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FOREWORD BY ANDREW WILES

I had the great good fortune to have a high school mathematics teacher who
had studied number theory. At his suggestion [ acquired a copy of the fourth
edition of Hardy and Wright’s marvellous book An Introduction to the The-
ory of Numbers. This, together with Davenport’s The Higher Arithmetic,
became my favourite introductory books in the subject. Scouring the pages
of the text for clues about the Fermat problem (I was already obsessed) 1
learned for the first time about the real breadth of number theory. Only four
of the chapters in the middle of the book were about quadratic fields and
Diophantine equations, and much of the rest of the material was new to
me; Diophantine geometry, round numbers, Dirichlet’s theorem, continued
fractions, quaternions, reciprocity . . . The list went on and on.

The book became a starting point for ventures into the different branches
of the subject. For me the first quest was to find out more about alge-
braic number theory and Kummer’s theory in particular. The more analytic
parts did not have the same attraction then and did not really catch my
imagination until I had learned some complex analysis. Only then could I
appreciate the power of the zeta function. However, the book was always
there as a starting point which [ could return to whenever I was intrigued
by a new piece of theory, sometimes many years later. Part of the success
of the book lay in its extensive notes and references which gave naviga-
tional hints for the inexperienced mathematician. This part of the book
has been updated and extended by Roger Heath-Brown so that a 21st-
century-student can profit from more recent discoveries and texts. This is
in the style of his wonderful commentary on Titchmarsh’s The Theory of
the Riemann Zeta Function. 1t will be an invaluable aid to the new reader
but it will also be a great pleasure to those who have read the book in
their youth, a bit like hearing the life stories of one’s erstwhile school
friends.

A final chapter has been added giving an account of the theory of ellip-
tic curves. Although this theory is not described in the original editions
(except for a brief reference in the notes to §13.6) it has proved to be crit-
ical in the study of Diophantine equations and of the Fermat equation in
particular. Through the Birch and Swinnerton-Dyer conjecture on the one
hand and through the extraordinary link with the Fermat equation on the
other it has become a central part of the number theorist’s life. It even
played a central role in the effective resclution of a famous class number
problem of Gauss. All this would have seemed absurdly improbable when
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the book was written. It is thus an appropriate ending for the new edition
to have a lucid exposition of this theory by Joe Silverman. Of course it is
only a quick sketch of the theory and the reader will surely be tempted to
devote many hours, if not the best part of a lifetime, to unravelling its many
mysteries. '

AJW.
January, 2008



PREFACE TO THE SIXTH EDITION

This sixth edition contains a considerable expansion of the end-of-chapter
notes. There have been many exciting developments since these were last
revised, which are now described in the notes. It is hoped that these will
provide an avenue leading the interested reader towards current research
areas. The notes for some chapters were written with the generous help of
other authorities. Professor D). Masser updated the material on Chapters
4 and 11, while Professor G.E. Andrews did the same for Chapter 19. A
substantial amount of new material was added to the notes for Chapter 21
by Professor T.D. Wooley, and a similar review of the notes for Chapter 24
was undertaken by Professor R. Hans—(}xli We are naturaily very grateful
to all of them for their assistance.

In addition, we have added a substantial new chapter, deaimg with ellip-
tic curves. This subject, which was not mentioned in earlier editions, has
come to be such a central topic in the theory of numbers that it was felt
to deserve a full treatment, The material is naturally connected with the
original chapter on Diophantine Equations.

Finally, we have corrected a significant number of misprints in the
fifth edition. A large number of correspondents reported typographical or
mathematical errors, and we thank everyone who contributed in this way.

The proposal to produce this new edition originally came from Professors
John Maitland Wright and John Coates. We are very grateful for their
enthusiastic support.

D.R.H.-B.
JHS.
September, 2007

D. R. Heath-Brown K A¥ER, SHRKEHR, REER¥ES
2R, %%‘!?1981$$Bl9965ﬁ3§f§ﬁ5§5{ﬁ EMEN V4 ma
(Berwick Prize) .

J. H. Silverman %@zﬁ%ﬁ EEM B RFEHIT, 1982460568
KAWL, B The Arithmetic of Elliptic Curves®™ -2 A45, %%
2 RIEXI002E.



PREFACE TO THE FIFTH EDITION

The main changes in this edition are in the Notes at the end of each chapter.
1 have sought to provide up-to-date references for the reader who wishes
to pursue a particular topic further and to present, both in the Notes and in
the text, a reascnably accurate account of the present state of knowledge.
For this I have been dependent on the relevant sections of those invaluable
publications, the Zentralblatt and the Mathematical Reviews. But I was
also greatly helped by several correspondents who suggested amendments
or answered queries. 1 am especially grateful to Professors J. W. 8. Cassels
and H. Halberstam, each of whom supplied me at my request with a long
and most valuable list of suggestions and references.

There is a new, more transparent proof of Theorem 445 and an account of
my changed opinion about Theodorus’method in irrationals. To facilitate
the use of this edition for reference purposes, I have, so far as possible, kept
the page numbers unchanged. For this reason, I have added a short appendix
on recent progress in some aspects of the theory of prime numbers, rather
than insert the material in the appropriate places in the text.

EMW
ABERDEEN
October 1978



PREFACE TO THE FIRST EDITION

This book has developed gradually from lectures delivered in a number
of universities during the last ten years, and, like many books which have
grown out of lectures, it has no very definite plan.

It is not in any sense (as an expert can see by reading the table of contents)
a systematic treatise on the theory of numbers. It does not even contain a
fully reasoned account of any one side of that many-sided theory, but is
an introduction, or a series of introductions, to almost all of these sides
in turn. We say something about each of a number of subjects which are
not usually combined in a single volume, and about some which are not
always regarded as forming part of the theory of numbers at all. Thus chs.
XII-XV belong to the ‘algebraic’ theory of numbers, Chs. XIX-XXI to
the ‘addictive’, and Ch. XXII to the ‘analytic’ theories; while Chs. 111, XI,
XX11, and XXIV deal with matters usually classified under the headings
of ‘geometry of numbers’ or ‘Diophantine approximation’. There is plenty
of variety in our programme, but very little depth; it is impossible, in 400
pages, to treat any of these many topics at all profoundly.

There are large gaps in the book which will be noticed at once by any
expert. The most conspicuous is the omission of any account of the theory of
quadratic forms. This theory has been developed more systematically than
any other part of the theory of numbers, and there are good discussions of
it in easily accessible books. We had to omit something, and this seemed to
us the part of the theory where we had the least to add to existing accounts.

We have often allowed out personal interests to decide out programme,
and have selected subjects less because of their importance (though most
of them are important enough) than because we found them congenial and
because other writers have left us something to say. Our first aim has been
to write an interesting book, and one unlike other books. We may have
succeeded at the price of too much eccentricity, or we may have failed; but
we can hardly have failed completely, the subject-matter being so attractive
that only extravagant incompetence could make it dull.

The book is written for mathematicians, but it does not demand any great
mathematical knowledge or technique. In the first eighteen chapters we
assume nothing that is not commonly taught in schools, and any intelligent
university student should find them comparatively easy reading. The last
six are more difficult, and in them we presuppose a little more, but nothing
beyond the content of the simpler university courses.

The title is the same as that of a very well-known book by Professor
L. E. Dickson (with which ours has little in common). We proposed at one
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time to change it to An introduction to arithmetic, a more novel and in some
ways a more appropriate title; but it was pointed out that this might lead to
misunderstandings about the content of the book.

A number of friends have helped us in the preparation of the book. Dr. H.
Hetlbronn has read all of it both in manuscript and in print, and his criticisms
and suggestions have led to many very substantial improvements, the most
important of which are acknowledged in the text. Dr. H. S. A, Potter and
Dr. S. Wylie have read the proofs and helped us to remove many errors and
obscurities. They have also checked most of the references to the literature
in the notes at the ends of the chapters. Dr. H. Davenport and Dr. R. Rado
have also read parts of the book, and in particular the last chapter, which,
after their suggestions and Dr. Heilbronn’s, bears very little resemblance
to the original draft.

We have borrowed freely from the other books which are catalogued
on pp. 417-19 [pp. 596-9 in current 6th edn.], and especially from those
of Landau and Perron. To Landau in particular we, in common with all
serious students of the theory of numbers, owe a debt which we could
hardly overstate.

G.H. H.
EMW
OXFORD
August 1938



REMARKS ON NOTATION

We borrow four symbols from formal logic, viz.
-, =, 3, €.
— is to be read as “implies’. Thus
Ilm—>Iln (p.2)

means ‘ *“/ is a divisor of m”* implies “/ is a divisor of n
same thing, ‘if / divides m then [ divides n’; and

bila.cib— cla (p. 1)

means ‘if b divides a and ¢ divides b then ¢ divides a’.

LA

, or, what is the

= is to be read ‘is equivalent to’. Thus
mlka—ka = my|la—d (p.6]1)

means that the assertions ‘m divides ka—#ka’” and ‘m; divides a—a’” are
equivalent; either implies the other.

These two symbols must be distinguished carefully from -» (tends to)
and == (is congruent to). There can hardly be any misunderstanding, since
-+ and == are always relations between propositions.

3 is to be read as ‘there is an’. Thus

Al <l <«<m.iim (p 2)

means ‘there is an / such that (i) 1 </ < m and (i1) / divides m’.
€ is the relation of a member of a class to the class. Thus

meS.neS > (mtn)eS (p23)

means ‘if m and n are members of § then m + n and m — n are members
of §”.

A star affixed to the number of a theorem (e.g. Theorem 15*) means that
the proof of the theorem is too difficult to be included in the book. It is not
affixed to theorems which are not proved but may be proved by arguments
similar to those used in the text.
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THE SERIES OF PRIMES (1)
1.1. Divisibility of integers. The numbers
ceey—3,-2,-1,0,L,2,...

are called the rational integers, or simply the integers, the numbers

0,1,2,3,...
the non-negative integers; and the numbers

1,2,3,...

the positive integers. The positive integers form the primary subject-matter
of arithmetic, but it is often essential to regard them as a subclass of the
integers or of some larger class of numbers.

In what follows the letters

a,b,....np,....x,¥,...

will usually denote integers, which will sometimes, but not always, be
subject to further restrictions, such as to be positive or non-negative. We
shall often use the word ‘number’ as meaning ‘integer’ (or ‘positive int-
eger’, etc.), when it is clear from the context that we are considering only
numbers of this particular class.

An integer a is said to be divisible by another integer b, not 0, if there is
a third integer ¢ such that

a = bc.

If a and b are positive, ¢ is necessarily positive. We express the fact that ¢
is divisible by &, or & is a divisor of a, by

bla.
Thus
lla, ala;
and b|0 for every b but 0. We shall also sometimes use

bt a
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to express the contrary of b|a. It is plain that
bla . clb — cla,

bla ~» bclac
if ¢ 5 0, and
cla.clb - clma+ nb

for all integral m and n.

1.2. Prime numbers. In this section and until § 2.9 the numbers con-
sidered are generally positive integers.! Among the positive integers there
is a sub-class of peculiar importance, the class of primes. A number p is
said to be prime if

O p>1,

(ii) p has no positive divisors except | and p.

For example, 37 is a prime. It is important to cbserve that 1 is not reckoned
as a prime. In this and the next chapter we reserve the letter p for primes.}

A number greater than 1 and not prime is called composite.
Our first theorem is

TaroREM 1. Every positive integer, except 1, is a product of primes.

Either n is prime, when there is nothing to prove, or n has divisors
between | and n. If m is the least of these divisors, m is prime; for otherwise

Al <! <« m.lim,
and
lim — |n,

which contradicts the definition of m.
Hence # is prime or divisible by a prime less than n, say p;, in which
case

n=pn;, 1<n<n

! There are occasional exceptions, as in §§ 1.7, where ¥ is the exponential function of analysis,

! It would be inconvenient to have to observe this convention rigidly throughout the book, and
we often depant from it. In Ch. IX, for example, we use p/q for a typical rational fraction, and p is
not usually prime. But p is the ‘natural’ letter for a prime, and we give it preference when we can
conveniently,
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Here either n; is prime, in which case the proof is completed, or it is
divisible by a prime p; less than #n;, in which case

n=pny =pypany, L <nm<no<n

Repeating the argument, we obtain a sequence of decreasing numbers
n,ny,..., Bg_i,..., all greater than 1, for each of which the same alter-
native presents itself. Sooner or later we must accept the first alternative,
that 7.1 is a prime, say pi, and then

(1.2.1) n=pip1.. Dk
Thus
666 = 2.3.337.

If ab = n, then a and b cannot both exceed /n. Hence any composite 7 is
divisible by a prime p which does not exceed /n.

The primes in (1.2.1) are not necessarily distinct, nor arranged in any
particular order. If we arrange them in intreasing order, associate sets of
equal primes into smgie factors, and change the notation appropriately, we
obtain

¥
ax

(1.22) n=p{'pd?..08 (@>0a2>0,....p1 <py<..)

We then say that n is expressed in standard form.

1.3. Statement of the fundamental theorem of arithmetic. There is
nothing in the proof of Theorem 1 to show that (1.2.2) is a unique expression
of n, or, what is the same thing, that (1.2.1) is unique except for possible
rearrangement of the factors; but conmderatlon of special cases at once
suggests that this is true.

TrEoREM 2 (THE FUNDAMENTAL THEOREM OF ARITHMETIC). The standard
Sform of nis unique; apart from rearrangement of factors, n can be expressed
as a product of primes in one way only.

Theorem 2 is the foundation of systematic arithmetic, but we shall not
use it in this chapter, and defer the proof'to § 2.10. It is however convenient
to prove at once that it is a corollary of the simpler theorem which follows.

THEOREM 3 (EUCLID’S FIRST THEOREM). Ifp is prime, andp | ab, thenp | a
orplb.
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We take this theorem for granted for the moment and deduce Theorem 2.
The proof of Theorem 2 is then reduced to that of Theorem 3, which is given
in§ 2.10.

It is an obvious corollary of Theorem 3 that

plabe...I — pla or plb or plc... or pli,

and in particular that, if a,b, ...,/ are primes, then p isoneof a,b,...,1.
Suppose now that

aj a2 [ bf

b
n=p{pe.. .ot =q'qy .. .q,

each product being a product of primes in standard form. Then p,-l.:;("f1 e qu
for every i, so that every p is a ¢; and similarly every g isap. Hence k =
and, since both sets are arranged in increasing order, p; = ¢; for every i.

If a; > b;, and we divide by p¥, we obtain

—b b by b b
p‘;!...pfi t...pﬁ :pil..-pfi_ltpi_:.ll..-pkk.

The lefi-hand side is divisible by p;, while the right-hand side is not; a
contradiction. Similarly b; > a; yields a contradiction. It follows that
a; = b;, and this completes the proof of Theorem 2.

It will now be obvious why 1 should not be counted as a prime. If it
were, Theorem 2 would be false, since we could insert any number of unit
factors.

1.4. The sequence of primes. The first primes are
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, . ...

It is easy to construct a table of primes, up to a moderate limit N, by
a procedure known as the ‘sieve of Eratosthenes’. We have seen that if
n & N, and n is not prime, then n must be divisible by a prime not greater
than +/N. We now write down the numbers

2¥3’4!5!6!"'!N

and strike out successively

(i) 4,6,8,10,...,i.e. 22 and then every even number,.

(i) 9,15,21,27,..., i.c. 3% and then every multiple of 3 not yet struck
out, : :
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(i) 25,35,55,65,...,1.e. 52, the square of the next remaining number
after 3, and then every multipie of 5 not yet struck out, . ...

We continue the process until the next remaining number, after that whose
multiples were cancelled last, is greater than +/N. The numbers which
remain are primes. All the present tables of primes have been constructed
by modifications of this procedure,

The tables indicate that the series of primes is infinite. They are complete
up to 100,000,000, the total number of primes below 10 million is 664,579;
and the number between 9,900,000 and 10,000,000 1s 6,134. The total
number of primes below 1,000,000,000 is 50,847.478; these primes are
not known individually. A number of very large primes, mostly of the form
2P — 1 (see §2.5), are also known; the largest found so far has just over
6,500 digits.’

These data suggest the theorem

THeorem 4 (EUCLID’S SECOND THEOREM). The number of primes is inf-
inite.

We shall prove this in § 2.1.

The ‘average’ distribution of the primes is very regular; its density shows
a steady but slow decrease. The numbers of primes in the first five blocks
of 1,000 numbers are

168, 135,127,120, 119,
and those in the last five blocks of 1,000 below 10,000,000 are
62,58,67,64,53.
The last 53 primes are divided into sets of
5,4,7,4,6,3,6,4,5,9

in the ten hundreds of the thousand.

On the other hand the distribution of the primes in detail is extremely
irregular, -

In the first place, the tables show at intervals long blocks of composite
numbers. Thus the prime 370,261 is followed by 111 composite numbers.
It is easy to see that these long blocks must occur. Suppose that

2,3,5,...,p

. 1 Seethe end of chapter notes.
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are the primes up to p. Then all numbers up to p are divisible by one of
these primes, and therefore, if

235...p=q,
all of the p — 1 numbers
g+2,9+3,9+4,....9+p

are composite. If Theorem 4 is true, then p can be as large as we please;
and otherwise all numbers from some point on are composite.

TureoreM 5. There are blocks of consecutive composite numbers whose
length exceeds any given number N.

On the other hand, the tables indicate the indefinite persistence of prime-
pairs, such as 3, 5 or 101, 103, differing by 2. There are 1,224 such pairs
(p,p+ 2) below 100,000, and 8,169 below 1,000,000. The evidence, when
examined in detail, appears to justify the conjecture

There are infinitely many prime-pairs (p,p + 2).

It is indeed reasonable to conjecture more. The numbers p,p+ 2, p + 4
cannot all be prime, since one of them must be divisible by 3; but there
is no obvious reason why p,p + 2, p + 6 should not ali be prime, and the
evidence indicates that such prime-triplets also persist indefinitely, Sim-
ilarly, it appears that triplets (p,p + 4, p -+ 6) persist indefinitely. We are
therefore led to the conjecture

There are infinitely many prime-triplets of the types (p,p+2,p+6) and
(p,p+4,p+6).

Such conjectures, with larger sets of primes, may be multiplied, but their
proof or disproof is at present beyond the resources of mathematics.

1.5. Some questions concerning primes. What are the natural ques-
tions to ask about a sequence of numbers such as the primes? We have
suggested some already, and we now ask some more.

(1) Is there a simple general formula for the n-th prime p,,' (a formula,
that is to say, by which we can calculate the value of p,, for any given n with
less labour than by the use of the sieve of Eratosthenes)? No such formula
is known and it is unlikely that such a formula is possible.

t Sec the end of chapter notes.
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On the other hand, it is possible to devise a number of ‘formulae’ for
pn. Of these, some are no more than curiosities since they define p, in terms
of itself, and no previously unknown p,, can be calculated from them. We
give an example in Theorem 419. Others would in theory enable us to
calculate p,, but only at the cost of substantially more labour than does the
sieve of Eratosthenes. Others still are essentially equivalent to that sieve.
We return to these questions in § 2.7 and in §§ I, 2 of the Appendix.

Similar remarks apply to another question of the same kind, viz.

(2) is there a simple general formula for the prime which follows a given
prime (i.e. a recurrence formula such as p,4| = pzn + 2)?
Another natural question is

(3) is there a rule by which, given any prime p, we can find a larger
prime q? ‘

This question of course presupposes that, as stated in Theorem 4, the
number of primes is infinite. It would be answered in the affirmative if
any simple function f{(n) were known which assumed prime values for
all integral values of n. Apart from trivial curiosities of the kind already
mentioned, no such function is known. The only plausible conjecture con-
cerning the form of such a function was made by Fermat,” and Fermat’s
conjecture was false.

QOur next question is

(4) how many primes are there less than a given number x?

This question is a much more profitable one, but it requires careful
interpretation. Suppose that, as is usual, we define w(x) to be the number
of primes which do not exceed x, sothat 7 (1) =0, 7 (2) = 1, 7(20) = 8.
If p, is the nth prime then 7 (p,) = n, so that w(x), as function of x, and
Pn, a8 function of n, are inverse functions. To ask for an exact formula for
7 (x), of any simple type, is therefore practically to repeat question (1).

We must therefore interpret the question differently, and ask ‘about how
many primes ...?7" Are most numbers primes, or only a small proportion?
Is there any simple function £ (x) which is ‘a good measure’ of 7 (x)?

We answer these questions in § 1.8 and Ch. XXII.

1.6. Seme notations. We shall often use the symbols
(1.6.1) 0, o, ~,

t See §2.5.



8 THE SERIES OF PRIMES (Chap. 1

- and occasionally
(1.6.2) <, >, X .

These symbols are defined as follows.

Suppose that n is an integral variable which tends to infinity, and x a
continuous variable which tends to infinity or to zero or to some other
limiting value; that ¢(n) or ¢(x) is a positive function of n or x; and that
f(n) or f(x) is any other function of n or x. Then

(i) f = O(¢) means that' |f] < A,

where 4 is independent of n or x, for all values of n or x in question;
(i) f = o(¢d) meansthat [/ — O;

and
(ii1) f ~ ¢ means that f /¢p — 1.

Thus

10x = O(x), sinx = O(l), x= O@?),

x=o0(x?), sinx=o(x), x+1~x,
where x — 00, and
x2 = O{x), X = o(x), sinx~x, 1 -Fx ~ 1,

when x — 0. It is to be observed that [ = o(¢) implies, and is stronger
than, ' = O(¢).
As regards the symbols (1.6.2),

(iv)f < ¢ means f /¢ —> 0, and is equivalent to f = o(¢);
(V) f > ¢ meansf/¢ — o0,
(vi)f >< ¢ means Ap < f < A¢,

where the two 4’s (which are naturally not the same) are both positive and
independent of » or x. Thus /' < ¢ asserts that *f is of the same order of
magnitude as ¢°.

We shall very often use 4 as in (vi), viz. as an unspecified positive
constant. Different 4’s have usually different values, even when they occur
in the same formula; and, even when definite values can be assigned to
them, these values are irrelevant to the argument.

t 1 denotes, as usually in analysis, the modulus or absolute vatue of £,
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So far we have defined (for example) ‘f = O(1)’, but not ‘O(1Y in
isolation; and it is convenient to make our notations more elastic. We agree
that ‘O(¢)’ denotes an unspecified f such that f = O(¢). We can then
write, for example,

O(1) + O(1) = O(1) = ofx)

when x — oo, meaning by this *if f = O(1)and g = O(1) then f + g =
O(1) and a fortiori f + g = o(x)’. Or again we may write

n
dom=0wm,

v=}

meaning by this that the sum of n terms, each numerically less than a
constant, is numerically less than a constant multiple of n.

Itis to be observed that the relation ‘=", asserted between O oro symbols,
is not usually symmetrical. Thus o(1) = O(1) is always true; but O(1) =
o(1) is usually false. We may also observe that f ~ ¢ is equivalent to
f=¢+o(P)orto

f = @{1 +o()}.

In these circumstances we say that fand ¢ are asymptotically equivalent,
or that fis asymptotic to ¢.

‘There is another phrase which it is convenient to define here. Suppose
that P is a possible property of a positive integer, and P(x) the number of
numbers less than x which possess the property P, If

P(x) ~ x,

when x > 00, i.e. if the number of numbers less than x which do not
possess the property is o(x), then we say that almost all numbers possess
the property. Thus we shall see’ that 7(x) = o(x), so that almost all
numbers are composite.

1.7. Thelogarithmic function. The theory ofthe distribution of primes
demands a knowledge of the properties of the logarithmic function log x.
We take the ordinary analytic theory of logarithms and exponentials for
granted, but it is important to lay stress on one property of log x.}

¥ This follows at once from Theorem 7.
? log x is, of course, the ‘Napierian® logarithm of x, to base e. ‘Common’ logarithms have no
mathemnatical interest.
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Since
n1

X
ml L _ L3
& =1+x+ toatarot

..
1

x " >

- G

X
(n+ 1)}

when x —> o00. Hence €* tends to infinity more rapidly than any power of
x. It follows that log x, the inverse function, fends to infinity more slowly
than any positive power of x; log x —» 00, but

log x

(1.7.1) =22 50,
X

or log x = o(x%), for every positive . Similarly, loglog x tends to infinity
more slowly than any power of log x.

We may give a numerical illustration of the slowness of the growth of
log x. If x = 10° = 1,000,000,000 then

logx =20-72.. ..

Since &3 = 20-08...,loglogx is a little greater than 3, and logloglog x a
little greater than 1. If x = 1099 logloglog x is a little greater than 2. In
spite of this, the ‘order of infinity’ of logloglog x has been made to play a
part in the theory of primes.
The function
x

log x

is particularly important in the theory of primes. It tends to infinity more
slowly than x but, in virtue of (1.7.1), more rapidly than x! ¢ i.e. than any
power of x lower than the first; and it is the simplest function which has
this property.

1.8. Statement of the prime number theorem. Afier this preface we
can state the theorem which answers question (4) of § 1.5.

THEOREM 6 (THE PRIME NUMBER THEOREM). The number of primes not
exceeding x is asymptotic to x/log x:
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This theorem is the central theorem in the theory of the distribution of
primes. We shall give a proof in Ch. XXII. This proof is not easy but, in
the same chapter, we shall give a much simpler proof of the weaker

TrroreM 7 (TCHEBYCHEFR'S THEOREM). The order of magnitude of m{(x) is
x/log x:

nix) =< mf._'
logx

It is interesting to compare Theorem 6 with the evidence of the tables.
The values of 7 (x) for x = 10, x = 10% and x = 107 are

168, 78,498, 50,847,534,
and the values of x/log x, to the nearest integer, are

145, 72,382, 48,254,942,
The ratios are

1-159...,1.084...,1:053...;

and show an approximation, though not a very rapid one, to 1. The excess of
the actual over the approximate values can be accounted for by the general

theory.
If
x
y=i—
log x
then
logy = logx — log log x,
and
log log x = o{log x),
so that '

logy ~logx, x=ylogx ~ylogy.

The function inverse to x/log x is therefore asymptotic to x log x.
From this remark we infer that Theorem 6 is equivalent to
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Tueorem 8:
pn ~ nloga.

Similarly, Theorem 7 is equivalent to

Tueorem 9:
pn > nlogn.

The 664,999th prime is 10,006,721; the reader should compare these
figures with Theorem 8.

We arrange what we have to say about primes and their distribution
in three chapters. This introductory chapter contains little but definitions
and preliminary explanations; we have proved nothing except the easy,
though important, Theorem 1. In Ch. I we prove rather more: in particular,
Euclid’s theorems 3 and 4. The first of these carries with it (as we saw in
§ 1.3) the ‘fundamental theorem’ Theorem 2, on which almost all our later
work depends; and we give two proofs in §§ 2.10-2.11. We prove Theorem
4 in §§ 2.1, 2.4, and 2.6, using several methods, some of which enable us
to develop the theorem a little further. Later, in Ch. XXII, we return to
the theory of the distribution of primes, and develop it as far as is possible
by elementary methods, proving, amongst other results, Theorem 7 and
finally Theorem 6.

NOTES

§ 1.3, Theorem 3 is Euclid vii. 30. Theorem 2 does not seem to have been stated explicitly
before Gauss (DDA, § 16). It was, of course, familiar to earlier mathematicians; but Gauss
was the first to develop arithmetic as a systematic science. See also § 12.5.

§ 1.4. The best table of factors is D. N. Lehmer’s Factor table for the first ten millions
(Carnegie Institution, Washington 105 (1509)) which gives the smallest factor of all numbers
up to 10,017,000 not divisibie by 2, 3, 5, or 7. The same author’s List of prime numbers from
1 to 10,006,721 {Carmnegie Institution, Washington 165 (1914)) has been extended up to 108
by Baker and Gruenberger (The first six million prime numbers, Rand Corp., Microcard
Found., Madison 1959}, Information about eariier tabies will be found in the introduction
to Lehmer’s two velumes and in Dickson’s History, §, ch. xiii. Qur numbers of primes are
less by | than Lehmer’s because he counts 1 as a prime. Mapes (Math. Computation |7
(1963}, 1845} gives a table of 7 (x) for x any multiple of 10 million up to 1,000 miltion.

Alist of tables of primes with descriptive notes is given in D. H. Lehmer’s Guide to tables
in the theory of numbers (Washington, 1941). Large tables of primes are essentially obso-
lete now, since computers can generate primes afresh with sufficient rapidity for practical
purposes.

Theorem 4 is Euclid ix. 20,

For Theorem 5 see Lucas, Théorie des nombres, 1(1891), 35961,
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Kraitchik [Sphinx, 6 (1936), 166 and 8 (1938), 86] lists all primes between 10'2 — 10% and
10’2 + 10%: and Jones, Lal, and Blundon (Math. Comp. 21 (1967), 103-7} have tabulated
all primes in the range 10% 10 10% + 150,000 for integer k from 8 to 15, The largest known
pair of primes p,p + 2 is

2003663613,2193000 4 1

found by Vautier in 2007. These primes have 58711 decimal digits.

In § 22.20 we give a simpie argumernt leading to a conjectural formula for the number
of paits (p,p + 2) below x. This agrees well with the known facts. The method can be
used to find many other conjectural theorems concerning pairs, triplets, and larger blocks
of primes.

§ 1.5. Qurlistof questions is modified from that given by Carmichael, Theory of numbers,
29. Of course we have not {and cannot) define what we mean by a *simple formula’ in this
context. One could more usefully ask about algorithms for computing the nth prime. Clearly
there is an algorithm, given by the sieve of Eratosthenes. Thus the interesting question is just
how fast such an algorithm might be, A method based on the work of Lagarias and Odlyzko
(J. Algorithms 8 (1987), 173-91) computes p,, in time O(>/3), (or indeed slightly faster
if large amounts of memory are available). For questions (2) and (3} one might similarly
ask how fast one can find p,,.| given py, or more generally, how rapidly one can find any
prime greater than a given prime p, At present it appears that the best approach is merely to
test each number from p, onwards for primality. One would coniecture that this process is
extremely efficient, in as much as there should be a constant ¢ > © such that the next prime
is found in time O¢(log n)°). We have a very fast test for primality, due to Agrawal, Kayal,
and Saxena (4nn. of Math. {2} 160 (2004), 781-93), but the best known upper bound on

the difference ppq1 — pr isonly O (pﬁ'szs ) . {See Baker, Harman, and Pintz, Proc. London

Math. Soc. (3) 83 (2001), 532-62). Thus at present we can only say that p, . can be
determined, given p,, in time O (pﬁ), for any constant ¢ > (0.525.

§ 1.7. Littlewood’s proof that # (x) is sometimes greater than the ‘fogarithm integral’
Li(x) depends upon the targeness of logloglog x for large x. See Ingham, ch. v, or Landau,
Voriesungen, ii. 123-56.

§ 1.8. Theorem 7 was proved by Tchebychef about 1850, and Theorem 6 by Hadamard
and de ia Vallée Poussin in 1 896. Sec Ingham, 4-5; Landau, Fandbuch, 3-55; and Ch. XX11,

especially the note to §§ 22.14-16,
A better approximation to m{x) is provided by the ‘logarithmic integral’

< di

Litx) = ) gt

Thus at x = 109, for example, 7 (x} and x/log x differ by more than 2,500,000, while 7 {x)
and Li(x) only differ by about 1,700,
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2.1. First proof of Euclid’s second theorem. Euclid’s own proof of
Theorem 4 was as follows.
Let 2, 3, 5,..., p be the aggregate of primes up to p, and let

(2.1.1) g=235...p+ 1L

Then g is not divisible by any of the numbers 2, 3, 5,..., p. It is therefore
either prime, or divisible by a prime between p and ¢. In either case there
is a prime greater than p, which proves the theorem.

The theorem is equivalent to

(2.1.2) n{x) — oo,

2.2. Further deductions from Euclid’s argument. Ifpisthenthprime
Pn, and g is defined as in (2.1.1), it is plain that

q<py+1
for n > 1,1 and so that

Prtt < pr+ 1.

This inequality enables us to assign an upper limit to the rate of increase
of pa, and a lower limit to that of 7w {x).
We can, however, obtain better limits as follows. Suppose that

(2.2.1) pn < 2%

forn=1, 2,..., N. Then Euclid’s argument shows that

(2.2.2) PN41 SPiPa...py + 1 < 224042 g 2"

Since (2.2.1) is true for n = 1, it is true for all n.

t There is equality when

=1, p=2, g=3.
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Suppose now that » > 4 and

Then'

and so
7)) > (e ) > x@¥) =,
by (2.2.1). Since loglog x < n, we deduce that
m{x) = loglog x

forx > e‘"s; and 1t is plain that the inequality holds also for2 < x € €.
We have therefore proved

TaeEOREM 10;
wix) = loglogx (x = 2).

We have thus gone beyond Theorem 4 and found a lower limit for the
order of magnitude of m(x). The limit is of course an absurdly weak one,
- since for x = 107 it gives m(x) 23, and the actual value of 7 (x) is-over 50
million.

2.3. Primes in certain arithmetical progressions. Euclid’s argument
may be developed in other directions.

TraeoreM 1. There are infinitely many primes of the form 4n + 3.

Define g by
g=2%235.p—1,

instead of by (2.1.1). Then g is of the form 4n+3, and is not divisible by
any of the primes up to p. It cannot be a product of primes 4n+1 only, since
the product of two numbers of this form is of the same form; and therefore
it is divisible by a prime 4n+3, greater than p.

TueoreM 12. There are infinitely many primes of the form 6n + 5.

t This is not true for n = 3.
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The proof is similar. We define g by
g=235...p—1,

and observe that any prime number, except 2 or 3, is 6n+1 or 6n+3, and
that the product of two numbers 6a+1 is of the same form.

The progression 4n+1 is more difficult. We must assume the truth of a
theorem which we shall prove later (§ 20.3).

TueoreM 13. If a and b have no common factor, then any odd prime
divisor of a* + b? is of the form 4n + 1.

If we take this for granted, we can prove that there are infinitely many
primes 4n+1. In fact we can prove

TreoreM 14, There are infinitely many primes of the form 8n+-5.
We take
g=32527% . p? 4+ 22

a sum of two squares which have no common factor. The square of an odd
number 2m+1 is

dm(im + 1)+ 1

and is 8n+1, so that g is 82+5. Observing that, by Theorem 13, any prime

factor of g is 4n+1, and so 8n+1 or 8a+5, and that the product of two

numbers 8n+1 is of the same form, we can complete the proof as before.
All these theorems are particular cases of a famous theorem of Dirichlet.

THEOREM 15* (DIRICHLET’s THEOREM). | If @ is positive and a and b have
no common divisor except 1, then there are infinitely many primes of the
Sform an+b,

The proof of this theorem is too difficult for insertion in this book. There
are simpler proofs when b is 1 or —1.

¥ An asterisk attached to the number of a theorem indicates that it is not proved anywhere in the
book.
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2.4. Second proof of Euclid’s theorem. Our second proof of Theorem
4, which is due to Pdlya, depends upon a property of what are called
‘Fermat’s numbers’.

Fermat’s numbers-are defined by

Fo=2 41,
50 that
Fi =5, Fp =17, Fy=257, Fq=65537.

They are of great interest in many ways: for example, it was proved by
Gauss' that, if F,, is a prime p, then a regular polygon of p sides can be
inscribed in a circle by Euclidean methods.

The property of the Fermat numbers which is relevant here is

TueoreM 16. No two Fermat numbers have a common divisor greater
than 1.

For suppose that F,, and F,.x, where &k > 0, are two Fermat numbers,
and that ' )

miFy,, miFpy;.
Ifx = 2%, we have

For—2 221 ¥
n-k I X =xFr o2,

F, 2741 x+1

and so F|Fpyx ~ 2. Hence

mFosk, mFpie—2;

and therefore m| 2. Since F, 1s odd, m = 1, which proves the theorem.

It follows that each of the numbers Fy, F»,..., F, is divisible by an odd
prime which does not divide any of the others; and therefore that there are
at least n odd primes not exceeding F,. This proves Euclid’s theorem. Also

Pnit S Fp = 27 + 1,

and it is plain that this inequality, which is a little stronger than (2.2.1),
leads to a proof of Theorem 10.

t See §5.8.
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2.5, Fermat’s and Mersenne’s numbers. The first four Fermat num-
bers are prime, and Fermat conjectured that all were prime. Euler, however,
found in 1732 that

Fs = 2% 41 = 641.6700417
is composite. For
641 =5+ 24 =527+ |

divides each of 5% . 2284232 and 5%.2%% — 1 and so divides their difference
Fs.
In 1880 Landry proved that

Fo=2% 41 = 274177.67280421310721.
More recent writers have proved that F, is composite for
7<n<l6,n=18,19,21,623,36,38,39,55,63,73

and many larger values of n. No factor is known for F4, butin all the other
cases proved to be composite a factor is known.

No prime F,, has been found beyond Fj, so that Fermat’s conjecture has
not proved a very happy one. It is perhaps more probable that the number
of primes F, is finite.! If this is so, then the number of primes 2™+1 is
finite, since it is easy to prove

Tueorem 17. Ifa = 2 and a" + 1 is prime, then a is even and n = 27,
For if g is odd then a” + 1 is even; and if » has an odd‘factor k and
n = ki, then @" + 1 is divisible by
a¥ 41

: = g®mD =D
a +1

! ‘This is what is suggested by considerations of probability. Assuming Theorem 7, one might argue
roughly as follows. The probability that a number » iy prime is at most
A

logn ’
and therefore the total expectation of Fenmat primes is at most

1 —n |
AZ{W](AZZ < A

This argument {apart from its general lack of precision) assumes that there are no special reasons why
a Fermat pumber should be likely to be prime, while Theorems 16 and 17 suggest that there are some.,
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It is interesting to compare the fate of Fermat’s conjecture with that of
another famous conjecture, concerning primes of the form 27 — 1, We begin
with another trivial theorem of much the same type as Theorem 17.

Tueorem 18. Ifn > | and a" — 1 is prime, then a= 2 and n is prime.

Forifa > 2,thena — 1]a" — 1, and if g = 2 and n = &/, then we have
2k — 12" — 1.

The problem of the primality of @" — 1 is thus reduced to that of the
primality of 27 — 1. It was asserted by Mersenne in 1644 that M, =27 — |
is prime for

p=2,3,5"713,17,19,31,67,127,257,

and composite for the other 44 values of p less than 257, The first mistake in
Mersenne’s statement was found about 1886, when Pervusin and Seelhoff
discovered that Mg; is prime. Subsequently four further mistakes were
found in Mersenne’s statement and it need no longer be taken seriously.
In 1876 Lucas found a method for testing whether M,, is prime and used it
to prove Mi27 prime. This remained the largest known prime until 1951,
when, using different methods, Ferrier found a larger prime (using only a
desk calculating machine) and Miller and Wheeler (using the EDSAC 1
electronic computer at Cambridge) found several large primes, of which
the largest was

180M7,, + 1,

which is larger than Ferrier’s. But Lucas’s test is particularly suitable for
use on a binary digital computer and it has subsequently been applied by a
succession of investigators (Lehmer and Robinson, Hurwitz and Selfridge,
Riesel, Gillies, Tuckerman and finally Nickel and Noll). As a result it is
now known that M), is prime for

p=2,3,571713,17,19,31,61, 89,107,
127,521,607, 1279, 2203, 2281,3217,
4253,4423,9689,9941, 11213, 19937,21701,

and composite for all other p < 21700. The largest known prime is thus
M?21701, a number of 6533 digits.}

¥ Euler stated in 1732 that My and My7 are prime, but this was a mistake.
! See the end of chapter notes,
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We describe Lucas’s test in § 15.5 and give the test used by Miller and
Wheeler in Theorem 101.

The problem of Mersenne’s numbers is connected with that of ‘perfect’
numbers, which we shall consider in § 16.8.

We return to this subjectin § 6.15 and § 15.5.

2.6. Third proof of Euclid’s theorem. Suppose that 2, 3,..., p; are the
first / primes and let N (x) be the number of 7 not exceeding x which are
not divisible by any prime p > p;. If we express such an 7 in the form

n=nim,

where m is ‘squarefree’, i.¢. is not divisible by the square of any prime, we
have

FiT)

m = 251352 ...pj",

with every b either 0 or 1. There are just 2/ possible choices of the exponents
and so not more than 2/ different values of m. Again, n) € /n < /x and
so there are not more than ./x different values of . Hence

2.6.1) N(x) € Y./

If Theorem 4 is false, so that the number of primes is finite, let the primes
be 2, 3,...,p;. In this case N(x) = x for every x and so

x<Px, x<2¥,
which is false for x > 2% + 1.
We can use this argument to prove two further results.

TueoreMm 19. The series

1 1 1 1 1
2.6.2 ~— =4 -4+ -4+ —F---
(262) 2o=3t3tstytat
is divergent.

If the series is convergent, we can choose j so that the remainder after /
terms is less than %, i.e.
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The number of n < x which are divisible by p is at most x/p. Hence
x — N(x), the number of n < x divisible by one or more of pj+1, Py+2,--
is not more than
x x
it el SRR %x.
Pi+t Pi+2

Hence, by (2.6.1),

%x <NE <P /x, x< 2442

which is false for x > 2%+2, Hence the series diverges.

TueoreMm 20:

log x

=
7(x) 2 2log2

xz1); pa<d.

We take j = 7(x), so that p;4.; > x and N(x) = x. We have
x=Nx) <20 /x, 270 > /x,

and the first part of Theorem 20 follows on taking logarithms. If we put
x = py, s0 that w(x) = n, the second part is immediate.

By Theorem 20, 7(10%) =15; a number, of course, still ridiculously
below the mark.

2.7. Further results on formulae for primes. We return for a moment
to the questions raised in § 1.5. We may ask for ‘a formula for primes’ in
various senses.

(i) We may ask for a simple function f(n) which assumes all prime values
and only prime values, i.e. which takes successively the values py, p2, ...
when n takes the values 1, 2,.... This is the question which we discussed
in§ 1.5

(ii) We may ask for a simple function of # which assumes prime values
only. Fermat’s conjecture, had it been right, would have supplied an answer
to this question.! As it is, no satisfactory answer is known. But it is possible

!t H had been sugpested that Fermat’s sequence should be replaced by

2
241, 241, 2241, 2 4,

The first four numbers are prime, but Fig, the fifth member of this sequence, is now known 1o be
compuosite. Another suggestion was that the sequence Mp, where p is confined to the Mersenne primes,
would contain only primes. But M3 = 8191 and My is composite.



22 THE SERIES OF PRIMES [Chap. I

to construct a polynomial (in several positive integral variables) whose
positive values are all prime and include ali the primes, though its negative
values are composite. See § 2 of the Appendix.

(iii) We may moderate our demands and ask merely for a simple function
of n which assumes an infinity of prime values. It follows from Euclid’s
theorem that f'(n) = n is such a function, and less trivial answers are given
by Theorems 11-15. Apart from trivial solutions, Dirichlet’s Theorem 15
is the only solution known. It has never been proved that n*+1, or any
other quadratic form in n, will represent an infinity of primes, and all such
problems seem to be extremely difficult.

There are some simple negative theorems which contain a very partial
reply to question (i1).

TueoreM 21. No polynomial f(n) with integral coefficients, not a
constant, can be prime for all n, or for all sufficiently large n.

We may assume that the leading coefficient in f(n) is positive, so that
f(n) — oo when n —» o0, and f'(n) > 1 forn > N, say. Ifx > N and

f(x);aaxk-i---‘:y) 1,
then
f v +x) = ag(ry +x)* + ..

is divisible by y for every integral r; and f(#p+x) tends to infinity with r.
Hence there are infinitely many composite values of f (n).

There are quadratic forms which assume prime values for considerable
sequences of values of n. Thus n* — n + 41 is prime for 0 < n < 40, and

n® — 791 + 1601 = (n — 40)% + (n — 40) + 41

for0< n <79
A more general theorem, which we shall prove in § 6.4, is

TaeEOREM 22, If
f(n) = P(n,2°.37,.. ., k")

is a polynomial in its arguments, with integral coefficients, and f(n) — oo
when n — 00,1 then f(n) is composite for an infinity of values of n.

1 Some care is required in the statement of the theorem, to avoid such an £ () as 2°3" — 6" + 5,
which is plainly prime for ali n.
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2.8. Unsolved problems concerning primes. In § 1.4 we stated two
conjectural theorems of which no proof is known, although empirical
evidence makes their truth seem highly probable. There are many other
conjectural theorems of the same kind.

There are infinitely many primes n’+1. More generally, if a, b, ¢ are
integers without a common divisor, a is positive, atb and c are not both
even, and b* — dac is not a perfect square, then there are infinitely many
primes an®+bn+c.

We have already referred to the form #2-+1 in § 2.7 (iii). If a, b, ¢ have
a common divisor, there can obviously be at most one prime of the form
required. If a + b and ¢ are both even, then N = an®+-bn+-c is always even.
If b* — dac = k?, then

4aN = (Qan + b)* — k%

Hence, if N is prime, either 2an+b + k or 2an+b — k divides 44, and this
can be true for at most a finite number of values of n. The limitations stated
in the conjecture are therefore essential. -

There is always a prime between n? and (n+1)°.

Ifn > 4 is even, then n is the sum of two odd primes.

This is ‘Goldbach’s theorem’.

Ifn 2 9 is odd, then n is the sum of three odd primes.

Any n from some point onwards is a square or the sum of a prime and a
square.

This is not true of all »#; thus 34 and 58 are exceptions.

A more dubicus conjecture, to which we referredin § 2.5, is

The number of Fermat primes F, is finite.

2.9. Moduli of integers. We now give the proof of Theorems 3 and 2
which we postponed from § 1.3. Another proof will be given in § 2.11 and
a third in § 12.4. Throughout this section integer means rational integer,
positive or negative.

The proof depends upon the notion of a ‘modulus’ of numbers. A modulus
is a system S of numbers such that the sum and difference of any two
members of S are themselves members of §: 1.e.

2.9.1) meS.neS—>mtn)esS.

The numbers of a modulus need not necessarily be integers or even rational,
they may be complex numbers, or quaternions: but here we are concerned
only with moduli of integers.
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The single number 0 forms a modulus (the nuwll modulus).
It foliows from the definition of § that

aeS—>0=ag~qgeS.2a=a+acsh,

Repeating the argument, we see that na € § for any integral » (positive or
negative). More generally

(2.9.2) acS. beS->xa+ybeSsS

for any integral x,y. On the other hand, it is obvious that, if @ and b are
given, the aggregate of values of xa+yb forms a modulus.

It is plain that any modulus S, except the null modulus, contains some
positive numbers. Suppose that d is the smallest positive numberof §. If n
is any positive number of §, then n—zd € § for all z. If ¢ is the remainder
when n is divided by 4 and

n=zd+c,

thenc € S and 0 < ¢ < d. Since d is the smallest positive number of S,
we have ¢ = O and n = 2zd. Hence

TueoreM 23. Any modulus, other than the null modulus, is the aggregate
of integral multiples of a positive number d.

We define the highest common divisor d of two integers g and b, not
both zero, as the largest positive integer which divides both @ and b; and
write

d = (a,b).
Thus (0, a) = |a|. We may define the highest common divisor
(a,b,¢,.... %)

of any set of positive integers a, b, c, ...,k in the same way,
The aggregate of numbers of the form

xa + yb,

for integral x, y, is a modulus which, by Theorem 23, is the aggregate of
multiples zc of a certain positive ¢. Since ¢ divides every number of S, it
divides g and b, and therefore

c<d.
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On the other hand,
dla.d|b — dixa + yb,
so that d divides every number of S, and in particular ¢. It follows that
c=d
and that § is the aggregate of multiples of d.

Turorem 24, The modulus xa + yb is the aggregate of multiples of d =
(a,b).

It is plain that we have proved incidentally
THeOREM 25. The equation
ax+by=n
is soluble in integers x, y if and only if d | n. In particular,
ax + by =d
is soluble.

THEOREM 26. Any common divisor of a and b divides d.

2.10. Proof of the fundamental theorem of arithmetic. We are now
in a position to prove Euclid’s theorem 3, and so Theorem 2.

Suppose that p is prime and p| ab. If p { a then (@, p) = 1, and therefore,
by Theorem 24, there are an x and a y for whichxa +yp =1 or

xab +ypb = b.

But plab and p|pb, and therefore pib.
Practically the same argument proves

TaeoreM 27:
(a,b)=d .¢c >0 > (ac,bc) = de.
For there are an x and a y for which xa + yb = d or
xac + ybe = de.

Hence (ac, bc) | de. On the other hand, dja — dc {acand d |b — dc | bc;
and therefore, by Theorem 26, d¢ | (ac, bc). Hence (ac, be) = dc.
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2.11. Another proof of the fundamental theorem. We call numbers
which can be factorized into primes in more than one way abnormal. Let
n be the least abnormal number. The same prime P cannot appear in two
different factorizations of n, for, if it did, n/P would be abnormal and
n/P < n. We have then

nEpyPIP3 .. = 4142 0

where the p and ¢ are primes, nopisagandnogisap.

We may take p) to be the least p; since n is composite, p:;‘ £ n. Similarly,
if g is the least g, we have q% < n and, since p; # qi, it follows that
piq1 < n. Hence, if N =n — p1q;, we have 0 < N < nand N is not
abnormal. Now py! n and so p|N; similarly ¢;|N. Hence p; and ¢; both
appear in the unique factorization of N and p;4:| N. From this it follows
that p;q:|n and hence that g |n/p;. But n/p; is less than n and so has the
unique prime factorization p,ps .. .. Since g is not a p, this is impossible.
Hence there cannot be any abnormal numbers and this is the fundamental
theorem.

NOTES

§ 2.2, Mr. ingham tells us that the argument used here is due to Bohr and Littlewood:
see Ingham, 2.

§ 2.3. For Theorems 11, 12, and 14, see Lucas, Théorie des nombres, i (1851}, 3534,
and for Theorem 15 see Landau, Handbuch, 422-46, and Vorlesungen, i. 79-96.

An interesting extension of Theorem |5 has been obtained by Shiu (J. London Math.
Soc. (2} 61 (20603, 359-73). This says that for a and b as in Theorem 15, the sequence
of primes coniains arbitrarily long strings of consecutive elements, all of which are of the
form an + b. Taking @ = 1000 and & = 777 for example, this means that one can find as
many consecutive primes as desired, each of which ends in the digits 777.

§ 2.4. See Polya and Szeg6, No. 94.

§ 2.5, See Dickson, History, i, chs. 1, xv, xvi, Rouse Ball Mathematical recreations
and essays, Ch.2, and, for the earlier numerical results, Kraitchik, Théorie des nombres,
i (Paris, 1922), 22, 218 and D. H. L.ehmer, Bulletin Amer. Math. Soc. 38 (1932}, 383-4,
Miiter and Wheeler {Nature 168 (1951}, 838) give their large prime and Tuckerman {Proc.
Nat. Acad. Sci. U.S.A. 68 (1971), 2319-20) gives the Mersenne prime My, with p = 19937
and references to the other smaller ones found by electronic computing. The discovery of
the prime M, with p = 21701 was reported in the Times of 17th November, 1978, For
factors of composite F, see Hallyburton and Brillbart, Math. Comp. 29 (1975), 109-12
and, for a factor of Fy, see Brent, American Math. Soc. Abstracts, 1 (1980), 565.

By 2007, F, was known to be composite and had been completely factored for the values
5 € n £ 11, while many factors had been discovered for larger n. It was known that Fj, is
composite for 4 < n € 32. The smallest » for which no factor of F,, had been discovered
was n = 14,
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Similarly, by 2007, a total of 44 Mersenne primes had been discovered, the largest
being M37582657. The 39th Mersenne prime had been identified as M)3456917. but not ail
Mersenne numbers in between these two had been tested.

Ferrier’s primeis (2 148 1. 1)/17 and is the largest prime found without the use of electronic
computing (and may well remain so}.

The new large computers have made the subjects of factoring large numbers and of
testing large numbers for primality very interesting and highly non-trivial. Guy (Proc. 5th
Manitoba Conf. Numerical Math. 1975, 49-89) gives a full account of methods of factoring,
some remarks about tests for primality and a substantial list of references on both topics. On
tests for primality, see also, for example, Brillhart, Lehmer, and Seifridge, Math. Comp. 29
(1975), 62047 and Selfridge and Wunderlich, Proc. 4th Manitoba Conf. Numerical Math.
1974, 105-20.

Our proof that 641 F5 is due to Coxeter (Introduction to geometry, New York, Wiley,
1969), foowing Kraitchik and Bennett.

Ribenboim, The new book of prime number records, (Springer, New York, 1996) gives
a fult account of all the above work, and much besides.

§ 2.6. See ErdSs, Mathematica, B 7 (1938), 1-2. Theorem 19 was proved by Euler in
1737,

§ 2.7. Theorem 2} is due to Goldbach (1752} and Theorem 22 to Morgan Ward, Journal
London Math. Soc. 5 {1930), 106-7.

§ 2.8. See § 3 of the Appendix.

88 2.9-10. The argument follows the lines of Hecke, ch. i. The definition of a modulus
is the natural one, but is redundant. k is sufficient to assume that

meSneS-—»m—nel.
For then
O=n—nes, —n=0—nmeslS, mitn=m-—(—nres
§ 2.11. F A, Lindemann, Quart. J. of Math. (Oxford), 4 (1933), 319-20, and Davenport,

Higher arithmetic, 20. For somewhat similar proofs, see Zermelo, Géttinger Nachrichten
(new series}, i (1934), 43-4, and Hasse, Journal fiir Math. 159 (1928), 3-6,
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FAREY SERIES AND A THEOREM OF MINKOWSKI

3.1. The definition and simplest properties of a Farey series. In this
chapter we shall be concerned primarily with certam properties of the ‘pos-
itive rationals’ or ‘vulgar fractions’, such as 5 or -f~ Such a fraction may
be regarded as a relation between two positive integers, and the theorems
which we prove embody properties of the positive integers.

The Farey series 3, of order n is the ascending series of irreducible
fractions between 0 and 1 whose denominators do not exceed n. Thus h/k
belongs to J,; if

(3.1.1) 0Sh<k<n (k=1

the numbers 0 and 1 are included in the forms % and -} For example, Js is

01112132341
1’5°4’3°5°2°5’3’4’5° 1
The characteristic properties of Farey series are expressed by the following
theorems.

Treorem 28. If h/k and K [k’ are two successive terms of I, then
(3.1.2) ki — hk' = 1.
TueoREM 29. If h/k, h'/k", and K [k’ are three successive terms of 3,
then
hﬂ h + k»’
313 —_— e,
( ) kﬂ k e kf

We shall prove that the two theorems are equivalent in the next section,
and then give three different proofs of both of them, in §§ 3.3, 3.4, and
3.7 respectively. We conclude this section by proving two still simpler
properties of J,,.

TueoreM 30. Ifh/k and W [k’ are two successive terms of 3, then

(3.1.4) k4K >n

The ‘mediant’
h+ h’
k+ & + k"

T Or the reduced form of this fraction.
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of h/k and #' /K’ falls in the interval

(h /4

kK'k )

Hence, unless (3.1.4) is true, there is another term of 3, between #/k and
Kk

Tueorem 31. Ifn > 1, then no two successive terms of 3, have the same
denominator.

Ifk > 1 and /' /k succeeds h/k in 3, thenh + 1 < & < k. But then
4
h h h+1 (h_

F k-1 Tk S¥

and h/(k — 1)t comes between h/k and k' /k in X, a contradiction.

3.2. The equivalence of the two characteristic properties. We now
prove that each of Theorems 28 and 29 implies the other.

(1) Theorem 28 implies Theorem 29. If we assume Theorem 28, and
solve the equations

3.2.1) kR —hk" =1, W Kk =1
for " and k", we obtain
K'kh' — Ky =h+ K, kK'(kh —h)=k+k,

and so (3.1.3).

