred at 2n. 

(v) Let C be the boundary of the rectangle 1 5 x 5 7, - 1 5 y 5 1. 

4 Repeat parts (i) and (ii) of the previous question using f (z) = z cosec2z. 

5 Let L be a contour from the real number -0 to + O .  By choosing L to be a 
line-segment, and then sketching the P6lya vector field at points along L,  show 
that [' z eiz dz is purely imaginary. Verify this by calculating the exact value of 
the integral. 

6 All complex analysis texts recognize the great utility of the inequality 
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but none that we know of have sought to answer the question, "When does 
equality hold?" This is probably because no elegant answer is forthcoming 
(cf. our attempt in Chapter 7) without the concept of the P6lya vector field. 
However, armed with the P6lya vector field, we have what we shall call Braden's 
b he or ern^: 

Equality holds in (32) ifand only ifthe contour L cuts the streamlines 
of the Po'lya vector3eld o f f  at a constant angle. 

Explain Braden's Theorem. 

7 Continuing from the previous question, suppose that f ( z )  = T. 

(i) Show that if L is a segment of the spiral with polar equation r = es, then 
the condition of Braden's Theorem is met. 

(ii) Verify by explicit calculation that equality does indeed hold in (32), as 
predicted. 

8 Consider the flow created by (2n + 1) sources, each of strength 2n,  located at 

0, f n ,  f 2 n ,  ..., f n n .  

(i) If a, (z) denotes the complex potential of this flow, show that 

(ii) Ignoring the constant, and referring to Ex. 13 on p. 449, deduce that as the 
number of sources increases without limit, an (z) tends to (2) = ln[sin z]. 

(iii) Check that this answer makes sense by using a computer to draw the velocity 
vector field, 51 = St'. 

9 (i) Explain why the derivative of the complex potential of a source yields the 
complex potential of a dipole. 

(ii) Referring to the previous question, draw a sketch predicting the appearance 
of the flow whose complex potential is (z) = & ln[sin z]. Check your 
answer by getting the computer to draw this flow. 

10 Reconsider the term C z  in the local decomposition (17) of a general vector 
field. See [ l  11. 

(i) Show that the visual appearance of the vector field C F is essentially indepen- 
dent of the value of C. More precisely, show that if C = ei4 then increasing 

6~raden  [1987]. We independently recognized this fact, probably at about the same time as 
Braden himself. 
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@ merely causes the entire picture of the vector field C T to rotate, in fact 
exactly half as fast as ei@ rotates. 

(ii) To make the result vivid, create a computer animation of the vector field 
ei@ 2 as 4 increases from 0 to n . 

(iii) More generally, show that if n is an integer and F(z) stands for either Zii or 
z-", then the vector field of ei@ F is obtained by rotating the vector field of 
F through @/(n  + 1). [Note that the n = - 1 fields (including sources and 
vortices) are exceptional.] 

11 Consider a flow such that the inverse complex potential is !X1 ( w )  = w + e W.  
Use a computer to draw the streamlines, and verify mathematically that the 
picture may be interpreted as the flow out of a channel -n 5 Irn(z) 5 n ,  
Re(z) 5 -1. 

12 Consider the flow with complex potential 

Use a computer to draw the streamlines, and verify mathematically that the 
picture may be interpreted as the flow that results when the dipole with complex 
potential Q (z) = (l/z) is confined to the channel -n 5 Im(z) 5 n .  

13 Continuing from the previous question, what would the new complex potential 
be if fluid were flowing down the channel with speed v prior to the insertion of 
the dipole? Check your answer by using a computer to draw the streamlines. 

14 Suppose that the doublet consisting of a source of strength 2n at z = 1 and a sink 
of equal strength at z = - 1 is inserted into the uniform flow with real, positive 
velocity v. Locate the "stagnation points" (singular points of zero velocity) of 
the net flow, and describe (perhaps with the aid of a computer animation) how 
they move as v varies from 0 to 3. 

15 If two sources are located at opposite corners of a square, and two sinks are 
located at the other two corners, and all four are of equal strength, then show 
that the circle through these four points is a streamline. Check this by getting 
the computer to draw the complete flow. 

16 Show that the streamlines produced by two vortices of equal strength are Cassi- 
nian curves (figure [8b], p. 61) whose foci are the locations of the two vortices. 
[Note that your reasoning immediately generalizes: Cassinian curves with n foci 
are the streamlines of n equal vortices placed at the foci.] 

17 Show that the streamlines [15b] and the equipotentials of a quadrupole are 
lemniscates (see [9], p. 62). 
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I Harmonic Duals 
1 Dual Flows 
As in the previous chapter, let H = be a steady, sourceless, irrotational vector 
field with complex potential 52 = @ + irlr. If at each point we rotate % through 
a fixed angle 6 then we obtain the P6lya vector field of the analytic function 
Ho = e-'%, namely, Tia = ei". Thus this rotated vector field is automatically 
sourceless and irrotational, and its complex potential is Qa = e-'". Writing 
Q9 = + i rlrs, the potential and stream functions are therefore 

@a = (cos 6 )  @ + (sin 6 )  \I, and rlro = (cos 6 )  \I, - (sin 6 )  @. 

Henceforth we shall concentrate on the particularly simple and important case 
in which 6 = +(n/2). After rotating through this right angle we ob@n the 
P6lya vector field of H,p, for which we shall use the special symbol H. Thus 
-X - 
H = Hn/2 = iH. In complex analysis, the standard terminology is to say that - 
H^ is "conjugate" to the original flow H .  However, I know of no mathematical1 

connection between this concept and the familiar one of complex conjugation. 
Furthermore, our use of P6lya vector fields (involving genuine complex conjuga- 
tion) brings these two senses of "conjugate" into direct conflict, for the complex 
conjugate of the original flow is not the "conjugate" flow. 

Fortunately, in other areas of mathematics (e.g., topology) there is another term - 
that is commonly used to describe this idea. We therefore propose to call H^ the 
dual of 2. Similarly, let us call the potential and stream functions of the dual flow 
the dual potential and the dual stream function. 

Later we shall see that the concept of a dual flow is very useful. For example, 
having found the flow of a fluid round an obstacle, the dual flow represents the 
electric field which solves an analogous problem in electrostatics. 

As interesting examples of dual flows, consider what happens in the vicinity 
of a singularity. Figure [I] illustrates how, as 6 varies from 0 to (n/2), a source 
gradually evolves into a dual vortex of equal strength. Note (c.f. [12], p. 489) that 
the intermediate flow may also be viewed as a superposition of the original flow 
and its dual. Indeed, this is true quite generally: 

l~inguistically, the common origin of both terms is the Latin word "conjugatus", meaning 
joined together. 
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Original Source Dual Vortex 

6 = 0  6 = n/4 6 = n/2  

Figure [I] 

- 
H~ = (COS 6 ) H  + (sin 6)Hx. 

Check for yourself that the type of qualitative change of flow exhibited in [I] does 
not occur in the case of higher multipoles. For example, the dual of a dipole is just 
another dipole. As 19 varies from 0 to (n/2), are all the intermediate flows dipoles 
as well? See Ex. 10 of the previous chapter. 

Observe that in passing from a flow to its dual the roles of the streamlines and 
equipotentials are interchanged: the streamlines of the dual flow are the equipoten- 
tials of the original, while the equipotentials of the dual flow are the streamlines of 
the original. Symbolically, this interchange of roles is manifested in the fact that 
the dual potential and stream functions are 

h h 

@=+\I, and \I,=-@. 

The difference of sign in these two equations is easily understood when we 
look at [2], which depicts a typical flow and its dual. [Streamlines are solid and 

Original Flow 
6) 

Dual Flow 

Figure [2] 
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equipotentials are dashed.] Recall that if we think of these pictures as force fields, 
work is done by the field when a particle moves along a line of force, so the original 
and dual potentials increase in the illustrated directions. Similarly, when thought 
of as a fluid flow, the flux across a directed segment of curve is positive when the 
fluid crosses it from left to right, so the original and dual stream functions increase 
in the illustrated directions. We now see clearly that and \I, increase in the same 
direction, while $ and @ increase in opposite directions. 

Given a complex potential S2 = Q> + i \Jr, we may thus think of \I, as either 
the stream function, or as the dual of the potential function. Likewise, @ may 
be thought of as either the potential function, or as minus the dual of the stream 
function. Since any analytic function f = u + iv may be thought of as a complex 
potential, we may extend this language and say that v is dual to u, and that -u is 
dual to v. 

Finally, we cannot resist at least mentioning two miraculous connections be- 
tween the above ideas and the study of soap films, also known as minimal sur- 
faces. First miracle: Each complex analytic function H ( z )  describes the shape of 
a minimal surface, and vice versa. Second miracle: Varying 6 causes the minimal 
surface corresponding to Ho ( z )  to undergo stretch-free bending: all these minimal 
surfaces have identical @trinsic geometry. For example, if H corresponds to the 
so-called helicoid, then H corresponds to the so-called catenoid, and [3] illustrates 
the stretch-free bending of one into the other, each intermediate surface itself being 
a minimal surface. 

For an elementary introduction to the fascinating subject of minimal surfaces, 
see Hildebrandt and Tromba [1984]; for the mathematical details, see Nitsche [1989]. 

Figure [3] 
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2 Harmonic Duals 
We know that both the real and the imaginary parts of an analytic function are 
automatically harmonic. It is therefore natural to wonder if, conversely, every 
harmonic function is the real (or imaginary) part of some analytic function. As we 
shall see, this is indeed the case. That is, given a harmonic function u we can always 
find another harmonic function v, the harmonic dual of u,  such that f = u + iv  
is analytic. [Again, the standard terminology is that v is the "harmonic conjugate" 
of u.] 

We make two remarks before proceeding. First, if v is a harmonic dual then 
so is v + const., and consequently v will only be uniquely determined if we 
impose additional conditions, such as v vanishing at a particular point. Second, 
the harmonic dual of a single-valued function may itself be a multifunction. Witness 
the case u = In lzl, illustrated in [I], for which v = arg(z). 

Given an irrotational vector field, we know how to construct a potential func- 
tion. But, conversely, if we are given a real function @ (z) then we may construct 
an irrotational vector field 5? for which @ is the potential function, namely, 

If is harmonic then we know [(30), p. 5001 that H will be sourceless, and so 
it will possess a stream function q. Since H is irrotational, q is harmonic. The 
complex potential L2 = 0 + i \I, will then be an analytic function having as its real 
part the given harmonic function @. In other words we have shown that 

The harmonic dual of a given harmonic function is the stream 
function of the vector field V@. 

Alternatively, is the potential function for the dual of V@. 
This result means that facts about analytic functions can sometimes be recast as 

facts about harmonic functions. For example, in Chapter 9 we saw that iff  = u +i v 
is analytic then ( f )  = f (p), where ( f )  denotes the average of f over any circle 
centred at p.  It follows that the harmonic real part of f obeys the law (u )  = u(p). 
But we now know that if u is any given harmonic function then we may construct 
an analytic function for which it is the real part. We thus obtain Gauss ' Mean Value 
Theorem: 

The average value of a harmonic function on a circle is equal to the 
value of the function at the centre of the circle. 

We obtain another example by reconsidering [14], p. 356, in which we saw that 
if f = u + iv  is analytic in some region whose boundary is r, then the maximum 
of u occurs on r. The existence of harmonic duals therefore implies that 

Ifafunction is harmonic in some region, its maximum occurs on the 
boundary of that region. 

The same goes for a (nonzero) minimum of a harmonic function. 
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Next we give explicit formulae for the construction of harmonic duals. To make 
\I, unique, let us demand that it vanish at some point a .  Then if K is any path from 
a to p, we have the flux formula 

Alternatively, in terms of complex integration, we have 

\I,(p) = lm [L(m) dz] . 

As we have seen, if we restrict ourselves to a simply connected region throughout 
which is harmonic, these integrals are single-valued. However, if the region 
is not simply connected, or if @ has singularities, then (in general) Q will be a 
multifunction. 

We illustrate these formulae with the example = x3 - 3xy2, which is 
easily seen to be harmonic. Choose a = 0, let p = X + i Y, and choose K to 
be the line-segment between them, which may be represented parametrically as 
z = x + i y  = (X+iY)t ,whereOs t 5 1.Since 

and ds = d m  dt, the first formula yields [exercise] 

Alternatively, since 

the second formula yields 

The simplicity of the second method depended crucially on our ability to 
express m ( x ,  y) as a function Q'(z) of z, but it is not always so obvious how to 
do this. However, there does exist a systematic method of doing this in the case 
where @ is defined in a region containing a segment of the real axis. - 

Let V (x) be the vector field evaluated on the real x -axis, i.e., V (x) = V (x , 0). 
If (x , y ) is an explicit formula in terms of the familiar functions (powers, trigono- 
metric, exponential) that possess complex analytic generalizations, then V (x) is 
such a formula also. Hence if in the formula for V (x) we now replace the symbol 
x with the complex variable z then we obtain an analytic function V(z) which 
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agrees with Qt(z) when z is real. But, as we saw in Chapter 5, this implies that the 
two functions must continue to agree when z becomes complex. 

Thus our recipe for finding Qt(z) as an explicit formula in z is to calculate - 
VO (x, y) ,  set y = 0, then substitute z for x: 

For example, if O = cos[cos x sinh y] esinx then [exercise] 

- 
V O (x , y) = cos[cos x sinh y ] esin 

COSh Y cos x cosh y + F, 

where F stands for three terms which vanish when y = 0. Using (1) we get 
Rr(z) = eSinz cos z, and hence @ = Im esin z .  

II Conformal lnvariance 
1 Conformal lnvariance of Harmonicity 
Let w = f (z) be a complex analytic function of z, which we will think of as 
a conformal mapping (rather than as a vector field) from the z-plane to the w- 
plane. Using f ,  any real function O(z) in the z-plane may be copied over (or 
"transplanted") to a function O(w) in the w-plane by defining 

In other words, corresponding points in the two planes are assigned equal function 
values. We will now show (first symbolically then geometrically) that 

Harmonicity is conformally invariant: g(w) is harmonic ifand only 
i f  (z) is harmonic. 

(3) 

As before, think of 6 (w)  - as the potential of the vector field f -- ~ 5 .  If 
and only if 6 is harmonic, V possesses an_analytic complex potential- 6(w) = 
@(w) + i G(w), where the stream function @ is the harmonic dual of @. Since f 
is analytic, so is its composition with 6: 

Thus O(z) is the real part of an analytic function, and so it is harmonic. 
There is a very simple geometric idea behind this important result. Figure [4] 

illustrates a visual means of checking whether or not a given real function is 
harmonic. Once again, think of O as the potential of the force field V = V@. We 
know that O is harmonic if and only if V admits a complex potential. This we 
know occurs if and only if the field may be divided into a grid of (infinitesimal) 
square k-cells. 

To check this we should therefore construct a "test gr id:  
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Figure [4] 

(i) With a small value of k, draw the equipotentials @ = 0, f k, f 2k, f 3k, . . .. 

(ii) Choose one of the resulting k-work tubes [shaded in the figure] and draw 
line-segments across it in such a way that the tube is divided into squares. 

(iii) Extend these line-segments into lines of force [dashed] of V,  i.e., orthogonal 
trajectories through the equipotentials. 

Then @ is harmonic i f  and only i f  these lines of force divide each k-work tube 
into squares. Figure [4a] illustrates this test for a @ that is harmonic, while [4b] 
illustrates it for one that is not. The result (3) can now be seen as nothing more 
than a statement of the conformal invariance of this geometric test. Let us spell 
this out. 

Equation (2) defines the potential of each point in the z-plane to be the same 
as its image point (under f )  in the w-plane. Thus f maps the k-work tubes of @ to 
the k-work tubes of 5. See [5]. Finally, since f is conformal, the constructed test 
grid for @ will be composed of squares if and only if the image grid is composed 
of squares. Figure [5] illustrates the case where the potentials are harmonic. 

