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Abstract

In this easy introduction to higher gauge theory, we describe parallel trans-
port for particles and strings in terms of 2-connections on 2-bundles. Just
as ordinary gauge theory involves a gauge group, this generalization in-
volves a gauge ‘2-group’. We focus on 6 examples. First, every abelian
Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1)
gerbes, which play an important role in string theory and multisymplec-
tic geometry. Second, every group representation gives a Lie 2-group; the
representation of the Lorentz group on 4d Minkowski spacetime gives the
Poincaré 2-group, which leads to a spin foam model for Minkowski space-
time. Third, taking the adjoint representation of any Lie group on its own
Lie algebra gives a ‘tangent 2-group’, which serves as a gauge 2-group in
4d BF theory, which has topological gravity as a special case. Fourth,
every Lie group has an ‘inner automorphism 2-group’, which serves as the
gauge group in 4d BF theory with cosmological constant term. Fifth, ev-
ery Lie group has an ‘automorphism 2-group’, which plays an important
role in the theory of nonabelian gerbes. And sixth, every compact simple
Lie group gives a ‘string 2-group’. We also touch upon higher structures
such as the ‘gravity 3-group’, and the Lie 3-superalgebra that governs
11-dimensional supergravity.

1 Introduction

Higher gauge theory is a generalization of gauge theory that describes parallel
transport, not just for point particles, but also for higher-dimensional extended
objects. It is a beautiful new branch of mathematics, with a lot of room left
for exploration. It has already been applied to string theory and loop quantum
gravity—or more specifically, spin foam models. This should not be surprising,
since while these rival approaches to quantum gravity disagree about almost
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everything, they both agree that point particles are not enough: we need higher-
dimensional extended objects to build a theory sufficiently rich to describe the
quantum geometry of spacetime. Indeed, many existing ideas from string theory
and supergravity have recently been clarified by higher gauge theory [82, 83].
But we may also hope for applications of higher gauge theory to other less
speculative branches of physics, such as condensed matter physics.

Of course, for this to happen, more physicists need to learn higher gauge
theory. It would be great to have a comprehensive introduction to the subject
which started from scratch and led the reader to the frontiers of knowledge. Un-
fortunately, mathematical work in this subject uses a wide array of tools, such as
n-categories, stacks, gerbes, Deligne cohomology, L∞ algebras, Kan complexes,
and (∞, 1)-categories, to name just a few. While these tools are beautiful, im-
portant in their own right, and perhaps necessary for a deep understanding of
higher gauge theory, learning them takes time—and explaining them all would
be a major project.

Our goal here is far more modest. We shall sketch how to generalize the
theory of parallel transport from point particles to 1-dimensional objects, such
as strings. We shall do this starting with a bare minimum of prerequisites:
manifolds, differential forms, Lie groups, Lie algebras, and the traditional theory
of parallel transport in terms of bundles and connections. We shall give a small
taste of the applications to physics, and point the reader to the literature for
more details.

In Section 2 we start by explaining categories, functors, and how parallel
transport for particles can be seen as a functor taking any path in a manifold
to the operation of parallel transport along that path. In Section 3 we ‘add
one’ and explain how parallel transport for particles and strings can be seen as
‘2-functor’ between ‘2-categories’. This requires that we generalize Lie groups
to ‘Lie 2-groups’. In Section 4 we describe many examples of Lie 2-groups, and
sketch some of their applications:

• Section 4.1: shifted abelian groups, U(1) gerbes, and their role in string
theory and multisymplectic geometry.

• Section 4.2: the Poincaré 2-group and the spin foammodel for 4d Minkowski
spacetime.

• Section 4.3: tangent 2-groups, 4d BF theory and topological gravity.

• Section 4.4: inner automorphism 2-groups and 4d BF theory with cosmo-
logical constant term.

• Section 4.5: automorphism 2-groups, nonabelian gerbes, and the gravity
3-group.

• Section 4.6: string 2-groups, string structures, the passage from Lie n-
algebras to Lie n-groups, and the Lie 3-superalgebra governing 11-dimensional
supergravity.
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Finally, in Section 5 we discuss gauge transformations, curvature and nontrivial
2-bundles.

2 Categories and Connections

A category consists of objects, which we draw as dots:

• x

and morphisms between objects, which we draw as arrows between dots:

x•

f

''
•y

You should think of objects as ‘things’ and morphisms as ‘processes’. The main
thing you can do in a category is take a morphism from x to y and a morphism
from y to z:

x•

f

''
•y

g

''
•z

and ‘compose’ them to get a morphism from x to z:

x•

gf

$$
•z

The most famous example is the category Set, which has sets as objects and
functions as morphisms. Most of us know how to compose functions, and we
have a pretty good intuition of how this works. So, it can be helpful to think
of morphisms as being like functions. But as we shall soon see, there are some
very important categories where the morphisms are not functions.

Let us give the formal definition. A category consists of:

• A collection of objects, and

• for any pair of objects x, y, a set of morphisms f :x → y. Given a
morphism f :x → y, we call x its source and y its target.

• Given two morphisms f :x → y and g: y → z, there is a composite
morphism gf :x → z. Composition satisfies the associative law:

(hg)f = h(gf).

• For any object x, there is an identitymorphism 1x:x → x. These identity
morphisms satisfy the left and right unit laws:

1yf = f = f1x

for any morphism f :x → y.
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The hardest thing about category theory is getting your arrows to point the
right way. It is standard in mathematics to use fg to denote the result of doing
first g and then f . In pictures, this backwards convention can be annoying. But
rather than trying to fight it, let us give in and draw a morphism f :x → y as
an arrow from right to left:

y• •x

f

ww

Then composition looks a bit better:

z• •y

f

ww
•x

g

ww
= z• •x

fg

ww

An important example of a category is the ‘path groupoid’ of a space X .
We give the precise definition below, but the basic idea is to take the diagrams
we have been drawing seriously! The objects are points in X , and morphisms
are paths:

y• •x

γ

��

We also get examples from groups. A group is the same as a category with one
object where all the morphisms are invertible. The morphisms of this category
are the elements of the group. The object is there just to provide them with a
source and target. We compose the morphisms using the multiplication in the
group.

In both these examples, a morphism f :x → y is not a function from x to y.
And these two examples have something else in common: they are important in
gauge theory! We can use a path groupoid to describe the possible motions of
a particle through spacetime. We can use a group to describe the symmetries
of a particle. And when we combine these two examples, we get the concept of
connection—the basic field in any gauge theory.

How do we combine these examples? We do it using a map between cate-
gories. A map between categories is called a ‘functor’. A functor from a path
groupoid to a group will send every object of the path groupoid to the same
object of our group. After all, a group, regarded as a category, has only one
object. But this functor will also send any morphism in our path groupoid to
a group element. In other words, it will assign a group element to each path in
our space. This group element describes how a particle transforms as it moves
along that path.

But this is precisely what a connection does! A connection lets us compute
for any path a group element describing parallel transport along that path.
So, the language of categories and functors quickly leads us to the concept of
connection—but with an emphasis on parallel transport.

4



The following theorem makes these ideas precise. Let us first state the
theorem, then define the terms involved, and then give some idea of how it is
proved:

Theorem 1. For any Lie group G and any smooth manifold M , there is a

one-to-one correspondence between:

1. connections on the trivial principal G-bundle over M ,

2. g-valued 1-forms on M , where g is the Lie algebra of G, and

3. smooth functors

hol:P1(M) → G

where P1(M) is the path groupoid of M .

We assume you are familiar with the first two items. Our goal is to explain the
third. We must start by explaining the path groupoid.

Suppose M is a manifold. Then the path groupoid P1(M) is roughly a
category in which objects are points of M and a morphism from x to y is a path
from x to y. We compose paths by gluing them end to end. So, given a path δ
from x to y, and a path γ from y to z:

z• y•

γ

��
x•

δ

��

we would like γδ to be the path from x to z built from γ and δ.
However, we need to be careful about the details to make sure that the

composite path γδ is well-defined, and that composition is associative! Since we
are studying paths in a smooth manifold, we want them to be smooth. But the
path γδ may not be smooth: there could be a ‘kink’ at the point y.

There are different ways to get around this problem. One is to work with
piecewise smooth paths. But here is another approach: say that a path

γ: [0, 1] → M

is lazy if it is smooth and also constant in a neighborhood of t = 0 and t = 1.
The idea is that a lazy hiker takes a rest before starting a hike, and also after
completing it. Suppose γ and δ are smooth paths and γ starts where δ ends.
Then we define their composite

γδ: [0, 1] → M

in the usual way:

(γδ)(t) =

{

δ(2t) if 0 ≤ t ≤ 1
2

γ(2t− 1) if 1
2 ≤ t ≤ 1
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In other words, γδ spends the first half of its time moving along δ, and the
second half moving along γ. In general the path γδ may not be smooth at
t = 1

2 . However, if γ and δ are lazy, then their composite is smooth—and it,
too, is lazy!

So, lazy paths are closed under composition. Unfortunately, composition of
lazy paths is not associative. The paths (αβ)γ and α(βγ) differ by a smooth
reparametrization, but they are not equal. To solve this problem, we can take
certain equivalence classes of lazy paths as morphisms in the path groupoid.

We might try ‘homotopy classes’ of paths. Remember, a homotopy is a way
of interpolating between paths:

y• •x

δ

gg

γ

ww
Σ��

More precisely, a homotopy from the path γ: [0, 1] → M to the path δ: [0, 1] →
M is a smooth map

Σ: [0, 1]2 → M

such that Σ(0, t) = γ(t) and Σ(1, t) = δ(t). We say two paths are homotopic,
or lie in the same homotopy class, if there is a homotopy between them.

There is a well-defined category where the morphisms are homotopy classes
of lazy paths. Unfortunately this is not right for gauge theory, since for most
connections, parallel transport along homotopic paths gives different results. In
fact, parallel transport gives the same result for all homotopic paths if and only
if the connection is flat.

So, unless we are willing to settle for flat connections, we need a more delicate
equivalence relation between paths. Here the concept of ‘thin’ homotopy comes
to our rescue. A homotopy is thin if it sweeps out a surface that has zero area.
In other words, it is a homotopy Σ such that the rank of the differential dΣ is
less than 2 at every point. If two paths differ by a smooth reparametrization,
they are thinly homotopic. But there are other examples, too. For example,
suppose we have a path γ:x → y, and let γ−1: y → x be the reverse path,
defined as follows:

γ−1(t) = γ(1− t).

Then the composite path γ−1γ, which goes from x to itself:

y• •x
��

γ−1

γ

��

is thinly homotopic to the constant path that sits at x. The reason is that we
can shrink γ−1γ down to the constant path without sweeping out any area.

We define the path groupoid P1(M) to be the category where:

• Objects are points of M .
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• Morphisms are thin homotopy classes of lazy paths in M .

• If we write [γ] to denote the thin homotopy class of the path γ, composition
is defined by

[γ][δ] = [γδ].

• For any point x ∈ M , the identity 1x is the thin homotopy class of the
constant path at x.

With these rules, it is easy to check that P1(M) is a category. The most
important point is that since the composite paths (αβ)γ and α(βγ) differ by a
smooth reparametrization, they are thinly homotopic. This gives the associative
law when we work with thin homotopy classes.

But as its name suggests, P1(M) is better than a mere category. It is a
groupoid: that is, a category where every morphism γ:x → y has an inverse
γ−1: y → x satisfying

γ−1γ = 1x and γγ−1 = 1y

In P1(M), the inverse is defined using the concept of a reverse path:

[γ]−1 = [γ−1].

The rules for an inverse only hold in P1(M) after we take thin homotopy classes.
After all, the composites γγ−1 and γ−1γ are not constant paths, but they are
thinly homotopic to constant paths. But henceforth, we will relax and write
simply γ for the morphism in the path groupoid corresponding to a path γ,
instead of [γ].

As the name suggests, groupoids are a bit like groups. Indeed, a group is
secretly the same as a groupoid with one object! In other words, suppose we
have group G. Then there is a category where:

• There is only one object, •.

• Morphisms from • to • are elements of G.

• Composition of morphisms is multiplication in the group G.

• The identity morphism 1• is the identity element of G.

This category is a groupoid, since every group element has an inverse. Con-
versely, any groupoid with one object gives a group. Henceforth we will freely
switch back and forth between thinking of a group in the traditional way, and
thinking of it as a one-object groupoid.

How can we use groupoids to describe connections? It should not be sur-
prising that we can do this, now that we have our path groupoid P1(M) and
our one-object groupoid G in hand. A connection gives a map from P1(M) to
G, which says how to transform a particle when we move it along a path. More
precisely: if G is a Lie group, any connection on the trivial G-bundle over M
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yields a map, called the parallel transport map or holonomy, that assigns an
element of G to each path:

hol: • •

γ
vv

7→ hol(γ) ∈ G

In physics notation, the holonomy is defined as the path-ordered exponential of
some g-valued 1-form A, where g is the Lie algebra of G:

hol(γ) = P exp

(
∫

γ

A

)

∈ G.