(2) Theorem 29 implies Theorem 28. We assume that Theorem 29 is true
generally and that Theorem 28 is true for .1, and deduce that Theorem
28 is true for 3,,. It is plainly sufficient to prove that the equations (3.2.1)
are satisfied when 4" /k” belongs to 3, but not to 3,1, so that &/ = ».
In this case, after Theorem 31, both & and &’ are less than £”, and A/k and
# [k’ are consecutive terms in J,_1.

Since (3.1.3) is true ex hypothesi, and A" /k" is irreducible, we have

h+hW =20, k4K =2k,
where A is an integer. Since & and &’ are both less than &”, A must be 1.

T Or the reduced form of this fraction.
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Hence
h”zh"’kh’, k”mk”{’*kf,
kh' — hk" = kh' — Bk = 1;

and similarly
kﬁh! — hh‘k! " i.

3.3. First proof of Theorems 28 and 29. Our first proof is a natural
development of the ideas used in § 3.2.

The theorems are true for n = 1; we assume them true for 3,_, and
prove them true for J,,.
- Suppose that h/k and #'/k’ are consecutive in J,—; but separated by
B k" in 3,.Y Let

(3.3.1) kW' —hk" =r >0, k'h - Wk =5>0.

Solving these equations for A" and k", and remembering that
ki — hk' = 1,

we obtain |

(3.3.2) KW =sh+ri, k' =sk-+rk'.

Here (r,s) == 1, since (A", k") = 1.
Consider now the set § of all fractions
H  uh-+ AW

333 I
( ) K uk+ Ak
in which A and u are positive integers and (A, i) = 1. Thus #” /k” belongs
to S. Every fraction of S lies between A/k and #'/k’, and is in its lowest
terms, since any commeon divisor of H and K would divide

k(uh + A0y — h(uk + Aky = A

¥ After Theorem 31, #”/k" is the only term of 3, between k/k and ' /k’; but we do not assume
this in the proof.
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and
Wk + M) — K (uh + AW = p.

Hence every fraction of § appears sooner or later in some J,; and plainly
the first to make its appearance is that for which X is least, i.e. that for
which A == 1 and u = 1. This fraction must be #” /k”, and so

(3.3.4) KW =h+W, K =k+Fk.

If we substitute these values for A7, k" in (3.3.1), we see thatr =5 = 1.
This proves Theorem 28 for J,. The equations (3.3.4) are not generally
true for three successive fractions of J,, but are (as we have shown) true
when the central fraction has made its first appearance in 3.

3.4. Second proof of the theorems. This proof is not inductive, and
gives a rule for the construction of the term which succeeds A/k in 3.
Since (h, k) = 1, the equation

(34.1) kx —hy =1
is soluble in integers (Theorem 25). If xg, o is a solution then
xo+rh, yo+rk

is also a solution for any positive or negative integral ». We can choose »
so that n — k < yp -+ rk < n. There is therefore a solution (x, y) of (3.4.1)
such that

(3.4.2) ) =1 0<n—k<y<n,

Since x/y is in its lowest terms, and y < n,x/y 1s a fraction of J,. Also

o1k
k&

x
y
so that x/y comes later in &, than A/k. If it is not &' /k’, it comes later than
K /K, and
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while
W h kW —hk I
——— — m— 2 —_
kK ok kk’ kk'
Hence
1 hk—hy x h_1 1 k+y
kv T kv oy kT Ky k' kk'y
n I
—_— ? —,
kk’ ky .

by (3.4.2). This is a contradiction, and therefore x/y must be #'/k’, and

kh' — hk' = 1.

Thus, to find the successor of g in %13, we begin by finding some solution (xgyg) of
9 — 4y = 1, eg. xg = 1, yp = 2. We then choose r so that 2 4 9» lies between
13~9=4and 13. Thisgivesr= L, x=1+4r =5,y =2 4+ 9 = 11, and the fraction

required is % .

3.5. The integral lattice. Our third and last proof depends on simple

but important geometrical ideas.

Suppose that we are given an ori-
gin O in the plane and two points P, O
not collinear with O. We complete
the parallelogram OPQR, produce its
sides indefinitely, and draw the two
systems of equidistant parallels of
which OP, QR and OQ, PR are con-
secutive pairs, thus dividing the plane
into an infinity of equal paralielo-
grams. Such a figure is called a lattice
(Gitter).

A lattice is a figure of lines. It
defines a figure of points, viz. the sys-
tem of points of intersection of the
lines, or lattice points. Such a system
we call a point-lattice.

QA

Two different lattices may deter-
min¢ the same point-lattice; thus in
Fig. 1 the lattices based on OF, OQ
and on OF, OR determine the same

/V
7
/

Fig. 1.
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system of points. Two lattices which determine the same point-laftice are
said to be equivalent.

It is plain that any lattice point of a lattice might be regarded as the origin
0, and that the properties of the lattice are independent of the choice of
origin and symmetrical about any origin.

One type of lattice is particularly important here. This is the lattice which
is formed (when the rectangular coordinate axes are given) by parallels to
the axes at unit distances, dividing the plane into unit squares. We call
this the fundamental lattice L, and the peint-lattice which it determines,
viz. the system of points (x, y) with integral coordinates, the fundamental
point-lattice A.

Any point-lattice may be regarded as a system of numbers or vectors,
the complex coordinates x+iy of the lattice points or the vectors to these
points from the origin. Such a system is plainly a modulus in the sense of
§ 2.9. If P and @ are the points (x;,y1) and (x2,y2), then the coordinates of
any point § of the lattice based upon OF and OQ are

X =mxy +nxa, y=my +ny;,

where m and »n are integers; or if z; and z; are the complex coordinates of
P and Q, then the complex coordinate of §' is

zZ=mzy 4 nzz.

3.6. Some simple properties of the fundamentai lattice. (1) We now
consider the transformation defined by

(3.6.1) ¥ =ax+ by, y =cx+dy,

where q, b, c, d are given, positive or negative, integers with ad — bc # 0.
It is plain that any point (x, y) of A is transformed into another point (x, ")
of A.

Solving (3.6.1) for x and y, we obtain

dx' — by ex' — ay
362 = — 7 A

If

(3.6.3) A =ad — bc = %1,
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then any integral values of x’ and 3’ give integral values of x and y, and
every lattice point (x, ') corresponds to a lattice point {x,y). In this case
A is transformed into itself.

Conversely, if A is transformed into itself, every integral (x,y') must
give an integral (x, y). Taking in particular (x’,y) to be (1, 0) and (0, 1),
we see that

Ald, Alb, Ale, Ala,

and so
Allad — be, A%|A.
Hence A = *1.
We have thus proved

TueoRrEM 32. A necessary and sufficient condition that the transforma-
tion (3.6.1) should transform A into itself is that A = +£1.

We call such a transformation unimodular.
(2) Suppose now P = (g, ¢) and Q = (b, d) are points of A not collinear
with O. The area of the parallelogram defined by OP and OQ is

& = *(ad — bc) = |ad — bel,

the sign being chosen to make § positive. The points (x', ") of the lattice
A’ based on OP and OQ are given by

X =xa+yb, ¥y =xc+yd

where x and y are arbitrary integers. After Theorem 32, a necessary and
sufficient condition that A’ should be identical with A is that 8§ = 1.

TueoREM 33. A4 necessary and sufficient condition that the lattice L'
based upon OP and OQ should be equivalent to L is that the area of the
parallelogram defined by OP and OQ should be unity.

(3) We call a point P of A visible (i.e. visible from the origin) if there
is no point of A on OP between O and P. In order that (x, y) should be
visible, it is necessary and sufficient that x/y should be in its lowest terms,
or {x,y) = l.
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Tueorem 34. Suppose that P and Q are visible points of A, and that 8 is
the area of the parallelogram J defined by OP and OQ. Then

(i) if 8 = 1, there is no point of A inside J;

(il) if & > 1, there is at least one point of A inside J, and, unless that
point is the intersection of the diagonals of J, at least two, one in each of
the triangles into which J is divided by PQ.

There is no point of A inside J if and only if the lattice L’ based on OP
and OQ is equivalent to L, i.e. if and only if & = 1. If § > |, there is at
least one such point S. If R is the fourth vertex of the parallelogram .J, and
RT is parallel and equal to OS, but with the opposite sense, then (since the
properties of a lattice are symmetrical, and independent of the particular
lattice point chosen as origin) T is also a point of A, and there are at least
two points of A inside J unless T coincides with S. This is the special case
mentioned under (ii).

. The different cases are illustrated in Figs. 2a, 2b, 2c.

3.7. Third proof of Theorems 28 and 29. The fractions A /k with

O<hsksn, Wk)=1
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are the fractions of 3,, and correspond to the visible points (k,h) of A
inside, or on the boundary of, the triangle defined by the lines y = 0,
y = X,X = n.

If we draw a ray through O and rotate it round the origin in the counter-
clockwise direction from an initial position along the axis of x, it will pass
in turn through each point (k, /) representative of a Farey fraction. If P and
P’ are points (k, k) and (k', /') representing consecutive fractions, there is
no representative point inside the triangle OPP’ or on the join PP, and
therefore, by Theorem 34,

ki — hk' = 1.

3.8. The Farey dissection of the continuum. It is often convenient to
represent the real numbers on a circle instead of, as usual, on a straight
line, the object of the circular representation being to eliminate integral
parts. We take a circle C of unit circumference, and an arbitrary point
O of the circumference as the representative of 0, and represent x by the
point P, whose distance from O, measured round the circumference in the
counter-clockwise direction, is x. Plainly all integers are represented by
the same point O, and numbers which differ by an integer have the same
representative point.

It is sometimes useful to divide up the circumference of C in the
following manner. We take the Farey series 3, and form all the mediants

_h+H
= xw
of successive pairs A/k, i /k’. The first and last mediants are
o0+1 1 n—1+1  =n
l+n n+1’ n+1 a4+l

The mediants naturally do not belong themselves to J,,.

We now represent each mediant i by the point P,,. The circle is thus
divided up into arcs which we call Farey arcs, each bounded by two points
P, and containing one Farey point, the representative of a term of 3,,. Thus

( n 1 ‘
n+i'n+1

is a Farey arc containing the one Farey point O. The aggregate of Farey
arcs we call the Farey dissection of the circle.
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In what follows we suppose that n > 1. If Py is a Farey point, and
hy/ky, halks are the terms of &, which precede and follow h/k, then the
Farey arc round Py, is composed of two parts, whose lengths are

h h+h 1 h+hy h 1

kK k+k  kk+k) k+ky k  k(k-+k)

respectively. Now k + k| < 2n, since k and &; are unequal (Theorem 31)
and neither exceeds n; and k + k; > n, by Theorem 30. We thus obtain

TugoreM 35. In the Farey dissection of order n, where n > 1, each part
of the arc which contains the representative of h/k has a length between

k2n—1 " k¥ 1)

The dissection, in fact, has a certain ‘uniformity’ which explains its
importance.

We use the Farey dissection here to prove a simple theorem concerning
the approximation of arbitrary real numbers by rationals, a topic to which
we shall return in Ch, XI.

THeorReM 36. If§ is any real number, and n a positive integer, then there
is an irreducible fraction h/k such that

(3.8.1) 0<k<n,

h 1
el [P —
k’ k(n+1)

We may suppose that 0 < £ < 1, Then & falls in an interval bounded by
two successive fractions of J,,, say A/k and /%', and therefore in one of

the intervals
(h h+h’) (h-f—h’ h’)
Ek+k)’ k+kkK )
Hence, after Theorem 33, either A’k or &' /&’ satisfies the conditions: A/k if
£ falls in the first interval, #'/k’ if it falls in the second.

3.9. A theorem of Minkowski. If P and Q are points of A, P’ and
¢ the points symmetrical to P and  about the origin, and we add to the
parallelogram ./ of Theorem 34 the three paralielograms based on OQ, OF,
on OF', OQ', and on OQ', OP, we obtain a parallelogram K whose centre
is the origin and whose area 44 is four times that of /. If § has the value 1 (its
least possible value) there are points of A on the boundary of K, but none,

é‘.._
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except O, inside. If § > 1, then there are points of A, other than O, inside
K. This is a very special case of a famous theorem of Minkowski, which
asserts that the same property is possessed, not only by any parallelogram
symmetrical about the origin (whether generated by points of A or not),
but by any ‘convex region’ symmetrical about the onigin.

An open region R is a set of points with the properties (1) if P belongs
to R, then all points of the plane sufficiently near to P belong to R, (2} any
two points of R can be joined by a continious curve lying entirely in R.
We may also express (1) by saying that any point of R is an inferior point
of R. Thus the inside of a circle or a parallelogram is an open region. The
boundary C of R is the set of points which are limit points of R but do not
themselves belong to R. Thus the boundary of a circle is its circumference.
A closed region R* is an open region R together with its boundary. We
consider only bounded regions.

There are two natural definitions of a convex region, which may be
shown to be equivalent. First, we may say that R (or R*) is convex if every
point of any chord of R, i.e. of any line joining two points of R, belongs to
R. Secondly, we may say that R (or R*) is convex if it is possible, through
every point P of C, to draw at least one line / such that the whole of R
lies on one side of /. Thus a circle and a parallelogram are convex; for the
circle, / is the tangent at P, while for the parallelogram every line / is a side
except at the vertices, where there are an infinity of lines with the property .
required.

It is easy to prove the equivalence of the two definitions. Suppose first
that R is convex according to the second definition, that 7 and Q belong to
R, and that a point S of PQ does not. Then there is a point T of C (which
may be S itself) on PS, and a line ! through 7" which leaves R entirely on
one side; and, since all points sufficiently near to P or Q belong to R, this
is a contradiction.

Secondly, suppose that R is convex according to the first definition and
that P is a point of C; and consider the set L of lines joining P to points of
R.If Y, and Y7 are points of R, and Y is a point of Y, Y2, then ¥ is a point of
R and PY aline of L. Hence there is an angle 4PB such that every line from
P within APB, and no line outside APB, belongs to L. If APB > x, then
there are points I3, E of R such that DE passes through P, in which case P
belongs to R and not to C, a contradiction. Hence APB < . IfAPB = 7,
then A8 is aline [; if APB < 7, then any line through P, outside the angle,
is a line /.

It is plain that convexity is invariant for translations and for magnific-
ations about a point O.
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A convex region R has an area (definable, for example, as the upper
bound of the areas of networks of small squares whose vertices lie in R).

Turorem 37. (MINKOWSKI’s THEOREM). Any convex region R symmet-
rical about O, and of area greater than 4, includes points of A other
than Q.

3.10. Proof of Minkowski’s theorem. We begin by proving, a simple
theorem whose truth is ‘intuitive’.

TreoREM 38. Suppose that Rg is an open region including O, that Rp
is the congruent and similarly situated region about any point P of A,
and that no two of the regions Rp overlap. Then the area of Ro does not
exceed 1.

The theorem becomes ‘obvious’ when we consider that, if Rp were the
square bounded by the lines x = :t%, y = i%, then the area of Rgp would
be 1 and the regions Rp, with their boundaries, would cover the plane. We
may give an exact proof as follows.

Suppose that A is the area of Rp, and 4 the maximurn distance of a point
of Co' from O; and that we consider the (2rn+ 1)? regions Rp cotresponding
to points of A whose coordinates are not greater numerically than n. All
these regions lie in the square whose sides are parallel to the axes and ata
distance n + A4 from O. Hence (since the regions do not overlap)

2
A—l

@n+ 1A <@n+247°, Ag|1+—2]),
n-+ s

and the result follows when we make » tend to infinity.

It is to be noticed that there is no reference to symmetry or to convexity
in Theorem 38.

It is now easy to prove Minkowski’s theorem. Minkowski himself gave
two proofs, based on the two definitions of convexity.

(1) Take the first definition, and suppose that Rp is the result of contract-
ing R about O to half its linear dimensions. Then the area of Rg is greater
than 1, so that two of the regions Rp of Theorem 38 overlap, and there is
a lattice-point P such that Rp and Rp overlap. Let O (Fig. 3a) be a point
common to Rg and Rp. If OQ' is equal and parallel to PQ, and Q" is the
image of Q' in O, then (', and therefore O, lies in Rp; and therefore, by

1 We use C systematically for the boundary of the corresponding &.
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the definition of convexity, the middle point of Q' lies in Rp. But this
point is the middle point of OP; and therefore P lies in R.

(2) Take the second definition, and suppose that there is no lattice point
but O in R. Expand R* about O until, as R™, it first includes a lattice point
P. Then P is a point of C”, and there is a line /, say /', through P (Fig. 3b).
If Rp is R’ contracted about O to half its linear dimensions, and /p is the
parallel to / through the middle point of OF, then /g is a line / for Rp. It is
plainly also a line [ for Rp, and leaves Rg and Rp on opposite sides, so that
Ry and Rp do not overlap. A fortiori Rp does not overlap any other Rp,
and, since the area of Rp is greater than 1, this contradicts Theorem 38.

There are a number of interesting alternative proofs, of which perhaps
the simplest is one due to Mordell,

If R is convex and symmetrical about O, and P} and P; are pomts of R
with coordinates (x1, y1) and (x3, y3), then (—x2, —y2), and therefore the
point M whose coordinates are %(x; — x3) and %(yl — y2), is also a point
of R.

The lines x = 2p/t, y = 2g/t, where ¢ is a fixed positive integer and
p and g arbitrary integers, divide up the plane into squares, of area 4/12,
whose comers are (2p/t, 2q/1). If N(r) is the number of corners in R, and
A the area of R, then plainly 42N () —> A whent -> oo; and if 4 > 4
then N (¢) > ¢2 for large 1. But the pairs (p, g) give at most 12 different pairs
of remainders when p and g are divided by ¢; and therefore there are two
points P; and P; of R, with coordinates 2p,/t, 2q,/¢ and 2pa/t, 2g2/t, such
that p; — p> and q; — g2 are both divisible by 7. Hence the point M, which
belongs to R, is a point of A.

3.11. Developments of Theorem 37. There are some further develop-
ments of Theorem 37 which will be wanted in Ch. XXIV and which it is
natural to prove here. We begin with a general remark which applies to all
the theorems of §§ 3.6 and 3.9-10.
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We have been interested primarily in the ‘fundamental’ lattice L (or A),
but we can see in various ways how its properties may be restated as general
properties of lattices. We use L or A now for any lattice of lines or points. If
itis based upon the points O, P, O, asin § 3.5, then we call the parallelogram
OPRQ the fundamental parallelogram of L or A,

(i) We may set up a system of oblique Cartesian coordinates with OF,
OQ as axes, and agree that P and Q are the points (1, 0) and (0, 1). The
area of the fundamental parallelogram is then

8§ = 0P -0Q : sinw,

where w is the angle between OP and OQ. The arguments of § 3.6,
interpreted in this system of coordinates, then prove

TreoreM 39. A4 necessary and sufficient condition that the transforma-
tion (3.6.1) shall transform A into itself is that A = 1.

Turorem 40. If P and Q are any two points of A, then a necessary and
sufficient condition that the lattice L' based upon OP and O should be
equivalent to L is that the area of the parallelogram defined by OF, OQ
should be equal to that of the fundamental parallelogram of A.

(i) The transformation
‘=ax+ By, ¥y =yx+dy

(where now «, 8, v, 5 are any real numbers)! transforms the fundamen-
tal lattice of § 3.5 into the lattice based upon the origin and the points
(e, ¥), (B, 8). It transforms lines into lines and triangles into triangles.
If the triangle Py P2P3;, where P; is the point (x;,y;), is transformed into
01 02(s, then the areas of the triangles are

R IR I
- 3 x3 y2 1
x3 y 1

and

axi + Byr yxi+8yp 1 1 X1 N
-l axz+ By yxa+d8n 1 |= :i:fzw(aa -ByYi x2 y2 1
ax3+ Byy yx3+8y3 1 x3 y3 1

¥ The & of this paragraph has no connexion with the § of (i), which reappears below.
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Thus areas of triangles are multiplied by the constant factor |8 — By |; and
the same is true of areas in general, since these are sums, or limits of sums,
of areas of triangles.

We can therefore generalize any property of the fundamental lattice by
an appropriate linear transformation. The generalization of Theorem 38 is

Tueorem 41. Suppose that A is any lattice with origin O, and that Ro
satisfies (with respect to A) the conditions stated in Theorem 38. Then the
area of Rp does not exceed that of the fundamental parallelogram of A.

It is convenient also to give a proof ab initio which we state at length,
since we use similar ideas in our proof of the next theorem. The proof, on
the lines of (i) above, is practically the same as that in § 3.10.

The lines

x==n y=:tn

define a parallelogram I1 of area 4n%3, with (2n+1)? points P of A inside
it or on its boundary. We consider the (2n+1)? regions Rp corresponding
to these points. If 4 is the greatest value of [x| or [y| on Cp, then all these
regions lie inside the parallelogram IT', of area 4(n + 4)?8, bounded by the
lines

x=x(n+4), y==xn+4),
and
(2n + 1)*A < 4(n + A)?S.
Hence, making n — oo, we obtailn.
A <4,

We need one more theorem which concerns the limiting case A = 5. We
suppose that R is a parallelogram; what we prove on this hypothesis will
be sufficient for our purposes in Ch. XXIV,

We say that two points (x,y) and (x’,y') are equivalent with respect to
L if they have similar positions in two parallelograms of L (so that they
would coincide if one parallelogram were moved into coincidence with the
other by parallel displacement). If L is based upon OP and OQ, and P and
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Q are (x1, y1) and (x2, y2), then the conditions that the points (x,y) and
(x’,y") should be equivalent are that

X —x=rxp+sxy, ¥y —y=ry +sy,,

where r and s are integers.

THeoreM 42. If Ro is a parallelogram whose area is equal to that of the
Sundamental parallelogram of L, and there are no two equivalent points
inside Ro, then there is a point, inside Ro or on its boundary, equivalent
to any given point of the plane.

We denote the closed region corresponding to Rp by R}

The hypothesis that R includes no pair of equivalent points is equivalent
to the hypothesis that no two Rp overlap. The conclusion that there is a point
of Ry, equivalent to any point of the plane is equivalent to the conclusion
that the R}, cover the plane. Hence what we have to prove is that, if A =&
and the Rp do not overlap, then the R}, cover the plane.

Suppose the contrary. Then there is a point Q outside all Rp. This point
@ lies inside or,on the boundary of some parallelogram of L, and there isa
region D, in this parallelogram, and of positive area » outside all Rp; and-
a corresponding region in every parallelogram of L. Hence the area of all
Rp, inside the parallelogram I’ of area 4(n + 4)?8, does not exceed

4@ -+ A4+ 1D
It follows that
Cn+ 128 <4@ —n+4+ D%
and therefore, making n — o0,
€ 8—n,

a contradiction which proves the theorem,

Finally, we may remark that all these theorems may be extended to
space of any number of dimensions. Thus if A is the fundamental point-
lattice in three-dimensional space, i.e. the set of points (x, y, z) with integral
coordinates, R is a convex region symmetrical about the origin, and of
volume greater than 8, then there are points of A, other than O, in R. Inn
dimensions 8 must be replaced by 2". We shall say something about this
generalization, which does not require new ideas, in Ch. XXIV.
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NOTES

§ 3.1. The history of ‘Farey series’ is very curions. Theorems 28 and 29 seem to have
been stated and proved first by Haros in 1802; see Dickson, History, i. 156. Farey did not
publish anything on the subject untit 1816, when he stated Theorem 29 in a note in the
Philosophical Magazine. He gave no proof, and it is unlikely that he had found one, since
he seems to have been at the best an indifferent mathematician.

Cauchy, however, saw Farey’s statement, and supplied the proof (Exercices de mathéma-
tigues, i. 114-16). Mathematicians generally have followed Cauchy’s example in attributing
the results to Farey, and the series witl no doubt continue to bear his name,

See Rademacher, Lectures in elementary number theory (New York, Blaisdefl, 1964),
for a fuller account of Farey series and Huxley, Acta Arith. 18 (1971), 281-7 and Hall,
J. London Math. Soc. (2) 2 (1970}, 139-48 for more details,

§ 3.3. Hwrwitz, Math. Annalen. 44 {1894}, 417-36. Professor H. G. Diamond drew my
attention to the incompleteness of our proof in eariier editions,

§ 3.4. Landau, Vorlesungen, i. 98100,

§§ 3.5-7. Here we follow the lines of a lecture by Professor Polya,

§ 3.8. For Theorem 36 see Landau, Vorlesungen, i. 160,

§ 3.9. The reader need not pay much attention to the definitions of ‘region’, "boundary’,
etc., given in this section if he does not wish to; he will not lose by thinking in terms
of elementary regions such as paralielograms, polygons, or eilipses, Convex regions are
simple regions involving no ‘topological’ difficulties. That a convex region has an area was
first proved by Minkowski (Geometrie der Zahlen, Kap. 2).

§ 3.10. Minkowski's first proof wili be found in Geometrie der Zahlen, 73-76, and
his second in Diophantische Approximationen, 28-30. Mordell's proof was given in Com-
positio Math. | (1534), 248-53. Another interesting proof is that by Hajos, dcta Univ
Hungaricae (Szeged), 6 (1934}, 224-5: this was set out in foll in the first edition of this
book.
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IRRATIONAL NUMBERS

4.1. Some generalities. The theory of ‘irrational number’, as explained
in text books of analysis, falls outside the range of arithmetic. The theory
of numbers is occupied, first with integers, then with rationals, as relations
between integers, and then with irrationals, real or complex, of special
forms, such as

r4s/2, r+sJ(=5),
where r and s are rational. It is not properly concerned with irrationals as
a whole or with general criteria for irrationality (though this is a limitation
which we shall not always respect).

There are, however, many problems of irrationality which may be
regarded as part of arithmetic. Theorems concerning rationals may be
restated as theorems about integers; thus the theorem

‘** + 5% = 3 is insoluble in rationals’
may be restated in the form
‘a*d® + b*c* = 3b°d? is insoluble in integers’:

and the same is true of many theorems in which ‘irrationality’ intervenes.
Thus

(P} */2 is irrational’
means
(9)) ‘a’* = 2b? is insoluble in integers’,

and then appears as a properly arithmetical theorem. We may ask ‘is /2
irrational?’ without trespassing beyond the proper bounds of arithmetic,
and need not ask ‘what is the meaning of /27" We do not require any
interpretation of the isolated symbol /2, since the meaning of (P) is defined
as a whole and as being the same as that of (0).!

In this chapter we shall be occupied with the problem

‘is x rational or irrational?’,

x being a number which, like /2, e, or r, makes its appearance naturally
in analysis.

t Inshort ./2 may be treated here as an ‘incomplete symbol® in the sense of Principia Mathematica,
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4.2. Numbers known to beirrational. The problem which we are con-
sidering is generally difficult, and there are few different types of numbers
x for which the solution has been found. In this chapter we shall confine
our attention to a few of the simplest cases, but it may be convenient to
begin by a rough general statement of what is known. The statement must
be rough because any more precise statement requires ideas which we have
not yet defined.

There are, broadly, among numbers which occur naturally in analysis,
two types of numbers whose irrationality has been established.

(a) Algebraic irrationals. The irrationality of ./2 was proved by
Pythagoras or his pupils, and later Greek mathematicians extended the
conclusion to /3 and other square roots. It is now easy to prove that

mN

is generally irrational for integral m and V. Still more generally, numbers
defined by algebraic equations with integral coefficients, unless ‘obviously’
rational, can be shown to be irrational by the use of a theorem of Gauss.
We prove this theorem (Theorem 45) in § 4.3.

(b) The numbers ¢ and w and numbers derived from them. 1t is easy to
prove e irrational (see § 4.7); and the proof, simple as it is, involves the
ideas which are most fundamental in later extensions of the theorem.
is irrational, but of this there is no really simple proof. All powers of e
or &, and polynomials in e or m with rational coefficients, are irrational.

Numbers such as
ev:, oS, .\/7e3‘/2, log 2

are irrational. We shall return to this subject in Ch. X1 (§§ 11.13-14),

It was not until 1929 that theorems were discovered which go beyond
those of §§ 11.13—14 in any very important way. It has been shown recently
that further classes of numbers, in which

e’ 2‘/2, V2 & +x
are included, are irrational. The irrationality of such numbers as
2 a¢, avl e+nm
or ‘Euler’s constant™ y is still unproved.

t oy B 1 1_
ym”knéo(]+2+...+ﬂ logn).
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4.3, The theorem of Pythageras and its generalizations. We shall
begin by proving

THEOREM 43 (PYTHAGORAS® THEOREM). /2 is irrational.

We shall give two proofs of this theorem. The theorem and its sim-
plest generalizations, though trivial now, deserve intensive study. The old
Greek theory of proportion was based on the hypothesis that magnitudes of
the same kind were necessarily commensurable, and it was the discovery
of Pythagoras which, by exposing the inadequacy of this theory, opened
the way for the more profound theory of Eudoxus which is set out in
Euclid v.

(i) First proof. If /2 is rational, then the equation
43.1 a* = 2?

is soluble in integers a, b with (a,b) = 1. Hence bla? and therefore pla2
for any prime factor p of b. It follows that pja. Since (¢,5) = 1, this is
impossible. Hence b = 1 and this also is clearly false,

(ii) Second proof. The traditional proof ascribed to Pythagoras runs as
follows. From (4.3.1), we see that a? is even and therefore that a is even,
i.c. @ = 2¢. Hence % = 2¢? and b is also even, contrary to the hypothesis
that (a,b) = 1.

The two proofs are very similar but there is an important difference, In
(ii) we consider divisibility by 2, a given number. Clearly, if 2{a?, then 2|a,
since the square of an odd number is certainly odd. In (i), on the other hand,
we consider divisibility by the unknown prime p and, in fact, we assume
Theorem 3. Thus (ii) is the logically simpler proof, while, as we shall see
in a moment, (i) lends itself more readily to generalization.

We now prove the more general

TueoreM 44. T/N is irrational, unless N is the m-th power of an integer n.
(ii1) Suppose that
(4.3.2) a” = Nb™,

where (a, b) = 1. Then b|a™, and p]a™ for every prime factor p of . Hence
pla, and from this it follows as before that b = 1. It will be observed that
this proof is almost the same as the first proof of Theorem 43.
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(iv) To prove Theorem 44 for m =2 without using Theorem 3, we suppose
that

b
JN=a—|—;,

where a, b, ¢ are integers, 0 < b < ¢ and b/c is the fraction with least
numerator for which this is true, Hence

N = (ca + b)? = a*c* + 2abc + b

and so c]b?, i.e. b? = cd. Hence

b d
JNma+z—a+3

and 0 < d < b, a contradiction. It follows that \/N is integral or irrational.

A still more general theorem is

THeOREM 45. If x is a root of an equation
xm+c1xm*hk+“'+0m:03

with integral coefficients of which the first is unity, then x is either integral
or irrational,

In the particular case in which the equation is
x* — N =0,
Theorem 45 reduces to Theorem 44.
We may plainly suppose that ¢, % 0. We argue as under (jii) above,
Ifx = a/b, where (a,b) = 1, then
@ +cd™ b+ +eub™ = 0.
Hence bja™, and from this it follows as before that b = ],

it is possible to prove Theorem 44 for general m and Theorem 45 also
without using Theorem 3, but the argument is somewhat longer.
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4.4. The use of the fundamental theorem in the proofs of Theorems
4348, It is important, in view of the historical discussion in the next
section, to observe what use is made, in.the proofs of § 4.3, of the
fundamental theorem of arithmetic or of the ‘equivalent’ Theorem 3.

The critical inference, in the proof (iii) of Theorem 44, is

‘pla™ — pla’.

Here we use Theorem 3. The same remark applies to the first proof of
Theorem 43, the only simplification being that m = 2. In these proofs
Theorem 3 plays an essential part.

The situation is different in the second proof of Theorem 43, since here
we are considering divisibility by the special number 2. We need ‘2ja® —>
2|a’, and this can be proved by ‘enumeration of cases’ and without an
appeal to Theorem 3. Since

2s + 1)? = 45% 4 ds + 1,

the square of an odd number is odd, as we remarked, and the conclusion
follows.

We can use a similar enumeration of cases to prove Theorem 44 for any
special m and N. Suppose, for example, that m = 2, N = 5. We need
‘5la®> — 5}a’. Now any number a which is not a multiple of 5 is of one
of the forms Sm + 1, Sm + 2, 5m + 3, 5m + 4, and the squares of these
numbers leave remainders 1, 4, 4, 1 after division by 5.

Ifm =2, N = 6, we argue with 2, the smallest prime factor of 6, and
the proof is almost identical with the second proof of Theorem 43. With
m = 2 and

N =2,3,56,7,8,10,11,12,13,14,15,17,18,
we argue with the divisors
d=2,3,52742,11,3,13,2,3,17,2,

the smallest prime factors of N which occur in odd multiplicity or, in the
case of 8, an appropriate power of this prime factor. It is instructive to work
through some of these cases; it is only when N is prime that the proof runs
exactly according to the original pattern, and then it becomes tedious for
the larger values of N.

We can deal similarly with cases suchas m =3, N =2, 3, or 5, but we
confine ourselves to those which are relevant in §§ 4.5-6.



30 IRRATIONAL NUMBERS [Chap. IV

4.5. A historical digression. It is unknown when, or by whom, the
‘theorem of Pythagoras’ was discovered. “The discovery’, says I_-Ie:ath,!r
‘can hardly have been made by Pythagoras himself, but it was certainly
made in his school.” Pythagoras lived about 570490 B.c. Democritus,
born about 470, wrote ‘on irrational lines and solids’, and ‘it is difficult
to resist the conclusion that the irrationality of /2 was discovered before
Democritus’ time’. ‘

It would seem that no extension of the theorem was made for over fifty
years. There is a famous passage in Plato’s Theaetetus in which it is stated
that Theodorus (Plato’s teacher) proved the irrationality of

V3,5,

‘taking all the separate cases up to the root of 17 square feet, at which point,
for some reason, he stopped’. We have no accurate information about this
or other discoveries of Theodorus, but Plato lived 429-348, and it seems
reasonable to date this discovery about 410-400.

The question how Theodorus proved his theorems has exercised the
ingenuity of every historian. It would be natural to conjecture that he used
some modification of the ‘traditional’ method of Pythagoras, such as those
which we discussed in the last section. In that case, since he cannot have
known the fundamental theorem,! and it is unlikely that he knew even
Euclid’s Theorem 3, he may have argued much as we argued at the end
of § 4.4. The objections to this (made by historians such as Zeuthen and
Heath) are (i) that it is so obvious an adaptation of the proof for /2 that it
would not be regarded as new and (ii) that it would be clear, long before
/17 was reached, that it was generally applicable. Against this, however,
it is fair to remark that Theodorus would have to consider each different
d anew and that the work would become notably laborious at \/11, /13,
and /17 (and behind /17 lurk /19 and ,/23).

There are, however, two other hypotheses as to Theodorus’ method of
proof. These methods become notably more complicated, one at /17 and
the other at /19. Which of these is to be preferred depends on the exact
meaning of the Greek word pe xpi, translated as ‘up to’ by Heath; does
it mean ‘up to but not including’ or ‘up to and including’ (the American
usage of ‘through’)? Classical scholars tell me that the former is the more

¥ Sir Thomas Heath, 4 manual of Greek mathematics, 54-55. In what follows passages in inverted
commas, unless attributed to other writers, are quotations from this book or from the same writer’s
A history of Greek mathematics.

¥ See Ch. XII, § 2.5, for some further discussion of this point,



4.5] IRRATIONAL NUMBERS 51

probable and, if so, the following method, proposed by McCabe, is a
very likely one. It has the merit of depending essentially on the distinction
between odd and even, a matter of great importance in Greek mathematics.

Considering /N for successive values of N, Theodorus could ignore
N = 4n, since he would already have dealt with /n. The other even values
of N take the form 2(2n+1) and the proof for /2 extends to this at once.
We have therefore only to consider odd N. For such N, if \/N = a/b and
(a,b) = 1, we have Nb? = a* and a and b must both be odd. We write a =
24+1 and b= 2B+1 and so obtain

N4+ 1)} = 2B+ 1)%
The namber N must be of one of the forms
4n -+ 3, 8n+5, 8n+1.
If N = 4n + 3, we multiply out, divide by 2 and obtain
8n4{A+ 1)+ 64(A+ D+ 2n+1=2B(B+1),

an impossibility, since one side is odd and the other even. If N = 8n + 5,
we again multiply out, divide by 4 and have

8nA{A+ 1)+ 544+ 1) +2n+ 1 = B(B + 1),

again impossible, since 4{4 + 1) and B(B -+ 1) are each even.

There remain the numbers of the form 8z + 1, which are 1,9,17,....
Of these, 1 and 9 are trivial and a difficulty first arises at N = 17. Arguing
as before, we reach the equation

17(B* +B) + 4 = A% + 4,

both sides being even. We have then to consider a variety of possibilities
and the whole problem becomes much more complicated. (The reader may
care to try them.) Hence, if this were Theodorus® method, he would very
naturally stop just short of /17.

Zeuthen suggests an interesting method involving ratios which after a
few transformations begin to cycle endlessly, thus leading to a proof by
contradiction. This works well up to and including 17, while 18 is of course
trivial, but 19 requires 8 ratios before an endless chain begins. We give his
proof for /5 in § 4.6. But, even if w€ xpt, means ‘up to and including’ in
this passage, Plato might more reasonably have said ‘up to and including
18’. On balance, McCabe’s conjecture seems the most plausible.
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4.6. Geometrical proof of the irrationality of /5. The proofs sug-
gested by Zeuthen vary from number to number, and the variations depend
at bottom on the form of the periodic continued fraction’ which represents
N . We take as typical the simplest case (N = 5).

We argue in terms of
1
= (/5 - 1}
x=3 (W51}
Then
2=1—x
Geometrically, if AB = |, 4C = x, then
AC?> = AB.CB
A c, G C, c B
FiG. 4.

and 4B is divided ‘in golden section’ by C. These relations are fund-
amental in the construction of the regular pentagon inscribed in a circle
(Euclid iv. 11).

If we divide 1 by x, taking the largest possible integral quotient, viz. 1,}
the remainder is 1 — x = x2. If we divide x by x?, the quotient is again 1
and the remainder is x — x? = x*. We next divide x? by x*, and continue
the process indefinitely; at each stage the ratios of the number divided, the
divisor, and the remainder are the same. Geometrically, if we take CCy
equal and opposite to CB, CA is divided at 'y in the same ratio as AB at C,
i.e. in golden section; if we take € C; equal and opposite to C1 4, then (' C
is divided in golden section at Cz; and so on.! Since we are dealing at each
stage with a segment divided in the same ratio, the process can never end,

It is easy to see that this contradicts the hypothesis of the rationality of
x. If x is rational, then 4B and AC are integral multiples of the same length
8, and the same is true of

CiC=CB=AB — AC, (1Cy = AC, =AC—-CC,...,

r.e. of all the segments in the figure. Hence we can construct an inf-
inite sequence of descending integral multiples of &, and this is plainly
impossible.

t SeeCh. X, § 10.12.

! Since 4

I CyCy equal and opposite to C7C, C3Cy equal and opposite to C3Cy,. ... The new segments
defined are measured alternately to the left and the right.

<x <L
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4.7. Some more irrational numbers. We know, after Theorem 44,
that \/7, 3/2, #/11,... are irrational. After Theorem 45, x = /2 + /3 is
irrational, since it is not an integer and satisfies

xt—10x2 +1=0.

We can construct irrationals freely by means of decimals or continued
fractions, as we shall see in Chs. IX and X; but it is not easy, without
theorems such as we shall prove in §§ 11.13-14, to add to our list many of
the numbers which occur naturally in analysis.

TueoreMm 46. logip 2 is irrational.

This is frivial, since
a
I 2= -
0810 5

involves 2% = 10%, which is impossible. More generally log, m is irrational
if m and n are integers, one of which has a prime factor which the other
lacks.

THroreM 47. e is irrational.

Let us suppose e rational, so that e = a/b where a and b are integers. If

k 2 band |
1 1
d=k!(e—1—*ﬁ—§?—...*~a),

then bik! and o is an integer. But

1 1
O<e=r T *a+Dasn T
1 1

1
“kr1l G T Tk
and this is a contradiction.

In this proof, we assumed the theorem false and deduced that o was
(i) integral, (ii) positive, and (iii) less than one, an obvious contradiction.
We prove two further theorems by more sophisticated applications of the
same idea.

For any positive integer n, we write

-y 1 &
fefo =200 1§ o,

n! n!
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where the ¢, are integers. For 0 < x < |1, we have
1
(4.7.1) 0<fx) < prt
Againf(0) = 0andf0) = 0ifm < norm > 2n. But, ifn < m < 2n,
!
megy = 7
f (0) - n! Cm,

an integer. Hence f (x) and all its derivatives take integral values at x = Q.
Since f(1 — x) = f{(x), the same is true atx = 1.

THEOREM 48. ¢ is irrational for every rational y # 0.

Ify = h/k and ¢ is rationa), so is €® = &*. Again, if e~* is rational, so
is ”. Hence it is enough to prove that, if & is a positive integer, ¢* cannot
be rational. Suppose this false, so that ¢ = a/b where a, b are positive
integers. We write

Fx) =R — K0 + ...~ P V) + ),

so that F(0) and F(1) are integers. We have
%{e’”‘f‘“(x)} = e (hF(x) + F'(x)} = A" e f(x).

Hence
1
b f KA (0 dx = b{e™ F(x)] = aF (1) — bF(0),
0

an integer. But, by (4.7.1),

bhneh

<1
n!

1
0<b f LM ronde <
0

for large enough n, a contradiction.

Temorem 49. 1 and 2 are irrational.
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Suppose 72 rational, so that 7% = a/b, where a, b are positive integers.
We write

Gix) =
b IKan(x) - nzn«-zfn(x) + 7!’2"“4}"(4)(1?) —en e (__l)nf(Zn}(x)] ,

so that G(0) and G(1) are integers. We have

—‘-{»{G’(x) sin mx — 7w G(x) cos mx}

dx
= {G"(x) + n*G(x)} sinwx = " "2 (x) sin wx
= n2a" sin 7 xf (x).
Hence
! : H
T [ a"sinnx f(x)dx = [Ei(fg;ﬁif - {F{x) COS :rx]
4 0
= G(0) + G(1),

an integer. But, by (4.7.1),

N

< ]

1
0 < nfa”sin:rxf(x)dx < :r‘:
/ !

for large enough n, a contradiction.

NOTES

§ 4.2. The irrationality of ¢ and 7 was proved by Lambert in 1761; and that of &™ by
Gelfond in 1929, See the notes on Ch. X

§§ 4.3-6. A reader interested in Greek mathematics is referred to Heatly’s books men-
tioned on p. 42, to van der Waerden, Science awakening {Gronnigen, Nordhoff, 1954) and
to Knorr, Evoiution of the Euclidean elements (Boston, Reidel, 1975). See McCabe, Math,
Mag. 49 (1976}, 2013 for his conjecture as to Theodorus” method of proof.

We do not give specific references, nor attempt to assign Greek theorems to their real
discoverers. Thus we use ‘Pythagoras’ for ‘some mathematician of the Pythagorean school”,

§ 4.3. Sir Alexander Oppenheim found the proof (iv) of Theorem 44 (improved by
Prof. R. Rado) and the corresponding proof of Theorem 435 referred to at the end of § 4.3,
Theorem 435 is proved, in a more general form, by Gauss, D4, § 42.
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§ 4.7. Qur proof of Theorem 48 is based on that of Hermite ((Euvres, 3, 154} and owr
proof of Theorem 49 on that of Niven (Bulletin Amer. Math. Soc. 53 {1947), 509).
By Theorem 49

X1 n?

is irrational, and by Theorem 205, L (4) = a; is also irrational, as are the values of {{m)
for all even positive integers m. However when m is odd much less is known. Apéry
(1978) showed that £(3) is irrational; for a short proof see Beukers (Bull London Math.
Soc. 11 {1979}, 268-72). It is still unknown if £(5)} is irrational. However Bali and Rivoal
(Inventiones Math, 146 (2001), 193-207) proved that the sequence (3}, (5), £(73, £{9)....
contains infinitely many irrational numbers.



vV
CONGRUENCES AND RESIDUES

5.1. Highest common divisor and least common multiple. We have
already defined the highest common divisor (g, ) of two numbers a and
b. There is a simple formula for this number.

We denote by min(x, y) and max(x, y) the lesser and the greater of x and
y. Thus min(1,2) = 1, max(l,1) = 1.

Tueorem 50. If
a=[lp" @20,
P
and
b=[1r" B20,
P
then

(a,b) = [ [p™" .
I 4

This theorem is an immediate consequence of Theorem 2 and the
definition of (a, b).

The least common multiple of two numbers a and b is the least positive
number which is divisible by both @ and . We denote it by {a, b}, so that

al{a,b}, bl{a, b},
and {a, b} is the least number which has this property.

t The symbol
[lre
P
denotes s product extended over all prime values of p, The symbol
[Tr»
pim

denotes a product extended over all primes which divide m. In the first formula of Theorem 50, « is
zero unless pla (so that the product is really a finite product). We might equally well write

a= Hp“
pla
In this case every o would be positive,
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Tueorem 51. In the notation of Theorem 50,

(a, b} = [ ] ™.
P

From Theorems 50 and 51 we deduce

THEOREM 52:

ab
(a,b)’

{a,b} =

If (a,b) = 1, a and b are said to be prime to one another or coprime.
The numbers a, b, c,..., k are said to be coprime if every two of them are
coprime. To say this is to say much more than to say that

{a,b,c,..-,k) = 1’

which means merely that there is no number but 1 which divides all of
ab,c,... k.

We shall sometimes say that ‘a and b have no common factor’ when we
mean that they have no common factor greater than 1, i.e. that they are
coprime.

5.2. Congruences and classes of residues. If m is a divisor of x — a,
we say that x is congruent to a to modulus m, and write

x = a (mod m).

The definition does not introduce any new idea, since ‘x = a (mod m)’ and
‘m|x — a’ have the same meaning, but each notation has its advantages. We
have already used the word ‘modulus’ in a different sense in § 2.9, but the
ambiguity will not cause any confusion.t

By x # a (mod m) we mean that x is not congruent to a.

If x = a (mod m), then a is called a residue of x to modulus m. If
0 < a < m~— 1, then a is the least residuet of x to modulus m. Thus two
numbers ¢ and b congruent (mod m) have the same residues (mod m). A
class of residues {(mod m) is the class of all the numbers congruent to a given

¥ The dual use has a purpose because the notion of a “congruence with respect to a modulus of
numbers’ occurs at a later stage in the theory, though we shall not use it in this book.
3 Strictly, least non-negative residue.
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residue {mod m), and every member of the class is called a representative
of the class.-It is clear that there are in all m classes, represented by

0,1,2,...,m— L.

These m numbers, or any other set of m numbers of which one belongs to
each of the m classes, form a complete system of incongruent residues to
modulus m, or, more shortly, a complete system (mod m).

Congruences are of great practical importance in everyday life. For
example, ‘today is Saturday’ is a congruence property (mod 7) of the num-
ber of days which have passed since some fixed date. This property is
usually much more important than the actual number of days which have

_passed since, say, the creation. Lecture lists or railway guides are tables of
congruences; in the lecture list the relevant moduli are 365, 7, and 24,

To find the day of the week on which a particular event falls is to solve a
problem in ‘arithmetic (mod 7)’. In such an arithmetic congruent numbers
are equivalent, so that the arithmetic is a strictly finite science, and all
problems in it can be solved by trial. Suppose, for example, that a lecture i1s
given on every alternate day (including Sundays), and that the first lecture
occurs on a Monday. When will a lecture first fall on a Tuesday? If this
lecture is the (x 4+ [)th then

2x = 1 (mod 7);
and we find by trial that the least positive solution is
x =4,

Thus the fifth lecture will fall on a Tuesday and this will be the first that
will do so.
Similarly, we find by trial that the congruence

x* =1 (mod 8)
has just four solutions, namely
x=1,3,5,7 (mod 8).

It is sometimes convenient to use the notation of congruences even when
the variables which occur in them are not integers. Thus we may write

x =y (mod 2)
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whenever x — y is an integral multiple of z, so that, for example,
% = %(mod 1), —=n = r(mod 2m).

5.3. Elementary properties of congruences. It is obvious that con-
gruences to a given modulus m have the following properties:

(Da=b-—+b=a,
(a=b.b=c—a=c,
(i) a=d . b=V s> a+b=d +¥.

Also,ifa=d ., b=V,... wehave

V) ka+b+...=kd +IV+...,

V) @ =a?%, a° =a",

and so on; and finally, if ¢(a,b,...) is any polynomial with integral
coefficients, we have

V) ¢(a,b,..) =6, ¥,..).
THEOREM 53. If a = b (mod m) and a = b(mod n), then
a = b (mod{m, n}).
In particular, if (m,n) = 1, then
a = b (mod mn),

This follows from Theorem 50. If p€ is the highest power of p which
divides {m, n}, then p®|m or pin and so p€|(a — b). This is true for every
prime factor of {m, n}, and so

a = b (mod {m, n)).

The theorem generalizes in the obvious manner to any number of
congruences.

5.4. Linear congruences. The properties (i)<(vi) are like those of
equations in ordinary algebra, but we soon meet with a difference. It is
not true that

ka=kid - a=d,
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for example
2.2=2.4(mod 4),
but
2 # 4 (mod 4).
We consider next what is true in this direction.

TueoreMm 54. If (k, m) = d, then

o by =4 e
kaxka(modm)aa_.a(modd),
and conversely. |

Since (k,m) = d, we have
k=kd, m=md, (k,m)=1

Then
ka — kd' _ ki(a— a')

m my
and, since (ky, m;) = 1,
mlka — ka' = myla—a't
This proves the theorem. A particular case is
Tueorem 55. If (k,m) = 1, then

ka = ka'(mod m) = a = a’ (mod m)

and conversely.

Tueorem 56. If aj,aa,...,am s a complete system of incongruent
residues (mod m) and (k,m) = 1, then kay, kay,... kay is also such

a system.

For ka; — ka; = 0 (mod m) implies a; — @; = 0 (mod m), by
Theorem 55, and this is impossible unless i = j. More generally, if

¥ ‘=" is the symbol of logical equivalence: if P and Q are propositions, then P = Qif P ~» Q and

g+ P

6l
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(k,m) = 1, then
ka, +1(r=1,2,3,...,m)
is a complete system of incongruent residues (mod m).
TreoreMm 57. If (k,m) = d, then the congruence
(5.4.D) kx == I (mod m)

. is soluble if and only if d|l. It has then just d solutions. In particular, if
(k,m) = 1, the congruence has always just one solution.

The congruence is equivalent to
kx — my = I,

so that the result is partly contained in Theorem 25. It is naturally to be
understood, when we say that the congruence has ‘just d” solutions, that
congruent solutions are regarded as the same.

If d == 1, then Theorem 57 is a corollary of Theorem 56. If d > 1, the
congruence (5.4.1) is clearly insoluble unless d}i. If d|i, then

m=dm, k=dk, @=dl,
and the congruence is equivalent to
(5.4.2) | k'x = I'(mod n).
Since (k', m’) = 1, (5.4.2) has just one solution. If this solution is
x =t (mod m),
then
X=1t+ym,

and the complete set of solutions of (5.4.1) is found by giving y all values
which lead to values of ¢ + ym’ incongruent to modulus m. Since

t+ym =t+zm' (mod m) = mim'(y — 2) = d|(y — 2),
there are just d solutions, represented by
t, t+w, t+2m',..., t4+(d-Dn'

This proves the theorem.
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5.5. Euler’s function ¢(m). We denote by ¢ (m) the number of positive
infegers not greater than and prime to m, that is to say the number of integers
n such that

O<ngm, (n,m):l.T

If a is prime to m, then so is any number x congruent to a (mod m). There
are ¢ (m) classes of residues prime to m, and any set of ¢ (m) residues, one
from each class, is called a complete set of residues prime to m. One such
complete set is the set of ¢ (m) numbers less than and prime to m.

Tueorem 58. If a1, aa, ..., ag(m) is a complete set of residues prime to
m, and (k,m) = 1, then

kay, kay,. .., kapom

is also such a set.

For the numbers of the second set are plainly all prime to m, and, as in
the proof of Theorem 56, no two of them are congruent.

THeorREM 59. Suppose that (m,m’) = 1, and that a runs through a
complete set of residues (mod m), and a’ through a complete set of
residues (mod m'). Then a'm -+ am’ runs through a complete set of residues
(mod mm"). '

There are mm’ numbers a’'m + am’. If
aym + aym’ = dym + aym’(mod mm'),
then
aym’ = aym’ (mod m),

and so

ay = ap (mod m);
and similarly

d) = a5 (mod m').

Hence the mm’ numbers are all incongruent and form a complete set of
residues (mod mm').

1 ncan be equal 10 m only when # = 1. Thus ¢(1) = 1.
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A function £ (m) is said to be multiplicative if (m,m’) = 1 implies

f(mm'y = f(m)f ().

TueorREM 60. ¢ (n) is multiplicative.

If (m,m’) = 1, then, by Theorem 59, a’m -+ am’ runs through a complete
set (mod mm’) when a and a’ both run through complete sets (mod m) and
(mod m’) respectively. Alse

@m+am’ mmY=1=@m+am’ m)=1.@m+am’ ,m') =1
= (am',m) = 1.(@mm) =1

= (a,m)=1.,m) =1

Hence the ¢ (mm’) numbers less than and prime to mm' are the least positive
residues of the ¢ (m)¢(m’) values of a’m + am’ for which a is prime to m
and &’ to m’; and therefore

¢ (mm') = $(m)$ (m’).
Incidentally we have proved

TueoreMm 61. If (m,m’) = 1, a runs through a complete set of residues
prime to m, and a’ through a complete set of residues prime to m’, then
am’ 4 a'm runs through a complete set of residues prime to mm'.

We can now find the value of ¢ (m) for any value of m. By Theorem 60,
it is sufficient to calculate ¢ (m) when m is a power of a prime. Now there
are p° — 1 positive numbers less than p°, of which p°~! — 1 are multiples
of p and the remainder prime to p. Hence

1
p(P)=p°—1—- @1 - 1)=p° (1 --;);

and the general value of ¢ (m) follows from Theorem 60.

TueoreM 62. If m = I'1pF, then
1
= 1—-1}.
¢ (m) mH( p)

We shall also require
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THEOREM 63

Y o)y =m.

dim

If m = I1p°, then the divisors of m are the numbers d == Ip<’, where
0 € ¢’ < c for each p; and

Pm) = ¢ = [[o¢")
dlm e

=[T{1 +6@ +60H + -+ 06"},
; |

by the multiplicative property of ¢ (m). But

L +¢@ + - +8@) =1+ @—D+pE—1)+---
+p7 1~ 1) = p°,

so that

B(n) = np‘ = m.
F]

5.6. Applications of Theorems 59 and 61 to trigonometrical sums.
There are certain trigonometrical sums which are important in the theory
of numbers and which are either ‘multiplicative’ in the sense of § 5.5 or
possess very similar properties.

We write!

e(t) = e*'7;

we shall be concerned only with rational values of r. It is clear that

(1) =<(7)

whenm = m’ (mod n). Itis this property which gives trigonometrical sums
their arithmetical importance.

¥ Throughout this section ¢! is the exponential function e¥ = | + ¢ + --- of the complex variable
¢. We assume a knowledge of the elementary properties of the exponential function.
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(1) Multiplicative property of Gausss sum. Gauss’s sum, which is
particularly important in the theory of quadratic residues, is

n—~1 . ’ n] hzm
s B 5 ()

k=0 k=0

(=)= ()
e{ ———0 2} =e/|
n n

Since

for any », we have

whenever i1 = k3 (mod n). We may therefore write
hZ
Sim,n) = Ze (l) .
A{n) n

the notation implying that 4 runs through any complete system of residues
mod n. When there is no risk of ambiguity, we shall write & instead of h(n).