Figure [5] 
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2 Conformal lnvariance of the Laplacian 
The result (3) is merely a special case of the following more general result on the 
conformal invariance of the Laplacian operator A: 

We will give two explanations of this result. 
For the first explanation, we rephrase the result in terms of flux densities. Just 

as we did for % in the w-plane, let us construct the vector field V = V@ in the 
z-plane. We wish to understand this: 

Now consider [6], which illustrates a toy model of the phenomenon. The poten- 
tial @ (z) = (S/4) 1z12 generates a vector field V = (S/2) z of uniform divergence 
V * V  = S. With a small value of k, the LHS of [6] shows the special equipotentials 
@ = 0, f k, f 2k, f 3k, . . ., for which the strength of the field is inversely propor- 
tional to the separation of the curves. Now apply the mapping w = f (z) = cz, 
which is a rotation and an expansioz by Jcl. By definition, these expanded circles 
are equal-valued equipotentials of @ (w ), so that 

The field v = v 5 therefore has uniform flux density V ? = S/ 1 c 1 2, proving (5) 
for this case. 

More intuitively still, in [6] compare the flux leaving the shaded disc on the 
left with the flux leaving the shaded image disc on the right. Since the separation 
of adjacent equipotentials is scaled up by (c( ,  the strength of the field on the rim of 
the image disc is scaled down by lcl, whilethe circumference of the rim is scaled 
up by Icl. The net effect is that the flux of V out of the image disc is the same as 

Figure [6] 
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the flux of V out of the original disc. Finally, since the area of the disc is scaled 
up by /el2, the flux d e n s i ~  is scaled down by lc 1 2 .  

To employ this idea in the general setting, it is only necessary to recognize 
that the local behaviour of a general potential is very similar to our toy potential, 
and that the local effect of a general analytic mapping f is very similar to our toy 
mapping, with 1 f' 1 playing the role of (c  1 .  

We will not spell this out completely because we will shortly be able to give 
a second explanation which is even simpler. However, according to (17), p. 487, 
the behaviour of V very near to z0 is expressible as 

where Y is sourceless and, of course, irrotational. Correspondingly, the local be- 
haviour of the potential is2 

where Y is harmonic, and r = lz - zo I is the small distance from zo. Having made 
explicit the connection with the toy model, we leave the remaining details to the 
interested reader. 

3 The Meaning of the Laplacian 

Given a real function @(z) in the z-plane, we have seen that its gradient vector 
field V @  is a geometric quantity, independent of the coordinates used to describe 
z. We have also seen that the divergence of a vector field measures its flux-density, 
so it too is geometrically defined. It follows that the Laplacian A@ = VoV@ 
must possess a coordinate-independent interpretation. 

In order to state this interpretation, recall that if C is a circle centred at p then 
(a) denotes the average value of @ on C .  We will show that 

The Laplacian of @ at p measures the amount by which the average 
value of @ on an infinitesimal circle centred at p exceeds the value 
of @ at p itse& More precisely, ifr is the infinitesimal radius of this 
circle then 

(7) 

(@) - @ ( p )  = i r 2  A@. 

Note that this result is in accord with Gauss' Mean Value Theorem, which 
says that if @ is harmonic then (a) - @ ( p )  = 0 for circles of any size, not 
just infinitesimal ones. In fact if you have already convinced yourself of (6) then 
[exercise] you may derive (7) by using the fact that the harmonic function 'Y obeys 
Gauss' Mean Value Theorem. 

2 ~ h i s  may also be derived directly by taking the Taylor series for (9 and rewriting it in a rather . 
unobvious way. 
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Before giving a more direct derivation of (7), let us return to Gauss' Mean 
Value Theorem itself and rederive it without appealing to complex analysis3. Let 
V = V@ be the vector field of the potential function @. The flux of V out of a 
(non-infinitesimal) circle C of radius r is then [exercise] 

Thus if @ is harmonic, so that V is sourceless, then F = 0, by (7), p. 481. Since 
a, (a) = 0, we see that (a) is independent of the radius of C. Shrinking C down 
to p, we deduce that this radius-independent value must be @ (p). Done. 

Now suppose that V is not sourceless, but that its flux-density V * V  = A@ 
is constant. Gauss' Divergence Theorem [(7), p. 4811 then yields F [V,  C] = 
nr2 A@. Inserting this into the previous result, we find that 

which may be integrated to yield the formula in (7). To complete the explanation 
of (7) it is only necessary to observe that the Laplacian of an arbitrary @ is constant 
within an infinitesimal circle. 

Knowing the meaning of the Laplacian, it is a simple matter to understand its 
conformal invariance as expressed in (4). The analytic map~ing f amplitwists an 
infinitesimal circle C centred at p to an infinitesimal circle C centred at F, the new 
radius being 7 = ( f '(p) 1 r . By definition, 6 (a = @ (p). Likewise, the values of 

at points of C" are the same as those of @ at the preimages on C, so (5) on C" 
equals (@) on C. Thus (7) implies 

from which (4) follows immediately. 

Ill A Powerful Computational Tool 
A zealot might wish for an ideal world in which calculation would always be 
relegated to the confirmation of insights provided by geometry. Alas, even this 
author must confess to occasional lapses in which calculation has preceded under- 
standing! We now describe a powerful computational tool which in many areas of 
complex analysis provides a considerable saving of labour. In the next section the 
study of the "complex curvature" [cf. Chapter 51 will provide a good showcase for 
its simplicity and elegance. 

The gradient operator V of vector calculus acts on a real function R ( x ,  y) to 
produce the gradient vector field 

3~reviously we got it from ( f )  = f (p), which in turn came f'rom Cauchy's formula. 
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and we are free (as we have previously done) to think of this as a complex function 

From this we may abstract the complex gradient operator V, together with the 
conjugate operator 7: 

- 
V = a x + i a y  and V=a , - i a , .  

These two operators open the way to an exciting new method of calculation. 
Given a vector field 

we have seen how the real version of V may be formally dotted or crossed with f to 
yield its divergence V f or its curl V x f .  The interpretations of these quantities as 
flux and work densities shows them to be truly geometric, that is to say, coordinate- 
independent. However, there would seem to be no natural way of applying V 
directly to f to obtain a new vector field Vf. However, if we replace V by its 
complex version V, and replace the vector field f by the complex function f = 
u + i v, then there is a natural definition: 

The equivalent expression 

V f = Vu + i Vv = Vu + (VV rotated ;) 

helps to see that V f is geometrically meaningful (because Vu and Vv both are). 
The power of the complex gradient derives from the following fundamental 

result [exercise] : 

A complex finction f is analytic if and only if V f = 0, in which 
case we also have 7 f = 2 f'. 

You may easily verify the following useful properties of V: 

If f is analytic then V f [g(z)] = f '[g(z)] Vg. For example, 
veg(z) = eg(z) Vg. 

The concepts of divergence and curl are neatly subsumed by V: 
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Similarly, 

v f = v * T - i v x F ,  

which shows, once again, that a vector field is sourceless and irrotational if 
and only if it is the P6lya vector field of an analytic function. 

The Laplacian operator A can be expressed neatly as VV = A = VV. 
In the next section, and in the exercises at the end of the chapter, you will see 

the strength of the new technique. You may also find that exercises from previous 
chapters are solved more readily by this method. For the moment, here are just 
two examples of the use of the complex gradient. 

The first is simply to observe how neatly the theorems of Gauss and Stokes 
[p. 48 11 may be combined into a single complex result: If C is the boundary curve 
of a simply connected region R then 

If f is analytic (V f = 0) we immediately obtain Cauchy's Theorem. This is not 
a new explanation, of course, merely a mathematically streamlined version of our 
previous physical one. 

Our second example is another derivation of the result (4). Let z = x + iy 
and w = u + iv, so that the complex gradient operators in the two planes are 
V, = a, + i a, and Vw = a. + i a,. The result we wish to prove can then be 
expressed (less ambiguously than before) as 

Since w = f (z), a straightforward application of the chain rule yields [exer- 
cise] 

- 
Vz = 7 v w  and V, = f 'v , .  (8) 

For example, 

as it should. Returning to the problem, we easily obtain 
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IV The Complex Curvature Revisited* 
1 Some Geometry of Harmonic Equipotentials 

Given a real function <P ( x ,  y) ,  figure [4] provided a geometric test for harmonicity. 
However, the first step of the test is not purely geometric in that it uses the values 
of @, not just the geometry of the curves @ = const. This leads us to pose the 
following more subtle problem. Given a family of curves E Jilling a region of the 
plane, how may we decide whether or not there exists a harmonic function Q> such 
that E is its family of equipotentials? 

For example, let E be the set of origin-centred circles. If we assign potentials to 
these curves according to the rule Q(z) = lzl then our previous test yields figure 
[4b], which shows that this potential is not harmonic. But the question we are 
now asking is whether these same curves can be assigned potentials according to 
a different rule which is harmonic? In fact they can: let <P ( z )  = In (21. 

When the family does admit a harmonic assignment of potential in this way, 
we shall simply extend our use of the word "harmonic" to the family of curves 
itself. Thus we would say that the family of origin-centred circles is harmonic. The 
opening question may then be rephrased succinctly: 

What geometric property of E determines whether it is harmonic? 

One way to answer this question is to generalize the test in [4] to the one in 
[71: 

(i) Choose two members of E which are close together. 

(ii) Draw line-segments across the region between them [shaded] so as to divide 
it into squares. 

(iii) Extend these line-segments into streamlines [dashed], i.e., orthogonal trajec- 
tories through E. 

(iv) Choose one of the resulting flux tubes [darkly shaded] and draw line-segments 
across it so as to divide it into squares. 

(v) Extend these line-segments into members of I .  
Then I is harmonic if and only if the resulting grid is composed of squares. 

We already know that a family of concentric circles is harmonic, and [7a] 
shows how symmetry guarantees that it passes the test. Figure [7b] shows that a 
family of similar, concentric ellipses is not harmonic. 

2 The Curvature of Harmonic Equipotentials 

We now turn to a second, more elegant answer to our question. Let S be the family 
of curves (streamlines) orthogonal to E. When one looks at [7] one gets the feeling 
that in order for a grid of squares to forrn, the bending of the curves of E must be 
connected in some special way with the bending of the curves of S. By examining 
the curvatures of the two types of curve we shall see that this is indeed the case. 
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Figure [7] 

First let us attach directions to the curves of E and S ,  so that their curvatures 
will have well-defined signs. Choose the direction for S arbitrarily, but then define 
the direction of E to be that of a tangent vector to S rotated through a positive 
right angle. Through any given point wo there passes one member C1 of S and one 
member C2 of E. Let the curvatures of C1 and C2 be ~1 and ~ 2 ,  and let sl and s2 be 
the arc lengths along C1 and C2. We then have the following striking result: 

E is harmonic if and only if 

In other words, if the rates of change of the curvatures along the two types of 
curve are exactly equal and opposite. Note that both these rates of change are well- 
defined even in the absence of a choice of direction for the curves, for reversing 
such a choice changes the sign of both K and as. 

Figure [8] illustrates the new test for the concentric circles and ellipses we 
considered in [7]. Since the circles and lines of [8a] have constant curvature, (9) 
is trivially satisfied. In [8b] it is clear that both curvatures are decreasing at the 
indicated point, so (9) is violated there. 

The result (9) seems to have been first published in an enjoyable paper by Bivens 
[1992]. We had also hit upon the idea, but as a consequence of investigating the 
"complex curvature" concept introduced in Chapter 5. Here is the pertinent result: 

The complex curvature vector field of an analytic mapping f is 
automatically sourceless, and its stream function is @ = 1 / 1 f ' 1. (10) 

To see the connection between the two results, first observe that a family E in 
the w-plane is harmonic if and only if it is the image set of vertical lines in the z- 
plane under an analytic mapping w = f (z). For if E is harmonic then its potential 
function @(w) is the real part of a complex potential z = St (w) which maps E to 
vertical lines, and so f (z) -- St-' ( z )  has the required property. Conversely, if E 
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Figure [8] 

is the image set of vertical lines under an analytic f then it is harmonic, indeed its 
harmonic potential is the real part of the complex potential i2 (w) = f  -' (w). 

Thus if E is harmonic then the curves C1 and C2 through wo = f (20) are 
the images under f of the horizontal and vertical lines through zo. But referring 
to [20], p. 240, we see that curvatures occurring in (9) are simply the real and 
imaginary parts of the complex curvature of f  at zo: 

Since infinitesimal horizontal and vertical movements dx  and dy are amplified 
by If '(zo)l to movements dsl and ds2 along C1 and C2, the flux-density of the 
complex curvature is 

The result (10) therefore implies that equation (9) is a necessary condition for E 
to be harmonic; the question of sufficiency will be addressed shortly. 

To prove (10) we will use the complex gradient technique of the previous 
section; later we will give a proper geometric explanation. We must show that 
Q = l/ 1 f' 1 is the stream function for the complex curvature 

- 
if" 

K : = w  
f' I f ' l '  

in other words [cf. (24), p. 4981, K: = -i VQ. 
Since 

we need to know V J  f  ' 1 .  Because f  is analytic, so is f  ', and this implies V f' = 0 
and 7 f' = 2 f ". Hence 
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Substituting this into the previous equation, we obtain the desired result: 

The fact that harmonicity implies (9) can also be understood without appealing 
to ideas from complex analysis. Let S and £ be the streamlines and orthogonal 
trajectories of a vector field X. With the present notation, the results (5) and (6) 
from the previous chapter [see p. 4791 become 

31x1 alxl V.X = - + ~21x1 and V xX = -- + ~ i l X l .  
as1 as2 

In order for E (or S )  to be harmonic, X must be divergence-free and curl-free, so 

a a 
~1 = -In 1x1 and ~2 = --In 1x1, 

a s2 as1 

from which (9) immediately follows. 
We conclude this section by establishing the converse result that equation (9) 

is a sufficient condition for E to be harmonic. In the w-plane, let O (w) be the angle 
that the curve C1 through w makes with the horizontal. The angle of the curve C2 
through w is therefore O + (n/2). Since the curvatures of C1 and C2 are the rates 
of change of these two angles with respect to the distances along the curves, we 
then have 

a@ ao 
K I = -  and Q=- .  

as1 as2 
Next we calculate the Laplacian of 0; the reason will be clear in a moment. 

Because the Laplacian is coordinate-independent, we may choose our coordinate 
directions tangent to C1 and C2, obtaining 

Thus equation (9) implies that O(w) is harmonic, in which case it is the real 
part of an analytic function, say, G(w). We may now define an analytic function 
H ( ~ )  = e-iG a ,-i@ such that H a e i@ is everywhere tangent to S. Thus S and 

E are the streamlines and equipotentials of the P6lya vector field of an analytic 
function. Done. 

3 Further Complex Curvature Calculations 
Suppose once again that S and E are the images in the w-plane of horizontal and 
vertical lines in the z-plane under an analytic mapping w = f (z). They are then 
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the streamlines and equipotentials of the vector field 2' in the w-plane, where Q 
is the complex potential z = S2 (w) = f -'(w) mapping S and E in the w-plane 
back to horizontal and vertical lines in the z-plane. 

At present, the curvatures ~1 and ~ 2  at a point wo = f (ZO) in the w-plane are 
represented as the components of the complex curvature of f at zo in the z-plane: 
Kf (zo) = ~1 + i ~ 2 .  [We have added the subscript f because we will shortly be 
considering the complex curvature of more than one mapping.] But suppose we 
think of the complex potential S2 ( w )  as fundamental, not merely the inverse of f ;  
how can we express the curvatures directly in terms of S2? 

We shall answer this question by deriving a remarkably simple relationship 
between the complex curvature Kf (z) of f at z, and the complex curvature KQ (w )  
of S2 at the image point w. Since f '(z) = 1/ Q1(w), equation (8) yields 

This is interesting. Recall that an infinitesimal complex number 6 emanating 
from z is amplitwisted to yield the image complex number f '  (z) 6 emanating from 
w. Thus, since (1 1) may also be written as 

we see that transforming Kf (z) as if it were an infinitesimal vector yields an image 
vector at w which is simply the negative of Ksl (w). 

In the next section we shall shed some geometric light on this result, but for 
the moment (1 1) yields the desired formula (also known to Bivens [I 9921) for the 
curvature of the streamlines and equipotentials of a sourceless, irrotational vector 
field in terms of its complex potential: 

Next we turn to the curl of K. The complex curvature is the P6lya vector field of 
the function (-if "/ f ' I  f' I), and the presence of I f  '1 in the denominator prevents 
this from being analytic. Thus while K: has been shown to be divergence-free, it 
cannot also be curl-free. What then is its curl? 

