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PREFACE TO THE 
AMERICAN EDITION 

As in the case of Volume I, a considerable number of changes have 
been made in adapting the original book for use by English-speaking 
readers. The editor accepts full responsibility for these changes which 
include the following: 

1. The order of a few problems has been changed in order that no 
problem need depend on a later one for its solution. 

2. Problems 110 and 128 were added in order to supplement and 
lend perspective to problems 112 and 127, respectively. 

3. Several solutions, and some of the introductory paragraphs, have 
been expanded or rewritten to bring out points not familiar to many 
American readers. This applies in particular to most of Section 8. 

4. The bibliography has been considerably enlarged. 

Cambridge 

1967 

v 

BASIL GORDON 





SUGGESTIONS 
FOR USING THE BOOK 

This volume contains seventy-four problems. The statements of the 
problems are given first, followed by a section giving complete solutions. 
Answers and hints are given at the end of the book. For most of the 
problems the reader is advised to find a solution by himself. After solving 
the problem, he should check his answer against the one given in the book. 
If the answers do not coincide, he should try to find his error; if they 
do, he should compare his solution with the one given in the solutions 
section. If he does not succeed in solving the problem alone, he should 
consult the hints in the back of the book (or the answer, which may also 
help him to arrive at a correct solution). If this is still no help, he should 
turn to the solution. It should be emphasized that an attempt at solving 
the problem is of great value even if it is unsuccessful: it helps the 
reader to penetrate to the essence of the problem and its difficulties, and 
thus to understand and to appreciate better the solution presented in 
the book. 

But this is not the best way to proceed in all cases. The book con­
tains many difficult problems, which are marked, according to their 
difficulty, by one, two, or three asterisks. Problems marked with two or 
three asterisks are often noteworthy achievements of outstanding mathe­
maticians, and the reader can scarcely be expected to find their solutions 
entirely on his own. It is advisable, therefore, to turn straight to the hints 
in the case of the harder problems; even with their help a solution will, 
as a rule, present considerable difficulties. 

The book can be regarded not only as a problem book, but also as a 
collection of mathematical propositions, on the whole more complex 
than those assembled in Hugo Steinhaus's excellent book, Mathematical 
Snapshots (New York: Oxford University Press, 1960), and presented in 
the form of problems together with detailed solutions. If the book is 
used in this way, the solution to a problem may be read after its statement 
is clearly understood. Some parts of the book, in fact, are so written that 
this is the best way to approach them. Such, for example, are problems 
125 and 170, and, in general, all problems marked with three asterisks. 

vii 



viii Suggestions for using the book 

The problems are most naturally solved in the order in which they 
occur. But the reader can safely omit a section he does not find interesting. 
There is, of course, no need to solve all the problems in one section before 
passing to the next. 

This book can well be used as a text for a school or undergraduate 
mathematics club. In this case the additional literature cited in the text 
will be of value. While the easier problems could be solved by the partic­
ipants alone, the harder ones should be regarded as "theory." Their 
solutions might be studied from the book and expounded at the meetings 
of the club. 
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PROBLEMS 

I. POINTS AND LINES 

Problems lOt to 107 are taken from a branch of mathematics called 
projective geometry. We are concerned here only with plane projective 
geometry, which deals with the properties of plane figures that are 
unchanged by projection from one plane onto another (fig. I). 

a 

Fig. 1 

jlJ 
: B: ! 

Parallel projection 

b 

There are two kinds of projection, central and parallel. A central 
projection is obtained by choosing two planes 1T, 1T', and a center 0 which 
is on neither of them. Given any point P of 1T, we draw OP and extend it 
until it intersects 1T' in a point P' as in fig. I a. The mapping P -+- p' is 
called a central projection. (Of course if OP is parallel to 1T' there will be 
no point P' of intersection. In this case P can be thought of as being 
mapped to a "point at infinity" by the projection.) A parallel projection 
from 1T to 1T' is obtained by drawing a family of parallel lines and mapping 

3 



4 PROBLEMS 

each point A of 7T onto the point A' of 7T' such that AA' is one of these lines 
(fig. I b). This is sometimes thought of as central projection from a point 
at infinity. 

A projection sends any figure F drawn in the plane 7T to a figure F' in 
7T'. We call F' the image of F. The image of a straight line is itself a 
straight line, but the distance from a point P to a line I, or the angle 
between two lines 11 and 12, may be changed by projection (fig. Ja). 
Similarly, the image of a circle need not be a circle (fig. Jb). Projective 
geometry deals only with the properties of figures which are unchanged by 
projections, and is therefore not concerned with such things as distances, 
angles, and circles. However, concepts involving only the incidence of 
points and lines (such as collinearity or concurrence) are preserved under 
projection and therefore belong to projective geometry. Each configuration 
of straight lines and curves in problems 101 to 107 would be transformed 
under projection into another configuration having the same properties, 
and thus the results proved in these problems are theorems of projective 
geometry. 

For further reading see [4) and [10]. 

101. A certain city has 10 bus routes. Is it possible to arrange the routes 
and the bus stops so that if one route is closed, it is still possible to get 
from anyone stop to any other (possibly changing along the way), but 
if any two routes are closed, there are at least two stops such that it is im­
possible to get from one to the other? 

102. Show that it is possible to set up a system of bus routes (more than 
one) such that every route has exactly three stops, any two routes have a 
stop in common, and it is possible to get from anyone stop to any other 
without changing. 

103. * Consider a system of at least two bus lines with the following 
properties: 

(I) Every line has at least three stops. 
(2) Given any two stops there is at least one bus line joining them. 
(3) Any two distinct lines have exactly one stop in common. 

a. Show that all the lines have the same number of stops. Calling 
this number n + I, show that every stop lies on n + I different lines. 

b. Prove that there are altogether n2 + n + I stops and n2 + n + I 
lines in the system. 

100a. Arrange nine points and nine straight lines in the plane in such a 
way that exactly three lines pass through each point, and exactly three 
points lie on each line. 

b. Show that such an arrangement is impossible with seven points 
and seven straight lines. 
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lOS.· Let S be a finite set of straight lines in the plane, arranged in such a 
way that through the point of intersection of any two lines of S there passes 
a third line of S. Prove that the lines of S are either all parallel or all 
concurrent. 

106.· Let S be a finite set of points in the plane, arranged in such a way 
that the line joining any two points of S contains a third point of S. Prove 
that all the points of S are collinear. 

Remark. The results of problems 105 and 106 are "dual" to each other 
in the sense of projective geometry. This means that either result is obtained 
from the other by interchanging the words point and line and interchanging 
the terms line joining two points and point of intersection of two lines. The 
"principle of duality" asserts that whenever a theorem holds in projective 
geometry, so does its dual. See, for example, pp. 13-14 in [4]. 

107.·· In the plane we are given n points, not all collinear. Show that at 
least n straight lines are required to join all possible pairs of points. 

l08a. Find all possible arrangements of four points in the plane such that 
the distance between any two of them is one or the other of two given 
quantities a and b. Find all the values of the ratio a: b for which such 
arrangements are possible. 

b. Find all possible arrangements of n points in the plane such that 
the distance between any two of them is either a or b. For what values of 
n do such arrangements exist? 

l09a.· Show that for any integer N > 2 it is possible to find N points in 
the plane, not all on one line, such that the distance between any two 
of them is an integer. 

b." Show that it is impossible to find infinitely many points in the 
plane satisfying the conditions of part a. 

II. LATTICES OF POINTS IN THE PLANE 

Problems I 10 to 112 deal with lattice points in the plane, that is, with 
a system of points at the vertices of a network of squares (the lattice 
squares) covering the plane in the same way as the squares on a sheet of 
graph paper cover the sheet (fig. 2). Such lattices play an important part 
in pure mathematics (theory of numbers) and in scientific applications 
(crystallography): Minkowski's theorem (problem 112) is particularly 
important and has many applications in the theory of numbers. See Ref. 
[19], chap. IV and [10], chap. II. 

In some of the following problems it is convenient to introduce a 
coordinate system, as in fig. 2, and to take the width of the lattice squares 
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y 

0 x 

Fig. 1 

as the unit of measurement. Then the lattice points are precisely the points 
(x,y) whose coordinates x and yare integers. 

no. Blichfeldt's lemma.o Let Mbe a set in the plane with area greater than 
I. Show that M contains two distinct points (X1'Yl) and (x2,yJ such that 
Xz - Xl and Y2 - Yl are integers. 

111a. Let n be a parallelogram whose vertices are lattice points, and 
suppose there are no other lattice points inside n or on its boundary 
(fig. 3a). Prove that the area of n is equal to that of a lattice square. 

b. Let n be any polygon whose vertices are lattice points (fig. 3b). 
Prove that the area A of n is given by the formula A = i + bj2 - I, 
where i is the number of lattice points inside nand b is the number of 
lattice points on the boundary of n. Here the unit of area is that of a 
lattice square. For example, the area of the polygon in fig. 3b is 4 + l,f -
1 = II. 

(Part a is a special case of part b, with i = 0 and b = 4.) 

A / 
I I I 

rj/ ~ I 
\ " I V ............ 

'-

" /. 
/' 

• b 
Fig. 3 

o Hans Blichfeldt (1873-1945), an American mathematician. 
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lI2.*'" Minkowski's theorem. l Let K be a convex set in the plane which 
is centrally symmetric with respect to the origin O. Suppose K has an 
area greater than 4. Prove that K contains a lattice point other than O. 

113. In a circular orchard of radius 50 with center at the origin 0, trees 
are planted at all the lattice points except O. In the middle of the orchard 
there is a garden-house (fig. 4). As long as the trees (which we assume have 
equal circular cross section) are thin enough, they do not block off the 

• • 
• • • • 

• • • 
• • • 
• ·0 

• • • 
• • • 
• • • • • • 

• • • 

Fig. 4 

view from the garden-house (that is, it is possible to draw a ray from 0 
which does not pass through any of the trees). Show that it is possible 

to see out of the orchard when the trees have radius less than 1/,j2501 R;j 

1/50.01, but that when the radius becomes greater than 1/50 the view is 
completely blocked off. 

III. TOPOLOGY 

Topology is a branch of mathematics which is concerned with very 
general, purely qualitative properties of geometric figures. As a branch 
of mathematics in its own right, it arose comparatively recently, in the 
twentieth century. At present it is an important part of mathematics, 
having valuable applications to many other branches. See Refs. [2], [7], 
and [10], chap. VI. 

lI4. Draw n straight lines in the plane. Shovv that the regions into which 
these lines divide the plane can be colored with two colors in such a way 

1 Hermann Minkowski (1864-1909), a German mathematician. 
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Fig. 5 

that no two adjacent regions (that is, two regions touching along a segment 
of one of the lines) have the same color (fig. 5). 

We may formulate problem 114 as follows: the map obtained by 
drawing n straight lines in the plane can be colored using two colors in 
such a way that no two neighboring countries have the same color. In 
this form the problem is seen to be a special case of the following question: 
What is the minimum number of colors which will suffice to color any 
map in such a way that no two neighboring countries have the same color? 
This question is still unanswered, although it has attracted the attention 
of mathematicians for the past one hundred years. It has been proved 
that five colors are enough, and it is conjectured that four colors are 
enough. Problems on the coloring of networks of lines (see 115) and nodes 
(see Remark to 117) are also connected with this question. For more 
details, see reference [7]. 

llSa. Consider a network of lines and nodes with the property that at 
most two lines meet at each node (fig. 6a). The lines are to be colored in 
such a way that no two adjacent lines (that is, lines meeting at a node) have 

00 
Fig. 6 



III. Topology 9 

the same color. Show that this is always possible using three colors, but 
may be impossible with only two colors. 

b. ** Suppose that at most three lines meet at each node of the net­
work (fig. 6b). Show that the lines can be colored as in part a using four 
colors, but that this may be impossible with only three colors. 

Remark. In practice it sometimes happens that a network of lines has to 
be colored in the way described above. This occurs, for example, when an 
electrical network has to be connected without mixing up the wires. It proves 
convenient to use wires of different colors and never to plug two wires of the 
same color into the same terminal. 

116a. ** Sperner's /emma.2 A triangle T is divided into smaller triangles 
in such a way that any two of the small triangles have no point in common, 

2 

~--------------~L-------~~--------~3 

Fig. 7 

or have a vertex in common, or have a complete side in common. (Thus 
no two triangles touch along part of a side of one of them.) The three 
vertices of T are numbered I, 2, 3. Each vertex of the small triangles is 
then also numbered I, 2, or 3. The numbering is arbitrary except that 
vertices lying on the side of T opposite vertex i (for i = 1,2,3) must not 
be numbered i (fig. 1). Show that among the small triangles there is at 
least one whose vertices are numbered 1, 2, 3. 

b. State and prove an analogous result for a tetrahedron divided into 
smaller tetrahedra. 

117.* A triangle is divided into smaller triangles as in problem 116a. 
Show that if an even number of triangles meet at each vertex, then the 
vertices can be numbered I, 2, or 3 in such a way that the vertices of every 
triangle have three different numbers attached to them (fig. 8). 

I Emmanuel Sperner (l90S- ), a German mathematician. 
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~--------~~----~----------~3 

Fig. 8 

There is a conjecture that in all cases (that is, without the requirement 
that an even number of triangles meet at each vertex), it is possible to 
number the vertices with the four numbers I, 2, 3, and 4 in such a way that 
the vertices of any of the small triangles have three different numbers 
attached to them. This conjecture has not yet been either proved or dis­
proved. It is closely connected with the map-coloring problem (see above, 
under problem 114). 

Remark. Note that problem 117 may be rephrased as follows: if a triangle 
is broken up into small triangles, as described in problem 116a, and an even 
number of triangles meet at each vertex, then the vertices may be colored so that 
no two adjacent vertices (that is, vertices belonging to the same triangle) have 
the same color, using just three colors (see problems 114 and 115). 

llS.*** A problem on neighbors. A square of side 1 is divided into 
polygons (fig. 9). Suppose that each of these polygons has a diameter 
less than 3\' Show that there is a polygon P with at least six neighbors, 
that is, polygons touching P in at least one point. 

Fig. 9 

• By the diameter of a polygon we mean the greatest distance between any two of 
its points. 



V. Convex polygons 

IV. A PROPERTY OF THE RECIPROCALS 
OF INTEGERS 

11 

119. Let a = lin be the reciprocal of a positive integer n. Let A and B 
be two points of the plane such that the segment AB has length I. Prove 
that every continuous curve joining A to B has a chord4 parallel to AB 
and of length a. Show that if a is not the reciprocal of an integer, then 
there is a continuous curve joining A to B which has no such chord of 
length a. 

For a complete characterization of the possible sets of chord lengths parallel to 
AB, see H. Hopf [26]. 

V. CONVEX POLYGONS 

Problems 120 to 122 are concerned with extremal properties of 
convex polygons. The results are true, and the proofs need little alteration, 
for any convex sets (not necessarily polygons). A set is said to be convex 
if the whole of the line segment joining any two points in it lies inside the 
body. 

The theory of convex bodies is an important part of geometry, having 
applications in other branches of mathematics and science. See Refs. 
[19], [22], and [24]. 

120a. Show that any convex polygon of area I can be enclosed in a 
parallelogram of area 2. 

b. Show that a triangle of area 1 cannot be enclosed in a parallelo­
gram of area less than 2. 

121a. Show that any convex polygon of area I can be enclosed in a 
triangle of area 2. 

b. * * Show that a parallelogram of area 1 cannot be enclosed in a 
triangle of area Jess than 2. 

122a. * Let M be a convex polygon and I any straight line. Show that it is 
possible to inscribe a triangle in M, one of whose sides is paranel to I, and 
of area at least i that of M. 

b. Let M be a regular hexagon, and I a line parallel to one of its sides. 
Show that it is impossible to inscribe a triangle in M with one side parallel 
to I and of area more than i that of M. 

4 A chord of a curve C is a straight line segment, both of whose endpoints lie on C. 
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VI. SOME PROPERTIES OF SEQUENCES 
OF INTEGERS 

123a. •• Consider n arithmetic progressions, each consisting entirely of 
integers, and extending indefinitely in both directions. Show that if any 
two of the progressions have a term in common, then they all have a term 
in common. Show that if the progressions are allowed to assume non­
integer values, then the conclusion may be false. 

b. Consider n arithmetic progressions, each extending indefinitely in 
both directions. If each three of them have a term in common, prove that 
they all have a term in common. 

Remark. It is interesting to note the similarity between the phrasing of 
this problem and the follOWing theorem of Helly: If a family of convex sets in 
the plane is such that any three have a point in common, then all of them have a 
point in common. For a unified treatment of both theorems, see reference [27]. 

124a. Show that a sequence of l's and 2's, having at least four terms, 
must contain a digit or sequence of digits which appears twice in succession. 

b. •• Show that there exist arbitrarily long sequences of I's and 2's in 
which no digit or sequence of digits occurs three times in succession. 
(Cf. M. Morse and G. A. Hedlund, "Symbolic Dynamics", American 
Journal of Mathematics, vol. 60 (1938), pp. 815-866.) 

12Sa. ... Show that there exist arbitrarily long sequences consisting of 
the digits 0, 1,2,3, such that no digit or sequence of digits occurs twice in 
succession. 

b. Show that there are solutions to part a in which the digit 0 does not 
occur. Thus three digits is the minimum we need to construct sequences 
of the desired type. 

Although part a is actually a corollary of part b, we have stated the 
problems separately, for part a is somewhat simpler. 

126.·· Let T be a positive integer whose digits consist of NO's and I's. 
Consider all the n-digit numbers (where n < N) obtained by writing down 
n consecutive digits of T; there are N - n + 1 such numbers, starting 
at the 1st, the 2nd, ... , the (N - n + 1 )th digit of T.6 

Show that, given n, we may choose Nand T in such a way that all 
the n-digit numbers obtained from T are different, and that every n-digit 
number consisting entirely of 1 's and O's is to be found among them. 

• Thus if T = 10010, then the two-digit numbers we obtain in this way are 10, 00, 
01, and 10 again. 
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VII. DISTRIBUTION OF OBJECTS 

127. We are given 10 cookies of each of 20 flavors. The cookies are dis­
tributed into 20 boxes, 10 cookies to each box. Show that however the dis­
tribution is made, it is always possible to select one cookie from each box 
in such a way that the 20 cookies so obtained are all of different flavors. 

128. The marriage p,oblem. Suppose that there are m boys and M girls, 
and that each boy is acquainted with a certain number of the girls. 
Suppose, moreover, that for each subset of k boys (1 ~ k ~ m), the total 
number of their acquaintances is at least k. Show that it is possible for each 
boy to marry one of his acquaintances without bigamy being committed. 

VIII. NONDECIMAL COUNTING 

The problems in this section are related by the fact that their solution 
involves the use of number systems other than the familiar decimal system. 
For the reader's convenience. we now give a brief account of these 
systems. 

Consider an infinite sequence of integers Uo = 1, Ul> u2, ••• 'Un> ••• , 

with U o < U1 < U2 < .. '. Let N be any given positive integer, and 
suppose u" is the largest member of the sequence which is ~ N. We 
divide N by Un> obtaining a quotient q .. and a remainder, .. ; that is, 
N = qnun - '., where q .. = [N/unl and 0 :::: , n < Un' Next we divide, n 
by Ur _ l , c!'taining a quotient qn-l and a remainder 'n-l; thus'n = 

q,._lun_ " -1> where qn-l = [tn/un_Il, and 0 ~ , n-l < Un-I' We now 
div:de , .-1 by U n_ 2, and proceed in this way, obtaining the equations 

N = qnun +'n 

, n = qn-lun-l + , n-l 

, n-l = q n-2Un-2 + , n-2 

'2 = qlul + '1 
'1 = qouo 

O~'n<Un 

o ~ 'n-l < Un _ 1 

o ~ 'n-2 < Un_2 

(1) 
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The last remainder ro is zero, since U o = 1. It is possible that some earlier 
remainder ri is zero, in which case qi-l = qi-2 = ... = qo = O. 

Combining equations (1) we get 

(2) 

where qi = [rHJui]. Since 0;;:; rHI < UH1' we have 0;;:; qi < Ui+lJU j • 

We will refer to equation (2) as the representation of N in the number 
system determined by {uo, U1, U2, ... }. Note that r i = qi-lui-l + ... + 
q1u1 + qo, and therefore, since r. < Ui , we have 

(1 ;;:; i;;:; n + 1). (3) 

It is easily seen that, conversely, given a sequence q", qn-b ... ,ql, qo 
of nonnegative integers satisfying condition (3), the expression q"u" + 
qn-lun-l + ... + q1ul + qouo is the representation of its sum in the number 
system determined by {uo, Ul' UZ, ••• }. The inequalities 0 ;;:; q. < UHl/Uj 

are not always sufficient for this, as we shall see later (page 15). 
A case of particular importance arises if we choose a fixed integer 

b > I and let Ui = bi. Then UHl/Ui = bH1/bi = b, and our expansion 
takes the form 

(4) 

where 0 ;;:; qi < b. When b = 10, this means that 0 ~ qi ~ 9. In this 
case qm qn-h ... ,qo are the digits of N in the usual decimal notation, 
which is customarily abbreviated as N = qnqn-l ... qo (not a product!). 
In general, equation (4) is referred to as the representation of N to the base 
b, and the resulting number system is called the b-ary system. (For 
b = 2, 3, and 10 the terms binary system, ternary system, and decimal 
system are preferred.) 

It is easy to show conversely that given integers qn' qn-l> ... ,qb qo, 
with 0 ;;:; qi < b, the expression qnbn + qn_lbn-1 + ... + q1b + qo is the 
representation of its sum to the base b; as noted earlier, this property 
need not hold for more general sequences {uo, Ul> U2 • ... }. 

The case b = 2, that is, the binary system, is especially important 
and is used in solving problems 129 and 130. Here the "digits" q. satisfy 
o S;; qi < 2, so that each q. is either 0 or 1. Hence the representation 

gives us an expression of N as a sum of distinct powers of 2, namely, those 
powers 2' for which q. = 1. For example, the binary expansions of the 
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integers ~ 10 are as follows: 

Abbreviated notation 

1= 20 

2= 21 10 

3= 21 + 20 11 

4= 22 100 

5= 22 + 20 101 

6= 22 + 21 110 

7= 22 + 21 + 20 III 
8 = 23 1000 

9 = 23 + 20 1001 

10 = 23 + 21 1010 

In the right-hand column we show the abbreviated notation, in which 
only the digits qnqn-l ... qlqO are written, just as in the decimal system. 

As another example (which is of use in problem 131), we consider the 
case where the U j are the Fibonacci numbers, that is, U o = I, Ut = 2, and 
ui = Ui-l + Ui _2 for i ;;;:; 2. The first few of these numbers are shown in 
the following table. 

o 2 3 4 5 6 7 8 9 10 

Ui 2 3 5 8 13 21 34 55 89 144 

The number system determined by this sequence is called the Fibonacci 
system, or F-system for short. Since 0 ~ qi < UH 1!Ui = (ui + Ui_l)/Ui < 
(ui + uJ/ui = 2, we see that each qi is either 0 or I, as in the case of the 
binary system. But it is not true that every expression of the form 
q,.u,. + ... + qoUo, with 0 ~ qi ~ I, is the representation of its sum in the 
F-system. In fact, we cannot have two consecutive digits qi-l and qi-2 

equal to 1. For if qi-l = qi-2 = I, then qi-1Ui-l + qi-2ui-2 + ... + 
qoUo ;;;:; Ui-l + Ui-2 = U;, a contradiction to inequality (3) above. 

On the other hand, if 1 = q .. , qn-l, ... ,ql> qo is a sequence of I's 
and O's, such that no two consecutive terms are I, then the expression 
q,p,. + qn-lun-l + ... + q1ul + qouo is the F-expansion of its sum N. 
For if I ~ i ~ n + 1, we have 
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where k = 0 or 1 according as i is odd or even. If i is odd, then 

U, _ 1 + Ui-a + Ui-o + ... + U2 + U o 

= (u; - ui_;) + (UH - u._4) + (uH - ui-J + ... + (ua - uJ + Uo 
= U i - U1 + U o = U; - 1. 

(5) 
If j is even, then 

Ui-l + Ui-8 + Ui-o + •.. + U8 + Ul 

= (Ui - Ui_;) + (Ui-2 - ui-J + ... + (u2 - u o) (6) 

= Ui - U o = Ui - 1. 

Thus in any case, 

so that the inequalities (3) are satisfied. This shows thatq"u" + ... + qoUo 
is the F-expansion of its sum. 

The F-expansions of the integers from I to 10 are as follows: 

Abbreviated form 

1= 

2= 2 10 

3= 3 100 

4= 3 +1 101 

5= 5 1000 

6= 5 +1 1001 

7= 5 +2 1010 

8=8 10000 

9=8 +1 10001 

10 = 8 +2 10010 

In problems 130 and 131 we are concerned with mathematical games 
of the following type. 

A network of nodes and lines is given, the one illustrated in fig. 10 
for example. There is a unique highest node, marked START. The game 
is played by two players with a counter which is initially placed at START. 

The first player moves the counter downward along one of the lines 
emanating from START, until it covers an adjacent node. For example, 
in fig. 10 the first player could move to anyone of the positions marked 
1,2, or 3. Next, the second player moves the counter farther down in the 
same manner. In the figure, if the first move is to position I, the second 
move must be to 4; if the first move is to 2, the second move must be to 
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START 

Fig. 10 

5; while if the first move is to 3, the second move could be to either 6 or 
7. The game continues in this way, with the two players alternately 
moving the counter downward, until a position is reached where no 
further move is possible (nodes 7, 8, 9, and 10 in the figure). The player 
whose turn it is to move is then unable to play, and loses the game. In 
other words, the object is to make the last move. 

We wish to describe briefly how such games can be analyzed. Bya 
winning position we mean one with the property that whoever plays from 
it can win the game by proper play, no matter what his opponent does. 
The other positions are called lOSing positions; they are such that whoever 
has to move from them will be defeated by a skilled opponent. The 
following three properties are clear: 

(1) The nodes at the bottom of the network are losing positions. 
(2) A node A is a winning position if it is possible to move from A 

to a losing position. 
(3) A node B is a losing position if every move from B leads to a 

winning position. 

By using these three properties we can determine the nature of every node 
in the diagram, starting at the bottom and working up. For example, in 
fig. 10 we first mark the bottom nodes with an L (for losing). This gives 
fig. ll. 

Next, using property (2), we see the nodes 3, 4, 5, and 6 are winning 
positions; marking them with a W, we obtain fig. 12. By property (3) it 
now follows that nodes 1 and 2 are losing positions; this gives fig. 13. 

Finally, we see from property (2) that the START is a winning position. 
This means that the first player can win the game by moving either to 1 or 
2, and then, after his opponent moves, pushing the counter to the bottom. 
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J;'i8·11 

Fig'12 

Fig. 13 
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It is clear from our analysis that with proper play on both sides, the 
game is a win for the first or second player according as the START is 
marked with a W or an L. 

In actual practice, the method we have just described for finding the 
winning and losing positions can be quite cumbersome to apply. The 
following theorem gives a convenient criterion for identifying the set 
of all losing positions in the network without working up from the 
bottom. 

Theorem. Let r be a subset of the nodes of the network such that 

(4) No two nodes of r are connected by a line of the network. 
(5) From every node not in r there is a line leading (downward) to a 

node of!:. 

Then r is precisely the set of all losing positions. 
Proof The nodes at the bottom of the network are in C, for otherwise 

property (5) would be violated. Now suppose you are playing the game 
and find yourself at a node of!:. By (4) you must move the counter to a 
node not in C. By (5) your opponent can then move it back to a node of 
!:. Continuing in this way, you will find yourself at lower and lower nodes 
of r, until you finally reach the bottom of the network; you will then be 
unable to move. Thus the nodes of r are losing positions. On the other 
hand, if you start at a node not in r, you can move the counter to a node 
in r by (5). Then you have put your opponent in a losing position and 
thus have won the game. Hence the nodes not in r are winning positions. 

The use of this theorem will become apparent in problems 130 and 
131. 

129. U. The squares of an infinite chessboard are numbered successively 
as follows: in the corner we put 0, and then in every other square we put 
the smallest nonnegative integer that does not appear to its left in the 
same row or below it in the same column (fig. 14). What number will 
appear at the intersection of the 10000h row and the IOOth column? 

Fig. 14 
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130." The game of Nim. Two players play with three piles of matches. 
Each player in turn takes a number of matches (as many as he likes) from 
any of the piles (but only from one pile in each turn). The winner is the 
one who takes the last match. 

Determine the initial conditions for which the first player can force 
a win, and those for which he cannot, and give a method of play with 
which he will always win in the first case. 

. Remark. Instead of three piles of matches we may use a piece of paper 
With three rows of squares and three checkers (fig. 15). The players alternately 

e 
~ 

~ 

Fig. 15 

move one of the checkers any number of squares to the right, and the winner is 
the one who makes the last move. In this form the game may conveniently be 
played in a classroom, using chalk and an eraser. 

Similar remarks apply to the following problem. 

131.· .. Wythoff's game.s The game is played with two piles of matches. 
The two players alternately remove from the piles. They may either take 
as many matches as they like from one pile or take the same number from 
both piles. The winner is the one who takes the last match. 

Determine the initial conditions for which the first player can force a 
win, and those for which he cannot, and give the correct method of play 
for him in the former case. 

IX. POLYNOMIALS WITH MINIMUM DEVIATION 
FROM ZERO (TCHEBYCHEV POLYNOMIALS) 

Problems 133 to 138 are concerned with P. L. Tchebychev's classical 
theorem on the polynomials with minimum deviation from zero (see 
problem 135) and related results. These questions play an important part 
in modern mathematics. 

• Nim and Wythoff's games are both played in China, the latter under the name of 
Tsan-shitsi (which means "choosing stones"). The mathematical theory of the game 
was given by Wythoff in Ref. [25]. See also Coxeter, Ref. [5] 
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Fig. 16 

The deviation of a function f(x) from zero on some interval is the 
maximum absolute value assumed by the function on the interval. Thus 
the deviation from zero of the function y = f(x), whose graph is given in 
fig. 16, is the length MP. 

132. Show that 

a. sin noc = (~) sin oc cos .. - 1 oc - (;) sin3 oc cos .. - 3 oc 

+ (;) sins oc cosn- S oc - ... ; 

so that, for example, 

sin 60c = 6 sin oc coss oc - 20 sin3 oc cos3 oc + 6 sin° oc cos oc. 

b. cosnoc = cosn oc - (;) sin2 occosn-2 oc + (:) sin" oc cosn-4 oc - 0 •• ; 

so that, for example, 

cos 60c = cosG oc - 15 sin! oc cos" oc + 15 sin" oc cos2 oc - sinG OCo 

c. 
(~) tan oc - (;) tan3 oc + (;) tanS oc - 0 0 0 

tannoc=----------------------------------

1 - (;) tan2 oc + (:) tan~ oc - ... 

so that, for example, 

L 6 tan oc - 20 tanS oc + 6 tanS oc 
tanua=--~~~--~~~~~~=-~ 

1 - 15 tan2 oc + 15 tan" oc - tanG oc 

133. Tchebychev's polynomials. Prove that for all x in the interval 
-I ~ x ~ I, the expression 7 

Tn(x) = cos (n cos-1 x) 

• Here oos-1 x means the angle at such that 0 ~ at ~ ",. and cos at = x. 
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is a polynomial in x of degree n with leading coefficient 2"-1. Find all the 
roots of the equation T,,(x) = 0 and all the values of x between -I and 
+ I for which T,,(x) assumes a maximum or a minimum. 

134. Find the quadratic polynomial 

x2 + px + q 

whose deviation from zero on the interval -I ~ x ~ I is least. 

135. • * Prove that the deviation from zero of the polynomial 

x" + a"_lx"-l + an_ 2x"-2 + ... + alx + a o 

of degree n with leading coefficient I, on the interval -I ~ x ~ I, is at 
least 1/2n

- 1 and is equal to 1/2"-1 if and only if the polynomial is 
(l/2 n- 1)T,,{x) (see problem 133). 

136.· Find all the monic polynomials (Le. with leading coefficient I) whose 
deviation from zero on the interval - 2 ~ x ~ 2 is the least possible. 

137. ** The deviation from zero of a function f(x) on a set of points 
x = a, x = b, x = c, .. . ,x = k is the maximum of the numbers If(a)l, 
If(b)l, ..• , If(k)l. 

Find the monic polynomial of degree n whose deviation from zero on 
the n points x = 0, I, 2, ... , n is the least possible. 

138.*** Let AI' A 2, ••• , An be any n points of the plane. Show that on 
any segment of length I there is a point M such that 

_ _ _ (')" MAl' MA 2 ' •• MAn;;;; 2 4 . 

How should the n points AI> A 2, ••• ,A" be chosen so that on a given 
segment PQ of length I there is no point M for which 

_ _ _ (,)n 
MAl' MA2 ' " MAn> 2 4 ? 

X. FOUR FORMULAS FOR 7t 

It has been proved that 7r, the ratio of the circumference of a circle 
to its diameter, is not only irrational but is not even a root of any poly­
nomial xn + alXn- 1 + ... + an = 0 with rational coefficients a1> ... ,an' 
In particular, there is no expression for 7r involving only a finite number 
of rational numbers, addition, subtraction, multiplication, division, and 
root extraction signs. There are, however, a large number of expressions 
for 7r involving, infinite sums or products, the first such formula having 
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been obtained in the sixteenth century (see problem 144a). In this section 
we derive a number of the classical formulas for 17', allowing us to calculate 
its value as closely as we like. See Ref. [II]. 

139. Prove that 

a. If 0 < ot < 17'/2, then sin ot < ot < tan ot. 

b. If n is an integer > I, and 0 < not < 17'/2, then (sin ot)/ot > 
(sin not)/not. 

140. Simplify the expression 

ot ot ot ot 
cos - cos - cos - ... cos - . 

2 4 8 2" 

141. Find polynomials with rational coefficients whose roots are 

a. cot2 __ 17'_ , 
2m + 1 

2 217' 
cot --- 2 317' 2 m17' cot ---, ... ,cot ---; 

b. cot!!.... 
4n 

• 2 17' c. sm-. 
2m 

d. sin2 ..!!.... , 
4m 

142. Prove that 

317' -cot-
4n • 

• 2217' sm -
2m' 

• 2 3 17' sm -
4m' 

2m + l' 2m + 1 2m + 1 

517' 
cot-

4n' 
717' (2n - 3)17' 

-cot - , ...• cot • 
4n 4n 

t 
(2n - 1)17' 

-co 
4n 

• 2 317' . 2 (m - 1)17' 
sm - •... ,sm ; 

2m 2m 

• 2 517' . 2 (2m - 1)17' 
sm -, ... ,sm . 

4m 4m 

(for n even); 

2 17' 2 217' 2 317' a. cot --- + cot --- + cot -- + ... 
2m + 1 2m + 1 2m + 1 

+ cot2~ = m(2m -1); 
2m + 1 3 

2 17' 2 217' 2 317' b. csc --- + csc --- + csc --- + ... 
2m + 1 2m + 1 2m + 1 

+ CSC2~ = m(2m + 2). 
2m + 1 3 ' 

c. for even n 

17' 317' 517' 717' 
cot- - cot- + cot- - cot- + ... 

4n 4n 4n 4n 

+ 
(2n - 3)17' (2n - 1)17' 

cot - cot = n. 
4n 4n 
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143. Prove that 
• 7T • 27T • 37T • (m - l)7T __ Jm 

sm - Sin - Sin - ..• Sin 
2m 2m 2m 2m 2m-

1 

and 
• 7T • 37T • 57T • (2m - l)7T J2 

sln-sm-SIn-" . Sin =-
4m 4m 4m 4m 2m 

144a. From the result of problem 140 deduce Vieta's8 formula 

7T 1 

2 J! J! + !J! J! + !J! + !J!'" 

b. Evaluate the infinite product 

!. J! + !.! J! + !J! + !.! J! + !J! + !.J! +!.! .... 

145a. From the identities 142a and b deduce Euler's formula 

b. What is the sum of the infinite series 

111 1 +-+-+-+ ... ? 
2' 3' 4' 

146a. From the identity of 142c deduce Leibniz's9 formula 

7T 1 1 1 -=1--+---+···. 
4 3 5 7 

b. What is the sum of the infinite series 

111 1+-+-+-+"'? 
32 52 72 

147. From the identity in problem 143 deduce Wallis's formula1o 

z:=~.~.~.~.§.~ ... 
2 133 5 5 7 

8 Fran~is Vieta (1540--1603), a French mathematician, one of the creators of 
modem algebraic notation. 

• Gottfried Wilhelm Leibniz (1646-1716), a German mathematician. one of the 
inventors of the differential and integral calculus. 

10 John Wallis (1616-1703), an English mathematician. 
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XI. THE CALCULATION OF AREAS OF REGIONS 
BOUNDED BY CURVES 

25 

Problems 148 to 157 are concerned with the calculation of the areas 
of curvilinear figures (that is, figures bounded by curves). In high-school 
geometry we learn to calculate the areas of certain simple plane figures: 
circles, and sectors and segments of circles. But in many problems in both 
pure and applied mathematics, we have to calculate the areas of more 
complicated figures, with boundaries that need not consist of straight lines 
and arcs of circles. The integral calculus is concerned in part with general 

x 

• b 

Fig. 17 

methods for calculating such areas. Most of these general methods were 
created in the seventeenth and eighteenth centuries, when the development 
of the sciences made numerous calculations of this type necessary. How­
ever, isolated problems in the calculation of areas were dealt with long 
before that time: a number of them were solved by various special tricks 
which use no more than high-school mathematics. We give a number of 
these below. 

The central role in this series of questions is played by problems 151 
to 154, which contain the geometric theory of natural logarithms. 

In the following problems we will calculate the areas of certain 
curvilinear trapezoids A BCD bounded by a curve BC given by the equation 
y = f(x) (for instance, the parabola y = X2, or the sine curve y = sin x), 
a segment AD of the x axis and two vertical lines AB and CD, corre­
sponding to x = a and x = b (fig. 17a). In certain cases the side AB of 
our trapezoid may degenerate to a point, and we shall then be dealing 
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with a curvilinear triangle instead of a curvilinear trapezoid. See, for 
example, triangle ACD in fig. 17b. 

In calculating the area of a curvilinear trapezoid ABCD (as in the 
calculation of the area of a circle) we must use the concept of limit. Let 
us divide the base line AD of the trapezoid into n parts by means of points 
MI> M 2, ... , M"_I> and let the lengths of AMI' M I M 2, M 2Ma, ... , M"_ID 
be hI> h2' ha, ... ,h .. , respectively. Next draw vertical lines through 
MI> M 2, ••• , M"_l to meet the curve y = /(x) at the points NI , N2, ••• , 

N n - I (fig. 18). Construct n rectangles with bases AMI> M1M2, M 2Ma, ... , 
Mn_1D and heights MINI> M 2M2, MaMa, ... , DC, respectively. 

Let the x coordinates of the points Mb M2, ... , M n_1• D be Xl, 
X2, ... ,xn_ 1• X .. ; then since the X coordinate of A is a, and that of B is 
b, we have Xl = a + hI> X2 = a + hI + h2' ... ,Xn - 1 = a + hI + h2 + ... + 
hn- 1 = b - hm x .. = b. The lengths of the segments MINh M2N2, 
MaNa, ... , DC are equal to /(x1),/(xJ,f(xs), . .. ,/(x .. ). respectively; 
it follows that the area of the steplike polygon we-have constructed from 
our n rectangles is 

New let n tend to infinity. at the same time making an the lengths 
hI> h2' ha, ... ,h .. of the segments AMI' M 1 M2, M2Ma, ... , M .. _ID tend 
to zero. Then in all cases considered in this book, Sn will tend to a limit 
which is the area of the curvilinear trapezoid ABC D.ll 

11 We might equally well have taken the heights of our n rectangles to be the segments 
AB, MiN" M.N •• ...• M .. -1N,,-1' It turns out in all the examples given below that 
the area of the polygon formed in this way will tend to the same limit as S" (for n -+ 00 

and all hi tending to zero). This common limit is the area of the curvilinear trapezoid 
ABeD. 

It follows that we need only distribute our n - 1 points M" M .. ...• M n - 1 on AD 
in a manner that allows us to calculate the sum (7); we then let n -+ 00 in the formula 
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In the following problems, a and b are positive real numbers such that 
a<b. 

y 

Fig. 19 

148. Calculate the area of the curvilinear triangle bounded by the parabola 
y = X2, the x axis, and the line x = a (fig. 19). 

149a. Find the area bounded by the wave ABC of the sine curve y = 
sin x (-7T/2 ;;;; x ;;;; 37T/2) and the line A C (fig. 20a). 

b. Find the area of the curvilinear triangle bounded by the sine curve 
y = sin x, the x axis, and the line x = a, where a < 7T (fig. 20b). 

lSOa. * Find the area of the curvilinear trapezoid bounded by the curve 
y = xm (where m is an integer * -1), the x axis, and the lines x = a and 
x=b. 

b. Using the result of part a, find the area of the curvilinear triangle 
bounded by the curve y = xm (m > 0), the x axis, and the line x = b. 

The next four problems deal with the calculation of the area of the 
curvilinear trapezoid bounded by the curve y = X-I = l/x, the x axis, and 
the lines x = a and x = b, that is, with the case m = -1 excluded in 150a. 

Logarithms and exponentials are often introduced in high school in 
the following way. If n is a positive integer, one defines 

.. factors -----­an = aa" ·a. 

obtained, and find the area of the curvilinear figure. Of course we must be careful to 
choose the division points in such a way that as n -+ 00 the distance between neighboring 
points tends to zero. 

The calculation of the area of a curvilinear triangle (fig. 17) is treated in the same 
manner as the calculation of the area of a curvilinear trapezoid. 
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If a =1= 0, and n is a negative integer, then an is defined to be I/a-", while 
aO is defined to be 1. It is then shown that am+n = am . an and am" = (am)" 
for any integers m and n. At this point the student is expected to see 
intuitively that if a > 0, then a'" can be defined even when x is not an 
integer, in such a way that the "laws of exponents" aU+" = aUa" and 
aU" = (aU)" continue to hold. The logarithm of y to the base a, denoted 
by 10gaY is then defined to be "that number x such that a'" = y." The 
crucial point, namely the existence and uniqueness of such a number x, 
is not discussed. One then goes on to show that 

lo~ uv = lo~ u + lo~ v 
and 

lo~ u" = v lo~ u. 

All of this can be made perfectly rigorous; we will briefly indicate 
some of the steps. First of all, if q is a positive integer, the function y = XI 
increases continuously from ° to co as x goes from ° to co (fig. 21). 

Hence any horizontal line y = a, where a > 0, cuts the curve in a 
unique point. In other words there is a unique value of x such that 
XI = a. We use the symbol a1/

q to denote this value. Next, if p is any 
integer, and q is a positive integer, we define a11/

q to be (a1/
q

)11. Thus we have 
defined a" for all rational numbers r. The laws of exponents, namely 
ar+s = ar . a", arB = (ary, where rand s are rational, are not hard to prove 
using the above definitions. It is also easy to show that ar is an increasing 
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function of r if a> I, i.e. that ar < a8 whenever r < s. If a < I, then a1' 
is a decreasing function of r. 

If x is irrational, choose an increasing sequence {r ,,} of rational 
numbers such that lim r" = x. The sequence {arn } is monotone and 

n_oo 

bounded. Hence lim arn exists. We denote this limit by aX. It can then 
.. _00 

be shown that the function aX is continuous and satisfies the laws of 
exponents. It is monotone increasing if a > I, and decreasing if a < I 
(fig. 22). 