Tueorem 64. If (n,n') = 1, then
S(m,nn’) = S(mn’, n)S(mn,n’).

Let A, A" run through complete systems of residues to modulus n,»'
respectively. Then, by Theorem 59,

H = hn' +h'n
runs through a complete set of residues to modulus #n’. Also

mH? = m(hn' + K m)? = mh2n? + mh'*n?(mod nn').
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Hence

o ‘2
S(mn’, S(mn, n') = [Ze (h ':" )] {Ze (h n’:’")]
. . 4

If

(m(th'i* + h’znz))
P ,
Iy nn
2 .
= Z € (m!{ ) = S(m,nn').
nn

H

(2) Multiplicative property of Ramanujan s sum. Ramanujan’s sum is

h
im- (%),

L ()

the notation here implying that 4 runs only through residues prime to g. We
shall sometimes write 4 instead of #* (g) when there is no risk of ambiguity.
We may write ¢, (m) in another form which introduces a notion of more
general importance. We call g a primitive g-th root of unity if p9 = I but
o is not 1 for any positive value of r less thang.
Suppose that g = 1 and that » is the least positive integer for which
p = 1.Thenqg = kr + 5, where 0 < s < r. Also
| pF=pi ™ =1

¥

so that s = 0 and »|g. Hence

THROREM 65. Any g-th root of unity is a primitive r-th root, for some
divisor r of q.

THEOREM 66. The g-th roots of unity are the numbers
h) '
ef — (h=0,1,...,g—1),
¢

and a necessary and sufficient condition that the root should be primitive
Is that h should be prime to q.
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We may now write Ramanujan’s sum in the form
cq(m) = Xp",

where p runs through the primitive gth roots of unity.
TheoreM 67. If (g, q* ) = 1, then

Caq' (M) = cg(m)cy (m).

For
h !
cq(m)cy(m) =) e {m (w + f'—,)}
o 7 4
h h"
Bk
by Theorem 61.

(3) Multiplicative property of Kloosterman s sum. Kloosterman’s sum
{which is rather more recondite) is

S@v,m =3 e (“” . "h) ,
h

where h runs through a complete set of residues prime to n, and A is
defined by

hh = 1(mod n).

Theorem 57 shows us that, given any A, there is a unique 4 (mod n) which
satisfies this condition. We shall make no use of Kloosterman’s sum, but
the proof of its multiplicative property gives an excellent illustration of the
ideas of the preceding sections.

TuEOREM 68. If (n,n) = 1, then
S(u, v, S, Vv, 1’y = S, V, nn'),

where

V owe vi' +vn2
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If

hh = l(tmod n), HKH = 1(mod n)

then

S, v, )8, v',n') = Z e

?

h+vh  ull + VR
(u b P +u Vv )

Y, n n
{(hn—i—h’n) vf_m’+v’iz’u]
=Ze u y + y
nn nn
h A
uH + K
(5.6.1) :Ze( —; )
hH

where
H=hi'+hn K=vhn' +VHin,

By Theorem 61, H runs through a complete system of residues prime to
nn'. Hence, if we can show that

(5.6.2) K = VH(mod nn'),
where A is defined by
HH = 1(mod nn"),

then (5.6.1) will reduce to

Stu,v,m)Sw,v' . n') = ;e (W) = S(u, V,nn).
Now
(hn' + Wn)H = HH = 1 (mod nn').
Hence

hn'H = 1(mod n), n'H =hhn'H = h (mod n),
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and so
(5.6.3) n2H = n'h (mod nn').
Similarly we see that
(5.6.9) n*H = n'h (mod nn');
and from (5.6.3) and (5.6.4) we deduce
VH = (n? +vVnHH = 'l + Vnk' = K (mod nn').
This is (5.6.2), and the theorem follows.

5.7. A general principle. We return for a moment to the argument
which we used in proving Theorem 65. It will avoid a good deal of repeti-
tion later if we restate the theorem and the proof in a more general form. We
use P(a) to denote any proposition asserting a property of a non-negative
integer a.

THEOREM 69, If

(iYP(a) and P(b) imply P(a + b) and P(a — b), for every a and b
(provided, in the second case, that b < a),

(i1) r is the least positive integer for which P(r) is true, then

(a) P (kr) is true for every non-negative integer k,

(b) any q for which P(q) is true is a multiple of r.

In the first place, (@) is obvious.

To prove {(b) we observe that 0 < r < ¢, by the definition of ». Hence
we can write

g=kr+s, S§S=gq-—kr,
where k 2> 1and 0 < 5 < r. But P(r) — P(kr), by (a), and
P(g) . P(kr) — P(s),
by (i). Hence, again by the definition of r,s must be 0, and ¢ = k.

We can also deduce Theorem 69 from Theorem 23. In Theorem 65, P(a)
is p* =1,
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5.8. Construction of the regular polygon of 17 sides. We conclude
this chapter by a short excursus on one of the famous problems of elemen-
tary geometry, that of the construction of a regular polygon of #n sides, or
of an angle « = 27/n.

Suppose that (n1, 72) = 1 and that the problem is soluble for » == n; and
for n = ny. There are integers r; and r; such that

riny + rang = 1

or
2 2n r
ryag -+ rpoy @ pp e 4 rp— = .
H; ni nny
Hence, if the problem is soluble for » — 7y and n = ny, it is soluble for
n = nyny. It follows that we need only consider cases in which » is a power
of a prime. In what follows we suppose n == p prime.

We can construct  if we can construct cos « (or sin «); and the numbers

coska +isinka (k=1,2,...,n~1)

are the roots of
x? =1

x—1

(5.8.1) =x"t4x"24...41=0.
Hence we can construct « if we can construct the roots of (5.8.1).
‘Euclidean’ constructions, by ruler and compass, are equivalent analyt-
ically to the solution of a series of linear or quadratic equations.! Hence
our construction is possible if we can reduce the solution of (5.8.1) to that
of such a series of equations.
The problem was solved by Gauss, who proved (as we stated in § 2.4)
that the reduction is possible if and only if » is a ‘Fermat prime*

nzpmzzkiwi:F;,.
The first five values of h, viz. 0, 1, 2, 3, 4, give
n==3 5, 17, 257, 65537,

all of which are prime, and in these cases the problem is soluble.
The constructions for n = 3 and n = 5 are familiar. We give here the
construction for n = 17. We shall not attempt any systematic exposition

1 See § 11.5. tSee§2s.
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of Gauss’s theory; but this particular construction gives a fair example of

the working of his method, and should make it plain to the reader that (as

is plausible from the beginning) success is to be expected when n = p and

p — 1 does not contain any prime but 2. This requires that p is a prime of

the form 2™ + 1, and the only such primes are the Fermat primes.!
Suppose then that n = 17. The corresponding equation is

x17 -

(5.8.2) =x®4xP 4. 51=0

x -1

We write

amzx € = k = coska 4 isink
=17 k=€ 5= isinka,

so that the roots of (5.8.2) are
(5.8.3) X —€1,€2,...,€16-

From these roots we form certain sums, known as periods, which are the
roots of quadratic equations,
The numbers

@< m<15)

are congruent (mod 17}, in some order, to the numbers k = 1,2,...,16,}
as is shown by the table

(5.8.4) m=20,1,2 3,4, 56, 7, 8 910,11,12,13,14,15,
(5.8.5) k=13,910,13, 515,11,16,14, 8, 7, 4,12, 2, 6.

We define x; and x; by

Xy == Z €k = €1 + €9+ €13+ €15+ €16 + €3+ €4 + €3,

m even
X2 = Z €k = €3+ €10 T €5 + €11 + €14 + €7 + €12 + €6;
m odd

t See§ 2.5, Theorem 17.
Y infactlisa ‘primitive root of 17" in the sense which will be explained in § 6.8.
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and yi, 2, ¥3, ya by

Yt = Z € = €] -+ €13 + €16 + €4,
m=0(mod4)
2= Z € = €5 + €15 + €3 + €2,
m=2{ mod4)
Y3 = Z € = €3 + €5 + €14 1 €12,
m=1{mod4)
Y4 = Z € = €10 + €11 + €7 -+ €6,
m=3{mod4)
Since
€x + €)7- = 2coska
we have

x; = 2(cos o -+ ¢os 8a -+ cos 4 + cos 2a),

x7 = 2{cos 3a + cos 7a + cos Sa + cos 6a),

vt = 2(cosa + cosda), y2 = 2(cos 8u + cos 2a),
y3 = 2(cos 3a + cos Sa), y4 = 2(cos 7o + cos 6a).

We prove first that x; and x; are the roots of a quadratic equation with
rational coefficients. Since the roots of (5.8.2) are the numbers (5.8.3), we
have

8 16
X1 +x3 = ZZcosica = 226;, = —1L.
Again, '

x1x3 = 4(cos ¢ + cos 8a + cos 4o + cos 2a)
x {cos 3o + cos ot -+ cos Sa + cos 6a).

If we multiply out the right-hand side and use the identity
{5.8.6) 2 cos ma cos na = cos{m -+ n)a + cos(m — n)a,
we obtain

x1x2 = 4(x; + x3) = —4,
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Hence x; and x3 are the roots of
(5.8.7) x*+x—4=0.
Also
cosa + cos2a > 2¢os i:r = /2> —~cos8a, cosda > 0.
Hence x; > 0 and therefore
(5.8.8) X1 > X3.

We prove next that y;, y» and y3, y4 are the roots of quadratic equations
whose coefficients are rational in x; and x;. We have

Y1+ y2 = xy,
and, using (5.8.4) again,
yiyr = 4(cos a + cos 4 ){cos Ba + cos 2a)

8
= ZZcoska = —1,
k=1

Hence yy, y7 are the roots of

(5.8.9) VP —xy—1=0;
and it is plain that

(5.8.10) Y1 > .
Similarly

yi+ya=x2, yiya=-—I,
and so y3, y4 are the roots of
(5.8.1D) Y —xy—1=0,

and

(5.8.12) V1 > y4
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Finally

2cosa + 2cosda =y,
4 cos & cos 4a = 2(cos Sa + cos 3a) = y3.

Also cos @ > cos4a. Hence z; = 2cosa and z3 = 2cos4a are the
roots of the quadratic

(5.8.13) 22 —yiz+y3=0
and
(5.8.14) 2 >z
We can now determine z; = 2cosa by solving the four quadratics

(5.8.5), (5.8.7), (5.8.9), and (5.8.11), and remembering the associated
inequalities. We obtain

2cosa = §{—1+ 17+ /(34 — 2/17)}
+ L /168 + 1217 — 16,/(34 + 2,/17)
-2 — /1N (34 - 2/17)},
an expression involving only rationals and square roots. This number may
now be constructed by the use of the ruler and compass only, and so o may
be constructed.
There is a simpler geometrical construction. Let C be the least positive

acute angle such that tan 4C = 4, so that C, 2C, and 4C are all acute. Then
(5.8.5) may be written

x2+4xcot4C~—4m{).

The roots of this equation are 2 tan 2C, —2 cot 2C. Since x; > x3, this gives
x) = 2tan 2C and x; = ~2 cot 2C. Substituting in (5.8.7) and (5.8.9) and
solving, we obtain

yi=tan(C+in), y3=tanC,

y2 = tan (C — %J’t), y4 = —cotC.
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Hence

(5.8.15)
2cos3x +2cosSa == y3 = tan C,
2cos3a.2cos85a = 2 cos2a 4+ 2cos 8o = yz = tan{C ~ %zr).

Now let O4, OB (Fig. 5) be two perpendicular radii of a circle. Make
OfI one-fourth of OB and the angle OIE (with E in OA) one-fourth of the
angle OIA. Find on A0 produced a peint F such that EJF = %:r. Let the
circle on AF as diameter cut OB in K, and let the circle whose centre is E
and radius EX cut O4 in N3 and N5 (N3 on O4, N5 on AO produced). Draw
NP3, N5Ps perpendicular to 04 to cut the circumference of the original
circle in P3 and Ps.

P B Py
Py
Py
I
Ny F OE A A

Fig. 5.
Then OI4 = 4C and OIE = C. Also
ON3 — ONj _ 40E _ OE _

2¢08AO0P; +2cos AQPs; = 2 o
3 3 04 o4 = o1 =G
ON3 — ONs OK?2
2¢05A0Py  2¢08A0Ps = —4 i — 47"
3. < COSAVES 042 N YE
T o4 T " or T 37/

Comparing these equations with (5.8.13), we see that AOP3; = 3« and
AOPs = Sa. It follows that 4, P53, Ps are the first, fourth, and sixth vertices
of a regular polygon of 17 sides inscribed in the circle; and it is obvious
how the polygon may be completed.
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NOTES

§ 5.1. The contents of this chapter are all ‘classical’ (except the properties of Ramanujan’s
and Kloosterman’s sums proved in § 5.6), and will be found in text-books. The theory of
congruences was first developed scientifically by Gauss, D.4., though the main results must
have been familiar to earlier mathematicians such as Fermat and Euler. We give occasional
references, especially when some famous function or theorem is habitually associated with
the name of a particular mathermatician, but make no atternpt to be systematic,

§ 5.5. Euler, Novi Comm. Acad. Petrop. 8 (1760--1), 74-104 [Opera (1), ii. 53144},

It might seem more natursl to say that f () is multiplicative if

f(mm') = f(m)f (m)

for all m, m’. This definition would be too restrictive, and the less exacting definition of
the text is much more useful.

§ 5.6. The sums of this section occur in Gauss, ‘Summatio quarumdam serierum singu-
larium’ €1808), Werke, ii. 11--45; Ramanujan, Trans. Camb. Phil. Soc. 22 (1918), 259-76
{Collected Papers, 179-99); Kloosterman, Acta Math. 49 (1926), 407-64. ‘Ramanujan’s
sum’ may be found in easlier writings; sce, for example, Jensen, Beretning d. tredje Skand.
Matematikercongres (1913}, 185, and Landau, Handbuch, 572: but Ramanujan was the
first mathematictan to see its full importance and use it systematically. |t is particularly
important in the theory of the representation of numbers by sums of squares, For the
evaliation of Gauss's sumns, their applications and their history, see Davenpont, Multiplica-
tive number theory, (Markham, Chicago, 1967) and for information and references about
Kloostermann’s sums, see Weil, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-7.

§ 5.8. The general theory was developed by Gauss, DA, §§ 335-66. The first explicit
geometrical construction of the 17-agon was made by Erchinger {see Gauss, Werke, ii.
186-7). That in the text is due to Richmond, Quarterly Journal of Math. 26 (1893), 206-7,
and Math. Annalen, 67 {1909), 459-61. Qur figure is copied from Richmond's.

Gauss {(D._4., § 341) proved that the equation (5.8.1) is irreducible, i.e. that its left-hand
side cannot be resolved into factors of lower degree with rational coefficients, when n is
prime. Kronecker and Eisenstein proved, more generally, that the equation satisfied by
the ¢ (n) primitive nth roots of unity is irreducible; see, for example, Mathews, Theory of
numbers (Cambridge, Deighton Bell, 1892), 186-8. Grandjot has shown that the theorem
can be deduced very simply from Dirichlet’s Theorem §5: see Landau, Vorlesungen, iii. 219.
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FERMAT’S THEOREM AND ITS CONSEQUENCES

6.1. Fermat’s theorem. In this chapter we apply the general ideas of
Ch. V to the proof of a series of classical theorems, due mainly to Fermat,
Euler, Legendre, and Gauss.

Tueorem 70. If p is prime, then
(6.1.1) @’ = a (modp).

TreoREM 71 (FERMAT’S THEOREM). If p is prime, and p 4 a, then
(6.1.2) @1 &= 1 (mod p).

The congruences (6.1.1) and {6.1.2) are equivalent when p 4 a; and (6.1.1)
is trivial when pla, since then ¢ = 0 = a. Hence Theorems 70 and 71 are
equivalent.

Theorem 71 is a particular case of the more general

THEOREM 72 {THE FERMAT-EULER THEOREM). If (a,m) = |, then

a®™ = 1 (mod m).
If x runs through a complete system of residues prime to m, then, by

Theorem 38, ax also runs through such a system. Hence, taking the product
of each set, we have

H(ax) = Hx (mod m)

or
a® nx = nx (mod m).

Since every number x is prime to m, their product is prime to m; and hence,
by Theorem S5,

a®™ = 1 (mod m).

The result is plainly false if (@, m) > 1.
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6.2. Some properties of binomial coefficients. Euler was the first to
publish a proof of Fermat’s theorem. The proof, which is easily extended
so as to prove Theorem 72, depends on the simplest arithmetical properties
of the binomial coefficients.

TueoreM 73. If m and n are positive integers, then the binomial
coefficients

(m)_m(mml).,.(mwn+1)

n n!

PO EELILALED.
ni

are integers.

It is the first part of the theorem which we need here, but, since

-mY _, yanfmin—1
()= (7).
the two parts are equivalent. Either part may be stated in a more striking

form, viz.

Tueorem 74. The product of any n successive positive integers is
divisible by n\.

The theorems are obvious from the genesis of the binomial coefficients
as the coefficients of powers of x in (1 + x)(1 +x)... orin '

Q=010 =-x)" =0 4x4+2 4+ )0 +x4+x24+.-)....

We may prove them by induction as follows. We choose Theorem 74, which
asserts that

(m)y =mm-+1)...(m+n~— 1)

is divisible by a!. This is plainly true for » = 1 and all m, and also for
m = ] and all n. We assume that it is true (@) forn = N — 1 and all m and
(b) forn = N and m = M. Then

M+ Dy —My=NM+ Dy,

and (M + Dy_; is divisible by (N — 1)!. Hence (M + 1)u is divisible by
N1, and the theorem is true for n = N and m = M + 1. It follows that the
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theorem is true for n = N and all m. Since it is also true for n = N + 1 and
m = 1, we can repeat the argument; and the theorem is true generally.

TueoreM 75. If p is prime, then
p\ (P p
1 * 2 L B | p — 1
are divisible by p.

Ifl<n<p—1,then
n|p(p—D...(p—n+1),
by Theorem 74. But ! is prime to p, and therefore
nl(p—ND(p—2)..(p—n+1).

Hence

p—

(p) _p=-D(p=2)...(p—nt+1)
n P I

n!
is divisible by p.

TueoreM 76. If p is prime, then all the coefficients in (1 — x)™P are
divisible by p, except those of 1, xP, x*P, ..., which are congruent to 1
(mod p).

By Theorem 73, the coefficients in

—-p s p+n-—1
(1~x)P~..1+Z( . )x"

n== |

are all integers. Since
-2y l=14+x%+..,
we have to prove that every coefficient in the expansion of
(1= =-0)P=010-0)"PU—-) {1 —xf — 1 +5°}

is divisible by p. Since the coefficients in the expansions of (1 — x)™” and
(1 — x?)~! are integers it is enough to prove that every coefficient in the
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polynomial (I — x)? — 1 + x” is divisible by p. For p = 2 this is trivial
and, for p > 3, it follows from Theorem 75 since

-1 '
(1—-x¥ -1+ = Z}(—l)r (f)x'

r=

We shall require this theorem in Ch, XIX.

TaeoreMm 77. If p is prime, then
x+y+---+wf 5x“’+y"+~-+wp'(m0dp).
For
(x+y¥ =x"+y? (modp),

by Theorem 75, and the general result follows by repetition of the argument.
Another useful corollary of Theorem 75 is

TeeorREM 78. Ifa > O and
| m = 1 (mod p*),
then
m? = 1 (mod p**}),
Form = 1 + kp®, where & is an integer, and ap > a + 1. Hence
m’ = (1+kp"Y = 1 + it

where [ is an integer.

6.3. A second proof of Theorem 72. We can now give Euler’s
proof of Theorem 72. Suppose that m=TIp®. Then it is enough, after
Theorem 33, to prove that

a®™ =] (mod p%).
But

¢(m) = []oe™ =']"[p°’“<p -1,
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and so it is sufficient to prove that

&P = (mod p*)

whenp t a.
By Theorem 77,
(x+y+... W =x+y” +.. (modp).
Takingx =y = z = ... = |, and supposing that there are @ numbers, we
obtain
&’ = a (mod p),
or
# ' = 1 (mod p).

Hence, by Theorem 78,

PP =1 (modp?), FCD =1 (mod ), ..,
#7'07D = 1 (mod p*) .

6.4. Proof of Theorem 22. Before proceeding to the more important
applications of Fermat’s theorem, we use it to prove Theorem 22 of Ch. 11
‘We can write f (#) in the form

m m qr
f(n) = ZQ?‘ (?I) a: - Z ZCr,s"s)a:,
rezl razl =0
where the g and ¢ are integers and

l€ai<ay <...<am.

The terms of f(n) are thus arranged in increasing order of magnitude for
large n, and f (n) is dominated by its last term

Congm MM Ay,

for large n (so that the last ¢ is positive).
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If £ (n) is prime for all large n, then there is an n for which

fn)=p > am
and p is prime. Then
{n+kp(p — DY = n’ (mod p),
for_ail integral k and s. Also, by Fermat’s theorem,
@1 =1 (modp)

and so
a::+’¢(P“1) = 4" (modp)

for all positive integral k. Hence
(n+kp (p = DY ap*PP~D = w¥a] (modp)
and therefore
[ntkp(p — 1)} = f(n) = 0(mod p)

for all positive integral k; a contradiction.

6.5. Quadratic residues. Let us suppose that p is an odd prime, that
P 1 a, and that x is one of the numbers

1,2, 3,.. cop— L
" Then, by Theorem 58, just one of the numbers
1.x,2.x,...,(p~1x
is congruent to a (mod p). There is therefore a unique x” such that
x'=a(modp), 0<x <p.

We call x’ the associate of x. There are then two possibilities: either there
is at least one x associated with itself, so that x’ = x, or there is no such x.

(1) Suppose that the first alternative 1s the true one and that x; is
associated with itself. In this case the congruence

x=a {mod p)
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has the solution x = x;; and we say that a is a quadratic residue of p, or
(when there is no danger of a misunderstanding) simply a residue of p, and
write a R p. Plainly

x =p —x1 = ~x; (mod p)

is another solution of the congruence. Also, if x’ = x for any other value
x» of x, we have

2 e 2 2 _
xf=a, xg =a, (X —x)x+x)=x{—-x;=0(modp).
Hence either x = x; or

X=X =P~ X1,

and there are just two solutions of the congruence, namely x; and p — x;.
In this case the numbers

,2,....,p~1

may be grouped as x;, p — x;, and 3(p—3) pairs of unequal associated
numbers. Now

x1{p—x1) = —x% = —a(modp),

while
xx' = a(mod p)

for any associated pair x, x’. Hence
(p—-1i=[]x= ~a.at#Y = —1#~V (modp).

(2) If the second alternative is true and no x is associated with itself, we
say that g is a quadratic non-residue of p, or simply a non-residue of p,
and write a N p. In this case the congruence

“=a (mod p)
has no solution, and the numbers
,2,...,p—1

may be arranged in %( p — 1) associated unequal pairs. Hence

(7 - D! =[x =a?®" (modp).
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We define ‘Legendre’s symbol’ ( g), where p is an odd prime and a is any
number not divisible by p, by

(g—):-{—i, if aRp,
G)m—l, if aNp.

()= G)

if 2 = b (mod p). We have then proved

It is plain that

Taeorem 79. If p is an odd prime and a is not a multiple of p, then
(p— 1! =~ (E) a2P=1 (mod p) .

We have supposed p odd. It is plain that 0 = 02,1 = 12, and so all
numbers, are quadratic residues of 2. We do not define Legendre’s symbol
when p = 2, and we ignore this case in what follows. Some of our theorems
are true (but trivial) whenp = 2.

6.6. Special cases of Theorem 79: Wilson’s theorem. The two
simplest cases are those in whicha =l anda = —1.
(1) Firstleta = 1. Then

x> = | (mod p)

has the solutions x = +1; hence 1 is a quadratic residue of p and

G-

If we put g = 1 in Theorem 79, it becomes

TiHeEOREM 80 (WILSON’S THEOREM):
(p— 1I}{=—1(mod p).
Thus 11 | 3628801.
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The congruence
(p— D!+ 1= 0(mod p?)

is true for
p=35 p=13, p=563,

but for no other value of p less than 200000. Apparently no general theorem
concerning the congruence is known.
If m is composite, then

m|(m — 1)! + 1
is false, for there is a number 4 such that .
dim, 1l <d<m,

and d does not divide (m — 1}!+1. Hence we derive

Turorem 81. Ifm > 1, then a necessary and sufficient condition that m
should be prime is that

mi(m — Dt + 1,

The theorem is of course quite useless as a practical test for the primality
of a given number m.
(2) Next suppose a = —1. Then Theorems 79 and 80 show that

(_—1) = —(=DIPD (p— = (—1)TFPD,
p

TureoreM 82. The number —1 is a quédmtic residue of primes of the
form 4k + 1 and a non-residue of primes of the form 4k + 3, i.e.

(:1_) —_ (_;)%(P—l} ]
P

More generally, combination of Theorems 79 and 80 gives

(E) = qiP-1) (mod p) .

THEOREM §3:
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6.7. Elementary properties of quadratic residues and non-residues.
The numbers

(6.7.1) 12,22,3%, . (L (p - D}

are all incongruent; for 2 = 52 implies r = s or r = —s (modp), and the
second alternative is impossible here. Also

r = (p— ir')2 {mod p).
It follows that there are %( p—1) residues and %( p~1) non-residues of p.

Tureorem 84, There are %( p — 1) residues and %( p — 1) non-residues
of an odd prime p.

We next prove

TueoreM 85. The product of two residues, or of two non-residues, is a
residue, while the product of a residue and a non-residue is a non-residue.

(1) Let us write o, o', a,... for residues and 8, 8, Bi,... for non-
residues. Then every aa’ is an «, since

P =0y =a o (x3)? = aa’(mod p).
(2) If a; is a fixed residue, then
1"11’2'“1,3'“1:' - "(p - Z)a}

is a complete system (mod p). Since every aa; is a residue, every Ba;
must be a non-residue.
(3) Similarly, if B, is a fixed non-residue, every 88, is a residue. For

l'ﬁlsz'ﬁls .- 'v(p - i)ﬁf

is a complete system (mod p), and every af; is a non-residue, so that every
BB is a residue.

Theorem 85 is also a corollary of Theorem 83.

We add two theorems which we shall use in Ch. XX. The first is little
but a restatement of part of Theorem 82.

Theorem 86. If p is a prime 4k + 1, then there is an x such that
1 +x* = mp,

where ) < m < p.
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For, by Theorem 82, —1 is a residué of p, and so congruent to one of the
numbers (6.7.1), say x?; and
0 < 1+x? <1-i—(%p)2 <pt

Tueorem 87. If p is an odd prime, then there are numbers x and y such

that
1 +x% +y* = mp,

where 0 < m < p.

The %(pﬂ) numbers
(6.7.2) 2o<x<ip-1)
are incongruent, and so are the %( 7 + 1) numbers

(6.7.3) ~1—-y* (0<y<3(p-1).

But there are p + 1 numbers in the two sets together, and only p residues
(modp); and therefore some number (6.7.2) must be congruent to some
number (6.7.3). Hence there are an x and a y, each numerically less than

1p, such that

=1 wyZ‘, 14 x2 4+ y* = mp.

Also
0<1+2x% ~{»»y2 <1 +2(-§-p)2 <p2,
sothat® < m < p.
Theorem 86 shows that we may take y = O whenp = 4k + 1.

6.8. The order of a (mod m). We know, by Theorem 72, that
a‘b(”’).a 1 ({mod m)
if (a, m) = 1. We denote by d the smallest positive value of x for which
(6.8.1) a = 1 (mod m),
so that d < ¢(m).
We call the congruence (6.8.1) the proposition P(x). Then it is obvious
that P(x) and P(y) imply P(x + y). Also, if y < x and

&Y = b(mod m),
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then
a* = ba’ (mod m),

so that P(x) and P(y) imply P(x — y). Hence P(x) satisfies the conditions
of Theorem 69, and ,

d\¢p(m).
We call d the order’ of a (mod m), and say that a belongs to d (mod m).

Thus
2=2 22=4, 2 =1(mod7),

and so 2 belongs to 3 (mod 7). If d = ¢(m), we say that a is a primitive
root of m. Thus 2 is a primitive root of §, since

2=2 22=4, 22=3 2*=1(mod5);

and 3 is a primitive root of 17. The notion of a primitive root of m bears
some analogy to the algebraical notion, explained in § 5.6, of a primitive
root of unity. We shall prove in § 7.5 that there are primitive roots of every
odd prime p.

We can sum up what we have proved in the form

Turorem 88. Any number a prime to m belongs (mod m) to a divisor of
¢ (m) : if d is the order of a (mod m), then d |¢(m). If m is a prime p, then
d |(p — 1). The congruence a* = | (mod m) is true or false according as
x is or is not a multiple of d.

6.9. The converse of Fermat’s theorem. The direct converse of
Fermat’s theorem is false; it is not true that, if m { a and

(6.9.1) a" ' = 1 (mod m),

then m is necessarily a prime. It is not even true that, if (6.9.1) is true for
all 2 prime to m, then m is prime. Suppose, for example, that m = 561 ==
3.1.17.1f3¢44a, 11 ta, 17 { a, we have

2= 1(mod3), a'®=1@mod 1), a'®=1(mod17)

by Theorem 71. But 2] 560, 10| 560, 16 | 560 and so a°%® = 1 to each of
the moduli 3, 11, 17 and so to the modulus 3.11.17 = 561.

If (6.9.1) is true for a particular 2 and a composite m, we say that m
is a pseudo-prime with respect to a. If m is a pseudo-prime with respect

Y Often called the index; but this word has a quite different meaning in the theory of groups.
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to every a such that (a,m) = 1, we call m a Carmichael number. 1t is
not known whether there is an infinity of Carmichael numbers,! nor even
whether there is an infinity of composite m such that 2" =2 and 3" = 3
(mod m). But we can prove.

THEOREM 89. There is an infinity of pseudo-primes with respect to every
a> 1l

Let p be any odd prime which does not divide a(a® — 1). We take

a2 — 1 & —1\ [P +1
(6.9.2) m*"az_l"_”(a—l)(a+1)’

so that m is clearly composite. Now
@ —1)m—1)=d¥ — 2% =a@”' — 1)(&® +a).

Since a and af are both odd or both even, 2[(a” + a). Againa®™! — 1 is
divisible by p (after Theorem 71) and by a?—1, since p—1 is even. Since
P 1 (a? — 1), this means that p(a® — 1){(a?~! — 1). Hence

2p(a® — Di(@® - 1)(m — 1),
so that2p|(m— 1) and m = | +2pu for some integral u. Now, to modulus m,
P =1+m@@-D=1, " =g¥=],

and this is (6.9.1). Since we have a different value of m for every odd p
which does not divide a(a? — 1), the theorem is proved.
A correct converse of Theorem 71 is

Taeorem 90. If a™~1 = 1 (mod m) and a* = 1 (mod m) for any divisor
x of m — 1 less than m — 1, then m is prime.

Clearly (@, m) = 1. If d is the order of a (mod m), then d{(m — 1) and
di¢ (m) by Theorem 88. Since a? = 1, we must have d = m — 1 and so
(m — 1)|¢p(m). But

dJ(m):mI.[(l»g) <m-—1

pim

if m is composite, and therefore m must be prime.

t This has now been settled, see the end of chapter notes.
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6.10. Divisibility of 22!~ 1 by p*. By Fermat’s theorem

27~1 _ 1 = 0 (mod p)
if p > 2.1Is it ever true that
27~1 1 = 0 (mod p*)?

This question is of importance in the theory of ‘Fermat’s last theorem’ (see
Ch. XII). The phenomenon does occur, but very rarely.

THEOREM 91. There is a prime p for which
277! . 1 = 0(mod p?).
In fact this is true when p = 1093, as can be shown by straightfor-

ward calculation. We give a shorter proof, in which all congruences are to
modulus p? == 1194649.

In the first place,
(6.10.1) 37 =2187=2p+1, 3“=Qp+1Di=4p+1. .
Next

2% = 16384 = 15p — 11, 2% = —330p + 121,
32228 = ~2970p + 1089 == —2969p — 4 = —1876p — 4,

and so
3222 = —469p — 1.

Hence, by the binomial theorem,
342182 = _(469p+ 1) = ~3283p~ 1 = —4p — ] = —34
by (6.10.1). It follows that
2182 = 1, 21992 = 1 (mod 1093%).

The same result is true for p = 3511 but for no other p < 3 x 107.
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6. 11 Gauss’s lemma and the quadratic character of 2. Hpis an odd
prime, there is just one residue! of n (mod p) between u«ﬁp and 2p We
call this residue the minimal residue of n (mod p); it is positive or negatwe
accordmg as the least non-negative residue of n lies between 0 and 2p or

between ip and p. \
We now suppose that m is an integer, pos&izve or negative, not divisible
by p, and consider the minimal residues of the 5( 2 — 1) numbers

(6.11.1) m, 2m, 3m,..., 1(p = Dm.
We can write these residues in the form.

! ! !
Fisl2se ooy ¥a, _r]a_rzs--w“"rp_v

where
Adpu=3ip-1, O0<r< ip, 0<ri< ip.

Since the numbers (6.11.1) are incongruent, no two r can be equal, and no
two /. If an r and an »’ are equal, say r; = r]f, let am, bm be the two of the
numbers (6.11.1) such that

am=r;, bm= —r} (mod p).

Then
am + bm = 0 (mod p),

and so
a+ b = 0 (med p),

which is impossible because 0 < a < %p, 0<b < %p.
It follows that the numbers 7y, rj are a rearrangement of the numbers

1,2,..., 3(p—1);
and therefore that

m2m... Y(p—Dm=(-D*12... 1(p - 1) (mod p),

and so |
m2P=D = (—1)*(mod p).

¥ Here, of course, *residue’ has its usual meaning and is not an abbreviation of *quadratic residue”
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But
m Lep
(— = m2?~Y(mod p),
pP

by Theorem 83. Hence we obtain

THEOREM 92 (GAUSS'S LEMMA). (%) = (—1)#, where u is the number of
members of the set

m,2m, 3m,..., %(p — Dm,

whose least positive residues (mod p) are greater than %p.

Let us take in particular m = 2, so that the numbers (6.11.1) are
2,4,...,p— L.

In this case A is the number of positive even integers less than %p.

We introduce here a notation which we shall use frequently later. We
write [x] for the ‘integral part of x°, the largest integer which does not
exceed x. Thus

x=[l+f,

where 0 < f < 1. For example,

Z1=2 []=0 [-3]=-2

With this notation
A= [3p]
But
Ap=3(p-1),
and so

nw=3(p—-1—-[ir].
If p = 1 (mod 4), then

p=3p-D-tp-D=ip-D=[Ep+n],
and if p = 3 (mod 4), then

p=3(p~~3p-3)=Hp+D=[ip+D]

(%) =23(P-D = (“1)[5(1’“’] (mod p),

Hence



94 FERMAT'S THEOREM AND ITS CONSEQUENCES [Chap. Vi

that is to say (%) =1,ifp=8n+lor8n—1,
2 .
(u) =1,ifp=8n+30r8n—3.
P

Ifp = 8n & 1, then §(p? — 1) is even, while if p = 8n £ 3, it is odd.

Hence
—plien] _ pylben],
Summing up, we have the following theorems.

THEOREM 93:
(3)= (~plaen]

TarorREM 94

2
4

(3= colio]

THEOREM 95. 2 is a quadratic residue of primes of the form 8n + 1 and
a quadratic non-residue of primes of the form 8n £ 3.

Gauss’s lemma may be used to determine the primes of which any given
integer m is a quadratic residue. For example, let us take m = —3, and
suppose that p > 3. The numbers (6.11.1) are

—3a2 {(J<€ax %p),

and wu is the number of these numbers whose least positive residues lie
between %p and p. Now

—3a =p ~ 3a(mod p),

and p — 3a lies between «%p andpifl €a < ép Ifép <a< %p, then
P — 3a lies between 0 and %p. If %p < a%p then

—3a = 2p — 3a (mod p),

and 2p — 3a lies between %p and p. Hence the values of @ which satisfy the
condition are

L2, (3], [l + 1 [de] + 2. (3o,
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<[]+ [2e] - [

Ifp==6n-+1then u = n+3n—~2niseven, and if p = 6n -+ 5 then
p=n+3Bn+2)—2n+1)

is odd.

THeOREM 96. 3 is a quadratic residue of primes of the form 6n+ 1 and
a quadratic non-residue of primes of the form 6n + 5.

A further example, which we leave for the moment! to the reader, is

TueoreM 97. 7 is a quadratic residue of primes of the form 10n + 1 and
a quadratic non-residue of primes of the form 10n &+ 3.

6.12. The law of reciprocity. The most famous theorem in this field is
Gauss’s ‘law of reciprocity’.

Tueorem 98. If p and q are odd primes, then

(B

‘=p-1), ¢ =13@g-1.

where
Since p'q’ is even if either p or ¢ is of the form 4n + 1, and odd if both -

are of the form 4n + 3, we can also state the theorem as

TueoreMm 99. If p and g are odd primes, then

©)-¢)

unless both p and g are of the form 4n + 3, in which case
£)--)
q

¥ See § 6.13 for a proof depending on Gauss's law of reciprocity.

We require a lemma.
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Trxorem 100. T if

then
S(q,p)+S(p, ) =pq.

The proof may be stated in a geometrical form. In the figure (Fig. 6) AC
and BCarex =p,y =q,and KM and LM arex =p',y = ¢'.

B c
]
Prd

N///

L 1= = <

L~
L

0 s K A

Fic. 6.

If (as in the figure) p > ¢, then ¢'/p’ < g/p, and M falls below the
diagonal OC. Since
"< Lk <q +1
q p q + ¥
there is no integer between XM = ¢’ and KN = ¢p'/p.

We count up, in two different ways, the number of lattice points in the
rectangle OKML, counting the points on KM and LM but not those on the
axes. In the first place, this number is plainly p’q’. But there are no lattice
points on OC (since p and g are prime), and none in the triangle PMN
except perhaps on PM. Hence the number of lattice points in OKML is the

sum of those in the triangles OKN and OLP {counting those on KN and
LP but not those on the axes).

T The notation has no connection with that of § 5.6.
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The number on S7, the line x == s, is [sg/p], since sq/p is the ordinate of
T. Hence the number in OKN is

7

i

> [fpg] = 5(q, p).

=1
Similarly, the number in OLP is S(p, g), and the conclusion follows.
6.13. Proof of the law of reciprocity. We can write

(6.13.1) kq=p[%’]+uk,

where
1<k<p, 1<y <p—1.

Here uy is the least positive residue of k&g (mod p). If uy = v < p/, then
uy is one of the minimal residues r; of § 6.11, while if uy = w; > p/, then
ui — p is one of the minimal residues —r/. Thus

vi=Vg, rj=p—wg

for every i,j, and some k.
The 7; and r} are (as we saw in § 6.11) the numbers 1,2,...,p' in some
order. Hence, if

R=)"r=>Y w, R':ZGTWZ(PWW)=MP—ZW1:

{where u is, as in § 6.11, the number of the rj), we have

1p—1 2 _
R+R = Zv_.—p pt1_p -1

2 8
and so
I
(6.13.2) up~§»2vk~—2wk=§(p2—l).
On the other hand, summing (6.13.1) from k = 1 to k£ = p/, we have
(6.13.3)

$9(P° — 1) =pS@.p) + ) m =pS@.p) + ) _vi + P _ .
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From (6.13.2) and (6.13.3) we deduce

(6.13.4) §(PP~ (g —1) =pS@. p)+2)_wi — up.

Now g — 1 is even, and p2 — 1 = 0 (mod 8);' so that the left-hand side
of (6.13.4) is even, and also the second term on the right. Hence (since p
is odd)

S{(g,p) = u (mod 2},

and therefore, by Theorem 92,

(g.) : (—1)* = (_1)3(9,‘0).

(?.) (E) = (=)@P+Spa) _ (WY,
P/ \q

by Theorem 100.
We now use the law of reciprocity to prove Theorem 97. If

Finally,

p=10n+k,
where k is 1, 3, 7, or 9, then (since 5 is of the form 4n + 1)

()= =("")=(5)

The residues of 5 are 1 and 4. Hence 5 is a residue of primes 57 + 1 and
S5n+ 4, i.e. of primes 10n -+ 1 and 102 + 9, and a non-residue of the other
odd primes.

6.14. Tests for primality. We now prove two theorems which provide
tests for the primality of numbers of certain special forms. Both are closely
related to Fermat’s Theorem.

Tueorem 101. Ifp> 2, h<p,n=hp+ 1 or hp* + 1 and
(6.14.1) 2% %1, 2" ! &= 1 (mod n),
then n is prime.

We write n = hp® + 1, where b = 1 or 2, and suppose d to be the order
of 2 (mod n). After Theorem 88, it follows from (6.14.1) that d t A and

/]
T ¥ p = 2n+1 then p? —1 = dn(n+1) = 0 (mod 8).
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d|(n— 1), i.e. d}ap®. Hence p|d. But, by Theorem 88 again, d|¢(n) and so
n). If
pio(n) .
we have
o) =p? L pE T (- D (- D)

and so, since p { n,p divides at leastone of py — 1, p2 - L,....pe — 1.
Hence n has a prime factor P = 1 (med p).

Let n = Pm. Since n = 1 = P (mod p), we have m
m > 1, then

Ik

1 (mod p). If

(6.14.2) n=up+Dlp+1), 1 Sugy
and

bl = uyp 4 u 4 v.

hp
Ifb=1,thisis h = uvp + u + v and s0
psup<h<p,
a contradiction. If b = 2,

hp=uwp+u+v, piu+v), ut+vzp

and so )
vzut+vzp, v> 5P

and

w<h<p, uw<p—2 ux

Hence u = 1 and so
vezp—1, wzp-—1,

a contradiction. Hence (6.14.2) is impossibleand m = 1 and n = P.

TaroreM 102, Letm 2 2, h < 2™ and n = h2™ + 1 be a quadratic non-
residue (mod p) for some odd prime p. Then the necessary and sufficient
condition for n to be a prime is that

(6.14.3) 2%V = 1 (mod n).
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First let us suppose # prime. Since n = 1 (mod 4), we have

by Theorem 99. Then (6.14.3) follows at once by Theorem 83. Hence the
condition is necessary.

Now let us suppose (6.14.3) true. Let P be any prime factor of » and let
d be the order of p (mod FP). We have

pr*D=_1 prte=l, pPl=1 (modP)

and so, by Theorem 88,

df jn—1, din—1), diP-1),
that is

dt 2"k, d12™h, dI(P - 1),
so that 2™id and 2™ |(P — 1). Hence P == 2™x 4 1.
Since n = 1 = P (mod 2™), we have n/P = 1 (mod 2™) and so

n=0Q"%+1DR"+1), x21,y=20

Hence

2"y < 2"xy+x+y=h <27, y=0,

and n = P. The condition is therefore sufficient.

Ifweputh =1, m = 2% we have n = Fj in the notation of § 2.4.
Since 12 = 2?2 = l (mod 3) and F;, = 2 (mod 3), F; is a non-residue
(mod 3). Hence a necessary and sufficient condition that Fy be prime is

that Fy [(31F~1 4 1),

6.15. Factors of Mersenne numbers; a theorem of Euler. We return
for the moment to the problem of Mersenne’s numbers, mentioned in § 2.5.
There is one simple criterion, due-to Euler, for the factorability of M, =
27 - 1.

TusoreM 103. Ifk > | and p = 4k + 3 is prime, then a necessary and
sufficient condition that 2p + 1 should be prime is that

(6.15.1) 27 = 1 (mod 2p + 1).

Thus, if 2p + 1 is prime, (2p + 1} | My and M, is composite.
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First let us suppose that 2p + 1 = P is prime. By Theorem 95, since
P = 7 (mod 8), 2 is a quadratic residue (mod P) and

2 = 21P-D = | (mod P)

by Theorem 83. The condition (6.15.1) is therefore necessary and P|Mj.
Butk > landsop > 3and M, =27 — 1 > 2p+ 1 = P. Hence M is
composite.

Next, suppose that (6.15.1) is true. In Theorem 101, put £ = 2, n =
2p + 1. Clearly h < p and 2# = 4 % 1 (mod n) and, by (6.15.1),

21— 227 = | (mod n).

Hence n is prime and the condition (6.15.1) is sufficient.

Theorem 103 contains the simplest criterion known for the character of
Mersenne numbers, The first eight cases in which this test gives a factor
of M}, are those for which

p =11, 23, 83, 131, 179, 191, 239, 251.

NOTES

§ 6.1. Fermat stated his theorem in 1640 ((Fuvres, ii. 209). Euler’s first proof dates from
1736, and his generalization from 1760, Sec Dickson, History, i, ch, iii, for full information.

§ 6.3. Legendre introduced ‘Legendre's symbol” in his Essai sur la théorie des nombres,
first published in 1798. See, for example, § 135 of the second edition {1808).

§ 6.6. Wilson’s theorern was first published by Waring, Meditationes algebraicae (1776),
288. There is evidence that it was known long before to Leibniz. Goldberg (Journ. London
Muth. Soc. 28(1953), 252-6) gives the residue of (p— 1)1+ 1to 11'«:>dulus;::2 forp < 10006,
See E. H. Pearson [Math. Computation 17 (1963), 194-5] for the statement about the
congruence {mod p?). By 2007, the computation had been extended to 5 x 168 without
finding further examples.

§ 6.7. We can use Theorem 835 to find an upper bound for g, the least positive quadratic
non-residue (mod p). Let m=[p/g] + |, sothatp < mg <p+gq. SinceC <mqg ~p < g,
we see that mg — p must be a quadratic residue and so must mg. Hence m is a quadratic
non-residue and so g < m. Hence g2 < p-+gandg < J(p+ i— + %) Burgess (Mathematika

4 (1957), 106-12) proved that ¢ = O p%) as p — oo for any fixeda > te~1/2.

§ 6.9. Theorem 89 is due to Cipolla, Annali di Mat. (3), 9 (1903), 139-60. Amongst
others the following are Carmichael numbers, viz. 3.11.17, 5.13.17, 5.17.29, 5.29.73,
7.13.19, Apart from these, the pseudo-primes with respect to 2 which are less than 2000 are

341 == 1131, 645 = 3.5.43, 1387 = 19.73, 1905 = 3.5.127.

See Dickson, History, i. 91-95, Lehmer, Amer. Math. Monthly, 43 (1936}, 347-54, and
Leveque, Reviews, 1, 4753 for further references.
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It has been shown by Alford, Granville, and Pomerance, (Ann. of Math. (2} 139 (1994},
703-22) that there are in fact infinitely many Carmichael numbers, Indeed the numbers they
construct are coprime to 6, yielding composite integers m for which 2™ =2 and 3™ = 3
{mod n1}. It had been shown in 1899 by Korselt (L 'inermédiaire des math. 6 (1899), 142-3)
that n is a Carmichael number if and only if » is square-free and p — 1| n — 1 for every prime

|n.
i Theorem 90 is due to Lucas, Amer. Journal of Math. 1 (1878), 302, It has been modified
in various ways by D. H. Lelumer and others in order to obtain practicable tests for the
prime or composite character of a given large m. See Leluner, loc. cit., and Bulletin Amer.
Math. Soc. 33 {1927), 327-40, and 34 {1928), 5456, and Duparc, Simon Stevin 29 (1952},
21-24,

§ 6.10. The proof is that of Landau, Vorlesungen, iii. 275, improved by R. F. Whitehead.
Theorem 91 for p = 3511 is due to Beeger. See also Pearson (Joc. cit. above) and Friberg
{Computers in Math. Research, (North Holland, 1968), 8488} for the numerical statement
at the end. It is now (2007) known that there are no further primes below 1.25 x 10} with
the property described.

8§ 6.11-13. Theorem 95 was first proved by Euler. Theorem 98 was stated by Euler
and Legendre, but the first satisfactory proofs were by Gauss. See Bachmann, Niedere
Zahlentheorie, i, ch. 6, for the history of the subject, and many other proofs,

§ 6.14. Miller and Wheeler took the known prime 2!27 — | as p in Theorem 101 and
found n = 190p? + 1 to satisfy the test. Sec our note to § 2.5. Theorem 101 is also true
when n = hp® + 1, provided that k < /p and that  is not a cube. See Wright, Math.
Gazerte, 37 (1953), 104-6.

Robinson extended Theorem 102 (Amer. Math. Monthly, 64 (1957), 703—10} and he and
Selfridge used the case p = 3 of the theorem to find a large number of primes of the form
h. 2™ + | (Math. tables and other aids to computation, 11 (1957), 21-22). Amongst these
primes areé several factors of Fermat numbers. See also the note to § 15.5.

Lucas [Théorie des nombres, i (1891}, p. xii] stated the test for the primality of F;.
Hurwitz [Math. Werke, ii. 747} gave a proof. Fy and Fig were proved composite by this
test, though actual factors were subsequently found.

The most important development in this area is undoubtedly the result of Agrawal, Kayal,
and Saxena (dnn. of Math. (2) 160 (2004}, 781-93), which gives a primality test, based
uvitimately on Fermat’s Theorem, which takes time of order (log n)“ to test the number 7.
Here ¢ is a numerical constant, which one can take to be 6 according to work of Lenstra
and Pomerance.

§ 6.15. Theorem 103; Euler, Comm. Acad. Petrop. 6 (1732-3), 103 [Opera (1), ii. 3.



vii
GENERAL PROPERTIES OF CONGRUENCES

7.1. Roots of congruences. An integerx which satisfies the congruence
f(x) = cox" +cx® V.. + ey = 0 (mod m)

is said to be a root of the congruence or a root of f(x) (mod m). If a is
such a root, then so is any number congruent to a (mod m). Congruent roots
are considered equivalent; when we say that the congruence has / roots,
we mean that it has / incongruent roots.

Analgebraic equation of degree n has (with appropriate conventions} just
n roots, and a polynomial of degree n is the product of » linear factors. It is
natural to inquire whether there are analogous theorems for congruences,
and the consideration of a few examples shows at once that they cannot be
so simple. Thus

(7.1.1) #~1 —1=0(med p)
has p — 1 roots, viz.
,2,...p— 1,
by Theorem 71;
(7.1.2) x* — 1 = 0(mod 16)

has 8 roots, viz. 1, 3,5,7,9, 1, 13, 15; and
(7.1.3) x* — 2 = 0 (mod 16)

has no root. The possibilities are plainly much more complex than they are
for an algebraic equation.

7.2. Integral polynomials and identical congruences. Ifcg,cy,..., ¢y
are integers then

copx" + e x4ty
is called an integral polynomial. If

fO=) ox"", gy =) &,
r={} r={}
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and ¢, = c, (mod m) for every r, then we say that f(x) and g(x) are

congruent to modulus m, and write
fx) = g(x) (mod m).
Plainly
S(x) = gx) = [()h(x) = g()h(x)

if A(x) is any integral polynomial.

In what follows we shall use the symbol ‘=" in two different senses, the
sense of § 5.2, in which it expresses a relation between numbers, and the
sense just defined, in which it expresses a relation between polynomials,
There should be no confusion because, except in the phrase “the congruence
f(x) = O, the variable x will occur only when the symbol is used in the
second sense. When we assert that f (x) = g(x), or f(x) = 0, we are using
it in this sense, and there is no reference to any numerical value of x. But
when we make an assertion about ‘the roots of the congruence f{x) = 0,
or discuss ‘the solution of the congruence’, it is naturally the first sense
which we have in mind. '

In the next section we introduce a similar double use of the symbol *|’.

Tueorem 104, (1) If p is prime and
fx)g(x) = 0(mod p),

then either f(x) = 0 or g(x) = 0 (mod p).
(i1) More generally, if

S (x)g(x) = 0 (mod p%)
and
S{x) # 0 (mod p),
then
g(x) = 0(mod p*).

(1) We form f; (x) from f(x) by rejecting all terms of f(x) whose coef-
ficients are divisible by p, and g; (x) similarly. If f(x) & 0 and g(x) # 0,



1.2 (108)) GENERAL PROPERTIES OF CONGRUENCES 105

then the first coefficients in f;(x) and g;(x) are not divisible by p, and
therefore the first coefficient in fi (x)g; (x) is not divisible by p. Hence

Sgh) = filx)gi(x) #£0(mod p).

(i) We may reject multiples of p from f(x), and multiples of p* from
g{x), and the result follows in the same way. This part of the theorem will
be required m Ch. VIIL

If f(x) = g(x), then f (a) = g(a) for all values of a. The converse is not
true; thus

@ = a(mod p)
for all ¢, by Theorem 70, but
x* = x (mod p)

is false.

7.3. Divisibility of polynomials (mod m). We say that f(x) is divisible
by g(x) to modulus m if there is an integral polynomial A(x) such that

f(x) = gx)h(x) (mod m).
We then write

g f(x) (mod m).

THEOREM 105. A necessary and sufficient condition that

(x — a)| f(x) (mod m)

is that
f(a) = 0(mod m).
If
(x — a)| f(x) (mod m),
then -

S(x) = (x — a)h(x) (mod m)
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for some integral polynomial A(x), and so

f(a) = 0 (mod m).

The condition is therefore necessary.
It is also sufficient. If

f(a) =0 (mod m),

then
S(x) = f(x) — f(a) (mod m).
But
Sy = Ecrx"“’
and
Sx) ~fla) = (x — @h(x),
where

h(x) = & —f@ = Z GO X g g™
A —dad

is an integral polynomial. The degree of A(x) is one less than that of f(x).

7.4. Roots of congruences to a prime modulus. In what follows we
suppose that the modulus m is prime; it is only in this case that there is a
simple general theory. We write p for m.

Tueorem 106. If p is prime and

Sx) = g(x)h(x) (mod p),
then any root of f(x) (mod p) is a root either of g(x) or of h(x).
If a is any root of f(x) (mod p), then

f(a) = 0(mod p),

ar

g(a)h(a) = 0 (mod p).
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Hence g(a) = 0 (mod p) or A(a) = 0 (mod p), and so a is a root of g(x) or
of A(x) (mod p). :
The condition that the modulus is prime is essential. Thus

P =x*—4=(x—2)(x+2)(mod 4),

“and 4 is a root of x2 = 0 (mod 4) but not of x — 2 = 0 (mod 4) or of
x + 2 = 0 (mod 4).

Turorem 107. If f(x) is of degree n, and has more than n roots (mod p),
then ‘

J(x) = 0 (mod p).

The theorem is significant only when n < p. It is true for n = 1, by
Theorem 57; and we may therefore prove it by induction.

We assume then that the theorem is true for a polynomaial of degree less
than n. If f(x) is of degree n, and f(a) = 0 (mod p), then

S(x) = (x — a)g(x) (med p),

by Theorem 105; and g(x) is at most of degree n — 1. By Theorem 106,
any root of f(x) is either a or a root of g(x). If f(x) has more than n roots,
then g(x) must have more than n — 1 roots, and so

g(x) = 0 (mod p),
from which it follows that
Sf(x) = 0 (mod p).
The condition that the modulus is prime is again essential. Thus
x* — 1 =0(mod 16)

has 8 roots,
The argument proves also

Tueorem 108. If f (x) has its full number of roots
ai, az, . .., an (mod p},
then

f(x) = colx — a1)(x — a2).. .(x — a,) (mod p).
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7.5. Some applications of the general theorems. (1)Fermat’s theorem
shows that the binomial congruence

(7.5.1) x? = 1(mod p)

has its full number of roots when d = p — 1. We can now prove that this
is true when d is any divisor of p — 1.

Tuaeorem 109. If p is prime and d |p — 1, then the congruence (7.5.1)
has d roots.