To find it, recall that 

- 
Since Vfl = 0 = Vf'f, 
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- - 
- V K = V  ( w i' } = F [ ~ ~ ( + - ) ]  = = fff  { E I = - ~ -  . lfff12 

f f  I ~ ' I  f f  1 f f 1 3  

Thus V K = 0, which we already knew, and 

Although we have just differentiated K, note that the result does not depend on any 
higher derivatives off than occur in K itself. Indeed, the result may be re-expressed 
as 

V x K  = - 1  f ' l  1 x 1 ~ .  (12) 

Since K is geometrically defined by f ,  and since the curl operator is also geo- 
metric, the curl of K must encode some (presumably simple) geometric information 
about the mapping f .  Unfortunately, we have not yet succeeded in decoding this 
information. 

4 Further Geometry of the Complex Curvature 
The above results were derived by pure calculation in order to illustrate the complex 
gradient technique. We now revert to form and seek more geometric explanations, 
beginning with (10). 

The geometrically derived result (3 I), p. 240, says, in part, that the streamlines 
of the complex curvature are the level curves of the amplification, 1 f '  1. Figure 
[9] illustrates this: sections of adjacent streamlines are mapped by f f to arcs of 
origin-centred circles. It also shows how the infinitesimal complex number dzl 
along the streamline through the point a is amplitwisted by f "(a) to a complex 
number at f '  (a) that points counterclockwise along the circle 1 f ' ( 2 )  1 = I f '(a) 1 = 
const. Correspondingly, the orthogonal number dz2 = -i dzl is amplitwisted to 
a complex number at f f  (a) that points radially outwards. 

Figure [9] 
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In order for IC to be sourceless it must be of the form K: = -iVW, so that 
VW (the direction of maximum increase of W) must be directed as shown, and \I, 
must be a function of If' 1 .  Since If' 1 increases in the direction dz2, while VW is 
in the opposite direction, W must be a decreasing function of 1 f ' 1 .  Thus if \I, is 
any decreasing function of If' 1 then -i VW will be a sourceless vector field in the 
direction of IC. It only remains to show that for the particular function W = 1 / 1 f ' 1, 
the magnitudes also agree, i.e., I VW 1 = IICI. 

Let d 1 f ' 1 and dW be the changes in If' 1 and !P that result from the movement 
dz2. From the picture we see that d 1 f ' 1 = If " (a) dz2 I ,  so that with W = l /  1 f ' 1 ,  

as was to be shown. 
Next we give a more geometric derivation of (1 1). Figure [lo] shows a hor- 

izontal line-segment at z being mapped b~ f to a segment of curve at w whose 
curvature is ~1 and whose unit tangent is 6. The inverse mapping Sl unbends this 
piece of curve and sends it back to the straight line-segment at z. Hence, by the 
general transformation law of curvature, 

In other words, as illustrated, the component of -ICn in the direction of r is 
K I /  1 Sl' 1 = ~ 1 1  f ' 1 .  Likewise, the orthogonal component is ~2 1 f '  1 .  

We now see that -ICn is obtained by expanding Kf by 1 f ' I ,  and rotating it by 
arg(r). But since an infinitesimal real number E a s  is amplitwisted_fo a complex 
number r f ' (z) at w which points in the direction of 6, we see that arg(6) = arg( f '). 
Hence 

- x n  ( 4  = f ' (z) ICf ( z ) ,  
as was to be shown. 

It is also possible to give a more geometric derivation of the result (12). How- 
ever, we shall not bother to do this since we have not yet been able to establish the 
significance of that result. 

Figure [lo] 
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V Flow Around an Obstacle 
1 Introduction 

Figure [ l  11 

Consider a typical fluid flow such as [ l  11. From our assumption that the fluid has 
no viscosity [this is most certainly an idealization] it follows that if we were to 
suddenly freeze the fluid within a flux tube, such as the shaded region in [I  I], then 
the unfrozen fluid would continue to flow in exactly the same way as before. The 
same idea applies if [ l  11 instead represents flowing heat: if the shaded region of 
the metal plate were suddenly replaced with material which did not conduct heat 
then there would be no disturbance to the flow of heat in the remainder of the plate. 
This is much less of an idealization than in the case of fluid flow. 

Conversely, if we insert an obstacle into a flow then the new disturbed flow 
must be such that the boundary B of this obstacle is a streamline, or is made up of 
segments of streamlines. If we think of the complex potential S2 of this disturbed 
flow as a mapping, this means that S2 maps B to a horizontal line, or to segments 
of a horizontal line. 

The problem of finding flows around a given B therefore amounts to finding 
conformal mappings S2 with this property. In fact since the complex potential of 
a given flow is only defined up to a constant, we may further demand that the 
horizontal image line be the real axis. Alternatively, this characterization may 
be restated in terms of harmonic functions: we seek harmonic stream functions Q 
which vanish on B. There are of course infinitely many different flows which satisfy 
this requirement; we only obtain a unique solution if we add other requirements, 
such as demanding that the flow become uniform far from the obstacle. Indeed, 
the superposition of any two flows round B yields a third such flow. 

2 An Example 

As our first example of a flow in the presence of a barrier, reconsider the case of 
S2 (z) = z + (1 / z ) .  See [12]. As we previously discussed, this represents a uniform 
flow to the right into which has been inserted a dipole at the origin. On the other 
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Figure [12] 

hand it certainly appears that the picture can be interpreted in a second way, as 
the flow around a circular obstacle (the shaded unit disc) inserted into a uniform 
flow. [Later we shall see that it is no accident that the flow may be interpreted in 
these two ways.] That both the top and bottom halves of the unit circle are indeed 
segments of the streamline W = 0 is easily seen from the fact that Q maps them 
to the segment -2 5 x 5 2 of the real axis: 

Note the breakdown of the grid at f 1 and check that this corresponds to the fact 
that these are the stagnation points of the flow. 

While this is a possible flow round C that is uniform at infinity, it is not the 
only such flow. First let us discuss this fact in terms of the flow round an obstacle 
of arbitrary shape. 

For any flow round an obstacle, the boundary curve B is composed of stream- 
lines, so B has zero flux. If the obstacle has been inserted into a uniform flow 
then there are no singularities outside B (except at infinity), and it follows from 
the deformation theorem for flux [(9), p. 4811 that if B is deformed into any loop 
round the obstacle then the flux through it continues to vanish. Loops that do not 
enclose the obstacle may be contracted to a point without crossing any singulari- 
ties, so their fluxes also vanish. Since all loops have vanishing flux, the flow is not 
merely locally sourceless, it is totally sourceless. Put differently, this says that the 
flux crossing any curve between to points in the flow is independent of the path. 

It is a different story for the circulation/work round B, for there is no a priori 
reason for this to vanish. Let S denote the value of this circulation. By the Defor- 
mation Theorem (lo), p. 481, the circulation round any simple loop enclosing the 
obstacle will also equal S, while the circulation round loops that do not enclose the 
obstacle will vanish. Put differently, this says that the flux crossing a path between 
two points in the flow is dependent on the choice of that path. The circulation Q ( z )  
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Figure [13] 

along a path from a fixed point to a variable point z is a multifunction of z: if the 
difference of two paths is a loop winding round the obstacle n times, the difference 
of the two values of (z) will be n S. 

We may now state (without proof) the uniqueness property of flows round a 
given obstacle when it is inserted into a uniform flow of given velocity: for each 
value of the circulation S there is precisely one flow. In particular, there is a unique 
flow that is totally irrotational, i.e., for which S = 0. For a circular obstacle, this 
is the one shown in [12]. 

In the case of the disc it is easy enough to construct each of the flows for which 
S # 0. We need only superpose the totally irrotational flow in [12] with the flow of 
a vortex of strength S at the origin. Figure [13] illustrates this flow for a small value 
of S. The reader is strongly encouraged to use a computer to verify this figure. 

As you gradually increase the value of S, notice how the stagnation points on 
the circle move towards each other and finally coalesce at i. At what value of S 
does this occur? Verify your empirical answer with an exact calculation. Increasing 
the value of S still further, this single stagnation point moves off the circle and up 
the imaginary axis, and we obtain the qualitatively different flow shown in [14]. 

Figure [14] 
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Returning to the totally irrotational flow in [12], figure [15] is an attempt to 
illustrate the geometry of its complex potential in greater detail than before. The 
top half is essentially just a copy of [12], while the bottom half illustrates the image 
under the complex potential mapping. Though the figure is intended to be largely 
self-explanatory, we make the following observations: 

If we choose to measure circulation and flux along paths emanating from p, 
then St (p) = 0. 

Here the flow is totally sourceless and irrotational, so St (z) is a single-valued 
function of z. 

The paths from p to zl and 22 both have the same circulation and flux: St is 
two-to-one on the boundary of the disc. 

However, no two points lying strictly outside the disc have the same and q, 
so we have a one-to-one mapping (with inverse St-') between the exterior of 
the disc and the exterior of the line-segment connecting St (f 1). [The latter 
region is often described as a plane with a cut along this segment.] 

C _ - - - - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Figure [15] 
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The bottom half of the figure illustrates two routes [blacklwhite arrows] by 
which the dot-filled shape may be moved to the brick-filled shape. The top 
illustrates their images under S2-' (as defined above). Both routes yield the 
same image for the brick-filled shape, but the price we pay is that 52-' is 
not even continuous (let alone analytic) on the cut: witness the fate of the 
black shape as we follow the white route. However, consider the following 
alternative. Again following the white arrows, sketch what happens if we 
analytically continue S2-' as we cross the cut. Hint: look at the flow inside 
the unit circle in [ 121. 

The fact that we have ended up with two different images for the brick-filled 
shape reflects the fact that the two routes enclose a branch point at S2 (1). This 
is implied by the existence at f 1 of stagnation points, i.e., critical points of 
S2. Geometrically, this is evident from the doubling of angles at these points, 
e.g., the angle n at - 1 is doubled to 2n at S2 (- 1). 

We now turn to two more physical interpretations of [12]. First, we may view 
the two-dimensional flow in [12] as being a cross section of a genuine three- 
dimensional flow. Suppose we were to make a few thousand photocopies of this 
figure and stack them neatly one on top of the other. The shaded discs would fit 
together to form a cylinder perpendicular to the stack, and the streamlines would 
represent the flow round this cylinder. Of course a real cylinder has ends, and, 
when it is inserted into a uniform flow perpendicular to its axis, the flow on a plane 
that is close to one of these ends will no longer look like [12]. 

To give the second interpretation we must explain a previous remark, namely, 
that the dual of a flow round an obstacle is the electric field which solves an 
analogous problem in electrostatics. The dual of the flow in [12] is shown in [16]. 
Since C was a streamline of the original flow, it is now an equipotential of the dual 
flow. 

Suppose we insert a long copper cylinder into a uniform electric field perpen- 
dicular to its axis. Almost instantly, the free electric charges within the cylinder 
will settle themselves into an equilibrium distribution such that the electric field 
becomes steady ("electrostatic"). Figure [16] then represents a cross section of 
this electrostatic field on a plane that cuts perpendicularly through the conductor 
somewhere in the middle. [Again, the field near the ends will be different.] 

Here's why. Just as we require \I, to be constant on the boundary of an obstacle 
in a fluid flow, so we require Q, to be constant on the boundary of a conductor 
in an electrostaticfield. This is equivalent to demanding that the electric field be 
perpendicular to the boundary of the conductor, and it is not hard to see why the 
latter must be true. For if the electric field E = VQ, were not perpendicular, it would 
have a nonzero component within the surface of the conductor. But this means that 
the free charges there would experience a force and would move, contradicting our 
assumption that the field has settled into an electrostatic one. 

The figure also sketches the equilibrium distribution of negative 8 and positive 
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Figure [ 161 

@ charge on the surface of the cylinder. This distribution is such that the charge 
density is proportional to the (signed) strength of the electric field at the surface. If 
a phase portrait has been divided into squares, as this one has, this implies [why?] 
that the charge density is proportional to the density of field lines (per unit length) 
leaving the conductor's surface. To learn more of the physics of electrostatics, see 
Feynman [1963]; for a geometric approach, see Maxwell [1881]. 

3 The Method of Images 
To illustrate the different kinds of flow which are possible in the presence of one 
and the same obstacle, suppose that we instead inserted the unit disc into the flow 
of a dipole located at 2, having dipole moment -(1 + i), and thus represented by 
the (undisturbed) complex potential 

Clearly the disturbed flow must look something like [17]: the streamlines be- 
have like those of Q, both close to 2 and far from the obstacle, and the unit circle 
is composed of streamlines. Later we will use the so-called method of images to 
show that (modulo artistic error) this figure is in fact the exact flow. To explain this 
method we begin with a much simpler example. 

With the lower half-plane as the obstacle, consider the flow of a source of 
strength 2x located at (2 + i), for which the undisturbed complex potential is 

Q,(z) = log(z - 2 - i). 

Clearly the disturbed complex potential Qd (which we seek) must have streamlines 
which look something like those in [18]: they closely resemble those of Q, near the 
singularity, and the barrier is a streamline. That [18] is actually the exact solution 
follows from the illustrated fact that equipotentials [dashed] may be drawn so as 
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Figure [17] 

to divide this flow into squares. We now describe how this ad may be found by 
the method of images. 

As we saw in Chapter 5, Schwarz's Symmetry Principle (p. 252) says that a 
function which is analytic on one side of the real line, and which takes real values 
on that line (e.g., ad), may be analytically continued to the other side by taking 
conjugate points to have conjugate images. This is vividly clear in [18]: the grid 
of squares in the upper half-plane may be continued to the lower half-plane by 
reflecting the grid in the real axis. The complete flow is thus given by 1191. 

Figure [18] 
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Figure [19] 

Intuitively, we have found that the flow in the presence of the barrier may be 
obtained by removing the barrier and instead inserting another source of the same 
strength as the original, but located at the mirror image in the real axis. Thus !2d 

is the superposition of these two sources: 

!&(z) = log(z - 2 - i)  + log(z - 2 + i). 

Use a computer to verify that this formula produces [19]. 
More generally, if i2, is the undisturbed complex potential of a superposition 

of multipoles (sources, vortices, dipoles, etc.) in the upper half-plane, then ad 
will be the superposition of the undisturbed flow of this set of multipoles and 
the undisturbed flow of their mirror images. Note that while the mirror image 
multipoles will be of the same type and strength as the originals, the direction of 
their multipole moments will be different. For example, a dipole in the direction 
(3 - 2i) reflects to one in the conjugate direction (3 + 2i). More generally, a 
multipole with multipole moment Q reflects to one with moment e. 

Now let us turn this method into a formula. In Chapter 5 we showed that from 
a given analytic mapping f (2) we can produce a new analytic mapping f * ( z )  
according to the recipe 

f "(2) = f (a. (14) 

The physical significance of this new analytic function is easy to see: if a, again 
represents the complex potential of a superposition of multipoles in the upper half- 
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plane, then SZG will be the undisturbed complex potential of their mirror images in 
the lower half-plane. The formula for the disturbed complex potential is thus 

Note that this formula does indeed satisfy Schwarz's Symmetry Principle: SZ; (z) = 
SZd(z), so the real axis is a streamline. Naturally, if SZ, instead represents a col- 
lection of multipoles in the lower half-plane, then (15) is again the solution in the 
presence of the barrier. 

Essentially the same method may be used to find the disturbed flow in [17], 
in which the barrier is now a circle rather than a line. Reconsider that figure. We 
have drawn the streamlines Q = const. at random, but had we instead chosen 
the values of Q in arithmetic progression (as we did in [12]) then it would have 
been possible to divide this flow into a grid of infinitesimal squares, with the unit 
circle being comprised of edges of these squares. As we saw in Chapter 5, it is 
again possible to extend this grid across the barrier (c.f. [12]), but to do so we must 
replace reflection in a line by its analogue for circles, namely, inversion. 

Performing this inversion in the unit circle we obtain [20], the dipole at 2 
inverting to another dipole at (1/2). It is now clear that to find SZd we should 
remove the barrier and superpose the undisturbed flows of these two dipoles. But 
what is the undisturbed complex potential of this new dipole at (1/2)? 

As we saw in Chapter 5, if reflection in the real line is replaced by inversion 

Figure [20] 
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in the unit circle then the recipe (14) may be modified to generate a new analytic 
function f given by 

The physical significance of this new analytic function is much as before: if SZ, 
represents the complex potential of a superposition of multipoles outside the unit 
circle, then 8: will be the undisturbed complex potential of their images under 
inversion. The analogue of (15) is now 

which automatically satisfies the symmetry requirement 8; ( z )  = 8 d  ( z ) ,  so that 
the unit circle is a streamline. This result is known as the Milne-Thomson Circle 
Theorem. If 8, instead represents a collection of multipoles all of which lie inside 
the unit circle, then this 8 d  is again the solution in the presence of the barrier. The 
reason for the emphasis on "all" will be explained later. 