The holonomy map satisfies certain rules, most of which are summarized in
the word ‘functor’. What is a functor? It is a map between categories that
preserves all the structure in sight!

More precisely: given categories C and D, a functor F :C → D consists of:

• a map F sending objects in C to objects in D, and

• another map, also called F , sending morphisms in C to morphisms in D,

such that:

• given a morphism f :x → y in C, we have F (f):F (x) → F (y),

• F preserves composition:

F (fg) = F (f)F (g)

when either side is well-defined, and

• F preserves identities:
F (1x) = 1F (x)

for every object x of C.

The last property actually follows from the rest. The second to last—preserving
composition—is the most important property of functors. As a test of your
understanding, check that if C and D are just groups (that is, one-object
groupoids) then a functor F :C → D is just a homomorphism.

Let us see what this definition says about a functor

hol:P1(M) → G

where G is some Lie group. This functor hol must send all the points of M to
the one object of G. More interestingly, it must send thin homotopy classes of
paths in M to elements of G:

hol: • •

γ
vv

7→ hol(γ) ∈ G

8



It must preserve composition:

hol(γδ) = hol(γ) hol(δ)

and identities:
hol(1x) = 1 ∈ G.

While they may be stated in unfamiliar language, these are actually well-
known properties of connections! First, the holonomy of a connection along a
path

hol(γ) = P exp

(
∫

γ

A

)

∈ G

only depends on the thin homotopy class of γ. To see this, compute the variation
of hol(γ) as we vary the path γ, and show the variation is zero if the homotopy
is thin. Second, to compute the group element for a composite of paths, we just
multiply the group elements for each one:

P exp

(
∫

γδ

A

)

= P exp

(
∫

γ

A

)

P exp

(
∫

δ

A

)

And third, the path-ordered exponential along a constant path is just the iden-
tity:

P exp

(
∫

1x

A

)

= 1 ∈ G.

All this information is neatly captured by saying hol is a functor. And
Theorem 1 says this is almost all there is to being a connection. The only
additional condition required is that hol be smooth. This means, roughly, that
hol(γ) depends smoothly on the path γ—more on that later. But if we drop this
condition, we can generalize the concept of connection, and define a generalized
connection on a smooth manifold M to be a functor hol:P1(M) → G.

Generalized connections have long played an important role in loop quan-
tum gravity, first in the context of real-analytic manifolds [3], and later for
smooth manifolds [17, 65]. The reason is that if M is any manifold and G
is a connected compact Lie group, there is a natural measure on the space of
generalized connections. This means that you can define a Hilbert space of
complex-valued square-integrable functions on the space of generalized connec-
tions. In loop quantum gravity these are used to describe quantum states before
any constraints have been imposed. The switch from connections to generalized
connections is crucial here—and the lack of smoothness gives loop quantum
gravity its ‘discrete’ flavor.

But suppose we are interested in ordinary connections. Then we really want
hol(γ) to depend smoothly on the path γ. How can we make this precise?

One way is to use the theory of ‘smooth groupoids’ [16]. Any Lie group
is a smooth groupoid, and so is the path groupoid of any smooth manifold.
We can define smooth functors between smooth groupoids, and then smooth
functors hol:P1(M) → G are in one-to-one correspondence with connections on
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the trivial principal G-bundle over M . We can go even further: there are more
general maps between smooth groupoids, and maps hol:P1(M) → G of this
more general sort correspond to connections on not necessarily trivial principal
G-bundles over M . For details, see the work of Bartels [25], Schreiber and
Waldorf [87].

But if this sounds like too much work, we can take the following shortcut.
Suppose we have a smooth function F : [0, 1]n × [0, 1] → M , which we think of
as a parametrized family of paths. And suppose that for each fixed value of the
parameter s ∈ [0, 1]n, the path γs given by

γs(t) = F (s, t)

is lazy. Then our functor hol:P1(M) → G gives a function

[0, 1]n → G
s 7→ hol(γs).

If this function is smooth whenever F has the above properties, then the functor
hol:P1(M) → G is smooth.

Starting from this definition one can prove the following lemma, which lies
at the heart of Theorem 1:

Lemma. There is a one-to-one correspondence between smooth functors

hol:P1(M) → G and Lie(G)-valued 1-forms A on M .

The idea is that given a Lie(G)-valued 1-form A on M , we can define a
holonomy for any smooth path as follows:

hol(γ) = P exp

(
∫

γ

A

)

,

and then check that this defines a smooth functor hol:P1(M) → G. Conversely,
suppose we have a smooth functor hol of this sort. Then we can define hol(γ)
for smooth paths γ that are not lazy, using the fact that every smooth path is
thinly homotopic to a lazy one. We can even do this for paths γ: [0, s] → M
where s 6= 1, since any such path can be reparametrized to give a path of the
usual sort. Given a smooth path

γ: [0, 1] → M

we can truncate it to obtain a path γs that goes along γ until time s:

γs: [0, s] → M.

By what we have said, hol(γs) is well-defined. Using the fact that hol:P1(M) →
G is a smooth functor, one can check that hol(γs) varies smoothly with s. So,
we can differentiate it and define a Lie(G)-valued 1-form A as follows:

A(v) =
d

ds
hol(γs)

∣

∣

s=0
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where v is any tangent vector at a point x ∈ M , and γ is any smooth path with

γ(0) = x, γ′(0) = v.

Of course, we need to check that A is well-defined and smooth. We also need to
check that if we start with a smooth functor hol, construct a 1-form A in this
way, and then turn A back into a smooth functor, we wind up back where we
started.

3 2-Categories and 2-Connections

Now we want to climb up one dimension, and talk about ‘2-connections’. A
connection tells us how particles transform as they move along paths. A 2-
connection will also tell us how strings transform as they sweep out surfaces. To
make this idea precise, we need to take everything we said in the previous section
and boost the dimension by one. Instead of categories, we need ‘2-categories’.
Instead of groups, we need ‘2-groups’. Instead of the path groupoid, we need
the ‘path 2-groupoid’. And instead of functors, we need ‘2-functors’. When
we understand all these things, the analogue of Theorem 1 will look strikingly
similar to the original version:

Theorem. For any Lie 2-group G and any smooth manifold M , there is a

one-to-one correspondence between:

1. 2-connections on the trivial principal G-2-bundle over M ,

2. pairs consisting of a smooth g-valued 1-form A and a smooth h-valued

2-form B on M , such that

t(B) = dA+A ∧A

where we use t: h → g, the differential of the map t:H → G, to convert B
into a g-valued 2-form, and

3. smooth 2-functors

hol:P2(M) → G

where P2(M) is the path 2-groupoid of M .

What does this say? In brief: there is a way to extract from a Lie 2-group
G a pair of Lie groups G and H . Suppose we have a 1-form A taking values in
the Lie algebra of G, and a 2-form B valued in the Lie algebra of H . Suppose
furthermore that these forms obey the equation above. Then we can use them
to consistently define parallel transport, or ‘holonomies’, for paths and surfaces.
They thus define a ‘2-connection’.

That is the idea. But to make it precise, we need 2-categories.
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3.1 2-Categories

Sets have elements. Categories have elements, usually called ‘objects’, but also
morphisms between these. In an ‘n-category’, we go further and include 2-
morphisms between morphisms, 3-morphisms between 2-morphisms,... and so
on up to the nth level. We are beginning to see n-categories provide an algebraic
language for n-dimensional structures in physics [12]. Higher gauge theory is
just one place where this is happening.

Anyone learning n-categories needs to start with 2-categories [63]. A 2-
category consists of:

• a collection of objects,

• for any pair of objects x and y, a set of morphisms f :x → y:

y• •x

f
uu

• for any pair of morphisms f, g:x → y, a set of 2-morphisms α: f ⇒ g:

y• •x

g

gg

f

ww
α��

We call f the source of α and g the target of α.

Morphisms can be composed just as in a category:

z• •y

f

ww
•x

g

ww
= z• •x

fg

ww

while 2-morphisms can be composed in two distinct ways, vertically:

y• •x

f

�� f ′

oo

f ′′

``

α
��

α′

��

= y• •x

f

xx

f ′′

ff α′
·α

��

and horizontally:

z• y•

f1

vv

f ′

1

hh α1�� •x

f2

ww

f ′

2

gg α2�� = z• •x

f1f2

xx

f ′

1f
′

2

ff α1◦α2

��

Finally, these laws must hold:
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• Composition of morphisms is associative, and every object x has a mor-
phism

x• •x
1xuu

serving as an identity for composition, just as in an ordinary category.

• Vertical composition is associative, and every morphism f has a 2-morphism

y• •x

f

gg

f

ww
1f��

serving as an identity for vertical composition.

• Horizontal composition is associative, and the 2-morphism

x• •x

1x

hh

1x

vv
11x��

serves as an identity for horizontal composition.

• Vertical and horizontal composition of 2-morphisms obey the interchange
law:

(α′

1 · α1) ◦ (α
′

2 · α2) = (α′

1 ◦ α
′

2) · (α1 ◦ α2)

so that diagrams of the form

x• y•

f1

|| f ′

1oo

f ′′

1

bb
α1��
α′

1��
•z

f2

|| f ′

2oo

f ′′

2

cc

α2��
α′

2��

define unambiguous 2-morphisms.

The interchange law is the truly new thing here. A category is all about
attaching 1-dimensional arrows end to end, and we need the associative law to
do that unambiguously. In a 2-category, we visualize the 2-morphisms as little
pieces of 2-dimensional surface:

• •ff
xx

��

We can attach these together in two ways: vertically and horizontally. For
the result to be unambiguous, we need not only associative laws but also the
interchange law. In what follows we will see this law turning up all over the
place.
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3.2 Path 2-Groupoids

Path groupoids play a big though often neglected role in physics: the path
groupoid of a spacetime manifold describes all the possible motions of a point
particle in that spacetime. The path 2-groupoid does the same thing for particles
and strings.

First of all, a 2-groupoid is a 2-category where:

• Every morphism f :x → y has an inverse, f−1: y → x, such that:

f−1f = 1x and ff−1 = 1y.

• Every 2-morphism α: f ⇒ g has a vertical inverse, α−1
vert: g ⇒ f , such

that:
α−1
vert · α = 1f and α · α−1

vert = 1f .

It actually follows from this definition that every 2-morphism α: f ⇒ g also has
a horizontal inverse, α−1

hor: f
−1 ⇒ g−1, such that:

α−1

hor ◦ α = 11x and α ◦ α−1

hor = 11x .

So, a 2-groupoid has every kind of inverse your heart could desire.
An example of a 2-group is the ‘path 2-groupoid’ of a smooth manifold M .

To define this, we can start with the path groupoid P1(M) as defined in the
previous section, and then throw in 2-morphisms. Just as the morphisms in
P1(M) were thin homotopy classes of lazy paths, these 2-morphisms will be
thin homotopy classes of lazy surfaces.

What is a ‘lazy surface’? First, recall that a homotopy between lazy paths
γ, δ:x → y is a smooth map Σ: [0, 1]2 → M with

Σ(0, t) = γ(t)

Σ(1, t) = δ(t)

We say this homotopy is a lazy surface if

• Σ(s, t) is independent of s near s = 0 and near s = 1,

• Σ(s, t) is constant near t = 0 and constant near t = 1.

Any homotopy Σ yields a one-parameter family of paths γs given by

γs(t) = Σ(s, t).

If Σ is a lazy surface, each of these paths is lazy. Furthermore, the path γs equals
γ0 when s is sufficiently close to 0, and it equals γ1 when s is sufficiently close to
1. This allows us to compose lazy homotopies either vertically or horizontally
and obtain new lazy homotopies!

However, vertical and horizontal composition will only obey the 2-groupoid
axioms if we take 2-morphisms in the path 2-groupoid to be equivalence classes
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of lazy surfaces. We saw this kind of issue already when discussing the path
groupoid, so we we will allow ourselves to be a bit sketchy this time. The
key idea is to define a concept of ‘thin homotopy’ between lazy surfaces Σ
and Ξ. For starters, this should be a smooth map H : [0, 1]3 → M such that
H(0, s, t) = Σ(s, t) and H(1, s, t) = Ξ(s, t). But we also want H to be ‘thin’.
In other words, it should sweep out no volume: the rank of the differential dH
should be less than 3 at every point.

To make thin homotopies well-defined between thin homotopy classes of
paths, some more technical conditions are also useful. For these, the reader can
turn to Section 2.1 of Schreiber and Waldorf [87]. The upshot is that we obtain
for any smooth manifold M a path 2-groupoid P2(M), in which:

• An object is a point of M .

• A morphism from x to y is a thin homotopy class of lazy paths from x to
y.

• A 2-morphism between equivalence classes of lazy paths γ0, γ1:x → y is a
thin homotopy class of lazy surfaces Σ: γ0 ⇒ γ1.

As we already did with the concept of ‘lazy path’, we will often use ‘lazy surface’
to mean a thin homotopy class of lazy surfaces. But now let us hasten on to
another important class of 2-groupoids, the ‘2-groups’. Just as groups describe
symmetries in gauge theory, these describe symmetries in higher gauge theory.

