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Foreword

The present book gives an exposition of the classical basic algebraic
and analytic number theory and supersedes my Algebraic Numbers,
including much more material, e.g. the class field theory on which I make
further comments at the appropriate place later.

For different points of view, the reader is encouraged to read the collec-
tion of papers from the Brighton Symposium (edited by Cassels-Frohlich),
the Artin-Tate notes on class field theory, Weil’s book on Bastc Number
Theory, Borevich-Shafarevich’s Number Theory, and also older books like
those of Weber, Hasse, Hecke, and Hilbert’s Zahlbericht. It seems that
over the years, everything that has been done has proved useful, theo-
retically or as examples, for the further development of the theory. Old,
and seemingly isolated special cases have continuously acquired renewed
significance, often after half a century or more.

The point of view taken here is principally global, and we deal with
local fields only incidentally. For a more complete treatment of these,
cf. Serre’s book Corps Locaux. There is much to be said for a direct global
approach to number fields. Stylistically, I have intermingled the ideal
and idelic approaches without prejudice for either. I also include
two proofs of the functional equation for the zeta function, to acquaint
the reader with different techniques (in some sense equivalent, but in
another sense, suggestive of very different moods). Even though a reader
will prefer some techniques over alternative ones, it is important at least
that he should be aware of all the possibilities.

New York SERGE LaNG
June 1970






Prerequisites

Chapters I through VII are self-contained, assuming only elementary
algebra, say at the level of Galois theory.

Some of the chapters on analytic number theory assume some analysis.
Chapter XIV assumes Fourier analysis on locally compact groups. Chap-
ters XV through XVII assume only standard analytical facts (we even
prove some of them), except for one allusion to the Plancherel formula in
Chapter XVII.

In the course of the Brauer-Siegel theorem, we use the conductor-
discriminant formula, for which we refer to Artin-Tate where a detailed
proof is given. At that point, the use of this theorem is highly technical,
and is due to the fact that one does not know that the zeros of the zeta
function don’t occur in a small interval to the left of 1. If one knew this,
the proof would become only a page long, and the L-series would not be
needed at all. We give Siegel’s original proof for that in Chapter XIII.

My Algebra gives more than enough background for the present book.
In fact, Algebra already contains a good part of the theory of integral
extensions, and valuation theory, redone here in Chapters I and II.
Furthermore, Algebra also contains whatever will be needed of group
representation theory, used in a couple of isolated instances for applica-
tions of the class field theory, or to the Brauer-Siegel theorem.

The word ring will always mean commutative ring without zero divisors
and with unit element (unless otherwise specified).

If K is a field, then K* denotes its multiplicative group, and K its
algebraic closure. Occasionally, a bar is also used to denote reduction
modulo & prime ideal.

We use the o0 and O notation. If f, g are two functions of a real variable,
and g is always = 0, we write f = O(g) if there exists a. constant C' > 0
such that |f(z)| = Cg(z) for all sufficiently large . We write f = o(g) if
lim,_,, f(x)/g(x) = 0. We write f ~ ¢ if lim,_, f(z)/g(z) = 1.

vii
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CHAPTER 1

Algebraic Integers

This chapter describes the basic aspects of the ring of algebraic integers
in a number field (always assumed to be of finite degree over the rational
numbers Q). This includes the general prime ideal structure.

Some proofs are given in a more general context, but only when they
could not be made shorter by specializing the hypothesis to the concrete
situation we have in mind. It is not our intention to write a treatise on
commutative algebra.

§1. Localization

Let A be a ring. By a multiplicative subset of A we mean a subset
containing 1 and such that, whenever two elements z, y lie in the subset,
then so does the product zy. We shall also assume throughout that 0 does
not lie in the subset.

Let K be the quotient field of 4, and let S be a multiplicative subset
of A. By S~1A we shall denote the set of quotients x/s with z in A and
sin 8. Itis a ring, and A has a canonical inclusion in S~ 4.

If M is an A-module contained in some field L (containing K), then
S™IM denotes the set of elements v/s withv € M and s € S. Then S™!M
is an S~'A-module in the obvious way. We shall sometimes consider
the case when M is a ring containing A as subring.

Let p be a prime ideal of A (by definition, p ¢ A). Then the comple-
ment of p in A, denoted by'A — gi\is a multiplicative subset S =<@of 4,
and we shall denote S7'4 by 4,.

A local ring is a ring which has a unique maximal ideal. If o is such a
ring, and m its maximal ideal, then any element z of o not lying in m
must be a unit, because otherwise, the principal ideal zo would be con-
tained in a maximal idezl unequal to m. Thus m is the set of non-units
of o.

3



4 ALGEBRAIC INTEGERS (1, §2]

The ring 4, defined above is a local ring. As can be verified at once,
its maximal ideal m, consists of the quotients z/s, with z in p and sin 4
but not in p.

We observe that m, N A = p. The inclusion D is clear. Conversely,
if an elementy = z/sliesinmy, N A withz €pands e S, thenz = sy € p
and s € p. Hence y € p.

Let A be a ring and S a multiplicative subset. Let a’ be an ideal of
S~'A. Then

o’ = S o' N A).

The inclusion D is clear. Conversely, let z € a’. Write z = a/s with
some a € A and s € S. Then sz € a’ N 4, whence z € S™}(a’ N A4).

Under multipfication by Sj‘, the multiplicative system of ideals of A
is mapped homomorphically onto the multiplicative system of ideals iof
S~'A. This is another way of stating what we have just proved. If a
is an ideal of A and S™!a is the unit ideal, then it is clear that a N S is
not empty, or as we shall also say, a meets S.

§2. Integral closure

Let A be a ring and z an element of some field L containing A. We
shall say that z is integral over A if either one of the following conditions
is satisfied.

INT 1. There exists a finitely generated non-zero A-module M C L_such
that M C M.

INT 2. The element x satisfies an equation
Jorde - cobes

2" 4 gu g b ag =0
with coefficients a; € A, and an integer n = 1. (Such an equation
will be called an integral equation.)

The two conditions are actually equivalent. Indeed, assume INT 2.
The module M generated by 1, z, ..., 2" ! is mapped into itself by the
element z. Conversely, assume there exists M = (vy, ..., v,;) such that
M CM,and M # 0. Then

vy = @101 + -+ -+ Qratn
TV = Qn1V1 + o Guatn

with coefficients a;; in A. Transposing zvy, . . . , 2v, to the right-hand side
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of these equations, we conclude that the determinant

xr — a3
—ai;
X — Q39
—aij .
X — Qun

is equal to 0. In this way we get an integral equation for z over A.

Proposition 1. Let A be a ring, K its quotient field, and x algebraic over
K. Then there exists an element ¢ % 0 of A such that@ﬁs integral over A.

Proof. There exists an equation
a "+ :--+ag=0
with a; € A and a, # 0. Multiply it by a?~!. Then
(@n2)" + -+ +agan =0

is an integral equation forla,z|over A.

Let B be a ring containing A. We shall say that B is integral over 4
if every element of B is integral over A.

Proposition 2. If B is inlegral over A and finitely generaled as an
"’A-algébfa then B is a finitely generated A-module.

Proof. We may prove this by induction on the number of ring gen-
erators, and thus we may assume that B = A[z] for some element z inte-

gral over A. But we have already seen that our assertion is true in that
case.

Proposition 3. Let A C B CC be three rings. If B s integral over A
and C 1s integral over B, then C is integral over A.

Proof. Let x €C. Then z satisfies an integral equation
"+ bpgz" 4+ b =0

with b; € B. Let By = Alby, ..., bs_1]. Then B, is a finitely generated
A-module by Proposition 2, and B,[z] is a finitely generated B;-module,

whence a finitely generated ‘A-module. : Since multiplication by x maps
B, [x] into itself, it follows that z is integral over A.

Proposition 4. Let A C B be two rings, and B integral over A. Let o
be a homomorphism of B. Then a(B) 1is integral over a(A).
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Proof. Apply o to an integral equation satisfied by any element x of B
It will be an integral equation for () over g(4).

The above proposition is used frequently when ¢ is an isomorphism
and is particularly useful in Galois theory.

Proposition 5. Let A be a ring contained in a field L. Let B be the set
of elements of L which are integral over A. Then B @ called the
integral closure of A 7n L. i

Proof. Let z, y lie in B, and let M, N be two finitely generated A-
modules such that A C M and yN C N. Then MN is finitely generated,
and is mapped into itself by multiplication with z & y and xy.

Corollary. Let A be a ring, K its quotient field, and L a finite separable
extension of K. Let x be an element of L which is integral over A. Then
the norm and trace of x from L to K are integral over A, and so are the
coefficients of the irreductble polynomial satisfied by = over K.

Proof. For each isomorphism o of L over K, gz is integral over 4.
Since the norm is the product of oz over all such o, and the trace is the
sum of oz over all such o, it follows that they are integral over A. Simi-
larly, the coefficients of the irreducible polynomial are obtained from the
elementary symmetric functions of the oz, and are therefore integral
over A.

A ring A is said to be integrally closed in a field L if every element
of L which is integral over A in fact lies in A. It is said to be
integrally closed if it is integrally closed in its quotient field.

Proposition 6. Let A be a Noetherian ring, integrally closed. Let L be
a finite separable extension of its quotient field K. Then the integral closure
of A in L 1s finitely generated over A.

Proof. It will suffice to show that the integral closure of A is contained
in a finitely generated .4-module, because A is assumed to be Noetherian.

Let wy, ..., w, be a linear basis of L over K. After multiplying each
w; by a suitable element of A, we may assume without loss of generality
that the iw; are integral over A (Proposition 1). The trace Tr from L to
K is a K-linear map of L into K, and is non-degenerate (i.e. there exists
an element x € L such that Tr(z) # 0). If « is a non-zero element of L,
then the function Tr(ex) on L is an element of the dual space of L (as
K-vector space), and induces a homomorphism of L into its dual space.
Since the kernel is trivial, it follows that L is isomorphic to its dual under
the bilinear form

(x, y) = Tr(xy).
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Let wy, .. ., w; be the dual basis of wy, . .., ws, so that
Tr(wéw,-) = 5,’,‘.

Let ¢ # O be an element of A such that cw/ is integral over A. Let z be
in L, integral over A. Then zcw! is integral over A, and so is Tr(czw})
for each . If we write

z=byw; + -+ bpwn
with coefficients b; € K, then
Tr(czw}) = cby,
and cb; € A because A is integrally closed. Hence z is contained in
Ac'wy + -+ - 4+ Ac w,.

Since z was selected arbitrarily in the integral closure of A in L, it follows
that this integral closure is contained in a finitely generated A-module,
and our proof is finished.

Proposition 7. If A is a unique factorization domain, then A s inte-
grally closed.

Proof. Suppose that there exists a quotient a/b with a, b € A which is
integral over A, and a prime element p in A which divides b but not a.
We have, for some integer n = 1,

(@/b)" + an_1(@/b)* 4+ - -+ ag = 0,

whence
a4 ap_1ba™ 1+ -+ agd" = 0.
Since p divides b, it must divide a”, and hence must divide a, contradiction.

Theorem 1. Let A be a principal ideal ring, and L a finite separable
extension of its quotient field, of degree n. Let B be the integral closure of
A in L. Then B is a free module of rank n over A.

Proof. As a module over A, the integral closure is torsion-free, and by
the general theory of principal ideal rings, any torsion-free finitely gen-
erated module is in fact a free module. It is obvious that the rank is
equal to the degree [L: K].

Theorem 1 is applied to the ring of ordinary integers Z. A finite exten-
sion of the rational numbers Q is called a number field. The integral
closure of Z in a number field K is called the ring of algebraic integers of
that field, and is denoted by og.
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Proposition 8. Let A be a subring of a ring B, integral over A. Let S
be a multiplicative subset of A. Then S™B is integral over ST A. If A
is integrally closed, then S~ A is integrally closed.

Proof. If x € B and s € §, and if M is a finitely generated A-module
such that zM C M, then S™!M is a finitely generated S~!A-module
which is mapped into itself by sz, so that s™!z is integral over S A4.
As to the second assertion, let z be integral over S~1A, with z in the
quotient field of A. We have an equation

n bﬂ— n— b
PR B ) 1_;_..._,_;09:0,

Spn—1

b;e A and s; €8. Thus there exists an element s € S such that sz is
integral over A, henceliesin A. This proves that z liesin S™1A4.

Corollary. If B is the integral closure of A in some field extension L
of the quotient field of A, then S™'B is the integral closure of S™'A in L.

§3. Prime ideals

Let p be a prime ideal of a ring A and let S = A — p. If Bis a ring
containing A, we denote by B, the ring S~!B.

Let B be a ring containing a ring A. Let p be a prime ideal of A and
P be a prime ideal of B. We say that P lies above pif N A = p and
we then write Blp. If that is the case, then the injection

A— B
induces an injection of the factor rings

A/p— B/9,

and in fact we have a commutative diagram:

B — B/

T T
A— A/p

the horizontal arrows being the canonical homomorphisms, and the
vertical arrows being inclusions.
If B is integral over A, then B/ is integral over A/p (by Proposition 4).

Nakayama’s Lemma. Let A be a ring, a an ideal contained in all mazxi-
mal ideals of A, and M a finitely generated A-module. If aM = M, then
M=0.
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Proof. Induction on the number of generators of M. Say M is gen-
erated by w;, ..., w,. There exists an expression

w1 = Qwy + ¢ * + ApWnm

with a; € a. Hence

(1 — a))wy = agwy + -+ - + AnWp.

If 1 — a, is not a unit in A4, then it is contained in a maximal ideal p.
Since a; € p by hypothesis, we have a contradiction. Hence 1 — a, is
a unit, and dividing by it shows that M can be generated by m — 1 ele-
ments, thereby concluding the proof.

Proposition 9. Let A be a ring, p a prime tdeal, and B a ring containing
A and integral over A. Then pB # B, and there exists a prime ideal P
of B lying above p.

Proof. We know that B, is integral over 4,, and that A, is a local ring
with maximal ideal m,. Since we obviously have

pBy, = pA,B = pA,B, = myB,,

it will suffice to prove our first assertion when A4 is a local ring. In that
case, if pB = B, then 1 has an expression as a finite linear combination
of elements of B with coefficients in p,

1= ab; + -+ + aubn

with a; €p and b; € B. Let Bg = A[by,...,bs]. Then pBy = Bg and
By is a finite A-module by Proposition 2. Hence By = 0, contradiction.

To prove our second assertion, we go back to the original notation, and
note the following commutative diagram:

B — B,
T 1 (all arrows inclusions).
A—- A,

We have just proved that m,B, # B,. Hence m,B, is contained in a
maximal ideal I of By, and M N A, therefore contains m,. Since m, is
maximal, it follows that

mp=§DenAp.

Let P = I N B. Then P is a prime ideal of B, and taking intersections
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with A going both ways around our diagram shows that M N A = p,
so that

PNndd=y,
as was to be shown.

Remark. Let B be integral over A, and let b be an ideal of B, b # 0.
Thenbn 4 # 0.

To prove this, let b € b, b # 0. Then b satisfies an equation
R
with a; € A, and ay # 0. Butagliesinb N A.

Proposition 10. Let A be a subring of B, and assume B integral over A.
Let P be a prime ideal of B lying over a prime ideal p of A. Then P s
mazimal ¢f and only if p s maximal.

Proof. Assume p maximal in A. Then A/p is a field. We are reduced
to proving that a ring which is integral over a field is a field. If k is a field
and z is integral over k, then it is standard from elementary field theory
that the ring k[z] is itself a field, so z is invertible in the ring. Conversely,
assume that P is maximal in B. Then B/P is a field, which is integral
over the ring A/p. If A/p is not a field, it has a non-zero maximal ideal
m. By Proposition 9, there exists a maximal ideal I of B/P lying above
m, contradiction.

When an extension is given explicitly by a generating element, then we
can describe the primes lying above a given prime more explicitly.

Let A be integrally closed in its quotient field K, and let E be a fintte exten-
ston of K. Let B be the integral closure of A in E. Assume that B = Ala]
for some element a, and let f(X) be the irreducible polynomial of o over K.
Let p be a mazximal ideal of A. We have a canonical homomorphism

A—A/p= 4,

which extends to the polynomial ring, namely

m

g(X) = 2 c.X'+ ;Eixi = g(X),

=1
where ¢ denotes the residue class mod p of an element c € A.

We contend that there is a natural bijection between the prime ideals P of
B lying above p and the irreducible factors P(X) of F(X) (having leading



{1, §4] CHINESE REMAINDER THEOREM 11

coefficient 1). This bijection is such that a prime B of B lying above p cor-
responds to P if and only if B is the kernel of the homomorphism

Ala] — 4[a]

where & is a root of P.

To see this, let P lie above p. Then the canonical homomorphism
B — B/P sends a on a root of f which is conjugate to a root of some
irreducible factor of f. Furthermore two roots of f are conjugate over 4
if and only if they are roots of the same irreducible factor of f. Finally,
let z be a root of P in some algebraic closure of A. The map

g(a) — §(2)
for g(X) € A[X] is a well-defined map, because if g(e) = 0 then
9(X) = f(X)N(X)

for some h(X) € A[X], whence §(z) = O also. Being well-defined, our
map is obviously a homomorphism, and since z is a root of an irreducible
polynomial over 4, it follows that its kernel is a prime ideal in B, thus
proving our contention.

Remark 1. As usual, the assumption that p is maximal can be weakened
to p prime by localizing.

Remark 2. In dealing with extensions of number fields, the assumption
B = A[q] is not always satisfied, but it is true that B, = A,[a] for all but
a finite number of p, so that the previous discussion holds almost always
locally. Cf. Proposition 16 of Chapter III, §3.

§4. Chinese remainder theorem

Chinese Remainder Theorem. Let A be a ring, and ay, . . ., a, ideals
such that a; + a;j = A for alli # j. Given elementsz,,...,x, € A, there
exists £ € A such that x = z; (mod a;) for all 1.

Proof. If n = 2, we have an expression
1=a;+a;

for some elements a; € a;, and we let x = z.a; + z;0a,.
For each 7 we can find elements a; € a; and b; € a; such that

a,~+bi=1, 7

v

2.
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The produet J] (a: + b;) is equal to 1, and lies in a; + II a;. Hence

=2 =2

a; + J] a; = A.

=2
By the theorem for n = 2, we can find an element y; € A such that

yi=1 (mod ay)

y1=0 (modHa,- .

i=2

We find similarly elements ys,, .. ., ¥, such that
yi=1(moda;); y;=0 (moda), 75 j.

Then z = z1y; + - - - + ZTayx satisfies our requirements.

In the same vein as above, we observe that if ay, ..., a, are ideals of
a ring A such that

al+"'+an= A)
and if »4, . . ., v, are positive integers, then
ai'+ - +ar = A

The proof is trivial, and is left as an exercise.

85. Galois extensions

Proposition 11. Let A be a ring, integrally closed in its quotient field K.
Let L be a finite Galois extension of K with group G. Let p be a maximal
tdeal of A, and let P, Q be prime ideals of the integral closure of A in L
lying above p. Then there exists ¢ € G such that cP = Q.

Proof. Suppose that P = o for any ¢ € G. There exists an element
z € B such that

z =0 (mod P)
z=1 (mod ¢Q), allce @

(use the Chinese remainder theorem). The norm

Ni@) = ][] oz

o€EG

liesin BN K = A (because A is integrally closed), and liesin B N 4 = ».
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But z € ¢Q for alleg € G, so that ox & Q for allo € G. This contradicts
the fact that the norm of z liesin p = Q N A.

If one localizes, one can eliminate the hypothesis that p is maximal;
just assume that p is prime.

Corollary. Let A be a ring, integrally closed in its quotient field K.
Let E be a finite separable extension of K, and B the integral closure of A
in E. Let p be a maximal ideal of A. Then there exists only a finite number
of prime ideals of B lying above p.

Proof. Let L be the smallest Galois extension of K containing E. If
01, Q, are two distinct prime ideals of B lying above p, and B;, P, are
two prime ideals of the integral closure of A in L lying above Q; and Q.
respectively, then B, # P,. This argument reduces our assertion to the
case that E is Galois over K, and it then becomes an immediate conse-
quence of the proposition.

Let A be integrally closed in its quotient field K, and let B be its integral
closure in a finite Galois extension L, with group G. Then 0B = B for
every ¢ € G. Let p be a maximal ideal of A4, and B a maximal ideal of B
lying above p. We denote by Gg the subgroup of G consisting of those
automorphisms such that o = PB. Then Gg operates in a natural way
on the residue class field B/, and leaves A/p fixed. To each o € Gg we
can associate an automorphism & of B/ over A/p, and the map given by

g—0

induces a homomorphism of Gg into the group of automorphisms of B/$
over A/p.

The group Gg will be called the decomposition group of B. Its fixed
field will be denoted by L¢, and will be called the decomposition field
of . Let B? be the integral closure of A in L? and let Q = P N B
By Proposition 11, we know that P is the only prime of B lying above Q.

Let G = |Jo;Gg be a coset decomposition of Gg in G. Then the prime
ideals o;P are precisely the distinct primes of B lying above p. Indeed,
for two elements o, T € G we have ¢P = 7P if and only if 77 6P = B,
i.e. 77% lies in Gg. Thus 7, ¢ lie in the same coset mod Gg.

It is then immediately clear that the decomposition group of a prime
oPBisaGgo .

Proposition 12. The field L? is the smallest subfield E of L containing

K such that B is the only prime of B lying above B N E (which is prime in
B NE).
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Proof. Let E be as above, and let H be the Galois group of L over E.
Let q = PN E. By Proposition 11, all primes of B lying above q are
conjugate by elements of H. Since there is only one prime, namely P,
it means that H leaves P invariant. Hence H C Gy and E D L%. We
have already observed that L has the required property.

Proposition 13. Notation being as above, we have A/p = BY/Q (under
the canonical injection A/p — BY/Q).

Proof. If o is an element of G, not in Gy, then P = P and o~ I1P = P.
Let
L, =07 ¥ N B

Then £, # . Let x be an element of BY. There exists an element y
of BY such that

y=x (mod L)
y=1 (mod .}
for each ¢ in G, but not in Gg. Hence in particular,
y=2a (mod )
y=1 (modo™{)
for each o not in Gg. This second congruence yields
ocy=1 (mod R)

for all ¢ & Gy. The norm of y from L? to K is a product of y and other
factors oy with 0 € Gg. Thus we obtain

NE@ =+ (mod ).

But the norm lies in K, and even in A, since it is a product of elements
integral over A. This last congruence holds mod £, since both x and the
norm lie in BY. This is precisely the meaning of the assertion in our
proposition.

If x is an element of B, we shall denote by T its image under the homo-
morphism B — B/R. Then & is the automorphism of B/ satisfying the
relation

0T = OJr.

If f(X) is a polynomial with coefficients in B, we denote by F(X) its natural
image under the above homomorphism. Thus, if

f(X) = bn‘\’"’%" c ':_b()»
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then
F(X) = b, X" 4 - - - + b,.

Proposition 14. Let A be integrally closed in its quotient field K, and
let B be its integral closure in a finite Galois extension L of K, with group G.
Let p be a maximal ideal of A, and B a maximal ideal of B lying above p.
Then B/P is a normal extension of A/p, and the map o — & induces a
homomorphism of Gg onto the Galots group of B/B over A/p.

Proof. Let B= B/P and 4 = A/p. Any element of B can be written
as T for some z € B. Let T generate a separable subextension of B over 4,
and let f be the irreducible polynomial for x over K. The coefficients of f

liein A because z is integral over A, and all the roots of f are integral over A.
Thus

fX) = I_I1 (X — 29)
splits into linear factors in B. Since

i@ =11 & —z)

and all the %; lie in B, it follows that f splits into linear factors in B. We
observe that f(x) = O implies f(Z) = 0. Hence B is normal over 4,
and

[A(x):4) £ [K(z):K] £ [L:K].

This implies that the maximal separable subextension of 4 in B is of
finite degree over A (using the primitive element theorem of elementary
field theory). This degree is in fact bounded by {L: K].

There remains to prove that the map ¢ +— & gives a surjective homo-
morphism of Gg onto the Galois group of B over 4. To do this, we shall
give an argument which reduces our problem to the case when P is the
only prime ideal of B lying above p. Indeed, by Proposition 13, the residue
class fields of the ground ring and the ring B? in the decomposition field
are the same. This means that to prove our surjectivity, we may take L¢
as ground field. This is the desired reduction, and we can assume K = L¢,
G - GGB.

This being the case, take a generator of the maximal separable sub-
extension of B over 4, and let it be T, for some element z in B. Let f be
the irreducible polynomial of z over K. Any automorphism of B is deter-
mined by its effect on Z, and maps Z on some root of f. Suppose that
z = z;. Given any root z; of f, there exists an element ¢ of G = Gy
such that oz = z;. Hence T = T,;. Hence the automorphism of B over A
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induced by elements of G operate transitively on the roots of f. Hence they
give us all automorphisms of the residue class field, as was to be shown.

Corollary 1. Let A be a ring integrally closed in its quotient field K.
Let L be a finite Galois extension of K, and B the integral closure of A in L.
Let p be a maximal ideal of A. Let ¢: A — A/p be the canonical homo-
morphism, and let Y1, Y2 be two homomorphisms of B extending ¢ in a
given algebraic closure of A/p. Then there exists an automorphism o of
L over K such that

Y1 = Ya00.

Proof. The kernels of ¢;, 2 are prime ideals of B which are conjugate
by Proposition 11. Hence there exists an element 7 of the Galois group G
such that ¢,, ¥2°7 have the same kernel. Without loss of generality,
we may therefore assume that y¥;, ¥ have the same kernel . Hence
there exists an automorphism w of ¥, (B) onto ¥3(B) such that wey; = s
There exists an element o of Gg such that w oy = ¢, o0, by the preceding
proposition. This proves what we wanted.

Remark. In all the above propositions, we could assume p prime in-
stead of maximal. In that case, one has to localize at p to be able to apply
our proofs. In the application to number fields, this is unnecessary, since
every prime is maximal.

In the above discussions, the kernel of the map
Gq; - Uq;

is called the inertia group T'g of PB. It consists of those automorphisms
of Gy which induce the trivial automorphism on the residue class field.
Its fixed field is called the inertia field, and is denoted by L.

Corollary 2. Let the assumptions be as in Corollary 1, and assume that
P s the only prime of B lying above p. Let f(X) be a polynomial in A[X]
with leading coefficient 1. Assume that f is trreducible in K[X]), and has a
root & in B. Then the reduced polynomial T is a power of an irreducible
polynomial in A{X).

Proof. By Corollary 1, we know that any two roots of 7 are conjugate
under some isomorphism of B over A, and hence that 7 cannot split
into relative prime polynomials. Therefore, f is a power of an irreducible
polynomial.

Let k be a number field and E a finite extension of degree N. A non-zero
prime ideal of the ring of algebraic integers o, will usually be called a prime
of k. We say that such a prime p splits completely in E if there are
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exactly N different primes of E lying above p. If K/k is Galois, then p
splits completely in K if and only if Gg = 1 because G permutes the primes
PBlp transitively.

When K/k is abelian, then we have the following characterization of the
fixed field of the decomposition group.

Corollary 3. Let K/k be abelian with group G. Let p be a prime of k, let B
be a prime of K lying above p and let Gg be its decomposition group. Let E
be the fized field of Gg. Then E is the maximal subfield of K containing k in
which p splits completely

Proof. Let
r
G = U g ,‘Gq;
i=1
be a coset decomposition. Let g = P N E. Since a Galois group permutes
the primes lying above a given prime transitively, we know that P is the
only prime of K lying above q. For each 7, the prime ¢, is the only prime
lying above o.,q, and since ¢;%B, . . ., 0,B are distinet, it follows that the
primes 04q, . . . ,0,q are distinet. Since G is abelian, the primes o;q are
primes of E, and [E:k] = r, so that p splits completely in E. Conversely,
let F be an intermediate field between k and K in which ¥ splits completely,
and let H be the Galois group of K/F. Ifo € Ggand BN F = Py, then o
leaves B fixed. However, the decomposition group of Py over p must be
trivial since p splits completely in F. Hence the restriction of ¢ to F is the
identity, and therefore Gg C H. This proves that F C E, and concludes
the proof of our corollary.

Let k be a number field and let K be a Galois extension with group G
Let p be a prime of o; and P a prime of ox lying above p. The residue
class field ox/p is finite, and we shall denote the number of its elements by
Np. Itis a power of the prime number p lying in p. By the theory of finite
fields, there exists a unique automorphism of 0x/%P over o;/p which gener-
ates the Galois group of the residue class field extension and has the effect

z — N,

In terms of congruences, we can write this automorphism & as
oa = o™’ (mod P), a € 0.

By what we have just seen, there exists a coset 67y of T'g in Gy which
induces & on the residue class field extension. Any element of this coset
will be called a Frobenius automorphism of $, and will be denoted by
(B, K/k). If the inertia group T'g is trivial, then (B, K/k) is uniquely
determined as an element of the decomposition group Gg.
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If Q is another prime lying above p, and #n € G is such that B = Q,
then the decomposition group of Q is given by

Go = Gug = nGgn™,

and similarly for the inertia group, and a Frobenius automorphism.

(B, K/k) = 2(B, K/k)n™".

This is immediately verified from the definitions. Furthermore, if T'g is
trivial, we see that (B, K/k) = 1 if and only if p splits completely, mean-
ing that Gg = 1.

If K/k is abelian, and if the inertia group T’y is trivial for one of the B|p
(and hence for all B|p), it follows that to each p in k we are able to associate
a uniquely determined element of G, lying in Gg (the same for all B|p),
which we denote by

o= (p, K/k),

and call the Artin automorphism of p in G. It is characterized by
the congruence

ga =" (mod P), a € og.

We shall study this automorphism at length in the class field theory.

§6. Dedekind rings

Let o be a ring and K its quotient field. A fractional ideal of o in K is
an o-module a contained in K such that there exists an element ¢ # 0
in o for which ca C 0. If o is Noetherian, it follows that ca, and hence a,
is finitely generated.

Theorem 2. Let o be a ring which is Noetherian, integrally closed, and
such that every non-zero prime ideal is maximal. Then every ideal of o can
be uniquely factored into prime ideals, and the non-zero fractional ideals
form a group under multiplication.

Proof. We shall first prove the second assertion, following Van der
Waerden.

(1) Let a O be an ideal in 0. Then there exists a product of prime
ideals pyp2 - - - p, Ca.

Suppose the assertion false. Since o is Noetherian, there exists an
ideal a # 0 and maximal with respect to the stated property. This ideal
cannot be prime. Hence there exist by, by € 0 such that b;b, € a but
neither b; norb; liesina. Leta; = (a, b;) and a. = (a, b2). Then a;a; C q,
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and a; # a, az ¥ a. Since a was maximal with respect to the stated
property, we can find products of prime ideals contained in a; and as.
Taking the product of these gives a contradiction.

(ii) Every maximal ideal p is invertible.

Let p~! be the set of elements x € K such that ap Co. Then p~! Do.
We contend that p~! 0. Leta €p, a # 0. Choose r minimal such that
there exists a product

P19 C(a) Cy.

Then one of the p;, say p;, is contained in p, and hence equal to p, since
every prime is maximal. Furthermore,

Dz"‘DrCZ(a)

and hence there exists an element b € p, - - - p, such that b &€ (a). But
bp C (a) and hence ba~'p C o, so that ba™! € p~!. But b & ao and hence
ba~—! & o, thereby proving our contention.

We obtain p Cpp~! Co. Since p is maximal, either p = pp~! or
pp~! = 0. But p~!p = p would mean that p~! leaves a finitely generated
o-module invariant, and hence is integral over 0. This is impossible, since
o is integrally closed. Hence pp~! = o.

(i) Every non-zero ideal is invertible, by a fractional ideal.

Suppose this is not true. There exists a maximal non-invertible ideal a.
We have just seen that a cannot be a maximal ideal. Hence a Cp for
some maximal ideal p, and a % p. We get

aCap~'Caa~! Co.

Since a is finitely generated, we cannot have ap~™ = a (because p~! is not
integral over 0). Hence ap™! is larger than a, hence has an inverse, which,
multiplied by p, obviously gives an inverse for a, contradiction.

(iv) Let a be an ideal # 0, and ¢ a fractional ideal such that ac = o.
Then ¢ = a~! (the set of elements x € K such that xa C o).

It is clear that ¢ Ca~!. Conversely, if za C o, then zac C ¢ and hence
z € ¢, because ac = o.

We finally conclude that every fractional ideal # 0 is invertible. In-
deed, if a is a fractional ideal £ 0, then there exists an element ¢ €0
such that ca C o, and ca is invertible. If cab = o, then ¢b = a~!. This
proves that the non-zero fractional ideals form a group.

From this, we shall prove unique factorization.
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First, we note that every non-zero ideal a is equal to a product of prime
ideals. Indeed, if this is false, there is a maximal ideal a which is not such
a product, and a cannot be prime. Thus a C p and a # p for some prime p.
Then ap~ C o and ap~! # a but contains a. Hence ap~! has a factor-
ization, which, when multiplied by p gives a factorization of a.

Given two fractional ideals a, b we say that a|b if and only if there exists
an ideal ¢ such that ac = b. This amounts to saying that a D b, because
in that case, we take ¢ = a™'b.

From the definition of a prime ideal, we see that whenever a, b are two
ideals and p|ab then pja or p|b. (Namely, ab C p implies a Cp or b C p.)
Given two factorizations

PiP2 - Pr =102 - Qs

into prime ideals, we conclude that p; divides the product on the right,
hence divides some q;, hence is equal to some q;. Multiplying by p7!
both sides of the equality, we proceed by induction to prove that r = s
and that the factors on both sides are equal, up to a permutation.

If a is a fractional ideal £ 0, and ¢ € o is such that ¢ ¢ 0 and ca C o,
then (¢) =p;---pr and ca = q; - - - q;. Hence a has the factorization

=q1..‘q8
Pi---Pr

(writing 1/p instead of p~!). If we cancel any prime appearing both in
the numerator and denominator, then it is clear that the factorization is
unique.

A ring satisfying the properties of Theorem 2 is called a Dedekind ring.
The ring of algebraic integers in a number field K is a Dedekind ring,
because it satisfies the three properties stated in Theorem 2. The multi-
plicative group of non-zero fractional ideals of the ring of algebraic integers
og will be denoted by Ix.

From now on, by fractional ideal we shall mean non-zero fractional
ideal, unless otherwise specified.

Let A be a Dedekind ring and a a fractional ideal. We have a
factorization

a= IDI p’y

with integers r, all but a finite number of which are 0. We say that r, is
the order of a at p. If , > 0, we say that a has a zero at p. If r, < 0,
we say that it has a pole at p.

Let a be a non-zero element of the quotient field of A. Then we can
form the fractional ideal (a) = Aa and we apply the above notions of
order, zero, and pole to a.

a
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If a and b are two fractional ideals, then it is clear that a D b if and only
if ordy a = ord, b for all primes p. Thus we have a criterion for an element
a to belong to a fractional ideal a in terms of orders (taking b = («)).

If ord, @« = 0, then we say that o is a unit at p. If that is the case, then
a is a unit in the local ring A,.

In what follows, by a prime ideal, we shall mean a non-zero prime ideal,
unless otherwise specified, and we call a non-zero prime ideal simply a
prime.

Proposition 15. Let 0 be a Dedekind ring with only a finite number of
prime ideals. Then o is a principal ideal ring.

Proof. Let py, ..., ps be the prime ideals. Given any ideal
a=prt---p; # 0,

select an element 7; in p; but not in p? and find an element « of o such
that

a=ai  (mod pith).
If

(@) = pir- - - pie

is a factorization of the ideal generated by «, then one sees immediately
that e; = r; for all 7, and hence that a = ().

Proposition 16. Let A be a Dedekind ring and S a multiplicative subset
of A. Then S™'A is a Dedekind ring. The map

a— S la

18 a homomorphism of the group of fractional ideals of A onto the group of
fractional ideals of ST'A, and the kernel consists of those fractional ideals
of A which meet S.

Proof. If p meets S, then
S~ lp=8"14
because 1 lies in S~!p. If a, b are two ideals of 4, then
8~ (ab) = (87a)(S7'0),

so multiplication by S~! induces a homomorphism of the group of
(fractional) ideals.

If S™'a = S™'A, then we can write 1 = «/s for some a €a and s € S.
Thus a« = s and a meets S. This proves that the kernel of our homo-
morphism is what we said it is.
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Our mapping is surjective since we saw in §1 that every ideal of S™14
is of type S 'a for some ideal a of A. The same applies of course to frac-
tional ideals. This proves our proposition.

By a principal fractional ideal we shall mean a fractional ideal of type
aA, generated by a single element « in the quotient field of 4, and a = 0
unless otherwise specified.

Let A be a Dedekind ring. The group of fractional ideals modulo the
group of principal ideals (i.e. non-zero principal fractional ideals) is called
the ideal class group of A.

Proposition 17. Let A be a Dedekind ring, and assume that its group
of ideal classes is finite. Let ay, . . ., a, be representative fractional ideals of
the ideal classes, and let b be a non-zero element of A which lies in all the a;.
Let 8 be the multiplicative subset of A generated by the powers of b. Then
every ideal of S~ A: s principal.

Proof. All the ideals S~ ay, ..., S™!a, map on the unit ideal in the
homomorphism of Proposition 16. Since every ideal of A is equal to some
a; times a principal ideal, our proposition follows from the surjectivity of
Proposition 16.

If two fractional ideals qa, b lie in the same ideal@lass, we write
a~b

and we say that a, b are linearly equivalent. It is clear that every frac-
tional ideal is linearly equivalent to an ideal.

The assumptions of Proposition 17 will be proved later to be satisfied
by the ring of integers of an algebraic number field.

§7. Discrete valuation rings

A discrete valuation ring o is a principal ideal ring having a unique
(non-zero) prime ideal m. It is therefore a local ring. If 7 is a generator
for m, then it must be the only irreducible element of o, i.e. the only prime
element (since any prime element generates a prime ideal) up to a unit,
of course. Thus the unique factorization in an arbitrary principal ideal
ring has a particularly simple form in this case: Every element a # 0 of
o has an expression

a=Tu

with some integer 7, and a unit u in o.

Every discrete valuation ring is a Dedelund ring, and every Dedekind
ring having only one maximal ideal is a discrete valuation ring. If A is
a Dedekind ring, and p a prime ideal of A, then A4, is a discrete valuation
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ring, since it is equal to S~!4 (S = complement of p in A4) (cf. Proposi-
tion 16).

Since every ideal of a discrete valuation ring is prineipal, it must be
some power of the maximal ideal.

In proving theorems about Dedekind rings, it is frequently useful to
localize with respect to one prime ideal, in which case one obtains a dis-
crete valuation ring. For instance we have the following proposition.

Proposition 18. Let A be a Dedekind ring and M, N two modules over A.
If p is a prime of A, denote by S, the multiplicative set A — p. Assume
that S;'M C Sy !N for allp. Then M C N.

Proof. Let a € M. For each p we can find z, € N and s, € S, such
that @ = z,/s,. Let b be the ideal generated by the s,. Then b is the
unit ideal, and we can write

1= Zynsn

with elements y, € A all but a finite number of which are 0. This yields

a= Zyasna = Zynxv
and shows that a lies in N, as desired.

If A is a discrete valuation ring, then in particular, 4 is a principal
ideal ring, and any finitely generated torsion-free module M over A4 is
free. If its rank is n, and if p is the maximal ideal of A, then M /pM is a
free module of rank =.

Proposition 19. Let A be a local ring and M a free module of rank n
over A. Let p be the maximal ideal of A. Then M /pM is a vector space of
dimension n over A/Y.

Proof. This is obvious, because if {z;, . .., z,} is a basis for M over 4, so

M = > Az; (direct sum),
then

M/pM ~ D> (A/p)T; (direct sum),
where Z; is the residue class of z; mod p.

Let A be a Dedekind ring, K its quotient field, L a finite separable
extension of K, and B the integral closure of A in L. If p is a prime ideal
of A, then pB is an ideal of B and has a factorization

B=0-- B (21D

into primes of B. Itis clear that a prime B of B occurs in this factorization
if and only if P lies above p.
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If S is the complement of p in A, then multiplying the above factoriza-
tion by S gives us the factorization of S~'p in S™!B. The primes S™!;
remain distinct.

Each e; is called the ramification index of PB; over p, and is also written
e(Pi/p). If we assume that A is a local ring, then p = () is principal
(Proposition 15). Let S; be the complement of PB; in B and let

B; = S7'B = By,
Then P, is principal, generated by an element w;, and we have
pB; = wB; = (7).

Warning: B; is not necessarily integral over 4,. It is if and only if
there exists only one prime ideal P above p in B. Prove this as an exercise.

Denote by I(A) the group of fractional ideals of a Dedekind ring A.
Let K, L, B be as above. Then we have a natural injection

I(4) — I(B)

given by a > aB. We shall define a homomorphism in the other direction.

1f P lies above p in B, we denote by fg or f(B/p) the degree of the residue
class field extension B/ over A/p, and call it the residue class degree.
We define the norm N%(P) to be p’® and extend our map N% to the
group of fractional ideals by multiplicativity.

Proposition 20. Let A be a Dedekind ring, K iis quotient field,
K CE CL two finite separable extensions, and A C B CC the corre-
sponding tower of integral closures of A in E and L. Let p be a prime of
A, q a prime of B lying above p, and P a prime of C lying above q. Then

e(B/p) = e(B/a)e(a/p)
F(B/p) = f(B/0)f(a/p).
Proof. Obvious.

From Proposition 20 it is clear that the norm is transitive, i.e. if we
have a fractional ideal ¢ of C, then

NENE(©) = Nk().

Proposition 21. Let A be a Dedekind ring, K its quotient field, L a
finite separable extension of K, and B the integral closure of A in L. Let
p be a prime of A. Then

[L:K] = 2 esfs.
Blp
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Proof. We can localize at p (multiplying A and B by S;7!), and thus
may assume that A is a discrete valuation ring. In that case, B is a free
module of rank n = [L: K] over A, and B/pB is a vector space of dimen-
sion n over A/p.

Let pB = P51 - - - B¢ be the factorization of p in B. Since P D pB for
each 7, we have a well-defined homomorphism

B — B/pB — B/B¥

and therefore a homomorphism into the direct sum
B— B/yB— ]I B/®%.
i=1

Each B/P can be viewed as an A /p-vector space, and hence so can the
direct sum. The kernel of our homomorphism consists of those elements
of B lying in all the B¥, and is therefore pB. Furthermore, our map is
surjective by the Chinese remainder theorem. It is obviously an A4/p-
homomorphism, and thus B/pB is A /p-isomorphic to the above direct sum.

We shall now determine the dimension of B/P° (if P is some P; and
e = e,-).

Let II be a generator of P in B. (We know from Proposition 15 that P
is principal.) Let j be an integer = 1. We can view B//PB’*! as an A /p-
vector space, since pPB/ C B’*?. We consider the map

B/% — B/p

induced by multiplying an element of B by II’. This map is an A/p-
homomorphism, which is clearly injective and surjective. Hence B/P and
PB/P+! are A /p-isomorphic.

The A/p-vector space B/P° has a composition series induced by the
inclusions

BOBDOPED--- D P

The dimension of B/P over A/p is fg, by definition. From this it follows
that the dimension of B/P¢ over A /p is eg fg, thereby proving our proposi-
tion.

If eg = fg = 1 for all B|p, then one says that p splits completely in L.
In that case, there are exactly [L : K] primes of B lying above .

Corollary 1. Let a be a fractional ideal of A. Then

N%(@B) = o' K,

Proof. Immediate.
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Corollary 2. Assume that L is Galois over K. Then all the eg are equal
to the same number e (for P|p), all the fg are equal to the same number f

(for Blp), and +f
pB= (P1--- ‘Br)c;

efr = [L:K].

then

Proof. All the P lying above p are conjugate to each other, and hence
all the ramification indices and residue class degrees are equal. The last
formula is clear.

Corollary 3. Assume again that L is Galois over K with group G, and
let P be a prime of B lying above p in A. Then

NiB-B= Il 0B = (Br-- B
cEG
(with e, £, r as in Corollary 2, and the ideal on the left is viewed as embedded
in I(B)). The number ef is the order of the decomposition group of B, and
e 18 the order of the tnertia group.

Proof. The group G operates transitively on the primes of B lying above
p, and the order of Gy is the order of the isotropy group. Our assertions
are therefore obvious, taking into account Proposition 14 of §5.

Proposition 22. Let A be a Dedekind ring, K its quotient field, E a finite
separable extension of K, and B the integral closure of A in E. Let b be a
fractional ideal of B, and assume b is principal, b=(B), B#0. Then.

NEb = (NX(8)),

the norm on the left being the norm of a fractional ideal as defined above,
and the norm on the right being the usual norm of elements of E.

Proof. Let L be the smallest Galois extension of K containing E. The
norm from L to E of b and of 8 simply raises these to the power [L : E].
Since our proposition asserts an equality between fractional ideals, it will
suffice to prove it when the extension is Galois over K. In that case, it
follows at once from Corollary 3 above.

Proposition 23. Let A be a discrete valuation ring, K its quotient field,
L a finite separable extension of K, and B the integral closure of A in L.
Assume that there exists only one prime B of B lying above the mazimal
tdeal p of A. Let B be an element of B such that its residue class mod P
generates B/PB over A/p and II an element of B which is of order 1 at B.
Then A[B, 1] = B.
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Proof. Let C be the ring A[B, IT]. It can be viewed as a submodule of B
over A, and by Nakayama’s lemma, applied to the factor module B/C,
it will suffice to prove that

pB+C = B.

But pB = R¢, and the products °II’ generate B/P* over A /p, as in Propo-
sition 21. Hence every element z € B is such that

r= Zc;;ﬁiﬂj (mod pB)
for some ¢;; € A. This proves our proposition.

Finally, we prove one more result, generalizing the arguments of
Proposition 21.

Proposition 24. Let A be a Dedekind ring, and a a non-zero ideal. Let
ny, = ord, a. Then the canonical map

A—-J] An™
p

induces an isomorphism of A /a onto the product.

Proof. The map is surjective according to the Chinese remainder
theorem, and it is clear that its kernel is exactly a.

Corollary. Assume that A/p is finite for each prime ideal p. Denote by
Na the number of elements in the residue class ring A/a. Then

Na = [T (Np)™.
b}

We observe that the function N can simply be viewed as being extended
from the prime ideals to all fractional ideals by multiplicativity.

§8. Explicit factorization of a prime

We return to the discussion at the end of §3 and give more precise
information concerning the splitting of the prime, due to Dedekind.

Proposition 25. Let A be a Dedekind ring with quotient field K. Let E
be a finite separable extension of K. Let B be the integral closure of A in E
and assume that B = A[a] for some element o. Let f(X) be the irreducible
polynomial of a over K. Let p be a prime of A. Let T be the reduction of
Jmod p, and let

J(X) = Py(X)1--- P(X)"
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be the factorization of T into powers of irreducible factors over A = A/p,
with leading coefficients 1. Then

bB = Bi - - BY

1s the factorization of p in B, so that e; is the ramification index of P; over p,
and we have

B: = pB + Pi(a)B,

if P(X) € A[X] s a polynomial with leading coefficient 1 whose reduction
mod p is P;.

Proof. Let P be an irreducible factor of 7, let & be a root of P, and let
P be the prime of B which is the kernel of the map

Ala] — Afa).

It is clear that pB + P(a)B is contained in B. Conversely, let g(a) € P
for some g(X) € A[X]. Then § = Ph with some % € A[X], and hence
g — Ph, which is a polynomial with coefficients in 4, in fact has coefficients
in p. This proves the reverse inclusion, and proves the last formula of our
proposition.

Finally, let €] be the ramification index of P;, so that

pB = P5i- - - P,

and let d; be the residue class degree [B/P;: A/p]. It is clear that d; is
the degree of P;. Since f(a) = 0, and since

F(X) = Py(X)*r - - - P(X)* € pA[X],
it follows that ' -
(*) Py(a)? - - - Pr(a)r € pB.
On the other hand, we see that
¥ CpB + Pi(a)"B,
whence using (*) we find
P BT CPB+ Pr(@)” - Bo(@)"B CpB = Bii - - - P77,
This proves that e; = ¢! for all 2. But we know that
eds = degf = [B:F) = 2eids.

It follows that e; = e for all 7, thus proving our theorem.



I, §8] EXPLICIT FACTORIZATION OF A PRIME 29

Remark. The hypothesis that B = A[a] for some « is not always satis-
fied, but if we are interested in the decomposition of a single prime p,
then it suffices to look at the localization B, over 4,, and in that case B,
can be generated by a single element except for a finite number of excep-
tions. See Proposition 16 of Chapter III, §3.

Ezample. Let a® = 2, and let E = Q(a). It can be shown that the
ring of algebraic integers og is precisely Z[a]. Let p = 5. Then we have

X} —2=X—-3)(X%4+3X —1) (mod5),

and X% 4 3X — 1 is irreducible mod 5. Hence the prime ideal (5) of Z
has the decomposition

S50 = P1P2

where p; has residue class degree 1, and p, has residue class degree 2
over Z/5Z.






CHAPTER II

Completions

This chapter introduces the completions of number fields under the
p-adic topologies, and also the completions obtained by embedding the
number field into the real or complex numbers.

In §3 we discuss the rough structure of complete fields.

In §4 and §5 we cover the basic facts concerning unramified and tamely
ramified extensions. For the higher ramification theory, we refer the
reader to Artin-Tate [3]. In §4 and §5 we deal with complete Dedekind
rings. We define the notions of P unramified, tamely ramified, and totally
ramified above p. These can also be defined globally, since they will depend
only on the ramification index and residue class degree. However, in the
local case, we can also apply them to the field extension, since to each
finite extension of the ground field K there is exactly one P above p.

It is useful to think of finite extensions of a number field as coverings,
and of completions as analogous to power-series fields in the theory of
functions. Absolute values measure something like the order of a zero or
pole of a function. '

§1. Definitions and completions

Let K be a field. An absolute value on K is a real valued function
z — |z|, on K satisfying the following three properties:

AV 1. We have |z|, = 0 and = 0 if and only if x = 0.
AV 2. For all z, y € K we have |zy|, = |z|s|yl,-
AV 3. |z +ylo = |zfo + [ylo-
If instead of AV 3 the absolute value satisfies the stronger condition

AV 4. |z + y|, £ max(|z|,, [ylv),

then we shall say that it is a valuation or that it is non-archimedean.

The absolute value which is such that || = 1 for all z 5 0 is called
trivial. We shall assume from now on that none of the absolute values
we deal with are trivial.

31
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When v is fixed throughout a discussion, we omit it from the notation,
and write |z| instead of |z|,.

An absolute value | | defines a distance function (z,y) — |z — y|, and
thus a topology on the field. Two (non-trivial) absolute values are called
dependent if they define the same topology. If they do not, they are
called independent. It is clear that if | || and | |, are absolute values such
that there exists some N > 0 for which

|zl = |x|§, allz € K,

then they are dependent. The converse is also true, and thus the weakest
notion of dependence implies the strongest. This is eastly seen as follows.
The set of z € K such that |z|; < 1 is the same as the set such that
limz™® = 0 for n — . Then if £ € K and |z|; > 1 we conclude that
|z|2 > 1 also, because [x~!|; < 1. Since the absolute values are assumed
to be non-trivial, there exists y € K such that |y|; > 1. Let a = |y|; and
let b = |yls. Letze€ K,z % 0. Say |z| =2 1. Then |z|; = |y|{ for some
a = 0. If m, n are integers > 0 such that m/n > «, we have

lzl: < lglT",
whence |z"/y™|; < 1, and thus [z"/y™|2 < 1, so that

2 < lyl3'™

Similarly if m, n are integers such that m/n < «, then
|zl2- > [y3"".

Hence |z|; = |y|3. From this it follows immediately that
lxll = lxlé,

where A = (log a)/(log b), thus proving our assertion.

Let v be an absolute value on K. We say that K is complete if every
Cauchy sequence in K has a limit (i.e. converges). Suppose that K is
complete, and let £ be a finite extension of K. Assume that we have ex-
tended the absolute value to E in some way. Since E is a finite dimensional
vector space over K, it is easy to verify that all extensions of v to E are
equivalent, and we shall recall the proof below. Since two of them are
positive powers of each other, and since they coincide on K, we conclude
that they must be equal. Thus we get:

If K is complete under an absolute value, then an extension of this absolute
value to a finite extension ts uniquely determined. In particular, if E is a
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finite extension of K and o : E — ogE s an isomorphism of E over K, then

loa] = |af
for every a € E.

We now recall the result about finite dimensional vector spaces over
complete fields.

Let k be complete with respect to an absolute value. Let V be a finite dimen-
stonal vector space over k. Then all norms on V are equivalent.

By a norm on V we mean of course a function which satisfies the same
properties as an absolute value, namely its values are real = 0, and
|z| > 0if z # 0, the triangle inequality holds, namely

lz + 3| = lal + |yl

and we have
lex|] = || || cek,zeV.

We say that two norms are equivalent if each one is less than or equal
to a positive constant times the other.

The reader can refer to my Algebra for a proof in the general case. We
give here a slightly simpler argument valid when k is locally compact,
which is the only case that matters for this book. Let {ay,..., as} be a
basis for V over k, and let || || be the sup norm with respect to this basis.
We let | | be any other norm. If x € V and z; € k are its coordinates with
respect to our basis, then

2| = lz1es 4« - - + Zaca| = Clla]],

where C = n - sup ||le;||. This proves one inequality, and shows that the
norm || is continuous with respect to || ||. Hence | | has a minimum on
the unit sphere with respect to || | (by local compactness), say at the
point v € V, so that

[v] < |z, allze V, |z| = 1.

Let y € V, y # 0 and write
Y =y1a1+ -+ Ynom, yi € k.
Let j be such that |yj| = max |y;| = |ly||. Theny = y,z with ||z|| = 1, and

lo| < |z = ly/yil = lyl/lyl-
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It follows that
ol llyll = lyl,

thus proving the other inequality, and concluding the proof of our
assertion.

The vector space V is like n-space over k with respect to the sup norm,
and is thus complete with respect to the sup norm, because a sequence in
V is Cauchy if and only if the sequences of coordinates with respect to
the given basis are Cauchy (in k). From the equivalence of any norm with
the sup norm, we conclude that V is complete with respect to any norm.
All of this applies to a finite extension of k, which may be viewed as a
normed vector space over k.

We shall be mostly concerned with the following examples.

Let K = Q be the rational numbers. Then we have the ordinary
absolute value.

For each prime number p we have the p-adic valuation v, = | |,, de-
fined by the formula

Ipfm/nh’ = l/pr)

where r is an integer, and m, n are integers £ 0 and not divisible by p.

Let o be a discrete valuation ring with maximal ideal m, generated by
an element w. Every non-zero element a of the quotient field K of o can
be written in the form & = #"u, where r is an integer and « is a unit in o.
We call r the order of a. Let ¢ be a positive real number, 0 < ¢ < 1.
If we define

lo] = ¢,

then we get an absolute value on K (trivial verification), which is in fact
a valuation.

There is of course considerable arbitrariness in the choice of the con-
stant c. In number fields, we shall deal with two possible normalizations
of this constant.

Let A be the integral closure of the integers Z in an algebraic number
field K, and let p be a prime of A. Let 7 have order 1 at p, and let p be
the prime number generating p N Z. Then p = w°u for some integer
e > 0 and a unit » at p. Let f = f, be the degree of A/p over Z/pZ.
The residue class field A/p is an extension of degree f over Z/pZ, and
hence has p’ elements. We denote by Np the number of elements in A /p.
We now have two absolute values determined by p. On the one hand the
unique absolute value such that

and ||y = —+

= -

Iply =
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and on the other hand the unique absolute value such that

1
I = &5
For any a € K, o # 0, we have
llelly = lels?’™.

Similarly, if L is a finite extension of K, and P lies above p in the ring
of algebraic integers B of L, let II be an element of order 1 at p. Then

pB — qsemlb) ...
and

7l = mE®.

The fact that ramification indices and residue class degrees are multipli-
cative in towers insures the consistency of these definitions when we go
to finite extensions.

Given a p-adic valuation on Q, any extension of it to a number field K
comes from some prime ideal in the integral closure A of Z in K. Indeed,
if o is the given valuation ring in K, and m its maximal ideal, then m N 4
cannot be 0, and hence is a maximal ideal p. It is then trivial to verify
that o = A,. Thus from our point of view of Dedekind rings and integral
closure, we recover all the valuations on K which induce p-adic valuations
on Q.

If K is a number field, then every embedding of K into the real or com-
plex numbers will induce an absolute value on K, which will be called
real or complex accordingly.

Let K be a number field. The set of absolute values on K consisting of
the p-adic absolute values | |, described above, and of the absolute values
induced by embedding K in C or R will be called the canonical set, and
will be denoted by Mg. The real or complex absolute values in Mg are
also called archimedean.

If E is a finite extension of K and » € Mg, then any absolute value
on E extending v lies in M g, and we write

wlv.

It is clear that two distinct absolute values in our canonical set are
independent, in the sense that they induce distinct topologies on K. We
shall prove the approximation theorem, which is the analogue for absolute
values of the Chinese remainder theorem, and is due to Artin~Whaples.

Theorem 1. Let K be a field and | |4, . . ., | |s non-trivial pairwise inde-
pendent absolute values on K. Let x, . . . , x; be elements of K, and € > 0.
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Then there exists x € K such that

lz — x| < €
for all 1.

Proof. Consider first two of our absolute values, say v; and v,. By hy-
pothesis we can find « € K such that [¢|; < 1 and |a|, 2 1. Similarly,
we can find 8 € K such that [8]; = 1 and |8], < 1. Let y = 8/a. Then
lyly > 1 and |yl, < 1.

We shall prove that there exists z € K such that [2[; > 1 and |2|; < 1
forj = 2,...,s. We prove this by induction, the case s = 2 having just
been proved. Suppose that we have found z € K satisfying

lzly > 1 and lz2l; <1 forj=2,...,8s— 1.

If |z|, < 1, then the element z"y for large n will satisfy our requirements.
If |z|, > 1, then the sequence

tn = 2"/(1 + 2%

tends to 1 at v; and v,, but tends toO atv; (= 2,...,s — 1). For large
n, it is then clear that ¢,y satisfies our requirements.
Using the element z that we have just constructed, we see that the

sequence

zﬂ

14 2n

tendsto 1 at v; and toO atv; forj=2,...,s. Foreachi=1,...,s
we can therefore construct an element z; which is very close to 1 at v; and
very close to 0 at v; for j # ¢. The element

T = 21T1 + -+ 2,%,
then satisfies the requirement of the theorem.

Let K be a number field, and v an absolute value (assumed from now
on to be always in the canonical set). Then we can form the completion
of K in the same way as one constructs the real numbers from the
rationals. We consider Cauchy sequences in K. These form a ring. The
null sequences form a maximal ideal, and the residue class ring is a field
K,. Our field K is naturally embedded in K, (by means of the sequences
whose elements consist of a fixed element of K), and the absolute value
on K can be extended to K, by continuity. We usually identify K inside
K,, and call K, the completion of K.

If v is archimedean, then K, is the field of real or complex numbers.
In fact, K, contains the closure of the rational numbers, which is R.
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View K as embedded in K,, as well as R. Then KR is a finite extension
of R, and hence equal to R or C (in the latter case, determined up to com-
plex conjugation). But KR is then complete, hence closed, so that
KR = K,.

If v is non-archimedean, i.e. is a valuation, corresponding to a prime
ideal p of the ring of algebraic integers of K, then K, will also be written
K,, and will be called the field of p-adic numbers. We shall now consider
in greater detail the situation when v = v, is a p-adic valuation.

Let A be the integral closure of Z in K, i.e. the ring of algebraic integers
of K. Denote by A, the closure of A in K,, andletz € A,. Selecty € A
such that

|z — yl < la|

(1 =11lp)- Then|y| = |y — = + z| = |z| because of the non-archimedean
nature-of our valuation. Since all elements of A have a p-adic absolute
value which is = 1, it follows that all elements of A, have a p-adic ab-
solute value < 1. A similar argument shows that the closure of p consists
of elements of A, which have absolute value < 1, and that an element
z € K, which does not lie in A, has absolute value > 1. In particular,
the value group on K, and K is the same, and is infinite cyclic. If 7 is
an element of order 1 at p in A, then || generates this value group.

Let 0 = A, be the local ring at p. All the elements of o have a p-adic
absolute value = 1 because their orders at p are = 0. Hence o lies in the
closure of A, and hence the closure of o in K, is the same as the closure
of A. Itis called the ring of p-adic integers in K,. Let m, be the maximal
ideal of 4,. Then we have canonical isomorphisms

Ab/mb < A/D g Av/pv

if we denote by p, the closure of p in A4,.
In view of the above remarks, every element « % 0 in K, has an
expression
a = 1'u,

where |u|, = 1, and u is therefore a unit in the closure 4, of A. Hence
A, is a unique factorization domain with precisely one prime, and is
therefore a discrete valuation ring.

Let E be a finite extension of K, B the integral closure of A in E, and
P a prime of B lying above p. Let w be the canonical absolute value
corresponding to . Then we have a commutative diagram:

B — B,

T 1
A—- A,
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the arrows on the top, bottom, and left being inclusions, and the right
vertical arrow mapping 4, on the closure of A in B,,. Similarly, we have
a commutative diagram of residue class fields:

B/B — Bu/Bw
) )
A/p — Ay/p,

the vertical arrows being injections, and the horizontal arrows being
isomorphisms.

Let K, be the closure of K in E,,. Then the composite field EK,, is a
finite extension of K, contained in E,,., We know that EK,, is complete,
hence closed, hence equal to E,.. The same argument of course applies
also to the case when v, w are both induced by embeddings into the real
or complex numbers.

Theorem 2. Let K be a number field, v one of its canonical absolute
values, E a finite extension of K. Two embeddings o, 7:E — K, over K
give rise to the same absolute value on E if and only if they are conjugate
over K,,.

(By conjugate over K, we mean that there exists an isomorphism \ of
oE - K, onto 7E - K, which is the identity on K,.)

Proof. Suppose that the two embeddings are conjugate over K,. Then
the uniqueness of the extension of the absolute value from K, to K, guar-
antees that the induced absolute values on E are equal. Conversely,
suppose that this is the case. Let

\N:7E —-coE
be an isomorphism over K. We shall prove that A extends to an isomor-
phism of 7E - K, onto oF - K, over K,. Since TE is dense in 7E - K,,
an element x € 7E - K, can be written

z = lim 7z,

with z, € E. Since the absolute values induced by ¢ and 7 on E coincide,
it follows that the sequence

{A\z,} = {oz,}

converges to an element of ¢F - K, which we denote by Az. One then
verifies immediately that Ar is independent of the particular sequence



[II, §1] DEFINITIONS AND COMPLETIONS 39

T2, used, and that the map
N:7E-K,—oE K,

is an isomorphism, which clearly leaves K, fixed. This proves our assertion.