Let us apply this method to find the disturbed complex potential of [20] (and 
hence of [17]). If 8, is given by (13) then 

That this is indeed a dipole at (112) may be seen by rewriting it as 

Because constants have no effect on the flow, this is a dipole at (112) with dipole 
moment ( 1  - i ) /4 .  Unlike the case of reflection across a line, note that it is not only 
the direction of the dipole moment which is affected by the inversion, but also its 
magnitude: here the strength of the inverted dipole is one quarter the strength of 
the original. Superposing the two dipoles we obtain 

and you may use a computer to verify that this formula does yield the flow in [20]. 
Like [19], figure [20] has symmetry, but it is of a more subtle kind than before: 

by construction, the figure reproduces itself under inversion in the unit circle. This 
symmetry can be made to leap from the page by projecting [20] onto the Riemann 
sphere. As we learnt in Chapter 3, inverting in the unit circle is equivalent to 
reflecting the Riemann sphere in its equatorial plane. The flow on the northern 
and southern hemispheres should therefore be mirror images of each other in this 
plane. Behold figure [21]! Note that on the sphere the strengths of the two dipoles 
become equal. 
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For example, if K is the real line (so that 'iRK (z) = ?) then f * = f *, while if K is 
the unit circle (so that 'illK (z) = 1/Z) then f = f t . Thus if a, is the undisturbed 
complex potential of a collection of multipoles on one side of K then the disturbed 
complex potential with K as barrier will be 

This formula automatically satisfies = a d ,  so that K is a streamline. 
For example, take the ellipse E in [22] to have equation (x/212 + y2 = 1. In 

this case we have [see p. 2561 

Thus, with a, (z) = z, 

and you may use a computer to verify that this formula yields figure [22]. Note, 
however, that everything is not quite as it seems. While a, is a uniform flow to the 
right with speed 1, the behaviour of a d  for large values of lzl is a uniform flow to 
the right with speed (413). Of course if we wish the flow to have unit speed far 
from the ellipse then we need only multiply this ad by (3/4). 

4 Mapping One Flow Onto Another 
We previously established the fact that a conformal mapping sends the streamlines 
and equipotentials of steady, sourceless, irrotational flow to the streamlines and 
equipotentials of another such flow. This idea has many theoretical and practical 
uses. 

A theoretical benefit is a fresh insight into the very concept of a complex 
potential. Reconsider figure [21], p. 501. Applying any conformal mapping f 
to the flow on the left yields another steady, sourceless, irrotational flow on the 
right. The complex potential may now be defined as the special mapping f = 
for which the image flow is uniform with velocity 1. For example, what is the 
complex potential of a uniform flow with velocity I? From the new point of view 
it is the conformal mapping which sends this flow to a uniform flow with velocity 
1. Thus it is the identity mapping Q (2) = z, as it should be! 

To demonstrate the practicality of mapping one flow onto another, let us return 
to the problem of finding the flow round an obstacle, restricting our attention to the 
case where the obstacle is inserted into a uniform flow. For example, let us rederive 
the flow round the ellipse (x/212 + y2 = 1 in [22]. Suppose that we knew of a 
one-to-one conformal mapping w = f (z) from the exterior of the unit circle C in 
the z-plane to the exterior of this ellipse E in the w-plane. We already know the 
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flow round C when it is inserted into a uniform flow of velocity 1, so applying f 
to these streamlines yields some flow round E .  If we want the flow round E to be 
uniform far from E then we must further demand that f (z) behave like a multiple 
of the identity far from C: f (z) cz if lzl is large. Assigning equal values of 
\I, to the original and image streamlines, the image flow far from E will then be 
uniform, with speed (1 1 lc 1) and direction c [why?]. 

Recall figure [22], p. 242. As z = eit describes C, w = p eit +q e-i t  describes 
the ellipse ( x / u ) ~  + ( y ~ b ) ~  = 1, where p = (a + b)/2 and q = (a - b)/2. Thus 
in the case of (x/212 + y2 = 1, the mapping we seek is 

As illustrated in [23], C is mapped to E and circles concentric to C are mapped to 
ellipses confocal to E. Far from C the mapping behaves like (312)~: you can see 
that as the circles on the left grow, their images approach circles that are (312) as 
big. Thus f should map the flow round C to the flow that results from inserting E 
into a uniform flow of velocity (213). 

Figure [23] 

Let's go through the details and check that we recover the flow in [22]. Since 
the flow round C has complex potential S2 (z) = z + (1 /z), and since the complex 
potengal z (w)  at the image w = f (z) of z is defined to be the same as S2 at z, we 
have Q(w) = z + (112). To express this as an explicit function of w we solve (18) 
for z and obtain [why the choice of +?I 

Although we could immediately insert this into the formula for 6(w), we may 
save ourselves a little algebra by first noting that (18) implies (l/z) = 2w - 32. 
Thus -- 

C~(W) = z + ( 1 1 ~ )  = 2(w - Z) = (2w - d m ) .  
Apart from the factor of (2/3), signifying that the velocity is (213) far from E 
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(as anticipated), this is the same formula we previously obtained by Schwarzian 
reflection. 

As another illustration of this idea, suppose that E were instead inserted into 
a uniform flow in the direction of ei#. To find the flow round E we need only find 
the flow round C when it is inserted into such a flow, and then apply f .  Since the 
undisturbed complex potential is !2. (z) = e-'6z, the method of images says that 
the flow round C is 

With 4 = (n/4) this flow is illustrated on the left of [24]. On the right is the desired 
flow round E obtained by applying f to the flow round C. Use your computer to 
verify this figure. 

In this manner we may derive the flow round an infinite variety of obstacles: 
choose any analytic mapping w =_ f (z) which is one-to-one outside C and which 
behaves like cz for large izl, then Q(w) = f -' (w) + [ I /  f -' (w)] is the flow round 
an obstacle whose boundary curve B is f (C). 

Figure [24] 

VI The Physics of Riemann's Mapping Theorem 
1 Introduction 
Recall that Riemann's Mapping Theorem [p. 1801 asserts that any simply connected 
region R (other than the entire plane) may be mapped one-to-one and conformally 
to any other such region S. Granted this, we saw that no loss of generality results 
from taking S to be the unit disc D, and that there must be as many mappings 
from R to S as there are automorphisms of D. Later [p. 3571 we showed that 
these automorphisms are the hyperbolic rigid motions, which have three degrees 
of freedom. Thus the complete result we seek to understand is this: there exists a 
three-parameter family of one-to-one, conformal mappings between R and D. 
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There are at least two standard proofs of this fundamental result, and most 
advanced books on complex analysis include one of these. Despite the fact that 
one of the arguments (due to Koebe) is constructive in nature-and therefore, in 
principle, comprehensible-we have not yet found a way to present it in a manner 
consistent with the aims of this book. However, the interested reader will find an 
excellent description of the idea underlying Koebe's proof in Hilbert [1932], and 
a clear description of the technical details in Nehari [I9681 or Nevanlinna and 
Paatero [1969]. To our knowledge, the deepest investigation of this idea is that 
given by Henrici [1986]. 

On a brighter note, the above ideas on flows will enable us to gain considerable 
insight into both the existence of such mappings and the fact that they have three 
degrees of freedom. We shall do so by reversing the idea of conformally mapping 
one flow onto another. That is, by resorting to physical experiment one may obtain 
flows, and these may then be used to construct conformal mappings. 

2 Exterior Mappings and Flows Round Obstacles 

Consider [25]. The top part depicts an obstacle R that has been inserted into uniform 
flow having velocity 1. If we do not introduce any circulation round R then, as 
we have previously remarked, the flow is unique. Next, we have arbitrarily chosen 
a point [not shown] from which to measure circulation and flux, i.e., a point at 
which the potential Q, and stream function both vanish. With a small value of k, 
we have then constructed the k-flux tubes and k-work tubes, thereby dividing the 
exterior of R into small, approximately square, k-cells. As usual, we may imagine 
shrinking the value of k to zero, so that ultimately the k-cells are square. 

As illustrated, let a and b be the two stagnation points on the boundary of R 
(ordered so that the flow passes from a to b), and let S1 and S2 be the two segments 
of boundary streamline connecting them. Since the flow is totally irrotational, the 
circulations along S1 and S2 must be equal to each other, the common value being 
the potential difference [ a ]  between a and b: 

[ a ]  = Q, (b) - Q, (a). 

Put geometrically, this says that the number of squares abutting S1 and S2 must be 
equal to each other, this number being given by [a] /  k. 

Now insert the unit disc D into a uniform flow with velocity v eim and divide up 
the resulting flow into k-cells, using the same value of k as before. Let us employ 
tildes to denote corresponding entities in the new flow:the stagnation points are ;i 
and b, the segments of streamline connecting them are S1 and S2, and the~otential 
and stream functions (relative to an arbitrarily chosen point) are Q, and Q. 

The method of conformally mapping points z in the exterior of R to points 
w = f (z) in the exterior of D now seems clear: identify "corresponding" squares 
in theqwo grids! Let us control our excitement and think this through. Presumably, 
by "corresponding" we mean that once we know the image w of one grid point 
z then the image of any other is determined by the pair of grids: if z moves four 
squares downstream and two squares "up" the equipotentials, then w does the 



542 Flows and Harmonic Functions 

Figure [25] 

same. See [25]. 
However, we cannot arbitrarily choose to map a particular z to a particular w ,  

for the sought-afer conformal mappin3 w = f ( z )  must map the stagnation points 
a and b to the stagnation points li and b. This is because the geometric signature of 
the critical point a is the angle of (n/4) between the streamline and equipotential 
[not shown] through a,  and this property is preserved by a conformal mapping. 

Now the snag is this: defining the image of a20 be li (as we must), b will map to 
if and only if the number of squares abutting Sl is equal to the number abutting 

S1.  Looking closely, we see this is not the case in [25]: there are fewer squares 
along S1 than S1. To correct the situation we must slightly increase the speed v 
of the flow round the disc. More precisely, v must be chosen so that the potential 
difference [ z ]  across D equals the potential difference [@I across R. Since we 
know that [@I = 4v,  we deduce that 
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A one-to-one, conformal mapping between the two grids is obtained 
if and only if the disc is inserted into a flow of speed v = [@]/4. 

Although we hope our use of grids has helped to make the mapping vivid (and 
to show that it is both one-to-one and conformal), we should perhaps point out 
that the grids are in no way essential to the definition of f .  All we are doing is 
identifying points by means of circulation and flux: the image w = f (2) of z is 
defined by 

G(w) = Q(z)+ {G(Z) -Q(a ) ] ,  

the constant having been chosen so as to ensure that Z = f (a). 
Since the choice of the zero point of flux and circulation in each of the flows 

has no bearing on the construction of f ,  we may choose these two points to our 
advantage. Henceforth, we will take the zero point in the imageflow to be the image 
of the zero point in the originalflow. In [25], for example, this convention says that 
if we choose the zero point for the flow round R to be at a (i.e., Q (a) = 0), then 
we must take the zero point for the flow round D to be at ;i (i.e., 6 ( Z )  = 0). The 
above equation then simplifies to 

In other words, w and z correspond if and only if their circulation and flux are 
equal. 

In this case the mapping may be written as f = 6-' 0 Q, which we may 
interpret as follows. Refer to [25] and [15]. The complex potentials Q(z) and 
E(w) map points lying strictly outside R and, respectively, D to points in a plane 
that is slit along the real axis from 0 to [@I. Thus f may be thought of as first 
mapping the exterior of R to the slit plane by means of Q, then mapping the slit 
plane to the exterior of D by means of 6-' . 

We now return to the mappings themselves and ask, how "many" of them do we 
obtain by means of this construction? We begin by explaining the illusory nature 
of some of the apparent freedoms in the construction. First, why not insert R into 
a uniform flow of arbitrary speed? Of course we can, but nothing new results from 
doing so. For example, if we double this speed then we must also double v, because 
we must maintain equality between the number of k-cells along Sl and yl. But 
this yields the same mapping f as before. Second, in constructing the grid outside 
D, why not use a different value of k, say F, from that used outside R ?  In order to 
maintain equality bezeen the number of squares along SI and $1 we would then 
have to change v to k[@]/4k [why?], and this would produce the same grid and 
mapping as before. 

Clearly, however, we do obtain new mappings by varying the direction 4 of 
the, flow round D. If F denotes the particular mapping f corresponding to 4 = 0, 

\ then the mapping Fm corresponding to a general value of 4 is F4(z) = ei"(z), 
namely, F followed by a rotation. 

It would seem plausible that still other mappings could be obtained by varying 
the direction-let us call it 8-of the flow into which R is inserted. Not so. This 
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follows from the fact that the flow round R in this case may be obtained by applying 
F-' to the flow round the disc when it is inserted into a uniform flow in the 
direction 0. Clarify this in your own mind by referring to figures [23] and [24]. 
Thus the mapping between the two flows is only sensitive to the angle between 
their directions: inserting R and C into flows with directions 0 and 4, respectively, 
yields the mapping F(4-o). 

Since 4 is the only genuine degree of freedom, the mappings we have con- 
structed belong to a one-parameter family. We are therefore missing two degrees 
of freedom. Though we will explain this mystery shortly, you may care to think 
about it on your own before reading further. 

Granted the generosity of Nature in providing such flows round obstacles, 
we now have a physical method of determining f ,  but we lack a mathematical 
procedure for doing so. This is a very hard problem. However, there does exist an 
explicit formula for f in the case that R is bounded by a polygon. This is called 
the Schwarz-Christoffel fomzula; see Nehari [I9521 or Pdlya and Latta [I9741 for 
good discussions of the result. We shall not enter into this here, except to say that 
the advent of high-speed computers has opened the way to approximating f by 
approximating the boundary of a given R with a polygon; see Trefethen [I9861 
and Henrici [I9861 for this and other algorithmic approaches to the problem. 

3 Interior Mappings and Dipoles 

In [25], suppose that the speed of the flow round D has been adjusted to [@]/4, 
yielding a conformal mapping between the exteriors of R and D. If we now perform 
inversion in the boundary of D, we obtain the flow [26b] inside the unit circle C .  
This is the familiar flow of a dipole inserted into the centre of a circular pool of 
fluid. 

Similarly, if we choose an arbitrary interior point q of R, then perform an 

Figure [26] 
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inversion4 in a circle of unit radius centred there, we obtain [26a]. Use a computer, 
or your Peaucellier linkage [see p. 1811, to verify that the boundary of R does 
indeed invert to the illustrated curve Rt. In [25], the streamlines far from R are 
parallel lines, and the inversion therefore sends these to small, mutually tangent 
circles through q. Thus, as illustrated, the inverted flow in [26a] represents a dipole 
which has been inserted at q into the Rt-shaped pool of fluid. In fact [exercise] 
since the original uniform flow had unit speed, the dipole at q has unit strength. 

In this way, the one-to-one, conformal mapping between the exteriors of R 
and C now yields another such mapping between the interiors of R? and C. For 
example, the stagnation point a maps to the stagnation point E, q maps to 0, and 
the black T-shape inside Rt  maps to the one inside C. Although the speed of the 
flow grows arbitrarily large as we approach q, there is nothing dramatic about the 
behaviour of the mapping near q. For example, imagine sliding the T-shape along 
the streamlines towards q, and consider its image. 

We may look at this construction rather differently. Suppose that Rt is a given, 
fixed curve whose interior we wish to map to the unit disc. We may obtain such a 
mapping f as follows: 

(i) Insert a horizontal dipole of unit strength into the interior of R? at an arbitrary 
interior point p.  Divide the interior into k-cells of the flow, and let N denote 
the number of them abutting Rt . 

(ii) At the centre 0 of C, insert a dipole of strength d ,  and direction @. Divide the 
interior of C into the k-cells of this flow, and adjust the strength d until the 
number of them abutting C is equal to N. If [@I again denotes the circulation 
along a segment of boundary streamline connecting the stagnation points a 
and p,  this condition is met by d = [@]/4. 

(iii) Except for the fact that the dipole inside R? is now located at a general point 
p (instead of the particular point q), we are now back to the situation depicted 
in [26], and the mapping f is completely determined. 