3.3 2-Groups

Just as a group was a groupoid with one object, we define a 2-group to be a
2-groupoid with one object. This definition is so elegant that it may be hard to
understand at first! So, it will be useful to take a 2-group G and chop it into
four bite-sized pieces of data, giving a ‘crossed module’ (G,H, t, α). Indeed, 2-
groups were originally introduced in the guise of crossed modules by the famous
topologist J. H. C. Whitehead [93]. In 1950, with help from Mac Lane [66], he
used crossed modules to generalize the fundamental group of a space to what
we might now call the ‘fundamental 2-group’. But only later did it become clear
that a crossed module was another way of talking about a 2-groupoid with just
one object! For more of this history, and much more on 2-groups, see [13].

Let us start by seeing what it means to say a 2-group is a 2-groupoid with
one object. It means that a 2-group G has:

• one object:
•

• morphisms:

• •

g
vv

15



• and 2-morphisms:

• •

g

��

g′

\\
α

��

The morphisms form a group under composition:

• •

g
vv

•

g′

vv
= • •

gg′

vv

The 2-morphisms form a group under horizontal composition:

• •

g1

xx

g′

1

ff α1��

g2

xx

g′

2

ff α2�� = • •

g1g2

zz

g′

1g
′

2

dd α1◦α2

��

In addition, the 2-morphisms can be composed vertically:

• •

g

�� g′

oo

g′′

]]

α
��

α′

��

= • •

g

zz

g′′

dd α′
·α

��

Vertical composition is also associative with identity and inverses. But the 2-
morphisms do not form a group under this operation, because a given pair may
not be composable: their source and target may not match up. Finally, vertical
and horizontal composition are tied together by the interchange law, which says
the two ways one can read this diagram are consistent.

• •

g1

}} g′

1oo

g′′

1

aa
α��

α′

��
•

g2

}} g′

2oo

g′′

2

aa
β��
β′

��

Now let us create a crossed module (G,H, t, α) from a 2-group G. To do
this, first note that the morphisms of the 2-group form a group by themselves,
with composition as the group operation. So:

• Let G be the set of morphisms in G, made into a group with composition
as the group operation:

• •
g

vv
•

g′

vv
= • •

gg′

vv
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How about the 2-morphisms? These also form a group, with horizontal com-
position as the group operation. But it turns out to be efficient to focus on a
subgroup of this:

• Let H be the set of all 2-morphisms whose source is the identity:

• •

1•

zz

t(h)

dd h
��

We make H into a group with horizontal composition as the group oper-
ation:

• •

1•

xx

t(h)

ff h�� •

1•

xx

t(h′)

ff h′

�� = • •

1•

zz

t(hh′)

dd hh′

��

Above we use hh′ as an abbreviation for the horizontal composite h ◦ h′ of two
elements of H . We will use h−1 to denote the horizontal inverse of an element
of H . We use t(h) to denote the target of an element h ∈ H . The definition of
a 2-category implies that t:H → G is a group homomorphism:

t(hh′) = t(h)t(h′).

This homomorphism is our third piece of data:

• A group homomorphism t:H → G sending each 2-morphism in H to its
target:

• •

1•

zz

t(h)

dd h
��

The fourth piece of data is the subtlest. There is a way to ‘horizontally conju-
gate’ any element h ∈ H by an element g ∈ G, or more precisely by its identity
2-morphism 1g:

• •

g

xx

g

ff 1g�� •

1•

xx

t(h)

ff h�� •

g−1

xx

g−1

ff 1
g−1��

The result is a 2-morphism in H which we call α(g)(h). In fact, α(g) is an
automorphism of H , meaning a one-to-one and onto function with

α(g)(hh′) = α(g)(h) α(g)(h′).
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Composing two automorphisms gives another automorphism, and this makes
the automorphisms of H into a group, say Aut(H). Even better, α gives a
group homomorphism

α:G → Aut(H).

Concretely, this means that in addition to the above equation, we have

α(gg′) = α(g)α(g′).

Checking these two equations is a nice way to test your understanding of 2-
categories. A group homomorphism α:G → Aut(H) is also called an action
of the group G on the group H . So, the fourth and final piece of data in our
crossed module is:

• An action α of G on H given by:

• •

g

xx

g

ff 1g�� •

1•

xx

t(h)

ff h�� •

g−1

xx

g−1

ff 1−1
g�� = • •

1

xx

t(α(g)(h))

ff α(g)(h)��

A crossed module (G,H, t, α) must also satisfy two more equations which follow
from the definition of a 2-group. First, examining the above diagram, we see
that t is G-equivariant, by which we mean:

• t(α(g)h) = g(t(h))g−1 for all g ∈ G and h ∈ H .

Second, the Peiffer identity holds:

• α(t(h))h′ = hh′h−1 for all h, h′ ∈ H .

The Peiffer identity is the least obvious thing about a crossed module. It
follows from the interchange law, and it is worth seeing how. First, we have:

hh′h−1 = • •

1•

zz

t(h)

dd h
��

•

1•

zz

t(h′)

dd h′

��
•

1•

zz

t(h−1)

dd h−1

��

where—beware!—we are now using h−1 to mean the horizontal inverse of h,
since this is its inverse in the group H . We can pad out this equation by
vertically composing with some identity morphisms:

hh′h−1 = • •

1•

~~ t(h)oo

t(h)

``

h
��

1t(h)

��

•

1•

~~ 1•oo

t(h)

``

11•
��

h

��

•

1•

~~ t(h−1)oo

t(h−1)

``

h−1

��

1
t(h−1)

��

18



This diagram describes an unambiguous 2-morphism, thanks to the interchange
law. So, we can do the horizontal compositions first and get:

hh′h−1 = • •

1•

zz 1•oo

t(hh′h−1)

dd

11•

��

α(t(h))(h′)

��

But vertically composing with an identity 2-morphism has no effect. So, we
obtain the Peiffer identity:

hh′h−1 = α(t(h))(h′).

All this leads us to define a crossed module (G,H, t, α) to consist of:

• a group G,

• a group H ,

• a homomorphism t:H → G, and

• an action α:G → Aut(H)

such that:

• t is G-equivariant:
t(α(g)h) = g(t(h))g−1

for all g ∈ G and h ∈ H , and

• the Peiffer identity holds for all h, h′ ∈ H :

α(t(h))h′ = hh′h−1.

In fact, we can recover a 2-group G from its crossed module (G,H, t, α), so
crossed modules are just another way of thinking about 2-groups. The trick to
seeing this is to notice that 2-morphisms in G are the same as pairs (g, h) ∈
G×H . Such a pair gives this 2-morphism:

• •

1•

xx

t(h)

ff h�� •

g

xx

g

ff 1g��

We leave it to the reader to check that every 2-morphism in G is of this form.
Note that this 2-morphism goes from g to t(h)g. So, when we construct a
2-group from a crossed module, we get a 2-morphism

(g, h): g → t(h)g
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from any pair (g, h) ∈ G × H . Horizontal composition of 2-morphisms then
makes G×H into a group, as follows:

(g, h) ◦ (g′, h′) =

• •

1•

}}

t(h)

aa h�� •

g

}}

g

aa 1g�� •

1•

}}

t(h′)

aa h′

�� •

g′

}}

g′

aa 1g′�� =

• •

1•

}}

t(h)

aa h�� •

g

}}

g

aa 1g�� •

1•

}}

t(h′)

aa h′

�� •

g−1

}}

g−1

aa 1
g−1�� •

g

}}

g

aa 1g�� •

g′

}}

g′

aa 1g′�� =

• •

1•

}}

t(h)

aa h�� •

1•

uu

t(α(g)(h′))

ii α(g)(h′)�� •

gg′

xx

gg′

ff 1gg′�� =

• •

1•

ww

t(hα(g)(h′))

gg hα(g)(h′)

��
•

gg′

xx

gg′

ff 1gg′�� = (gg′, hα(g)(h′)).

So, the group of 2-morphisms of G is the semidirect product G ⋉ H , defined
using the action α.

Following this line of thought, the reader can check the following:

Theorem 2. Given a crossed module (G,H, t, α), there is a unique 2-group G
where:

• the group of morphisms is G,

• a 2-morphism α: g ⇒ g′ is the same as a pair (g, h) ∈ G × H with g′ =
t(h)g,

• the vertical composite of (g, h) and (g′, h′), when they are composable, is

given by

(g, h) · (g′, h′) = (g′, hh′),

• the horizontal composite of (g, h) and (g′, h′) is given by

(g, h) ◦ (g′, h′) = (gg′, hα(g)(h′)).

Conversely, given a 2-group G, there is a unique crossed module (G,H, t, α)
where:

• G is the group of morphisms of G,

20



• H is the group of 2-morphisms with source equal to 1•,

• t:H → G assigns to each 2-morphism in H its target,

• the action α of G on H is given by

α(g)h = 1g ◦ h ◦ 1g−1 .

Indeed, these two processes set up an equivalence between 2-groups and
crossed modules, as described more formally elsewhere [13, 51]. It thus makes
sense to define a Lie 2-group to be a 2-group for which the groups G and H in
its crossed module are Lie groups, with the maps t:H → G and α:G → Aut(H)
being smooth. It is worth emphasizing that in this context we use Aut(H) to
mean the group of smooth automorphisms of H . This is a Lie group in its own
right.

In Section 4 we will use Theorem 2 to construct many examples of Lie 2-
groups. But first we should finish explaining 2-connections.

3.4 2-Connections

A 2-connection is a recipe for parallel transporting both 0-dimensional and
1-dimensional objects—say, particles and strings. Just as we can describe a
connection on a trivial bundle using a Lie-algebra valued differential form, we
can describe a 2-connection using a pair of differential forms. But there is a
deeper way of understanding 2-connections. Just as a connection was revealed
to be a smooth functor

hol:P1(M) → G

for some Lie group G, a 2-connection will turn out to be a smooth 2-functor

hol:P2(M) → G

for some Lie 2-group G. Of course, to make sense of this we need to define a
‘2-functor’, and say what it means for such a thing to be smooth.

The definition of 2-functor is utterly straightforward: it is a map between
2-categories that preserves everything in sight. So, given 2-categories C and D,
a 2-functor F :C → D consists of:

• a map F sending objects in C to objects in D,

• another map called F sending morphisms in C to morphisms in D,

• a third map called F sending 2-morphisms in C to 2-morphisms in D,

such that:

• given a morphism f :x → y in C, we have F (f):F (x) → F (y),
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• F preserves composition for morphisms, and identity morphisms:

F (fg) = F (f)F (g)

F (1x) = 1F (x),

• given a 2-morphism α: f ⇒ g in C, we have F (α):F (f) ⇒ F (g),

• F preserves vertical and horizontal composition for 2-morphisms, and
identity 2-morphisms:

F (α · β) = F (α) · F (β)

F (α ◦ β) = F (α) ◦ F (β)

F (1f ) = 1F (f).

There is a general theory of smooth 2-groupoids and smooth 2-functors [16,
88]. But here we prefer to take a more elementary approach. We already know
that for any Lie 2-group G, the morphisms and 2-morphisms each form Lie
groups. Given this, we can say that for any smooth manifold M , a 2-functor

hol:P2(M) → G

is smooth if:

• For any smoothly parametrized family of lazy paths γs (s ∈ [0, 1]n) the
morphism hol(γs) depends smoothly on s, and

• For any smoothly parametrized family of lazy surfaces Σs (s ∈ [0, 1]n) the
2-morphism hol(Σs) depends smoothly on s.

With these definitions in hand, we are finally ready to understand the basic
result about 2-connections. It is completely analogous to Theorem 1:

Theorem 3. For any Lie 2-group G and any smooth manifold M , there is a

one-to-one correspondence between:

1. 2-connections on the trivial principal G-2-bundle over M ,

2. pairs consisting of a smooth g-valued 1-form A and a smooth h-valued

2-form B on M , such that

t(B) = dA+A ∧A

where we use t: h → g, the differential of the map t:H → G, to convert B
into a g-valued 2-form, and

3. smooth 2-functors

hol:P2(M) → G

where P2(M) is the path 2-groupoid of M .

22



This result was announced by Baez and Schreiber [16], and a proof can be
be found in the work of Schreiber and Waldorf [88]. This work was deeply
inspired by the ideas of Breen and Messing [29, 30], who considered a special
class of 2-groups, and omitted the equation t(B) = dA+A∧A, since their sort
of connection did not assign holonomies to surfaces. One should also compare
the closely related work of Mackaay, Martins, and Picken [67, 69], and the work
of Pfeiffer and Girelli [76, 58].

In the above theorem, the first item mentions ‘2-connections’ and ‘2-bundles’—
concepts that we have not defined. But since we are only talking about 2-
connections on trivial 2-bundles, we do not need these general concepts yet.
For now, we can take the third item as the definition of the first. Then the con-
tent of the theorem lies in the differential form description of smooth 2-functors
hol:P2(M) → G. This is what we need to understand.