This result gives a clear picture of the nature of the extensions of v
to E, including the archimedean absolute values.

Corollary 1. Let K be a number field and E a finite extension, of degree n.
Let v € Mg and for each absolute value w on E extending v, let n,, be the
local degree,

ny = [Ey:K,).

D Ny = mn.

wlv

Then

Proof. Immediate from Theorem 2 and the fact that for a finite sep-
arable extension, the degree is equal to the number of conjugates.

Corollary 2. Let K be a number field, and vy an absolute value in M.
Let « € K. Then

IT Jaftr = ING (@)]s0.

vivg

Corollary 3. Let k be a number field and E a finite extension. Letv € My
and for each wl|v in E, let N, be the local norm from E,, to k,, and Tr,,
the local trace. Then

NE(e) = I|I Nu(a),
and .
Tri (e) = 2 Tru(e)

wlv

foralla € E.

Remark. From Corollary 1, viewing a number field as a finite extension
of Q, we see immediately that we have an isomorphism

K®QQ”0 = HKv

vlvg
if vg is a fixed absolute value in M.

Let K be a number field and E a finite extension of degree n. Let v
be an absolute value in M g. We shall say that » splits completely in E if
there exist precisely n extensions of v to E. From Theorem 2, we see at
once that v splits completely in E if and only if every embedding o of E
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into K, over K maps E into K,, i.e. (0E)K, = K,. From this we im-
mediately obtain some basic properties concerning the case when v splits
completely as follows:

SC1. Let E D F D K be finite extensions. An absolute value v in Mg
splits completely in E if and only if it splits completely in F, and
every wlv in F splits completely in E.

SC 2. If v splits completely in E, if K,/K 1is finite, and v,|v in K;, then
vy splits completely in EK,.

SC 3. If E,, E; are finite extensions of K, and v splits completely in E;
and E,, then v splits completely in the compositum E,E,.

The proofs are immediate.

Let A be a Dedekind ring. Its group of fractional ideals is isomorphic
to the free abelian group generated by the prime ideals. If p is a prime
ideal, and A4, the local ring at p, then the group of fractional ideals of 4,
is infinite cyclic, generated by the maximal ideal m, of 4,. If » is the
absolute value determined by p and A, the completion of A (or 4,), then
A, is also a Dedekind ring, and its group of fractional ideals is infinite
cyclic, generated by p,. Thus we have natural maps:

I(4,) — I(4,) — I(4),

the first arrow being a bijection, and the second an inclusion. It is con-
venient to make an abuse of language, and occasionally to identify p,,
m,, and p and just call any one of them p. A product

b_—_HprD
)

with integers r, all but a finite number of which are 0 could be called a
formal ideal, and according to the context can be interpreted as an
element of I(A), I(4,), or I(4,). We shall call p™ its p-component and
denote it by b,. We say that r, is the order of b at p and write

7y = ord,d.

If « # 0 is an element of the quotient field of A or of A,, then we can
form the principal fractional ideals a4, «A4,, or a4, and the orders of
these at p are all equal to the same integer, ord, a.

If «, B are two such elements, we write

a=# (mod d)

if ordy(e — B) = ord, b. If @, B lie in the quotient field of A and we
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view b as being a fractional ideal, then this means that « — 8 lies in b
and is a congruence in the usual sense. It is convenient to visualize it as
applying simultaneously to any one of the three above rings if b = p" is
the power of a single p.

Suppose that A is a Dedekind ring and p a prime of A4, with a corre-
sponding valuation v. Let A, be the closure of A in the completion K,
of the quotient field, and p, the closure of p in A,. Then A, is a discrete
valuation ring. If a is a fractional ideal of A, then we have trivially:

ad, = p;D
if r, = ord, a. Conversely, given a fractional ideal p; of 4,, we have
ppnAd =y

The closure of the fractional ideal ain A, is a4,. All these statements are
trivial to verify, and we leave the details to the reader.

§2. Polynomials in complete fields

Throughout this section, we assume that K is a field complete under a
valuation, and we let o be the ring of integers, i.e. the set of elements of
absolute value < 1. We don’t need to assume that the valuation is dis-
crete. We let p be the maximal ideal of 0. We observe that a series

Ld

Z an
n=1

with a, € K converges if and only if

lim a, = 0.

n—oo

Thus convergence is easier to deal with than in the archimedean case.
We now discuss the possibility of finding roots to certain polynomials
in complete fields. -

Proposition 1. Let m be a positive integer such that

m £ 0 (mod p).
Then for any = € p the binomial series of (1 4+ z)Y™ converges to an m-th
root of 1 + x in o*.

Proof. Obvious, because the binomial coefficients have no p in the
denominators.

It is frequently necessary to have a more refined criterion for the exist-
ence of a root.
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Proposition 2. Let f(X) be a polynomial with coefficients in o. Let aq
be an element of o such that

[flao)| < |f'(@0)?|
(here f' denotes the formal derivative of f). Then the sequence
_ J(e)

a1 = a; fl(ai)

converges to a root o of f(X) tn 0. Furthermore,

_ f(eo)
¢ — ag| = F(@o)? <L
Proof. Let ¢ = |f(ao)/f'(a0)?] < 1. We show inductively that

(l) |ail = 1)
(i) |a; — o] = ¢,
o | _f(a)
i) |-
@ |
These three conditions obviously imply our proposition. If 7 = 0, they
are hypotheses. By induction, assume them for 7. Then:

NE
V|72

whence |a; 1] < 1.7

s
<.

)

)
< ¢ gives jaip1 — il £ % <1,

(li) |a,-+1 —_ aol é max{la,-.;.l _ ail, Ia,' —_ aol} = C.
(iii) By Taylor’s expansion, we have

J(e) f'(a:)
for some 8 € 9, and this is less than or equal to
flas)

. J(ei)
in absolute value.
Using Taylor’s expansion on f’(a;41) we conclude that

[f(air)] = 1" (ad)].

. o) \2
flait1) = fla) — f'(ai) fla) | 8 (f( ;))

2

From this we get
f(,ai+l) < 02i+1
fCaip1)?| =

as desired.



[11, §2] POLYNOMIALS IN COMPLETE FIELDS 43

(The interested reader can refer to Bourbaki [5] to see a more general
formulation of the preceding proposition.)

As an application, we observe that in the 2-adic field Q2, the equation
22 4+ 7 = 0 has a root. In fact, for any element ¥ =1 (mod 8) in Q,
the equation 2 = 7 has a root. We take «g = 1 in Proposition 2.

Proposition 2 applies also in the trivial case when

f(ao) = 0 (mod p) but f'(ao) #0 (mod p).

The solution of the recursive linear equation needed to refine g to a root
of fis then more trivial. Another way of characterizing this situation is to
say that ag is a root of multiplicity 1 of the polynomial f reduced mod p.
We shall call this the trivial case of Hensel’s lemma.

Proposition 2 also shows that every unit of o sufficiently close to 1 has
an m-th root if m is not divisible by the characteristic of K. Indeed, we
need but consider the equation

X" —u=20

and take g = 1, provided |u — 1] < |m|2.
We prove next a useful approximation lemma in finite extensions.

Proposition 3. Let o, B be two elements of the algebraic closure of K,
and assume that o 1s separable over K(B). Assume that for all tsomorphisms
o of K(a) over K, o # id, we have

B — «a| < |oa — q.
Then K (a) C K(B).

Proof. Tt suffices to show that for all isomorphisms of K(8, a) over K(8)
the element o remains fixed. Let 7 be such an isomorphism. By the
uniqueness of extensions of absolute values over complete fields, applying
7 to B — «a yields for allo # id:

B — Ta| < |oa — al.
Using the hypothesis, we obtain
lTa — af = |[ta — B+ B — a| < |oa — a].
This implies that 7 is the identity, hence K(B, @) = K(B), as desired.

Proposition 3 is known as Krasner’s lemma. It is useful in determin-
ing extensions of K.

Next, we note the continuity of the roots of a polynomial.
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Let f(X) be a polynomial in K[X] having leading coefficient 1 and
admitting a factorization

X)) = II(X — a)™

in the algebraic closure of K. Say f has degree n, and the a; are distinct.
Let g also have degree n and leading coefficient 1. As usual, we denote
by |g| the maximum of the absolute values of the coefficients of g. One
sees immediately that if |g| is bounded, then the absolute values of the
roots of g are also bounded.

Suppose that g comes close to f, in the sense that |f — g| is small. If
B is any root of g, then

|£(8) — g9(B)] = |£(B)]

is small, and hence 8 must come close to some root of f. As 8 comes close
to say a = «, its distance from the other roots of f approaches the dis-
tance of «; from the other roots and is therefore bounded from below.
We may say in that case that 8 belongs to a.

If g comes sufficiently close to f, and say B4, . . ., 8. are the roots of ¢
which belong to o (counting multiplicities), then we contend that s = r
(the multiplicity of « in f).

If this is not so, then we can find a sequence g, as above, approaching f,
with precisely s roots 8%, . .., 8 belonging to « and s % . Thus each
BY, ..., 8" approaches a. Butlim g, = f and hence « must have multi-
plicity s in f, contradiction. ’

As an application, we have:

Proposition 4. If f is irreducible and separable, then any polynomial g

suffictently close to f is also irreducible. (Both f and g are still assumed to

have leading coefficient 1, and the same degree.) Furthermore, given a root
_a of f, there exists a root B of g belonging to a, and K(a) = K(B).

Proof. 1f g is sufficiently close to f, then its roots have multiplicity 1,
and belong to the distinct roots of f. If 8 is a root of g very close to the
root a of f, then Krasner’s lemma immediately shows that K(a) = K(B).
Hence g is irreducible, since it has the same degree as f.

Corollary. Let K be a finite extension of Q,. Then there exists a finite
extension E of Q contained in K such that [E:Q] = [K:Q;] and E is
dense in K, so that K = EQ,,.

Proof. Let K = Q,(a), let f be the irreducible polynomial of a over Q,,
and take for g a polynomial very close to f as before, but with coefficients
in Q. Then let E = Q(B).
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In view of this corollary, we call any finite extension of Q, also a p-adie
field. The integral closure of the p-adic integers in K has a unique max-
imal ideal which is denoted by p.

§3. Some filtrations

Let o be a discrete valuation ring with maximal ideal p, let K be its
quotient field, and assume that K is complete under the valuation induced
by 0. Let 7 be a generator for p. This notation will stay fixed throughout
the section. We also fix a valuation corresponding to o.

We know that in the topology given by the valuation, we have sub-
groups »" (r = 1,2,...) which are open in the topology. Indeed, given
z €K, if y is an element of K such that [zt — y| < |z|, then |y| = |z|.
Thus the p” are open subgroups whose intersection is 0. Consequently,
they form a fundamental system of neighborhoods of 0 in K. (We let
p® = o by definition.)

As an additive group, each factor group p’/p"*?! is isomorphic to o/p
under multiplication by 7.

The units of o form a group under multiplication, which will be denoted
by U. For each integer 7 = 1 we let

Ui =1+

and define Uy = U. Then U; is a group, because whenever z, y € p*
we see that

A+20+y)=1+z+y+ayel+p @C21)
14+ z+y mod(l + pit?)

I

and

QA—2)'=1+z+22+---

is a convergent series.

The units are an open subset of o.

If 7 has order 1 at p, then it is clear that K* is topologically and alge-
braically isomorphic to the product {w} X U (letting {7} be the cyclic
group generated by ).

Under the canonical map

o —0o/p

the units map on the non-zero elements of o/p, and the kernel of the
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induced homomorphism
U — (o/p)*

is precisely U,. Thus U/U, = (o/p)*.
Furthermore, for 7 2 1, we have an isomorphism

p /ot > Uy/Uips
induced by the map on p* given by
z— (1+2) mod Uiy,

which is immediately verified to be a homomorphism, whose kernel is
p**1. This map is a truncated exponential map.

If o/p is a finite field, with ¢ elements, then the number of elements in
p*/pit1is also equal to g. The number of elements in U/U is then ¢ — 1.

Proposition 5. If o/p is finite, then o and U are compact.

Proof. We observe that o is the projective limit of the finite groups
o/p* and hence is compact. (It can be viewed as a closed subgroup of the
Cartesian product of the o/p’.) The same argument applies to U as a
projective limit of U/U.,.

The U; form a fundamental system of neighborhoods of 1 in U.

In view of Proposition 5, we conclude that a p-adic field is locally
compact.

As we remarked in the preceding section, every unit of a p-adic field
sufficiently close to 1 is an m-th power. Thus given a positive integer m,
the index (U : U™) is finite. We shall now determine this index.

We need a group theoretic lemma.

Lemma. Let f be a homomorphism of a commutative group A into some
other group. We denote the image of f by A’ and its kernel by A;. Let B be
a subgroup of A. Then

(A:B) = (A7:B)(A;:B))

in the sense that if two of the indices are finite, so is the third and the equality
holds.

Proof. Consider the composite homomorphism of f and the canonical
map
A — Al — Af/B/.
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Its kernel in A is B + Ay, and hence we have an isomorphism
A/B+ Ay =~ A7/B.
But A DB+ A;D B, and
(B+ Ap)/B =~ Asj/(A; 0N B) = As/By.

Our lemma follows at once.

Proposition 6. Let K be a yp-adic field and U the units of its ring of
integers. Let m be a posttive integer. Then

. — 1 * .
o™ = Tl (Km:1)
and

* prkmy M * |
(K":K )—W(K,,..l)

(where K is the group of m-th roots of unity contained in K).

Proof. The second formula follows from the first by recalling that
K* = Z X U.

We now consider the unit index, and the proof is taken from Artin [1].

Take r so large that [m7™*?| = |72"| and consider the group U,. Then
for any integral z,

14+ zr\™ =1+ mzr" (mod ma™t?).
Thus if ordy, m = s, we have
U:" = Ur+3-

Take r sufficiently large that no m-th root of unity except 1 liesin U,. We
apply the lemma to the homomorphism f(a) = a™, applied to the units.
We obtain

(U:U,) = (U™:Urys)(Km:1)
— (U Ur 8) *
= —(—i]—ﬁ (Km:1).
Hence
(U:Urqs)

WU =710y

(K:z :1) = (U,: Ur+s)(K:n :1).

But (U, : U,4,) = (Np)? and our assertion follows.
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Corollary. If K contains the m-th roots of unity, then

m2
llmils

(U:U™ = and (K*:K*™) =

[|ml],

§4. Unramified extensions

We continue to assume that K ts complete under a discrete valuation, with
ring A and mazximal ideal p.

If E is a finjte extension of K and B the integral closure of A in E, then
there is a unique prime ideal P of B lying above p, and B is a discrete
valuation ring. If eis the ramification index and f the residue class degree,
then

ef = [E:K].

(In this book, we have proved this only when E is separable over K.
As we are primarily interested in number fields, we don’t give the proof
in general. The reader may assume that K has characteristic 0 if he
wishes.)

We see that e = 1 if and only if

[E:K]=[B/B:4/p].

If this equality holds and the residue class field extension B/P over A /p
is separable, then we shall say that P is unramified over p, or that E is
unramified over K.

Let ¢: B — B/P be the canonical homomorphism. If

g = BuX"+ -+ Bo

is a polynomial with coefficients in B, then we denote by ¢¥ the polynomial
e(B)X™ + - - - 4 ¢(Bg), obtained by applying the map ¢ to the coeffi-
cients of g.

Proposition 7. Let E be finite over K, and assume that P vs unramified
over p. Let @ € B¥ be such that B = A¥(a) and let « be an element of B
such that pa = @. Then E = K(a), and the irreducible polynomial g(X)
of a over K 1is such that g is irreducible. Conversely, if E = K(c) for some
a € B satisfying a polynomial g(X) in A(X) having leading coefficient 1
and such that g° has no multiple root, then B is unramified over p and
B? = A?(pa).

Proof. First assume P unramified. Let §(X) be the irreducible poly-
nomial of @ over A. Let « be an element of B such that ga = &, and
let g(X) be its irreducible polynomial over K. Then « is integral over A,
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and & is a root of g, whence g divides g*. On the other hand
deg g= [B'P:Av] = [EK] = deg g

and so § = ¢*. This proves the first statement.

Conversely, if a satisfies the stated condition, then we may assume
without loss of generality that its irreducible polynomial ¢g(X) is such
that ¢ has no multiple roots. We can now apply Corollary 2 of Proposi-
tion 14, Chapter I, §5 (to the smallest Galois extension of K containing E)
to conclude that g¥ is a power of an irreducible polynomial, and hence is
irreducible. Using the inequalities

[4%(pa) : 4%] = [B*: A%] = [E:K]
we now conclude that we must have an equality everywhere, and that
B? = A%(pa).
This proves our proposition.

Proposition 8. Let E be a finite extension of K.

(1) If E D F DK, then E s unramified over K if and only if E is un-
ramified over F and F is unramified over K.

(ii) If E is unramified over K, and K, s a finite extension of K, then
EK, s unramified over K.

(iii) If E, and E; are finite unramified over K, then so is E{E.

Proof. The first assertion comes from the fact that the degrees of residue
class field extensions are bounded by the degrees of the field extensions,
and their multiplicativity property in towers. One must also use the fact
that assertion (i) holds when “unramified” is replaced by “a finite separable
extension”. The second assertion is an immediate consequence of our

criterion in Proposition 7. The third comes formally from the first and
second.

Proposition 9. For each finite extension E of K in a given algebraic
closure, let Bg be the integral closure of A in E. Let A be the integral closure
of A in the algebraic closure K of K. Let ¢ be a homomorphism of A such
that its restriction to Bg has the maximal ideal Pg as kernel. Then the map

Bg — B%

induces a bijection between unramified extensions E of K and separable
extensions of A®.

Proof. We have shown in Proposition 7 that every finite separable
extension of A is obtainable as an image BY; for some finite extension £
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of K, unramified over K. We now must prove the uniqueness. If E; C E,
are unramified, then clearly ¢Bg, C ¢Bg,. Let E; = K(a;) and
E; = K(az) be unramified extensions, generated by elements a;, as re-
spectively satisfying polynomials over 4 having leading coefficient 1, and
whose reductions mod p have no multiple roots. Then E,E; = Ej(ay),
and «; satisfies with respect to E; a similar condition (with the same poly-
nomial as over K). Let E = E,E,. Using Proposition 7 once more, we
conclude that

¢Bg = ¢BEg,(pa1) = A®(pay, paz) = (¢Bg,)(¢BE,).

If ¢Bg, = ¢BE,, we conclude that E; = E,, thus proving our proposition.

If we assume that A is a finite field, as is the case in number theory,
then its algebraic extensions are all separable, and in fact are cyclic. The
Galois group is generated by a canonical automorphism, the Frobenius
automorphism ¢ (Chapter I, §5) such that

or = 27
if ¢ is the number of elements in the residue class field A/p. Thus each
finite unramified extension of K is in fact cyclic, and has a uniquely deter-
mined automorphism corresponding to ¢. In fact, we see that in Propo-
sition 14 of Chapter I, §5 the Galois group G of an unramified extension
is equal to Gy because there is only one P above p, and Gg is isomorphic
to the Galois group of the residue class field extension.

Corollary. Let K be a p-adic field (i.e. completion of a number field under
a p-adic valuation). Let E be an unramified extension of K. Then every
unit of K is a norm of a unit in E.

Proof. Let u be a unit in K. We identify the Galois group of E over K
with the Galois group of the residue class field extension. It is a simple
consequence of Hilbert’s Theorem 90 (or anything else you can think of)
that both the trace and norm from a finite extension of a finite field are
surjective. Hence there exists a unit ag in £ such that

u= NEag (mod p).
Then

uNEag!=1+c;m (mod p?).
for some c; € A. Let
a; =1+ 7z,

with z, in Bg. Then

NEa; =1+ Tr(z))m (mod p?)
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where Tr is the trace, and it is again an easy matter to verify that the trace
is surjective in the residue class field extension. Hence we can select z;
such that

Tr(z;) = c¢; (mod p),
whence we can find «; such that

uNEag!'= NEa; (mod p?).
Proceeding inductively, we can find ag, a4, . . ., a, such that

ap=1 (modp")
and such that

uNE(ag- - az)" ' =1 (modp"*").

The infinite product
II e
i=0

is convergent to an element a such that

NEa = u,

thus proving our corollary.

§5. Tamely ramified extensions

We still assume that K vs complete, under a discrete valuotion, with Dede-
kind ring A and mazimal tdeal p, and we assume that A/p is perfect.

If E is a finite extension, we denote by B = Bpg the integral closure of
A in E, and P = Pg its maximal ideal.

We shall say that P is totally ramified above p if [E : K] = e. In that
case, the residue class degree is equal to 1 (because ef = n). Since P is
the only prime of B lying above p, we say that E is totally ramified over K.

Proposition 10. Let E be a finite extension of K. Let E, be the com-
posttum of all unramified subfields over K. Then E,, is unramified over K,
and E 1is totally ramified over E,,.

Proof. The first statement comes from Proposition 8 of the preceding
section. As to the second, we consider the towers

E B/®
I |
E. By/PBu

l l
K Afp
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If the residue class field extension in the upper level of the tower had
degree > 1, then it could be lifted back to an unramified subfield of E
over E,, of the same degree, contradicting the maximality of E,. Hence
the degree must be equal to 1, and therefore E is totally ramified over E,.

Let E be a finite extension of K. We shall say that P is tamely ramified
over p (or E tamely ramified over K) if the characteristic p of the residue
class field A/p does not divide e. If it does, we say that P is strongly ram-
ified. We shall now describe totally and tamely ramified extensions.

Proposition 11. Assume that E s totally ramified over K. Let II be

an element of order 1 at B. Then II satisfies an Eisenstein equation
X+ ‘1o:—1)(¢_1 +---+a =0,

where a; € p for all i and ag # 0 (mod p?). Conversely, such an equation is

irreductble, and a root generates a totally ramified extenston of degree e.

Proof. All conjugates of IT over K have the same absolute value (by the
uniqueness of the extension of p to any finite extension), and hence the
coefficients of its irreducible equation, which are polynomial functions of
the roots, lie in B N A = p. The last coefficient @, is the product of II
and its conjugates, and there are e of those. Hence

IaO‘ = Inlcy

S0 @g = T is an element of order 1 at p. As to the converse, an Eisenstein
equation is irreducible. If B8 is a root, then the same argument we applied
to II before now applies to 8 and shows that |8|° = |r|. Hence
e = [K(8) :K].

We observe that if p { e, then the extension is tamely ramified.

Proposition 12. Let E be totally and tamely ramified over K. Then there
exists an element 11 of order 1 at P in E satisfying an equation

Xe—7=0

with 7 of order 1 at p in K. Conversely, let a be an element of A, and e a
positive tnteger not divisible by p. Then any root of an equation

X°—a=0

generates a tamely ramified extenston of K, and this extension s totally
ramzfied tf the order at p of a is relatively prime to e.

Proof. Let f(X) = X° — a with a € A and e not divisible by p. Let
a be any root of f. Write a = w"u with some integer r and a unit u of A.
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Then K (e) is contained in K(¢, »'/¢, 7€), where { is a primitive e-th root
of unity. The extension F = K(¢{, u'/°) is unramified over K, and hence 7
is still a prime element in . The extension F(7'/) is totally and tamely
ramified, and hence the ramification index of K(a) over K divides that of
K(t, u'®, 7'/%) over K. This proves that K(e) is tamely ramified over K.
If the order of a at p is relatively prime to e, then we can find two integers
s, t such that
se+itr=1.

Let 8 = a'7*. Then B° and 7 have the same order at P, whence the
ramification index is at least equal to e. It must therefore be equal to e
(because [K (@) : K] < e), and our extension is totally tamely ramified.

There remains to prove that any totally and tamely ramified extension
is generated by the root of an equation

X—7=0
for some prime element 7 of p. For this we shall need a lemma.

Lemma. Let ¢ be a posttive integer not divisible by p. Let E be a finite
extension of K, wg a prime element in p, and 8 an element of E such that
|B|¢ = |mo|. Then there exists an element w of order 1 in p such that one
of the roots of the equation X°* — w = 0 is contained tn K(B).

Proof. We can write 8° = mou with a unit % in B. Since the extension
is totally ramified, the residue class degree is equal to 1, and hence there
exists a unit uq in A such that u = u¢ (mod B). Letting m = mouo we get

=7+ 7z

with some element £ = 0 (mod P). Thus

8° — | < |ml.

Let f(X) = X°® — 7, and let ay, . . ., c, be its roots. Then
IfB] =18 — 1] - - |B — el

But |a;| = |B| for each ¢. Hence for at least one value of 7, say 1 = 1,
we have

1B — ai] < el
On the other hand,

|/ (e)] = lea|*™! = lay — az|* -« oz — «f

and |a; — a;j| < |a;|. This proves that for all pairs 7, j with ¢ = j, we
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have |a; — a;] = |a;|. By Krasner’s lemma, it follows that K(a;) C K(B8)
thereby proving our assertion.

Proposition 12 follows at once by taking g8 = II.

Proposition 13. Let E be a finite extension of K. Then all statements
of Proposition 8 hold if the word “unramified” is replaced throughout by
the words “tamely ramified”.

Proof. Routine, using the multiplicativity of the ramification index,
and Proposition 12.

Corollary. Let E be a finite extension of K, and let E, be the compositum
of all tamely ramified subextensions. Then E, vs tamely ramzfied over K,
and E 1is totally ramified over E,. Furthermore, if p ts the characteristic of
the residue class field, then the degree {E : E,} is a power of p.

Proof. Let e be the ramification index and write
e = eop’,
where ¢g is prime to p. Let II be an element of order 1 at P, and let
g =1r.

By the lemma, K(B) contains a tamely ramified subextension of ramifica-
tion index eg. The composite of this extension with the maximal un-
ramified subfield of E gives us a tamely ramified extension F of K, and
from the definition of B, it follows that the ramification index of E over F
is p". On the other hand, E is totally ramified over F (because F contairs
E,), and hence [E: F] = p". Any tamely ramified subextension of E must
be contained in F, otherwise its compositum with F would be tamely
ramified over F. This proves the corollary.

Lastly, we specialize to p-adic fields and prove a useful finiteness
statement.

Proposition 14. Let K be a p-adic field (finite extension of Qp). Given
an inleger n, there extsts only a finite number of extensions of degree < n.

Proof. Since there is exactly one unramified extension of a given degree,
corresponding to an extension of the residue class field, and since every
extension is a tower of an unramified and totally ramified extension, it
will suffice to prove that there is only a finite number of totally ramified
extensions of a given degree e. But such extensions are obtained by
Eisenstein equations

Xt a1 X714 fugr = 0,
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where the coefficients a; belong to p and u, is a unit (7 being a fixed prime
element of p). The Cartesian product

pX---XpXU

of the units and of p taken ¢ — 1 times is compact. Any point in it can be
viewed as determining a finite number of extensions of degree e (corre-
sponding to the distinet roots of the equation). By Krasner’s lemma, it
follows that a neighborhood of such a point determines the same extensions
(Proposition 4 of §2), and by compactness the finiteness follows.

By






CHAPTER III

The Different and Discriminant

The study of the different and discriminant provides some information
on ramified primes, and also gives a sort of duality which plays a role both
in the algebraic study of ramification and the later chapters on analytic
duality. It also gives a good method for computing the ring of algebraic
integers in a number field, as in Proposition 10.

§1. Complementary modules

Throughout this section, A is a Dedekind ring, K its quotient field,
E a finite separable extension of K, and B the integral closure of A in E.
Let L be an additive subgroup of E. We define its complementary set
(relative to the trace) to be the set of z € E such that

TrIE{ (zL) C A,

and denote it by L’. Then L’ is an additive group. If AL = L, then
AL’ = L'.
If L, M are two additive subgroups of E, and L C M, then M’ C L.
We also have the following properties.

Proposition 1. If w,, ..., wy ts a basts of E over K and

L= Aw,+ -4 Aw,,
then
L'= Awi + - -+ Awp,

where {w;} is the dual basis relative to the trace.
Proof. Let a € L' and write
a= awi +- -+ awp

with a; € K. Then Tr(aw;) = a;, whence a; € A for all . This proves
57
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the inclusion C. Conversely,
Tr(AwiL) = A-Tr(wiL) C A
so the inclusion D is equally trivial.

Since every fractional ideal of B is squeezed between two A-modules of
type Aw; + - - - + Aw, for suitable bases {w;} of E over K, and since
A is Noetherian, we obtain:

Corollary. If b is a fractional ideal of B, then b’ s also a fractional
ideal. Furthermore B C B’.

Proposition 2. Let E = K(a) be a finite separable extension, of degree n.
Let f be the irreductble polynomial of « over K, f’ its derivative, and

% = bo 4 b1 X 4 - - - + bu 1 X"V,

Then the dual basis of 1, «, . .., a" "1 s
bo o b
f'(a) f'(e)
Proof. Let o, ..., a, be the distinct roots of f. Then

nAX) of o
E@E—a)Fay =X, 0=

To see this, let g(X) be the difference of the left- and right-hand side of
this equality. Then g has degree < n — 1, and has = roots «y, . .

hence g is identically 0.
The polynomials

IIA

n—1.

<y Qn;

fX) o
X — a; f'(ag)
are all conjugate to each other. If we define the trace of a polynomial

with coefficients in £ to be the polynomial obtained by applying the trace
to the coeflicients, then

[ {2 )= x

Looking at the coefficient of each power of X in this equation, we see that

i bi V5
Tr(" m)”v

thereby proving our assertion.
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Corollary. Assume that B = Alc]. Then B’ = B/f'(a).

Proof. Using the recurring formulas

bn—l =1

bn-—2 - abn—l = Qn—-1

we see that the module generated by 1, «, . . ., "~ ! over A is the same as
that generated by by, . .., bp—;. Our corollary follows immediately.

Proposition 3. Assume that A is a discrete valuation ring, that there is
only one prime P of B above A, and that B/P is separable over A/p. Then
there exists o € B such that B = Alc].

Proof. Let 8 be an element of B whose residue class mod P generates
B/P over A/p. Let f be a polynomial with leading coefficient 1 and
coefficients in A such that its reduced polynomial mod p is an irreducible
polynomial for 8 mod B. Let II be an element of order one at P in B.
Then

f(B+1) =f(8) + (AU (mod PB?),

and f/(B) # 0 (mod PB). Hence taking either 8 or 8 + II yields an element
a such that its residue class generates B/P over A/p and such that there
exists an element of order 1 at P in the ring A[a]. We conclude by Propo-
sition 23 of Chapter I, §7 that B = A[a].

The preceding proposition gives us a criterion when we can apply
Proposition 2. It applies in particular in the local case, when our Dedekind
ring is complete.

Proposition 4. Let b be a fractional ideal of B. Then
b = B'bL
Proof. We have
Tr(B'b~'b) = Tr(B'B)C A
whence B'6~! C b’. The converse is equally clear.

For purposes of the following proposition, we denote by B, x the com-
plementary module of B. We need some index, since we shall deal with
more than two fields.

Proposition 5. Let E D F O K be two separable extensions, C the integral
closure of A in F, and B the integral closure of A in E. Then

B'gix = B'g;rC'r k.
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Proof. We prove first the inclusion D. We have

TrE(B% rC% kB) = Trk TrE(B%rC’'r/kB)
= Trk(C%/x TrE(B%rB))
C A.

This proves the desired inclusion.
Conversely, let 8 € Bg/x. Then

TrR(8B) = Trk(C Tr¥(8B)) C A
(we can insert C since CB = B). Thus

Tr£(8B) C C'r/x,
and

wix TrF(BB) C C.

The C-fractional ideal C47# can be taken inside the trace Try because it
is contained in F. Hence

BC¥ik C BEr-

Multiplying by Cf/x shows that B € Cr/xBg/r and concludes the proof
of the reverse inclusion.

Notation being as above, we define the different D4 to be Bz/k. The
preceding proposition gives us the rule

DB1cDcia = Dpya,

which is called the multiplicativity of the different in towers.
The different is the inverse of a fractional ideal containing the integers,
and therefore is an ideal.

Proposition 6. Let S be a multiplicative subset of A. Then
Ds-18/5-14 = S 'Dpa.
Proof. Obvious.

Proposition 6 allows us to compute the different by localizing at a
prime p of A. This has the advantage that A, becomes principal.

We shall now see how the different localizes in the completion, and
how it can be computed purely locally.

Using Proposition 6, we may assume that A is a discrete valuation ring.
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Proposition 7. Let A be a discrete valuation ring, v its valuation, and
B a prime of B lying above the prime p of A. Let wg be the valuation corre-
sponding to B and A,, Bug the respective completions. Then:

DpjaBug = Dp,gyia,
Proof. Since the differents are ideals, it suffices to prove that

ordq; QB/A = Ordg SDB“%/A‘,.
Let Tr denote the trace from E to K and Tr,, the local trace from E,, to
K, for any w extending v in E. Then

Tr = Z Try
wlv
(as an operator on E).

Let z € Eyg and assume that Tr,,,g(xB,mB) C A,. Select an element ¢
of E which is very close to = at wy and very close to 0 at all other w|v.
Let y € B. Then Tr,(¢ty) is close to 0 if w # wg and Tr,(&y) lies in 4,
if w = wg, by assumption and the fact that the local trace is continuous.
This implies that Tr(fy) lies in A and hence that £ lies in the comple-
mentary module B’.

Conversely, let z be an element in B’ and let ¥ € By,g. Find an element
£ of E which is close to z at wg and close to 0 at the other w|v. Find an
element 5 of B close to y at wg and close to 0 at the other w|v. Then

Tr(tn) = Trug(én) + 2 Tru(tn).

wEwP

The global trace on the left lies in A. Each term in the sum on the right
lies in 4,. Hence Tryg(£n) lies in A,. Since ¢ and 7 are close to z, y
respectively, it follows that Tr,g(zy) also lies in 4,.

The above arguments show that B’ is dense in B,q (= local comple-
mentary module with respect to Tr.q) and the proposition follows.

Let © denote the different of B over A. If we think of formal ideals,
then we have the relation

D = ]I Ds.
B
Each Dg can be interpreted as the P-component of Dp, 4, as the P-

component of Dpgaq (if Blp), or as Dp 4, if w and v are the valuations
corresponding to P and p respectively.
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One usually calls Dp;4 the global different, and Dp 4, the local
different. We may identify Dp ,4, with Dg as a formal ideal, and in
this sense, we may say that the global different is the product of the local
differents.

§2. The different and ramification

In this section, we let A be a Dedekind ring, K its quotient field, E a finite
separable extenston of K, and B the inlegral closure of A in E. We shall
also assume that for any prime p of A the residue class field A/p is perfect.

Proposition 8. Let P be a prime of B lying above b, and let e be its rami-
fication index. Then B¢~ divides Dpja. If P is strongly ramified, then
PB® divides Dpja. If P is unramified, then B does not divide Dp 4. There
s only a finite number of ramified primes. Finally, Dp 4 ts the greatest
common divisor of all ideals (f'(a)), where a is an integral generator of
E over K, and f the irreducible polynomial for o over K.

Proof. In view of the fact that ramification theory and the theory of
the different localize to the completion, we may prove the first assertions
under the assumption that K is complete.

Since we work over a complete field, we can apply Proposition 3 of §1,
the Corollary of Proposition 2, §1, and Proposition 23 of Chapter I, §7.
If P is unramified, this yields ©pj4 = (1). Using Proposition 5 of §1
(multiplicativity in towers), we may also assume that P is totally ramified.
In that case, we can write B = A[II] for some element IT of order 1 at B,
and II satisfies an Eisenstein equation

@) =0+ a0 1 4+-.. +7=0,
fora; € p and m € A of order 1 at p. Then
/() =em*™!  (mod P°),

and the second assertion of the proposition follows from the definitions.

We now return to the global case. Let « be an integral generator for
E over K, and let f be its irreducible polynomial over K. There is only
a finite number of primes P dividing (f/(«)), and hence by Proposition 7
of Chapter II, §4, these primes are the only possible primes which may
ramify (we may view a as a generator of the completion E,q over K,g).
Since B D Ala), it follows that Dp,4 divides (f’(a)). There remains to
be proved that it is the greatest common divisor, or more precisely that
given a prime P, there exists an « such that

ordg Dpja = ordg (f'(a)).
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The proof will be an exercise in techniques revolving around the approxi-
mation theorem.

There would be no difficulty if we could write B = A[a] for some a.
This is true only locally. Hence we shall use the approximation theorem
to reduce our problem to the local case.

Let v = v, and w = wg. Let {o} range over the distinct isomorphisms
of E into the algebraic closure K, of K. Let o be one of these, inducing
the absolute value wg on E. If a is a generator of E over K, and f its
irreducible equation over K, then

o1f'(a) = f'(01a) = H (010 — 0a).

g#£0y

We shall write 0 ~ 7 if @ and 7 are conjugate over K,, i.e. if there exists
an isomorphism A of K, over K, such that 7 = Ao on E.

According to Proposition 3, §1, there exists an element 8 of B, such
that B,, = A,[8]l. We observe that any element of B,, which is sufficiently
close to 8 also generates B, over A,.

Let A range over isomorphisms of K, over K,. There exists an element
a € A, such that

N8 —al=1

for all \. Such an element exists because the conjugates A8 have residue
classes which are conjugate over A,/p,. If these residue classes are 0, we
take a = 1. If they are not 0, we take @ = 0.
Let o1, ..., o, be representatives of the equivalence classes of the
" embeddings of E into K,. By the approximation theorem, we can find
an element a of E such that

|oye — B is very small,
|oia — a is very small for ¢ = 1.

Without loss of generality, we may assume in addition that « is integral
over A and F = K(a). (If necessary, first multiply o by an element
of A which is = 1 mod p and is highly divisible by a finite number of other
primes to make it integral, and then add v, where 7 is any integral
generator, and v is very large. Then a 4+ 77 becomes a generator.)

Since ¢ is very close to 8, it follows that B, = A,[o1a], and hence
the P-contribution to the different is given by

ordg Dp, 4, = ordg H (010 — 0a).
S

We must now show that the other factors do not give any PB-contribution.
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Suppose that ¢ is not conjugate to o; over K,. We can write ¢ = Ao,
7 #% 1. Then

o1 — ga| = |o1a — Nial = N "loa — 04af
= N"lo0a —a+a—oi

But |0;@ — a| is very small, and A" !0« is very close to A™8. Since
\"!8 —a| =1, it follows that [A"'oj@ —a| =1 also. Hence
|o1a: — oa| = 1. This proves our last assertion.

83. The discriminant

Throughout this section, A is a Dedekind ring, K its quotient field, E a
Jinite separable extension of K of degree n, and B the integral closure of A in E.

Let W = (w;, ..., w,) be any set of n elements of E. We define the
discriminant

DE/K(I’V) = det(a;w,-)“’

to be the square of the determinant taken with o; ranging over the n dis-
tinct embeddings of E in a given algebraic closure of K.

Assume that W and V = (vq,...,v,) are two sets of elements of E,
and that there is a matrix X = (z;;) of elements of K such that W = XV.
From this we see that

Dgix(W) = det(X)*Dgx(V).

If the matrix X has entries in A, then det(X)? liesin A. Hence whenever
W and V generate the same module over 4, the matrix X is invertible in
A, and its determinant is a unit in A. Thus the two discriminants differ
by the square of a unit in A.

In particular, if A = Z is the ring of ordinary integers, the discriminant
is uniquely determined by the module. If the module is the ring of alge-
braic integers ok, then its discriminant will be called simply THE dis-
criminant (or also the discriminant of K), and will be denoted by Dg.

Proposition 9. Notation as above, the discriminant Dg, g (W) lies in K,
and lies in A if the components of W lie tn B. The discriminant s % 0 ¢f
and only if W s a basis of E over K.

Proof. Applying any isomorphism ¢ of E over K to the determinant
det(gw;) interchanges the rows, hence multiplies the determinant by 1.
Taking the square gets rid of #=1. If « is a generator of E over K, i.e.
E = K(e), then the discriminant Dg/x(1,«,...,a" !) is the Vander-
monde determinant, and hence is ¢ 0. The same holds therefore for
any basis V of E over K by a preceding remark concerning the change of
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the discriminant under linear transformations. If the coordinates of W
are linearly dependent over K, it is clear that the discriminant is 0. If
they are all integral over A4, it is also clear that the disecriminant lies in A
(because the integral closure of A in a Galois extension containing E is
a ring). This proves our proposition.

If M is a free module of rank n over A (contained in E), then we can
define the discriminant of M by means of a basis of M over A. It is well
defined up to the square of a unit in 4.

Proposition 10. Let M, C M2 be two free modules of rank n over A,
contained in E. Then Dg k(M) divides Dgx(M3) (as principal ideals).
If Dg;x(M,) = Dgix(M3)u for some unit u of A, then M; = M,.

Proof. The first statement is obvious. The second statement asserts
that the matrix going from a basis of M; to a basis of M, is invertible
in A, and hence that M, = M,.

In general, it is not true that every fractional ideal of B is a free module
over A. For the moment, if b is a fractional ideal of B, we denote by
Dk (8) the A-module generated by all Dg;g(W) as W ranges over bases
of E over K such that all w; € b, and call this the discriminant of the
fractional ideal. Since there exists an element ¢ % 0 in A such that
¢b C B, it follows at once that the discriminant is a fractional ideal of A.

Proposition 11. Lei b be a fractional ideal of B and S a multiplicative
subset of A. Then

S 'Dgx(t) = Dgx(S™'0).

Proof. Trivial from the definitions.

This proposition allows us to localize. If p is a prime of A, we can
compute the p-component of the discriminant by localizing at p. The
great advantage of this is that 4, becomes a discrete valuation ring, and
thus that every fractional ideal of B becomes a free A,-module when
localized at p. Furthermore, B, has only a finite number of primes above
p, and is a principal ideal ring. Thus we are reduced to computing Vander-
monde determinants.

Proposition 12. Assume in addition that A is a discrete valuation ring.
Let b be a fractional ideal of B, b = (B) for some 8 # 0 in E. Then

D x(6) = (N&(B))*Drx(B).

Proof. Let W be a basis of B over A. Then SW is a basis of b over A,
and the assertion is obvious from the definitions.
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Using the localizing process, we can extend the above proposition to
the case when A4 is not necessarily local.

Proposition 13. Let A be arbitrary again, and b a fractional ideal of B.
Then

Dgx(b) = (NE(6))*Dgx(B),
the norm being the norm of ideals as in Chapter I, §7.

Proof. 1t suffices to verify this relation for each p-component, p a prime
of A. Thus we may assume that A is a discrete valuation ring by Propo-
sition 11. In that case b = (B) for some 8 € E, and our assertion follows
from Proposition 23 of Chapter I, §7.

Proposition 14. The discriminant and different are related by the formula

NILE‘-DB/A = Dg;g(B).

Proof. Using Proposition 6 of §1 and Proposition 11, we may assume
that A is a discrete valuation ring, and hence that B is a free module over
A. If W is a basis for B over A, then Dg, x(B) is generated by Dg x(W).
Let W’ be the complementary basis to W under the trace. Then the
complementary module B’ is generated by W' over A. Thus

Dgik(B") = Dgigk(W")A.
But we see directly from the definition of the discriminant of a basis that
DE/K(I’V)DE/K(I’V') = 1.

Hence Dg/x(B)Dgix(B’) = A. Using Proposition 4 of §1 and Proposi-
tion 13 yields what we want.

Finally, consider a finite separable extension E of degree n over K, and
let B be an element of E, 8 # 0, such that E = K(8). We define the dif-
ferent Dg x(B) and the discriminant Dg x(8) of this element by

Dix(8) = JI (8~ 06)
Dgik(B) = Dgix(1, 8, ..., 8"").
Proposition 15. We have
Dz k(8) = (—1)"""V2NEDg/x(B).

Proof. Exercise in permuting the rows of a determinant.
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Proposition 16. Let o € B and let p be a prime of A. If p does not divide
DE/K(a)/DE/K(B) then B, == A;,[a].

Proof. By Theorem 1 of Chapter I, §2 we know that B, is a free module
over A,. Furthermore

Dgix(1, e, ..., ") = DE/K(B)62

where ¢ is an element of 4,. By hypothesis, this element ¢ is a unit in 4,,
and hence our proposition follows from Proposition 10.

Remark 1. In Proposition 16, we formulated a local version. One
obtains immediately a global version in special cases using Proposition 18
of Chapter I, §7, which states that two A-modules are equal if and only if
all their localizations are equal.

Remark 2. Instead of using the discriminant, we could have formulated
our hypothesis in terms of the different. Indeed, the condition

B is relatively prime to (f'(«)) /D x
where f is the irreducible polynomial of a over K s equivalent with the
condition
p does not divide Dg;x()/Dg g(B).

The equivalence is seen at once by taking the norm, and using the fact
that the norm of the different is equal to the discriminant.

The following result is sometimes useful to analyse the discriminant
and verify that the hypothesis of Proposition 16 is satisfied.

Stickelberger’s criterion. Let E be an extension of degree n over Q,
and let ay, . . . , an be algebraic integers in E, linearly independent over Q.
Then

DE[Q(“I, ceey an) =0 or 1 mod4.
Proof. The determinant det(o;x;) has an expansion as a sum of terms
with plus and minus signs in front of them. Let P be the sum of terms with

plus signs, and N the sum of terms with minus signs, so that the diserim-
inant is equal to

(P — N)?2 = (P + N)2 — 4PN.

But P + N and PN are both invariant under any ¢;, and hence are rational
integers. The assertion follows at once.

Ezample. Let E = Q(a) where o® = 2, say a is the real cube root of 2.
Let f(X) = X® — 2. Then f'(a) = 3a2, and Dgjo(a) = —3%22. Let B
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be the ring of algebraic integers in E. Note that 2 is ramified in E with
ramification index 3, and hence Dgo(B) is divisible by 2, whence by 22,
by Stickelberger’s criterion. Furthermore 3 must have some ramified
factor in E, for otherwise all the conjugates of E would be unramified
over 3, so that the splitting field Q(e, v/—3) would also be unramified
over 3, which is obviously not the case. The polynomial X3 — 2 is irre-
ducible over the 3-adic field Q3 because already the congruence

X3 =2 (mod 9)

has no solution in the 3-adic integers. Thus there is only one prime in E
lying above (3), and therefore the ramification index must be 3. Thus
we have

3B = 3.

We see that in fact, P is strongly ramified, and by Proposition 8 of §2 we
conclude that P2 divides the different of E/Q. Since NP = 3, it follows
that 3% divides the discriminant, and we now see that 3322 divides the
discriminant Dg;q. By Proposition 10, we conclude finally that B = Z[a].

Proposition 17. Let K, E be two number fields. Assume that their dis-
criminants are relatively prime and that the fields are linearly disjoint (i.e. if
Wy, - . ., Wy 1S @ basis of K over Q and vy, . . ., vy, 1s a basis of E over Q,
then {ww;} 1s a basis of KE over Q). Then

ORKE = OROE
and

Dgg = DxDk.

Proof. From the fundamental properties of the different, we know that
DxkE/q is equal to

DrexDk190 = DrEEDE/Q-
But Dgjp and Dg g have no factor in common (viewed as ideals of ok k).
The same holds for the other two factors. Hence

Dkeie = Dkio and Dkex = DEjo-

Let W be a basis for og over Z and V a basis for og over Z. Then the
above remark implies that the complementary basis W’ of W, which
generates D o, also generates Dxp/p. This is the complementary module
of og g relative to og. Dualizing again shows that W generates ox g over
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og and proves the assertion concerning the rings of integers. We leave
the assertion on the discriminants as an exercise.

Examples of the situation in Proposition 17 arise, for instance, with two
distinct quadratic extensions, with relatively prime discriminants, or with
cyclotomic extensions of relatively prime degrees, as we shall see in the
next chapter. It will in fact be used to determine the ring of algebraic
integers for an arbitrary cyclotomic extension when we know the ring
of integers in cyclotomic extensions of a prime power root of unity. Thus
the next chapter gives us further examples for the use of the discriminant.






CHAPTER IV

Cyclotomic Fields

This chapter achieves two purposes simultaneously. It gives examples
for the theory, and also describes in greater details the cyclotomic fields
which exert a great deal of control over algebraic number theory in general.
The extent to which they exert this control is in fact not yet clearly under-
stood, but one knows for instance that the heart of the proofs of class
field theory is concentrated in the cyclotomic fields.

§1. Roots of unity

Let @ be an n-th root of unity, i.e. w® = 1. The extension Q(w) is
normal over Q. Indeed, if w is a primitive n-th root of unity (i.e. has
period exactly »), and if ¢ is any isomorphism of Q(w) over Q, then
(ow)® = o(w™) = 1, so that ow is an n-th root of unity also. Hence
ow = ' for some integer ¢ = i(¢), uniquely determined mod n. Hence
Q(w) is mapped into itself by o, and hence is normal over Q. If 7 is another
isomorphism of Q(w) over Q, then 07w = w*”*”  Since o, T are iso-
morphisms, it follows that #(¢), 4(7) are prime to n. Hence the map

o — (o)

is a homomorphism of the Galois group G of Q(w) over Q into the multi-
plicative group of residue classes mod n, prime to n, and is injective. If
we let ¢ be the Euler o-function, then ¢(n) is the order of this multipli-
cative group. We shall see below that [Q(w): Q] = ¢(n). This will deter-
mine the Galois group of Q(w) over Q, i.e. prove that the map o — (o)
is surjective.

Let K be a number field. Then the Galois group of K(w) over K is a
subgroup of G, and hence is abelian.

Let K be a number field, and let us fix an algebraic closure K of K.
A cyclotomic extension of K is one which is contained in a field K(w),
where w is a root of unity (w™ = 1 for some n). Since K(w) is abelian over
K, a cyclotomic extension of K is abelian. We say that K is ¢yclotomic
if it is a cyclotomic extension of Q.

71
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Consider now the case K = Q(w).
Let p be a prime number and w a primitive p-th root of unity. Then
w is a root of the polynomial

XP—1=X—-1DXP14...41).
Hence [Q(w): Q] = p — 1. We contend that
Qw:Ql=p —1

In fact, let 7 =1 — w. Then = is integral over Z. If 7 is an integer
prime to p, then " is also a primitive p-th root of unity, and

1— o

1_w=1+w—|—...+wi_l

is an algebraic integer. But w = (w)’ for some integer j (such that
ji=1 (mod p)), and hence the above quotient is a unit in the ring og of
algebraic integers of K.

Let p be a prime of og lying above (p), and let

fX) = X7 4o gL

Then ' ({=1,...,p — 1) is a root of f(X) (because it is a root of
X? — 1), and hence

p—1

fx) =TI (X — .

t==
Therefore
p—1

p=F1)= 1 0 — o).

=1
For any 7, j prime to p we have seen that

1 — ot
1 — wi

is a unit in ox. All elements 1 — &' have the same absolute value at p.
Hence for the absolute value | | = | |, we have

|w[*=! = |pl.

This implies that the ramification index of p is at least p — 1. By Propo-
sition 21 of Chapter I, §7 it follows that

& =p—1=[Q):Q]
and that p is the only prime of og above (p), which is totally ramified.
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Since w also satisfies the equation X? — 1 = 0, we see that any prime
number not equal to p is unramified in Q(w), because the derivative
pwP~! is divisible only by p. (Use Proposition 8 of Chapter I1I, §2.)

We now consider the prime-power case, and let m = p”, r an integer > 0.
Let ¥ = X?"' and consider

X —1=Y?P—1= (Y —1)¥* ' +---41).
Let

r

=X =1

X -1

=Y. 41

The degree of fis ¢(p”) = (p — 1)p"~!. Let w be a primitive p’-th root
of unity. Let ¢ be integer. Then w* is also a primitive p’-th root of unity
if and only if ¢ is prime to p. Thus there are ¢(p") primitive p"-th roots of
unity. Then

X=MN&E-=I1E&—),
£ ,p)=1
the product over { being taken over primitive p'-th roots of unity, and the
product over ¢ being taken over distinct residue classes of Z/p"Z prime to p.
Just as we saw for p-th roots of unity, we see that

1 — o'
1 — w

is a unit if 7, j are prime to p. Let m = 1 — w. Then from

(*) ﬂn=p=pqla—w)
1,0)=
we conclude that

r
e = |p|

at any absolute value extending the p-adic absolute value on Q, and hence
p is totally ramified. We therefore have:

Theorem 1. Let w be a primitive p'-th root of unity, and K = Q(w).
Then [K :Q] = o(p") = (p — 1)p"~'. There is only one prime p of ox
lying above p, and it is totally ramified. All other primes of og are un-
ramified.

Corollary. Let n be an integer > 1, and assume that n is not a prime
power. Let w be a primative n-th root of unity. Then

ﬂff 1— o) =1
i=1
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Proof. Let Sz be the set of primitive d-th roots of unity. Let
JaX) = II x—9.

$ES,
Let
Xn —1 n—1 n—2
9X) =5 —7=X"+X"+- -+ X+1
Then
9(X) = II fa(X).
)
Hence
n=g(1) = I] 7.Q1).
1o}
If p is a prime dividing n, then among the divisors of n we get p, p2, ..., p"

(where r is the highest power of p dividing n). We know from (*) that
fp¥(1) = p. Hence

N H fpk(l) = pr-
g k=1

Thus from the prime powers dividing n we already get a contribution
of n for g(1). This implies that for the composite divisors of n, the values
fa(1) (which are algebraic integers, rational, hence ordinary integers) must
be 1 or —1. Assume inductively that for d|n and d < » the value f3(1) is
equal to 1. Then we see from our product that f,(1) = 1, thus proving
our corollary. (I am indebted to Bass for this proof.)

The last statement in Theorem 1 actually can be strengthened as follows.

Theorem 2. Let m be a positive integer and w a primitive m-th root of
unity. Then [Q(w) : Q] = @(m). The only ramified primes p in Q(w) are
those dividing m. If

7 T
m:pll...ps'

1s the prime power decomposition of m, w; is a primitive p'i-th root of
unity, then

Qw) = Qwy, . . ., ws) = Qw1) .. . Q(ws)
18 the compositum of the Q(w;).

Proof. Let g(X) = X™ — 1. Then w satisfies g¢(X) = 0, and

7'(@) = mam?

is divisible only by primes dividing m. Hence any other prime is unrami-
fied in Q(w). For any j > 1, the field Q(w;) is an abelian extension of Q
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whose intersection with Q(w;,...,w;—;) is Q, because p; is totally
ramified in Q(w;) and unramified in the other field. Hence Q(wy, . . ., ;)
has degree ¢(p"i) over Q(w;, . .., wj—1). This proves our theorem.

If G is the Galois group of Q(w) over Q, then any automorphism o of
Q(w) over Q must map w on some primitive root «*, ¢ prime to m. Since
[Q(w): Q] = ¢(m), it follows that for any such 7 there exists ¢ € G such
that ow = w’. Thus G is isomorphic to the multiplicative group of residue
classes of Z/mZ which are prime to m. Observe also that if m, n are two
relative prime integers > 0, and {,, ¢{» denote primitive m-th and n-th
roots of unity respectively, then

Q($2) N Q(sm) = Q.

Theorem 3. Let w be a primitive p"-th root of unity, and K = Q(w).
Then og = Z[w]. The discriminant is given by

r—1
DK=:tpp (pr—r—l)’

where the — sign holds when p" = 4 or p = 3 (mod 4), and the + sign
holds otherwzse.

Proof. We shall give the proof only when r = 1. The principle is the
same in general. Thus we deal with the p-th roots of unity. Let B = Z[w].
To prove that B = ok it suffices to prove that the discriminant of B and
ok as modules over Z coincide as Z-ideals by Proposition 10 of Chapter III,
§3. To do this, it suffices to prove it locally for each prime. All primes
except p are unramified, and consequently such primes do not contribute
either to the discriminant of ox or of B. As for p, it is totally ramified,
and using Proposition 23 of Chapter I, §7, we conclude that S,'B = S, ok
if S, is the complement of the principal ideal (p) in Z. Hence the p-com-
ponent of the discriminants is the same in both cases. This proves that
B = og. The assertion concerning the exact value of the discriminant
comes from taking the discriminant of the element w itself, and paying
attention to the sign. There is no difficulty in this (use Proposition 15 of
Chapter III, §3).

To deal with an arbitrary composite integer m, we use a discriminant
criterion.

Theorem 4. Let m be a positive integer, and w a primitive m-th root of
unity. Then Z|w] is the integral closure of Z in Q(w).

Proof. 1t is clearly the compositum of the rings of integers of various
prime power cyclotomic fields which satisfy the conditions of Proposition
17, Chapter III, §3.
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§2. Quadratic fields

Extensions of degree 2 over the rationals are also worthy of mention as
examples.

Theorem 5. Let m be a square-free integer = 0, and let K = Q(\/m).
If m =2 or 3 (mod 4), then [1,/m] is a basis for og over Z. If m =1

(mod 4), then
| 14+vVm |
1 2

is a basts for og over Z.

Proof. Exercise. To verify that an element z + y+/m with z, y € Q is
integral over Z, it is necessary and sufficient that its norm and trace lie
in Z. From this, there is no difficulty in verifying the assertion of the
theorem.

For instance, if m = —3, then

1+v-3
2

is a cube root of unity, and hence is integral over Z.
Before proving the next result, we make some observations on finite
fields.

Let F, be the finite field with ¢ elements, ¢ equal to a power of the
prime number p. Then F¥ has ¢ — 1 elements, and is a cyclic group.
Hence we get the index for p odd

(Fy:F3%) = 2.

If v is an integer # 0 mod p, let

v\ _ ' 1 if v=2% (mod p)
T =1 if v#£2® (mod p).
This is known as the quadratic symbol, and depends only on the residue
class of » mod p.

From the preceding remark, we see that there are as many quadratic
residues as there are non-residues mod p.

Theorem 6. Let ¢ be a primitive p-th root of unity for p odd, and

-2 ()
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the sum being taken over non-zero residue classes mod p. Then

Every quadratic extension of Q s contained in a cyclotomic extension.

Proof. The last statement follows at once from the explicit expression
of +p as a square in Q(¢) and also (1 + )2 = 2¢. As for the sum, we have

2= (l’ﬁ) i

v \P

As v ranges over non-zero residue classes, so does vu for any fixed y, and
hence replacing v by vu yields

82=3 (ﬂ) ceth = 3 Z) FHo+D
Vi

v \ P
-2(5)e+ £ () e

But 1+ ¢4 ---4 ¢! = 0, and the sum on the right over u conse-
quently yields —1. Hence

g (:pl) P—D+CD X (%)
-»(5)-26)

as desired.

We see that Q(1/p) is contained in Q(¢, v/—1), or Q(¢), depending on
the sign of the quadratic symbol with —1. It is in fact a theorem that
every abelian extension of Q is cyclotomic, and we shall prove this in the
class field theory later.

We now apply Theorem 6 to prove the quadratic reciprocity law. We
observe that if p is an odd prime, then

(%) — (D7 and (;) =T (mod p).

‘This is obvious from the definitions, and the fact that (Z/pZ)* is cyclic.
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Let p, q be odd primes. On the one hand, we get

—1

q
8? = S(8?)

—1 g—1

p—1
=8(—1)2 2p¢2

Q

I

= :S(—l)l%—T 2) (mod g).

On the other hand, we get

Hence

Multiplying by S and canceling +p yields the reciprocity law

Q- @

{1V, §2]

A similar argument (but simpler) using the sum (1 4 2)? yields the result

We shall now reconsider these results from another point of view, closer
to that of class field theory, and having to do with the decomposition laws

for primes.

Quadratic Reciprocity Law. Let p, g be prime numbers.

Case 1. If p, q are odd and p = 1 (mod 4), then (%)) = (_q_) .

p

Case 2. If p, q are = 3 (mod 4), then <§> = — (%) .
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2
Case 3. If ¢ = 2 and p is odd, then (;) =14 p= 21 (mod 8) and
2

(;> = —1if p= %3 (mod 8).

Proof. First deal with Case 1, and consider the field Q({) where ¢ is a
primitive p-th root of unity. Then

Q) :Q=p—1

and Q(¢) is cyclic over Q. Hence Q(¢{) contains a unique quadratic sub-
field. Since p is the only ramified prime, this subfield must be obtained by
v/—p or /p, and hence must be Q(+/p) since the discriminant is p in the
latter case, and —4p in the former.

In the field Q(v/p), the prime ¢ splits as follows:
(@) = qq’ with q < ¢ < (%’) =1,
(q) = q remains prime < (g) = —1.

This is obvious from the definitions.

Let Qlg in Q(¢). We let f be defined by NQ = ¢, so Q) )
that f is the order of the decomposition group of Q. We
let r be the number of distinct primes of Q(¢) dividing g.
Then

fr=p—1 QWp) ¢ G
We shall prove that 2|r is equivalent with (g) = 1 and

with (%) = 1. This will take care of Case 1. Q |
Assume that 2|r. If Z is the fixed field of Gg, i.e. the decomposition field
of g, then [Z: Q] = r, so that Z contains the unique quadratic subfield
Q(+/p). Hence g splits completely in this subfield, and (2 = 1.
q
Conversely, if (g) = 1, then ¢ splits completely in Q(1/p), which is

therefore contained in Z, and hence 2|r.
Next, let o be the Frobenius automorphism such that o¢ = {9 Then
¢’ =1 (mod p) and f is the least positive such exponent. If 2|r, then
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fl(p — 1)/2, and hence
qe;_l =1 (mod p).
It follows that <%) = 1. Conversely, if (%) = 1, then we get the same

congruence, so that f|(p — 1)/2 and finally 2|r, thus proving Case 1.
As for Case 2, the proof is just like that of Case 1, except that now, 2|r

is equivalent with (lq—)) = —1.
In Case 3, we take ¢ = 2. Let7 = +/—1s0 (1 +14)® = 24, and

a+ i)z(p—l)l2 = 9—1/2;(p—1/2 _ 1+ ‘i)p_l.

We get
Q+)P=1+4+= (%) 1P~ VI2(1 4 4)  (mod p).
But
) ) 2% ifp=1  (mod4)
P =
1+ +1) [2 ifp=—1 (mod4).
Hence

p=1(mod4) implies 2= (%) i{?~DI29;  (mod p),

= —1 (mod 4) implies 2= (%) P~ D/297  (mod p).

From this Case 3 follows at once.

Note that the three cases can be summarized by the usual formula.
The symbol
(@)
q

can be extended to more general integers.
Let P be a non-zero integer, written as
P=4+p,...p;
where py, . . ., pr are primes. Let

Q=q1...q,
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be an odd positive integer written as a product of primes. We assume that

(P,Q) = 1. We define
©)-16)

We call this the quadratic symbol. It is then clear from the definition
that the following properties hold.

QR 1. If Py = P, (mod Q) then

&)-G)

QR 2. The symbol is bi-multiplicative, i.e.,

F)-@E) = (@)-@&E):

QR 3. We have <7> = (—1)9_2_—‘.

Proof. By definition, and the definition of the symbol for primes,

g;—1 (gj—1)

(%):jf}%(—l)‘f:(—l)’* T,

But

0=l (G—D+D =2 @G- D+1 (modd)

because ¢; — 1 is even, and the product of any two or more such terms
is = 0 mod 4. Thus our assertion follows.