This one-to-one, conformal mapping f from the interior of Ri to the unit disc 
is, in fact, the most general such mapping. This may be seen from the fact that the 
construction has the full three degrees of freedom: two for the location p of the 
dipole in Rt, and one for the direction @ of the dipole in C. It is not hard to see the 
geometric significance for f of these physical degrees of freedom: p is the point 
which is mapped to the centre of the disc, i.e., f (p) = 0; and @ is clearly the twist 
of f at p ,  i.e., 4 = arg[ f '(p)]. 

Note that while the twist off at p is freely specifiable, the amplification If '(p) ( 
is not. In fact [exercise, or read on] If '(p) 1 is simply the strength d of the dipole in 
C, and we have seen how the latter is fixed in the course of the above construction. 
Put differently, If '(p) 1 = [@]/4. 

4~deas related to those which now follow may be found in Bak and Newman [1982, p. 1681, 
Siege1 [1969, p. 1481, and especially Courant [1950]. Although Riemann himself employed phys- 
ical reasoning, the idea of relating his mapping theorem to dipoles seems to have originated with 
Hilbert [ 19091. 
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We can now return to the construction in [25] and see why it is missing two 
degrees of freedom. To obtain the general mapping between the exteriors of R and 
D, we may take this newly constructed general mapping between the interiors of 
R? and C, then reverse (i.e., repeat) the inversions which took us from [25] to [26]. 

In the above process of generalization the fundamental step was moving the 
dipole at q to an arbitrary interior point p. Since the flow in [26b] did not undergo 
any fundamental change, inversion returns it to a flow round D like that shown in 
[25]. However, to send R+ back to the boundary of R we must invert in the circle 
of unit radius centred at q (which we now take to be the origin), and theflow inside 
R? of the dipole at p inverts to the jlow outside R of a dipole placed at (l/P). 
Figure [17] illustrates such a flow when R is a disc. 

The construction in [25] is now recognizable as the special p = q in which the 
dipole outside R has been placed at oo rather than at a general point. Here are our 
two missing degrees of freedom: there was nothing wrong with choosing to place 
one of the dipoles (the one outside D) at oo, but we then (unnecessarily) insisted 
on placing the other dipole there too. In terms of the resulting mapping between 
the exteriors, this amounted to insisting that oo map to oo, whereas the general 
construction allows us to map any point outside R to oo by placing a dipole there. 

4 Interior Mappings, Vortices, and Sources 

Having had the inspiration to construct mappings by means of multipoles, it is 
natural to wonder if we may simplify this dipole method by employing the most 
primitive of all multipoles, the source. However, if we continue to think in terms 
of fluid flows then this idea cannot work. For if we place a source inside the region 
we wish to map, the fluid flowing out of the source and into the region has nowhere 
to go! The only way out is to also insert a sink of equal strength5, thereby creating 
a doublet. But this is really no improvement over our earlier dipole construction, 
for a dipole is merely a limiting form of a doublet. 

However, as we shall explain shortly, the failure of this attempted use of sources 
is merely a consequence of our thinking in terms fluid flowing within a strangely- 
shaped pool; by thinking in terms of electric fields or heat flows, we can use sources 
to construct mappings. 

Continuing with the fluid interpretation for the time being, there does exist 
a simple alternative to the dipole method, but in place of sources we must use 
vortices. Let B be the boundary curve of the simply connected region which we 
wish to map to the interior of the unit circle C. To construct the mapping, insert 
a vortex into B at an arbitrary interior point p, and insert another vortex into C at 
0. See [27]. Dividing each flow into k-cells, as before, conformal mappings leap 
from the page. Let's examine the details. 

Firstly, in defining the correspondence between the grids we are forced to map 
p to 0. Secondly, having chosen the strength S of the vortex in B, the strength 
of the one in C must be chosen so that (as illustrated) the number of k-cells 

50f course we could insert several sinks whose strengths summed to that of the source, but 
that would be messier still. 
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Figure [27] 

abutting C is equal to the number N abutting B. This is the same idea as in the 
dipole construction, but the answer in this case is much simpler: put S" equal to S. 

The explanation is as simple as the answer. Concentrate on one of the vortices, 
say the one in B. Its strength S is, by definition, the circulation along any simple 
loop round p, and we may conveniently take this to be one of the streamlines. 
The equipotentials cut this streamline into N segments, each having circulation k. 
Thus S = Nk, and likewise S = N k .  The condition S" = S follows immediately. 

Finally, observe that we have not yet pinned down the mapping. In both 1251 
and [26] there were stagnation points which we were forced to identify, thereby 
tying down the mapping. However, here there are none, and we must do the job by 
hand. A common procedure goes like this. We know that the streamline B maps to 
the streamline C, and we may now insist that a particular point a on the first maps 
to a particular point Z on the second. 

If we wished to be more definite, we might do the following. Consider the 
heavily-dashed equipotential in B which exits p travelling due east, and choose a 
to be its intersection with B. See [27]. If we now choose Z = ei4 then the mapping 
f between the two grids is completely tied down. For example, the black T-shape 
in B maps to the black T-shape in C. The only advantage of specifying a and li in 
this particular way is that @ then has a simple interpretation in terms of f ,  for it is 
clearly the twist of f at p: q j  = arg[ f '(p)]. 

As with the dipole method, we have obtained the full three-parameter family 
of mappings: two for the point p that f maps to the centre of C, and one for the 
twist o f f  at p.  

Now let us turn to other physical interpretations of this construction. Taking the 
dual of the flows in [27], we obtain [28]. The equipotentials have become stream- 
lines?. and the streamlines (B and C in particular) have become equipotentials. By 
the same reasoning as above, the strength of each source shows up geometrically 
as k  times the number of streamlines emanating from it. 

Let us digress briefly. Since the strength of a source is measured by the number 
of k-flux tubes emanating from it, a conformal mapping sends a source to another 
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Figure [28] 

source of equal strength. Obviously, the same goes for a sink. Returning to [26], 
we can understand why the strength d of the dipole inside C is the amplification 
of f at p. The dipole of unit strength at p may be thought of as a doublet in which 
the source and sink are an infinitesimal distance E apart, and each has strength 
(116). The conformal mapping f sends this to another doublet at 0: the strengths 
of the source and sink are preserved, but their separation (and hence the strength 
of dipole) is amplified by I f  '(p) 1, as was to be shown. 

Returning to the physical interpretation of [28], we have already observed that 
such pictures of sources make no sense when thought of as fluid flows. However, 
they do make perfect sense when thought of as electrostatic fields. Imagine that the 
dark regions in [28] represent cross-sections of blocks of copper through which we 
have bored "cylindrical" holes with cross-sections given by B and C. Now imagine 
that p and 0 are the cross-sections of two long, very thin, uniformly (and equally) 
charged wires running down these holes. The electrostatic fields generated by these 
wires automatically have B and C as equipotentials, so [28] faithfully represents 
these fields, with the streamlines being the electric field lines. 

We may also interpret [28] in terms of heat flows. Imagine that the white shapes 
bounded by B and C have been cut from a sheet of heat-conducting metal, and 
imagine that the dark regions are filled with ice, thereby maintaining B and C at 
constant temperature (i.e., potential). If heat is introduced at a steady rate at p and 
at 0 then the flow of heat will eventually settle down to the one in [28], with the 
dashed equipotentials being the isotherms. 

It must be observed, however, that a point source of heat is a much less physical 
concept than its electrostatic analogue, which may be realized (as we have said) 
by a very thin charged wire. The reason is that the potential function @ becomes 
arbitrarily large as we approach a source. In electrostatics this does not present 
any difficulties, but in the heat-flow interpretation -@ represents temperature, so 
the metal in the vicinity of such an imagined source of heat would vaporize! For 
an excellent discussion of such physical distinctions, see Maxwell [1881], p. 51 
onwards. 
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While many readers may be unfamiliar with electrostatics, few will be unfa- 
miliar with heat. Thus, ignoring the above objection, we shall persist in expressing 
ideas mainly in the language of heat rather than electrostatics. 

5 An Example: Automorphisms of the Disc 

Let us explicitly cany out the construction in [27] for the case B = C, and so 
re-obtain the automorphisms of the unit disc from a fresh point of view. 

Figure [29] illustrates the construction in this case. Previously we did not 
specify the strength S of the two vortices because the choice had no effect on the 
resulting mapping, but let us now choose S = -2n. Taking the zero of flux and 
circulation in [29b] to be at 1, the complex potential for [29b] is then 

N 

Q ( w )  = i log w .  

Figure [29] 

Now consider the flow in [29a]. We may find its complex potential by the 
method of images6. That is, we superpose the real vortex at p with its reflection 
in C, namely, a fictitious vortex of equal and opposite strength at (1  I F ) .  See [30]. 
The complex potential of [29a] is thus 

= i log 7 - 6 .  I 
where y and 6 are constants. 

"In [29b] we chose to measure circulation and flux from a boundary point, and 
we now choose to do the same in [29a]. In terms of the above equation this is 
equivalent [exercise] to demanding that the constant 6 be an arbitrary real number. 

6~owever,  note that we are not using (17). See Ex. 14 to understand why. 



550 Flows and Harmonic Functions 

Figure [30] 

To pin down the mapping we must now choose a and Z. Instead of doing this 
as we did in [27], let us this time choose them to be the two boundary points 
from which we have elected to measure circulation and flux in the two flows. As 
previously discussed, the mapping is then effected by equating circulation and 
flux: 

ii(w) = Q(z). 

Solving for w, we do indeed recover the familiar automorphisms of the disc: 

Of course we have not done anything really new, for we have used the method 
of images, and this is merely a disguised form of the Symmetry Principle by means 
of which the result was originally obtained. Nevertheless, we hope you have found 
it instructive-and delightful!-to be able to look at these automorphisms from a 
new, more physical point of view. 

6 Green's Function 

We now return to [28] and to the heat-flow approach to the construction of con- 
formal mappings. 

Figure [31] is essentially a copy of 1281, but with a few added details which 
we will need shortly. We supply heat at the constant rate 27~ to the point p of the 
region R while holding the temperature all around the boundary B at the constant 
value 0. After the heat flow has settled down, the temperature in R will be a well 
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defined (except at p)  harmonic function Gp(z) called the Green's finction of R 
with pole at p.  Note the new, special sense of the word "pole". 

As an example, let us obtain the Green's function for the unit disc. In [29a] we 
considered the flow of a vortex of strength -2n inserted at p.  And because we 
chose a point on C as the zero of circulation and flux, the stream function vanished 
on the boundary streamline. The dual of this flow is therefore precisely what we 
are after: a source of strength 2n at p,  with the boundary at zero potential. By (19), 
the complex potential is 

~ ( z )  = ~ ( z )  + i q (z )  = log [;z--pl] 7 + is,  

where 6 is a real constant. Thus the temperature in the disc is given by 

Note that Gp (2) = - In I f  (z) I, where f (z) is any of the one-parameter family of 
mappings to the unit disc such that f (p) = 0. We shall see that this is true quite 
generally. 

Also note that this Green's function has a very interesting symmetry property: 

Thus, with the boundary packed with ice, the steady-state temperature at q due to 
a point source of heat at p is the same as the temperature at p when the source 
is instead at q. Remarkably, we shall see that this symmetry holds true for the 
Green's function in a region of arbitrary shape! 

The Green's function is a powerful tool in several areas of mathematics. For 
the time being, we will concern ourselves primarily with its relationship to the 
conformal mappings w = f (z) from the interior of B to the unit disc. In the next 
section we shall discuss another important application. 

Returning to the general case in [31], suppose Gp is known. As previously 
described, we may then construct a harmonic dual Xp(z), that is, a harmonic 
function whose level curves are the paths along which the heat flows (orthogonally 
through the isotherms Gp = const.) from p to the boundary. Thus knowledge 
of Gp is sufficient for the construction of the whole complex potential, 52 (z) = 
-[GP(z) + i Xp(z)l- 

Consider the behaviour of Gp in the immediate vicinity of p.  Physical intuition 
leads us to expect, irrespective of the temperatures assigned to B ,  that the flow out 
of p will almost be like that of an isolated source, so that 52 (2) % log(z - p). Thus 
if z t  p + p eie then 

Gp(z) - ln p ,  (22) 

for small values of p. 
Similarly, Xp (2) % - (8 + $), where $ is a constant. The freedom in choosing 

$ is equivalent, as we shall see, to the freedom of choosing which point of B maps 
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to a particular point of C .  If we choose 4 = 0 then the value of 7-lp at a typical 
point q has a particularly simple interpretation. See [3 11. Following the flow of 
heat back from q to p ,  the angle at which it enters p is -3-lp(q). 

Returning to (22), the precise version is that Gp differs from - ln(p) by a 
function gp (z) which is harmonic throughout R: 

Since Gp vanishes on the boundary, the values of gp on B are determined directly 
by the shape of B and the location of p within it: 

The problem of constructing Gp is therefore equivalent to the problem of finding 
the function gp that takes these values on B and is harmonic throughout the interior. 
This is an example of the type of "Dirichlet problem" to be discussed in the next 
section. The solution of this problem also gives us 7ip, for we may construct a 
harmonic dual hp of gp, and then 7ip = -8 + hp. 

To construct a conformal mapping w = f (z) to the unit disc D such that 
f (p) = 0, we may (as previously explained) equate the complex potential ( z )  
of the flow inside R with the complex potential 6 (w)  = log w in D of the heat 
source at 0, with the boundary at zero temperature. Thus 

As illustrated in [3 11, the dashed isotherm at temperature G(q) is mapped to the 
dashed circle of radius e-9(q), and the streamline 3-l = Z(q)  = -6 entering p at 
angle 8 maps to the ray entering 0 at angle 8. Thus f has zero twist at p. This is the 
significance for f of our previously choosing 4 = 0; in general arg[ f '(p)] = 4. 

Now that we possess the mapping f ,  any harmonic temperature distribution 

Figure [3 11 
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T(z) on R may be conformally transplanted to a harmonic function T"(w) on D 
(and vice vers_a) by assigning equal temperatures to corresponding points of the 
two regions: T [ f (z)] - T (z). In particular, the values of T on B are transplanted 
to C. 

We can use this to understand the following. If we know a conformal mapping 
w = f (z) from R to D such that f (p) = 0, then the Green's function of R with 
pole at p is 

Gp(z) = --In If (d l .  

To see this, consider the temperature distribution gp(w) in D obtained by trans- 
planting Gp with f .  We know that this conformal transplantation preserves the 
harmonicity of the original, that it sends the source at p to an equal source at 
f (p) = 0, and that the vanishing temperature on B is transplanted to vanishing 
temperature on C. Thus this temperature distribution GP(w) = GP[ f -'(w)] in 
D must be the Grecn's function with pole at 0, and we already know that this is 
- In I w 1. Done. 

Exactly the same reasoning yields the following generalization. Let J(z) be 
a one-to-one conformal mapping of R to some other simply connected region S 
with boundary Y. Then J conformally transplants the Green's function &(z) of 
R with pole at a to the Green's function of S with pole at J (a). In particular, the 
streamlines of the flow in R map to the streamlines of the flow in S .  In this sense, 
the concept of the Green's finction is conformally invariant. 

This result immediately yields the following generalization of (6) to the case 
where the pole of the Green's function of R is an arbitrary point s,  rather than 
f -'(o). From (21), we know the formula for the Green's function in the disc 
when the pole is moved from 0 to f (s). Conformal transplantation by means of 
f -' carries this pole to the desired point s of R, so 

As a bonus, notice that this general formula establishes the previously claimed 
"symmetry property" of the Green's function: 

For a more common approach to the symmetry property, see Ex. 15. 
We end this section with a result which we will need later. The analogue for 

heat flows of the velocity of a fluid flow is the heatflow vector H; in the present 
case, H = -VG. Let us call its magnitude Q = I HI the local heat flux; this 
is h e  analogue of fluid speed, and it represents the heat flux (per unit length) 
across a short line-segment at right angles to the flow. Since B is an isotherm, H is 
orthogonal to B, and so the local heat flux at a boundary point z may be expressed 
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where n measures distance in the direction of N, the outward unit normal vector 
to B (see [31]). We can now state the result: 

At a boundary point z, the local heatjux is equal to the amplification 
o f f . -  Q(z) = I ~ I ( Z ) I .  

(25) 

For example, using (20), the result predicts that the local heat flux at the bound- 
ary of the unit disc is given by [exercise] 

This formula will play a central role in the next section. Of course Q(z) may instead 
be calculated directly by substituting (21) into (24), but this is a little easier said 
than done [exercise]. 