The continuity and monotonicity of aO! imply that for any given 
y > 0, there is exactly one value of x such that y = aX. We denote this x 
by the symbol log.. y. The properties log.. uv = log.. u + log.. v, log.. U2 = 

v log.. u are now simple consequences of the laws of exponents. 
The development of exponentials and logarithms sketched above can 

be regarded as the "old-fashioned" treatment. At the present time the 
preferred method is to define the logarithmic function log.. x as the area 

y y 

x 
a>1 a< 1 

graph of y - a" 

a. b. 

Fig. :z:z 
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under part of a certain hyperbola. The exponential function is then defined 
as the inverse function of y = log..x. In problems 151-154 we develop 
this approach more fully, and show that it leads to the same results as the 
old-fashioned treatment. 

151. Let SI and S2 be the areas of the curvilinear trapezoids bounded by 
the hyperbola y = I/x, the x axis, and the lines x = aI' x = b1 and x = a2, 
x = b2, respectively (fig. 23). Show that if bI /al = bJa2, then Sl = S2' 

Y 

Fig. 23 

We now proceed to determine the area of the curvilinear trapezoid 
bounded by the hyperbola y = I/x, the x axis, and the lines x = a and 
x = b (fig. 24). By the result of 151 this area depends only on the ratio 
b/a = c; trapezoids for which this ratio is the same have the same area. 
In other words, the area is a function of c = b/a; we denote the function 
by F(c). It is clear that for every z > I, F(z) is equal to the area of the 
curvilinear trapezoid bounded by the hyperbola y = l/x, the x axis, and 

y 

x 

Fig. 24 
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the lines x = I and x = z (see fig. 25a, in which this area is shaded). It 
is natural to put F(I) = 0; and in the future we shall do so. As regards 
values of z less than I, we agree that F(z) will then mean the area of the 
trapezoid bounded by the hyperbola, the x axis, and the lines x = 1 and 
x = z, but taken with the negative sign. We have now defined F(z) for all 
positive z, and according to our definition F(z) > 0 for z > I, F(1) = 0, 
and F(z) < 0 for z < l. 

y y 

x 

• b 

Fig. 25 

The following three problems are devoted to a study of the function 
F(z): they lead us to the conclusion that this function coincides with the 
logarithmic function, familiar from high-school work, the only difference 
being that it is to a base different from 10. 

152. Prove that for any positive ZI and Z2 

F(ZIZJ = F(z}) + F(zJ. 

153. Prove that the function F(z) assumes the value 1 at some point 
between 2 and 3. 

In what follows we shall always use the letter e to denote the value of 
z for which F(z) = I. Thus the conclusion of 153 is that the number e 
exists and that 2 < e < 3. 

This number e plays an important part in mathematics and often 
appears in contexts that at first glance have nothing to do with its definition 
as the area under a hyperbola. See, for example, problems 158, 163, 164, 
and 80 (in vol. I). 

154. Suppose 10& z is defined as indicated on pp. 27-29. Show that 

F(z) = log. z. 
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Thus geometric considerations of the area under a hyperbola have 
led us to the function12 log z. This fact will help to explain why the creators 
of the theory of logarithms, Napier and Burgi, who developed the theory 
independently and almost at the same time, both chose as their base not 
10 (which might seem the logical choice) but the irrational number e. 
Napier and Burgi did not, in fact, consider the area under a hyperbola, but 
in essence their definitions of logarithms are fairly close to ours, and both 
immediately lead to logarithms to base e.13 

Logarithms to base e are customarily called natural logarithms and 
are denoted by the symbol In: 

In z = loge z. 

We have thus proved that F(z) = In z. It follows that the area of the 
curvilinear trapezoid bounded by the hyperbola y = Ilx, the x axis, and 
the lines x = a, x = b (where b > a) is equal to In (b/a) (see problem lSI 
above). This result has numerous applications, and it explains the frequent 
occurrence of logarithms in problems that at first glance seem to have no 
connection with them. See, for example, problems 155, 156, 167, 170, 
173, and 174. 

For notions of probability used in the next three problems, refer to 
Section VII (page 27) in Volume I. 

155. * * * A rod is broken into three pieces; the two break points are 
chosen at random. What is the probability that an acute-angled triangle 
can be formed from the three pieces? 

156. ** * A rod is broken in two at a point chosen at random; then the 
larger of the two pieces is broken in two at a point chosen at random. 
What is the probability that the three pieces obtained can be joined to 
form a triangle? 

157.*** Buffon's problem. 14 A plane is ruled with parallel lines, the dis­
tance between two consecutive lines being 2a. A needle of length 2a and 
negligible thickness is dropped in a random fashion on the plane surface. 
Prove that the probability that the needle lands across one of the lines 
is 211T ~ 0.637 (where 1T as usual denotes the ratio of the circumference of 
a circle to its diameter). 

11 We can arrive geometrically at logarithms to other bases simply by considering 
the area under hyperbolas y = c/x, where c # I. For instance, we arrive at the so­
called common logarithms by choosing c = Iflog, lO "" 0.4343. However, there are a 
number of reasons why logarithms to base e are particularly simple and natural. These 
reasons are connected with the fact that the simplest hyperbola of the form y = c/x 
is the one with c = 1. 

18 Reference [II deals with the history ofthe theory of logarithms. 
"Georges Buffon (1707-1788), a famous French scientist. 
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XII. SOME REMARKABLE LIMITS 

The following problems on limits are connected with the geometric 
problems of the last section. The solutions depend on the results of prob­
lems 148 to 154. Purely algebraic solutions to some of these problems are 
given in references [17] and [21]. 

158. Find the values of the following limits: 

a. limn In (1 + !). 
n~«l n 

b. lim n log,. (1 + !). 
n-+(X) n 

c. lim n( \Ya - 1). 

159&. * Find the area of the curvilinear trapezoid bounded by the curve 
y = cr, the x axis, the y axis, and the line x = b (fig. 26a). 

b. Find the area of the curvilinear triangle bounded by the curve 
y = loga x, the x axis, and the line x = b, where b > I (fig. 26b). 

y 

y 

a. b. 
Fig. 26 

160. * Find the area of the curvilinear trapezoid bounded by the curve 
y = (lo~ x)/x, the x axis, and the line x = b, where b > I (fig. 27). 
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PROBLEMS 

log. x 
y=-­x 

Fig. 27 

161. Show that for k > -1 

. 1 k + 2k + 3k + ... + nk 1 
hm =--. 
n-oo nk

+1 k + 1 

x 

The result of 161 shows that for large n the sum 1 k + 2k + 34 -j- ••• + 
nk, where k > -I, is asymptotically nJ.+l/(k + I). This same sum for the 
cases k = -I and k < -I will be considered in problems 167 and 169. 

In what follows we repeatedly come across approximate estimates 
for sums and products, made on the assumption that the number of 
summands or factors is large. These estimates are of two different types. 
If we are lucky, we find a comparatively simple expression such that the 
difference between it and the sum of n terms tends to zero as n ->- 00. In 
such cases the absolute error made by replacing the sum by our expression 
will be very small for large n. We shall say that the sum of n terms is 
approximately equal to our expression and shall use the symbol ~ for 
approximate equality. 

But sometimes, for example in problem 161, we have a different 
situation. Here we cannot assert that the difference 1 k + 2k + 3k + ... + 
nk - nk+l/(k + 1) becomes very small for large n. However, the ratio 
(I k + 2k + 3k + ... + nk)(k + 1 )/nk+l for large n is very close to one. 
So if we replace the sum 1 k + 2k + 3k + ... + nk by the expression 
nk+l/(k + I), we commit an error which may be large, but is small 
compared to the sum 1 k + 2k + 3k + ... + nk itself. The relative error 
approaches zero as n ->- 00. In such cases mathematicians speak of the 
asymptotic equality of two expressions and use the symbol "-'. The result 
of problem 161 is that the sum 1 k + 2k + 3k + ... + 11k is asymptotically 
equal to nk+I/(k + I): 

1 1 k + 2k + 3k + ... + nk,,-, -- nk+l. 

k + 1 
162a. * Show that the sequence 

( 1 + if. (1 + ~r (1 + jr ... , (1 + ;r· .. 
is increasing. 
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b. Show that the sequence 

is decreasing. 
From the results of 159a and b it follows easily that the two sequences 

considered in them both tend to one and the same limit. F or by a the 
sequence 

IS Increasing. Moreover, the terms cannot increase indefinitely, since they 
are all less than (I + 1/1)2 = 4. This follows from the inequality 

( 1)" ( 1)"+1 ( 1)2 1+~ < 1+; ~ 1+., 
which in turn follows from the fact that the sequence in b is decreasing. 
Thus the terms of the first sequence tend to a limit. Similarly, we can 
show that the terms of the second sequence tend to a limit: its terms are 
decreasing, and each is greater than (I + 1/1)1 = 2, since 

( 1)"+1 ( 1)" ( 1)1 1+; > 1+; ~ 1+ •. 
Moreover, since 

lim (1 + 1/n)"+l = lim (1 + .!) = 1 
,,-+00 (1 + lIn)" ,,-+00 n ' 

the limits of the two sequences coincide. 
This common limit lies between 2 and 4; in fact, it is just the number 

e, defined geometrically in problem 153: 

( 1)" ( 1)"+1 lim 1 + - = lim 1 + - = e. 
n-+oo n 11:-+00 n 

(See the solution of problem 163.) 
From the results of a and b it follows that for all positive integers n 

( 1)" ( 1)"+1 1+; <e< 1+~ ; 
this allows us to determine the value of e to any desired degree of accuracy. 
The decimal expansion of e starts e = 2.718281828459045 . .. . In 
practice one would not use the result of problem 162 to calculate e, but 
the infinite series given below in problem 164. 
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163. * Show that for any positive or negative z 

e% =-= lim (1 + ~)" 
11-00 n 

164. * * Show that 
.,.2 Z3 Z" 

e'=l+z+~+-+"'+-+'" 
2! 3! n! 

so that in particular (for z = 1 and z = -1), 

1 1 1 1 (-1)" 
- = e- = - - - + ... + -- + .... 
e 2! 3! n! 

165. * ** Show that for any positive integer n the number n! satisfies the 
inequality 

166&. ** * Show that the ratio 

tends to a limit C as n -- 00. Note that by the previous result C lies 
between .J4/5e and e, and hence, between 2.43 and 2.72. 

b. Show that the number C of part & is equal to .J2rr ~ 2.50, where 
rr is the ratio of the circumference of a circle to its diameter. 

From the result of 166 it follows that 

I· n! 1 1m = 
11- cc .J2rrn(n/et ' 

in other words, that 

(For the meaning of -. see the discussion after problem 161.) This 
approximation formula is known as Stirling's formula16 and is of frequent 
application in various branches of mathematics and physics. It turns out 

10 James Stirling (1692-1770), a Scottish mathematician. 
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that for n = 10 Stirling's formula already gives a very good approximation 
to n!. (In fact. IO! = 3,628,800. and using 5-figure tables we find that 
.j207T (lOle)lO ~ 3,598,700 (to 5 significant figures); thus if we replace lO! 

by .j2Orr (lO/e)lO our error is less than 1 %.) 
As n increases further, the relative error involved in using the formula 

decreases rapidly. At the same time it is precisely for large values of n 
that the direct calculation of n! as the product of all the integers from I 
to n becomes laborious. Stirling's formula is used in the remarks following 
the solutions of problems 78b, 798, and 79b in the first volume of this book. 

167. Put 
1 1 1 

1 + - + - + ... + -- -In n = Yn' 
2 3 n - 1 

Show that 
8.0< Yn < 1. 
b. As n -+ 00, y" tends to a limit y. 
Thus for large n we have the approximate equality 

1 1 1 
1 + 2 + '3 + ... + ; ~ In (n + 1) + Y, (8) 

and the accuracy of this approximate equation increases as n increases. 
As n -+ 00 the difference 

In (n + 1) - In n = In n : 1 = In (1 + ~) 
tends to zero (since (I + lIn) -+ I), so that (8) can also be written in the 
more elegant form 

I 1 1 
I + - + - + ... -I- - i=:::i In n + y. 

2 3 n 

(Compare this with the result of problem 173.) 
The number 

Y = lim (1 + 1. + 1. + ... + _1_ -In n) 
n"'co 2 3 n - 1 

appears often in higher mathematics (see, for example. "Mertens' third 
formula," problem 174); it is called Euler's constant. Its decimal 
expansion starts Y = 0.57721566 .... 

1688. * Show that there exists a number C such that the difference 

log 1 + log 2 + log 3 + ... + log (n - 1) _ C log2 n = ~n 
1 2 3 n-l 

always lies between - 1 and + 1. Find this number C. 
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b. Show that as n -- 00, b" tends to a limit !5 (which also lies between 
-1 and +1). 

Thus for large n we have the approximate equality 

log 1 + log 2 + log 3 + ... + log (n - 1) ~ C log2 n -t b, 
1 2 3 n-l 

or alternatively 

log 1 + log 2 + log 3 + ... + log n ~ C log2 n + b. 
1 2 3 n 

The accuracy of the approximation increases with n. 
It is interesting to compare this with problem 171. 

169. Show that as n tends to infinity, for s > I the sum 

1 1 1 1+-+-+"'+-2' 3' n' 

tends to a limit lying between I/(s - I) and siCs - I). 
The proposition of 169 may also be phrased as follows: the infinite 

series 

til 1 1+-+-+-+"'+-+'" 2" 3" 4" nB 
(9) 

converges for s > 1, and its sum lies between I/(s - 1) and sl(s - 1). 
Thus for s = 2 the sum lies between I and 2, for s = 4 it lies between 
1 and t. For the exact sum of the series I + 1/22 + 1/32 + 1/42 + ... 
and I + 1/24 + 1/34 + 1/44 + ... see problems 145a and b. For s ~ 1 
the infinite series (9) diverges; the partial sums I + 1/2' + ... + lIn' 
tend to infinity as n -- 00. (See problems 161 and 167.) 

XIII. THE THEORY OF PRIMES 

The theory of numbers is the branch of mathematics that studies the 
properties of integers. A large part of the theory is concerned with the 
study of prime numbers (that is, numbers having no divisors except I and 
themselves); problems 170-174 treat this topic. The central result among 
these problems is Tchebychev's theorem (problem 170). 

Despite the apparent simplicity of the questions that arise in the theory 
of prime numbers, it remains one of the deepest branches of mathematics. 
A number of the central questions have been solved only recently, and 
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some are still unsolved. Significant results in the theory of prime numbers 
have been obtained in the last few decades by 1. M. Vinogradov, P. Erdos, 
and A. Selberg, among others. See Refs. [12], [IS], and [23]. 

The number of primes ~ N is denoted by 7T(N); thus 

7T(I) = 0 (I does not count as a prime), 7T(2) = I, 7T(3) = 7T(4) = 2, 

7T(5) = 7T(6) = 3, 7T(7) = 7T(S) = 7T(9) = 7T(IO) = 4, 7T(II) = 7T(12) = 5, 

7T(13) = 7T(I4) = 7T(15) = 7T(16) = 6, ... 

170. *** Tchebychev's theorem. Show that there exist positive constants 
A and B such that for every N 

N N 
A -- < 7T(N) < B -- • 

log N log N 

It is clear that the result of problem 93, Volume I, follows from 
Tchebychev's theorem, since the inequality 7T(N) < BN/log N implies that 
7T(N)/N -.0 as N -.00. 

Tchebychev's theorem asserts that the number 7T(N) of primes ~ N is 
of the order N/log N. This remarkable theorem was an important step in 
determining the asymptotic behavior of 7T(N) as N -.00. 

Tchebychev found fairly close limits between which 7T(N) must lie. 
He showed that 

N N 
0.40 -- < 7T(N) < 0.48 -- . 

log N log N 

This result may be written more elegantly if we pass over to natural 
logarithms (logarithms to base e = 2.7IS ... ; see problems 151 to 154): 
7T(N) satisfies the inequalities 

N N 
0.92 - < 7T(N) < 1.11 - . 

In N In N 

Thus we see that 7T(N) is approximated with considerable accuracy 
by the function N/ln N (since the numerical multiples 0.92 and 1.11 are 
both close to I). Tchebychev also proved that if the ratio 7T(N):N/ln N 
tends to a limit as N -. 00, then this limit is necessarily I. That the limit 
of the ratio 7T(N): N/ln N as N -. 00 does in fact exist (and therefore is 
equal to I) was not proved until the end of the last century, some fifty 
years after Tchebychev's work. The first proofs of the existence of the 
limit, due to the French mathematician J. Hadamard and the Belgian 
mathematician Ch. de la Vallee Poussin, required the application of deep 
ideas from higher mathematics. An "elementary" (although very com­
plicated) proof was found in 1945 by the Hungarian mathematician 
P. Erdos and the Norwegian mathematician A. Selberg. 
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Thus it is now known that 
N 

7r{N),....." In N 

(for the meaning of the symbol,....." see above, under problem 161). 

171. *** Mertens' first theorem.16 Let 2, 3, 5, 7, II, ... ,p be the primes 
not exceeding a given integer N. Show that for an N, the quantity 

I log 2 + log 3 + log 5 + log 7 + log 11 + ... + log p _ log N I 
2 3 5 7 11 p 

is bounded, in fact < 4. 
As N increases indefinitely. so does its logarithm, for log N is greater 

than any given number K as soon as N is greater than 10K • The sum 

log 2 + log 3 + log 5 + ... + log p 
235 P 

where 2, 3, 5, 7, II, ... ,p are the primes;;:;; N, also tends to infinity with 
N. Mertens' first theorem asserts that the difference between these two 
quantities remains bounded: the absolute value of this difference is 
always less than 4. Thus the sum 

log 2 + log 3 + log 5 + log 7 + log 11 + ... + log p 
2 3 5 7 11 p 

may be approximated by the simple expression log N. The error is always 
less than 4, and therefore as N - 00 the relative error tends to O. 

In particular, it follows from Mertens' first theorem that 

log 2 log 3 log 5 log PIN 
--+--+-+'''+--''''og 

2 3 5 P 

(for the meaning of the notation see above, in the discussion following 
problem 161). For as N _ 00 

(
log 2 + log 3 + log 5 + ... -+- log p) flOg N _ 1 
235 p 

= (log 2 + log 3 + log 5 + ... + log p _ log N) /IOg N -+- O. 
2 3 5 P 

172a. Abel's jormula.17 Consider the sum 

S = albl + a2b2 + aaba + ... + a"b", 

,. F. Mertens, an Austrian mathematician who specialized in the theory of numbers. 
He was active at the end of the nineteenth century. 

17 Niels Henrik Abel (1802-1829), a brilliant Norwegian mathematician who in the 
course of his short life established a large number of important results in algebra and 
analysis. 
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where 010 O 2• 0a ••••• a .. and bI> b2• ba, •••• b .. are any two sequences of 
numbers. Denote the sums bl , b1 + b2• b1 + b2 + ba• bi + b2 + ... + b .. 
by Bh B2, Ba, •••• B .. , respectively. Show that 

S = (01 - aJB1 + (a2 - as)B2 + (as - aJBs + ... 
+ (a .. _1 - a .. )Bn_ 1 + anB ... 

h. Using Abel's formula, calculate the value of 

1. I + 2q + 3q2 + ... + nq"-l. 

2. 1 + 4q + 9q2 + ... + n2qn-l. 

173.*** Mertens' second theorem. a. Let 2,3,5,7,11, ... ,p be the 
primes not exceeding the integer N. Show that for all N > 1, the expression 

1 1 1 1 1 1 - + - + - + - + - + ... + - - In In N 
2 3 5 7 11 p 

has absolute value less than some constant T. (We could, for example, 
take T = 15.) 

b. Show that the difference 

! + !. + !. + !. + 1. + ... + !. - In In N 
2 3 5 7 11 p 

tends to a limit {J as N -- 00. It follows from part a that {J ~ 15; in fact, 
{J is approximately t· 

We thus have the approximate equality 

1 1 1 1 1 1 - + - + - + - + - + ... + - ~ In In N + {J. 
2 3 5 7 11 P 

174. Mertens' third theorem. Let 2,3,5, 7, II, ... ,p be the primes not 
exceeding the integer N. Show that as N -- 00, the product 

In N ( 1 - ~) (1 - j) (1 - ~) (1 - ~) (1 - 111) ... (1 - !) 
tends to a limit c. 

We can also write Mertens' third theorem in the form 

(1 - ~) (1 - j) (1 - ~) ( 1 - ~) (1 - /J ... (1 - !) ~ InC N' 

Using advanced methods it can be shown that the constant C is equal to 
e-Y• Here e ~ 2.718 ... is the base for the system of natural logarithms, 
and y is Euler's constant, defined in problem 167. 
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We also note the following curious formula, closely connected with 
Mertens' third theorem: 

(1 + H (1 + ~) (1 + ~) (1 + ~) ... (1 + ;) ~ ~: In N 

(where 2, 3, 5, 7, ... ,p are the primes not exceeding N). Here e and y 
are defined as above, and '1T is the ratio of the circumference of a circle to 
its diameter. The preceding formula follows from 

(1 + ~) (1 + H (1 + ~) (1 + ~) (1 + 111) ... (1 + ;) 

(1 - 1/2~(1 - 1/32X1 - 1/52X1 - 1/72)(1 - 1/112) ... (1 - I/p2) 

(1 - 1/2)(1 - 1/3)(1 - 1/5)(1 - 1/7X1 - 1/11) ... (1 - IIp) 
and 

(1 - ~) (1 - H (1 - ~) (1 - ~) (1 - 11J ... (1 - ;) ~ I:-~ 
(see problem 174), while 

(1 - 1.) (1 - 1.) (1 - 1.) (1 - 1.) (1 - ...!....) ... (1 - 1.) ~ !. 
22 32 52 72 112 p2 '1T2 

by Euler's formula, which is given in problem 145a. (See the solution to 
problem 92 of vol. 1.) 

The three theorems of Mertens, together with the prime number 
theorem (Hadamard-de la Vallee Poussin; see the text following problem 
170), are examples of the remarkable connection between natural logarithms 
and the distribution of the primes among the integers. 



SOLUTIONS 





SOLUTIONS 

I. POINTS AND LINES 

101. Yes. Consider, for example, to straight lines in the plane, no two 
of which are parallel and no three of which are concurrent. Let the lines 
be the bus routes and let the points of intersection be the stops. We can 
get from anyone stop to any other (if the stops lie on one line, without 
changing; and if not, then with just one change). If we discard one line, 
it is still possible to get from anyone stop to any other, changing buses at 
most once. However, if we discard two lines, then one stop-their point 
of intersection-will have no bus routes passing through it, and it will be 
impossible to get from this stop to any other. 

102. One possible arrangement of the routes is shown in fig. 28. There 
are seven routes and seven stops. 

7 

4 

Fig. 28 

103 •. We note that given any two stops P and Q, there is exactly one line 
joining them. For by property (2) there is at least one such line. But if 
there were two distinct lines passing through P and Q, then property (3) 
would be violated. 

Now denote by!{P) the number of lines through the stop P, and by 
g(1) the number of stops on the line I. We prove first that if P does not lie 

45 
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p 

Fig. 29 

on I, then f(P) = g(/). For let the stops of I be Q1' Q2' .•. , Q 11' where 
g = g(/). By the preceding remark, there is exactly one line joining P to 
each of the g stops Q1' Q2' •.. , Q 11. But by property (3) every line through 
P has a stop in common with I, that is, every line through P passes through 
one of the stops Ql> Q2, ••• , Q 11. Therefore there are exactly g lines 
through P, that is,f(P) = gel). 

Now consider any two distinct lines a and b. We will prove that there 
is a stop P which is on neither a nor b. By property (3), a and b have 
exactly one stop C in common. By property (I), a has at least three stops, 
so there is a stop A *- Con a. Similarly, there is a stop B *- C on b 
(fig. 30). The line joining A and B contains a third stop P by property (I). 
If P were on either a or b, property (3) would be violated. 

b 

------~~----~-----a 

Fig. 30 
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R 

d 
Fig. 31 

From what we showed above it now follows that g(a) = j(P) and 
g(b) = j(P), so that g(a) = g(b). Thus all lines have the same number of 
stops, which we denote by n + I. (This notation proves to be convenient 
in more advanced work; see the remark at the end of the problem.) 

It remains to be shown that if P is any stop, thenj(P) = n + I. It 
suffices to prove that there is some line I which does not pass through P; 
we then have j(P) = g(l) = n + 1. To construct such a line I, choose a 
stop Q *- P. Then there is a line d joining P to Q. (fig. 31). 

By hypothesis there is more than one line, so there is a stop R not on 
d. Then the line I joining Q and R has the desired property. 

b. Let I be any line, and let Ql' Q2 • ... , Q,,+l be the stops on I. 
Every line other than I has exactly one stop in common with I, that is, 
goes through exactly one of the stops Ql' Q2' ...• Qn+l' By part a we 
know that through each Q i there are n + 1 lines, one of which is I itself 
(fig. 32). Hence there are altogether (n + I)n lines other than I. Together 
with I, this gives a total of (n + I)n + I = n2 + n + I lines. 

Similarly, we choose any stop P, and let 11' 12, ••• , 1"+1 be the lines 
through P. Since every stop is joined to P by a line, every stop is on one of 
the lines Ii' By part a, Ii has n + I stops. one of which is P itself. Hence 
each I; has n stops other than P, so that there are altogether (n + I)n stops 
other than P. Together with P, we get a total of (n + I)n + I = n2 + n + 1 
stops. 

n n n n n 

Fig. 32 
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Remark. A system n of lines and stops satisfying the conditions of problem 
103 is called a finite projective plane. Generally the stops are called points. The 
number n is called the order of n. It has been proved that if n is a power of a 
prime, then there exists a projective plane of order n. Thus there exist planes 
of orders 2, 3,4,5,7,8,9, 11, 13, 16, ... For example, if n = 2, the system of 
n2 + n + I = 7 points and seven lines shown in fig. 28 is a projective plane of 
order 2. No one has ever found a projective plane whose order n is not a prime 
power. It has been proved that there is none of order 6, but it is not known 
whether or not there exists a plane of order 10. 

104a. Arrange two congruent rectangles ABCD and BEFC so that they 
touch along the common side BC (fig. 33). Draw the diagonals of each of 
these rectangles, and of the large rectangle AEF D which they form. Each 
of the three pairs of diagonals intersects in a point lying on the straight 

C 
D~--------~~------~.F 

A~--------~--------~E 
B 

Fig. 33 

line MN, where M and N are the midpoints of AD and EF, respectively. 
These three points of intersection X, Y, Z, together with the points A. B. 
C, D, E, F, comprise the nine points. As the nine lines we take the six 
diagonals, the horizontal lines AE and DF, and the line MN. which lies 
halfway between them. It is easy to see that these nine points and nine 
lines satisfy all the conditions of the problem. 

b. Suppose we could arrange seven points AI> A z, Aa, A" As, Ae, A7 
and seven lines Pb P2, Pa. p" Ps, Pe, P7 in a configuration satisfying the 
conditions of the problem. We show first that in this case any line joining 
two of the points AI> As, Aa, A 4, As. Ae. A7 is one of the seven lines PI> pz, 
Ps. P4. Ps, Pe. P7. and that any point of intersection of two of the lines Pl. pz. 
Ps. P4. Ps. Pe. P7 is one of the points AI> Az• Aa. A" As. Ae. A 7. Suppose. 
for example. that PI' Pz. Pa are the three lines which pass through the point 
AI' By hypothesis two of our points (apart from AI) lie on each of these 
lines. Thus each of the six remaining points lies on one of the lines Pl' 
Pz. Pa. This means that the line joining Al to any of the other points is 
one of the lines PI> PI. Ps· 

Similarly, we can show that the line joining any of the seven points to 
any other is one of our seven Jines, and that the point of intersection of any 
two of our seven Jines is one of the points AI> AI. As. A" A 5• Ae. A 7• For 
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a. b. 
Fig. 34 

this it is sufficient to note that through the three points which lie on one of 
the lines there pass all the remaining lines (two through each of the points). 

Let us start now with three points A}t Aa. As and the three lines. say 
Plo Pa. Ps, which join these points in pairs (fig. 34). By the conditions of the 
problem, one of the seven given Jines (other than the sides of this tri­
angle) must pass through each vertex of the triangle AIAaAs. 

Suppose that p, passes through Ah Ps through AI, and Pe through As. 
Let p, meet Ps at A" p" meet Pa at A", and Ps meet PI at As. If all the con­
ditions are to be fulfilled, we must require in addition that the three lines 
p" Pt" Pe meet at a point A7 and that the points A" As, Ae lie on a line P7' 
We shall show that it is impossible to fulfill both conditions. In particular, 
we shall show that if p" Pt" Pe meet in a point A 7• then A" As, As cannot 
be collinear. 

Any straight line which does not pass through a vertex of a triangle 
either cuts two sides of the triangle (fig. 35a) or fails to cut any of the sides 
(fig. 35b): it cannot cut just one side or cut all all three sides. If A7 lies 
inside triangle AIAaAs (fig. 34a), then all the points A" At,. As. will lie on 

a. b. 

Fig. 35 
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the sides of this triangle; and if it lies outside the triangle AIA2A3 (fig. 
34b and c), then just one of these points lies on a side of the triangle, and 
the others on the extensions of the other two sides. In the first case P7 
would have to cut all three sides of triangle AIA2Aa; in the second case it 
would have to cut just one side (and the extensions of the other two sides). 
Since both cases are impossible, we conclude that it is impossible to arrange 
seven points and seven lines to satisfy the conditions of the problem. 

105. Suppose the lines of S are not all parallel; then two (and hence, by 
hypothesis, three) of them intersect in a point A. We shall prove that all 

a b 

Fig. 36 

the lines of S pass through A. To show this, we suppose there is a line I 
in S which does not pass through A (fig. 36a) and we derive a contradiction 
as follows. In addition to A there may be other intersection points of the 
lines of S which do not lie on I (fig. 36b). But since S is a finite set, there 
are only a finite number of such points, say AI' A2, ••• ,Ak • If di is the 
distance from Ai to t, we can choose the numbering so that d l is minimal, 
that is, d l ;;; d; for i = 2, ... , k. 

By hypothesis there are at least three lines through AI' and these lines 
intersect t in points P, Q, R, where Q lies between P and R (fig. 37). 

Fig. 37 
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By hypothesis S contains a line through Q other than I and Al Q. This line 
intersects either AlP or AIR in a point Ai' But then d; < dh a contra­
diction. This proves that all the lines of S pass through A. 

106. As in problem 105, the proof is by contradiction. If A, B, C are any 
three points, let d(A; BC) denote the distance from A to the line I con­
taining Band C. Now suppose that not all points of S are collinear; then 
there exist three points A, B, C in S such that d(A; BC) > O. There are 
only a finite number of such triplets A, B, C, for S is finite. Hence there is 
at least one such triplet such that d(A; BC) is minimal. 

By hypothesis the line I through Band C contains another point D 
of S (see fig. 38). The foot P of the perpendicular from A to I divides I 

A 

B p D 

Fig. 38 

into two halflines. Two of the three points B, C, D must lie on the same 
halfline (one of them may coincide with P). Let us say for definiteness 
that the situation is as shown in fig. 38, with C a~d D in the same halfline. 
Draw CQ perpendicular to AD and CR parallel to AP. Then CQ < 
CR ~ AP, so that d(C; AD) < d(A; BC). This contradicts the fact that 
d(A; BC) was minimal, and the proof is complete. 

Remark. The above proof is due to L. M. Kelly. For a historical account 
of this problem, together with other proofs, see Ref. [6]. 

The result can also be formulated as follows: Among the lines joining 
n points in the plane, not all collinear, there is at least one ordinary line, 
that is, a line containing only two of the points. In this formulation, one 
is naturally led to ask how many ordinary lines there must be. It has been 
shown that there must be at least 3n/7 such lines; see Ref. [14]. 

107. The number n must be at least 3, since not aU of the n points lie on a 
line. If n = 3 the theorem is clear: we need exactly three lines to join the 
three possible pairs of points. We now use mathematical induction. We 
suppose the theorem has been proved for n points and show that it also 
holds for n + I points. Consider all the lines joining our n + I points in 
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pairs. According to problem 106 at least one of these lines must contain 
only two of our n + 1 points (or else all the points would lie on one line). 
Say these two points are An and An+l' If the n points AI, ... ,An lie on a 
line, it is clear that the total number of lines is exactly n + I (the line on 
which the points AI> A z, As, ... , An lie, and the n distinct lines joining 
these points to A n+I). On the other hand, if the n points AI> A2, As, ... , An 
do not lie on a line, then by the induction hypothesis there are at least n 
lines joining these points in pairs. Now draw lines joining An+! to 
AI> A 2, ••• ,An. Since AnAn+l does not contain any of the other points 
AI> A 2, As, .•• , An-I> it is distinct from all the lines joining AI' A 2• As, ... ,An 
in pairs. We have thus added at least one new line and therefore have a 
total of at least n + 1 distinct lines. Consequently, we have shown that if 
our theorem is true for n points, then it is also true for n + 1 points. By 
mathematical induction it follows that the theorem holds for any number 
of points. 

108 •. Let A, B, C, D be the four points. In all, there are six possible 
distances between the points, namely, AB, AC, AD, BC, BD, CD. Each 
of these six distances must have one of the two values a and b. There are 
a priori the following possibilities: 

(1) All six distances are a. 
(2) Five distances are a and one is b. 
(3) Four distances are a and two are b. 
(4) Three distances are a and three are b. 

Let us examine these four cases separately. 
Case 1. This case is impossible. For then the points A, B, C are the 

vertices of an equilateral triangle, and D, being equidistant from all of 
them, must lie at the center of the circumscribed circle. But then AD < AB, 
a contradiction. 

Case 2. Three of the given points, say A, B, and C, must be vertices 
of an equilateral triangle of side a. The fourth point D must be at distance 
a from two of these vertices, say A and C, and at distance b from B. 

So the points A, B, C, D are the vertices of a rhombus, one of whose 
diagonals, AC, is equal to its side (fig. 39a). It is easy to calculate that in 
this case b = BD = a.J3. 

Case 3. This case contains two subcases. 
(i) Suppose the two segments of length b have a common endpoint, 

say D. Then the remaining points, A, B, C, form an equilateral triangle 
of side a. The point D is at distance b from two of the vertices, say A and 
C, and is at distance a from the third vertex B. Since AD = CD, D lies on 
the perpendicular bisector of AC; and since BD = a = BA = BC, D 
lies on the circle with center at B which passes through A and C. Hence 
there are two possible positions for D, as shown in fig. 39b and c. Thus 
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Fig. 39 

A, B, C, D lie at the vertices of a deltoid, 1 two of whose sides are a and 
two b, and whose diagonals are each equal to a. It follows easily from the 
diagrams that in this case 

b
2 = Ap

2 + PD
2 = (~f+ (a ± a~3J= (2 ± .j3)a2

, 

that is, that 
b = a,h --j J 3 or b = a,h - Ji 

(The two signs under the radical correspond to the two possibilities 
illustrated by figs. 39b and c.) 

(ii) Suppose the two segments of length b do not have a common 
endpoint. Then the notation can be chosen so that AC = BD = b, and 
AB = AD = BC = CD = a. Since BA = BC and DA = DC, both B 
and D lie on the perpendicular bisector of AD (fig. 39d). Moreover, since 

1 A deltoid is a quadrilateral with two pairs of equal adjacent sides. 
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AB = AD, Band D are equidistant from AC. Thus the diagonals of the 
quadrilateral ABCD are perpendicular bisectors, and so ABCD is a 
rhombus. Since AC = BD, the rhombus is a square, and therefore 
b = a.J2. 

Case 4. This case also contains two subcases. 
(i) Suppose that among the four given points there are three (say A. 

B, C) which form the vertices of an equilateral triangle. Then D must be 
equidistant from these three points, and so lies at the center of the circum­

scribed circle (fig. 37c). It is clear that in this case b = AD = aJ3/3. 
(ii) Suppose that no three of our four points form the vertices of an 

equilateral triangle. Let us assume that b > a. 
Among the three segments of length b there must be two with a 

common endpoint, for the six endpoints of these segments are aU in the set 
{A, B, C, D}. Suppose such a common endpoint is A and that AB = 

AC = b. Since we have assumed that the triangle ABC is not equilateral. 
we must have BC = a. Notice now that the point D cannot be at the same 
distance from Band C (that is, cannot lie on the perpendicular AE to 
Be): for if it were, then either BD = CD = a and triangle BCD would be 
equilateral, or BD = CD = b, which would make four of our six distances 
equal to b. 

So the point D does not lie on AE, and we may suppose by symmetry 
that it lies on the same side of AEas C. Then DB > DC, so that we must 
have DB = b, DC = a. But there are altogether three segments of length 
a and three of length b; it follows that the only segment we have not yet 
considered, AD, must be of length a. We now see that the triangles ABC 
and BA D are congruent, so that C and D are at the same distance from 
AB and CD is parallel to AB. Thus the points A, B, C, D form an isosceles 
trapezoid whose shorter base is equal to the sides, and whose longer base 
is equal to the diagonals (fig. 39f). 

Let P be the foot of the perpendicular from D to AB. Then BD2 = 
BP2 + PD2 and AD2 = AP2 + PD2, so that BD2 - AD2 = Bp2 - AF = 

(BP + AP)(BP - AP). Now BD = b, AD = a, BP + AP = BA = b, 
and BP - AP = CD = a. Thus b2 - a2 = ba. Dividing by a2 and 

transposing, we obtain (bJa)2 - (bla) - I = O. Hence b/a = (I + ·/'S)/2 
(since the other root of the quadratic equation x2 

- x - I = 0 is (l - .J'S)/2, 
which is negative). 

Thus figs. 37a to f show all possible arrangements of four points in 
the plane such that the distance between any two of them is one of the 
values a and b. We see that such configurations are possible only if 

b = a.J3, b = a.J2 + .j3, b = a.J2 - .J3, 

b = a.j2, b = af, or b=a 1 +.J5 
2 ' 
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where b is the distance occurring less frequently, or if both distances occur 
the same number (three) of times, b is the longer. It is more convenient, 
however, to reformulate the result so that b is taken to be the longer of the 

two lengths in every case. Since It',h - .J3 =.J2 + .J3 and 1/(.J3/3) = 
.J3, the following possibilities are the only ones that remain: 

r I----;=- r 1 + y'5 
b = av 3, b = av 2 + V 3, b = Qv 2, and b = a --- . 

2 

b. Let us consider, in order, the possible values of n. 
(I) n = 2. In this case there is only one distance: whatever the 

location of the two points in the plane, this distance assumes only one 
value a. 

(2) n = 3. In this case there are three distances. If these distances 
are to assume only the two values a and b (say a twice and b once), the 

C 

A~B • • • 
A c D 

a. b. 
Fig. 40 

points must be the vertices of an isosceles triangle with base b and side a 
(fig. 40a and b: the latter illustrates the degenerate case when the triangle 
reduces to a line segment). It is clear that a and b need only satisfy the 
inequality 

in particular, it is possible to have a = b. 
(3) n = 4. This case was settled in part 8. 

(4) n = 5. If A, D, C, D are any four ofthe five points A, D, C, D, E, 
they satisfy the condition of part 8 and must therefore be arranged in one 
of the six configurations shown in fig. 39. Suppose, for example, that A, 
B, C, D are arranged as in fig. 39a. The distances between the four points 
A, D, C, E must assume the same two values a and b = a.J3; it follows 
that these points must be arranged as in fig. 39a or e. But three of these 
four points, A, D, C, are the vertices of an equilateral triangle of side a, 
and in fig. 39c the only equilateral triangle has side b > a. So A, D, C, E 
must be situated as in fig. 39a. Since E does not coincide with D, the only 
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possible configuration is that illustrated in fig. 41a. But in this configur­
ation DE = 2a has length neither a nor h. So we have shown that it is 
impossible for four of our five points to be arranged as in fig. 39a. 

Similarly, we can show that the points A, B, C, D cannot be situated 
as in fig. 39b or c, for if we assume that they are, we necessarily arrive at 
one of the configurations 39b or c for the five points A, B, C, D, E, and in 
each of these configurations the length of DE is different from a or b. If 
A, B, C, D are arranged as in fig. 3ge, then so are A, B, C, E, and this is 
clearly impossible if D and E are to be distinct. Similarly, if A, B, C, D 
are as in 39d, E must coincide with D (for the four points A, B, C, E must 
also be at the vertices of a square). 

B B D ~--+--';#E 

A A C 

D 

A 

E 
D 

a. b. c. 
Fig. 41 

Thus the only case remaining is the one in which A, B, C, D are at the 
vertices of the trapezoid illustrated in fig. 37f. In this case A, B, C, E must 
form a congruent trapezoid, and it is easy to see that the five points A, B, 
C, D, E must lie at the vertices of a regular pentagon (fig. 42).2 This 
arrangement of the five points is therefore the only one satisfying the 
conditions of the problem: all the 10 distances between pairs of the five 

points are equal to one of the quantities a and b = a(1 + ../5)/2. 

• Note that if we circumscribe a circle about the trapezoid ABCE (fig. 37f), then 
the points A, B, C, D will be four of the vertices of a regular pentagon inscribed in this 
circle. Toprovethis,putLDAB= LADB=oc. Then LCDB= LCBD= LCDA­
LBDA = (180° - oc) - oc(note that in the cyclic quadrilateral ABCD the angles at 
Band D sum to 180°, and the angle at B is oc by the congruence of triangles ABC 
and BAD) = 180° - 2ex = LABD, and LBCD = 180° - 2(180° - 2oc) = 40c - 180°. 
Since LBCD..., LCBA = 180°, we have Soc - 1800 

- 180°; oc = 2(180°/5) = 72°. 
Now since LABD = LDBC ~ 180°/5, it follows that AD, CD, and CB are three of 
the sides of a regular pentagon inscribed in the circle. 
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(5) n ~ 6. By the result we have just obtained, any five of the given 
n points must lie at the vertices of a regular pentagon. But if n ~ 6 points 
are all distinct, such an arrangement is clearly impossible. So there are no 
solutions to our problem for n ~ 6. 

We thus see that the problem has a solution only for n = 2,3,4, or 5. 

B 

A~----~~r-+-----~C 

Fig. 42 

l09a. Let N be a given integer, greater than 2. We are required to find N 
points in the plane, not all collinear, such that the distance between any 
two of them is an integer. 

We give two such arrangements. 
First solution. It is easy to check directly that if 

x = 2uv, Y = u2 
- v2

, Z = u2 + v2
, (1) 

then 
~+~=~ W 

By using these formulass we can find N - 2 distinct triples of positive 
integers (Xl>Yl>Zl), (X2,Y2,Z2), •.• , (XN-2,YS-2,ZS-2) satisfying (2) and such 
that Xl = X2 = ... = XN-2' For let k be any common multiple of the 
integers 1, 2, 3, ... , N - 2 such that k > (N - 2)2. To obtain our N - 2 
triples we successively put 

UI = k, VI = 1; 
k 

u2 = -; v2 = 2, 
2 

k 
Ua = 3' Vs = 3 ; ... ; 

k 
UN- 2 = ---, VN-2 = N - 2 

N-2 
in formula (1). This gives N - 2 triples (Xi'Yi,Zi)' Clearly Xl = X2 = ... = 

XN-2 = 2k, and Yl > Y2 > ... > YN-2' Moreover, YN- 2 > 0, since 

YN-2 = (_k_)2_ (N _ 2)2 > (N - 2)2)2_ (N _ 2)2 = o. 
N-2 N-2 

• Equations (I) are the well-known formulas for the lengths of the sides of a right­
angled triangle, when all these lengths are integers. See, for example, Hardy and Wright, 
Ref. [9]. 
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y 

A. 