We have
X -1= 0~ Dg),
where
g =%,

Nowx’"! —1=0hasp— 1 roots,and g(x) == Ohasatmostp — 1 —d. It
follows, by Theorem 106, that x4 — 1 = 0 has at least d roots, and therefore
exactly d.

Of the d roots of (7.5.1), some will belong to & in the sense of § 6.8, but
others (for example 1) to smaller divisors of p — 1. The number belonging
to d is given by the next theorem.

Tueorem 110. Of the d roots of (7.5.1), ¢(d) belong to d. In particular,
there are ¢(p — 1) primitive roots of p.

If yr (d) is the number of roots belonging to 4, then
Y v =p-1,
dip—1

since each of 1,2, ..., p — 1 belongs to some d; and also

2 ¢@d=p-1,

dip—1

by Theorem 63. If we can show that ¥ (d) < ¢(d), it will follow that
Y(d) = ¢(d), for each d.
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If ¢r(d) > 0, then one at any rate of 1,2,...,p — 1, say f, belongs to d.
We consider the d numbers

f=f" O<h<d-1.

Each of these numbers is a root of (7.5.1), since f¢ = 1 implies f#¥ = 1.
They are incongruent (mod p), since f* = % where i’ < h < d, would
imply /¥ = 1, where 0 < k = h— &' < d, and then f would not belong to
d; and therefore, by Theorem 109, they are all the roots of (7.5.1). Finally,
if f, belongs to d, then (h,d) = 1; for kjh, kid, and k > 1 would imply

(FHE = (fAYPIE = 1,

in which case f;, would belong to a smaller index than 4. Thus A must be one
of the ¢ (d) numbers less than and prime to 4, and therefore ¥ (d) < ¢(d).
We have plainly proved incidentally

Turorem 111, If p is an odd prime, then there are numbers g such that
1,2,8% .. ..2°~% are incongruent mod p.

(2) The polynomial
fx)y=x"1-1

is of degree p — 1 and, by Fermat’s theorem, has the p — 1 roots 1,2,3,.. .,
p — 1 (med p). Applying Theorem 108, we obtain

Tueorem 112. If p is prime, then
(7.5.2) #l—l=@—-DE~2)...(—~p+ 1) (mod p).

If we compare the constant terms, we obtain a new proof of Wilson’s
theorem. If we compare the coefficients of xP~2, xP~3, . | . x, we obtain

Tueorem 113. If p is an odd prime, | <1 < p — 1, and A; is the sum of
the products of | different members of the set 1,2,...,p— 1, then 4; = 0
(mod p).

We can use Theorem 112 to prove Theorem 76. We suppose p odd.
Suppose that

n=rp—s (r2zL0gs<p)
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(p~+~n-— r) _p—s+p— 1)
n T - Hi(p -1
_p—s4+ DNp—354+D.(p~5s+p-1)
B (p~

i an integer i, and
p—s+DNp—s4+2)..0p—s+p—1)=(p~ Dl = —i(mod p),
by Wilson’s theorem {Theorem 80). But the lefi-hand side is congruent to
G—1DE=2)..(s—p+ ) =#"1~1(mod p),

by Theorem 112, and is therefore congruent to —1 when s = 0 and to 0 otherwise.

7.6. Lagrange’s proof of Fermat’s and Wilson’s theorems. We based
our proof of Theorem 112 on Fermat’s theorem and on Theorem 108.
Lagrange, the discoverer of the theorem, proved it directly, and his
argument contains another proof of Fermat’s theorem.

We suppose p odd. Then

(761) x—Dx—2)...c—p+D=xP ! — gyxP 2 4. 44y,

where A4, ... are defined as in Theorem 113. If we multiply both sides by
x and change x into x — 1, we have

(x 1P —Aie— 1P dpei(x = 1) = (x — D(x = 2)...(x — p)
=(x—-p)P ! — 1P L+ Ape).

Equating coefficients, we obtain

(};) + 41 = p + A, (g) + (pT I)Al + Ay = pAy + Az,

(‘g) + (p; 1)141 + (p?z)Az-i-A;:pAzﬁ-A;;,
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and so on. The first equation is an identity; the others yield in succession

_ (P (P p-—1
(P p—1 p—2
= ()75 Yo (37)
Hence we deduce successively
(7.6.2) piAy, pld2, ..., pldp-2,
and finally
(P~ DAp-1 = 1(mod p)

or
(7.6.3) Ap..; = —1(mod p).

Since Ap-y = (p —~ D}, (7.6.3) is Wilson’s theorem; and (7.6.2) and
(7.6.3) together give Theorem 112. Finally, since

x—Dx—-2)...x—p+1)=0(mod p)

for any x which is not a multiple of p, Fermat’s theorem follows as a
corollary.

7.7. The residue of {3(p — 1)}!. Suppose that p is an odd prime and
w = %(p - 1}.
From

(p-Di=12...3p-Dip—3p-D}{p—-p-3}...cp- D
= (—1)®(w)*(mod p)

it follows, by Wilson’s theorem, that

(@h? = (=1)"~! (mod p).
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We must now distinguish the two cases p = 4n+1 and p = 4n+3.
p=4n+ I, then

(wH? = —1 (mod p),

so that (as we proved otherwise in § 6.6)‘— 1 is a quadratic residue of p. In
this case ! is congruent to one or other of the roots of x* = —1 (mod p).
Ifp = 4n+ 3, then

(7.7.1) (w!)? = 1 (mod p),
(7.7.2) w! = +1 (mod p).

Since —1 is a non-residue of p, the sign in (7.7.2) is positive or negative
according as w! is a residue or non-residue of p. But w'! is the product of
the positive integers less than %p, and therefore, by Theorem 85, the sign
in (7.7.2) is positive or negative according as the number of non-residues
of p less than p is even or odd.

Tueorem 114. If p is a prime 4n -+ 3, then
{3(p— D}I= (-1)" (mod p),

where v is the number of quadratic non-residues less than % p

7.8. A theorem of Wolstenholme. It follows from Theorem 113 that
the nurmnerator of the fraction
1+ . + : + -+ :
2 3 p~—1
is divisible by p; in fact the numerator is the 4,_; of that theorem. We can,
however, go farther.

Tueorem 115. If p is a prime greater than 3, then the numerator of the
Sfraction

11 1
7.8.1 S SR P
(7.8.1) tat3ytootoTy

is divisible by p*.

The result is false when p = 3. It is irrelevant whether the fraction is or
is not reduced to its lowest terms, since in any case the denominator cannot
be divisible by p.
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The theorem may be stated in a different form. If i is prime to m, the
congruence

ix = 1(mod m)

has just one root, which we call the associate of i (mod m).T We may denote
this associate by 1, but it is often convenient, when it is plain that we are
concerned with an integer, to use the notation

|

i
(or 1/i). More generally we may, in similar circumstances, use
b .

a

(or b/a) for the solution of ax = b,
We may then (as we shall see in a moment) state Wolstenholme’s theorem
in the form

TaeoreM 116. If p > 3, and 1/i is the associate of i (mod p?), then

2 3

We may elucidate the notation by proving first that

I | 1
7T R82 ) [ S S SN TP 1
( ) +2+3+ +p«--§ 0 (mod p)

I |
1+—+—+»--+;~550(modp2).

For this, we have only to observe that, if 0 < i < p, then
1 I
- =1, — ) = | .
.~ (P =i =1(mod p)
Hence

1 . :
i(—.%*—-fm) —=*i.—l_—— (pmf)w}“—‘“ﬁo(mOdP),
i p—i

and the result follows by summation.

t Asin § 6.5, the a of § 6.5 being now 1.
: Here, natarally, 1/ is the associate of / (mod p). This is determinate (mod p), but indeterminate
(mod p?) to the extent of an arbitrary multiple of p.
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We show next that the two forms of Wolstenholme’s theorem (Theo-
rems 115 and 116) are equivalent. If 0 < x < p and X is the associate of x
(mod p?), then

xi(P““ 1! _ (p—1)
X X

Hp— 1= (mod p?).

Hence
(p-DA+2+ - +p-T)

1 1
=(p— D 44— 2
=(p 1).(z+2+ +pw1)(modp),

the fractions on the right having their common interpretation; and the

equivalence follows.
To prove the theorem itself we put x = p in the identity (7.6.1). This

gives

(p— D =pPl — AipP 2 Ay ap+ Ay
But4,-; = (p — 1)}, and therefore

PP —ApP i+ Ay p—Ap =0
Since p > 3 and
pldy, plds, ..., pl4p.3,
by Theorem 113, it follows that p?|4,_», i.e.
Plp— 1! (1 +%+...+};i—l).

This is equivalent to Wolstenholme’s theorem.
The numerator of
1 1

CG=l+—=+... 4 ——"
P 22 (p—1)°

is A;mz — 24, _1A4p—3, and is therefore divisible by p. Hence

Tueorem 117. If p > 3, then Cp = 0 (mod p).
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7.9. The theorem of von Staudt. We conclude this chapter by proving
a famous theorem of von Staudt concerning Bernoulli’s numbers.

Bemoulli’s numbers are usually defined as the coefficients in the
expansion'

x B 2 By 4 B3 ¢
el it A T i
We shall find it convenient to write
X 52 2 B3 3
_,30+ o E

sothat o = 1, f1 = —§ and

Bak = (=118, Bouy1 =0 (k1)

The importance of the numbers comes primarily from their occurrence in
the ‘Euler-Maclaurin sum-formula’ for 3~ m*. In fact

k

1 k
k |~k v — k+1-r
(79.D) 14254 4 (n-1 “Zo:k+i-r(r)" B
r=

for k > 1. For the left-hand side is the coefficient of x**! in

x(1 4+ & +e¥ + ...+ D5

i ™ X

= k! o _
- & F—1¢ —V

ﬁl ﬁz 2 2 2
— k! R + .
Kt (1 2' 2'
and (7.9.1) follows by picking out the coefficient in this product,

Von Staudt’s theorem determines the fractional part of By.
Tueorem 118. Ifk 2 1, then

= klx

(7.9.2) (=B, = Z (mod 1),

the summation being extended over the primes p such that (p — 1)|2k.

¥ This expansion is convergent whenever ix} < 27.
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For example, if k = 1, then (p —~ 1)|2, whichistrue if p = 2 orp = 3.
Hence -8y = % ot % = %; and in fact By == ;1; When we restate (7.9.2) in
terms of the 8, it becomes

1
(7.9.3) B+ D -=i,
(p—Dlk
where
(7.9.4) k=1,2,4,6,..."

and { is an integer. If we define ¢; (p) by
@@ =1 (p—-DIk, a@ =0(((p—-Dtk),
then (7.9.3) takes the form

(7.9.5) B+ G*;P) —i

where p now runs through all primes.
In particular von Staudt’s theorem shows that there is no squared factor
in the denominator of any Bernouilian number.

7.10. Proof of von Staudt’s theorem. The proof of Theorem 118
depends upon the following lemma,

TrreonreMm 119:

p—1
Y mf = —ex(p) (mod p).
;

If (p — 1)|k, then m* = 1, by Fermat’s theorem, and
ka m=p~1=—1=—e(p)(mod p).
If(p~ 1)tk,and g is a primitive root of p, then

(7.10.1) g° #1 (mod p),



7.10] GENERALPROPERTIES OF CONGRUENCES 17

by Theorem 88. The sets g, 2g,...,(p—1)gand 1, 2,..., p—1 are equivalent
(mod p), and therefore

Y (mg* = m* (mod p),
€ — 1) m* =0(mod p),

and
Y “m* =0 = —€(p) (mod p),

by (7.10.1). Thus 3~ m* = —e;(p) in any case.

We now prove Theorem 118 by induction, assuming that it is true for any
number [ of the sequence (7.9.4) less than &, and deducing that it is true for
k. In what follows & and / belong tc (7.9.4), r runs from O to &, 8¢ = 1, and
B3 = Bs = ... = 0. We have already verified the theorem when k = 2,
and we may suppose k > 2.

It follows from (7.9.1) and Theorem 119 that, if o is any prime,

k

I kY k1-

ek(w)+z -——--—-»( )w+ "B, = 0(mod @)
mok-'f-i—r ¥

or

(7.10.2)

Br +

k~2

1 k k—1wr _ .
Py (5) = @8 = 0mod 1,

€x()

there is no term in 8;_;, since B;_; = 0. We consider whether the
denominator of

_ 1 kY _k—1-r
“k,rwk_i_lwr(r)w (wB,)

can be divisible by wr.
Ifrisnotanl/, B, is 1 or 0. If 7 isan/, then, by the inductive hypothesis, the
denominator of B, has no squared factor,T and that of w 8, is not divisible by

t It will be observed that we do not need the fisll force of the inductive hypothesis.
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w. The factor f is integral. Hence the denominator of u , is divisible

by = only if that of

wk—lwr nT_r.s—l
k+1—r s+1

is divisible by @, In this case

s+ 12w’
Buts = k — » = 2, and therefore
s+1 <2< o’

a contradiction. It follows that the denominator of ¥, is not divisible

by w.
Hence
Br + “l=) %
w by
where @r 1 bg; and
€x(p)
(p# o)
P
is obviously of the same form. It follows that
€(p) _ 4k
(7.10.3) B + ALAT slapeenin 2y
2, =3

where By is not divisible by @ . Since w is an arbitrary prime, B; must be
1. Hence the right-hand side of (7.10.3) is an integer; and this proves the
theorem.

Suppose in particular that £ is a prime of the form 3n-+ 1. Then (p— 1)]2k
onlyifpisoneof2,3, k-+1,2k+1. Butk+1liseven, and 2k 41 = 6n+3
is divisible by 3, so that 2 and 3 are the only permissible values of p. Hence

Tueorem 120: Ifk is a prime of the form 3n + 1, then
By = § (mod 1).

The argument can be developed to prove that if & is given, there are an
infinity of / for which B; has the same fractional part as By; but for this we
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need Dirichlet’s Theorem 15 (or the special case of the theorem in which
b=1)

NOTES

§§ 7.2-4. For the most part we follow Hecke, § 3.

§ 7.6. Lagrange, Nowveaux mémoires de l'Académie royale de Berlin, 2 (1773), 125
(Fuvres, iii, 425}, This was the first published proof of Wilson’s theorem,

§ 7.7. Dirichlet, Journal fiir Math. 3 (1828), 407-8 (Werke, 1. 107-8).

§ 7.8. Wolstenholme, Quarteriy Journal of Math. 5 (1862), 35-39. There are many
generalizations of Theorem 115, some of which are aiso generalizations of Theorem 113.
See § 8.7.

The theorem has generally been described as *Wolstenholme’s theorem’, and we follow
the usual practice. But N. Rama Rao [Bull. Calcutta Math. Soe. 29 (1938), 167-70] has
pointed out that it, and a good many of its extensions, had been anticipated by Waring,
Meditationes algebraicae, ed. 2 {1782), 383.

§§ 7.9-10, von Staudt, Journal fiir Math. 21 (1840}, 372-4. The theorem was discovered
independently by Clausen, Astronomische Nachrichten, 17 (1840), 352, We follow & proof
by R. Rado, Journal London Math. Soc. 9 (1934), 85-8.

Many authors use the notation

so that their By is our 8,. .

Theorem 120, and the more general theorem referred to in connexion with it, are due to.
Rado (ibid. 88-90). indeed ErdSs and Wagstaft (HHlinois J. Math, 24 (1980), 104--12) have
shown, for given £, that one has B,, = B; (mod 1) for a positive proportion of values of m.



VIl
CONGRUENCES TO COMPOSITE MODULI

8.1. Linear congruences. We have supposed since § 7.4 (apart from a
momentary digression in § 7.8) that the modulus m is prime. In this chapter
we prove a few theorems concemning congruences to general moduli. The
theory is much less simple when the modulus is composite, and we shall
not attempt any systematic discussion.

We considered the general linear congruence

(8.1.1) ax = b (mod m)

in § 5.4, and it will be convenient to recall our results. The congruence is
insoluble unless

(8.1.2) d = (a,m)|b.

If this condition is satisfied, then (8.1.1) has just 4 solutions, viz.

m m m
E’€+ gvg+2§,°-°s€+(d_ 1):{3

where & is the unique solution of

a b m
a—x = R‘ (mod *a*) .
We consider next a system
(8.1.3) aix = by (mod my), axx = by (mod my),
s aex = by (mod my).
of linear congruences te coprime moduli m;, m, ..., m; The system will
be insoluble unless {a;, m;)|b; for every i. If this condition is satisfied, we

can solve each congruence separately, and the problem is reduced to that
of the solution of the system

(8.1.4) x=c; (mod my), x = c3 (mod my),...,x = c; (mod my).

The m; here are not the same as in (8.1.3); in fact the m; of (8.1.4) is
m;/(a;, m;) in the notation of (8.1.3).
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We write
m=mymy...mp=my M =mM =...=m M
Since (m;, M;) = 1, there is an »; (unique to modulus ;) such that
nM; = 1 (mod my).
If
(8.1.5) x = mMjcy 4+ naMacy 4+ - -+ mpMicy,

then x == mMic; = c¢; (mod m;) for every i, so that x satisfies (8.1.4).
If y satisfies (8.1.4), then

y = ¢ = x {mod m;)

for every i, and therefore (since the m; are coprime), y = x (mod m). Hence
the solution x is unique (mod m).

Taeorem 121. If my, ma,...,my are coprime, then the system (8.1.4)
has a unigue solution {mod m) given by (8.1.5).

The problem is more complicated when the moduli are not coprime. We content curselves
with an illustration.

Six professors begin courses of lectures on Monday, Tuesday, Wednesday, Thursday,
Friday, and Saturday, and announce their intentions of lecturing at intervals of two, three,
four, one, six, and five days respectively. The regulations of the university forbid Sunday
lectures (5o that a Sunday lecture must be omitted). When first will all six professors find
themselves compelled to omit a lecture?

If the day in question is the xth (counting from and including the first Monday), then

Xzl 42k =243k =3+4dky3 =4+ ks
=5+ 6ks = 6+ 5kg = Tky,

where the k are integers; i.e.

(D x =1 (mod2), (2) x =2(mod3), (3) x = 3 (med4d),
{4y x = 4 (mod 1), (5) x 2= 5 (mod6), (6) x = 6 (mod 5),
(7) x == 0 (mod 7).

Of these congruences, {4) is no restriction, and (1) and (2} are included in (3) and (5). Of the
two latter, (3} shows that x is congruent to 3, 7, or 11 (mod 12), and (5) that x is congruent
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to 5 or 11, so that (3) and (5) together are equivalent to x = 11 (mod 12). Hence the problem
is that of solving

x=11(mod 12), x=6(mod5), x=0(mod?7)
or
xm=m—] (mod 12), x=1(mod3S), x=0(med7).
This is a case of the problem soived by Theorem 121, Here

m=12, m =% m=T7 m=420,
M)y =35 M =8, M =60

The n are given by

35n; = | (mod 12), 84nz =1(mod 5), 60n3 =1 (mod 7),

—ny=1(mod 12}, —np=1(mod5), 4n3=1(mod7);
and we can take ny = —1, 72 = —1, n3 = 2. Hence
x = (—1{-1354 (—1}1.84 4 2.0.60 = —49 = 37} (mod 420).
The first x satisfying the condition is 371.

8.2. Congruences of higher degree. We can now reduce the solution
of the general congruence!

(8.2.1) - f(x) =0 (mod m),
where f (x) is any integral polynomial, to that of a number of congruences
whose moduli are powers of primes.
Suppose that
m=mumy...mg,
no two m; having a commeon factor. Every solution of (8.2.1) satisfies

(8.2.2) f) =0(mod m) (i=1,2,... k).

t See§7.2.
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Ifcy, ca,...,cx is a set of solutions of (8.2.2), and x is the solution of
8.2.3) x=¢(modm) (i=12,...,k),
given by Theorem 121, then

S&x) = f(c:) = 0 (mod m;)

and therefore f(x) = 0 (mod m). Thus every set of solutions of (8.2.2)
gives a solution of (8.2.1), and conversely. In particular

THeOREM 122, The number of roots of (8.2.1) is the product of the

numbers of roots of the separate congruences (8.2.2).
Ifm = p{'py* ... pe*, we may take m; = p{*.

8.3. Congruences to a prime-power modulus. We have now to
consider the congruence

(8.3.1) f(x) = 0 (mod p*)

where pisprime anda > 1.
Suppose first that x is a root of (8.3.1) for which

(8.3.2) _ 0 <x < pf
Then x satisfies
(83.3) f(x) =0 (mod p*~1),
and is of the form
(8.3.4) E+sp* 0<s<p),
where £ is a roof of {(8.3.3) for whicﬁ
(8.3.5) 0< & <p*l.
Next, if £ is a root of (8.3.3) satisfying (8.3.5), then

SE +5p" ) = &) + sp™ U E) + 10T E) + -
= f(§) + sp®"'f'(£)(mod p%),
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since2a—~2 > a,3a—3 > a,..., and the coefficients in

ARG
k!
are integers. We have now to distinguish two cases.
(1) Suppose that
(8.3.6) S(&) # 0 (mod p).

Then &+sp?! is a root of (8.3.1) if and only if
FE +35p”'f'(§) = 0 (mod p*)

or

and there is just one s (mod p) satisfying this condition. Hence the number
of roots of (8.3.3) is the same as the number of roots of (8.3.1).
(2) Suppose that

(8.3.7 f(&) =0 (mod p). .
Then
f&E +sp™ ) = f(£) (mod p?).

If f{(&) # 0 (mod p®), then (8.3.1) is insoluble. If (&) = 0 (mod p?),
then (8.3.4) is a solution of (8.3.1) for every s, and there are p solutions of
(8.3.1) corresponding to every solution of (8.3.3).

TuroreM 123. The number of solutions of (8.3.1) corresponding to a
solution & of (8.3.3) is

(a) none, iff'(§) = 0 (mod p) and & is not a solution of (8.3.1);

(B) one, if f'(§) 5 0 (mod p);

(©) p, iff'(¢) = 0 (mod p) and & is a solution of (8.3.1).

The solutions of (8.3.1) corresponding to & may be derived from &, in
case (b) by the solution of a linear congruence, in case (¢} by adding any

multiple of p°~ % to &.
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8.4. Exaﬁplw. (1) The congruence
fx) =x"! — 1= 0 (mod p)
has the p—1roots 1,2,...,p — |; and if £ is any one of these, then
£/ = (p— D& # 0 (mod p).

Hence f(x) = 0 (mod p?) has just p — 1 roots. Repeating the argument,
we obtain

Tueorem 124. The congruence
=t — 1 = 0 (mod p%
has just p — 1 roots for every a.
(2) We consider next the congruence
(8.4.1) F(x) = xPP=D _ | =0 (mod p?),
where p is an odd prime, Here
£'® = 3p(p — DEFPD! = 0 (mod p)

for every £. Hence there are p roots of (8.4.1) corresponding to every root
of f(x) = 0 (mod p).
Now, by Theorem 83,

x3P=D = 41 (mod p)
according as x is a quadratic residue or non-residue of p, and
x2P(P~D = 41 (mod p)

in the same cases. Hence there are %(p — 1) roots of f(x) = 0 (mod p),
and 3p(p — 1) of (8.4.1).

We define the quadratic residues and non-residues of p? as we defined
those of p in § 6.5. We consider only numbers prime to p. We say that x is
a residue of p? if (i) (x, p) = 1 and (ii) there is a y for which

yz = x {mod pz), '

and a non-residue if (i) (x, p) = 1 and (ii) there is no such y.
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If x is a quadratic residue of p?, then, by Theorem 72,

x2P(P—D) = yPP~1 = (mod p?),

so that x is one of the %p( p — 1) roots of (8.4.1). On the other hand, if
y; and y2 are two of the p(p—1) numbers less than and prime to p?, and
V= y4, then either y; = p?> — y} ory; — y2 and y; + y; are both divisible
by p, which is impossible because y; and y2 are not divisible by p. Hence
the numbers y? give just 3p(p — 1) incongruent residues (mod p?), and
there are %p( p — 1) quadratic residues of p?, namely the roots of (8.4.1).

Tueorem 125. There are %p( p — 1) quadratic residues of p?, and these
residues are the roots of (8.4.1).

{3) We consider finally the congruence _
(8.4.2) fx) =x* — ¢ =0 (mod p%),
where p { ¢. If p is odd, then

f(&) = 2§ # 0 (mod p)

for any & not divisible by p. Hence the number of roots of (8.4.2) is the
same as that of the similar congruences to moduli p°~!, p°~2, ... p; that
is to say, two or none, according as ¢ is or is not a quadratic residue of p.
"We could use this argument as a substitute for the last paragraph of (2).
The situation is a little more complex when p = 2, since then /'(£) = 0
(mod p) for every &. Wé leave it to the reader to show that there are two
roots or none when a = 2 and four or none when a = 3.

8.5. Bauer’s identical congruence. We denote by ¢ one of the ¢ (m)
nmbem less than and prime to m, by t(m) the set of such numbers, and by

8.5.1) Sy =JT0x=0
t{m)

a product extended over all the ¢ of 1(m). Lagrange’s Theorem 112 states
that

(8.5.2) ) = x*" — 1 (mod m)
when m is prime. Since

x*™ _ 1 = 0 (mod m)
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has always the ¢ (m) roots ¢, we might expect (8.5.2) to be true for all m;
but this is false. Thus, when m = 9, ¢ has the 6 values +1, £2, +£4 (mod 9),

and
a0 = (2 — 102 - 29(x* — 4%) =x% — 3x* 4+ 3x* — 1 (mod 9).

The correct generalization was found comparatively recently by Bauer,
and is contained in the two theorems which follow.

TueoreMm 126, If p is an odd prime divisor of m, and p? is the highest
power of p which divides m, then

(8.5.3) (%) = I‘[ (x ~ 1) = (P~ — 1)/ (P=D) (mod p?).

t(m)
In particular
(8.5.4) fr) =[] a=0 =061 -~ 1! (mod p%.
)

Tueorem 127. If m is even, m > 2, and 2% is the highest power of 2
which divides m, then

(8.5.5) £l = (2 — 1)3%0 (mod 29y,
In particular

(8.5.6) Sra(x) = (2 — D¥2 (mod 2%).
whena > 1. |

In the trivial case m = 2, f3(x} == x — 1. This falls under (8.5.3) and not under (8.5.5).
We suppose first that p > 2, and begin by proving (8.5.4). This is true -
when a = 1. If ¢ > 1, the numbers in ¢(p?) are the numbers

t+vp* 1 (0 < v < p),
where ¢ is a number included in #(p*!). Hence

pt
S @) = [ o1 — "N

y={}
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But
Spmr & =) = fram1 (x) — P77 1 (3) (mod p%);
and

Sr®) = a1 N = 3 vp®™ s 00}, (2)
= {fye-1 ()}P(mod p,

since 3 v = %p(p — 1) = 0 (mod p).

This proves (8.5.4) by induction.

Suppose now that m = p®M and that p ¢ M. Let ¢ run through the ¢(p*)
numbers of ¢(p®) and T through the ¢(M) numbers of 1(M). By Theorem
61, the resulting set of ¢(m) numbers

tM + Tp®,
reduced mod m, is just the set £(m). Hence

Sm(x) = H (x—t) = ]—l H x—tM — Tp“)l (mod m).
1{m) Ter(M) tet{ p*)

For any fixed 7', since (p?, M) =1,

[] c—M-1p% = [l c—an
tet{p?) tet(p?)

= [] @& -0 =40 (mod p.
tet(p)

Hence, since there are ¢(AM) members of t(M),
fnx) = (21 — 177100 (mod p%)
by (8.5.4). But (8.5.3) follows at once, since

roon = 2D ap - 2.
p—1 p—1
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8.6. Bauer’s congruence: the case p = 2. We have now to consider
the case p = 2. We begin by proving (8.5.6).
Ifa =2,

falx) = (x — D(x — 3) =x? — 1 (mod 4),
which is (8.5.6). When a > 2, we proceed by induction. If
fre1 ) = (& = D7 (mod 257,
then
Jyar (x) = 0 (mod 2).
Hence

Fra(x) = fram1 (X)fpa1 (x — 2°71)
= (foa1 () = 29 fpars (1) (%)
= {frat ) = (2 — 1D (mod 29).

Passing to the proof of (8.5.5), we have now to distinguish two cases.
(DIf m=2M and M > ], where M is odd, then

fu®) = (x = DP™ = (2 — 1)1 (mod 2),
because (x — 1) = x2 — 1 (mod 2).
(2) If m = 2°M, where M is odd and a > 1, we argue as in § 8.5, but
use (8.5.6) instead of (8.5.4). The set of ¢p(m) = 29~ ! $(M) numbers
IM 4+ T2°,

reduced mod m, is just the set ¢(m). Hence

@ =Jle-0="T] [] &-f-2°7) (mod m)

£Hm) Tet(M) tet{2%)
= {fa()}*M) (mod 2),

justasin § 8.5. (8.5.5) follows at once from this and (8.5.6).



136 CONGRUENCES TO COMPOSITE MOBPUL} [Chap. VIE

8.7. A theorem of Leudesdorf. We can use Bauer’s theorem to obtain
a comprehensive generalization of Wolstenholme’s Theorem 1185.

TreorEM 128. If

then

(8.7.1) Sm = 0 (mod m?)
f2tm34m;

(8.7.2) Sm = 0 (mod 1m?)
i#24m,3\|m;

(8.7.3) Sm = 0 (mod 3m?)
if 2im,3 Y m, and m is not a power of 2;

(8.7.4) Sm = 0 (mod Lm?)
if2im, 3| m; and

(8.7.5) Sm = 0 (mod Lm?)
if m=2%

We use X, TT for sums or products over the range t(m), and X', I for
sums or products over the part of the range in which ¢ is less than %m; and

we suppose that m = pgbr© . ..
If p > 2 then, by Theorem 126,

(8.7.6) ' (Pt - e/~ o n (x =~ 1)
=T = 06— m+0) =[]t + t0m ~ ) (mod p*).

We compare the coefficients of x2 on the two sides of (8.7.6). If p > 3, the
coefficient on the left is 0, and

(8.7.7)
! 4 1 1 a
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Hence
1 1 1
SmI'Ile_IrZ; = %]—[rz(;—k m—t)
1 14
= %mH:Z PrE— ﬁ()(mc’dp2 ),
or
(8.7.8) S = 0 (mod p**).

If24{ m,31 m, and we apply (8.7.8) to every prime factor of m, we obtain
(8.7.1).
If p = 3, then (8.7.7) must be replaced by

D™ Hem =1 [T > ,(m’_ 1 (mod 3°);
so that
Sn [Tt = (=™ Lmg(m) (mod 3%).
Since ¢ (m) is even, and divisible by 3%~ this gives
Sn = 0 (med 3%,

Hence we obtain (8.7.2).
If p = 2, then, by Theorem 127,

2 — 1)2¢ = [T'62 + tm — H}(mod 27

and so

; L (m)—11 1 1
(=1)2 f“"’”’—fn‘zr(w;)'

Sn[]t=tm]eD> :('ml- 5= (~1) 1~ g (m) (mod 222).

Ifm = 2°M, where M is odd and greater than 1, then

1o(m) = 2°"2p(M)
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is divisible by 291 and
S, = 0 (mod 2271y,

This, with the preceding results, gives (8.7.3) and (8.7.4).
Finally, if m = 2%, 1¢(m) = 29-2, and

= () (mod 22¢7%).

This is (8.7.5).
8.8. Further consequences of Bauer’s theorem. (1) Suppose that

m>2 m=[[pr w=jem, u= ;’(j"i (p>2).

Then ¢(m) is even and, when we equate the constant terms in (8.5.3) and
{8.5.5), we obtain
[]t= (=% (mod p*.
. tm) |

It is easily verified that the numbers uz and u are all even, except when
m is of one of the special forms 4, p®, or 2p%; so that [1¢ = 1 (mod m)
except in these cases. [f m = 4, then 1t = 1.3 = —1 (mod 4). If m is p*
or 2p7, then u, is odd, so that I1# = —1 (mod p®) and therefore (since Il¢
is odd) It = 1 (mod m).

Tueorem 129.

[]t=+1 (mod m),

t{m)

where the negative sign is to be chosen when m is 4, p®, or 2p°, where p is
an odd prime, and the positive sign in all other cases.

The case m = p is Wilson’s theorem.
(2)Ifp > 2 and

S =[] &-0=xP — g x0PO-1 4.
Hp?)
then f(x) = f(p® — x). Hence
241 4 24339003 L = (X)) — f(x) = F(PP +x) —J(x)
= pf'(x) (mod p*°).
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But

PR =2 (p— D2 — 1P (mod p*)
by Theorem 126. It follows that 42,1 is a multiple of p*@ except when
$(p)—2v—~1=p—2(modp—1),
i.e. when
2v=0(mod p—1).

TueoreM 130. If A2y is the sum of the homogeneous products, 2v + 1
at a time, of the numbers of t( p®), and 2v is not a muitiple of p—1, then

Azys1 = 0 (mod p*%).
Wolstenholme’s theorem is the case
a=1, 2v+l=p~2, p>3.

(3) There are also interesting theorems concerning the sums

1
Sovt1 = -

We confine ourselves for simplicity to the case 2 = 1, m = p,} and suppose
p>2.Thenf(x) =f(p—x)and

f(=x)=f(p+x)=f&)+pf (),
fl=x) =—f"(p+x =) —pf"&)),
FEF(=x) + /@) (—x) = p{f () — f )" (%))
to modulus p?. Since f(x) = x*~! — 1 (mod p),
F23) —f@)f"(x) = 272 — 5%~ (mod p)
and so

(B88.1) SO (~x) + 1 (X (—x) = p(2 3 — x4 (mod p?).

t In this case Theorem 112 is sufficient for our purpose, and we do not require the general form of
Bauer’s theorem.



134 CONGRUENCES TO COMPOSITE MODULI [Chap. VI

Now
J;((;)) = }'“}f}“ =—Si-x8—xSH -
S (—x) + f(=x)f "(x) 2
(8.8.2) oVen —28) — x2Sy —
Also
x>
f(x)m]’[(xﬂr):ﬂ(f—x)xw(1+flf-+%i~+ )
SIS
fo = w 2 ’
883) o —i(1+flff+£¥"_4+...)
(8.8.3) fxf(—x) ~ w2 w?l ol ’

where w = (p—1)!and the a, b, and ¢ are integers. It follows from (8.8.1),
(8.8.2), and (8.8.3) that

—281 — 228y — -

caix®  eax?
x |14 gt — e ],

o w
where g(x) is an integral polynomial. Hence, if 2v < p—3, the numerator
of 82,41 is divisible by p*.

Tueorem 131. Ifp is prime, 2v < p — 3, and
I I
S2v+1 *1+W+"'+m,

then the numerator of Syv4) is divisible by p2.

The case v = 0 is Wolstenholme’s theorem. When v = 1, p must be
greater than 5. The numerator of

l 1 l

is divisible by 5 but not by 52.
There are many more elaborate theorems of the same character.

¥ The series which follow are ordinary power series in the variable x.
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8.9. The residues of 2~! and (p — 1)! to modulus p?. Fermat’s and
Wilson’s theorems show that 27~! and (p — 1)! have the residues I and
—1 (mod p). Little is known about their residues (mod p?), but they can be
transformed in interesting ways.

Tueorem 132. If p is an odd prime, then
p=t g

2 I b 1
8.9 1 L 4+l —— _
( ) +3+5+ +p 2(rni:)d}:?)

In other words, the residue of 27~! (mod p?) is
1+ : + : +- 4 !
Pi\3753 p—-2)°
where the fractions indicate associates (mod p).
We have

o1
2P=(1+1)”=1+(ﬁ’)+---+(ﬁ)m2+zi:(f).

Every term on the right, except the first, is divisible by p,! and

(}ID) = px},

Ig=(@-p-—2...(p—1+1)=(=1)""1¢ - 1)! (mod p),
or bx; = (—1)*~! (mod p). Hence

where

X = (—I)"‘; (mod p),
(‘;’ ) =px = (—1)"“‘p~§~ (mod p?),

—1
p-2 1 1
(892) — E - = + 3’ ““““ ;""— (mod p)
1

i By Theorem 75.
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But

by Theorem 116, so that (8.9.2) is equivalent to (8.9.1).
Alternatively, after Theorem 116, the residue in (8.9.1) is

TueoreM 133, If p is an odd prime, then

_ 2
(p— D= (—1)2(P=D22 (pTl‘) (mod p?).

Letp = 2n + 1. Then

In)!
(2"") =13...Qn=D=@p-2(p-4)...(p—2n),
(—1)"(2”) --2”n!—2"n!p(;+i+ 4 — )(modpz)

= 2"n! 4+ 2"n!(2%" — 1) (mod p?),
by Theorems 116 and 132; and

(2n)! = (—1)"2* (a2 (mod p?).

¥ We need only (7.8.2).
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NOTES

§ 8.1, Theorem 121 {Gauss, D.4., § 36) was known to the Chinese mathematician
Sun-Tsu in the first century A.p. See Bachmann, Niedere Zahlentheorie, i. 83.

§ 8.5. Bauer, Nouvelles annales (8), 2 (1902), 256-64. Rear-Admira! C, R. Darling-
ton suggested the method by which I deduce (8.5.3) from (8.5.4). This is much simpler
than that used in earlier editions, which was given by Hardy and Wright, Journal London
Math. Soc. 9 (1934), 38-41 and 240.

Dr. Wylie points out to us that (8.5.5) is equivalent to (8.5.3), with 2 for p, except when
m is a power of 2, since it may easily be verified that

% — 1% = (x — 132 (mod 2%)

when m =29 Misodd, and M > 1.

§ 8.7. Leudesdort, Proc. Londonr Math. Soc. (1) 20 (1889), 199-212. See also S. Chowla,
Journal London Math. Soc. 9 (1934), 246; N. Rama Rao, ibid. 12 (1937), 247-50; and
E. Jacobstal, Forhand. K. Norske Vidensk. Selskab, 22 (1949), nos. 12, 13, 41,

§ 8.8. Theorem 129 (Gauss, D.4., § 78) is sometimes called the “generalized Wilson’s
theorem’.

Many theorems of the type of Theorems 130 and 131 wili be found in Leudesdorf’s
paper quoted above, and in papers by Glaisher in vols. 31 and 32 of the Quarterly Journal
aof Mathematics.

* § 8.9 Theorem 132 is due to Eisenstein (1850). Full references to later proofs and
generatizations will be found in Dickson, History, i, ch. iv. See also the note to § 6.6,
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THE REPRESENTATION OF NUMBERS BY DECIMALS

9.1. The decimal associated with a given number. There is a process
for expressing any positive number & as a ‘decimal’ which is familiar in
elementary arithmetic.

We write

.1.1) E=[fl+x =X +x,

where X is an integer and 0 € x < 1,1 and consider X and x separately.
IfX > 0and :

10F < X < 105+,

and 4; and X; are the quotient and remainder when X is divided by 10°,
then

X =410 + X,,
where
0<A=[10"°X]1<10, 0K X, <10,
Similarly

Xi=A1071+X, (042 <10,0 <Xz < 105D,
Xa=A3.10072+ X3 (0< 43 < 10,0 < X3 < 10°2),

Xs—1 =410+ X, (0<4; <10,0 <X, <10),
Xs = As+1 (0 < Agp1 < 10).

Thus X may be expressed uniquely in the form
9.1.2) X o= A1.10° + A2 1057 b oo 4 4010 + Ay,

where every A is one 0f0,1,2,...,9, and 4, is not 0. We abbreviate this
expression to

(9.1.3) X =A142... . AsAs41,
the ordinary representation of X in decimal notation.

t Thus [£] has the same meaning a5 in § 6.11.
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Passing to x, we write
x=fi O<fi <l
We suppose that a; — [10f;], so that

ai ar+1
— ;
o SN <"1

apisoneof0,1,...,9, and
ay=[10f1, 10i=ai+fpr O<fH <1).
Similarly, we define a3, a3, ... by

az=[104)], W0L=ao+fi O<fHi<D),
a3=[10R}, 10a=a3+fa (O<fy <],

Everya,isone 0of0,1,2,...,9. Thus

(9.1.4) X = Xp 4+ Enil,
where
ai a2 an
9.1.5 = o e —
1
(9.1.6) 0 < gnyy =Tt o L

107 10n°
We thus define a decimal '

‘ala2a3- + -a". .

139

associated with x. We call gy, ay,... the first, second, ... digits of the

decimal.
Since a, < 10, the series

[s o]
a
9.1.7) Z ﬁ
i

is convergent; and since g, —> 0, its sum is x. We may therefore write

9.1.8) X =-aq;aas...,

the right-hand side being an abbreviation for the series (9.1.7).
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If fn+-1 = O for some n, i.e. if 10"x is an integer, then
dpyl =aps2 = ... =0.

In this case we say that the decimal terminates. Thus

17
ik 000...,
200 0425

and we write simply

17
— = -0425.
400
1t is plain that the decimal for x will terminate if and only if x is a rational
fraction whose denominator is of the form 2%58,

~ Since
dptl An42 _ I
Jortl T g T T 8 < 5
and
o . 9 . _ 9 1
(S (1 Tt (1- ) 107

it is impossible that every a, from a certain point on should be 9. With

this reservation, every possible sequence (a,) will arise from some x. We

define x as the sum of the series (9.1.7), and x,, and g, as in (9.1.4) and

(9.1.5). Then gn4+1 < 1077 for every n, and x yields the sequence required.
Finally, if

' o0 an oo bn
(9.1.9) ;F =Z}jm

and the b, satisfy the conditions already imposed on the a,, then a, = b,
for every a. For if not, let ay and by be the first pair which differ, so that
lay — byl =2 1, Then

. a > b
" "
l 107 ; 107

>__1__i|a—b§> 1 _i 9 o
N 10" 7 10¥ o

N+l N+t
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This contradicts (9.1.9) unless there i1s equality. If there is equality, then
all of ay+1 — byyy, an+z — by 4o, ... must have the same sign and the
absolute value 9. But then ¢ithera, = 9and b, = 0 forn > N, or else
ap, = 0 and b, = 9, and we have seen that each of these alternatives is
impossible. Hence a, = b, for all n. In other words, different decimals
correspond to different numbers.

We now combine (9.1.1), (9.1.3), and (9.1.8) in the form

(9.1.10) E=X+x=41A2.. . As -ayazas ...,
and we can sum up our conclusions as follows.
TueoreM 134. Any positive number & may be expressed as a decimal
A4y, Agpr-aiazaz ...,
where
04 <10,04;,<10,...,0< a, <10,

not all A and a are 0, and an infinity of the a,, are less than 9. If &€ > 1
then Ay > 0. There is a (1, 1) correspondence between the numbers and
the decimals, and

£ =A41.10" + .. ~{>~As«¢~1+—+ + -

l(}2

In what follows we shall usually suppose that 0 < & < 1 50 that X = 0,
& = x. In this case all the 4 are 0. We shall sometimes save words by ignor-
ing the distinction between the number x and the deczmal which represents
it, saying, for example, that the second digit of is 4.

9.2. Terminating and recurring decimals. A decimal which does not
terminate may recur. Thus

3=-3333..., I =-14285714285714...;
equations which we express more shortly as
b4 1 _ ;
3 =3, =5 =-142857.

These are pure recurring decimals in which the period reaches back to the
beginning. On the other hand,

L L
L= 1666... =16,
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a mixed recurring decimal in which the period is preceded by one non-

recurrent digit.
We now determine the conditions for termination or recurrence.

() I

_p_p
¥=q T 2
where (p,q) = 1, and
(9.2.1) p = max(a, B),

then 10%x is an integer for n = wu and for no smaller value of n, so that x
terminates at a,,. Conversely,

10'*102+ T T 108 g

where g has the prime factors 2 and 5 only.

(2) Suppose next that x = p/q, (p,q) = 1, and (g, 10) = 1, so that ¢
is not divisible by 2 or 5. Our discussion of this case depends upon the
theoréems of Ch. VL

By Theorem 88,

0¥ = | (mod ¢)

for some v, the least such v being a divisor of ¢(g). We suppose that v has
this smallest possible value, i.e. that, in the language of § 6.8, 10 belongs
to v (mod ¢) or v is the order of 10 (mod ¢). Then

I W
92.2) 10 = (;P _ (mq;- 1)p mmp+§ — mp +x,

where m is an integer. But
10"x = 10%x, + 10¥gy41 = 10%x, + fiy1,
by (9.1.4). Since 0 < x < 1, fi41 = x, and the process by which the

decimal was constructed repeats itself from f;..; onwards. Thus x is a pure
recurring decimal with a period of at most v figures.
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On the other hand, a pure recurring decimal -@; a2 ... &, is equal to

ay a a 1 1
a2 LAY (1 e
(o +702 '+zo%)( tixtieE Tt )

10 1a; + 101”“202 + -+ ay

J— s—

. 10* — 1

3

LR

when reduced to its lowest terms. Here ¢{10* — 1, and so A > v. It follows
thatif (g, 10) = 1, and the order of 10 (mod ¢) is v, then x is a pure recurring
decimal with a period of just v digits; and conversely.

(3) Finally, suppose that

P
22560’

where (p,q) = 1 and (2, 10) = 1; that u is defined as in (9.2.1); and that
v is the order of 10 (mod Q). Then

(9.2.3) x=2=
q

P
108x =S =X + =,
Q

o

0

where p/, X, P are integers and
0K X <10, 0<P<Q, (PQQ=L

[£X > Othen 10° < X < 10°*) forsomes < w, and X == A14y... Asp1;
and the decimal for P/ is pure recurring and has a period of v digits,
Hence

104x = 4145 ... Agy - Q103 .. . Gy
and
(9.2.4) x = biby...bymay ... ay,

the last s + | of the b being 41,42, ..., 45+, and the rest, if any, 0.
Conversely, it is plain that any decimal (9.2.4) represents a fraction
{9.2.3). We have thus proved

TheoreM 135. The decimal for a rational number p/q between 0 and 1
is terminating or recurring, and any terminating or recurring decimal is
equal to a rational number. If (p,q) = 1,q = 2*58, and max(a, 8) = u.
then the decimal terminates after . digits. If (p,q) = 1,9 = 2%5PQ, where
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0 > 1,(Q,10) = 1, and v is the order of 10 (mod Q), then the decimal
contains | non-recurring and v recurring digits.

9.3. Representation of numbers in other scales. There is no reason
except familiarity for our special choice of the number 10; we may replace
10 by 2 or by any greater number . Thus

WwWih Wbk oof—

the first two decimals being *binary’ decimals or *decimals in the scale of
2’, the third a ‘decimal in the scale of 7.} Generally, we speak of ‘decimals
in the scale of 7’

The arguments of the preceding sections may be repeated with certain
changes, which are obvious if 7 is a prime or a product of different primes
(like 2 or 10), but require a little more consideration if » has square divisors
(like 12 or 8). We confine ourselves for simplicity to the first case, when
our argurnents require only trivial alterations. In § 9.1, 10 must be replaced
by r and 9 by » — 1. In § 9.2, the part of 2 and 5 is played by the prime
divisors of r.

TuroreM 136. Suppose that r is a prime or a product of different primes.
Then any positive number & may be represented uniquely as a decimal in
the scale of r. An infinity of the digits of the decimal are less than r — 1;
with this reservation, the correspondence between the numbers and the
decimals is (1, 1).

Suppose further that

0<x<1, x=2, (o) =1.
q
If
g =P .. .,

t We ignore the verbal contradiction involved in the use of *decimal’; there is no other convenient
word.
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where s, t, .. .,u are the prime factors of r, and

= max(e,B,...,¥),

then the decimal for x terminates at the uth digit. If q is prime to r, and
v is the order of r (mod @), then the decimal is pure recurring and has a
period of v digits. If

g=s% ... Q0 (©@>1),

Q is prime to r, and v is the order of r (mod Q), then the decimal is mixed
recurring, and has p non-recurring and v recurring digits.}

9.4. Irrationals defined by decimals. It follows from Theorem 136
that a decimal (in any scale!) which neither terminates nor recurs must
represent an irrational number. Thus

x = -0100100010. . .

(the number of 0’s increasing by 1 at each stage) is irrational. We consider
some less obvious examples.

TaroreM 137:
011010100010 .. .,

where the digit a, is | if n is prime and 0 otherwise, is irrational.

Theorem 4 shows that the decimal does not terminate. If it recurs, there
is a function An + B which is prime for ali » from some point onwards;
and Theorem 21 shows that this also is impossible.

This theorem is true in any scale. We state our next theorem for the scale
of 10, leaving the modifications required for other scales to the reader.

TueoreM 138.

-2357111317192329.. .,

¥ Generally, when r = o417 ... uC, we must define 1 as

if this mumber is an integer, and otherwise as the first greater integer.

! Stictly, any ‘quadratfrei’ scale (scale whose base is a prime or a product of different primes). This
is the only case actually covered by the theorems, but there is no difficultly in the extension.
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where the sequence of digits is formed by the primes in ascending order, is
irrational.

The proof of Theorem 138 is a little more difficult. We give two
alternative proofs.

(1) Let us assume that any arithmetical progression of the form
I 41 (k=1,2,3,..)

contains primes. Then there are primes whose expressions in the decimal
system contain an arbitrary number s of 0’s, followed by a I. Since the
decimal contains such sequences, it does not terminate or recur.

(2) Let us assume that there is a prime between N and 10N for every
N = 1. Then, given s, there are primes with just s digits. If the decimal
recurs, it is of the form

(4.1 _ L dmar. . aglaan .. ag] ...,

the bars indicating the period, and the first being placed where the first
period begins. We can choose ! > 1 so that all primes with s = kI digits
stand later in the decimal than the first bar If p is the first such prime, then
it must be of one of the forms

p=aiaz...qxlagaz...axl.. . lmay...ax
or
P=08myt. . Glaraz...acl ... layaz.. . axlayaz .. .ap

andisdivisiblebyayaz ... ay orbyamy1 ... aray1a; . . . ay; a contradiction.

In our first proof we assumed a special case of Dirichlet’s Theorem 15.
This special case is easier to prove than the general theorem, but we shall
not prove it in this book, so that (1) will remain incomplete. In (2) we
assumed a result which follows at once from Theorem 418 (which we shall
prove in Chapter XXII). The latter theorem asserts that, for every N > 1,
there is at least one prime satisfying N < p < 2N. It follows, a forﬂort,
that NV < p < 10N,

9.5. Tests for divisibility. In this and the next few sections we shall be
concerned for the most part with trivial but amusing puzzles.

There are not very many useful tests for the divisibility of an integer by
particular integers such as 2,3, 5,... . A number is divisible by 2 if its last
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digit is even. More generally, it is divisible by 2¥ if and only if the number
represented by its last v digits is divisible by 2¥. The reason, of course, is
that 2¥[10V; and there are similar rules for 5 and 5.

Next

10" = 1(mod 9)
for every v, and therefore

AL 105+ 42107 o 1 410+ Ayt
=A1+A2+ - +Asp; (mod 9).
A fortiori this is true mod 3. Hence we obtain the well-known rule ‘a number
is divisible by 9 (or by 3) if and only if the sum of its digits is divisible by

9 (or by 3)’.
There is a rather similar rule for 11. Since 10 = —1 (mod 11), we have

104 =1, 10! = —1(mod11),
50 that

Ap10° + 421057 o 4 4010 + 454
§A3+l _A_g +As—} —— “(mOdii).

A number is divisible by 11 if and only if the difference between the sums
of its digits of odd and even ranks is divisible by 11. :

We know of only one other rule of any practical use. This is a test for
divisibility by any one of 7, 11, or 13, and depends on the factthat 7.11.13 =
1001. Its working is best illustrated by an example: if 29310478561 is
divisible by 7, 11 or 13, so is

561 — 478 4+ 310 — 29 = 364 = 4.7.13.

Hence the original number is divisible by 7 and by 13 but not by 11.

9.6. Decimals with the maximum period. We observe when learning
elementary arithmetic that

1=-142857, 2= .285714, ..., §= 857143,

the digits in each of the periods differing only by a cyclic permutation.
Consider, more generally, the decimal for the reciprocal of a prime g.
The number of digits in the period is the order of 10 (mod g), and is a
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divisor of ¢(g) = ¢ — 1. If this order is g — 1, i.e. if 10 is a primitive root
of g, then the period has ¢ — 1 digits, the maximum number possible.

We convert 1/qg into a decimal by dividing successive powers of 10 by
q; thus

10"

= lon'xﬂ +.ﬁ3+l L]

in the notation of § 9.1. The later stages of the process depend only upon
the value of f,,1 1, and the process recurs so soon as f,, repeats a value. If,
as here, the period contains g — 1 digits, then the remainders

ﬁ'ﬁ*""f‘}

must all be different, and must be a permutation of the fractions

The last remainder f; is 1/q.
The corresponding remainders when we convert p/q into a decimal are

Pph, - Bl

reduced (mod 1). These are, by Theorem 58, the same numbers in a differ-
ent order, and the sequence of digits, after the occurrence of a particular
remainder s/g, is the same as it was afler the occurrence of s/g before.
Hence the two decimals differ only by a cyclic permutation of the period.

What happens with 7 will happen with any g of which 10 is a primitive
root. Very little is known about these ¢, but the g below 50 which satisfy
the condition are

7,17, 19, 23,29, 47.

THEOREM 139. If q is a prime, and 10 is a primitive root of g, then the
decimals for

(p_—..l,2,...,qw1)

£ |

have periods of length g — 1 and differing anly by cyclic permutation.
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9.7. Bachet’s problem of the weights. What is the least number
of weights which will weigh any integral number of pounds up to 40
(a) when weights may be put into one pan only and (b) when weights
may be put into either pan?

The second problem is the more interesting. We can dispose of the first
by proving

Tueorem 140. Weights 1,2,4,...,2" ! will weigh any integral weight
up to 2" — 1; and no other set of so few as n weights is equally effective
(i.e. will weigh so long an unbroken sequence of weights from 1).

Any positive integer up to 2" — 1 inclusive can be expressed uniquely
as a binary decimal of » figures, i.e. as a sum

n--1
Zas?,
0

where every a; is 0 or 1. Hence our weights will do what is wanted, and
‘without waste’ (no two arrangements of them producing the same resuit).
Since there is no waste, no other selection of weights can weigh a longer
sequence.

Finally, one weight must be 1 (to weigh 1); one must be 2 (to weigh 2);
one must be 4 (to weigh 4); and so on. Hence 1,2,4,...,2" ! is the only
system of weights which will do what is wanted. ,

It is to be observed that Bachet’s number 40, not being of the form 2" —1,
is not chosen appropriately for this problem. The weights 1, 2, 4, 8, 16, 32
will weigh up to 63, and no combination of 5 weights will weigh beyond 31.
But the solution for 40 is not unique; the weights 1, 2, 4, 8, 9, 16 will also
weigh any weight up to 40.

Passing to the second problem, we prove

Tueorem 141, Weights 1, 3, 3%,...,3" ! will weigh any weight up to
%(3" - 1), when weights may be placed in either pan; and no other set of
so few as n weights is equally effective,

(1) Any positive integer up to 3” — 1 inclusive can be expressed uniquely
by n digits in the ternary scale, i.e. as a sum

n—1
Z ag3*,
0
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where every a; is 0, 1, or 2. Subtracting
143432 4+...4371=13"-1),

we see that every positive or negative integer between w%(3’" — 1) and
1(3" — 1) inclusive can be expressed uniquely in the form

n—1
> b3,
0

where every b is -1, 0, or 1. Hence our weights, placed in either pan, will
weigh any weight between these limits.! Since there is no waste, no other
combination of n weights can weigh a longer sequence.