QR 4. If P, Q are odd and both > 0O then

-

pp—1 ¢;—1

BO-BEE- ™ -

Proof. We have
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§3. Gauss sums

Sums involving roots of unity appear in many contexts. We have just
seen one example in §2. Other examples arise in the functional equation
of zeta functions and L-series. We study them here a little for their own
sake. We shall use constantly the fact that if G is a finite abelian group
and X is a character of G (i.e. a homomorphism of G into the group of roots
of unity) then

o if x = 1
ZX&=\q.1) ifx—1

This is trivially seen, because if X £ 1, then there exists b € G such that
x(b) = 1. Then

2 x(a) = 2 x(ba) = x(b) 2 x(a),
a€G aEG a€EG
whence 3 x(a) = 0.

We shall consider Gauss sums relative to Z/qZ where ¢ is an integer > 1,
and also relative to a finite field with ¢ elements. We begin with the
former case.

Gauss sums for Z/qZ.

The elements of Z/qZ represented by integers relative prime to ¢ form
a multiplicative group denoted by (Z/9Z)*. By a multiplicative char-
acter of Z/qZ (or a character mod ¢) one means a character of this multi-
plicative group. Such characters are denoted by x. If d|g, then we have a
natural homomorphism

Z/qZ — Z/dZ

which is surjective. A multiplicative character for Z/dZ composed with
this homomorphism induces a character mod g. We say that a character
mod ¢ is primitive if it cannot be induced by a character mod d for any
divisor d of ¢, d # ¢. A character X is extended to a function on Z/qZ by
letting

x(n) = 0if (n,q) > 1.

Let ¢ be a primitive ¢-th root of unity. We define the Gauss sum for
a primitive character X mod ¢ and an integer n to be

) = X x@™

zmod g
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This Gauss sum of course depends on {. We can always select
g. — eZ‘rilq

as a canonical choice, but we are interested here in algebraic manipula-
tions rather than analytic values, so any fired ¢ will do. Observe that
7(X, n) is actually the Fourier transform of x evaluated at n (actually
selecting ¢ to be e™27#/41),

If (n, @) = 1, then we write

X(n) = x(n)™' = x(n7?)
where n™! is the inverse of n mod g.

For any primitive character X mod q we have the formula

(1) 7(X, n) = X()7(x, 1).

Proof. Assume first that (n, ¢) = 1. Then
x(m)r(x, 1) = 22 x(m)x(z)¢*

= > x(@n )" = 2 x@)¢™ = 1(x, n),

because as x ranges over the residue class mod ¢, so does nx when n is
relatively prime to q. This proves our formula, in case (n, ¢) = 1.

Assume now that (n, ¢) > 1. 1t will suffice to prove that

2 (X, n) = 0.

Write ¢ = rd and n = md with positive integers r, d, m such that d > 1
and (r, m) = 1. Then

T(n) = 2. x@)*

zmod ¢
where ¢, = ;g is a primitive r-th root of unity. Write

T=y+rz with y mod r and 2z mod d.
Then
Tn) = 2., 2 x(y+ra)ir.

ymodr zmodd
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Note that the function
y= 2 x(y+ e

zmodd
depends only on the residue class of y mod r. We get:

x@r(x,n) = 2 3 Xy + cra)¢r?

ymodr zmodd

= 2 2 x(=71(x,n).

ymodr zmodd

It follows that 7(x, n) = 0, thus proving our assertion (2).
Finally, we obtain the absolute value of the Gauss sum.

For primitive character X mod q and (n, q¢) = 1, we have

3) lr(x, )| = V.

Proof. We have:

[r(x, n)|2 = 7(X, n)T(X, n) = E Z x(x)'x_(wg.n(z—y).

Take the sum over all residue class n mod q.

If £ 3 y (mod ¢) then Y, "% =0,

nmod ¢

If =y (mod ¢) then > "% =4

nmod ¢

Since x(z) = 0 if (x, ¢) > 1, we get

2 It ) = X [x@)]q=q0(q).

nmodq z=y

But from (1), we know that

lr(x, )|* = |x()|?|7(x, 1)|%.

IV, §3]

Summing over n and using the fact that x(n) = 0if (n, q¢) > 1 we get

e(@lr(x, n)|2 = ge(g).

This proves our formula |7(x, n)| = /4.
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We shall now investigate quadratic sums. For the rest of our discussion,
we use the following convention.

Let a, b be non-zero integers, b > 0, and (a, b) =

Let

273 5,2
G(a,b)= Y eb .

zmod b

We shall determine the value of this Gauss (quadratic sum). We first
give some algebraic reduction steps.

QS 1. If p is an odd prime, then

Gla, p) = (g) G, p).

Proof. 1f a = ¢? (mod p) for some ¢, then we replace z by cx, which also
runs over the residue classes mod p, and we see that G(a, p) = G(1, p) in
this case. If a # ¢% (mod p), then we use the fact that

T 2r7
> 627:2 1+2>) e? "

zmod p

where r denotes the non-zero quadratic residues mod p, and n denotes the
non-zero non-residues mod p. The map x — z2 covers the residues pre-
cisely twice (since (Z/pZ)* is cyclic), and we also have
27, 2 2ri
Z er V=0= 1—{—231’ +Zel’ ",
ymod p r

From this our assertion is clear.

QS 2. Let p be an odd prime, and r an integer = 2. Then

G(a, p") = pG(a, p"™?).

Proof. Write

z=y+p 2, ymodp !, zmodp.

Then z% = y% 4 2p" " yz + p? %%

1

G(a,P)—ZZe”

0112 2“ 2ayz
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Sum separately for y=0 (p) and y £ 0 (p). If y # 0 (p), then the map
z — 2ayz permutes the residue class mod p, and hence the sum over z in
this case is 0. If y = 0 (p), we write

Y = py,

2xi
and we can take the sum for » mod p"~2. Each term ¢ 7 2% js = 1, and
the inner sum over z yields p. Thus we obtain precisely

pG(a, p"?),
as desired.

QS 3. Letb,c = 1, (b,c) = 1, and (a,bc) = 1. Then

G(a, be) = G(ab, ¢)G(ac, b).

Proof. Write x mod bc as

z = yb + zc, y mod ¢, z mod b.

Then
27t 2 273 2
G(ab, )Glac,b) = e e “Veb
Y.z
> e%’ albn®+(en)’)
Y2
= G(a, bc)
because
2yzbc
e = 2yz

is an integer.

QS 4. Ifbisodd = 1 then

G(a,b) = (g) G(1, b).

Proof. Induction. If bis an odd prime, this is QS 1. Assume b > 3.
If b= p" and r = 2, then

G(o, p") _ Gla,p"7?)
G{1,p)  G(,p2)

Our assertion then follows at once, in the case of prime power.
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In the composite case, suppose b, ¢ > 1, and (a, bc) = 1. Then
G(a, bc) = G(abd, c)G(ac, b)

_ (@> (%) G, 0G(1,b)  (by induction)

c

_ (z";) (g) <§> (1, G, b)

= (bic) G(b, ©)G(c, b) = (bi‘c) G(1, be),

and we are done.

There remains to handle the case when b = 2". We shall compute
analytically the value G(1, b) for arbitrary b below, and we shall find:

1+ 9)vVb if b= 0 (mod 4)

G(1,b) = Vb if b=1 (mod 4)
! if b= 2 (mod 4)
b if b= 3 (mod 4).

Remember that b = 1, and that /b is the ordinary positive square root of b.
In view of these values, we define

1 if b=1 (mod 4)

«®) = {z‘ if b=3 (mod 4).

We shall use the given values to get G(a, 2") as follows.
QS 5. Let a be odd. Then

_a2') e(@)G(1, 27).

G(a,2") = (

Proof. The map
0a:5 > ¢°

on 2™-th roots of unity induces an automorphism of the field generated
over Q by 2™-th roots of unity for all m, and we have

G(a, 2") = 0,G(1, 2") = a,(1 + 1)0.(2"3),
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assuming that » = 2 (the case r = 1 being trivial). Obviously,

1442 if a =1 (mod 4)

149 =1+:=
ll +8) =1+ ll—i if @ = 3 (mod 4),
Since 1 — 7 = —(1 4+ 7), we find that

oall + ) = (—‘a—l> €(@)(1 + 4).
Next observe that

2z
8

\/é or \/§=1+1’;

(7]

14+27=c¢e

2mi
where egs = ¢ 8. Hence

aa\/§=lti =[ V2 if a= %1 (mod 8)
€g -
Thus

a’_1

/2 = (g) VZ=(-1) ® V2

V2 if a= 43 (mod 8). .

(Iv, §3]

If r is even, then 272 is rational, and if r is odd, then 272 is a rational

number times /2. Therefore

T T
0.(27%) = (%) 212 — (%) 2712,

This proves QS 5 and concludes our formalism of the Gauss sums.

There remains to compute G(1, b) for arbitrary b = 1. The computa-
tion is analytic, and is due to Dirichlet. It uses the fact that if ¢ is a
function which is smooth except for ordinary discontinuities, then its
Fourier series converges pointwise to the midpoint of the discontinuity.
In particular, if ¢ is a function which is continuously differentiable on the

interval [0, 1], then
0(0) + (1) _
2 o

where c,, is the m-th Fourier coefficient,

1 .
Cmlp) = /0 o(x)e™ "™ g,

and the sum is taken over all integers m.
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We shall use the function

f(l‘) — e2riz21b’ 0

A
8
A
‘_l—l

and its translates, also in the interval 0 £ z < 1, namely

fe(@) = flz + k), k=0,1,...,b— 1.
Then by definition,

b—1
k=0
whence if ¢ = fo -+ f1 + - -+ 4+ fs—1, we need only compute the sum of

the Fourier coefficients for ¢ to get the value of G(1, b). By definition, and
the convergence of the Fourier series, we find

b—1 .
G(1L,b) = X Z,O [0 fe(@)e™"™ g

m

—_ Z /be‘.’wizz/be—Zrimz dzx
m J0

— b % (zz-—bmz)
= Lf e dz.
m J0o

We complete the square,

and find that our last expression is
o2 b
— e—rzbm /12 e
zer,
If m is even, then e~ *®""/2 = 1. If m is odd, then ¢~ *®™"/2 = ;= We
split the sum over even m and odd m. A trivial computation putting

m = 2r or m = 2r -+ 1 shows that the sums of the integrals over m even
and m odd are equal to the same value, namely

Ib= ]::e

GA,b) = (14 i,

273 bm 2
b (=~

)
27 dx.

2

dy,

2xt
¥
so that

This integral converges at both ends, for if 0 < A < B, then changing
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variables, t = y2%, dt = 2ydy, and integrating by parts shows that

B
2 iyzlb 1
e dy=0 ( e —
/A VA
Thus the tail ends of the integral are arbitrarily small. Finally, let

u=—  and du=££-

Vb Vb
Changing variables shows that
0 27t y2 — [ .2
f e?® dy=\/b/ €™ du = Vb I,

where I is the universal integral constant on the right. The integral I is
simply I,, whose value is obtained from the relation

1=G1,1)= 1+ HI,.
Thus we find

—b
G, b = V5,

as desired.

Character sums over finite fields

For the rest of this section, we let F be a finitz field with q elements, and
q=7p’. Welet F, be Z/pZ. We denote elements of F by x, and elements of
the multiplicative group F* of F by a. We let w= e2™?. We let
Tr = Trp/r, be the absolute trace from F to Fp. Let § be the vector space
of complex valued functions on F.

If \:F — C* is a non-trivial character, then X induces a self duality of
F, by means of the pairing

(z, y) = N(zy).

Indeed, if A; is the map such that A.(y) = A(zxy), then x +— A, is an injective
homomorphism of F into its dual group, whence an isomorphism because

these two groups have the same order. We shall always use the fixed N
such that

X(.’L') = w’l‘r(;‘)
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If f € §, we define the (essentially Fourier) transform T'f by
Ti(y) = 2. f(@)N(zy).
zEF .
Thus Tf is again a function on F (identified with its character group by ),
and T: § — § is a linear map.
Theorem 7. We have T*f = qf ~, i.e. T%f(2z) = qf(—2).
Proof. We have
T*f(z) = 22 2 f@)Ny)\(zy)
y z
= 2 flz — 2) 22 \ya)
z Y
= qf (—Z),

as desired.

Theorem 7 is the analogue of the Fourier inversion formula. We see in
particular that T is an automorphism of §.
We define the convolution f * g between functions by the usual formula

(F*9)) = :Z,f(:c)g(y — z).
A change of variables shows that
fxg=g*f.
Theorem 8. For complex functions f, g on F, we have
T(f*g) = (TF)(T9)
T(fg) = 7 T/ To.
Proof. For the first formula, we have

T(F*9)(2) = 2. (F*9)WA(=y) = 2. 2 f@)gly — )M (zy).

We change the order of summation, lety — z = t, y = z 4+ £, and find
2 f(@)\(zz) 5;, g\ (z0),

which is precisely (Tf)(Tg)(z), thus proving the first formula. The second
formula follows from the first because T is an isomorphism on §, so that
we can write f = T'f;, g = Tg, for some functions f,, g;. We then combine
the first formula with Theorem 7 to get the second.

We let X denote a character of the multiplicative group F*, and define
x(0) = 0.
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Ezxample. If p is odd, we could take the character X, defined by

Xqo(a) = (%>,

i.e. the quadratic residue symbol. This character is trivial on F*2.

We are concerned with the Gauss sums which generalize the sum S
considered in §2, and which are defined by

() = 2 x(@)\a) = 22 X(2)A(2).

a€EF T

This can also be written as
7(X) = X(—1(x*N)(0) = (Tx)(1),

using our convention that x(0) = 0. The Gauss sum has the following
properties.

GS 1. For any character X % 1, we have TX = 7(X)x"!.
Proof. We have
Tx(y) = Z X(z)\(yx).
If y=0, then Tx(y) = 0. If y # 0, we make a change of variables,
r = ty~!, and we find precisely the desired value 7(X)x(y™!).
GS 2. T(X)T(x™Y) = x (—1)q for x#1.

Proof. Note that T?x = T(r(X)x™!) = 7(x)r(x")x. But we also
know that T2x = gx—. This proves GS 2.

GS 3. |T(X)| = V/q for x#1.
Proof. For the complex conjugate, we have
() = L xH@M—a) = x7(—1) X x ' (@)Ma)
’ = x(-—-l)‘r(le).
Hence 7(x)7(x) = ¢, and our property follows.

GS 4. Let
Y(X1, X2) = X1 *X2(1) = 2 X1(2)X2(1 — 2).
If X1Xo # 1, then

T(X1)T(X2) = ¥(X1, X2)T(X1X2).
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Proof. We compute from the definitions:
T(X))7T(X2) = Z 22 X1(@) X2 (YN = + y)
=2 Z X1(2)X2(y — D)MY)
=3 ﬁj X1(z)X2(a — )N @) + 2 X3 ()Xo (—2).

z a#0 z

Since X;X2 # 1, the last sum on the right is equal to 0. In the other sum,
we interchange the order of summation, replace z by az, and find

2 XaXg(@)A(@) - 22 X1 (2)X5(1 — 2),

which proves GS 4.

GS 5. For any posttive integer r, we have T(x*) = 7(x).

Proof. This is obvious because raising to the p-th power is an auto-
morphism of F, and therefore Tr(2?) = Tr(z).

We shall now consider the prime factorization of 7(x). To begin with,
we observe that t(x) is an algebraic integer in Q(w,e) where ¢~ '=1.
Furthermore, since t())t(x~') = * ¢, it follows that the only primes dividing
7(x) are those which divide p.

We let K be the extension of Q obtained by adjoining the p-th roots of
unity and the (¢ — 1)-th roots of unity, so that K contains roots of unity
as representatives of the elements of the finite field F with ¢ elements.
We fix a homomorphism

¢:0ox = F,
of ox into the algebraic closure of F,, and write mod p for this homomor-
phism. This homomorphism induces an isomorphism between the group
of (¢ — 1)-th roots of unity in K and the multiplicative group F*, because

the polynomial X?~! — 1 has no multiple root mod p. If W,_, is the
cyclic group of (¢ — 1)-th roots of unity, then

qo:W_l — F*

is this isomorphism. We can define a generator X, for the character group
of F* by letting X, be the character such that

eXo(a) = a™ L.

Then X, has order ¢ — 1, and any character X is a power of X,,.
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Theorem 9. Let X be a character of F* and let X = X, with

1Ssv<qg—1.

Write v in the p-adic expansion

v=vot+vp+---F+v_p’?

withO S v; Sp—1l,andnotallv;=00rp — 1. Let
/=1 =1
s)= 2 v; and Y@)= [ (") (mod p).
=0 =0

Thenv(¥) # 0 (mod p) and

7(X) _ -1
|| = 75y moap

In particular, for any absolute value | |, extending the p-adic absolute value
on the rationals, we get

[r()p = | — 113
Proof. We use induction on v. Take first v = 1 soX = X,. We have

7(Xp) = 2 Xp(@)™®.
Write *

W@ = (1 4+ w— 1)T = 1 + Tr(@)(w — 1) + £w — 1)2

with some algebraic integer ¢ depending on a. We interpret Tr(a) to be
any representative in ox for the element in F. Then

w—1

TXe) 3 x,(@)[Tr(a) + £ — 1)),

and hence

¢ (L(i%) = Z a_lTr(a) = Z a_l(a +aP 4+ apf_l)
=> (1+a 4. + apf—l—l)
=g¢g—1=—1 (modp)

because a — a? ~! is a multiplicative character. This settles the case
v=1.
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Assume next that 1 < » < ¢ — 1 and that the statement is true for
x4 with 1 < p < v. We distinguish two cases.

Case 1. plv. Then v = pu and X, = (x})?, so that by GS 5 we have

7(Xp) = 7(X5).
But obviously

s(p) = s(v) and @) = Y(p).
This case is taken care of.

Case 2. piv. Then vy # 0. We shall use GS 4. We have
‘P(¢(x¢; x;—l)) = ( E xtp(a)xv_l(l - a))
= 2 “(1 — a7,

a%0,1

and after inserting ¢ — 1 as an exponent of (1 — a), using the fact that
(1 — a)?~! = 1, we find that this is

L i(qa— v\ i—1
== S vi(*5)e
a%0 j=0 J
= (g — D(—1)(g—»)
(because a — a’~! is a multiplicative character)
= —y = —pg (mod p).

Note that in the present case,

s)=s(v—1+1 and Y@) =vo-Y(yv — 1).

04 \ _ T(X) T
¢ <(w — 1)°">> ¢ ((w — 1w — 1) y(x, x:r‘)>

—1
= (= l)‘)’(u—l) Vo

Hence

B ‘Y(V) ’
thus proving our theorem.

For an application in the next section, we obtain another expression for
s(v). As usual, [z] is the largest integer < z, and {z} = z — [z].
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Lemma. If v is a positive integer, v = vo+vip + - -+ + vy_1p’ !
with0 S v; < p — 1, then

)= v — (p — 1)'2[;”_”—1]

Proof. The expression on the right is equal to

R

=0 g—1

We note that this expression depends only on the residue class of
v (mod ¢ — 1). We consider therefore » such that 0 < » < ¢ — 1. For
i=0,...,f — 1, we have

U DAY R PN
Vi = pj ppj+1’

and [v/p’] = 0. Taking the sum yields

f—=1r =1 J
S(V)=v—(p—l)25ﬁ—l]=v—(p—l)_};[yg—]-

i=0

It will now suffice to prove that

[7]- 1)

Suppose otherwise. Then for some integer n we have

) )
m<n§ P )
q g—1
whence
' ng Ve _ v
V<pi=q—1 v+q_1<v+l,

a contradiction which proves our lemma.

§4. Relations in ideal classes

Throughout this section we let k = Q(¢) where ¢ is a primitive m-th root
of unity. We let p be a prime number, ptm, and we let p be a prime in k
such that p|p. We let w be a primitive p-th root of unity. If u is a positive
integer prime to m, we let o, be the automorphism of k such that

0.8 = ¢
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We know that p is totally ramified in B, Q, w)
Q(w), and hence p is totally ramified in
Q(¢, w) = k(w). Thus there exists a p, Q) =k
unique prime P in k(w) such that Plp,
and we have Q(w)

p=Pr L Q

Theorem 10. Let f be the order of p mod m, and ¢ = p’. Let X be a
character of F = Fg such that

X(@) =a~9" V™ (mod p).

Then for any integer r = 1 we have the factorization

T(X") ~ BT,

where a(r) is the element of the group ring given by

at) =358 (—————(q ~ ”“’) o,

m m

and the sum 1is taken over all p mod m, prime to m.

Proof. This is essentially a reformulation of Theorem 9. Let K = Q({, w)
and let ¢ be a homomorphism of og into F, corresponding to B, i.e. inducing
an injection

DK/‘B — F',,.

Then we may assume that x” = x¢™"/™  We know from §1 that w — 1
is a prime element in Q(w), and remains unramified in K. Hence by
Theorem 9,

ordg 7(X") = s (—q-—%—l—)l) .
We also have

o,7(X") = 7(x™),
so that

(¢ — 1)?#),

ord,;'p 7(X") = ordg g, 7(X") = s( —

As u ranges over (Z/mZ)*, each conjugate of P appears f times. This
proves Theorem 10.
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Theorem 11. Let k = Q(¢n) where ¢, is a primitive m-th root of unity.
Let p be a prime number, plm, and let p|p in k. For positive integers a, b such
that ab(a+b)#0 mod m, let

wm (52 [2]- )

Then p®s» is principal, and in fact
PQ“"’ ~ ‘,,(xa’ xb)’
where X s the character described in Theorem 10.

Proof. We just transform the expression of Theorem 10 and use GS 4.
We have

o by _ T(XHT(X
y(X%, x°) = ETOR
and hence
\b(xa, xb) ~ gBB(a.b),
where

B(a, b) =

% = (s ((q —ml)a#) 4 ((q —ml)bu) s ((q = 1)157 + b)#» ot
—2t 1y Z[(“ +b)p u] [ap'ﬁ] _ [bp’ﬁ]) o,

P m m

using the lemma at the end of §3. The decomposition group G, of pin k
is {1,0,,052,...}. Hence we can replace o, by d,i,, and since u ranges
over (Z/mZ)*, so does p’u. Consequently we find

B(a,b) = (p — 1)ba,».
Since p = PP, we see that Theorem 11 is proved.

The special case of Theorems 10 and 11 when m is prime is already in
Hilbert’s Zahlbericht. The general case is due to MacKenzie (“Class group
relations in cyclotomic fields”, Am. J. Math., 74, 1952, pp. 759-763).
Here, I have followed an exposition given by Tate in a seminar around
1951. The significance of Theorem 11 is that it gives a relation in the ideal
class group of Q(¢), since every ideal class contains infinitely many primes
(a fact which will be proved later in this book).



CHAPTER V

Parallelotopes

This chapter gives quantitative results concerning the distribution of
elements of a number field in parallelotopes.

If we impose certain bounds on the absolute values of elements « in a
number field &, then we can ask for the number of field elements satisfying
such conditions. It turns out that this number is asymptotic to the volume
of the region (in a suitable space) determined by the inequalities.

Next, we shall reproduce the classical theory of Minkowski concerning
the units and discriminant of the number field, and obtain the Minkowski
constant.

§1. The product formula

Let Mg be the canonical set of absolute values on the rational numbers
Q. Then for any element a € Q, a = 0, we have

H la|v=1

vEMQ

Indeed, if « is a prime number [, then

i, = {1 if p is a prime number # [
? 1/p if p=1

The ordinary absolute value will be called (by abuse of language) a prime
at infinity. Since |l|, = [, the product formula is satisfied for prime
numbers. It follows for any element of Q* by multiplicativity.

Let k be a finite extension of Q and M, the set of absolute values of k
extending those of Mo. Then by Corollary 2 of Theorem 2, Chapter II,
§1, we obtain for a € k*:

1= JI IN§@lw= II TIlel>

vEMQ 2EMQ vlve
= II leli>= II llel..
vEM,, vEM,,

99
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Thus the product formula is also satisfied, with multiplicities

Ny = [ky:Qy,).

If k is a number field, we denote by S, the set of archimedean absolute
values in M. Welet r; and r, be the number of real and complex absolute
values respectively. Then

ry+ 2r; = [k: Q]

and we denote this degree by N. We also let r = r; 4+ ro — 1. The local
degree N, is 1 if v is real, and 2 if v is complex.

We shall now prove the classical theorems concerning the finiteness of
class number and the unit theorem.

To begin with the class number, we shall prove that there exists a con-
stant C depending only on k, such that for any ideal a (always assumed 7= 0),
there exists an ideal b in the linear equivalence class of a such that Nb = C.

This implies that the number of ideal classes is finite, because there is
only a finite number of ideals with bounded norms. (In fact, there is only
a finite number of prime numbers bounded by a given constant, and for
each prime number p, there is only a finite number of prime ideals p of o,
lying above p.) This number is called the class number of k.

Let wy, . . ., wy be a basis of o, over Z, and let S be the set of elements
of o; of type

a1w; + -+ - + aywn

with integers a; such that
0=<a; £ Na)"¥ 1.

Then there are more than Na elements in S, and thus there are two distinet
elements «, 8 in S such that « — 8 = ¢ will map into 0 in the homo-
morphism

0; — Hok/pordhu.

(Cf. Proposition 24 of Chapter I, §7.) It follows that there exists an ideal
b such that (£) = ab. On the other hand, we estimate the norm

N§@&) = I erw + - - - + enwfl,

o

where0 < |c] < (Na)¥ + 1. We see that there is a constant C' (depend-
ing on the maximum of the archimedean absolute values of the w; and
on N) such that

IN&(®)| = C- Na.
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Using Proposition 22 of Chapter I, §7 we get Nb < C and b ~ a! by
definition. This proves our assertion.

Next, we shall prove the unit theorem, as in Artin-Whaples. We first
discuss some general notions.

We define an M-divisor ¢ to be a real valued function of absolute
values v in M, such that:

(1) ¢(v) > O for all v in M;.

(2) ¢(v) = 1 for all but a finite number of v in M.

(3) If v is a discrete valuation, then there exists an element « in k such
that c(v) = |al,.

We shall sometimes write |c], or ¢, instead of ¢(v), and when we have
the multiplicities N,, we write

"c"v = C(U)N'-
We define the k-size or simply size of our M -divisor to be

llelle = TT e@)™>.

v

We denote by L(c) the set of elements x € k such that for each v € M,
we have

lxlv =< c(v).

Each element a € k* determines an M-divisor whose value at v is simply
|a|,. The product of two M,-divisors is an M-divisor, and if ¢ is an
M -divisor, then ac is the M;-divisor such that

(ac)(v) = aloe(v).
In view of the product formula, we have
leeelle = el

In other words, the size of ¢ is the same as the size of ac.
If « € k*, then L(ac) and L(c) are in canonical bijection under the
mapping
z P ax, z € L(c).

We denote the number of elements of L(c¢) by A(c). Then
Mac) = A(c).

If we think of ¢ as prescribing the sides of a box, all but a finite number of
which are 1, then A(c) may be interpreted as the number of field elements
in the box. The size of ¢ may be interpreted as the volume of the box. We
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shall now prove that the number of elements in the box is approximately
equal to the volume. In the next section, we shall obtain a stronger
asymptotic result, by different methods.

Theorem 0. Let k be a number field. There exist two numbers ¢y, c; > 0
depending only on k, such that for any M -divisor ¢, we have

caflelle < Me) = sup [1, collclli].

Proof. Suppose that there is at least one complex absolute value v¢ in
M,. We identify k,, with the complex plane, and consider the square
centered at the origin, with sides of length 2¢(vg). Let m be an integer
such that

m < Me)V2 = m+ 1.

Without loss of generality, we may assume that m = 0, and so m = 1.
Cut up each side of the square into m equal parts, thus giving rise to m?
small squares inside the big one. Our set L(c) is embedded inside the big
square at k,,. Since it contains more than m? elements, there exist two
distinct elements z, y € L(c) lying in the same small square. Hence we
can estimate their difference by

|z — y|vo =

2v/2 ¢(vo)
e

If v is any other archimedean absolute value of My, then
|z — ylo = 2¢(2),

and if v is non-archimedean, then
|z — ylo = c@).

Taking the product, we obtain

Lo T fo— ot < Colldle
vg{{kl ylv 2

with a suitable constant c;. Since (m 4 1) < 4m?, the inequality on the
right in Theorem 0 follows immediately.

If there is no complex absolute value in M}, then we proceed in a similar
manner, using a real one vq, and cut up the interval centered at the origin
of length 2c(vg) into m equal parts, giving rise to m small intervals, with

m< AMc) Em+1.

The arguments then proceed in the same way.
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Let us prove the other inequality. Let w;, ..., wy be a basis for o;
over Z. Put
Co = N SUupy,: |w.~|.,,

the sup being taken over the archimedean absolute values v in M}, and
over 7. This is a number depending only on k.

Let ¢ be our given My-divisor. By the approximation theorem, there
exists an element o € k* such that

Co = Iacl,, = 200

for each archimedean absolute value v in M;. We now select an element
a€Z, a # 0, such that aac has absolute value = 1 at all non-archi-
medean v € My, just by taking a highly divisible at a lot of prime numbers.
In view of the fact that A(c) and ||c||x do not change if we multiply ¢ by an
element of k*, we may therefore assume, without loss of generality, that
our M -divisor satisfies the inequalities

Co|0|v = Iclv = 2cO|a|v

for some element a € Z, a > 0, and all v € S...
We must exhibit elements of L(c). For this purpose, consider the set L
of elements of o; consisting of those which can be expressed in the form

aywy + - - - + aywn

with a; €Z, and 0 < a; < a. Then our set L contains more than a¥
elements. :

Each non-archimedean v in M}, corresponds to a prime p of o, and using
the third condition in the definition of an M-divisor, we have in an obvious
manner the notion of ord, ¢. Let n, = ord, ¢. The additive group

ox/TIp™

has J](Np)"» elements. We look at the image of L under the canonical
homomorphism of o into this additive group. There will be a subset L’
of L with at least

N

%
IT(Np)™

elements, all of which have the same image. Take one fixed element
x € L’, and let y range over L’. Then for each non-archimedean absolute
value v in My, we have

lx - yl" = C(U),
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because ord, (x — y) = ord,c. If v is archimedean, then by an obvious
estimate, we have

lz — ylv = colals = c(v).

Thus our element z — y lies in L(c). We have therefore proved that

v 1
MO 2 T -
We observe finally that
o = II lal¥* > e1 T Ie3~,

vivg vivg,

the product being taken over the archimedean absolute values, and ¢,
being an obvious constant, while

1
No™ = llcllv,

if v is the non-archimedean absolute value belonging to p. Taking the full

product over all absolute values proves our inequality on the left in
Theorem 0.

Let k be a number field, and S a finite subset of M, containing the
archimedean absolute values. Let s be the number of elements of S. We
define the set of S-units kg to be the set of elements a in £* such that

|a|,, =

forveg S. If S = 8., the S-units are also called the units of k. Strictly
speaking, they are the units (invertible elements) of the ring of algebraic
integers o.

We map kg into Euclidean s-space as follows. Let v;, ..., v, be the
absolute values of S. Map

z — (log [ll1, - . ., log [lz]l.),
and call this map
log: ks — R°.

By the product formula, the image of kg is contained in the hyperplane
defined by the equation

Ht-rt+H EH=0,
so that this image is at most (s — 1)-dimensional.

Unit Theorem. The image log(ks) is an (s — 1)-dimensional lattice
in R°.
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By saying that it is a lattice, we mean that it is a discrete subgroup of
R*, and by saying that it is (s — 1)-dimensional, we mean that the vector
space generated by it is the entire hyperplane mentioned above. Thus
in particular, it follows that log(ks) is a free abelian group on s — 1
generators. The kernel of our log mapping is clearly the set of roots of
unity in k because the kernel is a group, and its elements have bounded
absolute values, hence form a finite group.

Corollary. Let k be a number field and S a finite subset of M}, containing
the archimedean absolute values. Then kg modulo the group of roots of
unity in k 1s a free abelian group on s — 1 generators (s = number of
elements of S).

Observe, however, that the statement of the unit theorem is stronger
than the statement of the corollary. The unit theorem is actually equiva-
lent with a compactness statement, which we shall give in Chapter VII, §3.

We shall now prove the unit theorem.

Let us begin by observing that in any bounded region of R*® there
exists only a finite number of elements of log(ks). Indeed, if log(z) lies
in such a region, then the absolute values of z and its conjugates must
be bounded, and hence z can satisfy only a finite number of equations
of degree = [k : Q] over Q, because the coefficients of such equations are
elementary symmetric functions of z and its conjugates. By a well-known
property of Euclidean space, whose proof we shall recall at the end, it
follows that log(ks) is a discrete, finitely generated subgroup of R*. We
must prove that it has dimension s — 1.

For this purpose, we shall first prove that given an index 7, there exists
a vector (&, ..., &) in log(ks) such that ¢ > 0 and £; < O for j # <.
We shall then prove that any s — 1 such vectors are linearly independent
over R.

We need the following lemma.

Lemma. Given vy € My, there exists a number c(vg) > 0 such that for
any M -divisor c there exists B € k* such that

1 = ||Befls = c(vo)
for all v % vg in M.

Proof. Let ¢y be the number of Theorem 0. Let ¢o = 1 if v is archi-
medean, and let ¢¢ = Np, if pg is the prime of vo. Let ¢’ be an M-divisor
which differs from ¢ only at vg, and such that

1/¢1 £ ||dllx £ co/ca.

If vy is archimedean, we can adjust the vg-component as we please, in a
continuous fashion. If vy is discrete, the value group ranges over powers
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of Npo, and so we can also find the ¢’ subject to our condition. We set
c(vo) = co/c1-
By Theorem 0, A(¢/) > 1, and hence there exists an element a # 0 in
L(c’), that is,
llells = NIl

for all v € M. We put 8 = 1/a. Then the inequality on the left in the
lemma is satisfied. For the inequality on the right, we have

el = FETe < el = lle

WV

for all v € M. The product is taken over all w € My, w £ v. Since ¢’
is like ¢ except at vy, we have also proved the inequality on the right.

We return to the main proof. If v & S, then the value group of v is
infinite cyclic, generated by Np, and there is only a finite number of primes
such that if v5€S corresponds to the index ¢, then

Np = c(vo).

Consequently, by the lemma, there is a finite set of absolute values 8’ O S
having the following property. If ¢ is an M;-divisor, then there exists
B € k* such that

1= ||ells allv g S'.

‘Consider only such ¢ that ¢(v) 2 1 for all » and ¢(v) = 1 for all v & S.
For such ¢ there exists g with

1 = ||Bcll, = [18ll», v S
1= ”Bc”v = C(vo), v # V9.

Let B be the set of all such 8. Map B into RS'~S by
ﬁ = {”B“v}vES’-—S-

The image of B is finite. Let 8, ..., 8, be representatives in B for the
elements of this image. Let

b= Min [8.
vES’'—S8

j——-l ..... m

Then b > 0, and for all B € B there exists an S-unit ug € ks and some j
such that

B = ugB;j.
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For all ¢ as above, we can therefore find u € kg satisfying

ol20)

llucll, < )

all v £ v,.

We select ¢ such that ¢(v) is very large for all v € S. Then ||u|, is very
small for all v # vy, v € 8. By the product formula, it follows that |u|},,
is very large. The log of u has the desired property. This achieves the
first of our objectives.

As to the second, we have found elements z;, . .., z;,_; € ks such that

IOg z % (Ell) R Els)

log 2,1 = (Ec—l.ly sy Ea—l,a);

and such that the matrix of signs of the &;; is as follows:

—_—— e —
Let Y,,...,Y, be the column vectors. We must show that the first
s — 1 are linearly independent over R. Suppose that
@Y1+ +as_1Y,_; =0,
not all the coefficients being 0. Say @, > 0 and a; = a; for any j. Then
looking at the sum just in the first row, we get
0=a1t11 +azkiz+ -+ as1f1,561

Z a1t tarfi2+ o+ arée

a;(§11+ E12+ o+ £16-1)

because £;; is negative for j = 2,...,s — 1. By the product formula,
we must have

Ennt+ b2+ T+ 151 >0,

contradiction.

For the convenience of the reader, we repeat the proof that a discrete
subgroup of Euclidean space is a free abelian group. We do this by in-
duction on the dimension of the subgroup, i.e. the maximal number of
linearly independent elements over R.

Let T be our subgroup and ¢, ..., £, a maximal set of independent
vectors in I'. Let 'y be the subgroup of I' contained in the subspace
spanned by £;,..., tn—1. By induction, we may assume that any vector
of Iy is a linear integral combination of £y, ..., £m—1.
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Consider the subset T of all £in I' of the form
t=a151+ -+ amin
with real coeficients a, satisfying

0
0

a; <1, t=1...,m—1
a, £ 1.

A 1A

It is a bounded set. Let £, be a vector of 7' with the smallest a,, # 0, say
tn=bi&1+ -+ bnkm.

Starting with any vector ¢ of T, we can select integral coefficients
€1, ..., Cn in such a way that
P =Ft—cmim —C1f1 — - — Cm—ibm—1

lies in 7', and the coefficient of &, is <b,, and = 0. This coefficient must
therefore be 0, and &' lies in I'y. From this our result is clear.

Remark. It is sometimes useful to consider subgroups of finite index in
the unit group. They may arise in the following way. Let M be an additive
subgroup of the algebraic integers o, of finite index. An equivalent condi-
tion is that M has rank [k :Q]. Let u be a unit in 0. The map

T — uUx

is an additive automorphism of o, which maps M on an additive subgroup
uM. We have isomorphisms of factor groups,

o/M = o/uM,
and hence the same index,
(0: M) = (o:uM).
If m = (0:M), then every element of o/M has period m, and hence
0 DO M D mo.

Since o/mo is finite, we conclude that there is only a finite number of sub-
groups of o lying between o and mo. The unit group U is represented in
the finite group of permutations of such subgroups of 0. We conclude
that the subgroup Ujs consisting of all units u € U such that uM = M
is a subgroup of finite index in U.
Let
r=r + reg — 1.
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If a« € k, we let «'” be the j-th conjugate of a forj = 1,...,r; + r,. Let

{ul,. . .,u,}

be a set of generators for the ordinary unit group U, modulo roots of
unity. The absolute value of the determinant

Nilog [u{®| --- Njlog|ul™|

N,log|u{”| --- N,log|u{”

is independent of the choice of our generators u;, . . . , %, and is called the
regulator By = R of the field k. Since the log vectors of the units are
linearly independent, it follows that the regulator is not 0. We note that
this regulator, like all determinants, can be interpreted as a volume of a
parallelotope in r-space. The regulator oceasionally oceurs in the form

1 loglu® --- ,log |ut?|
+27NR = |: : : .
1 logfuy*? log [u{" D)

To see this, we multiply the ¢-th row of the determinant on the right by
N;, and add the sum of the first r rows to the last row. Then we get N
in the lower left-hand corner, 0 in the rest of the last row, and our assertion
is obvious.
The reason for the regulator appearing in the second form is as follows.
Let
G=RtX---xXRt

be the direct product of r; + ro copies of the multiplicative group of
positive reals. Map each unit « into G by

(1)|’ . (r+1)|).

u (lu - lu
This is a homomorphism of U into G, whose kernel consists of the roots of
unity. Let V be the image of U in G. Then V is contained in G°, the sub-

group consisting of all elements

y= (1, -, Yr41)
such that
r+1 Ne
y= Hl yit=1
Let uy, ..., u, be a set of independent generators for U modulo roots of

unity, and let 5y, ..., %, be their respective images in G. Then we have
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an isomorphism

g:RtXR — G
given by
g(t,2) = Vot - - af,

and the Jacobian matrix of this mapping is

1
Y1 Ni Y1 log 711 s Y1 log 7,1
Jac, (8, 2) = : :

1
Yr+1 N Yrgrlognirq1 oo Yrg1log merqa

Hence the Jacobian determinant is

1 logluf®l ---  log|ut?)
At 2) = Pttt |n :
Nt 1 logluf*V] --- log|u{™t?

from which we see the determinant as indicated above.
Observe that our map g gives us a natural parametrization of G in
terms of a Euclidean space R".

§2. Lattice points in parallelotopes
In this section, we shall give a refinement of Theorem 0.
Theorem 1. Let k be a number field, [k :Q] = N. Let By, be the constant

_2"(2m)"™

B, = Duz

Then, for ¢ ranging over M-divisors, the number \(c) of elements of L(c)
s given by
MO = Billells + O(llclle™""™),  llelle — oo.

In other words, there exist constants by, by > 0 depending only on k such
that for ||c/lx > bs we have

INe) — Bullellel = &a(llclla™*™).

Proof. We shall first make some remarks concerning M k-divisors.
Given an M;-divisor ¢, there exists a fractional ideal a of o; such that
a € a if and only if

lely = e(vy)
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for all primes p of or. This follows at once from the definitions. Thus
L(c) consists of those elements of a which satisfy certain inequalities at
the archimedean absolute values. We call a the fractional ideal associated
with c.

Given B € k*, we have A(Bc) = A(c). Hence to compute A(c), we may
change ¢ by an element of k*.

We know that the group of ideal classes of o is a finite group. Let
ai, ..., as be ideal representatives of the elements of this group. Multi-
plying ¢ by a suitable element of k*, we may assume that the fractional
ideal a associated with ¢ is equal to one of the a;.

Let ¢ be an M-divisor, and a its associated fractional ideal. Then

_ 1 N,
”c”k ~ Na ”gw Cy

where we write ¢, instead of ¢(v) to simplify the notation.

Lemma 1. Assume that the associated fractional ideal a ts equal to one of
the fixed representatives a;. There exists a unit u of o such that we have,
forallv € S,

c®elli™ < Jucly = ca(k)|clli’™,

where c;(k), ca(k) are two constants > 0, depending only on k.
Proof. Let V = ||c||x and let ¢, = ¢,(VNa)~Y¥ for all v € S,. Then

I ¥ =1.

vESw

Consider now the log vector

log(¢) = (..., log [chlls, - - -)veEse-

Since the log vectors of units form a lattice of maximal rank in the hyper-
plane of vectors such that the sum of the components is 0, it follows that
there exists a unit % such that

[log(¢') — log(z™")| < ¢3(k)

for some constant cz(k). The absolute value is the ordinary norm of a
vector in Euclidean space. From this we conclude that log(uc') is a vector
of bounded length, i.e. that there exist constants c4,c5 > 0 such that

cy = |ucyly = s

for all v € S,. We get the assertion of the lemma by substituting the
definition of .
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We let
Ap(o) = H ky.

vESw

We can identify this product with RY, because we have a product of r;
copies of the real numbers, and r, copies of the complex numbers. If v
is complex, we fix an isomorphism of k, with C. (We have a choice of two
such isomorphisms.)

Each ideal of oy is a lattice of rank N in this Euclidean space, if we
view o; as embedded in the natural way on the diagonal. The inequalities
imposed by our M,-divisor at absolute values v € S, can be viewed as
determining a region in this Euclidean space, and our problem has there-
fore been reduced to the following.

Given a lattice L of rank N in Euclidean N-space, show that under
certain circumstances, the number of lattice points in a parallelotope is
approximately equal to the volume of the parallelotope. This is precisely
what we shall do.

Let £y, ..., & be linearly independent vectors in R¥. The abelian group
generated by them is a lattice. By definition, a fundamental domain
for the lattice is any (measurable) set such that every vector of RY is
congruent to exactly one vector in the set modulo the lattice. For funda-
mental domain, we shall always select the set F of points

W&+t intn

with0 = ¢; < 1.
If ¢ is an M\ -divisor, we denote by P, the set of vectors z in

II k.= RY
vESw
such that

|zl £ ¢, forallve S,

and call P, the parallelotope determined by ¢ (at infinity).
Let n(c) be the number of translations F, of F which are contained in
P, for some z € L.

Let m(c) be the number of translations F, of F which intersect P, for
some z € L.

Let I(c) be the number of lattice points in the parallelotope P, Then
clearly

n(c) Vol(F) < Vol(P,) = m(c) Vol(F)

where Vol means volume in Euclidean space.
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The only lattice point in F, is z itself. Thus
n(c) = I(c) = m(c).

We shall now prove a theorem concerning any lattice in RY.

Theorem 2. Let c range over M-divisors such that for all v € S, we have
e VOI(PYUN = ¢, £ ¢7 Vol(P)V,

with constants cg, c; > 0. Let L be a fized lattice tn RY. Then, whenever
Vol(P,) > ¢, we have

_ Vol(P.)

" 1—1/N
I(c) = Vol(F) =+ ¢’" Vol(P,) )

with constants ¢’, ¢’’ depending only on cg, ¢7, and L.

Proof. 1t suffices to prove that m(c) — n(c) is bounded by a term of
order of magnitude B*~ ¥ if we set B = Vol(P,).

If a translation F, of our fundamental domain by an element z in L is
not contained in P, but intersects P, then it intersects the boundary
of P.. (Namely, the line segment between a point in F, N P, and a point
in F. but not in P, is contained in the convex set F. and crosses the
boundary of P.) We can write

Pc= H Dv,

vESw

where D, is the closed interval or the closed disc of radius c,, according
as v is real or complex. Then the boundary of D, consists of two points
or acircle, and

oP.= U [aD,,,,x II D,,]-

‘ersm VY

The dimension of the boundary is therefore N — 1. It will now suffice
to give an upper bound of the desired kind for the number of translations
F, which intersect each

aD,,x II D,

vy

because there are at most N such terms in the union. This will be done
by parametrizing the boundary by a map having suitable partial deriva-
tives. We recall that if ¢ is a differentiable map with derivative ¢’, then
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for any two vectors y, z we have

le@) — e@)| = |¢] ly — 2|,

where | | is Euclidean norm, and |¢’| is the maximum of the norm of the
derivative of ¢ on the segment between y and z. (This is the mean value
theorem.)

We parametrize P, by a map

o:IN > P,

sending the N-cube with sides of length equal to 1 onto P, as follows.
If v is real, we map

t—>20,(t— %), 0=t

IIA

1

and if v is complex, we use polar coordinates, and map

(u, 0) — (cou, 270),

A 1A

1.

Each partial derivative of ¢ is then bounded by ¢, times a constant
(2 or 27), and hence there is a constant cg (= 2wNc;) such that
l¢'| < csB'M.

The boundary of P, is then parametrized by the (N — 1)-cube IV~
If we cut each side of IV ™! into [BY¥] segments of equal length, we get
a decomposition of IV~ into

[Bl/N]N—l

small cubes, of diameter < (N — 1)¥/2/[BY¥]. The image of such a
small cube under ¢ has diameter

(N — 1)112
[Bl/N]
Cg.

IIA

c8[BIIIV]

A

The number of translations F, (x € L) which meet a region of diameter
=< cg is bounded by a constant ¢; o depending only on ¢g and the diameter
of F. Thus the image of a small cube under ¢ meets at most ¢ translates
F. of F by lattice points. Since we have [BY~"/¥] small cubes, we see
that o(IV 1) meets at most ¢;o[BY~"/¥] translates of F. The boundary
of P, consists of at most N pieces, each of which can be parametrized as
indicated. This proves our theorem.
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The next lemma determines the volume of the fundamental domain of
an ideal a of o; viewed as a lattice in Euclidean space

RY = ] k.

‘vESm

Lemma 2. Let a be an ideal of the ring of integers of k, and let F be a
fundamental domain of a, as lattice in RY. Then

Vol(F) = 27"%| Dyo(0)|*/> = 2~"*Nav/[Dyl.
Proof. The ideal a has a basis «;, ..., ay over Z.

Letoy,...,0,, be the real embeddings of k. Let 7y,...,7,, and their
conjugates be the complex ones. Each « in k¥ maps on the vector

(o10y...,0,,0,T10y. .., TrQ).

Let us write
Tja = z; +V —1y;

where (z;, y;) are real coordinates in the complex numbers C. Thus
Tjav':xjv’i‘\’—lij, v=1,...,N.

The discriminant of a as a module over Z is the square of the determinant

g1y ... O10N8
. . Ty
Tyt Wi ... Tiv+WiN }1'2
Tyi— Wi ... TN —WIN }1'2

Adding the last set of 7, rows to the middle rows, and then subtracting
again, we see that this determinant, up to a sign, is equal to

g1y ... Oi1an
9" IC}l [ x}N
Yn ... YN

and the determinant obtained here is the determinant of a set of basis
vectors for a as a lattice in RY having all their components in the direction
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of the canonical unit vectors of RY. Thus we obtain

V/[Drje(a)] = 27 Vol(F)
as desired.

We can finally show how Theorem 2 implies Theorem 1. We had seen
that we could assume our M -divisor such that the condition of Theorem 2
was satisfied, and also such that its associated ideal a is one of a finite
number of representatives of the ideal classes.

For any M ,-divisor ¢, we find

Vol(P) = T @) II (wcd) =2"a" J] o*

vreal v complex vESw
Vol(F) = 27 "2Nav/|Dy|
whence

VolPy _ 2n@m |
Vol(F) — [DiJuz Ik

thereby proving Theorem 1.

§3. A volume computation

We begin with some remarks on convex bodies in Euclidean space RY.
We let u be the ordinary measure in RV,
A subset C of RY is said to be convex if, whenever z, y are points of C,
then
tx+ (1 — )y, 0=st=1

also lies in C (in other words, the line segment between z and y lies in C).
We say that C is symmetric (with respect to the origin) if x € C implies
—zeC.

Theorem 3. Let L be a lattice of dimension N in RY, and let C be a
closed, conver, symmetric subset of RY. If

#(C) = 2Nu(F),
where F 1s a fundamental domain for L, then there exists a lattice point = 0
in C.

Proof. We shall first prove the theorem under the assumption
w(C) > 2Vu(F).

Under this assumption, we contend that there exist two elements in
3C whose difference is in L. Indeed, we have

1c=U GCcnF,) (disjoint)

zEL
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and
B(3C) = > w(3C N Fy)
zEL

= EZL u((3C)—z N F).

But #(3C) = 1/2" - u(C). Hence the sets (3C)_, N F cannot be disjoint
(otherwise the assumption on the measure of F would be contradicted).
This means that there exist two vectors y,, y2 € C such that

3+ 2z = dy2 + 2

with suitable z;, x5 in L, and z; £ z,. This proves our contention.

This gives 4(y; — y2) € L. But y; €C implies —y, €C, and so
4(y1 — y2) lies in C by convexity, as desired.

Suppose that u(C) = 2Vu(F). For évery € > 0,

(@ + €)C) > u(C) = 2¥u(F),

and hence there is a lattice point in (1 + €)C. Letting € tend to O shows
that one of these lattice points must be in C.
Our next task is to compute a volume.

Lemma 3. Let
RY = ]I k.,

vESw

where k, ranges over the reals taken r, times, the complex ro times, and
N = r; + 2ry. For each number a > 0, let A be the convex region deter-
mined by the inequality

>, Nz S a

vESao

and denote its volume by V., ,,(a). Then

ryg— 1
Vir(a) = 27477%(2m)"™ £y 0™
Proof. To begin with, it is clear that
Vrl,rz(a) = aNVrl,rz(l))

because
2 Nofao| = laa| +--- + |27,
vES®
+ lz"|+1| + |§'1+l| +-ee |ZT1+le + |21‘1+1‘2|'
The complex variables 2, 41, ..., 2r,+r, Will now be replaced by polar

coordinates.
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We wish to find V, ,,(1). Use polar coordinates (u;8;) with
0 < 6; < 2mand 0 < u; to describe z;. We have

Vflfg(l)
= /un+l St Urygry Gyt AUy By - Ay ey BB gy e - Ay gy,

the integral being taken over the region

[ual + -+ + ury| + 2ur 41 + - - 4 2ur, 40, S 1

Restricting the region of integration so that «; = 0 for all ¢ multiplies the
integral by 2",

We make the change of variables 2u;=w;, 2du;=dw; for
ry+1 = j = r;+ ra. The integral becomes

2'14—'2(21')'2er ,rz(l))
where

W'lv"z(b) = [uf1+1 Tt Uritrg duy - - du'l +ra

the integral taken over the region «, = 0 for all ¢, and

u1+"'+ur1+rz = b
But
Wiirg(b) = bNWn.rz(l).

We can split off the integral over du, between 0 and 1, and write the
integral
1
W";,Tz(l) = fo Wfl—l,fg(l - ul) dul

1
= N Wr;—l,r,(l)y

performing a trivial integration on %; and using the homogeneity. By
induction, we get rid of the first set of variables and get

1
NN—-1)---(N—r+1)

Wfl.fz(l) = WO.TQ(I)'
In a similar way, we get

1
Wo,r,(1) = fo t(1 — )22 dt, Wo,r,—1(1),
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which, after performing the integration and using induction, is

=1
= @ra)!

1

Wo,0(1) = @

This yields

1
er.rg(l) = 'ﬁ"

whence the desired value for V,, ., drops out.

§4. Minkowski’s constant

Let k be of degree N over Q and let a be an ideal of the integers o,
viewed as a lattice in R¥. We select the number a in Lemma 3 such that
the region of that lemma has volume at least equal to 2V times the volume
of a fundamental domain for a. We denote by d, the absolute value of
the discriminant Dyx. Then the value of a such that

aV¥ = N4"x"Nad}/?

will achieve our purpose, in view of Lemma 2, §2. By Theorem 3 there
exists a lattice point in the region of Lemma 3. This means that there
exists an element a € a, a # 0 such that

lowa) + -+ + onal = a.
The geometric mean being bounded by the arithmetic mean, we get

(@) s dnnel e lowe]

N
whence
ING(a)| = 1—‘\‘,1,,, = —%4”#”’Na di'?.
We have a factorization of ideals,
() = ab,

where b is an ideal. Hence

|N§(a)| = NaNb.
Canceling Na, we have:

Theorem 4. In any ideal class, there exists an tdeal b such that

Nb < Cidi'?,
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where Cy, 18 the Minkowski constant:

N! [ 4\™
0B
Corollary. The absolute value of the discriminant di ¢s > 1. There is

at least one prime ramified tn k.
Proof. We have Nb = 1 whence

T 27y N2N T N N2N
e 2 (Z) anz: =\3) @
If N = 2, then we obtain at once d > § > 1. Our assertion will be
proved if we show that the sequence of numbers

7_|' N N2N

4/ (N)12
is monotone increasing. Taking the ratio of two successive numbers, a
trivial computation proves what we want.

I copied the following table of values for the Minkowski constant in a
course of Artin 20 years ago. ’

4\ N!

N ry Tro (1—1_) W

0 1 0.63661
2

2 0 0.5

1 1 0.28299
3

3 0 0.22222

0 2 0.15198
4

2 1 0.11937

4 0 0.09375

1 2 0.06225
5

3 1 0.04889

5 0 0.0384
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For large N, we see that di = (1/N)(we2/4)V.

We conclude by an example of which Artin was very fond. Consider
the equation f(X) = X5 — X + 1. The discriminant A of a root of
X34 aX 4+ bis 5%* 4+ 2%°. In this special case,

A = 2869 = 19 - 151.

Each prime factor occurs to the first power.

Let « be a root of f(X) and k = Q(«). Then « is integral over Z. Since
f(X) is irreducible mod 5, it is irreducible over Z (or Q) and k is of degree 5
over Q. The discriminant of Z[«] as a module over Z has no square factors.
Hence it must be equal to D(ox), because it differs from D(o) by a square.
Hence Z[a] = o, by Proposition 10 of Chapter 111, §3.

It is not difficult to show that the Galois group of the polynomial is the
full symmetric group. Hence the splitting field K has degree 120 over Q.

By the Minkowski theorem, every ideal class has an ideal b such that
Nb < 4 (using the value for the Minkowski constant in the table and
trivial estimates). Since Nb is an integer, it is either 1, 2, or 3. If Nb = 1,
the only possibility is that b is a prime ideal p with Np = 2 or 3. This
would mean that the residue class field ox/p has degree 1 over Z/pZ and
hence that f has a root mod 2 or mod 3. This is impossible (direct compu-
tation), and hence the only possibility is that Nb = 1. But then b = (1)
and (oh miracle!) every ideal is principal. The ring of integers is a prin-
cipal ideal ring.

As Artin noticed, it can be shown that the splitting field K is unramified
over the extension Q(+/D) = Q(+/19 - 151).

Artin’s example also gives an example of an unramified extension whose
Galois group is the icosahedral group. As he once pointed out, given any
Galois extension K of a number field k, with group G, there exist infinitely
many finite extensions E of k such that K N E = k and KE is unramified
over E. To obtain such E, it suffices to construct an extension which
absorbs locally all the ramification of K (this puts a finite number of
conditions on E, which can be realized by the approximation theorem),
and one must insure that E N K = k. To do this, one can for instance
use the existence of primes and density theorems proved in a later chapter.
We leave it as an exercise.

As a final application of the Minkowski theorem, we shall prove:

Theorem 5. If k is a number field, denote by N, and dy the degree [k : Q]
and absolute value of the discriminant respectively. Then the quotient
Ni/log di is bounded for all k = Q. Furthermore, there exists only a finite
number of fields k having a given value of the discriminant.

Proof. The first assertion follows from a trivial computation involving
the inequality of the Corollary to Theorem 4, and the standard estimate
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from Stirling’s formula
N! = NV¥e™V \/2zN JI12¥V | 0<0<l.

We leave it to the reader. This shows that the degree is bounded when

the discriminant is bounded. Hence to prove the second assertion, we

must show that there is only a finite number of number fields k£ having

given degree N and given absolute value of the discriminant d.
Consider Euclidean N-space

RY = I k..

UGSQ

Suppose that there is at least one complex absolute value vy. Consider
the domain defined by the inequalities

Izvo - EVol é C‘ld”2
lzl’o + Eﬂol < %
o] < &, v # vy,

where C; is a large constant, depending on N. Here we denote by z, an
element of k., identified with C or R as the case may be.

Then our domain is convex and symmetric with respect to the origin.
Consequently it must contain an element o # 0 in o;. Since the norm
of a has absolute value = 1 (being a non-zero rational integer), it follows
from the first inequality that the absolute value of the imaginary part of «
is greater than 1. Hence the two conjugates of a corresponding to v,y are
distinct. Furthermore, « is distinct from any other conjugate, since
already its absolute value at vq is distinct from its absolute value at
v # v9. Hence a is a generator for k over Q. Its equation over Z has
coefficients which are elementary symmetric functions of a and its con-
jugates, and are therefore bounded as a function of d and N. Hence such
a can satisfy only a finite number of equations over Z, thereby proving
our theorem if there is a complex vy. If all absolute values are real, the
proof is even easier, since we can replace the first pair of conditions
simply by

|2e| = C1d"?

and argue in the same way.



CHAPTER VI
The Ideal Function

§1. Generalized ideal classes

Let k& be a number field, and let I denote the multiplicative group of
non-zero fractional ideals. Let P be the subset of principal ideals. If
a, b are fractional ideals (which we say from now on, instead of non-zero
ideals, unless otherwise specified), then we write a ~ b (a is equivalent to b)
if there exists @ € k such that a = ()b, i.e. ab™! is a principal fractional
ideal. Then the equivalence classes of fractional ideals form a finite group
(as we saw in Chapter V, §1), which we call the ideal class group. Its
order is usually denoted by 4, and is called the class number of k.

We shall now refine the notion of ideal class group. By a cycle (of k)
we shall mean a formal product

— m(v)
c vZAI{E v ’
where v ranges over the normalized absolute values of k (inducing the
ordinary absolute value of a p-adic absolute value on Q), with exponents
m(v) which are integers = 0, and such that m(v) = 0 for all but a finite
number of v. Thus we are interested in assigning a multiplicity = 0 to
each absolute value. Actually, we shall not care about the complex v,
and if v is real, then we only care whether m(v) = 0 or m(v) > 0. Thus
for our purposes, we could take m(v) = O or 1 in case v is real, and leave
out the complex v altogether.

From a notational point of view, the literature extends the notation
to apply to the archimedean absolute values in M}, and also to say that
such v are “primes”, or “primes at infinity”.

We shall avoid this, and reserve p to denote (non-zero) prime ideals
of 0. If v = v, for some prime p, we do however also write m(p) instead of
m(v). We write p|c or v|c if m(p) [or m(v)] is > 0, and we also say in that
case that v (or p) divides c. We call m(v) the multiplicity of vin ¢. Welet

6= pm(v) or € = vm(v)

denote the local s»-component of ¢, if p corresponds to v.
123
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We denote by ¢o the product

co= II @
PV
taken over all prime ideals p, and call it the finite part of c.

We let I(c), or I(k, ¢), or Ii(c), denote the set of fractional ideals rela-
tively prime to ¢y (or as we shall also say, prime to ¢). Thus I(c) is the set
of fractional ideals not divisible by any prime ideal p having a multipli-
city > Oinc.

Next, we introduce a subgroup of k* as follows. If a € k*, we define

a=1 (mod*c)

to mean that « satisfies the following two conditions:

(i) If p is a prime ideal with multiplicity m(p) > O, then « lies in the
local ring o,, and

a=1 (mod mp®),

where m, is the maximal ideal of o,. Symbolically, we also write
this congruence in the form

a=1 (modc,).

(i) If v is a real absolute value in M} having multiplicity m(v) > 0
in ¢, and g, is the corresponding embedding of k in R, then

o.a > 0.

It is clear that those elements of k* satisfying (i) and (ii) form a group,
and we denote this group by k.. We observe that elements of k. are neces-
sarily p-units if p is a prime dividing ¢. [As a matter of notation, we write
X (c) to denote the subset of X consisting of those elements prime to ¢,
and X, to denote the subset of X consisting of those elements satisfying
the congruence relations (i) and (ii).]

We denote by P, the subgroup of P consisting of those principal frac-
tional ideals () with @ € k.. Then it is clear that P, is a subgroup of I(c).
The factor group I(c)/P. will be called the group of c-ideal classes. We
shall see in a moment that it is finite, and has the ordinary group of ideal
classes as factor group. If ¢ = 1, we agree to the convention that I(1) = I
is the group of fractional ideals, and P, = P.

First, we observe that every ideal class in I/P has a representative in
I(c), i.e. has a representative ideal prime to ¢. To see this, let a be an
(integral) ideal in a given class mod P. If ord, a = r(p) for a prime ideal
p|c, we solve the congruences

a=m® (modp ™+l
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for p|c, using the Chinese remainder theorem. We use the notation m, for
an element of order 1 at p. Then a(a™!) is prime to c. Again using the
Chinese remainder theorem, we can multiply a(a™!) by a suitable alge-
braic integer in k, prime to ¢, to make it an ideal (i.e. not fractional). Thus
the inclusions

I -1

l I

PnI()—P

induce an isomorphism of factor groups
(1) I(c)/P(c) = I/P,

where P(c) denotes the group of principal fractional ideals prime to ¢,
so that

P(c) = P n I(c).
We note that P(c) contains P,, and we have the tower of subgroups
I(c) D P(c) D P..
We therefore have a surjective homomorphism
I(c)/P.— I(c)/P(c) =~ I/P.