A 2-functor of this sort must assign holonomies both to paths and sur-
faces. As you might expect, the 1-form A is primarily responsible for defin-
ing holonomies along paths, while the 2-form B is responsible for defining
holonomies for surfaces. But this is a bit of an oversimplification. When com-
puting the holonomy of a surface, we need to use A as well as B!

Another surprising thing is that A and B need to be related by an equation

for the holonomy to be a 2-functor. If we ponder how the holonomy of a surface
is actually computed, we can see why this is so. We shall not be at all rigorous
here. We just want to give a rough intuitive idea of how to compute a holonomy
for a surface, and where the equation t(B) = dA+A∧A comes from. Of course

dA+A ∧ A = F

is just the curvature of the connection A. This is a big clue.
Suppose we are trying to compute the holonomy for a surface starting from

a g-valued 1-form A and an h-valued 2-form B. Then following the ideas of
calculus, we can try to chop the surface into many small pieces, compute a
holonomy for each one, and multiply these together somehow. It is easy to chop
a surface into small squares. Unfortunately, the definition of 2-category doesn’t
seem to know anything about squares! But this is not a serious problem. For
example, we can interpret this square:

• •
foo

•

h

OO

•
k

oo

g

OO

α{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

as a 2-morphism α: fg ⇒ hk. We can then compose a bunch of such 2-
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morphisms:
• •oo •oo •oo

•

OO

•oo

OO

•oo

OO

•oo

OO

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

•

OO

•oo

OO

•oo

OO

•oo

OO

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

with the help of a trick called ‘whiskering’.
Whiskering is a way to compose a 1-morphism and a 2-morphism. Suppose

we want to compose a 2-morphism α and a morphism f that sticks out like a
whisker on the left:

z• y•
foo •x

g

ww

g′

gg α
��

We can do this by taking the horizontal composite 1f ◦ α:

z• y•

f

vv

f

hh 1f
��

•x

g

ww

g′

gg α
��

We call the result f ◦ α, or α left whiskered by f . Similarly, if we have a
whisker sticking out on the right:

z• y•

g

vv

g′

hh α
��

x•
foo

we can take the horizontal composite α ◦ 1f :

z• y•

g

vv

g′

hh α
��

•x

f

ww

f

gg 1f
��

and call the result α ◦ f , or α right whiskered by f .
With the help of whiskering, we can compose 2-morphisms shaped like ar-

bitrary polygons. For example, suppose we want to horizontally compose two
squares:

• •
foo •

f ′

oo

•

h

OO

•
k

oo

ℓ

OO

•
k′

oo

g

OO

α{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

β{� ⑧⑧
⑧⑧⑧⑧
⑧⑧
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To do this, we can left whisker β by f , obtaining this 2-morphism:

f ◦ β: ff ′g ⇒ fℓk′

• •
foo •

f ′

oo

•

ℓ

OO

•
k′

oo

g

OO

β{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

Then we can right whisker α by k′, obtaining

α ◦ k′: fℓk′ ⇒ hkk′

• •
foo

•

h

OO

•
k

oo

ℓ

OO

•
k′

oo
α{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

Then we can vertically compose these to get the desired 2-morphism:

(α ◦ k′) · (g ◦ β): ff ′g ⇒ hkk′

• •
foo •

f ′

oo

•

h

OO

•
k

oo

ℓ

OO

•
k′

oo

g

OO

α{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

β{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

The same sort of trick lets us vertically compose squares. By iterating these
procedures we can define more complicated composites, like this:

• •oo •oo •oo •oo

•

OO

•oo

OO

•oo

OO

•oo

OO

•oo

OO

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

•

OO

•oo

OO

•oo

OO

•oo

OO

•oo

OO

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

Of course, one may wonder if these more complicated composites are unambigu-
ously defined! Luckily they are, thanks to associativity and the interchange law.
This is a nontrivial result, called the ‘pasting theorem’ [77].

By this method, we can reduce the task of computing hol(Σ) for a large
surface Σ to the task of computing it for lots of small squares. Ultimately, of
course, we should take a limit as the squares become smaller and smaller. But
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for our nonrigorous discussion, it is enough to consider a very small square like
this:

•

•

Σ{� ⑧⑧
⑧⑧⑧
⑧

ooOO

γ2

γ1

We can think of this square as a 2-morphism

Σ: γ1 ⇒ γ2

where γ1 is the path that goes up and then across, while γ2 goes across and
then up. We wish to compute

hol(Σ): hol(γ1) ⇒ hol(γ2).

On the one hand, hol(Σ) involves the 2-form B. On the other hand, its source
and target depend only on the 1-form A:

hol(γ1) = P exp

(
∫

γi

A

)

, hol(γ2) = P exp

(
∫

γ2

A

)

.

So, hol(Σ) cannot have the right source and target unless A and B are related
by an equation!

Let us try to guess this equation. Recall from Theorem 2 that a 2-morphism
α: g1 ⇒ g2 in G is determined by an element h ∈ H with g2 = t(h)g1. Using
this, we may think of hol(Σ): hol(γ1) → hol(γ2) as determined by an element
h ∈ H with

P exp

(
∫

γ2

A

)

= t(h) P exp

(
∫

γ1

A

)

,

or in other words

t(h) = P exp

(
∫

∂Σ

A

)

(1)

where the loop ∂Σ = γ2γ
−1
1 goes around the square Σ. For a very small square,

we can approximately compute the right hand side using Stokes’ theorem:

P exp

(
∫

∂Σ

A

)

≈ exp

(
∫

Σ

F

)

.

On the other hand, there is an obvious guess for the approximate value of h,
which is supposed to be built using the 2-form B:

h ≈ exp

(
∫

Σ

B

)

.

For this guess to yield Equation (1), at least to first order in the size of our
square, we need

t(exp

(
∫

Σ

B

)

) ≈ exp

(
∫

Σ

F

)

.
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But this will be true if
t(B) = F.

And this is the equation that relates A and B!
What have we learned here? First, for any surface Σ: γ1 ⇒ γ2, the holonomy

hol(Σ) is determined by an element h ∈ H with

P exp

(
∫

γ2

A

)

= t(h) P exp

(
∫

γ1

A

)

In the limit where Σ is very small, this element h depends only on B:

h ≈ exp

(
∫

Σ

B

)

.

But for a finite-sized surface, this formula is no good, since it involves adding
up B at different points, which is not a smart thing to do. For a finite-sized
surface, h depends on A as well as B, since we can approximately compute h
by chopping this surface into small squares, whiskering them with paths, and
composing them—and the holonomies along these paths are computed using A.

To get the exact holonomy over a finite-sized surface by this method, we
need to take a limit where we subdivide the surface into ever smaller squares.
This is the Lie 2-group analogue of a Riemann sum. But for actual calculations,
this process is not very convenient. More practical formulas for computing
holonomies over surfaces can be found in the work of Schreiber and Waldorf
[88], Martins and Picken [69].

4 Examples and Applications

Now let us give some examples of Lie 2-groups, and see what higher gauge
theory can do with these examples. We will build these examples using crossed
modules. Throughout what follows, G is a Lie 2-group whose corresponding
crossed module is (G,H, t, α).

4.1 Shifted Abelian Groups

Any group G automatically gives a 2-group where H is trivial. Then higher
gauge theory reduces to ordinary gauge theory. But to see what is new about
higher gauge theory, let us instead suppose that G is the trivial group. Then
t and α are forced to be trivial, and t is automatically G-equivariant. On the
other hand, the Peiffer identity

α(t(h))h′ = hh′h−1

is not automatic: it holds if and only if H is abelian!
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There is also a nice picture proof that H must be abelian when G is trivial.
We simply move two elements of H around each other using the interchange
law:

• •

1

ZZ

1

��
h

��
• •

1

ZZ

1

��
h′

��
= • •ooYY

�� h
��
1

��

• •ooYY
�� 1

��
h′

��

= • •YY oo
��

h

��
h′

��

= • •ooYY
�� 1

��
h′

��

• •ooYY
�� h

��
1

��

= • •ZZ
��

h′

��
• •ZZ
��

h

��

As a side-benefit, we see that horizontal and vertical composition must be equal
when G is trivial. This proof is called the ‘Eckmann–Hilton argument’, since
Eckmann and Hilton used it to show that the second homotopy group of a space
is abelian [43].

So, we can build a 2-group where:

• G is the trivial group,

• H is any abelian Lie group,

• α is trivial, and

• t is trivial.

This is called the shifted version of H , and denoted bH .
In applications to physics, we often see H = U(1). A principal bU(1)-2-

bundle is usually called a U(1) gerbe, and a 2-connection on such a thing is
usually just called a connection. By Theorem 3, a connection on a trivial U(1)
gerbe is just an ordinary real-valued 2-form B. Its holonomy is given by:

hol: • •

γ
vv

7→ 1

hol: • •ZZ
��

Σ
��

7→ exp

(

i

∫

Σ

B

)

∈ U(1).
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The book by Brylinski [31] gives a rather extensive introduction to U(1)
gerbes and their applications. Murray’s theory of ‘bundle gerbes’ gives a dif-
ferent viewpoint [74, 89]. Here let us discuss two places where U(1) gerbes
show up in physics. One is ‘multisymplectic geometry’; the other is ‘2-form
electromagnetism’. The two are closely related.

First, let us remember how 1-forms show up in symplectic geometry and
electromagnetism. Suppose we have a point particle moving in some manifold
M . At any time its position is a point q ∈ M and its momentum is a cotangent
vector p ∈ T ∗

q M . As time passes, its position and momentum trace out a curve

γ: [0, 1] → T ∗M.

The action of this path is given by

S(γ) =

∫

γ

(

piq̇
i −H(q, p)

)

dt

where H :T ∗M → R is the Hamiltonian. But now suppose the Hamiltonian
is zero! Then there is still a nontrivial action, due to the first term. We can
rewrite it as follows:

S(γ) =

∫

γ

α

where the 1-form
α = pidq

i

is a canonical structure on the cotangent bundle. We can think of α as connec-
tion on a trivial U(1)-bundle over T ∗M . Physically, this connection describes
how a quantum particle changes phase even when the Hamiltonian is zero! The
change in phase is computed by exponentiating the action. So, we have:

hol(γ) = exp

(

i

∫

γ

α

)

.

Next, suppose we carry our particle around a small loop γ which bounds a
disk D. Then Stokes’ theorem gives

S(γ) =

∫

γ

α =

∫

D

dα

Here the 2-form
ω = dα = dpi ∧ dqi

is the curvature of the connection α. It makes T ∗M into a symplectic man-
ifold, that is, a manifold with a closed 2-form ω satisfying the nondegeneracy
condition

∀v ω(u, v) = 0 =⇒ u = 0.
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The subject of symplectic geometry is vast and deep, but sometimes this simple
point is neglected: the symplectic structure describes the change in phase of a
quantum particle as we move it around a loop:

hol(γ) = exp

(

i

∫

D

ω

)

.

Perhaps this justifies calling a symplectic manifold a ‘phase space’, though his-
torically this seems to be just a coincidence.

It may seem strange to talk about a quantum particle tracing out a loop
in phase space, since in quantum mechanics we cannot simultaneously know a
particle’s position and momentum. However, there is a long line of work, begin-
ning with Feynman, which computes time evolution by an integral over paths
in phase space [40]. This idea is also implicit in geometric quantization, where
the first step is to equip the phase space with a principal U(1)-bundle having a
connection whose curvature is the symplectic structure. (Our discussion so far
is limited to trivial bundles, but everything we say generalizes to the nontrivial
case.)

Next, consider a charged particle in an electromagnetic field. Suppose that
we can describe the electromagnetic field using a vector potential A which is
a connection on trivial U(1) bundles over M . Then we can pull A back via
the projection π:T ∗M → M , obtaining a 2-form π∗A on phase space. In the
absence of any other Hamiltonian, the particle’s action as we move it along a
path γ in phase space will be

S(γ) =

∫

γ

α+ e π∗A

if the particle has charge e. In short, the electromagnetic field changes the

connection on phase space from α to α+ e π∗A. Similarly, when the path γ is a
loop bounding a disk D, we have

S(γ) =

∫

D

ω + e π∗F

where F = dA is the electromagnetic field strength. So, electromagnetism also
changes the symplectic structure on phase space from ω to ω+ e π∗F . For more
on this, see Guillemin and Sternberg [60], who also treat the case of nonabelian
gauge fields.

All of this has an analog where particles are replaced by strings. It has been
known for some time that just as the electromagnetic vector potential naturally
couples to point particles, there is a 2-form B called the Kalb–Ramond field
which naturally couples to strings. The action for this coupling is obtained
simply by integrating B over the string worldsheet. In 1986, Gawedski [54]
showed that the B field should be seen as a connection on a U(1) gerbe. Later
Freed and Witten [52] showed this viewpoint was crucial for understanding
anomaly cancellation. However, these authors did not actually use the word
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‘gerbe’. The role of gerbes was later made explicit by Carey, Johnson and
Murray [34], and even more so by Gawedski and Reis [55].