(2) The proof that no other combination will weigh so long a sequence
is a little more troublesome, It is plain, since there must be no waste, that
the weights must all differ. We suppose that they are

W < Wy <0 < Wy
The two largest weighable weights are plainly
W=w+wi+ 4w, Wi=wt+ - tw

Since Wy = W — 1, w; must be 1.
The next weighable weight is

~wi+w2+wit-twy =W -2,
and the next must be
W)+ w3+ wst oWy

Hencew) +wi+-- 4w, =W —3and wy == 3.

T Counting the weight to be weighed positive if it is placed in one pan and negative if it is placed
in the other.
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Suppose now that we have proved that
wp=lw=3,...,w; = 31

If we can prove that wey = 3°, the conclusion will follow by induction.
The largest weighable weight W is

L4 n
W&ZW;'*'ZW:.
i

Leaving the weights wg.,1, . . ., w, undisturbed, and removing some of the
other weights, or transferring them to the other pan, we can weigh every
weight down to

s n
—Y w Y we= W (3D,
1

s+i

but none below. The next weight less than this is # — 37, and this must be
wit+ w2t we b Wepg b W3 o+ Wi
Hence
Wepl =2wp +wa + -+ wg) +1=3°,

the conclusion required.
Bachet’s problem corresponds to the case n = 4.

9.8. The game of Nim. The game of Nim is played as follows. Any
number of matches are arranged in heaps, the number of heaps, and
the number of matches in each heap, being arbitrary. There are two players,
A4 and B. The first player 4 takes any number of matches from a heap; he
may take one only, or any number up to the whole of the heap, but he must
touch one heap only. B then makes a move conditioned similarly, and the
players continue to take alternately. The player who takes the last match
wins the game,

The game has a precise mathematical theory, and one or other player can
always force a win.

We define a winning position as a position such that if one player P (4
or B) can secure it by his move, leaving his opponent Q (B or 4) to move
next, then, whatever (J may do, P can play so as to win the game. Any
other position we call a losing position.
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For example, the position

B T

or (2, 2), is a winning position. If 4 leaves this position to B, B must take
one match from a heap, or two. If B takes two, 4 takes the remaining two.
If B takes one, A takes one from the other heap; and in either case 4 wins.
Similarly, as the reader will easily verify,

dede.,

or (1, 2, 3), is a winning position,

We next define a correct position. We express the number of matches in
each heap in the binary scale, and form a figure ¥ by writing them down
one under the other. Thus (2, 2), (1, 2, 3), and (2, 3, 6, 7) give the figures

10 01 010
10 10 011
— 11 110
20 — 111
22 —
242

it is convenient to write 01, 010,... for 1, 10,... so as to equalize the
number of figures in each row. We then add up the columns, as indicated in
the figures. If the sum of each column is even (as in the cases shown) then
the position is ‘correct’. An incorrect position is one which is not correct:
thus (1, 3, 4) is incorrect.

TusoreMm 142. A position in Nim is a winning position if and only if it is
correct.

(1) Consider first the special case in which no heap contains more than
one match. It is plain that the position is winning if the number of matches
left is even, and losing if it is odd; and that the same conditions define
correct and incorrect positions.

(2) Suppose that P has to take from a correct position. He must replace
one number defining a row of F by a smaller number. If we replace any
number, expressed in the binary scale, by a smaller number, we change
the parity of at least one of its digits. Hence when P takes from a correct
position, he necessarily transforms it into an incorrect position.
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(3) If a position is incorrect, then the sum of at least one column of F is
odd. Suppose, to fix our ideas, that the sums of the columns are

even, even, odd, even, odd, even.

Then there is at least one 1 in the third column (the first with an odd sum).
Suppose (again to fix our ideas) that one row in which this happens is

011101,

the asterisks indicating that the numbers below them are in columns whose
sum is odd. We can replace this number by the smaller number

* ok
010110,

in which the digits with an asterisk, and those only, are altered. Plainly
this change corresponds to a possible move, and makes the sum of every
column even; and the argument is general. Hence P, if presented with an
incorrect position, car always convert it into a correct position.

(4) If 4 leaves a correct position, B is compelled to convert it into an
incorrect position, and A4 can then move so as to restore a correct position.
This process will continue until every heap is exhausted or contains one
match only. The theorem is thus reduced to the special case already proved.

The issue of the game is now clear. In general, the original position will
be incorrect, and the first player wins if he plays properly. But he loses
if the original position happens to be correct and the second player plays
properly.t

Y When playing against an opponent who does not know the theory of the game, there is no need
to play strictly according to rule. The experienced player can play at random until he recognizes a
winning position of a comparatively simple type. It is quite enough 10 know that

1,2n,2n 4+ 1, n,7—nT, 2,3,4,5
are winning positions; that
L2In+1,2n 42

is a losing position; and that a combination of two winning positions is a winning position, The winning
tove is not always unique. The position

1,3,9,27
is incorrect, and the only move which makes it correct is to take 16 from the 27. The position
357811
is also incorrect, but may be made correct by taking 2 from the 3, the 7, or the 11
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There is a variation in which the player who takes the last match Joses.
The theory is the same so long as a heap remains containing more than one
match; thus (2, 2) and (1, 2, 3) are still winning positions. We leave it to
the reader to think out for himself the small variations in tactics at the end
of the game.

9.9, Integers with missing digits. There is a familiar paradox' con-
cerning integers from whose expression in the decimal scale some particular
digit such as 9 is missing. It might seem at first as if this restriction should
only exclude ‘about one-tenth’ of the integers, but this is far from the truth.

TuroreM 143. Almost all numberst contain a 9, or any given sequence
of digits such as 937. More generally, almost all numbers, when expressed
in any scale, contain every possible digit, or possible sequence of digits.

Suppose that the scale is r, and that v is a number whose decimal misses
the digit 5. The number of v for which rtgvertis@e—-Difb=0
and (# — 2)(r — 1!~V if b # 0, and in any case does not exceed (r — 1)\,
Hence, if

Frl sn< rk,
the number N (n) of v up to n does not exceed

r=14+0—-D%+ -+ (r— D <k(r— D,

and

R £ - _ k
N(n) < k(r 1) <kr r—1 ,
n rk-1 r

which tends to 0 when n — 0.

The statements about sequences of digits need no additional proof, since,
for example, the sequence 937 in the scale of 10 may be regarded as a single
digit in the scale of 1000.

The ‘paradex’ is usually stated in a slightly stronger form, viz.

Treorem 144. The sum of the reciprocals of the numbers which miss a given digit is
convergent.

f Relevant in controversies about telephone directories.
3 In the sense of § 1.6.
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The number of v between ¥~ and #* is at most r— 1Y%, Hence

o

Yi-y ¥

ken] phe) Ly pk
o0

oo k -
{r - 1) 7o i
Ckﬁzlv _..—:.(r— l}kzﬂi( - ) =!“(?‘—1).

We shall discuss next some analogous, but more interesting, properties
of infinite decimals. We require a few elementary notions concerning the
meastre of point-sets or sets of real numbers.

9.10. Sets of measure zero. A real number x defines a ‘point’ of
the continuum. In what follows we use the words ‘number’ and ‘point’
indifferently, saying, for example, that ‘P is the point x’.

An aggregate of real numbers is called a set of points. Thus the set T
defined by

—_ l (n = 1,2,3,...),
n

the set R of all rationals between 0 and 1 inclusive, and the set C of all real
numbers between 0 and 1 inclusive, are sets of points.

An interval (x — 8, x + §), where & is positive, is called a neighbourhood
of x. If § is a set of points, and every neighbourhood of x includes an
infinity of points of S, then x is called a limit point of S. The limit point
may or may not belong to §, but there are points of § as near to it as we
please. Thus T has one limit point, x = 0, which does not belong to T.
Every x between 0 and 1 is a limit point of R,

The set S’ of limit points of S is called the derived set or derivative of
S. Thus C is the derivative of R. If § includes ', i.e. if every limit point
of Sbelongs to §, then S is said to be closed. Thus C is closed. If §’ includes
S, i.e., if every point of § is a limit point of S, then § is said to be dense in
itself. If $ and S’ are identical (so that S is both closed and dense in itself),
then § is said to be perfect. Thus C is perfect. A less trivial example will
be found in § 9.11.

A set § is said to be dense in an interval (a, b) if every point of (a,b)
belongs to 8. Thus R is dense in (0, 1).

If § can be included in a set J of intervals, finite or infinite in number,
whose total length is as small as we please, then § is said to be of measure
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zero. Thus T is of measure zero. We include the point 1/# in the interval

L _gmmts, Lygnts
n n
of length 28, and the sum of all these intervals (without allowance for

possible overlapping) is

OO0
522‘” - §,
;

which we may suppose as small as we please.
Generally, any enumerable set is of measure zero. A set is enumerable
if its members can be correlated, as

(9.10.1) X1y X2seees Xtgeeny

with the integers 1,2,...,n,.... We include x, in an interval of length
2778, and the conclusion follows as in the special case of 7.

A subset of an enumerable set is finite or enumerable. The sum of an
enumerable set of enumerable sets is enumerable.

The rationals may be arranged as

0 111213123
IR AV L LY S SR SR L LA
and so in the form (9.10.1). Hence R is enumerable, and therefore of mea-
sure zero. A set of measure zero is sometimes called a null set; thus R is
null. Null sets are negligible for many mathematical purposes, particularly
in the theory of integration.
. The sum S of an enumerable infinity of null sets S, (i.e. the set formed
by all the points which belong to some $,,) is null. For we may include S,
in a set of intervals of total length 277§, and so § in a set of intervals of
total length not greater than § Y 27" = §.

Finally, we say that almost all points of an interval / possess a property
if the set of points which do not possess the property is null. This sense of
the phrase should be compared with the sense defined in § 1.6 and used in
§9.9. Itimplies in either case that ‘most’ of the numbers under consideration
(the positive integers in §§ 1.6 and 9.9, the real numbers here) possess the
property, and that other numbers are “exceptional’.t

t Owr explanations here contain the minimus necessary for the understanding of §§ 9.11-13 anda
few later passages in the book. In particulsr, we have not given any general definition of the measure
of & sei. There are fuller accounts of all these ideas in the standard treatises on analysis.
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9.11. Decimals with missing digits. The decimal

= 142857

has four missing digits, viz. 0, 3, 6, 9. But it is easy to prove that decimals
which miss digits are exceptional.

We define S as the set of points between 0 (inclusive) and 1 (exclusive)
whose decimals, in the scale of 7, miss the digit b. This set may be generated
as follows,

We divide (0, 1) into r equal parts

s s+ 1
-5 X<

(s=0,1,...,r—1);

the left-hand end point, but not the right-hand one, is included. The sth
part contains just the numbers whose decimals begin with s — 1, and if we
remove the (& + 1)th part, we reject the numbers whose first digit is b.

We next divide each of the » — 1 remaining intervals into r equal parts
and remove the (b + 1)th part of each of them. We have then rejected all
numbers whose first or second digit is b. Repeating the process indefinitely,
we reject all numbers in which any digit is b; and § is the set which
remains.

In the first stage of the construction we remove one interval of length 1/r;
in the second, » — 1 intervals of length 1 /rz, i.e. of total length (r — 1) /rz;
in the third, (» — 1)? intervals of total length (» — 1)2/r3; and so on. What
remains afler k stages is a set J; of intervals whose total length is

lmi(rml)"“i

=1

r’ ’

and this set includes S for every k. Since

B ()

when k — o0, the total length of J; is small when k is large; and § is
therefore null.

Taeorem 145. The set of points whose decimals, in any scale, miss any
digit is null: almost all decimals contain all possible digits.
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The result may be extended to cover combinations of digits. If the
sequence 937 never occurs in the ordinary decimal for x, then the digit
‘937 never occurs in the decimal in the scale of 1000. Hence

TusoreM 146. Almost all decimals, in any scale, contain all possible
sequences of any number of digits.

Returning to Theorem 145, suppose thatr = 3 and b= 1. The set S is

formed by rejecting the middle third (%, %) of (0, 1), then the middle thirds

5 %) , (%, %) of (0, 31-), and (%, 1) and so on. The set which remains
is null.

It is immaterial for this conclusion whether we reject or retain the end
points of rejected intervals, since their aggregate is enumerable and there-
fore null. In fact our definition rejects some, such as 1/3 == -1, and includes
others, such as 2/3 = -2.

The set becomes more interesting if we retain all end points. In this
case (if we wish to preserve the arithmetical definition) we must allow
ternary decimals ending in 2 (and excluded in our account of decimals at the
beginning of the chapter). All fractions p/3" have then two representations,
such as

1 .
gm«lz-OZ

(and it was for this reason that we made the restriction); and an end point
of a rejected interval has always one without a |,

The set § thus defined is called Cantor s ternary set.

Suppose that x is any point of (0, 1), except 0 or L. If x does not belong
to S, it lies inside a rejected interval, and has neighbourhoods free from
points of S, so that it does not belong to §'. If x does belong to S, then
all its neighbourhoods contain other points of §; for otherwise there would
be one containing x only, and two rejected intervals would abut. Hence x
belongs to S7. Thus § and §” are identical, and x is perfect.

Turorem 147. Cantor's ternary set is a perfect set of measure zero.

9.12. Normal numbers. The theorems proved in the last section
express much less than the full truth. Actually it is true, for example, not
only that almost all decimals contain a 9, but that, in almost all decimals,
9 occurs with the proper frequency, that is to say in about one-tenth of the
possible places.
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Suppose that x is expressed in the scale of r, and that the digit b occurs
ny times in the first # places. If

np

n

- B

when n — o0, then we say that b has frequency B. It is naturally not neces-
sary that such a limit should exist; np/n may oscillate, and one might expect
that usually it would. The theorems which follow prove that, contrary to
our expectation, there is usually a definite frequency. The existence of the
limit is in a sense the ordinary event.
We say that x is simply normal in the scale of » if
ny 1

(9.12.1) —— —
H r

for each of the » possible values of 5. Thus
x = 0123456789

is simply normal in the scale of 10. The same x may be expressed in the
scale of 1010, when its expression is

x = b,

where b = 123456789, It is plain that in this scale x is not simply normal,
100 — 1 digits being missing.

This remark leads us to a more exacting definition. We say that x is
normal in the scale of r if all of the numbers

x,rx,réx,.. 1
are simply normal in all of the scales

r,rz,rs,..,.

It follows at once that, when x is expressed in the scale of r, every
combination

biby... by

¥ Strictly, the fractional parts of these numbers (since we have been considering numbers between
0 and 1). A number greater than 1 is simply normal, or normal, if its fractional part is simply normal,
or normal.
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of digits occurs with the proper frequency; i.e. that, if n; is the number of
occurrences of this sequence in the first n digits of x, then

ng 1

122 -2 il

(9.12.2) - — "
when n -» 00,

Our main theorem, which includes and goes beyond those of § 9.11, is

TueoreM 148, Almost all numbers are normal in any scale.

9.13. Proof that almost all numbers are normal. It is sufficient to
prove that almost all numbers are simply normal in a given scale. For
suppose that this has been proved, and that S(x, ) is the set of numbers
x which are not simply normal in the scale of ». Then S(x, r), S(x,rz),
S(x,r?),.. . are null, and therefore their sum is null. Hence the set T'(x, »)
of numbers which are not simply normal in all the scales r, r2,...is null.
The set T(rx, r) of numbers such that »x is not simply normal in all these
scales is also null; and so are T(#*x, r), T(rx,7), . . . . Hence again the sum
of these sets, i.e. the set U(x,r) of numbers which are not normal in the
scale of r, is null. Finally, the sum of U(x, 2), U(x, 3), ... is null; and this
proves the theorem.

We have therefore only to prove that (9.12.1) is true for almost all num-
bers x. We may suppose that n tends to infinity through multiples of 7, since
(9.12.1) is true generally if it is true for n so restricted.

The numbers of r-ary decimals of n figures, with just m b’s in assigned
places, is (r — 1)"~™. Hence the number of such decimals which contain
just m b’s, in one place or another, is'

t

n: Rt
pin, m) = m(" -~ 1)

We consider any decimal, and the incidence of b’s among its first z digits,

and call

n *
H=m-——~=m-—mn
r

T p(n, m) is the term in (r — 1)"" in the binomial expansion of
{1+ (r — DY™.
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the n-excess of b (the excess of the actual number of b’s over the number
to be expected). Since n is a multiple of r, n* and . are integers. Also

(9.13.1) dera L
r n r
We have
pin, m+4 1) n--m
9.13.2 =
( ) pin, m) r—DHm+1)
@ Dn-—ru

= r=—Dn+r@r—D@+1

Hence

pn,m+1) pln,m+ 1)

ol (u=~1,-2,..), =T 1 (u=0,1,2,..):
pn, m) H e )

so that p(n, m) is greatest when

If 4 > 0, then, by (9.13.2)

pin,m+1) (r—Dn-—ru
pin,m) ¢ —Dn+rr— D@ +1)

z «%gexp SR .
re1n r-1n

pin,m+1)  (r—=Dm (—Da—rir—1)yv
pin,my ~ n—m+1 (—Da+riv+1)

.<1—%<exp( )mexp( I:'l)

We now fix a positive 8, and consider the decimals for which

(9.13.3)

< |-

Ifu < Oand v = juj, then

(9.13.4)

(9.13.5) ) > én
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for a given a. Since 7 is to be large, we may suppose that || 2> 2. If u is
positive then, by (9.13.3),

pln,my _ pm,m pn,m-=1) pa,m—pu+1)
pn,m—p) pn,m—1)pn,m—2)"" pn,m—pu)

r (—D+@—2)+---+1
< oxp -1 n
— r(ﬂml)#’ wK.u,zfﬂ
_exp{ 2(rmi)n}<e ’

where K is a positive number which depends only on r. Since
pln,m — y) = p(n,n*) <t
it follows that

(9.13.6) pin, m) < e~ K/,

Similarly it follows from (9.13.4) that (9.13.6) is true also for negative p.

Let Sp(xt) be the set of numbers whose n-excess is u. There are p =
p(n,m) numbers &, £&,. .., &, represented by terminating decimals of n
figures and excess y, and the numbers of S, (1) are included in the intervals

g&"&.&'”*'r_n (Sw1929""p)'
Hence S,(;¢) is included in a set of intervals whose total length does not
exceed

rpn, m) < e~KK' /",

And if T,,(8) is the set of numbers whose n-excess satisfies (9.13.5), then
T,(3) can be included in a set of intervals whose length does not exceed

2 z ) 2 H
§ : emKﬂ /n 2 z : e~K,u. /n <2 § :e—:!{u /ne—zK,u./n
lis| 28n uzdn pzén
o0 ~1K8n
_lrs? 1 272 § ral
S 23 ij& n § :e zxﬂ./'ﬂ < Lne—zKa l‘l’

#=0 1— e~ 2K/m

where L, like X, depends only on r.

t indeed p{n, m) < r* for alt m.
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We now fix N (a multiple N*r of r), and consider the set Ux(8) of
numbers such that (9.13.5) is true for some

n=n*r > N=N"*
Then Uy (8) is the sum of the sets

TN(S)! TN'H"(S)S TN+2r(5); sy

i.e. the sets T,,(8) for which n == kr and &k = N*. Itcan therefore be included
in a set of intervals whose length does not exceed

o o]
LY ke 18 = pvey;
k==N*

and n{N*) — 0 when n* and N* tend to infinity.

If U(3) is the set of numbers whose n-excess satisfies (9.13.5) for an
infinity of n (all multiples of r), then U (8} is included in Uy (8) for every
N, and can therefore be included in a set of intervals whose total length is
as small as we please. That is fo say, U () is null.

Finally, if x is not simply normal, (9.12.1) is false (even when » is
restricted to be a multiple of ), and -

il 2 ¢n

for some positive ¢ and an infinity of multiples » of . This ¢ is greater
than some one of the sequence 3, %8, %8, ..., and so x belongs to some
one of the sets

all of which are null. Hence the set of all such x is null.

It might be supposed that, since almost all numbers are normal, it would
be easy to construct examples of normal numbers. There are in fact simple
constructions; thus the number

-123456789101112 . .,
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formed by writing down all the positive integers in order, in decimal nota-
tion, is normal. But the proof that this is so is more troublesome than might
be expected.

NOTES

§ 9.4. For Theorem 138 see Polya and Szeg8, No. 257, The result is stated without proof
in W. H. and G. C. Youngs® The theory of sets of points, 3. -

§ 9.5. See Dickson, History, i, ch. xii. The test for 7, 11, and 13 is not mentioned
explicitly. # is explained by Grunert, Archiv der Math. und Phys. 42 (1864), 478-82,
Grunert gives slightly eartier references to Brilka and V. A. Lebesgue.

§8§ 9.7-8. See Ahrens, ch. iii.

There is an interesting logicel point invoived in the definition of a ‘losing’ position in
Nim. We define a losing position as one which is not a winning position, 1.e. as a position
such that P cannot force a win by leaving it to (. It follows from our analysis of the game
that a losing position in this sense is also a losing position in the sense that {J can force a
win if P leaves such a position to (3. This is a case of a general theorem (due to Zermelo
and von Neumann) true of any game in which there are only two possible results and only
a finite choice of ‘moves’ at any stage. See D. Konig, Acta Univ. Hungaricae (Szeged), 3
(192, 121-30.

§ 9.10. Our “limit point’ is the 'limiting point” of Hobson's Theory of functions of a real
variable or the *Haufungspunkt’ of Hausdorfl"s Mengenlehre.

§§ 9.12-13. Niven and Zuckerman (Pacific Journal of Math. 1 (1951), 1039} and
Cassels (ibid. 2 (1952), 555-7) give proofs that, if (9.12.2) holds for every sequence of
digits, then x is normal. This is the converse of our statement that {5.12.2) follows from the
definition; the proof of this converse is not trivial.

For the substance of these sections see Borel, Legons sur la théorie des fonctions (2nd ed.,
1914), 182-216. Theorem 148 has been developed in various ways since it was originally
proved by Bore! in 1909. For an account and bibliography, see Kuipers and Niederreiter,
69-78,

Champermnowne (Journal London Math. Soc. 8 (1933), 254-60) proved that -123 ... is
normal. Copeland and Erd6s (Bulletin Amer. Math. Soc. 52 (1946), 857-60) proved that, if
ay, @3, . .. is any increasing sequence of integers such that a, < n' ¢ for every ¢ > 0 and
n > ng(e), then the decimal

ayaas . ..

{formed by writing out the digits of the a, in any scale in order) is normal in that scale.
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CONTINUED FRACTIONS
10.1. Finite continued fractions. We shall describe the function
1
(10.1.1D) ap + 1
ay 4+ 1
a +
2 az + -
1
+.............
an

of the N -4 1 variables
aﬂsal9" ')aﬂr" '!aN’

as a finite continued fraction, or, when there is no risk of ambiguity, simply
as a continued fraction, Continued fractions are important in many branches
of mathematics, and particularly in the theory of approximation to real
numbers by rationals. There are more general types of continued fractions
in which the ‘numerators’ are not all 1’s, but we shall not require them here.

The formula (10.1.1) is cumbrous, and we shall usually write the
continued fraction in one of the two forms

1 1 1

ap A ————
ar+ az+ ax

or
[a{}, A1,4%, ... ,QN}.
We call ag, ay,. .., an the partial quotients, or simply the guotients, of the

"continued fraction.
We find by calculation that!

ag ajag + 1
lagl = —, lag,a1] = ——,
i aj
azayag + az + ag
[aoaa}s aZI = ’
azay + 1

T There is a clash between our notation here and that of § 6.11, which we shall use again later in
the chapter {for example in § 10.5). In § 6.11, {x] was defined as the integral part of x; while here {ag]
means simply ag. The ambiguity should not confuuse the reader, since we use [2g] here merely as a
special case of {ag, ay, . .., ax). The square bracket in this sense will seldom oceur with a single letter
ingide it, and will not then be important. .
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and it is plain that

1
(10.1.2) [ag, a1} :ao+~;-,
i

1
(10.1.3) {ap, ai,...,qn1, 0} = [a{); aj,...,dp-2,4n—1 + a_] s

i

(10.1.4)

{a(}, alvﬂsaﬂlﬁae'i" =[GO,[510, a;,...,a,,]],
[aﬂs alg* . '9a}1}

for 1 € n € N. We could define our continued fraction by (10.1.2) and
either (10.1.3) or (10.1.4). More generally

(10‘1'5) [a(}s agy... ’al'l} = [aﬂs alv A sam—ls[am: am+ls e san]]
fori<m<n<N.
10.2. Convergents to a continued fraction. We call
[aOv afs*--;‘zn] (0 g n "'~<-.N)

the nth convergent to [ag, ay,..., an]. It is easy to calculate the convergents
by means of the following theorem.

Tueorem 149. If p, and g, are defined by

(10.2.1)
po=ap, pr=ayap+1, pp=aps1+ps—2 Q2<n<N)
(10.2.2)
go=1, gr=a1, gn=augn-1+gn-2 QLENLN),
then
(10.2.3) (a0, a1,...,a,] = 2.

In

We have already verified the theorem for n = 0 and n = 1. Let us
suppose it to be true for n < m, where m < N. Then

a -1+ pm-
lag, a1, --.,am—1, am]m&z mPm—1 + Pm 2,
dm  Amm-1 + gm-2
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and pp—1, Pm—2, 9m—1, dm—2 depend only on
ag, 1.0y 8m—1.

Hence, using (10.1.3), we obtain

1
{amﬂi,- «+28m—1, Am, am+i] = [00, ap,...,Amely @+ ——
Qm+1

_ (am + ﬁﬁ)?mwi + Pm-2
(am + W) Gm—1 + gm—2

i

_ Am+1{@mPm~1 + Pm~2) + Pm—1
- Am+1{@Gmdm~1 + Gm—1) + Gm—1
_ Bm+1Pm + Pm—1 __ Pmy1
 Omiigm+gm—1 Gmit

and the theorem is proved by induction.
It follows from (10.2.1) and (10.2.2) that

Pn _ GnPn—t + Pn-2

(10.2.4) = .
dn Angn—t + Gn-2

Also

Pntin—t —Pn—14n = (anpn—l +Pn~2)?nwi —Pn—l(anq:wwl + Gn_2)
= “(Pn-1‘]n—2 _Pn—ZQn—l)-

Repeating the argument withn — 1,7 — 2, ..., 2 in place of n, we obtain
Pnn—1 ~ Pa-1gn = (=1)"" (p1g0 — poq1) = (~1)""\.
Also

Pndn-2 = Pp-24n = (anpn—i + Pn-2)qn—2 "“Pn—Z(anq;:wl + qn-3)
= an(Pn—lQn—»Z — Pn-2qn—1) = (—l)nan-

Tueorem 150. The functions p, and q, satisfy

(10.2.5) Pngn—_t — Pn—14dn = (_l)nmi
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or

Pn Pn-1 - (‘"1)"_1
gn  dn-1 Gn—19n

(10.2.6)

Tueorem 151, They also satisfy
(10.2.7) Pndn—-2 ™ Pn—2Qn = (—1)"a,

or
gﬂ _ Pn-2 (—=D"a,
qn  qn-2 gn-2qn '

(10.2.8)

10.3. Continued fractions with positive quotients. We now assign
numerical values to the quotients a,, and so to the fraction (10.1.1) and to
its convergents. We shall always suppose that

(10.3.1) a;>0,...,ay > 0,1

and usually also that a, is integral, in which case the continued fraction
is said to be simple. But it is convenient first to prove three theorems
(Theorems 1524 below) which hold for all continued fractions in which
the quotients satisfy (10.3.1). We write

Pn
xﬂwm_? x“—“xN,

Gn
s0 that the value of the continued fraction is xy or x.
It follows from (10.1.5) that
(10‘3'2) {a{}’ afs ‘“r- vaN] = [ag, al-: - :anwl’ {am an+h L ,QN]]

_Man, a1, an1Pn—t + pa—2
[@n, @ns1,. .. anlgn—1 + Gn-2

for2 < n<N.

TueorEM 152, The even convergents xy, increase strictly with n, while
the odd convergents x3,+ decrease strictly.

Tueorem 153. Every odd convergent is greater than any even conver-
gent.

 4p may be negative.
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THeoREM 154, The value of the continued fraction is greater than that of
any of its even convergents and less than that of any of its odd convergents
(except that it is equal to the last convergent, whether this be even or odd).

In the first place every g, is positive, so that, after (10.2.8) and (10.3.1),
Xp — Xp—2 has the sign of (—1)”. This proves Theorem 152.
Next, after (10.2.6), x, — x,—1 has the sign of (—1)""!, so that

(10.3.3) X2m+1 > X2m-

If Theorem 153 were false, we should have x3,,4} < x3, for some pair
m, u. If u < m, then, after Theorem 152, x3,54.1 < X2m, and if & > m, then
X2.+1 < X3, and either inequality contradicts (10.3.3).

Finally, x = xx is the greatest of the even, or the least of the odd
convergents, and Theorem 154 is true in either case.

10.4. Simple continued fractions. We now suppose that the a, are
integral and the fraction simple. The rest of the chapter will be concerned
with the special properties of simple continued fractions, and other fractions
will occur only incidentally. It is plain that p, and g, are integers, and g,
positive. If

[ag, a1,az,..., an] = 2N = x,
gN
we say that the number x (which is necessarily rational) is represented by
the continued fraction. We shall see in a moment that, with one reservation,

the representation is unique.
THEOREM 155. gn 2 qn—1 for n = 1, with inequality when n > 1.
Tarorem 156. g, 2 n, with inequality when n > 3.

In the first place, gg = 1, g1 = a; 2 1.1fn > 2, then
gn = @ngn—-1 + qn-2 2 gn-1 + 1,
so that g, > gr—1 and g, > n. If n > 3, then
gn 2 qn—-t +qn-2 > gn-1+12n,

and so g, > n.
A more important property of the convergents is

Tueorem 157. The convergents to a simple continued fraction are in
their lowest terms.
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For, by Theorem 150,

d|pn . dign — di(—~1)""! — d|1.

10.5. The representation of an irreducible rational fraction by a sim-
ple continued fraction. Any simple continued fraction [ag, ai,...,an]
represents a rational number

X = XN.

In this and the next section we prove that, conversely, every positive
rational x is representable by a simple continued fraction, and that, apart
from one ambiguity, the representation is unique.

THEOREM 158. If x is representable by a simple continued fraction with
an odd (even) number of convergents, it is also representable by one with
an even {odd) number.

For, ifa, > 2,
[aﬁyah . 'saH] = [aesais- <3 8n — l, 1]:

Whiie, ifaﬂ = 1! [aB; 123 PRICIEI £ F/ 2 N 1] - [a{)sals naey@p—2,8p—1 + 1]'
For example
2,2,31=[2,2,2,1}.

This choice of alternative representations is often useful.
We call

a, = [an, @ay1,...,ay] 0K n< N)

the n-th complete quotient of the continued fraction

[ag,ai" ceslpy .. "aN]~

Thus
‘ , ajag + 1
X = ag, X —m————
a4
and
!
(10.5.1) x= Pl VP2 o W,

anGn—1 + Gn-2
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Tueorem 159. a, = [a,], the integral part of da,} except that

an-1 = [ay.1] — 1

when ay = L.
If N = 0, then ag = a = [ap). If N > 0, then

1
ay = ay + = O<ngN-1.
Bpti

Now
. >1 0<ag<N-1

except thata, ., = | whenn = N ~ 1 and ay = 1. Hence
(10.5.2) n <dp<ap+1l O<nE N1

and
ap=1a,] O<n<N-1D

except in the case specified. And in any case
ay = ay = [ay].
Tueorem 160. If two simple continued fractions
lao,a1,...,anl, [bo,b1,...,bum]
have the same value x, and ay > 1, by > 1, then M = N and the fractions

are identical,

When we say that two continued fractions are identical we mean that
they are formed by the same sequence of partial quotients.

By Theorem 139, ag = [x] = bg. L.et us suppose that the first » partial
quotients in the continued fractions are identical, and that a,, b/, are the nth
complete quotients, Then

[
X = [a(),a},. . ';aﬂ“}san] = {ao,als L -:an—l:b:;]-

Ifn =1, then |
1
ao+;~;}—--ao+b—,l-,

1 We revert here to our habitual use of the square bracket in accordance with the definition of § 6.11.
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a) = b}, and therefore, by Theorem 159, a4 = b. If n > 1, then, by
(10.5.1),
alnpnwl + P2 . b;;Pn—l “+ Pn—2
@ qn-1 + gn—2 . b.qn-1 + Gn-2’
(@, — b)) (Pn-19n-2 — Pn-2gn-1) = 0.

But pr_1gn—2 — Pn—2qn—1 = (—1)", by Theorem 150, and so a, = b,. It
follows from Theorem 159 that a, = b,.
Suppose now, for example, that N < M. Then our argument shows that

ap = by
forn < N.IfM > N, then
b, + PN
PN N+ 1PN + PN
e 22 { G @& ,---saN}=[acsala-”’aN-bN h--"bﬂlﬁ L]
qN L0, * b’N.;.;‘?N + qN-1

by (10.5.1); or
PNGN-1 —pN-19N =0,
which is false. Hence M = N and the fractions are identical.

10.6. The continued fraction algorithm and Euclid’s algorithm. Let
x be any real number, and let ag = [x]. Then

x=ag+&, 0<& <l

If & # 0, we can write

1
—=a), [dl=a, aj=a1+&, 0<&H <1

&o

If & # 0, we can write

o,
gl‘"—”azzaZ'f'st 0"-<\E2<13

and so on. Alsoa), = 1/&,_1 > l,andsoa, > 1, forn > 1. Thus

| _
x = [ag,a}} = [ao,ax tor )= [ag, a1, a5] = [ag,a),az,a51 = ...,
)
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where ap, a1, . . . are integers and
a;>0, a3>0,....

The system of equations

x = ap + & O<é <D,
1
-—=a;ma1+fl O<E <,
£o

;

is known as the continued fraction algorithm. The algorithm continues so
long as &, s 0. If we eventually reach a value of n, say N, for which
&y = 0, the algorithm terminates and

x = [aﬁ’ai’a;!s .. -’aN]-

In this case x is represented by a simple continued fraction, and is rational.
The numbers a), are the complete quotients of the continued fraction.

Tueorem 161. Any rational number can be represented by a finite simple
continued fraction.

If x is an integer, then & = 0 and x == ap. If x is not integral, then
X = };’
where 4 and & are integers and & > 1. Since

h
Ew—waoﬁ"?ﬁo, h = agk + &ok,

ap is the quotient, and k = &g k the remainder, when k is divided by k.1

t The ‘remainder’, here and in what foliows, is to be non-negative Chere positive). If g 2 0, then
x and h are positive and &; is the remainder in the ordinary sense of arithmetic. If ag < 0, then x and
h are negative and the “remainder’ is
{x — [x])k.

Thus if h = — 7,k = §, the ‘retnainder’ is

(LD
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If & # O, then

dy =

Rl i

1
&o
and

k
?cwﬁa;-{-E;, k = arky + &1k
1

thus a; is the quotient, and ky = §1&; the remainder, when £ is divided by
k;. We thus obtain a series of equations

h=agk+k;, k=artki+k, k =aks+ks,...

continuing so long as £, # 0, or, what is the same thing, so long as
ka1 # 0.

The non-negative integers k,k;, ky,... form a strictly decreasing
sequence, and so ky.4; = O for some N. It follows that & = 0 for
some N, and that the continued fraction algorithm terminates. This proves
Theorem 161.

The system of equations
h = agk + k1 0 <k <k),
k= aiky + ky (0 < ky < ky),

kn_2 = an-1kny—1 +ky (0 < ky < ky-1),

kn—1 = ankn
is known as Euclid’s algorithm. The reader will recognize the process as
that adopted in elementary arithmetic to determine the greatest common

divisor ky of h and k.
Since £y = 0, ay = ay; also

1 1
0<—=—F=&n-1<1,

and so ay 2 2. Hence the algorithm determines a representation of the
type which was shown to be unique in Theorem 160. We may always make
the variation of Theorem 158.

Summing up our results we obtain

TueoreM 162. A rational number can be expressed as a finite simple
continued fraction in fust two ways, one with an even and the other with
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an odd number of convergents. In one form the last partial quotient is 1,
in the other it is greater than 1.

10.7. The difference between the fraction and its convergents.
Throughout this section we suppose that N > 1 and n > 0. By (10.5.1)

N @pp1Pr + Pri
a:,+29’n +gn-1’

fori <n< N-1,andso

_Pn_ Pnqn) —Pn—19n _ (=1)"
In Qn(a';,,;,ﬂn + Gn—1) Q::(a;,.‘;.ﬂn + gp-1)
Also
Po ]
X =X Ay
q0 a,
If we write
(10.7.1) g1 =4}, 4 =apgn-1+gn2 (1 <n<N)

(so that, in particular, g = gn), we obtain
TueoreM 163. If 1 < n< N — 1, then

pn _ (1)
Y .

Gn  Gndoyy

This formula gives another proof of Theorem 154.
Next,

Anil < dpypy < Gyt + 1
forn < N — 2, by (10.5.2), except that

!
ay_y =ay- + 1

when ay = 1. Hence, if we ignore this exceptional case for the moment,
we have

(10.7.2) gr=a1<ad+1<q

and

(10.7.3) Gyt = GppiGn + Gnt > Gnatdn + gnoy = gnsl,
(10.7.4) Gnst < Oni1Gn+ Gnt + Gn = Gny1 + ¢n

€ An+2qnst + Gn = Gn2,
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for 1 € n < N — 2. It follows that

1

(10.7.5) < |pn — gux} < (ns<N-2),
qni2 gnat
while
I
(10.7.6) | PN -1 — gn—1x] = a’ PN —gNx =0,

In the exceptional case, (10.7.4) must be replaced by
gv—1 = (an-1+ Dgn-—2+gn-3 =gn-1 +gN_2 = gN
and the first inequality in (10.7.5) by an equality. In any case (10.7.5)

shows that | p,, — gnx| decreases steadily as » increases; a fortiori, since g,
increases steadily,
o

qn

decreases steadily.
We may sum up the most important of our conclusions in

TreoreM 164. If N > 1, n > 0, then the differences

P
'x*"qfr qﬂx-—pﬂ

decrease steadily in absolute value as n increases. Also

(—1)"3,
gnX ~ Pp = »
Inil
where
D<dp<1 (I€ngEN-2), Ny =1,
and
(10.7.7) X — i = : < _EZ_
- 4n Gndn+1 dn

Jor n < N — 1, with inequality in both places except when n = N — 1.
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10.8. Infinite simple continued fractions. We have considered so far
only finite continued fractions; and these, when they are simple, represent
rational numbers. The chief interest of continued fractions, however, lies
in their application to the representation of irrationals, and for this infinite
continued fractions are needed.

Suppose that ag, a;, az,... is a sequence of integers satisfying (10.3.1),
so that

Xp = {ag, a1, ..., an]

is, for every n, a simple continued fraction representing a rational number
Xp. If, as we shall prove in a moment, x,, tends to a limit x when n — oo,
then it is natural to say that the simple continued fraction

(108.1) [ao, a1, a2, .-
converges to the value x, and to write
(16.8.2) ' x = {ag,a,az,...].

Tueorem 165. If ap, ai, a2,... is a Sequence of integers satisfying
(10.3.1), then x, == [ag, a1, . .., an] tends to a limit x when n — o0,

We may express this more shortly as

Tueorem 166. All infinite simple continued fractions are convergent.

We write
P
Xp = — [aosafs”-,an}s
qn

as in § 10.3, and call these fractions the convergcnts to (10.8.1). We have
to show that the convergents tend to a limit..

If N 2 n, the convergent x, is also a convergent to [ag, aj,...,ax]
Hence, by Theorem 152, the even convergents form an increasing and the
odd convergents a decreasing sequence.

Every even convergent is less than x;, by Theorem 153, so that the
increasing sequence of even convergents is bounded above; and every
odd convergent is greater than xg, so that the decreasing sequence of odd
convergents is bounded below. Hence the even convergents tend to a limit
&1, and the odd convergents to a limit £;, and &§; < &;.

Finally, by Theorems 150 and 156,

I 1
= < '---)0,

p__l’ﬁ _PZH—I
qmgam—1  2n(2n — 1)

q2n d2n—1
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so that &} = & = x, say, and the fraction (10.8.1) converges to x.
Incidentally we see that

THeOREM 167. An infinite simple continued fraction is less than any of
its odd convergents and greater than any of its even convergents.

Here, and often in what follows, we use ‘the continued fraction’ as an
abbreviation for ‘the value of the continued fraction’.

10.9. The representation of an irrational number by an infinite
continued fraction. We call

a:-; = [aﬂs Antls .. ']
the n-th complete quotient of the continued fraction

-x = [ag,a1,...}

Clearly
, .
a, = lim [a,,a N}
n N—»Do[ s Gn+1, N]
) 1
= dp + ilm = dapn + I3 ]
N->»oo [@ps1,...,aN] il
and in particular
!
x = dg = ag + — .
¢ afl
Also

ay > an, dpgy>anyl >0, 0< —— < 1
and so a, = [a,].
Tueorem 168. If [ag, a1, a3,...] = x, then
ap =Ixl, a,=I[a}] (n=0).
From this we deduce, as in §10.5,

Taeorem 169. Two infinite simple continued fractions which have the
same value are identical,
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We now return to the continued fraction algorithm of § 10.6. If x is irra-
tional the process cannot terminate. Hence it defines an infinite sequence
of integers

aOsaEsazs---r

and as before
. !
x = [a0,a}] = [a0,a1,a3] = ... = [ap,a1,a2,...,4n, a5 ],

where

!
Api) = Anyl + —— > Qnil.
Qnt2

Hence
_ a:‘:+1pﬂ + Pn—1
a:,+19n + qn—1 ’

by (10.5.1), and so

Pn _ Pn—19n = Pnqn-—\ (—D"

X - — = 7 —_ 7 -
qn Qn(a,,.;.ﬂn + Gn-1) Qn(a,,_;.ﬂn + gn-1)

P L : = : < : - 0
qn Gn{an+1gn + gn—1) Indn4 1 n(n+ 1)

when n — oo. Thus

. Pn
x = lim ~ = [ap,a1,...,49n,...],
n«wooqn

and the algorithm leads to the continued fraction whose value is x, and
which is unique by Theorem 169.

Tueorem 170. Every irrational number can be expressed in just one way
as an infinite simple continued fraction.

Incidentally we see that the value of an infinite simple continued fraction
is necessarily irrational, since the algorithm would terminate if x were
rational.

We define

q:, = a;;q::——l + gn-2

as in § 10.7. Repeating the argument of that section, we obtain
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Taeorem 171. The results of Theorems 163 and 164 hold also (except
Jor the references to N) for infinite continued fractions. In particular

1 1

Pn < .
qndn+1 qn

x—-—.-—
an

-

(10.9.1)

10.10. A lemma. We shall need the theorem which follows in § 10.11.

TueoREM 172, If
_PL+R

o+ S
where { > | and P, Q, R, and S are integers such that

0>8>0, PS-—QR=-x+Il,

then R/S and P/(} are two consecutive convergents to the simple continued
Jfraction whose value is x. If R/S is the (n — 1)th convergent, and P/(} the
n-th, then { is the (n + 1)th complete quotient.

We can develop P/ in a simple continued fraction

Pn

qn

P
(10.160.1) **Q“m[ao,al,»--,an]=

After Theorem 158, we may suppose n odd or even as we please. We
shall choose n so that

(10.10.2) PS — QR =41 =(-1)""1,

Now (P, Q) = | and @ > 0, and p, and g, satisfy the same conditions.
Hence (10.10.1) and (10.10.2) imply P = p,, Q = g, and

PnS —qnR=PS — QR =(—1Y" = pugn_1 — Pn-14n,
or
(10.10.3) Pn(S — gn-1) = gu(R — pp..1).
Since (pn, g4) = 1, (10.10.3) implies

(10.10.4) gnl (S — gn-1).
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But
Gh=0>8>0, gnZgn1>0,
and so
|§ - Q'n—ll < 4n,
and this is inconsistent with (10.10.4) unless § — g, = 0. Hence

S = gn-1, Rz=pp_i

and
y o= Pné + Pn—1

gnl + Gn—1
or
X _= [aesals L -saﬂ’{}'

If we develop ¢ as a simple continued fraction, we obtain
{ = [@ns1,an42,- - -]
where a4+ == [¢] 2 1. Hence
x = [ag,ai,...,n dnt1, Gnt2s - - ),

a simple continued fraction. But p,—1/g,— and p,/g,, thatis R/S and P/Q,
are consecutive convergents of this continued fraction, and ¢ is its (n+1)th
complete quotient.

10.11. Equivalent numbers. If £ and n are two numbers such that

man«}«b
T en+d’

where q, b, ¢, d are integers such that ad — bc = 1, then £ is said to be
equivalent to 7. In particular, £ is equivalent to itself.t
If ¢ is equivalent to n, then
—dE + b
= __W-f + , (—d)(—a)—bc=ad— bc = %1,
ct —a

and so 7 is equivalent to £. Thus the relation of equivalence is symmetrical.

Tueorem 173. If & and 1 are equivalent, and n and ¢ are equivalent,
then & and ¢ are equivalent.

¥ ga=d=lb=c=0,
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For
an + & _
= — be = &1,
3 ontd’ ad — bc
a’{-{—b’ £ gt I
= —— d —bc = %1,
n cr"c +d! a
and (A8
T Cce+D
where

A=ad +bd, B=ab +bd, C=cd +dd, D=cb +dd,
AD ~ BC = (ad — bc)(@'d’ — by = 1.
We may also express Theorem 173 by saying that the relation of équiva~
lence is transitive, The theorem enables us to arrange irrationals in classes
of equivalent irrationals.

If h and k are coprime mtegers, then, by Theorem 25, there are integers
k' and k' such that

hk! — Wk = 1;
and then

h_HWO+h al+b
k~ KO+k cO+d

withad —bc = —1. Hence any rational 4/k is equivalent to 0, and therefore,
by Theorem 173, to any other rational.

Turorem 174. Any two rational numbers are equivalent.

In what follows we confine our attention to irrational numbers, repre-
sented by infinite continued fractions.

TuroreM 175. Two irrational numbers & and n are equivalent if and
only if
(10.11.1)
g = [a(]sal’ v ey @my €0, C1, €24 -]s n - [boyb}s v 9bﬂacﬂycbczt . -]a

the sequence of quotients in & after the m-th being the same as the sequence
in n after the n-th.
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Suppose first that £ and 7 are given by (10.11.1) and write

o [Cﬂ's C1,C2, .. °]‘

Then
§ = (a0 a1, .., am 0] = 22T Pml,
gm®@ + Gm—1
and ppgm—1 — Pm—19m = *1, so that £ and w are equivalent. Similarly,

n and w are equivalent, and so & and # are equivalent. The condition is
therefore sufficient.
On the other hand, if £ and 5 are two equivalent numbers, we have

_at+b
Tck+d

n ab — be = +1,

We may suppose c§ + d > 0, since otherwise we may replace the coef-
ficients by their negatives. When we develop & by the continued fraction
algorithm, we obtain

5 = [aOvalw s QR A1y - -]

Pk—19; + Pk—2

/
= [aﬂw v sakwhak] =

Gk-1ay + Gi—2
Hence
y Pa, +R
Qa; + S’
where

P=ap, +bq_y, R=ap, +bg;_3,
Q=cpy_y+dgp_y, S=cpp_3+dgy.y,

so that P, O, R, § are integers and
PS — OR = (ad — beY(Pr—19k-2 — pr—29x—1) = £1.

By Theorem 171,

f

S
Py =Eqp 1+ ——, pra=Eqr-2+ .
L/ F | qe-2
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where |8] < 1,]8'| < 1. Hence

!

3 ¢
Q e (Cf 'E_d)qk—l + _C_: S = (C“;: ”‘}”d)Qk—z + *q“;:;

Now ct +d > 0,gk..1 > gk—2 > 0, and gx_; and g4 tend to infinity;
so that .
>85>0

for sufficiently large k. For such &

_P;+R

where
PS—~QOR==%1, Q>8>0 ;:a'k:»l;

and so, by Theorem 172,
n = [bo, b1, ... 01,81 = [0, b1, . -, b1, Gk Gicg1s - )

for some bg, by, .. ., b;. This proves the necessity of the condition.

10.12. Periodic continued fractions. A periodic continued fraction is
an infinite continued fraction in which

a; = djyk

for a fixed positive k and all / > L. The set of partial quotients

AL, L4 1y 8L4k—1
is called the period, and the continued fraction may be written
lag,ay,...,ar—1, 4L, Q1415+« QL4k—1)-
We shall be concerned only with simple periodic continued fractions.

Tueorem 176. A periodic continued fraction is a quadratic surd, i.e. an
irrational root of a quadratic equation with integral coefficients.
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If @} is the Lth complete quotient of the periodic continued fraction x,
we have

I
ay = ar,aL41s. s AL4k=1,AL, AL41s- - -]

== [@L, @L41s - - - » AL4k—1, L),
ar _ pfa}‘ +pﬂ
L qfai + qﬂ”
(10.12.1) qa? + " —pha,—p’ =0,

where the fractions p”/q” and p'/q’ are the last two convergents to [ay,

177 JETS PR aL+k-1]~
But

= pL—1a; +pL-2 4 = PL-2—qi-ax
qr-1a, +qr-2° Y7 qr-1x — pr1

If we substitute for 4; in (10.12.1), and clear of fractions, we obtain an

equation

(10.12.2) ax? 4+ bx+c=0
with integral coefficients, Since x is irrational, b — 4ac # 0.

The converse of the theorem is also true, but its proof is a little more
difficult.

Tueorem 177. The continued fraction which represents a quadratic surd
is periodic.

A quadratic surd satisfies a quadratic equation with integral coefficients,
which we may write in the form (10.12.2). If

X = Iaosala"'saﬂs" ']s

then

= Pr-19 +Pn2.
n-1a5 + gn2
and if we substitute this in (10.12.2) we obtain

(10.12.3)  Apd? 4 Buay + Cy =0,
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where

Ap = apfzr—; + bpn—1gn-1 + cqﬁ,..;,
By = 2app_1pn-2 + b(Pn-1gn-2 + Pr-2Gn-1) + 2€qn-1qn-2,
Cn = ap?:-z + bpn_2qn.2 + C4§—2-

if
Ap = ap;zg_z + bgn—1gn—1 + cq,zh_; =0,

then (10.12.2) has the rational root p,—1/gn—1, and this is impossible
because x is irrational. Hence 4, # 0 and

A + By +C=0
is an equation one of whose roots is aj,. A little calculation shows that

(10.12.4) B2 ~44,Cp = (b* ~ 4a0)Pp-19Gn-2 — Pn—2qn-1)*

= b* — 4dac.
By Theorem 171,
' 5}1—!
Pn—1t = Xqn—1 + l (l8n—11 < 1).
-
Hence
8t \* a,,,_
Ap = alxgn—1 + P + bgn—1 | Xgn—1 + + cqzm;
i
2
= (ax® + bx + c)g3_
2
= 2axd,.. 1+a L+ by,
qn—i
and

. [An] < 2fax} + |a| + |b|.
Next, since C, = 4,1,

|Cal < 2lax] + |al -+ {b].
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Finally, by (10.12.4),

B2 < 414,C,) + |b* — dac]
< 4Q2|ax| + la] + [bD? + | — dac|.

Hence the absolute values of 4,, B,, and C, are less than numbers
independent of n.

It follows that there are only a finite number of different triplets
(4n, Bn, Cp); and we can find a triplet (4, B, C) which occurs at least three
tzmes, say as (4ns Bny, Cny), (Anys Bnyy Cny), and (Any, Bny, Cpy). Hence
Aly, s Apy» Gy, Are all roots of

AV +By+C =0,
and at least two of them must be equal. But if, for example, @), = aj, , then

Any = dpyy, Ayl =8yl -+
and the continued fraction is periodic.

16.13. Some special quadratic surds, It is easy to find the continued
fraction for a special surd such as /2 or /3 by carrying out the algorithm
of § 10.6 until it recurs. Thus

1 1
10.13.1 2=1 2—1)=1 [ S ———
(10.13.1) V2=1+W2= D=1+ g = 14 o
1 1 1 1 .
+2+J2+1 *2+2+... 1,21,
and, similarly,
111 1 .
10.13. = — =
(10.13.2) V3 1+1+2+z+2+... 1.1,2],
1 .
10.13.3 = — =
( ) JS 2+4+4+"' [2,4]’
(10.13.4) JI=2+ rrt 1 w{21214
. ST 1+ 4 144 LLA4

But the most interesting special continued fractions are not usually ‘pure’
surds.
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A particular simple type is
(10.13.5) x=b+ — e = [b, ],

where a|b, so that b = ac, where c is an integer. In this case

Il (ab+1Dx+b

bt T T m
(10.13.6) 2 —bx—c=0,
(10.13.7) x = b+ J(b* + 40)}.
In particular
11 S5+ 1
13, e ] oy e e— = [1]} = ,
(10.13.8) a=1+ =1l >
11 .
(10.13.9) B=2+57—=01= J2+1,
1 1 -
10.13. = — = [2, 1} = 1.
(10.13.10) y=2+i-5—— =[21] J3+

It will be observed that 8 and y are equivalent, in the sense of § 10.11, to
/2 and /3 respectively, but that & is not equivalent to ,/S.
1t is easy to find a general formula for the convergents to (10.13.5).

Toeorem 178. The (n + 1)th convergent to (10.13.5) is given by

Jnt D) —[{,'(uﬂ)]

(10.13.11) Pn= ol Uni2, Gn=C tns1, ]
where
(10.13.12) iy = -y

Sl 4
and x and y are the roots of (10.13.6).

t The power of cis ¢ when n = 2m and ¢! whenn = 2m + 1.
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In the first place

i b x+y w
frenicd — =g = — == =i .
q0 Ui, 4qi v A -

po=b=x+y=u,
bz-i—cw (x+y)2~—xy_f_la
c

pr=ab-+ 1=

¢ c

3

so that the formulae (10.13.11) are true for » = 0 and n = 1. We prove the
general formulae by induction.

We have to prove that
Pn= c_[%(ﬁn]uwz = Wnt2,
say- Now 2 = g poodt ot
and so
(10.13.13) : Upy2 = bl + cu,.
But

Umy2 = € Wamt2, U2mel = C Womal.

Substituting into (10.13.13), and distinguishing the cases of even and odd
n, we find that

Wim42 = bW2m;i-1 + W2m, Wlmsl = AW2m + Wom.1.

Hence wy 7 satisfies the same recurrence formulae as p,, and 80 p,, = wy.43.
Similarly we prove that g,, = w, 4.

The argument is naturally a little simpler when a = b, c = |. In this case
P and g, satisfy

Uni2 = Dliny) + Up
and are of the form
AX" + By",

where 4 and B are independent of #» and may be determined from the values
of the first two convergents. We thus find that

X yn+2 xhtl _yn-i-l
Pn 7= —mrme—mn g = e,

x—y xX—y
m agreement with Theorem 178.
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lb.lt%. The series of Fibonacci and Lucas. In the special case g =
b = | we have

| VAR S BV. B
(10.14.1) X = > == T
xn+2 o g1E2 xn+l _ ol
Pn = Uppd = “’“““““v“;gy“nms Gn = Upy) = —ﬁ/“gy:“*“
The series (uy,) or
(10.14.2) 1,1,2,3,5,8,13,21,...

~ in which the first two terms are #; and u», and each term after is the sum
of the two preceding, is usually called Fibonacci’s series. There are, of
course, similar series with other initial terms, the most interesting being
the sernies (v,) or

1 (10.14.3) 1,3,4,7,11,18,29,47, ...
defined by
(10.14.4) vp = x" + ",

Such series have been studied in great detail by Lucas and later writers, in
particular D. H. Lehmer, and have very interesting arithmetical properties.
. We shali come across the senes (10.14.3) again in Ch. XV in connexion
with the Mersenne numbers.

We note here some arithmetical properties of these series, and particu-
larly of (10.14.2).