R~------------~----------~S 

o p 

• Fig. 43 b 

N ow choose a coordinate system in the plane, and mark off n = N - 2 
points AI, A 2, A3, • .. ,An on the y axis at distances YI'Y2'Y3"" ,Yn 
from O. Let P be the point (2k,O) (fig. 43a). It is easy to see that the N 
points 0, P, AI' A 2, A 3 , ••• , A N - 2 satisfy the conditions of the problem, 
that is, that the distance between any two of them is an integer. 

Remark. Instead of marking off N - 1 points 0, AIA2> •.• , AN_2 on Oy 
and a single point P on Ox, we can take only N - 2 points on Oy, and for our 
Nth point take P' = (-2k, 0). We could also take only half our points on the 
positive y axis, and choose the remainder so that the whole configuration is 
symmetric about O. 

Second solution. We see from equations (I) and (2) that 

(3) 

Using (3) we can find N points R, S, AI' A2, ... ,AN - 2 = An on the 
circumference of a circle with diameter RS = I so that all the distances 
AlR, A 2R, ... , AnR, AIS, A 2S, ... ,AnS are rational numbers: for this 
choose n = N - 2 pairs of rational numbers (Ul>VI), (U2,l'2), ••• , (un,vn ) so 
that the ratios Ui!Vi are distinct and> I. Take for AI' A 2, ••• ,An the 
points for which AiR = (2ui v;)!(U;2 + vl); i = 1,2, ... ,n; note that in 
this case 

(fig. 43b). 
We prove now that the distance between any two of these points is 

also rational. Since the diameter of the circle is I, we have 

AIAz = sin AIRA2 = sin (AIRS - A 2RS) 

= sin AIRS cos A 2RS - sin A2RS cos AIRS 

= A1S . A2R - A 2S' AIR; 
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from which it follows at once that AIA2 is rational. By an analogous 
argument each of the distances AiAj (i,j = 1,2, ... , n) is rational. 

Suppose k is any common multiple (for instance, the least common 
multiple) of the denominators of the fractions representing the distances 
between all possible pairs of points selected from R, S, AI> A 2, ••• , An. 
Then by drawing a figure similar to the one we have constructed, but magni­
fied by a factor of k, we obtain N points, any two of which are an integral 
distance apart. All these points lie on a circle of radius k, but not on a 
straight line. 

b. We must show that an infinite number of points, not all lying on a 
straight line, cannot have the property that the distance between any two 
of them is an integer. To do so it is sufficient to prove that given three 

Fig. 44 

noncollinear points 0, P, Q, there exist only a finite number of points at 
integral distances from all of them. 

Suppose PO = m and QO = n, where m and n are integers. We 
denote by A an arbitrary point lying at an integral distance from the three 
points 0, P, Q (fig. 44). Since the difference between the lengths of two 
sides of a triangle does not exceed the length of the third side, 

lAP - AOI ~ PO = m and IAQ - AOI ;;;:; QO = n, 

equality being attained when the triangle APO (or A QO) degenerates into 
a segment of a straight line. Since the distances AO, AP, and A Q are 
integers, the differences AP - AO and AQ - AO are also integers 
(possibly negative). From the given inequalities, the difference AP - AO 
can assume only the 2m + I distinct values m, m - I, ... , I, 0, -1, ... , 
-m + I, -m, and AQ - AO the 2n + I values n, n - 1, ... ,1,0, 
-I, ... ,-n+ I,-n. 

We now show that for given values k and I of the two differences 
AP - AO and AQ - AO, there can be at most two positions for the point 
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A; it then follows that there cannot be more than 2(2m + 1)(2n + I) 
distinct positions for A, such that the distance from A to each of the points 
O. P, Q is integral. This will conclude our proof. 

Suppose then that 

AP-AO=k and AQ-AO=I. 

Draw lines AX and A Y which pass through A and are parallel to 
OQ and OP, respectively (fig. 44). Let x and y be the lengths OX = Y A 
and OY = XA, and let ot be the angle QOP. We note that ot * 0°; 
ot * 180°, since 0, P, Q are not collinear. On applying the law of cosines 
to the triangles 0 A X, PAX, and QA Y, and noting that cos A XO = 
cos (180° - ot) = cos ot, we find that 

AO = .J x 2 + y2 + 2xy cos ot 

PA = .J(x - m)2 + y2 + 2(x - m)y cos ot 

AQ = .J(y - n)2 + x 2 + 2(y - n)x cos ex. 

Since AP - AO = k and AQ - AO = I, 

.J[(x - m)2 + y2 + 2(x - m}y cos ot] - .J[r + y2 + 2xy cos otl = k, (1) 

.J[x2 + (y - n)2 + 2x(y - n)cosot] - .J[x2 + y2 + 2xy cos ot = I. (2) 

We shall transform the first of these equations. Carry the second radical 
to the right-hand side and square both sides, obtaining 

(x - m)2 + y2 + 2(x - m)y cos ot 

= x 2 + y2 + 2xy cos ot + 2k.J (r + y2 + 2xy cos ot) + k 2 

or 

\:2 _ 2xm -I- m2 + y2 + 2xy cos ot - 2my cos ot 

= x 2 + y2 + 2xy cos ot + 2k.J'-(X-=2-+-y--:2-+-2x-y-c-o-s---:ot) + k 2 , 

or 

-2xm - 2ym cos ot + m2 - k 2 = 2k.J(x2 + y2 + 2xy cos ot). 

In exactly the same way the second equation yields 

-2yn - 2xn cos ot + n2 - [2 = 2i.J(x2 + y2 + 2xy cos ot). 

On comparing these last two equations, we find that 

1(-2xm - 2ym cos ox + m 2 - k 2) = k(-2yn - 2xn cos ot + n2 - [2), 

or 

x( -2ml + 2nk cos IX) j y( -2ml cos a. + 2nk) 

= k(n2 - [2) - l(m2 - t2), (3) 
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and on squaring each of them, we obtain 

(-2xm - 2ym cos IX + m2 - k 2)2 = 4k2(x2 + y2 + 2xy cos IX), (4) 
and 

(-2yn - 2xn cos IX + n2 - /2)2 = 4/2(x2 + r + 2xy cos IX). (5) 

If the coefficients of x and yin (3) are not both zero, we may solve for 
one of them and substitute in (4) or (5): we obtain a quadratic, which 
cannot have more than two distinct real roots. We thus obtain at most 
two solutions [that is, pairs (x,y)] for the equations, and each pair deter­
mines uniquely the position of the point A [in effect, the pair (x,y) is the 
expression for A in nonrectangular coordinates referred to axes OP and 
OQ]. Hence in this case there are at most two positions for A, and the 
theorem is proved. 

If the coefficients of both x and y in (3) are zero, we have 

m2f2 = mink cos IX = n2k 2• 

Thus ml = nk or -nk and either ml = nk = 0 or cos IX = ± l. But 
cos IX = ± I is impossible, as we have noted, and the remaining case 
reduces to 

/ = 0 = k. 

The equations (4) and (5) now reduce to 

2x + 2y cos IX = m 

2y + 2x cos IX = n 

and these may be solved uniquely for x and y, since cos2 IX #- l. Thus in 
this case there is only one possible position for the point A. 

We have thus completed an algebraic proof that the number of points 
A for which AP - AO = k and AQ - AO = I (where 0, P, Q are given 
noncollinear points of the plane, and k and I are given real numbers) is at 
most two. To explain this result geometrically, it is natural to consider 
the locus of those points of the plane whose distances from two given 
points have a constant difference. This locus is studied in detail in analytic 
geometry: it is a branch of the curve known as a hyperbola (a special case 
of which is the graph of the function y = l/x) and has the form given in 
fig. 45.' 

From the shape of such curves it is intuitively clear that two of them 
cannot intersect in more than two points (see fig. 45b), and it is just this 
fact which was proved rigorously above. 

• In figs. 45a and b the second branches of the hyperbolas are shown as dotted 
lines. It is customary to give the name hyperbola, not to the locus of points from which 
the distances to two given fixed points have a constant difference but to the locus of 
points for which the difference of these distances has a constant absolute value. The 
hyperbolathushastwobranches: oneconsistingofthepointsMforwhichMA - MB = 
a, and the other of the points N for which NB - NA = a. 