Its kernel is P(c)/P,, which we shall now analyze.

We have the surjective homomorphism k* — P, which to each a € k*
associates the principal fractional ideal (). Its kernel is the group of units
U. Similarly, if k(c) denotes the subgroup of k* consisting of those ele-
ments whose ideal is prime to ¢, then we have a surjective homomorphism

k(c) — P(c)
given by

a— (a).

The inverse image of P, is precisely the subgroup Uk., where U denotes
the group of units of k, thus giving rise to the diagram

k(c) — P(c)
U‘lcc — P!c
and the isomorphism
(2) k(c)/Uk, = P(c)/P..

Let Rt denote the multiplicative group of real numbers > 0. Ifvisa
real absolute value, then k) = R¥, and k¥*/k} =~ {1, —1}. For p|co let
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m(p) be its multiplicity. We consider the map

®) k(c) — III (0p/my™®)* X I|I ky/k3
bleg vl¢
vreal

which to each a € k(c) associates its residue class in the corresponding
factor. If pis a prime ideal, then (o,/mP*®)* is the group of units (invertible
elements) in the residue class ring o,/mI®. Using the approximation
theorem, one sees at once that our map is surjective, and from the defini-
tions, it follows directly that its kernel is precisely k.. Thus we have a good
description of the factor group k(c)/k. as a direct product of local factors
shown in (3).
As in the rational case, we define the Euler o-function. We let

¢»(co) = order of the group (o,/mp®)*

¢(co) = H ev(Co)-

vleg

and

It is clear that
ep(co) = (Np — 1)Np™® 1,

We already see that I(c)/P. is finite, and the order of k(c)/k. is given in
terms of the Euler function.
Finally, we have the tower

k() D Uk, Dk,
and we look at the factor group
(C)) Uk/ke = U/(Unk) = U/U,,

where U, consists of those units = 1 (mod* ¢). In the above manner we
have unscrewed the group of c-ideal classes into various constituents,
which in particular allow us to write down a formula for its order. For
clarity, we write down the diagram of what we have done.

Ic) > 1I
| l
k(c) = P(c) » P
l I
U — Uk, — P,

I I
U.— k.

Two opposite vertical bars represent isomorphisms of factor groups. For
each horizontal arrow, the group on the left is the inverse image of the
group on the right under the corresponding homomorphism.
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Theorem 1. The group of c-ideal classes I(c)/P. is finite. If h ts the
class number of k, and k. is the order of I(c)/P,, and s(c) is the number of
real v|c, then
b — he(co)2*®

i (U:U,)

It is a reasonable convention to define

o(c) = ¢(c0)2°*,

so as to include the archimedean v into the definition of the Euler function.
Then we can write

_ _he(9)
he= w0y

We note that U, being of finite index in U, it has also
r=r;+rs—1

independent units, and the additive group of “log vectors” of elements
of U, is a lattice in R".

If {e¢;,...,¢€} are independent units generating U modulo roots of
unity, and if {9y,..., #,} are independent units generating U. modulo
roots of unity, then the logs of these units respectively generate lattices
in R’, denoted by log U and log U, respectively. We can define the
t-regulator B, by

R = |det(log| o;2:"7)],

withi=1,...,randj=1, ..., r. Just as the regulator B can be
interpreted as the volume of a fundamental domain, so can we interpret
R, as the volume of a fundamental domain for log U, in R".

Ezample. We conclude this section by an example which is in some
sense “typical”. Let k = Q. Each prime ideal is represented by a prime
number p, and we let v, denote the real absolute value. Let m be a positive
integer, representing an ideal (m), and let ¢ = mv,. Then Un,, consists
of 1 alone. The group I(c) consists of those ideals prime to m, and Q,,,,,
consists of those positive rational numbers a such that

a=1 (mod* m).

Any class of I(mvy)/Pmy, can be represented by an arithmetic progression
of positive integers prime to m. The generalized ideal class group is iso-
morphic to (Z/mZ)*, namely the multiplicative group of integers prime
to m, mod m. Thus we can view our generalized ideal classes as generaliza-
tions of arithmetic progressions tn number fields.
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§2. Lattice points in homogeneously expanding
domains

By a lattice in RY, we mean as usual a discrete subgroup of rank N.
Let L be such a lattice, and let D be a subset of RV. We denote by 8D
the boundary of D (set of points in the closure of D, not lying in the
interior). We let tD denote the set of points tx, for t € R and z € D.
Then 9(tD) = tdD. We are interested in an asymptotic formula for
the number of points of L in ¢D. To get this, one has to make some assump-
tion on the smoothness of the boundary, as follows. Let S be a subset of
some euclidean space. A map

¢:8S—> RN

is said to satisfy a Lipschitz condition if there exists a constant C' such
that for all z, y € S we have

le(z) — ()| = Clz — y|.

Let I* denote the unit cube in k-space, that is the set of points
(x1,...,zx) with0 < z; < 1. A subset T of RY is said to be k-Lipschitz
parametrizable if there exists a finite number of Lipschitz maps
¢;: I¥ — T whose images cover T'.

Let wy, ..., wny be a basis for the lattice L over Z. The set F of all
points

lLiwy + - -+ tvwy, 0o=st:<1)

is a fundamental domain for L. Then the translations F, of F by
elements le L cover RY and are disjoint. Every element of RY has a
unique representative in ¥ modulo L.

We let Vol denote volume in N-space.

Theorem 2. Let D be a subset of RY and L a lattice in RY, with funda-
mental domain F. Assume that the boundary of D is (N — 1)-Lipschilz
parametrizable. Let \(t) = N, D, L) be the number of lattice points
intD. Then

Vol(D) ~

_ N—
W)“Vol(F)‘ + oM,

where the constant in O depends on L, N, and the Lipschitz constants.

Proof. If a point I € L lies in tD, then F; intersects tD. Furthermore,
either F; is contained in the interior of ¢D, or F; intersects the boundary
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of tD. Let:

n(t) = number of [ € L such that ! € ¢D.
m(t) = number of l € L such that F; C interior of ¢tD.
b(t) = number of [ € L such that F; intersects atD.

Then
m(t) < n(t) < m(t) + b(@),
and
m(t) Vol(F) < VoltD < (m(t) + b(t)) Vol(F).
Hence

m() < YA < m() + b0,

and to conclude the proof, it suffices to estimate b(t). Let ¢: IV~ ! — R¥
be one of the parametrizing maps for a piece of the boundary of D, with
Lipschitz constant C. Then {p parametrizes a corresponding piece of atD.
Let {t] denote the largest integer < ¢, as usual. Cut up each side of the
unit cube IV ! into sides of length 1/[t]. We then get [t} ~! small cubes.
The image under ¢ of each small cube has diameter < C,/[t], and hence
the image under {y of each small cube has diameter < C5. The number
of I € L such that F; intersects the image of such a small cube under tp
is then bounded by C’, where C’ is a constant depending only on L and C.
Hence
b(t) < C'V L.

This proves our theorem.

§3. The number of ideals in a given class

Let I be the group of fractional ideals of k, and P the subgroup of
principal fractional ideals. We are interested in an asymptotic formula
for the number of ideals a in a given class of I/P such that Na =< ¢, for
t — oo. More generally, we want such a formula for the ideals in a gen-
eralized class of I(c)/P. for some cycle c. We begin by sketching the
argument in the simplest case. We let a, b denote ideals (not fractional).

Let & be a given ideal class mod P, and let b be an ideal in the inverse
class. For each ideal a € &, the ideal ab is then a principal ideal (£) con-
tained in b (because we took a to be an ideal, so a C 0). We have

Na £ ¢ if and only if N(ab) = N(£) < Nb-¢.
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Elements «, 8 of k are called equivalent if there exists a unit u such that
a = uB. Let j(!,t) be the number of ideals a € ® such that Na =< ¢.
Then j(&, t) is the number of equivalence classes of elements ¢ € b, £ = 0,
such that Nt < Nb-¢. Let U denote the group of units. Then U operates
on the number field k, but we may also view U as operating on Euclidean
space
Ax(w0) = RV = ] k..
vESx

(If v is complex, we fix a definite identification of k, with C.) Namely, if
u € U, and (a,) is in RV, then

u(av) = (0‘1,'u - a,),

where g, is the embedding of k in %k, corresponding to v.

Elements £, 7 of RY are said to be in the same orbit of U if there exists
a unit % such that § = us.

We can define the norm on R¥ = A;(o0), namely if ¢ = (&,), then we let

Ne= IJ |~

vESw

If £ 7 are in the same orbit of U, then clearly Nt = Ny. For £ € Ax(o0)
we have
N(tf) = t"N¢.

We are of course interested in elements ¢ # 0 in b, and hence it is useful
to deal with the subset of Ax(0) given by

Jk(OO) = H k:’

VESw

consisting of those elements having non-zero coordinates at all » € S...
Then Jk(o0) is stable under the operation of U, and we can define the
notion of a fundamental domain D in J4(w0), namely a subset such that
every orbit of U has a unique element in D. We can then say that j(f, t)
is the number of elements £ € b such that

@ Nt <Nb-t and ¢eD.

If Y is a subset of 4x(0) and ¢ > 0, we let Y (f) be the subset of ¥ con-
sisting of those elements  such that N¢ < t. Assume that we are able to
construct D such that tD = D for every real t > 0. Then

D(t) = tY¥D(1).
With this notation, our conditions (1) are equivalent to the condition

(2 t € D(Nb - t),
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and we get the fundamental formula:

J(®, ) = M((No - )YV, D(1), b).

In other words, the number of ideals a € & such that Na =< ¢ is equal to
the number of points of the lattice b lying in the domain

(Nb - )Y¥D(1) = D(Nb - t).

This reduces the problem of computing j(f, f) to Theorem 2, §2, provided
that we can construct D(1) so as to satisfy the hypothesis of that theorem
(that is, Lipschitz parametrizable boundary).

For convenience, it is easier to construct a fundamental domain for a
free abelian subgroup of the unit group (i.e. disregard the roots of unity).
If we do that, and count the number of points of the lattice b in such a
domain, then we get w - 7(f, t), where w is the number of roots of unity in k.

The whole discussion can be applied more generally to ideal classes of
I(c)/P. as follows. We shall prove:

Lemma 1. Let ¢ be a cycle of k. Let V be a free subgroup of U. which
generates U, modulo roots of unity. Let Jy(o0,c) be the subset of Ji(0)
conststing of those £ such that &, > 0 if v is real, v|c. There exists a funda-
mental domain D for the operation of V on Ji(ec, ¢) such that tD = D
if t > 0, and such that D(1) has an (N — 1)-Lipschitz parametrizable
boundary.

Let us postpone for a moment the proof of Lemma 1. Let & be an tdeal
class of I(c)/P., and let j(R, t) be the number of ideals a € & such that Na < .
Select b € 8 !. The map

a—ab= (%)

establishes a bijection between ideals of a € &, and U~equivalence classes
of elements £ satisfying the pair of conditions:

t=1 (mod*c), t=0 (modbd).
If w, denotes the number of roots of unity in U,, then we see that:

w.J(R, t) is equal to the number of elements £ satisfying
teb,
¢=1 (mod ¢o),
te DINb-t) = (Nb- )YV D().

We wrote £ =1 (mod ¢p) rather than { =1 (mod* ¢) because our third
condition, that ¢ € D, already guarantees that o, > 0 if v is real, v|c,
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since D is contained in Jx(o0, ¢). The two congruences
£ =0 (mod b) and =1 (mod ¢g)

define a translation of the lattice (ideal) by in RY = A(w0), because if
£o 1s one solution of these congruences, then the map

t— £— &

gives a bijection of the set of solutions of these congruences and beg.
[Note that b, ¢o are relatively prime, and the Chinese remainder theorem
applies, i.e. £ = 0 (mod bcy) if and only if £ = 0 (mod b) and z =0 (mod ¢g).]
Thus we have shown:

Lemma 2. Let the notation be as tn Lemma 1, and let L be the lattice
obtained by translating beg by one solution of the two congruences above.
Then w.j(R, t) is equal to the number of elements of L lying in

(N6 - )YV D(1).

We are therefore in the situation discussed in Chapter V, §2. Observe
that the volume of a fundamental domain for bcg in RY is the same as the
volume of a fundamental domain for the translated lattice L.

Theorem 3. Let ¢ be a cycle of k, and let & be a class of I(c) modulo P..
Then

H(R, ) = pd + O@*—1M),

where
_ 2"(27)"*R,
Pe= wc\/EZ Nec '
and:

R, is the c-regqulator,

Nc¢ = 2°©Ne,,

s(c) is the number of real v|c,

we 18 the number of roots of unity in U,

dyi. s the absolute value of the discriminant of k.

In particular, if  is an ordinary ideal class modulo principal ideals, then
2"(27) 2R
wv dk

where R s the regulator, w the number of roots of unity in k, and dj, is as
above.

iRt = t+o@—m),
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Proof. In Chapter V, §2, we had computed the volume of a fundamental
domain for the lattice of an ideal bcg, and found it equal to

27"2NbNcoV d.

In view of Lemma 2, there remains only to prove Lemma 1, i.e. construct
a suitable fundamental domain for V in Ji(o0, ¢), and to prove that

Vol D(1) = 2n*©x"2R,,

We shall essentially follow Hecke to do this.
We proceed to construct D. Let
g:Jk(oo, C) - H R,

vE S,

be the homogenized log map given by

o) = (108 —N";;;—”,N - Jeese

As usual, ||£,]| = |&|Y>. Then we see at once that the image of g is con-
tained in the hyperplane H consisting of all elements z such that

Z zv=zl+"'+zrl+r2=0-

‘UESm
Let {n1,..., n,} be a set of generators for V and let g(5;) = y;. Then
{¥1,...,yr} is a basis for a lattice in H, and is the usual image of these
units under the log mapping, because for any n € V we have Ny = 1.

We let F be the usual fundamental domain for this lattice in H, namely
the set of all linear combinations

&y + -+ ¢, 0=<¢ <1
Let

D = g~ Y(F).

It is immediately verified that D is a fundamental domain for the action
of V on Ji(w, ¢) and that for any real { > 0 we have tD = D. This last
condition comes from the fact that

legoll gl
Nep™™ o NgTI

We note that D(1) is bounded, because for each coordinate £, of an
element of D, we have

‘Evl § NEIINeBr’



134 THE IDEAL FUNCTION [VI, §3]

where B is a bound for the elements y;. Hence if § € D(1), we have
|&,| < ePr.

We shall now simultaneously see that the boundary of D(1) is (N — 1)-
Lipschitz parametrizable, and compute the volume of D(1).
For this purpose, we use polar coordinates, namely

(piy6:) (G=1,...,11+r2)
such that 0 = p; for all 7, and

6; = =1 ifi=1,...,rlbut9,-=1ifv,-|c
0<6; <27 fi=r+1,...,r1+ra

The inverse image of our domain D(1) in the polar coordinate space is
described by the conditions

1472 N

0< JI pit=1
(3) =1 1 Ty+To N r

log p; — 3:log II pi = 3 c;log |mgl

=1 q=1
with0 < ¢; < 1for ¢g=1,...,r. These conditions (3) do not involve
any of the angles 6;.
Let us denote by P the set of (py,...,pr,+r,) satisfying 0 < p; and

also satisfying conditions (3), i.e. the inverse image of D(1) in the polar
coordinate space. For the Lipschitz parametrizability of the boundary
of D(1), it will suffice to show that the boundary of P in (r; + r3)-space is
(ry + r2 — 1)-Lipschitz parametrizable. Furthermore, we have

Vol D(l) = 2”_8“)(277'),-2/ Tt [Pr1+1 *c o Pridrg dpl Tt dpr1+r2'

where the integral is taken over P. We change variables, and consider the

cube 8 in (r; + r)-space with variables (u,cy,..., ), satisfying the
inequalities

O<u=1
@ [

0=<¢ <1

We have a bijection f:.S — P between this cube S and P, given in one
direction by

pJ' = u”N exp (Zl cq ].Og lo'iﬂql) = ff(uy C1y--+, C,-).
g=
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In the other direction, we have
ritr2

u= JI o
=1

and the numbers ¢, are uniquely determined by (py, .. ., pr,+r,) because
the determinant det |ojng|(j,¢ = 1,...,r) does not vanish. This deter-
minant is in fact the R.regulator, by definition.

The Jacobian determinant of our map is easily computed. For instance,
we find

l .
dp;/du = 5 % and  9p;/dc, = p;log |ojn,|.

Hence the Jacobian determinant of f is

1 1 lOg lalﬂll te log lalﬂrl

N ... : : :
Pry+1 Pritry 1 log |0f1+72”1| .o+ log lUr,+r,ﬂr|

Adding the first r rows to the last after multiplying the j-th row by N},
we find that this Jacobian determinant is equal to

1

— 27 "2R.
Pry+1° " Prytr,

Hence

Vol D(1) = 2"1~*9(27r)" [S 2 "R dp = 2" 7R,

where u is Lebesgue measure. The volume of the cube S is of course equal
to 1, and we have computed the volume of D(1) as desired.

Finally, as to the parametrizability, only the exponent 1/N of u is not
continuously differentiable. But this is harmless: We just reparametrize
the cube, letting say » = u) with another variable u;. We then get a
continuously differentiable parametrization of the closed cube (compact)
onto the closure of P, given by

T

pPj = Uy exp ( Cq ].Og |o'jﬂql> :
1

q=

It follows immediately that the boundary of P is (r; + rs — 1)-Lipschitz
parametrizable, because the boundary of our closed cube trivially has
this property. This concludes the proof of Lemma 1, and also the proof of
our main result, Theorem 3.






CHAPTER VII
Ideles and Adeles

In classical number theory, one embeds a number field in the Cartesian
product of its completions at the archimedean absolute values, i.e. in a
Euclidean space. In more recent years (more precisely since Chevalley
introduced ideles in 1936, and Weil gave his adelic proof of the Riemann-
Roch theorem soon afterwards), it has been found most convenient to
take the product over the completions at all absolute values, including
the p-adic ones, with a suitable restriction on the components, to be
explained below. This chapter merely gives the most elementary facts
concerning the ideles and adeles (corresponding to a multiplicative and
additive construction respectively), and their topologies. In each case,
we prove a certain compactness theorem, and construct a fundamental
domain. Although we use the existence of fundamental domains later,
we shall not need any explicit form for them.

Given any group scheme over the ring of integers o; of a number field,
one can take its points in the adele ring, and one can try to prove similar
results. This leads into the arithmetic theory of algebraic groups, and we
do not deal with it here. Suffice it to say that the ideles turn out to be
the points of the multiplicative group scheme in the adele ring.

§1. Restricted direct products

Let k be a number field. For each absolute value v on k& (normalized to
induce one of the standard absolute values on Q), we have the completion
k, of k which is one of three types of fields: The reals, the complex, or a
p-adic field. We call » by the corresponding name.

The additive group k, (also written k") is locally compact, and so is
the multiplicative group k¥. Each one contains a compact subgroup in
the p-adic case, namely the p-adic integers or the p-adic units which are
open in k and k¥ respectively.

We shall now describe a general procedure which allows us to take a
restricted product of these groups.

Let {v} be a set of indices, and for each v, let G, be a locally compact
commutative group. For all but a finite number of v, let H, be a compact

137
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open subgroup of G,. The restricted direct product of the G, with
respect to the H, is the subgroup G of the direct product consisting of
elements all but a finite number of whose components lie in H,.

If S is a finite set of indices v, including at least all » for which H, is
not defined, then we denote by Gs that subgroup of @ for which all com-
ponents outside S are in H,. Then

Gs=HGvXHH,,

vES vES

is a direct’product of locally compact groups, all but a finite number of
which are compact. Thus G is a locally compact group (product topology),
and we make G into a locally compact group by decreeing that each such
Gs is an open subgroup.

Each G, is embedded in G on the v-component, as a closed subgroup.

The restricted product of the additive groups k, with respect to the
local integers o, (defined only when v = v, for some p) is called the adele
group of k and is denoted by A; or simply A. We call A5 the S-adeles.

The restricted product of the multiplicative groups k7 with respect to
the units U, of o, is called the idele group of k and is denoted by Ji or
simply J. (The topology on the idele group is not the topology induced
on it as a subset of the adeles!) We call J5 the S-ideles.

We can embed the number field k in the adeles on the diagonal. Since
an element « of k is a p-adic integer for all but a finite number of p, and
since we can view « as embedded in each k,, the vector (o, @, «,...) is
an adele.

Similarly, we can embed the multiplicative group k* in the ideles be-
cause a non-zero element of & is a p-adic unit for all but a finite number of p.

We can define the trace on adeles. Let E be a finite extension of k¥ and
z an adele of E, z = (z,), w € Mg. We define its trace Trf(z) to have
v-component

Z Try(zw).

wlv

Then its trace is an adele of k.
Similarly, we define the norm of an idele a = (a,,) of E to be the idele
NE(a) whose v-component is

H Nu(aw).

wlv

According to Corollary 3 of Theorem 2, Chapter II, §1, these definitions
are consistent with the embedding of k¥ in 4 and k* in J, and the usual
definition of norm and trace on field eleménts. In other words, the fol-



[VIL, §2] ADELES 139

lowing diagrams are commutative:

ES Ag E*SJg
Tr | | Tr N | | N
k'E’Ak k*'(':"Jk

Theorem 1. The additive group k is embedded as a discrete subgroup of
the adeles A. The multiplicative group k* is embedded as a discrete sub-
group of J.

Proof. Let a € k. To say that a is close to 0 in the adele topology means
that |a|, =< 1 for all but a finite number of » and |al, is very small for a
finite set of ». By the product formula, this implies that « = 0. Hence
0 is an isolated element of k in A. It follows that k is discrete in A. The
same argument applied to an element a of k* close to 1 shows that k* is

discrete in J.

§2. Adeles

We observe that the adeles form a topological ring (with zero divisors)
if we define multiplication componentwise. If a is an idele and z is an
adele, then az is an adele. The map

he:A — A

given for each idele a by the formula h,(x) = az is a topological linear
automorphism of the additive group A onto itself.

Let us denote by S, the set of archimedean absolute values in the
canonical set of absolute values M.

Theorem 2. We have
k+ As, = A.
The factor group A/k is compact.

Proof. The first statement means that given any adele z, there exists
an element « of k such that £+ — o« has integral components at all valua-
tions ». This is an easy extension of the Chinese remainder theorem, and
can be done for instance as follows. Given z € 4, let m be a rational
integer such that mz has integral components for all non-archimedean v.
Let S be the set of primes p of o such that p/m. We can find an algebraic
integer « in k such that

mz=a (modyp”)
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for all p in S and large », by the ordinary Chinese remainder theorem.
Then z — a/m will be integral for all p if » is sufficiently large.
The field k can be viewed as embedded in Euclidean space

H k, = RN:

vESw
and in that case, the integers o; form a lattice of rank N = [k:Q] in RY.

To show that A/k is compact, we observe that given x € A we can

translate it by an element of k into Ag_. We can then translate an element
of As, by an integer in oz in such a way that the resulting adele has
bounded components at all v € S,, because o, has maximal rank in R¥.
Hence every element of A/k has a representative in a compact subset of
Ag,. This proves that A/k is compact.

It is in fact easy to construct a fundamental domain for A/k.

Theorem 3. Let w;,...,wy be a basts for the integers or of k over Z.
Let F, be the subset of

IT &

vESw

spanned by the vectors > _tyw; with 0 < t; < 1. Then

F = H 0, X Foo
vESw

18 a fundamental domain for A mod k.

Proof. Given z € A we can bring it into Ag, by translation with an
element of k, uniquely determined up to an element of o;. Restricting the
components f; to lie in the half-open interval as above determines this
algebraic integer uniquely if we require that the translation have a repre-
sentative in F.

§3. Ideles

In this section we carry out an investigation similar to that of the
adeles, but applied to the multiplicative ideles.

We denote by S any finite set of absolute values in M} containing the
set S, of archimedean absolute values.

For each v € My, corresponding to a p-adic valuation, we have the
p-adic integers o, and the units U, of 0,. Both of these are compact groups.

Each idele a has components a, € k¥, all but a finite number of which
lie in U,. We define

llalls = llalls
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and

lall = llalle = II llall..
vEM;

All but a finite number of terms of this product are equal to 1, so the
product is well defined. Furthermore, the map

ar |
defines a homomorphism

J = RT
of J onto the multiplicative group of positive real numbers. This map is
obviously continuous, and its kernel is a closed subgroup of J, denoted
by J°.

By the product formula, k* is contained in J°, and is a closed discrete
subgroup of J°.

There is a natural homomorphism of J onto the fractional ideals of o.
Indeed, given an idele ¢ = (a,), each a, lies in k,. If v is p-adic, then we
can speak of the order of a, at p, namely the integers r, such that we can
write

Ay, = TyU

with a prime element 7, and a unit % in U,. We let
r, = ord, a.

Then r, = 1 for almost all v, and therefore
n pOl’cl;)a.
v
is a fractional ideal, also denoted by (a¢). The map

a— (a) — Hpordpa

is a homomorphism of J onto the group of fractional ideals I, whose
kernel is J ..
Thus we have an isomorphism

J/k*J s, =~ I/P,

where P is the group of principal fractional ideals, and I/P is the group
of ideal classes. This group is finite, and thus if we enlarge S, to a set S
which contains enough primes we can find such an S that

J = k*Js.
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An element of k* viewed as an idele is called a principal idele. Its
associated ideal is a principal ideal. We therefore have an induced homo-
morphism from J/k* onto the ideal classes. The factor group J/k* will
be called the group of idele classes and will be denoted by Cj, (or C if the
reference to k is clear). It contains the closed subgroup C? = JO%/k*.

Let S be a finite subset of M containing S,. Then Jg is an open sub-
group of J, and J$ is an open subgroup of J°. The intersection

JsNk*

will be denoted by ks and will be called the group of S-units. It is a
discrete subgroup of Js (obvious), and if § = S,, then kg is simply the
group of units of the ring of integers og, namely it is the set of elements
a € k* such that |a,| = 1 forv € S.. The factor group J s/ks is called the
group of S-idele classes, and is denoted by Cs. We have natural inclusions

Cs—C, ¢6Y¥y-C°

and under these inclusions, the smaller group is mapped onto an open
and closed subgroup of the larger group. (Immediate verification.) In
terms of ideles, the first inclusion can be written

Js=>J
k*NJs = kg > k*
JIs/ks = J[k*
and we have a topological and algebraic isomorphism
J/k*J s = C/Cg.

If S = S, then J/k*J s is isomorphic to the group of ideal classes (i.e.
fractional ideal classes), and is finite. Thus for any S, the group
J/k*Js = C/Cgs, which is a homomorphic image of C/Cs,, is also finite.
In particular, k*J s, can be viewed as the kernel of the homomorphism
of J onto the group of ideal classes. We can interpret k*J s in a similar
way, as the kernel of the homomorphism onto the group of ideal classes
represented by ideals “relatively prime to S” (in the obvious meaning to
be attached to these words).

Theorem 4. The factor group J°/k* = C° is compact. So is J3/ks for
any finite set S O Se.

Proof. Let
v:J - Rt

be the map which to each idele a associates y(a) = |la]|. Then ¢(k*) = 1
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and so ¢ is defined on J/k*. Its kernel is C°. For any real number p > 0,
we let C* = ¢~ 1(p). Then C* is topologically isomorphic to C®. Indeed,
if we consider an idele

a, = (pllN) R :pl/Nr L1,.. -)

having component p!¥ at all v € S,, and 1 otherwise, then ¥(a,) = p and
C* = a,C° It will therefore suffice to prove that C* is compact for some p.

Lemma. There exists a constant ¢, (k) > 0 such that, for p > ¢, and ali
a € J* there exists an element a € k* such that

1 = [leall, = p, ally € M.

Proof. According to Theorem O of §1, Chapter V, there exists an element
a~! € k* such that

la™, < lal,
for all v € M. This implies
1 = [laa,
for all v, and also for any v,

laall, = fLlsale <2,
wY

as desired.

If v = v, is p-adic, then the values ||«a|, are of the form
..+, 1/Np, 1, Np, (Np)?, ...

and there is only a finite number of p such that Np < p. We takep > ¢;
in the lemma. We can conclude that there is a set S such that

1 £ [leall, =p, veS
laally =1, ve&S8.
Let X be the subset of J defined by these conditions. Then X is of type
I1 (annulus in &3) X [] U,

vES V€S

and each factor is compact. (Each annulus is the annulus between 1 and
p.) Hence X is compact. In the canonical map

J—-C
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the set X maps onto a compact subset of C which contains C*. Hence C?
is compact, as was to be shown. The conclusion for J$/kg follows at once.

We can recover the unit theorem from the compactness of JO/k*,
without the arguments at the end of §1, Chapter V. We indicate how this
can be done.

Given a set S D S, let s be the number of elements of S. We map

log:Js— R*

by the log mapping,
(.vy@y . (..., loglalls, .. Des-

Then J2 maps into the hyperplane determined by the equation

B+t k=0

Call this hyperplane H*~!. The group ks maps onto a discrete subgroup
of R®°. Indeed, in a bounded region of R? there is only a finite number
of elements of log(ks). (This is clear, since prescribing a bounded region
of R? in effect defines bounds on the absolute values of an element of k,
and hence bounds on the coefficients of the equation which this element
satisfies over Z.)

Theorem 5. The image log(ks) is a discrete subgroup of rank s — 1
in H*" L,

Proof. Note first that H*~! is generated (over R) by log(J2), because
we can pick s — 1 coordinates in S arbitrarily, and then adjust the last
coordinate (at an archimedean absolute value ») so that the sum of the
logs is equal to 0. Let W be the subspace generated by log(ks). We have
a continuous homomorphism

J$/ks — H* /W,

and the image of our homomorphism generates H*~!/W as a vector space
over R. But this image is the continuous image of a compact set, hence
is compact. It follows that W = H®™!, thereby proving our assertion.

The kernel of the log mapping consists exactly of the roots of unity
in k, because it is a subgroup consisting of elements all of whose absolute
values are boundad, and hence is a finite subgroup.

For computational purposes, we shall now describe how to construct a
fundamental domain for the factor group J/k*.

We select one absolute value v in S, and let S, be the complement
of vgin S,. Then the restriction of the log mapping to J%, is denoted by L.
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We see that
1:J%, — R"

maps J§_ onto Euclidean r-space, where r = r; +r, — 1. The surjec-
tivity follows from the fact that we can select r components of an idele
in S, arbitrarily, and then adjust the component at vy so as to get an
element of J°.

Let {¢;} (¢=1,...,r) be a basis for the group of units modulo roots
of unity. Then the vectors I(¢;) are a basis of R, and for any b € J3_
we can write

I(b) = X2d(e:)

with unique real numbers z;. Let P be the parallelotope in r-space spanned
by the vectors I(¢;), that is the set of all vectors

2_zil(e:)
with 0 < z; < 1. Let w be the number of roots of unity in k, and let

2

E° = subset of all 4 in I~ (P) such that 0 < arg b, »

IIA

0

Let h be the order of the ideal class group, and let ¥, . . . , b* be elements
of J? such that their associated ideals represent the distinct ideal classes.
We then have the following result.

Theorem 6. The subset E of J° consisting of
EOb(l) u--- UEOb(h)
is a fundamental domain for J° mod k*.

Proof. Starting with any idele b in J? we can change it into an idele
which represents a principal ideal by dividing it by a uniquely determined
5. Multiplication by a field element brings us to an idele representing
the unit ideal, and therefore takes the idele into J2_. A change by units
lands us in "}(P), and finally multiplication by a root of unity adjusts
the argument at vo to land us in E®. It is clear that this final representa-
tive in E° is uniquely determined, thereby proving our theorem.

§4. Generalized ideal class groups;
relations with idele classes

Let ¢ be a cycle of k. If v|c, we may now interpret ¢, in the completion
k,, as follows. If v = v, for some prime ideal p, we let m, be the maximal
ideal in the completion o, = o,. If v has multiplicity m(v) in ¢, we let

¢, = my®.
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Let v = v,. If a €k, and m(v) > 0, we define a =1 (mod* ¢,) to mean
that @ € 0, and a = 1 (mod ¢,). If v is real, we define @ = 1 (mod* ¢,) to
mean @ > 0. Thus we can extend the notion mod* ¢ to ideles. If a is an
idele, we define @ = 1 (mod* ¢) to mean that a, = 1 (mod* ¢,), for all ».

We let J, denote the group of ideles a such that a = 1 (mod* ¢). Then it
is clear that k. = J. N k*.

For each v|c we let W(v) be the subgroup of k¥ consisting of those
elements a € k¥ such that a = 1 (mod* ¢,). If v{c, then we let W (v) = U,,
the group of local units. We let

We= I W) x ] U..

vle vic

By convention, if v is real or complex, we let U, = k.
We can write

Jc= HWc(U)XHk:

vi¢ vic

If v is real, v|c, then W(v) = R is the group of reals > 0.

If v is complex, then always W (v) = C*.

If v is non-archimedean, corresponding to the prime p, and if » has
multiplicity m > 0 in ¢, then

W) = 1+ my,

where m, as before is the maximal ideal in the complete local ring 0,. We
may say that W (v) is a disc of center 1 in the p-adic field.

It is clear that the collection of W, forms a fundamental system of open
subgroups of the ideles at the identity. In other words, each W, is open,
and given an open subgroup of J containing 1, there exists some ¢ such that
this subgroup contains W..

We now consider the relations with idele classes. Any idele class (element
of J/k*) has a representative idele in J, for any given ¢. Indeed, given
a € J, by the approximation theorem, there exists « € k* such that
a"'a eJ. (Select a so that a — « is very close to 1 at all v|c, and then
divide by «.) It follows that we have an isomorphism

J/ke = J/k*

for each ¢, corresponding to the diagram

Je— J
[ — |

Jonk* =k — k*.
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We have the natural homomorphism

Jo B 1)
a — (a)

which to each idele a associates its ideal (a). It is clear that ¢ (= ¢.) is
surjective. Furthermore, we have

"’—I(Pc) = kcwc-

Indeed, if a €J, and (a) = (@) for some a € k., then («~'a) = (1),
whence o~ !a = b is an idele all of whose components are units. It is clear
that b = 1 (mod* c), and by definition, b € W,.. Thus we have a diagram

Je B I

l |
‘I’—I(Pc) = kW.— P.

and an isomorphism

Jc/chc = I(C)/Pc-

Thus the generalized ideal class group has been expressed as an idele class
group.

We now consider certain intermediate groups between kW, and J,
corresponding to norm groups of finite extensions.

Let K/k be a Galois extension. A cycle ¢ of k will be said to be
admissible for K/k if W (v) is contained in the group of local norms
N,K} for each v and w|v in K. Here we abbreviate

N, = Nf=

to be the local norm. Since K/k is Galois, we can also write N, instead of
N, (because all the w above a given v are conjugate by an element of the
Galois group).

If v is archimedean, and wlv in K, we say that w is unramified over v
if K, = k,. With this convention, if v is any absolute value of M}, and if
K /k is unramified over », then every unit in U, is a local norm. This is
obvious if v is real or complex, and in the non-archimedean case, it follows
from Chapter II, §4, Corollary of Proposition 9.

We may say that a cycle ¢ is smaller than a cycle ¢’ if ¢|¢’. There is obvi-
ously a smallest admissible cycle { for K/k. It is such that for non-archi-
medean v corresponding to p, the open disc Wi(v) is the largest disc centered
at 1, contained in the local norms at v, for all v. Of course, if v is unrami-
fied, then »{f and this disc is all of U,.
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Let 9t(c) = 9t(c, K/k) denote the subgroup of I(c) consisting of all
norms NF9, where ¥ is a fractional ideal of K, prime to ¢ (i.e. by defini-
tion, relatively prime to every prime ideal P of K lying above some prime
ideal pjc). The subgroup

Pa(c) C I(c)

is of great importance in class field theory. It is useful only if ¢ is admis-
sible for K/k. In that case, we have:

Theorem 7. Let c be admissible for K/k, and let | be the smallest admissible
cycle for K/k. Then the inclusion

I(c) — I(f)
induces an tsomorphism

I() — I
I(c)/Pu(c) = I())/P(p). l |
P(c) — Pu(f)

We have P(f) N I(c) = PIUc). If ¢ s divisible only by the same p
such that p|f, then Pu(f) = PI(f).

Proof. Let a € I(c) be such that a = (a)NKb with some b in I(f, K)
prime to f, and some a € k* such that « = 1 (mod* f). We express « as a
local norm at all v|f, say

a= N,fi“")’,,,

for wlv, v|f. We can take v,, to be a unit. By the approximation theorem,
there exists ¥ € K such that N&7 is very close to a at all »|f. (For instance,
take ¥ close to ¥, for one woplv, and 7 close to 1 for the other w|v, and each
vlf.) We can also select ¥ such that ordg ¥ = —ordg b for all B|p, pjc, pif.
Then

aN ;{(‘Y_l
is close to 1 at all v|f, ¥b is prime to ¢, and

a = (NEYHNE(()b).

Since a is prime to ¢, it follows that «NXv~! is a v-unit at all v|c. We use
the approximation theorem again, and the fact that every v-unit is a norm
if v|c but v{f to find an element v; in K such that 7, is a v-unit for all
vl¢, and

a; = aNFYy INEyT!
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is very close to 1 at all v|c, specifically @; = 1 (mod* ¢). Then

a = (a))NE((1)b),
so that a € P91(c), thereby proving both assertions of the theorem.
We are interested also in representing the factor group I(c)/PIt(c) as
a factor group of the ideles. We have a diagram

Je LA (0

| I
‘l/"‘(Plch(C)) - Pcf!'l(C)
kW, — P,

Let Jx(1, ¢) denote the subgroup of K-ideles consisting of those ideles
A € Jg having component A, = 1 at all w|y, and v|c. We contend that

v Y (PA)) = kWNETK(Q, ©).

To see this, let a be an idele in J, such that (a) = (a)NK¥ for some a € k,
and some ideal U of K relatively prime to ¢. Let A € Jx have component
A, = 1 for all wjv and v|c, for all archimedean w, and for all wg such that
P is relatively prime to . If P occurs in the factorization of A, we let
A g have the same order at P as U itself. Then from the definitions, we
see that

(NEA) = NKu.

Therefore («NKA) = (a), and hence aNKA differs from a by an element
of W.. This proves one inclusion of our contention, and the reverse inclu-
sion is obvious. We obtain an isomorphism

J/kWNEI (1, ¢) =~ I()/Pac).

On the other hand, corresponding to the inclusion J. C J, we contend
that

E*N&Tg nJe = ¢~ (PaL(O)),

so that we have the diagram

I I
v (Pa(e)) — k*NETx
I I
kW, — k'w.
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The verification uses the same type of trivial technique as above, and the
assumption that W, C NXJx. We leave it to the reader. We then obtain
an isomorphism of the corresponding factor groups, which we summarize
in a theorem.

Theorem 8. Let K/k be a Galois extension. Let ¢ be admissible for K /k.
Then we have an tsomorphism
J/E*NE&Tk = I(¢)/Pa(c).
The isomorphism s induced by the isomorphism
J/ke = J/k*,
followed by the ideal map b — (b) of J. onto I(c).

Thus in Theorem 8, to each idele a we first select an idele b in the same
coset mod k* such that b € J.. We then map b on its ideal (b). We have
(b) € PA(c) if and only if @ € k*NEXJ k. In this manner we have repre-
sented the idele factor group J/k*NXJx as an ideal class factor group.
Observe that the norm map applies to the idele classes, and that

Ci/NECx =~ Ji/k*NEJk.

Thus the factor group in Theorem 8 can also be viewed as an idele class
group. We shall study it especially in the class field theory, and we shall
find that if K/k is abelian, then the Galois group G(K/k) is isomorphic
to this factor group. We shall also exhibit the isomorphism explicitly.

Example. If we reconsider the example given at the end of Chapter VI,
§1, we take k = Q and let K = Q({,,) be the field obtained by adjoining
a primitive m-th root of unity to Q. Let ¢ = mv,. Then it is easily verified
that Pat(c) is simply the unit class in (Z/mZ)*, i.e. is represented by the
arithmetic progression of positive integers = 1 (mod m). To see this, let p
be a prime number, p{m, so that p is unramified in K. Let

(P)=P1---Ps

be the factorization in K, with p = p;. Let G, be the decomposition group
of pin G. Then G, is cyclic, generated by the automorphism ¢ such that

ga=aP (mod p), (a € 0g)
and o is determined by its effect on ¢,,, which is
O:{m ¢ 5;-

Thus the order of ¢ is the order of p (mod m) in (Z/mZ)*. If f is the local
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degree, so that Np = p/, then
fs = o(m) = [K:Q],
and f is precisely equal to this order. In particular,
p =1 (modm),

thus showing that the norms of ideals lie in the unit class.

§5. Embedding of k! in the idele classes

We consider the idele class group Cx = Ji/k*. We had embedded the
“multiplicative group of positive reals R* in J = J;, in §3. Let
N = [k: Q]. If p € R*, we denote by a, the idele

aQ = (pl/N, .. )pllN; 1’ 1’ .- -)
or its idele class (to be made clear by the context). The map
fiRTXCR—Cy

such that
(p, b) > azb

is then an algebraic isomorphism of the product onto Cy, and it is obvi-
ously continuous. In fact, it is also bicontinuous. This is essentially trivial.
If an idele class @ is close to 1 in Cj, then it can be represented by an idele
a close to 1 at a large set of absolute values, and in particular at all v € S,.
Thus if ||la|] = p, then a, is close to 1, and a™'a is close to 1 also, thus
proving that the inverse of our isomorphism is continuous at 1, whence
continuous.

Let v be an absolute value on k. We can embed k¥ in the ideles, on the
v-component, namely if ¢ € k¥, then we identify ¢ with the idele

c=(..,1,1,¢1,1,..))

having ¢ at the v-component, and 1 at all other components. The composite
map

ki »J > J/k* =Ch

is then obviously a continuous injective homomorphism of k¥ into Cy.
It is again verified easily that it is a topological embedding, 1.e. is bicontinuous.
In fact let » be p-adic. We can write k¥ as a direct product

ks — {7} X U,,

where {7} is the cyclic group generated by a prime element 7 in k,, and
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U, is the group of local units in k,. The cyclic group {#} has the discrete
topology, so that

k¥ ~ 2% U,

If the idele class of an element 7#™u (u € U,) is close to 1 in Cy
then ||[#™u|| = || 7™ul|, must be close to 1, and this proves the bicontinuity
at 1, whence everywhere since our composite map is an algebraic iso-
morphism between k¥ and its image in Cj.

Under the isomorphism of C with Rt X C?, we see that {m} corre-
sponds to a discrete cyclic subgroup of R*, namely the subgroup generated
by Np, and U, corresponds to a subgroup of C9. Recall that both U,
and C are compact. Thus k¥ is embedded as a closed subgroup of Cj.

The situation when v is archimedean is similar. If, say, v is complex,
we write

ky = C* = RY X C,,

where C; is the multiplicative group of complex numbers of absolute
value 1. The argument proceeds as before.

Warning. If S is a finite set of absolute values on k, then one obtains
similarly a continuous injective map

H k:-—’Ck,

vES

but this map is not bicontinuous, i.e. is not a topological embedding if
S has more than one element.

§6. Galois operation on ideles and idele classes
Let k be a number field as before, and let

o:k—ok

be an isomorphism. Each v € M}, is then mapped on an absolute value
ov € M ,x, defined by

lozlo = |zl z €k,
or

[Ylow = Ia'_lylv, y €ok.

Then ¢ induces an isomorphism on the completions, uniquely determined
by continuity, and again denoted by ¢, namely

0:ky — (0k)go.
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We shall apply this to the case of a finite extension E/k. Consider the

product
I1 £,

wlv

which occurs as a partial product in the adeles of E. (Putting a star on
E would give the same discussion for ideles.) If o is an isomorphism of E
over k, i.e. leaving k fixed, then ¢ operates on the above product in a
natural way, namely if

a = {aw}wlp € H Ew,
wiv
then
(aa)aw = O'(Gu,),

and thus o induces an isomorphism

I1E.— 1] 0E)w,
wiv w’ v
where w’ ranges over those elements of M, such that w'|v.
In particular, suppose that K is Galois over k and let 0 € G(K/k) = G.
Then ¢ permutes those w € Mg such that w[v, and hence ¢ induces an

automorphism
11 K. — I] K.

wlv wiv

The group G permutes the factors K,, transitively, because the elements
of G permute the absolute values w|v transitively. The same applies to
other products taken for w|v, for instance the product '

I1 U,

wlv

where U, is the group of local units in K,, in the case when v is p-adic.
This product in that case can also be written

II Us.
Bl
We shall study this type of operation in greater detail in Chapter IX, §1.
In the operation of G on such a product as

I

the subgroup of G leaving one factor K, invariant is the subgroup G,
l.e. the decomposition group of w, consisting of all ¢ € G such that
ow = w. We had already considered that subgroup in the context of
prime ideals, Chapter I, §5.
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The above discussion applies to ideles, because the ideles of K are the
unions of the subgroups

II I1Kux I II U,

vES wlv vES wlv

where S ranges over finite subsets of My, and each partial factor taken
over w|v is G-invariant.

Finally, we note that G leaves K* invariant, and hence induces an
automorphism of the idele class group Jx/K*. Since the operation of an
element ¢ € G on Jg is obviously bicontinuous, it follows that the auto-
morphism induced by o on Ck is also a topological isomorphism.



CHAPTER VIII

Elementary Properties of the Zeta
Function and L-series

§1. Lemmas on Dirichlet series

We recall the formula for summation by parts. If {a,} and {b,} are
sequences of complex numbers, and if we let

An=12a1+ " +an
Br="b1+ - +bs

be the partial sums, then

N N—-1
Zl anb, = Anbn + Z An(bn - bn+l)-
n= n=1 .

We shall consider series
L]
2 2=,
=ine
where {a,} is a sequence of complex numbers, and s is a complex variable.

We write s = g + it with g, ¢ real.

Theorem 1. If the Dirichlet series Y an/n® converges for some s = s,
then it converges for any s with Re(s) > a¢ = Re(sy), uniformly on any
compact subset of this region. ‘

Proof. Write n® = n®n®~*0, and sum the following series by parts:
Z Ay 1
7%

If P.(so) = X n—; am/m’, then the tail ends of this Dirichlet series are
given for n > m by

n
(457 1 P (SQ) [ 1 ]
.2 - P .
k=§+1 ko fFf0  ptT0 + —§+1 (s0) = (k -+ 1)5—®0
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We have

1 1 oy
P ke O s°)/k o

which we estimate easily in absolute value. If § > 0 and Re(s) = o¢ + 3,
then we conclude that our tail end is small uniformly if |s — so| is bounded.
This proves the theorem.

Assuming that the Dirichlet series converges for some s, if o¢ is the
smallest real number such that the series converges for Re(s) > o4, then
we call 0y the abscissa of convergence, and we see that the series con-
verges in the half plane to the right of the line ¢ = o, but does not
converge for any s with ¢ < a.

If the Dirichlet series converges for s; = o + f;, then we must have

a, = 0(n%)

because the n-th term of the series a,,/n°t tends to 0. It follows in particular
that the Dirichlet series converges absolutely and uniformly for

Re(s) 2 01 + 1+ 6,
if 5 > 0. This is immediately seen by comparison with the series 3"1/n1%3.
We shall now derive a similar criterion using an estimate for the partial
sums of the coefficients of the series.
Theorem 2. Assume that there exists a number C and o, > 0 such that
|4n] = las + - -+ + an| < Cn7
for all n. Then the abscissa of convergence of 3 a,/n® is < o4.

Proof. Summing by parts, we find for n = m,

EPANERS B [l__l__J
Py (s) Pm(s)——Anns+k=§+1Ak W G

1 S
= An ,,; + k=§+1 Aks/k Em dz.

Let 8 > 0 and let Re(s) = o; + 5. Then

k+1 1 k41 1
< P
A /k —nide s C /k i &
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whence taking the sum from k = m + 1 to o we find

C s 1
IP,,(s) - Pm(3)| = n—5+06— m

This proves our theorem.

Let
() =X o

Applying Theorem 2 shows that {(s) is analytic in s, defined by the series
for Re(s) > 1. Namely we have 0; = 1 in this case. Furthermore, we
have for s real > 1:

0

1 1
oIS ),z S s1+

1 .
s—1

This follows immediately by comparing the infinite sum with the integral.
Hence for s > 1, we have

1= (s— D) =5

We shall prove in a moment that { can be continued analytically to the
line 0 = 0, and that it is analytic except possibly for a singularity at
s = 1. The preceding estimate then implies that ¢ has a simple pole
at s = 1, with residue equal to 1.

To get the analytic continuation, we use a simple trick, namely we
consider the alternating zeta function

fa() =1 — itz —

The partial sum of the coefficients of this Dirichlet series are equal to 0
or 1, and therefore are bounded. Theorem 2 shows that {3(s) is analytic
for Re(s) > 0. But

2. £(s) + £2(s) = £(s),

and therefore

tas) = (1 = 51_—1) ).

By analytic continuation, this already gives an analytic continuation of ¢
to the line 0 = 0, and we must still show that there are no poles except at
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s = 1. This is easily done by considering

1 1 1 -1 1
rr(s)=F+2a+"’+(r_1)3_T+(r+1)a+“°

with r = 2, 3, ... . Then just as for r = 2, we see that the partial sums
of the coefficients of ¢, are bounded by r, whence ¢, is analytic for
Re(s) > 0. Furthermore, by a similar argument as before, we get

t(s) = g-r(s)l .
1 —

1-3—1

From the expression with {2, we see that the only possible poles (other
than at s = 1) occur when 2°~! = 1, or equivalently, when

_ 2min

$= logz 1

for some integer n. Using {3, we see in the same way that the only such
poles occur at

2mwim
$= Tog3 +1

At any such pole we have 3" = 2™, which is impossible. This proves:

Theorem 3. The zeta function {(s) is analytic for Re(s) > O except for
a stmple pole at s = 1, with residue 1. If & > 0, the series > 1/n° for
£(s) converges uniformly and absolutely in the region Re(s) = 1 + 4.

For applications to the L-series, we consider a special case of Theorem 2,
in which the hypothesis is made more precise.

Theorem 4. Let {a,} be a sequence of complex numbers, with partial
sums A,. Let 0 = o, < 1, and assume that there is a complex number p,
and C > 0 such that for all n we have

IAn - npl = Cn’l)
or in other words, A, = np + O(n°t). Then the function

f(s) = Zan/n*

defined by the Dirichlet series for Re(s) > 1 has an analytic continuation
to Re(s) > o, where it is analytic except for a simple pole with residue p
at s = 1.

Proof. The proof is obtained by considering f(s) — p¢(s), and applying
Theorems 2 and 3 directly.



[VII], §2] ZETA FUNCTION OF A NUMBER FIELD 159
§2. Zeta function of a number field

We have for Re(s) > 1:

the product being taken over all prime numbers p. To see this, recall
that if z is a complex number with |z| < 1, then log(1 + 2) is defined by
the usual series. Thus the sum

Zos(1-3)

converges absolutely for Re(s) > 1, and the infinite product converges
likewise. Expanding out the series for the log, and reordering the terms,
we find that {(s) is given by the infinite product, using the unique fac-
torization of a positive integer into prime powers. Furthermore, we have
the expression

log {(s) = 3 —

pom mpﬂl! ’
the sum being taken over all prime numbers p and all integers m = 1.
Observe that the sum

1
pmz2 MP™*

converges uniformly and absolutely for Re(s) = 4+ 8, § > 0. Hence
only the sum
1
» P°
contributes to the singularity at s = 1.
We use the notation f(s) ~ g(s) to mean that two functions which have

a singularity at 1 differ by a function which is analytic at 1. With this
notation, we have

£(s) ~

s— 1
and

1 1
log ¢(s) ~ zp: oy log 3

Next consider a number field k with [k: Q] = N. If p is a prime ideal
of k and p|p, and if Np = p/» where f, = deg p is the degree of the residue
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class field extension, then we have

D s SN.

vlp

We define the Dedekind zeta function

i) = [T ——

v I—va

The sum of the logarithms of the terms yields formally

1

log tx(s) = 2, N

»m

For Re(s) = o > 1, this sum is dominated by

N
—— = N log ¢(0).
o
Consequently the sum for the logarithms of the terms of the infinite
product for {x(s) converges absolutely and uniformly forc = 1 + 3, just
like the case of {¢ = ¢. We can then exponentiate and multiply out the
product. We find the additive expression

1
$i(s) = ; Neo
taken over all ideals a of k. Just as with {o(s), we also find

1
lo s) ~ =
g g-k( ) de§=l Np"
So far, we have used only the analytic and very simple statements of
§1. We shall use the somewhat more refined results of Chapter VI, §3,
Theorem 3. For every ideal class & of the ideal class group I/P we define

(6, ®) = T xo-
Then

Sils) = % ¢(s, R).
If we write

£, ®) = 272

then the partial sum A, = a; + - - - + a, is equal to j(®, n), the number
of ideals in & with Na < n. Combining the result of Chapter VI, §3,



[VIII, §2] ZETA FUNCTION OF A NUMBER FIELD 161

Theorem 3 and Theorem 4 of the preceding section, we find:

Theorem 5. Let k be a number field, [k:Q] = N, and let & be an ideal
class. Then (s, &) is analytic for Re(s) > 1 — 1/N, except for a stimple
pole at s = 1, with residue p, given by

_2"@2m"R
w\/dy

The same holds for t1(s), except that the residue is equal to hp, where h is
the class number.

Similarly, using the estimates for the number of ideals in a generalized
ideal class, we obtain:

Theorem 5c. Let ¢ be a cycle of k, and let & be a class of I(c) mod P..
Then (s, &) is analytic for Re(s) > 1 — 1/N, except for a simple pole
at s = 1 with residue p. given in Theorem 3, Chapter VI, §3, depending
only on ¢ but not on R.

With a notation which will not be misleading because of the choice of
letters, we can define

g.k(sy C) = Z 1

(a,¢)=1 Nas
with the sum taken over those ideals prime to ¢. Then

futs, 0 = [T ——

pic —
1 N

the product taken over those prime ideals p not dividing ¢. We have

g-k(s, C) = E g-(sy R))

Rel@©)/ P,
and this yields immediately:
Corollary. The function ¢i(s,¢) is analytic for Re(s) > 1 — 1/N,

except for a stmple pole at s = 1 with residue h.p., where h, is the order of
the group I(c)/P..

The product for {x(s, ¢) differs from the product for {x(s) by only a
finite number of factors, corresponding to those plc. This yields a relation
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between p and p., namely

1
hp = thcH 1
ble 1 —
Np

Furthermore, this finite product does not affect the singularity of the
logarithm at s = 1, and hence we get:

Theorem 6. The equivalence ~ denoting the property of differing by a
Sfunction analytic at s = 1, we have:

1 1
log ~log k(s) ~ D <=~ D -
k ; N]J’ Nps

s—1 degp=1

8§3. The L-series

Let G be a finite abelian group. The character group @ consists of all
homomorphisms of G into the multiplicative group of roots of unity. If
X is a character of G, then

{o ifx =1

2 X@=\G.1) ifx—1

zZEG

This is trivially seen: If X = 1, the statement is clear. If x 5 1, then
for some y € G we have X(y) # 1. Then

2 X@) = 2 x(yz) = x(y) 2 x(z).
z€EG zEG zEQ

Our assertion follows. [We note that the proof applies to a compact
abelian group, the sum being replaced by an integral, and the Haar mea-
sure being normalized so that u(G) = 1.]

‘We shall apply this to the finite abelian group G = I/P of ideal classes
in a number field k. More generally, we select a cycle ¢, and apply this to
the finite group G(c) = I(c)/P. of generalized ideal classes. For each
character X of G(c), we have the value x(a) for any ideal a € I(c). We
define the L-series

77 —L .
L‘(S,X)_Hl_&z

Nps

It is clear that the infinite product converges absolutely and uniformly
in the same manner as the product for the zeta function {%(s), and that we
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have for Re(s) > 1,

x(p)™
log L.(s, X) = .
og Lc(s, X) Eu Np™

As before, from the point of view of convergence to Re(s) > 1/2, we can
do away with the terms having m = 2, so that

x(p)
log Lc(s, X) ~ =%,
¢ 2 N

and this holds whether we sum over all p, or merely over all those p such
that deg p = 1. We also have obviously the Dirichlet series representation

Lis, )= ¥ Xo,

(a,c)=1 Nas

and immediately from the definitions, collecting terms,
LC(S, X) = % X(R)I(S, 'Q):

taking the sum over the classes & of I(c)/P..
Using Theorem 3 of Chapter VI, §3, we can now prove one fact about
the L-series L(s, X) which distinguishes it from the zeta function if X > 1.

Theorem 7. The Dirichlet series for L.(s,X) is convergent in the half
plane Re(s) > 1 — L/N if x % 1, and represents L.(s,X), which 1is
analytic in that half plane.

Proof. By Theorem 3 loc. cit. we know that the number of ideals a in
a given class & such that Na < n is equal to the same number pn, with
an error term O(n'~Y/Y). Using the remark at the beginning of the section,
concerning the sum of a non-trivial character over the elements of a finite
abelian group, we conclude that the partial sum of the coefficients of the
Dirichlet series satisfies the estimate

_ 1-1/N
%: ae% X(a) = O(n ).

Na=n

We can therefore apply Theorem 4 of §1 (with p = 0!) to conclude the
proof.

We shall apply the L-series to study the decomposition of primes in
abelian extensions. In general, we recall that in a finite extension E/Ek,
a prime p of k is said to split completely if there are exactly [E : k] distinct
primes P of E lying above p. For each such P, it follows that the extension
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of the residue class field has degree f(B|p) = 1. We let Sg/x be the set of
primes of k which split completely in E.

Let K/k be Galois, and let ¢ be a cycle of k divisible by all the ramified
primes. (That’s all we are going to need for the rest of this section, but
what matters is in fact that ¢ is admissible in the sense of Chapter VII,
§4.) Consider the intermediate group

I(c) > Po(c) D P,

where 91(c) is the group of norms of fractional ideals of K, prime to c.
For any p of k and By in K, we have

N]{Q,B — pf(‘Blv).

Thus p splits completely in K if and only if p is a norm from K, and p is
unramified.
The factor group

I(c)/PeI(c)

will be of fundamental importance in class field theory, and we shall use
especially its order

(I()) : P9Uc))

(called the norm index) in various technical steps in the proofs of the
class field theory. Using what we already know about L-series, we can
state and prove a basic result about this order.

Universal Norm Index Inequality. Let ¢ be divisible by the ramified
primes of K/k. Then

(I(c): P(c)) £ [K:K).

In other words, the norm index vs at most equal to the degree of the extension.

Proof. Let H = PJt(c) and let h = (I(c) : H). Let X be a non-trivial
character of the factor group I(c)/H. Then X may also be viewed as a
character of I(c)/P.. Let m(x) be the order of the zero of L.(s,X) at s = 1.
Then m(x) = 0. (We shall see in a moment that m(x) = 0.) Write

Le(s,X) = (s — 1)™%g(s, X).
Then

log L¢(s, X) ~ m(X) log (s — 1) ~ —m(X) log

s—1
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For Re(s) > 1 and any character x of I(c)/H, we can write

log L(s, X) ~ 2. X(® )

fel(o)/H NP'

Take the sum over all characters X of I(¢)/H. We find

log £1(6) + X log L(s, ) ~ £ T x(®) T, -
x#1 x & e NP
Consider only real values of s > 1, let s — 1, and use the sign 2 to mean
that the right-hand side is less than or equal to the left-hand side plus
some constant, in a neighborhood of 1. For each p € Sk there are exactly
= [K : k] primes P of K lying above p. Thus we find:

[1 _—> m(x)] log ~h Y Np8

x+#1 vEH

>hZNp

DGSK“,

> 1

deg B=1 N‘B'
log

>

v

N

13 :

N —1

From this we conclude that m(x) = O for all X ¢ 1, and the inequality
h=N

falls out at the same time. This concludes the proof.

In view of Theorem 8, Chapter VII, §4 we can formulate our inequality
for ideles and idele classes.

Corollary. Let K/k be a Galois extension of degree N. Then
(Je:k*NEJg) <N and  (Ci:NECk) = N

It will be a consequence of class field theory that in fact, the norm index
is equal to the degree of the maximal abelian subfield of K.

Assuming results of class field theory, we shall indicate in the next
section how the same argument which was used to prove our universal
inequality can also be used to prove a more general density statement for
primes in certain ideal class groups. Conversely, inserting the next section
here also serves as motivation for the theorems of class field theory. In
fact, historically, this is precisely how one was led to them.
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§4. Density of primes in arithmetic progressions

Let ¢ be a cycle of k. The class field theory will show that given any
intermediate group

I(c) DHD P,
there exists an abelian extension K/k such that
H = P3¢, K/k).

In particular, this holds of P, itself, and therefore the conclusion that
m(x) = 0 holds for all characters X # 1 of I(c)/P.. We state this as a
theorem.

Theorem 8. Let ¢ be a cycle of k, and let X be a character of I(c)/P.,
X #= 1. Then
L(1,x) # 0.

Using the same argument that we did to get our universal inequality,
we now obtain a density statement.

Corollary. Let he = (I(c): P.) and let 8 be a fixed ideal class of
I(c) modulo P., in other words an element of G(c) = I(c)/P.. Then for
sreal, s > 1, s — 1, we have

log 7 ~h & Npr-

Proof. We return to the relation

1
log Le(s, X) ~ 2 X(R)‘%N—ps-

REG() €
Multiply the relation by x(f5 ) and sum over all x. We get

log £4(s) ~ X T X(RR5Y) X v
g x peR NP

The sum over X yields 0 unless 88, ! is the unit class, and therefore

~he 2 1

8_1 DERQN_ps’

log

as was to be proved.
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If M is a set of primes of k, it is convenient to speak of the limit
1
lim 2EM Npr

=14 og

s—1

as the Dirichlet density of M (if it exists). The corollary of Theorem 8
shows that an ideal class of I(c)/P. always has such a density, and that
this density is precisely 1/h.. We can view this as stating that the primes
are equidistributed over the ideal classes.

Ezample. Without any class field theory, we have proved an equi-
distribution statement in a special case which is already of interest. Indeed,
let m > 1 be an integer, and let ¢ = mv,. Then the field Q(¢{m) = K
obtained by adjoining a primitive m-th root of unity to Q has the property
that P, is precisely its norm class group, as we already mentioned in
Chapter VII, §4. Thus we find Dirichlet’s theorem that there are infinitely
many primes in an ordinary arithmetic progression as a special case of
our corollary. We also have a Dirichlet density for these primes, namely
1/¢(m), where ¢ is the Euler function.

It is customary, following Artin, to view classes mod P, in an arbitrary
number field to be generalizations of arithmetic progressions, whence the
title of this section.

Finally, we note that one can define another notion of density (in
some sense, the usual one according to probabilistic practice), namely
for any set of primes M, it is the limit

lim Number of p € M with Np < n
n—o  Number of p with Np < n

if it exists. It is a simple exercise to show that if the ordinary density
exists, then the Dirichlet density also exists and the two densities are
equal. (The converse is not always true.) To prove that the ordinary
density exists for our ideal classes requires additional arguments. For
results without error terms, we shall carry out these arguments in
Chapter XV.