Taeorem 179, The numbers u, and v, defined by (10.14.2) and
(10.14.3) have the following properties:

D @nuns) =1, o) =1
(if) u, and v, are both odd or both even, and

(Up, Vy) == 1, (utn, Vn+l) == 2

in these two cases;
(i) wp|urm for every r;
(iv) if (m,n) = d then
(tiy, Up) = ugq,
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and, in particular, u, and u, are coprime if m and n are coprime;
(v) if (m,n) = 1, then

Umlin timp.

It is convenient to regard (10.13.12) and (10.14.4) as defining u, and v,
for all integral n. Then
o =0, vwp=2

and
(10.14.5) Uop = — () "ty = (_l)nMI Uny, Von = (—=1)"v,

We can verify at once that

(10.14.6) 2Upmin = UmVp + UnVim,
(10.14.7) Vi —5u2 = (~1)"4,
(10.14.8) U = Up_ytipgy = (~1)"7",
(10.14.9) Vv — Vpo iVl = (-1 S.

Proceeding to the proof of the theorem, we observe first that (i) follows
from the recurrence formulae, or from (10.14.8), (10.14.9), and (10.14.7),
and (ii) from (10.14.7).

Next, suppose (iii) true for r =1,2,..., R — 1. By (10.14.6),

2ugy = UpV(R—1)n + UR-1)nVn-

If u, is odd, then u,[2ug, and so u,lug,. If u, is even, then v, is even by
(ii), ur-1)n by hypothesis, and v(z_1), by (ii). Hence we may write
URn = Uy - %V(R—r),, + URT)n * %Vn,

and again #,|ug,.

‘This proves (ii1) for all positive . The formulae (10.14.5) then show that
it is also true for negative r.

To prove (iv) we observe that, if (m,n) = d, there are integers r,s
{positive or negative) for which

rm+4-sn=d,
and that
(10.14.10) 2ug = UmVsn + UsnVrm,
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by (10.14.6). Hence, if (4, 4,) = h, we have

Rl Aty —> hlttym.hlusy — hj2uy.

If A is odd, hluy. If h is even, then u, and u, are even, and so
Upm, Ysn, Vrm, Vs are all even, by (ii) and (iii). We may therefore write
(10.14.10) as

Ug = Upm (%Vsn) -+ Usn (%Vrm) )
and it follows as before that hjuy. Thus h|uy in any case. Also ug|um, 4gty,
by (ii1), and so
Ug|(tm, Un) = h.

Hence
k = Uy,

which is (iv).
Finally, if (m,n) = 1, we have

Umllmns  YnlUmn
by (iii), and (i, un) = 1 by (iv). Hence
Umthy |tmp.

In particular it follows from (iii) that u,, can be prime only when m is 4
(when u4 = 3) or an odd prime p. But u, is not necessarily prime: thus

us3 = 53316291173 = 953 . 55945741.

Treorem 180. Every prime p divides some Fibonacci number (and
therefore an infinity of the numbers). In particular

Uy..1 = 0 (mod p)

ifp =5m+1, and
Up+1 = 0 (mod p)

ifp=5m=+2.

Since u3 = 2 and us5 == 5, we may suppose that p # 2, p # 5. It follows
from (10.13.12) and (10.14.1) that

(10.14.11) 2"“*u,,=n+(;‘)s+(§)52+...,
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where the last term is 52¢~ 1 if n is odd and n. 527~ if n is even. If n =p

then
¥l =, 510-D = G) (mod p),

by Theorems 71 and 83; and the binomial coefficients are all divisible by
P, except the last which is 1. Hence

up = G) = %1 (mod p)

and therefore, by {10.14.8), *
Up—1tpy1 = 0 (mod p).
Also{(p—L,p+1) =2 and sol
(up—;:up41)_= up =1,
by Theorem 179 (iv). Hence one and only one of u,_; and up; is divisible

by p.
To distinguish the two cases, take n = p + 1 in (10.14.11). Then

1
2Pup+i = (p+ 1) + (p;* )S+...+(p+ 1)5-}(}:—1)‘

Here all but the first and last coefficients are divisible by p,T and so

Pup =1+ G) (mod p).

Hence uy4) = 0 (mod p) if (ﬁ) = —1, ie. if p = £2 (mod 5),% and
#p—1 = 0 (mod p) in the contrary case,

We shall give another proof of Theorem 180 in § 15.4.

1 pt : ),wherefi €vgp~ l‘is\anintegcr, by Theorem 73; the numerator contsins p, and

the denominator does not.
% By Theorem 97.
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10.15. Approximation by convergents. We conclude this chapter by
proving some theorems whose importance will become clearer in Ch. XI.
By Theorem 171,
Pn 1
qn Qﬁ ’
so that p,/g. provides a good approximation to x. The theorem which
follows shows that p,/qy is the fraction, among all fractions of no greater
complexity, i.e. all fractions whose denominator does not exceed q,, which
provides the best approximation. '

—X| <

Turorem 181. Ifn > 1,V 0 < g < qn, and p/q 5 pn/qn, then

P

- —x{.
q

Pn
— —x

dn

<<

(10.15.1)

This is included in a stronger theorem, viz.

Tarorem 182, Ifn > 1,0 < q < gu,andp/q % pn/qn then
(10.15.2) Pn — qux] < |p — gx|.
We may suppose that (p, g) == 1. Also, by Theorem 171,
Ion — gnx| < |Pp—1 — gn-1x|;

and it is sufficient to prove the theorem on the assumption thatg,.; < g <
g», the complete theorem then following by induction.
Suppose first that ¢ = g,. Then

Pn P 1

i _ s =

an dn an

¥ We state Theorems 181 and 182 for » > 1 in order to avoid a trivia} complication. The proof is
vatid for n = | unless g2 = gn+y = 2, which is possible only if @) = ag = 1.
In this case _ |
S b1
T Y m et 4

=ag + I,
and
ag+:‘z-cxcag-§«l

unless the fraction ends at the second 1. If this is not so then py /¢ is nearer to x than any other integer.
But in the exceptional case x = ag + 2 there are two integers equidistant from x, and (10.15.1) may
become an equality.
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if p # p,. But _
1 1
< *
Indn+1 24n
by Theorems 171 and 156; and therefore

<

-

P x

qn

P _x
dn

<

L

which is {10.15.2).
Next suppose that g,..1 < g < gp, 50 that p/q is not equal to either of
DPn—1/qn1 OF pn/qn. If we write

HPn + VPp} =P, jign+Vqu—1 = 4,

then ,
U(Pngn—1 — Pn—1qn) = Pdp_} — GPp-1»
so that
B = +£Pgy_1 — 9Pr-1);
and similarly
v = 4(pq, — gp,).

Hence p and v are integers and neither is zero.
Since ¢ = uqy + vgn-1 < g, 4 and v must have opposite signs. By
Theorem 171,

Pn— 4dnX, Pp.] —gp1X
have opposite signs. Hence

“(Pn — Gnx)y  V(Pn—1 ~ qn—1%)
have the same sign. But
P — gx = u(pn — gnx) + V(Pn-1 — gn-1%),
and therefore
1P — gx] > [Pr—1t = gn-1X] > |Pn — gaxl|.

Our next theorem gives a refinement on the inequality (10.9.1) of
Theorem 171.
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Tueorem 183. Of any two consecutive convergents to x, one at least
satisfies the inequality

1

- —x

q

Since the convergents are alternately less and greater than x, we have

]p

Pn+l  Pn Pn
dntl qn dn

If (10.15.3) were untrue for both p,/q, and pr.+1/gn+1, then (10.15.4)
would imply

1 —
Indni1

(10.15.4) x|+

P+l ‘
— Xj.
dnil

I3

Pn+1Gn — Pnin+1
“ndn+1

. 1 1
Pn+l - Pn > — =
gn+t  9n 2q;, 29514

or _
(@n+1 — gn)* <0,
which is false except in the special case

n=0, ai=1 gt=4qg0=1

In this case

s0 that the theorem is still true. _

It follows that, when x is irrational, there are an infinity of convergents
Pn/qn which satisfy (10.15.3). Our last theorem in this chapter shows that
this inequality is characteristic of convergents.

THEOREM 184. If

)7 I,
(10.15.5) ’ ]a - Xi < @,
then p/q is a convergent. '
if (10.15.5) is true, then
g
P_ ¢
q q
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where
e=%1, 0<8<3
We can express p/q as a finite continued fraction

[a{)’als L saﬁl;

and since, by Theorem 158, we can make » odd or even at our discretion,
we may suppose that
€ = (-N"L
We write _ ©Pn + Proi
wqp + Gn—1 ’
where p,/qn, Pn—1/gn—1 are the last and the last but one convergents to the
continued fraction for p/q. Then

€ pn __ Pngn—i —Pn-1qs _ (=D
Q?; _—'?n . qn (Wqn + gn-1) m‘]’n(a’qﬂ+4n+1),
and so dn .
Win "f'QHwI
Hence
W= ~1~ _. dn-1 > 1
' 6 gn

(since 0 < 8 < %); and so, by Theorem 172, pp-.1/qgn—1 and p,/q, are
consecutive convergents to x. But p, /g, = p/q.

NOTES

§ 10.1. Many proofs in this and the next chapter are modelled on those given in Perron’s
Kettenbriiche and Irrationalzahien; the former contains full references to the early his-
tory of the subject, There are accounts in English in Cassels, Diophantine approximation,
Qlds, Continued fractions and Wall, Analytic theory of continued fractions (New York, van
Norstrand, 1948). Stark, Number theory, also gives additional references and material.

§ 10.12. Theorem 177 is Lagrange’s most famous contribution to the theory. The proof
given here (Perron, Kettenbriiche, 77} due to Charves.

§6§ 10.13—14. There is a iarge literature concerned with Fibonacci’s and similar series.
See Bachmann, Niedere Zahlentheorie, ii, ch. ii; Dickson, History, i, ch. xvii; D. H. Lehmer,
Annals of Math. (2}, 31 (1930}, 419-48.



XI
APPROXIMATION OF IRRATIONALS BY RATIONALS

11.1. Statement of the problem. The problem considered in this
chapter is that of the approximation of a given number &, usually irrational,
by a rational fraction

'Q_!"C:

We suppose throughout that 0 < & < | and that p/q is irreducible.!

Since the rationals are dense in the continuum, there are rationals as
near as we please to any £. Given £ and any positive number ¢, there is an
r = p/q such that

<€

zrwﬂm{£~e
q .

any number can be approximated by a rational with any assigned degree of
accuracy. We ask now how simply or, what is essentially the same thing,
how rapidly can we approximate to £7 Given & and ¢, how complex must
p/q be (i.e. how large g) to secure an approximation with the measure of
accuracy €? Given & and g, or some upper bound for g, how small can we
make €?

We have already done something to answer these questions. We proved,
for example, in Ch. III (Theorem 36) that, given £ and n,

p 1
dp,g.0<g<n. |[-—-§ £ ——
A g+ 1)
and a fortiori
p 1
(11.1.1) lm B < =
q q*

and in Ch. X we proved a number of similar theorems by the use of contin-
ued fractions.? The inequality (11.1.1), or stronger inequalities of the same
type, will recur continually throughout this chapter.

When we consider (11.1.1) more closely, we find at once that we must
distinguish two cases.

Y Exceptin § 11.12. % See Theorems 171 and 183.
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(1) & is a rational a/b. If r 3# &, then

p a
b

_ |bp — aql S 1

(22.1.2) lr — & == > & EE,

so that (11.1.1) involves ¢ < b. There are therefore only a finite number
of solutions of (11.1.1).

(2) & is irrational. Then there are an infinity of solutions of (11.1.1).
For, if p,/q, is any one of the convergents to the continued fraction to £,
then, by Theorem 171,

& - g‘ < J’f;
qn In
and p,/q, is a solution.

Tueorem 185. If & is irrational, then there is an infinity of fractions p/q
which satisfy (11.1.1).

In § 11.3 we shall give an alternative proof, independent of the theory
of continued fractions.

11.2. Generalities concerning the problem. We can regard our prob-
lem from two different points of view. We suppose & irrational.
(1) We may think first of ¢. Given &, for what functions

¢~—~¢(5,é)

(11.2.1) 3p,q-qé¢.!§“£‘$e,

1s it troe that

for the given & and every positive €? Or for what functions

oo

independent of &, is (11.2.1) true for every £ and every positive €7 It is
plain that any ¢ with these properties must tend to infinity when e tends
to zero, but the more slowly it does so the better.
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There are certainly some functions ¢ which have the properties required.

Thus we may take
I
=|—f+1,
< [26] +

and g = ®. There is then a p for which
1

|‘E - 5' g o <€,

q 2q

and so this @ satisfies our requirements. The problem remains of finding,

if possible, more advantageous forms of ®.
(2) We may think first of g. Given &, for what functions

¢ = ¢, g),

tending to infinity with g, is it true that
p I
(11.2.2) 3 .‘wv’g“:g—?
P lq ¢

Or for what functions ¢ = ¢(g) independent of &, is (11.2.2) true for
every £7 Here, naturally, the larger ¢ the better. If we put the question
in its second and stronger form, it is substantially the same as the second
form of question (1). If ¢ is the function inverse to @, it is substantially
the same thing to assert that (11.2.1) is true (with ¢ independent of &) or
that (11.2.2) is true for all & and q.

These questions, however, are not the questions most interesting to us
now. We are not so much interested in approximations to § with an arbitrary
denominator g, as in approximations with an appropriately selected q. For
example, there is no great interest in approximations to x with denominator
11; what is interesting is that two particular denominators, 7 and 113, give
the very striking approximations »2% and %’?—g We should ask, not how
closely we can approximate to £ with an arbitrary g, but how closely we
can approximate for an infinity of values of q.

We shall therefore be occupied, throughout the rest of this chapter, with
the following problem: for what ¢ = ¢(&, q), or ¢ = ¢(q), is it true, for a
given &, or for all &, or for all £ of some interesting class, that

1
1123 E_|g_
(1123 2-¢|<
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for an infinity of q and appropriate p? We know already, after Theorem
171, that we can take ¢ = ¢ for all irrational £,

11.3. An argument of Dirichlet. In this section we prove Theorem 185
by a method independent of the theory of continued fractions. The method
gives nothing new, but is of great importance because it can be extended
to multi-dimensional problems.t

We have already defined [x], the greatest integer in x. We define (x) by

(x) = x — [x];

and X as the difference between x and the nearest integer, with the
convention that ¥ == % whenxisn + % Thus

- 03 35

Suppose £ and € given, Then the O+1 numbers
0,(5),(26),...,(Q%)

define Q+1 points distributed among the (Q intervals or ‘boxes’

I
i.H<“x-< st (s=0,1,...,0—~1).

o Q
There must be one box which contains at least two points, and therefore
two numbers ¢ and g2, not greater than Q, such that (¢£) and (g,#) differ
by less than 1/Q. If g5 is the greater, and g =¢3 — g1, then 0 < g < Q
and lgét < 1/Q. There is therefore a p such that

1
9§ ~pl < —.
o

Hence, taking -

1
L 1
0 _€]+ ,
we obtain

I

Ap.q.q9 < [Z + 1.

£_4<£
d q q

¥ See§ 11,12,
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(which is nearly the same as the result of Theorem 36) and
D 1 i
11.3.1 . g‘ i g
(130 | L‘ PO

which is (11.1.1).
If £ is rational, then there is only a finite number of sclutions. t We have
to prove that there is an infinity when £ is irrational. Suppose that

pL P2 Pk

qt!qz’ !qk

exhaust the solutions. Since £ is irrational, there is a { such that

1
-gi >— (s=1,2,...,k).
Q

But then the p/q of (11.3.1) satisfies

- 1 < 1

90 = @’
and is not one of p,/q;; a contradiction. Hence the number of solutions of
(11.1.1) is infinite.

Dirichlet's argument proves that g£ is nearly an integer, so that (g£) is nearly 0 or 1, but
does not distinguish between these cases. The argument of § 11.1 gives rather more: for

pn £ = {_}?n—l
n Indpny1

is positive or negative according as n is odd or even, and ¢, is alternately a little less and
z little greater than py,

11.4. Orders of approximation. We shall say that £ is approximable
by rationals to order n if there is a K(£), depending only on &, for which

K()

(11.4.1)

P_y| K

has an infinity of solutions.
We can dismiss the trivial case in which & is rational. If we look back
at (11.1.2), and observe that the equation bp — ag = 1 has an infinity of

¥ The proof of this in § 11.1 was independent of continued fractions.
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solutions, we obtain

Tusorem 186. A rational is approximable to order |, and to no higher
order.

We may therefore suppose & irrational. After Theorem 171, we have
TueoreMm 187. Any irrational is approximable to order 2.

We can go farther when £ is a quadratic surd (i.e. the root of a quadratic
equation with integral coefficients). We shall sometimes describe such a &
as a quadratic irrational, or simply as ‘quadratic’.

Turorem 188. A quadratic irrational is approximable to order 2 and to
no higher order.

The continued fraction for a quadratic & is periodic, by Theorem 177. In
particular its quotients are bounded, so that

O<a, <M,
where M depends only on & Hence, by (10.5.2),
‘I:z+1 = a;;+z‘1n + gn—1 < (@ns1 + L)gn—1 < (M + 2)q,

and a fortiori gnyy < (M+2)g,. Similarly g, < (M+2)g,.-1.
Suppose now that g,—1 < ¢ < gn. Then ¢, < (M+2)gq and, by
Theorem 181,

-

where K = (M+2)~3; and this proves the theorem.

The negative half of Theorem 188 is a special case of a theorem
(Theorem 191) which we shall prove in § 11.7 without the use of con-
tinued fractions. This requires some preliminary explanations and some
new definitions.

1 1 K
> > -,
’ ande  M+Dg2 M+ 23, ¢

11.5. Algebraic and transcendental numbers. An algebraic number
is a number x which satisfies an algebraic equation, i.e. an equation

(11.5.1) aox” +aix" L 4 a, =0,

where ag, a;,... are integers, not all zero.
A number which is not algebraic is called transcendental.
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If x = a/b, then bx — g = 0, so that any rational x is algebraic. Any
quadratic surd is algebraic; thus i = ,/(—1) is algebraic. But in this chapter
we are concerned with real algebraic numbers.

An algebraic number satisfies any number of algebraic equations of
different degrees; thus x = /2 satisfies x2—-2 =0, x*~4 =0,.... If x
satisfies an algebraic equation of degree », but none of lower degree, then
we say that x is of degree n. Thus a rational is of degree 1.

A number is Euclidean if it measures a length which can be constructed,
starting from a given unit length, by a Euclidean construction, i.e. a finite
construction with ruler and compasses only. Thus /2 is Euclidean. It is
plain that we can construct any finite combination of real quadratic surds,
such as

(11.5.2) JA 427 — JA1 =27

by Euclidean methods. We may describe such a number as of real quadratic -
type.

Conversely, any Euclidean construction depends upon a series of points
defined as intersections of lines and circles. The coordinates of each point
in turn are defined by two equations of the types

x+my+n=0

or 2432 4+ 2ex 4+ 2+ ¢ =0,

where I, m, n, g, £, ¢ are measures of lengths already constructed; and two
such equations define x and y as real quadratic combinations of 7, m,....
Hence every Euclidean number is of real quadratic type.

The number (11.5.2) is defined by

xmy—z, yY=11+2, 2=11-2 =7
and we obtain Xt —44 + 112 =0
on eliminating y, z, and ¢. Thus x is algebraic. It is not difficult to prove

that any Euclidean number is algebraic, but the proof demands a little
knowledge of the general theory of algebraic numbers.?

Y 1In fact any number defined by an equation agx™ + o2 4+ ... + @, = 0, where g, ay,..., Oy
are algebraic, is algebraic. For the proof see Hecke 66, or Hardy, Pure mathematics (ed. 9, 15944), 39.
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11.6. The existence of franscendental numbers. Itis not immediately
obvious that there are any transcendental numbers, though actually, as we
shall see in a moment, aimost all real numbers are transcendental.

We may distinguish three different problems. The first is that of proving
the existence of transcendental numbers (without necessarily producing a
specimen). The second is that of giving an example of a transcendental
number by a construction specially designed for the purpose. The third,
which is much more difficult, is that of proving that some number given
independently, some one of the ‘natural’ numbers of analysis, such as e or
7, is transcendental.

We may define the rank of the equation (11.5.1) as

N =n+ japl + lay| + - - - + |anl.

The minimum value of N is 2. It is plain that there are only a finite number
of equations

Enis Enz, oo, EN gy
of rank N. We can arrange the equations in the sequence
Eyy, Ezpy oos Eopg, B30, B30, .oy E3pg, Eays .

and so correlate them with the numbers 1, 2, 3,.... Hence the aggregate of
equations is enumerable. But every algebraic number corresponds to at least
one of these equations, and the number of algebraic numbers corresponding
to any equation is finite. Hence

TrEOorREM 189. The aggregate of algebraic numbers is enumerable.
In particular, the aggregate of rea! algebraic numbers has measure zero.

THeoREM 190. Almost all real numbers are transcendental

Cantor, who had not the more modern concept of measure, arranged his proof of the
existence of transcendental numbers differently. After Theorem 189, it is enough to prove
that the continuum O < x < 1 is not enumerable. We represent x by its decimal

X = 2182403, ..

(9 being excluded, as in § 9.1). Suppose that the continuum s enumerable, as xy, x2, x3,--.,
and let

X] = -g114124)3. - -
X7 = -G21622823. ..
X3 = -G31432a33. ..
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If now we define a, by

an = apn + 1 (if any is neither 8 nor 9),
ap = 0 (ifa,m is 8 or 9),

then a, # ann for any a; and x cannot be any of xj, x3,..., since its decimat differs from
that of any x, in the nth digit. This is a contradiction.

11.7. Liouville’s theorem and the construction of transcendental
numbers. Liouville proved a theorem which enables us to produce as
many examples of transcendental numbers as we please. It is the gen-
eralization to algebraic numbers of any degree of the negative half of
Theorem 188.

TueorReM 191. A real algebraic number of degree n is not approximable
to any order greater than n.

An algebraic number £ satisfies an equation
fE) =at" +ait" '+ +a,=0
with integral coefficients. There is a number M (§) such that
(11.7.1) <M  E-1<x<t+1).

Suppose now that p/q # £ is an approximation to £. We may assume the
approximation close enough to ensure that p/q lies in (§—1, £+1), and is
nearer to § than any other root of £ (x) = 0, so that f (p/q) # 0. Then

P\l _ laop™ + a1p" g + - -
f(q) h >

i
7" e
since the numerator is a positive integer; and

(11.7.3) f(‘g) =f(§) —f®) = (g -£)/.

where x lies between p/q and £, It follows from (11.7.2) and (11.7.3) that
P _ @/l 1 K

— = g — - - =

q Lf (o) Mg g"

so that £ is not approximable to any order higher than .

The cases n =1 and n = 2 are covered by Theorems 186 and 188. These
theorems, of course, included a positive as well as a negative statement.

(11.7.2)
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(a) Suppose, for example, that
£ =-110001000... = 10"" + 10" + 107 + ...,

that n > N, and that &, is the sum of the first n terms of the series. Then
P P

En = o g
say. Also

0<t — £ =g — g, = 107D 107 HD 4L 22107 D gV,
q

Hence £ is not an algebraic number of degree less than N. Since N is
arbitrary, £ is transcendental.

(b) Suppose that
£ = 1 1 1
10410204 103 .. 7
that n > N, and that P _ E_’l,
9 4n
the nth convergent to £. Then
1 1

— - 5‘ < < .
an:,H ﬂn—e—l?ﬁ Anit1

gn <@+ D@+ 1) Aan+ 1)

(1+1)(1+~l‘—) (1+1 '
10 102 pon ) 91427 Gn

<2aiay---ay = 2108 o 10HA) o aﬁ,

l£_§_< 1 1 1 1 1
q

At - _ﬂ L T -
Gntl ans dp " qEN

We conclude, as before, that £ is transcendental.
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Tuzorem 192. The numbers
£ = 10—-1! + iowa + 10—31 R
and
1 1 1
TI0M4 10404 103 4 -

§

are transcendental,

It is plain that we could replace 10 by other integers, and vary the con-
struction in many other ways. The genera! principle of the construction s
simply that @ number defined by a sufficiently rapid sequence of rational
approximations is necessarily transcendental. It is the simplest irrationals,
such as /2 or % (+/5 ~ 1), which are the least rapidly approximable.

It is much more difficult to prove that a number given ‘naturally’ is
transcendental. We shall prove e and n transcendental in §§ 11.13-14.
Few classes of transcendental numbers are known even now. These classes
include, for example, the numbers

e, , sin 1,Jg (1), log 2, 335—3, e, 2v?
log 2
but not 2¢, 2%, =%, or Euler’s constant y. It has never been proved even
that any of these last numbers are irrational.

11.8. The measure of the closest approximations to an arbitrary
irrational. We know that every irrational has an infinity of approximations
satisfying (11.1.1), and indeed, after Theorem 183 of Ch. X, of rather
better approximations. We know also that an algebraic number, which
is an irrational of a comparatively simple type, cannot be ‘too rapidly’
approximable, while the transcendental numbers of Theorem 192 have
approximations of abnormal rapidity.

The best approximations to £ are given, afier Theorem 181, by the
convergents p,/q, of the continued fraction for &; and

Pr l 1
E — < 2 ¥
Gndnyi  On+14

so that we get a particularly good approximation when a,; is large.’
It is plain that, to put the matter roughly, £ will or will not be rapidly
approximable according as its continued fraction does or does not contain
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a sequence of rapidly increasing quotients. The second & of Theorem 192,
whose quotients increase with great rapidity, is a particularly instructive
- example.

One may say, again very roughly, that the structure of the continued
fraction for £ affords a measure of the ‘simplicity’ or ‘complexity’ of &.
Thus the second § of Theorem 192 is a ‘complicated’ number. On the other
hand, if @, behaves reguiarly, and does not become too large, then £ may
reasonably be regarded as a ‘simple’ number; and in this case the rational
approximations to & cannot be too good. From the point of view of rational
approximation, the simplest numbers are the worst.

The ‘simplest’ of all irrationals, from this point of view, is the number

i 1

(11.8.1) g__(Jsm )W"{TEWH

in which every a, has the smallest possible value. The convergents to this
fraction are

0112 3 5

1’ 1’ 2’ 3’ 5’ 8’

so that g, = p, and m=p——*$
qn In

Hence

1
QnQ:,,H gn {(1 + E)gn + gn—1}

1 ( q,,_;)“ 11 1
=—{1+&+ ~ = = ,
a3 qn G 1+2  gl/s

==t

when n — oc.
These considerations suggest the truth of the following theorem.

TueoreMm 193, Any irrational & has an infinity of approximations which
satisfy

1
g*/5

The proof of this theorem requires some further analysis of the approx-
imations given by the convergents to the continued fraction. This we give

in the next section, but we prove first a complement to the theorem which
shows that it is in a certain sense a ‘best possible’ theorem.

(11.8.2) E ~ & <
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Treorem 194. In Theorem 193, the number /5 is the best possible num-
ber: the theorem would become false if any larger number were substituted

for /5.

It is enough to show that, if 4 > /5, and § is the particular number
(11.8.1), then the inequality
1

P
2t <

q

has only a finite number of solutions. -
Suppose the contrary. Then there are infinitely many g and p such that

p 1 1
E'm""l"—z—, |8|<Z<75—.
Hence 8 3 1 1
— —p, _— - S —— g ,
. g9 —p p 2q«/ 29— P

f.z_-.a\/s—( q~f~p) —%tf:p2+pqwq2-

The left-hand side is numcn'cally less than 1 when g is large, while the
right-hand side is integral. Hence p? + pg — g% = 0 or (2p + ¢)* = 542,
which is plainly impossible.

11.9. Another theorem concerning the convergents to a continued
fraction. Our main object in this section is to prove

Tueorem 195. Of any three consecutive convergents to £, one at least
satisfies (11.8.2).

This theorem should be compared with Theorem 183 of Ch. X.
We write

(11.9.1) gn-1

qn

= b1

Then

qn

Andny)  9i 4, w1+ baat’

Pn ’ 1 J{ 1

and it is enough to prove that
(11.9.2) a;+b; < 5

cannot be true for the three values n—1, n, n+1 of ;.
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Suppose that (11.9.2) is true for i = n—1 and i = n. We have

, . 1
Qp_j = Qp-1 + a_;’
and
i Tn—1 :
11.9.3 — = an_1 + bp.-1.
( ) by Gn—2 : nl
Hence
: + — ! a_ 4+ by €5
aﬁ b = n—1I n—1 = ]
and
l
l‘an"‘“_ (\/5 b,,)(\/S——)
n
or

bn""— ‘\/5

Equality is excluded, since b, is rational, and b, < 1. Hence

2
— b /5+1 <0, (%Js—b,,) < %

(11.9.4) by > %ws ~ 1.
If (11.9.2) were true also for i = n + 1, we could prove similarly that
(11.9.5) bpit > % (JS — i);

and (11.9.3),7 (11.9.4), and (11.9.5) would give

w~~~1b,,~<«»«v(~/5+1)——(~/5—z)_1

An ==
bn+1

a contradiction. This proves Theorem 195, and Theorem 193 is a corollary.

¥ Withn+ 1 forn.
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11.16. Continued fractions with bounded quotients. The number /5
has a special status, in Theorems 193 and 195, which depends upon the
particular properties of the number (11.8.1). For this &, every a, is 1; for
a £ equivalent to this one, in the sense of § 10.11, every g, from a certain
point is ; but, for any other £, a, is at least 2 for infinitely many ». It is
natural to suppose that, if we excluded & equivalent to (11.8.1), the /5 of
Theorem 193 could be replaced by some larger number; and this is actually
true. Any irrational & not equivalent to (11.8.1) has an infinity of rational
approximations for which

2 <

2q2~/2
There are other numbers besides /5 and 2.,/2 which ;Siay a special part in
problems of this character, but we cannot discuss these problems further
here.

If a, is not bounded, i.¢. if
(11.10.1) fim a, = 0o,

1 OC
then g, . ,/g, assumes arﬁitratily large values, and

€
<---....«
q2

P
= —§
q

for every positive € and an infinity of p and q. Our next theorem shows
that this is the general case, since (11.10.1) is true for ‘almost all’ £ in the
sense of § 9.10. :

(11.10.2)

TaeOREM 196. a, is unbounded for almost all §; the set of & for which
ay is bounded is null.

We may confine our attention to- & of (0,1), so that ag = 0, and to irra-
tional &, since the set of rationals is null. It is enough to show that the set
Fy of irrational £ for which

(11.10.3) an < k

is nuli; for the set for whlch ap is bounded is the sum of Fy, Fs, Fa,...
We denote by

Eai 182y ety
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the set of irrational £ for which the first » quotients have given values ay,
az,..., ay. The set E,, lies in the interval

1 1
(114“'1’01’

which we call 1,,. The set £, ,, lies in

1 1 i 1
aj+a;’ ai+ar+1°

which we call I, 5,. Generally, £, 4, ..,4, lies in the interval Iz, o, ... q,
whose end points are

[ah a2y « .y Qp—1,s an+1]s [als A2y ooy QAn—1, aﬂ]

(the first being the lefi-hand end point when » is odd). The intervals cor-
responding to different sets ay, ay, . .., a, are mutually exclusive (except
that they may have end points in common), the choice of a,.4 dividing up
1a),ay,....a, INt0 exclusive intervals. Thus I, 4,, .., 4, is the sum of

Iahag,...,an, s Ia1,az.....a,;,2a e
The end points of I, 4, ... a,, can also be expressed as

(an + 1)pn—1 + Pn—2 AnPn..t + P2
(an + gn1 + qn-2 ’ angp-1 + gn-2 ’

and its length (for which we use the same symbol as for the interval) is

1 1
{(a, + I)Qnml + QnMZ}(anQn—l + gn.2) - (Qn + Qn—vi)q:r:‘

Thus
_ 1
T (@ + Day’
We denote by
Eaz,az, Y

the sub-set of £, 4,, . 4, for which g,41 < k. The set is the sum of

Eal.az..-..amaml {any1 = 1,2, ..., k).
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The last set lies in the interval I, oy, ... a,, 5,1, WhoSE end points are
[a1,a2,...,an,an41 + 1], [ai,az,...,an ant1l;

and 50 Eg, g5, .., a,: & lies in the interval I, 4, a4,k whose end points are

lai,az,...,an,k + 1], la1,a2,...,a5, 1],
or
(k + 1)pn + Pn—1 Pn + Pn-)
(k + Dgn + gn—1’ gn + Gn-1
The length of I3, 4,5, ... 0y & 18
_ ) |
{k + Dgn + gn-1}1gn + gn-1)’
and
(11.10.4) la,az,..., an % Kqn k

= - .
Ial,az....,a,, k + Dgn + gn-t k+1

for all a1, az,..., a,.
Finally, we denote by

{n)
Ik = E i Iaa,az,---,an
al‘g.k) »--sﬂn-<-.k

the sumofthe I, o, forwhicha; <k,...,a, < k;and by F,E"} the set of
irrational £ for which aj < k,...,a, < k. Plainly F{" is included in 1"
First, Ién is the sum of [, fora) = 1,2,...,k, and

1) u 1 I k
I = - =1- = .
k Eai(a1~+~l) k+1 k+1

aj=1

Generally, I;r"“) is the sum of the parts of the I, 4, .4

. included in 7,
for whicha,;; € k,1e.18

Z Iﬂl'ﬂz.---.a,,;k«

a1 5Kk, . dn sk
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Hence, by (11.10.4),

k k
I(”-H) < 2 : Fi - I(ﬂ}.
k a],82, ..., 08 E
k + z a; Sk,'-'ral!‘-(\k k + 1

[(n+1) - k n+1
k k+1 ‘

It follows that F, ,f") can be included in a set of intervals of length less

than
k n
(k+z) ’

which tends to zero when n — 0o. Since F} is part of Fé") for every n, the
theorem follows.

It is possible to prove a good deal more by the same kind of argument.
Thus Borel and F. Bernstein proved

and so

Tueorem 197*. If ¢(n) is an increasing function of n for which
!
¢ (n)

is divergent, then the set of € for which

(11.10.5)

(11.10.6) an < ¢ (n),

Jor all sufficiently large n, is null. On the other hand, if

1
(11.10.7) Z e

is convergent, then (11.10.6) is true for almost all £ and sufficiently large n.

Theorem 196 is the special case of this theorem in which ¢(n) is
a constant. The proof of the general theorem is naturally a little more
complex, but does not involve any essentially new idea.
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11.11. Furthertheorems concerning approximation. Letussuppose, to fix ourideas,
that a, tends steadily, fairly regularly, and not too rapidly, to infinity. Then

Pn | I 1 ;

qn - Indpiy  Ant19E " anx(gn)’

where

x{gn) = ani19n.

There is a cerfain correspondence between the behaviour, in respect of convergence or
divergence, of the series!

o T
XM’ x(gn)’

¥
and the latter series is

Z 1

Qn 4§ ‘

These rough considerations suggest that, if we compare the incqualitib's

(L1L1) an < B(n)

and

(1.11.2) ‘E _EI L
q 9x{(q)

there should be a certain correspondence between conditions on the two series
I 1
Z pn)’ Z x@
And the theorems of § 11.10 then suggest the two which follow.
Tusorem 198, If

1

x@
is convergen!, then the set of £ whick satisfy (11.11.2) for an infinity of q is null.
Turorem 199%. If x{q)/q increases with g, and
1
x@

is divergent, then (11.11.2) is true, for an infinity of g, for almost all £.

f_ The idea is that underlying ‘Cauchy’s condensation test’ for the convergence or divergence of a
series of decreasing positive terms. See Hardy, Pure mathematics, $th ed., 354,
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Theorem 199 is difficult. But Theorem 198 is very easy, and can be proved without
continued fractions. It shows, roughly, that most irrationals cannot be approximated by
rationals with an error of order ruch less than q”z, e.g. with an efror

1
Ol ————1.
qu(logq)z}

The more difficult theorem shows that approximation to such orders as

1 1
o(-). (o) -
_ g-logq g“loggloglogg
is usually possible.

We may suppose 0 < & < 1. We enclose every p/q for which ¢ > N in an interval

4 1 ¥4 1

g gx{@’ g qx{@)

There are less than ¢ vatues of p corresponding to a given g, and the total leagth of the
intervals is less {even without allowance for overlapping) than

o

1
2256

N

which tends to 0 when N — oo, Any & which has the property is included in an intervai,
whatever be N, and the set of £ can therefore be included in a set of intervals whose total:
length is as small as we please.

11.12. Simultaneous approximation. So far we have been concemed
with approximations to a single irrational &. Dirichlet’s argument of § 11.3°
has an important application to a multi-dimensional problem, that of the
simultaneous approximation of k¥ numbers

£, E2,... .8
by fractions

P p2 Pk

g g9’ g

with the same denominator g (but not necessarily irreducible).

TusoreMm 200. If &, &2, ..., &, are any real numbers, then the system of
inequalities :

pi 1 I P
(11.12.1) ‘;— ;|<m ( =5 :_2,2,...,k)
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has at least one solution. If one £ at least is irrational, then it has an infinity
of solutions.

We may plainly suppose that 0 < & < | for every i. We consider the k-
dimensional ‘cube’ defined by 0 < x; < 1, and divide it into * *boxes’ by
drawing ‘planes’ parallel to its faces at distances 1/Q. Of the @*+1 points

(g, (&), ..., 08 (=0,1,2,...,09,

some two, corresponding say to / = ¢; and ! = g > g1, must lie in the
same box. Hence, takingg = g3 — g1, asin § 11.3, thereisag < Q‘r such
that

_ 1
lg&i| < 0 < 7
for every i.
The proof may be completed as before; if a £, say &, is irrational, then

£; may be substituted for £ in the final argument of § 11.3.
In particular we have

Tueorem 201. Given &), &, ..., & and any positive €, we can find an
integer q so that g&; differs fmm an integer, for every i, by less than ¢.

11.13. The transcendence of . We conclude this chapter by proving
that ¢ and 7 are transcendental.

Our work will be considerably simplified by the introduction of a symbol
A", which we define by

=1, K= (¢

If £ (x) is any polynomial in x of degree m, say

f) = Z crx”

then we define (k) as

m m
Z crh = Z cpr!
r=0 r<=



11.13 (202)} IRRATIONALS BY RATIONALS 219

{where 0! is to be interpreted as 1). Finally we define f(x + k) in the
manner suggested by Taylor’s theorem, viz. as

m o () m
Zf..-._rgz}," o Zf(r)(x)-

ra() ) re=g

Iff(x +y) = F(y), then f (x + k) = F(h).
We define u,(x) and ¢,(x), forr =0, 1, 2,..., by

W= X g
W = Y eI e T T eW
It is obvious that ju, (x)| < ¥, and so
(11.13.1) e, (x) < 1,
for all x.

We require two lemmas.

Turorem 202. If ¢{(x) is any polynomial and

5 8
(11.13.2) ¢ =) o, Y =) ce(0x,
r=0 r==0

then
(11.13.3) Eh) = d(x + h) + g (x)e™.

By our definitions above we have

-1
(x'i'h)r*hr‘i“rx -t +&2—2~m)~x2h"2+---+x’

r(r - 1)

=r4+rr— Dix+ (r—2% 4+ X

— x? x"
= ! +x+~§?+---+-r—!

= e — u, (X)x" ~ &h" — u, (x)x".
Hence

eh = (x+ h) + u(X)x" = (x + A + e¥le, (x)x".
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Multiplying this throughout by ¢,, and summing, we obtain (11.13.3).
Asin § 7.2, we call a polynomial in x, orinx, y, ..., whose coefficients
are integers, an integral polynomial inx, orx, y,....

Traeorem 203. If m 2 2, f(x) is an integral polynomial in x, and

-1

Fi(x) = o

S,

S(x), Falx) =

xm
(m — 1)t
then F\(h), F5(h) are integers and

Fi(h) = £(0), Fp(h)=0 (mod m).

Suppose that

L
f) =) ax,

I=0
where aq, ..., a are integers. Then
I+mw
Fi{x) = Zaz O
1=0
and so
(1+m — D!
Fi(h .
1(h) = Z e T
But
(+m— 1)
r—— +m—-—DI+m—~2)--.m

is an integral multiple of m if / > 1; and therefore

Fi(h) = ap = f(0) (mod m).
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Similarly

+m

Fy(x) = Za; v

[ !
Fa(h) = Za;( t”;’)f = 0 (mod m).
{0 :

We are now in a position to prove the first of our two main theorems,
namely

TueoreM 204. e is transcendental.

If the theorem is not true, then

(11.13.4) Y G =0,
t=0

where n 2 1, Cg, Cy,..., C, are integers, and Cy # 0.
We suppose that p is a prime greater than max(n, |Cp}), and define
&(x) by

]
-1

Ultimately, p will be large. If we multiply (11.13.4) by ¢(4), and use
(11.13.3), we obtain

ox) = x—Dx—-2)...x —m}.

Y Cot+m+ Y Cyne =0,

=0 t=0
or
(11.13.5) Si+8 =0,
say.

By Theorem 203, with m = p, ¢(h) is an integer and

$(h) = (~1y""(n (mod p).
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Again, if 1 <2< n,

(¢t +xyp!

@ - D
o
= mf(X),

Gt + x) = {x+et=D...xx—D...x+1t—-m}*

where f (x) is an integral polynomial in x. It follows (again from Theorem
203) that ¢(r + A) is an integer divisible by p. Hence

Si=) Cip(t+h=(~1"Co(n)’ #0(modp),
=0

since Cp # 0 and p > max(n, |Cp|). Thus §) is an integer, not zero; and
therefore

(11.13.6) |S1] = 1.
On the other hand, |€,(x)] < 1, by (11.13.1), and so

A
WOl <) lerl

re=(}
rp—l
@ — 1)

<

(+1D(¢+2)---¢+mPF =0,

when p — oc. Hence §2 —> 0, and we can make

1
(11.13.7) 521 < 5

by choosing a sufficiently large value of p. The formulae (11.13.5),
(11.13.6), and (11.13.7) are in contradiction. Hence (11.13.4) is impossible
and e is transcendental.

The proof which precedes is a good deal more sophisticated than the
simple proof of the irrationality of e given in § 4.7, but the ideas which
underlie it are essentially the same. We use (i) the exponential series and
(ii) the theorem that an integer whose modulus is less than 1 must be 0.
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11.14. The transcendence of x. Finally we prove that 7 is transcen-
dental. It is this theorem which settles the problem of the ‘quadrature of
the circle’.

THrEOREM 205. 7 is transcendental.

The proof is very similar to that of Theorem 204, but there are one or
two slight additional complications.
Suppose that 81, 8,..., B are the roots of an equation

" +dix" '+ +d,=0
with integral coefficients. Any symmetrical integral polynomial in
dpy,dBs, ..., dBm
is an integral polynormial in
dlsdzs v ;drm
and is therefore an integer.
Now let us suppose that x is algebraic. Then in is algebraic,! and
therefore the root of an equation

& +dix™ 4 4+ dy, =0,

where m 2 1, d,d,..., d,, are integers, and d # 0. If the roots of this
equation are

Wy, ,..., Wy,
then [+e” = 1+e’® = 0 for some w, and therefore
(1 4+ +e*)...(1 +e&“m) = 0.

1 fapx" + a4 4+ a, = Gand y = ix, then
apy" —apy" T b+ i(ay —apy™ 4 =g
and so

@0y ~ay"2 4 - )2 b (™! — a4 P e,
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Muttiplying this out, we obtain

am
(11.14.1) 1+ Y e =0,
=1
where
(1§i42) adr,az,...,

are the 2™ —1 numbers
W1, W@ + w2, 01 +@3,..., @ W)+t O,

in some order. )
Let us suppose that C—1 of the « are zero and that the remaining

n=2"-1—-(C—1)

are not zero; and that the non-zero « are arranged first, so that (11.14.2)
reads

o, .,0,,0,0,...,0.
Then it is clear that any symumetrical integral polynomial in
(11.14.3) dal,..., dan
is a symmetrical integral polynomial in
day,...,da,,0,0,...,0,
i.e. in
day, dag, ..., dam..g.
Hence any such funcﬁon is a symmetrical integral polynomial in
dwi,dws, ..., dwy,
and so an integer. ‘

We can write (11.14.1) as

n
(11.14.4) C+) e =0
t=1
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We choose a prime p such that

(11.145)  p>max(d, C,|d" - -ax))
and define ¢(x) by
dmetp=lygp-1
(11.146) ¢ (x) = T {x—a)x—a2) - (x—an)l.
Multiplying (11.14.4) by ¢(h), and using (11.13.3), we obtain
(11147 So+ 81+ S5 =0,
where
(11.14.8) So = Co(h),
n
(11.14.9) S1 =) ¢l +h),
=1
n
(11.14.10) Sa=) yla)e™
=1
Now

D S IR
¢ (x) = (p,-l):gg"’"

_ where g; is a symmetric integral polynomial in the numbers (11.14.3), and
so an integer. It follows from Theorem 203 that ¢(k) is an integer, and that

(L14.11) ¢h) =go = (=1)"" @~ (day.day. ... dap)’ (mod p).
Hence Sg is an integer; and
(11.14.12) | So=Cgos0(mod p),

because of (11.14.5).
Next, by substitution and rearrangement, we see that

» %
— i
bl +x) = = gﬁ"x’
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where
S =fildog day,dag, .. day_y,dagyy, ... day)

is an integral polynomial in the numbers (11.14.3), symmetrical in all but
de;. Hence

n P np—1
Z¢(a1 +x) = Z Fi,
=1 ?-Diz _
where
n n
Ff = § :.}f,f = Zﬁ(da!;dais' - 'rdaf—-fsdafﬂ-l" .- )daﬂ)'
=1 fe=]

It follows that F; is an integral polynomial symmetrical in all the numbers
(11.14.3), and so an integer. Hence, by Theorem 203,

Si=) ¢l+h

=1
i$ an integer, and
(11.14.13) $1 = 0 (mod p).

From (11.14.12) and (11.14.13) it follows that Sg -+ S) is an integer not
divisible by p, and so that

(11.14.14) IS0 + Si] > 1.
On the other hand,

|d )PP xip—]
I (x)| < oD {Uxl + le1]) - .- (x| + ez} p — O,

for any fixed x, when p — oo. It follows that

(11.14.15) 152 (é

for sufficiently large p. The three formulae (11.14.7), (11.14.14), and
(11.14.15) are in contradiction, and therefore & is transcendental.
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In particular » is not a ‘Euclidean’ number in the sense of § 11.5; and
therefore it is impossible to construct, by Euclidean methods, a length equal
to the circumference of a circle of unit diameter.

It may be proved by the methods of this section that

aeft +aze'62 + e 4 agefs # 0

if the « and B are algebraic, the « are not all zero, and no two § are equal.

It has been proved more recently that o is transcendental if o and 8 are
algebraic, o is not 0 or 1, and 8 is irrational. This shows, in particular, that
e~™, which is one of the values of i*, is transcendental. It also shows that

g — log 3

log2

is transcendental, since 2Y =3 and @ is irr_ational.f

NOTES

§ 11.3. Dirichiet’s argument depends upon the principle ‘if there are n+] objects in #
boxes, there must be at least one box which contains two (or more) of the objects’ (the
Schubfachprinzip of German writers). That in § 11.12 is essentially the same.

§8 11.6-7. A full account of Cantor’s work-in the theory of aggregates {Mengenlehre)
will be found in Hobson’s Theory of functions of a real variable, i.

Liouville's work was published in the Journal de Math. (1) 16 (1851), 13342, over
twenty years before Cantor’s. See also the note on §§ 11.13-14.

Theorem 191 has been improved successively by Thue, Siegel, Dyson, and Gelfond.
Finally Roth (Mathematika, 2 {1955), 1-20) showed that no irrational algebraic number is
approximable to any order greater than 2. Roth’s result can be re-phrased by saying that if
one takes x(g) = g1 *€ in Theorem 198, with any fixed € > 0, then the resulting null set
contains no 1rrsticnal algebraic numbers. It is not known whether this remains true with any
essentially smaller function x{g). For an account of Schmidt’s generalization of this to the
simultaneous approximation to several algebraic numbers, see Baker, ch. 7, Th. 7.1. ef seq.
See also Bombieri and Gubler, Heighty in Diophantine geometry (Cambridge University
Press, Cambridge, 2006) for an account of the more general Subspace Theorem and its
p-adic extensions. For stricter limitations on the degree of rational approximation possible
10 specific hrationals, ¢.g. %’2 see Baker, Quart. J. Math. Oxford (2) 15 {1964), 375-83.
Curently (2007} it is known that

2 - >

4‘?2 4325
for all positive integers p, ¢ (see Youtier J. Théor. Nombres Bordeaux 19 (2007), 265-90).

t See§ 4.
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§§ 11.8-9. Theorems 193 and 194 are due to Hurwitz, Math. Ann. 39 (18%1), 279-84,
and Theorem 195 to Borel, Journal de Math. (5), 9 (1903}, 329-75. Our proofs follow
Perron (Kettenbriiche, 49-52, and Irrationalzahlen, 129-31).

§ 11.190. The theorem with 2./2 is also due to Hurwitz, loc. cit. supra. For faller
information see Koksma, 29 et seq.

Theorems 196 and 197 were proved by Borel, Rendiconti del circolo mat, di Palermo,
27 {1909), 24771, and F. Bernstein, Math. Ann. 71 (1912}, 417-39.

For further refinements see Khintchine, Compositio Math. 1 (1934), 36183, and Dyson,
Journal London Math. Soc. 18 {1943), 46-43.

§ 11.11. For Theorem 199 see Khintchine, Math. Ann. 92 {1924), 115-25,

§ 11.12. We lost nothing by supposing p/g trreducible throughout §§ 11.1-11.
Suppose, for example, that p/q is a reducible solution of (11.1.1}. Then if (p, g} = 4 with
d>1l,andwewritep=dp’,q~=dg’, wehave (P ¢') =1 and

!

P P 1 1
m_glzl-—g|4_47,
'9’ q ¢ 47

so that 7//q’ is an irreducible solution of {11.1.1).

This sort of reduction is no longer possible when we require a number of rational fractions
with the same denominator, and some of our conclusions here would become false if we
insisted on irreducibility. For example, in order that the system (11.12.1) should have an
infinify of solutions, it would be necessary, after § 11.1 (1), that every &; should be irrational.

We owe this remark to Dr. Wylie.

§§ 11.13-14. The transcendence of e was proved first by Hermite, Comptes rendus, 77
(1873), 18-24, etc. (Buvres, iii. 150-81); and that of n by F. Lindemann, Math. Ann. 20
(1882), 213-25. The proofs were afterwards modified and simplified by Hilbert, Hurwitz,
and other writers, The form in which we give them is in essentials the same as that in
Landau, Forlesungen, tii. 90-95, or Perron, Irrationalzahlen, 17482,

Nesterenko (Sb. Math, 187 (1996), 1319-1348) showed that n and " are aige-
braically independent in the sense that there is no non-zero polynomial P{x, y) with rational
coefficients such that P(;r, £ ) = 0. This result includes the transcendence of both numbers.

The problem of proving the transcendentality of | under the conditions stated at the
end of § 11.14, was propounded by Hilbert in 1900, and solved independently by Gelfond
and Schneider, by different methods, in 1934. Fuller details, and references to the proofs of
the transcendentality of the other numbers mentioned at the end of § 11.7, will be found in
Koksma, ch. iv. and in Baker, ch. 2. Baker’s book gives an up-to-date account of the whole
subject of transcendental numbers, in which there have been important recent advances by
him and others.

It is unknown whether log 2 and log 3 are algebraically independent, or indeed if there
exist any two non-zero algebraic numbers a, 8 such that log « aad log B are algebraically
independent. )



X1t

THE FUNDAMENTAL THEOREM OF ARITHMETIC
IN k(1), k(i), AND k(p)

12.1. Algebraic numbers and integers. In this chapter we consider
some simple generalizations of the notion of an integer.

We defined an algebraic number in § 11.5; £ is an algebraic number if it
15 a root of an equation

cof" +e1f" 4 ken=0 (co#0)
whose coefficients are rational integers.? If
cgp = 1,
then & is said to be an algebraic integer. This is the natural definition, since

a rational & = a/b satisfies b — a = 0, and is an integer when b = 1.
Thus

i=.(1)
and
(12.1.1) p=ed" =Ll +iy3)
are algebraic integers, since
F+1=0
and
P+p+1=0

When n = 2, & is said to be a quadratic number, or integer, as the case
may be.
These definitions enable us to restate Theorem 45 in the form

TueorEM 206. An algebraic integer, if rational, is a rational integer.

¥ We defined the ‘rational integers’ in § 1.1, Since then we have described them simply as the
‘integers’, but now it becomes important to distinguish them explicitly from integers of other kinds.
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12.2. The rational integers, the Gaussian integers, and the integers
of k(p). For the present we shall be concemed only with the three simplest
classes of algebraic integers.

(1) The rational integers (defined in § 1.1) are the algebraic integers for
which # = 1. For reasons which will appear later, we shall call the rational
integers the integers of k(1).!

(2) The complex or ‘Gaussian’ integers are the numbers

E = a4 bi,
where g and b are rational integers. Since
£ —2at + & + b? =0,

a Gaussian integer is a quadratic integer. We call the Gaussian integers the
integers of k(i). In particular, any rational integer is a Gaussian integer.
Since .

(@ + bi) + (¢4 di) = (@ +¢) + (b + d)i,
(a + bi)(c + di) = ac — bd + (ad + bc)i,

sums and products of Gaussian integers are Gaussian integers. More
generally, if o, 8, ..., « are Gaussian integers, and

g =P(a’ﬁ!"‘9x)!

where P is a polynomial whose coefficients are rational or Gaussian
integers, then £ is a Gaussian integer.
(3) If p is defined by (12.1.1), then

P =i = L=l 4 iy3),
p+pi=-1, pp’=1.
If
§=a+ bp’

¥ We shall define k(8) generally in § 14.1. k(1) is in fact the class of rationals; we shall not use a
special symbol for the sub-class of rational integers. (i) is the class of numbers r+si, where r and s
are rational; and £(p) is defined similarty.
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where a and b are rational integers, then
(E—a—bp)§—a—bp®)=0
or
£ — (2a— b +d* —ab+ b =0,

so that £ is a quadratic integer. We call the numbers & the integers of k(p).
Since

Rrpo+1=0a+bp=a—b-—>bp* a+bp*=a—~b-—bp,

we might equally have defined the integers of k(o) as the numbers a + bp?.

The properties of the integers of k(i) and k(o) resemble in many ways
those of the rational integers. Our object in this chapter is to study the
simplest properties common to the three classes of numbers, and in par-
ticular the property of ‘unique factorization’. This study is important for
two reasons, first because it is interesting to see how far the properties of
ordinary integers are susceptible to generalization, and secondly because
many properties of the rational integers themselves follow most simply and
most naturally from those of wider classes.

We shall use small Latin letters a, b,..., as we have usually done, to
denote rational integers, except that i will always be ./(—1). Integers of
k(i) or k(o) will be denoted by Greek letters «, 8, .. ..

12.3. Euclid’s algorithm. We have already proved the ‘fundamental
theorem of arithmetic’, for the rational integers, by two different methods,
in §§ 2.10 and 2.11. We shall now give a third proof which is important
both logically and historically and will serve us as a model when extending
it to other classes of numbers.!