62 SOLUTIONS 

I 
I 

I 
~~~-----+\--~p 

\ 

a b 

Fig. 45 

\ , , , 
" 

We note that if 0, P, Q are collinear, the proof breaks down; then 
the very definition of the quantities x and y is impossible. Geometric 
considerations in this case do not lead to a solution either: if 0, P, Q 
are collinear, the hyperbolas can degenerate into rays of the line OPQ 
(this will happen, for example, when k = OP and 1= OQ) and coincide 
with each other along a whole halfline. Of course, this corresponds to 
the fact that it is possible to find an infinite number of points on a line 
satisfying the conditions of the problem: we need merely choose all the 
points lying at an integral distance from some fixed point of the line. 

II. LATTICES OF POINTS IN THE PLANE 

110. For each lattice point L, let SL be the lattice square whose lower left 
corner is L (fig. 46).5 The set M is decomposed into pieces M () SL by the 
squares SL' Translate each square SL along the segment LO so that the 
squares are all superimposed on So- The pieces M () S L are thereby 
translated onto subsets T L of So- Since the total area of these pieces is, 
by hypothesis, greater than 1, at least two of them must intersect. Suppose 
therefore that (x,y) is in both Tp and TQ, where P =1= Q. If P = (a,b) and 
Q = (c,d), then the point (Xl,Yl) = (x + a,Y + b) is in M () Sp, while 
(X2,yJ = (x + c, Y + d) is in M () SQ. Thus both (xl,yJ and (X2,yJ are 

6 More precisely, let SL be the set of all points (x,y) such that m ;;;; x < m + 1 
and n ;;;; y < n + 1, where L = (m,n). The purpose of this convention is to insure that 
the squares SL cover the plane without overlapping. 
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in M. Furthermore, X2 - Xl and Y2 - Yl are integers, since X2 - Xl = 
C - a and Y2 - Yl = d - b. 

Remark. The result of this problem may be expressed in a different form 
as follows. Let L be a lattice point, and suppose each point A of M is translated 
to the point A' such that AA' is parallel and equal to OL (fig. 47). We then say 
that M has been given the translation OL, and we denote the image of M under 
this translation by M L • It is easily seen from the figure that if A = (x,y) and 
and L = (m,n), then A' = (x + m, y + n). 

Now suppose M has an area greater than 1. By problem 110, M contains 
two distinct points of the form (x,y) and (x + m, y + n), where m and n are 

Fig. 47 
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integers. If A ~ (x,y) and L = (m,n), then A' = (x + m, y + n) is by definition 
in M L. Thus M and ML both contain the point A'. We state this result as a 
theorem. 

Theorem 1. If M has an area greater than I, then there is some lattice 
point L -ft 0 such that M and M L have a point in common. 

We also note for later purposes that the pieces into which M L is decom­
posed by the lattice squares are translates of the pieces T j •• Hence we have 

Theorem 2. The translates M L cover the entire plane if and only if the 
pieces T p cover the entire square So. 

111a. Let TI = OABC be a parallelogram whose vertices are lattice points 
and which contains no other lattice points in its interior or on its boundary 
(fig. 48a). Let TIi be the interior of TI; then II is the union of TIl and the 

C 

B/ / 
~ VA 

o 

b 

Fig. 48 

four edges OA, AC. CB. BO. C1earl) TI and TIi have the same area 0(; 

the problem is to prove that 0( - J. 
For each lattice point L let IlL be the parallelogram obtained by 

translating II along the segmcl't OL (fig. 48b). 
The parallelogram~ n I. f('rm a network covering the entire plane. 

Moreover, if n:. den0tes tJ->l' interior of nL' then n~. and II~ have no 
points in common when P,,~ Q. 

The proof that (X -- t ;< by contradiction. If 0( =f=. I, we must have 
either 0( > I or 0( '- I. 

(I) Supp0<;c 0( - I. [hen we can apply theorem J, with M = ni. 
The theorem says that t' .:re is a lattice point L =f=. 0 such that fIi and n~ 
have a point in com"-oll. This is a contradiction to the fact that n~. 
and nb do not int("~",ct when P =f=. Q. 

(2) Suppo<;e (y ...:. I. Then we can apply theorem 2 with M = n. 
The pieces Tl' have total area 0( < I and so cannot cover all of So. Hence, 
by theorem 2. the parallelograms n L cannot cover the entire plane, a 
contradiction. 

These contradictions prove that 0( = 1 as required. 
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b. It follows from part a that the formula (3) A = i + bt2 - 1 holds 
when il is a parallelogram containing no lattice points other than its 
vertices. For then i = 0, b = 4, and i + bt2 - 1 = t - 1 = I = A. 

Next, suppose il is an "empty" triangle, that is, a triangle containing 
no lattice points other than its vertices. Then i = 0, b = 3, and i + bt2 -
I = t. Thus in order to verify (3) we must show that il has area t. To 
prove this we extend il to a parallelogram by adjoining a triangle il' 
symmetric to it with respect to the center 0 of one of its sides (fig. 47). 
Since 0 is a center of symmetry of the lattice, il I contains no lattice points 

v '" 
/ '" pV !l 

'" '" ./ / 
Fig. 49 

other than its vertices. Hence, by the result of part a, the parallelogram 
we have constructed has area 1; therefore il has area i. 

Consider now two polygons ill and il2 having all their vertices at lattice 
points and adjoining each other along the common side PQ (fig. 49). 

Suppose we already know that the formula (3) holds for each of these 
polygons. We shall then show that it also holds for the polygon il = 
ill U il2. Let A, AI> A 2.;, i1> ;2. b, bI> b2 be the areas, numbers of interior 
lattice points. and boundary lattice points of II, ill' and H2, respectively. 
By hypothesis 

and 
A2 = i2 + ~ - 1. 

2 

Denote by k the number oflattice points on the segment PQ, including 
the two endpoints. Then it is clear from the figure that 

A = Al + A 2 , 

i = i l + ;2 + (k - 2), 
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and 
b = (b i - k) + (b2 - k) + 2. 

(The last term +2 takes account of the points P and Q.) Therefore 

A = Al + A2 = il + !?.! - 1 + i2 + !!J - 1 
2 2 

= (il + i2 + k - 2) + 1. (b1 + b2 - 2k + 2) - 1 
2 

= i + £. - 1, 
2 

which is what we wanted to prove. 
It is now easy to show that (3) holds for all polygons with vertices at 

lattice points. Every such polygon can be decomposed into triangles by 
drawing suitable diagonals6 ; all the vertices of these triangles are lattice 
points, since they are vertices of the original polygon. Each triangle n 
which is not already empty (that is, contains at least one lattice point P 
other than its vertices) can be split into empty triangles. For if P is an 
interior lattice point of n, we join it to the three vertices, whereas if P is 
on an edge of n, we join it to the opposite vertex. In either case we have 
split n into smaller triangles, each containing fewer lattice points than n. 
By repeating this process sufficiently often, we eventually decompose all 
the triangles, and hence also the original polygon, into empty triangles. 
As we have seen, the formula (3) holds for the empty triangles. By 
repeatedly applying the fact that (3) holds for the union of two polygons 
if it holds for each of them, we see that (3) holds for the original polygon. 

Remark. For any polygon II we have b ~ 3 (since II has at least three 
vertices), and i ~ O. Hence A = i + b/2 - I ~ ~ - 1 = !. Thus any polygon 
whose vertices are lattice points has area at least!. Equality holds if and only if 
II is an empty triangle. 

112. If A = (x,y) is any point of K, let A' = (x/2.y/2). It is easily seen that 
A'lies on the segment OA, and OA' = iOA (fig. 50). 

Applying the transformation A ~ A I to every point of K, we obtain a 
set K' which is similar to K in the ratio I: 2. Since the area of a set is 
proportional to the square of its linear dimensions, area (K') = ! area (K). 
By hypothesis, area (K) > 4, and therefore area (K') > l. By Blichfeldt's 
lemma (problem 110), K' contains two points (XhYI) and (X2'Y2) such that 
X 2 - Xl and Y2 - YI are integers. By the construction of K', the points 
A = (2x1,2Yl) and B = (2x2,2Y2) are in K. Since K is symmetric about 0, 
it also contains the point C = (-2Xb - 2YI), which is the mirror image of 
A in O. Since K is convex it contains the midpoint P of the segment CB. 

• See, for example, Knopp. Ref. [15]. 
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The coordinates of Pare 

Since X2 - Xl and Y2 - Yl are integers, P is a lattice point. 

Remarks. (1) Since K is symmetric about 0, it contains Q = (Xl - X2' 

Yl - Y2), the mirror image of P in the origin. Thus K contains at least two lattice 
points other than O. 

(2) If K is convex, symmetric about 0, and has area 4, it need not contain 
any lattice point other than O. Consider, for example, the square consisting 
of all points (x,y) with Ixl < 1, Iyl < 1. However, there is always a lattice point 
P =10 0 either inside K or on its boundary. For if there were no such point, we 
could magnify K slightly about 0 and obtain a set L which would still contain 
no lattice points except O. This is a contradiction to Minkowski's theorem, 
since L has area > 4. 

113. We show first that if the radius p of the trees is greater than lo. then 
the view from the center will be blocked in every direction. Through the 
center 0 draw an arbitrary line M N intersecting the boundary of the orchard 
in the points M and N. We assert that there is no gap in the trees in either 
of the directions OM and ON. To prove this, draw tangents to the 
boundary of the orchard at M and N, and lines AD and BC equal and 
parallel to MN and at distance p from it (fig. 51a). We obtain a rectangle 
ABCD of area AB· MN = 100· 2p = 4· 50p and so greater than 4 (since 
p> io). By Minkowski's theorem (problem 112) it follows that there are 
at least two lattice points P and Q inside the rectangle which are symmetric 
with respect to O. (See remarks at the end of the solution to problem 
112.) The trees of radius p planted at P and Q intersect the rays OM and 
ON, so that an observer at the center cannot see out of the orchard in 
either of these directions. 

We must now show that if p < I IJ2501 , it is possible to see out ofthe 
orchard from O. Let R be the point whose coordinates are (50,1). (See 
fig. 51 b.) We will prove that the segment OR does not intersect any trees. 
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Fig. 51 

Clearly there are no lattice points on OR other than the endpoints 0 and 
R. The length of OR is J502 + f2 = J2501. Now let S be any lattice 
point in the orchard. By the remark made in the solution of problem 
11tb, the area of the triangle ORS is at least t. 

If T is the foot of the perpendicular from S to OR, then the area of 
ORS is lOR' ST. Therefore tOR' ST ~ t, which implies that ST ~ 

IIOR = I/J2501 > p. This means that the tree of radius p with center 
at S does not intersect OR. Thus it is possible to see out of the orchard by 
looking toward R. 

III. TOPOLOGY 

114. To begin with, it is clear that the two regions into which the plane is 
divided by a single straight line can be colored according to the conditions 
of the problem (fig. 52). We shall now show that if the regions into which 

Fig. 52 
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Fig. 53 

the plane is divided by n lines can be properly colored, then so can the 
regions into which it is divided by n + I lines. The result then follows by 
mathematical induction. 

Suppose that we are given n + I lines. Throw one of them away. 
The remaining n lines divide the plane into areas which by the induction 
hypothesis can be colored to suit the conditions of the problem (fig. 53a). 
Let us now reintroduce the (n + \)st line and change all the colors on 
one side of it, replacing black by white and white by black, while leaving 
all the colors on the other side unchanged (fig. 53b). The plane is now 
properly colored. For if two of the regions into which the plane is divided 
by the n + I lines adjoin each other along one ofthe first n lines, then they 
must have different colors. (The reason is that they had opposite colors 
before, which have either remained unchanged or both been changed.) 
If two regions touch along the (n + l)st line, then before this line was 
reintroduced they were part of the same region and thus had the same 
color. But we changed the colors on one side of the line and not on the 
other, so that now they have opposite colors. Thus the coloring we have 
constructed satisfies the conditions of the problem, and the theorem is 
proved. 

USa. First solution. Let I, 2, 3 denote three colors. Since at most two 
lines meet at any node, each connected part of the network is either an 
open or a closed polygonal path (fig. 54a). Any open path can be colored 
by painting its lines alternately 1 and 2. 

The same rule applies to any closed path with an even number of 
sides. If P is a closed path with an odd number of sides, say 2m + I, then 
we can color 2m of the sides by alternating the colors I and 2. Then the 
remaining side can be colored 3. 
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This analysis shows that the necessary and sufficient condition that 
our network can be colored with only two colors is that it contain no 
closed paths with an odd number of sides. 

Second solution. Choose some line of the network and color it I. 
Then choose another line and color it 2. Proceed in this way, coloring 
one line after another. Suppose that at the nth stage of this process we 
have chosen a line L to be colored. By hypothesis there is at most one 
other line through each endpoint of L (fig. 54b). These other lines may 
have already been painted, but since there are altogether three colors, 
there is at least one color left for L. Thus the process can be continued 
until the entire network is colored. 

b. Denote the four available colors by 1,2, 3,4. Figure 55a illustrates 
an example where all four colors must be used, since every line is adjacent 
to every other line. 

We must now prove that four colors are always sufficient. As in the 
second solution to part a, start coloring one line after another. Suppose 

b 

• 

B 
4 

D 

" I 

Fig. 55 
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that at the nth stage of the process we have chosen the line AB to be 
colored. By hypothesis there are at most two other lines through each of 
the points A and B. Hence there is a color available for AB unless these 
lines have already been colored 1,2, 3, and 4 as shown in fig. 53b. 

Unless there are lines through C colored 1 and 2, we can change the 
color of BC to I or 2, thereby releasing 3 for use on AB. Similarly, we are 
in good shape unless there are lines through D colored I and 2. Hence 
we may suppose that the situation is as shown in fig. 55c. 

Now let P be the longest possible path starting at A, with the property 
that its edges are alternately colored I and 3. There are three possibilities: 

(I) P ends at B. 
(2) P ends at D. 
(3) P does not end at B or D. 

These three cases are illustrated in fig. 56. 
In cases (2) and (3) we interchange the colors 1 and 3 along the path 

P. The result of this interchange is that adjacent lines are still colored 
differently, but now AB can be colored l. 

In case (1) let Q be the longest path through D whose edges are alter­
nately colored 1 and 3. This path cannot end at any of the lettered vertices. 
We interchange the colors I and 3 on the edges of Q. Then the color of 
BD can be changed to I, thus releasing 4 for use on AB. 

Hence in all cases we can color AB, and so the process can be continued 
until the entire network is colored. 

Remark. For another solution, see Ref. [13]. In the same way it can be 
shown that if at most m = 2k lines meet at each node, then the network can 
be painted with 3k colors, whereas if m = 2k + I, then 3k + 1 colors are enough. 

116a. We will prove that the number of triangles whose vertices are labeled 
1,2.3 is odd (and therefore >0). Let the small triangles be T1 , T2, ••• , Tn' 
and denote by ai the number of HI2-edges" of Ti (that is, edges whose 
endpoints are labeled 1, 2. If the vertices of T, are I, 2, 3, then a i = I; 
if the vertices of Ti are I, 1,2 or 1,2,2, then at = 2; otherwise at = O. 
The idea of the proof is to evaluate the sum al + a2 + ... + an in two 
different ways. 

(1) Let X denote the number of triangles Ti whose vertices are labeled 
1,2,3, and let Ybe the number whose vertices are labeled I, 1,2 or I, 2, 2. 
Then we have 

al + a2 + ... + an = X + 2 Y. 

(2) Let U be the number of 12-edges inside T, and let V be the number 
of 12-edges on the boundary of T. Every interior 12-edge lies in two 
triangles T; and is therefore counted twice in the sum al + a2 + ... + an' 
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But the 12-edges on the boundary of T lie on only one triangle Ti and so 
are counted only once in the sum. Hence 

a1 + a2 + ... + an = 2U + V. 

Comparing the two expressions, we get 

X+ 2Y= 2U+ V. 

It follows from this formula that X is even if V is even and odd if V is odd. 
It is therefore sufficient to show that V is always odd. 

According to the conditions of the problem the side 13 cannot include 
any vertices numbered 2, and the side 23 cannot contain any vertices 
numbered 1, so that segments 12 can occur only on the side 12 of the large 
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triangle T. Let us look at all such segments in the order in which they 
occur as we move from the endpoint 1 toward the endpoint 2. We first 
encounter a number (at least one) of vertices marked 1 (fig. 57). When 
we first pass a segment 12 we are at a vertex labeled 2. A number of 2's 
may now follow (that is, a number of segments 22): only after we have 
passed a segment 21 do we reach a vertex labeled 1. Passing the next 
segment 12 we again find ourselves at a vertex labeled 2; passing the next 
segment 21 we arrive at a 1 and so on. 

Thus after an odd number of segments 12 we arrive at vertices labeled 
2, and after an even number of segments at vertices labeled 1. But since 
the last vertex we come to is the vertex 2 of T, the total number of segments 
12 lying on the side 12 of T must be odd. Thus the theorem is proved. 

2 2 2 2 2 
Fig. 57 

Remark. This result can be put in a more precise form. Let us distinguish 
between the 123-triangles for which the vertices labeled 1, 2, 3 go around the 
triangle in the same order in which they go around T, and those for which they 
go around the opposite way. It can be shown that the number of triangles of 
the first type is always exactly one larger than the number of the second type; 
the result that the total number of triangles numbered 123 is odd follows from 
this. The proof of this assertion is similar to the solution we have given of the 
main problem and is left to the reader. 

b. For the formulation of the theorem see the hints at the end of the 
book. The proof is similar to that of part a. We count in two different 
ways the number of 123-faces of the small tetrahedra. Each small tetra­
hedron numbered 1234 (of which there are, say, X) has one such face, 
each tetrahedron numbered 1123 or 1223 or 1233 (a total of, say, Y 
tetrahedra) has two such faces, and all the other tetrahedra have no such 
faces. Thus the total number of 123-faces is 

X+2Y. 

On the other hand, every 123-triangle inside the large tetrahedron (say 
there are U such triangles) is a face of two small tetrahedra, one lying on 
each side of it. Suppose there ar~ V I23-triangles lying on the face 123 of 
the large tetrahedron. Note that there are no 123-triangles on any of the 
other faces of the tetrahedron, by the conditions of the problem. It 
follows that 

x + 2Y= 2U + V. 

But the division of the face 123 of the large tetrahedron satisfies all the 
conditions of part a, and from the solution to that problem it follows that 
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V is odd. Hence X is also odd and therefore cannot be zero. Thus the 
theorem is proved. 

Remark. This theorem can also be made more precise in the same way as 
the theorem of part a (see the note on the previous page). The formulation and 
proof of this refinement are left to the reader. 

117. We shall prove more than is stated. We show that if an arbitrary 
polygon M is divided into triangles in accordance with the conditions of 
the problem (that no two triangles should adjoin along part of a side 
of one of them), and if an even number of triangles meet at each vertex of 
the decomposition D, then the vertices of D can be numbered 1, 2, or 3 
in such a way that all the vertices lying on the boundary of M are numbered 
1 or 2, and the three vertices of every triangle are numbered 123. 

b 

Fig. 58 

The proof is by induction on the number of interior vertices.7 Suppose 
first that there is only one vertex P inside M. By hypothesis, an even 
number of triangles meet at P, and therefore an even number of vertices 
lie on the boundary of M. Number the boundary vertices I and 2 alter­
nately, and assign the number 3 to P (fig. 58). 

Suppose next that there are n vertices inside M, and that the theorem 
holds for decompositions D' with fewer than n interior vertices. Let AB 
be one of the segments into which the vertices of D divide the boundary 
of M, and let ABP be one of the triangles of D. The vertex P must lie 
inside M; otherwise there would be only one triangle at one of the vertices 
A, B. By hypothesis, an even number of triangles meet at P: let us call 
the polygon composed of all these triangles p (see fig. 58b, in which p is 
shaded). Note that p might be concave. 

We now remove p from M, thus obtaining a smaller polygon M', 
which clearly contains fewer interior vertices than M. Furthermore, the 

7 Since two or more triangles converge at each vertex of M, there must be at least 
one vertex inside M. 
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triangles into which M' is divided constitute a decomposition D' satisfying 
the conditions of the problem. For at every vertex of M' which is also a 
vertex of D, exactly two triangles have been removed; thus the number of 
triangles at each vertex of D' is even. By the induction hypothesis we can 
number all the vertices of D' so that the boundary vertices are all numbered 
I or 2 and so that every triangle is numbered 123. (We leave it to the reader 
to make the necessary changes in our argument if M' consists of a number 
of separate pieces.) 

We now assign the number 3 to P and continue numbering the 
boundary of p, with l's and 2's alternately (some of the boundary vertices 
will already have been numbered in this way). Since there are an even 
number of triangles, and therefore an even number of vertices, we can 
carry this out successfully. We now have an enumeration of the vertices 
of D, and by mathematical induction our theorem is proved. 

Fig. 59 

lt8. It may be that there are cavities between two adjacent polygons M 
and M' of the decomposition D. Such cavities will, of course, be filled up 
by the other polygons of D (see fig. 59). In such a case the boundary 
between M and M' consists of a number of separate pieces. This phenom­
enon is inconvenient, and we proceed to construct a new decomposition 
of the square in which it does not take place. For this purpose we adjoin 
to M all the cavities between it and its neighbors; we obtain a larger 
polygon MI' We then do the same with all the neighbors of M I , and so 
on. Our new decomposition jj is such that the boundary between any 
two pieces is either a single point or a connected polygonal line. It is clear 
that if some polygon of the new decomposition has at least six neigh­
bors, then the same must have been true of the original decomposition, 
for our construction can only decrease the number of neighbors a polyg0...!1 
has. We note that each polygon Ai is contained within the polygon M 
obtained by adjoining to M all its neighbors and all the gaps between it 
and its neighbors. Sinse by hypothesis both M and all its neighbors have 
diameter at most lo, M has a diameter of at most l-o = lo (fig. 60) and Ai 
has a diameter no greater. 

Consider the polygon Mo of the new decomposition which covers the 
center 0 of the square (if 0 lies on a boundary, choose any polygon that 
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Fig. 60 

covers it). We say that Mo has rank 1. All the polygons of the new 
decomposition adjacent to Mo we call polygons of rank 2; all other 
polygons adjacent to any polygon of rank 2 we call polygons of rank 3, 
and so on. 

It is clear that the polygon Mo is contained inside a circle of radius 
io· and center at 0; that Mo and all the polygons of the second rank are 
contained inside a circle of radius 1\ and center 0, and, finally, that Mo 
and all polygons of the second, third, and fourth ranks are contained 
inside a circle of radius 10 with center at O. It follows in particular that 
no polygon of the first four ranks can touch the boundary of the square. 

We note some simple properties of the classification of polygons by 
rank. 

(I) Every polygon of rank n(n > 1) has at least one neighbor of 
rank n - 1. 

(2) No polygon M of rank n has a neighbor of rank <n - I (otherwise 
M would have been assigned a rank <n). In other words, any two 
neighboring polygons have either the same rank or ranks differing by 
one. 

(3) If the polygon M of rank n > I has less than two neighbors of 
rank n, then it has no neighbors of rank n + I. For otherwise part of its 
boundary would be part of the boundary of a polygon of rank n + I, 
while another part would be part of the boundary of a polygon of rank 
n - 1 [see property (1)]. These two polygons could not touch by property 
(2), and hence there would be at least two regions where M adjoined 
polygons of rank n, other ranks being impossible by property (2). But our 
decomposition is such that neighbors touch only along a single segment 
of a boundary, so that M must have at least two distinct neighbors of 
rank n. 

We are now ready to prove that some polygon of [) has at least six 
neighbors. The proof is by contradiction. 
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Suppose that every polygon of [) has at most five neighbors. We 
will show that in that case no polygon of rank 4 can have neighbors of 
rank 5, or in other words, that there are no polygons of rank 5. This is a 
contradiction, for we have already seen that the square cannot be filled up 
by polygons of the first four ranks alone. 

We consider separately two cases. 

(a) If a polygon M of rank 4 has at most one neighbor of rank 4, 
then by property (3) it has no neighbors of rank 5. 

(b) Suppose now the polygon M of rank 4 has at least two neighbors 
of rank 4. We show first that M has at least two neighbors of rank 3. 
For if not, and if M' is the single neighbor of rank 3, then M' has at least 
two neighbors of rank 4, apart from M: these two are the polygons Ml 

H M' 
M, 

M' 

Fig. 61 

and M2 which border M at the ends of its common boundary with M' 
(fig. 61). MI and M2 cannot be of rank 3, since by hypothesis M has no 
neighbors of rank 3 apart from M', and they cannot be of rank 5 by 
property (2). Moreover, M' has at least two neighbors of rank 3 [see 
property (3)] and at least one neighbor of rank 2 [see property (I»), a total 
of at least six neighbors, contrary to hypothesis. 

We show next that M has at least three neighbors of rank 3. Suppose 
M' is any neighbor of M of rank 3 (we know there are at least two such). 
We show that M' has no neighbors of rank 4 apart from M. M' has at 
least two neighbors of rank 3 [see property (3)]. Moreover, it has at least 
two neighbors of rank 2. (This may be proved in exactly the same way 
as it was proved that M had at least two neighbors of rank 3.) And since 
the total number of neighbors of M is at most five by hypothesis, M must 
be the only neighbor of M' of rank 4. Now let M I ' and M 2' be the poly­
gons which touch M' at the ends of the boundary it shares with M. These 
must be of rank 3 and are neighbors of M. So M has at least the three 
neighbors M ' , M I ', and M 2', or rank 3. 

It is now clear that M cannot have neighbors of rank 5. For otherwise 
it would have at least two neighbors of rank 4 [by property (3)], and, as we 
have seen, three neighbors of rank 3, making a total of six neighbors, 
contrary to hypothesis. The theorem is proved. 

Remark. It is easy to see that the square can be divided into arbitrarily 
small polygons, each of which has no more than six neighbors; the pattern of 
hexagons given in fig. 62 is an example. 
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Fig. 62 

IV. A PROPERTY OF THE RECIPROCALS 
OF INTEGERS 

119. Let K be a continuous curve joining the points A and B. We will 
show that if K contains no chord parallel to AB of length a or length b, 
then it has no such chord of length a + b. It follows from this that K 
has a chord of length lin. For otherwise it would have no chords of 
length 

1 121 2 3 1 3 4 -+-=-, -+-=-, -+-=­
n n n n n n n n n 

and, finally, it would have no chord of length 

.! + n - 1 = 1, 
n n 

whereas we know that it does contain such a chord (the chord AB itself). 
We proceed to prove our assertion. The statement that K contains 

no chord or length a is ~quivalent to the statement that the curve K' 
obtained from K by a parallel displacement through a distance a in the 
direction AB has no point in common with K (fig. 63). Next, the curve 
K' has by hypothesis no chord of length b. for it is congruent to K. Thus 
the curve K". obtained by translating K' a distance b in the direction AB, 
has no points in common with K'. We next show that the curves K and 
Kit do not intersect: this will mean that the curve AB has no chord or 

M' 

~ N N 
\2 

N' 

Fig. 63 
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length a + b parallel to AB. (For KH is obtained from K by translating 
it a distance a + b in the direction AB.) The curve K' contains points 
lying on or above AB (for example, A and B themselves). Among these 
points there is at least one whose distance from AB is maximal; denote 
it by M' (fig. 63). Similarly, among the points of K' lying on or below 
AB, let N' be one whose distance from AB is maximal. 

Through M' and N' draw lines II and 12 parallel to AB. (One or both 
of these lines may coincide with AB.) It is clear that all three curves K, K', 
Kg lie inside the strip enclosed by 11 and 12 , The portion M'N' of the curve 
K' divides this strip into at least two parts; and since K and Kg do not 
intersect K', each must lie entirely inside one of the parts. We claim that. 
in fact, they lie in different parts of the strip and therefore do not intersect. 

For if M and M n are the points of K and KH corresponding to the 
point M' of K' , then M and Mil lie on opposite sides of M'. Therefore, 
because they are continuous, the entire curves K and KH lie on opposite 
sides of the curve M'N' and so cannot intersect. This concludes the 
proof of the first half of the theorem. 

We must now show that for each real a not of the form lIn, there is a 
continuous curve joining A to B and having no chord of length a parallel 
to AB. If a> I this is obvious: it suffices to require that the curve remains 
inside the region bounded by perpendiculars to AB erected at A and B. 
(See, for example, fig. 64.) If I > a > ! we draw parallel lines through 

P, 

'~H 
b Q, 

P, 

Q, d 

Fig. 64 

A and B (neither of them the line AB itself). and an arbitrary line not 
parallel to these two through the midpoint C of AB. It is easy to check 
that the polygonal line AP1CQ1B (see fig. 64a) has no chord parallel to 
AB of length greater than !. 

Suppose now that t < a <!. Divide AB into three equal parts 
AC1 = C1C2 = C2B and also into two equal parts AD = DB. We draw 
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three mutually parallel lines through A, D, and B, and through Cl and 
C2 two parallel lines not parallel to the first three. Then the polygonal 
line APlCIQIDP2C2Q2B (fig. 64c) has no chords parallel to AB and of 
length lying between! and 1. 

For if the ends of a chord lie on API and PI Qh or on PI Ql and Q1P2 , 

or on QlP2 and P2Q2' or on P2Q2 and Q2B, then the chord is of length at 
most 1 (since in the notation of fig. 64 ACl = P2'P2 = QtQl' = C2B = U. 
If the ends of the chord lie on the segments APt and QIP2 or QIP2 and 
Q2B, then its length is!. Finally, in all other cases the length of a chord 
is greater than !. 

In a completely analogous manner, we can construct a continuous 
curve having no chord parallel to AB and of length lying between l/(n + I) 
and lIn. We divide AB into n + I equal parts ACl = Cl C2 = ... = enB 
and independently into n equal parts ADI = DlD2 = ... = Dn_to. We 
now draw arbitrary paraUellines through A, DI> D2, ••• , Dn_1> B, and 
parallel lines intersecting these through Cl , C2, ••• , Cn. It is easy to 
see that the curve we obtain (see fig. 64d in which the case n = 5 is 
illustrated) satisfies the conditions: the proof is analogous to the one 
given for the case n = 3. 

V.CONVEX POLYGONS 

120a. Let AB be one side of the convex polygon M of area I, and C a 
point of M at maximum distance from the line containing AB (C may 
be a vertex, or it may be an arbitrary point of a side of M parallel to AB). 
We draw the straight line AC (fig. 65) dividing M into two parts Ml and 
M2 (one of these will not exist if AC is a side of M). Suppose next that 
Dl and D2 are points of M at maximum distances from AC on either side 
of AC. We draw through C the straight line 1 parallel to AB, and lines 
11 and 12 through DI and D2, respectively, parallel to AC. The four lines 
A B, I, 110 12 form a parallelogram P containing M. 

I 
I 

/1, 
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Since MI and M2 are convex, they contain the entire triangles A DI C 
and A DaC, respectively. The line AC divides P into two smaller parallelo­
grams PI and Pa• It is clear that 

Area (A DIe) = 1 area PI and area (ADae) = 1 area Pa' 

It follows from this that 

AreaP = areaPl + areaPa = 2 area (ADle) + 2 area (ADze) 

~ 2 areaMl + 2 area M2 

= 2areaM= 2. 

If the area of P is less than 2, we can increase its area to 2 by translating 
one of the sides through a suitable distance. This larger parallelogram 
will still contain M. 

b. Let P be a parallelogram containing the triangle ABC of area 1 
(fig. 66). We can shrink this parallelogram by moving its sides together 

Fig. 6(i 

parallel to themselves until each of them passes through a vertex of the 
triangle. Let A be the vertex (or one of the vertices) through which two 
sides of the parallelogram produced in this manner pass. Let the parallelo­
gram be APQR, and let Band C lie on PQ and QR, respectively. Through 
C draw line CDE parallel to AR, meeting AB and AP in D and E, 
respectively. Denoting the area of any polygon M by SCM), it is clear that 

S(CBD) ~ S(CBE) = lS(CQPE). 
and 

S(CA D) ~ S(CAE) = lS(CRAE), 

whence it follows that 

S(ABC) = S(CBD) + S(CAD) 

<:-: lS(CQRE) + tS(CRAE) = lS(APQR'); 

S(APQR) ? 2S{ABC) = 2. 

(If C is an interior point of Q R, thl'n S( A PQ R) "'- 2 if and only if P and 
B coincide.) 
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c, 

Fig. 67 C, 

121a. Inscribe in the given polygon U a triangle AIAzA3 of maximum 
area8 (fig. 61a). Through the vertices of the triangle draw lines parallel 
to the opposite sides. This gives a triangle T of area four times that of 
A 1AzA3. Suppose that the area of AIAzA3 is ;£; 1. Then the area of T is 
~2. 

We now show that the polygon U lies entirely within T. Suppose 
some point M of U lies outside T. Then M is further from one of the sides 
(say A1Az) of the triangle AIAzA3 than the opposite vertex (A3)' Hence 
the triangle A1AzM has a greater area than AIAzA3 (see fig. 61a), contrary 
to the hypothesis that AlAzA3 has the largest possible area for a triangle 
inscribed in U. Thus we have shown that U is enclosed within a triangle 
T of area not greater than 2, as required. (We could always expand T 
to obtain a triangle of area exactly 2, and it would also contain U.) 

The case where the area of AlAzA3 is greater than! is slightly more 
complicated (fig. 61b). In each of the portions of U cut off by the sides of 
AlAzA3' construct a triangle of maximum area with base a side of AlAzA3' 
Through the other vertices Bl, Bz, B3 of these three triangles, draw lines 
parallel to their bases, We obtain a larger triangle Cl C2Ca• In exactly 
the same way as before we see that U lies within C = C1C2Ca. 

We will show that S(C1C2Ca) ;£; 2S(AIB3AzBIA3Bz). Since 

S(AIB3AZBIA3B2) ;£; S( U) = I, 

the required inequality then follows. Now C1C2C3 is similar to AIA2A3' so 
we can compute its area if we know the ratio C1C2/A 1A2 • To calculate 
this ratio, put 

S(AIA2Ba) = )'3' S(AIAaB2) - A S(A 2 A3B1 ) = AI' 
S(AIA2A3) S(AIA2A3) - 2, S(A 1A2A3) 

• It can be shown that such a triangle is one of the triangles whose vertices are 
vertices of U. See, for example, Shklyarskii et al. Ref. [21], chap. II, problem 23. 
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Note that 

A,l _ S(AlA2Ba) + S(AlAaB2) + S(A2 AaB ) 
1 + "'2 + "'3 - S(AlA2A a) 

~ S(U) - S(AIA2A a) = 1 - S(AIA2Aa) < 1, 
S(AIA2Aa) S(AIA2Aa) 

since by hypothesis S(AlA2Aa) > t. Hence 

S( C) = (A + A + A + 1)2 
SeA) 1 2 a , 

and since also it is clear that 

S(AIBaA2BIA sB2) 

SeA) 

SeA) + S(BIA2Aa) + S(B2AlAa) + S(BaA lA 2) 

SeA) 

= 1 + Al + A2 + Aa. 
we finally arrive at the result 

SeC) 
--...::....>...'--'----- = 1 + Al + A2 + As < 2, 
S(AIBsA2BIAaB2) 
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since Al + A2 + Aa < I. As explained above, this completes the proof. 
b. We first show that a square of side 1 cannot be enclosed in a 

triangle of area less than 2. Let C = C1 C2Cs be a triangle containing the 
square A = AIA2AaA.. We may suppose that at least three vertices of A 
lie on sides (or at vertices) of C, for otherwise we can simply shrink C 
appropriately until this occurs. Consider now the case where three of the 
vertices AI> A 2 , and Aa lie on the sides of C opposite C l , C2• and Ca. 
respectively. We produce the sides A.A1 and A.A2 to meet CaC1 and CaC2 

in Fand D, respectively. and to meet Cl C2 in G and E. respectively. Since 
the angles A2A.F and AIA.D are right angles, angles A.FCs and A.DCs 
are obtuse. Next. 

LA2EAa + LAIGAa = 180° - LEA.G = 90°; 

LA2AaE + LAIAsG = 90°. 

It follows that either LA2ASE;5 LA2EAa or LAlAaG :S LAIGAa. For 
definiteness suppose that the first of these inequalities holds. In that case 
we have 

A 2E;? A2Aa = A 2A. < A2D, 

and it follows from fig. 68a that 

S(A2DCa» S(A2EC1), S(EDC2) < S(C). 

We have thus arrived at a circumscribed triangle EDC2 of area 
smaller than C, one of whose sides cor.tains two vertices of A, and therefore 
the side joining them. If this was the case to start with for C and A, then 
the preceding argument can be omitted. 
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c, 

D 

G 

• b 

Fig. 68 

Denote the height of triangle AIAsC2 with base AlAs by h, and let 
Hand H' be the points of intersection of the perpendicular from C2 with 
AlAs and A2A, (fig. 68b). Then HH' = 1 (the length of a side of the 
square) and 

so that 

and 

S(CaHAI) h 

S(HA1A,H') 2 ' 
S(C2HA1) = h2• 

S(AIA,D) 

S(AIA,D) 1 
S(HA1A,H') 2h 

S(C2H'D) = S(CsHA1) + S(HAIA,H') + S(AIA,D) = 1 + ~ 1-. 
S(HA1A,H') S(HA1A,H') 2 + 2h 

In exactly the same way we may show that 

A(C2H'E) _ 1 ~ 1-
A(HAaAaH') - + 2 + 2h . 

It follows from this that 

S(C2ED) = 1 + ~ + 1- = 2 + (~ _ 1 + 1-) 
S(A) 2 2h 2 2h 

=2 + (~- J2~J~ 2. 
that is, S(CsED) ~ 2, as was required. 

We show now that if A = AIA2ASA, is any rectangle of area 1. then a 
circumscribing triangle C = C1C2Ca has area at least 2. This result 
follows easily from the corresponding result when A is a square. For given 
A and C in a plane p. let us project the whole configuration orthogonally 
onto a plane Q in such a way that the projection of A is a square (fig. 68a). 
If AlAs < AaAa we take Q to intersect P along AlAs, and to make an 
angle IX with it, where cos IX = AIAs/AaAa. The areas of A' = AIAaAa'A/ 
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and C' = Cl 'C2'CS' are equal to the areas of A and C multiplied by the 
factor cos ex, for this is a property of the areas of all figures under orthog­
onal projection. If, then, SeC) < 2 SeA), we shall also have S(C') < 2 
SeA'), which is impossible, as we have seen. 

From the result when A is a rectangle we can deduce the corresponding 
result when A is a parallelogram. Suppose the result is false for some 
parallelogram A and triangle C (fig. 69b). Construct a sphere whose 
diameter is equal to the longer diagonal AlAa of A, and let A 2' and A.' be 
the points of intersection of this sphere with perpendiculars erected at 
A2 and A" to the plane 'IT of A, and lying on opposite sides of this plane. Set 
A' = Al A2'AaA.', and let C' be the triangle in the plane of A' whose 

c, 

Fig. 69 

orthogonal projection onto 'IT is C. It is clear that A' is a rectangle whose 
orthogonal projection onto 'IT is simply A, and we complete the argument 
in the same way as before. 

122a. Draw two lines parallel to I lying on either side of the convex 
polygon M, and move them in until they pass through extreme points A 
and B of M. It is possible that the two lines II and 12 meet M not merely 
in a point but in a whole side (fig. 70). M now lies in the strip between 
II and '2; denote the width of this strip by d, and draw lines 11" 10' 12' so 
as to divide it into four smaller strips of width dJ4. Suppose the boundary 
of M meets II' in P and Q, and 12' in Rand S. (Note that these lines 
cannot intersect the boundary of M along a whoie side of M because M 
is convex). Let p be the side of M passing through P (or one of the two 
such sides if P is a vertex), and, similarly, for q, r, and s. The area of the 
trapezoid Tl bounded by the lines 10' It> p, and q is PQ • d/2; similarly, the 
area of T2 bounded by 1o, 12, r, and s is RS . d/2. Since Tl and T2 together 
contain the whole of M, 

S(M) ~ S(T1) + S(TJ = PQ . ~ + RS . ~ = (PQ + RS) ~. 
2 2 2 
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A 

t, t, t, I; I, 
Fig. 70 

Consider now the two triangles A RS and BPQ inscribed in M. 
Clearly SCARS) = iRS' ~d; S(BPQ) = ~PQ' ~d, so that SCARS) + 
S(BPQ) = (RS + PQHd = !CPQ + RS) d/2 ~ JS(M). It follows from 
this that either SCARS) ~ is(M) or S(BPQ) 2; is(M), which proves the 
theorem. 

b. Let M be the regular hexagon ABCDEF, and let I be a line parallel 
to the side AB (fig. 71). Let PQR be a triangle inscribed in M and of 
maximum possible area, with PQ parallel to AB. If P and Q lie on FA 
and BC, respectively, then clearly R must lie on DE (in fact, it makes no 

F 

Fig. 71 

difference where it lies on DE). Let us take the length of a side of the 
hexagon as our unit and write AP = BQ = a. Then (see fig. 71) we easily 
see that 

a a 
PQ = AB + PG + QH = 1 + "2 + "2 = 1 + a, 

and 
- al) I) 

h(PQR) = RS - AG = -/3 - -y- = (2 - a) Y- . 
2 2 



Hence 
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1 .J3.J3 2 
S(PQR) = - (1 + a)(2 - a) - = - (2 + a - a ) 

224 
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It follows at once from this formula that the triangle PQR has 
maximum area when a = t. and then 

9 J3 9J3 
S(PQR) =-.- =-. 

4 4 16 

But the area of the hexagon is given by 

J3 3J3 
6S(OAB) = 6-= -. 

4 2 

(0 is its center.) It follows that the largest area a triangle inscribed in M 
and with one side parallel to AB can have is i of the area of M. 

VI. SOME PROPERTIES OF SEQUENCES OF 
INTEGERS 

123a. We are given n arithmetic progressions, whose terms are integers. 
Supposing that every pair of progressions has a term in common, we must 
show that all n progressions have a term in common. We shall give a 
proof by induction. For n = 2 the theorem is obvious. 

Suppose the theorem has already been proved for n - I progressions, 
and consider a set of n progressions. each pair of which has a common 
term. By the inductive hypothesis. the first n - 1 of them have a common 
term A. Now subtract A from all the terms of all the progressions: we 
obtain n new progressions. the first n - I of which have the term 0 in 
common. It is clear that if we can prove the theorem for these n new 
progressions. then it is also true for the original ones. 

Let us denote the common differences of the n progressions by 
dh d2 • ••• ,d ... where all the d; are integers. Then the first n - I pro­
gressions consist of the multiples of dl> d2, •••• d .. _l> respectively, since 
they each contain the term O. The general term of the nth progression is 
a + kd", where a is anyone term and k is an integer which may be 
positive, negative, or zero. 
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We must show that there is a term a + kdn which belongs to all the 
other sequences, that is, that there exists an integer k such that a + kdn 

is divisible by all of the numbers €II' d2 , ••• , d ll - 1• Equivalently, we must 
show that there exists an integer k such that a + kdn is divisible by the 
least common multiple N of the numbers til' dz, ... ,tin-I' 

Denote by D the greatest common divisor of the numbers N and €Ill' 

Then there exist integers P and q (positive, negative, or zero) such that 
D = pN -+ qd". We leave the proof of this assertion to the end of the 
solution; meanwhile we assume its truth. 

We prove now that a is divisible by D. Write D as a product of 
primes 

The fact that D is divisible by p /i means that both d" and N are divisible 
by pt'. The fact that the least common multiple N of the numbers 
dl , d2, ••• , d n-1 is divisible by Pi 'Xi means that some one of these numbers, 
say d l , is divisible by p /i. But, by hypothesis, the first and nth progressions 
have a term in common. In other words, there exist integers k' and k" 
such that 

k 'd1 = a + k"d", 

or 

a = k'd1 - k"d", 

from which it follows that a is divisible by Pi'>i (since both d l and tin are 
divisible by p;"i). Since this is true for each i. a is divisible by the product 
D = PI'X1P2'X' ... p/,'. 

Multiply the equation D = pN + qdn by m = at D, we obtain 

a = pmN + qmdn or a - qmd" = pmN, 

from which it follows that the term a - qmdn of the nth progression is 
divisible by N, which is what we had to show. 

It remains for us to prove the existence of integers p and q such that 
D = px + qy. where D is the greatest common divisor of \; and y. 
Consider the set I of all integers of the form px + qy, where p and q are 
any integers-positive, negative, or zero. It is easy to check that the sum 
or difference of any two members of I is again a member of I. [For 
(PIX -f- qlY) + (P2X + q2Y) = P3X + qsY, where Ps = PI + P2; q3 = ql + 
q2 J It is also obvious that any multiple of a member of I is also a member 
of I. Now I has at least one positive member (for example, x =- I . X -[ 

o . y) Let E be the smallest positive member of I. We intend to show 
that E = D. We first show that I consists precisely of all the multiples 
(positive. negative, or zero) of E. Suppose t is an arbitrary member of I. 
On dividing t by E we obtain a remainder r lying between 0 and E - I. 
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We may write 

t = nE + r, o ~ r < E. 