We can obtain a characterization of Galois extensions by means of the
set of primes splitting completely in the extension. Let S, T be sets of
primes in k. We shall write

S<T
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if there exists a set of Z of primes of Dirichlet density 0, contained in S,
such that S — Z C T. Thus S is contained in T except for a set of primes
of density 0. Observe that we can always take for Z the subset of those
primes of S which have degree > 1 (over Q, i.e. the absolute degree).

Let K/k be a Galois extension and let Sk, be the set of primes of k
which split completely in K. If L D K is another Galois extension of k,
then trivially, Spx C Sgk. If

Sk < Sr,
then L = K. Indeed, Sp,x has density 1/[L:k] and hence
[L:k] < [K:k],

so L = K. From this we get:

Theorem 9. Let K/k be a Galois extension and E a finite extension of k.
Then Sk < Sgixif and only if E C K.

Proof. A prime p of k splits completely in E if and only if it splits com-
pletely in the smallest Galois extension L of &k containing E, because this
condition is equivalent to every conjugate of £ over k being contained in
the completion k,. Hence we may assume without loss of generality that
E = L is Galois over k. If L C K, then Sg;x < Sr; so this direction is
obvious. Conversely, assume that Sk < Spi. Then KL D K and KL
is Galois over k. But

Sk = Srik N Sk
Hence

Skm < SkLiks

and we can apply the remark preceding the theorem to conclude that
KL = K, whence L C K, thus proving our theorem.

We conclude this chapter by pointing out a non-abelian generalization
of the density statements. We assume that the reader knows the class
field theory, and more specifically the Artin reciprocity law, which says
that we have an isomorphism

I(c)/H = G,

where H is a subgroup of ideals containing P, and @G is the Galois group
of an abelian extension K of k, class field to H. This isomorphism is given
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on primes p by the Artin symbol
p— (v, K/k),

and is extended to all fractional ideals by multiplicativity.
Given a Galois extension K/k with group G, and ¢ € G, we ask for the
density of those primes p in k for which there exists P|p in K such that

o= (B, K/k),

i.e. g is the Frobenius automorphism of § in K. The prime p in k actually
determines the conjugacy class of ¢ in G, since all the primes in K lying
above p are conjugate.

Theorem 10. (Tchebotarev). Let K/k be Galots with group G. Let
o0 €G. Let [K:k] = N, and let ¢ be the number of elements in the con-
jugacy class of @ in G. Then those primes p of k which are unramified in
K and for which there exists Plp such that

o = (B, K/k)
have a density, and this density s equal to ¢c/N.

Proof. The simple argument which follows is due to Deuring (Math.
Ann. 110, 1934). Let o have order f. Let Z be the fixed field of . Then
K /Z is cyclic of degree f, and therefore a class field. If ¢ is an admissible
cycle for K/Z, then we have the Artin isomorphism

I(c)/H — G(K/Z),

where H is a subgroup of I(c) containing P.. Let S be the set of primes
p of k satisfying the condition of the theorem, and prime to ¢. Let Sk .
be the set of P in K such that PB|p for p € S, and (P, K/k) = 0. Let Blqg
for qin Z. Then Sk, is in bijection with the set Sz of q in Z which lie in
a given class mod H, and which divide p splitting completely in Z. How-
ever, the density depends only on those primes of degree 1 over Q. Hence
Sz has density 1/f, by the density statement for abelian, or even cyclic
extensions. On the other hand, for a fixed p, the number of P in K lying
above p and such that

o= (B, K/k)
is equal to
(Go:1)
(Gg:1) ’
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where G, is the subgroup of elements of G commuting with o, and Gg is
the decomposition group of P. Since (G : G,) = ¢, we find that this num-
ber is equal to N/¢f. The density of S is thus equal to 1/f divided by
N/¢f, which gives us ¢/N, and proves the theorem.

For historical comments on the density theorem, ¢f. the introductory
remarks to the next part. Let us add here only that when one has certain
error terms in the density statements, Artin showed, using the formalism
of the non-abelian L-series (which we discuss later), how to give the
Tchebotarev density with similar error terms, formally using induced
characters. We refer the reader to the original paper in Artin’s collected
works. For our purposes here, the simple argument of Deuring was suffi-
ciently appropriate.



PART TWO

CLASS FIELD THEORY
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The fact that there exist relations between ideal class groups and
abelian extensions of a number field was observed during the end of the
nineteenth century. At first, only the fact that the primes in the unit
class are precisely those which split completely in a suitable extension was
taken to be the defining relation of a class field by Hilbert, who defined
what is now called the Hilbert class field, namely the maximal unramified
abelian extension, and conjectured its principal properties. He proved
them in special cases, and general proofs were given by Furtwangler.

Weber defined the generalized ideal classes, and proved the uniqueness
of the class field corresponding to them, conjecturing the existence, and
pointing out that the existence of infinitely many primes in a generalized
ideal class would follow from the existence of the class field (precisely the
method we have adopted in this book).

Finally, in 1920, Takagi extended the Weber and Hilbert-Furtwangler
theorems to the most general case, especially proving the existence theorem
for abelian extensions corresponding to generalized ideal class groups, and
showing that the Galois group of such an extension was isomorphic to the
corresponding ideal class group. However, during all this period, both the
splitting laws and the isomorphism were obtained essentially from the
numerical invariants, that is the numbers e, f for the splitting case, and
the order of the ideal class group for the isomorphism. Since a eyclic group
is determined (up to isomorphism) by its order, and since a finite abelian
group is a product of cyelic groups, the isomorphism between the Galois
group of an abelian extension K/k and the ideal class group I(c)/Pt(c)
could be obtained just by counting, and a reduction to the cyclic case.

On the other hand, Frobenius had associated a conjugacy class of
elements in the Galois group of a Galois extension to a prime in the ground
field, and conjectured that set of primes having a given conjugacy class
has the obvious density. He could prove only a weaker result, corre-
sponding to a coarser decomposition of the group into larger classes.
In 1923, Artin defined his non-abelian L-series, and conjectured that in
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the abelian case, the isomorphism of class field theory was induced by the
Frobenius automorphism

pr— (v, K/k).

In 1926, Tchebotarev proved the Frobenius conjecture by using cyclo-
tomic fields, and Artin, recognizing the connection with his reciprocity
law, succeeded in proving his conjecture in 1927, thus completing the basic
statements of class field theory. (A more detailed history with references
is given in Hasse’s Bericht “Uber neuere Untersuchungen und Probleme der
algebraischen Zahlkérper”, reprinted by Physica-Verlag, Wurzburg, Wien,
1965. See also Hasse’s talk at the Brighton Conference, [7].)

Thus in this period, from about 1880 to 1927, we see the class field theory
developing from three themes: the decomposition of primes, abelian
extensions, and ideal class groups.

In 1936, Chevalley introduced the ideles in order to formulate the class
field theory for infinite extensions. [Shortly afterwards, Weil introduced
adeles, and gave his adelic proof of the Riemann-Roch theorem.] The
ideles are very useful technically (among other things) because every
generalized ideal class group is a homomorphic image of the idele class
group J/k*. Thus expositions of class field theory making greater use of
the ideles were given by Artin in seminars in the late forties. The treat-
ment which I give in this book follows roughly one of these seminars,
with some exceptions: I have still made use of the generalized ideal class
groups because when the Artin symbol is given for unramified p, these
ideal groups occur naturally and I think it obscures matters deliberately
to disregard them. More importantly, I have used the oldest proof for
the universal norm inequality (Weber’s proof) both because it is more
natural than the “purely algebraic” proof of Chevalley (reproduced in
Artin-Tate), and also because it motivates the whole approach to class
field theory through the density of primes in arithmetic progressions, and
the splitting laws. The proof of the reciprocity law is a simplification by
Artin himself of his original 1927 proof.

There is another approach to the class field theory, first started in the
early thirties by Hasse, namely through the theory of simple algebras,
centering around the fundamental theorem that a simple algebra over k
splits over k if and only if it splits locally everywhere (Albert-Hasse-
Brauer-Noether). Hasse also shows how to associate invariants with a
division algebra, and how the reciprocity law has a formulation in terms
of the sum of the invariants being equal to 0 (Math. Ann., 1932). Hoch-
schild in 1950 pointed out that one could express the class field theory
only in terms of cohomology; the simple algebras were unnecessary if one
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used only the 2-cocycle used to define them. At about this time, Weil
also emphasized the cohomology, by discovering the fundamental 2-cocycle
of idele classes. The Artin-Tate notes give a complete systematic treat-
ment from the point of view of cohomology. This approach, which shows
that the second cohomology group of the idele classes (for the algebraic
closure) is isomorphic to Q/Z, provides a good background for theories
where this result is used to obtain pairings, e.g. some diophantine questions
related to abelian varieties over p-adic fields or number fields as in the
work of Tate. In this direction, the simple algebras do not appear. This
second cohomology group is used as a receiver of character values.

On the other hand, starting from the functional equation of the zeta
function of a division algebra (obtained by Hey, unpublished thesis,
Hamburg 1929, cf. Deuring’s Algebren), Zorn showed how the fundamental
theorem on simple algebras over number fields could easily be obtained
as a corollary, thus providing still another alternative approach to the
class field theory (Hamburg Abh., 1933). After a slumber of thirty years,
this approach has again become important because of the recent advances
in the arithmetic theory of semisimple Lie groups, and it is the one selected
by Weil in his Basic Number Theory.

A fourth way of describing the class field theory, and in many ways the
most exciting, originated with Kronecker, and consists in giving “natural”
generators for class fields as values of transcendental functions, and
obtaining an explicit reciprocity law in terms of them. As of now, this
program (Kronecker’s Jugendtraum) has succeeded only for a limited
number of class fields, essentially those over totally imaginary quadratic
extensions of totally real fields, in excess of the class fields over the totally
real subfield.

The analogy between number fields and function fields in one variable
has been a prime source of motivation ever since the nineteenth century
(passing through Hensel-Landsberg, Artin’s thesis, etc.). Both Artin-Tate
and Weil axiomatize the class field theory so that it applies as well to the
function fields over finite constant fields. However, once the analogy has
been understood, there are some reasons for giving alternative expositions
for the two cases. First, certain aspects of number fields are still shrouded
in mystery while the corresponding aspects of the function field case are
cleared up. Thus a certain emphasis on the peculiarities of number fields
is not out of place. Secondly, one can give an exposition of the class field
theory in the function field case making use of the generalized Jacobians
of Rosenlicht, by a method which was new even in the simplest case of
unramified extensions of elliptic function fields, independently of these
generalized Jacobians. I did this in two articles (Annals of Math., 1956
and Bulletin de la Société Mathématique de France, 1956), as a by-product .
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of showing how to formulate class field theoretic results for higher dimen-
sional varieties. The essential idea is to map the variety into a commuta-
tive algebraic group, obtain explicit coverings for the group defined over
the finite field with ¢ elements (e.g. the covering defined by the formula
z +— '@ — z), verify trivially the reciprocity law for these coverings, and
then pull them back to the variety. In the case of curves, Rosenlicht’s
universal mapping theorem for his generalized Jacobians gives a convenient
family of mappings, cofinal with the family of all maps into all commu-
tative algebraic groups. The generalized Jacobians correspond to the
generalized ideal class groups of Weber (history comes around full circle).
In the “geometric case”, this approach allows one to have a much clearer
insight into the whole class field theory, since the existence theorem and
the reciprocity law become obvious once the machinery of algebraic
geometry is available. For these reasons, I have limited myself in the
present book to an exposition of the class field theory over number fields.
With only minor modifications, though, they are also seen to apply to the
function field case. (Only exception: the existence theorem for p-exten-
sions, p equal to the characteristic.)

If there is one moral which deserves emphasis, however, it is that no
one piece of insight which has been evolved since the beginning of the
subject has ever been “superseded” by subsequent pieces of insight. They
may have moved through various stages of fashionability, and various
authors may have claimed to give so-called “modern” treatments. You
should be warned that acquaintance with only one of the approaches will
deprive you of techniques and understandings reflected by the other
approaches, and you should not interpret my choosing one method as
anything but a means of making easily available an exposition which had
fallen out of fashion for twenty years.



The first chapter of this part is quite technical. The reader is advised
to read immediately the beginning of Chapter X, i.e. the description of the
reciprocity law isomorphism, and the statements of the main results of
class field theory in Chapter X, §2 and §3.
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CHAPTER IX

Norm Index Computations

§1. Algebraic preliminaries

The Herbrand quotient

We begin by considerations of general abelian groups, which will be
used both in the local and global case. We recall the index relation

(A:B) = (4’ :B")(A;:B)),
if A D B are abelian groups, f is a homomorphism of A. This was already
used in Chapter II, §3.
Let f, ¢ be homomorphisms of A into itself such that
feg=gef=0.
Then we define the Herbrand quotient

Q) = Qro(4) = $E4D,

if the indices in the numerator and denominator are finite.

Lemma 1. If B is a subgroup of A which is mapped inio itself by f and
g, so that f, g may be viewed also as endomorphisms of the factor group
A/B, then

Q(4) = Q(B)Q(4/B),

in the sense that if two of the quotients are defined, so is the third and the
relation holds. Furthermore, if A s finite, then

Q(4) = 1.

Proof. One may view the quotient @ as an Euler-Poincaré character-
istic of a complex of length 2 (cf. my book Algebra, Chapter IV), and
apply a general result, of an elementary nature, to deduce the multi-
plicativity property. We shall reproduce a sketch of the proof below in
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our special case. First, we give a proof for the simpler case when B is of
finite index in A. We have

(4;:BY)

(A:B) = (A7 :B)(A;:By) = (47 :B) (5,5

(4,:4°)

= (4’:B%)(4°:B°) Ok

whence
(A:B) _ (47:49
(A7:BN(A%:B% ~ (B;:b%

The left-hand side is symmetric in f and g, so that

(47: 4% _ (4,:4)
(B;:B% — (B,:B")’

This proves that Q(A) = Q(B). The reader can verify for himself that
all the steps were legitimate (i.e. under the assumption that Q(A4) or Q(B)
is finite, then we never divided by zero or infinity.)

Now for the general case. We have a sequence

0—-B—-A4-5C—-0
where C = A/B. We define
Ho(A) = A;/A° and H (A) = A,/4A.

And similarly for B and C. We construct a diagram

Hy(A) — Ho(C)

b NG
Ho(B) H,(B)
N /
H(C) « Hy(4)

which is exact, i.e. such that the image of each arrow is the kernel of the
next arrow. Going from B to A, and A to C, the arrows are simply the
natural homomorphisms induced by the inclusion B — A and the canonical
map A —» A/B = C. The maps § are defined as follows. Let ¢ €Cy
represent an element of Hy(C). Then fc = 0. There exists a € A such
that ¢ = ja, if 7: A — C is the canonical homomorphism. Then

jfa = fja =0,

so that fa € B, and in fact fa € B,. It is immediate to verify that the
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association
¢ — class of fa mod B/

is a well defined homomorphism, whose kernel contains C?, and hence
defines a homomorphism

3:Ho(C) — H\(B).

The map from H,(C) to Hy(B) is defined similarly. It is a routine matter
to prove that with these definitions, the hexagon is exact.

If the quotient @ is defined for two dut of three of 4, B, C we see from
the hexagon and the exactness that it must be defined for the third. Under
this condition, we order our six groups in the diagram clockwise, starting
say with Ho(A), and denote them by M; = 1,...,6 mod 6). Let k;
be the order of the kernel of the arrow leaving M; and let m; be the order
of the image of the arrow arriving at M;. Then

ord M,' B m,'k,'+1.
Furthermore m; = k; by exactness. Hence
m1m3m5k2k4k6 - m2m4m6k1k3k5.

Dividing suitably yields the relation Q(4) = Q(B)Q(C), thus proving
the multiplicativity of @.

We shall next give the proof for the second statement, Q(A) = 1if A
is finite. We have the following lattice of subgroups:

A

A,X \A,,
"
\OX

Under the map g we have an isomorphism A/A, = A9 and similarly
with f replacing g. Thus opposite slanting sides of the hexagon are equal.
It follows that the vertical sides are also equal, thus proving what we
want. (Equality here means that the corresponding factor groups have
the same order. As an abuse of language, it is very much less obnoxious
than the corresponding abuse in plane geometry . . .)

The preceding lemma will be referred to as the Q-machine. It will
be used in the following context. Let G be a cyclic group operating on an
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abelian group A. Let o be a generator of G. Let
f=1—0¢ and g¢g=140+4+---4o"!

where n is the order of G. Let A€ be the subgroup 4,_,, i.e. the subgroup
of A consisting of those elements fixed by G. Note that

1+o0+:--40" 1= Trg

is a “trace” map, which in multiplicative notation would be denoted by
a norm map. Thus our quotient.in this case is

(A°:Tred)
(ATr (1 — U)A)
The numerator is the trace index (norm index in multiplicative notation).

If G operates with trivial action on Z (or any infinite cyclic group,
then we have

Q(G, 4) =Q(4) =

QG,2) = (G:1)

i.e. the Herbrand quotient is equal to the order of G. This follows because
Z¢ = Z, Tr(Z) = nZ (where n is the order of G), and Z7, = G.

Let G be an arbitrary finite group operating on an abelian group A.
We associate with (G, A) two abelian groups

HYG, A) = A®/TrgA  and H7NG, A) = Ar/IGA,

where I¢ is the ideal of the group ring Z[G] generated by all elements
(1 — o) foro € G. Itis an ideal, because for 7 € G we have

T—T10=7—1+1— 710.

Thus IgA by definition consists of the G-submodule generated by the
elements a — oa, witha € 4 ando € G. If G is cyclic, and o is a generator
of G, then

TeA = (1 — )4,
because 1 —a* = (1 —a)(1 4 -+ -+ o' ).

In homological terminology, we see that the numerator and denominator
of the Herbrand quotient are simply orders of cohomology groups, namely
the orders of H® and H™! respectively.
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Semilocal representations

We shall now prove some lemmas which are useful in computing these
orders in a situation which arises all the time. We consider a finite group
@ operating on the abelian group A. Assume that A is the direct sum of
subgroups,

A=1] 4,
=1

and that G permutes these subgroups A; transitively. When that occurs,
we say that the operation of G is semilocal. Let G; be the decomposition
group of A, (i.e. the subgroup of elements ¢ € G such that 04, = A,).
We call (G,, A,) its local component. Each element a € A can be written
uniquely

s
a = Zai’

i=1
with a; € A;. Furthermore, let

¢= U ot (@ =1

=1

be a left coset decomposition of G. We can chose the indices 7 in such a
way that 0;A; = A;. In that case, each element a; € A; can be written
as 0;a; for a uniquely determined element a; € A,.

Lemma 2. The projection w: A — A, tnduces an tsomorphism
HO(GJ A) = HO(GI: Al)-
Proof. We first observe that A€ consists of all elements of the form
8
> oiay, with a; € 4,5
i=1
Namely, it is clear that such an element is fixed under G. On the other
hand, if

8
a= 2 o4} (af € 4y)

i=1
is fixed under G, then for a fixed index j we apply o; ! and see that
a; = oj 'o;a} is the A -component of 6 'a = a. Hence a} = af for all j,
thus proving our assertion. In particular, an element of A¢ is uniquely
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determined by its first component, and thus the projection gives an
isomorphism
A% =, 4P

On the other hand, for a fixed j and a, € 4, we have
Tre(oja,) = aEZG' ga; = ;Z:l o; Trg,(ay).
This shows that Trg(A4) consists precisely of those elements of the form
;le o Tre,(ay), a1 € 4;.
Thus it is clear that A¢/TrgA ~ A%/Trg,(A,), and the lemma is proved.

Lemma 3. There is an tsomorphism (to be described tn the proof)

H™Y(G, A) =~ H Y(Gy, 4y).
Proof. Let
a= io’;a’i, a; € A,.
Then =
Tro(o) = 3. 03 Tre,(@h + - + ai).

Hence Trg(a) = 0 if and only if Trg,(a; + - - - 4+ a;) = 0. The map

amal+--+al
is therefore a homomorphism

\:Ker Trg — Ker Trg,,
which is obviously surjective (take a = a, in Ker Trg,). We show that

A maps IgA into Ig,4;. If ¢ € G, then there is a permutation 7 of the
indices 7 such that

00; = Ox(i)Tx(3)

with some 7,(; € G;. Hence
8
Noa — a) = Z (Tr(i)aé — a3),
i=1

thus proving our assertion. To conclude the proof, it will suffice to show
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that if A(@) = O then a € IgA. Butif aj +---+ a, = 0 we can write

a= Z (0’,‘0',’ - a:');

t=1
and so a € IgA. This proves our lemma.

Remark. The two lemmas are frequently used in case G; = {1}, and
in that case, we see that H°(@, A) = H~'(@, A) = 0. This occurs in
the case of the “regular” representation of G, of which the following is an
important case. Let K/k be a Galois extension with group G. It is known
from elementary algebra that there exists a normal basis for K/k, i.e. a
basis consisting of elements {ws}seq such that for any 7 € G we have
Tw, = wre- In that case, G permutes the 1-dimensional k-spaces k - w,
transitively, and each decomposition group is trivial. Thus we get

HG,K)=H (G, K) = 0.
If K/k is cyclic, then we always have
H™Y(G,K* = 1.

This is nothing but Hilbert’s Theorem 90.

§2. Exponential and logarithm functions

Let k be a p-adic field, and let | | = | |,. The series
2 .3
log(1+x)=x—£2—+£3——---

converges for all z € k such that |z] < 1. To see this, let

pr <n< pr+l.
Then

ord, z"/n = n-ordyx — ordyn = n-ordyx — 7,
and the right-hand side tends to infinity with =.
For sufficiently small z, we shall see that log(1 + z) and z have the same
order at p. Precisely, we shall prove that if n = 2 and

ord, z > p—i—l, or equivalently, lz| < p~ YD
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then |2"/n| < |z|. Namely, we have

log, |z"/n| — log 2] = (n — 1) logy |z| — logy [n|

n—1

p—1

This shows that log, [t"/n| < log, |z|, whence |z"/n| < |z|. Hence for

such z, we find that the series of log(1 + z) is dominated by its first term x
(remember that the absolute value is non-archimedean!) so that

< — +r =0

ord, log(1 + z) = ord, z

whenever ord, z > ¢/(p — 1).
The functional equation

log(aB) = log a + log B
holds whenever o and 8 are = 1 (mod p), and we define
log a = log(1 — (1 — a)).

Indeed, it is true as a formal power series relation, and the series involved
converge.

The series
22 2®
expx—l.}.x_*_a_}—y_*_...

converges for all x such that ord, z > e/(p — 1), that is in the same disc that
the log series behaves well, and in that disc, we have the same type of relation
as for the log, namely

ord, z = ordy(exp z — 1).

In fact, for n = 2, and z in that disc, we have again |z"/n!| < |z|.

To prove this, we meet a slightly more difficult situation than for the
log, because the factorials are more divisible and thus tend to zero more
strongly than the mere n of the log series. We write

n=ga +ap+---+ap
with rational integers a; satisfying 0 < a; < p — 1. Then
[n/p) = a1 +asp+ -+ - +ap™™*
[n/p*1 = az + -+ ap?

[n/p] = e
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Hence

ordyn! = a1+ (p+1ag+---+ @'+ + Da,

and

(p —Dordyn! = (p — Da; + (p*> — Nag+--- + (p" — 1)a,
=n—(ao+ -+ a).

Consequently, we find for n = 2,

log, [z"/n!| = n - log, |2| — log, [n!]

1
<n [logp |z| + 'I;':—l]
and also

log, |2"/nY| — log, |z] = (n — 1) log, |z| — logy [n!]
n—1

<ty Gt tal S0

This shows both that z"/n! — 0 as n — o (for the p-adic topology), and
also shows that for n = 2, we have [z"/n!| < |z|, thus proving all our
assertions.

In the disc |z| < p~ Y=Y we conclude that

explog(l+z)=1+4+1=x and log exp z = =.

Namely, this is a formal power series identity, and all the series converge.
In particular, for small 8 > 0, and this is all that we shall need in the rest
of class field theory, we see that 8-neighborhoods of 1 and 0 are mapped
isomorphically onto each other by the log and exp respectively. We shall
not need the exact maximal domain in which this is true.

§3. The local norm index

Let k be a p-adic field. Let K/k be a cyclic extension of degree N, with
group G, and let o be a generator. Let Uy be the group of units in k, and Uk
the group of units in K. We let e be the ramification index and f the residue
class degree as usual.

The Galois group G operates on Ug and K*. We are interested in

H°@,K*) = k*/NEK?,
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or less precisely in the index (k*: NKK*). We shall prove:

Lemma 4. Hypotheses being as above, we have

Q(G,K*) = (k*: N{K*) = [K : k],
(Ue:NEUg) = ¢, Q(G,Ug) = 1.

Proof. We use the Q-machine. By Hilbert’s Theorem 90 we know that
H™Y(G,K*) = 1. Hence

QK*) = (k*:NFK™)

is our norm index. We have K*/Ug =~ Z (with trivial action, because
. |oal = || for all « € K*), whence

[K: k] = Q(Z) = Q(K*)/Q(Ux)

provided that we can show that Q(Uk) is defined. In fact, we shall prove
that it is equal to 1.

Let {w,} be a normal basis of K over k. After multiplying the elements
of this basis by a high power of a prime element 7 in k, we can assume
that they have small absolute value. Let

M= E owr,
T€EG
where o is the ring of integers in k. Then G acts on M semilocally, with
trivial decomposition group. Furthermore, exp M = V is G-isomorphic to
M (the inverse is given by the log), and V is 4n open subgroup of the units,
whence of finite index in Ug. Therefore we find that

1=Q(V) =QUk)
as desired.
Finally, we note that
(Ue: N Ux) |
(H:UK™)
where H is the kernel of the norm in Ugk. Using Hilbert’s Theorem 90

again, together with the fact that |oa| = || for all « € K*, we see that
H = K*!~° Hence the denominator of Q(Uk) is given by

Q(Uk) =

H:UK™) = (K"7:UK") = (K" 7: (k*Ux)'™)
_ (K*:k*Uk)
(Ki—o: (6" Ux)1-0)

€ _
B N
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This shows that (Uy: NKUg) = e, and concludes the proof of the lemma.

Observe that we have recovered the result that if K/k is unramified, then
every unit in k is a norm of a unit in K, because e = 1.

Remark. If k is the real or complex field, then the result of Lemma 4
holds also, and the verification is trivial. We must interpret the “units”
then to mean the whole multiplicative group of the field, and ¢ = [K : k]
is equal to 2 or 1.

In the local class field theory, we shall see that the factor group k*/NEKK*
is isomorphic to G, and not only in the cyclic case but also in the abelian
case.

Finally, we remark that the tnequality

(k*:NEK™) < [K:K)

Sollows easily for an arbitrary abelian extension K/k. To see this, consider
a tower

KDEDk.

Assume that the inequality is proved for each step of the tower, namely
K/E and E/k. We have

k* > NfE* > NEK*
because NX = NEoNE. Therefore
(k*:NEK*) = (k* :NEE*)(NEE* : NEK™).
But
(NEE*:NENEK*)  divides (E*:NEK™.
Since the degree of an extension is multiplicative in towers, we see that if
the norm index inequality holds in each step of the tower, then it holds

for K/k. This reduces the inequality to cyclic steps, in which case we
apply Lemma 4.

Similarly, for any abelian extension K /k we have
(Ur:N{Ux) S e

Local class field theory will ultimately show that we have an equality in
these index relations.

§4. A theorem on units

We turn to the global case, and throughoul this section we let k be a number
Jield. Then Uy denotes the group of units in k.
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Under a log mapping, we can embed the units (modulo roots of unity)
into a Euclidean space R®. If K/k is a Galois extension with group G, then
one can define an operation of G on R®* which makes this a G-embedding,
in a natural way, and allows us to visualize the operation of G on the units
somewhat more clearly. This is done as follows.

Let S be a finite set of absolute values on k containing all archimedean
ones, and let Sk be the set of absolute values w on K such that wjv for
some v € S. For each w € Sk we select a symbol X,,, and let E* be the
s-dimensional real space having {X,} as basis, for w € Sg¢. Thus s is the
number of elements of Sg. If ¢ € G, we define

0X» = Xow,

and extend o to all of E* by linearity. Then G operates on E°.

By a lattice in E* we mean, as usual, a free abelian subgroup of rank s,
such that a Z-basis for this subgroup is also an R-basis for E®. The next
theorem is taken from Artin-Tate.

Theorem 1. Let M be a lattice in E* which is tnvariant under G (i.e.
oM C M for all 0 € G). Then there exists a sublattice M’ of finite index
in M which is tnvariant under G, and has a Z-basis {Y,}, (w € Sk),
such that

oYy = Y,

Proof. We take the sup norm on E*® with respect to the coordinates
relative to the basis {X,}. Since M is a lattice, there exists a number b
such that for any X € E®, there exists some Z € M such that

|IX — 2| <b.

For each v € 8, let 7 be a fixed element of Sk such that #lv. Take ¢ real
and large positive, and find some Z; € M such that

tX; — Z;| <b.
For wlv, let
Yw = Z 0’Z§.

The sum is taken over all ¢ € G such that o5 = w. We contend that the
family {Y,} is a basis for a sublattice M’ satisfying our requirements.
First the action of G is the desired one, because for 7 € G,

7Y, = Z 7025 = Z PZs = Y.y

ov=w PU=TW

The second sum is taken over those elements p € G such that p7 = 7w,
making the transformation p = 7. This proves our first assertion.
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We must now show that the vectors {Y,,} are linearly independent over
R. Suppose that

Y oY =0

with real ¢,. If not all ¢,, = 0, we may assume that |c,,| = 1 for all w,
and also ¢, = 1 for some w. Let

Z; = tX;+ B;
with a vector B; such that |B;| < b. Then

Yo= 2, 0Zs=1t Y, X+ B,

where |B,| < Nb, and N = order of G. Hence
Yo = tmypX, + B,
if m,, is the number of ¢ € G such that 65 = w. Thus we obtain

0= co¥u =12 compXy,+ B,

where |B’| £ sNb. Looking at that w such that ¢, = 1, we see that if ¢
was selected sufficiently large then we have a contradiction, thus proving
our theorem.

We observe that M’ is G-isomorphic to the lattice having {X,} as a
basis. We can decompose M’ into a direct sum

M=1]1I II1zY.
vES wlv
and each subgroup

M, =]]zY.

wlv

is semilocal (i.e. G permutes the factors ZY ,, transitively), with decomposi-
tion group G, for each w, acting trivially on the local component ZY,,
which is G,-isomorphic to Z itself.

We can now apply the semilocal theory, and the @-machine.

Corollary 1. Let G be cyclic of order N. Then
QG, M) =Q(G, M) = ][] N,

vES

where N, is the order of the composition group G, for any wv.
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Proof. We have
Q¢ M) = I @@, M3) = I] Q(Gs, 2Y5)
vES vES

and Q(Gy, Z) = N, so that our corollary follows because (M : M') is
finite.

Corollary 2. Let K/k be cyclic of order N and let K 5 be the S-units in K.
Then

1
Q(G) KS) = ']v II N..
vES
Proof. The map

L: Ks — E*
given by
L = 2 log |&luXw (w € 8k)
wESK

is a G-homomorphism of K g into E°, whose image is a lattice in a hyper-
plane of E*, and whose kernel is finite. Let X be the vector

X0= Z Xw.

wESk

Then Xy and L(Kg) generate a lattice M in E® to which we can apply
Theorem 1. The @-machine gives:

Q(Ks) = Q(L(K5)),
and since ZX is G-isomorphic to Z,
QM) = QM) = Q(L(K5))Q(Z).
But Q(Z) = N. This proves our corollary.

§5. The global cyclic norm index
In this section, we prove:

If K/k s cyclic of degree N, then

(Jr:k*NEJk) = (Ci: NECk) = N.

Remark. The class field theory ultimately shows that the same relation
holds if K/k is abelian. However, for an arbitrary finite extension E/k,
the group k*NfJ g is equal to k*NXJx where K is the maximal abelian
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subextension of E. Thus the fact that the index is equal to the degree in
the abelian case is a non-trivial global fact, requiring some sort of global
argument.

Considering the lemmas proved in the preceding sections, the proof
will not be hard. We know by the finiteness of the class number that there
exists a set of absolute values S in K such that

Jg = K*Jx,s = K*Js.

We always assume that S contains all the archimedean absolute values,
and we enlarge S so that S is invariant under G, i.e. fc €eGand w e S
then ow € S also. We also enlarge S so that S contains all w which are
ramified.

We use the @-machine, and find:

Q(Cx) = QUk/K*) = Q(K*Js/K*) = Q(Js/Ks) = QJ5)/Q(K35).

We already know of course that Q(K) is defined, and we have computed
it in the preceding section. It is easy to see that Q(Js) is also defined and
to compute it. Let Si be the set of absolute values v of k which are induced
by elements of S = Sx. We can write

JS - vES, (wlv ) X v€Sy (wlv w) .

By Lemma 4 of §3, and the assumption that any v & Sk is unramified in
K, we conclude that

H%Gy, Uy) = H Gy, Uyp) = 1.

By the semilocal theory, and the fact that each factor

HUw

wiv

is G-invariant, we conclude that if ¥V denotes the product

V= H HUwy

vE€Sy wlv
then

HYG,V)=HYG,V)=1,

and hence Q(V) = 1. Therefore by the semllocal theory, and Lemma 4
of §3,

QUs) = II Q(Gu, Kw) = I N,
vES, vESy
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where N, is the local degree [K,,:k,] for any wjv. Combining this with
the value of Q(K g) found in Corollary 2, §4 we see that

Q(Ck) = N.
But
. K
aen = Cr:NEen),

where h_; is the order of H~!(G, Ck). Hence (Cix: NXCk) is divisible by
N. In view of the universal norm index inequality, we now conclude that
equality must hold, thus proving what we wanted.

Remark. Because of this equality, we also find as a by-product that
H™YG,Cxg) = 1.

See the next section for an application of this.
As an application of our index result, we can prove:

Let K/k be cyclic of degree > 1. Then infinitely many primes of k do
not split completely in K.

Proof. Suppose that all but a finite number of v in k split completely in
K. Let S be a finite set of absolute values of k containing those which do
not (i.e. for which K, # k,if v € S). We shall prove that J, = k*N&J g,
which will be a contradiction. Let a € J;. By the approximation theorem,
there exists some o € k* such that aa is very close to 1 at all v € 8, and
hence a local norm at allv € 8. Forv € S, aa is trivially a local norm since
K., = k,. Hence aa = NXA for some idele A € Jk.' Hence

Jx Ck*N{J k.

This proves our assertion.

This result will be used in the next chapter to show that the reciprocity
law mapping is surjective.

§6. Applications

This section will not be used in the rest of the book and may be omitted.
It deals with cohomological applications of the results obtained so far.
We assume that the reader is acquainted with a little bit of cohomology
of groups, but nothing worse than H—!, H°, H!, H? and the exact sequence
connecting them. Let K/k be cyclic. Corresponding to the exact sequence

0o K*¥>Jg—Ckg—0
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we have an exact sequence ’
1= H (G, Ck) — H%G, K*) — H°G, Jx),

whence the map on the right is injective. If the reader looks at the defini-
tions, he will see that this injection is nothing but

Hasse’s Theorem. Let K/k be a cyclic extension. If an element o € k*
15 a local norm everywhere, then it is a global norm.

Note. This is true in general only in the cyclic case. The variance from
this precise relation in, say, abelian extensions, is determined by higher
cohomology (3-cohomology, in fact).

Next, consider another piece of the exact sequence,
1 = HY(G,Ck) — H*G, K*) - H*(G, Jk).

Again, we have an injective map on the right. But H?2 is nothing but the
Brauer group, and the injection is nothing but the fundamental theorem
of Albert-Hasse-Brauer-Noether:

A 2-cocycle (or simple algebra) splits globally if and only if it splits locally
everywhere.

This last statement has seemingly been proved only in the cyclic case,
but it is an easy technical matter to see that it holds for any Galois exten-
sion, i.e. that H(@, Ck) = 1 if K/k is Galois. Our purpose is not to go
into this part of theory here, so we let the reader look it up elsewhere
(e.g. Artin-Tate).






CHAPTER X

The Artin Symbol, Reciprocity Law,
and Class Field Theory

§1. Formalism of the Artin symbol

Let K/k be an abelian extension, and let p be a prime of k which is
unramified in K. We had seen in Chapter I, §5 that there exists a unique
element o of the Galois group G, lying in the decomposition group Gg
(for any P|p, they all coincide in the abelian case) having the effect

ga = o™ (mod P), a € og.

This element o depends only on p, is denoted by (p, K/k), and will be
called the Artin symbol of pin G.
We extend the map

p— (v, K/k)

to the subgroup I(b) of fractional ideals prime to the discriminant b of
K/k, by multiplicativity. In other words, if a is prime to b, and

a= Hpvp’

then we define
(a, K/k) = TI (v, K/k)">.
We call again (a, K/k) the Artin symbol of a, and the map

a— (a, K/k)
is a homomorphism
w:I(d) — G(K/k),
which will also be called the reciprocity law map, or the Artin map.
Its kernel will be called the reciprocity law kernel, or Artin kernel G.

The Artin symbol satisfies the following formal properties, which are
immediate consequences of its definition.

197
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Al. Leta: K — oK be an tsomorphism (not necessarily equal to the identity
on k). Then

(0a,0K /ok) = o(a, K/k)o ™.
Proof. Obvious.
A2. Let K' D K D k be a bigger abelian extension. Then
resg(a, K'/k) = (a, K/k).

For this statement, any prime entering in the factorization of a must be
unramified in K’. The statement is obvious for prime ideals, and thus
follows for any a. It is called the consistency property.

A3. Let K/k be abelian and let E /k be finite. Let p be a prime in k unrami-
fied in K and let q be a prime of E lying above p. Then

resg(a, KE/E) = (p, K/k)’

where f is the residue class degree, f = [og/q:or/p] = f(alp).
The lattice of fields is as follows:

/\
\/

I
k

For any z € oxg/Q (where Q is a prime of KE lying above q) and
o = (q, KE/E) we have oz = z™9. But Nq = Np/. Thus our property
is obvious. We also see another formulation, namely:

A4. Let K, E be as above, and let b be a fractional ideal of E such that if q
occurs in the factorization of b, and g|p with p in k, then p is unramified
in K. Then

resx (b, KE/E) = (NEb, K/k).
In particular, 1f K D E D k, then
(6, K/E) = (N¢b, K/k).

The next property is neither trivial nor formal, and is a corollary of
the cyclic norm index equality.
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Theorem 1. Let K/k be abelian. Then the rectprocity law map
a — (a, K/k) is surjective, as a map of I(c) into the Galois group, for any
cycle ¢ (divisible by the ramified primes).

Proof. Let ¢ be a fixed cycle of k, divisible by the ramified primes, and
let H be the subgroup of G which is the image of the reciprocity law
mapping. Let F be the fixed field of H. We must show that F = k. Any
p € I(c) must split completely in F, otherwise (p, F/k) # 1, and (p, F/k)
is the restriction of (p, K/k), thus contradicting the fact that F is the fixed
field of H. Thus all but a finite number of primes of k split completely in
F. If F # k, then F contains a subfield Fy which is cyclic over k, of
degree > 1, and all but a finite number of primes of k split completely in
Fgy. This contradicts the result of Chapter IX, §5 (essentially, the global
norm index equality), and proves our theorem.

Our main task now is to prove that there exists some admissible cycle ¢
such that P, is contained in the kernel of the Artin map. Such ¢ is called
a conductor for the Artin map. This is the crux of the present approach
to class field theory, and is a remarkable fact. Indeed, the Artin map is
defined for each p (unramified) and extended formally to fractional ideals.
There is a priori no connection between this definition and the definition
of P, (which is very global).

Property A4 shows that the norm group of ideals is contained in the
kernel of the Artin map, that is if % is a fractional ideal of K relatively
prime to the ramified primes, then

(NEY, K/k) = 1.

Therefore if ¢ is a conductor, then the group which we denoted by PJt(c)
is contained in the Artin kernel G. But we know the universal inequality

(I(c):PIUc)) < [K:K] = (G:1).

In view of Theorem 1, the surjectivity of the Artin map, it follows that
Pau(c) is the precise kernel,’ and we get an isomorphism

w:I(c)/PI(c) — G

from the Artin map. This is the Artin reciprocity law.

Example: Cyclotomic extensions.

We conclude this section by our usual example of cyclotomic extensions,
not only because of its special interest, but also because it will be used in
the general proofs later.
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Let m be an integer > 1. Let K = Q(¢{,) be the extension obtained by
adjoining a primitive m-th root of unity to Q. Then only primes p dividing
m ramify in K (cf. for instance Proposition 8, Chapter III, §2, together
with the fact that ¢,, is a root of X™ — 1 = 0). Let p be a prime number,
pim. Then the definitions show that ((p), Q(¢=)/Q) has the effect

I

on { = {,. Hence if a is a positive rational number prime to m, and
a = d (mod* m) for any positive integer d, then

((0), QUtm)/Q) : ¢+ §2
In particular, ((a), Q(¢{=)/Q) = 1 if and only if a = 1 (mod* m).

Nezxt, let k be any number field, and K C k(¢). There exists a cycle ¢
of k divisible only by p|m and archimedean v such that if « € k* and

a =1 (mod* ¢),

then (a) is in the kernel of the Artin map, i.e. P, is contained in G.

Proof. This follows easily from the formal properties of the Artin
symbol. By consistency, it suffices to prove our assertion when K = k({.,).
By the continuity of the local norms, there exists ¢ such that if o € k*
and o =1 (mod*¢), then Nﬁa = 1 (mod* m) and is positive. At the
archimedean absolute values, we simply impose the condition that « is
totally positive. Then

resq. (@), K/k) = (N§(@), Q(tn)/Q) = 1.

The effect of an element of G(k({n)/k) is determined by its effect on {p,.
This concludes the proof that the Artin map has a conductor in ecyclotomic
extensions, and that we can take this conductor divisible only by p|m or
archimedean v.

§2. Existence of a conductor for the Artin symbol

We shall need auxiliary cyclotomic fields, and to construct these, we
need prime numbers satisfying certain properties. Artin’s original proof
for the existence of these prime numbers used fancy existence theorems.
Van der Waerden observed that one could get them easily and in a very
elementary manner, and the proofs of Lemmas 1 and 2 are due to him.

Lemma 1. Let a, r be integers > 1. Let q be a prime number. Then there
exists a prime number p such that a has order ¢" (mod p).
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Proof. We consider the positive number

Then
T — (aqr-l _ l)q._l + q(aqr-l _ l)q—-2 e q.

Let p be a prime dividing 7. If p also divides a’” — 1, then p = q.
Otholarwise, p serves our purposes. If ¢ divides T then ¢ also divides
a?® — 1. If ¢> 2, then ¢ — 1 > 1, and hence g2 does not divide T.
But T > ¢, so that there exists a prime p # ¢ dividing T and not at — 1,

which serves our purposes. Finally, if ¢ = 2, then
T=(@" —1+2

and is not ldivisible by 22 so that again there exists p|T but p does not
divide a2 * — 1, thus concluding the proof.

Let P be an integer > 1. Integers a, b > 0 are said to be independent
mod m if they generate cyclic groups in (Z/mZ)* which are independent,
i.e. whose intersection is 1.

Lemma 2. Let

r T
nqul...qs‘

be a positive tnteger factorized into powers of primes q;. Let a be an
integer > 1. There exists an integer

m=pl...psp’1...p£’

with distinct primes p;, p; such that a has order (mod m) divisible by n,
and there exists a positive integer b whose order (mod m) s divisible by n,
and such that a, b are independent mod m. The primes p;, p; can be chosen
arbitrarily large, satisfying these conditions.

Proof. By letting r — oo, we see that in Lemma 1, we can find arbi-
trarily large primes p such that a has order (mod p) divisible by a fixed
power of q. We therefore first find large distinct primes p;, ..., p, such
that @ has order ¢& (mod p,) with a positive integer r¥ > r;. Next we find
still larger primes pj,..., p., distinct from p;, ..., ps and from each
other, such that a has order ¢}i (mod p}) with a positive integer i > r¥.
We let m = p;y---pspy---p.. Then certainly a has order (modm)
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divisible by n. Let b be a positive integer such that
b=a (mod p; - - - ps) and b=1 (mod p} - - - ph).
Then b has order (mod m) divisible by n. Finally, suppose that
a’b* =1 (mod m)
with positive integers v, u. Then @’ =1 (mod p; - - * p;), whence
q'l" <o qf' divides ».

This implies that @* = 1 (mod p; - - - p,), and hence that @’ = 1 (mod m).
Therefore b* = 1 (mod m), thereby finishing the proof of the lemma.

We interpret the lemma in terms of cyclotomic extensions. In an
abelian group G, we say that two elements o, 7 are independent if they
generate cyclic groups whose intersection is 1.

Lemma 3. Let K be an abelian extension of the number field k, and let
S be a finite set of prime numbers. Let n = [K :k]. Let p be a prime of
k which is unramified in K. Then there exists an integer m relatively prime
to the numbers in S and to p, such that:
(i) The Artin symbol (p, k(¢m)/k) has order divisible by n.

) KNk(tm) = k.

(iii) There exists an automorphism 7 of k({m) over k, independent of

(v, k(¢ m)/k), and whose order is divisible by n.

Proof. We apply Lemma 2 with @ = Np. We can take m divisible only
by arbitrarily large primes, so that K N Q({») = Q and (ii) is satisfied.
Let ¢ = (p, k(¢m)/k). Then

a.(m = g-:l.,

and (i) is satisfied. Finally select b as in Lemma 2, and define 7 by
T¢tm = ¢o. Then (iii) is satisfied. This proves the lemma.

Artin’s Lemma. Let k be a number field, K a finite cyclic extension, and
S a finite set of prime numbers. Let p be a prime of k unramified in K.
Then there exists an integer m relatively prime to all numbers in S, and a
Jinite extension E of k such that:

(1) KNE = k.
(2) K(m) = E(tm) and K N k(fm) = k.
(3) p splits completely in E.
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Proof. The lattice of fields is as follows:
E@}) = K &)

Choose m as in the preceding lemma and let { = {,,. The Galois group of
K(¢) over k is the product of the group G of K over k and the group

of k(¢) over k. Let o be a generator of G. Let 7 be as in the preceding
lemma, and let H be the subgroup of K(¢) over k generated by ¢ X 7 and

(0, K/k) X (p, k(£)/k).

This second condition guarantees that H contains (p, K(¢)/k), and hence
by definition, the decomposition group of p in K(¢). If E is the fixed
field of H, then p splits completely in E.

On the other hand, it is clear that the intersection of H and G X 1 is
the identity. But G X 1 is the subgroup of K(¢) leaving k(¢) fixed. Hence
kE(Y)E = E(¢) must be all of K(¢). This proves Artin’s lemma.

The lemma will be applied in a moment to a situation where we deal

with a finite number of primes py, ..., p-ink. Foreachp; t=1,...,7)
we construct an auxiliary field E; with a root of unity ¢, as in the lemma,
selecting successively the integers my, . . . , m, such that they are divisible

by large primes, and are relatively prime to each other. Then
K(tmy -+« ¢tm,)/k hasgroup G X Gy X---X Gy,

where G; is the Galois group of Q(¢{x,)/Q. Each E; is the fixed field of the
group
HiX Gy XX G X+ XGy,

where the roof means that G; is omitted, and H; is the subgroup of G X G;
generated by

o X T and (pix K/k) X (piy k(g.m,)/k)

As before, ¢ is a fixed generator of G.

Contention: The field E = E, - - - E, (compositum of all E;) is such that
K NE =k, and hence G(K/k) = G(KE/E).
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Proof. The field E is the fixed field of the intersection of all groups
G(KE/E;), which contains

XTI X+ XTy.

/x
\/

Hence K N E is left fixed byo X 1 X - -+ X 1, and is therefore equal to k,
thus proving the contention.

Furthermore, K is left fixed by

IXTy X X1y

Theorem 2. Let K /k be a cyclic extension. Then there exists an admissible
cycle ¢ divisible only by ramified p in K such that the kernel of the Artin
map tn I(c) is equal to PI(c).

Proof. We shall prove that there exists ¢ such that the kernel of the
Artin map is contained in PJt(c), i.e.

@ C Pau(c) C I(c).
By the cyclic norm index inequality, and Theorem 1, which implies
(I(c):@) = [K :k],

we then conclude that @ = PI(c).

Let f be the smallest admissible cycle for K/k, and let a € I(f) be such
that (a, K/k) = 1. We know that only ramified primes p can divide f.
We have to prove that a € P9i(f). Factorize a into prime powers:

r
a= ] pi
1=1

For each p; construct the auxiliary extension E; by means of a root of
unity {m, as described above, and form the compositum

E=E, - E,.
We have the diagram:
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By hypothesis, if we let ¢ be a generator of G, and

%, K/k) = o
for some integer d; = 0, then (a, K/k) = [ 0% = 0%% = 1. Hence

}: d; = dn,

where n = (K : k], that is n divides >_ d;. Select a fractional ideal bg in
E, prime to f, and all integers m;, such that

(bg, KE/E) = 0.

This can be done by Theorem 1. We identify here G(K/k) with G(KE/E).
Let by = Ngbg. Then

(bx, K/k) = @.

We note that p}ib; % is a norm from E;. This is true of a power of p; because

p: splits completely in E;, and b is a norm by the transitivity of the norm.
Write

pibr Y = NEY,

with some ¥; prime to f and all m;. Since (plib; %, K/k) = 1, it follows
that (N;, KE;/E;) = 1. But KE;/E; is cyclotomic, and we can apply
the theorem for cyclotomic extensions. We write

A; = (BINEFD,

for some B; prime to { and all m;, and 8; = 1 (mod* mc]) for some cyecle
¢} in E;, which we can select highly divisible by all primes dividing f, and
archimedean absolute values. Taking the norm from E; to k, we get

Pibe % = (NEB)NE(NKE,),

and N7iB;=1 (mod*f). Taking the product over all 7 shows that
ab; 9" € POu(f). But » = [K:k], so that bz %" is also a norm. Hence
a € Pu(f), thereby concluding the proof of the theorem.

Although the next result is a corollary of the eyclic result just proved,
we state it as a theorem. It is the central theorem of class field theory.

Theorem 3. Let K/k be an abelian extension. Let ¢ be any admissible
cycle for K/k. Then the Artin map

I(c) — G(K/k)
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has kernel equal to P(c), and thus induces an isomorphism
I()/PI(c) — G.

Proof. Let § be the smallest admissible cycle for K/k. If ¢ is divisible
only by the same » that divide {, then we know from Theorem 7 of Chap-
ter VII, §4 that Pou(f) = PIu(f). We express K/k as a compositum of
cyclic extensions. For each such cyclic extension, we can find a conductor
divisible only by v such that v|f, using Theorem 2. An elemento € G(K/k)
is equal to 1 if and only if its restriction to each cyclic extension is equal to
1. Hence by Theorem 2, we can find some admissible ¢ such that the kernel
of the Artin map contains P,, and we know trivially that the kernel of the
Artin map contains 9U(f). Hence

Pa(f) Ca.

As pointed out already, using the universal norm index inequality, we
obtain @ = Pi(f). For an arbitrary admissible ¢, the result follows
immediately, because

Pa(c) = Pou(f) n I(c).

We have proved the fundamental theorem of class field theory.

We shall formulate the result in terms of ideles in the next section, and
prove the other theorems of class field theory, which are now mere
corollaries.

§3. Class fields

Let K/k be an abelian extension. For any admissible cycle ¢, we have
an isomorphism

J/k*NET ¢ ~ I(c)/PIu(c)

described in Chapter VII, §4. This isomorphism allows us therefore to
define the Artin map for ideles, and we get a map

w:Jr — G(K/k),
also denoted by
a— (a, K/k),

which we may once more describe explicitly as follows. We select o € k*
such that aa = 1 (mod* ¢). If a is the associated ideal of aa, then

(a, K/k) = (a, K/E).
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This is well defined. Observe that from our definition, we get

(o, K/k) = 1
for all € k*. Thus the Artin map on ideles may be viewed as defined
on the idele classes, and yields an isomorphism

Ci/NECk ~ G(K/k).

If a is an idele, and a, its v-component for v € My, then we identify a,
with the idele whose v-component is a,, and having component 1 at all
v’ € My, v’ # v. Thus we have the correspondence

g (..,1,1,8,1,1,...)

for a, € k¥. If a is an idele, then a, is a unit for almost all v. Let S be a
finite set of absolute values on k containing the archimedean ones and all
v which are ramified in K. Let S also contain those v at which a, is not a
unit. If » € §, then a, is a local norm, and hence the idele

a5 =1] a

vgS

is in NXJk. Hence (a5, K/k) = 1, and

(a, K/k) = IEIS (av, K/k).

Since (a,, K/k) = 1 for all but a finite number of v, we may summarize
the preceding discussion in a theorem as follows.

Theorem 4. Let K/k be abelian. The Artin map a — (a, K/k) induces
an isomorphism

Ci/NECx = Ji/k*NETx = G(K/k),

and for any idele a, we have

(e, K/k) = 11 (av, K/K).

OEJ!;,

Next we have formal properties of the symbol (a, K/k), similar to the
symbol for ideals.

Al. Leto:K — oK bean isomorphism (not necessarily equal to the identity
on k). Then

(0a,0K /ok) = a(a, K/k)o™!.
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A2. Let K' D K Dk be a bigger abelian extension. Then
resg (a, K'/k) = (a, K/k).
A3. Let K/k be abelian and let E/k be finite. Letb € Jg. Then

resx (b, KE/E) = (N£b, K/k).

These properties are immediate from the corresponding properties for the
ideal map.

If E/k is a finite extension, then NEJg is an open subgroup of J.
Indeed, if v is unramified in E, then every unit in k, is a local norm. Even
if » is ramified, the group of local norms contains an open neighborhood
of 1, which is of finite index in the group of units. Hence the group of
local norms is open. Hence NEJg is open. Thus the group k*NZJ g is
an open subgroup of Ji, containing k*. There is a bijection between open
subgroups of J; containing k* and open subgroups of C, = Ji/k*. If H
is an open subgroup of J; containing k*, we say that H belongs to the
abelian extension K/k if H = k*NfJk. And similarly if H is an open
subgroup of Ci, we say that it belongs to K/k if H = NECx. We shall
also say that K is the class field belonging to H. We also say that H
is the class group belonging to K.

If K is the class field belonging to H, and ¢ : K — ¢K is an isomorphism
(not necessarily identity on k), then it is clear from the basic definitions
that oK is class field (over ak) to oH.

Theorem 5. The map K — NECk (resp. K — k*NEJ k) establishes a
bijection between finite abelian extensions of k and open subgroups of Cj
(resp. of J, containing k*). If K belongs to H and K' belongs to H', then
K C K’ if and only if H D H’'. Furthermore, KK’ belongs to H N H', and
K N K’ belongs to HH'.

Proof. Suppose that H belongs to K and H' belongs to K’. The kernel
of the Artin map

Cr — G(KK'/k)

is H N H’, because of the consistency property A2. Hence H N H’' belongs
to KK’'. If K CK’, it follows from the transitivity of the norm that
H > H'. Conversely, if H D H’, then H N H' = H’, and

(Cx: H") = [K':k] = [KK' :k].

Since k C K’ C KK’, we conclude that KK’ = K’, whence K C K’. This
proves our theorem, except for the fact that every open subgroup of Cy
belongs to an abelian extension. This will be proved in the next chapter.
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Corollary 1. Let K/k be class field to H and let Hy D H. Then H, has a
class field, which is the fixed field of (H., K/k).

Proof. Let K, be the fixed field of (H, K/k). By the consistency prop-
erty of the Artin map, we see at once that H; is the kernel of the map
Cr — G(K,/k), so K, is the class field belonging to H;.

Corollary 2. Let K/k be an abelian extension and let ¢ be a cycle of k,
admissible for K/k. Let W, be the neighborhood of 1 in J; defined in
Chapter VII, §4. If k*W_ belongs to the class field K /k, then K C K..

Proof. Let H belong to K. As we saw in Chapter VII, §4, we have the
inclusion H D k*W,.. Hence our assertion is now obvious.

The class field to k*W, (whose existence will be proved in general in the
next chapter) is called a ray class field (Strahl Klassenkérper).

Ezample. Let K = Q({»). We shall prove that K is the ray class field
to the cycle mv,, thus belonging to Q*W ,,,.

Proof. We first consider the case when m = p” is a prime power. Let
u be a local unit at p, i.e. u € U,. We identify u with the idele

u=(..,Lul,...)

having component 1 at all v # v,, and component » at p. Let ¢ = p*v,

be an admissible cycle for K/Q, with u = ». Let a be a positive integer

such that
: au = 1 (mod p*).

Then

au=(...,a,a,au,qa,aqa,...)

is an idele such that
au = 1 (mod* p*vy,).
If
o = (u, Q¢ /Q) = (au, Q(:»")/Q),
then from the definition of the Artin map for ideles, we find that
o = ¢4

However, ¢* depends only on the residue class of a (mod p*). We conclude
that if v € U, and = 1 (mod p”), then

(u, Q(t»1)/Q) = 1.
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This implies that if m = p*, and H,, is the class group belonging to Q(¢n),
then
Wnve C Hm.

For an arbitrary unit » in U,, we can write symbolically
(%, Q)/Q) i = 57,

exponentiation by ¥~! meaning exponentiation by any positive integer a
such that au = 1 (mod p*).

For composite m, we see at once that Wpy, C Hpm, using the multi-
plicativity of the Artin symbol for ideles. However, we have an isomor-
phism J/Q*W .y, = (Z/mZ)* under the ideal map, as in Chapter VII,
§4, and thus the index relation

(J: Q*Winv,) = [Q(Sm) : Ql = (J: Hp).
Hence
Q*Wmvw = Hmy
thus proving our assertion.

Corollary 3. Let K/Q be an abelian extension of the rationals. Then K
1s cyclotomic, i.e. there exists a root of unity ¢ such that K C Q(¢).

Proof. Let mv, be an admissible cycle for K/Q, and let H be the class
group of K. Then

H, = Q*Wn,, CH,
whence K C Q({,) by Theorem 5.

Corollary 3 is known as Kronecker’s theorem. According to some
critical modern appraisals, Kronecker stated the theorem, but the first
complete proof seems to have been given by Weber. For a proof depend-
ing on higher ramification theory, but not on class field theory, cf. Speiser,

J. Reine Angew. Math., 1919. See also Neumann, J. Reine Angew. Math.,
323, 1981, pp. 105-126 for a discussion of Kronecker’s and Weber’s proofs.

Theorem 6. Let K/k be the class field of H, and let E/k be finite. Then
KE/E s the class field of Ng/i(H).

Proof. The kernel of the Artin map
Cg — G(KE/E)

is precisely equal to Ng/;(H) because for b € Cg we have

resg (b, KE/E) = (N£b, K/k),
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and an automorphism of KE/E is determined by its effect on K. This
proves our theorem.

To prove the next theorem, we shall use the fact that given an open sub-
group H of J; containing k*, there exists an abelian extension K/k such
that H = k*N§Jk. This is the existence theorem which will be proved
in the next chapter.

Theorem 7. Let E/k be a finite extension, and let H = NECg. Then H
belongs to the maximal abelian subextension of E.

Proof. Let K/k be the class field belonging to H. For any b € Cg we
have Nib € H, and hence

1 = (N£b, K/k) = resk (b, KE/E).

Hence KE is the class field to all of Cg, whence KE = E and K CE.
It is then clear that K is maximal abelian in E, thus proving the theorem.

Corollary. We have [E :k] = (Ci : NECE) if and only if E/k is abelian.
Proof. Clear.

From the consistency property, we can define the Artin map for infinite
abelian extensions. Let A be the maximal abelian extension of k (i.e.
compositum of all finite abelian extensions). Given a € C; we define an
automorphism (a, k) on A to be (a, K/k) on each subextension K of 4,
finite over k. The consistency property shows that this is well defined,
and from the definition of the (Krull) topology on G(A4/k), which is a
compact totally disconnected group, we obtain a continuous map

Cr— G(A/k).

This map, which we again call the Artin map, has an image which is
everywhere dense in G(A4/k), because of the surjectivity in finite exten-
sions. We can write Cy as a product

C.=RtxCP

both algebraically and topologically, and the positive reals Rt are in-
finitely divisible (i.e. every element is an n-th power for all n). Hence our
infinite Artin map is given by its restriction to C9, which is compact
(Theorem 4, Chapter VII, §3). Since the continuous image of a compact
set is compact, it follows that the Artin map is surjective, i.e. maps c?
onto G(A/k).
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Similarly, if K is any infinite abelian extension, we obtain a continuous
surjective homomorphism

WKk :Ck b d G(K/k).

An open subgroup H of Cy is of finite index, and hence closed (it is the
complement of the union of a finite number of cosets). The kernel of
wk/k is the intersection

Hx= () Hr
FCK
of all groups H p belonging to finite subextensions F of K. Actually, it is
better to look at wk/x as defined on CJ, because of the compactness. We
can then write the kernel of wg x in C§ as the intersection

FCK
where H2 = Hp N CH, and HY is open, of finite index in C9. This kernel
is then compact, and we have an algebraic and topological isomorphism

CY/H% ~ G(K/k).

We then obtain a bijection between closed subgroups of Cy containing
H, and (possibly infinite) abelian extensions of k, given by

K'—)HK.

In the other direction, if H is a closed subgroup of Ci containing H 4,
then its class field K is the fixed field of (H, A/k) = (H, k). As in the
finite case, the association K — Hg reverses inclusion relations. We call
K the class field to Hg as before. The group H 4 will be called the group
of universal norms. It is the intersection of Cj of all the norm groups
from finite extensions (or finite abelian extensions, same thing). Using
the existence theorem, we shall prove a structure theorem for it later
(Theorem 6, in Chapter 11, §6).



CHAPTER XI

The Existence Theorem and
Local Class Field Theory

§1. Reduction to Kummer extensions

We must prove that any open subgroup H of J; containing k* belongs
to some abelian extension. Thus at some point, we have to start exhibiting
abelian extensions of k. There are not that many ways of doing this.
One general way is to make cyclotomic extensions, and when the n-th
roots of unity are in k, to make Kummer extensions, i.e. adjoining n-th
roots of elements of k. We shall prove the existence theorem by this
method. Deeper methods involving the values of certain transcendental
functions are more significant, but lead into directions which require a
whole book to themselves. We first start with the reduction lemma.

Lemma. Let F/k be a cyclic extension, and let H be an open subgroup
of Ji containing k*. Let Hr = Ng/i(H). If Hp has a class field (over F)
then so does H (over k).