In short, electromagnetism has a ‘higher version’. What about symplectic
geometry? This also has a higher version, which dates back to 1935 work by
DeDonder [39] and Weyl [92]. The idea here is that an n-dimensional classical
field theory has a kind of finite-dimensional phase space equipped with a closed
(n+ 2)-form ω which is nondegenerate in the following sense:

∀v1, . . . , vn+1 ω(u, v1, . . . , vn) = 0 =⇒ u = 0.

Such a n-form is called a multisymplectic structure, or more specifically, an
n-plectic structure For a nice introduction to multisymplectic geometry, see
the paper by Gotay, Isenberg, Marsden, and Montgomery [57].

The link between multisymplectic geometry and higher electromagnetism
was made in a paper by Baez, Hoffnung and Rogers [10]. Everything is closely
analogous to the story for point particles. For a classical bosonic string prop-
agating on Minkowski spacetime of any dimension, say M , there is a finite-
dimensional manifold X which serves as a kind of ‘phase space’ for the string.
There is a projection π:X → M , and there is a god-given way to take any map
from the string’s worldsheet to M and lift it to an embedding of the worldsheet
in X . So, let us write Σ for the string worldsheet considered as a surface in X .

The phase space X is equipped with a 2-plectic structure: that is, a closed
nondegenerate 3-form, say ω. But in fact, ω = dα for some 2-form α. Even
when the string’s Hamiltonian is zero, there is a term in the action of the string
coming from the integral of α:

S(Σ) =

∫

Σ

α.

We may also consider a charged string coupled to a Kalb–Ramond field. This
begins life as a 2-form B on M , but we may pull it back to a 2-form π∗B on X ,
and then

S(Σ) =

∫

Σ

α+ e π∗B.

In particular, suppose Σ is a 2-sphere bounding a 3-ball D in X . Then by
Stokes’ theorem we have

S(Σ) =

∫

D

ω + e π∗Z

where the 3-form
Z = dB

is the Kalb–Ramond analog of the electromagnetic field strength, and e is the
string’s charge. (The Kalb–Ramond field strength is usually called ‘H ’ in the
physics literature, but that conflicts with our usage of H to mean a Lie group,
so we shall call it ‘Z’.)

In summary: the Kalb–Ramond field modifies the 2-plectic structure on the

phase space of the string. The reader will note that we have coyly refused to
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describe the phase space X or its 2-form α. For this, see the paper by Baez,
Hoffnung and Rogers [10]. In this paper, we explain how the usual dynamics of a
classical bosonic string coupled to a Kalb–Ramond field can be described using
multisymplectic geometry. We also explain how to generalize Poisson brackets
from symplectic geometry to multisymplectic geometry. Just as Poisson brackets
in symplectic geometry make the functions on phase space into a Lie algebra,
Poisson brackets in multisymplectic geometry give rise to a ‘Lie 2-algebra’. Lie
2-algebras are also important in higher gauge theory in the same way that Lie
algebras are important for gauge theory. Indeed, the ‘string 2-group’ described
in Section 4.6 was constructed only after its Lie 2-algebra was found [7]. Later,
this Lie 2-algebra was seen to arise naturally from multisymplectic geometry
[15].

4.2 The Poincaré 2-Group

Suppose we have a representation α of a Lie group G on a finite-dimensional
vector space H . We can regard H as an abelian Lie group with addition as the
group operation. This lets us regard α as an action of G on this abelian Lie
group. So, we can build a 2-group G where:

• G is any Lie group,

• H is any vector space,

• α is the representation of G on H , and

• t is trivial.

In particular, note that the Peiffer identity holds. In this way, we see that
any group representation gives a crossed module—so group representations are
secretly 2-groups!

For example, if we let G be the Lorentz group and let α be its obvious
representation on R4:

G = SO(3, 1)

H = R4

we obtain the so-called Poincaré 2-group, which has the Lorentz group as its
group of morphisms, and the Poincaré group as its group of 2-morphisms [13].

What is the Poincaré 2-group good for? It is not clear, but there are some
clues. Just as we can study representations of groups on vector spaces, we can
study representations of 2-groups on ‘2-vector spaces’ [6, 24, 38, 48]. The rep-
resentations of a group are the objects of a category, and this sort of category
can be used to build ‘spin foam models’ of background-free quantum field theo-
ries [5]. This endeavor has been most successful with 3d quantum gravity [53],
but everyone working on this subject dreams of doing something similar for 4d
quantum gravity [80]. Going from groups to 2-groups boosts the dimension of
everything: the representations of a 2-group are the objects of a 2-category, and
Crane and Sheppeard outlined a program for building a 4-dimensional spin foam
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model starting from the 2-category of representations of the Poincaré 2-group
[36].

Crane and Sheppeard hoped their model would be related to quantum grav-
ity in 4 spacetime dimensions. This has not come to pass, at least not yet—but
this spin foam model does have interesting connections to 4d physics. The spin
foam model of 3d quantum gravity automatically includes point particles, and
Baratin and Freidel have shown that it reduces to the usual theory of Feynman
diagrams in 3d Minkowski spacetime in the limit where the gravitational con-
stant GNewton goes to zero [21]. This line of thought led Baratin and Freidel to
construct a spin foam model that is equivalent to the usual theory of Feynman
diagrams in 4d Minkowski spacetime [22]. At first the mathematics underlying
this model was a bit mysterious—but it now seems clear that this model is based
on the representation theory of the Poincaré 2-group! For a preliminary report
on this fascinating research, see the paper by Baratin and Wise [23].

In short, it appears that the 2-category of representations of the Poincaré
2-group gives a spin foam description of quantum field theory on 4d Minkowski
spacetime. Unfortunately, while spin foam models in 3 dimensions can be ob-
tained by quantizing gauge theories, we do not see how to obtain this 4d spin
foam model by quantizing a higher gauge theory. Indeed, we know of no classi-
cal field theory in 4 dimensions whose solutions are 2-connections on a principal
G-2-bundle where G is the Poincaré 2-group.

However, if we replace the Poincaré 2-group by a closely related 2-group,
this puzzle does have a nice solution. Namely, if we take

G = SO(3, 1)

H = so(3, 1)

and take α to be the adjoint representation, we obtain the ‘tangent 2-group’ of
the Lorentz group. As we shall see, 2-connections for this 2-group arise naturally
as solutions of a 4d field theory called ‘topological gravity’.

4.3 Tangent 2-Groups

We have seen that any group representation gives a 2-group. But any Lie group
G has a representation on its own Lie algebra: the adjoint representation. This
lets us build a 2-group from the crossed module where:

• G is any Lie group,

• H is g regarded as a vector space and thus an abelian Lie group,

• α is the adjoint representation, and

• t is trivial.

We call this the tangent 2-group T G of the Lie group G. Why? We have
already seen that for any Lie 2-group, the group of all 2-morphisms is the
semidirect product G⋉H . In the case at hand, this semidirect product is just
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G ⋉ g, with G acting on g via the adjoint representation. But as a manifold,
this semidirect product is nothing other than the tangent bundle TG of the Lie
group G. So, the tangent bundle TG becomes a group, and this is the group of
2-morphisms of T G.

By Theorem 3, a 2-connection on a trivial T G-2-bundle consists of a g-valued
1-form A and a g-valued 2-form B such that the curvature F = dA + A ∧ A
satisfies

F = 0,

since t(B) = 0 in this case. Where can we find such 2-connections? We can find
them as solutions of a field theory called 4-dimensional BF theory!

BF theory is a classical field theory that works in any dimension. So, take an
n-dimensional oriented manifold M as our spacetime. The fields in BF theory
are a connection A on the trivial principal G-bundle over M , together with a
g-valued (n− 2)-form B. The action is given by

S(A,B) =

∫

M

tr(B ∧ F ).

Setting the variation of this action equal to zero, we obtain the following field
equations:

dB + [A,B] = 0, F = 0.

In dimension 4, B is a g-valued 2-form—and thanks to the second equation, A
and B fit together to define a 2-connection on the trivial T G-2-bundle over M .

It may seem dull to study a gauge theory where the equations of motion
imply the connection is flat. But there is still room for some fun. We see this
already in 3-dimensional BF theory, where B is a g-valued 1-form rather than a
2-form. This lets us package A and B into a connection on the trivial TG-bundle
over M . The field equations

dB + [A,B] = 0, F = 0

then say precisely that this connection is flat.
When the group G is the Lorentz group SO(2, 1), TG is the corresponding

Poincaré group. With this choice of G, 3d BF theory is a version of 3d general
relativity. In 3 dimensions, unlike the more physical 4d case, the equations
of general relativity say that spacetime is flat in the absence of matter. And
at first glance, 3d BF theory only describes general relativity without matter.
After all, its solutions are flat connections.

Nonetheless, we can consider 3d BF theory on a manifold from which the
worldline of a point particle has been removed. In the Bohm–Aharonov effect, if
we carry a charged object around a solenoid, we obtain a nontrivial phase even
though the U(1) connection A is flat outside the solenoid. Similarly, in 3d BF
theory, the connection (A,B) will be flat away from the particle’s worldline, but
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it can have a nontrivial holonomy around a loop γ that encircles the worldline:

γ

This holonomy says what happens when we parallel transport an object around
our point particle. The holonomy is an element of the Poincaré group. Its
conjugacy class describes themass and spin of our particle. So, massive spinning
point particles are lurking in the formalism of 3d BF theory!

Even better, this theory predicts an upper bound on the particle’s mass,
roughly the Planck mass. This is true even classically. This may seem strange,
but unlike in 4 dimensions, where we need c, GNewton and ~ to build a quantity
with dimensions of length, in 3-dimensional spacetime we can do this using only
c and GNewton. So, ironically, the ‘Planck mass’ does not depend on Planck’s
constant.

Furthermore, in this theory, particles have ‘exotic statistics’, meaning that
the interchange of identical particles is governed by the braid group instead of
the symmetric group. Particles with exotic statistics are also known as ‘anyons’.
In the simplest examples, the anyons in 3d gravity reduce to bosons or fermions
in the GNewton → 0 limit.

There is thus a wealth of interesting phenomena to be studied in 3d BF
theory. See the paper by Baez, Crans and Wise [9] for a quick overview, and
the work of Freidel, Louapre and Baratin for a deep treatment of the details
[21, 53].

The case of 4d BF theory is just as interesting, and not as fully explored.
In this case the field equations imply that A and B define a 2-connection on
the trivial T G-2-bundle over M . But in fact they say more: they say precisely
that this 2-connection is flat. By this we mean two things. First, the holonomy
hol(γ) along a path γ does not change when we change this path by a homotopy.
Second, the holonomy hol(Σ) along a surface Σ does not change when we change
this surface by a homotopy. The first fact here is equivalent to the equation
F = 0. The second is equivalent to the equation dB + [A,B] = 0.

When the group G is the Lorentz group SO(3, 1), 4d BF theory is sometimes
called ‘topological gravity’. We can think of it as a simplified version of general
relativity that acts more like gravity in 3 dimensions. In particular, we can
copy what we did in 3 dimensions, and consider 4d BF theory on a manifold
from which the worldlines of particles and the worldsheets of strings have been
removed. Some of what we will do here works for more general groups G, but
let us take G = SO(3, 1) just to be specific.

First consider strings. Take a 2-dimensional manifold X embedded in a 4-
dimensional manifold M , and think of X as the worldsheet of a string. Suppose
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we can find a small loop γ that encircles X in such a way that γ is contractible
in M but not in M −X . If we do 4d BF theory on the spacetime M −X , the
holonomy

hol(γ) ∈ SO(3, 1)

will not change when we apply a homotopy to γ. This holonomy describes the
‘mass density’ of our string [9, 20].

Next, consider particles. Take a curve C embedded in M , and think of C as
the worldline of a particle. Suppose we can find a small 2-sphere Σ in M − C
that is contractible in M but not M − C. We can think of this 2-sphere as a
2-morphism Σ: 1x ⇒ 1x in the path 2-groupoid of M . If we do 4d BF theory
on the spacetime M − C, the holonomy

hol(Σ) ∈ so(3, 1)

will not change when we apply a homotopy to Σ. So, this holonomy describes
some information about the particle—but so far as we know, the physical mean-
ing of this information has not been worked out.

What if we had a field theory whose solutions were flat 2-connections for the
Poincaré 2-group? Then we would have

hol(Σ) ∈ R4

and there would be a tempting interpretation of this quantity: namely, as the
energy-momentum of our point particle. So, the puzzle posed at the end of the
previous section is a tantalizing one.

One may rightly ask if the ‘strings’ described above bear any relation to those
of string theory. If they are merely surfaces cut out of spacetime, they lack the
dynamical degrees of freedom normally associated to a string. Certainly they
do not have an action proportional to their surface area, as for the Polyakov
string. Indeed, one may ask if ‘area’ even makes sense in 4d BF theory. After
all, there is no metric on spacetime: the closest substitute is the so(3, 1)-valued
2-form B.