Now E is in I, so that nE is also, and t is in I. so that r = t - nE is 
also in I, by the remark above. But we chose E to be the smallest positive 
member of I, and r is smaller. This can only be true if r = O. Thus every 
member t of I is of the form nE. In particular, E is a common factor of 
x and y, both of which lie in I, and so divides D. On the other hand. 
every number of the form px + qy is clearly divisible by D, and E is of 
this form (being a member of n. Since the two positive numbers D and 
E divide each other, they must be equal. We can therefore write 

D = E=px+qy, 

and equation (1) is proved. 
Consider the two arithmetic progressions 

PI: ... , -2.J2, -.Ji 0, .J2, 2.Ji . .. 
and 

P2 : ••• , -2, -1,0, 1,2, ... 

These progressions have the common term 0, and no other common terms. 
For if k/2 = k', where k and k' are nonzero integers, we deduce that 
k' /k = .J2 is rational, a contradiction. We now construct a third pro­
gression having a term in common with each of the first two, but having 
no term equal to zero. Consider, for example, the progression 

P3:(1 + .J2) + k(l -.fi) (k = ... , -2, -1,0, 1,2, ... ). 

When k = -I we get the term 2/2, which is also in Pl' When k = 1 we 
get the term 2, which is in P2 • But no term of Pa is equal to zero, since if 

(I + .J2) + k(1 - .J2) = 0, 
then 

k = .J~ + 1 = ~ + 1 . .J~ + 1 = 3 + 2.J2 
~2 - 1 ~2 - 1 .J2 + 1 

= 5.82 ... , a contradiction. 

Remark. It is easy to see that the first part of the problem remains true 
for arithmetic progressions of rationals (not necessarily integers). For one can 
find a number N such that when the progressions aj -I kd; (i -0 I, ... ,n) are 
multiplied by N, they all become sequences of integers. We can take N, for 
example. to be the least common denominator of aI' a2 • ••• , am d1, dz • ... , d". 
Neither the hypothesis nor the conclusion of the theorem is affected by multi­
plying or dividing all the progressions by the same number. 

b. Suppose we arc given n arithmetic progressions PI' ... , Pn of real 
numbers. every three of which have a term in common. Consider any 
two of the progressions, say PI and P2 • If they have only one term in 
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common, then every other progression must also contain this term (for 
every other progression has a term in common with PI and P2). If PI and 
P 2 have two or more terms in common, the difference between these terms 
can be written in either of the forms k'd1 or kif d2 , where k' and k" are 
integers and d l , d2 are the common differences of PI' P2 • Thus 

so that d l and d2 are commensurable (that is, have a rational ratio). 
Therefore if the common differences of any two of the progressions 

are incommensurable, they have only one term in common, and this term 
also belongs to all the other progressions. On the other hand, if the 
common differences of all the progressions are commensurable, we can 
multiply Ph ... ,Pn by a number so that the common differences of the 
resulting progressions PI', ... , P n' are integers. We now subtract from 
all the terms of PI', ... , P1l ' one of the terms of PI', obtaining progressions 
PI", . .. , Pn". The entire progression PI" consists of integers (since the 
common difference is an integer and one of the terms is 0). Each of the 
other progressions P2", ••• , P n" also contains an integer (since it has a 
term in common with the first) and therefore consists entirely of integers. 
Moreover, every pair of the progressions PI", . .. , Pn" has a term in 
common (since every three of them do), and therefore by the first part of 
the problem they all have a term in common. But this means that the 
original progressions also had a term in common, which is what we wanted 
to prove. 

124a. The first part is nearly trivial. By symmetry, there is no loss of 
generality in assuming the first digit to be a I. Then the second digit 
cannot be a I, or I would be repeated, and therefore must be a 2. Our 
sequence thus starts with 12. The third digit must be I (since we cannot 
have two 2's in a row), and, similarly, the fourth must be 2. But then the 
sequence starts with 1212, and the subsequence 12 is repeated. 

b. We show that each of the sequences In (n = 1,2, ... ), constructed 
by using the digits 1 and 2 in the manner explained in the hint at the end 
of the book, contains no digit or block of digits three times in succession. 
That In contains no three comecutive digits follows from the fact that it 
consists of a succession of 12's and 21's. In what follows we call the pairs 
12 and 21 links of the sequences. It is harder to show that no block of 
digits in In can occur three times in a row. Our proof will be by the 
method of descent: we shall show that if In contains a block of digits 
repeated three times, then so does In-l' We thus see that In, In_ J •••• , 13• 12 
and finally 11 contain such blocks, and this is obviously false, for 11 = 12. 

Case I. The block P, which is repeated three times. contains an even 
number of digits. There are two subcases: 
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(i) The first time it appears, P starts at the first digit of a link. In 
this case it will start at the first digit of a link on the second and third 
appearances also. This means that P consists of an integral number 
of links. On replacing each link 12 by a 1 and each link 21 by a 2, P is 
replaced by a block Q half as long, which occurs three times in suc­
cession in In-I' Thus In-I contains a sequence Q of digits repeated 
three times, as required. 

(ii) At its first appearance P starts with the second digit of a link 
(and therefore also on the second and third appearances). Suppose for 
definiteness that the first digit of P is a I (the argument is unaffected if 1 
and 2 are interchanged throughout). In this case P starts with the second 
digit of the link 21 at each appearance, and therefore the last digit of P is a 
2. We arrive at the configuration I. It is clear from the configuration that 

P P P 
r ,,/" ""... " 

21 ****···21 **** .. ·21 ****···21 
~~" -' 

Q Q Q 
Configuration 1 

In contains three successive blocks Q obtained by throwing away the 
final 2 of P and including an initial 2. But Q starts with the first digit of 
a lin k, so that case (ii) reduces to case (i). 

Case 2. The block P contains an odd number of digits. Since I" 
consists entirely of two-digit links, P contains an integral number of links 
plus one digit, and so must either begin or end in the middle of a link (but 
not both). If P begins in the middle of a link at its first appearance, then 
it begins at the beginning of a link at the second appearance, and therefore 
in the middle of a link at the third appearance; if it begins at the beginning 
of a link at the first appearance, then it begins in the middle of a link at 
the second appearance, and at the beginning of a link at the third appear­
ance. In either case we can find two successive appearances of P, the first 
beginning at the start of a link and the second in the middle. Call these 
two blocks PI and P2• 

Without loss of generality, we may suppose that PI starts with the 
link 12; otherwise we can merely interchange the roles of 1 and 2 in the 
argument. Since P2 starts with the second digit of a link, and this digit 
is a I, the link must be 21 and the last digit of PI is a 2 (see Configuration 
2). Since the second digit of PI is a 2, so is the second digit of P2 , and this 

PI P2 ......-----/ "-

12**** .. ·21****···2 
1212 2121 

Configuration 2 
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means that the first link entirely inside Pz is 21. Thus we see that the third 
digit of Pz, and therefore also of PI' is a I. This means that the second 
link of PI is a 12. We now see that the fourth digit of PI> and therefore 
also of p z• is a 2; this means that the second complete link of Pz is a 21. 
Continuing in this way, we see that the links of Pare all 12; this means that 
the last digit of PI must be a I. for P contains an odd number of terms. and 
all the odd positions are occupied by I's. This is a contradiction, and 
hence this case cannot occur. (We note, incidentally, that if P contained 
as many as six terms we would already have three successive links 12 in 
Pl') 

Remark. On writing out the sequences 11' 12, Ia • ... it is easy to see that 
each sequence is an initial segment of the following sequence. Using mathe­
matical induction it can be shown that in general the first 2n-1 digits of In 
constitute exactly In-I' It follows from this that we can not only write down 
arbitrarily long sequences of I's and 2's in which no digit or block of digits 
occurs three times successively, but can actually write down an infinite sequence 
with this property. 

125a. We construct sequences I n (n = 0, I, ... ) in the manner described 
in the hints for this problem. The proof that none of these sequences 
contains a digit or block of digits twice in succession is analogous to 
that of problem I 24b. First of all, we show that no sequence I n can 
contain two successive equal digits. For I n consists oflinks 02, 0121, 0131 
and 03. Neither within one link, nor inside the sequence obtained by 
putting two links together, can two successive equal digits occur. For 
each link starts with a zero, whereas no link ends with a zero. 

It remains to show that I n contains no block of digits occurring twice 
in succession. The proof is by induction and follows closely the method 
used for problem 124b. It is clear that the sequence Jo = 01 contains no 
repeated digit or block of digits. Suppose now that the sequence J n-l also 
satisfies this condition, and that the sequence J n does contain two successive 
equal blocks of digits. We show that these assumptions lead to a contra­
diction. Let J n contain two successive blocks P, which we shall denote by 
PI and P2• We now consider several cases. 

Case 1. PI consists of an integral number of links. In this case it is 
clear that P2 also consists of an integral number of links. We now replace 
every link of I n by the corresponding number, or, in other words, go 
back to I n- l • Then PI and Pz become equal consecutive blocks of digits in 
I n- l , a contradiction. since we supposed that I n- 1 contained no two such 
successive blocks. 

Case 2. The blocks PI and P2 start with a digit a which in both cases 
occupies the same place in the same link. Suppose for definiteness that 
both blocks start with the 2 of the link 0121. In this case PI ends with 
the digits 01, and therefore so does Pzo We thus obtain configuration 
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3, from which we see that J n also contains two successive equal blocks QI 
and Q2' each consisting of a number of complete links. We have already 
examined this case and shown that it is impossible. 

PI P2 ...----.... ...----.... 
0121 ****0121 ****01 
~~ 

QI Qz 
Configuration 3 

Case 3. The blocks PI and P2 start with the same digit a, which either 
appears in different links in PI and P2 , or in different positions of the same 
link. The digit a must be followed by the same digit b in both PI and P2 • 

Examining all possible cases (here it is important to know the digits that 
follow every given digit of a link), and bearing in mind that the last digit 
of a link is always followed by a zero, we see that this case can only occur 
when a = I, and in one of the P's it is the I standing at the end of the link 
0121, whereas in the other it is the I at the end of the link 0131. Suppose 
for definiteness that PI starts with the last digit of 0121, whereas Pz starts 
with the last digit of 0131. (This is no loss of generality, for we may, if 
necessary, reverse the roles of 2 and 3 in the following argument.) The 
block PI ends in 013, the first three digits of the link 0131. Therefore 
Pz also ends with 013. It is easily seen that the digits 013 can only appear 
in a sequence I n if they are the first three digits of the link Ol3I. We 
conclude that the first digit after the end of Pz is a I, and we obtain 
configuration 4. We see from it that the sequence I n contains two 

PI Pz ...----..........----....... 
01210****01310****0131 

""-...-" ""-...-" 
QI Qz 

Configuration 4 

successive equal blocks Ql and Qz, lying one digit to the right of Pl and 
P2 , and that these blocks consist of a number of complete links. Thus 
case (3) reduces to case (I). 

Remark. In order to construct an infinite sequence from the digits 0, 1, 2, 3 
satisfying the conditions of the problem (see the remark after the solution of 
124b), we consider instead of the sequence I n the sequence I n ' obtained 
from it by the rule 

Jo' = 01, 

(Here the tilde - above a letter has the same significance as in the hint to this 
problem.) It is easy to check that the sequence J~_I constitutes the first part of 
the sequence I n'. 
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b. The proof is similar to that of problems 124b and 125a, and like 
them, uses mathematical induction (the method of descent is really a type 
of inductive argument). It is clear that the sequence K = 123 contains no 
repeated digits or blocks of digits. Suppose now this is also true of the 
sequence Kn- I but false for the sequence Kn. We show that this leads to 
a contradiction. Suppose Kn contains two successive equal blocks PI and 
P2• To begin with, it is clear that PI and P2 cannot consist of a single digit. 
In fact, none of the individual links (that is, blocks 123, etc.) of K contains 
a repeated digit. Also, the last digit of one link cannot equal the first 
digit of the following link. Suppose, for example, that the links 231 and 
123 stand next to each other. In that case, one of these links would occupy 
the place previously occupied by an odd-numbered term of Kn-l> and the 
other an even-numbered place, whereas they both have to occupy odd­
numbered places. Next, suppose that the links 321 and 123 stand next 
to each other. Then they replace adjacent I's in K n- h which is impossible 
by hypothesis. All other cases are argued in the same way as one or the 
other of these two. 

We must now show that Kn cannot contain successive equal blocks PI 
and P2 > We consider separately a number of distinct cases and show that 
none of them can take place. 

Case I. The blocks PI and Pa consist of complete links. In this case 
we replace aU the links of Kn by the corresponding numbers, obtaining the 
sequence Kn-l> in which there will be two successive equal blocks (the 
replacements for PI and P2), contrary to hypothesis> 

Case 2. The number of digits in PI and P2 is divisible by 3, but PI 
and P2 do not consist of complete links. If PI starts with the second digit 
of a link, then so does P2 (since the number of digits in PI is divisible by 3). 
If the two last digits of the link which starts PI are, say 12, then before 
them there stands a 3, and since P2 must also start with the last two digits 
12 of a link, the last digit of PI must be a 3. But then the last digit of P2 

is also a 3, and we obtain configuration 5. We see that the blocks QI 

PI Pi ....---..........---...... 
312******312******3 
'-...--"'-...--" 

QI Q2 
Configuration 5 

and Q2 lying one digit to the left of PI and P2, respectively, are repeated 
adjacent blocks consisting entirely of complete links. Thus this case is 
reduced to the previous one. The case in which PI and P2 start with the 
third digit of a link is dealt with in exactly the same way. The corre­
sponding blocks QI and Q2 will in this case lie one digit to the right of 
PI and Pa• 
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Case 3. The number of digits in PI and P2 is not a multiple of 3. 
Also, P2 starts at the beginning of a link. We consider two subcases: 

(i) The number of digits in the blocks PI and P2 is equal to 3k + 1. 
In this case PI and P2 consist of an integral number of links plus one digit. 
The extra digits will be at the beginning of PI and at the end of P2 • Suppose 
for the sake of definiteness that the first digit of P2 (and therefore also of 
PI) is a 3. (Clearly the argument is unchanged if in fact the digit is a I or 
a 2, because of the symmetric role the three digits play in our construction.) 
The next two digits of P2 will be a 2 and a I, but we do not know in which 
order they occur. In the configuration 6 toward which we are working, 
the pair 12 or 21 (we do not know which) will be denoted by XX. It 
follows that the second and third digits of PI are also 12 or 21. But they 
are the first two digits of a link, and the third digit can only be a 3. Thus 
the fourth digit of Ph and therefore also of P2 , is a 3. Now this digit is the 
first digit of a new link in P2 , the other members of which must be 21 or 
12. We put them in P2 and also in Pl' We can now argue as before that 
the next digit of PI is a 3, and so on. We conclude that the figure 3 stands 
in the 1st, 4th, 7th, ... positions of PI and P2, and since the total numl:er 
of digits in P is 3k + I, both PI and P2 must end with a 3. But then PI 
ends with a 3 while P2 begins with one, so that we have two successive 3's, 
which is impossible, as we have shown. 

3 X X 3 X X 3· ..... X X 33 X X 3 X X 3 X X' ..... 3' 

Configuration 6 

(ii) The number of digits in PI and P2 is equal to 3k + 2. In this case 
PI and P2 consist of a number of complete links and two extra digits. 
These will stand at the beginning of PI and at the end of P2 • Suppose the 
first two digits of PI and P2 are I and 2 in some order; then the third 
digit, being the third digit of a link, must be a 3 in P2 , and therefore also 
in PI' But this means that the fourth and fifth digits of PI must be a I and 
a 2 (since they are the last two digits of a link beginning with a 3). And 
so the sixth digit of P2 must be a 3, being the third digit of a link starting 
with 12 or 21, and so on. 

We see (Configuration 7) that the blocks PI and P2 have 3's in the 

3X X3X X3X X······3XXX X3 X X3 X X3······X i 
Configuration 7 

3rd, 6th, 9th, ... places. It follows that PI ends with a link starting with 
a 3, that is, either 321 or 312. The block P2 starts with a link whose third 
member is 3, that is, either 123 or 213. Thus the six middle digits of the 
block PI U P2 must have one of the four forms 312213, 321123, 312123, 
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321213. All these are impossible, the first two because the middle two 
digits are the same, and the last two because the two links of which they 
are composed must both have come from odd-(respectively, even-) 
numbered digits in K,,_l' 

The cases where the first two digits of PI are I and 3 or 2 and 3 are 
treated in the same way. 

Case 4. The number of digits in PI and P2 is not divisible by 3; Pz 
does not begin at the beginning of a link. There are four subcases to 
consider. 

(i) Pz starts with the third digit of a link; P l and Pz contain 3k + I 
digits. In this case PI must start with the last two digits of a link and end 
with the first two digits of a link; and Pz must start with the last digit of a 
link and end with a complete link. 

Suppose for the sake of definiteness that PI and Pz begin with a 3 
(clearly this assumption involves no loss of generality). Then the last 
two digits of P l must be a I and a 2 (in some order), and therefore, the 
last two digits of Pz must also be a I and a 2. Hence the third from last 
digit of P2 (and so also of PI) is a 3. But this means that the two digits 
before the 3 in P l must be a 2 and a I, since the 3 is the last digit of a link. 
The argument continues in exactly the way it proceeded in cases 3(i) and 
(ii), and we see that a 3 stands in the 3rd, 6th, 9th, ... positions from the 
end of P l and Pz (Configuration 8). Since PI and Pz contain 3k + I 

r ....... .... 

33······XX3XX3XX33··· .. 3XX3XX3XX 
Configuration 8 

digits. a 3 must stand in the second place of PI and Pz. But in PI we have a 
3 in position I, so that in this case we would have two 3's next to each other. 

(ii) Pz starts with the last digit of a link, and PI and Pz contain 
3k + 2 digits. In this case PI must start with an entire link and Pz must 
end on the first digit of a link. We suppose again, without loss of generality, 
that PI and Pz start with a 3. Then the second and third places in PI (and 
therefore also in Pz) are occupied by a I and a 2 (in some order). But then 
the fourth position in Pz (and therefore also in PI) is occupied by a 3. 
Continuing the argument in exactly the same way as before, we conclude 
that the figure 3 stands in the 1st, 4th, ... positions of P l and Pz (Con­
figuration 9). Since the number of digits is 3k + 2. a 3 must stand in the 
next to last position in the two blocks, which contradicts the fact that the 
last two digits of P are a I and a 2 (since they are the first two digits of a 
link ending with the 3 at the beginning of Pz). 

3XX3XX3XX 3X3XX3XX3XX3 
Configuration 9 

3 X3 
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(iii) P2 starts with the last two digits of a link; PI and P 2 contain 
3k + 1 digits. In this case PI must start at the beginning of a link and P 2 

end with the first two digits of a link. Suppose for the sake of definiteness 
(and without loss of generality) that PI and Pz end with a 3. Then the 
first two digits of P2 (and PI) are a 1 and a 2. Arguing as in the preceding 
cases, we find that a 3 stands in the 3rd, 6th, 9th, ... positions of PI and 
P2• Since the total number of digits in these two blocks is 3k + 1, a 3 
stands in the next to last place. Since there is also a 3 in the last place, we 
have two 3's next to each other, which is impossible. 

XX3XX3XX3··· 33XX3XX3XX ...... 33 

Configuration 10 

(iv) P2 starts with the last two digits of a link, and P l and P2 contain 
3k + 2 digits. In this ca!>e P l starts with the last digit of a link, and P2 

ends with a complete link. Suppose once again that P l and Pz end with 
a 3. Then, arguing exactly as before, we find that P l and P2 have a 3 in 
the 1st, 4th, 7th, ... places counting from the end (Configuration I I). 

,. 
X3 3 X X3 X X3X3 ... XX3XX3 

COnfiguration 11 

Since the number of digits in the blocks is 3k + 2, it follows in particular 
that there is a 3 in the second position of P 2' But this position is occupied 
by the last digit of the link whose first digit is the final 3 in P b and this 
is a contradiction. 

We have now examined all possible cases, and proved that none of 
them can occur. The proof is thus complete. 

Remark. Suppose we start with the sequence 123'" n, and construct 
further sequences by successively replacing the digits standing in odd-numbered 
places as follows: 

1 by the block 123· . n 
2 by the block 234 ... nl 
3 by the block 345 ... nl2 

n by the block nl23 ... (n - 2)(n - I) 

and the digits standing in even-numbered places as follows: 

I by the block n(n - I)(n - 2) .. ·321 
2 by the block In(n - l)(n - 2) ... 432 
3 by the block 2ln(n - I)(n - 2) .. ·543 

n by the block (n - l)(n - 2)(n - 3) ... 321n. 
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We can show by a proof analogous to 125b above that none of the 
sequences (of digits 1,2,3, ... , n) obtained in this way contains a repeated 
digit or block of digits. 

126. We show that the number T = Tn constructed according to the rule 
given in the hints does in fact satisfy the conditions of the problem. From 
the construction of Tn we know that no two n-digit numbers selected from 
it are identical. Thus to complete the solution it suffices to show that any 
sequence S of nO's and I's occurs somewhere in T. The proof is by 
induction on the number of 1 's at the end of S. 

It follows from the construction of Tn that it contains n consecutive 
1 's, for that is the way it starts. The only sequence ending with exactly 
(n - I) ones is 011 •.. 11. We claim that this number is to be found in 

'- .I 

n-l limes 

Tn' and in fact that it comprises the last n digits of Tn. For let us denote 
the last n digits of Tn by 0(11X21X3 ••• IXn = lXt/i, say, where {3 is the sequence 
1X2~3 ••• 1Xn- By the definition of Tn the n-digit numbers {30 and {31 have 
already occurred as n successive digits of Tn- For otherwise we could 
write either a I or a 0 after {3, and {3 would not lie at the end of Tn. 
Suppose now that not all the digits of {3 are I's. Then neither of the 
sequences po and {31 can start T, for T starts with n I's. It follows that 
the sequences {30 and {31 must both occur somewhere in the interior of T. 
Since no sequence of n digits can repeat itself in T, {3 must be preceded once 
by a I and once by a O. But in that case 1X1 cannot be either a I or a 0 (for 
in either case the final sequence, 1{3 or 0{3, would already have occurred). 
This is a contradiction, and shows that {3 contains only I's. Thus the 
last n - I digits of T are I's, and the nth from the last digit must be a 0 
(or the sequence 1{3 would occur twice: once at the beginning and once 
at the end of T). 

We have thus shown that the sequence 011 ... 11 does indeed occur 
in T. 

Let us write lX(r) for a sequence of r zeros and I's (about whose 
distribution we know nothing), and {3(r) for a sequence of r ones. Let 
us suppose that every lX(n) of the form lX(n - i - l)Otf(i), where i> m 
has already been shown to occur in T. We proceed to show that the 
number k = yb O{3(m) also occurs in to T, where y is an IX(I) and b an 
lX(n - m - 2). 

By our inductive hypothe<;is bO{3(m + I) occurs somewhere in T. 
But by the construction of T this number can occur only if somewhere 
earlier in Tthere is the sequence bO{3(m)O. We see therefore that 0 = bO{3(m) 
occurs twice in T, and neither time at the beginning, since it contains a 
zero. And since no lX(n)'s can occur twice in T, 0 must be preceded on 
one occasion by a I and on the other occasion by a zero. Thus whatever 
the value of y, k = yO occurs in T. The proof is thus complete. 
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Remark. Since the number of distinct <x(n)'s is clearly 2n , it follows in 
particular from this solution that Tn contains (2n + n - 1) digits. For if it 
contained any fewer, it would be missing at least one <x(n), whereas if it contained 
any more, at least One x(n) would occur more than once. 

We note that one can use a similar construction to obtain a number L = L .. 
in the decimal system, such that every possible sequence of n successive digits 
chosen from it is different, and such that every sequence of n digits is found 
somewhere in it. We start Ln by writing down n 9's, and thereafter write in each 
p:)sition the smallest digit which will not introduce duplicated sequences of n 
digits in the part of L already written down, until we can go no further. 

VII. DISTRIBUTION OF OBJECTS 

127. We prove a more general proposition: that if we are given n cookies 
of each of m different flavors, and if we put n cookies into each of m 
different boxes, then we can always take one cookie from each box so 
that no two of the cookies we take are of the same flavor (thus we have 
one cookie of each flavor). The assertion is clearly true when m = 1 
(one box and one kind of cookie) and when n = 1 (one of each flavor and 
one cookie per box). We show now that the theorem is true for any 
value of n. 

Consider first the case where n = 2 (two cookies per box). In this 
case it is easy to describe a process of selection satisfying the conditions of 
the problem. Select one of the cookies from the first box. Say this is a 
cookie of type I, and say the other cookie in the first box is of type 2 
(we shall deal with the case where this second cookie is also of type 1 
shortly). Since we have two cookies of each kind, some box contains the 
second cookie of type 2. Say this is the second box, and the other cookie 
in it is of type 3. Then we take the cookie of type 2 from the second box, 
and find box 3, containing the second cookie of type 3. Say box 3 also 
contains a cookie of type 4: we take out the cookie of type 3 and look 
for a fourth box containing the second cookie of type 4. We continue 
in this way until we finally come to a box, say the kth, which contains 
the second cookie of type I. If k = 1 we have the case (which we 
promised to deal with) where both cookies of the first type lie in the 
same box; if k = m then we have finished our process of selection. In 
any case we have found k boxes which contain cookies of the first k kinds, 
and no others, and none of the untouched boxes contain any of these 
types of cookies. So we forget about the first k types of cookies and the 
first k boxes, and start the whole process again on the remaining boxes 
(see Configuration 12). On this second attempt we may still fail to get one 
of every type of cookie, but in that case we merely have to start once more. 
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Sooner or later we will obtain one of every type of cookie. (We could 
have presented this proof more elegantly in the form of an argument 
by induction on m: when we have finished the first cycle we have again 
the situation we started with but a smaller m.) 

1 2 3 k I k+1 k+2 
II 121 12 I 31 13 I 41 ... I!ITI Ik + 1 I k + 21 Ik + 21 k +31'" 

Configuration 12 

For the cases with n ~ 3 we shall give a proof by induction on n. 
Suppose that for all n smaller than some given value (greater than 2) we 
have already proved the theorem. Then we will show that the theorem 
holds for this value also. 

We are given n cookies of each of m different types, m . n cookies 
in all. Suppose for the moment that the arrangement of the cookies in 
boxes is such that it is possible to make a selection in accordance with 
the conditions of the problem. We show that if we interchange any two 
cookies, the new arrangement of cookies in the boxes is still such that 
we can make an admissible selection. 

For by assumption we can select m cookies, one of each kind, from 
the m boxes. After that we have an arrangement of (n - I) cookies of 
each of m kinds, arranged so that (n - I) cookies lie in each of the m 
boxes. By our inductive hypothesis we may make a second selection of 
m cookies, one of each kind, and one from each box. After this there will 
be (n - 2) cookies of each of m kinds lying in m boxes, (n - 2) to a box. 
(Remember that n ::=:: 3.) By our inductive hypothesis we can make a 
third admissible selection. Suppose now that we change the initial 
arrangement by interchanging two of the cookies. In this process at least 
one of the three sets of m cookies that we could select will be undisturbed, 
so that everyone of the m cookies in this selection remains in its original 
box. So we merely select this set. 

We can now conclude that whatever the initial arrangement of the 
cookies in the boxes was, we can always make an admissible selection. 
For consider the arrangement in which each box is filled by all the cookies 
of some one sort. It is clear that we can make an admissible selection 
from it. (In fact we cannot help making an admissible selection if we take 
one cookie from each box.) Now any arrangement of the cookies in the 
boxes can be obtained from this arrangement by successive interchanges 
of pairs of cookies. Thus by the theorem we proved above, applied a suffi­
cient number of times, we conclude that any arrangement permits an admis­
sible selection. The general result now follows by mathematical induction. 

Remark. This problem can also be stated in a geometrical form. Suppose 
we have two rows of m points (as ir. fig. 72, where m = 4). 

Now suppose that lines are drawn, each of which connects a point of the 
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Fig. 72 

top row with a point of the bottom row. It is permitted that the same pair of 
points be connected by more than one line. We require, however, that the same 
number of lines, say n, pass through every point (in fig. 72, n - 3). We assert 
that it is then possible to choose m of the lines such that every point lies on exactly 
one of them (in fig. 72 the heavy lines form such a choice). 

To see that this result is equivalent to problem 127, think of the points 
Ai, ... , Am on the top row as the m flavors, and the points Bl , ... , Bm on the 
bottom row as the m boxes. The lines are the cookies. Whenever a line connects 
Ai to Bi' we put a cookie of flavor Ai in the box B j • The fact that n lines meet 
at each Ai means that there are n cookies of each flavor, and that the fact that 
n lines meet at each Bi means that there are n cookies in each box. A choice of 
m lines such that each point lies on one of them is the same as a choice of m 
cookies, one of each flavor and one in each box. 

In its geometrical form, problem 127 is a famous theorem of graph theory, 
due to Konig. For other proofs, see Ref. [\6]. 

128. We note that the hypothesis of the problem is clearly necessary in 
order to marry off the boys (for if it is not satisfied, then there is some set 
of k boys who are collectively acquainted with fewer than k girls). To 
prove sufficiency we use induction on m. For m = 1 the result is trivial. 
Suppose that m > I, and that the theorem has been proved when the 
number of boys is <m. We distinguish two cases: 

(I) Any k boys, where k < m, have at least k + 1 acquaintances. 
(2) There is a set S of k boys, k < m, who have exactly k acquaint­

ances. 

In case (I) pick one of the boys and marry him to one of his acquaint­
ances. There remain m - 1 boys, and any k of them have at least k 
acquaintances among the M - I remaining girls. By induction these 
m - I boys can be married off, and we are through. 

In case (2) we can marry the boys of the set S by the induction 
hypothesis. There remain m - k boys, and we assert that they satisfy the 
conditions of the problem with respect to the set R of remaining girls. 
To see this, consider any subset T containing I of these boys, where 
I ~ I ~ m - k. If the boys in T were acquainted with fewer than I girls 
of R, then the boys in S U T would be acquainted with fewer than k + I 
girls, a contradiction to the hypothesis. Hence the boys in T are acquainted 
with at least I girls of R. By induction we can marry them off, and the 
proof is complete. 
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Remark. The above result was first proved by P. Hall. The proof we have 
given here is due to P. Halmos and H. Vaughan, (Ref. [8]). 

As in the remark following problem 127, we can formulate the marriage 
problem geometrically. Represent the girls by a row of points AI' ... , AM' 
and the boys by points B 1, ••• , Bm as in fig. 73 (where m = 4, M = 6). 

Connect Ai and B; if the boy B; is acquainted with the girl Ai. The hypo­
thesis says that any k points on the bottom row are connected to at least k points 
on the top row. The conclusion is that m of the lines can be chosen so that each 
Ai is on at most one, and each B; on exactly one of them. (In fig. 73, the heavy 
lines form such a choice.) 

It is now easy to show that problem 127 is a special case of 128. Recall that 
in problem 127 we have M = m. Moreover, from each subset of k points on 
the bottom row there emanate exactly kn lines. These lines must terminate 
on at least k different points of the top row, since at most n of them can go 
through any given Ai. Thus the conditions of problem 127 imply those of 128. 
This gives us another solution to problem 127. 

Fig. 73 

VIII. NONDECIMAL COUNTING 

129. We will show that the number in the (A + I)st row and (B -I- l)st 
column is the Nim sum A CB B described in the hints at the back of the 
book. Before doing this, we will derive some properties of A <D B. 

(I) The Nim sum is commutative, i.e. A <D B = B CB A. This follows 
at once from the definition. 

(2) The Nim sum is associative, i.e. (A CB B) CB C = A CB (B CB C). 
In fact if A = (anan - 1 ••• a1), B = (bnbn - 1 • •• b1), C = (cncn- 1 ' •• c1 ), 

we easily see from the definition that both (A CB B) CB C and A CB (B 0'l C) 
are equal to (dndn- 1 ••• dt ), where 

{
o if a j + bi + Cj is even 

d-= 
• 1 if a j + b, + c. is odd 

(3) 0 CB A = A for all A, i.e. 0 is an identity element under CB. 
(4) A CB A = 0 for all A (since if A = (anan- 1 ' •• a1), then aj + a j = 

2a" which is even for all i). This means that each integer A is its own 
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inverse under CD. In the language of abstract algebra, properties (1)-(4) 
imply that the nonnegative integers form a commutative group under the 
Nim sum. In view of (2) we can simply write A CD B CD C to denote 
either of the numbers (A G) B) G) C or A G) (B CD C). 

We are now ready to prove that A e B is the entry in the (A +- l)st 
row and (B + l)st column of the array under consideration. To do this 
we have to check that A G) B has the following properties: 

(a) 0 G) 0 = O. 
(b) A G) B is different from all the numbers Pl') B (P < A) and 

A (f) Q (Q < B). 
(c) Any nonnegative integer X < A G) B is equal to one of the num­

bers P G) B (P < A) or (A CD Q) (Q < B). 

Property (a) is clear. We proceed to prove (b). If A Q) B = pm B, 
where P < A, then A q; B ::D B = P (j) B CD B Since B Q) B = 0, we 
have A = P, a contradiction. Similarly, the equation A (f) B = A CD Q 
where Q < B leads to a contradiction. 

To prove (c), let A = (anan- 1 ••• a1 ), B = (bn- 1 ••• bI), A C:0 B = 

C = (cnc n- 1 " • c1), and suppose X = (xnxn - 1 ' •• Xl) is any nonnegative 
integer < c. Let k be the greatest integer such that ck -=1= x k ; since 
C > X we must have ck = I and x k = O. Since Ck = I we have either 
ak = I, bk = 0 or ak = 0, bk = 1. Suppose that ak = I, bk = O. Then 
B G) X < B::D C, since bk + X k = 0 < bk + Ck = I, while all "higher" 
digits of B e X and B ED C are the same. But B G) C = B C+) B C0 A = A; 
thus, B (j) X < A. Putting P = B (I) X, we have P (fl B = B I.) B (-) X = 
X, which shows that Xis of the desired form P (,) B with P < A. Similarly 
the case ak = 0, bk = I leads to X = A CD Q where Q < B. 

This concludes the proof. It remains only to observe that in binary 
notation, 999 = (II lllOOI II ) and 99 = (lIOOOIl), and therefore the 
number at the intersection of the lOOO'th row and the lOO'th column is 
999 G) 99 = (1110000100) = 900. 

130. Suppose the three piles have a, b, C matches in them. We write the 
numbers to base 2 in the form 

where each of the digits ao, bo, co, aI, bI , Cl> ••• , am' bm• Cm is either 0 or 
l. We have given a, b, and C the same number of digits; this is possible 
provided we allow an initial digit to be zero. We require one of the 
initial digits to be a I, but not necessarily all of them. A player on making 
a move changes just one of the numbers a, b, C to a smaller number. In 
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the process he must change at least one of the digits of this number. Thus. 
if he takes some matches from the first pile, he must change at least one 
of the digits ao, aI' ••• ,am' Note now that every change in a digit 
reverses its parity (that is, changes it from even to odd or odd to even). 
It follows that a player taking a match from the first pile necessarily 
changes the parity of at least one of ao. a l • ... ,am' A similar conclu~ion 
holds ifhe takes matches from the second or third pile~. Con<;ider now the 
sums 

If at least one of these sums is odd, we assert that the first player can \\-in. 
whatever his opponent does. Suppose, for example. that the first odd 
sum is ak + h" + Ck • Then at least one of the terms aJ.. hI.' c" is equal to 
I; for the sake of definiteness let us suppose a" = I. Then by taking a 
suitable number of matches from the first pile the first player can make 
sure that nOne of the digits am' am-I' ... , aJ..l changes, while the digits 
ak-1> ••• , a1> a o assume any values he likes, and aJ. changes from J to 
zero. This is so because any number satisfying all these conditions must 
be less than a, and therefore obtainable from a by the subtraction of a 
suitable number. In particular, the first player can make sure that all the 
sums 

ak + bk + c", ak_1 + hk .1 -+- C"_I' ... , al + hi ~ CI , a o -+- ho -i Co 

become even (whether or not they were even before). When the second 
player makes his move, he mu<;t alter the parity of at least one term, and 
therefore also of at least one of the sums 

am + bm + em' a m - 1 + hm- 1 -\- Cm_ I ,· .. , al + hI I CI ' a o + bo + co· 

This means that after his turn there will Once again be an odd sum for the 
first player, and he now moves as before. As the game continues in this 
manner, the number of matches continually decreases. Since at the 
moment when all the matches have gone, the sums are all zero. and hence 
even, the first player must have made the last move. 

If in the initial position all of the sums 

are even, then the first player cannot guarantee a win; in fact the second 
player can win by playing in the manner described above. Of course. the 
first player can move at random, waiting for the second player to make a 
mistake: after a single mistake on the second player's part the first player 
can win. 

Remark 1. Using the Nim sum which was discussed in problem 129, the 
strategy can be described as follows. Compute the Nim sum a ? b -; c 
of the three piles. If it is not zero, you can always move to a position where 
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it is zero. Then, no matter what your opponent does, he will leave you in a 
position where the Nim sum is not zero. Continue in this way, always leaving 
your opponent in a position where the Nim sum is zero. Finally he will be left 
in the position a = b = c = 0, and then you will have won the game. This is 
the reason for calling A (j) B the "Nim sum" of A and B. 

Remark 2. Notethatthegame has a bias in favor of the first player: losing 
positions for him are in a certain sense exceptional (since winning positions 
occur far more frequently, especially when the piles are large). Thus if two 
players who know how to take advantage of a winning position play each other, 
the first to play will win most of the time. 

Let us also note that our argument did not depend at all on the number of 
piles: the first player can win in the manner described by the strategy described 
however many piles there are, provided the sums 

am ;- b ... + em + ... + hm' am-l +- bm- 1 + Cm_l + ... + hm- 1, ••• , 

are not all even. 
Instead of counting to base 2 we could have used base 4, 8, etc. We give 

(without proof) the results when a system to base 4 is used. Suppose 0, b, and c 
are of the forms 

respectively (where all the a;'s, etc., lie between 0 and 3). Then the initial 
position is a losing position if and only if everyone of the sets {ao,bo,co}, 
[albIcl }, ••. , {a",.b""cm } is equal to one of the sets {O,O,O}, {O,I,l}, {O,2,2}, 
{O,3,3}, {1,2,3}. If this is not the case, then the first player can win by correct 
play. He need only choose the matches he takes in such a way that afterwards 
all the sets are of this form. However, the easiest way of showing that this is 
always possible is to translate back to base 2. 

131. The position of the game at any moment can be described by the 
or 'ered pair (x,y), where x is the number of matches in the first pile, and 
}' IS the number in the second pile. Thus the various possible positions can 
be represented geometrically by the points in the plane whose coordinates 
are nonne~atlve integers (fig. 74). When a player is at (x,y), he can move 
to any point on the horizontal line to the left of (x,y) (by taking matches 
from the first pile), or to any point on the vertical line below (x,y) (by 
taking matches from the second pile), or to any point of the diagonal line 
to the southwest of (x.y) (by taking the same number of matches from 
both piles). 
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We now proceed to analyze the game, using the method explained on 
page 17. In the present case properties (I), (2), and (3) can be stated as 
follows: 

(I) (0,0) is a losing position. 
(2) If P is a losing position, then every point on the horizontal to 

the right of P, the vertical above P, or the diagonal to the north­
east of P, is winning. 

(3) If every point on the horizontal to the left of P, the vertical below 
P, and the diagonal southeast of P is winning, then P is losing. 

Applying property (2) with P = (0,0), we see that the points (other 
than (0,0» on the three lines drawn in fig. 75 are winning positions. By 
property (3), the positions (1,2) and (2,1) are losing. Another application 
of (2) shows that all uncircled points on the lines drawn in fig. 76 are 
winning positions. 

y 

Fig. 75 
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y 

x 

Fig. 76 

Using property (3) again, we see that (3,5) and (5,3) are losing 
positions. Hence by (2), all uncircled points on the lines drawn in fig. 77 
are winning positions. We now use (3) again to conclude that (4,7) and 
(7,4) are losing positions. 

Continuing in this way, we obtain at the nth stage of the process two 
losing positions (ambJ and (bn,an). The rule for finding (ambn) is the 
following: 

Cross out the rows, columns, and 45° diagonals on which the points 
(0,0), (al>b1), (bhal), ... , (an-hbn- 1), (bn-1,an-l) lie. Then (ambn) is the 
leftmost point of the diagonal y = x + n which has not been crossed 
out. 

Fig. 77 
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Table 1 

n 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

3 4 6 8 9 II 12 14 16 17 19 21 22 24 

bn 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 

In the notation of analytic geometry, the columns crossed out are the 
lines x = 0, x = a., x = bI> ..• , x = an-I, X = bn- 1• Therefore 

(i) an is the least positive integer which is not equal to at> b1 , O 2• b2, ••• , 

an-I> or bn- 1• 

(ii) bn = an + n. 

Properties (i) and (ii) completely determine the sequence {(on,bn)}, the 
first few terms of which are shown in table I. 

Remark. Our treatment has been designed to show how properties (i) and 
(ii) can be systematically derived from the general theory, as explained on page 
17. If. however, one has somehow guessed (i) and (ii), it is easily verified that 
the pairs (ambn) and (bn.o .. ). together with (0,0), are indeed the losing positions. 
It suffices to show that the set C = {(O,O), (al,bl), (bbal)' (a2,b2), (b2,a2), ... } 
satisfies the conditions of the theorem on page 19. Note first that every non­
negative integer is the x coordinate of exactly one point in C and is also the 
y coordinate of exactly one point in C. Moreover, every integer is the "coordinate 
difference" y - x of exactly one pair (x,y) in C. In particular, no two distinct 
points P, P' of C have the same x coordinate, y coordinate, or coordinate 
difference. This proves property (4) on page 19. To prove (5), suppose that 
(x,y) is not in C. If x = y, we can immediately play into the position (0,0). 
Therefore we may suppose without loss of generality that x < y. We know that 
there is a point of the form (x,z) in C (where z 01= y). If y > z, we can play from 
(x,y) to (x,z) by removing y - z matches from the second pile. If y < z, 
consider the (unique) point (a,b) in C such that b - a = y - x. Since b - a < 
z - x, the pair (a,b) precedes (x,z) in the list {(a",bn)}. Hence a < x, so one 
can play from (x,y) to (a,b) by removing x - a matches from both piles. 

In the course of this proof we have incidentally obtained an optimal 