Suppose that

a=b>0,
Dividing a by & we obtain
a=gqib+ry,

! The fundamental idea of the proof is the same as that of the proof of § 2.10: the numbess divisible
by d = (g, b) form a ‘modulus’. But here we determine 4 by a direct construction.
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where 0 < 71 < b. If r{ 3 0, we can repeat the process, and obtain
b=gqry+r,

where 0 < <. Ifrm #0,
re =q3r2-trs,

where 0 < r3 < rp; and so on. The non-negative integers b,ry, r2,...,
form a decreasing sequence, and so

Fpyl == 07
for some n. The last two steps of the process will be

Ypn—2 = Gnlnt + Tn 0 < ry; <rp—1),

Tpwl = Gun+i¥n-
This system of equations for ri, r2, ... is known as Euclids algorithm. It
is the same, except for notation, as that of § 10.6.

Euclid’s algorithm embodies the ordinary process for finding the highest
common divisor of @ and b, as is shown by the next theorem.

Turorem 207: r, = (a, b).
Let d = {a,b). Then, using the successive steps of the algorithm, we
have ’
dla.dib—> diry > dlrz > - - dlr,,,_

so that d < »,. Again, working backwards,

PalFpet = Palfn—2 = altn—3 = ... = ralb ~> ryla.
Hence r, divides both a and b. Since 4 is the greatest of the common
divisors of @ and b, it follows that r, < d, and therefore that r, = 4.

12.4. Application of Euclid’s algorithm to the fundamental theorem
in k(1). We base the proof of the fundamental theorem on two preliminary
theorems. The first is merely a repetition of Theorem 26, but it is convenient
to restate it and deduce it from the algorithm. The second is substantially
equivalent to Theorem 3.

THeorREM 208. Iffla, f1b, then f|{a,b).
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For

fla.flb = flr1 = flr2 = ... = flr,
orfid.
Turorem 209. If (a,b) = L and b | ac, then b |c.

If we multiply each line of the algorithm by ¢, we obtain

ac = qibc + rc,

rp_2C == Qp¥py—1C - Fpc,

Py 1€ = gnpy|TnC,

which is the algorithm we should have obtained if we started with ac
and bc instead of @ and 4. Here

e = (a,b) =1
and so
{ac,bcy = rye = ¢.
Now blac, by hypothesis, and b}bc. Hence, by Theorem 208,
| bli(ac, be) = ¢,

which is what we had to prove.

If pis a prime, then either pla or (a, p) = 1. Inthe latter case, by Theorem
209, plac implies pjc. Thus plac implies pla or plc. This is Theorem 3, and
from Theorem 3 the fundamental theorem follows as in § 1.3.

It will be useful to restate the fundamenta! theorem in a slightly different
form which extends more naturally to the integers of k(¥) and k(p). We call
the numbers

€ =%l
the divisors of 1, the unities of k(1). The two numbers

€m
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we call associates. Finally we define a prime as an integer of £(1) which is
not 0 or a unity and is not divisible by any number except the unities and
its associates. The primes are then

+2, 43, #£5,...,

and the fundamental theorem takes the form: any integer n of k(1), not 0
or a unity, can be expressed as a product of primes, and the expression is
unigue except in regard to (a) the order of the factors, (b) the presence of
unities as factors, and {(c) ambiguities between associated primes.

12.5. Historical remarks on Euclid’s algorithm and the fundamen-
tal theorem. Euclid’s algorithm is explained at length in Book vii of the
Elements (Props. 1-3). Buclid deduces from the algorithm, effectively,
that

Sla . flb— fl(a,b)
and
(ac, be) = (a, b)c.

He has thus the weapons which were essential in our proof.
The actual theorem which he proves (vii. 24} is ‘if two numbers be prime
to any number, their product also will be prime to the same’; i.e.

(12.5.1) (@,c) =1.(b,c) =1 - (ab,c) = 1.

Our Theorem 3 follows from this by taking ¢ a prime p, and we can prove
(12.5.1) by a slight change in the argument of § 12.4. But Euclid’s method
of proof, which depends on the notions of ‘parts’ and ‘proportion’, is
essentially different.

It might seem strange at first that Euclid, having gone so far, could
not prove the fundamental theorem itself; but this view would rest on a
misconception. Euclid had no formal calculus of multiplication and expo-
nentiation, and it would have been most difficult for him even to state
the theorem. He had not even a rerm for the product of more than three
factors. The omission of the fundamental theorem is in no way casual or
accidental; Euclid knew very well that the theory of numbers turned upon
his algorithm, and drew from it all the return he could.
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12.6. Properties of the Gaussian integers. Throughout this and the
next two sections the word ‘integer’ means Gaussian integer or integer
of k(i).

We define ‘divisible’ and ‘divisor’ in k(i) in the same way as in k(1);
an integer £ 1s said to be divisible by an integer 5, not 0, if there exists an -
integer ¢ such that

§=n¢;

and »n is then said to be a divisor of £. We express this by nj. Since 1, -1,
i, —i are all integers, any & has the eight ‘trivial’ divisors

1,&, 1, —&,i,iE, —i,—IE.
Divisibility has the obvious properties expressed by

alp . Bly — «aly,
alyr. ... .alyn = alfiyi + -+ Bava

The integer ¢ is said to be a unity of k(i) if €l for every & of k().
Alternatively, we may define a unity as any integer which is a divisor of 1.
The two definitions are equivalent, since 1 is a divisor of every integer of
the field, and '

€ll . 1}t — €lf.
The norm of an integer £ is defined by
NE = N(a+ bi) = a® + b2

If £ is the conjugate of £, then

Nt =gk = (g%,
Since

(@ + b)) (c® + d%) = (ac — bd)? + (ad + be)?,
NE£ has the properties
NENn=N(Em, NENn...=N(En..).

TueoreM 210. The norm of a unity is 1, and any integer whose norm is
1 is a unity.
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Ifeis auﬁity, then €| 1. Hence 1 = €7, and so
1 = NeNn, Nell, Ne=1.
On the other hand, if N(a + bi) == 1, we have
1=a*+b*=(a+bida—bi), a-+bill,

and 0 a -+ bi is a unity.

TueoreMm 211, The unities of k(i) are

e=1{ (¢s=0,1,2,3).
The only solutions of a® + b? = 1 are
a=+41, &=0; a=10, b=:=+l,

so that the unities are %1, i,
If € is any unity, then €& is said to be associated with . The associates
of & are

E! f{", W‘Es _is;

and the associates of 1 are the unities. It is clear that if £|n then £¢;|nea,
where €1, €3 are any unities. Hence, if 5 is divisible by &, any associate of
n is divisible by any associate of &,

12.7. Primes in k(i). A prime is an integer, not 0 or a unity, divisible
only by numbers associated with itself or with 1. We reserve the letter
for primes.! A prime 7 has no divisors except the eight trivial divisors

l,w, =, —m,i,in,—i,—ir.
The associates of a prime are clearly also primes.

THEOREM 212. An integer whose norm is a rational prime is a prime.

For suppose that N§ = p, and that § = nZ. Then

Hence either N = 1 or N¢ = 1, and either n or { is a unity; and therefore
£isaprime, Thus N(2 + i) = 5,and 2 + i is'a prime.

! There will be no danger of confusion with the ordinary use of .
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The converse theorem is not true; thus N3 =9, but3isa pnme
For suppose that

3 = (a + bi)(c + di).
Then |
9 = (&% + b*)(* + d%).
It is impossible that
2+ = +d =3

(since 3 is not the sum of two squares), and therefore either a? 4+ b* =1

or ¢ + d? = 1, and either a + bi or ¢ + di is a unity. It follows that 3 is
a prime.

A rational integer, prime in k{¢), must be a rational prime; but not all

rational primes are prime in k(i). Thus

5=@Q+ DR -
THeOREM 213. Any integer, not O or a unity, is divisible by a prime.
If y is an integer, and not a prime, then
y=a181, Naj>1, NB>1, Ny=NaNB,
and so
1l < Na) < Ny.
If at; is not a prime, then

a; =afs, Nay>1, Nf>1,
Nay =NaaNB;, | < Nay < Nay.

We may continue this process so long as a, is not prime. Since
Ny, Nai, Naag,...

is a decreasing sequence of positive rational integers, we must sooner or
later come to a pnme «,; and if @, is the first prime in the sequence y, «,
., then

y = oy = B1fraa = ... = Bif2fs.. .Bray,
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and so
arly.
TuroreMm 214, Any integer, not O or a unity, is a product of primes.
If y is not O or a unity, it is divisible by a prime xr 1. Hence
y =my, Nyt <Ny:
Either y; is a unity or
vi =my, Ny <Ny
Continuing this process we obtain a decreasing sequence
Ny, Ny;,, Nva, ...,

of positive rational integers. Hence Ny, = ! for some r, and y, is a unity
¢; and therefore

. ’
Y = WNY. Hp€ = Y L e T,

where 7| = m,¢ is an associate of m, and so itself a prime.

12.8. The fundamental theorem of arithmetic in 5(¢). Theorem 214
shows that every y can be expressed in the form

Y =mA2... Ky,

where every m is a prime. The fundamental theorem asserts that, apart from
trivial variations, this representation is unique.

THEOREM 215 (THE FUNDAMENTAL THEOREM FOR GAUSSIAN INTEGERS). The
expression of an integer as a product of primes is unique, apart from
the order of the primes, the presence of unities, and ambiguities between
associated primes.

We use a process, analogous to Euclid’s algorithm, which depends upon

Tusorem 216. Given any two integers v, vy, of which y # 0, there is
an integer k such that

Yy =kyi1+¥», Nyz<Ny.
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We shall actually prove more than this, viz. that
Ny: <INy,

but the essential point, on which the proof of the fundamenta! theorem
depends, is what is stated in the theorem. If ¢ and ¢| are positive rational
integers, and ¢; # 0, there is a & such that

c=key 4¢3, 00 <y,

It is on this that the construction of Euclid’s algorithm depends, and
Theorem 216 provides the basis for a similar construction in k (i),
Since y; ¥ 0, we have

l=R+Sf,

Yi

where R and § are real; in fact R and § are rational, but this is irrelevant,
We can find two rational integers x and y such that

R—xI< %, IS-y<i

and then

'.V . . i 2 H 1
e e (X 4+ By} = (R — X} 4+ (8 ~ 3} = {(R—x)* + (§ — 1g —.
’y; ( }’)‘ I Y+ IS ~ ) = {( x) ( )’} 72
If we take

x=x+i‘y, Ve=YyY —K¥i,
we have

i
[y —&vil € 273y,

and so, squaring,

Ny2=N(y —«n) < 3Ny.

We now apply Theorem 216 to obtain an analogue of Euclid’s algorithm.
If ¥ and y are given, and y; $ 0, we have

Yy=ky1+y: (Nyz <Ny
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If y» # 0, we have
n=xy+ys Ny3s <Ny),
and so on. Since
Ny, Ny, ...

is a decreasing sequence of non-negative rational integers, there must be
an n for which

NY"'*“E - 03 Va4l = 0,
and the last steps of the algorithm will be

Yn-2 = Kn-»Z.:Vn—l +vn (Nyn<Ny,_1),
Yn—1 = Kn—1¥n.

It now follows, as in the proof of Theorem 207, that y, is a common
divisor of y and y;, and that every common divisor of y and y{ is a
divisor of y,,.

We have nothing at this stage corresponding exactly to Theorem 207,
since we have not yet defined ‘highest common divisor’. If { is a common
divisor of y and y;, and every common divisor of ¥ and y is a divisor
of {, we call ¢ a highest common divisor of y and yi, and write { =
(¥, y1). Thus y,, is a highest common divisor of y and y . The property of
(v, v1) corresponding to that proved in Theorem 208 is thus absorbed into
its definition.

The highest common divisor is not unique, since any associate of a
highest common divisor is also a highest common divisor. If 5 and ¢ are
each highest common divisors, then, by the definition,

ne, Zin,

and so

{=¢n n=6r=0¢n 6¢=1.

Hence ¢ is a unity and ¢ an associate of n, and the highest common divisor
is unique except for ambiguity between associates.

It will be noticed that we defined the highest common divisor of two
nmambers of k(1) differently, viz. as the greatest among the common divi-
sors, and proved as a theorem that it possesses the property which we take
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as our definition here. We might define the highest common divisors of two
integers of k(i) as those whose norm is greatest, but the definition which
we have adopted lends itself more naturally to generalization.

We now use the algorithm to prove the analogue of Theorem 209, viz.

Tueorem 217, If (v, ¥1) = | and y1| By, then y,| B.
We multiply the algorithm throughout by 8 and find that

By, By 1) = By,.

Since (v, ¥1) = 1, ¥, is a unity, and so

(ﬁy35}"k) = ﬁ

Now y 1| By, by hypothesis, and y;i8y 1. Hence, by the definition of the
highest common divisor,

}’l¥(ﬁy3 ﬁyl)

or ¥1}B.

If 7 is prime, and (7w, ¥) = u, then p|x and ujy. Since wjrn, either
(1) u is a unity, and so (;r, y)} = 1, or (2) u is an associate of 7, and so
7{y. Hence, if we take y1 = m in Theorem 217, we obtain the analogue
of Euclid’s Theorem 3, viz.

THeOREM 218. If m|By, then |f or wiy.

From this the fundamental theorem for k(i) follows by the argument
used for k(I1)in § 1.3.

12.9. The integers of k(p). We conclude this chapter with a more
summary discussion of the integers

E§=a+bp

defined in § 12.2. Throughout this section ‘integer’ means ‘integer of k(p)".
We define divisor, unity, associate, and prime in k(p) as in k(/); but the
normof§ =a+ bp is

NE& = (a+ bp)Xa + bp?) = a* — ab + b*.
Since
a* —ab+ b = (a-— %b)z—!-%bz,
NE is positive except when & == 0.
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Since
la+bp|? = a® — ab+ b* = N(a+ bp),
we have ,
NaNB =N@f), NaNB...=N(aB...),
as in k(7).

Theorems 210, 212, 213, and 214 remain true in k(p); and the proofs
are the same except for the difference in the form of the norm.
The unities are given by

a* —ab+b* =1,
or

(2a - b)? + 3b* = 4.
The only solutions of this equation are

a=+1,b=0,a=0,b=%xl;a=1,b=1,a=~1,b=—1:

so that the unities are '

+1, p, (1 + p)
or

+1, +p, £p?.

Any number whose norm is a rational prime is a prime; thus I — p is
a prime, since N(1 — p) = 3. The converse is false; for example, 2 is a
prime. For if

2= (a+bp)(c+dp),
then |
4 = (a* — ab + b*)(c* — cd + d?).
Hence either g + bp or ¢ + dp is a unity, or
@® —ab+ b =+2, (2a—b)?+3b® = 48,

which is impossible.
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The fundamental theorem is true in k(o) also, and depends on a theorem
verbally identical with Theorem 216.

Turorem 219. Given any two integers ¥, y1, of which y1 # 0, there is
an integer k such that

Yy =k¥i+v2, Nwva<Ny.

For

Yy _atbp (@ + bp)(c +dp?)
vi  c+dp  (c+dp)c+dp?)
ac+bd—ad+(bc—ad)p

2 —cd + d?

say. We can find two rational integers x and y such that

=R+ Sp,

R—xI< 3, IS-¥<3,

and then

2
3

__(x+yp) =R-) -R-)E—-N+E—»*< i

Hence, ifx = x + yp, y2 = y ~ ky}, we have
Nya=N(y —xy) < Nvi <Ny
The fundamental theorem for (o) follows from Theorem 219 by thc
argument used in § 12.8.

TueorEM 220, [THE FUNDAMENTAL THEOREM FOR K(0)] The expression of
an integer of k(p) as a product of primes is unique, apart from the order
of the primes, the presence of unities, and ambiguities between associated

primes.

We conclude with a few trivial proposifions about the integers of k()
which are of no intrinsic interest but will be required in Ch. XIII,

THEOREM 221. A = 1 — p is a prime.

This has been proved already.
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Turorem 222. All integers of k(p) fall into three classes (mod 1),
typified by 0, 1, and —1.

The definitions of a congruence to modulus A, a residue (mod 1), and a
class of residues (mod 1), are the same as in k(1).
If y is any integer of k(p), we have

y=a+bp=a+b—br=a+b(modA).

Since3 = (1 —p)(1 — pz), A|3; and since a+ b has one of the three residues
0, 1, —1 (med 3), y has one of the same three residues (mod A). These
residues are incongruent, since neither N1 =1 nor N2 = 4 is divisible by
Nx=3.

Tueorem 223. 3 is associated with )2,

For
k2:1—2p+pzm-—3p.

THEOREM 224. The numbers (1 — p), (1 — p?), +p(1 — p) are all
associated with .

For

+(1—p)=4A, =(1—p% =Fip? o(l—p)=EArp.

NOTES

The terminology and notation of this chapter, and also of Chapters 14 and 15, has become
out of date. In particular k(1}, k(:}, and k(o) are alternatively denoted @, Q(i), and Q{p).
Moreover ‘unities’ are alternatively referred to merely as ‘units’,

§ 12.1. The Gaussian integers were used first by Gauss in his researches on biquadratic
reciprocity. See in particular his memoirs entitled *‘Theoria residuorum biquadraticorum’,
Werke, ii. 67-148. Gauss (here and in his memoirs on algebraic equations, Werke, iii. 3-64)
was the first mathematician to use complex numbers in a really confident and scientific
way. :

The numbers a + bp were introduced by Eisenstein and Jacobi in their work on cubic
reciprocity. See Bachmann, Allgemeine Arithmetik der Zahlkorper, 142.

§ 12.5. We owe the substance of these remarks to Prof. §. Bochner.

Professor A. A. Mullin drew my atiention to Euclid ix. 14, the theorem that, if # is
the least number divisible by each of the primes p;,..., p;, then n is not divisible by any
other prime. This may perhaps be regarded as a further step on Euclid’s part towards the
Fundamental Theorem.



X1
SOME DIOPHANTINE EQUATIONS

13.1. Fermat’s last theorem. ‘Fermat’s last theorem’ asserts that the
equation

(13.1.1) X" 4 Yt = 27,

where n is an integer greater than 2, has no integral solutions, except the
trivial solutions in which one of the variables is 0. The theorem has never
been proved for all n,’ or even in an infinity of genuinely distinct cases,
but it is known to be true for 2 < n < 619. In this chapter we shall be
concerned only with the two simpiest cases of the theorem, in which n = 3
and n = 4. The case n = 4 1s casy, and the case n = 3 provides an excellent
itlustration of the use of the ideas of Ch. XII.

13.2. The equation x> 4 3 = z*. The equation (13.1.1) is soluble
when n = 2; the most familiar solutions are 3, 4, Sand 5, 12, 13. We
dispose of this problem first.

It is plain that we may suppose x, y, z positive, without loss of generality.
Next

dx.dly-»djz.

Hence, if x, y, z is a solution with (x, y)} = d, thenx = dx’,y = dy',z = d7’,
and x’, ', 2’ is a solution with (x’, ") = 1. We may therefore suppose that
(x,y) = 1, the general solution being a multiple of a solution satisfying
this condition. Finally

x=1(mod2).y=1(mod2) - z* = 2 (mod 4),

which is impossible; so that one of x and y must be odd and the other even.
It is therefore sufficient for our purpose to prove the theorem which
follows.

Turorem 225. The most general solution of the equation
(13.2.1) 24+ =2
satisfying the conditions

(13.2.2) x>0, y>0, z>0, (xy)=1,21x,

T This has now been resolved. See the end of chapter notes,
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is

(13.2.3) x=2ab, y=a*-b, z=a*+b,

where a, b are integers of opposite parity and

(13.2.4) (a,b) = 1, a>b>0

There is a (1,1) correspondence between different values of a, b and
different values of x, y, 2.

First, et us assume (13.2.1) and (13.2.2). Since 2 |x and (x,y) = 1,
y and z are odd and (y,z) = 1. Hence 3 (z — y) and 3 (z + y) are integral

and
z—yz—i—y)#l
272 )

6 -(37) ()

and the two factors on the right, being coprime, must both be squares.
Hence

By (13.2.1),

where

a>0, b>0, a>b (ab)=1.
Also

a+b=a*+b =z=1(mod 2),

and a and b are of opposite parity. Hence any solution of (13.2.1), satisfying
(13.2.2), is of the form (13.2.3); and @ and b are of opposite parity and satisfy
(13.2.4).

Next, let us assume that ¢ and b are of opposite parity and satisfy (13.2.4).
Then
xz +y2 — 4&262 e (az _ bZ)Z — (a2 o+ b2)2 — ZZ’
x>0, yvy>0, z>0, 2ix.
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If (x,y) = d, thend |z, and so

dly =a* - b, d|z=a*+ b

and therefore d | 242, d | 25%. Since (a,b) = 1, d must be 1 or 2, and the
second alternative is excluded because y is odd. Hence (x,y) = 1.

Finally, if y and z are given, a? and »?, and consequently a and b, are
uniquely determined, so that different values of x, y, and z correspond to
different values of @ and b.

13.3. The equation x* 4+ y* = z%. We now apply Theorem 225 to the
proof of Fermat’s theoremn for n = 4. This is the only ‘easy’ case of the
theorem. Actually we prove rather more.

TaroreM 226. There are no positive integral solutions of
(13.3.1) : eyt =22

Suppose that u is the least number for which
(13.3.2) Aayt=1 x>0,y>0u>0)

has a solution. Then (x,y) = 1, for otherwise we can divide through by
(x, y)4 and so replace u by a smaller number. Hence at least one of x and y
is odd, and

= x*+3% = 1 0r2 (mod 4).

Since «* = 2 (mod 4) is impossible, u is odd, and just one of x and y is
even.
I x, say, is even, then, by Theorem 225,

x> =2ab, y*=a*—-b%, u=a®+ b
a>0, b>0, (a,b)=1,

and a and b are of opposite parity. If a is even and b odd, then
y? = —1 (mod 4),
which is impossible; so that a is odd and b even, and say b = 2¢.

Next
1 \2
(Ex) = q¢, (a,c)=1;
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and so
a=d: c=f% d>0, f>0, df)=],
and d is odd. Hence
y=at - bt =db —4rt,
(2f2)2 +y2 — (d2)2’

and no two of 2f 2 ¥, d? have a common factor.
Applying Theorem 225 again, we obtain

262 =2tm, d*=P+m? 1>0, m>0, (,m)= 1.

Since
A=im, (m) =1,
we have
l=p, m=3s (r>0,s5>0),
and so
r st =d2
But

d$d2=a§a2<a2+b2:u,

and so u is not the ieast number for which (13.3.2) is possible. This
coniradiction proves the theorem.

The method of proof which we have used and which was invented and
applied to many problems by Fermat, is known as the ‘method of descent’,
If a proposition P(n) is true for some positive integer », there is a smallest
such integer. If P(n), for any positive n, implies P(n’) for some smaller
positive n’, then there is no such smallest integer; and the contradiction
shows that P(n) is false for every n.

13.4. The equation x* +y* = z3. If Fermat’s theorem is true for some

n, it is true for any multiple of n, since x 4 " = 2 js

(xf)n A (yl)n — (2!)".
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The theorem is therefore true generally if it is true (@) when n = 4 (as we
have shown) and (b) when 7 is an odd prime. The only case of (b) which
we can discuss here is the case n = 3.

The natural method of attack, after Ch. XII, is to write Fermat’s equation
in the form

x+y)x+ p)x + pty) =2°,

and consider the structure of the various factors in k(p). As in § 13.3, we
prove rather more than Fermat’s theorem.

Tueorem 227. There are no solutions of
E+n+07=0 E£0,n#0,#0)
in integers of k(p). In particular, there are no solutions of
D=2
in rational integers, except the trivial solutions in which one of x, y, z is 0.

- In the proof that follows, Greek letters denote integers in k(p), and A is
the prime 1 — p.¥ We may plainly suppose that

(134.1) mD=¢ 8=En=L

We base the proof on four lemmas (Theorems 228--31).

TuzoreM 228. If w is not divisible by A, then
w? = 4] (mod A4).

Since @ is congruent to one of 0, 1, —1, by Theorem 222, and A { w,
we have

w=*1 (mod A).
We can therefore choose @ = +w so that
az=1(mod i), a=1+4+ 8

' See Theorem 221.
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Then

t(@Fl)=a’—l=(@-1(@=-p) (a—r?
= BA(BA+ 1~ p)(Br+1-p?)
=8B+ 1 (B-p%),
since ] — p2=A(1+p)= ~Ap?. Also
p? =1 (mod)),
50 that
BB+ 1)(B — pP) = B(B + 1)(B — 1) (modd).
But one of 8, 8 + 1, 8 — 1 is divisible by A, by Theorem 222; and so
+(w® F 1) = 0 (mod 1)
or
w® = 1 (mod A4).
Tueorem 229. IfE3 4+ 1° 4+ ¢? = 0, then one of £, n, ¢ is divisible by A.
Let us suppose the contrary. Then
0=£ 4+ +>=2111+1 (mod 2h,

and so £1 = 0 or £3 = 0, i.e. A*|1 or A*|3. The first hypothesis is
untenable because A is not a unity; and the second because 3 is an associate
of A%t and therefore not divisible by A*, Hence one of &,75,{ must be
divisible by A.

We may therefore suppose that A | ¢, and that

¢ =",

where A 4 y. Then A 4 &, A 1 n by (13.4.1), and we have to prove the
impossibility of
(134.2) E 4+ +2" =0,

? Theorem 223.
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where
(134.3) & m=1 nx1, Af§ Aifn, Afy.
It is convenient to prove more, viz. that
(13.4.4) E+n+ery?=0
cannot be satisfied by any &, n, ¢, subject to (13.4.3) and any unity ¢.
TreoreM 230. If€, n, and y satisfy (13.4.3) and (13.4.4), then n 2 2.
By Theorem 228,
—eAy3 =83 4+ 9’ = £1 £ 1 (mod A%).
If the signs are the same, then
—er"y? = £2 (mod 1Y),
which is impossible because A { 2. Hence the signs are opposite, and
—eA¥y? = 0 (modar %),

SinceAty,n > 2.

TueoreM 231, If (13.4.4) is possible for n = m > 1, then it is possible
forn=m~ 1.

Theorem 231 represents the critical stage in the proof of Theorem 227,
when it is proved, Theorem 227 follows immediately. For if (13.4.4) is
possible for any n, it is possible forn == 1, in contradiction to Theorem 230.
The argument is another example of the ‘method of descent’.

Our hypothesis is that

(13.4.5) —eX*™y? = (€ + & + pn)(E + pP1).
The differences of the factors on the right are
nA,  onk, pinA,

all associates of nA. Each of them is divisible by A but not by A2 (since
Mmoo

Since m = 2, 3m > 3, and one of the three factors must be divisible by
A%. The other two factors must be divisible by A (since the differences are



252 SOME DIOPHANTINE EQUATIONS {Chap. XHI

divisible), but not by A? (since the differences are not). We may suppose
that the factor divisible by A? is & + 7; if it were one of the other factors,
we could replace n by one of its associates. We have then

(13.4.6)  E+n=2""%, E+pn=hrc, £-+p°n=>ra,

where none of 1, &3, &3 is divisible by A.
1f 8 | k2 and & | x3, then & also divides

Ky = K3 = pn
and
2. _
pr3 — piry = pk,

and therefore both £ and 5. Hence § is a unity and (x5, x3) = 1.
Similarly (k3, 1) = 1 and (x1, «2) = 1.
Substituting from (13.4.6) into (13.4.5), we obtain

w€y3 = K1K2K3.
Hence each of k1, x32, k3 15 an associate of a cube, so that
E+n=2""20 = ed’20, & + oy = 209, & + pPn = 31y,

where 6, ¢, ¥ have no common factor and are not divisible by A, and ¢,
€7, €3 are unities, It follows that

0= +p+p)E+n =&+n+pE +pn)+ p*(E + pn)
= e1A"7203 + 62000 + e30%0¢ 3,

and so that
(13.4.7) ¢ + e + A3 30% = 0,

where €4 = €3p/¢€; and €5 = €} /€y p are also unities.
Now m 2> 2 and so

¢’ + eV’ =0 (mod 1)
(in fact, mod A%). But A { ¢ and A 1 ¥, and therefore, by Theorem 228,
¢ = %1 (mod2r?),  ¢3 =11 (mod 1)



13.4(232) SOME DIOPHANTINE EQUATIONS 253

(in fact, mod A%). Hence
*+1 464 =0 (mod 22,
Here €4 is £1, £ p, or £ p?. But none of
+1+p, =x1+p?

is divisible by A2, since each is an associate of 1 or of A; and therefore
€4 == 1.

If €4 == 1, (13.4.7) is an equation of the type required. If ¢4 = —1,
we replace by — . In either case we have proved Theorem 231 and
therefore Theorem 227.

13.5. The equation x> 4+ y* = 3z3. Almost the same reasoning will
prove

TueoreM 232. The equation
x* + y3 = 323
has no solutions in integers, except the trivial solutions in whichz= 0.

The proof is, as might be expected, substantially the same as that of
Theorem 227, since 3 is an associate of A*. We again prove more, viz. that
there are no solutions of

(13.5.1) £+ + ey =,
where

&,m=1 ity

in integers of k(o). And again we prove the theorem by proving two
propositions, viz.
(a) if there is a solution, then n > 0;

(b) if there is a solution for n = m 2> 1, then there is a solution for
n=m-—1;

which are contradictory if there is a solution for any ».
We have

(& + n)(E + pn)(E + pPn) = —ea ™23,
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Hence at least one factor on the left, and therefore every factor, is divisible
by A; and hence m > 0. It then follows that 3m + 2 > 3 and that one factor
is divisible by A2, and (as in § 13.4) only one. We have therefore

E+n=2A"k, E+pn=ic, §+pin=li;,

the k being coprime in pairs and not divisible by A.
Hence, as in § 13.4,

—€V3 = K1k2K3,
and 1, x2, k3 are the associates of cubes, so that
E+n=a’0’, E+pn=erg’, £+pn=ery’.
It then follows that '
0=§& + 7+ pE +pon) + P + 070
= ep’"9 4 2008 + 307297,
& +eqp’ +es2’m16% = 0

and the remainder of the proof is the same as that of Theorem 227.
It is not possible to prove in this way that

(13.5.2) £3 40 4@ty 20,
In fact
P42 491 =0,

and, since 9 = pk“,’f this equation is of the form (13.5.2). The reader will
find it instructive to attempt the proof and observe where it fails.

13.6. The expression of a rational as a sum of rational cubes.
Theorem 232 has a very interesting application to the ‘additive’ theory
of numbers.

The typical problem of this theory is as follows. Suppose that x denotes
an arbitrary member of a specified class of numbers, such as the class of
positive integers or the class of rationals, and y is a member of some sub-
class of the former class, such as the class of integral squares or rational
cubes. Is it possible to express x in the form

x=yr+yatoc+ Y

1 See the proof of Theorem 223.
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and, if so, how economically, that is to say with how small a value of £?
For example, suppose x a positive integer and y an integral square.
Lagrange’s Theorem 3697 shows that every positive integer is the sum of
four squares, so that we may take k == 4. Since 7, for example, is not a sum
of three squares, the value 4 of & is the least possible or the ‘correct’ one.
Here we shall suppose that x is a positive rational, and y a non-negative
rational cube, and we shall show that the ‘correct’ value of £ is 3.
In the first place we have, as a corollary of Theorem 232,

Tueorem 233. There are positive rationals which are not sums of two
non-negative rational cubes.

For example, 3 is such a rational. For
azd ch 3
(3) +(3) =3
involves
(ad)® + (bc)® = 3(bd)?,

in contradiction to Theorem 232.%
In order to show that 3 is an admissible value of &, we require another
theorem of a more elementary character.

TueoreM 234. Any positive rational is the sum of three positive rational
cubes.

We have to solve
(13.6.1) r=x>+3 +2°,
where r is given, with positive rational x, y, z. It is easily verified that
PP+ =ty +2° 30+ D+ +y)
and so (13.6.1} is equivalent to
(x+y +2)° — 3y+2Dz4+x)x+y) =r.

Y Proved in various ways in Ch. XX,

} Theorem 227 shows that | is not the sum of two positive rational cubes, but it is of course
expressibie as 03 + 13,
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fwewriteX =y+2z, ¥ =z-+x, Z=x-y,this becomes

(13.6.2) X +Y+2)°—24XYZ = 8r.
If we put
X+z Y
(13.6.3) u="== v=—,

(13.6.2) becomes

(13.6.4) (u+v) —24v(u~1) = 827
Next we restrict Z and v to satisfy

(13.6.5) r =323,

so that (13.6.4) reduces to

(13.6.6) (u+v)® = 24wy,

To solve (13.6.6), we put u = vf and find that

24¢% 24¢

(33.6.7) (f 1)3 » V= m,

This is a solution of (13.6.6) for every rational 7. We have still to satisfy
(13.6.5), which now becomes

rt + 1) = 122%¢.

If we put t = r/(72w>), where w is any rational number, we have
Z = w(t + 1). Hence a solution of (13.6.2) is

(13.6.8) X=@—12Z, Y=vZ, Z=wit+1l),

where u, v are given by (13.6.7) with 1 = rw—3/72. We deduce the solution
of (13.6.1) by using

(13.69) 2x=Y+Z-X, y=Z+X-Y, 22=X+Y -2
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To complete the proof of Theorem 234, we have to show that we can
choose w so that x, y, z are all positive. If w is taken positive, then f and Z
are positive. Now, by (13.6.8) and (13.6.9) we have

—?:v»{» L—(u—D=2+v-—u, %m&—v, %mu+v~2.
These are all positive provided that
H>V U—~v<2<u-tv,
that is
t>1, 1200 —1) < ¢+ 1) <12t + 1),

These are certainly true if ¢ 1s a little greater than 1, and we may choose w
so that

r

t=
T2w3

satisfies this requirement. (In fact, it is enough if 1 < ¢ < 2.)
Suppose for example that 7 = % Hweputw = % so that t = 2, we have

W)+ () )
=)+ G)+ ()"

which is equivalent to

The equation

(13.6.10) 63 =134+ 4° 4+ 5%
is even simpler, but is not obtainable by this method.

13.7. The equation x> + )* + z3 = £3. There are a number of other
Diophantine equations which it would be natural to consider here; and the
most interesting are

(13.7.1) Sy el=F
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and
(13.7.2) x? ~+»y3 =uw +v

The second equation is derived from the first by writing —u, v for z, ¢.

Each of the equations gives rise to a number of different problems, since
we may look for solutions in (a) integers or (b) rationals, and we may or
may not be interested in the signs of the solutions. The simplest problem
(and the only one which has been solved completely) is that of the solution
of the equations in positive or negative rationals. For this problem, the
equations are equivalent, and we take the form (13.7.2). The complete
solution was found by Euler and simplified by Binet.

I we put

x=X~Y, y=X<+Y, u=U-V, v=U+V,
{13.7.2) becomes
(13.7.3) X(X2 4373 = UWU? +37%).
We suppose that X and Y are not both 0. We may then wlrite

U+VJ/(=3) U~-VJ/(=3)
X+Y/(=3) X~ YJ(=3)

where g, b are rational. From the first of these

a-+ b\/(m3)9

a - b‘\/(_3)s

(13.7.4) U=aX —3bY, V=05X+aY,
while (13.7.3) becomes
X = U(a® + 3b%).
This last, combined with the first of (13.7.4), gives us
cX =dY,
where
c=a(@® + 365 — 1, d=3b(a% +3b%).
femd=0thenb=0,a=1,X = U,Y = V. Otherwise
(13.7.5) X = Ad = 3ib(a® 4+ 3bY), Y =2xc=xa(a®+36%) 1},
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where 2 # 0. Using these in (13.7.4), we find that
(13.7.6) U=3xb, V=2xrl(a*+3b")P —a}.
Hence, apart from the two trivial solutions '
X=Y=U=0Q; X:mU, Y=V,

every rational solution of (13.7.3) takes the form given in (13.7.5) and
(13.7.6) for appropriate rational A, a, b.

Conversely, ifA, a, b are gny rational numbersand X, Y, U, V are defined
by (13.7.5) and (13.7.6), the formulae (13.7.4) follow at once and

UU? 4+ 37?%) = 3ab{(aX — 3bY)? 4+ 3(bX + a¥)?)
= 3b(@® + 365 (X% + 37%) = X (X2 +37).
We have thus proved
Tuarorem 235. Apart from the trivial solutions
(13.7.7) x=y=0, u=-v, x=u, y=yv,
the general rational solution of (13.7.2) is given by

(13.7.8)
{xmlllw(a_Bb)(a2+3b2)}, y = (a+3b)(@® + 3p7) — 1},
u=xr{(@+3b) — @ +365}, v=2xr{@+36%)%— (@~ 3b)},

where A, a, b are any rational numbers except that A # 0.

The problem of finding all integral solutions of (13.7.2) is more difficult.
Integral values of a, b, and A in (13.7.8) give an integral solution, but there
isno converse correspondence. The simplest solution of (13.7.2) in positive
integers is
(13.7.9) x==1, y=12, =9, v=10,
corresponding to

10 7 361
ﬂ='}‘§, b=_ﬁ! }LE—"TT
On the other hand, if weputa=b=1, A = %, we have
x=3, y=5 u=-4, v=2¢,
équivalent to (13.6.10). |



260 SOME DIOPHANTINE EQUATIONS {Chap. XIII
Other simple sclutions of (13.7.1) or (13.7.2) are
P+6+8 =9 224343=15+33%, 9 +152=2"+16"
Ramanujan gave
x == 30 + Sab ~ 5b%, y = 4a® — dab + 6b*,
z = S5a* — Sab — 36, t=6a® — 4ab + 4b%,

as a solution of (13.7.1). If we take @ = 2, b = 1, we obtain the solution

(17, 14,7, 20). If we take a = 1, b = —2, we obtain a solution equivalent

to (13.7.9). Other similar solutions are recorded in Dickson’s History.
Much less is known about the equation

(13.7.10) x4yt =t A

first solved by Euler. The simplest parametric solution known is
[ x=a’ +a’b? — 2a°b* + 3a%b° + ab®,
y =a%h — 3a°b% — 2% + a%b° 4 b,
u=a +ab’—2a°b* + 3d°b° + ab®,
v =a% + 3267 — 2a*p® + B0 + 1,

(13.7.11) <

but this solution is not in any sense complete. Whena = 1, b =2 it leads to
133% + 134% = 158% 4 594,

and this is the smallest integral solution of (13.7.10).
To solve (13.7.10), we put

(13.7.12) x=aw+e¢, y=bw—d, u=aw+d, v=>bw+ec

We thus obtain a quartic equation for w, in which the first and last
coefficients are zero. The coefficient of w* will also be zero if

e(@ — By = d@® + b),

in particular if ¢ = a® + b3, d = a® — b*; and then, on dividing by w, we
find that

3wla? — b%)(c* — d%) = 2(ad® — ac® + be® + bd?).
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Finally, when we substitute these values of ¢,d, and w in (13.7.12), and
multiply throughout by 3a?, we obtain (13.7:11).
We shall say something more about problems of this kind in Ch. XXIL.

NOTES

§ 13.1. All this chapter, up to § 13.5, is modelled on Landau, Vorlesungen, iii. 201-17.
See also Mordell, Diophantine equations, and the first pages of Cassels, J. London Math.
Soc, 41 (1966}, 193-291.

The phrase ‘Diophantine equation’ is derived from Diophantus of Alexandria (about
A.D. 250), who was the first writer to make a systematic study of the solution of equations
in integers. Diophantus proved the substance of Theorem 225. Particular solutions had
been known fo Greek mathematicians from Pythagoras onwards. Heath's Diophantus of
Alexandria (Cambridge, 1910) includes translations of all the extant works of Diophantus,
of Fermat's comments on them, and of many solutions of Diophantine problems by Euler.

There is a very large literature about ‘Fermat’s last theorem’. In particular we may
refer to Bachmann, Das Ferma(problem (1919; reprinted Berlin, Springer, 1976); Dickson,
History, 1i, ch. xxvi; Landau, Vorlesungen, iii; Mordell, Three lectures on Fermat last
theorem (Cambridge, 1921);, Vandiver, Report of the committee on algebraic numbers, i1
(Washington, 1928), ch. ii, and Amer Math. Monthly, 53 (1946), 556-78. An excellent
account of the current state of knowledge about the theorem with full references is given by
Ribenboim {Canadian Math. Bull. 20 (1977), 229-42). For a more detailed account of the
subject and related theory, see Edwards, Fermat s Last Theorem (Berlin, Springer, 1977).

The theorem was enunciated by Fermat in 1637 in a marginal note in his copy of Bachet's
edition of the works of Diophantus. Here he asserts definitely that he possessed a proof,
but the later history of the subject seems to show that he must have been mistaken. A very
large number of fallacious proofs have been published.

In view of the remark at the beginning of § 13.4, we can suppesc that n = p > 2.
Kummer (1850) proved the theorem for n = p, whenever the odd prime p is ‘regular’, ie.
when p does not divide the numerator of any of the numbers

31’82,- . ‘!Bé(p_s}i

where By, is the kth Bemoulli number defined at the beginning of § 7.9. It is known,
however, that there is an infinity of ‘tregular’ p. Various criteria have been developed
(notably by Vandiver) for the truth of the theorem when p is irregular. The corresponding
calculations have been carried out on a computer and, as a result, the theorem is now known
to be true for all p < 125000. If, however, (13.1.1) is satisfied for any larger prime, then
min {x, ¥) has more than 3 billion digits. See Ribenboim loc. cit. for references and Stewart,
Mathematika 24 {1977), 1302 for another result.

The problem is much simplified if it is assumed that no one of x, 3, z is divisible by p.
Wieferich proved in 1909 that there are no such solutions unless 27! = 1 (med p?), which
is true for p = 1093 (§ 6.10) but for no other p less than 2000, [.ater writers have found
further conditions of the same kind and by this means it has been shown that there are no
solutions of this kind for p < 3 x 10° or for p any Mersenne prime (and so for the largest
known prime). See Ribenboim Joc. cit.

Fermat’s Last Theorem was finally settled in a pair of papers by Wiles, and by Wiles
and Taylor, (dnn. of Math. (2) 141 (1995), 443-55] and 553-72). Unlike its predecessors
described above, this work uses a connection between Fermat’s equation and elliptic curves.
Investigations by Hellegouarch, Frey, and Ribet had previously established that Fermat's
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Last Theorem would follow from a standard conjecture on elliptic curves, namely the
‘Taniyama-Shimura conjecture. Wiles was able to establish an important special case of
the latter conjecture, which was sufficient to handle Fermat’s Last Theorem. The paper by
Wiles and Taylor provided the proof of a key step needed for Wiles™ work.

§ 13.3. Theorem 226 was actually proved by Fermat. See Dicksen, History, ii, ch. xxii.

§ 13.4, Theorem 227 was proved by Euler between 1753 and 1770. The proof was
incomplete at one point, but the gap was filled by Legendre. See Dickson, History, ii,
ch, xxi.

QOur proof follows that given by Landau, but Landau presents it as a first exercise in the
use of ideals, which we have to avoid,

§ 13.6. Theorem 234 is due to Richmond, Proc. London Math. Soc. (2) 21 {1923), 401-9.
His proof is based on formulae given much earlier by Ryley [The ladies 'diary (1825), 35].

Ryley’s formulae have been reconsidered and generalized by Richmond [Proc.
Edinburgh Math. Soc. (2) 2 (1930}, 92-100, and Journal London Math. Soc. 17 {1942},
196-9] and Mordell [Journal London Math. Soc. 17 (1942}, 194-6}. Richmond finds
solutions not included in Ryley’s; for example,

Y-t =s(046), 3 —t+L2)y=s3t—1—1),
3(1 — t+ 122 = (3t — 31%),

where s is rational and ¢ = 3r/s>. Mordell solves the more general equation
X +Y+2) —dX¥Z =m,

of which (13.6.2) is a particular case. Our presentation of the preof is based on Mordell's.
There are a number of other papers on cubic Diophantine equations in three variables, by
Mordell and B. Segre, in later numbers of the Journal. Indeed Segre (Math Notae, 11
(1951), 1-68), has shown that if any non-degenerate cubic equation in three variables has
a rational solution, it will have infinitely many solutions. This suffices to handle (13.6.1),
which has a rational point ‘at infinity”, A full account of much recent work on homogeneous
equations of degree 3 and 4 variables is given by Manin (Cubic forms, Amsterdam, North
Holland, 1974).

§ 13,7, The first results concerning *equal sums of two cubes’ were found by Vieta before
1591. See Dickson, History, ii. 550 et seq. Theorem 235 is due to Euler. Our method follows
that of Hurwitz, Math. Werke, 2 (1933), 469--70.

The parameterization (13.7.8) has maximal degree 4 in a and b. There is an alternative
parameterization of degree 3, namely

x=AMA+B+C-D), y=ri4d+B-C+D),
u=r(A-B+C+D), v=A{A—-B—~C—-D)},
where
A=9a +3ab® +3b, B=6ab, C=9a2b+36°+b, D=3 +3°+1,
see Hua, Introduction to number theory, (Springer, New York, 1982), 290-91.
Euler’s solution of (13.7.10) is given in Dickson, Introduction, 60--62. His forrmwulae,

which are not quite so simple as (13.7.11), may be derived from the latter by writing f 4+ g
and f — g for a and b and dividing by 2. The formulae (13.7.11) themselves were first given
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by Gérardin, L 'Intermédiaire des mathématiciens, 24 {1917), 51. The simple solution here
is due to Swinnerton-Dyer, Journal London Math. Soc. 18 {1943}, 2-4.

Leech (Proc. Cambridge Phil. Soc. 53 (1957), 778-86) lists numerical sofutions of
(13.7.2), of {13.7.10), and of several other Diophantine equations.

In 1844 Catalan conjectured that the only solution in integers p, g, x, y, each greater
than 1, of the equation

# -y =1

isp=y = 2, q=x = 3, This has been proved by Mihdilescu (J. Reine Angew. Math. 572
{2004), 167-195).

One of the most powerful results on Diophantine equations is due to Faltings (Invent.
Matk. T3 {1983), 349-66). A special case of this relates to equations of the form
f{x,y,2z) =0, where f is a homogeneous polynomia] of degree at least 4, with integral
coefficients. One says that f is nonsingular if the partial derivatives of f cannot vanish
simultaneously for any complex (x, ¥, ) apart from (0, 0, 0). For such an f, Falting’s theo-
rem asserts that the equation £ (x,y,z)} = 0 has at most finitely many distinct sloutions, up
to multiplication by a constant. One may take f(x,y,z) = ax" + & —cz" forn 2 4, and
deduce that the generalized Fermat equation has at most finitely many essentially distinct
solutions for each .

Many of the equations considered in this chapter take the forma+ 4 = ¢, where g, band
¢ are constant multiples of powers. A very general conjecture about such equations, now
known as the ‘abe conjecture” has been made by Oesterlé and by Masser in 1985. 1t states
that if ¢ > O there is a constant K (£) with the following property. If a, b, ¢ are any positive
integers such that g + & = ¢, then ¢ € K (e)r{abc) 142 where the function r(m) is defined
as the product of the distinct prime factors of m.

As an example of the potential applications of this conjecture, consider the Fermat
equation {13.1.1). Taking @ = »", b = 3" and ¢ = 2", we observe that

r{abe) = r(x™y"z") < xyz < 2°

whence the conjecture would yield 2" < K(£)22(1+%), Choosing & == 1/2, and assuming
that n > 4 we would then have

MK KO/ L K8,

From this we can deduce that z* < K(1/2)%. Thus the abe conjecture immediately implies
that Fermat’s equation has at most finitely many solutions in x, ¥ z, n, forn 2 4. In fact
a whole hest of other important results and conjectures are now known to follow from the
ahc conjecture.



XIV
QUADRATIC FIELDS (1)

14.1. Algebraic fields. In Ch. XII we considered the integers of k(i)
and k(p), but did not develop the theory farther than was necessary for the
purposes of Ch. X!I!. In this and the next chapter we carry our investigation
of the integers of quadratic fields a little farther.

An algebraic field is the aggregate of all numbers

P)
R(%) 0@y’
where ¢ is a given algebraic number, P(#) and OQ(&#) are polynomials in
9 with rational coefficients, and () # 0. We denote this field by k(:%).
It is plain that sums and products of numbers of k() belong to k() and
that /8 belongs to k() if @ and B belong to k(#) and 8 # 0.

In § 11.5, we defined an algebraic number € as any root of an algebraic

equation

(14.1.1) apx” +ax* 14 4 a, =0,

where ag, a1, ... are rational integers, not all zero. If £ satisfies an alge-
braic equation of degree n, but none of lower degree, we say that £ is of
degree n.

If n = 1, then & is rational and k(%) is the aggregate of rationals. Hence,
for every rational £, k(&) denotes the same aggregate, the field of rationals,
which we denote by £(1). This field is part of every algebraic field.

If n = 2, we say that & is ‘quadratic’. Then & is a root of a quadratic
equation

a(;x2 +ax+ay; =0,

and so

E:a+me’ \/mzcé‘;a

C

for some rational integers a, b, ¢, m. Without loss of generality, we may
take m to have no squared factor. It is then easily verified that the field
k(&) is the same aggregate as k(,/m). Hence it will be enough for us to
consider the quadratic fields £(\/m) for every ‘quadratfrei’ rational integer
m, positive or negative (apart from m = 1).
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Any member & of k(,/m) has the form

_P(ym)  t+uym  (tHu/m)v—wym) a+b/m
oM v+wym v — wlnm - c

&

for rational integers ¢, u, v, w, a, b, ¢. We have (c& — a)* = mb?, and so £
is a root of

(14.1.2) 2x? — 2acx + a* ~ mb* = 0.

Hence & is either rational or quadratic; i.e. every member of a quadratic
field is either a rationa!l or a quadratic number.

The field k (,/m) includes a sub-class formed by all the algebraic integers
of the field. In § 12.1 we defined an algebraic integer as any root of an
equation

(14.1.3) e g =0,

where ¢, . .., ¢; are rational integers. We appear then to have a choice in
defining the integers of k(,/m). We may say that a number £ of k(,/m) is
an integer of k(/m) (i} if £ satisfies an equation of the form (14.1.3) for
some j, or (ii) if § satisfies an equation of the form (14.1.3) withj = 2. In
the next section, however, we show that the set of integers of £(,/m) is the
same whichever definition we use.

14.2. Algebraic numbers and integers; primitive polynomials. We
say that the integral polynomial

(14.2.1) f@) =apx"+ax" '+ +a,
1 a primitive polynomial if
aO>0) (QUSQIQ'-'SQR)= 1

in the notation of p. 20. Under the same conditions, we call (14.1.1) a
primitive equation. The equation (14.1.3) is obviously primitive.

THeOREM 236. An algebraic number € of degree n satisfies a unique
primitive equation of degree n. If & is an algebraic integer, the coefficient
of x" in this primitive equation is unity.

For n = 1, the first part is trivial; the second part is equivalent to
Theorem 206. Hence Theorem 236 is a generalization of Theorem 206. We
shall deduce Theorem 236 from
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‘TueoreM 237. Let & be an algebraic number of degree n and let fix) = 0
be a primitive equation of degree n satisfied by &. Let g(x) = 0 be any
primitive equation satisfied by &. Then g(x) = f (x)h(x) for some primitive
polynomial h(x) and all x.

By the definition of £ and » there must be at least one polynomial f (x) of
degree n such that f(£) == 0. We may clearly suppose f (x) primitive. Again
the degree of g(x) cannot be less than n. Hence we can divide g{x) by
f(x) by means of the division algorithm of elementary algebra and obtain
a quotient H (x) and a remainder K (x), such that

(14.2.2) g(x) = f(x)H (x) + K(x),

H(x) and K (x) are polynomials with rational coefficients, and K (x) is of
degree less than n,

If we put x = £ in (14.2.2), we have K (&) == 0. But this is impossible,
since & is of degree n, unless K (x) has all its coefficients zero. Hence

g(x) = f (x)H (x).

If we multiply this throughout by an appropriate rational integer, we obtain

(14.2.3)  eg(x) = f0h(x),

where c is a positive integer and A(x) is an integral polynomial. Let d be the
highest common divisor of the coefficients of A(x). Since g is primitive,
we must have dfc. Hence, if d > 1, we may remove the factor J; that is,
we may take A(x) primitive in (14.2.3). Now suppose that p|c, where p is
prime. It follows that f (x)A{x) = 0 (mod p) and so, by Theorem 104 (i),
either f(x) = 0 or A(x) = 0 (mod p). Both are impossible for primitive f
and & and so ¢ = |, This is Theorem 237.

The proof of Theorem 236 is now simple. If g(x) = 0 is a primitive
equation of degree » satisfied by &, then h(x) is a primitive polynomial of
degree 0; i.e. i(x) = 1 and g(x) = f(x) for all x. Hence f(x) is unique.

If £ is an algebraic integer, then & satisfies an equation of the form
(14.1.3) for some j > n. We write g(x) for the left-hand side of (14.1.3)
and, by Theorem 237, we have

g(x) = f (x)h(x),

where h(x) is of degree j — n. If f (x) == agx™ 4+ - - - and h(x) = hg x/~" +
.-+, we have 1 = agho, and so a9 = 1. This completes the proof of
Theorem 236.
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14.3. The general quadratic field k(,/m). We now define the infegers
of k(,/m) as those algebraic integers which belong to k(,/m). We use
‘integer’ throughout this chapter and Ch. XV for an integer of the particular
field in which we are working.

With the notation of § 14.1, let

_a+bym
- c

3

be an integer, where we may suppose thatc > Oand (a,b,¢) = 1. Ifb = 0,
then & = a/c is rational, ¢ = 1, and £ = q, any rational integer.

If b # 0, & is quadratic. Hence, if we divide (14.1.2) through by ¢Z, we
obtain a primitive equation whose leading coefficient is 1. Thus ¢|24 and
(@2 — mbh). If d = (a,c), we have

212, d4e?, 2@ — mb?y —> dPmb — d)b,

since m has no squared factor. But (a, b,¢) == | and so d = 1. Since ¢|2a,
we have ¢ = 1 or 2.

If ¢ = 2, then a is odd and mb? = q? = 1 (mod 4), so that b is odd and
m = 1(mod 4). We must therefore distinguish two cases.

(1) If m #1(mod 4), then ¢ = | and the integers of k(,/m) are

E=a+bym

with rational integral a, b. In this case m = 2 or m = 3(mod 4).

(1) If m = 1(mod 4), one integer of k(\/m) is ©t = %(\/m — 1) and all
the integers can be expressed simply in terms of this 7. If ¢ = 2, we have
a and b odd and

_atb/m a+b
T2 T2

where a1, b are rational integers. If ¢ = 1,

& + bt = ay + 2b1 + D1,

E=a+b/m=a+b+2bt =a;+2b1,

where a1, b are rational integers. Hence, if we change our notation a little,
the integers of k(/m) are the numbers a + br with rational integral a, b.

Tueorem 238. The integers of k(\/m) are the numbers

a+ bm
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when m = 2 or m = 3 (mod 4), and the numbers
a4+ br=a+ %b(\/m-— 1)
when m = 1(mod 4), a and b being in either case rational integers.

The field k(i) is an example of the first case and the field £{./(~3)} of
the second. In the latter case

‘rmw%-i-%i\/:;:p

and the field is the same as k(p). If the integers of k(¥) can be
expressed as

a+ b,

where a and b run through the rational integers, then we say that [1, ¢] is
a basis of the integers of k(). Thus [1, {] is a basis of the integers of k(i),
and [1, p ] of those of k{,/(—3)}.

14.4. Unities and primes. The definitions of divisibility, divisor, unity,
and prime in k(,/m) are the same as in k(i); thus « is divisible by 8, or
Bla, if there is an integer y of k(,/m) such that a = Byt Aunityeisa
divisor of 1, and of every integer of the field. In particular 1 and —1 are
unities. The numbers €& are the associates of &, and a prime is a number
divisible only by the unities and its associates.

TusoreM 239. If e} and €; are unities, then €1€; and €1/€3 are unities.
There are a 8; and a §; such that €18; = 1, €282 = 1, and
€1€28182 = 1 - €1€63|!.