Some of these problems may have solutions. For starters, when we remove
a surface X from our 4-manifold M , the action

S(A,B) =

∫

M−X

tr(B ∧ F )

is no longer gauge-invariant: a gauge transformation changes the action by a
boundary term which is an integral over X . We can remedy this by introducing
fields that live on X , and adding a term to the action which is an integral overX
involving these fields. There are a number of ways to do this [14, 49, 59, 50, 73].
For some, the integral overX is proportional to the area of the string worldsheet
in the special case where the B field arises from a cotetrad (that is, an R4-valued
1-form) as follows:

B = e ∧ e
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where we use the isomorphism Λ2R4 ∼= so(3, 1). In this case there is close rela-
tion to the Nambu–Goto string, which has been carefully examined by Fairbairn,
Noui and Sardelli [50].

This is especially intriguing because when B takes the above form, the BF
action becomes the usual Palatini action for general relativity:

S(A, e) =

∫

M

tr(e ∧ e ∧ F )

where ‘tr’ is a suitable nondegenerate bilinear form on so(3, 1). Unfortunately,
solutions of Palatini gravity typically fail to obey the condition t(B) = F when
we take B = e∧e. So, we cannot construct 2-connections in the sense of Theorem
3 from these solutions! If we want to treat general relativity in 4 dimensions as
a higher gauge theory, we need other ideas. We describe two possibilities at the
end of Section 4.5.

4.4 Inner Automorphism 2-Groups

There is also a Lie 2-group where:

• G is any Lie group,

• H = G,

• t is the identity map,

• α is conjugation:
α(g)h = ghg−1.

Following Roberts and Schreiber [79] we call this the inner automorphism
2-group of G, and denote it by INN (G). We explain this terminology in the
next section.

A 2-connection on the trivial INN (G)-2-bundle over a manifold consists of
a g-valued 1-form A and a g-valued 2-form B such that

B = F

since t is now the identity. Intriguingly, 2-connections of this sort show up as
solutions of a slight variant of 4d BF theory. In a move that he later called his
biggest blunder, Einstein took general relativity and threw an extra term into
the equations: a ‘cosmological constant’ term, which gives the vacuum nonzero
energy. We can do the same for topological gravity, or indeed 4d BF theory for
any group G. After all, what counts as a blunder for Einstein might count as a
good idea for lesser mortals such as ourselves.

So, fix a 4-dimensional oriented manifoldM as our spacetime. As in ordinary
BF theory, take the fields to be a connection A on the trivial principal G-bundle
over M , together with a g-valued 2-form B. The action for BF theory ‘with
cosmological constant’ is defined to be

S(A,B) =

∫

M

tr(B ∧ F −
λ

2
B ∧B).

37



Setting the variation of the action equal to zero, we obtain these field equations:

dB + [A,B] = 0, F = λB.

When λ = 0, these are just the equations we saw in the previous section. But
let us consider the case λ 6= 0. Then these equations have a drastically different
character! The Bianchi identity dF + [A,F ] = 0, together with F = λB,
automatically implies that dB + [A,B] = 0. So, to get a solution of this theory
we simply take any connection A, compute its curvature F and set B = F/λ.

This may seem boring: a field theory where any connection is a solution.
But in fact it has an interesting relation to higher gauge theory. To see this,
it helps to change variables and work with the field β = λB. Then the field
equations become

dβ + [A, β] = 0, F = β.

Any solution of these equations gives a 2-connection on the trivial principal
INN (G)-2-bundle over M !

There is also a tantalizing relation to the cosmological constant in general
relativity. If the B field arises from a cotetrad as explained in the previous
section:

B = e ∧ e,

then the above action becomes

S =

∫

M

tr(e ∧ e ∧ F −
λ

2
e ∧ e ∧ e ∧ e).

When we choose the bilinear form ‘tr’ correctly, this is the action for general
relativity with a cosmological constant proportional to λ.

There is some evidence [4] that BF theory with nonzero cosmological con-
stant can be quantized to obtain the so-called Crane–Yetter model [35, 37],
which is a spin foam model based on the category of representations of the
quantum group associated to G. Indeed, in some circles this is taken almost
as an article of faith. But a rigorous argument, or even a fully convincing
argument, seems to be missing. So, this issue deserves more study.

The λ → 0 limit of BF theory is fascinating but highly singular, since for
λ 6= 0 a solution is just a connection A, while for λ = 0 a solution is a flat
connection A together with a B field such that dB + [A,B] = 0. At least
in some rough intuitive sense, as λ → 0 the group H in the crossed module
corresponding to INN (G) ‘expands and flattens out’ from the group G to its
tangent space g. Thus, INN (G) degenerates to the tangent 2-group T G. It
would be nice to make this precise using a 2-group version of the theory of group
contractions.

4.5 Automorphism 2-Groups

The inner automorphism group of the previous section is closely related to the
automorphism 2-group AUT (H), defined using the crossed module where:
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• G = Aut(H),

• H is any Lie group,

• t:H → Aut(H) sends any group element to the operation of conjugating
by that element,

• α: Aut(H) → Aut(H) is the identity.

We use the term ‘automorphism 2-group’ because AUT (H) really is the 2-group
of symmetries of H . Lie groups form a 2-category, any object in a 2-category
has a 2-group of symmetries, and the 2-group of symmetries of H is naturally
a Lie 2-group, which is none other than AUT (H). See [13] for details.

A principal AUT (H)-2-bundle is usually called a nonabelian gerbe [28].
Nonabelian gerbes are a major test case for ideas in higher gauge theory. Indeed,
almost the whole formalism of 2-connections was worked out first for nonabelian
gerbes by Breen and Messing [30]. The one aspect they did not consider is the
one we have focused on here: parallel transport. Thus, they did not impose the
equation t(B) = F , which we need to obtain holonomies satisfying the conditions
of Theorem 3. Nonetheless, the quantity F − t(B) plays an important role in
Breen and Messing’s formalism: they call it the fake curvature. Generalizing
their ideas slightly, for any Lie 2-group G, we may define a connection on a
trivial principal G-2-bundle to be a pair consisting of a g-valued 1-form A and
an h-valued 2-form. A 2-connection is then a connection with vanishing fake
curvature.

The relation between the automorphism 2-group and the inner automor-
phism 2-group is nicely explained in the work of Roberts and Schreiber [79]. As
they discuss, for any group G there is an exact sequence of 2-groups

1 → Z(G) → INN (G) → AUT (G) → OUT (G) → 1

where Z(G) is the center of G and OUT (G) is the group of outer automorphisms
of G, both regarded as 2-groups with only identity 2-morphisms.

Roberts and Schreiber go on to consider an analogous sequence of 3-groups
constructed starting from a 2-group. Among these, the ‘inner automorphism
3-group’ INN (G) of a 2-group G plays a special role [86]. The reason is that
any connection on a principal G-2-bundle, not necessarily obeying t(B) = F ,
gives a flat 3-connection on a principal INN (G)-3-bundle! This in turn allows
us to define a version of parallel transport for particles, strings and 2-branes.

This may give a way to understand general relativity in terms of higher gauge
theory. As we have already seen in Section 4.3, Palatini gravity in 4d spacetime
involves an so(3, 1)-valued 1-form A and an so(3, 1)-valued 2-form B = e ∧ e.
This is precisely the data we expect for a connection on a principal G-2-bundle
where G is the tangent 2-group of the Lorentz group. Typically this connection
fails to obey the equation t(B) = F . So, it is not a 2-connection. But, it gives a
flat 3-connection on an INN (T SO(3, 1))-3-bundle. So, we may optimistically
call INN (T SO(3, 1)) the gravity 3-group.
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Does the gravity 3-group actually shed any light on general relativity? The
work of Martins and Picken [70] establishes a useful framework for studying
these issues. They define a path 3-groupoid P3(M) for a smooth manifold M .
Given a Lie 3-group G, they describe 3-connections on the trivial G-3-bundle
over M as 3-functors

hol:P3(M) → G

Moreover, they show how to construct these functors from a 1-form, a 2-form,
and a 3-form taking values in three Lie algebras associated to G. In the case
where G = INN (T SO(3, 1)) and hol is a flat 3-connection, this data reduces
to an so(3, 1)-valued 1-form A and an so(3, 1)-valued 2-form B.

4.6 String 2-Groups

The Lie 2-groups discussed so far are easy to construct. The string 2-group is
considerably more subtle. Ultimately it forces upon us a deeper conception of
what a Lie 2-group really is, and a more sophisticated approach to higher gauge
theory. Treated in proper detail, these topics would carry us far beyond the
limits of this quick introduction. But it would be a shame not to mention them
at all.

Suppose we have a central extension of a Lie group G by an abelian Lie
group A. In other words, suppose we have a short exact sequence of Lie groups

1 → A → H
t
→ G → 1

where the image of A lies in the center of H . Then we can construct an action
α of G on H as follows. The map t:H → G describes H as a fiber bundle
over G, so choose a section of this bundle: that is, a function s:G → H with
t(s(g)) = g, not necessarily a homomorphism. Then set

α(g)h = s(g)hs(g)−1.

Since A is included in the center of H , α is independent of the choice of s.
Thanks to this, we do not need a global smooth section s to check that α(g)
depends smoothly on g: it suffices that there exist a local smooth section in
a neighborhood of each g ∈ G, and indeed this is always true. We can use
these local sections to define α globally, since they must give the same α on
overlapping neighborhoods.

Given all this, we can check that t is G-equivariant and that the Peiffer
identity holds. So, we obtain a Lie 2-group where:

• G is any Lie group,

• H is any Lie group,

• t:H → G makes H into a central extension of G,

• α is given by α(g)h = s(g)hs(g)−1 where s:G → H is any section.
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We call this the central extension 2-group C(H
t
→ G).

To get concrete examples, we need examples of central extensions. For any
choice of G and A, we can always take H = G×A and use the ‘trivial’ central
extension

1 → A → A×G → G → 1.

For more interesting examples, we need nontrivial central extensions. These
tend to arise from problems in quantization. For example, suppose V is a finite-
dimensional symplectic vector space: that is, a vector space equipped with
a nondegenerate antisymmetric bilinear form

ω:V × V → R.

Then we can make H = V ×R into a Lie group called the Heisenberg group,
with the product

(u, a)(v, b) = (u+ v, a+ b+ ω(u, v)).

The Heisenberg group plays a fundamental role in quantum mechanics, because
we can think of V as the phase space of a classical point particle. If we let
G stand for V regarded as an abelian Lie group, then elements of G describe
translations in phase space: that is, translations of both position and momen-
tum. The Heisenberg group H describes how these translations commute only
‘up to a phase’ when we take quantum mechanics into account: the phase is
given by exp(iω(u, v)). There is a homomorphism t:H → G that forgets this
phase information, given by

t(u, a) = u.

This exhibits H as a central extension of G. We thus obtain a central extension
2-group C(H

t
−→G), called the Heisenberg 2-group of the symplectic vector

space V .
The applications of Heisenberg 2-groups seem largely unexplored, and should

be worth studying. So far, much more work has been put into understanding 2-
groups arising from central extensions of loop groups. The reason is that central
extensions of loop groups play a basic role in string theory and conformal field
theory, as nicely explained by Pressley and Segal [78].

Suppose that G is a connected and simply-connected compact simple Lie
groupG. Define the loop group ΩG to be the set of all smooth paths γ: [0, 1] →
G that start and end at the identity of G. This becomes a group under pointwise
multiplication, and in fact it is a kind of infinite-dimensional Lie group [71].

For each integer k, called the level, the loop group has a central extension

1 → U(1) → Ω̂kG
t

−→ΩG → 1.

These extensions are all different, and all nontrivial except for k = 0. In physics,
they arise because the 2d gauge theory called the Wess–Zumino–Witten model
has an ‘anomaly’. The loop group ΩG acts as gauge transformations in the
classical version of this theory. However, when we quantize the theory, we obtain
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a representation of ΩG only ‘up to a phase’—that is, a projective representation.
This can be understood as an honest representation of the central extension

Ω̂kG, where the integer k appears in the Lagrangian for the Wess–Zumino–
Witten model.

Starting from this central extension we can construct a central extension
2-group called the level-k loop 2-group of G, Lk(G). This is an infinite-
dimensional Lie 2-group, meaning that it comes from a crossed module where
the groups involved are infinite-dimensional Lie groups, and all the maps are
smooth. Moreover, it fits into an exact sequence

1 → Lk(G) → ST RINGk(G)−→G → 1

where the middle term, the level-k string 2-group of G, has very interesting
properties [8].

Since the string 2-group ST RINGk(G) is an infinite-dimensional Lie 2-
group, it is a topological 2-group. There is a way to take any topological 2-
group and squash it down to a topological group [8, 18]. Applying this trick
to ST RINGk(G) when k = 1, we obtain a topological group whose homotopy
groups match those of G—except for the third homotopy group, which has been
made trivial. In the special case where G = Spin(n), this topological group is
called the ‘string group’, since to consistently define superstrings propagating
on a spin manifold, we must reduce its structure group from Spin(n) to this
group [94]. The string group also plays a role in Stolz and Teichner’s work on
elliptic cohomology, which involves a notion of parallel transport over surfaces
[90]. There is a lot of sophisticated mathematics involved here, but ultimately
much of it should arise from the way string 2-groups are involved in the parallel
transport of strings! The work of Sati, Schreiber and Stasheff [83] provides good
evidence for this, as does the work of Waldorf [91].