Proof. Let K/F be the class field of Hr. We shall prove that
K is Galois over k. Let K’ be the smallest Galois extension of
k containing K. Let o be an automorphism of K’ over k. Then
oHr = Hp. But oK is class field to cHr. Hence 6K = K
and K is Galois over k, so K = K’. We shall actually prove
that K is abelian over k. Let ¢ be an automorphism of K
over k whose restriction to F generates G(F/k). Let 7 be any
automorphism of K/F. It will suffice to prove that ¢ com-
mutes with 7. Let b € Jr be such that

—y—N—

T = (b, K/F).
Then

o1~ ! = (ob,0K/oF) = (sb, K/F).
However, N (ab/b) = 1, so that ob/b € Hr. Hence
(ob, K/F) = (b, K/F),

213
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andero~! = 7, thus proving that K/k is abelian. But then k*N¥Jx C H,
and by the Corollary of Theorem 5, Chapter X, §3, we conclude that H
has a class field. This proves the lemma.

The lemma will be applied in the following situation. An abelian exten-
sion K/k is said to have exponent n if 6" = 1 for all ¢ € G(K/k). We
make the same definition for an abelian group A (say multiplicative),
and say that A has exponent n if a® = 1 for alla € A. Let H be an open
subgroup of Jj containing k*, such that J;/H has exponent n. We want
to prove that there exists a class field to H. Let F = k({.) be the field
obtained from k by adjoining a primitive n-th root of unity {,. We can
construct a cyclic tower

kCF]CFzC"‘CFr———‘F

such that each F;,,/F; is cyclic. Let Hp = N F/L(H ), and similarly
H;=N E}k(H ). If we can prove that Hr has a class field, then we come
down stepwise in the tower applying the lemma, to conclude that H has
a class field. When J;/H has exponent 7, this reduces the existence theo-
rem to the case when k contains the n-th roots of unity.

We now recall some easy facts about abelian extensions of k, of exponent
n, when {, lies in k. Such extensions correspond to subgroups of k* con-
taining k*" as follows.

Let k* O D D k**, and assume (D : k*") finite for simplicity. Let

Kp = k(D'")

be the field obtained from k by adjoining all n-th roots of elements of D.
If @y, ..., an are representatives in D of the factor group D/k*", then we
clearly have

1 1
Kp = k(allny ) ,am/n )

so that K is finite. It is trivial to verify that Kp is abelian over k, of
exponent n.

Conversely, let K/k be abelian of exponent n. Then K is a composite
of cyclic extensions, and each cyclic extension can be written in the form
k(a'™) for some a € k, using Hilbert’s Theorem 90, Lagrange resolvants,
or whatnot. (Cf. books on Algebra, e.g. mine.) Thus K = Kp for some D.

There is a duality between G(K/k) and D/k*" as follows. Let K = Kp.
For each ¢ € G(K/k) = @G, and each a € D, select A € K such that
A™ = a. ThenoA/A is independent of the choice of A, and is an n-th
root of unity, which we denote by (o, ). The map

GXD—-C*
given by
(0,0) — (0,a) = cA/A
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is then trivially verified to be bimultiplicative, i.e. a pairing. It is clear
that this pairing depends only on the class of « modulo £**, and thus
induces a pairing

G X D/k** — C*.

We contend that the orthogonal subgroup to G in D is precisely k**,
and that the orthogonal subgroup to D in G is 1. Proof: Let a € D be
orthogonal to alled € G. ThengA/A = 1 for all ¢ € @, whence a'/" € k.
Hence « € k*". On the other side, suppose that ¢ € G is orthogonal to all
of D. For any @ € D and A such that A” = « we havedA = A. Henceo
leaves fixed a set of generators for K, over k, and hence ¢ = 1. This
proves our assertion, and we conclude that the pairing

G X D/k** — C*

induces an isomorphism of each one of the groups G, D/k*" with the dual
group of the other. In particular, we find:

[Kp :k] = (D :k*").

The facts which we have just summarized are referred to as Kummer
theory. The field Kp is called the Kummer field belonging to D. Note
that the Kummer theory establishes a duality between the Galois group
and a certain group associated with the ground field, whereas the class
field theory establishes an isomorphism, depending on a much more subtle
construction, through the Artin symbol.

§2. Proof of the existence theorem

Existence Theorem. Let H be an open subgroup of Jy containing k*.
Then there exists a class field to H.

Proof. As mentioned in the preceding section, we are reduced to the
case when Ji/H has exponent n, and k contains all n-th roots of unity,
which we assume from now on.

Theorem 1. Let S be a finite set of absolute values of k containing all the
archimedean ones, all p such that p|n, and enough absolute values such that
Jr = k*Js. Let

B= I k"% II U..
vES €8
Then k*B has a class field K, which is equal to k(k}'™), i.e. is obtained by
adjoining to k all n-th roots of S-units. If s is the number of elements
of 8, then [K : k] = n®. Finally, k* N B = k.
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Proof. Let K = k(k}™). Observe that kg N k*™ = k3 (trivially), and
that we have an isomorphism

ksk*"/k*" =~ ks/(ks N k*") = ks/ks.

Thus K is the Kummer field belonging to ksk*". Since ks modulo n-th
roots of unity is a free abelian group on s — 1 generators (where s = num-
ber of elements of S), we conclude that

(ks: k%) = n° = [K : K].

Note that K/k is unramified outside S by the usual criterion. Namely,
K is obtained by adjoining roots of equations

f(X)=X"—a=0,

with « € ks. If A is a root, then f'(A) is divisible only by primes of S.
We shall prove that k*B = k*NKJ k. First we prove the inclusion

K*B C k*NXJ k.

Since K/k has exponent n, any zlement of k" for v € S (viewed as idele
with component 1 outside v) is in the kernel of the Artin map, and hence
contained in k*NKJx. (This could also be proved in a very elementary
way, using the approximation theorem.) An element of

II U,
vES

is contained in NKJ x because for v & S, every local unit is a local norm.
This proves the first inclusion.

Conversely, it will suffice to prove that (Jx:k*B) = n®. Let
kg = k* N B. We have:

(Ji:k*B) = (k*Js:k*B)
__ Us:B
(Js Nk*:B N k*)
¥ . kN
H (kv . kv ) nzs

vES — .
(ks:kg) (ks:kg)

(We used the index computed in Chapter 11, §3, and the product formula.)
There remains to be proved that kg = k5. It is clear that kg D k3. Con-
versely, let « € kg. Then « is a local n-th power at all » € S, so that »
splits completely in k(a!/®) for all v € S. Furthermore, if v & S, then v
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is unramified in k(a'/™). Let K’ = k(a¥™). Then Js C NX'J k., whence
J=ks Ck*NE Tk

Class field theory shows that K’ = k, and hence « € k3. This concludes
the proof of Theorem 1.

The existence theorem is now only a corollary of Theorem 1. Given an
open subgroup H of Ji, containing k*, such that J/H has exponent n,
and assuming that the n-th roots of unity are in k, we find a set S as in the
theorem, and enlarge S still further, to contain all those » such that U,
is not contained in H. Then B C H, and since k*B has a class field, we con-
clude by Corollary 1 of Theorem 5 in the preceding chapter that H has a
class field.

Remark. We shall see later that » is unramified in an abelian extension
F/k if and only if U, is contained in the group H to which F belongs.
From this, we see that in Theorem 1, the class field to £*B is the maximal
abelian extension of exponent n, unramified outside S, because if F/k is
abelian, of exponent n, unramified outside S, and class field to H, then
B C H whence F C K, where K is class field to k*B, as in the theorem.

§3. The complete splitting theorem

The decomposition of a given absolute value » in an abelian extension
K /k is reflected already in the group H to which K belongs.

Theorem 2. Let K/k be class field to H. Let v be an absolute value on k.
Then v splits completely in K if and only if k¥ C H.

Proof. If v splits completely, then k¥ C H because every element of k¥
is a local norm. We shall prove the converse. In this section, we prove it
only when Ji/H has exponent n, and the n-th roots of unity are contained
in k. We shall complete the proof in the next section.

Let therefore vy be a fixed absolute value on k such that l‘c,’,"0 C H, and
let S be a finite set of absolute values containing vy, satisfying the condi-
tions of Theorem 1, that is containing all archimedean v, all p|n, and enough
v such that J = k*Jg. Assume also that S contains all » which are rami-
fied in K. Let:

B, =kt x II kt»x I U,

vES v&S
Vg

By =k¥x [] ktx II U..
vES v&€S

vs£vg .
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Then B; N By = B, where B is the group mentioned in Theorem 1.
Also B, C H. We shall construct the class field K, to k*B,;, and we shall
see that vy splits completely in this class field. It then follows that v,
splits completely in K, because K C K.

Let Dy = k* N B, and D; = k* N B;. Then

ksCDyNk* CBNk*™=kg

by what we proved in §3. Hence D; N k*" = k%, and similarly,

Dy N Ek*" = k.

Let K; = k(D™ and K, = k(D}™). (The reversal of indices is not
accidental.) Then by Kummer theory,

[Ky:k] = (Dok*™ :k*") = (D2:D2 N k*") = (D : k%),
and similarly, reversing 1 and 2.
[Ko: k] = (Dyk*": k**) = (Dy: Dy N k*™) = (D,: k%).

Let K; and K be class fields to H; and Hj respectively. Then K,
K, are unramified outside S, and if v € 8, v vy then v splits completely
in Ko, while vy splits completely in K,. Hence

B, CH, and B, C H,.
Therefore we obtain inequalities:

(K, :k] < (J:k*By) = (k*Js:k*B,)

_ _s:By)
(ks :k*B;)
II k%™
vis
VY0 n
= ———— (k* N B, :k%)
(ks :k3) '
II et :k3m)
vES
L oL — p” K2 :k].
Similarly, we find
-
[Ky:k] £ (J:k*By) = QC_om_o K, :k].
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Multiplying on the right and on the left, we get
[K;:kl[K2:k] < (J:k*B,)(J :k*B3) = [K,:k])[K2:k].

Hence equality must hold everywhere in what precedes. In particular,
we find that k*B, = H,;. We know by construction that vy splits com-
pletely in K,, and thus finally, we conclude that vy splits completely in
K, thus proving what we wanted in the Kummer case.

Remark 1. The technique used here (due to Herbrand) can also be used
to give the “algebraic proof” of the universal norm index inequality, as
was done by Chevalley. Cf. Artin-Tate.

Remark 2. 1t did not really matter that we selected one vy from S.
We could split S into two disjoint sets S; and Ss, and argue in a similar
way. For the present application, however, what we needed was just for
the study of a single v,.

§4. Local class field theory and the
ramification theorem

In this section, we conclude the proof of the complete splitting theorem,
and derive local class field theory, describing the effect of the Artin map
on the local component k¥ for a fixed v.

Theorem 3. Let K/k be abelian. The Artin map restricted to k¥, namely
a+— (a, K/k), a €k

maps kY into the decomposition group G, (= G, for any w|v), has kernel
N K%, and induces an isomorphism

k3/NLK3, = G,,
where N, s the local norm from K., to k,.

Proof. We know that the group of local norms is contained in the kernel,
since it lies in NfJk. Hence our theorem follows from the local norm
index inequality, Chapter IX, §3, once we have proved that the image of
ky is contained in the decomposition group G,, and is equal to the whole
decomposition group (this being the local analogue to the global sur-
jectivity theorem of the Artin map).

Let Z be the fixed field of G,. Then v splits completely in Z, and hence
k¥ C NZJz. If a € k¥, then a = NZb for some local idele b € Z,, so that

(a, K/k) = (b, K/2),
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whence (a, K/k) lies in G,. This proves that the image of k¥ under the
Artin map is contained in G,.

Next we prove that the map is surjective. Without loss of generality,
we may assume that k = Z. Let S = (k¥, K/k) be the image of k¥ and
let E be the fixed field of S. If E # k, then E contains a subfield F which
is cyclic over k, of prime degree p. Let k' = k({,) where
¢p is a primitive p-th root of unity, and let

= F¥ = F(5,). / \

Let ' be an absolute value of k' such that v'|[v. The \ /
whole local group k¥ is contained in the kernel of the
Artin map

k3 — G.(F/k),
and hence k. is contained in the kernel of the Artin map
ky* — Gy (F'/K").

By the Kummer result of the preceding section, this implies that v’ splits
completely in F’. However, [k’ : k] divides p — 1, and is relatively prime
to p = [F :k]. Since the ramification index and residue class degree are
multiplicative in towers, it follows that v splits completely in F. Since we
assumed that k = Z, this gives a contradiction which proves our theorem.

The argument which we have just given also concludes the proof of
Theorem 2. Indeed, let K be class field to H, and assume that k¥ C H.
Then (k¥, K/k) = 1, and we know that

k%, K/k) = G,
It follows that G, = 1, i.e. v splits completely.
Corollary. Let K/k be class field to H. Then

Hnki = N.K$ and HnNnU,= NyU,.

Theorem 4. Let K/k be abelian, class field to H. An absolute value v on
k vs unramified in K if and only tf U, C H. More generally, (U,, K/k) is
equal to the inertia group T, (= T, for any w|v).

Proof. If v is unramified in K, then every local unit is a local norm, so
U, C H. Conversely, assume that U, C H. By the preceding corollary,
we know that every unit in U, is a local norm. By Chapter IX, §3, it
follows that v is unramified in every cyclic subfield of K, and hence is
unramified in K. To see that (U,, K/k) = T, in general, we may assume
without loss of generality that the Galois' group G(K/k) is equal to the
decomposition group G,. (If Z is the fixed field of G,, then v splits completely
in Z, and so we may use Z as ground field instead of k.) Let F be the
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maximal subfield of K in which v is unramified. Then T, is the Galois
group of K/F. If w|v in F, then by the norm property of the Artin symbol,
we have (Uy, K/F) = (Uy, K/k). In the non-archimedean case, there
exists a prime element 7 in F,, which is a local norm from K. Hence
(r,K/F) = 1. But

Fo= {r} XU,

(where {7} is the cyclic group generated by =), and (F%, K/F) = T,.
Hence (Uy, K/F) = T,, thus proving our result in general. The archi-
medean case is equally clear.

In view of Theorem 4, it is natural to define v unramified in H if
U, C H. With this terminology, we see that v is unramified in H if and
only if v is unramified in the class field belonging to H. Furthermore, if
K is class field to H, then the class field to HU, is the maximal subexten-
sion of K in which v is unramified.

Corollary. Let K/k be an abelian extension. For any v on k, and wlv
in K, we have
(Uy:NoUy) = e,

and the Artin map induces an isomorphism U,/N Uy = T,.

Proof. Immediate from the corollary of Theorem 3.

Theorem 5. Let k, be a local field. The Artin map defined for abelian
extensions K of k, satisfies the same formalism as the global map, when
viewed as defined on the multiplicative group of the local field. The
association

K — NEK*

establishes a bijection between finite abelian extensions of k,, and open
subgroups of k¥, which reverses the inclusion relations.

Proof. Same as in the global case. We should observe in addition that
given any abelian extension k| of k,, there exists an abelian extension K
of k such that Kk, = k’. To see this, note that k¥ is embedded in Ck,
and hence that any open subgroup H, of k¥ can be written as an intersection

H,=HnNk}

for some open subgroup H of C). All we have to do is let K be the class
field of H.

Note that the local Artin map kf — G(k'/k,) is induced by the global
map. The consistency property of the global symbol implies that the
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local map is independent of the global extension K chosen such that
Kk, = k’. It becomes a problem to define this local map purely locally
in the ramified case (in the unramified case, the Artin symbol locally can
be defined in the same manner as the global one). Chevalley was the first
to do it, using the simple algebras. What mattered, however, were the
cocycles defining the algebras, so that a purely cohomological treatment
could be given as was done first by Hochschild. In fact, the local and global
cohomology for this can be axiomatized into the “class formations”, for
which we refer to Artin-Tate.

When asking for a global abelian extension K of k such that Kk, = k’
is a given local abelian extension, one can ask if K can be so chosen that
[K:k] = [k’ :k,), especially in the cyclic case. The answer is yes, except
in one special case. This is the Grunwald-Wang theorem, which even does
this for a finite set S of absolute values. Observe that for such a set, the
finite product

I1 &

vES

is embedded algebraically in the idele classes C (that is the natural map
into Cj is injective), but not topologically, in distinction to the case when
S has only one element. For a complete treatment of the Grunwald-Wang
theorem, which has nothing to do with cohomology, we refer to Artin-
Tate.

A related question is the following: If « € k* is an n-th power locally
at every v € My, is « also an n-th power in k? The answer is yes, except
in a special case which can be described completely. Cf. Artin-Tate for
that too.

As in the global case, the local existence theorem allows us to see that
if E/k, is a finite extension, then N ,’fv E* is the local norm group to the
maximal abelian subextension of E. The proof is the same as in the global
case.

Using the consistency property, we can define the local Artin map for
the maximal abelian extension A of k,, thus obtaining a homomorphism

Wy ky — G(A/kv)y

whose image is everywhere dense. Let us assume that v is p-adic. Since
the intersection of all open subgroups of k is obviously equal to 1 (this
is now different from the global situation), we conclude that the kernel
of the infinite map is trivial. In the local case, however, the map is not
surjective any more. In fact, we can write k} as a product

Es={m} xU,=ZXU,,
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where {7} is the cyclic group generated by a prime element 7 in k,. The
map w, is not continuous for the product topology, but is continuous for
the topology in which subgroups of finite index form a fundamental
system of neighborhoods of 1 in k¥. The restriction of this topology to
Z is the “ideal topology”. Following Artin, we can then complete Z
under this topology, and using the Chinese remainder theorem we see
that the completion Z is the compact group equal to the direct product
of all p-adic integers for all p. Extending the map w, by continuity, we
obtain an isomorphism,

K =Zx U, = G(A/k,)

which is both algebraic and topological. This gives a rather good model
for the Galois group G(A/k,). For instance, we see that G(A/k,) has a
unique subgroup of order 2 (which one?), and hence that there exists a
unique subfield of A containing k,, which is of degree 2 under A.

Finally, we mention that Theorem 4 admits a substantial refinement.
Let k denote a p-adic field until the end of the section. Then k has a
filtration

k*=U_1D>U¢DU;DU2D>---DU;D---,
where Uy = U, and U; consists of those elements z € U such that

z=1 (mod p?).

Correspondingly, let K/k be a Galois extension with group G (equal to
the decomposition group since we assumed that k is local), inertial group
T. We can define a sequence of subgroups V; (called the higher ramifica-
tion groups) by the condition that o € V; if and only if

ca= a (mod P*1)
for all @ € 0. Thus Vo = T.

Theorem. If K/k is abelian, and k is p-adic, then the reciprocity law
map k* — G(K/k) maps U; onto Vi (i’ depending on 7).

The proof requires a refined look at the higher ramification, and is
carried out in detail, for instance in Artin-Tate. Our purpose is not to
rewrite or copy Artin-Tate here, and we refer the reader to it. The discus-
sion is arithmetic, and independent of cohomology. The local theory thus
obtained also yields a description of the local conductor in terms of the
higher ramification groups, and into a description of the precise relations
existing between the (local) different and the conductor.
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§5. The Hilbert class field and the
principal ideal theorem

The ramification theorem (Theorem 4) and the existence theorem have
an interesting global application. The group

H=1Ik*sg,

has a class field K which by Theorem 4 is unramified everywhere (includ-
ing the archimedean absolute values). Furthermore

J/k*Js, ~ I/P

is isomorphic to the ideal class group of k, under the ideal map. This
class field K is called the Hilbert class field. We see that its Galois group
is isomorphic under the Artin map to the ordinary ideal class group. It
becomes a problem to exhibit K explicitly. Complex multiplication and
its generalizations do this in special cases, by transcendental methods,
outside the scope of this book.

Hilbert had conjectured that an ideal of k becomes principal in the Hilbert
class field. This was reduced by Artin to a statement of finite group theory
by means of the reciprocity law as follows.

Let k be the number field, K the Hilbert class field
over k, and L the Hilbert class field over K. It is clear
that L is Galois over k: If X is any isomorphism of L over
k, then AK = K and AL is unramified over AK, whence L
AL CL,so A = L. Let G be the Galois group of L/k | (S
and S the Galois group of L/K. Then G/S is the Galois K
group of K/k. From the definition of the Hilbert class [ }G /8
field, it is clear that K is maximal abelian in L, and hence k
translating this in terms of the Galois groups, we con-
clude that G/8 is the maximal abelian factor group of
@, whence S = G° is the commutator subgroup of G.

Let p be a prime of k. We must prove that (p, L/K) = 1, identifying
p with pog. Let

p=0q1---4ar

be the factorization of p in distinet primes of K. Then

(o, L/K) = I_Il (a:, L/K).

Let q be any one of the primes of K dividing p, and let ¢; € G/8 be one
of the automorphisms of K/k such that ¢.6 = q.. Extend o; to all of L.
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Then
(9:, L/K) = (049, L/K) = (0:9,0:L/0;K) = 0:(a, L/K)o7".

Thus we obtain

(»n, L/K) = I_II 040, L/ K)o,

If we can prove that the product on the right is equal to 1, then we con-
clude that p is principal, by the reciprocity law!

A complicated group theoretic proof was given by Furtwangler. A
much simpler proof was given shortly thereafter by Iyanaga, following
a suggestion of Artin concerning a group-theoretical map, the transfer,
which shows that a product like the above is always equal to 1. We refer
the reader to Artin-Tate, Chapter XIII, §4, for the self-contained proof
(and definition of the transfer in general), having to do only with group
theory, but nothing to do with ideal theory. In this connection, it had
been an unsolved problem for a long time whether the tower which is
constructed by taking successive Hilbert class fields can ever become
infinite. In his talk at the International Congress in 1962, Shafarevich
showed how this question could be reduced to a group theoretic statement,
involving certain bounds for'the number of generators of certain groups.
Shortly afterwards, he and Golod succeeded in giving examples when the
tower is infinite, and showing that in some sense, this is a very frequent
occurrence. For this we refer the reader to the original paper of Golod
and Shafarevich (On class field towers, AMS translations 48) or the exposi-
tion by Roquette in [7].

§6. Infinite divisibility of the universal norms

Theorem 6. The group of universal norms in Cy ts infinttely divisible.
In other words, if a € Cy, is a universal norm, and n is a positive integer,
then there exists a universal norm b such that a = b™.

Proof. We shall first need a lemma, whose proof goes back to the tech-
nique of the existence theorem.

Lemma. Let n be a positive integer, assume thal the n-th roots of unity
lie in k, and let a be a universal norm. Then a € C%.

Proof. We construct a large set S as in Theorem 1, §2, and also we
construct the group

B= H’C:"X H Uv-

vES vg&S
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Let K be the class field belonging to k*B. Then a is a norm from K, so
there exists b € B in the same idele class as a. Let S’ be any set of absolute
values such that 8’ O 8, and form the group

B=1Ik xIIU:x II U.

vES vES’ vES’
vES

Then a also has a representative idele b’ in B’, and there exists 8 € k*
such that b = gb’. Then B € k* N B = k% by Theorem 1, §2. Hence
b, is an n-th power for all ¥ € §’. We can take S’ arbitrarily large. This
proves that b, is an n-th power for all v, i.e. b = ¢" for some idele ¢, thus
proving our lemma.

We shall now prove Theorem 6, as in Artin-Tate. We let Dy be the group
of universal norms in C;. We first prove that for any finite extension E/k
we have

Dk = NEDE

From the transitivity of the norm, one hag trivially NEDg C D;. Con-
versely, let a € Dg. For each finite extenston K containing E let

Xx = NECx n Nzh(a).

By Theorem 4 of Chapter VII, §3, it follows at once that Ng/}(a) is com-
pact. Hence X is compact, and is not empty by the transitivity of the
norm. The family {Xg} for all finite extensions K containing E has the
finite intersection property, because if K;, ..., K, is a finite number of
such extensions, and K contains each K; (: = 1,...,r) then Xg C Xk,
for all . It follows that there exists b € X for all K. Then a = N¥b
and b is a universal norm in Cg. This proves that Dy = N, fD E.

Given an integer n, and a € Dy, to prove that a € D} we let E = k({,).
Let @ = NEb with b € Dg. It will suffice to prove that b € D%. This
reduces our proof to the case when k contains the n-th roots of unity,
which we assume for the rest of the proof.

By the lemma, we have for each finite (Galois, if you wish) K,

Dy = NEDg C NE(CR) = (NECx)™.
Let
Yx = NECk n a*'™,

where a'/" means the set of all b € C) such that b = a. Then a'/* is
closed in Cy, and is compact by the same Theorem 4 of Chapter VII, §3.
We have just seen that Y x is not empty, and the transitivity of the norm
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shows that the family {Yx} for all finite K/k has the finite intersection
property. Hence there exists b € Y for all K. This b is a universal
norm, and b" = @, thereby concluding the proof of Theorem 6.

We refer to Artin-Tate for the proof that Dy is the connected component
of C k-






CHAPTER XII

L-Series Again

§1. The proper abelian L-series

Let X be a character of the idele classes C; (or equivalently, of Jg,
vanishing on k*), that is a continuous homomorphism

Ju/k* — C*,

and assume tn addition throughout this section that X has finite period. Then
the kernel H, of X is a closed subgroup of finite index, which is therefore
open, and has a class field denoted by K,.

A prime p is said to be unramified for X, or X is said to be unramzified at
p, if the group of local units U, is contained in H,. (Cf. Theorem 4 of
Chapter X1, §4.) If that is the case, and 7 is an element of order 1 in k,,
we view 7 as an idele,

r=(..,1,m1,...)
as usual, corresponding to the embedding of k, in J, and we define
x(p) = x(m).

This is well defined, and is independent of the choice of , since any other
element 7, of order 1 differs from 7 by a unit, i.e. 7y = um, v € U,, and
x(u) =1 since U, H,. If y is ramified at p, we define y(p) =

If ¢ is an admissible cycle for K, /k, then we could interpret J/H, as an
ideal class group, we could interpret X as a character of this group, and
X(p) would be the value of this character, viewing p as ar: element of an
ideal class as in Chapter VII, §4.

Let H be an open subgroup of J; containing k*. By the conductor
for H we shall mean the smallest cycle f such that the group W; of Chap-
ter VII, §4 is contained in H. The conductor of H, will also be called the
conductor of X, and will be denoted by f,. In general, a cycle c¢is said to be
admissible for H if W.C H. The conductor for H is thus its smallest
admissible cycle. The ramification theorem (Theorem 4 of Chapter XI,

229
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§4) shows that the conductor for x is divisible precisely by those primes p
which are ramified in K,.
Let X be a character as above. We define the L-series

1 1
L(S’X)_ngxl_.x_(;_)z_ "I“I"l —')‘('92
Nps Nps

The convergence theorems proved in Chapter VIII, §3, apply to this
L-series, which differs from L.(s, X) only by a finite number of factors,
if flc. It is clear that

L(s, 1) = {i(s).

Theorem 1. Let K /k be an abelian extension, class field to the class group
H CJg. Then

tx(@®) = JI L(s,%) = ti(s) JI Ls, %)

x(H)=1 x#1

where the second product ts taken over those characters X which are trivial
on H, but x # 1.

Proof. 1t suffices to prove that for each prime p of k, we have

1y _ _xm.
g (1 NT”) x(1£>1=1 (1 Np’)

Let p split in K as

p=(Pr--- B
Then efr = N = [K :k], and NP = Np’. Change variable, let w = Np~*.
It suffices to prove that

*) a—=u)= I (1—xpuw.

X(H)=1

We have a trivial identity
1=’ =TI 1 — tw,
e

where the product is taken over all f-th roots of unity {. We shall first
prove formula (*) under the assumption that p is unramified, i.e. e = 1.
We then have to show that the values X(p) are simply the values 1,
{s....{ " repeated r times, where {, is a primitive f-th root of 1.
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Let Hky = H, D> H. By the complete splitting theorem, H, is the class
group to the maximal subfield of K in which p splits completely, i.e. the
fixed field of the decomposition group Gg. Hence

(Hy:H) = f.

Let 1 = ¢y, ..., ¥, be the distinct characters of H,/H, which is cyclic,
generated by a prime element 7. Extend these characters to characters
of J/H, denoted by the same letters. Let 1 = X;, ..., X, be the distinct
characters of J/H,. Then

{X{\l/j} (1:=1,...,T;j=1,...,f)
are the characters of J/H. But 7 has order f mod H. Hence the values

12 CO PR 7(C.))

are precisely the values 1, ¢, ..., ¢f~!. This proves what we wanted
if X is unramified at p.

We now deal with the general case, where p may be ramified. We have
(HU,:H) = (Uy,:U,nH) =¢e

by Theorem 4 of Chapter X1, §4, and its corollary. Let 1 = ¢y,..., ¢,
be the distinct characters of HU,/H, and extend them to characters of
J/H. Let 1 = Xy, ..., Xy be the characters of J//HU,. Then p is unrami-
fied for allx;, 2 = 1, ..., fr, and the characters

{Xﬂl'j} (i=1,...,f7‘;j=l,...,6)

are all the characters of J/H. If j # 1, so ¢; # 1, then ¢;(p) = 0 by
definition. Hence the only characters X of J/H which are not 0 on p are
precisely the characters x; for which p is unramified. This reduces the
general case to the unramified case, which has already been dealt with,
and concludes the proof of our theorem.

From the factorization of the zeta function into a product of L-series,
and the evaluation at s = 1, one gets a formula relating the class number,
regulator, and discriminant. We don’t go into this here, but refer the
reader to Borevich-Shafarevich [4], or Hasse’s Uber die Klassenzahl abel-
scher Zahlkirper, Akademie Verlag, Berlin, 1952. The reader should also
look at Leopoldt’s results on the p-adic analogue, for instance his paper
Uber Fermatquotienten von Kreiseinheiten und Klassenzahlformeln modulo p,
Rendiconti del Circolo di Palermo, 1960, pp. 1-12.



232 L-SERIES AGAIN {XII, §2]

§2. Artin (non-abelian) L-series

All results used here from the elementary theory of group representa-
tions and characters can be found in the last chapter of my book Algebra.

Throughout this section and the next, I follow Artin (cf. his collected
works).

Let K/k be a Galois extension with group G. If p is a prime of k, then
p splits in K into a product

p=(Br--- B,

and efr = [K : k], where f is the degree of the residue class field extension.
For any B|p in K, we have N = Ny/. We have a Frobenius automor-
phism ¢ = (P, K/k) in the decomposition group Gg characterized by the
fact that

oa = o™* (mod P)

for « € og. This ¢ is determined only in the coset of the inertia group
T, which consists of all 7 € Gg inducing the identity automorphism on
the residue class field extension.

If 8 is a subset of G and X is the character of a representation of G
(in a finite dimensional space over an algebraically closed field of charac-
teristic zero), we define

X(S) = é X(7).

We may therefore view S as the element in the group ring equal to the
sum of all elements of S.
Let m be an integer = 1. If 0 = (P, K/k), we define

X(™) = 1 x(a"Ty).

This can also be viewed as the value of X on the element

1 > o™

e T€ETP

Since T'g is normal in Gg, it follows that our value for x(p™) is independent
of the choice of ¢ in the coset of T'g. Since Frobenius automorphisms cor-
responding to different P;|p are conjugate in G, and since the inertia
groups Ty, are also conjugate in G, it follows that this value is independent
of the choice of PB|p, and that our notation involving only p in x(p™) is
justified.
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We now define the L-series L(s, X, K/k) by its logarithm, namely

_ o5 X0™)
log L(s, X, K/k) = ,Z,,. N

The L-series is then the exponent of this logarithm. Trivial bounds in
terms of the degree of the representation, and the order of @, show that
this series converges absolutely and uniformly for the usual

Re(s) = 1+ 4, 6>0

by comparison with the ordinary zeta function.
The L-series satisfy the following formalism.

L1. We have L(s, 1, K/k) = &x(s).
L2. If X4, X2 are characters of G, then

L(S, X; + X, K/k) = L(S, X1, K/k)L(S, X2, K/k)

L3. If K’ D K Dk s a bigger Galois exlension, and X ts a character of
G(K/k), also viewed as character of G(K'/k), then

L(s,x, K/k) = L(s, x, K'/k).

L4. Let k C F C K be an intermediate field, and let  be a character of
G(K/F). Let xy be the induced character of G(K/k). (We recall the
definition below.) Then

L(s, ¥, K/F) = L(s, xy, K/k).

Of these properties, only the fourth one requires a non-trivial proof.
Indeed, the first is obvious, and so is the second since the character x
appears linearly in the definition of log L(s, X, K/k).

The third is also easy to see. Let B’|pin K/, and P'|B K’
for Bin K. Let S = G(K'/K) and let G’ = G(K'/k). | (S
Let Gg- be the decomposition group of P’ in G/, and let G{K
Ty be the inertia group of P’ in G'. We first contend | G
that we have natural isomorphisms k

Gg; = G«B'S/S
and
Tq; = TgyS/S
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Proof. It is clear that the restriction to K of an element in GgS leaves
P fixed, and so lies in Gg. Conversely, if A is an element of G’ which
restricts to an element of Gg, then there exists some ¥ € S such that
\Y € Ggr (because X maps P’ on another divisor of P and S permutes
such divisors transitively). Hence A € Gg.S, thus proving that

Gq; = GsB'S/S.

A similar argument shows that Ty =~ T¢.S/S.
We can also phrase our isomorphisms by saying that the restriction
homomorphisms

Ggr —Gg and Tg —Tg
from K’ to K are surjective, and hence that

The value of X on an element of G’ depends only on its class mod S, i.e.
on its restriction to K’, by definition of the extension of X from G to G'.
Finally, if ¢’ = (P, K'/k) is a Frobenius automorphism of P’ in Gg,
then its restriction to K is a Frobenius automorphism of P in Gg. From
this it follows that

1Y X6 =

€ T€TP e

L xemn
TETq;'

and hence that the value
x(p™)
does not depend on the field K’. This is precisely property L3.

The fouith property is slightly harder to prove, and depends on a
more accurate analysis of the decomposition groups and inertia groups
at the various levels. We do this in the next section. Here, we conclude
with still a simple statement.

Theorem 2. If K/k is abelian, class field to H, and if we identify G(K /k)
with the idele class group Cx/H under the Artin map, and X is a stmple
character, then

L(s,x, K/k) = L(s, X),

interpreting the character X on the right as a character on Ci/H, and the
L-series on the right being the proper abelian L-series of §1.
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Proof. If p is unramified in K, then the Artin map is given by means
of the Frobenius automorphism, which depends only on p, and so the
p-contribution to the L-series is the same no matter which L-series we
deal with. Let S be the kernel of X in G, and let K, be the fixed field of S.
By property L3, we may view X as a character on G(K,/k), and

L(s, X, K,/k) = L(s, X, K/k).

Hence it suffices to prove our result when K = K,, which we assume.
In that case, p is ramified in K if and only if it is ramified for X, i.e. ramified
in H, and X is a non-trivial character on the inertia group T's. The Galois
group definition of the L-series yields

XM =1 T X" = x@™ X xn) =0,
€ T€ETY € T€ETP
because the sum of a non-trivial character over an abelian group is 0.
Hence the p-contribution to the L-series L(s, X, K/k) is equal to 0. By
definition, it is also equal to 0 in the abelian definition of L-series. This
proves the theorem.

We conclude this section by the expression of the L-series as a product
over the primes, again as in Artin. Let A:0 +— A(c) be a representation
of G in terms of endomorphisms of the vector space V, so A(c) € End(V).
Then

1 1
;A(TB) =3 2 A

T€ETYP

is idempotent in End(V). If ¢ = (P, K/k) as before, we define

m m 1
AG™) = A(e™) § A(Ty).
We can then form the series

_ A®P™)
log L(s, A, K/k) = »Zm N

which converges uniformly and absolutely for Re(s) = 1 + §, as usual,
but has its values in End(V), assuming that V is a vector space over the
complex numbers. Because of the non-commutativity, it appears to be
a mess to exponentiate this series in End(V), although I cannot escape
the idea that there may be something in doing so. However, as in Artin,
one has

- A" _ — Nn—t
trace mé mNps = log |I — Np~"A(p)|,
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where I is the identity in End(V'), and consequently, one finds the product
representation

1

p— A’

L% K/W = 1 7=x

valid for Re(s) > 1.

For purposes of functional equations, to have neat formulas, it is neces-
sary to multiply zeta functions and L-series by suitable factors, corre-
sponding to the archimedean absolute values, namely I'-factors. We
shall see this later for abelian L-series. For the non-abelian ones, we refer
to Artin’s original paper for the description of these factors.

83. Induced characters and L-series contributions

In this section, we relate induced characters with the decomposition
and inertia groups. Let S be a subgroup of G = G(K/k), and let ¢ be a
character of S. If {¢} denotes the collection of right cosets of S in G,
and for each coset ¢ we let € be a coset representative, so that

¢=U sz,
then the induced character X, can be defined by the formula
Xg(N) = 2o y(ene™).

(For all properties concerning characters used here, cf. for instance the
last chapter of my book Algebra.) It is understood that ¢ is extended to
a function on G by letting ¢y(x) = 0ifx € G, x &€ S.

We shall find suitable coset representatives in terms of

the splitting of the prime p. We let F be the fixed field of S. K
Let | (S
p=q- g ol
be the splitting of p into distinct prime powers in F. For k
eachz=1,...,slet B; be a prime of K lying above q..
Let %; € G be such that
7P = Pu.

Let G; = Gg, be the decomposition group of P; in G, and T its inertia
group. Then

Gi= 7.Gini! and T: = 2T "
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If o; = (P:, K/k) is a Frobenius automorphism of P; in G; (well defined
modulo T';), then we can choose o; such that

-1
O; = 7i017; .

We let ¢;, f; and e, f{ denote the usual indices at the levels indicated on
the following diagram.

?B" [y
' ei’fs'
€, f qs:

' }ei; fs

p
Thus

e=ee; and f=fif}
We have
_Zl eifi = [F:k].

Note that the order of G; is ef, and the order of G; NS (which is 'the
decomposition group of P; in 8) is e}f;. Hence

(G::G;: N 8S) = eifs.
Let
{'Y,",,} (i=l,...,s;v=1,...,e,~f,-)

be right coset representatives of G; N S in G;.

Lemma 1. We contend that {Y;,n:} is a system of distinct right coset
representatives of S in G.

Proof. We first prove that they represent distinct cosets. Suppose that

S'Y.',.,m = S'Y,',,mj.
Then

-
Yipnin; 'Yj,,} eS.

Looking at the effect of this element on P;, we see that it maps PB; on
PBi. But an element of S leaves q; fixed, and P;|q;. Hence 7z = j. Can-
celing #n; = 7; we now conclude immediately that v = u, thus proving
our first assertion. QOur contention follows because the index of S in G
is equal to [F:k] = 3 eifi.
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Having found coset representatives of S in G, we can write down the
value of the induced character in terms of these, and find

s ef;
@ N =2 X V(i Y.
1= V=
This formula applies whether A is an element of G, or represents a sum
of elements of G. In the applications, of course, we use sums of elements
of @, namely A = oTT;. If we conjugate o7T; by #;, then we obtain
oT;. Furthermore, T; is normal in G;, hence further conjugation by
¥:, does not change ¢*T;. Consequently, we find an expression for the
value of Xy appearing in the L-series, namely

(2 Xy(0TTy) = Z eif (07 Ty).

T=

We must therefore determine the intersection of o7'T; with S, because
outside of this intersection, the value of ¢ is 0.

Lemma 2. The intersection o7'T; N S is not empty if and only if film.
In that case,

oTTiN 8 = JF(T: 0 8) = o7T}
where ¢; = (B;, K/F), and T = T; N S is the inertia group of P;in 8.

Proof. Suppose that ¢7'T; contains an element ¢7'r € 8, with 7 € T;.
Then on the residue class field oxg/P; the effect of o' is the same as that
of ¢, and it also leaves or/q; fixed. This effect is that of

m
TN

and or/q; has Np/s elements. For or/q; to be fixed, we must therefore
have f;|m.
Suppose now that this is the case. The effect of ¢; on ox/P; is

x> 2%

with Ng; = Np’i. Hence o7 and ¢™7/i have the same effect on ox/P;.
They both lie in G; NS, which is the decomposition group of P; in S.
Hence they lie in the same coset of T';. This shows that

o™T:N S Co™(T: N 8).

The converse is also clear, and this proves the lemma.
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The desired relationship L4 for L-series is now immediate from this
last formula. We have for fixed p,

E X¢(p ) z Z 1 8,,f{\(/(0', T)

~ mNpme < Z4 ¢ mNpms

1 etfi‘/’(o't t)
Z E mNpms

For each 7, write m = nf;. Only such m divisible by f; give a non-zero
contribution to the i-th sum. We have e¢;/e = ¢;. Hence we get

Xy (0™) ¥(a3)
Z mﬁ‘lpm' E Z nNpre

=1

This proves L4, because it proves that

log L(s, Xy, K/k) = log L(s, ¥, K/F).






PART THREE

ANALYTIC THEORY






The simple analytic results obtained in Chapter VIII were used up to
now only incidentally in basically algebraic results, especially in the class
field theory. We shall concentrate more on the analytic aspects for the rest
of the book. We give two proofs for the functional equation, one following
Hecke, and the other following Tate. The reader will profitably compare
both techniques. Hecke’s proof makes use of the general Poisson summa-
tion formula for the integral lattice in Euclidean space. Tate’s proof uses
the adelic form of the Poisson formula. We give the functional equation
for the L-series with characters only in Tate’s version, which in this case I
find slightly easier to keep track of the computations. If the character is
of finite period, then there would still not be too much difference with the
functional equation as given in Chapter XIII.

The chapter on densities, using the Tauberian theorem, is misleading.
Statements on the distribution of primes depend essentially on the explicit
formulas, which give much better insight (especially when one will have
better results in the direction of the Riemann Hypothesis). The reader
can refer to Landau [11], or also Hooley’s paper “On Artin’s conjecture,”
J. Reine Angew, Math., 225, 1967, pp. 209-220. Again, the Brauer-Siegel
theorem on log kR ~ log d'/2 really depends on a weak result on the zeros
of the zeta function to have a neat proof. Siegel and Brauer had to sur-
mount considerable technical difficulties to go around the non-availability
of such results at this time. I have reproduced Siegel’s argument for this
in Chapter XIII.
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CHAPTER XIII

Functional Equation of the Zeta
Function, Hecke’s Proof

§1. The Poisson summation formula

Let f be a function on R". We shall say that f tends to 0 rapidly
at infinity if for each positive integer m the function

z > (14 [z)"f(=), z €R?,

is bounded for |z| sufficiently large. Here as in the rest of this chapter,
|z| is the Euclidean norm of x. Equivalently, the preceding condition can
be formulated by saying that for every polynomial P (in n variables) the
function Pf is bounded, or that the function

z — |z|"f(z)

is bounded, for z sufficiently large (i.e. |z| sufficiently large).

We define the Schwartz space to be the set of functions on R" which
are infinitely differentiable (i.e. partial derivatives of all orders exist and
are continuous), and which tend to 0 rapidly at infinity, as well as their
partial derivatives of all orders.

Ezample of such functions. In one variable, e=*" is one, and similarly in
n variables if we interpret z2 as the dot product z - z, which we also write
z2. As a matter of notation, we shall write zy instead of z - y if z, y are
elements of R".

If f is a C* function of one variable which is 0 outside some bounded
interval, then f is in the Schwartz space. As an example, one can take

the function

1

f(z) = {e_"“‘"""" ifa<z<b
0 otherwise.

245



246 ZETA FUNCTION, HECKE'S PROOF [X11I, §1]

An analogous function in n variables can be obtained by taking the
product

f@y) - - - f(@n).

It is clear that the Schwartz space is a vector space, which we denote
by S. We take all our functions to be complex valued, so S is a space
over C.

We let D; be the partial derivative with respect to the j-th variable.
For each n-tuple of integers = 0, p = (p1, ..., pxn), We write

DP — Dll’l,, . Dgl’

so that DP? is a partial differential operator, which maps S into itself. As
a matter of notation, we write

Ipl = p1+ - + Pa.
It is also convenient to use the notation M ;f for the function such that
(M ;f)(z) = =zif(z).
Thus M ; is multiplication by the j-th variable. Also

M = MY M2Y,
so that
(MPf)(z) = 2% - - - 22" (2).

In what follows, we shall take the integral of certain functions over R,
and we use the following notation:

/f(:c) dr = [R" flx) dx = f_: <. /_:f(xl, e, Xy) dzy - - - dy.

Since our functions will be taken from S, there is no convergence problem,
because for z sufficiently large, we have for some constant C':

C
A+ 1+
and we can view the integral as a repeated integral, the order of integra-
tion being arbitrary. The justification is at the level of elementary cal-

culus. Furthermore, we differentiate under the integral sign, using the
formula

[f@)] =

F; 3
waK(z,y)dx—fgy—jK(x,y)dx
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for suitable functions K in situations where this is obviously permissible
(justification loc. cit.), namely when the partial derivatives of K exist,
are continuous and bounded by an absolutely integrable function of z
over R", independent of y. The trivial argument runs as follows, say
when z and y each consist of one variable:

l[ _: [K(x’ = h}i — K@Y _ e, y)] dx

@
éf
—0

But by the mean value theorem,

K(IB, Y + h) _ K(x: y)
h

— DyK(z, y)| dz.

Koyt W — KoY _ por(a,y) = DKz, 0) — DoK(a,v),

where ¢ lies between y and y -+ &, and ¢ depends on z, ¥, h. Now we split
the integral into a finite integral and a tail end, so that the tail end is very
small because of the absolute integrability of DoK, and then take h small
and use uniform continuity of D;K on the finite part to get our expression
less than €, for given e.

A similar argument which is even simpler works to show that similar
integrals depend continuously on parameters.

We shall also change variables in an integral. For instance,

. /f(x —y)dzx = /f(x) dz, /f(—x) dr = /f(x) dx.
If ¢ > 0, then ff(cx) dr = Elsz(x) dz.

We now define the Fourier transform of a function f € S by

i) = ff(x)e‘z”‘”’ dz.

Remember that zy = z - y.

We shall now see that the Fourier transform interchanges the maps
Djand M;.

Since

2 fla)e™ 5 = fa)(—2mi)zse >,
9y;

we see that we can differentiate under the integral sign, and that

D;f = (—2mi)(M;H)™.
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By induction, we get

D*f = (—2mi)'?'(MPN)".

The analogous formula reversing the roles of D? and M? is also true,
namely:

Mrf = @2mi)#(Def)"

To see this, we consider
uf) = [F@)y; e,
and integrate by parts with respect to the j-th variable first. We let
u = f(x) and dv = y;e” "V da;.

Then v = (—2m)~'e > and the term uv between — 00 and + 00 gives zero
contribution because f tends to 0 at infinity. Hence

M;f(w) = @ri)”' [ Dif@)e™*" dz = (2mi) (D" (y).
Induction now yields our formula.
Lemma. The Fourier transform f+ f is a linear map of the Schwartz

space into itself.

Proof. If f € S, then it is clear that f is bounded, in fact by
@) = [15()] d.

The expression for M?f in terms of the Fourier transform of D?f, which
is in S, shows that M?f is bounded, so that f tends rapidly to zero at
infinity. Similarly, one sees that M?D% is bounded, because we let
g = D%, g €S8, and

MPDY% = (—2mi)¥(2mi) ¥ (De M)
is bounded. This proves our theorem.

A function g on R™ will be called periodic if g(z + k) = g(z) for all
keZ". Welet T" = R"/Z" be the n-torus. Let g be a periodic C* func-
tion. We define its k-th Fourier coefficient for k € Z" by

L = /T" g(z)e_z’ik’ dx.
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The integral on T" is by definition the n-fold integral with the variables
(x1, ..., zn) ranging from 0 to 1. Integrating by parts d times for any
integer d > 0, and using the fact that the partial derivatives of g are
bounded, we conclude at once that there is some number C = C(d, ¢) such
that for all k € Z™ we have |c| < C/||k||% where ||k|| is the sup norm.
Hence the Fourier series

g(x) — E cke2‘l’ikz
keZ"

converges to g uniformly.

Poisson summation formula. Let f be in the Schwartz space. Then
> fm)= X f(m).
meZ meEZL
Proof. Let
0@) = X fz+h).
kEZ
Then ¢ is periodic and C*. If ¢, is its m-th Fourier coefficient, then

T en=90) = X fb).
kEZ™

meZ

On the other hand, interchanging a sum and integral, we get
—2ximz —27imzx
m — = k
¢ [T" g(x)e dz kezz:" /Tnf(x + ke dz
=3 / S+ ke 2 mEER gy
kez" JT

= [ J@eT ™ dx = f(m).

This proves the Poisson summation formula.

In preparation for the n-dimensipnal theorems of the next section, we
treat here the one dimensional case as an example. Let 8 be the function
defined for y > 0 by

o) = 2 e~

It is easy to see that if h(y) = e~ ™’ then h = h. (We shall recall the
proof briefly in the next section.) Furthermore, if f is in the Schwartz
.space, and b > 0, and f;(y) = f(by), then

Foly) = 7 fo'y).

S| =
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From this and the Poisson formula in one variable, we find at once the
functional equation of the theta function, namely

8(y") = y'*6(y).
Let s = o + it with g, ¢t real. We have by definition

© B dy
T —_/ v,s %Y .
(s) . VY

Let
F(s) = ©*/21(s/2) ¢ (s).

Let g(y) = Y. e™™¥, so that 29(y) = 6(y) — 1. Then from the above
n=1

integral for the gamma function, we obtain at once

O FUVEY.

) d ° dz
= / z*2g(z) = + / e %(1/z) =-
1 z 1 z
The functional equation of the theta function immediately implies that

1 1

F=s=3—5+ fl (@2 + 20 2g(a) 2E.

The integral on the right converges absolutely for all complex s, and
uniformly for s in any strip 0; < ¢ < 3. The expression on the right
then defines F for all values of s = 0, 1, and we see that

F(s) = F(1 — s).

§2. A special computation
Ezample 1. Consider the function
h(z) = e,

where z?

= z -z as usual. We contend that h is self dual, i.e.
h=h
Proof. We differentiate the Fourier transform

h(y) = [ h(z)e~2" " dx
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under the integral with respect to y (we may assume for this proof that
we are in the one variable case, since the Fourier transform splits into a
product of 1-variable transforms), and we integrate by parts. We then
find that

dh(y)

L = —2myh(y).
dy nyh(y)

Hence there exists a constant C such that
h(y) = Ce~™v",

Taking the value A(0) shows that C = 1, thus concluding the proof.

Ezample 2. Next, let f be an arbitrary function in the Schwartz space,
and let B be a non-singular real matrix. Then the function fp defined by

f8(z) = f(Bz)

is also in the Schwartz space, and using the change of variables formula
for the multiple integral, we find immediately that its Fourier transform
is given by

¢ _ 1 aena

where ||B]| is the absolute value of the determinant of B, and ‘B! is the
transpose of the inverse of B. This is clear since when we make the change
of variables z = Bz, we have dz = ||B|| dz, and

(B~ '2,y) = (2, 'B"'y).

The Poisson formula will be applied to a special kind of function f in
the Schwartz space. Let @ be a positive definite quadratic form over the
reals, on R¥. We can write

Q(z) = (Az, z)

where (, ) is the usual scalar product, z € R¥, and A is a symmetric
matrix, such that for all z ¢ 0 we have Q(z) > 0.

Let

g(x) —_ e—rQ(::)'

We can write A = B2 for some symmetric operator B, and thus

Q(z) = (Bz, Bz).
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We are therefore in the situation arising from Examples 1 and 2, and we
can apply the Poisson formula to g(z). We find:

—- 1 —x (A~}
e—TALD Z gAY

lzz;” V| Al 1ez¥

Or, if we let Q' be the quadratic form such that
Q'(x) = (A7 'z, 2),

then we can rewrite this formula in the form

1 ’
T e — 3 W,
iez¥ V4| 1ez¥

We shall apply this to a quadratic form obtained arithmetically.
Let k be a number field, and a a fractional ideal of k. Let

a = {al,...,aN}
be a basis of a over Z. We let
o' = {af,..., ok}

be the dual basis with respect to the trace. Then o' is a basis for the

fractional ideal .
o = (ba)7Y,

where b is the different of K over Q. (Proposition 4 of Chapter III, §1).
Weletj=1,...,r + 2r; be indices for the conjugates of k in C. We
write symbolically

= Ti1ay + e +ZNC(N,

and
£ = ol + - + onall,
with real numbers z,, . . ., zn.
Hecke’s theta formula. Let cy,...,cy be real numbers > 0, such

that ¢r 4y = Criqyqr, Jor 0 = v = ra. Let d, be the absolute value of the
discriminant of a, so that

(da = Nazdk.



X111, §3] FUNCTIONAL EQUATION 253

Let
N
g(z) = exp (—rd;lm > c,-l};"’)|2)
=1
and let
Oc,a0) = 2 9.
z€EZ
Then we have the relation
(¢, 0) = ———— 0(c™%, ),
Ci1**CN
where ¢! stands symbolically for c7’, . .., ¢y .
Proof. Let us put
N o .
Qc;a,z) = 12—:1 0:'[‘1(1’)11 +---+ ag)xﬂz
= (A¢.af, T).

The vu-component of the matrix A, , is
N ., .
> e
j=1

From Chapter III, §1, it is immediately verified that the inverse matrix
of A, . is given by

(472, 2) = Q(c™, o, 7).

Furthermore, the absolute value of the determinant is
”Ac.a” =C1°"" CNlD(al, ey aN)l.

This yields all the data needed to apply the Poisson formula in the form
given above for the exponential of a quadratic form, and concludes the
proof.

§3. Functional equation

It is convenient to deal with the zeta function associated with an ideal
class. We shall follow Hecke (cf. also Landau), which gives an N-dimen-
sional version of one of the original proofs for the functional equation by
Riemann.

Let ® be an ideal class of the ordinary ideal class group I/P. We define

1
g'(S, ‘Q) - [)EZ‘QNBS
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for Re(s) > 1. Let a be an ideal in 8 !. The map
b ab= (¢

establishes a bijection between the set of ideals in & and equivalence
classes of non-zero elements of a (where two field elements are called
equivalent if they differ by a unit). Let R(a) be a set of representatives
for the non-zero equivalence classes. Then we may write

1
Na~%¢(s, ) = ,
e {(s ) Eeé:(a) NE‘

where the sum is taken over representatives ¢ of equivalence classes of
non-zero elements of a. Let a;, ..., ay be a basis of a over Z. We write

¢ = z101 + - - - + zTNON, z; €Z.

Let S, be the set of archimedean absolute values on k. For v € S, we let
g, be the embedding of k in k,, identified with R or C (in the complex
case, we fix one identification which otherwise is determined only up to
conjugacy). We let

& = o'vE;
and also use this same notation when we let z; be real numbers.

Functional equation. Let & be an ideal class, N = [k: Q], di the
absolute value of the discriminant of k, :

A=2T g2
Let
F(s,®) = A°T (5)" T(9 £ (s, ).

Let R be the ideal class of (ba)™!, where b is the different of k/Q. Then
F(s, 8) is analytic except for simple poles at s = 0, s = 1, and

F(s, ) =F(1 — s, 8.

Proof. We shall obtain an integral expression for the zeta function,
and also see that it is entire except for a simple pole at s = 1, for which
we shall determine the residue.

We recall that

T(s) = / e Yy° d;y ) for Re(s) > 0.
0
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It will also be useful to note that if f is a function such that f(y)/y is
absolutely integrable from 0 to o0, then

/:f(y)%y= /:f(ay)‘;—y

for any number ¢ > 0. In other words, the integral is an invariant integral
on the multiplicative group of positive reals, for the measure dy/y. Note
that the gamma function is expressed as such an integral. This is relevant
to the zeta function, because for instance

F(Z{z) — / e—a2yya/2 iq .
0 y

(Here we made a multiplicative translation of f by a2.)
Let
da = Nazdk

be the absolute value of the discriminant of a.
Let v be real. Let

where £ is one of our non-zero elements of a. Then we find

_ I'(s/2 ) _ d
(w12 di/*N Na*1)® __I(ES/I’) = /0 exp(—m di V£, Py)y*'? 71/
Let v be complex. By a similar argument, we find
o , T : _ . d
@ 7 di/V Na?') _—IE(T")"’ =/o exp(— da VV2|£,|%y)y 71/

Multiplying over all » € S, and letting ¥y = [Jy, be the variable in
(ry + r2)-space, with

Y _ 11 W
y — 115,
we obtain
8 T T Nas B ® — 8 d
A'T(s/2)"T(0)" s = f / exp(—mwdz VLN gl Pyl 5
0 0 )
where

vl = TTyv>.

For Re(s) = 1 + &, the sum over inequivalent £ 0 is absolutely and
uniformly convergent. Hence for Re(s) > 1 we find an expression for
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F(s, &), namely

Fls, ) = A°T(/2T06)"5 (s, )

1 L] [

Dl o[ [ T ep(mart N el
0 0

¢ER(a) Yy

We can abbreviate the notation to get a clearer picture of this expression.
We let

G=Rtx..-x Rt = [IR}

be the product of r; 4+ rs copies of the positive reals. Then we can write

@) F(s, ®) = [ f@)yl"* a*y,

where d*y = dy/y, and f is the big sum over all £ = 0, ¢ € R(a).
Let V be the image of the group of units U in G@. In other words, V is
the image of the map

U = ([Uy]) vese-

The kernel of this map is the group of roots of unity. Its image is con-
tained in the subgroup G° consisting of all ¥ € @ such that {|y|| = 1, and
is a discrete subgroup. Furthermore, G°/V is compact. Also, we can write
@G as a product

G =R*"xQ°,

because any y € G can be written uniquely as
y=t"¢

with t € Rt and ¢ € G°. Here ¢ = (¢c,) and t"¥¢ = (¢¥¥¢,). By chang-
ing variables, we could map G on Euclidean space R"™*!. We prefer to
carry out the proof formally using the present notation. We shall perform
this change of variables at the end, to compute some needed constants.
Observe that with the above product expression we have

llyll = ¢
We may write

F(s,®) = /0 /Gof(t”Nc)t"/2 d*c%;

where d*c is the appropriate measure on G°, and ¢ = (c,) is the variable
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in G° If we put indicesj = 1,...,r, + r; then

¢=(C1y.+yCrigry)-

Let E be a fundamental domain for V2 in G°. We have a disjoint
decomposition

G’ = U an,

€V

and hence if w is the number of roots of unity in k, we get

° F(s, 8) =
/ / l E Z exp<_ ng/NENvlsvuvlztl/NCv)talz d*c ﬂ
0 JEW eV t€R ¢

_ ’ 1 1/N Ty
—/; Lw[G(t c,a) — 1] d*ct :

We split the integral from 0 to oo into two integrals, from 0 to 1 and from
1 to . We let u*(E) be the integral of 1 over E, with respect to d*c.
We then find:

1
F(s, ®) = L o@t¥e g2 gee 9 _ #1(E)
1] EW

T ws
+/ f l[@(t”Nc, a) — 1) d*c t’lzii—t-
1 JEW t
We now use the functional equation of the theta function. We see that

0@t'e,a) = L 8¢ e, o)

Vi

because ||c|| = 1 (cisin G°!). We transform the first integral from 0 to 1,
with a small change of variables, letting ¢t = 1/7, dt = —d7/72. Note
that the measure d*c is invariant under the change ¢ — ¢~ (think of the
isomorphism with the additive Euclidean measure, invariant under taking
negatives). We therefore find that

© F(s, R) =
[ ] Loy —qacdd s
1 EW L

ws

© 1—s
1 UN, .y _ 2 dt _ pME)2
+f1 /Ew[G)(t c,a) — 1] d*ct ; wd — 8)

3
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This expression is invariant under the changes

s—1—3s and a—a’.

This proves the functional equation.

Actually, our last expression yields more information on F(s, &). Indeed,
the integrals are absolutely convergent for all complex s, thus giving us
an analytic expression for F(s, &), disregarding the two simple polar
terms at s = 0and s = 1.

We shall now carry out explicitly the change of variables in the above
proof, and compute u*(E). Let u,, ..., u, be independent generators for
the units modulo roots of unity, and let

o= ("l ..., W) = (g, -, M)
be their images in G, so that #,, ..., 7, form a (multiplicative) Z-basis
for V. Let
Rt X R — @
be the map

1/N_2 2
(t,zl,...,z,)n—-)t’ TR i

Then our map is an isomorphism, and in terms of coordinates we have

1/N 2= 22 .
yi=t mj oy, J=1,...,r1+ 1

The Jacobian determinant is then immediately computéd to be

Ag(t, 2) = 2—r2+r Y- "; Yri1 R,

where R is the regulator. Hence (2) can now be written

F(s, ®) = fo T )RR a %

Thus the integral over G° corresponds to an integral over R’, and under
our map, the fundamental domain E is the image of the unit cube (half
closed) in this Euclidean space. The cosets of this unit cube with respect
to the lattice of integral points Z™ in R" correspond to the cosets of E
with respect to elements of V2 in G°. This shows that

p*(E) = 2772+'R = 2n~IR.
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This gives us the residue of F(s, &):

Theorem 1. The polar part of F(s, &) at s = 0 and s = 1 1is given by

:_»:@2(_1__1)_225(;_1.
w s—1 s/ w \s—1 s

The zeta function ¢(s, &) has a stmple pole at s = 1 with residue

_2"@em"R ,

K
wdp'?

and no other singularity.

Proof. The first statement is obtained by plugging in our value for
p*(E) in the expression (3). The second statement comes from evaluating

ATIP(1/2)"1T (1),
So Theorem 1 drops out.

We have obtained information on the zeta function of an ideal class.
Taking the sum over the ideal classes immediately yields information on
the zeta function itself, as follows.

Theorem 2. Lel

Fi(s) = %: F(s, 8).
Also, let

r r r
=2’hR and K=2‘(27r) *hR
w wd}?

A

Then
Fi(s) = Fi(1 — 8),

and Fi has a stmple pole at s = 0 and s = 1, with polar part

: 1 1 A
)‘(s—l_-§>_s(s—1).
The zeta function {i(s) has only a simple pole at s = 1 with residue equal

to K.

We shall now keep our integrals for ¢ = 1, but put back the theta
terms into the sums over ¢ In fact, we had

(§) = ab and  N¢ = NaNb.
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We can make a similar construction for a’ and hence we find that

A
s(s — 1) +

N —1/N 'Evlz id:l/
fuyu;l 2y P (—”Nb“” AN N y) ll®

N —1/N IEvI dy
+ /Iyllzl b;k' exp (_wazl dg NN, Ng/w y ) [yl 2

Each sum over b is taken over the ideals in the given class.
We change variables, making the multiplicative translation

F(s,R) =

&l®
Yo = Ng2iv Y

Then ||¥’|| = |ly|l, and we find:

Theorem 3. Let Tr(y) = > N,y,. Then

_>
s(s — 1)

+2 ﬁy,lgl eXP( wdg VNG Tr(y))[llyH'2 + llyll E ]‘:/y

Fi(s) =

where the sum s taken over all ideals b # 0.