strategy for actually playing the game (from any winning position). 

We will now obtain an explicit formula for the pairs (o..,b,,), namely 

an = [mo], bn = [m·t ], where T = (I + . ./5)/2, and where the brackets 
denote integer parts. The idea of the proof is to show that the pairs 
([nT], [nT2]) satisfy properties (i) and (ii). We begin by proving the following 
remarkable result. 

Theorem. If ot and P are positive irrational numbers such that 
I/ot + lIP = I, then every positive integer occurs once and only once 
among the numbers [not] and [np], n = 1,2,3, .... 
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Proof Let S be the set consisting of the numbers niX and np, 
II = 1,2. 3, . .. . Since (J. an'd P are irrational, the elements of S are also 
irrational. We want to show that there is exactly one element of S between 
I and 2, exactly one element between 2 and 3, etc. (For then, taking 
integer parts, we get every positive integer exactly once; see fig. 78.) In 
other words, we want to prove that if N is any positive integer, there are 
exactly N - I elements of S which are < N. Now n(J. < N for n = 

1,2, ...• [N/(J.], and np < N for n = 1,2, ... , [N/P]. Hence the number 
of elements of S less than N is [N/(J.] + [N/P]. We have N/(J. - I < 
[Nloc] < N/(J., and N/P - I < [N/P] < N/P, since N/(J. and N/P are 
irrational. Adding these inequalities, we get NI(J. + NIP - 2 < [N/(J.] + 
[NIP] < Nix + NIP. Since I/(J. + I/P = I, this says that N - 2 < 
[Nix] -I- [NIP] < N. Since [N/(J.] + [NIP] is an integer between N - 2 
and N. it must = N - I. This completes the proof. 

o 2 3 
Fig. 78 

4 5 6 

Now put (J. = T = (I + ..)5)/2, and P = T2 = (3 + ..)5)/2. Since 
T2 = T + I, we have II(J. + lIP = lIT + I/T2 = (T + 1)/T2 = 1. Since 
T is irrational. our theorem tells us that every positive integer occurs 
exactly once among the numbers [nT] and [n-r2], n = 1, 2, 3, . .. . This 
implies that [n-r] is the least positive integer not equal to [TJ, [T2], [2T], 
[2T2], •.• , [(n - I)T], [en - l}T2]. Moreover, 

[m2] = [neT + I)] =- [nT] + n. 

Thus properties (i) and (ii) are satisfied by the pairs ([n-r], [m2]). Since 
these properties characterize the sequence {(an,bn)}, we have 

This formula can be used to express the optimal strategy we found for 
winning the game in a curious form. We will merely state the rules and 
leave their verification to the reader. If 0 is any real number, put 
{O} = 0 - [0]. We call {O} thefractional part of 0; it satisfies 0;;;; {O} < 1. 
Suppose the initial position of the game is (x,y), where x < y. Then 

(I) If {XT} ;;;; IIT2, move to the position (x, [XT] - x). 
(2) If {XT} > 1/-r2 and y > [XT] + I, move to (x, [XT] + I). 
(3) If {XT} > I/T2 and y < [XT] + I, move to ([(y - X)T], [(y - x)-r2]). 
(4) If {XT} > I/T2 and y = [XT] + I, resign. You are in a losing 

position! 

We wish now to give still another construction for the losing pairs, 
one which has the advantage that we can tell whether a given position is 
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losint> 0T not without having to calculate all previous losing pairs. For 
thIs purpose we use the number system known as the F-syvtem (see pp. 
15-16 for a description of it). Using the abbreviated notation, we list 
the F-expansions of the first few pairs (ombn). 

n an bn 

1 1 10 
2 100 1000 
3 101 1010 
4 1001 10010 
5 10000 100000 
6 10001 100010 
7 10100 101000 
8 10101 101010 

We note that so far, every an ends in an even number of zeros 
(possibly none). and br, is obtained from an by adding a zero at the end. 
We will now prove that these properties hold for all the pairs (a",h,,). 
For the moment, call (x,y) a distinguished pair if x ends in an even number 
of zeros, and y = xO (that is, the F-expansion of y is obtained from that 
of x by adding a zero at the end). We wish to show that the distinguished 
pairs are precisely the pairs (a",bn). 

Every positive integer n belongs to exactly one distinguished pair. 
For if n ends in an even number of zeros, it belongs only to the pair 
(n,nO), and if n ends in an odd number of zeros, it belongs only to the pair 
(m,n), where n = mO. 

We show next that every positive integer z occurs as the difference 
y - x of the members of a distinguished pair. Suppose 

z = qkqk-l ••• qo = qkuk + qk-lUk-l + ... + qouo· 

If z ends with an odd number of zeros, let 

x = zO = q~k+1 + qk-luk + ... + qoUl 

Y = zOO = qkUk+2 + qk-lUk~ 1 + ... + qou2• 

Then (x,y) is a distinguished pair, and 

y - x = qk(Uk+2 - Uk+l) + qk-l(Uk+l - Uk) + ... + ql(U3 - U2) 

= qkuk + qk-lUk-l + ... + qoUo = z. 

If, on the other hand, z ends in an even number of zeros, say 2m, then 

qo = q2 = ... = q2m-l = 0, 
Let 

2m+2 digits 
'" ... 

x = qkqk-l ••• q2m+lOIOI ..• 0], 
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Then (x,y) is a distinguished pair. Moreover, 

x = qkuHl + q1r:-lUk + ... + q2m+lu2m+2 + U2m + U2m-2 + ... + U2 + UO• 

Y = qkUk+2 + qk-lU/c+l + ... + q2m+lu 2m+S 

+ U2m+I + U2m-l + ... + Us + U1• 

Hence 

y - x = qk(Uk+2 - Uk+l) + q1r:-l(UH l - Uk) + ... + q2m+l(U2m-tS -u2m+J 

+ (U2m+l - u 2m) + (U2m-I - U2m- 2) + ... + (Us - uJ + (u1 - uo) 

+ U 2m- S + ... + Us + U1 + Uo 

(noting that Ul - Uo = I = uo). Now 

U2m- 1 + U2m- 3 + ... + Us + U1 + Uo 

= (u2m - U2m- 2) + (U2m- 2 - U2m- 4) 

Therefore 

y - x = qkuk + qk-luk-l + ... + q2m+lu2m+l + U2m = z. 

This shows that every positive integer z occurs at least once as the differ­
ence of the members of an ordered pair (x,y). Now suppose (x,y) and 
(x',y') are two distinguished pairs with x < x'. We claim that y - x < 
y' - x'. To prove this, let the F-expansions of x and x' be 

x = qkuk + qk-luk-l + ... + q1u1 + qouo, 

x' = qk'uk + q~-lUk-l + ... + ql'Ul + qo'uo, 

where if necessary we adjoin enough zeros at the beginning of x so that 
both x and x' have the same number of digits. Then if I is the greatest 
integer such that ql =t= q/, we must have ql = 0 and q/ = l. Note that 
I =t= I, for then x' would end in one zero, contrary to the hypothesis that 
it ends in an even number of zeros. Hence I ~ 2. Now 

y = xO = qkUk+l + q1r:-lUk + ... + q 1u 2 + qoUl> 

and therefore 

y - x = qk(Uk+1 - Uk) + qk-l(Uk - Uk-I) + ... + ql(U2 - uI ) 

+ qo(ul - uo) 

= qkuk-I + qk-lUk-2 + ... + q1uO + qo· 
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Similarly, 

Hence 

(y' - x') - (y - x) = UZ- 1 + (q;-l - qt-l)UZ-2 

+ ... + (ql' - ql)UO + (qo' - qO)' 
If / is odd, then 

(Y' - x') - (y - x) ~ U 1- 1 - (ql-1ul- 2 + ... + q1UO) - qo 

;: U1_ 1 - (U I- 2 + U I- 4 + ... + u1) 

= U1- 1 - (U 1- 1 - 1) = I, 

using equation (6) on page 16 (with i = /- 1). 
If / is even, then we must have q/ = 1 for at least one i < I; otherwise 

x' would end in an odd number of zeros. Hence in this case 

(y' - x') - (y - x) > U 1_ 1 - (ql-lU I- 2 + ... + qouo) - qo 

~ U I - 1 - (UI- 2 + U I- 4 + ... + uo) - I 

=-= U Z- 1 - (U1- 1 - 1) - I = 0, 

using equation (5) on page 16 (with i = 1 - 1). 
Thus in all cases y' - x' > y - x. 
We are now ready to prove that the distinguished pairs are precisely 

the losing pairs (amb,,). Denote the distinguished pairs by (X1,Yl), (X:!.)'2)' 

(xa.Ya), ... , where Xl < X 2 < Xa < .. '. By what we have just shown, 
Yl - Xl < Y2 - X2 < Ya - Xa < .. '. But we saw earlier that every 
positive integer appears among the differences y .. - x". Therefore 
Yl - Xl = 1, Y2 - X2 = 2, Ya - X3 = 3, and in general Yll - Xn = n for 
every n (since otherwise the differences would skip some integer). From 
the fact that every positive integer occurs exactly once among the x's and 
y's, it follows that Xn is the least positive integer not equal to Xl. YI' X2, 

Y2, ... , Xn-l or Yn-l' Thus the pairs (xlI 'YII) satisfy properties (i) and (ii). 
Since these properties characterize the pairs (a",b,,), we have x" = a". 
Yn = bn for all n. 

As an example of the use of this criterion for the losing pairs, let us 
determine whether the position (64,105) is winning or losing. The 
Fibonacci numbers::; 105 are 1,2, 3, 5, 8, 13,21, 34, 55, 89. Therefore 

64 = 55 + 8 + I -= 100010001 

105 = 89 +- 13 + 3 = 1000100100. 

We see from this that (64,105) is not distinguished and therefore is a 
winning position. Our earlier methods would require the calculation of 
the first 40 pairs (an,bn) to obtain this result. 
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IX. POLYNOMIALS WITH MINIMUM DEVIATION 
FROM ZERO (TCHEBYCHEV POLYNOMIALS) 

132. To obtain formulas 8 and b, we expand the left-hand side of De 
Moivre's formula 

(cos a + i sin a)" = cos na + i sin na 

by the binomial theorem and then equate the real and imaginary parts of 
the resulting equation. 

To prove c we divide the two sides of equation 8 by the correspond­
ing sides of equation b, and then divide numerator and denominator of the 
quotient on the right-hand side of the resulting equation by cos" a. Of 
course, we must assume that cos a =F 0, but the formula is meaningless 
anyway when cos a = O. 

133. From problem 132b we have 

cos na = cos" a - (;) cos,.-2 a sin2 a + (:) COS,.-, a sin' a - .... 

Let us now write 
a = cos-1 X. 

Then 
cos a = x, sin a = ../1 - X2, 

and therefore 

Tn(x) -= cos (n cos-1 x) 

= xn _ (;)xn
-

2(1 _ X2) + (:)X"-'(l _ X2)2 _ ••• , 

so that T(x) is indeed a polynomial of degree n. On removing the paren­
theses in this expression for Tn(x), we find that the coefficient of x" is 

1 + (;) + (:) + ... , 
which is equal to 2n - 1 (see problem 588 of Volume I). 

Let us now find the roots of the equation 

Tn(x) = O. 
Since cos g; = 0 if and only if g; = 1(2k - 1)1T (k an integer), we have 

Tn(x) = cos (n cos-1 x) = 0 
if and only if 

_ 1 
n cos 1 x = - (2k - 1)1T, 

2 

1 
x = cos - (2k - 1)1T. 

2n 
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Fig. 79 

By assigning the values I, 2, 3, ... , n to k we find that the n roots of 
the equation Tn(x) = 0 are 

1 3 2n - 1 
Xl = COS-7T, X 2 = COS-7T, ••• , 

2n 2n 
Xn = cos ---- 7T. 

2n 

Next, it is clear that if X lies between -I and + 1, then -1 ~ 
cos (n cos-l x) ~ + 1 (since -1 ~ cos fP ~ I for any fP). It is not 
difficult to find the values of X for which the polynomial Tn(x) = 

cos (n cos-1 x) assumes the values + 1 and -I. For cos fP = ± 1 if and 
only if fP = k7T (k an integer), and we deduce that 

Tn{x) = cos (n cos-l x) = ± 1 
if and only if 

n cos-1 x = k7T, 
cos k7T 

X = -----. 
n 

Thus 

Tn(COS~) = -1, 

Tn( cos 3;) = -1, ... (1) 

It is important to note that on the interval -1 SO x ;;:; I the maximum 
and minimum values of T,,(x) alternate. Thus at x = I the value of the 
polynomial is + I; it then drops to -I (at the point x = cos 7T/n), then 
again increases to -t-I at the point x = cos 27T/n, then drops again to -J 
at the point x = cos 37T/n, and so on. (See fig. 79, in which we show the 
first six Tchebychev polynomials.) The solution to problem 135 below is 
based on this property of T,,(x). 
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134. It is easy to see that the polynomial 

P(x) = x2 + px + q = (x + ~r+ q - -f 
assumes its minimum value q - (P2/4) when x = -pI2. We consider now 
two separate cases. 

(I) l-p/21 ~ 1 (fig. 80a). Suppose at x = lour polynomial assumes 
the value P(l) = a and at x = -I the value P(-I) = b; the deviation 
from zero of the polynomial P is then equal to the greater of lal and Ibl. 
Consider now the polynomial 

2 a + b 2 PI(X) = x + px + q - -- = x + px + ql; 
2 

for this polynomial 

P (1) = a _ a + b = a - b 
I 2 2' 

P (-i) = b _ a + b = b - a 
I 2 2' 

so that P{l) = - P( -I). The deviation from zero of PI is not greater than 
the deviation of the original polynomial P. For the graph of PI is obtained 
from that of P by shifting it up or down such a distance that the two 
endpoints (where x = I and x = -1) are equally far from the x axis; 
see fig. 80a, where the graph of PI is shown dotted. Thus the deviation of 
P from zero is not less than that of Pi> and the deviation of PI is given by 

IPI(I) - PI(-i)1 = 1(1 + p + ql) - (I - p + qI)1 = Ipl. 
2 2 

Since by hypothesis Ipl21 ~ I, it follows that the deviation of P is at 
least 2. 

(2) l-p121 < I (fig. 80b). Let us suppose that the point x = -p/2 

K Y 

y 

Y - PIx) 

Fig. 80 

Y 

y--"-I 
1 
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is in the interval -I < - p/2 ~ 0, that is, 0 ~ p/2 < I. (In the alter­
native case. 0 ~ -p/2 < I, the argument needs only trivial alteration.) 
It is then clear that 

(see fig. 80b). As in case (I) we replace P(x) by a new polynomial 

P1(x) = x2 + px + ql. 

for which P1(-p/2) = -P1(l). The graph of P l is obtained from that of 
P by shifting it vertically until the lowest point of the graph and the point 
with x = I are located at equal distances from the x axis (see fig. 90b). 
It is clear that the deviation from zero of PI is less than or equal to that of 
P. Hence the deviation of P is at least 

IP1(l) - P1(- p12)1 _ l{l + p + q]) - (p2/4 - pl/2 + ql)1 
2 - 2 

Ip'l,/4 + P + II l(p/2 + 1)11 
2 2 

Since 0 ~ p/2 < 1, this deviation is a minimum when p = 0, and for this 
value of p we deduce from 

Pl( -~) = - P1(l) 

that 
1 

ql = - -. 
2 

We conclude that the quadratic polynomial with minimum deviation 
on the interval -I ~ x ~ +1 is 

(fig. 78c); its deviation is i. 

q 1 
Po(x) = x- --

2 

135. Suppose that on the interval -I ~ x ~ 1 the polynomial 

P .. (x) = x" + a,,_lx"-1 + ... + a1x + ao 

has deviation from zero less than (1)"-1. In other words, suppose that for 
-1 ~ x ~ 1 we have 

1 
IP ,,(x)1 < -1 • 

2"-
We show that this supposition leads to a contradiction. 

Consider the polynomial R, where 
1 

R(x) = P .. (x) - -1 T,.(x). 
2"-
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Since the coefficients of the leading terms of Pn and (!)"-1T" are equal 
to I, they cancel out on subtraction. The degree of R is therefore at 
most n - I. 

From (I) in the solution of problem 133, it follows that 

I 
R(I) = P,,(l) - 2,,-1 T,,(l) < 0, 

( 
2n) (2n) I ( 2n) R cos -;; = P" cos -;; - 2,,-1 Tn cos -;; < 0, 

( 
3n) (3n) I ( 3n) R cos -;; = P n cos -;; - 2,.-1 Tn cos -;; > O. 

Thus R{x) is negative at x = I. whereas it is positive for x = cos nln. 
It follows (by the continuity of R), that there is a value x between I and 
cos n/n for which R(x) = O. We see in exactly the same way that the 
equation R(x) =- 0 has a root in each of the intervals (cos 2nln, cos nln), 
(cos 3n/n. cos 2n/n), (cos 4nln, cos 3n/n), ... , (-I, cos (n - l)nln). 

We conclude that the equation R(x) = 0 has at least n roots. But R 
is of degree at most n - I, and this is a contradiction unless R is the zero 
polynomial.9 Hence Pn = (l)n-1T", contradicting the assumption that the 
deviation of P is less than (!)n-1 (for the deviation of Tis equal to <nn-l, as 
we saw in the solution to problem 133.) We have thus reached a contra­
diction, and the first part of the problem is solved. 

We can prove the second part-that u)n-1T" is the only polynomial 
of degree n with deviation equal to (Dn-l on the interval [-1,+1] by a 
refinement of the previous argument. Suppose P" is a second such 
polynomial. As before, we consider the difference R, where 

Here R is a polynomial of degree at most n - 1. At the points x = I, 
cos 27T/n, cos 4n/n, ... the values of R are ~ 0, while at x = cos nln, 
cos 3nln. cos 5n/n, ... they are ;?; O. It follows that in each of the 
intervals [cos 7Tln, 1], [cos 27T/n, cos 7T/nJ, [cos 37Tln, cos 27TlnJ, ... , 
[-1, cos (n - I )7T/n] (possibly at their endpoints) R(x) has at least one 
zero. We will show that in this case R has at least n zeros. It then follows 
as before that R is the zero polynomial. and therefore that Pn = (!)n-lT". 

• If a polynomial R(x) of degree <II has n roots x" x •• Xl • ••• , x n , then R(x) 
is divisible by the polynomial (x - x1)(x - x.) .•. (x - xn) of degree n. This is 
clearly impossible unless R(x) is identically zero. 
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Consider the graph y = R(x) near a point a at which R(a) = O. This 
graph must either cross the x axis at the point x = a or touch it. If the 
graph touches the axis, then x = a is a double root of the equation 
R(x) = 0, in the sense that (x - a)2 is a factor of R{x). For the purposes 
of our argument such zeros must be counted twice. 

Since a is a root of R(x) = 0, we can write R(x) = (x - a)RI(x) (by 
the factor theorem for polynomials). 

If R does not have a double zero at x = a, then RI(a) =1= O. Since RI 
is continuous, this means that in a sufficiently small neighborhood of a, 
R I does not change sign. But as we pass from points on the left of x = a 
to points on its right, the sign of the function (x - a) does change, and 
so the sign of (x - a)RI(x) also changes. This means that the graph of 
y = R(x) crosses the x axis at the point x = a, contrary to our hypothesis 
that it touches. 

In proving that R{x) = 0 has n roots, we must count double roots 
twice. To show that R does have at least n roots, we prove the following 
more general assertion: 

Let F be any continuous function defined on an interval [a,b]. 
Suppose this interval is divided into n smaller intervals 

Suppose that 

F(a;) ~ 0 

F(a;) ~ 0 

(an = a, a o = b). 

(i even), 

(i odd), 

and that F has a zero in every interval (possibly at an end point). Then F 
has at least n zeros, provided double zeros are counted twice. 

The proof is by mathematical induction. For n = I the theorem is 
trivial. Suppose we have proved it for all continuous functions and all 
intervals divided into fewer than n pieces. We then prove the result when 
there are n subintervals. 

Consider first the case where n is even, so that F(an) ;2; O. Suppose 
F(an) < O. If F(an_I) > 0, then the graph y = F(x) must cross the x axis 
at least once between x = an and x = a,,-I' Thus F has at least one zero 
in the interval [a",an _ I ] and, by the induction hypothesis, at least n - I 
zeros in the interval [an_loaO], a total of at least n zeros, as required. 

Suppose next that F(an_I) = 0, but F{an_z) =1= O. Then F(an_2) < O. 
We know that F has at least n - 2 zeros on the interval [an -2,aO], by the 
induction hypothesis. We must show that it has at least two zeros on the 
interval [a .. -I,on-J. We have one zero at an-I' If there are no other zeros 
to the left of an_I, then the graph of the curve remains under the x axis to 
the left of a,,_1 (see fig. 79a and b). If the zero at a n - I is not a double zero, 
then the graph is above the axis immediately to the right of an-I, and since 
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• 

Fla. 81 

b 

Q,,-: , 

it is below at a .. -2, it must cross the axis again somewhere in the interval 
[a .. _lt0 .. _d (see figs. 81c and d). Thus in every case there are at least two 
zeros (possibly a double zero at 0 .. _1) in the interval, as required. 

Suppose more generally that 

F(O .. _I) = F(oft-~ = ... = F(0le+1) = 0 

but that 

F(oJ #-0. 

By the induction hypothesis F has at least k zeros in the interval 
[Ole,oJ. We must show that it has at least n - k zeros in the interval 
[o .. ,oJ. If k is even, then F(oJ < O. We already have n - k - I zeros 
Oft-I> 0 .. - 2, ••• '0Tc+l' If there are no further zeros on the interval, then 
certainly all these zeros are simple (that is, not double) and there are no 
more zeros in the smaller interval [o"'0Tc+J. But then the graph crosses the 
x axis n - k - 1 times by the time it gets just to the right of 0Tc+l' Since 
n - k - 1 is odd, the graph is above the x axis just to the right of olen, 
and since it is below the x axis at Ole, it must cross the axis at least once 
in between. We thus have an (n - k)th zero (see fig. 82a). 

The proof where k is odd is similar. The graph crosses the axis an 
even number of times if there are only n - k - I simple zeros in the 
interval [O .. ,aTc+lJ, and is therefore below the x axis just to the right of oTc+l> 
whereas F(oJ > O. Hence there is a further zero in the last interval (see 
fig. 82b). 

If there is no k for which F(oJ #- 0 (k = n - 1, n - 2, ... ,1,0), 
then we already have n zeros On-I, 0 .. _2 • •••• 01> 00, 

......... C\ 0 7 V . \CL '(' 

Fig. 81 
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If F(o) = 0, then by the induction hypothesis F has at least n - 1 
zeros on the interval [0,,_1,00] and an is the required nth zero. Thus the 
proof is complete in this case. The case where n is odd is dealt with 
similarly. 

Returning to the original problem we see that R satisfies all the con­
ditions of the theorem and so has at least n zeros. The solution is now 
complete. 

136. Let 
P{x) = x" + 0n_lX,,-l + ... + 01 + 00 

be a polynomial of degree n whose deviation from zero on the interval 
[-2,2] is equal to lJ. Consider the polynomial 

P1(x) = P{2x) = (2x)n + an_1{2xt-1 + ... + 01(2x) + ao, 

Fig. 83 

whose graph is obtained from that of P by compressing it uniformly to 
half its width (fig. 83). The deviation of PI from zero on the interval 
[-I, + I] is equal to the deviation lJ of P on the interval [-2, + 2]. Con­
sider now the polynomial 

- 1 
P{x) = - P1(x) 

2" 

,,1 n-1 1 n-2 + 1 + 1 = x + -an-IX + - 0n_2x +... -la1x -ao, 
2 4 ~ r 

with leading coefficient l. Its deviation on the interval [-1,1] is clearly 
J = 0 )nlJ. But by the result of problem 135 we know that J is at least 
o)n-l and that J = (!)n-1 only if P = (!)n-lT". Therefore we see that 

lJ = 2nJ is at least 2 and is equal to 2 if and only if 

1 
P1(x) = P(2x) = 2n 2,,-1 T,,(x) = 2T,,(x) 

P(x) = 2Tn(~) = 2 cos (n COS-l~) 
(where n is arbitrary). 
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Remark. It can be shown in exactly the same way that the deviation from 
zero of a polynomial P n of degree n with leading coefficient 1 on the interval 

(
b - a)" [a,b] (where a and b are arbitrary real numbers with a < b) is at least 2 -4- , 

(
b - a)" and is equal to 2 -4- if and only if 

(
b - a)" 1 [2 ] P,,(x) = -2- 2n-1 T" b _ a (x - a) - 1 

(
b-a)" [2 ] = 2 -4- T" b _ a (x - a) - 1 . 

It follows, in particular, that in order for there to exist monic polynomials 
whose deviation on a given interval is less than any preassigned positive number 
(such as 1/1000 or 1/1,000,000) it is necessary and sufficient that the interval 
be of length less than 4. 

137. This problem looks similar to the previous one but is solved quite 
differently. Denote the values assumed by a given polynomial 

p(x) = x" + an_ 1x"-1 + ... + a1x + a o 

at the points x = 0, 1,2, ... , n by P(O), P(1), P(2), ... ,P(n), respectively. 
Consider now the polynomial Q, where 

Q(x) = P(O) (x - l)(x - 2)(x - 3) ... (x - n) 
(0 - 1)(0 - 2)(0 - 3)' .. (0 - n) 

+ P(1) (x - O)(x - 2)(x - 3) ... (x - n) 

(1 - 0)(1 - 2)(1 - 3) ... (1 - n) 

+ P(2) (x - O)(x - l)(x - 3) ... (x - n) 
(2 - 0)(2 - 1)(2 - 3) ... (2 - n) 

+ ... 
+ p(n) (x - O)(x - l)(x - 2) ... [x - (n - 1)] 

(n - O)(n - l)(n - 2) ... [n - (n - 1)] 

(x - l)(x - 2)(x - 3) ... (x - n) 
- P(O) -'---~-"":"">""--'---"-----"'-

(-l)"n! 

(x - O)(x - 2)(x - 3) ... (x - n) 
+ P(l) (-1)"-1l! (n - I)! 

(x - O)(x - l)(x - 3)· .. (x - n) 
+ P(2) (-1)"-22! (n - 2)! 
+ ... 

(x - O)(x - l)(x - 2)· .. [x - (n - 1)] + pen) . 
n! 
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The polynomials P and Q clearly have the same values at x = 0, I, 
2, ... ,n. Thus R(x) = P(x) - Q(x) has at least n + 1 zeros. Since R(x) 
is a polynomial of degree at most n, it vanishes identically. Hence P and 
Q coincide. In particular, the leading coefficient of Q is I, that is, 

P(O) P(!) P(2) 

(_l)nn! + (_I)n-ll!(n -I)! + (-1)n-z2!(n - 2)! 

P(3) . . . pen) _ 1 (1) 
+ (_1)n-s3! (n - 3)! + + n! - . 

Let us denote the deviation from zero of P on the set {O, 1,2, 
.. , , n} by 15, Then the quantities IP(O)I, IP(1)I, IP(2)1, ' , , , I P(n) I are ~ 15, 
and hence 

[
1 1 1 1 IJ 15-+ + + +"'+- ~1. 
n! lIen-I)! 2!(n-2)! 3!(n-3)! n! 

Now 

1 1 111 -+ + + +.,.+-
n! l!(n-l)! 2!(n-2)! 3!(n-3)! n! 

= ~![ (~) + (;) + (;) + (;) + ' , , + c ~ 1) + (:) J = ~~ 
(compare problem 57a of Volume 1). It follows that 

b 2
n 

~ 1, 
n! 

From this solution it also follows that there is a unique monic poly­
nomial of degree n whose deviation from zero on the set {O, I, 2, ... ,n} 
assumes the minimum value n!/2n, It is the polynowial 

P(x) = n! {(X - l)(x - 2)(x - 3)' .. (x - n) 
2n n! 

x(x - 2)(x - 3) ... (x - n) x(x - 1)(x - 3) . , . (x - n) + + +.,. 
l!(n-l)! 2!(n-2)! 

x(x - l)(x - 2) . , . [x - (n -- l)J} 
+ , ' n. 

for which 

n' pen) = -pen - 1) = pen - 2) = -p(n - 3) = .,' = (-l)np(o)=-.:, 
2n 

138. We use the geometric representation of complex numbers: the 
number 

Z = x + iy = r( cos 0 + i sin 0) 
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y 

A 

Fig. 84 

is represented by the point of the plane with cartesian coordinates (x,y) 
and polar coordinates (r,O) (fig. 84). If the points A!> A 2, ... , An of the 
plane correspond to the complex numbers lXI' 1X2' ••• , IXn' and the point 
M to the variable complex number z, then 

MAl = Iz - 1X11 

MA2 = Iz - 1X21 

MAn = Iz - IXnl. 

When complex numbers are multiplied, the absolute value of the product 
is equal to the product of the absolute values of the factors. Hence 

MAl' MA2 ... MAn = I(z - IXJ(Z - IXz) •.• (z - IXn)1 

= IZn + an_lZn- l + an_2zn- z + ... + a2Z2 + alz + aol, 
where 

zn + an_lZn- l + ... + alz + a o = P(z) 

is the polynomial (z - 1(1)(Z - IXJ ••• (z - IXn). In general, P(z) has 
complex coefficients, and its roots are IX!> 1X2' ••• , IXn' 

It is now possible to see the connection between this problem and 
problem 136 on the deviation of polynomials from zero. Suppose we have 
selected our axes in the plane in such a way that the segment of length I 
is the section of the real axis between -1/2 and +1/2. Our problem can 
then be restated as follows: Given a polynomial P of degree n with leading 
coefficient I and complex coefficients, what is the minimum possible 
deviation of P on the real interval 1= [-1/2, +1/2]? The deviation of a 
complex-valued function on an interval is defined as before; it is the 
maximum value of I P(z) I on the interval. The only difference is that it is 
no longer possible to draw the graph of P. 

We now write P in the form 

P(z) = Pl(z) + iPz(z), 

where Pi and Pz have real coefficients. The coefficients of Pi are the real 
parts of the corresponding coefficients of P, and those of P2 are the 
imaginary parts. Hence Pi is of degree n with leading coefficient I, and 
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PI is of degree at most n - 1. Next, 

IP(z)1 = .J[P12(Z) + P22(Z)] ~ IPI(z)I, 

The absolute value of P is therefore at least as great as that of Ph and so 
its deviation on I is greater than or equal to that of PI' But by the result of 
problem 136 (see especially the note at the end of the solution), the 
deviation of PIon an interval of length 1 is at least 2(//4)", Hence the 
deviation of P on I is at least 2(1/4)", This concludes the first part of 
the solution. 

For the deviation of P on I to be equal to 2(1/4)" it is necessary that 
PI(z) = 2(l/4)"T..(2z/l), and that PI vanishes at all the points where Ipil 
assumes its maximum [that is, 2(1/4)n], But there are n + 1 such points 

Fig. 85 

(see the solutions to problems 133 and 135), and so the polynomial PI 
of degree ~ n - 1 must vanish at n + 1 distinct points and must there­
fore be the zero polynomial (compare the solution of 135). We thus have 

P(z) = 2(~rTnen. 
Interpreting this result in terms of the original formulation, we have 
shown that the product MAl' MAl'" MA", where AI' As, ... , An are 
fixed points of the plane and M ranges over a segment I of length I, must 
assume a value of at least 2(1/4)n, And if it is to assume no larger value, 
the points AI> AI,' . , ,A" must be on I, and, moreover, in the positions 
of the roots of the equation Tn(2z{l) = 0 when we take I as part of the real 
axis and its midpoint as the origin. In other words, the distances of the 
points AI> AI, ... , An from the center of I must be equal to 

I '11' I 3'11' I 5'11' I (2n - 1)'11' 
- cos -, - cos -, - cos - , . , , , - cos 
2 2n 2 2n 2 2n 2 2n 

(fig. 85; see also the solution to problem 133), 

x. FOUR FORMULAS FOR K 

1398. Denoting the area of any plane figure F by S(F), we have 

S(b.OAM) = lOA' MP = I' I 'sin 0: = I sin 0: 

S(sector OAM) = ~ S (circle) = ~ . '11' 
21T 2'11' 

S(b.OAQ) = lOA' AQ = I' 1 . tan 0: = I tan 0:. 
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Fig. 86 

The result now follows from the fact that 

S(/:;OAM) < S(sector OAM) < S(/:;OAQ). 

b. We have (fig. 86) 

But clearly 

sin noc 

noc 

as required. 

IX = 2S(sector OAM), 

nIX = 2S(sector OAS), 

S(60AS) 

S(sector OAS) 

sin IX = 2S(!::"OAM), 

sin noc = 2S(/:;OAS). 

< ____ S~(~6~O_A_M __ +~6~O_M __ N_+~·_·_·+~6~O_R_S)~ __ _ 
S(sector OAM + sector OM N + ... + sector ORS) 

nS(60AM) S(60AM) sin IX 

nS(sector OAM) S(sector OAM) IX 
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140. Multiply the expression to be simplified by sin (1X/2"). We obtain 

IX IX IX ( IX. IX) cos- cos -'" cos- cos - SID-
2 4 2,,-1 2" 2" 

1 IX IX ( IX. IX) = - cos - cos - . .. cos - SID -
2 2 4 2,,-1 2,,-1 

1 IX IX ( IX. IX) = - cos - cos - . .. cos - SID -
4 2 4 2,,-2 2,,-1 

1 IX( IX. IX) = - cos - cos - SID -
2,,-2 2 4 4 

1 ( IX. IX) 1. = - cos - SID - = - SID IX 
2,,-1 2 2 2" ' 
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whence 
ot ot ot 1 sin ot 

cos - cos - ... cos - = - -- (ot =F k7T). 
2 4 2n 2n. ot 

SIO-
2n 

141a. The formula of problem 132a can be written in the form 

sin not = sinn ot[ t) cotn-1ot - (;) cotn- 3 ot + (~) cotn
-
S ot - .. J 

Suppose now that n = 2m + I is odd. If ot has any of the values 

7T 27T 37T m7T ---, ---, ---, ..... ,---, 
2m + 1 2m + I 2m + 1 2m + I 

then sin (2m + I)ot = 0 and sin ot =1= 0, so that 

(
2m + 1) t2m (2m + 1) tZm- 2 co ot- co ot 

1 3 

(
2m + 1) + 5 cotZm

-
4 ot - ... = O. 

We thus see that the equation 

em t 1) xm - em 3+ 1) xm -
1 + (2m 5+ 1) x m- 2 

... = 0 
has the roots 

or 

cot2 __ 7T_ , 
2m + 1 

2 27T 2 m7T cot ---, ... , cot 
2m + 1 2m + 1 

b. We may rewrite the formula of 132c in the form 

1 (~Lo~ot - (;)co:3 ot + (;)co:Sot -'" 
--=----~--------~--------~----------

1 - (;Lo:z ot + (:to:4 ot - (:Lo:a ot + ... 
cot not 

Suppose now that n is even. If ot is equal to any of the numbers 

7T 57T 97T (4n - 3)7T 
4n' 4n' 4n'···· 4n 
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then cot mx = I; so for such values of 0(, 

cotn 0( - (;) cotn
-

2 0( + (:) cotn
-

4 0( - 0 0 0 = I. 

(~) cotn-10( - (;) cotn
-

3 oc + (~) cotn- 5 0( - .00 

It follows from this that the equation 

has the roots 

But 

'iT 
cot-

4n' 

cot (4n - 3)71 

4n 

571 
cot-

4n' 

371 
-cot-

4n' 

971 cot (4n - 3)71 cot - , 0 • 0 , -~---"--
4n 4n 
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(4n - 7)71 _ t 771 (2n + 1)71 _ (2n - l)71 cot - -co , 0 0 • , cot - -cot , 
4n 4n 4n 4n 

and therefore the roots of equation (1) can also be written in the form 

71 
cot-

4n' 
371 

-cot-
4n ' 

571 771 (2n - 3)71 
cot -, -cot - , 0 • 0 , cot , 

4n 4n ~ 

(2n - 1)71 
-cot . 

4n 

c, d. The formulas of 132a and b, for n = 2m, can be written in the 
following form: 

sin 2moc = cos oc sin oc[ C~)(1 - sin2 oc)m-l - C;)(1 - sin2 0()m-2 sin2 0( 

+ C;)(1 - sin2 O()m-S sin4 oc - .. oJ 

and 

cos 2mO( = (1 - sin2 oc)m - C~)(1 - sin2 oc)m-l sin2 0( 

+ C:)(l - sin2 oc)m-2 sin' 0( - .... 

It follows in particular, as above, that the equations 

C~)(1 - x)m-l - C;)(l - x)m-2x + C;)(1 - x)m-Sx 2 - ... = 0 
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and 

(1 - x)m - C;)(1 - X)m-lX + (2:)(1 - X)m-2X2 - ... = 0 

have the roots 

and 

. 221T sin -, 
m 

sin2 .!!.... 
4m' 

. 221T SIn -
2m' 

• 2 31T 
SIn -

4m' 

. 231T . 2 (m - 1)1T 
SIn -, ... , SIn , 

2m 2m 

. 251T . 2 (2m - 1)1T 
sin - •...• SIn , 

4m 4m 
respectively. 

142a. Since the roots of the equation 

em 1+ l)xm - em 3+ l)xm-l + em 5+ l)xm-2 - '" = 0 

are 
2 1T 2 21T 2 m1T cot ---, cot ---, ... ,cot ---

2m + 1 2m + 1 2m + 1 

(see problem 14Ia), the polynomial 

em 1+ l)xm - em 3+ l)xm-l + (2m 5+ l)xm-2 - ... 

is divisible by each of 

x _ cot2 __ 1T_ , 
2m + 1 

2 21T 2 m1T 
x - cot ---, ...• x - cot ---

2m + 1 2m + 1 

We conclude that 

em 1+ l)xm - em 3+ l)xm-l + em 5+ l)xm-2 - ... 

= A(X - cot2 __ 1T
_) (x - cot2~) ... (x - cot2~), (1) 

2m + 1 2m + 1 2m + 1 

where A is a constant. On removing the parentheses on the right-hand side 
of this last equation and equating the coefficients of xm and xm

- 1 on both 
sides, we find that 

and 

(
2m + 1) ( 1T 2 21T 2 m1T ) = A cot2 

--- + cot --- + ... + cot --- . 
3 2m + 1 2m + 1 2m + 1 
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Hence 

2 '11' 2 2'11' 2 m'11' cot --- + cot --- + ... + cot ---
2m + 1 2m + 1 2m + 1 

m(2m - 1) 

3 

as required. 
b. Since csc2 at = cot2 at + 1, we deduce from part a that 

2 '11' 2 2'11' 2 m'11' esc --- + esc --- + ... + esc ---
2m + 1 2m + 1 2m + 1 

= m(2m - 1) + m = ~ m(m + 1). 
3 3 

c. It follows from the result of 141b that 

= (x - cot ;:) (x + cot ::) (x - cot !:) (x + cot ~:) ... 

( t (2n - 3)'11') (+ (2n - 1 )'11') X - co x_ cot . 
4n 4n 

Equating the coefficients of Xn-l on both sides of this last equation, we 
find that 

'11' 3'11' 5'11' 7'11' 
cot- - cot- + cot- - cot- + ... 

4n 4n 4n 4n 

+ cot (2n - 3)'11' _ cot (2n - 1)'11' = (n) = n. 
4n 4n 1 

143. From the solution to 141c and d it follows that 

and 

(1 - x)m - C~)(1 - x)m-lx + r:)(1 -x)m-2x 2 - ... 

= B( x - sin2 4:) (x - sin2 !:) ... (x - sin2 (2m
4
: })'11'). 
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Now equating coefficients of the leading terms on both sides of these 
equations, we find that 

A = (_l)m-l[ e~) + e;) + e:) + .. J 
B = (-l)m[l + e;) + e:) + .. J 

whence (see problems 58a and b of Volume I). 

We next equate the constant terms in the same two equations. This yields 

2m = (2m) = (-l)m-lA . sin2..2:... sin2 27T ... sin2 (m - l)7T , 
1 2m 2m 2m 

1 ( l )mB' 2 7T . 237T . 2 57T . 2 (2m - 1)'/T 
= - sm -sm -sm -" 'sm , 

4m 4m 4m 4m 

from which the required identities follow. 

144a. Consider the identity 

rx rx rx rx 1 sin rx cos - cos - cos - ... cos - = - -::"::'=--'-'---
2 4 8 2n 2n sin (rx/2") 

obtained in problem 140. Take the limit as n -+ 00. We find 

rx rx rx . ( rx rx rx rx) cos - cos - cos - ... = lim cos - cos - cos - ... cos -
2 4 8 n-oo 2 4 8 2n 

But 

because 

lim~ = I' 
,"-(lsin x ' 

this latter fact follows from the relation I ~ xlsinx;:; l/cosx(O < x < 7T/2), 
which in turn follows from the inequality of problem 139a. So 

(rx =1= 0). 
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We thus obtain 
ex ex ex sin ex cos - cos - cos - ... = --
248 ex 

and 
sin ex 

ex=--------~~~--------

cos (exJ2) cos (ex/4) cos (a/8) ... 

To complete the argument we put ex = 1T/2 
sin ('IT/2) = I, cos (1T/2) = 0, and 
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(a =1= 0) (1) 

(ex =1= k1T). 

and use the relations 

cos ~ = J G + ~ cos 0) . 
b. Substituting ex = 21T/3, sin a = J3;2, cos (ex/2) = ! in the identity 

(1), we obtain 

1 

2 G + ~ . ~) J [~ + ~J G + ~ . D] 
X J H + ~J G + ~J G + ~ . H ]} ... = 3:: . 

1 
145a. If the angle ex lies in the first quadrant, then csc a > - > cot ex (see 

ex 
problem 139a). It follows from the identities of problems 142a and b that 

m(2~ - 1) < em
1T+ lr+ e~~ lr+ Cm3~ lr+··· 

+ (2m + 1)2< m(2m + 2), 
m1T 3 

or 

Since the two outside terms of this double inequality both tend to the 
same limit 1T2/6 as m _ 00, we have 

. { 1 II} 1T2 hm 1 +-+-+ ... +-- =--. 
m-oo 22 32 m2 6 

b. Let us find the sum of the squares of the roots of the equation in 
problem 141a. On equating the coefficient of xm- 2 in the two sides of 
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equation (I) in the solution to problem 142a, we find that the sum of all 
products of two distinct roots of this equation is 

m(2m - 1)(m - lX2m - 3) 
30 

Denoting the roots by oc, {J, y, •.• , we have the identity 

oc2 + {J2 + y2 + ... = (oc + {J + y ••• )2 - 2(oc{J + ocy + ... + (Jy + ... ) 

where the last sum is taken over all possible distinct pairs. Applying this 
formula, we find that 

,'IT ,27T ,37T , m7T 
cot --- + cot --- + cot --- + ... + cot ---

2m + 1 2m + 1 2m + 1 2m + 1 

Next, 

m'2m - 1)2 m(2m - l)(m - 1)(2m - 3) 

9 15 

m(2m - 1)(4m2 + 10m - 9) 
45 

esc' oc = (cot2 oc + 1)2 = cot' oc + 2 cot2 oc + I, 
so that 

,7T ,27T , m7T esc --- + esc --- + ... + esc ---
2m + 1 2m + 1 2m + 1 

= m(2m - 1)(4m2 + 10m - 9) + 2m(2m - 1) + m 
45 3 

8m(m + 1)(m! + m + 3) 

45 

Now, as in the solution to part a, we obtain the double inequality 

m(2m - 1)(4m
2 

+ 10m - 9) < (2m + 1)'+ (2m + I)' 
~ 7T 27T 

+ (2m + 1)'+ ... + (2m + 1)'< 8m(m + l)(m
2 

+ m + 3) 
37T m7T 45 

or 

7T
1 (1 1) (1 2) (1 + 3 13) 

90 2m + 1 2m + 1 2m + 1 (2m + 1)2 

1 1 1 7T'( 1) ( 11) 
< 1 + 2' + J4 + ... + m' < 90 1 - (2m + 1)2 1 + (2m + 1)2 ' 
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from which we deduce by letting m -- 00 that 

1 1 1 77
4 

1+-+-+-+"'=-. 24 34 . 44 90 

Remark. We may evaluate the sum of the cubes, fourth powers, and so on, 
of the roots of the equation in problem 141a in the same manner, and we can 
deduce the following sequence of formulas, first given by Euler: 

1 1 1 176 

I + 26 + 36 + 4i + ... = 945 

1 1 1 178 

1 + 26 + 36 + 4i + ... = 9450 

1 1 1 "lo 
1 + 210 + 310 + 410 + . . . = 93,555 

1 1 1 6911712 

1 + 212 + 312 + 412 + ... = 638,512,875 . 

146&. We have the identity 

cot IX - cot {J = si~ ({J -:- IX) = sin ({J - IX) csc IX csc {J. 
sm IX sm {J 

Using the identity of problem 142c we deduce from it that 

. 77 ( 77 377 577 777 sm- esc-ese- + ese-esc- + ... 
2n 4n 4n 4n 4n 

+ 
(2n - 3)77 (2n - 1)77) esc ese = n, 

4n 4n 
or 

77 377 577 777 (2n - 3)77 (2n - 1)77 
esc - esc - + ese - ese - + ... + ese ese "---'_--<.-

4n 4n 4n 4n 4n 4n 

n 

sin (77/2n) 
On the other hand, 

cot IX - eot {J = tan ({J - IX)(I + eot IX eot (J), 

since eot ({J - IX) = (I + eot IX eot {J)/(eot IX - eot (J). It follows from 
the same identity that 

77 [ 77 377 577 777 tan- eot-eot- + eot-eot- + ... 
2n 4n 4n 4n 4n 

+ t (2n - 3)77 t (2n - 1)77 + ~ eo eo - = n, 
4n 4n 
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or 
7T 37T 57T 77T {2n - 3)7T (2n - 1)7T 

cot - cot - + cot - cot - + ... + cot cot -'----"-
4n 4n 4n 4n 4n 4n 

n n 

tan( 7T/2n) 2 

Proceeding as in problem 145a we obtain the double inequality 

n > 4n. 4n + 4n. 4n + ... + 4n 4n 
sin (7T/2n) 7T 37T 57T 77T (2n - 3)7T (2n - 1)7T 

n n > --, 
tan (7T/2n) 2 

or 
7T2 1 2 2 2 - >-+-+ ... +-----=---
8n sin (7T/2n) 1 ·3 5' 7 (2n - 3X2n - 1) 

7T2 1 7T2 

>- -
8n tan (7T/2n) - 16n ' 

or, finally, 

~ 7T/2n > 1 _ ! + ! _ ! + ... + _1 ___ 1_ 
4 sin (7T/2n) 357 2n-32n-1 

7T( 7T/2n 7T) 
> 4 tan (7T/2n) - 4n . 

As n -- 00 the two outside terms of this double inequality tend to the 
same limit 7T/4. This is because 

lim ~ = 1, 
...... co sin IX 

lim _IX_ = lim (~ . cos IX) = 1. 
...... 0 tan IX ...... 0 sm IX 

(See the solution of 144a.) It follows that 

111 7T 
1-)+5-7+"'=4' 

as required. 
b. Let us find the sum of the squares of the roots of the equation in 

problem 141b. As in problem 145b we see that the sum of the products 

of the roots taken two at a time is - (;) = -n(n - 1)/2, and that the sum 

of the squares of the roots is n2 + n(n - I) = n(2n - I). 
We deduce from the resulting identity 

2 7T 2 37T 2 57T 2 (2n - 1)7T cot - + cot - + cot - + ... + cot = n(2n - 1), 
4n 4n 4n 4n 
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that 

2 7T 237T 257T 2 (2n - 1)7T csc -+csc -+csc -+---+csc -"--------...:.-
~ ~ ~ ~ 

= n(2n - 1) + n = 2n2, 

from which, as in the solution to 145., we conclude that 

n(2n - 1) < - + - + - + - - - + < 2n2, (
4n)2 (4n)2 (4n)2 (4n)2 
7T 37T 57T (2n - 1)7T 

or 

7T
2(1 _ ~) < 1 + 1. + 1. + ___ + I < 7T

2 

8 2n 32 52 (2n - 1)2 8' 

and so that 

1 1 1 7T
2 

1+-+-+-+"'=-_ 
32 52 72 8 

This last formula is in fact equivalent to Euler's formula; for 

7T
2 1 7T

2 
7T

2 

=---"'-=-
6 4 6 8 

Remark, By determining the sums of the cubes, fourth powers, and so on, 
of the roots of the equation of problem 132b we may obtain the following 
sequence of formulas: 

I I I ,.a 
1-:33+:53-73+---=32' 

These formulas were also first discovered by Euler_ 
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147. We consider the following two expressions: 

sin (217/4m) sin (217/4m) sin (417/4m) sin (417/4m) 

sin (17/4m) sin (317/4m) sin (317/4m) sin (517/4m) 

and 

... sin «2m - 2)17/4m) sin «2m - 2)174/m) (1) 
sin «2m - 3)17/4m) sin ({2m - 1)17/4m) 

sin (217/4m) sin (417/4m) sin (417/4m) sin (617/4m) 

sin (317/4m) sin (317/4m) sin (517/4m) sin (517/4m) 

sin «2m - 2)17/4m) sin (2m17/4m) . 2) 

sin «2m - 1)17/4m) sin ({2m - 1)17/4m) ( 

The consideration of these two expressions is suggested by the form of 
Wallis's formula. By the identity of problem 143 these two expressions 
are equal respectively to 

(
.Jm/2m-1)2 17. (2m - 1)17 . 17 17 17 

sin - sm = 2m sm - cos - = m sin -
.J2/2m 4m 4m 4m 4m 2m 

and 

(
.Jm/2m-lj2Sin (2m17/4m) . 2 17 

--'------'--'- sm -
.J2/2m sin (217j4m) 4m 

sin2 (17/4m) 17 
= 2m = mtan-

2 sin (17/4m) cos (17/4m) 4m' 

We now show that the quantity (1) is decreased by substituting angles 
for their sines throughout, and, similarly, that (2) is increased by this 
substitution. We use the fact that 

sin 2 koc - sin2 oc = (sin koc + sin oc)(sin koc - sin oc) 

2 
. (k + 1)oc (k - l)oc 2 . (k - 1)oc .o..(k_+-,--l),,-oc 

= sm cos . sm cos -
2 2 2 2 

2 
. (k - 1)oc (k - 1)oc 2 . (k + 1)oc -'-( k_+-'------'1)'-oc 

= sm cos . sm cos -
2 2 2 2 

= sin (k - l)oc sin (k + l)oc. 

It follows from this that 

sin (k - 1)oc sin (k + 1)oc = sin2 koc - sin2 oc = 1 _ (sin oc )2 
sin koc sin koc sin 2 koc sin koc ' 

while 

(k - 1)oc (k + 1)oc = (k
2 

- 1)oc
2 

= 1 _ (oc_ y. 
koc koc (krxl k;J 
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From the result of problem 139b, sin a./sin ka. > a./ka. and therefore 

1 _ ( ~in a. \2< 1 _ (~)2. 
sm ka.J ka. 

As a consequence of this, 

sin (k - 1)a. sin (k + 1)a. < (k - 1)a. (k + 1)a. 
sin ka. sin ka. ka. ka.' 

sin ka. sin ka. > ka. ka. 
sin (k - 1)a. sin (k + 1)a. (k - 1)a. (k + 1)a. 

We thus have 

217/4m . 217/4m . 417/4m • 417/4m 

17j4m 317/4m 317/4m 517/4m 
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(2m - 2)17/4m (2m - 2)17/4m . 17 ... < msm-
(2m - 3}17/4m (2m - 1)17/4m 2m 

and 

217/4m . 417/4m . 417j4m . 617/4m 

317/4m 317/4m 517/4m 517/4m 

(2m - 2)17/4m __ 2m_17.!../4_m__ 17 
> mtan-

(2m - 1)17/4m (2m - 1)17/4m 4m 
or 

22442m-22m-2 .17 - . - . - . - ... --- . < m sm -
1 3 352m - 3 2m - 1 2m 

and 

~ . ~ . ~ . ~ ... 2m - 2 2m > m tan ..:!!.- • 
3 3 5 5 2m - 1 2m - 1 4m 

The last two inequalities can be combined in the following double 
inequality: 

. 17 2244 2m-22m-2 2m-l 17 
msm-> -'-'-'-" '---' > ---mtan-, 

2m 1 3 352m - 3 2m - 1 2m 4m 
or 

~ sin (17/2m»~. ~. ~. ~ ... 2m-2. 2m - 2 >::(I_...!...)tan (17/4m). 
2 17/2m 1 3 352m - 3 2m - 122m 17/4m 

The two outside terms of this double inequality tend to the same limit 
17/2 as m ---+- 00. (See the solution to problem 1468.) It follows that 

2 2 446 6 17 _0_._._0_0_ ... =-

133557 2 
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XI. THE CALCULATION OF AREAS OF REGIONS 
BOUNDED BY CURVES 

148. Divide the segment 0 D of length a into n equal parts and construct 
on each small segment Mk-lMk a rectangle of the type described on p, 26 
(fig. 87), The base of each rectangle is a/n, while the height of the kth 
rectangle is (ka/n)2. The total area of all the rectangles is therefore 

It is well known (and can be proved by induction, as in the footnote on 
page 105 of Volume 1) that 

12 + 22 + ' .. + n2 = n(n + 1~2n + 1) , 

and so 

Sn = ~ n(n + 1)(2n + 1) , 
n 6 

The area S of the region bounded by the parabola is equal to the 
limit of Sn as the number of rectangles increases indefinitely. That is, 

S I' S I' 3 (2n
3 + 3n

2 + n) = 1m ,,= lma 3 
7l-00 11-00 6n 

, 3 (1 1 1) a
3 

=hma -+-+-2 =-, 
n-oo 3 2n 6n 3 

y 

Fig. 87 
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149a. The required area is 27T. The proof follows at once from fig. 88a, 
from which we see that the area is that of AOBDC, and that this figure has 
the same area as the rectangle PQRS. The two portions of the area which 
do not lie in the rectangle are congruent to the two portions (I and II) 
of the rectangle which do not lie inside our figure. 

b. As in problem 148, choose bases of equal length for the n rectangles 
(fig. 88b). The sum S" is given by 

Sn = h(sin h + sin 2h -+- ... + sin nh), 
where 

h =~. 
n 

y 

Fig. 88 

Using the identitylO 

. h ' . 2h +' h sin ~nh sin !(n + l)h Sin 7 Sin -r . . . Sin n = . , 
Sin !h 

10 This formula can be easily derived as follows: since 

we have 

and so 

sin ex sin {J = Hcos (ex - (J) - cos (ex -I- {J)1 

h 
(sin h + sin 2h + ... + sin nh) sin 2 

= ~[(cos~ - cos~) + (cos~ -cos~) 

( 
(2n - 1) h (2n -r l)h)] - ... + cos--

2
- - cos 2 

~[cos~ - cos (11 + ~)h] 
sin h t- sin 2h + ... -I sin Ilh ~ 2 2. 2 

Sin !h 

sin !nh sin Hn + 1 )h 
sin !h 

x 
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we deduce that 

S = h sin !nh sin Hn + 1)h = ~ sin !a sin «n + 1)a/2n) . 
11 sin !h n sin (a/2n) 

But since lim (sin rx)/rx = 1, we have 
0<_0 

lim a/n = lim 2 a/2n = 2. 
"-<Xl sin (a/2n) n-<Xl sin (a/2n) 

It follows that the required area is 

S = lim Sn = 21im sin ~ sin [~(1 + .!)J = 2 sin! ~ . 
11-00 "-00 2 2 n 2 

In particular, when rx = 17 we have S = 2; and when rx = 17/2, 
S = I. From these two results we can again show that the area of the 
figure AOBDC of fig. 88a is 217, since 

S(OBD) = 2, S(ODSP) = 17, 

and 

S(OAP) = S(DCS) = ~ - 1. 

150 •. In this problem the most convenient way to divide up the segment 
AD of the x axis (where OA = a, OD = b) is not by points chosen at 
equal intervals, but by points chosen so that 

OMI =OM2 =OMa ='" =_b_ 
a OMI OM! OMn_ 1 

(fig. 89). Let us denote the common value of these ratios by q. Then 

OM} OM! OMs b 
-- = -- = -- = ... = --- = q, 

a OMI OM2 OMn_ 1 

b OMI OM2 0Ms b n -=-----_ ... _--=q, 
a a OM1 0M2 OMn_ 1 

so that q = \Y b/a. Consequently, as n -- 00, q -- 1.H 
It is clear that 

OMI =aq, 

OM! = OMI'q = aq2, 

OMs = OM2 • q = aqa, ... , b = OMn_ 1 • q = aqn. 

11 Since q decreases as n increases, and q ~ 1, it follows that L = lim q exists, and 
n_oo 

L ~ I. Since q ~ L, we have bla ~ Lft for all n, which is impossible if L > t. Hence 
L = 1. 
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y c 

/ 

Fig. 89 

hI = aMI - OA = a(q - 1), 

h2 = aq2 - aq = aq(q - 1), 

h3 = aq3 - aq2 = aq2(q - 1), 

hn = aqn - aqn-l = aqfl-l(q - 1). 

We note here that the necessary condition described on p. 26 is fulfilled: 

as n ---+- 00, q = 'V"b/a ---+- 1, and the length hk of each segment Mk_1MA 

tends to zero. The area of the kth rectangle is clearly 

so that the sum of the areas of all n rectangles is 

$", = a(q - 1)(aq)m + aq(q - 1)(aq2)m + aq\q - 1)(aq3)m + ... 
+ aqn-l(q _ 1) . (aqn)m 

= am+lqm(q _ 1)[1 + qm+l + q2(m+l) + ... + q(n-l)(m+ll] 

nImH) 1 
= am+1qm(q - 1) q -

qm+l _ 1 

- m am+l - - 1 1 [(h)m+l ] 

- q (qm+l _ 1)/(q - 1) a 
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[sinceqn(m+l) = (qn)m+l = (bla)m+l]. As n --+ 00, q --+ 1, so that limqm = 1 
11-00 

for any fixed m. Thus in order to determine the area of the curvilinear 