In fact, the string Lie 2-group had lived through many previous incarnations
before being constructed as an infinite-dimensional Lie 2-group. Brylinski and
McLaughlin [33] thought of it as a U(1) gerbe over the group G. The fact that
this gerbe is ‘multiplicative’ makes it something like a group in its own right
[32]. This viewpoint has also been explored by Murray and Stevenson [75].

Later, Baez and Crans [7] constructed a Lie 2-algebra stringk(g) correspond-
ing to the string Lie 2-group. For pedagogical purposes, our discussion of Lie
2-groups has focused solely on ‘strict’ 2-groups, where the 1-morphisms satisfy
the group axioms strictly, as equations. However, there is also an extensive
theory of ‘weak’ 2-groups, where the 1-morphisms obey the group axioms only
up to invertible 2-morphisms [13]. Following this line of thought, we may also
define weak Lie 2-algebras [81], and the Lie 2-algebra stringk(g) is one of these
where only the Jacobi identity fails to hold strictly.

The beauty of weak Lie 2-algebras is that stringk(g) is very easy to describe in
these terms. In particular, it is finite-dimensional. The hard part is constructing
a weak Lie 2-group corresponding to this weak Lie 2-algebra. It is easy to check
that any strict Lie 2-algebra has a corresponding strict Lie 2-group. Weak Lie 2-
algebras are more tricky [13]. Baez, Crans, Schreiber and Stevenson [8] dodged
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this problem by showing that the string Lie 2-algebra is equivalent (in some
precise sense) to a strict Lie 2-algebra, which however is infinite-dimensional.
They then constructed the infinite-dimensional strict Lie 2-group corresponding
to this strict Lie 2-algebra. This is just ST RINGk(G) as described above.

On the other hand, a finite-dimensional model of the string 2-group was
recently introduced by Schommer-Pries [85]. This uses an improved definition
of ‘weak Lie 2-group’, based on an important realization: the correct maps
between smooth groupoids are not the smooth functors, but something more
general [64]. We have already mentioned this in our discussion of connection:
a smooth functor hol:P1(M) → G is a connection on the trivial principal G-
bundle over M , while one of these more general maps is a connection on an
arbitrary principal G-bundle over M . If we take this lesson to heart, we are led
into the world of ‘stacks’—and in that world, we can find a finite-dimensional
version of the string 2-group.

There has also been progress on constructing weak Lie n-groups from weak
Lie n-algebras for n > 2. Getzler [56] and Henriques [61] have developed an
approach that works for all n, even n = ∞. Their approach is able to handle
weak Lie ∞-algebras of a sort known as ‘L∞-algebras’. Quite roughly, the
idea is that in an L∞-algebra, the Jacobi identity holds only weakly, while the
antisymmetry of the bracket still holds strictly.

In fact, L∞-algebras were developed by Stasheff and collaborators [68, 84]
before higher gauge theory became recognized as a subject of study. But more
recently, Sati, Schreiber, Stasheff [82, 83] have developed a lot of higher gauge
theory with the help of L∞-algebras. Thanks to their work, it is becoming
clear that superstring theory, supergravity and even the mysterious ‘M -theory’
have strong ties to higher gauge theory. For example, they argue that 11-
dimensional supergravity can be seen as a higher gauge theory governed by a
certain ‘Lie 3-superalgebra’ which they call sugra(10, 1). The number 3 here
relates to the 2-brane solutions of 11-dimensional supergravity: just as parallel
transport of strings is described by 2-connections, the parallel transport of 2-
branes is described by 3-connections, which in the supersymmetric case involve
Lie 3-superalgebras.

In fact, sugra(10, 1) is one of a family of four Lie 3-superalgebras that extend
the Poincaré Lie superalgebra in dimensions 4, 5, 7 and 11. These can be built
via a systematic construction starting from the four normed division algebras:
the real numbers, the complex numbers, the quaternions and the octonions [11].
These four algebras also give rise to Lie 2-superalgebras extending the Poincaré
Lie superalgebra in dimensions 3, 4, 6, and 10. The Lie 2-superalgebras are
related to superstring theories in dimensions 3, 4, 6, and 10, while the Lie 3-
superalgebras are related to super-2-brane theories in dimensions 4, 5, 7 and 11.
All these theories, and even their relation to division algebras, have been known
since the late 1980s [42]. Higher gauge theory provides new insights into the
geometry of these theories. In particular, the work of D’Auria, Castellani and
Fré [41] can be seen as implicitly making extensive use of Lie n-superalgebras—
but this only became clear later, through the work of Sati, Schreiber and Stasheff
[83].
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Alas, explaining these fascinating issues in detail would vastly expand the
scope of this paper. We should instead return to simpler things: gauge trans-
formations, curvature, and nontrivial 2-bundles.

5 Further Topics

So far our introduction to higher gauge theory has neglected the most important
topic of all: gauge transformations! We have also said nothing about curvature
or nontrivial 2-bundles. Now it is time to begin correcting these oversights.

5.1 Gauge Transformations

First consider ordinary gauge theory. Suppose that M is a manifold and G is
a Lie group. Then a gauge transformation on the trivial principal G-bundle
over M simply amounts to a smooth function

g:M → G,

while a connection on this bundle can be seen as a g-valued 1-form. A gauge
transformation g acts on a connection A to give a new connection A′ as follows:

A′ = gAg−1 + g dg−1.

This formula makes literal sense if G is a group of matrices: then g also consists
of matrices, so we can freely multiply elements of G with elements of g. If G
is an arbitrary Lie group the formula requires a bit more careful interpretation,
but it still makes sense. A well-known calculation says the curvature F ′ =
dA′ + A′ ∧ A′ of the gauge-transformed connection is just the curvature of the
original connection conjugated by g:

F ′ = gFg−1.

In higher gauge theory the formulas are similar, but a bit more complicated.
SupposeM is a manifold and G is a Lie 2-group with crossed module (G,H, t, α).
It will be helpful to take everything in this crossed module and differentiate it.
Doing this, we get:

• the Lie algebra g of G,

• the Lie algebra h of H ,

• the Lie algebra homomorphism t: h → g obtained by differentiating t:H →
G, and

• the Lie algebra homomorphism α: g → aut(H) obtained by differentiating
α:G → Aut(H).
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Here aut(H) is the Lie algebra of Aut(H). It is best to think of this as the Lie
algebra of derivations of h: that is, linear maps D: h → h such that

D[x, y] = [Dx, y] + [x,Dy].

If we differentiate the two equations in the definition of a crossed module, we
obtain the g-equivariance of t:

t(α(x)(y)) = [x, t(y)]

and the infinitesimal Peiffer identity:

α(t(y))(y′) = [y, y′]

where x ∈ g and y, y′ ∈ h. In case the reader is curious: we write t and α instead
of dt and dα because later we will do computations involving these maps and
also differential forms, where d stands for the exterior derivatve.

A quadruple (g, h, t, α) of Lie algebras and homomorphisms obeying these
two equations is called an infinitesimal crossed module. Just as crossed
modules are a way of working with 2-groups, infinitesimal crossed modules are
a way of working with Lie 2-algebras [7]. Any infinitesimal crossed module
comes from a Lie 2-group, and this Lie 2-group is unique if we demand that G
and H be connected and simply connected.

But we digress! We have introduced infinitesimal crossed modules in order to
say how gauge transformations act on 2-connections. A gauge transformation
of the trivial G-2-bundle over M consists of two pieces of data:

• a smooth function g:M → G,

• an h-valued 1-form a on M .

Why two pieces of data? Perhaps this should not be so surprising. Remember,
a 2-connection also consists of two pieces of data:

• a g-valued 1-form A on M ,

• an h-valued 2-form B on M satisfying t(B) = F .

Breen and Messing [30] worked out how gauge transformations act on connec-
tions on nonabelian gerbes, and their work was later generalized to 2-connections
on arbitrary principal 2-bundles [16, 88]. Here we merely present the formulas.
A gauge transformation (g, a) acts on a 2-connection (A,B) to give a new 2-
connection (A′, B′) as follows:

A′ = gAg−1 + g dg−1 + t(a)

B′ = α(g)(B) + α(A′) ∧ a + da − a ∧ a

The second formula requires a bit of explanation. In the first term we compose
α:G → Aut(H) with g:M → G and obtain an Aut(H)-valued function α(g),
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which then acts on the h-valued 2-formB to give a new h-valued 2-form α(g)(B).
In the second term we start by composing A′ with α to obtain an aut(H)-valued
1-form α(A′). Then we wedge this with a, letting aut(H) act on h as part of
this process, and obtain an h-valued 2-form.

As a kind of consistency check and test of our understanding, let us see
why the gauge-transformed 2-connection (A′, B′) satisfies the equation t(B′) =
F ′. First let us compute the curvature 2-form F ′ of the gauge-transformed
2-connection:

F ′ = dA′ +A′ ∧A′

= d(gAg−1 + g dg−1 + t(a)) +
(gAg−1 + g dg−1 + t(a)) ∧ (gAg−1 + g dg−1 + t(a))

This looks like a mess—but except for the terms containing t(a), this is just the
usual mess we get in ordinary gauge theory when we compute the curvature of
a gauge transformed connection. So, we have:

F ′ = gFg−1 + d(t(a)) + t(a) ∧ A′ + A′ ∧ t(a)− t(a) ∧ t(a)
= gFg−1 + t(da) + [t(a), A′]− t(a) ∧ t(a)

where we use the fact that d(t(a)) = t(da) and rewrite A′ ∧ t(a) + t(a) ∧ A′ as
a graded commutator.

On the other hand, we have

t(B′) = t(α(g)(B)) + t(α(A′) ∧ a) + t(da− a ∧ a)

TheG-equivariance of t implies that t(α(g)(B)) = gt(B)g−1, and the g-equivariance
of t implies that t(α(A′) ∧ a) = [A′, t(a)]. So, we see that

t(B′) = gt(B)g−1 + [A′, t(a)] + t(da− a ∧ a)

and thus t(B′) = F ′, as desired.

5.2 Curvature

Suppose G is a Lie 2-group whose crossedmodule is (G,H, t, α), and let (g, h, t, α)
be the corresponding differential crossed module. Suppose we have a connec-
tion on the trivial G-2-bundle over M : that is, a g-valued 1-form A and an
h-valued 2-form B.

As in ordinary gauge theory, we may define the curvature of this connection
to be the g-valued 2-form given by:

F = dA+A ∧ A.

We also have another g-valued 2-form, the fake curvature F − t(B). Recall
from Section 3 that only a connection with vanishing fake curvature counts as a
2-connection. In other words, we need t(B) = F to obtain well-defined parallel
transport over surfaces.
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We may also define the 2-curvature of a connection in higher gauge theory.
This is the h-valued 3-form given by:

Z = dB + α(A) ∧B.

In the second term here, we compose α: g → aut(H) with the g-valued 1-form A
and obtain an aut(H)-valued function α(g). Then we wedge this with B, letting
aut(H) act on h as part of this process, and obtain an h-valued 2-form.

The intuitive idea of 2-curvature is this: just as the curvature describes the
holonomy of a connection around an infinitesimal loop, the 2-curvature describes
the holonomy of a 2-connection over an infinitesimal 2-sphere. This can be made
precise using formulas for holonomies over surfaces [69, 88]

If the 2-curvature of a 2-connection vanishes, the holonomy over a surface
will not change if we apply a smooth homotopy to that surface while keeping
its edges fixed. A 2-connection whose curvature and 2-curvature both vanish
truly deserves to be called flat. We have seen flat 2-connections already in
our discussion of 4-dimensional BF theory in Section 4.3: the solutions of this
theory are flat 2-connections.

5.3 Nontrivial 2-Bundles

So far we have implicitly been looking at 2-connections on trivial 2-bundles.
This is fine locally. But there are also interesting issues involving nontrivial
2-bundles, which become crucial when we work globally.

A careful treatment of 2-bundles would require some work, and the reader
interested in this topic would do well to start with Moerdijk’s introductory
paper on ‘stacks’ and ‘gerbes’ [72]. Here we take a less sophisticated approach:
we simply describe how to build a principal 2-bundle and put a 2-connection
on it. Since we do not say when two principal 2-bundles built this way are the
‘same’, our treatment is incomplete. The reader can find more details elsewhere
[18, 19, 25, 28, 29, 30, 88]. We warn the reader that almost every paper in the
literature uses different notation, sign conventions, and so forth.

First recall ordinary gauge theory: suppose G is a Lie group and M a man-
ifold. In this case we can build a principal G-bundle over M using transition
functions. First, write M as the union of open sets or patches Ui ⊆ M :

M =
⋃

i

Ui.

Then, choose a smooth transition function on each double intersection of
patches:

gij :Ui ∩ Uj → G.