The general result (25) can be understood very intuitively. See [3 11. With an 
infinitesimal value of k, consider the shaded k-flux tube emanating from p which 
hits B at z, and let its width there be E .  Its image under f is a k-flux tube emanating 
from 0 and hitting C at w = f (z). [Remember, f was originally dejined to have 
this property!] Let Z be the width of this image tube at w .  Since the segment of B 
at z of length E is amplitwisted by f' ( z )  to the segment of C at w of length Z', 

Next, recall that the width of a k-flux tube at any given point is equal to k 
divided by the local heat flux [previously fluid speed] at that point. Since the local 
heat flux is constant on C, its value at w is simply the ratio of the strength of the 
source at 0 to the perimeter of C, and by construction this ratio is (2n/2n) = 1. 
Since the local heat flux at z is Q(z), we see that 

N 

E = k / l  and E =k /Q .  

Thus 

as was to be shown. 

VII Dirichlet's Problem 
1 Introduction 

Consider a steady heat flow within a metal plate whose faces are insulated. Other 
than at singularities, the temperature T(z) is then a harmonic function, and the 
(locally) sourceless heat flow vector field is H = - V T. 

Let us measure the temperature around the circumference C of a circle of 
radius R, the interior of which is free of sources and sinks, and the centre of which 
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we may conveniently choose to be the origin. As z = R eie moves round C, we 
may express the measured temperature as a function of the angle: T = T (8). We 
hope that it may seem physically plausible that these values actually determine the 
temperature at any interior point a .  Indeed, if a = 0 then we know [Gauss' Mean 
Value Theorem] that the temperature at the centre of C is simply the average of 
the temperatures on C: 

T(0) = (T) = j T(8)dO. 
2n -' 

Eventually we will discover that the generalization of this result to the case 
a # 0 is given by 

Writing a = r elff (r < R), and appealing to the cosine formula [exercise], this is 
usually written as 

This is called Poisson's formula, and the quantity in square brackets is called the 
Poisson kernel, which we shall write as Pa(z). 

Formula (28) says that T(a) is a weighted average of T on C, the temperature 
of each element of C contributing to T (a) in proportion to its weight Pa (z). Notice 
that P,(z) dies away inversely with the square of the distance between a and the 
element of C, so that if one element is twice as far from a as another, its influence 
on the temperature at a is only one quarter as great. If a = 0 then all parts of C 
have equal influence (for all are equally far from a )  and you can see that we do 
recover (27). 

Poisson's formula is connected with the following important and difficult is- 
sue. Instead of dealing with a pre-existing harmonic function, Dirichlet's prob- 
lem demands that we arbitrarily (but piecewise continuously) assign values to the 
boundary of a simply connected region R and then seek a continuous harmonic 
function in R which takes on these values as the boundary is approached. 

In the case of the disc, H. A. Schwarz demonstrated that not only does the solu- 
tion to Dirichlet's problem exist, but it is explicitly given by (28). If we are handed 
the piecewise continuous values T (8) on C then we may construct a function T (a) 
inkhe interior according to Poisson's recipe. Schwarz's solution then amounted to 
showing that T (a) is automatically harmonic, and that as a approaches a boundary 
point at which T (8) is continuous, T (a) approaches the given value T (8). Let us 
begin to explain all this.7 

7 ~ u c h  of the following material previously appeared in Needharn [1994]. 
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2 Schwarz's Interpretation 
There is a lovely geometric interpretation of formula (28), due to Schwarz [1890], 
which deserves to be far better known than it is: 

ToJind the temperature at a,  transplant each temperature on C to 
the point directly opposite to it as seen from a, then take the average (29) 
of the new temperature distribution on C. 

Schwarz deduced this from Poisson's formula, itself derived by computation. We 
shall instead demonstrate his result directly and geometrically, only then producing 
the Poisson formula as a corollary. 

Figure [32] 

The example in [32] illustrates the beauty of (29). In [32a] half of C is kept at 
100 degrees with steam, while the other half is kept at 0 degrees with ice. Being 
close to the cold side, we would expect a to be cool. Figure [32b] shows the new 
temperature distribution obtained by projection through a .  It is now vividly clear 
how the distant hot semicircle is 'focused' through a onto a much smaller arc, 
yielding a low average temperature on C and hence a low temperature at a itself. 

To begin to establish (29), recall the conformal invariance of harmonic func- 
tions: if T (z) is any harmonic function and h(z) any conformal mapping, then 
T (z*) is automatically harmonic, with z* = h (2). 

Suppose now that h(z) maps the disc to itself. If z = R eiB lies on C then so 
does z* = R eie* , and since we suppose that we have measured the temperature 
all round C, we therefore know the temperature T (8") at z*. Having the values of 
T (O*) ,  we may now compute the integral in (27) for the harmonic function T [h (z)] 
to obtain 

in which it should be stressed that the averaging is still taking place with respect 
to the angle of z, not its image z*. 

We may interpret (30) as follows: the temperature at 0* is the average of the new 
temperature distribution on C obtained by transplanting the temperature measured 
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at each z to the new location z*. We are now half way to Schwarz's result. To find 
the temperature at a we must find a conformal mapping of the disc to itself such 
that 0 is sent to a ,  then take the average of the new temperature distribution. 

But viewing the disc as the Poincar6 model of the hyperbolic plane, we are 
already very familiar with such mappings! Peek at [33b], to which we shall return 
in a moment. If m is the midpoint (in the hyperbolic sense) of the line-segment Oa, 
then the half-turn8 z I-+ z* = Ma (z) of the hyperbolic plane about m interchanges 
0 and a:  0* = a (as we desire) and a* = 0. Thus to establish (29) we need only 
demonstrate the illustrated fact that if z lies on C then z* lies at  the end of the 
(Euclidean) chord B passing from z through a .  In Chapter 3 we derived a formula 
for Ma (z), so we could easily obtain this result by calculation; however, we prefer 
a direct geometric approach. 

Figure [33] 

First we need a simple result which is explained in [33a]. Consider the family 

N = {circular arcs passing from z to z*}, 

where for the moment z* may be thought of as any given point of C. The figure 
shows three members of N :  the arc A through 0, the Euclidean chord B, and the 
hyperbolic line L. [Recall that in terms of hyperbolic geometry the members of N 
consist of the equidistant curves of L.] The result we need is this: 

The Euclidean chord B is the unique member of N such that L 
bisects the angle contained by A and B. (31) 

Since each member of JV is uniquely determined by the direction in which it 
erherges from z, and since the radius z0 is tangent to L at z, this is equivalent to 
the following: if tz and to are tangent to A at z and 0, respectively, then the black 
angle tzO and the shaded angle z*zO are equal. The proof is immediate from the 
figure and is left to the reader. 
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Now turn your attention to [33b], in which z* is the image of z after a half- 
turn about m. To finally establish Schwarz's result we must prove the illustrated 
fact that a lies on the chord B. To do so, consider the image A* of A. Since the 
half-turn interchanges the pair z and z* and the pair 0 and a ,  A* must be a member 
of N passing through a .  But since L* = L, the conformality of the mapping also 
says that the angle between A* and L must equal the angle between A and L. We 
conclude from (31) that this arc A* through z, a ,  and z* is none other than B. 
  one^. 

3 Dirichlet's Problem for the Disc 

Our example in [32] was a trifle hasty. For the moment, Schwarz's result merely 
says how the interior values of a given harmonic function in the disc may be found 
from the values on C. But in [32] we blithely assumed that we could also use 
it to construct such a function in the disc, given arbitrary piecewise continuous 
boundary values. In other words we assumed Schwarz's solution of Dirichlet's 
problem for the disc, as outlined in the introduction. We now justify this. 

Figure [34a] shows a approaching a boundary point z; also shown are the 
images (C; and C;) under projection through a of the two small arcs (C1 and C2) 
adjacent to z. If the given boundary values are continuous at z then T is essentially 
constant on C1 U C2, and so the new temperature distribution is likewise almost 
constant on C; U C;. As required, the constructed function T(a) therefore does 
approach T(z) as a approaches z. 

Although Dirichlet's problem makes no demands on the behaviour of T (a) as a 
approaches a boundary point at which T is discontinuous, it is easy to see (though 
not to calculate!) what actually happens. Suppose that the boundary temperature 
jumps from TI to T2 as we pass from C1 to C2. If a arrives at z while travelling in 
a direction making an angle Bn with C, then [exercise] T (a) approaches [B Tl + 
(1 - B) T21. This result is relevant to the representation of discontinuous functions 
by Fourier series. 

It now only remains to show that the constructed function is indeed harmonic. 
First we shall pause to recover Poisson's formula in its classical form. We begin 
by noting that (30) may be re-expressed [why?] as 

1 
T (a) = - 1 T (0) do*. 

2n -n 
(32) 

In order to put this into the same form as (28), we now require do* in terms of do. 
Consider [34b], which shows the movement R A@* of z* resulting from a 

movement R A0 of z. These arcs are ultimately equal to the chords t and s ,  so that 
(AO*/AO) is ultimately equal to (tls). But t and s are corresponding sides of two 
similar triangles [shaded], so (tls) = (a'lp). Finally, since (a ' lp) is ultimately 
equal to (a lp) ,  we obtain 

 his argument is perhaps conceptually clearer than the more elementary one in Need- 
ham [1994]. 
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Figure [34] 

de* 
- = [;] . 
de 

Thus (32) becomes 

Consequently, to derive Poisson's formula we need only show that [a lp ]  is the 
Poisson kernel Pa (z). This was precisely how Schwarz, working in the opposite 
direction, originally deduced his result from Poisson's formula. 

Since p a  = p'a '  is constant, we may evaluate it for the dotted diameter 
through a to obtain p a = (R2 - r2). Thus we do indeed find that 

As an interesting consequence of the geometric interpretation of the Poisson kernel, 
we see that (with z fixed) the level curves of Pa are the circles which are tangent 
to C at z (i.e., horocycles), with Pa = 0 being C itself. 

Returning to the issue of harmonicity, we see that if we permit ourselves dif- 
ferentiation under the integral sign of (33), then it is sufficient to show that [a lp]  
is a harmonic function of a .  To see that it is, consider [35]. Since the angle at E is 
a right angle, we have 
\ 

lz + a [  cosy = Re (-) z + a  . 
z - a  

Because it is the real part of an analytic function of a ,  [a lp ]  is automatically 
harmonic, and we are done. 
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Figure [35] 

This line of reasoning yields a bonus result. Let S be a harmonic dual of T, so 
that f = T + i S = -(complex potential) is an analytic function. This function is 
uniquely defined (up to an additive imaginary constant) and so it must be given by 

for this is analytic and has T ( a )  as its real part. This result is called Schwarz's 
fomula, and it enables us to resurrect the complete analytic function f from the 
ashes of its real part on C .  

4 The Interpretations of Neumann and B6cher 

If we specify arbitrary piecewise continuous temperatures T (x) along the edge 
(the real axis) of the upper half-plane, then there is another formula due to Poisson 
that yields the temperature at any point a = X + i Y (Y > 0): 

We shall explain this result by reinterpreting (32) in terms of elementary hyper- 
bolic geometry. The transition from (28) to (34) will then be seen as nothing more 
than a transition between the Poincare and upper half-plane models of the hyper- 
bolic plane. First, however, let us obtain still another geometric interpretation of 
Poisson's formula. 

For simplicity, let us employ the unit circle. Consider [36]. Let the arc K be 
heated to unit temperature while the rest of C is kept at zero degrees. By Schwarz's 
result, the temperature at a is T (a) = (K*/2n), while the temperature at the centre 
of the circle is T (0) = (K /2n). 

Next, imagine yourself standing at a looking out at a vast number of ther- 
mometers placed at equal intervals along the circle. As you turn your head through 
a full revolution-remembering to turn your feet!-let ((T)), denote the average 
(over all directions) of the temperatures you see. For example, the average (T) 
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Figure [36] 

occurring in Gauss' Mean Value Theorem is ((T))o. 
In our case ((T)), = (h/2n), where h is the angle subtended by K at a .  But 

we see from the figure that1' 

so ((T)), = 4 [T ( a )  + T(O)]: the average of the boundary temperatures as they 
appear to you is equal to the average of the temperature where you are and the 
temperature at the centre. It is then easy to see that this is still true if we instead have 
many arcs at different temperatures, and ultimately a general piecewise continuous 
temperature distribution. Thus Poisson's formula may be re-expressed as 

This result is due to Neumann [1884]; we merely rediscovered it, as did Duf- 
fin [I9571 from another point of view. For an interesting generalization, see Per- 
kins [1928]. 

Figure [37] is intended to make this result vivid. Turning one's head succes- 
sively through the same small angle marked one would see the thermometers 
located at the white dots on the boundary. The average of their temperatures is 
then a good approximation [exact as -, 0] to ((T)),, and hence to the average of 
the temperature where we stand and the temperature at 0. Note how the white dots 
become crowded together on the part of the boundary nearest us. As anticipated, 
this part of the boundary therefore has the greatest influence on the temperature 
where we stand. 

To obtain our third and final interpretation of Poisson's formula, imagine that 
the disc is the Poincark model of the hyperbolic plane, and that you are once again 

10~ncidentally, this means that the isotherms are the arcs of circles through p and q.  
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Figure [37] 

standing at the point a looking out to K, which is now infinitely far away on the 
horizon. How big does K appear to you in this distorted geometry? To a Godlike 
observer looking down on this model of the hyperbolic plane, the straight lines 
along which light travels to you now appear to be arcs of circles orthogonal to C, 
and so you see the angular size of K as being 

hyperbolic angle = h + (o + 0) . 
But we see in the figure that 

and hence we obtain the following remarkable fact: 

hyperbolic angle = 1 (K* + K) + 1 (K* - K) 
= K* 

= 2nT(a). 

The temperature where you are is simply proportional to how big K looks! [The 
result can also be obtained directly by appealing to the conformal and circle- 
preserving nature of the hyperbolic half-turn Ma (z) considered earlier.] 

Reinterpreting (32)' we now see that do* is simply the hyperbolic angle sub- 
tended at a by the element of C: the temperature of each element of C contributes 
to the temperature at an interior point in proportion to its hyperbolic size as seen 
from that point. Much as we did in the Euclidean case, let < T z-a denote the 
average of the temperatures you see on the horizon of the hyperbolic plane as you 
turn your head through a full revolution while standing at a .  We have found that 

This result (exceeding even the beauty of Schwarz's) is due to BBcher [1898], 
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Figure [38] 

[1906]. We have chosen to present (35) as a consequence of Schwarz's result, but 
at the end of the section we shall see that it can be understood in a much simpler 
way. 

The analogue of [37] is now [38]. Standing at the same point as before, and 
again turning one's head successively through the angle a, the figure shows the 
new locations of the thermometers we see on the boundary. The average of their 
temperatures is then a good approximation [exact as a + 0] to + T s,, and hence 
to the temperature where we stand. Note how the white dots again become crowded 
together on the part of the boundary nearest us, so that this part of the boundary 
has the greatest influence on the temperature where we stand. 

From the vantage point of (35), the distinction between (27) and (32) evapo- 
rates. Every point of the hyperbolic plane is on an equal footing with every other, it 
is merely that the hyperbolic angle do* happens to coincide with the more familiar 
Euclidean angle df3 when a = 0. 

Formulated in this way, we may carry the result over to the upper half-plane 
model for hyperbolic geometry. [The full justification for this transition will be 
explained at the end of the section.] The horizon is now the real axis and 'straight 
lines' are now (for our Godlike observer) semicircles meeting the real axis at right 
angles. The temperature where you stand is now the average (as a + 0) of the 
temperatures at the white boundary points in [39]. 

Figure [40] analyses this in greater detail. It shows both the hyperbolic angle 
A@* and the Euclidean angle A0 subtended at a by the element Ax of the horizon. 
Thinking of Ax as sufficiently small that T(x) is essentially constant on it, the 
contribution to the temperature at a is (1/2n) T(x) A@*. Integrating along the 
\ entire horizon we obtain 

In order to put this into precisely the same form as (34), we need to find 
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Figure [39] . 
(d@*/dx). We shall do this via an attractive and rather surprising fact: The non- 
Euclidean angle A@* is exactly double the Euclidean one A@, even if Ax is not 
small. To see this, concentrate on the semicircle meeting the axis at p. The angle 
between the dotted tangent at a and the vertical is clearly double that between the 
chord ap  and the vertical. The result then follows immediately. 