trapezoid ABeD it suffices to find the limit of the expression (qm+l - 1)1 
(q - I) as q --+ I. 

We consider separately a number of cases. 
(1) m is a positive integer. In this, the simplest case, 

q m+l _ 1 
lim = lim (qm + qm-l + ... + q + 1) 
(1-1 q - 1 (1-1 

=!+1+···+1+1=m+1. 
m f 1 times 

(2) m is a rational number greater than -1. We may write m + I = 
rls, where rand s are positive integers. In this case 

. qm+l _ 1 . qr/8 - 1 . [(ql/Sr - 1 . (ql/S)8 ~ IJ 
lIm = hm --- = lIm 1 -;- 1 • 
(1-+1 q - 1 (1-+1 q - 1 (1-+1 q /s - 1 q /. - 1 

Now as q --+ I, ql = ~q --+ 1. It therefore follows from the result of 
case (l) that 

. (qllsy _ 1 . q{ - 1 
lIm =hm---=r 
(1-+1 q1/ 8 - 1 (11-+1 ql - 1 ' 

. (ql/S)' _ 1 
hm 11_ = 5, 
(1-+1 q - 1 

and hence 
qm+l _ 1 r 

lim = - = m + 1. 
(1-1 q - 1 5 

(3) m is rational and less than -I. Say m + I = -rls, where rand 
s are positive integers. In this case, using the result of case (2), we find 

. qm+l _ 1 . q-r/8 _ 1 . ( qr/8 - 1) 
lIm = hm = lim _q-r/s ---
(I-I q - 1 (1-1 q - 1 (1-1 q - 1 

=-1·:'=m+1. 
5 

(4) If m is irrational, then qm+l is defined as the limit of qr/., where 
rls ranges through a set of rationals converging to m + 1. Since for any 
rational number m =1= I, lim (qm+l - I )/(q - I) = m + I, it follows12 that 

q_l 

12 To prove this, suppose for definiteness that q > I. Let a positive number e be 
given, and choose rational numbers r" r. such that 

r, < m + 1 < r2, r, > m + 1 - E, and r. < m + 1 + E. 

Then 
qr1-1 qm.l_l qr.-l 
--<---<--, 
q-l q-l q-I 
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for irrational m as well 

qmt-l _ I 
lim =m+ I. 
q-l q - 1 

Thus we see that for any m =1= -I, lim (qm+l - I)/(q - I) = m + I. 
q-l 

It follows that for any such m the area of the curvilinear trapezoid ABC D 
of fig. 89 is 

1. __ 1_ am+l[(~)m+l_ IJ = b
m+1 - a

m+1 
m+l a m+l 

Rel'tUlrk. For m = -1 the formula for the area of ABeD is of an entirely 
different form; see problem 154 below. 

b. To calculate the area of the curvilinear triangle bounded by the 
curve y = x m , the x axis, and the line x = b, the method we used for the 
previous question is inapplicable. This is because 0 D = a cannot be 
divided into a finite number of segments in such a way that the coordinates 

since q > 1. We have already shown that 

and 

. q'1 - 1 
hm-- =r1 
q-l q - I 

. qr. - 1 
hm-- = r •. 
q-I q - 1 

Hence, if q is sufficiently close to I, we have 

Then 

qr1 - 1 
-->r 1 -€, 
q - 1 

q'2 - 1 
q _ 1 < r. + E. 

q'"+' - 1 
r, - E < --- < r. + E. 

q-I 

Since r, > m + 1 - E and r. < m + 1 + E, it follows that 

qm" - 1 
mil - 2e < --- < m + 1 + 2E. 

q-l 

(Thesameinequalityisobtainedforq < 1 bychoosingr, > m + 1> r.,r, < m + 1 + 
E, r. > m + 1 - E.) Thus, if E > 0 is given, we have 

--- - (m + 1) < 2E I q'''' 1 I 
q - 1 

for all q sufficiently close to 1. This means by definition that 

. qm+l _ 1 
hm---=m+ I. 
q-l q - 1 
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c 
y 

o 

Fig. 90 

of the endpoints form a geometnc progression. However, we can use the 
result of the previous problem. The area of the curvilinear triangle OC D 
(fig. 90) is the limit as a -- 0 of the area of the curvilinear trapezoid ABC D. 
The expression (bm+l - am+l)j(m + 1) tends to bm+lj(m + I) as a tends 
to zero; it follows that the area of OCD is bm+lj(m + 1). 

Remark. The result of part b remains valid even for negative values of m, 
provided they are greater than -I. For if m > -1 then lim (bm+l-am+l)j(m + 1) 

a--+O 

= bm+lj(m + 1). In case m < 0 the curvilinear triangle OeD no longer 
exists, since the curve y = xm has the form shown in fig. 91a. (The reader 
should examine for himself the intermediate case m = 0, and compare its graph 
with figs. 90 and 91.) The figure bounded by the curve, the x axis, the line x = 0, 
and x = b is unbounded for m < 0, but we may nevertheless speak of its area. 
We may, for example, define the area to be the limit of the sum of the areas of 
the rectangles shown in 91a as the length of the base of each of them tends to 
zero; this limit is equal to bm+lj(m + I). 

y 
y 

x x 

• 
Fig. 91 
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In an analogous manner, when m < - 1 we can speak of the area of the 
figure bounded by the curve y = x m , the x axis, and the line x = a, although 
this figure is unbounded (fig. 91 b). This area may be defined as the limit of the 
sum of the areas of the rectangles shown in fig. 91 b as the number of rectangles 
tends to infinity and the length of the base of each rectangle tends to zero. The 
area so defined is equal to 

bm+l _ am+l am+l 
lim-----

I>-co m + I -(m + 1) . 

151. Suppose ~Al = a l , ODl = hl and OA 2 = a2, OD2 = h2. Divide 
the segments A1D1A2D2 into n equal parts and construct a rectangle on 
each part as base, as shown in fig. 92. Clearly the area of the kth rectangle 

y 

D, x 

Fig. 92 

of the first set is 

We can find the area of the kth rectangle of the second set in the same way; 
it is 

Ak2) = h2 - a2 ______ _ 

n a2 + k(b2 - a2)/n 

Since b2/a2 = hl/al' we have Ail) = Ai21; it follows that the sum S~l) of 
the areas of the first n rectangles is equal to the sum S!2) of the areas of the 
second n rectangles. Since n is arbitrary, the required result follows from 
the definition of the area under a curve (see p. 26). 



146 SOLUTIONS 

152. We consider separately a number of cases. 
(I) Zl and Z2 are both greater than 1 (fig. 93a). Since (zlz2)lz2 = zl/I 

it follows from problem 151 that the areas of the two shaded trapezoids in 
fig. 93a are equal. Since the area of the trapezoid bounded by the x axis, 
the hyperbola y = l/x, and the lines x = I and x = Zl Z2 is equal to the 
sum of the areas of the two trapezoids bounded by the x axis and the 
curve, and the lines x = 1, x = Z2 and x = Z2 and x = ZlZ2. respectively, 

y 

• 
Fig. 93 

(2) Z2 = Ilz1' Z1 > 1 (fig. 93b). In this case the identity to be proved 
assumes the form 

or 

Since z1:1 = l:l/zh it follows from problem 151 that the areas of the 
trapezoids bounded by the curve, the x axis, and the pairs of lines x = I, 
x = ZI' and x = l/z1 , X = I, respectively, have the same area. The 
equation F(llz1) = -F(ZI) follows immediately from this. 

(3) Z1 and Z2 are both less than 1. In this case l1z1o l/z2• IIz1z2 are all 
greater than I, and from what we have already proved 

and 
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Multiplying both sides of this equality by -1, we arrive at the required 
identity 

F(Zl) + F(Z2) = F(ZlZ2)' 

(4) Zl > I, Z2 < 1 but Zl Z2 =1= I. Suppose for definiteness that 
Zl > l/z2, so that 

Since l/z2 > 1 we may use the results already established to write 

F(Zl Z2) + F(~) = F( Zl Z2 .~) = F(Zl), 

whence 

F{ZlZ2) = F(Zl) - F(~) = F(Zl) + F{Z2)' 

The case where ZlZ2 < I is dealt with similarly. 
We have thus solved the problem in all cases. 

153. Note that by its definition the function F is increasing, that is, for 
Z2> Zl, F(Z2) > F(Zl)' Since F(l) = 0 and F increases continuously as 
Z increases (and so cannot "skip" any values), in order to prove the 
existence of a real number e such that F(e) = I, it is sufficient to show that 
there exist values Z for which F(z) > I. 

We will show that F(3) > I. Draw a tangent B' C' to the hyperbola 
at the point G(2,!) (fig. 94a). The area of the trapezoid ABC'D (where 
OA = I, OD = 3) is I, since its midline HG = !, while its height AD 
is 2. It follows that the area F(3) of the curvilinear triangle ABCD is 
greater than I, as required. 

We note now that F(2) < I. This follows from fig. 94b: the area of 
the curvilinear triangle ABGH (OA = I; OH = 2) is equal to F(2), and 
is clearly less than the area of the square ABG'I1, which is I. 

y 

Cc 

'3D 

Fig. 94 
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We thus conclude that 

F(2) < I < F(3) 

and so 
2 < e < 3. 

154. We first prove the following important property of the function F: 
for any ot, 

F(z«) = otF(z). 

We give the proof in a number of steps, each time extending the range of 
ot for which the theorem holds. 

(I) F(z") = nF(z) when n is a positive integer. For by the result of 
problem 152, 

F(Z2) = F(z . z) = F(z) + F(z) = 2F(z), 

F(r) = F(Z2 . z) = F(Z2) + F(z) = 2F(z) + F(z) = 3F(z), 

F(z4) = F(Z3 . z) = F(Z3) + F(z) = 3F(z) + F(z) = 4F(z), 

F(z") = F(zn-1 • z) = F(Z"-l) + F(z) = (n - I)F(z) + F(z) = nF(z). 

(2) F(zk) = kF(z) when k is a negative integer. For let k = -n, 
where n is a positive integer. Then clearly F(Zk) = F(I/zn) = -F(z") (see 
the solution to problem 142), and therefore 

F(Zk) = -nF(z) = kF(z). 

(3) F(zl/m) = (l/m)F(z) for m an integer. For let us substitute zl/m 
for Zl in the identity F(Zlm) = mF(zl)' Then we obtain 

whence 
F(z) = mF(zl/m), 

F(Zl/m) = 1.- F(z). 
m 

(4) F(znlm) = n/m F(z), where n/m is any rational number. For 

F(zn1m) = F[(zl/m),,] = nF(zl/m) = !!.. F(z). 
m 

[See cases (I), (2), and (3) above.] 
(5) F(z<1.) = otF(z), where ot is any irrational number. Construct two 

sequences of rationals, 
" , otl , ot2 , • • • , otn , • • • 
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satisfying the following conditions: 

(We could, for example, choose IXn and IXn' as follows. Let the representa­
tion of IX in the decimal system be aTf1k-l' •• aD • b1b2ba . • •• Put IXn = 

aTf1k-l' •• aD' b1b2 ••• bn> and IXn' = IXn + IO-n • Then 0 < IX - IX" < 10-" 
and 0 < IXn' - IX" < 10-".) 

Since F is clearly an increasing function, we have the inequalities 

F(z"'n) < F(z"') < F(z"'n'), 

or, since IXn and IXn' are rationals, 

[See case (4)]. Thus 

and therefore 

Since 

F(z"') , 
IXn < -- < IXn , 

F(z) 

I" F(z"') I' , 
ImlXn ~ -- ~ 1m IX" • 

,,-+co F(z) n-+co 

it follows from the last inequality that 

F(z"') 
F(z) = IX, 

F(z"') = IXF(z), 

as required. 
It is now easy to show that 

F(z) = 10& z. 

For by the above 

F(z) = F(eog· Z) = log. zF(e) = 10& z, 

since F(e) = I by the definition of e. 

ISS. In this problem the same experiment is cCttisidered as in problem 96 
of Volume I. As in the second solution to that problem, we can charac­
terize all possible outcomes to this experiment in terms of the two numbers 
AK = x and KL = z (see fig. 95). Then the set of all possible outcomes 
to the experiment can be represented as the set of all points in or on the 

A K 
o 

Fig. 95 

L 
I 

B 
o 



150 SOLUTIONS 

A 

B~--------~--------~C 

Fig. 96 

triangle OST bounded by the coordinate axes and the line x + z = I 
(fig. 97). The probability of any event is the ratio of the area of the part 
of OST corresponding to the points at which the event occurs to the area 
of the entire triangle OST. 

We must now determine for which values of x and z an acute-angled 
triangle can be formed from three segments with lengths x, z, and 1- x - z. 
A necessary and sufficient condition is that the square of each of these 
lengths be less than the sum of the squares of the other two lengths.13 

Therefore the unfavorable outcomes of the experiment correspond to the 
points of the triangle OST for which at least one of the following 
inequalities is fulfilled: 

(1) 

Moreover, no two of the above inequalities can be satisfied simultaneously 
(for if r, s, t are three numbers with r ~ S ~ t, then r2 ~ S2 + (2 and 
S2 ~ r2 + t 2). Consequently, no two of the three regions determined by 
these inequalities overlap. Furthermore, in splitting the rod at random 
into three pieces, the probability that the square of the length of a given 
piece is greater than or eq ual to the sum of the sq uares of the lengths of the 
other two pieces is the same for each of the three pieces of the rod14). It 
follows from this that the areas of the three regions of the triangle OST 
determined by the three inequalities (I) are the same. Hence in order to 
find the area of the region corresponding to all the unfavorable outcomes 
of the experiment, we need only compute the area of the region defined 
by one of the three inequalities (I) and multiply it by 3. 

13 The necessity of this condition follows from the law of cosines. For if a, b, care 
the sides of an acute triangle (fig. 96), then a' = b' + c' - 2bc cos A < b' + c', since 
cos A > O. Similarly, b' < a' + c' and c' < a' + b'. Conversely, if a, b, c are any 
three positive numbers satisfying a' < b2 I co, b' < a' -+ co, c' < a" t- bO, then 
a" < b' + 2bc + c' = (b + c)', so that a < b + c. Similarly,b < a + candc < a + b 
Hence there is a triangle ABC with sides a, b, c. From the law of cosines for ABC we 
find that cos A, cos B, cos C are positive, so that A, B, C are acute . 

.. As we saw in the solution to problem 98 of Volume I, the problem of breaking 
a rod into three pieces is equivalent to the problem of dividing a circle into three pieces, 
and in the division of the circle the three pieces obtained are obviously interchangeable. 
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Fig. 97 

Let us now find the area of the part of the triangle OST for which the 
inequality 

(I - x - Z)2 ~ x2 + Z2 

is satisfied. Removing parentheses, this inequality can be rewritten in the 
form 

12 + 2xz - 21x - 21z ~ O. 

Adding {2 to each side of the inequality and dividing by 2, we obtain: 

p 
(l - x)(l - z) ~ -. 

2 
But the equation (I - x)(1 - z) = 12/2 defines a hyperbola which passes 
through the points x = V. z = 0 (the point N) and x = 0, z = il (the 
point M); the inequality (I - x)(1 - z) ~ 12/2 is satisfied by all points of 
the curved region ONRM (the shaded part of fig. 97) and only by those 
points. 

It remains for us to determine the area of the region ONRM. 
Introduce a new coordinate system by taking for coordinate axes the lines 
OlTand OIS (that is, the lines 1 - z = 0 and I - x = 0; see fig. 97); in 
this coordinate system our hyperbola will have the equation x' z' = 12/2. 

Now take as a new unit of length 11.J"2. Then the abscissa OlK of the 

point N in the new units is (112)/(1//2) -= .J"2/2, and the abscissa OIT of 

the point M is 1/(I/J2) = J2. By the result of problem 154, the area of 

the hyperbolic trapezoid KNMT in the new units is In (.J2/(.J2/2) = 

In 2. Passing back to the old unit of area, we find that the area of the 
hyperbolic trapezoid KN MT is (In 2)(/2/2) = (/21n 2)/2. Hence for the area 
of the shaded region ONRM of fig. 97, we obtain 

~ _ 12 In 2 = ~ (1 _ In 2). 
2 2 2 
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The total area of the part of the triangle OST corresponding to the 
unfavorable outcomes of the experiment is three times this expression, 
and the area of the part corresponding to the favorable outcomes is 

/2 12 /2 
- - 3 - (1 - In 2) = - (3 In 2 - 2). 
2 2 2 

Therefore the probability to be computed has the following value: 

(/
2
/2)(3 In 2 - 2) = 3 In 2 - 2 = 0.082' .. 

/2/2 

156. Suppose for simplicity that the length of the rod is 2 (this is no 
restriction, since we can always take half the length of the rod as the unit 

M 

N 

o p x 

Fig. 98 

of length). Let A B be the rod, and K and L the first and second break 
points. The outcome of the experiment in this problem is completely 
determined by the numbers x = AK and z = KL, where x is chosen at 
random from the interval 0 ~ x ~ I (x is the length of the smaller of the 
two segments formed after breaking the rod the first time, whence x ~ I) 
and z is chosen at random from the interval 0 5: z ~ 2 - x. If we take 
x and z as coordinates in the plane, then the set of all possible outcomes to 
the experiment is represented by the set of all points on or inside the 
trapezoid OMNP (fig. 98). However, the probability that (x,z) falls 
within some small rectangle located within the trapezoid does not depend 
only on the area of this rectangle: the probability that x falls within a 
given segment of the x axis is the length of that segment, but the proba­
bility that z falls within any segment of the z axis for given x is the ratio 
of the length of that segment to 2 - x, and hence depends on x. Therefore 
the probability that a point (x,z) falls within any part of the trapezoid 
OMNP depends not only on the area of that part but also on its location 
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within OMNP; accordingly, the representation of all possible outcomes 
ofthe experiment as the points on or in the trapezoid OMNP is inconven­
ient for computing probabilities. 

It is more convenient to characterize all possible outcomes to the 
experiment in terms of the numbers x and y = z/(2 - x). The selection 
of the two break points amounts to a random selection of x and y from 
between 0 and I; consequently, if we take x and y as coordinates in the 
plane, then the possible outcomes to the experiment are represented by the 
points of the unit square OUVW (fig. 99), and the probability that a point 

Fig. 99 

(x,y) falls within some part of this square is the area of that part (since the 
area of the entire square OUVW is I). Hence we need only determine the 
area of the part of the square OUVW which corresponds to the favorable 
outcomes of the experiment. 

In this problem the favorable outcomes are those in which a triangle 
can be formed from segments of lengths x, z, and 2 - x - z. In order 
that this be possible, it is necessary and sufficient that none of these 
lengths exceed 1. Since x is by hypothesis at most I, the favorable 
outcomes are those in which z < I and 2 - x - z < I, that is, 

z < I and z > I-x. 

Since y = z/(2 - x), we find by dividing the above inequalities by 2 - x 
that the favorable outcomes correspond to the points (x,y) for which 
y < 1/(2 - x) and y > (I - x)/(2 - x), that is, 

I 1 
Y < -- , y > 1 - -- . (1) 

2-x 2-x 

We now have to determine what the region in fig. 99 defined by these 
inequalities looks like. 
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In place of the coordinates (x,y) let us introduce coordinates (X',y'), 
where 

y = y' and x' = 2 - x. 

This change of coordinates amounts to a translation of the origin to the 
point 0' located on the x axis at a distance of2 from 0, and a reversal of 
the direction of the x axis (see fig. 99). In the new coordinates the 
inequalities (1) assume the form: 

Y' <1. 
I' 

X 

I 1 1 Y > --. 
x' 

(2) 

The first of these inequalities shows that all points which correspond 
to favorable outcomes lie below the hyperbola 

I 1 y=-
x' 

Now consider the curve 

(1. _ !). 
x' 2' 

this curve is the one obtained by reflecting the curve y' = llx' over the line 
y' = t (see fig. 99). The second of the inequalities (2) shows that all 
points which correspond to favorable outcomes are located below the 
curve 

, 1 1 Y = --
x' 

Therefore the favorable outcomes correspond to the points of the shaded 
region in fig. 99. We must determine the area of this region. 

Note first that by virtue of the symmetry of the curves 

, 1 d I 1 1 Y =- an Y = --
x' x' 

about the line y' = t, the areas of the hyperbolic triangles OTW and 
TUV are equal. Therefore the required area is I - 2 area (TUV). But 
by problem 154, the area of the hyperbolic trapezoid OTVW is In 2. It 
follows from this that area TUV = I - In 2, and, consequently, the area 
of the hyperbolic triangle TVW is 

1 - 2(1 - In 2) = 2ln 2 - I = 0.388 .... 

This expression is the probability that a triangle can be formed from the 
segments x, z, and 2 - x - z. 
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Fig. 100 

157. The location of a needle AB after it lands on the plane is determined 
by the distance y from its center to the nearest of the parallel rulings 
and the angle x between AB and the rulings (fig. 100). It is clear that 
o ~ y ~ a, 0 :s x -;; 1T; the possible outcomes to the experiment are de­
termined by pairs of numbers (x,y) , where x is chosen at random from 
between 0 and 1T, and y is chosen from between 0 and a. The set of all 
outcomes can be represented as the set of all points in or on a rectangle 
OMNP with sides OM = a and OP = 1T (fig. 101). The probability of the 
point (x,y) lying within any region of this rectangle is the ratio of the area 
of that region to the area of the entire rectangle OMNP. We therefore 
need only determine the area of the part of OMNP which corresponds 
to the favorable outcomes of the experiment. 

Fig. 101 

It is apparent from fig. 100 that in order for the needle A B to lie across 
one of the rulings, it is necessary and sufficient that y ~ a sin x. Hence 
the favorable outcomes to the experiment correspond to the points 
located under this sinusoid. By problem 149b, the area under the sinusoid 
is 2a. Since the area of the entire rectangle OMNP is a1T, the required 
probability is 

2a _ ~:::::; 0.637. 
a1T 1T 

158a. We know that the quantity In (1 + lin) is equal to the area of the 
curvilinear trapezoid ABC D bounded by the hyperbola y = 1/ x, the x 
axis, and the lines x = I and x = 1 + lIn (see fig. 102). Since the area of 
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y 

x 

Fig. 102 

this trapezoid is less than the area of the rectangle A BED and greater than 
that of the rectangle AFC D, 

1. > In (I + 1.) > 1. . _1_ = _1_ . 
n n n l +1. n+1 

n 
Hence 

( I) n I I > n In I + - > -- = I - -- , 
n n+1 n+1 

and therefore 

lim n In (I + 1.) = 1. 
n-oo n 

Remark. The result of this problem is equivalent to lim (I + l/n)n = e. 
(See the end of problem 162.) n-oo 

b. We know that log.. x = (10& x)/(1og. a) = (In x)/ln a. (See foot­
note on p. 159.) Hence 

lim n log,. (I + 1.) = lim n In (l + lin) = _1_ . 
n-oo n n-oo In a In a 

c. Recall that the area of the curvilinear trapezoid bounded by the 

hyperbola y = llx, the x axis, and the lines x = I and x = '\Ya is equal 
to 

- 1 
In \Y a = - In a. 

n 

The area of the trapezoid with sides x = 1 and x = 1 + (lIn) In a is 
clearly less than the area of the rectangle with base (lIn) In a and height I 
(see fig. 103a), that is, less than (lIn) In a. It follows that 

1 VIa > 1 + - In a. 
n 
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y 

x 

• .. 
Fig. 103 

In the same way we can show that the area of the trapezoid with sides 

x = 1 and x = I I is greater than the area of the rectangle 
I - (lin) n a 

with base ( I ) I - I and height 1 - (lin) In a (fig. 103b), that is, 
1 - lin n a 

greater than (lIn) In a. It follows that 

- 1 
~a<--~--

1 - (lIn) In a 
Thus 

.! In a < vra - 1 < 1 _ 1 = (lIn) In a , 
n 1 - (lIn) In a 1 - (lin) In a 

that is, 
In a 

In a < n( vra - 1) < , 
1 - (lIn) In a 

Hence 
lim n( vra - 1) = In a. 

159a. Divide the segment OD of the x axis, where OD = b, into n equal 
parts (fig. 104). The length of each part is bin, and the heights of the 
rectangles having these parts as bases and inscribed in the curve y = aX 
are equal to 1, a b/ n , a 2b/ n , ••• , a(n-l)b/n. It follows that the total area 
of all these rectangles is 

Sn = £ (1 + ab/ n + a 2/)/n+ ... + a(n-l)/)/n) 

n 
b a b 

- 1 
- n ab1n - 1 . 

The area S of the curvilinear trapezoid OBeD is the limit of Sn as 
n -+ 00. Thus 

S I
· b (aO - 1) I· ab - 1 

= 1m _. = 1m 
n"'oo n (a b

/
n - 1) n-"" (njb)(a b

/
n 

- 1) 
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Fig. 104 

But by the result of problem 158c, 

Thus 

lim !! (a n/ b - I) = .!. lim n(Vi? - l) = .!.In ab = In a. 
n-oc, b b n-oc b 

aO - 1 
S=--. 

In a 

(In particular, if a = e we obtain the simple expression S = eb - l.) 
h. First solution. We use part a and the fact that the equation 

y = log.. x can also be written in the form x = all. We must find the area 
of the curvilinear triangle ABC, where OA = I and OB = b (fig. 105). 

We first calculate the area of the curvilinear trapezoid OACD. The 
equation of our curve is y = log.. x or x = all. It follows that the curvi­
linear trapezoid OACD is congruent to the curvilinear trapezoid OBCD 
in fig. 104, whose area we calculated in the previous problem.Is The 
trapezoid OACD is bounded by the curve x = all and the straight lines 

y 

Fig. lOS 

15 More precisely, these trapezoids are symmetric (since looking toward the positive 
direction of the x axis. the positive direction of the y axis is to the left, whereas looking 
toward the positive direction of the y axis, the positive direction of the x axis is to the 
right). 
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y = 0 and y =-= log, b. It follows from the result of part a that its area is 

log. bIb I 
S(OAC D) = a - -= --=-- . 

In a In a 

But the area of the curvilinear triangle can be found by subtracting this 
area from that of OBCD. We obtain16 

S = b loga b _ b - I ~ b loga b In a - b I 1 
In a In a 

bIn b - b + I 

In a 

In particular, the area So of the curvilinear triangle bounded by the 
x axis, the curve y = In x, and the straight line x = b is given by 

So = bIn b - b + I, 
and the area S1 of the curvilinear triangle bounded by the x axis, the curve 
y = log x, and the line x = b is given by 

SI = b In b - b + 1 = In 10 . b log b - b + I ~ 2.3b log b - b + I 
In 10 In 10 2.3 

Second solution. Let OA = I, OB = b. Divide AB into 11 parts by 

points MI. M 2, ... , M n- l so that 

OM I = OM2 = OM3 = ... = _b_ 
I OMI OMz OMn_1 

We have 

OM3 = q3, ... ,0Mn_ I = q"-I, OMn = q" = b, 

where q = ~b (compare the solution of problem 150). It follows from 
this that the lengths of the bases of the rectangles in fig. 106 are 

(q - I),q(q - 1},q2(q - I), ... ,q'H(q - 1) 

and the heights are 

10& q, loga q2 = 2 10& q, 10& q3 =-= 3 loga q, ... , loga qn -=- n log.. q. 

y 

x 

Fig. 106 

" We use here the identity log. b In a ~ In b. It can be deduced from the following 
chain of identities: 
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Thus the area of the curvilinear triangle ABC is equal to the limit as 
n ->- co of the sum 

SIt = (q - I) log,. q + q(q - I)' 2 Ioga q + q2(q - I) . 3 log,. q + ... 
+ qn-l(q _ I)· n log,. q 

= (q - 1)(1 + 2q + 3q2 + ... + nqn-l) Ioga q. 

Butl7 

so that 

nqn qn - 1 
1 + 2q + 3q2 + ... + nqn-l = -- - 2 ' 

q - 1 (q - 1) 

n qn - 1 
Sn = nq loga q - ---Ioga q, 

q-I 
or, since q = 'V'b, loga q = (l/n) loga b, 

S = b 10 b _ (b - 1) lo~ b . 
n ~ n( 'V'b - 1) 

Since lim n( \Yb - I) = In b (see problem J58c), we have 

S = lim Sn = b lo~ b - (b _ 1) Io~ b 
n-oo In b 

bIn b b - 1 
= -1- - -1-- (see footnote 16). 

na na 

Remark. If we determine the area in part b without using the solution to 
part a, as we did in our second solution, then one can use the resulting formula 
to find the result of part a. 

160. The solution to this problem is analogous to the second solution of 
problem I 59b. Suppose OA = I, OB = b. We divide the segment AB 
into n parts by points M}> M 2, ••• , Mn so that OMl/1 = OM2/OMl = ... 

= OMn_l/b (fig. 107). Then the lengths of the bases of the rectangles 
shown in the figure are 

(q _ J),q(q - 1),q2(q - 1), ... ,qn-l(q - I), 
11 For 

I + 2q + 3q2 + ... + IIq"-' = (l + q + q2 + ... + q"-') + (q + q2 + ... + qn-l) 

+ (q" + ... + qn-l) + ... + (qn-. I- qn-I) + qn-l 

= q" _ I + qn _ q + q" _ q2 + ... + q" _ qn-l 
q-I q-l q-I q-I 

IIqn 1 + q + ... + q"-I 
~q-I- q-l 

IIqn qn_ 1 
= q - I - (q - 1)2' 

Another proof of this identity is given in problem 172b. 
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Fig. 107 

where q = <ib, while their heights are 

log,. q 2 log,. q 3 log,. q n log,. q 
q q2 q3 qn 

(See the solution to 163b.) It follows that the area S of the curvilinear 
triangle ABC is the limit as n -+- 00 of the sum 

Sn = (q - 1) toga q + 2(q - 1) loga q + ... + n(q - 1) loga q 
q q q 

q - 1 n(n + 1) q - 1 
= --(1 + 2 + ... + n) logaq = --log,.q. 

q 2 q 
Since 

q = '\Ib, 1 
log,. q = - loga b, 

n 
we have 

S = n + 1 <i"b - 1 100 b = ~ n(<i"b _ 1) n + 1 ~ 100 h. 
n 2 <ib oa 2 n V"b oa 

Now by the result of problem 158c, 

lim n(<Yb - 1) = In b, 

and clearly (see footnote, page 140) 

lim n + 1 = lim (1 + 1) = 1, limV""b = 1. 
ft-OO n ft-OO n n-oo 

Thus (see footnote, page 159) 

S = lim Sn = tin b log,. b = lin a(loga b)2. 

In particular, the area of the curvilinear triangle bounded by the x 
axis, the curve y = (In x)/x, and the line x = b is equal to t In2 b, and the 
area of the curvilinear triangle bounded by the same lines and the curve 
y = (log x)lx is equal to 

t In 10 log2 b ~ 1.15 log2 b. 
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XII. SOME REMARKABLE LIMITS 

161. Let us determine the area of the figure bounded by the curve y = Xk, 

the x axis, and the line x = b. We choose the points Ml> M 2, ••• ,Mn- 1 

(see p. 26) so as to divide 0 D into n equal parts. The sum Sn is calculated 
as in the solution to problem 148: it is 

where h = bin. Thus the required area is 

S 
= ,. bkH Ik + 2k + ... + nk 

1m k 1 
n-<o n + 

But from the solution to problem ISOb we know that S = bk+1/ 
(k + 1). It follows that if k > -I (see the note to the solution of I SOb), 
then 

1 

k+l 

Remark. When k is a positive integer, this result can be proved more easily. 
We give a proof by induction. For k = 0 we have 

10 + 20 + ... -;- nO I 
n =1~0+1' 

for all n, so that the result certainly holds. Let us write Sr(n) for the sum 
lr + 2r + ... + nr. We assume that 

(0 ~ r < k - I), 

and must then prove that 

Consider the expression (n + 1)4+1 - n"+l. By the binomial theorem we have 

(
k + I' 

(n + 1)1.:+1 - nk+1 = (k -I- l}nk + 2) nl.- 1 + ... + (k + On + 1. 
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Similarly, replacing n by n - I, n - 2, ... , 0, we have 

(
k + I) ,f=+1 - (n - l)k+1 = (k + l)(n - I)k + 2 (n - l)k-1 + ... 

+ (k + I)(n - I) + 1 

(
k + 1) (n - I)k+l - (n - 2)1.+1 = (k + 1)(n - 2)k + 2 (n - 2)~-1 + ... 

+ (k + I)(n - 2) + I 

On adding all these equations, we obtain 

Now divide through by nk+1, getting 

(
n + l)kH _ -l- Sk(n) (k + 1)' Sk-l(n).! + ... 

n - (k . I) nk+l -j 2 nk n 

Let n -- 00, and use the induction hypothesis, that lim Sr(n)/nr +1 = I/(r + 1) 
(0 ~ r ~ k - 1). We obtain n-"" 

(
n + l)k+1 

1 -lim --
n_O'J n 

. Sk(n) 
- (k I- I) lim k+l -I 0 + 0 + ... + 0, 

n_QO n 

or 
. Sin) 1 

lim I:+f ~ k-- , 
n-oo n + 1 

as required. 

162a. First solution. It is sufficient to prove the inequality 

log [ (I + ~rJ > Jog [( 1 + ;fJ 
or 

n log (1 +~) > m log (I +;) 
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whenever n > m. We take logarithms to base e (see problems 151 to 154 
above). Then In (I + I/n) is the area of the curvilinear trapezoid ABDC 
bounded by the hyperbola y = I/x, the x axis, and the lines x = I and 
x = I + lin; In (I + 11m) is defined similarly (fig. 108). 

Let ABNK be the rectangle with base AB and area equal to that of 
the curvilinear trapezoid ABC D; then 

and therefore 

1 
S(ABNK) = AB· AK = -' AK, 

n 

Fig. 108 

~. AK = S(ABDC) = In (1 + ~), 

Next, using the notation of fig. 108, S(ABNK) = S(ABDC) and 
S(BBlMN) > S(BB1DlD), so that S(ABlMK) > S(AB1D1C). But 

I 
S(ABlM K) = ABl . AK = - AK 

m 

so that 

; n In (1 + ~) > In ( 1 + ;;J, 
n In (I +~) > m In (1 +;), 

as required. 
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Second solution. We use the inequality between the arithmetic and geometric 
means,IS which states that if a}, a2 , ••• , an are all ~ 0, then 

(1) 

with strict inequality unless a} = a2 = ... = an' Suppose n > I, and put 

1 
a l = a2 = ... = an-l = 1 + -- , 

n - 1 

Since the ai are not all equal, the strict inequality holds, and we get 

I( 1 )n-l (n - 1)( I + n ~ J + 1 
~ 1+---- <--------------------

n-l n 

=1+1. 
n 

Raising both sides to the nth power, it follows that 

( I )n-l ( I)n 
1+

n
_

1 
< 1+~, 

which is what we wanted to prove. 

Third solution. Expand (1 +~) by the binomial theorem; we get 

(
I + .!)n = 1 + 1 + n(n - 1) 1 + n(n - l)(n - 2) I + ... + 1. . 

n 2 n2 6 n3 nn 

The number of terms is n + I, and thus increases with n. Moreover, 
the individual terms increase with n, since 

n(n - l)(n - 2) ... (n - k + 1) 1 

k! 

and each factor 1 - jfn is an increasing function of n. Hence (I + ~)n 
increases with fl. 

'"The left-hand side of (I) is the geometric mean of the numbers a" a2' ... an, 
while the right side is their arithmetic mean. For a proof of the inequality, see for 
example, Ref. [3]. 
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b. First solution. It is sufficient to show that for any positive integer n 

[( 1 )n+l] [ ( 1)' n+2] 
In 1 + ~ > In 1 + n + 1 . 

Form the difference 

In [( 1 + ;f+l] - In [ (I + ;h f+2] 
= (n + 1) In (1 + ;) - (n + 2) In ( 1 + n ~ .) 

= (n + 1)[ln (I + ;) - In (1 + n ~ 1)] - In (I + n ~ .). 

But In (l + lin) - In (I + I/(n + I» is the area of the curvilinear trape­
zoid BBIDID bounded by the hyperbola y = I/x, the x axis, and the lines 
x = I + lin, x = I + I/(n + 1), and In (l + I/(n + I» is the area of 

y 

x 

Fig. 109 

the curvilinear trapezoid bounded by the same curve, the x axis, and the 
lines x = I and x = I + I/(n + I) (fig. 109). The area of the curvilinear 
trapezoid BBIDID is greater than the area of the rectangle BBIDlK, 
whose area is 

(
I 1) 1 1 n (1)2 

BBl· BlDl = ~ - n + 1 1 + lin = n(n + 1) n + 1 = n + 1 . 

Thus 

(n + 1)[ln (1 +.!) - In (1 + _1 -)] > (n + I) . 1 2 
n n + 1 (n + 1) 

1 

n + 1 
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The area of the curvilinear trapezoid ABC D is less than the area of the 
recta 19le ABLC, which is equal to 

1 1 
AB . AC = --' 1 = -- . 

n+l n+l 
Thus 

In (I + _1 _) < _I _ . 
n+l n+l 

On comparing the two inequalities, we find that 

= (n - l)[ln( I +~) - In( 1 + n : JJ - In( 1 + n : J > 0, 
as required. 
Second solution. As in the second solution to part a, we can use the 
inequality between the arithmetic and geometric meanS. Take 

I 
a1 = a2 = ... = an = I - - ,a n+1 = 1, where n > 1. 

n 

Then we have the strict inequality, so 

( 1) n 1-- +1 
n+l/(l _ !)n < n 

'1/ n n+l 

n ---
n + 1 

Hence 

Inverting both sides, we reverse the inequality; thu5. 

I n other words, 

(I + n ~ 1 r > (I + ~r+l, 
which is what we wanted to prove. 

Remark. In later problems it will be important to know that 

( l)n (l)n+l lim I + - = e ~ lim I + - , 
n_oo n n-oo n 
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where e is the number defined geometrically in problem 153. This follows at 
once from either problem 158a or problem 163 (with z = I). 

163. First suppose that z is positive. Consider the curvilinear trapezoid 
ABC D bounded by the hyperbola y = 1 lx, the x axis, and the lines x = I 
and x = 1 + zln (fig. 1 lOa). The area of this trapezoid lies between the 
areas of the rectangles ABED and AFCD, that is, between zln' 1 and 
z/n' 1/(1 + z/n) = z/(n + z) (see the end of the solution of 159). It 
follows that 

z ( z) z - > In 1 +- >--
n n n + z 

or 

z > In[(1 + ~)'nJ > _z_ . 
n 1 + z/n 

(1) 

Passing to the limit19 as n ~ 00, we see that 

In[~~"!, (1 + ~rJ = z, (2) 

from which it follows that 

lim (1 + ~)n = e%. 
n-<Xl n 

The case where z is negative is handled similarly (fig. II 0 b). 

Here S(ABED) = -zln, S(AFCD) =(_ =) _1_ = -z ,S(ABCD) = 
n z n + z 

1+-
n 

- In (l + (zln». (Remember that z is negative; see p. 31.) It follows 
from fig. 1l0b that 

z (z)-z - - < -In 1 + - < -- , 
n n n + z 

or 

z ( z) z - > In 1 + - > -- , 
n n n + z 

or finally, 

z > In[(1 + ~)nJ > _z_ . 
n 1 + zln 

11 The details are as follows. From (I) we see that (I + z/n)" < e', so the sequence 
(1 + z/n)n is bounded from above. As in problem 162, it can be shown that the 
sequence (l + z/n)n is increasing. Hence lim (1 + z/n)n exists. Since In x is continuous, 
we have lim In (l + z/n)n = In lim (1 + z/n)n. Since the first and last members of (I) 

tl-OO 11_00 

tend to z as n ~ 00, so must its middle member, i.e., lim In (I + z/n)n = z. Equa-
tion (2) follows at once from these facts. n-co 
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y 

C F 

E B 

169 

D .:,:.A ________ ... 

o ~ b x 

• 
Fig. 110 

Letting n -+ OC>, we find once again 

and so 

lim (1 + -=)" = eS. 
n .... oo n 

164. Expand (I + z/n)" by the binomial theorem: 

(
1 + -=)n = 1 + -= . !! + £ . n(n - 1) 

n n 1 n2 2! 

We can write 

where 

zn~n(~n_-__ l=)(_n_-~2)~'_'_'~(n_-__ n __ -_l~) + ... +--
nn n! 

Z2( 1) Z3( 1) ( z) =l+z+- 1-- +- 1-- 1--
2! n 3! n n 

z"( 1) ( 2) ( n - 1) + ... + n! 1 -; 1 -; '" 1 - -n- . 

(1 +;f = I + Ul + U 2 + ... + Un> 

Uk = £(1 - ;) (1 _ ;) ... (1 _ k ~ 1) (k = 1,2, .. , ,n). 
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The terms Uk of this sum clearly satisfy the inequalities 

Iu I S lzlk 
k - k! ' 

I 
Uk+l I = Izl [1 - (kIn)] ~ J..:L. 

Uk k + 1 k + 1 

From the second of these inequalities it follows that 

jzj jzl jzl2 
IUk+l1 ~ Iukl . k + 1 ; IUk+21 < IUk+l1 . k + 2 ~ IUkl' (k + 1)2 

Iu I s lu I _1_zl_ s Iu I' Izl
3 

k+3 - H2 k + 3 - k (k + 1)3 

Now choose k so that k + I > Izi. This is permissible, since we shall 
later let n - 00, and our sums can therefore be assumed to have sufficiently 
many terms. For such k 

[Uk+l + Uk+2 + ... + unl ~ IUk+l1 + IUk+21 + ... + Iunl 

~ IUk{k
l
: 1 + CI:I J + ... + CI: J-kJ 

~ IUkl Izl/(k + 1) = IUkl Izi 
I - Izl/(k + 1) k + 1 - Izl 

IzlHl 
S ------''---'----

k! (k + 1 - [zl) 

But 

(1 + ~r -(1 + U 1 + U2 + ... + Uk) = Uk+l + Uk-t2 + ... + Un> 

so that 

I (1 + ~)n - (1 + U1 + 112 + ... + Ilk) I ~ IZ[HI . 
n k! (k + 1 - Izl) 

It follows that 

lim I (1 + ~)n - (1 + U1 + U 2 + ... + Ilk) I ~ IZ[HI . 
n-oo n k! (k + 1 - Izl) 

Now lim Uk = zk/k! and lim (l + z/n)n = eZ (see problem 163). Hence 

I ( 
Z2 Zk) I Izlk+l 

e
Z 

- 1 + z + 2! + ... + k! ~ k! (k + 1 - Izl) . 
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But clearly 
. Izl/(-'-l 

lim = O. 
k-<>:.k!(k + I -Izl> 

Thus 

lim [ez - (1 + Z + ~ + ~ + ... + Zk) ] = 0, 
k-oc 2! 3! k! 

and this is exactly what is meant by the equation 

Z Z2 Z3 zn 
ez =l+-+--t--+···+-+···. 

1! 2! 3! n! 

165. Consider the sum of the areas of the n - 2 trapezoids and the triangle 
inscribed in the curve y = In x in fig. III a. Since the bases of the kth 
trapezoid are In k and In (k + I), this sum is eq ual to 

In 2 + In 3 + In 2 + In 4 + In 3 + ... + In n -+- In (n - I) 
2 2 2 2 

I 
= In 2 + In 3 + In 4 + ... + In (n - 1) + -In n. 

2 

The area Sn bounded by the curve y = In x, the x axis, and the line x = n 
is clearly greater than the area of the inscribed figure. That is, 

Sn > In 2 + In 3 + ... + In (n - 1) + ~ In n. 
Moreover, 

Kn = Sn - [In 2 + In 3 + In 4 + ... + In (n - I) + ~ In n] 

is an increasing function of n, since this difference is equal to the sum of 
the areas of the n - I segments cut from the curve by the upper boundaries 
of the trapezoids, and as n increases new segments are added. 

Let us now construct n - 2 trapezoids, bounded by lines x = k - ~ 

and x = k + ~, the tangent to the curve at the point x = k and the x axis 
(k = 2,3,4, ... , n - I). Add a further trapezoid bounded by the lines 
x = I and x = t, the tangent to the curve at x = i and the x axis, and a 

y 

n-I 

Fig. 111 

II - lIn -4" x 
n-I 
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rectangle of height In n with sides on x = n - I and x = n (fig. 111 b). 
Since the midline of the kth trapezoid is of length In (k + 1), and the 
midline of the small added trapezoid of length In!. the area of the 
entire figure is 

[In 2 + In 3 + ... + In (n - I)] + lIn n + lIn 1 

= [In 2 + In 3 + ... + In (n - 1) + lIn n} + lIn 1. 
But this area is greater than that of S", so that 

[In 2 + In 3 + ... + In (n - 1) + lIn n] + lIn 1 > Sn. 

lt follows that for any n, 

K,. < lIn 1. 
In the solution of problem 159b we showed that 

Sn = n In n - n + 1. 

On the other hand, 

In 2 + In 3 + ... + In (n - I) + In n = In (2 . 3 ... n) = In n! 

Using these relations, we can rewrite the expression for K" in the 
following form: 

K,. = (n In n - n + 1) - (In n! - ~ In n) 

"n - n".jn = In n - In e + 1 - In n! + In..) n = In -- + 1. 
n! en 

Since 0 < K" < lIn i for all n, 

n".jn 1 5 
O<In--+l<-ln-, 

n! e" 2 4 
that is, 

n".jn 1 5 
-1 < In -- < -1 + - In - , 

n! en 2 4 

or 

n'e" A 1 > In . r > In - e 
nn"n 5 

or 

as required. 

166a. We continue the argument used in the solution of problem 165. 
Since K,. increases with increasing n, yet always remains less than lIn i, 
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it must have a limit, also not exceeding ! In~, but necessarily positive, 
since K2 is positive, and all subsequent K's are larger. Thus 

Jim Kn = K, 
1 5 

where 0 < K ~ - In - . 
2 4 

But in the solution to 165 we showed that 

nn~n 
Kn= In-- + 1. 

n! e" 

Since the limit K = lim Kn exists, so does the limit 

and moreover, 

as required. 

I " C = lim 11. e _, 
n-+oo nllJn 

e> C ~ .jj e, 

b. In order to determine the numerical value of the limit C as 11 -+- 00 

of the quantity 

we use Wallis's formula (problem 147): 

7T • 2 2 4 4 2n ·2n 
- = 11m - . - . - . - ... --- . --- , 
2 n-oo 1 3 3 5 2n - 1 2n + 1 

which may be written in the form 

:!: = lim (2 . 4 . 6 ... 2n)4 = lim [2"(n !)]4 
2 "-00 (1·2·3·4·5· .. 2n)2(2n + 1) n-oo [(2n)!t(2n + 1)' 

or 
_. 22n(n!)2 

~7T = hm . 
n-oo (2n)! . J211 ; 1 

In this last equality we substitute 

(
2n)2" 

(2n)! = C2f1~2n -; 

and obtain 
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But 

lim C n = lim C2n = C. 

I · JE!ln + I I' pi r2 1m --- = 1m + - = V ' 
ft-CO n n-co n 

so that 

whence 
C = .j21T, 

as required. 

167a. In n is equal to the area of the curvilinear trapezoid ABCD bounded 
by the hyperbola y = l/x, the x axis, and the lines x = I and x = n. 

Construct n rectangles, all of base I and heights I, t,}, ... , I/(n - I), 
as in fig. 112a. The area of the curvilinear trapezoid ABeD is less than 

y 

y 

• 

b 

Fig. 111 

c 
D x 

c 
D 
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the total area of these rectangles. Hence 

1 1 1 
1 + - + - + ... + -- > In n, 

2 3 n - 1 

that is, 
1 1 1 

Y .. = 1 + - + - + ... + -- - In n > O. 
2 3 n - 1 

We now inscribe in the same curvilinear trapezoid n rectangles with 
unit bases and heights !, 1, 1, ... , lin (fig. I 12b). Since the total area of 
these rectangles is less than that of ABCD, 

In n > 1 + 1 + 1 + ... + 1. . 
2 3 4 n 

Therefore 
1 1 1 1 

Yn = 1 + - + - + ... + -- - In n < I - - < 1. 
2 3 n-l n 

Thus for any n, 0 < Yn < l. 
b. As n increases, so does Yn' for it is equal to the sum of the shaded 

areas in fig. 112a. Since with increasing n, 

1 I 1 
Yn = 1 + - + - + ... + -- - In n 

2 3 n - 1 

increases, yet always remains less than I, it must have a limit y, satisfying 
O<y;;; l. 

168a. The sum 

log 1 + log 2 + log 3 + ... + log (n - 1) 
1 2 3 n-l 

is equal to the area of the shaded figure shown in fig. 113. For large n 
this area does not differ greatly from the area of the curvilinear triangle 
A BC, which by problem 160 is 

y 

In 10 I 2 -- og n. 
2 

Fig. 113 
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It is therefore natural to suppose that the required number C is (In 10)/2. 
We consider, then, the difference 

log 1 + log 2 + ... + log n _ C log2 n 
1 2 n ' 

where C = {In 10)/2, but first let us examine in greater detail the form of 
the curve y = (log x)/x. 

Clearly, as x -+ 0 the quantity (log x)/x tends to -00, for x = I it is 
zero, and as x -+ 00 it tends to zero. This last follows from the fact that 
the ratio of the number of digits in a number n (written out in the usual 
way to base 10) and n itself tends to zero as n increases, since the number 
of digits in n does not differ from log n by more than 1. Now we use the 
fact that 

(see problem 162). It follows for n ~ 3 that n+lJn + I < \V;;. But 

J"2 = 1.41, and {I3 = l.44 ... , so that J2 < {I3" and {13 > 
{/4 > Vs > V6 > . . .. On taking logarithms, we find that 

log 2 < log 3 and log 3 > log 4 > log 5 > log 6 > .... 
2 3 3 4 5 6 

We see therefore that as x increases, the quantity (log x)/x at first 
increases, then somewhere between x = 2 and x = 3 assumes a maximum 
value, and then decreases. To locate the maximum more closely, we must 
do a little more calculating. 

Let us compare (log 2.5)/2.5 with (log 3)/3. We have 

log 2.5 = log 10/4 = 4(1 - 2 log 2) = 4(1 - 0.6026' .. ) = 0.15917 ... 
2.5 10/4 10 10 

and 

log 3 = 0.47712 ... = 0.15904 .... 
3 3 

Hence (log 2.5)/2.5 > {log 3)/3, and so the maximum value of (log x)/x 
occurs at some value of x between 2 and 3. It can be shown that the 
maximum value occurs precisely at x = e R:; 2.718. However, we shall 
not need this fact in the argument. We have thus established that the 
curve y = (log x)lx has the form shown in fig. 26. The maximum value 
of the function (log xlIx cannot be greater than (log 3)/2, for log x < log 3 
for 2 < x < 3. 
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y 

Fig. 114 

The area of the curvilinear figure ABC is less than that of the shaded 
polygon in fig. 114. The area of this shaded figure is less than 

Jog 2 + log 3 + log 3 + log 4 + ... + log (n - I) . 
2 2 3 4 n-I 

[For the area of the first rectangle is (log 2)/2, that of the second, less than 
(Jog 3)/2, while the areas of the third, fourth, ... rectangles are (log 3)/3, 
(log 4)/4, .... J Since (log 1)/1 = 0, we have 

Jog 1 + log 2 + log 3 + log (n - 1) + log 3 > ClogS n, 
1 2 3 n-I 2 

that is, 

15,. = log 1 + log 2 + ... + Jog (n - I) _ ClogS n > _ log 3 . 
1 2 n-I 2 

On the other hand, the area of the curvilinear triangle ABC is greater 
than the area of the curvilinear trapezoid M DEN; it is therefore still 
greater than the area of the shaded figure in fig. 115. The area of this 
figure is 

log 2 + log 4 + log 5 + ... + log (n - 1) . 
2 4 5 n-I 

Thus 

log 2 + log 3 + log 4 + ... + log (n - 1) _ log 3 < ClogS n, 
2 3 4 n-I 3 

where C = (In 10)/2, that is, 

15,. = log 1 + log 2 + log 3 + ... + log (n - 1) _ C log2 n < log 3 . 
1 2 3 n-I 3 

y 

x 

Fig. 115 
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Since (- log 3)/2 = -0.238 ... and (log 3)/3 = 0.IS9 ... , we find 
that 

-0.239 < ~n < 0.16 
and so certainly 

1 1 
-4 < d" < 4' 

b. The difference 

En = log 2 + log 4 + log S + ... + log (n - 1) _ (C log2 n _ C log2 2), 
2 4 S n-l 

where C = (1n 10)/2 and n ~ 3 is equal to the area of that part of the 
curvilinear trapezoid MBCN which is not shaded in fig. liS. Hence this 
difference increases with n. By the result of part a, 

En = ~n - log 3 + C log2 2 < ! _ log 3 + C log2 2 
3 4 3 

for any value of n. Hence as n -+ 00, En tends to a limit E. Therefore the 
sequence {~n}' where ~" = En + (log 3)/3 - C log2 2 also tends to a 
limit ~ = E + (log 3)/3 - C log2 2. 

169. The solution to this problem is analogous to that of 167a. Let ABCD 
be the curvilinear trapezoid bounded by the curve y = I/x', the x axis, 
and the lines x = 1 and x = n. Consider the polygon consisting of n - 1 
rectangles, with base 1 inscribed in the trapezoid, and the polygon 
consisting of n - 1 rectangles of base I circumscribed about it (see figs. 
122a and b). The areas of these polygons are 

1 + ! + ! + ... + 1 and! + ! + ... + 1 + .!.. 
2' 3' (n - 1)8 28 38 (n - 1)" n8

' 

and the area of the curvilinear trapezoid ABCD is (I - I/nB-l)/(s - I). 
(See the solution to ISOa.) Therefore, 

-.!. + .!.. + ... + 1 + ! < 1 - (1/n8-1) 
28 3' (n - 1)' n8 s - 1 

<1+J.+1+ ... + 1 
28 38 (n - 1)' 

or 

1 - (l/n8-1) 1 1 1 1 1 - (l/n8-1) 1 1 -----'--'------'-< +-+-+ ... + < + --, 
s - 1 28 38 (n - 1)' s - 1 n" 

or, finally, 

1 11 Ills s 1 ---- < 1 +-+-+ ... +--<----. 
s-l s-l n8

-
1 28 38 (n-l)" s-l s-l n5- 1 
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Since IIn8 --+ 0 as n --+ 00, the assertion of the problem follows from 