These transition functions give gauge transformations. We can build a principal
G-bundle over all of M by gluing together trivial bundles over the patches with
the help of these gauge transformations. However, this procedure will only

47



succeed if the transition functions satisfy a consistency condition on each triple
intersection:

gij(x)gjk(x) = gik(x)

for all x ∈ Ui ∩ Uj ∩ Uk. This equation is called a cocycle condition. We can
visualize it as a triangle:

•

• •
gik

oo

gjk

XX✶✶✶✶✶✶✶✶✶✶✶✶

gij

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

where we suppress the variable x for the sake of readability. The idea is that
this triangle should ‘commute’: the direct way of identifying points in the trivial
bundle in the ith patch to points in the trivial bundle over the kth patch should
match the indirect way which proceeds via the jth patch.

A similar but more elaborate recipe works for higher gauge theory. Now let
G be a Lie 2-group with crossed module (G,H, t, α). To build a G-2-bundle, we
start by choosing transition functions on double intersections of patches:

gij :Ui ∩ Uj → G

However, now it makes sense to replace the equation in the cocycle condition
by a 2-morphism! So, for each triple intersection we choose 2-morphisms in G:

γijk(x): gij(x) gjk(x) ⇒ gik(x)

depending smoothly on x ∈ Ui ∩ Uj ∩ Uk. We can again visualize these as
triangles:

•

• •
gik

oo

gjk

XX✶✶✶✶✶✶✶✶✶✶✶✶

gij

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

γijk

��

But now we demand that these 2-morphisms themselves obey a cocycle condition
on quadruple intersections of patches. As we ascend the ladder of higher gauge
theory, triangles become tetrahedra and then higher-dimensional simplexes. In
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this case, the cocycle condition says that this tetrahedron commutes:

•

••

•

gkl

OO
gjkoo

gij

��
gil

oo

gik

��

gjl

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄
γijl

��
✰✰
✰✰
✰✰

✰✰
✰✰
✰✰

γjkl{� ⑧⑧
⑧⑧
⑧⑧

⑧⑧
⑧⑧
⑧⑧

γijk �#

γikl

�


By saying that this tetrahedron ‘commutes’, we mean that the composite of the
front two sides equals the composite of the back two sides:

•

••

•

gkl

OO
gjkoo

gij

��
gil

oo

gjl

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄γijl

��
✭✭
✭✭

✭✭
✭✭

γjkl

{� ⑧⑧
⑧⑧⑧⑧
⑧⑧

=

•

••

•

gkl

OO
gjkoo

gij

��
gil

oo��⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

gik

γijk
�#
❄❄

❄❄
❄❄

❄❄

γikl

�� ✖
✖✖
✖

✖✖
✖✖

We need whiskering to compose the 2-morphisms in this diagram, as explained
near the end of Section 3. So in equations, the tetrahedral cocycle condition
says that:

γijl · (gij ◦ γjkl) = γikl · (γijk ◦ gkl)

where · stands for vertical composition and ◦ stands for whiskering.
We can describe this cocycle condition in a more down-to-earth manner if

we use Theorem 2, which says that a 2-morphism

γijk: gij gjk ⇒ gik

is the same as an element hijk ∈ H such that

t(hijk) gij gjk = gik.

This theorem also gives formulas for vertical and horizontal composition in
terms of the groups G and H . Since whiskering by a morphism is horizontal
composition with its identity 2-morphism, we can also express whiskering in
these terms. So, a little calculation—a wonderful exercise for the would-be
higher gauge theorist—shows that:

hijl α(gij)(hjkl) = hikl hijk

where α is the action of G on H .
There is no need to have gii = 1 in this formalism; we should really choose

a 2-morphism from gii to 1. However, without loss of generality, we can assume
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that gii = 1 and set this 2-morphism equal to the identity. We can also assume
that hijk = 1 whenever two or more of the indices i, j, k are equal. The reason
is that Bartels [25] has shown that any principal 2-bundle is equivalent to one
for which these simplifying assumptions hold. We will make these assumptions
in what follows. For the full story without these assumptions, see Schreiber and
Waldorf [88].

Now consider connections. Again, it helps to begin by reviewing the story
for ordinary gauge theory. Suppose we have a manifold M written as a union
of patches Ui, and suppose we have principal G-bundle over M built using
transition functions gij . To put a connection on this bundle, we first put a
connection on the trivial bundle over each patch: that is, for each i, we choose
a g-valued 1-form Ai on Ui. But then we must check to see if these fit together
to give a well-defined connection on all of M . For this, we need the gauge
transform of the connection on the jth patch to equal the connection on the ith
patch:

Ai = gijAjg
−1
ij + gijdg

−1
ij

on each double intersection Ui ∩ Uj.
The story is similar for 2-connections. Suppose we have a principal G-2-

bundle over M built using transition functions gij and hijk as described above.
To equip this 2-bundle with a 2-connection, we first put a 2-connection on the
trivial 2-bundle over each patch. So, on each open set Ui we choose a g-valued
1-form Ai and an h-valued 2-form Bi with t(Bi) = Fi. But then we must fit
these together to get a 2-connection on all of M .

For this, we should follow the ideas from Section 5.1 on how gauge transfor-
mations work in higher gauge theory. So, we choose an h-valued 1-form aij on
each double intersection Ui ∩ Uj , and require that

Ai = gijAjg
−1
ij + gij dg

−1
ij + t(aij)

Bi = α(gij)(Bj) + α(Ai) ∧ aij + daij − aij ∧ aij .

These equations say that the 2-connection (Ai, Bi) is a gauge-transformed ver-
sion of (Aj , Bj). The appearance of Ai on the right-hand side of the second
equation is not a typo! Finally, the 1-forms aij must obey a consistency condi-
tion on triple intersections:

h−1
ijk α(Ai)(hijk) + h−1

ijk dhijk + α(gij)(ajk) + aij = h−1
ijk aik hijk (2)

Where does this consistency condition come from? Indeed, what does it even
mean? We have not yet defined ‘h−1α(A)(h)’ when A ∈ g and h is an element
of the group H .

We could systematically derive this condition from a more conceptual ap-
proach to 2-connections [16, 88], but it will be marginally less stressful to mo-
tivate it as follows. For every triple intersection Ui ∩ Uj ∩ Uk we have three
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equations relating Ai, Aj and Ak:

Ai = gijAjg
−1
ij + gij dg

−1
ij + t(aij)

Aj = gjkAkg
−1
jk + gjk dg

−1
jk + t(ajk)

Ak = gkiAig
−1
ki + gki dg

−1
ki + t(aki)

The first equation expresses Ai in terms of Aj . We can substitute the second
equation in the first to get a formula for Ai in terms of Ak. Then we can use
the third equation to get a formula for Ai in terms of itself! We would like to be
able to simplify this formula to get simply Ai = Ai. The consistency condition,
Equation (2), ensures that we can do this.

This calculation is a bit of a workout; let us see how it goes. We begin by
doing the substitutions:

Ai = gijAjg
−1
ij + gij dg

−1
ij + t(aij)

= gij

(

gjkAkg
−1
jk + gjk dg

−1
jk + t(ajk)

)

g−1
ij + gij dg

−1
ij + t(aij)

= gij

(

gjk
(

gkiAig
−1
ki + gkidg

−1
ki + t(aki)

)

g−1
jk + gjk dg

−1
jk + t(ajk)

)

g−1
ij +

gij dg
−1
ij + t(aij).

Then we do a bit of simplification:

Ai = gijgjkgkiAi(gijgjkgki)
−1 + gijgjkgkid(gijgjkgki)

−1 +
gijgjkt(aki)(gijgjk)

−1 + gijt(ajk)g
−1
ij + t(aij).

Since t(hijk) gij gjk = gik and by our assumptions g−1
ik = gki, we have

gijgjkgki = t(hijk)
−1

so
0 = t(hijk)

−1 Ai t(hijk)− Ai + t(hijk)
−1 dt(hijk)+

t(hijk)
−1gikt(aki)g

−1
ik t(hijk) + gijt(ajk)g

−1
ij + t(aij).

(3)

Now, if G is a matrix group, we can freely multiply group elements and Lie
algebra elements. Then for any h ∈ H and A ∈ g we have

t(h)−1At(h) − A = t(h)−1[A, t(h)]. (4)

This will allow us to simplify the first two terms in Equation (3). Moreover, for
any g ∈ G, h ∈ H we have

t(h−1α(g)h) = t(h)−1t(α(g)(h)) = t(h)−1gt(h)g−1.

Taking g = exp(sA) for A ∈ g and differentiating this equation with respect to
s at s = 0, we get

t(h−1α(A)(h)) = t(h)−1At(h) − A (5)
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where on the left side α means the derivative of the map α:G ×H → H with
respect to its first argument, while t is the derivative of t. Here are we extending
our previous definitions of α and t. Combining Equations (4) and (5) we see
that

t(h)−1[A, t(h)] = t
(

h−1α(A)(h)
)

.

In fact this result holds even when G is a non-matrix Lie group, as long as we
carefully make sense of both sides.

Using this result, we can rewrite Equation (3) as follows:

0 = t(h−1
ijk α(Ai)(hijk)) + t(hijk)

−1 dt(hijk)+

t(hijk)
−1gik t(aki) g

−1
ik t(hijk) + gij t(ajk) g

−1
ij + t(aij)

Each term in the above equation is t applied to an h-valued 1-form. Writing
down all these h-valued 1-forms, we see that the above equation will be true if
this condition holds:

0 = h−1
ijkα(Ai)(hijk) + h−1

ijkdhijk + h−1
ijkα(gik)(aki)hijk + α(gij)(ajk) + aij

This is our consistency condition in disguise! To remove the disguise, let us
simplify it a bit further. When i = j this condition reduces to

aik + α(gik)(aki) = 0.

Reinserting this result we obtain

0 = h−1
ijk α(Ai)(hijk) + h−1

ijk dhijk − h−1
ijk aik hijk + α(gij)(ajk) + aij

Voilà! This is clearly equivalent to the consistency condition we stated in the
first place, Equation (2):

h−1
ijk α(Ai)(hijk) + h−1

ijk dhijk + α(gij)(ajk) + aij = h−1
ijk aik hijk

Now let us consider some examples. Recall from Section 4.1 that bU(1) is
2-group with one morphism and U(1) as its group of 2-morphisms. A U(1)
gerbe is principal bU(1)-2-bundle. Let’s look at principal U(1)-bundles and
then U(1) gerbes, to get a feel for how they are similar and how they differ.

To build a principal U(1)-bundle with a connection on it, we choose transi-
tion functions

gij :Ui ∩ Uj → U(1)

such that
gijgjk = gik

on each triple intersection. To put a connection on this bundle, we then choose
a 1-form Ai on each patch such that

Ai = Aj + gijdg
−1
ij
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on each double intersection Ui ∩ Uj. The curvature of this connection is then

Fi = dAi

on the ith patch. Note that Fi = Fj on Ui ∩ Uj, so we get a well-defined
curvature 2-form F on all of M .

To build a U(1) gerbe, we choose transition functions hijk:Ui ∩ Uj ∩ Uk →
U(1) such that

hjklhijl = hiklhijk

on each quadruple intersection. Remember, the 2-group bU(1) has only one
morphism, the identity, so the transition functions gij are trivial and can be
ignored. To put a 2-connection on this gerbe, we must first choose a 2-form Bi

on each patch. Then we must choose a 1-forms aij on each double intersection.
We require that

Bi = Bj + daij

on each double intersection, and

aij + ajk = aik + hijk dh
−1
ijk

on each triple intersection. The 2-curvature of this 2-connection is then

Zi = dBi

on the ith patch. Note that Zi = Zj on Ui ∩ Uj , so we get a well-defined
2-curvature 3-form Z on all of M .

There is a nice link between U(1) gerbes and cohomology, which in fact is
the reason they were invented in the first place. For any principal U(1)-bundle
with connection, the curvature F is integral:

∫

Σ

F ∈ 2πZ

for any closed surface Σ mapped into M . In addition, F is closed:

dF = 0.

Conversely, any closed, integral 2-form F on M is the curvature of some con-
nection on a principal U(1)-bundle over M . Two different connections on the
same bundle have curvature 2-forms that differ by an exact 2-form, so we get
a well-defined element of the de Rham cohomology H2(M,R) from a principal
U(1)-bundle. This idea can be refined further, and the upshot is that principal
U(1)-bundles over M are classified by the cohomology group H2(M,Z).

Similarly, for any U(1) gerbe, the curvature 3-form Z is closed and integral,
where the latter term now means that

∫

Y

Z ∈ 2πZ
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for any closed 3-manifold Y mapped into M . Conversely, any such 3-form is the
2-curvature of some 2-connection on a U(1) gerbe over M—and in fact, U(1)
gerbes over M are classified by H3(M,Z).

This is just the beginning of a longer tale: namely, the story of characteristic
classes in higher gauge theory [18, 83]. Indeed, though higher gauge theory is
only in its infancy, there is much more to say. But our story ends here. We
invite the reader to go further.
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