§4. Application to the Brauer-Siegel theorem

Following Siegel, we shall show how the formula of Theorem 3 implies
an asymptotic relation between the class number, absolute value of the
discriminant, and regulator of a number field k. We denote these numbers
as usual by hg, di, and Ry, respectively. Welet Ny = [k : Q. We omit
the subscript k if the reference to k is clear.

For the statement of the next theorem, we assume something about
the weros of the zeta function, in order to see clearly the simple logical
structure of the argument. Siegel showed in a special case how one can
supplement this argument by the technique of L-series to get a proof in
a wider class of cases, and Brauer extended Siegel’s argument more gen-
erally, using some of his theorems on characters. We shall do this in
Chapter XVI.

Theorem 4. Let k range over a sequence of number fields such that
Nyi/log d — 0. Assume that for some & > 0, the zeta functions {x(s)
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have no zeros on the interval [1 — 8, 1]. Then for this sequence of fields,
log(hiRi) ~ log di'>.

Proof. We shall consider successively values of 8 > 1, and values of
s < 1 to get inequalities for A R.
First take s real > 1, say

s=1—|——1-; azl
a

For this case, we disregard the sum over b in Theorem 3, except for the
faet that it is = 0. We then see that

Ks_i—l—)_ < A'T(s/2)"T() " (s).

For s near 1, the gamma factors I'(s/2) and I'(s) are bounded. Further-
more, using the series expression for {o(s), comparing it with the integral,
we have

;Q(1+§) <l+a

We also have the obvious bound

¢ (1+l < to1+1)"
k a) =°0C a
Using the value for A we find

kR < CNa'2d"2e(1 4 a)¥

for some universal constant C. Taking the log yields

loghR _ N 1, N
log d1/2 = log d'/2 logC+ 1+, + log d1/2 log(1 + o).

Given €, we select a so large that 1/a < e. We then select k in the sequence
so that Ni/logd}/? is close to 0. This proves the right-hand side of the
type of inequality we want to prove, and we note that the zeros of the zeta
function have played no role in this inequality.

We now work on the other side, taking s < 1 and s close to 1. This
time, we use only one term of the sum in Theorem 3, namely that term
corresponding to the ideal b = 0. Under our hypothesis on the zeros of
ti(s), we conclude that Fi(s) < 0 for s < 1 and s close to 1. We let
s=1—¢/N. We restrict the integral to the region defined by the
inequalities

dl/N < Yj é 2d1/N.
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We disregard the term with ||y||‘' /2, and give y; its lower bound in this
region. We then obtain at once an inequality

C(e)-—Ndl/2d—¢/2 < hR.
Taking the log and dividing by log d/? yields

—N log hR
fog 472 logC(e) +1 — € < Tog d/%
Letting € be small, we let k be so large that N/log d"/? is very small. This
yields the opposite inequality, and concludes the proof of Theorem 4.

The arguments we have just given will be repeated completely in
Chapter X VI, so that the reader can compare the use of the adelic integral
expressions of the zeta function with the use of Theorem 3.

§5. Applications to the ideal function

We shall see how the functional equation of the zeta function can be
used to give growth estimate on vertical lines. For this we need some
classical facts of complex variables, essentially of Phragmen-Lindelsf type.
We shall then see how the behavior of zeros in the critical strip affects
these growth estimates, and also affect the ideal function. The analytic
techniques developed are standard and elementary, essentially at the level
of Cauchy’s Theorem and its immediate corollaries.

Phragmen-Lindelof Theorem. Let f(s) be holomorphic in the upper
part of a strip: a <o < b,and t = t; > 0. Assume that f(s) is O(e’a)
with 1 £ a, and t — o« in this strip, and that f(s) is O(tM) for some
real number M = 0, on the sides of the strip, namely ¢ = a and ¢ = b.
Then f(s) is O(tM) in the strip. In particular, if f is bounded on the sides,
then f is bounded on the strip.

Proof. The general statement reduces to the special case when f is
bounded on the sides, by considering the function f(s)/s” instead of f(s).
We now prove this special case, and assume that f is bounded on the sides.
Without loss of generality we can take ¢, large, so that § = arg s is close
to w/2. We select an integer m = 2 (mod 4) such that m > o. If s = re',
then

s" = r"™(cos mb + 7 - sin m@),

and m@ is close to w. Consider the function
ge(s) = g(s) = f(s)e",
with € > 0. Then there is a constant B such that for large ¢t we have

lg(s) I < Betaeerm cosmf
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Consequently for large ¢, the function g¢(s) is
bounded by B on the horizontal segment ¢ = ¢,,
between the vertical lineso = a and o = b.

On the vertical sides of the rectangle shaded in
Fig. 1, ¢(s) is bounded since f(s) is bounded, and
et™eosm? js < 1. Hence g(s) is bounded on the
boundary of the rectangle, consequently inside
the rectangle, and in fact |¢g(s)| = B inside this
rectangle. Hence we get

|f(8)| é Becr"‘cosm@

inside the rectangle. This is true for every € > 0, a b

and hence Figure 1

If(s)] = B
inside the rectangle. Our theorem is proved.

In the Phragmen-Lindel6f theorem we were interested in the crude
asymptotic behavior for large . In the next theorem, we want a more
refined behavior, and so we must assume that the function is holomorphic
in a whole strip.

First convexity theorem. Let s = o + it. Let f be holomorphic and
bounded on the strip a < ¢ = b. For each o let

M;(o) = M(o) = sup [f(o + ).

Then log M (o) is a convexr function of o.
Proof. We must show that
M(@)*™® < M(a)®> "M ()"

We first consider the case when M(a) = M(b) = 1. We must show that
M(o) < 1. Suppose that |f(s)| < B in the strip. For e > 0, let

1
ge(s) = TFec—a)

Then the real part of 1 + e(s — a) is = 1, so that |g(s)] =< 1. Also,
fort # 0,

1
|g€(s)| é elt' !
and therefore
B
|f(8)g¢(8)| é Glfl M
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Let € be small, and select { = +=B/e. On the boundary of the rectangle
with sides at ¢ = a, 0 = b, with top and bottom +B/e, we find that
|fgel is bounded by 1. Hence |fg| = 1 on the whole rectangle. Letting €
tend to 0 we get what we want, namely, |f| < 1 on the strip.

In general, let

b—s s—a

h(s) = M(a)> ="M (b)*.
Then h is entire, has no zeros, and 1/h is bounded on the strip. We have
|[h(a +3t)] = M(a) and  |h(b+dt)| = M(b)
for all t. Consequently,
Myn(a) = Myn(b) = 1.

The first part of the proof implies that |f/h| < 1, whence |f| < |h], thus
proving our theorem.

Corollary. (Hadamard Three Circle Theorem.) Let f(z) be holo-
morphic on an annulus o < |2| < B, centered at the origin. Let

M(r) = sup |f()].
Then log M (r) is a convex funciion of log r. In other words,
log 8/a log M(r) < log 8/r log M(a) + log r/a log M(B).

Proof. Let f*(s) = f(e®). Then f* is holomorphic and bounded on the
stripa < ¢ < b, where ¢* = a and ¢® = 8. We simply apply the theorem,
to get the corollary.

In the next corollary, we analyze a growth exponent. Let f be holo-
morphic in the neighborhood of a vertical line o + #t, with fixed o, and
suppose that

flo +it) < g7

for some positive number . The inf of all such ¥ can be called the growth
exponent of f, and will be denoted by ¥(0). Thus

flo + it) K v @+e

for every € > 0, and ¥(0) is the least exponent which makes this inequality
true.
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Second convexity theorem. Let f be holomorphic in the strip
a £ 0 = b. For each c assume that f(o + it) grows at most like a power
of |t|, and let Y(a) be the least number = O for which

flo+dt) K [e[p @+

for every € > 0. Assume for simplicity also that f(o + it) K " in the
strip, with some o, 1 < a. Then {(0o) s convex as a function of o, and in
particular s continuous on [a, b].

Proof. The Phragmen-Lindel6f Theorem shows that there is a uniform
M such that f(o + it) < [t/ in the strip. Let L(s) be the formula for the
straight line segment between ¢(a) 4 € and ¥(b) + ¢€; in other words, let

L) = 2= (@) + e 1+

— a
— a

[w(b) + €.

The function

(5) (—is) T

is then immediately seen to be bounded in the strip, and our theorem
follows, since we get ¢(6) = L (o) for each ¢ in the strip, and every € > 0.

Remark. We wish to apply the second convexity theorem to the case
of a function which satisfies the hypotheses of this corollary, except for
the presence of a few poles, say the zeta function of a number field k,
which has a pole of order 1 at s = 1. In that case, we consider

f(8) = (s — Diw(s).
If for some o we know that outside a neighborhood of the pole,

Crlo + i) L JgV ot

then _
f(o. + 'it) & ]tldl(c)+l+€.

Furthermore y(0) is best possible for the zeta function, outside a neighbor-
hood of the pole, if and only if ¢(o) + 1 is best possible for the function f.
The convexity of ¢ follows from the convexity of ¥ + 1, so that our result
applies to the zeta function.

We shall deal with a fixed number field k, so that we sometimes write
¥ (o) instead of Yr(c). I am indebted to Bombieri for the following formulas
concerning ¥(c), and for pointing out Theorem 5. Bombieri tells me
that the arguments go back to Hardy-Littlewood (1917). They are given
in Titchmarsh’s book on the zeta function (e.g. Chapter XIV) for the
case k = Q. They also apply to a wider class of zeta functions and Dirichlet
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series. Cf. L. Goldstein’s paper, Acta Arithmetica (1969), pp. 205-215.
Since the zeta function is bounded foroe = 1 + 4, & > 0, it follows that

Yi(d) =0 if o> 1

Let k be a number field of degree N over Q. For any real o, the gam:.a
function satisfies the asymptotic relation

|P(e + it)| ~ C(o)e™™*°"'2  t— o0,

this being obvious from the simplest form of Stirling’s formula. Here,
C(o) is a constant depending on . (We won’t even require that it can be
taken uniform in a strip.) From the functional equation, we see that for
any s away from the poles, say away from the real axis, we have

e =4"*JIr (lﬂzlﬂ) r (%"f)_l el — 9).

vESw

For a fixed o, the term A!72% is bounded, as a function of ¢. If y;(c) exists
for some ¢, then using the asymptotic formula for the gamma function,
we conclude that (1 — o) also exists, and we have the relation

¥i(0) = N(3 — o) + (1 — o).

Since ¥(0) = 0 when o > 1, we conclude that ¥;(0) exists when o < 0.
The Phragmen-Lindel6f theorem then implies that y(o) exists for all o.
We can therefore apply the convexity theorem, and we see that the graph
of ¥ looks at worst like this:

o)=Y (1-20)

w2

0

Figure 2
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{Recall that a convex function on an open interval is necessarily
continuous.)

The graph may in fact look better. We shall see that if we assume
the Riemann Hypothesis, then in fact the graph follows the dotted line
to 4, and that y,(0) = 0if o = §.

Theorem 5. If {; has no zero fora = 8 > 1, then Y (d) = O fora = B.

Proof. First observe that log ¢1(s) is analytic foro = 8. We have
Re log ¢i(s) = log |$k(s)| < log |¢],

uniformly in a strip @ £ ¢ £ b and 8 < a, excluding a neighborhood of
the poles, or say for [¢| = ¢t; > 0.

The next lemma is the standard way of showing how to bound a holo-
morphic function by its real part. Recall that the real part of a holomorphic
function f satisfies the maximum modulus principle (for instance, look

at ¢/@).

Lemma. Let f be holomorphic on a closed disc of radius R, centered at
the ortgin. Let ||f||, = max |f(2)| for |s]| = r. Then

Il = EEL (1Refll2 + O

Proof. Let A = ||Re f||r. Assume first that f(0) = 0. Let

@
2(24 — f(2))
Then g is holomorphic for |z] £ R. Furthermore, if || = R, then
24 — ()| 2 If(2)]-

Hence |lg|lg < 1/R. By the maximum modulus principle, we have
llgll= = llgllr, and hence, if || = r, we get

lfw| 1.
r2A — fw)] T R

g(z) =

whence
fw)] = 5 @4 + [j@w))),

and therefore

2r
—r

Il s 52— 4,

which proves the,lerﬁma in this case.
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In general, we apply the preceding estimate to the function

h(z) = f(2) — £(0).
Then
IRek|lz = [[Refllz + 1£(0)],

and if jw| = r, we get

i) — SO 5 Fo—14 + SO},

whence

)| S 52— (4 + Ol + 50 s 14 +(10))

thereby proving the lemma.

We apply the lemma to the function f(s) = log ¢x(s), and to circles
centered at the point C + it for C large, passing through the points a + it
and b + i, with 8 < a < b. We then see that

|log £x(b + it)| < log |¢, t— oo.
r
B+it a+it btit it
R
Figure 3

Indeed, for C large, £x(8) is close to 1 in the half planeo = C.

Actually, we want log {; to behave like a power (log [¢])” with ¥ < 1.
To see this, we use the three circles with center at C' + it, passing through
a-+1t, b+ i, and B + <, with B large and close to C, as on the next
figure.

Q—rl—b
- $ e 4 4

hd hd v Y‘ Y‘
B+it a+it b+t B+it C+1t

3

Figure 4
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The Hadamard Three Circle Theorem then shows that

llog £x(b + 2t)| < (log |¢])7,

with
logC—_—p-
y—=_C=B |
lOgC——a
C —B

This proves Theorem 5.

Remark. Of course, we have proved something stronger, namely that
for ¢ > B, we have

log ¢r(o + it) < (log [t])* e,

and we can play the same game with ¢(¢) as we did with ¢(o), namely
show that it is convex in o, as in Titchmarsh, thus giving rise to a third
convexity theorem. We use the technique of the Phragmen-Lindelof
Theorem, and the auxiliary function

(log(—1s)) 7.

However, we won’t need this here.

We apply Theorem 5 to the problem of estimating the number of
ideals with norm < x. We need another lemma from complex variables.
First, we give an approximate formulation of the lemma. We have:

1 2+iw J* 1 if y>1
2—1};. oi ?dl' = '% if Yy = 1
- 0 if 0<y<l

This is a useful formulation to remember the formalism of what goes on,
but we need a more precise value for the manner in which the integral
converges, depending on ¥.

Lemma. We have
Y .
1 24iT /' 1+0 (T_@) if y>1

2

_y ;
0+0(T-logy) if 0<y<l.

2w Joir 8
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Proof. In the case y > 1, we take an integral over a rectangle as shown
on Fig. 5.

2417

2—1iT

Figure 5

We shall let A — ». The function y°/s has residue 1 at s = 0, thus
giving us the contribution of 1. We must then estimate the integral over
the top, bottom, and left side of the rectangle.

As for the top, the integral is estimated by

2 2
v <l/ ,
[_.4 o+ 7] do = T _Ay do.

Letting A tend to infinity, we see that this integral is bounded by
y%/T log y. The bottom is estimated similarly.
As for the left-hand side, the integral is estimated by

! —4 2T
/ S A—T L
-7 |—A -+ 1,t| A

which tends to 0 as A goes to infinity. This vields the estimate of the
lemma when y > 1.

If 0 < y < 1, we take a rectangle going to the right. Then there is no
residue, so 1 is replaced by 0. The estimates on the bottom and side of
the rectangle are carried out as before to yield the analogous estimate.

If y = 1, then one deals directly with the integral

2T T T o
. . — 1
/2_” 33 = ’/_r sradt= ’/_T ire®
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Since ¢ is an odd function, the term with —#t cancels. The integral of
1/(4 + t?) is an arctangent, which gives the desired result. We won’t
need this case in the applications, however.

Theorem 6. Let ji(x) be the number of ideals of k with Na < x. Assume
that ¢x(s) has no zero for ¢ = b, where 3 < b < 1. Then for every e,
we have

Je(@) = piz + O(a®t9),
where py, ts the residue of ¢ at s = 1.
Proof. We consider the integral
24T
1 z’
(%) 5t ]; o §x(s) ~ ds.
There is no problem of convergence, which is absolute, and such that we

can replace the zeta function by the sum > 1/Na®, as well as interchange
the sum and the integral. In view of the lemma, we have to deal with the

two sums
24T
Z[ ' (i)alds
Na<z J2—ir \Na/ s

T
Z /‘2+ (_x_)‘ l is
Na>z J 2—iT Na/ s

We take z to lie exactly between two integers, and use the lemma with
y = z/Na. In the estimate, the term log y comes close to 0 when Na
comes close to z, but even in the worst possible case when Na may differ
from z by 4, log(z/Na) behaves like . Hence

3 1 T eV 1 23
&, T /_ (N‘) s =@ +0 (T) ‘

All we have to do is pick T large, say T = z3, to make the error term
negligible. (We used the fact that the order of magnitude of ji(z) is at
most a constant times z, thus giving an upper bound for the number of
terms in the above sum.)

and
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For the sum with Na > z, we estimate each term using the lemma,

namely
/ e (&) Lo (__>__1_
2—sr \Na/ s Na/ T - log(x/Na)

& AR
Na2 T - log(x/Na)

Again, log(z/Na) behaves at worst like z. Selecting T = z® and summing
over all a yields an estimate << {x(2), i.e., a bound for our sum. Thus our
integral (*) yields essentially jx(z), up to a bounded term.

Now we use Theorem 5, and move the integral to the left. If we had
the Riemann Hypothesis, we would move the integral to thelinec = 4 + e.
Asitis, take any b with § < b < 1 so that {; has no zero fore = b. Then

Ce(d + i) < |t

for every € by Theorem 5. Consequently, shifting the integral (*) to the
line ¢ = b, we pick up a residue of p,z at s = 1. This gives us the main
term for jx(x). The error introduced is given by the integral on the top,
bottom, and left-hand side of the rectangle on Fig. 6.

Figure 6

The integral on the left-hand side of the rectangle is bounded by

T 5 T
. T brme 1
/_T [86(b + )| o dt <« T/_r P+ &

L z°T*log T.
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With our choice of T = z3, we find an error of z°*¢. For instance, on the
Riemann Hypothesis, our error term is

zhte,
The integral over the top, say, is estimated by

xd €

2
. T® 5
/; |§k(0+iT)lmd¢7 N

which is small. This proves our theorem.






CHAPTER XIV

Functional Equation, Tate’s Thesis

This chapter is essentially Tate’s thesis, which has also appeared
(finally) in the Brighton conference volume.

We first treat the local duality theory of local fields, i.e. completions of
number fields under an absolute value. In §1 we give the additive theory
and in §2 the multiplicative theory which are used later.

In §3 we give the local functional equation, and in §4 we perform certain
local computations and tabulate special zeta functions, namely those used
in practice. In §5 we discuss Haar measure and integration on restricted
direct products, and in §6 we discuss the additive global duality theory.
The main result here is that the adele group is self-dual, and that the
additive discrete group of k embedded in it is its own orthogonal comple-
ment. Thus one may apply the Poisson summation formula to this situa-
tion (done in §7) and thereby get instantly the functional equation for the
L-series, in an abstract form. We get actually more (as in the classical
theory), since we express these as an everywhere convergent integral plus
a simple term involving possible simple poles at s = 1 or s = 0.

Finally in §8, we make the results of §7 explicit, and tabulate various
identities useful for reference in the subsequent applications.

One more word on notation. If G is a locally compact commutative
group, we denote by Inv(G) the set of complex valued functions f on G
which are continuous, in L,(@), and such that the Fourier transform f
is also continuous and in L;(G). The Fourier inversion formula then holds
for such functions for some choice (unique) of Haar measure on G de-
pending on the choice of Haar measure on G. Such a pair of Haar measures
is then called self-dual, and throughout our theory we shall always select
the additive measures to be self-dual.

We shall use frequently the fact that if X is a character on a compact
group G, then

measure of G if X = 4d.

[, x(@ do = [o if X 5 id.
Since this fact is trivial, we recall its proof. If x = 7d., there exists an
element y of G such that x(y) ¢ 1. Making the translation by y does

275
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not change Haar measure, and hence
f X(z) dz = [ X(x + y)dz = X(y)/ X(z) dzx.
G G G

Subtracting and using x(y) # 1 gives what we want.

§1. Local additive duality

Let k = k, now denote the completion of a number field under the
absolute value v. We call & a local field. Then k is either the real numbers,
complex numbers, or a p-adic field, and v is described by the same terms.
We denote by | |, the normalized absolute value, inducing the ordinary
absolute value on the reals if » is archimedean, and the p-adic absolute
value |p|, = 1/p if v is p-adic. If N, = [k, : Q,] is the local degree, then
we set

Nl
llllo = lafv -

If v is p-adic, and Np denotes the number of elements in the residue class
field o/p of k, then
llzlly = lizll = (Np)7*,
where v = ord, z.
Suppose for the moment that k¥ = Q,. We define a non-trivial character
on the additive (locally compact) group of k as follows.
If v is real, we put

No(z) = —x (mod 1).

If v is p-adie, and Z,, Q, denote the p-adic integers and p-adic field
respectively, then there is a canonical embedding of Q,/Z, into Q/Z,
namely onto that subgroup of Q/Z having only powers of p in the de-
nominator. Viewing Q/Z as embedded in R/Z = reals mod 1, we let \¢
be the composition of these homomorphisms, sending Q,, into R/Z:

2:Q,—2Qy/Z, - Q/Z - R/Z.

If k is a finite extension of Q, and Tr = Tr§, is the trace, then the
homomorphism
A= )\0 oTr
is a continuous, nontrivial homomorphism of k into the reals mod 1.

Theorem 1. Let k be a local field. Then the bilinear map

(:’C, y) — 8271')\(:1/)

induces an identification of the additive group of k with its own character
group.
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Proof. 1t is easily verified that the pairing is continuous, and that the
kernels on both sides are trivial, i.e. = 0. This induces a natural map of k
into k£ which is injective, continuous, and dense. It is in fact bicontinuous,
because if the character A\, given by

xz (y) — e2 riN(zy)

is very close to 1, it must take on values close to 1 on a large compact
subset of k. One sees at once that in that case, £ must be close to 0. From
this it follows that the image of k in the character group is complete, and
hence closed. The map is therefore surjective and the theorem is proved.

In choosing a Haar measure on k, we choose one which is self-dual.
We shall choose:

dz = ordinary Lebesgue measure on the real line if k is real.

dz = twice the ordinary Lebesgue measure if k is complex.

dz = that measure for which the integers o of k get measure (ND) /2

if k is p-adic.

Here as usual, D = D, denotes the local different, i.e. the ideal such that
D! is the orthogonal complement of o in the pairing of Theorem 1.

If u denotes any Haar measure on k, and if a € k* is a non-zero element
of k, then

u(ao) = |al|p(o),

or symbolically, d(azx) = ||a|| dz.

Our assertion is clear if v is archimedean, and if v is p-adic, it suffices to
verify it when a = 7 is a prime element. In that case, 7o is of index Np
in o, and is an open subgroup of o. Thus our assertion is obvious.

Theorem 2. If we define the Fourier transform f of a function f in Ly (k) by
fw) = [§z)e=> ™ g,

then with our chotce of measure, the tnversion formula

f@) = f(—2),
holds for f in Inv(k).

Proof. We need only establish the inversion formula for one non-trivial
function, since from abstract Fourier analysis we know it is true save
possibly for a constant factor. For k real, we can take f(z) = e,
for k complex, f(z) = e~27'#"* and for k p-adic, f(x) = characteristic
funiction of 0. We leave the details of the computation to the reader

(cf. §4).
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§2. Local multiplicative theory

The units U, = U of our local field are the kernel of the homomorphism
ar |af

for a € k*. If v is p-adic, then U is a compact open subgroup of k*, and
it is always a compact subgroup of k*.

By a quasi-character of k* we mean a continuous homomorphism ¢
of k* into the multiplicative group of complex numbers. A character is
thus a quasi-character of absolute value 1. We say that ¢ is unramified
if it is trivial on U.

Proposition 1. The unramified quasi-characters are the maps of the form
c(a) = ”a”alogllall,

where s is any complex number; s is determined by ¢ if v is archimedean,
and is determined only mod 2mi/log Ny if v s p-adic.

Proof. An unramified quasi-character depends only on ||la|. Use the
fact that
k*~ UXRY o k*=UXZ

according as v is archimedean or not. In the p-adic case, the decomposition
is of course not canonical, and depends on the fact that once we have
selected an element 7 of order 1, then any element a € k* can be written

a=Tmu
for some integer r and a unit .

Any quasi-character ¢ restricted to the units U determines a character
on U, since U is compact. Conversely, given a character X of k*, the
function

c(a) = x(a)lla]®
is a quasi-character.
If v is archimedean, and X a character of k*, we can write

x@ = (&) e,

where m = m,(X) is an integer, m = 0 or 1 if v is real, ¢ = ¢,(X) is a real
number, and m, ¢ are uniquely determined by X.

If » is p-adic, then the subgroups 1+ p* (v = 0) form a fundamental
system of neighborhoods of 1 in U. Any quasi-character ¢ must therefore
vanish on one of these subgroups, and we call the ideal

fp=To,=P"



[XIV, §2] LOCAL MULTIPLICATIVE THEORY 279

the conductor of ¢ if m is the smallest integer for which ¢(1 + p™) = 1.
(If m = 0, then by definition, f = 0.)

To use a unified notation for the archimedean and non-archimedean
case, we shall refer to the integer m,(X) or ord, f, = m as the ramification
degree of c, or X.

Selecting a prime element 7 in case v is p-adic, and a decomposition

k* =~ UXRT or k¥*=UXZ

we let a’ be the U-component of an element a € k* (so a’ = a/|a| if v is
archimedean). We let ¢’ be the restriction of ¢ to U. Using elementary
results concerning Rt or Z, we get:

Proposition 2. The quasi-characters of k* are the maps of the form
a > c(a) = c'(a")||al|®,

where ¢’ is any character of U, uniquely determined by c. The complex
number s is determined as in Proposition 1.

The real part of s in Proposition 2 is uniquely determined by the quasi-
character, and will be called its real part or also Re(c).

Now for Haar measure. If g(a) is in C.(k*) (continuous functions with
compact support), then g(z)||z]| ™! is in Cc(k* — 0) = Cc(k — 0). Hence
we may define on C.(k*) a non-trivial functional

g [ 9@l dz,

which is obviously invariant under multiplicative translation, is positive,
and thus comes from a Haar measure. Passing to the limit, we have:

Proposition 3. A function g(a) is in Ly(k*) if and only if g(z)|x|™*
18 in Ly(k — 0), and for such functions, we have

fo@dia= [ gl dz,

where dYa is the measure on k* just mentioned, and dx s the measure on
(the additive group of) k.

In fact it will be convenient to take a Haar measure on k* which differs
from the above by a constant in the p-adic case, and gives the units mea-
sure 1 in general. Thus we take:

* da e - .
da= 7+ if » is archimedean.
lladl
Np da

d*a = et
= Np— 1 Jldf

if v is p-adic.
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Proposition 4. If v is p-adic, then fU d*a = (ND)™Y2,

Proof. This is seen immediately, taking into account that |ja| = 1 if
a € U, that the units are the complement of p in o, together with the
definition of the additive Haar measure in §1.

§3. Local functional equation

In this section, f(z) denotes a complex valued function on k*, and f(a)
its restriction to k*. We consider functions satisfying the following con-
ditions:

Z1,. f(x) and f(x) are continuous and in L, (k™).

Z2,. f(a)|a|| and f(a)|la]|® are in L,(k*) for ¢ > 0.

For such functions, and a quasi-character ¢, we define a zeta function:
£, 0) = [f(@)e(a) d*a.
If c(a) = x(a)||a}|®, where X is a character of k*, then we also write
£, %, 9) = [f@x(@)]lal d*a.

Once X is fixed, our zeta function can be viewed as a function of a complex
variable, which in view of our hypotheses on f, is holomorphic for Re(s)
(or Re(c)) > 0. In this domain, one sees immediately that one can
differentiate under the integral sign. Two quasi-characters are called
equivalent if we have c;(a) = cz(a)||a]|* for some complex number s,.
We can view a zeta function as a complex valued function on equivalence
classes of quasi-characters, and it is clear what is meant by analytic con-
tinuation on these.

If ¢ is a quasi-character, we define é(a) = ||allc™(a). The functional
equation will come from the following fundamental Lemma.

Lemma. For any quasi-character in the domain 0 < Re(c) < 1, and
two functions f, g satisfying Z1, and Z2,, we have

(1, 056, 6 = ¢(f, O3 (g, o).

Proof. We can write {(f, c){(4, é) as an absolutely convergent double
integral over k* X k*, namely:

J[#@)g(®)e(ab)b]] d*a a*b.
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The measure is invariant under shearing automorphism (a, b) — (e, ab),
and our integral is thus equal to

J[1@4(ab)e(v)]lab]| d*a d*b.

Writing down the definition of ¢ and the multiplicative measures d*a d*b
we get (up to an obvious constant factor)

f [ / f(a)g(z)c(d=1)e~ 2 ™MD gr dg db,

which is symmetric in f and g. This proves our Lemma.

If we can show that there exists one function f for which ¢(f, ¢) is not 0,
then the quotient {(f,c)/¢(f, é) is defined and does not depend on the
function f. We shall denote it by p(c). In the next section we shall exhibit
for each equivalence class of quasi-characters on a local field a function f
for which p(c) is defined. We thus get:

Theorem 3. A zeta function has an analytic continuation to the domain
of all quasi-characters given by a functional equation of the type

(£, ) = p()t(/, ).

The factor p(c), which is independent of the function f, is a meromorphic
Sunction defined in the domain 0 < Re(c) < 1 by the functional equation,
and for all quasi-characters by analytic continuation.

From the functional equation, we get the following properties:

L. p(c)p(é) = c(—1).
2. p(@) = c(—1)p(c)
3. If Re(c) = %, then |p(c)| = 1.

Proofs. For the first, we have
t(f, 0 = p(©¢(f, & = p(Op@)¢(f, &),

and

¢(f, 0 = e(—1)¢(F, &),

using the fact that f = f~ and é = c. The first property follows. For
the second, we have

70 = ¢(F,0) = p@)¢(F, %)
= p(@)c(—1)¢(F, & = p@)c(—1)¢(f, 6),
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and

c(7, o) = ple)e(f, 6),

so that the second property follows. As to the third, if the exponent of ¢
is equal to %, then

c(@)e(a) = le(@)]® = c(a)é(a).
Hence ¢(a) = é(a). Using the first two prope;'ties vields
p()p() = 1,
which proves the third property.

In the next section, we give explicitly, for each class of quasi-characters,
a weight function f. which makes the zeta function have the usual shape,
and in particular, defines p(c)

§4. Local computations

v archimedean. We use the following notation:

z = k;t-variable a = k}-variable
dz = N, times Lebesgue measure  d*a = da/||a]-

Given any character X of kJ, we have

x@ = (&) 1ol

where m = m,(X) and ¢ = ¢,(X). If visreal, s = O or 1.
We put
8y = 8,(X) = No(s + o) + lm|’

& = N,(1 — s —ip) + |m|
If v is real,
Frnl(@) = 2™ ™%,
If v s complex,
_1_ flmle-—21rl:::l2 fm=0
2w
Fxn(@) = 1 2
*xlmle-—%'lzl if m § 0.

2

Observe that our functions f,,, depend only on m, and thus may be de-
noted by fn = fm, If cis a quasi-character, and X the associated character
on the units, then we write f. = f,.
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Theorem 4. With the above notation, we have in all cases, putling
c(a) = x(a)llal|’:

fm(x) = ilmlf-—m(x) (lf vreal, f_, = fm)
g'(fcy C) = g-(fx.v, X, 8) = (Nv"r)—hlzr(sv/2)
t(fer &) = t(fxm X, 1 — 8) = "™(N,m)~3/21(5,/2).

Proof. If v is real, our first assertion concerning f is easy and is left to
the reader.

For the zeta functions, we use repeatedly the definition of the Gamma
function:

I'(s) = [: e u' " du.

The computations are also quite simple and are again left to the reader.
For v complex, things are slightly harder. We establish the formula
for f,, first for m = 0 by induction. To fit classical notation, let us use z
as a complex variable,
2=z + iy = re'.
For m = 0, we break up the Fourier integral into two real integrals and
use the classical formula

w .2 ; xg?
[ e TU +21nzudu = e T .
—c0
Assume we have proved our formula for some m = 0, so we have
/fm(w)e-—‘zwt)\(zw) dw = imf_m(Z).
Writing this out, we get
© ® . - 24,2 (T . . _ 2,2
[ / (u — dv)me W AITATIEU=I) Gy dy = Tz + dy) e 2TE V),
-0 -—00

Applying the operator D = (47i)~[8/dx + i(9/3y)] to both sides (a

simple task in view of the fact that since 2™ is analytic, D(z + iy)™ = 0)

we obtain our contention for m 4+ 1. The induction step is carried out.
To handle the case m < 0, we put a roof on the formula

f—m(z) = il'nlfm(z),

which we have already proved, and remember that f(z) = f(—2).
For the assertions concerning the zeta functions, we may assume with-
out loss of generality that ¢ = 0, and that our character x is of type
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cm(@) = ™. Then

g-(fm: Cmy §) = /fm(a)cm(a)llall‘ d*a

0 2x
= / f %rrz("l”"m'e'z"z% dr dé
o Jo
= / (r? (e=1)-+imi /2,277 a@?),
0

from which our assertion follows immediately after a change of variables.
The function {(f, é) is now computed using the first part of our theorem
and the definitions.

v p-adic. We use the following notation:

z = kf-variable a = k¥-variable
. — Ny da

dr gives o measure (ND)~ 1?2  d*vq = ———— .
& (ND) “= N1 [a]

We denote by my,, = m the order of the conductor of a character X,
som = 0. As in the archimedean case, our function f, , depends only on
this integer, and in fact, we put

fm(x) _ {e21ri7\(a:) z e @—l ;l
0 T & fD"lf;l

(® and f, should of course carry the index ).
For convenience of notation, we vwrite D, = Df,.

Proposition 5. We have

(ND)'>’(Nfy)  z=1 (modfy)

Im(@) =
" 0 z#£1 (modfy).
Proof. This comes immediately from the fact that the integral of a
character over a compact group is u(@) or 0 according as the character
is trivial or not. (The compact group here is (D,)"1.)

We observe that f, is the characteristic function of D~ while fo is (ND) /2
times the characteristic function of o.

We now give explicitly a zeta function for unramified characters. If x
is unramified, the value x(7) does not depend on the particular choice of
prime element 7, and is denoted x(p).
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Theorem 5. Let X be an unramified character of k*, and let f be the
characteristic function of an ideal . Then

(ND) M 2x(p)"(Np) ™
1 — X
Nps

¢, %, 8) =

Proof. This is an easy computation, using the definition of multipli-
cative Haar measure in terms of the additive one, and taking the integral
as a sum over integrals over the annuli p* — p**! for v ranging from
n to 0. On each such annulus, ||a||* is constant, and x(a) = x(#*), since
X is assumed unramified. We leave the details to the reader.

Corollary 1. We have

s—1/2
(o %o, 8) = 2L

~ N
and

1
¢(fo, Xo, 1 —8)=T‘Tp,_l'

Proof. Putn = —ord D in the first case, and n = 0 in the second.

Corollary 2. Let X be an unramified character of k*, and let fo = fy be
the characteristic function of ©~!. Then

(N®)8—1/2x(®—1)

_ X(»)
1 — Rps

g-(ny X, 8) =

and

—1 .

X0
Npl—s

g-(fO) i;l - S) =

We observe that for unramified x, the zeta function has the usual term
1 — (Np)™* in the denominator. For ramified characters, it does not.

Theorem 6. Let T be a prime element, X a character of k*, m > 0 the
order of its conductor, and {€} a set of unit representatives for U/(1 + fy).
Let o(x) = ord (D,), and put

‘q(x) — e21ri)\(z)_
Let c(a) = x(a)]a]|®>. Then

f(fm; C) = i’(fm, X, 8) == (N"Dx)aﬂ(l + fx)T(x);
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where
7(0) = 22 (xn)(er™*%).

Furthermore,

t(fmi €) = ¢(fmy % 1 — 8) = (ND)V2(Nf)n(1 + fy)-
(Note: The measure u is of course that of d*a, and 7 in 277 is 3.14159. .. .)
Proof. By definition,

$(fmy€) = /;);1 n(a)x(a)||a||® d*a

0

= 2, (Np™ fA 1(a)X(a) d*a,

—o(x)

where A, is the usual annulus p* — p**1. We contend that all the terms
in this sum after the first are O.

Casel. v = —ord ©. Then n(a) = 1 on A, and the integral is

/A x(a) d*a = /U x(am") d*a = X(W”)/U x(a) d*a,

14
which is 0, since X is non-trivial on U.

Case2. —ord® >v > —ord® — ordfy,. (This occurs only if
m > 1.) To handle this case, we break up A, into disjoint sets of type
ag + D! = ag(1 + D~ p™). On such a set, \ is constant, = \(ao), and
our integral is equal to )

n(ag) fa ot X(a) d*a.

This is equal to 0 because we can move this integral by multiplicative

translation to an integral over 1 4+ ©® !p™ on which our character is

non-trivial.
Thus we get

\

t(fmy X, 8) = (ND)* f,, 2(a)x(a) d*a.

=0(x)

Using our representatives of cosets of U/(1 + f,), it is a trivial matter to
transform this expression into the one given in the theorem.

For {(fm, X, 1 — s) we take into account the fact that f,, is (ND) V/2(Nf,)
times the characteristic function of 1 + f,, a set on which

x“'@la]' ™ =1L

Our result is then immediate.
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Corollary. If c(a) = x(a)||a||®, where X is a character with conductor f,
of order m > 0, then

p(c) = (ND,)*~V2(Nf)~27(x)
and (Nf)~Y27(x) has absolute value 1.

Proof. The first statement comes by taking quotients of the zeta func-
tions. The second comes from the general fact that for Re(c) = %, we
have |p(c)] = 1. We then merely set s = % above.

§5. Restricted direct products

Earlier, in Chapter VII, we studied the topology of restricted direct
products, and the special cases of adeles and ideles. Here we consider the
Haar measure and Pontrjagin duality.

We let {v} be any set of indices, and G, a locally compact commutative
group, with a given compact open subgroup H, for all but a finite number
of v. Let G be the restricted direct product of the G, with respect to the H,.

A quasi-character of G is then a continuous homomorphism into C*.

If ¢ is a quasi-character of G, then its restriction to G, is denoted by ¢,
and ¢, is trivial on H, for all but a finite number of » by continuity and the
fact that the multiplicative group of complex numbers contains no small
subgroup other than 1. Furthermore, we have the formula:

c(a) = I“I cy(av),

all but a finite number of the terms on the right being equal to 1.
Conversely, given a quasi-character ¢, of G, which is trivial on H, for
all but a finite number of v, we can define a quasi-character ¢ on G by this
formula.
We note that c is a character if and only if c, is a character for all v.
If G is the character group of G, and H* is the orthogonal complement
of a closed subgroup of G, i.e. the subgroup of characters which are trivial
on H, then we have in a natural way

G/H- ~ H, and (G/H)" =~ H-.

It is an easy matter to verify the following theorem in our special case of
restricted direct products.

Theorem 7. The restricted direct product of the groups G, relative to the
subgroups HY (which are compact by compaci-discrete duality) is naturally
isomorphic, topologically and algebraically, to the character group G of G.
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The isomorphism is of course given by the correspondence

x = []x.

Haar measure. Assume that we have chosen a Haar measure da, on
each G, which gives H, measure 1 for almost all v. We wish to define a
Haar measure on G for which, in some sense, da = J] da,. To do this,
we use once more our open subgroups Gg which are products of locally
compact groups, almost all of which are compact, and hence such that we
can take the product measure on Gs. There exists a unique Haar measure
on G inducing this product measure on each Gg (trivial verification),
which we denote by IJ da,.

Lemma. If f(a) ts a function on G, then
, [ f(a) da = limf f(a) da
G S Gg

if either (1) f(a) is measurable, f(a) = 0, tn which case oo is allowed as
value of the int.egrals; or (2) f(a) is in L1(G), tn which case the values of the
integrals are complexr numbers.

Proof. 1In either case, [f(a) da is the limit of the integral taken for
larger and larger compact subsets of G, and any compact is contained in
some G.

Theorem 8. Assume that for each v we are given a continuous function
f» € Li(Gy) such that f, = 1 on H, for almost all v. We define

f(a) =TI fula)
on G (actually a finite product). Then f is continuous. If, furthermore,
H /va(av)' da, = lim H /va(av)l da,
v S vES

is < o, then f(a) is tn L,(@), and

Lf(a) da = I:)I/Gvfu(av) da..

Proof. Immediate.

Fourier transforrf_t. We keep the notation as above, and let £ denote a
variable element of G. Let d#, be the measure of G, dual to da, in G,.
If f,(a,) is the characteristic function of H,, then its Fourier transform

Folks) = / Fo@0) Eo(@s) day
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is the measure of H, times the characteristic function of HL. Consequently,
from the inversion formula, we get

(fy, os) ([t =1

and the measure of HL is 1 for almost all ». We may thus put
at = J] ds..

Theorem 9. Let f,(a,) be in Li(G,), continuous, and assume f, is in
L(G,), i.e. assume that f, € Inv(G,). Assume also that f, is the character-
tstic function of H, for almost all v. Then the function

f(a) = va(av)

Proof. By Theorem 8, applied to the function f(a)c(a) = IT f.(av)c.(as)
we see that the Fourier transform of the product is the product of the
Fourier transforms. Since f, is in Inv(G,), it follows that f, is in Inv(G,)
for all v. For almost all v, f, is the characteristic function of H:. Hence
fisin Li(@) and thus f is in Inv(G).

s in Inv(@), and

Corollary. The measure dt = ] d¢, ¢s dual to I] da,.

§6. Global additive duality and
Riemann-Roch theorem

Let k be a number field (finite extension of the rationals Q). Its com-
pletion at the absolute value v is k,, and all objects discussed in the local
case in §1-§4 should have the index » or p in the p-adic case, e.g. o,, My,
@p, " ”v, Coy ete.

As mentioned above, the adele group of k is the locally compact group
equal to the restricted direct product of the k} with respect to the com-
pact subgroups o,, given at the non-archimedean absolute values. We let

2= (e, Zyynny)

denote a variable element of the adele group Ay = A. We define a con-
tinuous homomorphism

Mz) = 2 No(@0)
of A into the reals mod Z, and the duality of Theorem 7 applied to our
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present case, combined with the self-duality of the local theory, gives:

Theorem 10. The adele group s self-dual, under the pairing

<.’E, y) = H e2l’i)\,,(z,yv) — e2‘l’i)\(zy).
v

Our next goal is to prove that the additive group of k, embedded in A
on the diagonal:
a— (o, a,0,...)

is its own orthogonal complement. We frequently write k instead of k.

Theorem 11. The additive group k is its own orthogonal complement in
the self-duality of A.

Proof. We first prove that k is orthogonal to itself. This amounts to
proving that if z € k, then > \,(z) = 0. We can verify this at once if
k = Q is the field of rational numbers (using a partial fraction decom-
position of a rational number in terms of rational numbers having only
prime powers in their denominators). If k is finite over Q, and Tr, resp. Tr
denote the local trace resp. the global trace, then

Z )\v(x) = Z Z )‘w(Trv(x)) = Z )‘w(y))

w vlw

where y = 3 Tr,(x) = Tr(z), and w ranges over the absolute values

vlw
of Q. This reduces the statement to Q.

We have proved k* D k. But A/k compact implies k* discrete. Hence
k'/k is both discrete and compact, hence finite. Since k' is obviously a
vector space over k, we must have k* = k thereby concluding the proof
of the theorem.

Proposition 6. Let F,, be as in Theorem 3 of Chapter VII, §2. Then

with our choice of measure, F., has volume d)/%.

Proof. This is an easy determinant computation. Remember that at
complex v, our measure is twice Lebesgue measure.

Proposition 7. Let F be the subset of Ay equal to

II ouX Fu.
veSao

Then F has measure 1.

Proof. This follows from our choice of measures dzx,, which insure that
0, has measure (ND,) Y2 for v = v,.
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We are now ready to apply the duality of Theorem 11 to integration
theory.

The arguments which follow could be applied to any locally compact
commutative group and closed subgroup. To preserve the notation of the
applications, we give the proof in the context of a self-dual commutative
group A with a discrete closed subgroup k equal to its own orthogonal
complement. Then the integral over k is equal to the sum over k. Of
course, convergence in that case means absolute convergence. We also
assume that the measure on A is self-dual.

Poisson formula. Let f be continuous and itn L,(A). Assume that
2 @+ o)
a€k

1s untformly convergent for x in a compact subset of A, and that

2 f@)

a€k
s convergent. Then

2 fle) = 2 fla).
a€k a€k

Proof. We give a measure db on the factor group A/k which is such that
the formula

f,uk [k f(a+ b) dadb = [A f(a) da

holds, if da corresponds to summation over k, and da is the given measure
on A.

Let g(z) = [, f(z + @) da. We contend that g(a) = f(a) for a €k.
Indeed, denoting by (, ) the pairing of an element of a group and a char-
acter, and taking into account that

(A/k) =k+r=1k
we have:
68) = [, g(®)b, 6)db
Alk
- f /f(b+a)mdadb
Atk Je
= [ [fo+)b+a B dadb
Ak Jk
(because {a, 8) = 1 by assumption)

= [, 1@ a, 8) da
= f(®).
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Now the measure on A is self-dual. Hence the Fourier inversion can
be applied to g evaluated at 0. The assertion of the theorem follows at
once from the definition of §(0).

Classically, as in Chapter XIII, the Poisson formula is applied to the
case of the reals, and the discrete subgroup Z. We shall apply it to the
adeles.

In fact, we shall need to apply it in the adele case, to a multiplicative
translation of f.

Riemann-Roch theorem. If f(x) satisfies the conditions

(1) f(z) s continuous and in L;(A).
(2) X flalz + «)) is convergent for ideles a and adeles x uniformly for
a€k

these variables ranging over compact subsets of the idele and adele groups
respectively.

(3) X f(aa) is convergent for all ideles a.
ack

Then

1 a
ja 51(5) = Zreo

Proof. The function g(x) = f(azx) satisfies the conditions of the Poisson
formula, as we see using the relation

0 = 55 (2):

Our assertion is therefore immediate.

§7. Global functional equation

In the multiplicative theory, we take the ideles J = J as our restricted
direct product of the local multiplicative groups k¥ with respect to the
units U, and apply §5. The quasi-characters will be trivial for almost
all U,, i.e. are unramified for almost all ».

It will be convenient to write J as a direct product (topologically and
algebraically) by embedding the positive reals R* in it, namely, we map
an element ¢ of R on the idele

(N, LtV 1T,

having ¢!V as component at every archimedean v, and 1 at all others.
This is a norm preserving embedding, since

2. No=N (=[k:Q).

‘vESoo
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It is then clear that
J =~ Rt x J°,

i.e. every idele a can be written uniquely as a product
a=1tb

with t e Rt and b €J°, and this product decomposition is also topo-
logical. There is a unique measure on J° (denoted by d*b) such that we
have formally

d*a = d*b x % .

We make one restriction on the quasi-characters to be considered in the
sequel. We assume that they are trivial on k*. Then they can be considered
as quasi-characters on the idele classes C; = Jr/k*. Such characters will
also be called Hecke characters. Since we know that J2/k* = CQ is
compact, it follows that the restriction of a quasi-character to CP is a
character, and thus that we have a situation similar to the one in the local
archimedean theory. If cis a quasi-character trivial on Cg, then we must
have

c(@) = llal*

for some complex number s uniquely determined by ¢. If ¢ is any quasi-
character, then there is a unique real number ¢ such that |c(a)| = ||a]°,
and we call o the real part of ¢, Re(c). Given a character X on Cj, then
X(a)||a||® is a quasi-character, and conversely every quasi-character can be
so written (although X is not determined uniquely, only up to some [|a||*).
It will sometimes be convenient to normalize characters on C}, by pre-
scribing that they should take the value 1 on our embedded R* (the
embedding was canonical). This is clearly equivalent to stating that

2. Nuoo(x) = 0.

vESw

A quasi-character ¢ determines uniquely such a character X, so that the
formula c(a) = x(a)||a||® holds.

As in the local theory, we let é(a) = ||aljc(a)™! so that with the above
convention,

éa) = x"Y(a)l|all*~* = x(a)|lall .

We shall now supplement the construction preceding Theorem 6 of
Chapter VII, §3, by a measure computation.
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As before, we let vo be a fixed archimedean absolute value, and
St = S — vo.

As before, r = ry 4+ 13 — 1.

Let €;,..., € be units such that I(e;) generate the lattice of units.
These are called fundamental units. They are generators of the group
of units modulo the group of roots of unity.

The absolute value of the determinant

det(log || €] »)

taken with ¢=1,...,r and v in S, is the volume of a fundamental
parallelotope P in Euclidean r-space, up to a sign. Its absolute value is
called the regulator of k and is denoted by R = R;. We denote by
d = dy the absolute value of the diseriminant.

Proposition 8. Let the notation be as above, and | as in Theorem 6,
Chapter VII, §3. Then the measure of I~ 1(P) is

2"(27)"?
d}:l2
Proof. Let @ be the unit cube in r-space. Since ! is a homomorphism,
we have

measure of I”'(P) _ volume of P _ R
measure of [=1(Q) ~ volumeof @

Thus it suffices to compute the measure of I71(Q), and we leave it as an
exercise (easy, using the definitions of our multiplicative measure).

Proposition 9. If E is a fundamental domain for JO/k*, then its
measure s

o 2"@m)hE

wd}®

(notation as in Theorem 6 of Chapter VII, §3).
Proof. Trivial from Proposition 8.

We approach the end of our journey. To get global zeta functions, we
consider functions f on the adeles satisfying the following conditions:

Z1. f(z) and f(x) are continuous and in L (4), i.e. [ is in Inv(4).



[XIV, §7] GLOBAL FUNCTIONAL EQUATION 295

Z2. The sums Y. f(a(z + a)) and Zk f(a(z + a)) are both convergent,
a€k aE

absolutely and uniformly for ideles a and adeles x ranging over com-
pact subsets of the idele and adele groups respectively.

Z3. The functions f(a)||a||® and f(a)||a||® are in L,(J) for @ > 1.

Note that in view of Z1 and Z2, the Riemann-Roch theorem is valid
for functions of the above type. The purpose of Z3 is to enable us to define
zeta functions. With each such f we define, for quasi-characters ¢ with
Re(c) > 1 a zeta function

£(f,¢) = [f(a)e(a) d*a,
the integral being over the idele group. If c¢(a) = x(a)||a||®, then
Ufie) = Lf0) = [F@x(@lall* d*a.

(We always assume quasi-characters and characters are trivial on k*.)
Once the character X is fixed, our zeta function becomes a function of the
parameter s, and from our assumption Z3 it follows that it is holomorphic
in the domain Re(s) > 1. We can say invariantly that it is holomorphic
in the domain of quasi-characters with Re(c) > 1.

Theorem 12. By analytic continuation we may extend the definition of
any zeta function {(f, c) to the domain of all quasi-characters of J/k*. The
extended function is single valued and holomorphic, except at c(a) = 1 and
c(a) = ||a|l, where it has simple poles with residues —kf(0) and +-«f(0)
respectively, where k = volume of multiplicative fundamental domain of
J? mod k*. We have the functional equation

t(f, o) = ¢(f, 8,

where é(a) = ||aljc™(a).
Proof. We have

£, = [, F@c@ dtat [ f(@)e(a)d*a.

laliz1

The second integral obviously converges for Re(c) equal to any real num-
ber, because it converges for Re(c) > o for some oy, and hence con-
verges all the better for Re(c) < oy. We shall now transform the first
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integral and in fact we shall prove:

Theorem 13. We have
!'(f, c) =
f(@)é(a) d*a + Ox [_"_19_2_ - @] )

s 1 s

/uaugl f(a)e(a) d*a +

llallz1

where 8, is 1 or 0 according as the character X induced by ¢ on J° is trivial
or not in which case s s the unique complex number such that

c(a) = |afl*.
The two integrals are convergent for all ¢, uniformly in every strip
oo = Re(c) < 7.

The uniformity of convergence of the integrals in a given strip is clear
from the above remarks. Furthermore, let us replace (f,c) by (£, é) in
the expression on the right. We take into account that

£(0) = f(—0) = 7(0),

and that f(a) = f(—a). Then changing variables in the second integral,
we see that ¢(—1) will come out as a factor in front of the integral. But
we have assumed that c is trivial on k*. Hence the expression on the right
is invariant under the substitution sending (f, ¢) into (f, é), and thus the
functional equation follows.

Let us now complete our proofs by transforming the integral taken over
||a|| < 1. We can write the ideles as a product:

J=J"%X Rt
For any fixed {, we have
/J.,, FBe) b+ 10) | o) av
=2 / f(tb)c(th) d*b + £(0) f c(tb) d*b.
aEk* J aE E

Using the invariance of measure under multiplicative translations, and the
fact that c(a) = 1 for @ € k*, we see that this expression is equal to

P /E f(atb)e(th) d*b + £(0) L o(th) d*b.
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By Property Z2, which allows us to interchange sum and integral, this
is equal to

f > f(atb)c(th) d*b = / > 7 (—‘i‘) L c)d*  (Riemann Roch).
E &k E ac%” \tb/ ||tb]|
If we had started with the expression

[ Ftb)é(t1b) d*b + £(0) / é(t™") d*b,

Jo E

made the transformation sending b to b~! which preserves the measure,
and then applied the same arguments as above, we would end up with the
same expression that we found above; in other words, we find the equality

[ o T@b)e(t) @%b + 1) [ c(tb) d*b
- f, L 0)EE ) d*b + £(0) [E é(t™'b) d*b.

Now we observe that c(tb) = ¢(t)c(b) = t°c(b), whence

/ o(th) d*b — {"" if c(a) = [l
E

0 if ¢ is non-trivial on J°,

always using the fact that the integral over a compact group of a non-
trivial character is 0, and that the integral of the trivial character is the
measure of the group.

If we integrate our expressions from { = 0 to { = 1, then on the right-
hand side of our equality we can replace t~! by ¢ and the limits of inte-
gration from 1 to oo. Theorem 13 is now clear, and this concludes the
proof.

§8. Global computations

The purpose of this section is to derive explicitly certain convenient
global formulas used in the applications, using a particular weight fune-
tion g, closely related to fy. These will be products of local functions,
and the proof that the product converges for ¢ > 1 will be given in the
next chapter. Although it is simple (and classical), we must emphasize
that this proof is the final step in showing that Theorem 12 is not empty,
and applies to the classical zeta functions or L-functions.

Proposition 10. If g is a translation of f, i.e. g(z) = f(bx), then
§) = b~ fw/b)  and  £(g,¢) = c®TE(S, o).
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Proof. Directly from the definitions. The assertion is valid locally or
globally, i.e. on k¥ or Ji. In the local case, || | = || ||, of course, and b
is either in k¥ or an idele.

To fix some notation, we put for every character X,

D, = Df,  dy = ND,.

If X = X, then dg = dy, is simply the absolute value of the discriminant
of the number field k. We use similar conventions for the local case, putting
an index p on our symbols.

If v is archimedean, N = [k : Q], we let

Gy o(@) = Froo(dN 2N 2) (N ) me001/2,

where f, ,, is the function of §4.
If v is p-adic, we let

1
Ix.o(Z) = PR Tx.o(2),

it being understood as usual, that if X is unramified, then f,,, = 0, and
1+ fy.» = 0, also, so that its measure is d;’” 2 We let

gx(x) = H gx.v(xv)-

In particular, if X = X,, then for v archimedean,

‘ go,»(x) = fo,v(dl: Isz)
and for v p-adie,
90.5(2) = dy'*fo,(2),
where d, = ND,.

We observe that g, has been obtained from f, by a translation at the
archimedean v, and multiplication by constant factors, designed to cancel
certain local extraneous terms, occurring both in the zeta function of f,
and f,.

To begin with, we observe a symmetry at the origin.

Proposition 11. Let X = X be the trivial character. Then go and §o
are = 0, and

90(0) = 9o(0) = di'*(2m)™".
Proof. Immediate from the definitions.

Proposition 12. Let b be the idele having components b, = di/~ at

archimedean v, and b, = 7', where v, = ord, ©. Then ||b]| = 1, and

do(z) = go(b'z).
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Proof. This is an easy consequence of Proposition 10, together with
the explicit determination of g¢ in terms of fj.

If X is a character of Ci, and p is unramified for X, then the value of x
on the idele having a prime 7 at the p-component and 1 for all other com-
ponents is independent of the choice of such prime element 7, and will
be denoted by x(p). We then define

1
Lis,x) = [] —=——
(s, %) »g)(l_x(p)

Npe

the product being taken over all p which are unramified for X, letting S,
be the set of p which are ramified for x.
We put

A(s, x) = @2 V242" T T(s./2)L(s, X),
UESQ
where we recall that
8y = $,(X) = N,,(S + i‘Pv(X)) + lmv(x)l

Theorem 14. Assume that X is normalized so that

Z N v‘Pv(x) = 0.

vESgo

Then: )
$gx % 8) = A(s, %) II 700 I x(®7hH27*,
PESx PESx

where ® 1s the sum of ¢,(X) over the complex v. We also have
{(QXy i) 1-— S) = A(l - S, i)(fo) 1/22‘M 2“’)

where M = Y |m,(X)|, and these two expressions are equal.
vES

Proof. Just put together the local results of the computations of §4,
together with Proposition 10, and be careful about all the possible can-
cellations which take place.

If we had divided g, by (Nf,)!/2, we see that A(s,X) and the resulting
zeta function would have differed by a constant of absolute value 1, and
similarly for A(1 — s, X).

Corollary 1. We have the functional equation

WX)A(s, xX) = Al — s, %),
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where W(X) is a constant of absolute value 1, given by
W) = 4~ MNj )2 TT 700 TI x@®ph).
PESx PESx

Proof. From the local computations of §4, we know that each expres-
sion 7,(x) has absolute value (Nf,.;)/? which is just enough to cancel out
in the equality

g‘(gxy X, S) = i'(gx, X1 — S).

Corollary 2. For a fized character X, put A(s) = A(s, X). Then
A(3) = Al — s)u(x),
where u(X) has absolute value 1.
Proof. A trivial computation, using the relation
A(3,X) = A(s, X).
Corollary 3. Let Ao(s) = A(s,Xq). Then

Ao(s) = (go, Xo, 8) = (272 eV dy)*/ 2T (s/2)T"2(s) {4 (s)
and
Ao(s) = Ao(1 — ).
Proposition 13. Let
‘ __2"'(2w)"*hR
ST

be the volume of the fundamental domain for J? mod k*. Then the residue
of £(g0, ) = (g0, X0, 8) at s = 11s

)\=2‘hR
w

and the residue of ¢r(s) at 1 is k iself.

Proof. The residue for ¢(go, Xo, s) comes from the general Theorem 12
and that for the zeta function comes from s = 1 in Corollary 3 above
together with the values T'(3) = 72, and I'(1) = 1.

Theorem 15. We have an integral expression

£(00,) = [, o, Go@ (el + =) %0 2



[XIV, §8] GLOBAL COMPUTATIONS 301

Proof. If we write down the integral expression of Theorem 13, §7 and
use Proposition 10 together with the fact that ||b]] = 1 and that the
multiplicative measure is invariant under multiplicative translation, we
get what we want.

This formula is the analogue of the formula proved in Chapter XIII,
§3. Note that the integral terms are = 0.






CHAPTER XV

Density of Primes and Tauberian
Theorem

We shall give a proof of Ikehara’s Tauberian theorem (cf. also Widder’s
book on Laplace Transforms), and prove the density theorem of primes in
generalized arithmetic progressions determined by Hecke characters. In
addition to giving a density for primes in given ideal classes, it also gives
densities for primes distributed suitably in Euclidean N-space.

The reader will note that the Tauberian theorem has as a corollary the
asymptotic behavior of the coefficients of a Dirichlet series having a
simple pole at, say, an integer d > 1 and holomorphic otherwise for
Re(o) = d. If the residue is, say 1, then by translation we are brought
to evaluating sums of type

> na,,

n<z

and summing or integrating by parts shows that if Y a, ~ z, then
n<z '

3 n%a, ~ 2%t!/(d + 1). This can then be applied to the zeta function
of a variety defined over the ring of algebraic integers of a number field.
Reducing mod p for almost all p, and applying the estimates of Lang-Weil,
“Number of points of varieties in finite fields,” Am. J. of Math. (1954) pp.
819-827, one sees that the zeta function has an analytic behavior on
Re(o) = d such that we can apply the Tauberian theorem if d is the di-
mension of the variety under consideration.

§1. The Dirichlet integral

Let ¢(z) be a real valued function of bounded variation in any finite
subinterval of 0 £ 2 < . The function

)] f(s) = [0 e do(x) (s = o + it complex)

contains as special case the Dirichlet series if ¢(z) is taken to be a step
function. We shall look into this later. For now, we deal with the integral.

303
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Suppose that for a special value so the function
v _
9(y) = / e~ do(x)
0

isboundedin0 = y < 0. If 0 £ y; < y2, we have

[ e do@) = [ e 0% 0" dy(a)

n Y1
= ¢~ %% (1) qu + (s — sq) / ve e~ 0% (1) dx.
1 v

ls — so
g —0g
the left side is uniformly small for large y;. Therefore (1) will converge
for these s-values.

Since the assumption about g(y) is satisfied if s is taken to be a point
where (1) converges, it follows that (1) has a certain right half-plane as
plane of convergence and that this convergence is uniform in any compact
subset of the interior of the half-plane of convergence. Since each
f’{) e % dp(x) is analytic, it follows that (1) is analytic in the interior of
our half-plane.

Assume now that ¢(x) = 0, that (1) converges for some real so > 0.
Integrating d(e™**¢(x)), we get

We see that for Re(s — sg) = € > 0 and bounded values of

@ [fede@) = —ol0) + e o®) + 5[ ¢l dr
0 0
= —¢(0) + e~ 008y (1)

£ s .
+s /0 e~ T0%,—%0% (1) dx.

If we put s = sg in the first line of (2), we see that the left-hand side is
bounded, and the last two terms on the right are = 0. Hence e%fp(£)
is bounded in £. It follows that for Re(s) > sg we have

® 18) = —0(0) + [ " (@) da

0

(including of course the existence of the integral on the right side).

§2. Ikehara’s Tauberian theorem

Throughout this section, we suppose that ¢(x) is 2 monotone increasing
function, with ¢(x) = O forz £ 0. Welet

H(z) = e "o(x),
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and the monotonicity of ¢ means for H(z) that

H(zg) = H(zy)e™ ™2,  forxzp 2 ;.

For a given N > 0, consider the class of all monotonically increasing
functions ¢(x) with ¢(x) = 0 for z < 0 that have the following properties:

(1) The integral for f(s) converges for Re(s) > 1.
(2) Fore > 0,s =1+ €+ i, put

1 -
s— 1

he(t) = f(s) —

Our property states that h(f) = lim h(f) exists uniformly in ¢ for

«—0

[t < 2x. (Whence A(f) is continuous for |f| < 2).)