Now consider [41]. The small shaded triangle is constructed to be right-angled, 
and it is thus ultimately similar to the large shaded triangle as A0 shrinks to nothing. 
Thus ((/Ax) is ultimately equal to (Y/ 52). Also, since ( is like a tiny arc of circle 
of radius 52, it is ultimately equal to $2 A@. Thus if A@ is infinitesimal, 

We can now combine this with the previous result to obtain 

Putting this into (36), we obtain (34). 
While the precise form of the above argument may be new, the basic idea 

of transferring Bocher's result from the disc to the half plane was given by Os- 
good [1928]. For a different approach to (34), see Lange and Walsh [1985]. For 

Figure [40] 



Dirichlet's Problem 565 

Figure [41] 

more on all three of the interpretations thus far obtained, see Perkins [1928]. 

5 Green's General Formula 

If R is a simply connected region of arbitrary shape there exists a generalization 
of Poisson's formula (due to Green) for finding the temperature at any point a 
inside R in terms of the values T (z) on the boundary B. As before, let Ga (z) be 
the Green's function of the region when the heat source is placed at the point a ,  so 
that local heat flux at the boundary point z is given by 

With the aid of Q, we may now determine T (a). Here is the remarkable Green's 
formula: 

1 
(37) 

where ds is an element of arc length along B. Thus Q, now plays the same role 
as the Poisson kernel did in (28). Indeed, we previously calculated Q, for the unit 
disc, and we now recognize the result (26) as the Poisson kernel Pa. 

Although formula (37) is valuable both in theory and practice, we should point 
out that it is less explicit than Poisson's formula, for to find &, we must first find 
the Green's function. But as we previously explained, the problem of finding Ga 
is itself a Dirichlet problem: to construct 

we must find the harmonic function g ,  with boundary values g ,  (z) = In p. Formula 
(37) says that if we can just solve this particular boundary value problem then we 
can solve them all. 

To begin with, imagine that T (2) is a given harmonic function in R whose value 
T(a) at an interior a we wish to determine from the boundary values. The idea 
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behind our explanation of (37) is very simple1 l .  The Green's function Ga enables 
us to construct a conformal mapping f (and an inverse mapping f -') between R 
and the unit disc D such that a corresponds to 0. Figure [42] essentially reproduces 
[31] in which this was explained. 

Using the mapping z H w = f (z),the harmonic function T(z) in R may 
be transplanted to the harmonic function T (w) = T [ f -' (w)] in D, the boundary 
values on B becoming the boundary values on C. But the average of these boundary 
temperatures on C isthe temperature at the centre, and this is precisely what we 
were after, because T (0) = T (a). 

Figure [42] 

Expressing this idea symbolically, we have 

If the element d6 of C at w = f (z) is the image of the element ds of B at z then 

Finally, recall the result (25): the amplification If '(z) 1 equals the local heat flux 
Qa (z). This concludes the derivation of formula (37). 

This argument also explains the stronger result that (37) solves Dirichlet's 
problem for R. Using f to conformally transplant the given boundary values from 
B to C, we know that Poisson's formula allows us to construct the solution to 

 or a beautiful physical explanation of (37) in terms of electrostatic energy, see 
Maxwell [I 8731 or, better still, Maxwell [1881, Chap. 1111. 
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Dirichlet's problem in D. Transferring this solution back from D to R with f -I ,  

we have found the harmonic function T in R, and its value at a must then be given 
by (37). You can now understand why we lavished so much attention on the special 
case of the disc. 

We end this section with the observation that Green's formula (37) possesses 
the beautiful geometric interpretation shown on the LHS of [43]. Just as in [38], 
one imagines standing at a and turning one's head successively through the small 
angle e. But now suppose that light travels along the illustrated streamlines of the 
heatflow H = -VGa associated with the Green'sfunction. We would then see the 
thermometers at the illustrated points on the boundary. The general formula (37) 
says that the average of these temperatures (as --+ 0) is the temperature where 
one stands! BBcher's interpretation is clearly just a special case12. 

Figure [43] 

The explanation essentially reiterates the derivation of (25). Let ze be the 
boundary point we see when we look in the direction 0 .  Green's formula says 
that the temperature T (ze) of the element ds contributes to the temperature at a 
in proportion to Qa(ze) ds ,  which is the flux of H through ds .  Now follow the 
shaded flux tube back to the source at a ,  and let d0 be its angular width there. 
Since 2n of flux emerges symmetrically from a ,  the flux Qa (ze) ds emitted into 
our tube is equal to d0.  Thus (37) may be re-expressed as 

,namely, as the average of the boundary temperatures T(ze) over all directions. 
Done. 

121f we define the distance between two infinitesimally separated points of R to be the hyperbolic 
distance between their images in D, then R becomes a (non-standard) conformal model of the 
hyperbolic plane, and the geodesics emanating from a are the streamlines of [43]. The two results 
may then be viewed as identical. 
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We have presented [43] as a geometric interpretation of (37), but we may instead 
use it to simplify and illuminate our derivation of that formula. The key observation 
is that (even without passing to the limit of vanishing a) the average in [43] of 
the observed temperatures on B is conformally invariant. As before, let J(z) be a 
one-to-one conformal mapping of R to some other simply connected region S with 
boundary Y. Just as we did with f ,  let us choose J so that the directions of curves 
through a are preserved (i.e., arg [Jr(a)] = 0). Let wo = J(z0) be the image on 
Y ofzo on B. 

By the conformal invariance of the Green's function, the image of the stream- 
line leaving a at angle 8 is the streamline leaving J(a)  at the same angle. Thus wo 
is not only the image of zo, it is also the boundary point which an observer at J(a)  
sees when he looks in the direction 8. But, by definition, the temperature at each 
point zo on B is transplanted to we on Y, so the observer at J(a)  sees exactly the 
same temperatures on Y as the original observer at a saw on B. Done. 

Passing to the limit of vanishing a, the conformal invariance of this average 
may expressed as 

Figure [44] 
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Figure [43] illustrates the particular case where J = f is the previously constructed 
function which maps R to D and a to 0. The virtue of this special case is that the 
conformally invariant average may now be evaluated. _By Gauss' Mean Value 
Theorem, the avErage of the transplanted temperatures T (we) -- T (ze) on C is 
the temperature T (0) r T (a) at the centre: 

Thus, returning to R and passing to the limit of vanishing o, the average of the 
observed temperatures is the temperature where you stand. Finally, the argument 
associated with [43] shows that (38) is equivalent to (37). 

As illustrated in [44], this idea of a conformally invariant average lends unity 
to much of what we have done. Top centre is a depiction of Gauss' theorem: as 
l + 0 the average of the temperatures at the white boundary points is equal to the 
temperature at the centre of the disc. Applying an automorphism to this picture 
yields the visual form of Poisson's formula for the disc; applying a Mobius trans- 
formation from the Poincar6 model to the half-plane model yields the visual form 
of Poisson's formula for the half-plane; and applying a more general conformal 
mapping yields the visual form of Green's formula. 
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Vlll Exercises 

1 (i) Show that the dual of a dipole is a dipole. 

(ii) Think of a dipole as the limiting form of a doublet [a source and sink of 
equal strength]. Sketch the dual of a doublet, and thereby make geometric 
sense of part (i). 

2 If @ is a real harmonic function, and 5 is its harmonic dua1,show that @% is 
also harmonic. [Hint: Consider the complex function (@ + i a) . ]  

3 Use Gauss' Mean Value Theorem to show that a harmonic function cannot have 
a local maximum. 

4 Find the generalization of (7) in three dimensional space. 

5 (i) If f  is analytic, show that V 1 f  1 = ( f  F ) / l  f 1, and explain how this agrees 
with part (i) of Ex. 19, p. 374. 

(ii) Show that if A is the Laplacian, then A 1 f  I = 4 1 f' 1 2. Try deriving this by 
brute force. 

6 Let f (z) be analytic. By applying in turn to ( f  + f) and to ( f  f), show that 
if either the real part or the modulus of f is constant, then f  itself is constant. 

7 (i) By thinking of z and F as functions of x and y, use the chain rule of partial 
differentiation to show (at least formally) that 

a - - 1  and a y = Z V .  1 

(ii) Deduce (at least formally) that an analyticfunction f  depends on z but not 
on F: 

a , f = f r  and a , f = o .  

8 Let J denote the Jacobian of a transformation z I-+ w. Referring to the previous 
2 

question, show that the determinant is given by det(J) = 1 a, w l 2  - la ,  w 1 . 
9 From Ex. 7(i) we see that A = VV = 4 8, a?. Use this fact to solve the following 

problems: 

(i) Show that @ = [ l  - (x2 + y2)]-1 satisfies A@ = 4 ~ ~ ( 2 @  - 1). 

(ii) Solve A F = e Z for F by formally integrating with respect to z and then 
with respect to Z. Deduce that R = $ex (x cos y + y sin y)  is a solution of 
A R = ex cos y. Verify this by calculating A R explicitly. 

(iii) Show that if f  is the most general harmonic function in the plane, then 
f ( z ,  ?) = p(z) + q(T), where p and q are arbitrary analytic functions. 
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10 As usual, let F be the unit tangent to a curve of curvature K,  and let F be the 
curvature of the image under the analytic mapping f (2) .  Also let s and ? denote 
arc length of the original and image curves. Finally, let @ = (111 f '  1) be the 
stream function of the complex curvature, K = -iV@. 

(i) Use (30), p. 239 to show that ai F = @  as[^@ + +-$I. 
(ii) Show that a,F = i KT and a, @ = z- (i K) . 
(iii) Deduce that 

h aiz = q 2 a S K  + @ (as+)-c. 

[Hint: Remember (or prove) that (ia) (b) + (a) (i b) = 0.1 

(iv) Recall Ex. 18, p. 261, in which we saw how Newton attempted to define the 
"angle" O between two touching curves as the difference of their curvatures: 
O = ( K ~  - ~ 2 ) .  Although this is not quite conformally invariant, show that 
[02/asO] is conformally invariant. This geometrically meaningful gener- 
alization of the concept of angle is called Kasner's Invariant. 

11 With the same notation as in the previous question, let p measure distance in the 
direction i t  perpendicular to the curve. By substituting K = -iV@ into (30), 
p. 239, show that the image curvature is given by the tidy formula, 

12 Consider the image under an analytic mapping f of a source of strength S 
located at p.  

(i) Show geometrically, then algebraically, that if p is not a critical point of f 
(i.e., f '(p) # 0) then the image is another source of strength S at f (p). 

(ii) Show geometrically, then algebraically, that if p is a critical point of f of 
order (n - 1) then the image is again a source, but now of strength ( S / n ) .  

13 Repeat the investigation of the previous question in the case of a dipole located 
at p.  

14 Show that applying the Milne-Thomson formula (17) to a vortex at a point p 
inside the unit circle yields two new vortices: at l/p and at 0. Explain this with 
the aid of a picture of the flow on the Riemann sphere. 

15 (i) Show that if u and v are harmonic then X - (uVv - vVu) is sourceless. 

(ii) Prove (37) by taking u = T and v = G,, then equating the flux of X out of 
B with the flux out of an infinitesimal circle centred at a .  

(iii) By taking u = G, and v = Gb, prove the symmetry property of the Green's 
function: G, (b) = Gb (a). 
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16 Let T(z) be the temperature distribution in the unit disc if the top semicircle 
(Im(z) > 0) is kept at temperature +(n/2) and the bottom semicircle is kept at 
temperature - (n/2). Show that 

17 Let T (2) be a non-negative temperature distribution in the disc lz 1 5 R. Writing 
la 1 = r ,  use Poisson's formula (28) to derive Harnack's inequality: 

18 Use Harnack's inequality [previous exercise] to prove the following analogue 
of Liouville's Theorem: If T is harmonic in the whole plane and is bounded 
from above (or below), then T is a constant. 

19 Substitute the disc Green's function (21) into (24)' thereby confirming the for- 
mula (26) for the heat flux at the boundary of the disc. 

20 (i) Use the method of images to find the Green's function for the upper half- 
plane. 

(ii) Use this to show that Green's general formula (37) does indeed yield the 
Poisson half-plane formula (34). 

21 Use the idea behind the method of images to show that if 0 < p < 1 then the 
Green's function of the half-disc Re(z) 2 0, lzl 5 1 is 

Check this by getting the computer to draw the level curves of Gp (2).  
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linear and inverse-square, 241-244 

Ford, L. R., 164, 186 
Fourier series, 77-79,117,120,558 
Fourier, J., 77 
function 

analytic, see analytic function 
harmonic, see harmonic function 
many-valued , see multifunction 

Fundamental Theorem of Algebra, 
24,354 

Fundamental Theorem of Calculus, 
402-406 

Gauss' Divergence Theorem, 48 1 
Gauss' Mean Value Theorem, 110, 

429, 511, 516, 517, 555, 
569 

Gauss, K. F., 162 
complex plane, 2, 3 
differential geometry, 27 1,273,274 
non-Euclidean geometry, 269-27 1 
quaternions, 44 
rotations of sphere, 277 

Gaussian curvature, 273-275 
formula in terms of metric, 335 
of hyperbolic plane, 3 14 
of pseudosphere, 295-296 
of sphere, 278 
surfaces of constant, 275-277 

Gaussian integers, 48 

genus of surface, 464 
geodesic, 27 1 
geometry 

Erlangen Program, 33 
Euclidean, see Euclidean geome- 

try 
extrinsic, 273 
hyperbolic, see hyperbolic geom- 

etry 
intrinsic, 273 
non-Euclidean, 30-34,267-277 
on curved surface, 270-272 
projective, 33, 154, 158 
spherical, see spherical geometry 
via complex arithmetic, 16-19 

glide reflection, 52 
gradient operator, 497-498 

complex, 518-519,522,570 
gravitational orbits, 24 1-247 
Green's Function, 550-554,57 1,572 
Green's General Formula, 565-569 
group, 33 

half-plane, see upper half-plane 
Hamilton, W. R., 44,290-293 
harmonic family of curves, 520-523 
harmonic function 

average of, see Gauss' Mean Value 
Theorem 

conformal invariance of, 5 13-5 16 
conjugate, 508 
Dirichlet's Problem for, 554-569 
dual of, 508 
maxima and minima of, 357 
potential function, 500 
stream function, 498 

Harnack's inequality, 572 
Harriot, T., 278 
heat flow, 453,498, 527,548,550- 

569 
helix, 263 
Henrici, P., 541,544 
Hexlet, Soddy's, 184 
Hilbert, D., 301, 326, 545 
holes, 92,460,463 
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homogeneous coordinates, 157-1 58, 
161,170,329 

homographic transformations, 122 
Hopf's Degree Theorem, 34 1-344 
Hopf, H., 465 
horizon, 300 
horocycle, 309 
horosphere, 326 
Hurwitz polynomial, 37 1 
Huygens, C., 294,314 
hydrodynamics, 498 
hydrogen atom, 446 
hyperbolic functions, 86-90 
hyperbolic geometry, 269-27 1,275, 

angle of parallelism, 305 
angular excess, 3 13-3 15 
Beltrami's contributions to, see Bel- 

trami, E. 
Bol yai-Lobachevsky Formula, 306 
construction for distance, 3 17 
equidistant curve, 3 10,3 17 
hemisphere model, 322-324 
horizon, 300 
horocycle, 309 
horosphere, 326 
hyperbolic plane, 298-301 
Klein model, 323,331,332 
lines and reflections, 301-305 
motions in terms of reflections, 3 1 1- 

3 13 
motions of, 306-3 1 1 
PoincarC disc model, 3 15-3 19 
Poincar6 upper half-plane model, 

301 
Schwarz-Pick Lemma, 36 1 
via tractrix and pseudosphere, 293- 

298 
hyperbolic Mobius transformation, 152, 

165 

ideal points, 300 
identities 

hyperbolic, 86 
preservation of, 25 1-252 

trigonometric, 14- 16 
identity matrix, 157 
Identity Theorem, 7 1 
identity transformation, 17,32 
images, method of, see method of 

images 
imaginary axis, 6 
imaginary number, 1 
imaginary part, 6 
incompressibility, 455 
index of singular point 

Bendixson's Formula, 468 
defined in the plane, 457 
defined on a curved surface, 464 
Index Theorem, 460-462 
of Pdlya vector field, 482 
PoincarC's method of finding, 459- 