I I I 

this inequality. That the sum I + - + - + ... + - does tend to a 
28 38 nB 

definite limit as n --+ 00 follows from the fact that it increases with 
increasing n, yet remains bounded above by sl(s - I). 

XIII. THE THEORY OF PRIMES 

170. Consider the expression 

-' (2n)! 
(n!)2 . 

We shall estimate its value by two different methods. 
First, by the binomial theorem, 

I + Cln) + C;) + ... + (~n) + ... + (2n2~ I) + I = (l + 1)2n 

= 22n, 

and therefore 

Next, 

(
2n) = 2n(2n - 1)(2n -2) ... (n + 1) = 2n. 2n - 1 . 2n -2 ... n + 1 
n 1·2·3 ... n n n-l n-2 I 

~ 2·2·2···2 =2n .... ., 

n times 

so that 

(I) 

Second, let us consider the prime factorization of (~). The prime 

p appears in the factorization of the number k! to the power 

[;] + [~] -I- [;a] + ... , 

where brackets indicate integral parts. To see this. observe that among 
the k factors of k! = I ·2·3·· . k, there are [kip] divisible by p; of these, 
[k/p2] are divisible by p2 (and therefore have to be counted twice); [klr] 
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are divisible by p3 (and therefore have to be counted three times), and so 
on. Thus only the primes PI, P2' ... 'Pr' where Pr ~ 2n < Pr+h appear in 

the prime decomposition of (~) = (2n)!/(n!)2, and each Pi appears to 
the power 

[~~J + G;J + ... + [:i~jJ -2{[~J + [~2J + ... + [p~aJ} 

= ([~~J - 2[~J) + ([;; ] - 2[~2J) 
+ ... + ([~~,J - 2[p~ajJ), 

where qi is the largest integer such that Pia, ~ 2n. But by the definition 
of the integral part of a number, 

if !! - [~J <! 2 2 2' 
if ~ - [~ ~ ~, 

that is, [a] - 2[a/2] = 0 or 1, whatever the value of a. It follows that the 
sum 

q, terms 

does not exceed f + 1 + ... + 1 + I = qt. Hence Pi appears in the 

prime decomposition of (~) to a power ~ qi' and so 

(~) ~ PIa1p2as ... p/' ~ (2n)(2n) •.• (2n) = (2n)'. 

Here r = 17(2n), the number of primes not exceeding 2n. We may 
therefore write the last inequality in the form 

e:) ~ (2n)""(2n). 

On the other hand, 

(
2n) = 2n(2n - 1) . , , (n + l) 

n 1'2'3"'n 

is divisible by the product of all the primes P.+I' P.+2' ... ,P. greater than 
n but ~2n, (We denote the primes ~n by PI,b, , , "P •. ) So 

c:) ~ P.+lPs+2·'· Pro 
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On replacing each of these primes by the smaller number n, we find that 

(~) >n·n···n=nr
-., 

where r = 1T{2n) and s = 1T(n). Thus we obtain the result 

n .. (2nl- .. (nl < enn) ~ (2n)",(2nl. 

Comparing the inequalities (I) and (2), we see that 

2n ~ (2n )v(2n). 

Taking logarithms, we find that 

1T(2n) log (2n) ~ n log 2, 

or 

1T{2n) ~ log 2 ~ = 0.1501 ... ~ . 
2 log (2n) log (2n) 

(2) 

Thus for N even (N = 2n) we have already obtained one of the 
required inequalities. We can deduce a similar inequality for odd N> I 
by noting that 2n/(2n + I) ~ i. It follows from this inequality that 

1T(2n + 1) log (2n + 1) > 1T{2n) log (2n) ~ log 2 (2n)" 
2 

~ ~ . log 2 (2n + 1) 
3 2 ' 

so that 

7T(2n + 1) > log 2 2n + 1 = 0.10034 . . . 2n + 1 
3 log (2n + 1) log (2n + 1) 

Thus for all N > I, 
N 

7T(N) > 0.1--. 
10gN 

The proof of the second of the required inequalities is somewhat more 
complicated. First of all, on comparing (I) and (2), we find that 

Taking logarithm!., we obtain [1T{2n) - 1T(n)] log n < 2n log 2, so that 

n n 
1T(2n) - 1T(n) < 2 log 2 - = 0.60206 ... -- . 

log n log n 

Suppose x is an arbitrary number> I (not necessarily an integer). As 
before, we denote by 1T(X) the number of primes ~ x. Let n = [xj2]; then 
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clearly [x] = 2n or 2n + I, and 

1T(X) - 1T(~) ~ 1T(2n) - 7T(n) + 1 

< 2 log 2_n_ + 1 < (2 log 2 + l)_n_ 
log n log n 

= 1.60206 ... _n_ 
log n 

(since n/(log n) > 1). It is not hard to show that for n ~ 3 and n < x, 
n/(Iog n) < x/(Iog x). (See, for example, the solution to problem 168a.) 
It follows that for [x/2] ~ 3, 

7T(x) - 1T(~) < (2 log 2 + 1) ~ . 
2 log x 

The last inequality also holds for [x/2] < 3, that is, for x < 6. For if 
x < 10, then log x < I, and therefore 1T(X) - 1T(x/2) ~ 1T(X) < X < 
x/(Iog x) < (2 log 2 + I)x/(log x). Thu.s for arbitrary x> 1 (integral or 
not) we have 

1T(X) - 1T(~) < (2 log 2 + 1) ~. 
2 log x 

From this we obtain the inequality 

1T(x) log x - 1T(~) log ~ 

= [ 1T(x) - 1T(~) ] log x + 1T(~) (lOg x - 10g~) 

< (2 log 2 + 1) ~ log x + 1T(~) log 2 
log x 2 

< (2 log 2 + 1 + 10~ 2)x = 1.75257' .. x. 

[Here we have used the obvious fact that 1T(x/2) < x/2.] 
Suppose that N is an arbitrary positive integer. Then by what we 

have proved, 

1T(N) log N - 1T(~) log i < 1.75257' .. N, 

1T(i) log (i) - 1T(~) 10g~ < 1.75257'" i, 
(N) N (N) N N 1T - log - - 1T - log - < 1.75257 ... -

4 4 8 8 4' 

( N ) N (N) N N 1T - log- - 1T - log- < 1.75257'" -. 
2k-1 2k- 1 2k 2k 2k- 1 
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Choose k so that 2k > N, and add all these inequalities. This gives 

7T(N) log N - 7T(!'i) log!'i < 1.75257' .. (N + !'i + !'i + ... + ~) 
2k 2k 2 4 2k- 1 

= 1.75257' .. N - NI2k < 3.50514' .. N < 4N. 
1 - 1/2 

By the choice of k, NI2k < I and therefore 7T(NI2k) = O. Thus we find 
that 

as required. 

N 
7T(N) <4--, 

10gN 

171. We start from the decomposition of N! = I . 2 . 3 ... N into its 
prime factors: 

N! = Pl"'lp2"' • .•• p,"T. 

Here PI.P2 •... ,p, are all the primes not exceeding N, and lXi(i = 1,2, ... ,r) 
is equal to 

[~J + [:2J + [:3J + ... + [p~J 
The square brackets denote integral parts, and q. is the largest integer such 
that p/' ~ N (compare the solution to problem 170). On taking loga­
rithms, we find that 

log N! = IXI log PI + 1X210gp2 + ... + 1X,10gp,. 

We now estimate log N! in two different ways. The right-hand side 
of the last equation is of the form 

([~J + [:2J + ... + [;J) log PI 

+ ([~J + [~2J + .,. + [~tJ) log P2 

+ ... + ([;J + [:2J + ... + [~TJ) log Pro 

Let us throwaway all the square brackets in this expression, that is, let us 
replace [N/pl1 by Nlp/. In the process we introduce an error at most I 
into each term. Thus the total error introduced is at most 

qi log PI + q210g P2 + ... + qr log Pr 

= log PIq1 + log P2qa + ... + log Prqr 

~ !og N + log N + ... + Jog Ii = r log N. 
r times 
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By the result of the previous problem, r is less than B(N/log N), where B 
is a constant (in fact, we could take B = 4). Thus 

So we have 

N 
rlogN <B--logN =BN. 

log N 

( N +!i + ... + ~) log PI + (!:!. + !!.... + ... + ~) log PI 
PI PI2 PI'll Pi P2i PI'll 

+ ... + (!:!. +!:!... + ... + ~) log Pr ~ log N! 
Pr Pr

i p/r 

> (!!. + !!.... + ... + ~) log PI + (!:!. + N + ... + ~) log Pi 
PI PI2 PI'll Pi P21 Pi'll 

and 

+ ... + (!:!. + N + ... + ~) log Pr - BN. 
Pr Pr2 p/I.r 

We now use the inequalities 

N N N N -+-+ ... +-~-
Pi Pi

2 p/' Pi 

N N N (NIp;) - (Nlp~+1) NIp; -+-+ ... +-= < ---
Pi Pi2 p;'li 1 - (llpi) 1 - (llpi) Pi - 1 

N 

Thus we find that 

N N N 
--log PI + --logp2 + ... + --log Pr > 10gN! 
Pi - 1 P2 - 1 Pr - 1 

N N N > - log PI + - log P2 + ... -t- -log Pr - BN. (1) 
PI P2 Pr 

From this one can deduce the inequalities 

N{log PI + log PI + ... + log Pr + K} > log N! 
PI Pi Pr 

> N{log PI + log Pi + ... + log Pr _ B}' (2) 
PI Pi Pr 

where K is a positive constant. For 

log Pi _ log Pi = log Pi 

Pi - 1 Pi Pi(Pi - 1) 
(; = 1,2, ... , r), 

so that the left-hand side of (I) differs from 

N(logpl + iOgP2 + ... + 10gPr) 
PI Pi Pr 
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by the quantity 

N{ log Pi + log P2 + ... + log Pr }. 
Pi(Pi - 1) PiP2 - 1) Pr(Pr - 1) 

We show that for all r the sum inside the braces is bounded. Note 
that for each integer a ~ 2 

log a < _1_ a-I 
, that is, log a < r;;a • 

a(a - 1) aJa " .. 
For if a ~ 2, then 

while 
2 log a < J;, since !O2 log a = a2 < !Ova 

To see why this last inequality holds, note that if a2 lies between 10k and 
lOk+1, then the number of digits in !OVa is the integral part of J;. plus 
1. This is clearly greater than k + l. It follows from this inequality 
that 

log PI + log P2 + ... + log Pr 
PI(PI - 1) P,.(P2 - 1) PiPr - 1) 

111 <--+--+ ... +--= 
PIJPl P2JP2 prJPr 

<1 +~+~+_1_+ ... ~. 
2J2 3J3 4J4 NJN 

But this last sum remains bounded for all N: 

1 1 1 1 3/2 
1 + 2J2 + 3J3 + 4J4 + ... + N IN < 3/2 _ 1 = 3 

(see problem 169). Thus in the inequality (2), K can be taken equal to 3. 
In order to obtain another estimate for log N! we use the fact that 

for any N 

elJN(~r > N! > e~(~). 
where el = e, e2 = Jf e (see problem 165). On taking logarithms we 
find that 

1 
N{log N -log e} + - log N + log e1 > log N! 

2 
1 > N{log N -log e} + -log N + log e l • 
2 
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We use the facts that !Clog N)/N ~ l(log 3)/3 < 0.08 for N ~ 3 (see the 
solution to 168a) and that (log CI)/N::;::; (Jog e)/3 < 0.15, to write this 
inequality in the form 

N{log N - log e + 0.23} > log N! > N{log N - log e}. 

On comparing this with the inequality (2) on p. 184, we find that 

log PI + log pz + ... + log P. + K < log N _ log e, 
PI P2 Pr 

log PI + log pz + ... + log Pr _ B < log N _ log e + 0.23, 
PI P2 Pr 

whence we obtain the required result: 

log N + R > log PI + log P2 + ... + log Pr > log N - R, 
PI P2 Pr 

where we can take for R the larger of the numbers B - log e + 0.23 and 
K + log e. Since the constants Band K can be given the values 4 and 3, 
respectively, and since log e >;:::; 0.4343, we can take R = 4. 

172a. From the definition of BI , B2, .. . , Bn we have bi = BI> b2 = B2 - B1> 
ba = Ba - B2, ••• , bn = Bn - Bn- l • Thus 

albl + azb2 + a3b3 + ... + anbn 

= albl + a2(B2 - BI ) + a~B3 - B2) + ... + an(Bn - Bn- 1), 

or, regrouping terms, 

a1bl + azb2 + ... + anbn 

= (a l - a 2)B1 + (a 2 - aa)B2 + ... + (an- 1 - an)Bn_l + anBn' 

as required. 
b. (I) If we substitute 

a 1 = I, a2 = 2, a3 = 3, ... ,an = n; 

b1 = I, b2 = q ba = q2, . .. , b n = qn-1 

in the formula of part a, we find that 

( 
q - I) B1 = 1 =-- , 
q - 1 

2 qa - 1 
B3 = 1 + q + q = -- , ... , 

q - 1 
n-l _ 1 

B n- 1 = 1 + q + q2 + ... + qn-2 = q , 
q - 1 

n _ 1 
Bn = 1 + q + q2 + ... + qn-l = -q--l- , 

q-
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and 

Thus we find that 

1 + 2q + 3q2 + ... -I- nqn-I 

(
q _ 1 q2 _ 1 q"-l _ 1) qn - 1 

= - --+--+"'-1- +n--
q-l q-I q-t q-l 

-I (qn - t ) q" - 1 nqn qn - 1 
= q _ 1 -;-=-J - n + n ~ = q _ 1 - (q _ 1)2 . 

(2) If we substitute 

a1 = I, a2 = 4, a3 = 9, ... tan = n2 ; 

b i = I, b2 = q, b3 = q2, ... , bn = qn-l 

in the formula of part a, then HI> B2, ••• ,Bn have the same values as 
before, and 

a1 - a2 = -3, a2 - a3 = -5, a3 - a, = -7, ... , 

an- 1 - an = (n - 1)2 - n2 = -(2n - I). 

Thus we find that 

I + 4q + 9q2 + ... + n2qn-t 

= _ (3 q - 1 + 5 q2 - 1 + 7 q3 - 1 
q-I q-I q-t 

+ ... +(2n _I)qn-t- I ) + n2qn -I 
q-l q-l 

(
q _ 1 q2 _ 1 q3 _ 1 qn-l - 1) 

= --+--+--+".+.:..-_-
q-l q-I q-I q-l 

_ 2(2 q - 1 + 3 q2 - t + ... + n qn-l - 1) + n2 qn - 1 
q-I q-I q-I q-l 

= _1_ (l + q + q2 + ... + q,,-1 - n) 
q - 1 

__ 2_(1 + 2q + 3q2 + ... + nqn-l _ n(n + 0) + n2 qn - 1 
q-l 2 q-l 

1 (qn - 1 ) 
=q-l q_I- n 

__ 2_[ nqn _ qn - 1 _ n(n + I)J + n2 . qn - 1 
q - 1 q - 1 (q - 1)2 2 q - 1 

= n2qn _ (2n - I)qn + 1 2qn - 2 
q - 1 {q - 1)2 + (q - 1)3 . 
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Here we have used the fact that by part 1, 
nqn qn - 1 

1 + 2q + 3q2 + ---+ nq1l-l = -- - _ 
q - 1 (q - 1)2 

173a. In order to evaluate 

111 1 -+-+-+---+-, 
PI P2 Ps Pn 

where PI' P2, - - - 'Pn are all the prime numbers not exceeding some given 
integer N, we substitute 

1 1 a l =--, 
log PI 

a2=--, 
log P2 

b - log Pl b _ log P2 
1 - ,2 - , 

PI P2 

in the formula of problem 172a_ 
Put 

1 1 
as = --,_ -_,a .. =--, 

logps log P .. 

b = log Ps b = log P .. 
3 , ••• , r 

P2 P .. 

log PI _ B 
- I 

PI 

log P2 + log PI = B. 
P2 PI 

log P .. + ___ + log P2 + log PI = B .. _ 

P.. P2 PI 
We find that 

111 1 -+-+-+---+­
Pl P2 Ps P .. 

= Co; PI - 10: p) Bl + Co; P2 - 10; p) B2 

+ (_1 __ _ 1_)B + ___ + (_1 _ __ I_)B + _1_B 
log Ps log P4 S log Pr-l log P.. r-l log P.. r 

= Co; PI - 10: pJ BI + (10; P2 - 10; p) B2 

+ (_1 __ _ 1_)B + __ . + (_1 __ _ 1_)B 
log Ps log P4 S log Pr-l log P.. r-l 

+ (_I ___ 1_)B .. +_1_B ... 
log Pr log N log N 
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Let us now estimate this last expression. We first use the fact that by 
Mertens' first formula (problem 171), 

Bl < logpl + R, 

B. < 10gPa + R, 

Br-l < 10gPr_l + R 

Br < 10gPr + Rand Br < log N + R. 

Here R is a constant (which can be taken equal to 4). From this it follows 
that 

111 1 (1 1) - + - + - + ... + - < -- - -- (log PI + R) 
PI P2 Ps Pr log PI log P2 

+ (_1 ___ I_)(logP2 +R) 
Jog PI log Ps 

+ (_1 ___ 1_)(lOg Ps + R) 
log Pa log P4 

+ ... + (_1 ___ 1_). (IOgPr-I + R) 
Jog Pr-l log Pr 

+ (_1 ___ 1_)(log Pr + R) + _1_ (log N + R) 
log Pr log N log N 

= 1 + [- _1_ log PI + (_1 ___ 1 -) log P2 
log P2 log P2 log Ps 

+ (_1 ___ 1_) log Ps + ... + (_1 ___ 1_) log Pr-l 
log Ps log P4 Jog Pr-l log Pr 

+ (_1 ___ 1_) log Pr + _I-log NJ + R_l_, 
log Pr log N log N log PI 

since the terms having R as a factor cancel out in pairs (except for 
R/logpl)' 

It remains only to estimate the sum inside the brackets. This may 
easily be done geometrically. Write the sum in the form 

1 1 
(log P. - log PI) -- + (log Ps - log P.) --

log P2 log Ps 

1 + (log P4 - log Ps) -- + ... 
log P4 

1 1 + (log Pr - log Pr-I) -- + (log N - log Pr) --. 
log Pr log N 
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Now look at fig. 116a, in which the hyperbola y = llx is shown. 
It is clear that the expression in which we are interested is the area of the 
shaded part of the figure and is therefore less than the area bounded by the 
hyperbola, the x axis, and the lines x = logpl and x = log N. But this 
area is In (log N) - In {log PI) (see problem 154). 

Thus we obtain, finally, the inequality 
1 1 1 1 1 - + - + - + ... + - < In log N - In log Pl + R -- + 1. (1) 
PI P2 Ps Pr log Pl 

Fig. 116 

We have now found an upper bound for our sum. To obtain a lower 
bound, we start by transforming Mertens' first formula somewhat. It 
follows from the formula that 

log Pl log P2 log Pi 
B; =-- + -- + ... +--

PI P2 Pi 
log PI log P2 log Pi log Pm >--+--+"'+--+---a 
~ ~ A ~~ 

> log Pi~ - R - a (i = 1,2, ... , r), 
where a is a constant chosen greater than (log Pi+1)/Pi+1 (i = I, 2, ... , r). 
(We could, for example, take a = (log 3)/3 or a = 0.16 > (log 3)/3; see 
the solution to problem 171.) We also use the fact that 

log PI log P2 log Ps log Pr I N R --+--+--+ ... +--> og - -0. 

~ ~ h ~ 
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(According to Mertens' first formula the summand -a is actually un­
necessary, but we shall find it convenient to include it.) We obtain 

111 1 (1 1) - + - + - + ... + - > -- - -- (log PI - R - a) 
PI Pa Pa Pn log PI log Pa 

+ (_1 ___ l_)(lOg Pa - R - a) 
log P2 log Pa 

+ (_1 ___ 1_)OOg R4 - R - a) 
log Pa log P4 

+ . " + (_1 ___ 1_)(lOg P,. - R - a) 
log Pr-I log Pr 

+ (_1 ___ l_)(IOg N - R - a) 
log P" log N 

1 + -- (log N - R - a) 
log N 

= [(lOg PI - log PI) _1_ + (log Pa - log P2) _1_ 
log PI log P2 

1 1 + (log P4 - log Pa) -- + ... + (log Pr - log PH) ---
log Pa log Pr-I 

+ (log N -log p,,)_I_J + 1 - (R + a) _1_. 
log p.J log PI 

In the last expression we have omitted the term -(l/log N) log N from the 
quantity inside the brackets and included the extra term -(I/logpI) logpl' 
It is easy to see that the sum inside the brackets is greater than the area 
bounded by the hyperbola y = l/x, the x axis, and the lines x = log N 
and x = logpl' (See fig. 116b, in which the shaded area is equal to this 
sum.) Thus 

1 1 1 1 1 - + - + - + ... + - > In log N - In log Pl - (R + a) -- + 1. 
PI P2 Pa P" log PI 

(2) 

To avoid using logarithms to two different bases in the same formula, 
let us change to natural logarithms throughout. To transform common 
logarithms to natural logarithms, we use the formula 

10gN = Min N, 

where M = log e = 0.434 .... (See footnote on page ]59.) 
Thus our estimates (I) and (2) for the sum 

8=1..+1..+1..+,,·+1 
PI PI Pa Pr 
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assume the form 
R 

In In N + In M - In log 2 + -- + 1 
log 2 

1 1 1 1 >-+-+-+ ... +-
PI P2 Pa P, 

R+a > In In N + In M - In log 2 - -- + 1 
log 2 

(recalling that PI is the first prime, so that PI = 2). It follows from this 
double inequality that there is a constant T such that S lies between 
In In N + T and In In N - T. For T we may take the larger of the 
numbers R/(log 2) + I + In M - In log 2 and (R + a)/(tog 2) - 1 -
In M + In log 2; since the constants R/(log 2), (R + a)/(Iog 2), In M and 
In log 2 may be assigned the values 4/0.301 ... < 13!, 4.16/0.301" . < 14, 
In 0.434 ... = -0.833 ... and In 0.301 ... = -1.20 ... ,respectively, we 
can take T = 15. 

b. Let us use natural logarithms from the beginning. We write 

H _tn PI 
1- , H = In PI + In P2 

2 , ••• , 

PI PI P2 

H, = In PI + In P2 + ... + In Pr , 
PI P2 Pr 

and introduce the differences 

0(1 = Hl -Inph 0(2 = H2 - Inp2,"" 0(, = H, -Inpr. 

Let us also write 
0(<'\) = H, -In N, 

where Pr is the largest prime ~ N. 
It follows from Mertens' first formula (problem 171) that all these 

differences are bounded. In absolute value they are all less than 
4/0.434 ... < 10.20 Using the result of problem 172 in the same way as 
in the solution to part a, we find that 

eLY} = .!.. + .!.. + ... + .l _ In In N = e~"\} + e~'V), 
PI P2 Pn 

•• Since 

In PI , Inp. Inpk I 1 (iogp1 logp. 10gPk ) 
- T - + ... + - - npk = - -- + -- + ... + -- - logpk • 
PI p. Pk M PI p. Pk 

where M = 0.434 ... (see the footnote on p. 159), and 

IlogPI logp2 10gPk I -- + -- + .. + -- - logpk < 4. 
PI PI Pk 
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where 

(N) (1 1) (1 1 ) 
ei = IXI In PI - In P2 + ~ In P2 - In Ps 

+ ... + or. (_1 ___ 1_) + or. (_1 ___ 1_) + IX(N)_I_ 

r-1 In Pr-l In P,. ,. Inp,. In N In N' 
and 

IN) ( 1 1 ) (1 1 ) e2 = In PI -- - -- + In P2 -- - --
In PI In P2 In P2 In Ps 

+ ... + In P"_I(_I- __ ]_) + In p,.(_I ___ 1_) 
In Pr-l In p,. In p,. In N 

1 + In N - - In In N 
InN 

1 1 
= 1 + (In P2 - In PI) - + (In Ps - In P2)-

In P2 In Ps 
1 1 + ... + (In p,. - In Pr-l) - + (In N - In Pr) - - In In N. 

In p,. In N 

In the solution to part a we showed that le(N)1 < 15 for any value of 
N. Here we must show that as N -+ 00 the sequence {e(N)} = {eiN) + e~N)} 
tends to a limit. To do this it is sufficient to show that each of the 
sequences {e\N}} and {efl}} tends to a limit as N -+ 00. 

As far as the sequence {e~\')} is concerned, the proof is very simple. 
We need only use the fact that 

-eiN) - In In 2 + 1 = In In N - [(In P2 - In PI) _l_ 
In 2 In P2 

1 + (In Ps - In P2) -- + ... + (In p,. - In Pr-l) 
In Ps 

X _1_ + (In N - In p,.) _1_J 
In p,. In N 

is equal to the sum of the areas of the curvilinear triangles not shaded in 
fig. Il6a. We see from this that -ell} - In In 2 + I increases mono­
tonically as N increases; and since the terms of the sequence remain 
bounded above, it must have a limit as N -+ 00. And since _e!,N)_ 

In In 2 + I tends to a limit, so does ell). -
We show now that the sequence eiN} also tends to some limit as 

N -+ 00. Let us write 

ocI Cn
l
PI -ln1p) + IX2Cnlp2 -In

1
p) + ... 

+ OCk-1 (_1 ___ 1_) = d
k

• 

In Pk-l In Pk 
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Then it is clear that if N > Pk, 

( I 1) +(X ----- + ... 
k+l In Pk+l In Pk+2 

+ (X'-len :'-1 - InIp) + (X,CnIp, - InIN) + (X(S) IniN' 

But all the terms (Xl' (X2, ... , (Xr; (X(S) lie between -10 and + 10. On 
substituting -10 and + 10 for the (Xi in the appropriate parts of the last 
formula, we find that 

d 10 1.\) d + 10 
k - -- < £1 < k --. 

In Pk In Pk 

Thus all the numbers ci.S) for which N > Pk are included within a segment 
of the real line of length 20/(ln h). On choosing 1 > k we can find a ----.....--:::::------..... I I I I I I J II I 
~ 

Fig. 117 

segment of still smaller length within which all the c~·V) with N > PI are 
confined; then we choose a segment of length 20/(ln Pm), m > I, which 
is smaller still, and within which all the £1.\") with N > Pm lie, and so on. 
We obtain a system of nested intervals of length tending to zero (fig. 117). 
The left-hand endpoints of these intervals form an increasing sequence 
of numbers, which remains bounded; the right-hand endpoints form a 
decreasing sequence which is bounded below. Thus these sequences tend 
to limits fl and 81' Now there exist intervals of arbitrarily small length 
in our system, and the limit points must both lie inside all of them. It 
follows that the two limit points must coincide: fl = 81 = Cl' It is easy 
to see that Cl is also the limit of the sequence {£~.\")}. 

174. We need to evaluate the product 

nl.V
) = (1 - *) (1 - ~) (I - *) ... (1 - *), 

where Pl,P2, ... ,p, are all the prime numbers not exceeding the integer 
N. Taking natural logarithms, we find 

Inn(N) =In (1 -.!..) + In (1 -.!..) + .,. + In (1-1.). 
PI P2 P, 
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y 

~--========:.-.x 

Fig. 118 

The natural logarithm In (I - (lip;» is equal to the area of the curvi­
linear trapezoid APM;Qi taken with a negative sign (fig. 118). It is 
bounded by the x axis, the hyperbola y = I Ix, and the lines x = I - (1Ipi) 
and x = I (see the definition of the function F on p. 30 and problem 
154). But the area of the curvilinear trapezoid APMiQ; lies between the 
areas of the rectangles A PM/ Qi and AP/ MiQi' Now 

S(APM/Qi) = AP . QiA = 1 . ! = ! , 
Pi P; 

and 
1 1 1 

S(AP.MQ.) = Q.M·QA = . - = --
• •• ••• 1 - (lIp;) Pi Pi - 1 ' 

so that 

! < -In (1 _.!.) < _1_ . 
Pi Pi Pi - 1 

Let us write 

where 
1 1 1 o < (1i < -- - - = ---=---

Pi - 1 Pi Pi(Pi - I) 

The formula for In n<X) now assumes the form 

In n('V) = -(1. + 1. + ... +.!.) - ({1I + (12 + ... + (1r), 
PI P2 Pr 

or, if we write Ilpl + IIp2 + ... + IIPr - In In N = e(N) (see 173b), 

In n(X) = -In In N - e( IV) - ({1I + {12 + ... + (1r)' 
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As N -+ 00, the number E(N) tends to a limit E (see Mertens' second 
formula, problem 173). We show that the sum PI + P2 + ... + Pr also 
tends to a limit as N -+ 00. Since every Pi is positive, the sums increase 
with r. Therefore, to show that the sums tend to a limit, it is sufficient to 
show that they are bounded above. But 

so that 
1 1 1 

PI + P2 + ... + Pr < (PI _ I? + (P2 - 1)2 + ... + (Pr _ 1)2 

<1. + 1. + ... + 1.. < 2. 
12 22 Nt 

(See problem 169.) SO P1 + P2 + ... + Pr does tend to a limit as N -+ 00. 

Thus as N -+ 00, the sum 

In n(N) + In In N = _EIN) - (PI + P2 + ... + Pr) 
tends to a limit a: 

In nLV) + In In N -+ a. 

On eliminating the logarithms, we find that 

nLV) In N -+ ea, 

from which the required result follows on writing c for ea
: 

nIN),......, clln N. 
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101. Yes. 

102. A network can be constructed which contains seven lines and satisfies 
the conditions of the problem. 

103a. Select a line a, and suppose it contains n + I stops. Show that (1) 
there are exactly n + 1 lines through every stop not lying on a; (2) every 
line contains exactly n + 1 stops; (3) there are exactly n + 1 lines 
through each stop on the line a. 

b. Use the result of part a. 

l04b. Show first that every point of intersection of two of the seven lines 
must be one of the seven points (and that every line joining two of the 
seven points must be one of the given lines). 

105. The proof is by contradiction: suppose that the conclusion is false 
and that outside one of the n lines (say MN) there exist other points of 
intersection of the lines. Show that, given anyone such point of inter­
section, it is always possible to find another, lying closer to MN. This 
will imply that there are an infinity of points of intersection, and this 
clearly cannot happen. 

106. If the points are not all collinear, consider a triangle T with minimal 
altitude formed by them. By hypothesis there are at least three points of 
S on the line containing the base of T. Using this fact, derive a contra­
diction by showing that there is a triangle with an altitude smaller than 
that of T. 

107. Use mathematical induction, making use of the result of problem 106. 

lOS. There are six possible configurations consisting of four points which 
satisfy the conditions of the problem. These are 

(I) The vertices of a rhombus, one of whose diagonals has the same 
length as a side. 

(2) and (3) The vertices of a deltoid (a quadrilateral having two 
pairs of adjacent equal sides), the two diagonals of which are 
equal in length to one of the pairs of sides. The deltoid may be 
convex or concave. 

199 
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(4) The vertices of a square. 
(5) The three vertices and the center of an equilateral triangle. 
(6) The vertices of an isosceles trapezoid whose sides are equal in 

length to the shorter base and whose diagonals are equal to the 
longer. 

The possible values of the ratio bJa are 

..,[3, .j 2 + ..,[3,.J2 and t(l + .Js). 
(Here b is the greater of the two distances.) 

b. The possible values of n are 

n = 3: the vertices of an isosceles triangle; 
n = 4: the six configurations of part a; 
n = 5: the vertices of a regular pentagon. 

1098. One can give many examples of configurations of N points satisfying 
the conditions of the problem. In finding some of these, it is convenient 
to use the fact that if u and v are positive integers, then 

x = 2uv, y = [u2 - v2 1, Z = u2 + v2 

are the sides of a right triangle. 
b. Show that if 0, P, Q are three noncollinear points of the plane, 

then there are at most two possible positions for a point A such that the 
differences AP - AO and AQ - AO have preassigned values. It follows 
that there exist only a finite number of points whose distances from 0, 
P, and Q are all integral. 

110. The lattice squares decompose M into pieces. Translate these pieces 
so that they all lie in one lattice square and use the fact that their total area 
is >1. 

l11a. Starting with the given parallelogram, construct an infinite network 
of congruent parallelograms, including the given one, and covering the 
whole plane without overlapping. Then show that the parallelograms of 
this network can be divided into pieces which can be rearranged to form 
the squares of the original network. 

b. Show that if a polygon with vertices at lattice points is divided 
into two smaller polygons, whose vertices are also lattice points and for 
which the formula holds, then it holds for the large polygon as well. Then 
divide the given polygon into triangles which contain no lattice points 
except their vertices. By the result of part a, the formula holds for each 
of them. 

112. Shrink the set K to half its linear dimensions by applying the trans­
formation (x,y) -+ (x/2,y/2). Apply problem 110 to the set K' thus 
obtained. 
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113. Suppose the radius p of the trees is greater than to. Draw through 
the center of the orchard an arbitrary straight line cutting the boundary 
in M and N, and construct a rectangle of width 2p having MN as the 
longer midline. By Minkowski's theorem (see problem 112) it follows 
that within this rectangle there are at least two points at which trees are 
planted. and these trees will block the view from the center in each of 
the directions OM and ON. 

Ifthe radius of all the trees is less than VJ2501, then we can actually 
construct a ray through 0 not blocked by a tree. 

114. Use mathematical induction. 

115. Start coloring the lines in accordance with the conditions of the 
problem. In part a, no trouble can ever arise. In part b, we may come to a 
line 1 whose four neighbors have already been colored, each with a different 
color. Show that in that case we can recolor some of the lines so as to 
release a color for I. 

116. It is not hard to show that there are an odd number of 12-segments 
on the 12-side of T: on the remaining sides of T there are no such 
segments. Next, count the number of 12-sides of the small triangles. 
The number of such sides which belong to 123-triangles has the same 
parity as the number of 12-sides on a side of T. Since the latter is odd, so 
also is the former (and therefore certainly not zero). 

b. The theorem is formulated as follows: 
Suppose a tetrahedron T, with vertices marked I, 2, 3, 4, is divided 

into a number of smaller tetrahedra in such a way that any two of the small 
tetrahedra do not touch at all, or touch at a common vertex, or along a 
common edge (but not part of an edge), or on a common face (but not 
part of a face). Suppose further that all the vertices of the small tetrahedra 
are numbered I, 2, 3, or 4, in such a way that every vertex on the ijk-face 
of T is numbered i, j, or k, and every vertex on the ij-edge of T is 
numbered i or j. Then at least one of the small tetrahedra is numbered 
1234. 

117. Use mathematical induction to prove the following somewhat 
stronger assertion: If an arbitrary polygon M is divided into triangles in 
such a way that no two triangles touch along part of a side of one of them, 
and if an even number of triangles converges at each vertex, then all the 
vertices may be numbered 1,2, or 3 in such a way that the vertices on the 
boundary of M are all numbered 1 or 2 and the small triangles are all 
numbered 1,2,3. 

118. First of all, if there are gaps between two neighboring polygons 
(filled up by other polygons), then attach the gaps to the polygons. This 
will give a new decomposition of the square in which the boundary between 
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neighboring polygons consists of a single line. Then consider the polygon 
Mo containing the center of the square (the polygon of rank one), the poly­
gons neighboring Mo (polygons of rank two), the polygons neighboring 
polygons of rank two (polygons of rank three), and so on. Show that if 
all the small polygons have no more than five neighbors, then there are no 
polygons of the fifth or higher ranks. This is impossible, since polygons 
of the first four ranks cannot touch the sides of the square. 

119. Show that if the curve has no chord parallel to A B and of length 
either a or b, then it has no chord parallel to AB oflength a + b. For the 
proof, use the fact that the hypothesis is equivalent to the statement that 
the curve has no point in common with the congruent curve obtained by a 
parallel displacement a distance a or b to the right. 

For the proof of the second half, suppose a lies between lin and 
l/(n + I) (where n is some integer). Construct a continuous curve having 
no chord parallel to AB and of length lying strictly between lin and 
I/(n + I). (For the construction of an example the reader should first 
try small values of n.) 

120a. Let AB be a side of the convex polygon M of unit area, and C a 
point of the polygon at maximal distance from AB. Show that M is 
contained in a parallelogram of area ~ 2, one of whose sides contains AB 
and two of whose sides are parallel to AC. 

b. Consider a parallelogram APQR circumscribed about the triangle 
ABC of area one, so that B lies on PQ and C on RQ: show that its area 
is ~ 2. 

121a. Inscribe in the given polygon a triangle A1A2Aa of maximum 
possible area, and consider separately the cases where the area of this 
triangle is >! and ~ !. 

b. Show first that it is impossible to circumscribe a triangle of area 
less than two about a square of area 1. Then show successively that the 
result continues to hold for a rectangle as well as the square, and a 
parallelogram as well as a rectangle. Use the fact that under orthogonal 
projection all areas are changed in the same ratio. 

122a. Suppose the line I does not intersect M. Let A be a vertex of M as 
near as possible to I, and B a vertex as far as possible from I. Let 11', 10 , 

and '2' be lines parallel to 1 dividing AB into four equal parts. Let 11' 

(nearest to A) intersect Min P and Q, and let ' 2' intersect Min Rand S. 
Show that the area of one of the triangles ARS and BPQ is at least i 
the area of M. 

b. Find a triangle inscribed in a regular hexagon, one of whose sides 
is parallel to the side A B of the hexagon, and of maximum area. 

123a. Use induction on the number n of progressions. In the proof, it 
is useful to know that the greatest common divisor d of two integers a 
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and b can be written in the form d = pa + qb, where p and q are integers 
(not necessarily positive). The second assertion is proved by producing 
three progressions, each pair of which has a term in common, but such 
that all three do not have a term in common. 

b. Show that if the common differences of two of the given progressions 
are incommensurable, then they have only one term in common (which 
therefore must belong to all the other progressions). If the common 
differences are all commensurable, then the problem can be reduced to 
one in which all the progressions consist of integers. The result of part a 
can then be applied. 

124a. Direct attempts to construct sequences of I's and 2's without 
repetitions will rapidly lead to a contradiction. 

b. We introduce the following notation. Let A be some sequence of 
I's and 2's. Then A is the sequence obtained from A by replacing each I 
by the pair 12 and each 2 by the pair 21. Consider now the following 
sequences of 1 's and 2's: 

II = 12, 
12 = 11 = 12 21, 
13 = 12 = 12 21 21 12, 
I, = 13 = 12 21 21 12 21 12 12 21, 
15 = I, = 12 21 21 12 21 12 12 21 21 12 12 21 12 21 21 12, 

Show that none of the sequences In contains a block of digits occurring 
three times in a row. 

125a. As in the solution to problem 124b, construct sequences J 0, J1 = 

Jo, •.. in which In is obtained from I n by substituting blocks of digits for 
the digits of J n as follows: 

Thus 

Jo = 01, 
J1 = 10 = 02 0121, 

0-.02 
I -.0121 
2 -. 0131 
3 -. 03. 

J2 = 11 = 02 0131 02 0121 0131 0121, 
Ja = 12 = 02 0131 02 0121 03 0121 02 0131 02 0121, 

0131 0121 02 0121 03 0121 02 0121 0131 0121, 
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Show that none of the sequences J .. contains a block of digits occurring 
twice in a row. 

b. We introduce the following notation. For any sequence A of 
digits 1,2,3 we denote by A the sequence obtained from A by substituting 
certain blocks of digits for the digits of A as follows: 

If in A a I stands in an odd-numbered position, replace it by 123, and 
if in an even position, by 321. Similarly, if 2 stands in an odd position, 
replace it by 231; otherwise replace it by 132. If 3 stands in an odd 
position, replace it by 312; if in an even position, by 213. Consider now 
the following sequences: 

Kl = 123, 
K2 = /(1 = 123 
Ka = /(2 = 123 

132 312, 
132 312 321 312 132 312 321 231, 

Prove that none of the sequences Kl> K 2, Ka, ••• contains a digit or block 
of digits occurring twice in a row. 

126. Define the number T = T" by the following construction. First 
write down n l's in a row. Since we are not allowed to have two identical 
sequences of n digits in T, the next digit must be a O. Now continue 
writing zeros as long as this is possible, that is, until a further zero would 
introduce two identical sequences of n digits. At this stage write a 1. 
Now continue writing zeros for as long as possible. Continue in this way, 
always writing zeros if possible and ones if not, until we are stuck (that is, 
until we reach a point where whatever we write we obtain two identical 
n-sequences). At this stage we have completed the construction of Tn. 

For clarity we give a number of examples. 

T2 = 11001. 

After the two initial I's we write two zeros, after which we cannot write 
any more zeros, and so write a I. At this stage T2 stops; we cannot write 
a zero (or we get two sequences 10), and we cannot write a 1 (or we get 
two sequences II). In exactly the same way we can construct the sequences 

Ta = lllOOOlOll, 

Tlo = 1111000010011010111, 
and so on. 

It is not difficult to check that every pair (triple, quadruple) occurs 
once in T2(Ta,T J. The proof of the corresponding property of Tn is by 
induction on the number of l's at the end of the n-sequence which we 
are considering. 
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127. It is convenient to prove the following more general theorem: if 
there are mn cookies, n each of m different flavors, and if they are put into 
m boxes so that each box contains n cookies, then it is possible to choose 
one cookie from each box so that the chosen cookies all have different 
flavors. For n = I and n = 2 this theorem is almost obvious. Prove it 
by induction on n. 

128. Assume that the theorem is true for < m boys. Now consider 
separately the following two cases: 

(1) Any k boys, where k < m, have at least k + 1 acquaintances. 
(2) There is a set of k boys (k < m) who have exactly k acquaintances. 

In each case use the induction hypothesis. 

129. Let A and B be two nonnegative integers. We write them to base 2 
in the form A = (anan - 1 ••• ao>' B = <bnbn- 1 ' •• bo). This means that 
A = an2n + an_12n- 1 + ... + ao, and B = bn2n + bn _ 12n - 1 + ... + bo, 

whert the digits a i and bi are either 0 or 1 (we can suppose that at least 
one of the "leading digits" an' bn , is equal to I, but they need not both 
be I) . We define the Nim sum A @ B to be the integer C = (cncn- 1 ' •• co), 
where Ci is 0 or I according as ai + bi is even or odd. For example, if 
A = 27, B = 13, then A = (HOll), B = (01101), so C = (lOllO) = 22. 
The Nim sum is obtained by adding A and B in the base 2, but without 
"carrying" . 

Show that if the squares of the board are numbered as described in 
the problem, then the number in the (A + I)st row and the (B + I)st 
column is A @ B. 

130. Suppose the three piles contain a, b, and C matches, respectively. 
Write these numbers to base 2 and consider the sum of the last digits, the 
sum of the next to last digits, etc. If at least one of these sums is odd, then 
the first player can win. If not, then he loses to correct play by his 
opponent. 

131. Let x be the number of matches in the first pile and y the number in 
the second pile. Suppose for definiteness that x ;;:;; y. Expand x and y in 
the F-system as explained on pp. 15-16. Then the first player loses if and 
only if x ends in an even number of zeros (possibly none), and y = x 0 
(meaning that the expansion of y is obtained from that of x by adding a 
zero at the end). For example, the first few losing positions are 

x 3 4 6 

y 2 5 7 10 
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or in the F-system, 

x 100 101 1001 

y 10 1000 1010 10010. 

132. Use De Moivre's formula 

(cos IX + i sin IX)" = cos nIX + i sin nIX. 

133. Use the formula of problem 132b. 
To solve the second part of the problem, use the fact that cos rp 

assumes its maximum and minimum values when rp is a multiple of 17, and 
the value 0 when rp = 17/2 + k17, where k is any integer (not necessarily 
positive). 

134. The polynomial x 2 
- t, whose deviation from zero is t. 

135. Consider the polynomial 

1 
R(x) = P ,,(x) - 2"-1 T,,(X), 

where P .. (x) is any polynomial of degree n with leading coefficient I whose 
deviation from zero on the segment [-1,+ I] does not exceed 0)"-1. R is a 
polynomial of degree ~ n - I. Find points where R mu~t be positive 
and points where it must be negative, and deduce that the curve y = R(x) 
cuts the x axis at least n times. This means that the polynomial R of degree 
less than n has at least n roots. It follows that R = 0, that is, P ,.(x) = 

(!)fl-1T,.(x). Examine separately the cases where the deviation from 
zero of P ,,(x) is less than (t),,-1 and equal to 0)"-1. 

136. The required polynomials are 2T,,(xI2), where n is arbitrary and T" 
are the Tchebychev polynomials (see problem 133); the deviation from 
zero of all of them on the interval [-2,+2] is 2. The result of problem 
135 is used in the solution. 

137. The polynomial 

n! {(X - l)(x - 2Xx - 3)"'(x - n) +(x - 0Xx - 2Xx - 3)···(x -n) 
2" n! l!(n-l)! 

+ (x - O)(x - l)(x - 3) ... (x - n) 

2! (n - 2)! 

(x - O)(x - l)(x - 2) ... (x - n=t)} + ... + I ' 
n. 

whose deviation from zero is n !/2". 
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For the proof, use the formula 

P(x) = ( -l)"p(0) (x - 1)(x - 2)(x - 3) ... (x - n) 
n! 

+ (-l)"-lp(l) (x - O)(x - 2)(x - 3)' .. (x - n) 
l! (n - I)! 

+ (_1)n-2p(2) (x - O)(x - lXx - 3)' .. (x - n) 
2! (n - 2)! 

(x - 0Xx - lXx - 2) ... (x - n - 1) + ... + P(n) I ' 
n. 

207 

where P is an arbitrary polynomial of degree n, and P(O), P(I), P(2), ... ,P(n) 
are the values it assumes at the points 0, 1,2,3, ... , n, respectively. 

138. If there is no point M on a line segment of length I such that 
MAl' MA2 ... MA" > 2(//4)", then Ai> A 2, ••• , An all lie on the 
segment, at distances (112) cos 1T12n, (1/2) cos 31T/2n, (1/2) cos 51T/2n, ..• , 
(112) cos (2n - 1)1TI2n from its center. 

For the solution, use the geometric representation of complex num­
bers: if the points AI> A 2, ••• , A" correspond to the complex numbers 
1Xl> ~, ••• ,IX" and M to the complex number z, then the product 
MAl' MA2 ... MA" is equal to the absolute value of the polynomial 
(z - 1X1)(Z - ocJ(z - 1Xa) ••• (z - IX,,) of degree n with leading coefficient 
1. Now use the result of 136. 

139. Use the geometric interpretation of the sine and the tangent as twice 
the area of certain triangles connected with the unit circle. 

140. (!)" sin IXlsin (1X/2"). Multiply the expression by sin (1X/2"). 

141a. (2m t 1 )xm _ (2m : I )xm-l + (2m : 1 )x"-2 _ ... = O. 

Use the formula of 132a, taking n = 2m + 1. 

b. x" - G)X"-l - (;)x"-2 + (;)xn-s + (:)xn
-4 - ••• = O. 

Use the formula for cot nIX which follows from the formula of problem 
132c. 

c, d. The equations 

e~)(l - x)m-l - (~)(l - x)m-2x + (~)(l - x)m-Sx 2 - ... = 0 

and 

(I - x)m - (~)(l - X)m-IX + (~)(l - xr-2x 2 _ .. , = 0 

respectively. Use the formulas of problem 132a and b, putting n = 2m. 
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142a. Use the result of 141a. 
b. Follows from the identity of part a. 
c. Use the result of problem 141b. 

143. Use the results of problems 14lc and d. 

144a. In the identity of problem 140 put IX = TT/2 and let n ->- 00 

b. 3,[3 
417 

1458. Use the result of problem 1398, together with 1428 and b. 
b. TT'/90. Determine the sum of the fourth powers of the cotangents 

and cosecants of the angles 17/(2m + I), 217/(2m + 1), ... , mTT/(2m + 1). 

1468. The solution is similar to that of problem 1458. 

172 
b.-

8 

147. Consider the following two expressions, which are suggested by 
Wallis' formula: 

sin 217j4m . sin 2TT/4m • sin 417/4m . sin 417j4m ..• sin (2m - 2)TT/4m 

sin 17/4m sin 317/4m sin 317/4m sin 517/4m sin (2m - 3)17/4m 

and 

sin (2m - 2)TT/4m 
x 

sin (2m - 1)l7j4m 

sin 2TTj4m . sin 4TTj4m . sin 4TT/4m . sin 617j4m ... sin (2m - 2)17/2m 

sin 317/4m sin 317/4m sin 5TT/4m sin 5TT/4m sin (2m - l)TTj4m 

Then use the result of problem 139b. 

0 3 

148. 3' 

149a. 217 • 

. 2 0 
b. 2sm 2' 

sin 2mTTj4m x-------'---
sin (2m - 1)TT/4m 

1508. (bm+l - om+l)/(m + 1). Divide the side AD of the curvilinear 
trapezoid ABeD (where OA = 0, OD = b) into segments AM!> M 1M 2, 
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MaMa, ... , M,,_lD in such a way that 

OMl = OM" = OMa = ..• = _b_ 
a OM! OM,. OM,,_l 

bm+l 
b.--. 

m + 1 

151. If OAl = a1> ODI = b1> OA2 = a2, OD2 = b2, divide the segments 
AlD! and A 2D" into n equal parts and replace the curvilinear trapezoid by 
a stepped figure. 

152. Use the result of problem 151. 

153. Use the fact that F(z) is a continuous and increasing function of its 
argument z. 

154. Show first that for any IX, F(Z") = ocF(z). 

155. 31n 2 - 2 (use problem 154). 

156. 2 In 2 - 1. The outcome of the experiment can be described by the 
point (x,y), where x is the smaller of the two segments obtained by 
breaking the rod the first time, and y is the fraction then broken off from 
the bigger segment. (Thus 0 ~ Y ~ 1.) The possible outcomes (x,y) form 
a rectangle R, and the problem is to find the area of the subset of R formed 
by the favorable outcomes. 

157. Apply the result of problem 149b. 

158a. Use the result of problem 154. 
b. Illn a. Use the result of part a. 
Co In a. Use the result of problem 154. 

159a. (a~ - 1)/(ln a). The proof requires the result of problem 158c. 
b. (b In b - b + 1)/(ln a). This result may be deduced from the 

formula of part a or established independently by the method used for the 
solution of 150a. (See the hint to that problem.) If the second method 
is used, the result of problem 158c will be needed. 

160. ! In a (log.. b)2. The solution to this problem is analogous to the 
second solution of problem 159b. 

161. Use the result of problem 150b. 

162a. It is sufficient to show that if n > m, then n In (1 + lIn) > 
m In (I + 11m). Use the result of problem 154. 

b. Show that (n + I) In (1 + lIn) > (n + 2) In (1 + l/(n + I»; use 
the result of problem 154: 

163. Consider separately the cases where z is positive and negative; use 
the result of problem 154. 
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164. Use the result of problem 163. 

165. Evaluate the area of the curvilinear triangle bounded by the x axis, 
the curve y = In x, and the line x = n using two different methods. In 
one case start by considering the area of a trapezoid inscribed in the 
curve, in the other, circumscribed. Use the result of problem I 59b. 

166a. The solution is based on that of 165. 
b. Use Wallis' formula (problem 147). 

167. Use the result of problem 154. 

168. Use the result of problem 160. 

169. Use the result of problem 150a. 

170. Estimate by two different methods the value of the quantity (In) = 
(2n)! . n 
(n!)2' SpecIfically, show that 

2
n ~ e:) < 2

2n 

and 

171. Let PI,P2," . 'Pr be all the primes not exceeding the integer N; 
suppose the prime decomposition of N! is of the form N! = PI'lb"' ... p/'r. 
Then, as may easily be shown, 

where [x) is the integer part of x. Using this expression, we may obtain 
an estimate for log N! in which the sum (log 2)/2 + (log 3)/3 + (log 5)/ 
5 + ... + (log p)/p required by the problem appears. It will also be 
necessary to use Tchebychev's theorem (problem 170). 

The second estimate for log N! may be obtained from the result of 
problem 165. Finally. compare the two estimates obtained for log N!. 

172a. Express the numbers bI , b2, ••• ,bn in terms of the numbers 
Hb H2, ••• , Bn and substitute for them in the sum S. 

b. (1) nqn _ qn - \ ; 
q -1 (q - 1) 

n2qn (2n - l)qn + 1 2q" - 2 
(2) -- - 2 + s" 

q - 1 (q - I) (q - l) 
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173. Apply the formula of problem l72a to the sum ~ + 1 + ~ + } + ... 
+ IIp and use Mertens' first theorem (problem 171). It will also prove 
necessary to use certain estimates similar to those of problem 167. 

174. Clearly. 

In [ (1 -D (1 -~) (1 -n (1 - ~ ) (1 - /.) ... (1 - t) ] 
= In (1 -~) + In (1 -H + In (1 -~) + In (1 - ~) 

+ In (1 - 11.) + ... + In (1 - ;). 
To obtain an estimate for the right-hand side. use the geometric definition 
of the natural logarithm (see problems 151-154). Finally, use Mertens' 
second theorem (problem 173). 
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