Tauberian theorem. There are two functions Pi(\) and Py(\) of \
alone such that for any ¢ in our class, we have

P;(\) 2 lim H(y) 2 lim H(y) 2 P2(A) > 0

Y0 Yy—o

and such that

Ao

Should one know therefore that ¢(x) belongs to our class for all \ then

lim e "p(z) = 1.

—w

This is the formula used in our applications.

We shall now prove the Tauberian theorem. We define 7 to be the
integral

e in?
™= / B ldv >0
U
(which gives the customary value).

Lemma. Under the previous hypotheses, we have

Ay . 2
lim H( —2>S—‘;‘T’-’dv=1r.

y—o J —x A
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Proof. With s = 1 + € -+ 1t, we have using (3):
€ . 1
PO—1 (59 - A1)

s—1

=1
T s

—(s—1)x 1
= / e H(z) dz — T

() —1

= /o (H(z) — 1)e™"""* dz,

1 1 Thus

taking into account the integral / eV 4y = s
R —

£
BO =1 jim | (HE@) — Demt T de
) to0 J O

uniformly in |t] £ 2\ so long as € is fixed.

Our next goal is to get formula (6) below. We multiply our last expres-
sion by the function ¢*¥(1 — |t|/2\) and integrate over ¢ from —2X\ to 2\.
On the right we can interchange the integral and the limit. Putting

F(t) = (1 — %) h() — 1

s
we get:

2\
/ eVF (D) dt
—2A

“ AV
4 ity _ _ —ez—ilz
= ll_xg ot (1 2)\) []; (H(z) — e dx] dt.

The two integrations (which are over finite intervals) can be interchanged,
and one obtains:

2\
@ /_n e'VF (1) dt

= fo ) (H(z) — 1)e™* [ [_2; <1 — %) e“”‘”‘dt] dz.

The inner integral on the right is elementary. We have

22 It! 22 ‘tl
— ) jity—=)t g _ i _
[_n (1 2>\) ¢ dt = 2 /; (1 2)\> cos((y — x)i) dt,
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which after a change of variables and integration by parts is equal to

2sin® (\(y — 7))
Ay — 2)2

Thus (4) becomes

2 © . B
(5) f \ e"uF,(t) dt = 2/“) (H(x) _ l)e—ex %(:y_;)?x)_)_ dz.

° sin? (\(y — z))
The integral e
g ./o My — z)?

obtained by putting € = 0 exists. Adding it to both sides of (5), we get:

dx exists since the similar integral

22 ® .2
ity —ez SID (k(y - :t))
(6) /_2)‘ e"'F (t) dt + 2/0 =97 d
o[ —e sin*(My — 7))
= 2/(; H(:c)e ——)\(y__——x)T dz.

We now take the limit as € — 0. What happens to the left side as €e — 0?
The first part converges to
2\
/ e'¥F(t) dt,
—2)

where F(f) is the continuous function (1 — I%‘) ht) — 1

8

because of the

uniformity of A(t) — h(t).
The second integral has a tail end

B —ezSINZ ANy — z) f N sin? Ay — z)
-/e ¢ My — 2)2 iz = ¢ My — 2)? o

which is small for large £, uniformly in €. But as e — 0,

¢ 2 E L g
—ez SIN“ Ny — 1) / sin® A(y — x)
/oe -2 T Ag—ar =

Hence the second integral has the limit

© a2 _ Moo
fsm Ay — ) dx=/ sin“v .

V] x(y - x)2 —c0 v2
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What about the right side of (6)? We have just proved that it has a limit
as € — 0. The integrand is positive and increasing as ¢ — 0. Therefore

—ez sin® My — 2)
/H() )\(y PP dx

remains below this limit for all e > 0. Hence

sin? sin® Ny — )
/H() R s

is also below this limit. We see that

/ H(z )sm )\(y d:c

exists. Its tail end is small and greater than the tail end of the right side
of (6). It follows that the right side has the limit

/ H) sn)l‘(y)\(y x)zx) de = /_)‘:H(y _ %> si::: 2 i

Hence finally:

2\ ) Ay Ay .2
) f SR dt + 2 / S"‘ Ydv =2 f H <1 A N
—2) —» © A v2

What happens to (7) asy — o ? The first integral on the left is the Fourier
transform of the continuous function F(t) and goes to 0 by the Riemann-
Lebesgue Lemma. The second integral on the left goes to m, and this
proves our Lemma.

We shall now apply our Lemma. Observe that if » > \y, then
v .
H ( — i) = 0 so that we can also write

te v\ sin? v
11[1_1}: -, H(y—i>—-vz—dv=7r

The proof from now on is formal. For both inequalities, the idea is to
consider the integral between finite limits, depending on .
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Note that the integrand is = 0. Cutting down the domain of integration

we get
-— x v\ sin? v
3 — =" <
ilrg _ H (y )\) 22 dv £ .

Using the monotonicity of ¢ and the corresponding property of H, we get
in the interval [—v/X, V/A]

n(o=3)z (-39

Hence

— 1 oy ” sin® v
limH( —————)e_2/ )‘/ ——dv =
Yo Y VA —vx 2

Since A is fixed, y can be replaced by y + 1/4/A. Hence

P me?! Vi
lim H(y) = = P,()),
Yy—o \/X <2
st v
/ 5— v
—Vx v

and we see that lim P;(\) = 1, thereby proving the first half of the
A—s0

Tauberian theorem.
From this half, it follows that H(y) is bounded. Therefore,

@ . 2 LI 2
v\ sin® v sin“ v
-2 <
,/;@H (y A) 22 dv C/\I; 2 dv

goes to 0 as y — 0. Hence we may write also

J in2
(8) lim H( — 3) BV = .

y—o J —» A v?

(We take v/y as a limit of integration so that y — v/y — oo with y.)
If y is large enough, then H(y) < 2P;(\). Thus H (y — %) in (8) will
be < 2P;(\) if y is large enough.
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We now put

b= %Pl(x) +

and cut down the integration domain in (8) for large y from —b to b.
This neglects

—b . 9 -b
v\ sin“ v 1
f ] H( _ X) 20 2P| Sav = 2P0

—00

g v\ sin? » Y 1
_ ) < —_
/; H(y )\) 2 dv = 2P1()\)/; o2 dv = 2P;(\)/b.

Therefore

and

b . 2
4P1()‘)+lm bH(y—E)S‘—;‘z—”dvz .

yom )

Again by monotonicity, in this interval,
H Yy + P_ e2b[ A > H _ 2 .
A = A

b .,
4Pl()‘)—l—l H y-{——g)ezb”‘/bs———lszvdvg .

y—o

We get

b
Replacing y by y — X and the integral by 7 we get

lim H(y) 2 > (1 - gi#) = Py(M).

Yy—o

It is clear that lim P,(A\) = 1, and this proves the Tauberian theorem.

A—o

§3. Tauberian theorem for Dirichlet series
Let

f(s) — E an/ns — Eane——alogn
n=1
be a function defined by a Dirichlet series, which converges for Re(s) > 1,
has real a, = 0, and such that f is regular on the line Re(s) = 1 with
exception of a pole of first order at s = 1 with residue 1.
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Let ¢(x) be the step function which jumps at the places z = logn by
the amount a, and is 0 at 0. Then

ox) = 2. an

logn<z

Denoting by ®(z) the function
d(x) = D, an,

n<x
we have ¢(z) = ®(¢*) or &(x) = ¢(log x). Our function f(s) satisfies the
condition of the Tauberian theorem for all A, and hence
lim &(z)/z =1 or P(2) ~ z.

We shall now see formally how to extend this to a wider class of
Dirichlet series.

Theorem 1. Let f(s) be as above. Let g(s) = > bn,/n® be a Dirichlet
sertes with complex coefficients by, and assume that there is a number C
such that |b,] < Can,. Assume that the series for g(s) converges for
Re(s) > 1, and that g is regular on Re(s) = 1 with the possible exception
of a pole of first order and residue c at s = 1. Let ¥(x) = > bn. Then
¥(z) ~ az. n<z

Proof. We naturally set « = 0 if there is no pole at s = 0.

Suppose the b, are real. Then the function (Cf + ¢)/(C + «) for large
enough constant C satisfies the same conditions as f(s). From this our
assertion is immediate.

In case the b, are complex, we write

g*(s) = X ba/n"
so that g*(5) = g(s), and ‘
i (g —g*
g=3%@g+g9 +3 ki)
i
Then one sees immediately that our theorem follows for g(s).

For the prime number theorem, we need another asymptotic behavior,
which we formulate in a proposition.

Proposition 1. Letb, (n = 2,3, ...) be complex numbers such that

¥(N) = fj b, = aN + o(N)

n=2
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for some complex a. Then:

N
b _ N N\
(V) = ,,Z=:210gn— alogN+o(logN>

Proof. We have b, = ¥(n) — ¥(n — 1) for n = 2, putting ¥(1) = 0.
Hence

X ¥ —v¥n—1) E¥n) &' ¥
M= = Tgn = 2lgn > g+ D

R CHIRSS (1 1 )
_logN+ 2, ¥(n) logn  logln+1))

n=2

It will therefore suffice to show that the sum is o ( N ) - To estimate

log N
this sum, we can replace ¥(n) by Cn for some constant C. Furthermore,
lo (1 + 1
1 1 & n 1/n

logn log(n + 1) = log(n) log(n + 1) < (log n)2

Thus it suffices to show

N-—-1
1 N
2 QogmE = °(1ogN>'

As for this, the sum can be split into two sums, with 2 £ n < NY2 and
NY%2 < n < N. Thus our sum is bounded by

N1/2 N
(og2)2 T Tlog N12);

. . N che
which is obviously o (log N) . Our proposition is proved.

§4. Non-vanishing of the L-series

We let X be a Hecke character. If p is unramified for X, then we recall
that x(p) is the value x(7) for any prime element 7 (viewed as idele with
p-component equal to 7 and other components equal to 1). If p is ramified
for x, then we let X(p) = 0. This is the same thing we have already en-
countered for instance in Chapter XII, §1, for characters of finite period.
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We extend X to ideals a by multiplicativity, so that if
a= II pvb)
)

then
x(a) = JTx()™.

With every Hecke character X, we associate its L-series

_ X(a) _ 1
Lon=2yp=ll—%g

Np*

The character taking the value 1 will be called the trivial character X,.
Its L-series is then the zeta function {i(s) of the field k. We have the usual
logarithmic derivative

d m —ms
75 log L(s, x) = 2 (log Np)x(»™)Np
»m

with the sum taken over all primes p and m = 1. The sum converges
absolutely and uniformly for Re(s) = 1 4 5. As with characters of finite
period, we see that the contribution to a pole at 1 (if it exists at all) is all
due to the sum taken only for m = 1.

Theorem 2. Let x be a Hecke character, X # Xo. Then
L(1,x) # 0.

Proof. Assume that L(1,x) = 0. We have for sreal > 1:

L(s, X) = exp (Z M) ,

».m mNp™

where exp(z) = ¢*. Consider the function

£(s) = L3(s, Xo)L*(s, X)L(s, X2) = exp (,,Z 3+ 4x$’1'3p:; xz(n"‘)) .

Then

1f(s)] = exp[z 3 + 4 cos 0: coS 20] ,
».m mNp

where 6 = arg x(p™). Since 3+ 4 cos 8§ + cos 20 = 0, we see that
|f(s)] = 1 for Re(s) > 1. Assume that xZ 3 Xo. Then if L(1,x) = 0,



314 DENSITY OF PRIMES AND TAUBERIAN THEOREM XV, §4]

our function f(s) must have a zero at s = 1. Its series represents the
function for Re(s) > 1, and since f is in particular continuous at s = 1,
it follows that f(s) must tend to 0 as s tends to 1. Contradiction.

If x2 = x,, consider

L(s, Xo)L(s, X) = exp (Z 1+x_(”"')) .

»m  mNp™

The term inside exp is a Dirichlet series with coefficients = 0, which
dominates the series

_2
».m 2mNp 2™

which diverges for s = 4 (being the log of the zeta function). This con-
tradicts the following Lemma on Dirichlet series with coefficients = 0.

Lemma 1. Let f(s) = > a,n"* be a function defined by a Dirichlet series
with a, real = 0, such that the series converges for Re(s) > oo. Suppose
that f(s) s holomorphic at oo. Then the series converges for Re(s) > a9 — &
for some § > 0 (and hence represents f(s) in this bigger half-plane).

Proof. Let & be small > 0. We may assume ¢y = 0 (after a transla-
tion). We have for0 <o < 3,

— —(0—8)log(n) —dlog(n)
fe) = D ane e .
n

We replace the exponents e by the series > 2*/v!. Since all coefficients
are positive we can interchange > > and we get the power series expan-

n 1 4
sion for f in a neighborhood of 3§, which converges for ¢ = —24 if we took
5 small enough. We can then unwind the power series back into the
Dirichlet series, in the interval —26 < ¢ < §, and this shows that
the Dirichlet series converges for Re(s) = —3.

Theorem 3. Let X be a Hecke character which is non-trivial on J°. Then
L(s, X) has no zero on the line s = 1 + 1.

Proof. This is essentially a corollary of Theorem 2, if we replace s by
s + ¢, and X by the character

a — x(a)al 7%
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§5. Densities

For each number z > 0 we denote by P, the set of primes such that
Np =< z, and by A, the set of integral ideals a such that Na < z. If S
is a finite set of primes, we denote by A5 those integral ideals a which are
prime to S and such that Na < z, and similarly for PS.

As a special case of the Tauberian theorem, we get:

Theorem 4. Let K be the residue of the zeta function {i(s) at 1. Let n(AS)
and n(P,) be the number of elements in AS and P, respectively. Then these
two numbers are asymptotic to

n(AS) ~ Bz
n(P;) ~ z/log z,
where 8 = I (1 — 1/Np).

PES

Indeed, the residue at 1 of the function obtained from the zeta function
{k(s) by omitting the factors involving the primes in S has residue of,
whence the first assertion. As for the second, we apply the Tauberian
theorem to the logarithmic derivative of the zeta function, of type

log Np
m Npms

We split this sum as usual into two sums, one over all p, and m = 1, and
the other sum with m > 1. This second sum gives no contribution to the
residue at 1, and the first sum is

log Np
» Np°

This is a Dirichlet series > b,/n®, where b, = 0 if n is not a prime power.
For each integer n = 2, let u(n) be the number of p such that Np = n.
Then b, = u(n) logn. The residue of the logarithmic derivative of {x(s)
at s = 1 is equal to 1. By Theorem 1, we get

an~x.

n<z
We now apply Proposition 1 to conclude the proof.

We now study the question of equidistribution of primes.
Let G be a compact commutative group. Let F = U F, be a set which
is the union of finite subsets F,, withr =1, 2, ... and F, C F;;,. Let
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\: F — G be a map. We shall say that F is A-equidistributed in G if for
every character X of G we have

. 1
}1_12 D eeZ;,X o N§) = /;;x.
Recall the trivial fact that fg X = 1if X = X¢ and 0 if X # X,.

We take for granted the fact that any continuous function on a compact
group can be uniformly approximated by linear combinations of characters
with complex coefficients.

Let us call a real function f on G Riemann integrable if there exist
sequences of continuous real functions {g»}, {ks} such that

gnéféhn

and g¢,, h, converge to f monotonically increasing and decreasing respec-
tively, and such that

/G (gn — hn)

tends to 0 as n — oo.
A complex function is called integrable if both its real and imaginary
parts are Riemann integrable.
If F is M-equidistributed on G and if f is any integrable function on G,
then
. 1
lim 7 &) MO = [F

€F,

This follows at once by approximating f by continuous functions as above,
and then approximating each continuous function uniformly by linear
combinations of characters (use three epsilons). In practice, f is taken to
be the characteristic function of suitable subsets of G. For instance, if
@ is finite, we take f to be the characteristic function of an element of G,
so that [¢f = 1/2(G).

All desired theorems of equidistribution now follow from the following
result.

Theorem 5. Let X be a Hecke character which is non-trivial on J°, and
S a finite set containing those primes where X ramifies. Then

1
= > x(@) =0

o n(A4r) wcal

2 x(p) = 0.
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Proof. This is immediate, since we know that the L-series is holomorphic
at 1, and does not vanish on the line 1 + 7¢. Thus the residue of both the
L-series and its logarithmic derivative is 0, whence our results follow
from Theorem 1, Proposition 1, Theorem 3, and the Tauberian theorem.

Let J = J} be the ideles of k. Let S be a finite set of primes containing
the archimedean primes, and denote by J*° the subgroup of J consisting
of those ideles having components which are units at the primes outside S,
and 1 for the primes in S.

Thus
JS=1x---x1x I U,
PES

Care should be exercised to avoid confusing this with Jg, which con-
sists of the ideles having arbitrary components in S, and units outside
S. By continuity, any character of the idele classes will vanish on some
J5 and on the multiplicative group k* of k embedded in J. If G is a
compact group, and \:J/k*JS — G a continuous homomorphism, then
for any character X of G, the composite function X o X is a character of the
idele classes, i.e. a Hecke character. The set of primes PS not in S can be
viewed as embedded in J/k*J 5, as follows. Let 7 be an element of order
1 at aprimep € S. Then 7 is viewed as the idele having 7 as p-component,
and 1 as component for all other primes. Modulo k*J¥ the coset of T
does not depend on the choice of such element, and thus the map sending
p into this coset gives our embedding of PS into J/k*JS. (We could
also embed p on the idele #~!. This is in fact what we shall do in the
. subsequent examples, to fit the classical description relative to the archi-
medean primes.)

Let o: Jx — G be a continuous homomorphism such that

O'(Jl?) = G:

and whose kernel contains k*. If ¢ is a non-trivial character of G, then
X = Y o0 is non-trivial on J2, and hence we can apply our previous results,
especially Theorem 3, and the Tauberian theorem, combined with the
preceding discussion. Thus we obtain:

Theorem 6. Let P be the set of primes. Let 7: P — Jy, be the following
map. For each p, select a prime element , in ky; and let 7(p) be the idele
having component 1 at all v except v,, at which it has component m,. We
view P as filtered by the sets P, consisting of those p such that Np < r. Let
G be a compact commutative group, and let o: Jr — G be a continuous
homomorphism such that 6(J?) = G, and whose kernel contains k*. Let
A= ago71. Then P is \-equidistributed in G.
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Ezxample 1. Let H be an open subgroup of J containing k*, i.e. one of
those subgroups which are class groups to class fields, and let

x:J —J/H

be the canonical homomorphism. Then we get the equidistribution of primes
in our generalized ideal classes, which according to the Artin map of class
field theory, is the same as the equidistribution of primes having elements
of the Galois group as Artin symbols in the corresponding class field.

Ezxample 2.° Take k = Q(7), the Gaussian field. Let S consist of the
archimedean absolute value. We have

J/R*TS = kX/(£1, £1),

- where k¥ is the multiplicative group of complex numbers. We may then
consider the ideals as points in the Gauss plane, in the first quadrant, and
get equidistribution of ideals and primes in sectors, taking for A the radial
projection on the unit circle.

Ezxample 3. (Suggested by Serre.) Let k be a number field of class num-
ber 1, so that
J = k*Jg,

where S is the set of archimedean absolute values. Let U be the group
of units of o, viewed as a subgroup of

Kt = II &t

vES

(i.e. embedded on the diagonal). We have an injection
kY — J = k*Js

if we associate with each element of k& the idele having the same com-
ponents in S, and component 1 outside S. We then obtain a canonical
isomorphism

kX/U = J/k*J5.

Let o: k%/U — circle be a continuous homomorphism whose restriction to
the subgroup of k% consisting of all elements of norm 1 is surjective. Then
Theorem 6 applies to this case, and one gets the equidistribution of a{p),
where a(p) = o(7) for any generator m of p.
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In particular, if k is a real quadratic field of class number 1, we may take
an embedding k¥ — R of k into one of its (real) completions, giving rise
to an absolute value denoted by | |, and k% = R* X R*. We let

o(a, b) = laf**/1o5

where € is a fundamental unit, and we obtain the equidistribution of the
log 7 (mod log €).






CHAPTER XVI

The Brauer-Siegel Theorem

Using the integrals expressing the zeta function, one can give certain
estimates concerning its residue in order to derive asymptotic results
relating the class number, regulator, and discriminant of a number field,
and notably the following.

If k ranges over a sequence of number fields Galots over Q, of degree N and
absolute value of the discriminant d, such that N/log d tends to 0, then we
have

log(hR) ~ log dY/2.

One may of course ask whether it is possible to lift the restriction of
normality, and the condition that N/log d tends to 0. With the present
approach, these questions involve Artin’s conjecture on the non-abelian
L-series and the Riemann hypothesis (as will be clear in the proof). The
existence of infinite unramified extensions proved by Golod-Shafarevic
shows that the assumption N/logd — 0 is necessary. Indeed, if k is a
number field admitting an infinite tower of unramified extensions K, then
Ng/log dx is constant.

We observe that the discriminant of the field k = Q(¢), where ¢ is a
p-th root of unity (p a prime), is di = p?~2 and so our statement applies
to such fields. Similarly for towers of p”-th roots of unity.

The study of the behavior of N/logd is thus of considerable interest.
We shall use the essentially elementary fact that for all number fields
with

N>1 (iek#Q)

the number N/log d is bounded. This follows at once from Minkowski’s
theorem that in every ideal class there exists an integral ideal a such that

Na < C,d"2,

where C, is the Minkowski constant. Taking the N-th root, a simple
computation, using the fact that 1 < Na, shows that there is an absolute
constant C such that N/logd < C.

321
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§1. An upper estimate for the residue

Lemma 1. There exists an absolute constant ¢, such that the tnequality

k(k) < YA+ )at?* (N =[k:Q)
holds for all number fields k and all « = 1.

Proof. According to Chapter XIV, Theorem 14, Corollary 3 and
Theorem 15 together with the fact that the integrals expressing the zeta
function are = 0 for real s, we get for s > 1:

di’2m) .

ey (5) ron 2« g

If we put s = 1 4+ o™}, then the gamma factors are uniformly bounded.
We have obvious contributions of type ¢¥ and di’2*. From the product
expansion for the zeta function we have the inequalities

1 1\¥ N
G ll1+=) =S¢\l +=) =0+
o 24
The lemma follows at once.
Lemma 2. There exists a constant co such that for k # Q,
log(hR)/log(d"?) = c,.

If k ranges over a sequence of fields such that N /log d tends to O, then for
this sequence

. log hR 1

lim sup [(W - 1) N] =0

Proof. We use the elementary estimate that the number of roots of
unity w in a number field k is < csN? for some absolute constant cs.
(Use the fact that the field of n-th roots of unity over Q has degree ¢(n),
together with an obvious estimate of ¢(n), using o(p”) = (p — 1)p"~}
and the multiplicativity.)

From Lemma 1, and the value for «, we get

logdz 1= log d1/2 log(c:(1 + o)) + ST Wlog ca.

Putting o = 1 proves the first assertion. Fixing «, and taking our sequence
of fields shows that for each « large, and all but a finite number of fields
in our sequence, the difference on the left is < a~! 4 € with arbitrarily
small e. This proves our assertion.
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§2. A lower bound for the residue

IIA
(=

Lemma 3. Let s be real, 0 < sq < 1, and assume that £(gq, So)
(or what s the same thing, that {x(sq) < 0). Then

k(k) Z so(1 — SO)Z_Ne_“Nd}:o—l)m.

Proof. By Theorem 15 of Chapter XIV, §8, we have

-—’f—g_o_(o—)_ f 80 J*
Z |ty Jo@llal™ d*a.

so(l — s0) =

We shrink the domain of integration to a domain P = J]P,, where P, is
the set of units U, for v non-archimedean, and for » archimedean, P, is
the domain

1= |la,d™ V2N, < 2.

This lowers the value of the integral, and the integral over P is the product
of the local integrals, which we now compute.

For » p-adic, we know that go,, = dj'%fg., and hence §o,, = di'%fo., = dy
times the characteristic function of o,. Hence in this case, our local integral
becomes

[, do.(@) d%a = &3,

For v archimedean, we use Proposition 9 of Chapter XIV, §8, to get §
in terms of f. Changing variables, setting z = a,d "2/, our integral over
P, becomes

a2 o0 [ fo.oe) d¥e,

the range of integration being 1 < ||2[l, £ 2. In this range, we replace

. o s 1 e .
fo.»(2) by its lower bound, namely e~ *" if » is real and o e 4" if v is
T

complex. The measure of the annulus between 1 and 2 is easily computed
to be log 2 or 27 log 2 respectively, and thus finally we get the lower bound

|ld1I2N”5,80—])e-—41l' log 2
for v archimedean. Taking the product yields
kd"2(27) 77 2 so(1 — so) dM?dC0™ %™V (log 2)V

using N instead of r; 4 ro. The estimate of the lemma is a weakening of
the estimate we have just obtained.

Our goal is to prove the following theorem.
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Theorem 1. Let € > 0. There exists a number c4(€) such that for all
fields k normal over Q, the tnequality holds:

(k) = ca(e)™Ndie.

Proof. If we had the Riemann hypothesis, we could dispense with our
hypothesis that k is normal over Q. Indeed, our arguments are split into
two cases.

Case 1. For all normal fields k the function ¢x(s) does not vanish for
real swith1 — ¢/N < s < 1.

Then from the integral representation, we know that the zeta function
takes on negative values for s close to 1 and to the left of 1. Consequently,
under our present case, {x(1 — €¢/N) =< 0 and putting so = 1 — ¢/N in
Lemma 3 gives us what we want. The argument works if k is not normal.

Case 2. There exists a field ky normal over Q of degree N, such that
$ko(S0) = O for some real so with 1 — €¢/Ng < s < 1.

In order to treat this case, it will be necessary to take a detour through
L-series, and we shall prove in the next section:

Theorem 2. There exists a constant cs such that for all number fields k
and normal extensions K of k, the following inequality holds:

k(K)/k(k) = 351 + a)VEN4(dg/dy) !>
forall a = 1.

Let us assume this theorem for the time being. We use the following
fundamental lemma of Brauer’s which will be proved in an appendix.

Lemma. Let G be a finite group, and X, the character of the regular
representation. Then there exist cyclic subgroups H; £ 1, positive rational
numbers \;j, and one-dimensional characters ¢; % 1 of H; such that

xreg = Xo + Z )‘,111’;‘
(where the * means induced character).

We shall use the lemma several times, and to begin with, we use it to
note that if K is normal over k, and {x(so) = 0 for some sy, then
¢k (sg) = 0 also. (This is an open question in the non-normal case. Its
answer would of course be implied by Artin’s conjectures.) We use Artin’s
formalism:

tx(s) = e L1 Ls, v, K/k)N

and the fact that the L-series are abelian L-series of the type discussed
in Chapters XII and XIV.
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We treat Case 2 as follows. We may consider sg, the special value of s
between 1 — €/N, and 1, and the discriminant of k, as depending only
on €. Given a field k normal over Q, let K = kky,. Then K is normal over
ko and we can use the preceding remark: {x(so) = 0.

By Lemma 3, we get

k(K) = so(l — s0)2 VK2 ™NKgir(1—20)/2
An elementary estimate gives

Nk < NoNx  and  dg < di%dp?,

whence
—(1—8g)/2 —e/2N, —e/2 eN /2N,
dg T Z dg¥T = di g M,

and we get
k(K) = cs(e) Vi 2.

By Theorem 2 which compares residues in k and K, choosing « = Ny/e
we obtain an inequality

(k) = k(K)cg(e) Vrdi*/?,

so that Theorem 1 follows from our last two inequalities.

§3. Comparison of residues in normal extensions

Our purpose is now to prove Theorem 2. For this, we use again Brauer’s
lemma on group representations, and the decomposition of the zeta
function:

tx(s) = (I Ls, v, K7k,

Each L-series is equal to L(s, ¥;), where ¢; is a character # 1 of the idele
class group of K;. We have

k(K) /x(k) = TT LA, ¥»)™,

the factors on the right being finite, since each ¢; is different from the
trivial character.

We need an upper estimate for each factor [L(1, ¥;)|. We note that the
¥ ; are characters of finite period.

We have:

Lemma 4. Let k be a number field, ¥ # 1 a character of finite period of
Cr,and a = 1. Then

LA, )| £ A+ a)Vd)/2e.
2
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Proof. We have, with the same notation as Chapter XIV, §8,

fop D = [ s@¥@lalldta+ [ @) d%.

llall 2 lall 2

A direct computation shows that |§y| = |gy|. Hence we get the upper
bound:

oy, DI = 2[ _ lgw@l llal ' d*a (s> 1)

2¢(lgel, X0, 8) (s> 1).

IIA

Our character is unramified at complex ». Let » be the number of ramified
realv, and u = r; — v. Welet

T'(s,¥) = r(s+ 1) 1‘(—) r(s)"™.

Then evaluating local integrals in an easy way, we get from the expression
of the zeta function in terms of local factors the inequality:

dy22 2N I2p(1, ¢)|L(L, ¥)| < 2(dy227 2V I2) T (s, ¥) £u(s)

for s > 1. If we put s = 1 + o' and use the same trivial estimate as
in §1 for the zeta function we get our lemma.
Let us put

N; = [K;: Q]
We apply Lemma 4 to the field K; and characters ¢;. We get:
k(K)/k(k) = TT c6™i(1 + a)Vidyil®.
We use the relation
Nk = Ni+ 2 Nj\;

obtained by evaluating the character of the regular representation of
G(K/k) at 1 and multiplying by [k : Q]. From it and Artin’s conductor-
discriminant formula (cf. [3]) one gets at once:

dx = diJ] dji.

(Compute with the different instead of the discriminant, because the dif-
ferent is multiplicative in towers.) In view of these decompositions of the
degree and the discriminant, our estimate for the quotient of the residues
follows trivially.
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For the convenience of the reader, let us give the proof of the decom-
position of the discriminant. According to Artin’s formula, we have

Dgk = Nen®xe) = II Nejie®xiufe) .
We multiply both sides by
Ni(Dre) = Dijg"
and use our relation for the degrees. This yields

Ni®xi) = Deel] Nk, x(Dx;i0fy) ™.

If we now take Ny, of both sides, we get what we want.

§4. End of the proofs

From the lower bound of the residue obtained in §2, we get an inequality
of type

log (hR) — log di/®> = —Nc,(€) — 2€log di'>.

We had noted that N/log d is bounded for all number fields # Q. This
allows us to complement our first assertion in Lemma 2:

Theorem 3. There exists a constant cg such that for all fields k normal
over Q, we have

[log(hR)| = cslog d*'2.

Furthermore, if k ranges over a sequence of fields normal over Q for which
N/log d tends to 0, then the above inequality implies that

lim inf [log(AR)/log d'/?] = 1 — 2e.
Combined with our preceding results (Lemma 2) we get:

Theorem 4. If k ranges over a sequence of fields normal over Q for which
N/log d tends to 0, then

log(Rh) ~ log d'/2.

It is a simple exercise to estimate the discriminant of the smallest normal
extension %’ containing a given number field & over Q. One finds that

N*/2
de < di 2,

where N’ = [k’ : Q]. If we apply Theorem 2 to k&’ and k, and take a = %e



328 THE BRAUER-SIEGEL THEOREM [XVI, App.]

with € < §, we find the inequality
k(k) = k(k')co(e) ™ dir".
On the other hand, if we apply Theorem 1 to k', we get
x(k') = ca(€)™ dp

so that finally,
Rh/dY? = cio(e) N dir?e,

and
log(Rh) — logd''? = —N'cy0(€) — 2¢log di-.

Using the estimate of d; in terms of dy stated above, we get finally:

log(Rh) ] 1 (e _
[log az ~ LA Z T iogaiz T %€

There is only a finite number of number fields with bounded discriminant.
The left-hand side of our inequality is bounded below and does not possess
any negative limit point, if we let k range over all number fields ¢ Q.
From Lemma 2, we get our main result:

Theorem 5. If k ranges over all number fields %= Q and N’ is the degree
over Q of the smallest normal field k' over Q containing k, then the set of
values

[log(Rh) _ 1] 1
log d1/2 N’

1s bounded, and possesses 0 as its only limit point.

Corollary. If k ranges over number fields of fixed degree N over Q, then
we have the asymplotic relation

log(hR) ~ log d*/2
ford — oo.

Proof. Immediate, taking into account that N’ < N

Appendix: Brauer’s lemma

In this appendix, we prove the lemma on group characters which has
been used several times in the chapter. I am indebted to Serre for the
exposition (derived from Brauer’s).
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Let G be a finite group. We denote by 1¢ the trivial character, by r¢
the character of the regular representation, and we let ug = r¢ — 1¢. If
H is a subgroup of G and ¥ a character of H, we let y* be the induced
character.

If A is a cyclic group of order a, we define the function 84 on A by the
conditions:

a if o is a generator of A
6al0) = {O otherwise.

We let Ay = o(a)ry — 04 (where ¢ is the Euler function), and A4y = 0
ifa=1.
The desired result is contained in the following two propositions.

Proposition 1. Let G be a finite group of order g. Then
1
ug = — 2 )\:,
g
the sum being taken over all cyclic subgroups of G.

Proof. Given two functions X, ¢ on G, we have the usual scalar product:
l —_—
W, X)e = — 2 $(@)x(0).
g ¢eq

Let ¢ be any function on G. Then:

(\b’ guG) = <¢’ ng) - (’I” glG)
= g¥(1) — .,EZG“")'

On the other hand, using the standard fact that the induced character is
the transpose of the restriction, we obtain

W) =2 WA
= 2 W14, elara — 0a)
1
=2 ela() — 2o > ad(o)
A A oggen A
=g¥(1) — X ¥(0).
c€EG
Since the functions on the right and left of the equality sign in the state-

ment of our proposition have the same scalar product with an arbitrary
function, they are equal. This proves our proposition.
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Proposition 2. If A = {1}, the function N4 is a linear combination of
irreducible non-trivial characters of A with positive integral coefficients.

Proof. If A is cyclic of prime order, then by Proposition 1, we know
that A4 = gu4, and our assertion follows from the standard structure of
the regular representation.

In order to prove the assertion in general, it suffices to prove that the
Fourier coefficients of A4 with respect to a character of degree 1 are
integers = 0. Let ¢ be a character of degree 1. We take the scalar product
with respect to 4, and obtain:

W, Aa) = e(@¥(1) — 2 ¥(0)

o gen

= ¢(a) — X ¥(0)
= 2. (1 — (o).

The sum > ¥(o) taken over generators of A is an algebraic integer, and
is in fact a rational number (for any number of elementary reasons), hence
a rational integer. Furthermore, if ¥ is non-trivial, all real parts of

1 — ¥(o)

are > 0 if o # id and are 0 if ¢ = ¢d. From the last two inequalities,
we conclude that the sums must be equal to a positive integer. If ¢ is
the trivial character, then the sum is clearly 0. Our proposition is proved.



CHAPTER XVII

Explicit Formulas

We shall follow the paper of Weil [14]. One should note that the logical
structure of the proofs is extremely simple. We use only the following
facts, whose proofs come from arithmetic:

|L(s)| is bounded in every half-plane Re(s) = 1+ a,a > 0.
The functional equation of A(s).

The fact that A(s) is bounded in every strip 69 < ¢ £ o; (excluding
a neighborhood of its poles). This comes from the usual integral
expressions.

The rest of the arguments are analytical. In particular, we use repeatedly
Stirling’s formula giving the asymptotic behavior of the gamma func-
tion. It should be noted that the analysis involves the evaluation of a
few Fourier transforms, and definite integrals. The main result consists
in showing that the sum of a certain function extended to the prime
powers is essentially equal to a sum of its Mellin transform extended to
the zeros of the zeta function. The precise statement is given in §3. One
part of the proof depends in a rather technical manner on the Fourier
transform of a distribution, and I am much indebted to Schwartz for the
arguments involved in the proof of Proposition 4, §5. (Weil’s paper at this
point becomes much too sketchy to be followed.)

The reader who wishes some exercises can extend the theorems of
A. E. Ingham, The distribution of prime numbers, Cambridge Tract No. 30,
1932, to the L-series associated with an arbitrary Hecke character.

§1. Weierstrass factorization of the L-series

Throughout this chapter we use the results of Chapter XIV, §8. If k is
a number field, X a character of the idele classes, and d, = N(Df,), we
put A = 2 "er~ WVIBG1/2 and

Gols, X) = A" = Gols, X)
Gy(s, X) = T'(s,/2) (v archimedean),

331
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where s, = s,(X) = N,(s + i¢,) + |m,|, and
L(s, X) = usual product over p unramified for x.

Then we set

As, X) = Go(s, ) [T Guls, X)L(s, x) = A(s)

veSy,

and we have the functional equation

WX)A(s,X) = A(l — s, %),

or also
AGB) = Al — s)u(x),

where W(X) and «(X) have absolute value 1.
As usual, 8, is 1 if X = X, and O otherwise.
We wish to prove that

[s(s — 1)I*xA(s)

s an enlire function of order 1, and hence by a general and standard theorem
in complex variables that we have

A®) = aefs(s — DI IL (1 = 2) e,

where w ranges over the zeros of A(s), with their multiplicities, and a, b
are constants.

We shall need to estimate Gamma factors, and for this use the Stirling
formula

log T(s) = (5 — 4) 1ogs_s+%1og2,r+/ Py(2)

d

where

Pi(z) =[z] —z+ 3

is the saw-tooth function. The remainder term is therefore O(1/|s|) uni-
formly in each region

—7mT+é=args S T — §, 6> 0.
For a fixed complex number a, we obtain
logT(s+a) = (s+a— %) logs — s+ Llog 27 + O(1/|s])

uniformly in the above region.
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In particular, if a is real, and if we set r = |s| and § = arg s, then
IF(S+ a)l — ru+a—1126—t0e—c(27r)l/2eo(l/r)
uniformly in the above-mentioned region, and if a, ¢ are real then

IT(s + a + ip)| = ,.¢+a-1/2e—w-—¢oe-—a(21r) 12,00/

Letting G(s) be the product of the G,, G, i.e. essentially a product of
Gamma factors, we see immediately that |G(s)| is O(e'"'"™) for every
€ > 0 in the half-plane ¢ = 1. Furthermore, for every real a > 0, we
know from the product expansion that L(s) is bounded in the half-plane
o = 1+ a. Henece A(s) is O(e'*!"™) in this half-plane.

By the functional equation, we get the same estimate in the half-plane
g = —a.

On the other hand, the expression of A(s) as a sum of two integrals
converging for all s plus a term involving s(s — 1) shows that A(s) is
bounded in every stripoy = o = 0, excluding a neighborhood of the poles
s = 0, 1 if these occur, i.e. if X = X3. We have therefore shown that our
estimate in fact holds for all s, excluding such a neighborhood, and have
thus proved that our function is of order 1.

§2. An estimate for A'/A

We recall two lemmas from complex variables.

Lemma 1. Let f(s) be holomorphic in the upper part of a strip:
0o £ 0 S 0y,andt = t; > 0. Assumethat f(s) is O(e") for some constant
¢ > 0, and t — o in this strip, and that | f(s)| is O(tM) for some positve
integer M, on the sides of the strip o = oganda = oy. Then f(s) is O(tM)
in the strip.

This is nothing but the Phragmen-Lindelof Theorem, proved in Chap-
ter XIII, §5,

Lemma 2. Suppose f(2) is holomorphic in a circle |z — 29| = R, and has
at least n zeros in the circle |z — 29| = r < R (counting multiplicities).
Assume f(zg) # 0. Then

(B — n)/r1* = B/|f(20)l,

where B s the maximum of | f(2)| on the larger circle.
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Proof. We may assume 2o = 0. Let
f2) = 1:11 (z — a))e(2),

where a; are the zeros of f in the small circle. Then obviously on the large
circle, we have

le@@)] = |f@|/(R — )™ = B/(R —n)"

Since |a;] = r for each 7, we get our inequality by looking at ¢(0).

‘We return to our L-series. Put
L,(s) = s(s — 1)L(s).

Consider a stripog < 0 < 1 < 0,. We contend that there exists an integer
M such that Ly(s) is O(|t}) in this strip.
To prove this, note that

ILi()| = |s(s — DL()| = |s(s — DG(5)7'G1 — LA — 3)]

by the functional equation. Inside our strip, the function A(s) is bounded
because of its expression as an integral. Hence by the asymptotic formula
for gamma functions, we see that L,(s) is O(¢e°'") for some constant c,
inside our strip. On o = o, we know that L(s) is bounded by its expres-
sion as a product, and thus L(1 — 3) is bounded on ¢ = ¢3. On the other
hand for two complex numbers a, b we see from §1 that [T'(s + a)/T'(b — 3)|
is O(|t|¥) (for some M depending on a, b) inside our strip. (The point is
that the terms e~ cancel.) Hence L,(s) is O(|t|) on the lines ¢ = o
and ¢ = o for sufficiently large M. We now get our contention from
Lemma 1.

Applying Lemma 2 to a pair of circles centered at 1+ a + 4t with
fixed ¢ > 0 and constant radius, we get:

Proposition 1. The number of zeros of A(s) (equal to the number of zeros
of L(s)) inabor 0 g < land T =< |t| £ T+ 1150 (log T).

Corollary. There is a number a, and for each tnteger m with |m| = 2
there s a number T, in the interval

m<Th<m+1

such that A(s) has no zero in the (horizontal) strip
o

log [m]

[t — Tl =
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Returning to our Weierstrass product, we take its log derivative. For
any s, sg, we have

A'/A(s) — A'/A(sg)
> 1 1 1 | 1 1 1
—w(s—w so—w>_6"(§ s—1 s 80—1>.

Proposition 2. Let 0 < a £ 1, and m an integer with |m| = 2. Let
s=0c+1iThwith —a <0 <1+ aand T,, as above. Then

|A’/A(s)| = B(log |m)?,
where B is a number depending on a but not on m and o.
Proof. Let us take s = 1 + a + ¢T,, and write
w=B417.
We have
|A’/A8) — A'/A(so)l S 22

w

Sg — 8
(s — w)(so — w)

+Bly

where B, is a uniform bound clearly valid for the terms to the right of é,.
For the sum, we get the inequality

S — S 1
(= S@H -0 L o=l

e (s — w)(so — )
Under our hypotheses, we have
[so —wlZ2=(14+a—B)2+ (Tw — 7?2 a®+ (Tw — 72
On the other hand, putting b = a/log |m| (which we may assume = 1),

Is - wl2 g (Tm - 7)2 g %(Tm - 7)2 + %b2
z 3b%[a® + (T — )7,

since 0 < a £ 1. From this we get

|A’/A(s) — A’/A(so)] = B1+ 2(a+; =2 ; a?+ (Tlm — )2

We also have

1 (a+1)2 1
z:a2+(Tm—*¥)2 =T Zw: @+ 12+ (T — 72

w
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We shall compare this expression with Re(A’/A(so)) which is itself <
|A’/A(s0)]-
We have

A'/A(so)=b+§:[ L +1]—sx(l+ . )

S0 —w W So So—1

The real part of the middle sum over v is equal to

1+a—8 B
g[(l+a-—B)2+(Tm—7)2+62+72]

which is itself

a
2L AT T

From this our proposition is now immediate, taking into account the
following proposition.

Proposition 3. Let a be a number > 0. Then L'/L(s) ts bounded for
Re(s) = 1+ q, and

I’/T(s) = log s + O(1/|s|?)
for Re(s) = 1+ a and |s| — .

Proof. The first assertion follows at once from the product expansion
of L, and the second follows from Stirling’s formula (differentiating inside
the integral giving the error term).

8§3. The basic sum

Let F(z) be a complex valued function on the real line, and assume that
there exists a’ > 0 such that

F(x)e(l/2+a')lz|

isin L!. Then its Mellin transform

&(s) = /+¢ F(z)e® 1% gz
is holomorphic in every strip —a S o < 1+a for 0 <a <a'. We
shall assume in addition, to begin with, that &(s) is o(1/(log |¢[)?) uni-
formly in —a £ = 1+4a. (These conditions will be strengthened
later.)

Let us take T > 2. The number of zeros of A(s) whose imaginary part
is between 7 and the nearest T, of the preceding section is O(log T),
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and similarly for —T and the nearest T;. The sum } ®(w) over these
zeros tends to 0 as T tends to infinity.

We shall consider the integral of ®(s)dlog A(s) over the rectangle
bounded by the linese = —a,0 =1+ a,t = Ty, t = T;. By Proposi-
tion 2, the integral taken over the horizontal lines tends to 0 as T tends
to infinity, by our assumption on ®. If we denote by o(1) the additive
group of functions of T tending to 0 with 1/7, then by the formula of
residues, we get the following congruences mod o(1):

—5,[@(0) + 2D+ X  &(w)

=T<r<T

=L / ®(s)d log A(s)
277 J Ree
14a+4:T ~—a+iT
1 / 1
=_— &(s)d log A(s) — =— &(s)d log A
rl N (8)d log A(s) 53 ) _ayir, (s)d log A(s)
14a4iTy, —a+iTy,
1 1 —1
=5 ®(s)d log A(s) — =— ®(s)d log A(1 — s, X
E= R (s)d log A(s) 57 ) —ayir, (s)d log A( s )

14-a4iT 1 —a—iT
f _ ®(s)dlog A(s) + 2—/ _ ®(s)dlog A(1 — s, x~1).
14a—iT T J —a4iT

I
3]
—

In this last step, we use the estimate of Proposition 3 to insure that the
integrals taken between T',,, T and T, —T tend to 0 as T tends to infinity.

- 1+a+sz
1 + 14a+4:T
—a ; 1: i l14a
1+a+:T;
41 + 14a—-:iT Figure 1

In order to evaluate these integrals, we shall use the product decom-
position of A to get three types of integrals, involving the terms Gy, G,
and L. Furthermore, we shall assume that our function F satisfies the
additional conditions:

(A) F is continuous and continuously differentiable everywhere except
at a finite number of points a;, where F(x) and its derivative F'(x)
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have only a discontinuity of first kind, and such that
F(a;) = 3[F(a; 4+ 0) + F(a; — 0)].

(B) Thereis anumberbd > 0 such that F(z) and F’(z) are O(e~}/2+d)l=1)
for |z] — o«

Under these hypotheses, we see that for 0 < a’ < b our function &
is 0(|t|™!) uniformly in —a’ < ¢ £ 1+ &’ and the preceding discussion
appliesfor0 < a < a’' < banda = 1.

The integrals on the line 1 4 a and —a will be reduced to integrals on
the line 4. Our final result will be:

Explicit formula. Let F(x) satisfy conditions (A) and (B), and let ®
be its Mellin transform. The sum 3> ®(w) taken over the zeros w = B + ¥
of L(s) satisfying 0 < B = 1 and |Y| < T tends to a limit as T tends to
infinity, and this limit 1s

lim Y, ®(w) =38 f F(z)(e®'% + e~*!%) dz + 2F(0) log A

Tow |7|<T

Z loi}jg [x(p)"F(log Np™) + x(p) ~"F(log Np™™)]

+ = Lawy,

vES®
where Fo(z) = F(z)e~*** and 9, is a functional to be described in §5.
If one takes for F the function

ifx <Oorzx > logy
Fz) = l”z if0<z<logy

for some fixed number y > 1, then one recovers a classical formula as in
Ingham, Chapter IV. We leave the exact statement to the reader. Ob-
serve that conditions (A) and (B) are obviously satisfied, and that in the
sum taken over p, n only the terms with positive powers of p will appear.

§4. Evaluation of the sum: First part

In our explicit formula, the term with 8, arises in the obvious fashion
from the definition of #(0) and ®(1).
For the others, we use the identity

dlogA =dlogGo+dlogL+ Y, dlog G,

OESQ

and compute our two integrals successively for the three cases.
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Take first the case of Go. We have

d d
E;Iog Go(s) = log A, o log Go(1 — s) = —log A.
In view of the fact that we integrate a holomorphic function, we can shift
both integrals to the line ¢ = %, and combine them into the integral

1/24iT
2log A /
oni - &(s) ds.

We make the substitution s = % + ¢, ds = id¢, and take the limit for
T — o. The Fourier inversion formula is applicable, and we find the
desired expression 2F(0) log A as an answer.

We take up next the case of the integrals over d log L. We look first at
the integral on the line 1 + a. A trivial computation yields the value

l +T ~+-00
— + Ttu
2T J_r dt 2 . Hy . (w)e™™ du,
where
Hifa(u) = 1—%;1‘,1—2 X(p)"F(u + log Np™)et/2+o),

If we now use the fact that there is a constant C such that
IF(z)l < Ce—(1/2+b)|z|’

we get by a trivial estimate:

2Clog Np

|Hifn(u)| = NprFa)

This shows that our series 3" H;,(u) is absolutely, uniformly convergent
and defines a function H+(x) in L.
A similar computation for the integral on the line —a, and estimate for

». log N - 7y ,— a)u
palu) = ;gpnlzp X(p)""F(u — log Np™)e—1/2+®

yields a similar series. We put H,.(u) = H{,(u) + H; ,(u). Inter-
changing a series and integral sign, we find that our integrals over d log L
are equal to

+T °

- dt H(u)e™ du.

or J_r

Since H(w) is continuous and continuously differentiable except at the
points «; &+ log Np™ where it and its derivative have discontinuities of
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first kind (remember that there is only a finite number of «;), and since
H(u) takes on the middle values at these discontinuities, it follows that
the Fourier inversion formula applies, and hence our integral has a limit
as T goes to infinity, namely —H(0). This gives precisely the desired sum
over p, n in our explicit formula.

§5. Evaluation of the sum: Second part

We now come to the last term.

We have to compute each integral over dlog G,. We observe that
G./G, has no pole in the half-plane ¢ > 0 and is O(log [¢|) in any given
strip, outside neighborhoods of its poles. Consequently, the integral taken
from 1+ a — T to 1 4+ a + ¢T is congruent to the integral taken from
3 — 4T to 3 + ?T mod o(1). By the same type of argument, flipping s
into 1 — s, we can replace the integral on the line —a by a similar integral
on the line 4. Thus our integrals become:

L[V
) 5 ®(s)[d log Go(s, X) — dlog G,(1 — s, x™1)].
mt J1/2—iT

Writing down explicitly the definitions of G,, we find that our integral is
equal to

No/2 f, T ) [1,, /r (Nv<s + i) + I )

2w Jyz2—ir
v T (N.,(l —s —21'%) + |ml )] ds,

and making a change of variables, letting s = % + it — t¢,, with ds = dt,
we get

4T
@ Ne/2 [ a4 4 it — ioall/0) + /TN
where z = 3(N,(3 + it) + |m,|).
Let
¢v(t) = (I)(% + it — i‘Pv)
and

Fo(x) = F(z)e %~
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Then, using the usual change of variables, we get

Vo) = [ Fu@)e™ dz,

and the function F, satisfies conditions (A) and (B).
We define the function

9,0 = Rery/r (YD FIml).

We can then rewrite our last integral (2) in the form

T
N,
3 = f_T Vo(8)9o(2) dt.
Since ¥,() is 0(1/]¢]) for || — oo, itisin £5. But from Stirling’s formula,
qv(t) = log M + gv(t)’

where g, is in £,. Hence we cannot apply Plancherel’s formula directly,
nor take the integral from — w to 4o without a specific convergence
proof, and a justification of a generalized Plancherel formula to the special
situation facing us.

We shall prove eventually that

lim [ T 0090 dt
T—o0 J-T

exists. For this, we need some considerations of functional analysis.
For the sequel, we agree that

bl . +T
/ = lim .
—o0 Tow J-T

We shall also refer to Schwartz’s book Theorie des Distributions by the
symbol TD.

We consider the linear space of functions which are bounded, continuous,
and satisfy a Lipshitz condition uniformly on every compact subset of the
real line. Such functions will be called BCL.

The linear space generated by these functions and characteristic func-
tions of intervals which do not have 0 as endpoint will be called the space
of functions which are almost BCL. Such functions are then always
continuous at 0.
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On the space of almost BCL functions, we define a functional W by
the limit:

. 1— —Alzl|
W) = }‘liri [‘/_w —|;’/2—eT=/2I B(z) dz — 2B(0) log )\] .

Of course, we must prove:

Lemma 3. On the space of almost BCL functions, the preceding limit
exists.

Proof. In a neighborhood of 0, the denominator

|ex/2 _ e—z/2|

behaves like |z|] (mod z2). It will then suffice to prove our assertion when
we replace this denominator by |z| and 8 by a function which tends rapidly
to 0 at infinity.

Using linearity, consider first the case of a characteristic function. If
the origin does not lie in its interval, then the limit clearly exists. If the
origin lies in the interval, then we are led to consider an integral of type

b —\z:
¢()\)=/(1_+)dx, b>0, A2 1.
0

We can differentiate under the integral sign, and taking b = 1 for sim-
plicity, we get

Hence ¢(\) = log A + an integral which converges for A — o. From
this it is clear that the term 28(0) log M will cancel, and leave an integral
whose limit exists as A — o0.

Next, suppose that 8 is BCL and tends rapidly to 0 at infinity. Decom-
posing B into its odd and even parts, and subtracting a characteristic func-
tion we may assume that 8 is even and B(0) = 0. In that case, 8(x)/|x|
is bounded in some neighborhood of the origin, and hence the integral

(1 _ e—klzl) ﬁ_l(;i—)dx

has a limit as A — oo. The term involving 28(0) log A is 0, and so our asser-
tion is proved in that case.
Let 8 be a BCL function. If we write

B(z) = B(x) — B(0) + B(0),
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we obtain by linearity

o
W) = BOWQ) + [_, _B) — 60O) 4

|ez/2 —_ e-—zlzl

There is no convergence problem about this last integral, and thus we
find:

Lemma 4. If B is a BCL function, then
[W(B)| = C(|8] + lip1 B),

where C s a fixed constant, and lip, B is a Lipshitz constant on some compact
inlerval contatning 0.

The above lemma allows us to prove a continuity property for our
functional W, namely:

Lemma 5. Let {8,} be a sequence of BCL functions, converging to a BCL
function B. Assume also that the functions {B,} are uniformly bounded,
that the convergence is uniform on every compact set, and that the Lipshitz
constants lip B, are bounded on every compact set. Then W(B,) converges
to W(B).

Proof. We write for each n,
Bn(x) = Ba(z) — Ba(0) + B(0).

Then B,(0) converges to 8(0). This reduces the proof to considering the
sum of the integrals

Ba(z) — Ba(0) dzx

lezl2 _ e—z/2|

over intervals

I n
A
8

G

/A —
o JA
R

|z

taking € > 0 small and A large. For A large, the exponential function in
the denominator makes the integral small. For € small, the last integral
has a small value in view of the uniform bound for the Lipshitz constants.
The integral in the middle range is then close to the corresponding integral
for B(x) — B(0). Thus our lemma is clear.

Let B be as before. If y is any number, we denote by 8, the function
given by 8,(z) = B(z + y). Then by what we said above, the function
W(B,) is continuous (as a function of y).
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Let {p.} be a sequence of regularizing functions, i.e. infinitely differ-
entiable = 0, with compact support shrinking to 0, and whose integral is
equal to 1. We can form the convolution 8 * p,, and it is easily verified
that the sequence of functions {8 * p,} converges to 8 in the sense of the
additional assumptions of Lemma 5 for this convergence.

For any function 8, we denote by 8~ the function

B8~ (y) = B(—y).
Then we obtain:

Lemma 6. Let {p,} be a regularizing family as above. Then the functions
W{((B * pn)"z) converge to W(8™,) uniformly on every compact set.

From this we conclude:

Lemma 7. The functional W is a distribution. Let 8 be a BCL function.
The convolution of W with Tg (the distribution represented by B) is repre-
sented by the function whose value at x is W(8™ ;). Symbolically,

(W * Tg)(z) = W(B™2).
This function is continuous.

Proof. If T is a distribution, which is represented outside some compact
set by a function tending exponentially to 0 at infinity, and « is a C*-
function which is bounded, then by the theory of distributions, one knows
that

T*T,

is represented by the function T(a™;), which has a meaning in this case.
We can apply this result to the functions 8 * p,, and hence our lemma
follows. [Cf. TD, Theorem XI of Chapter VI, §4 and formula (VI, 1; 2).]

‘We shall now prove the analogue of Lemma 7 for almost BCL functions.

Lemma 8. Let X be a characteristic function of an tnterval which does not
hove 0 as its endpoints. Then the distribution W * T, is represented by a

©-function locally at every point other than the endpoints of the interval,
and tts value at such a potnt x is the value W(x ™).

Proof. This follows from the general properties of convolutions of dis-
tributions, e.g. TD, Chapter VI, Theorem III of §3 and Theorem XI of §4.

Corollary. Let F be a function which s almost BCL, and is continuous
at 0. Then the distribution W * T p is represented by a C*-function locally
at every point other than the points of discontinuity of F, and the value of
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this function at 0 s
W(F™).

We now come to more specific considerations concerning the gamma
function.

From its Weierstrass product, one gets (in every book on the gamma
function)

rr@=-tove Bl

amln n+42z

Substituting z = % + ¢t and taking the real part, together with the limit

Y= lim (1+---+%—logM)

M—wo

we obtain at once

M
9@ = lim [log M- n{:o (Tf%fﬁz']

— lim Uy(),
M —w

denoting by Ujs the function inside the brackets.

Lemma 9. The convergence of this limit is uniform on every compact set.
Furthermore
[T (0)| = Clog ¢

for some constant C independent of M, and say |t| = 2.

Proof. The first assertion is clear. As to the second, observe that the
sum in the expression for U, is bounded from below by

nt 3 <1 .
Wt FB=n+3

Sayt > 0. For M =< t the expression for Uy, is bounded by log M < logt.
For M = t, we observe:

M M
> = > = logM — logt — constant,
n=0 n=t

which gives us again what we want.
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For the rest of this section, we agree to normalize the Fourier transform
as follows. For suitable functions f, we define

1 = [T f@e da.

We also denote by (, ) the integral of the product of the two functions
appearing in the blank space of this scalar product, whenever the integral
makes sense. Then formally (for a restricted class of functions f, g), the
Plancherel formula asserts that

(f—) g) = <fv 0)

(The Fourier inversion formula would read
f=2nf")
By Fourier transform we shall mean f in the above sense, from now on.
The Fourier transform of a function
a

a? 4 t2

can be found easily by integrating over a semicircle (upper or lower ac-
cording as z < 0 or z > 0). Hence if we write

Yy = IOgM +gM1

then we find

1 — —M |zl
QM(Z) = —T—‘%;lz__—ee_m)‘l—'

In the sense of distributions, the Fourier transform of the constant
function 1 is
1 =27,

where § is the functional 8(f) = f(0). From these considerations, we
obtain:

Lemma 10. As a distribution,
Tq = q = —7W.

Proof. The boundedness condition of Lemma 9 insures that the limit
of the Fourier transforms is the Fourier transform of the limit. (Use TD,
Example 3 of Chapter VII, §7.)
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Our goal is to prove:

Proposition 4. Let F be a function satisfying properties (A) and (B).
Let

v=F"
Then (y,q) exists, and

Mox

or by what we have just seen, it is equal to —wW (F).

Proof. Writing F as a sum of an even function and an odd function, i.e.

F(z) = F(z) —I-2F(—:c) 4 F(x) —-2F(—x) ,

has the same effect on the Fourier transform. Thus it suffices to prove
our proposition for even and odd functions separately. But Y(f) is even.
Thus for odd functions F, the integral (¢, d) is 0. The limit on the right
is also equal to 0 (each term being 0) and so our assertion is trivial.

We may therefore assume from now on that F is even. In particular,
F is continuous at the origin.

We shall now prove the assertion of Proposition 4 for a more general
type of function. Namely, we assume that F satisfies the following
conditions:

(i) F is almost BCL, and is even.

(ii) F is in £,, it is differentiable except at its points of discontinuity,
and its derivative is in £,. '

Any even function satisfying conditions (A) and (B) also satisfies condi-
tions (i) and (ii). '

Lemma 11. Denoting as usual by T, the distribution represented by a
Sfunction f, we have
T\pq = Tq *Tp.

Proof. This follows from the theory of distributions, and hypotheses
(i) and (ii), because W decreases rapidly and 7T is tempered (7'D,
Theorem XV of Chapter VII, §8).

We have seen in Lemmas 7 and 8 that W * T is represented by a con-
tinuous function outside of the points where F is not continuous.

Writing F = 8+ > X; as a sum of a function 8 which is BCL, and
characteristic functions of intervals, and using condition (ii), we can
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conclude that ¢ has an expression:

Wy = X o M0t KD,

where ¢,, a, are constants, =a, # 0, and A is in £,.
Since the product of two functions in £; is in £,;, we conclude that
sin a,t

YOU() = 20 0 —; log lt] + k()

1 4

where k() is in £,.
Each function
sin a,t

T log |t

(say for t > 0) oscillates as ¢ tends to infinity. From this we conclude
that the limit

lim U () dt
T J-T

exists. (This has the same convergence as an alternating series whose
terms decrease to 0 monotonically.)

We can compute the Fourier transform of ¢4 (as a function) by the
integral

[ T Od)e " dt,

applying the integral separately to k(t) and to each term

sin a,t lg%m— )
provided z £ +a, for any v (because under this hypothesis, the con-
vergence is uniform in a neighborhood of z). Thus this Fourier trans-
form is a continuous function, defined outside the points a,.

The function ¢4 also represents a distribution Tyy whose Fourier
transform (as a distribution) is given by Lemma 11. We also have:

Lemma 12. Let f be the function 9. Ezcept at *a,, T’, 18 represented
by the continuous function given by the integral

T ie— = dt.

Proof. Let A be a compact interval, —T < ¢ < T, and let f4 be the
function f multiplied by the characteristic function of A. Our statement
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is true if we replace f by f4. Hence T;, approaches T, as a tempered
distribution, and consequently, T’, . approaches T, also as a tempered
distribution, hence as a distribution locally at each z # +a,. But the
integral expressing T, -4 converges to

+ fe= = g

uniformly (hence as a distribution) on every compact set not containing
the +a,. Hence T is represented by this integral in the desired range.

Now the two distributions T,pq and T'q * T are continuous functions in
the complement of a finite number of points, given by integrals, and
are equal as distributions (Lemma 11). Hence these continuous functions
are equal almost everywhere, and hence everywhere. In particular, they
are equal at 0. Using the Corollary of Lemma 8, we conclude the proof
of Proposition 4.

The arguments which have been carried out above for the function Y(¢)
could just as well be carried out for 4,, carrying throughout the parameters
N,, |m,|. For this purpose, we define the functional

W.(8) = lim | " (1= K@) dz — 26(0) log \]»

where K,(z) is the function given by the formulas:

e(v}—lﬂc.l)lzl

Kﬂ(x)= |ex_e_z| ifN-|,=1
e-—%lmvzl

if N, = 2.

K,,(:t) = l

e:l:/2 — e-—l,2l

The same type of computation that gave us the Fourier transform of 9 (f)
gives us the Fourier transform of 9,, and one obtains:

Lemma 13. The Fourter transform of 4, s given by

2w

= —5

Wo.

Putting everything together, we obtain:

Proposition 5. The last sum in the explicit formula is equal to

> RAE) = — T WF.

UESQ ‘DESQ
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