460 
PoincarC-Hopf Theorem, 463,465- 

466 
induced mapping, 143 
inequality, see triangle inequality 
infinitesimal, 20 
infinity, point at, 139 
"inside" (of closed curve), 339-340 
integral, complex 

as limit of Riemann sum, 383-386 
parametric evaluation of, 409-4 10 
path-independence of, 388, 406, 

407 
integration by parts, 423 
interior (of closed curve), 339-340 
interval of convergence, 64 
intrinsic 

curvature, see Gaussian curvature 
geometry, 273 

invariant curve, 38 
inversion in a circle, 124-126 

complex, see complex inversion 
geometric constructions of, 128- 

130,181 
illustrative applications of, 136- 

139 
mechanical construction of, 18 1 
preservation of angles, 130-132 
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preservation of circles, 126-1 28 
preservation of symmetry, 133 

inversion in a sphere, 1 3 3-1 36, 1 8 1 
local geometry of, 215 
relation to stereographic projection, 

142 
role in hyperbolic geometry, 322- 

327 
involutory transformation, 125, 128, 

179,187,188,320 
irrotational vector field, 476, 479- 

481,498,511,529,541 
isogonal mapping, 13 1 
isolated singularity, 443 
isometric circle, 186, 214 
isometry, 3 1 
isotherm, 548,551-553,561 

Jacobian matrix, 192-1 93,208-2 10, 
212, 213, 349, 370, 371, 
570 

Kasner's Invariant, 57 1 
Kasner, E., 244,246,261 
Kasner-Arnol'd Theorem, 244,246 
Kepler's equation, 64 
Klein, F., xi, 30, 33, 56, 163, 301, 

466 
Koebe, P., 541 

Lambert, J. H., 259 
Lanczos, C.,  77 
Lange, R. and Walsh, R. A., 564 
Laplace's equation, 258 
Laplacian operator, 258 

complex gradient form of, 5 19 
conformal invariance of, 5 15-5 16 
geometric interpretation of, 5 16- 

517 
in terms of a,, 570 

Laurent series, 401,419 
and poles, 434435 
annular, 442-445 
classification of singularities, 444 

Legendre polynomials, 446 

Legendre, A., 470 
Leibniz's rule, 1 13 
Leibniz, G., 1 
lemniscate, 61, 62, 111, 112, 118, 

187,2 14,507 
lernniscatic integral, 6 1, 1 1 8 ,2  15 
Liebmann, H., 122,283 
limit rotation, 307 
linear transformation 

geometry of, 208-209 
Jacobian, 192 
Mobius transformation as, 158 
matrix representation of, 156 
of space-time, 123 

linear-fractional transformations, 122 
Liouville's Theorem, 359-360,446, 

572 
Liouville, J., 2 1 5 
Lobachevskian geometry, see hyper- 

bolic geometry 
Lobachevsky, N., 271,305 
local degree, 348 
logarithm, 98-100 

and analytic "rigidity", 2 19-222 
and Mercator map projection, 259 
as integral, 408-409 
definition of general powers, 10 1- 

102 
power series for, 100-10 1 
principal value of, 99 
visual differentiation of, 222-223 

logarithmic branch point, 92, 146 
logarithmic power series, 101, 1 19 
loop 

"inside" of, 339-340 
simple, 339 
winding number of, 338 

Lorentz transformation, 123 
loxodromic Mobius transformation, 

153,166 
Lucas' Theorem, 259 

Macdonald's Theorem, 373 
matrix 

conjugate transpose, 162 



Index 587 

identity, 157 
Jacobian, 192 
normalized, 156 
of Mobius transformation, 1564  57 
unitary, 162 

Maximum-Modulus Theorem, 355- 
356 

Maxwell, J. C., 215, 375, 453, 495, 
501,532,548,566 

Mercator map projection, 259, 33 1 
Mercator, G., 259 
Mercator, N., 1 19 
meromorphic function, 366 
method of images, 532-538 
metric of a surface, 284 
Midpoint Riemann Sum, 380 
Milne-Thomson Circle Theorem, 536 
Minding, F., 283 
minimal surfaces, 5 10 
Minimum-Modulus Theorem, 355- 

356 
Mobius transformations, 122 

as automorphisms of the disc, 176- 
180 

as matrices, 156-157 
basic results on, 148-155 
decomposed into 2 or 4 reflections, 

172-176 
decomposed into simpler mappings, 

123-124 
in Einstein's Relativity Theory, 122- 

123 
in non-Euclidean geometry, 277, 

286-290,306-311,313,3 16, 
319-322,326 

normalized, 150 
of upper half-plane, 187, 307 
visualized and classified, 162-1 7 1 

modular surface, 56,374 
and Cassinian curves, 62,63, 11 1 
near essential singularity, 366 
of sin(z), 87 
of polynomial, 62,63 
of powers, 56 
poles as "volcanoes", 66,365 

related to maxima and minima, 1 12, 
356,357,373 

modulus, 6 
moments, multipole, 492, 534 
momentum, 475 

angular, 24 1,245 
Morera's Theorem, 4 14 
Morse Theory, 471 
motions 

direct, 36 
Euclidean, 34-37,327 
hyperbolic, 306-3 1 1,324-327 
isometry, 3 1 
opposite, 36 
rigid, 3 1 
spherical, 279-282, 327 

multifunctions, 90-98 
multiplicity 

algebraic, 346-348 
topological, 348-353 

multiplier of Mobius transformation, 
1 64 

calculation of, 169-170 
eigenvalue interpretation of, 170- 

171 
geometric meaning of, 166-1 68 

multiply connected set, 93 
multipole, 492 

at infinity, 492-493 
interpretation of Laurent series, 493- 

494 
multipole moments, 492,534 
mythology, 386 

natural boundary, 264 
Needham, T., 243,244,246,555 
Nikulin, V. V. and Shafarevich, I. R., 

30 
non-commutative multiplication, 44, 

290 
non-singular Mobius transformation, 

1 24 
normalized Mobius transformation, 

150 
Nyquist Stability Criterion, 37 1 



588 Index 

octupole, 492 
orbits in force fields, 241-247 
order of branch point, 92 
order of critical point, 205 
orthogonal trajectory, 1 1 1 
osculating plane, 263 
Osgood, W. F., 564 

parabolic Mobius transformation, 152, 
168 

Parallel Axiom, 268 
parallel transport, 337 
parametric evaluation, 409-4 10 
partial fractions, 22,400 
Pascal's triangle, 1 15 
Peaucellier, A., 1 8 1 
Penrose, R., x, 122, 123, 158, 182, 

293,327 
periodic function, 77,80,85,88,120 
Perkins, F. W., 561,565 
Perseus, 62 
perspective drawing, 185 
perspectivity, 32 
phase portrait, 453 
photons, 182 
planetary motion, 24 1-247 
Poincark models, see hyperbolic ge- 

ometry 
Poincark, H., 277,301,315,326 
Poincark-Hopf Theorem, 463, 465- 

466 
Poincarites, 308 
point at infinity, 139 
Poisson's formula 

,for disc, 555 
for upper half-plane, 560 

polar line of a rotation, 281 
pole, 364,365 

order of, 366 
pole of a rotation, 28 1 
P6lya vector field, 48 1 

area as flux, 484-485 
Braden's Theorem, 506 
Cauchy's formula, 488-489 
Cauchy's Theorem, 483-484 

complex integration, 48 1483,505 
index of, 482 
integral of zm, 489492 
non-analytic example, 496 
relation to complex potential, 502 
winding number as flux, 485-486 

polynomials 
approximating power series, 70- 

7 1 
Argument Principle for, 344-345 
Cassinian curves via, 61-63 
cubic, 4,45,59 
cyclotomic, 5 1 
Descartes' factor theorem, 23 
Fundamental Theorem of Algebra, 

24,354 
potential function, 498-500 
power series 

convergence of, 64-70,74-77 
differentiation of, 227-228 
for exp(z), 72,74,79 
for log(1 + z), 100-101 
for sin(z) and cos(z), 85 
Laurent, 434435,442-445 
manipulation of, 72-74 
polynomial approximation of, 70- 

71 
related to Fourier series, 77-79 
Taylor, 78,432-434 
uniqueness, 7 1-72 
used to find residues, 438-439 

powers of z 
fractional, 90-95 
general, 101-102 
positive integer, 57-59 
visual differentiation of, 229-23 1 

precision, see approximation 
primitive root, 5 1 
principal branch 

of arg(z), 94 
of log(z), 99 

used in Binomial Theorem, 100, 
116 
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principal curvatures, 274,295,479 
Principia, Newton's, viii, ix, 60,243, 

381 
Principle of the Argument, see Argu- 

ment Principle 
projections, group of, 32 
projective geometry, 33, 154, 158 
pseudosphere, 27 1,294 

# hyperbolic plane, 298 
area of, 3 14 
building your own, 334 
conformal map of, 296-298 
constant curvature of, 275, 295- 

296,314 
edge of, 299 
interpretation of limit rotations, 3 10 
radius of, 275 

pseudospherical surfaces, 293, 296, 
301 

Ptolemy, C., 138, 140, 183 

quadratics, 24, 61 
quadrupole, 49 1494,507 
quantum mechanics, x 
quaternions, 44,290-293, 328,329 

radius of convergence, 64,67,69 
real axis, 6 
real part, 6 
reciprocal mapping , see complex in- 

version 
recurrence relations, 50 
reflection 

glide, 52 
in a circle, 125 
in a general curve, 255 
in a hyperbolic line, 303 
in a sphere, 135 
in a spherical line, 279 
Three Reflections Theorem, 37 

reflection property of conics, 90 
reflections, reduction to 

Euclidean motions, 37 
hyperbolic motions, 3 1 1 
Mobius transformations, 175 

rotations of plane, 37 
spherical motions, 28 1 
translations, 38 

Relativity Theory, Einstein's, 122- 
123,334 

repulsive fixed point, 165 
residue 

evaluation of real integrals, 436- 
438,446,447 

evaluation of series, 448,449 
evaluation of series, 43944 1 
finding using power series, 438- 

439 
formula for a simple pole, 435 
general formula for, 435 

Residue Theorem, 401,419,435 
Riemann sphere, 14 1 

behaviour of functions at oo, 144- 
146 

classification of Mobius transfor- 
mations, 153 

conformality, 141, 142, 144, 145, 
203-204 

effect of inversions on, 143, 182, 
286287,328 

flows on, 492493,536537,571 
rotations of, 161-162,286293 
symmetry of exp(z), 182 
transferring functions to, 143 

Riemann sum, 378 
accuracy of, 380-383 
complex, 383-386 
superiority over trapezoidal rule, 

383,420 
using midpoints, 380 

Riemann surfaces, x, 56, 204, 206, 
409,466 

Riemann's Mapping Theorem, 180, 
540-554 

Riemann, B., xi, 3, 140, 180, 271, 
373 

rigid motion, 3 1 
rigidity of analytic functions, 2 19- 

222 
robotic vision, 292 



Rodrigues, O., 44,281 
roots 

algebraic multiplicity of, 346-348 
complex conjugate, 24 
Descartes' Factor Theorem, 23 
Fundamental Theorem of Algebra, 

24,354 
of unity, 26 
primitive, 5 1 
Rouche's Theorem, 353-354 
simple, 347 
topological multiplicity of, 348- 

353 
rotations 

as complex functions, 18 
as two reflections, 37,28 1,307 
composing, 18 
of space, 279-282,286-293 

Rouche's Theorem, 353-354 

Saccheri, G., 268,269 
saddle points, 375,456 
scalar product , see dot product 
Schwarz function, 255,264,265 
Schwarz's Symmetry Principle, 257, 

533,535 
Schwarz, H. A., 254,555 
Schwarzian derivative, 262,263,424 
Schwarzian reflection, 256257,264- 

266,537 
series 

binomial, see Binomial Theorem 
Fourier, 77-79,117,120,558 
power, see power series 
Taylor, see power series 

Siegel, C. L., 545 
similarities, 39-43 

direct or opposite, 41 
simple loop, 339 
simple pole, 366 
simple root, 347 
simply connected set, 92 
sine, 84-90 
singular point, 456 

index of, see index of singular point 

types of sector surrounding, 468 
singularities 

classification of, 444 
essential, 366 
of pole type, 364, 365 
order of, 366 

sinks, 454-456 
soap films, 510 
Soddy, F., 184 
Sommerville, D. M. Y., 209 
sourceless vector field, 473,479-48 1, 

494, 496, 498, 500, 5 1 1, 
521,571 

sources, 454-456 
space-time 

Lorentz transformations, 123 
Penrose's stereographic construc- 

tion, 182 
spatial complex numbers, see quater- 

nions 
spherical geometry, 269, 270, 275, 

277 
angular excess, 278-279 
conformal map, 283-286 
motions of, 279-282 
rotations as Mobius transformations, 

286-290 
rotations as quaternions, 290-293 

spiric sections of Perseus, 62 
stagnation point, 502 
Steiner, J., 184 
stereographic projection 

as inversion in a sphere, 142 
conformality of, 141,142,144,145, 

203-204 
formulae for, 146-148 
in hyperbolic geometry, 322-327 
in spherical geometry, 285-290 
Penrose's space-time construction, 

182 
preservation of circles, 142 

Stewart, I. and Tall, D., 3 
Stillwell, J., xi 
Stokes' Theorem, 481 
stream function, 494-497 
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streamlines, 453 
k-flux tube, 495 

strength of a source, 454 
subgroup, 37 
superposition of multipoles, 494 
surface 

geometry on, 270-272 
of constant curvature, 275-277 
vector field on, 462467 

symmetric points, 125 
preservation under inversion, 133 

Symmetry Principle, 148 
disc automorphisms via, 177-178 
Schwarz's, 257 
used to decompose Mobius trans- 

formations, 173 

Tartaglia, N., 5 
Taylor series, see power series 
temperature as potential function, 498, 

548 
Three Reflections Theorem, 37 
Thurston, W. P., 3 17, 326,334 
Topological Argument Principle, 350- 

353 
topological multiplicity, 348-353 
topology 

Euler characteristic, 464 
Euler's Formula, 470 
genus of surface, 464 
Hopf's Degree Theorem, 342 
index, see index of singular point 
Poincare-Hopf Theorem, 463 
universal cover, 299 
winding number, see winding num- 

ber 
toms, 62,63,204,463,464 
tractrix, 294 
translations 

as complex functions, 17 
as two reflections, 38 
composing with rotations, 18 

transplanted function, 5 13 
transpose, conjugate, 162 
Trapezoidal Rule, 379-380 

triangle inequality 
Braden's Theorem, 506 
generalized, 7 
integral version of, 386-387 

triangle, area of, see area 
trigonometry, 14-1 6 
triple pole, 366 
twist, 193, 194, 198 

as verb, 193, 198 

ultimate equality, 20 
ultra-parallel h-lines, 307 
uniform convergence, 70 
uniqueness 

of analytic continuation, 250-25 1 
of Mobius transformations, 150 
of motions, 34 
of power series, 71-72 

unitary matrix, 162 
universal cover, 299 
upper half-plane 

interpretation of cross-ratio, 155 
Mobius transformations of, 187, 

307 
model of hyperbolic geometry, 298- 

301 
Poisson's formula for, 560 

valence, 347 
vector field, 450 

conservative, 476,498-500 
fiducial, 464 
index, see index 
irrotational, 476,47948 1,498,5 1 1: 

529,541 
on a curved surface, 462467 
sourceless, 473 ,4794 ,494 ,496 ,  

498,500,511,521,571 
vector product, see cross product 
vectorial operations, 27-30,291 
velocity, 11 
Vi&te, F., 45 
Vikte's cubic solution, 45, 59 
vortex, 488 

Wallis, J., 2, 3, 423 



592 Index 

Wessel, C., 2,3 
Whyburn, G. T., 377,427 
winding number, 338 

and Cauchy's Formula, 429-43 1 
and Residue Theorem, 4 1 8-4 19, 

435 
as flux, 485486 
as integral of (1 / z ) ,  39 1-392 
crossing rule for, 340 

work 
I-work tube, 499 
circulation interpretation of, 476 
local density of, 478 
Stokes' Theorem, 48 1 
used to define potential function, 

498 
vanishing of, 476, 480,483, 489, 

490 

Y&Y, Inc., viii 

Zeitz, P., 115,137 
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