Hence ¢;¢; is a unity. Also 87 = 1/€2 is a unity; and so, combining these
results, €1/€ is a unity.

We call £ = r — s./m the conjugate of & = r + s/m. Whenm < 0, &
is also the conjugate of £ in the sense of analysis, & and & being conjugate
complex numbers; but when m > 0 the meaning is different.

T If e and § are rational integers, then y is rations], and so a rational integer, so that Bier then means
the same in K {/{—m)} as in k({1).
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The norm NE of £ is defined by

NE = EE = (r + s/m)(r — s/m) = rt — ms?.

If & is an integer, then N£ is a rational integer. If m = 2 or 3 (mod 4), and
& = a+ b,/m, then

NE& = a* — mb?;
and if m = 1(mod 4), and § = a + bw, then
Nt = (@— ib)* — tmb*.

Norms are positive in complex fields, but not necessarily in real fields, In
any case N(kn) = NENn.

Tueorem 240. The norm of a unity is £ 1, and every number whose norm
is 41 is a unity.

For (a)
€fl ~> €§=1—> NeNd =1 > Ne = %],
and (b)
£§ = NE = 1 - §|L.
Ifm < 0, m = —pu, then the equations

a2 + p{bz =1 Z (m = 2, 3 (mOd 4))!
(@352 +3ub? =1 (m=1(mod4)),

have only a finite number of solutions. This number is 4 in k(Z), 6 in k(p),
and 2 otherwise, since

a==+1,b=<0

are the only solutions when p > 3.
There are an infinity of unities in a real field, as we shall see in a moment

in k(/2).
NE may be negative in a real field, but

M§ = |N§|
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is a positive integer, except when § = 0. Hence, repeating the arguments
of § 12.7, with M ¢ in the place of N& when the field is real, we obtain

TeeOREM 241. An integer whose norm is a rational prime is prime.

THeOREM 242. An integer, not O or a unity, can be expressed as a product
of primes.

The question of the uniqueness of the expression remains open.

14.5. The unities of X(/2). Whenm = 2,

Ng =a* —2b°
and

@ =20 = -1
has the solutions 1, 1 and —1, 1. Hence

w=14./2, o'l=-d=-~14./2

are unities. It follows, afier Theorem 239, that all the numbers
(14.5.1) +o”, o™ (n=0,1,2,..)

are unities. There are unities, of either sign, as large or as small as we
please.

Turorem 243. The numbers (14.5.1) are the only unities of k(:/2).

(1) We prove first that there is no unity € between 1 and w. If there were,
we should have

l<xtyf2=€ <142
and
x2-—2y2=:§:1;
so that

—1l<x—y /2 <1,
0<2x <2+ /2
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Hencex = land 1 < 14y./2 < 14 /2, whichis impossible for integral y.
(ii) f ¢ > 0, then either € = " or

o" < € < "t

for some integral n. In the latter case @™ "¢ is a unity, by Theorem 239, and
" lies between | and w. This contradicts (i); and therefore every positive € is
an o". Since —e¢ is a unity if € is a unity, this proves the theorem,

Since Now = — 1, Nw? = 1, we have proved incidentally

TuroreM 244. All rational integral solutions of

~ 2% =1

are given by
x4 ya/2 = £(1 + /2)%,
and all of
x* — 2y2 = —1
by

X+ y/2 = £(1 + J2)2
with n a rational integer.

The equation
2 — my2 = 1,

where m is positive and not a square, has always an infinity of solutions,
which may be found from the continued fraction for ./m. In this case

L
=14
V2=l4 s

the length of the period is 1, and the solution is particularly simple. If the
convergents are

Pn

4n

i g AT R (n——-O,i,Z,...)

At~

13
1°2
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then p,, qn, and
&n=Pn+dny/2, Vn=Pn—4qnv/2
are solutions of
Xn = 2Xp] + Xn—2-
From
do=w ¢ =0 Yo=-0', Yi=o
and
" =207 40" 2, ()" = 2(—w) " 4 (—w) ",
it follows that
#n =", Y= ()]
for all n. Hence

pn=3 {0 + (o)™ = 5 {0+ v+ (1= 2
gn = %JZ{«)"“ _ (Ww)—n—l} - :41‘\/2 {a + /2 (1 - \/z)n-i-l}’
and
P2 — 297 = putrn = (— )"
The convergents of odd rank give solutions of x*~2y? = 1 and those of

even rank solutions of x2—2y? = —1.
Ifx*—2y? = 1 and x/y > 0, then

X i 1 i
0 <~ — /2 = < < .
y v yx+y/2)  y2p/2 0 22

Hence, by Theorem 184, x/y is a convergent. The convergents also give
all the solutions of the other equation, but this is not quite so easy to prove.
In general, only some of the convergents to ./m yield unities of £(,/m).
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14.6. Fields in which the fundamentsal theorem is false. The funda-
mental theorem of arithmetic is true in k(1), k(i), k(p), and (though we
have not yet proved so) in k(. /2). It is important to show by examples,
before proceeding farther, that it is not true in every k(,/m). The simplest
examples are m = —5 and (among real fields) m = 10.

(i) Since —5 = 3 (mod 4), the integers of k{,/(—5)} are a + b /(—5).
It is easy to verify that the four numbers

2,3, 14 /(=5), 1 = J(-35)
are prime. Thus
1+ J/(=5) = {a + B/(=5)He + d/(—5)}
implies
6 = (a® + 5b*)(c* + 5d%);

and o + 5b% must be 2 or 3, if neither factor is a unity. Since neither 2
nor 3 is of this form, 1 + ,/{—5) is prime; and the other numbers may be
proved prime similarly. But

6=2.3={l4+./(~5Hl - /(=5

and 6 has two distinct decompositions into primes.
(i) Since 10 = 2 (mod 4), the integers of k(,/10) are a + b./10. In this
case :

6=2.3=(4+./10)4 - /10),

and it is again easy to prove that all four factors are prime. Thus, for
example,

2 = (a + b./10)(c + d./10)
implies
4 = (a® — 10b°)(c? — 10d%),

and @ — 10b% must be =2, if neither factor is a unity. This is impossible
because neither of +2 is a quadratic residue of 10.}

T 12,22,3%,4%,52 62,72,82,92 =1,4,9,6,5,6,9. 4, | (mod 10).
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The falsity of the fundamental theorem in these fields involves the falsity
of other theorems which are central in the arithmetic of 4(1). Thus, if o
and B are integers of k(1), without a common factor, there are integers A
and p for which

ai + Bu = 1.

»

This theorem is false in k{./(—5)}. Suppose, for example, that o and g are
the primes 3 and 1 + /(—5). Then

a+bJ/(=5+ {1 + V(-5He +d/(—=5)} =1

involves
Ja4+c—5d =1, 3b+c+d=0
and so
3g—-3b—6d =1,
which is impossible.

14.7. Complex Euclidean fields. A simple field is a field in which
the fundamental theorem is true. The arithmetic of simple ficlds follows
the lines of rational arithmetic, while in other cases a new foundation is
required. The problem of determining all simple fields is very difficult, and
no complete solution has been found, though Heilbronn has proved that,
when m is negative, the number of simple fields 1s finite.

We proved the fundamental theorem in k(i) and k(p) by establishing an
analogue of Euclid’s algorithm in £(1). Let us suppose, generally, that the
proposition

(E) ‘given integers y and y1, with yy # 0, then there is an integer «
such that

y=xn+yr, INnl<|Nn/

is true in k(,/m). This is what we proved, for k(i) and k(p), in Theorems
216 and 219; but we have replaced Ny by |Ny| in order to include real
fields. In these circumstances we say that there is a Euclidean algorithm
in k(/m), or that the field is Euclidean.

We can then repeat the arguments of §§ 12.8 and 12,9 (w1th the
substitution of INy| for Ny), and we conclude that
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TueoreMm 245. The fundamental theorem is true in any Euclidean
quadratic field.

The conclusion is not confined to quadratic fields, but it is only in such
fields that we have defined Ny and are in a position to state it precisely.
(£) is plainly equivalent to
(E") “given any 8 (integral or not) of k(/m), there is an integer x such
that :
(14.7.1) N (@ —x) < 1°,
Suppose now that
8 =r+sm,
where » and s are rational. If m #] (mod 4) then
K =Xx+ym,
where x and y are rationa!l integers, and (14.7.1) is
(14.7.2) |r = x)? —m (s —y)*| < L.
Ifm = 1 (mod 4) then
K =x+y+3y(/m—1)=x+ 3y + 3p/m,}
where x and y are rationa! integers, and (14.7.1) is

(14.7.3) == Py =m(s—b)| < 1.

When m == —u < 0, it is easy to determine all fields in which these
inequalities can be satisfied for any r, s and appropriate x, y.

Tueorem 246. There are just five complex Euclidean quadratic fields,
viz. the fields in which

m= ],~2 =3 -7 ~11.

1 The formof § 143 withx +y,p for e, b.
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There are two cases.
(i) When m # 1 (mod 4), we take » = 3, 5 = 1 in (14.7.2); and we
require
itam<l,

or u < 3. Hence i == 1 and u = 2 are the only possible cases; and in these
cases we can plainly satisfy (14.7.2), for any r and s, by taking x and y to
be the integers nearest to » and s.
(i) When m = | (mod 4) we take r = J, s = § in (14.7.3). We require
{g + '1“1?;# < 1,

Since 4 = 3(mod 4), the only possible values of w are 3, 7, 11. Given s,
there is a y for which '

125 — y1 € 3,
and an x for which
[r—x -3 < 33
and then |
(r—x—b) —ms—-b)|<i+B=E<1

Hence (14.7.3) can be satisfied when u has one of the three values in
question.

There are other simple fields, such as k{,/(—19)} and k{./(~43)}, which
do not possess an algorithm; the condition is sufficient but not necessary
for simplicity. There are just nine simple complex quadratic fields, viz.
those corresponding to

me=—1,-2,-3,~7,~11,—19,—-43, —67, —163.

14.8. Real Euclidean fields. The real fields with an algorithm are more
numerous.

THeOREM 247 k(. /m) is Euclidean when
m=2,3,56,7,11,13,17,19,21,29,33,37,41,57,73
and for no other positive m.

We can plainly satisfy (14.7.2) when m = 2 or m = 3, since we can

choose x and y so that |r — x| < %and Is—yl < % Hence k(,/2) and
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k(,/3) are Euclidean, and therefore simple. We cannot prove Theorem 247
here, but we shall prove

Turorem 248. k(./m) is Euclidean when
m=273,56,7,13,17,21,29.
If we write

A=0, n=m (m#1(mod4)),

A=1%, n=jm (m=1 (mod4),

and replace 2s by s whenm = |, then we can combine (14.7.2) and (14.7.3)
in the form

(14.8.1) |r —x ~ Ap)2 —n(s —p)?| < L.

Let us assurne that there is no algorithm in k(,/m). Then (14.8.1) is false
for some rational #, s and all integral x, y; and we may suppose that'

(14.8.2) 0<r<i,0<s< 4

i
2’
T This is very easy 1o see when m 3 | (mod 4) and the left-hand side of (14.8.1) is
ir = x)? — mis —y)?);
for this is unaltered if we write
£1F -+ H, €1X+H, €5+v, €Y+
where €| and €3 are each | or — 1, and u and v are integers, for
rgx;-?,}’;

and we can always choose €|, €2, &, v so that €37 + » and €25 + v lie between 0 and % inclusive.
The situation is a little more complex when m = 1{mod 4) and the lefi-hand side of (14.8.1) is

(r=x= ) ~dmo -

This is unaltered by the substitution of any of
(1) e1r+u, 612+ u, €5, €13,
(B rnx—v,s+2v,y+ 2y,
B3 rix+y, -5 -y
@ J-rex1-51-y,
fornx, s p Wefirstuse (1) tomake 0 € r § %;then(Z)tomake ~1gs -.<., 1; and then, if necessary,

(3 tomake 0 < s < 1. 1fthen 0 < 5 < ¥, the reduction is completed. If 3 < 5 < 1, we end by using
{4), as we can do because % — r lies between 0 and % if » does so.
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There is therefore a pair r, s satisfying (14.8.2), such that one or other of

[P, )] (r=x—2)* 2 14+ n(s—y>
ING»)]  als— )% 2 1+ (= x — Ap)?

is true for every x, y. The particular inequalities which we shal! use are

[P(O, 0}] = 14ns?, INO O] ns® 2 1472
PO, (=% 2 1+ns? [N(,0] »s? 2 141-r)?,
[P(-1,0)] (1+7? > 1+ns?, [N(-1L,O)] ns® > 1+ (1+r)?.

One at least of each of these pairs of inequalities is true for some » and 5
satisfying (14.8.2). If r = s = 0, P(0, 0) and N(0,0) are both false, so that
this possibility is excluded.

Since r and s satisfy (14.8.2), and are not both 0, P(0, 0) and P(1, 0) are
false; and therefore N(0, 0) and N(1, 0) are true. If P(~1, 0) were true,
then N(1, 0) and P(—1, 0) would give

A+ 21422241 —r?

and so 4 > 2. From this and (14.8.2) it would follow that » = % and
nst = %, which is impossible.t Hence P(—1, 0) is false, and therefore
N(—1, 0)is true, This gives

ns?> 14+ (14022,

and this and (14.8.2) give n 2 8.
It follows that there is an algorithm in all cases in which n < 8, and these
are the cases enumerated in Theorem 248,

i Suppose that 5 = p/g, where (p, ¢) = 1. If m #£1(mod 4), then m = »n and
4mp2 =5q2.

Hence p#15, so that p = ; and g?{4m. But m has no squared factor, and 0 < s < 4. Hence ¢ = 2,

$= jandm=5 = (mod 4), 2 contradiction.
Ifm = I (mod 4), then m = 4n and

mpzzﬁqz.

From this we deduce p= 1, g = 1, 5= 1, in contradiction to (14.8.2).
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There is no algorithm when m = 23, Take r = 0, 5 = %’- Then

(14.8.1) is
[23x? — 23y ~ 72| < 23.
Since _
£ = 23x% — 23y — 7)* = —49 = -3 (mod 23),

£ must be —3 or 20, and it is easy to see that each of these hypotheses is
impossible, Suppose, for example, that

E=23x*-1%=_3
Then neither X nor Y can be divisible by 3, and
X?*=1, Y®=1, £=22=1(mod3),

a contradiction.
The field k(,/23), though not Euclidean, is simple; but we cannot prove
this here.

14.9. Real Euclidean fields. (continued). It is naturally more difficult
to prove that k(/m) is not Euclidean for al! positive m except those listed
in Theorem 247, than to prove k(,/m) Euclidean for particular values of
m. In this direction we prove only

Turorem 249. The number of real Euclidean fields k(\/m), where m =
2 or 3 (mod 4), is finite.

Let us suppose k(/m) Euclidean and m £1(mod 4). We take r = O and
s = t/min {14.7.2), where ¢ is an integer to be chosen later. Then there are
rational integers x, y such that

2
t
X —m(y——

(my — 2 — mx* = *(mod m),

< i, |(my—t)2—mx2| < m.

Since
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there are rational integers x, z such that
(14.9.1) 22 — mx? = (mod m), |:z2 — mx2| < m.

If m = 3 (mod 4), we choose ¢ an odd integer such that

2

Sm < t° < 6m,

as we certainly can do if m is large enough. By (14.9.1), z° — mx? is equal
to t2 — Sm or to t2 — 6m, so that one of

(14.9.2) 2z =mS—xb, ?—-—22=m6-x>

is true. But, to modulus §,

r2

=1, 22,x*=0,1,0rd4, m=3o0r7
2 —z2=0,1, or 5,
5-x2=1,4,0r5 6—x*=2,5,or6;

m(5—x*)=3,4,0r7 m6-—x*)=2736 017

and, however we choose the residues, each of (14.9.2) is impossible,
If m = 2 (mod 4), we choose ¢ odd and such that 2m < 2 < 3m, as we
can if m is large enough. In this case, one of

(14.9.3) P—=m@2-xb, £-22=m3-x)°
is true. But, to modulus 8, m = 2 or 6:
2-x?=1,2,0r6;, 3-x2=2.3, 017
m{2 —xz) = 2,4, 0or6, m(3 —x%) = 2,4, ot 6;

and each of (14.9.3) i1s impossible.

Hence, if m = 2 or 3 (mod 4) and if m is large enough, k(,/m) cannot
be Euclidean. This is Theorem 249. The same is, of course, true form == 1,
but the proof is distinctly more difficult.

NOTES

The terminology and notation of this chapter has become out of date since it was originally
written. In particular it has become customary to write @ (/m) rather than k (,/m) , and to
refer to ‘units’ rather than ‘unities’. Moreover, one usually says that the ring of integers of a
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field is a ‘unique factorization domain’, rather than calling the field ‘simple’. The property
{E) in §14.7 is generally referred to by saying that the field is ‘Norm-Euclidean’. We say
that the field (or its ring of integers) is ‘Euclidean’ if there is any function ¢ whatsoever,
defined on the non-zero integers of the field and taking positive integer values, with the
following two properties.

{i) If ¥, and y are non-zero integers with y 1|y 2, then ¢(y1) < ¢(7).
(i) If y1 and y, are non-zero integers with 1 { 4, then there is an integer x such that
iyt —xy2) < (0

We shall follow this terminology for the two notions of Euclidean field for the remainder
of the notes on this chapter,

§§ 14.1-6. The theory of quadratic fields is developed in detail in Bachmann’s
Grundlehren der neucren Zahlentheorie (Goschens Lehrbiicherei, no. 3, ed. 2, 1931]) and
Sommer’s Vorlesungen tiber Zahlentheorie. There is a French translation of Sommer’s
book, with the title Introduction a la théorie des nombres algébriques {Paris, 1911); and
a more elementary account of the theory, with many numerical eéxamples, in Reid’s The
elements of the theory of algebraic numbers (New York, 1910).

§ 14.5, The equation x2 -myz = 1 is ysually called Pell’s equation, but this is the result
of a misunderstanding. See Dickson, History, i, ch. xii, especially pp. 341, 351, 354.
There is a very full account of the history of the equation in Whitford's The Pell equation
(New York, 1912).

§ 14.7. Thecrem 245 is true for Euclidean fields in general, and not merely for Norm-
Euclidean fields. This can be proved by the arguments of §§12.8 and 12.9. Theorem 246
refers to the Norm-Euclidean property, but in fact there are no further complex quadratic
Euclidean fields, even with the wider definition given at the start of these notes, see Samuel
(. Algebra, 19 (1971), 282-301}.

Heilbronn and Linfoot {Quarterly Journal of Math. (Oxford), 5 (1934), 150-60 and
293-301) proved that there was at most one simple complex quadratic field other than
those listed at the end of § 14.7. Stark (Michigan Math. J. 14 (1967}, 1-27) proved that
this extra field did not exist. Baker (ch. 5) showed that the same result followed from his
approach to transcendence.

An earlier approach to this problem by Heegner (Math. Zeit. 56 (1952), 227--53), had
originally been supposed incomplete, but was later found to be essentially correct.

§ 14.8-9. Theorem 247, which refers to Norm-Euclidean fields, is essentially due to
Chatland and Davenport [Canadian Journal of Math. 2 (1950}, 289-961. Davenport [ Proc.
London Math. Soc. {2} 53 (1951}, 65-82] showed that k(,/m) cannot be Norm-Euclidean if
m>2M = 16384, which reduced the proof of Theorern 247 to the study of a finite number
of values of m. Chatland [Bulletin Amer. Math. Soc. 55 (1949), 948531 gives a list of
references to previous results, including a mistaken announcement by another that k(+/97)
was Norm-Euclidean. Barnes and Swinnerton-Dyer [Acta Math. 87 (1952} 259-323] show
that k(+/97) is not, in fact, Norm-Euclidean.

Our proof of Theorem 249 is due to Oppenheim, Math. Annalen 109 (1934), 34952, and
that of Theorem 249 to E. Berg, Fysiogr. Sallsk. Lund Firh. 5 (1935), 1-6. Both theorems
relate to the Norm-Euclidean property.

It has been shown by Harper, (Canad. J. Math. 56 (2004}, 55-70), that the field
k(~+/14) is Euclidean, and hence the integers satisfy the fundamental theorem, even though
it is not Norm-Euclidean. It is conjectured that there are infinitely many real quadratic fields
with the unique factorization property, and that they are all Euclidean, although only those
listed in Theorem: 247 can be Norm-Euclidean.

When p is a prime there appear to be a large number of fields (/7)) with the unique
factorization property. Indeed Cohen and Lenstra (Number theory, Noordwijkerhout 1983,
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Springer Lecture Notes in Math. 1068, 33—62), have given heuristics leading to a pre-
cise conjecture, which would show that k(,/7) has the unique factorization property for
asymptotically a positive proportion of primes.

We expect an infinity of real quadratic fields with the unique factorization property.
However if we restrict attention to square-free integers m for which there is a small non-
trivial unit, then the picture changes. Thus, for square-free numbers m of the form m =
472 + 1, there is a ‘small’ unit 2m 4+ /7, and it has been shown by Bird (dcta Arith, 107
{2003), 179-94), that in this case one obtains a unique factorization domain if and only if
r=1,235 7orl3
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15.1. The primes of k(i). We begin this chapter by determining the
primes of k(i) and a few other simple quadratic fields.
If m is a prime of k(./m), then

niNm=nnm

and [ iNx|. There are therefore positive rational integers divisible by x.
If z is the least such integer, z = 2,23, and the field is simple, then

niz1z9 —» wlzy or 1|z,

a contradiction unless z; or z; is 1. Hence z is a rational prime. Thus
divides at least one rational prime p. If it divides two, say p and p’, then

wlp.x|p > wlpx—ply=1
for appropriate x and y, a contradiction.

Tueorem 250. Any prime x of a simple field k(./m) is a divisor of just
one positive rational prime.

The primes of a simple field are therefore to be determined by the
factorization, in the field, of rational primes.
We consider k(i) first. If

w=a+bilp, 7wA=p,
then
NaN) = p?,
Either NA = 1, when A is a unity and 7 an associate of p, or
(15.1.1) Nr =a* + b =p.
(i) If p =2, then
p=1P 4+ 2=+~ =i~

The numbers 1 +{, —1 4+, —1 — i, 1 — i (which are associates) are primes
of k(i).
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(i) If p = 4n + 3, (15.1.1) is impossible, since a square is congruent to
0 or 1 (mod 4). Hence the primes 4n + 3 are primes of k(7).

(iii) If p = 4n + 1, then
)
P

by Theorem 82, and there is an x for which
plxz +1, plx+i)x—i).
If p were a prime of k(¢), it would divide x + i or x — i, and this is false,
since the numbers
*al
p P

are not integers. Hence p is not a prime. It follows that p = 7 A, where
T =a-+4 bi,A=a— bi,and

Nr=d*+ b =p.

In this case p can be expressed as a sum of two squares.
The prime divisors of p are

(15.1.2) R, i, —T, —irn, A, ik, ~A, —ik,

and any of these numbers may be substituted for 7. The eight variations
correspond to the eight equations

(15.1.3) (£a)* + (£5)° = (&b)? + (£a)? = p.

And if p = c* + d? then ¢ + id| p, so that ¢ + id is one of the numbers
(15.1.2). Hence, apart from these variations, the expression of p as a sum
of squares is unique.

Tusorem 251. A rational prime p == 4n + 1 can be expressed as a sum
a* + b? of two squares.

TueoreM 252. The primes of k(i) are

(1) 1 4 i and its associates,
(2) the rational primes 4n + 3 and their associates,
(3) the factors a + bi of the rational primes 4n + 1.
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15.2. Fermat’s theorem in k(i). As an illustration of the arithmetic of
k(i), we select the analogue of Fermat’'s theorem. We consider only the
analogue of Theorem 71 and not that of the more general Fermat-FEuler
theorem. It may be worth repeating that y|(a — B8) and

o = B(mod y)

mean, when we are working in the field k(9), thata — 8 = xy, where «
18 an integer of the field.

We denote rational primes 4n + 1 and 4n + 3 by p and ¢ respectively,
and a prime of k(i) by 7. We confine our attention to primes of the classes
(2) and (3), i.e. primes whose norm is odd; thus 7 is a g or a divisor of a p.
We write

¢(m)=Nm —1,
so that
oM =p-1 (xlp) s =g -1 (=2
Treorem 253. If (o, ) = |, then
a®™) = 1(mod 7).
Suppose that o mll + im. Then, when 7| p, # = i and
of = (I + im)P = PP 4+ (im)P = I + im” (mod p),
by Theorem 75; and so
of =1+ im = a{mod p),

by Theorem 70. The same congruence is true mod 7, and we may remove
the factor .
Whenn = ¢,i% = —i and

al = +im) =l ~imP=1—im=a (mod q).
Similarly, @¢ = «, so that

af = a, af la| (mod ¢).
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The theorem can also be proved on lines corresponding to those of § 6.1.
Suppose for example that r = a + bi| p. The number

{a 4+ bi)(c + di) = ac — bd + i{ad + bc)

is a multiple of x and, since (a,b) = 1, we can choose ¢ and 4 so that
ad + bc = 1. Hence there is an s such that

s+ i,
Now consider the numbers
r=0,1,2,...,Noe —1=d*+b* -1,

which are plainly incongruent (mod x). If x + yi is any integer of k(),
there is an r for which

x — sy = r (mod Nx);
and then
x+yi=y(s+i)+r=r{(modrn).

Hence the » form a ‘complete system of residues’ (mod 7).
If o is prime to m, then, as in rational arithmetic, the numbers «r also
form a complete system of residues.” Hence

n(ar) = n ¥ {mod ),

and the theorem follows as in § 6.1,
The proof in the other case is similar, but the ‘complete system’ is
constructed differently.

15.3. The primes of k{(p). The primes of k(p) are also factors of
rational primes, and there are again three cases.
(1)Xfp = 3, then
p=(-p)1=p%=(1+p)1-p)?=—p*1 - p)~.
By Theorem 221, 1 — p is a prime.

T Compare Theorem 58. The proof is essentially the same,
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(2) If p = 2 (mod 3) then it is impossible that N = p, since

AN = (2a — b)* + 3b°

is congruent to 0 or 1 (mod 3). Hence p is a prime in k(p).
(3) If p = 1 (mod 3) then
)
P

by Theorem 96, and plx? + 3. It then follows as in § 15.1 that p is divisible
by a prime m = a + bp, and that

p= N =a®—ab+ b

TueoreM 254. 4 rational pr:me 3n + 1 is expressible in the form
a® —ab+ b

TueoreMm 255. The primes of k(p) are

(1) 1 — p and its associates,
(2) the rational primes 3n + 2 and their associates,
(3) the factors a + bp of the rational primes 3n + 1.

15.4. The primes of k(.,/2) and k(./5). The discussion goes similarly
in other simple fields. In k(,/2), for example, either p is prime or

(15.4.1) N7 =a? — 2% = 4p.
Every square is congruent to 0, 1, or 4 (mod 8), and (15.4.1) is impossible

when p is 87 4+ 3. When p is 81 £ 1, 2 is a quadratic residue of p by
Theorem 95, and we show as before that p is factorizable. Finally

2= (/2%
and /2 is prime.
TueoreM 256. The primes of k(/2) are (1) /2, (2) the rational primes

8n+3, (3) thefactors a+b./2 of rational primes 8n+ 1 (and the associates
of these numbers).
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‘We consider one more example because we require the results in § 15.5.
The integers of k(/5) are the numbers a + bw, where a and b are rational

integers and

(15.4.2) w=3(1+./5).

The norm of a + bw is a® + ab — b?. The numbers
(15.4.3) +tot™ (n=0,1,2,..)

are unities, and we can prove as in § 14.5 that there are no more.
The determination of the primes depends upon the equation

Nx =a2+ab--b2mp,
or
Qa + b)* —- 5b* = 4p.

If p = Sn+ 2, then (2a + b)? = +3 (mod 5), which is impossible, Hence
these primes are primes in k(,/5).

Ifp = 5n+ 1, then
§)-

by Theorem 97. Hence pl(x* — 5) for some x, and we conclude as before
that p is factorizable. Finally

5=(/5)?%=Qw- 1%

TusoreM 257. The unities of k(\/5) are the numbers (15.4.3). The
primes are (1) /5, (2) the rational primes 5n + 2, (3) the factors a + bew
of rational primes 5n + 1 (and the associates of these numbers).

We shall also need the analogue of Fermat’s theorem.

Tueorem 258. If p and q are the rational primes 5n & | and 5n 4 2
respectively; ¢(m) = INz| — 1, so that

pmy=p-1 @p), ¢@=¢"—-1 (x=g);
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and (o, ) = 1; then

(15.4.9) a®™ =1 (mod m),
(15.4.5) | o~ =1 (mod ),
(15.4.6) a?t! = Na (mod q).
Further, if n| p, 7 is the conjugate of n, (a,zrj = 1 and (at,7) = 1, then
(15.4.7) o' =1 (mod p).

First, if

20 = ¢+ d./5,

then

20 = Qa) = (c+ dJS)p = +d“’5§{*""”\/5 (mod p).

53(7-1) = G) =1 (mod p),

¢® =cand df = d. Hence
(15.4.8) 20 = ¢+ d./5 = 2a (mod p),

But

and, a fortiori,
(15.4.9) 2aP = 2a (mod ).

Since (2, 7) = 1and (@, ) = 1, we may divide by 2c, and obtain (15.4.5).
If also (@, #) = 1, so that (&, p) = 1, then we may divide (15.4.8) by 2a,
and obtain (15.4.7).

Similarly, if ¢ > 2,

(154.10) 20 =¢c—d/5=2a, o'=a (modgq),
(15.4.11) ! = a@ = Na (mod g).
This proves (15.4.6). Also (15.4.10) involves

o =a? =a (mod q),

(15.4.12) a?"'=1 (mod g).
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Finally (15.4.5) and (15.4.12) together contain (15.4.4).

The proof fails if ¢ = 2, but (15.4.4) and (15.4.6) are still true. If
« = e + fw then one of ¢ and f is odd, and therefore Nz = e +ef —f2
is odd. Alsc, to modulus 2,

azgez-f-fzwz Ee+fw2=e+f(w+1)£e+f(l )

=e+fo=a

and

o) =oa =Na=l.
We note in passing that our results give incidentally another proof of Theorem 180.
The nth Fibonacci number is
o —&" -

w— & 5 0

Hpy o

where w is the number (15.4.2) and & = ~1/w is its conjugate.
iIfn = p, then

Pl =1 (mod p), aF =1 {mod p),
up_14/S = wP~ ! — P~ =0 (mod p),

and therefore upy = 0 {mod p). If n = ¢, then

A =No, ' =No (modg),
Ugi1+/3 = 0(mod ¢)
and 1y, = 0 (mod g).

15.5. Lucas’s test for the primality of the Mersenne number My, 3.
We are now in a position to prove a remarkable theorem which is due, in
substance at any rate, to Lucas, and which contains a necessary and suffi-
cient condition for the primality of My,..3. Many “necessary and sufficient
conditions’ contain no more than a transformation of a problem, but this
one gives a practical test which can be applied to otherwise inaccessible
examples.

We define the sequence

r,ra,r,... = 3,7,47,. ..

by
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where w is the number (15.4.2) and @ = —1/w. Then

Fmt1 = "ﬁ; —2.
In the notation of § 10.14,
Ym = vam,

No two r,, have a common factor, since (i) they are all odd, and
(it} rm=0->rpy=-2->r,=2>m+1),

to any odd prime modulus.
THEOREM 259. Ifp is a prime 4n 4 3, and
M=M,=2 1
is the corresponding Mersenne number, then M is prime if
(15.5.1) rp—1 = 0 (mod M),
and otherwise composite.
(1) Suppose M prime. Since
M=816"~1=8—-1=2 (modS5),
we may take @ = w,q = M in (15.4.6). Hence
¥ =Mt = N = ~1 (mod M),

1= (¥ + 1) =0 (mod M),

which is (15.5.1).
(2) Suppose (15.5.1) true. Then

oF + 1= wzpairp_,l =0 (mod M),
(15.5.2) w? = —1 (mod M),
(15.5.3) o? =1 (mod M).
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The same congruences are true, a fortiori, to any moduhis t which
divides M.
Suppose that

M=pp2...q192...

is the expression of M as a product of rational primes, p; being a prime
5n £ 1 (so that p; is the product of two conjugate primes of the field) and
g; a prime 5n % 2. Since M = 2 (mod 5), there is at least one g;.

The congruence

& = 1(mod 1),

or P(x), is true, after (15.5.3), when x = 2°+!  and the smallest positive
solution is, by Theorem 69, a divisor of 27t} These divisors, apart from
20+1 are 2P 2p-1 . and P(x) is false for all of them, by (15.5.2). Hence
27+1 is the smallest solution, and every solution is a multiple of this one.
But '
¥~ =1 (mod p),

wz(*?j+i) = (Nw)z =1 (mOd Q]) :

by (15.4.7) and (15.4.6). Hence p; — 1 and 2(g; + 1) are multiples of 2°+1
and )

pi=2"p 11,
g =2k — 1,

for some &; and k;. The first hypothesis is impossible because the right-hand
side is greater than M’; and the second is impossible unless

ki =1, g =M.

Hence M is prime.
The test in Theorem 259 applies only whenp =3 (mod 4). The sequence

4,14,194,. ..

(constructed by the same rule) gives a test (verbally identical) for any p. In
this case the relevant field is £(,/3). We have selected the test in Theorem
259 because the proof is slightly simpler.
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To take a trivial example, suppose p = 7, M, == 127. The numbers r,,
of Theorem 259, reduced (mod M), are

3, 7, 47, 2207 =48, 2302 =16, 254 =0,

and 127 is prime. If p = 127, for example, we must square 125 residues,
which may contain as many as 39 digits (in the decimal scale). Such com-
putations were, at one time, formidable, but quite practicable, and it was
in this way that Lucas showed Mj27 to be prime. The construction of elec-
tronic digital computers enabled the tests to be applied to A, with larger
p. These computers usually work in the binary scale in which reduction
to modulus 2" — 1 is particularly simple. But their great advantage is, of
course, their speed. Thus M)9937 was tested in about 35 minutes, in 1971,
by Tuckerman on an IBM 360/91.

15.6. General remarks on the arithmetic of quadratic fields. The
construction of an arithmetic in a field which is not simple, like k{./(—5)}
or k(,/10), demands new ideas which (though they are not particularly
difficult) we cannot develop systematically here. We add only some mis-
cellaneous remarks which may be useful to a reader who wishes to study
the subject more seriously.

We state below three properties, A, B, and C, common to the ‘simple’
fields which we have examined. These properties are all consequences of
the Euclidean algorithm, when such an algorithm exists, and it was thus
that we proved them in these fields. They are, however, true in any simple
field, whether the field is Euclidean or not. We shall not prove so much as
this; but a little consideration of the logical relations between them will be
instructive,

A. lfa and B are integers of the field, then there is an integer § with the
properties

(A1) Sla, I8,
and .
(Aii) 1la . 8118 — 818,

Thus 4§ is the highest, or ‘most comprehensive’, common divisor (¢, 8)
of o and B, as we defined it, in k(i), in § 12.8.

B. If a and B are integers of the field, then there is an integer § with the
properties -

®i) | o, 81 :
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and
(B ii) § is a linear combination of « and B; there are integers A and p
such that

A 4+ uf =8,

It is obvious that B implies A; (B i} is the same as (A i), and a § with the
properties (B i) and (B ii) has the properties (A i) and (A ii). The converse,
though true in the quadratic fields in which we are interested now, is less
obvious, and depends upon the special properties of these fields.

There are ‘fields’ in which ‘integers’ possess a highest common divisor in sense A but
not in sense B. Thus the aggregate of all rational functions

P(x,
Re9 = G

of two independent variables, with rational coefficients, is a field in the sense explained at
the end of § 14.1. We may call the polynomials P{x, y) of the field the ‘integers’, regarding
two polynomials as the same when they differ only by a constant factor. Two polynomials
have a greatest common divisor in sense A; thus x and y have the greatest common divisor
1. But there are no polynomials P(x,y)} and Q(x, ) such that

xP(x, y) + yQix,p) = L.

C. Factorization in the field is unique: the field is simple.
It is plain that B implies C; for (B i) and (B ii) imply

Sylay, 38yl|By, ray + upy =dy,
and so

(15.6.1) (ay, By) = dy;

and from this C follows as in § 12.8.
That A implies C is not quite so obviocus, but may be proved as follows.
It is enough to deduce (15.6.1) from A. Let

(O(y, ﬂ}") = A.

dla. 8|8 — Sylay .8y|By,
and so, by (A ii),
dylA.
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Hence
A = dyp,
say. But Alay, AlBy and so
Sple, 8plB;

and hence, again by (A i1), §p|d.

Hence p is a unity, and A = §y.

On the other hand, it is obvious that C implies A; for 8 is the product
of all prime factors common to & and 8. That C implies B is again less
immediate, and depends, like the inference from A to B, on the special
properties of the fields in question.’

15.7. Ideals in a guadratic field. There is another property common
to all simple quadratic fields. To fix our ideas, we consider the field k(),
whose basis (§ 14.3) is [1, 7}

A lattice A is? the aggregate of all points/

ma + nf,

a and B being the points P and Q of § 3.5, and m and n running through
the rational integers. We say that [a, 8] is a basis of A, and write

= [, B);

a lattice will, of course, have many different bases. The lattice is a modulus
in the sense of § 2.9, and has the property

(15.7.1) PEA . c€eA>rmpino el

for any rationa! integral m and n.
Among lattices there is a sub-class of peculiar importance. Suppcse that
A has, in addition to (15.7.1), the property

(15.7.2) y € A iyeA.

! In fact both inferences depend on just those arguments which are required in the elements of the
theory of ideals in & quadratic field.

! See § 3.5. There, however, we reserved the symbol A for the principal lattice.

§ We do not distinguish between a point and the number which is its affix in the Argand diagram.
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Then plainly my € A and niy € A, and so
yeA—puy €A

for every integer u of k(i); all multiples of points of A by integers of k(i)
are also points of A. Such a lattice is called an ideal. If A is an ideal, and
p and o belong to A, then up + vo belongs to A:

(15.7.3) PEN.OEAN—> up+vo €A

for all integral i and v. This property includes, but states much more than,
(15.7.1).
Suppose now that A is an ideal with basis [a, 8], and that

(a, B) = 8.

Then every point of A is a multiple of 8. Also, since § is a linear combination
of  and 8, 8 and all its multiples are points of A. Thus A is the class of
all multiples of 8; and it is plain that, conversely, the class of multiples of
any & is an ideal A. Any ideal is the class of multiples of an integer of the
field, and any such class is an ideal.

If A is the class of multiples of p, we write

= {p}.

In particular the fundamental lattice, formed by all the integers of the field,
is {1}.

The properties of an integer p may be restated as properties of the ideal
{p}. Thus o |p means that {p} is a part of {o'}. We can then say that *{p}
is divisible by {¢'}’, and write

{oH{e}.

Or again we can write

{o}lp, p = 0(mod {o}),

these assertions meaning that the number p belongs to the ideal {¢}. In
this way we can restate the whole of the arithmetic of the field in terms of
ideals, though, in &£(i), we gain nothing substantial by such a restatement,
Anideal being always the class of multiples of an integer, the new arithmetic
is merely a verbal translation of the old one.
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We can, however, define ideals in any quadratic field. We wish to use the
geometrical imagery of the complex plane, and we shall therefore consider
only complex fields.

Suppose that k(/m) is a complex field with basis [1, w).’ We may define
a lattice as we defined it above in £{i), and an ideal as a lattice which has

the property
(15.7.4) YEA—>wy €A,

analogous to (15.7.2). As in k(i), such a lattice has also the property
(15.7.3), and this property might be used as an alternative definition of
an ideal.

Since two numbers o and 8 have not necessarily a ‘greatest common
divisor’ we can no longer prove that an ideal r has necessarily the form
{p}; any {p} is an ideal, but the converse is not generally true. But the
definitions above, which were logically independent of this reduction, are
still available; we can define

sir
as meaning that every number of r belongs to s, and
p =0 (mod s)

as meaning that o belongs to s. We can thus define words like divisible,
divisor, and prime with reference to ideals, and have the foundations for
an arithmetic which is at any rate as extensive as the ordinary arithmetic of
simple fields, and may perhaps be useful where such ordinary arithmetic
fails. That this hope is justified, and that the notion of an ideal leads to a
complete re-establishment of arithmetic in any field, is shown in system-
atic treatises on the theory of algebraic numbers. The reconstruction is as
effective in real as in complex fields, though not all of our geometrical
language is then appropriate.

An ideal of the special type {p} is called a principal ideal; and the fourth
characteristic property of simple quadratic fields, to which we referred at
the beginning of this section, is

D. Every ideal of a simple field is a principal ideal,

This property may also be stated, when the field is complex, in a simple
geometrical form. In k(¥) an ideal, that is to say a lattice with the property

¥ w = /m when m %1 (mod 4).
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(15.7.2), is square; for it is of the form {p}, and may be regarded as the
figure of lines based on the origin and the points p and ip. More generally
E.If m < 0 and k(/m) is simple, then every ideal of k(\/m) is a lattice
similar in shape to the lattice formed by all the integers of the field.
It is instructive to verify that this is not true in ¥{./(—5)}. The lattice

ma+nf=m.3+n{~ 14+ /(—5}
is an ideal, for w = ./(—~5) and

we =u+38, wf=-2a-—§

51 N5+

-3 0 3 6

~of541

Fio. 7.
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But, as is shown by Fig. 7 (and may, of course, be verified analytically),
the lattice is not similar to the lattice of all integers of the field.

15.8. Other fields. We conclude this chapter with a few remarks about
some non-guadratic fields of particularly interesting types. We leave the
verification of most of our assertions to the reader.

(i) The field k(,/2 + i). The number

O =2+i
satisfies
94— 20% 4.9=0,

and the number defines a field which we denote by k(,/2+i). The numbers
of the field are

(15.8.1) Em=r45i+ /24 ui /2,
where 7, s, ¢, u are rational. The integers of the field are
(15.8.2) E=a+bi+cy2+di /2,

where a and b are integers and ¢ and 4 are either both integers or both
halves of odd integers.

The conjugates of & are the numbers &, &7, &3, formed by changing the
sign of either or both of i and /2 in (15.8.1) or (15.8.2), and the norm N§
of & is defined by

NE& = E& 1583,

Divisibility, and so forth, are defined as in the fields already considered.
There is a Euclidean algorithm, and factorization is unique.
(ii) The field k(/2 + \/3). The number

O = 2+ 3,
satisfies the equation
94— 1002+ 1=0,

¥ Theorem 215 stands in the field as stated in §12.8. The proof demands some calculation.
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The numbers of the field are

§ =1+ 52+ 03 + u /6,
and the integers are the numbers

E=a+ b2+ c/3+d/6,

where g and ¢ are integers and b and 4 are, either both integers or both halves
of odd integers. There is again a Euclidean algorithm, and factorization is
unique.

These fields are simple examples of ‘biquadratic’ fields.

(iii) The field k(e*™"). The number e$™* satisfies the equation

#5 -1

T =0t 33 +9% 4+ 24+ 1=0.

The field is, after k(i) and k{p), the simplest ‘cyclotomic’ field.T
The numbers of the field are

£ =r+s0+ 9%+ ud?,

and the integers are the numbers in which », s, ¢, v are integral. The
conjugates of £ are the numbers &1, &;, £, obtained by changing # into
#2,93, 94, and its norm is

NE = §&15283.

There is a Euclidean algorithm, and factorization is unique.

The number of unities in k(i) and k(p) is finite. In k(e5™") the number
15 infinite. Thus :

(1+3) | +82+8>+0%

and # + 9% + 93 + 94 = —1 so that | 4+ ¢ and all its powers are unities.

It is plainly this field which we must consider if we wish to prove
‘Fermat’s last theorem’, when n = 5, by the method of § 13.4. The
proof follows the same lines, but there are various complications of
detail.

! The field k(3) with @ a primitive ath root of unity, is called cyclotomic because # and its powers
are the complex coordinates of the vertices of a regular n-agon inscribed in the unit circle.
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The field defined by a primitive nth root of unity is simple, in the sense
of § 14.7, when'

n==3,4,58.

NOTES

§ 15.5. Lucas stated two tests for the primality of Mp, but his statements of his theorems
vary, and he never published any complete proof of either. The argument in the text is due
to Western, Journal London Math. Soc. 7 (1932), 130-7. The second theorem, not proved
in the text, is that referred to in the penultimate paragraph of the section. Westemn proves
this theorem by using the field k(,/3). Other proofs, independent of the theory of algebraic
- pumbers, have been given by D. H. Lehmer, Annals of Math. (2) 31 (1930), 419-48, and
Journal London Math. Soc. 10 {1935}, 162-5.

Professor Newman drew our attention to the following result, which can be proved by a
simple extension of the argument of this section.

Leth < 2™ be odd, M = 2™h — | = %2 {mod 5) and

Ri=o o R =R —20 2 ).
Then a necessary and sufficient condition for M to be prime is that
Rpy1 2= 0 {mod M).

This result was stated by Lucas [Amer Journal of Math. 1 (1878), 310}, who gives a
stmilar (but apparently erroneous) test for numbers of the form N = A2™ - 1. The primality
of the latter can, however, be determined by the test of Theorem 102, which also requires
about m squarings and reductions (mod N'}. The two tests would provide a practicable means
of seeking large prime pairs {p,p + 2).

§§ 15.6-7. These sections have been much improved as a result of criticisms from
Mr. Ingham, who read an earlier version. The remark about polynomials in § 15.6 is due to
Bochner, Journal London Math. Soc. 9 (1934), 4.

§ 15.8. There is a proof that k(eg’“) is Euclidean in 1.andau, ¥orlesungen, iii. 228-31,

The list of fields k{(*™*/™) with the unique factorization property has been completely
determined by Masley and Montgomery {J. Reine Angew. Math, 286/287 (1976), 248--56).
If m s odd, the values m and 2m lead to the same field, Bearing this in mind there are
exactly 29 distinct fields for m 3> 3, corresponding to

m=3,4,5728,911,12,13,15,16,17,19,20,21,24,25,27,28,
32,33, 35,36,40,44, 45,48, 60, 84,

2 L ;
LIPS LU £ L ‘:}’2-‘ is a number of £(/2 + 0.



XVI

THE ARITHMETICAL FUNCTIONS ¢(n), n(n),
d(n),o(n), r(n)

16.1. The function ¢(z). In this and the next two chapters we shall
study the properties of certain ‘arithmetical functions’ of », that is to say
functions f (n) of the positive integer # defined in a manner which expresses

some arithmetical property of n. _
The function ¢(n) was defined in § 5.5, for n > 1, as the number of
positive integers less than and prime to n. We proved (Theorem 62) that

(16.1.1) ¢(n)=nn(lw§-).

pin

This formula is also an immediate consequence of the general principle
expressed by the theorem which follows.

THEOREM 260. If there are N objects, of which Ny have the property
a,Nghave B,...,Nog havebothaand B, ... ,Nogy havet, B,and y, . . .,
and so on, then the number of the objects which have none of a, 8, y, . ..
is

(16.1.2) NoNg—Ng—-dNopt-—Nagy —+.

Suppose that O is an object which has just £ of the properties @, 5, ... .
Then O contributes 1 to N, If & 2 1, O also contributes 1 to k of N,
Ng,...,t0 5k(k—1) of Nyg, ..., to

k(k — Dk - 2)
1.2.3
of Nugy,. .., and so on. Hence, if £ > 1, it contributes

k{k — 1) ke - Dk -2)
1.2 1.2.3

to the sum (16.1.2). On the other hand, if ¥ = 0, it contributes 1. Hence
(16.1.2) is the number of objects possessing none of the properties.
The number of integers not greater than » and divisible by a4 is

Hl

I—k +o=(1=1F=0
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If a is prime to b, then the number of integers not greater than n, and
divisible by both g and b, is
' n
Ak

and so on. Hence, taking a, 8, y,... to be divisibility by a,b,¢, ..., we
obtain

TueoreM 261. The number of integers, less than or equal to n, and not
divisible by any one of a coprime set of integers a, b, . . ., is

- L E(5]-

If we take a, b, ... to be the different prime factors p,p/,... of n, we
obtain

(16.1.3) ¢(n)mnmz Z_.m...,___,,n(l,__)

pla
which is Theorem 62.

16.2. A further proof of Theorem 63. Consider the set of n rational
fractions

(16.2.1) '
n

A

h < n).

We can express each of these fractions in “irreducible’ form in just one way,
that is,

h
n

L4

IR

where d|n and
(16.2.2) 1€a<gd, (a,d)y=1,

and a and d are uniquely determined by 4 and n. Conversely, every fraction
a/d, for which din and (16.2.2) is satisfied, appears in the set (16.2.1),
though in general not in reduced form. Hence, for any function F(x), we
have

(16.2.3) 3 F( ) DS F( )

1<hSn din 1<a<d
(o)t
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Again, for a particular d, there are (by definition) just ¢(d) values of a
satisfying (16.2.2). Hence, if we put F(x) = 1 in (16.2.3), we have

n=>Y_ ¢(d.

din

16.3. The Mibius function. The Mobius function u(n) is defined as
follows:

(i) w)=1;
(i) w(n) = 0 if » has a squared factor,
(i) u(pipz.. pr) = (—=1)* if all the primes pi, pa, . . ., pi are different.
Thus u(2) = ~1, u(4) =0, u(6) = 1.
TuEOREM 262, p(n) is multiplicative.

This follows immediately from the definition of w.(n).
From (16.1.3) and the definition of x(n) we obtain

g =nL UP =V sud =Y du(§)= ¥ du@d?
din din din dd'=n

Next, we prove

TxeoREM 263:
dud=1 (a=1, Y ud=0 (x> 1)
din dn

Tueorem 264. [fn > 1, and k is the number of different prime factors
of n, then

2 lu@) =2~

din

Infact,ifk > 1 and n = p{' ... p{*, we have

D u@ =1+ @)+ Y ulpp)+---
din i 7

i 6
=1-k+(§)-(})+--=a-nt=q

¥ See§5.5.
A sum extended over alf pairs 4, d” for which dd’ = a.
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while, if n = 1, w(n) = 1. This proves Theorem 263. The proof of Theo-
rem 264 is similar, There is an alternative proof of Theorem 263 depending
on an important general theorem.

THeOREM 265. If f(n) is a multiplicative function of n, then so is

g =) fd).

dln

If (n,n') = 1,d|n, and d’|n’, then (d,d’) = 1 and ¢ = dd’ runs through
all divisors of nn’. Hence

gn) =) fl©)= Y f(dd)

clan’ dlnd'|n!

=Y fd) Y _fd) = glmen).

din da'n

To deduce Theorem 263 we write /' (n) = w(n), so that

: glm =) u(d).

din
Theng(1) =1, and
g™ =1+u(p)=0
when m > 1. Hence, when n = p{' .. . pf* > 1,
g(n) = g(py")g(p3?)...=0.

16.4. The Mébius inversion formula. In what follows we shall make
frequent use of a general ‘inversion’ formula first proved by Mébius.

THEOREM 266. If

gm =) f(),

din

then

=S (™) o) = ny
ro ;;u( ~)e@ %u(d)g( %)
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In fact

deln w@g(5) = ud Y flor = ¥ n@fie)

din c|5 cdin
=) A} uld).
e 4|}

The inner sum here is 1 if n/c = 1, i.e. if ¢ = n, and 0 otherwise, by
Theorem 263, so that the repeated sum reduces to f(n).
Theorem 266 has a converse expressed by

TusoreM 267

foy =3 u(5)e@ »gm= Zf(d)

dln

The proof is similar to that of Theorem 266. We have

Zf(d)--Zf() >3 u()e©

din dncz

—Zn(d)g(c) > ey u(=;) =gm.

cln d| #

Ifweputg(n) = ninTheorem 267, and use (16.3.1), sothat f(n) = ¢ (n),
we obtain Theorem 63.

As an example of the use of Theorem 266, we give another proof of
Theorem 110.

We suppose that d [ p — 1 and ¢|d, and that x (c) is the number of roots
of the congruence x? = 1 (mod p) which belong to ¢. Then (since the
congruence has 4 roots in all)

> xo)=
cid
from which, by Theorem 266, it follows that

x(d) = Eu(c)— = ¢(d).
cld
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16.5. Furtherinversion formulae. There are other inversion formulae
involving w(n), of a rather different type.

Tueorem 268. If

[x]

o =37 (2
n=}

for all positive x,! then

{x]

F(x) = Zu(n)(}' (i-) .
- n=1

For

{x/H}

Zu(n)G() Zju(n)ZjF( =)

= F (r) > umit= F(x),

1 k<[x} nik

by Theorem 263. There is a converse, viz.

THEOREM 269

fx] {x]

Foy =3 um6(Z) > 6w =) F(3).

n=1 n=]

This may be proved similariy.
Two further inversion formulae are contained in

TrEoREM 270:

g =Y flmx) =f(x) =Y uimg(m).
ma=l

n=1

1 An empty sumn is as usual to be interpreted as 0. Thus G{x) = 0if0 <x < L.
Y $fmn = k then nlk, and & runs through the numbers 1,2,. .., [x].
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The reader should have no difficulty in constructing a proof with the help
of Theorem 263; but some care is required about convergence. A sufficient
condition is that

S ifmayl =D dE) 1f ()]
k

mn

should be convergent. Here d(k) is the number of divisors of k1

16.6. Evaluation of Ramanujan’s sum. Ramanujan’s sum c,(m) was
defined in § 5.6 by

hm
(16.6.1) Cnlm) = Y e(-;;«).

15hn
{hm)=1

We can now express ¢,(m) as a sum extended over the common divisors
of m and n.

Turorem 271:

Cn(m) = Z u(g)d.

dimd|n
If we write

gmy= Y F(f«’;) fmy= ) F(;—')

1<h<n 1<hgn
(A, M=

(16.2.3) becomes

gy =Y fid).

din

By Theorem 266, we have the inverse formula

(16.6.2) fmy =3 "pu (g)g(d),

din

! Sec§16.7.
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that is

(16.6.3) 3 F( ) Zp,(w) > F(3)

1€hgn Igasd
(hm)=1

We now take F(x) = e(mx). In this event,
f(n) = ca(m)
by (16.6.1), while
hm
g(") - Z € (";'—);
1ghgn

which is n or 0 according as nim or n  m. Hence (16.6.2) becomes

Cp (M) = R u(d)

Another simple expression for ¢,(m) is given by
THEOREM 272. If (n,m) = a and n = aN, then

_ u)e®)
==
By Theorem 271,
n a
en(m) =Y du (%)= D dute) = 3 Zu(o).
dla edm=qa cla

Now w(Nc) = u(N)u{c) or 0 according as (¥, c) = 1 or not. Hence

cn (m) = ap (N) Z g—(“)**au(N)( Z$+Z;%_)’

(e, N)m}

where these sums run over those different p which divide a but do not
divide N. Hence

cp (M) = apu (N) r[ (1 — ;1;)

pia,ptN
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But, by Theorem 62,

s =% I (1=5)=<I1 (1-;)

pin,piN pla,ptN

and Theorem 272 follows at once.
When m = 1, we have ¢, (1) = u(n), thatis

h
(16.6.4) wuin) = Z e(;).

1<hSn
thay=1

16.7. The functions d(») and (). The function d(n) is the number
of divisors of n, including 1 and n, while oz (#n) is the sum of the kth powers
of the divisors of n. Thus

oy =Y d*, dm=) 1,
din din

and d(n) = og(n). We write o (n) for o1(n), the sum of the divisors of n.
If

— 31 a2 ar
n=p Py ---Pr>

then the divisors of n are the numbers

pp ... ol
where
0<bhi <a, 0<b<ay, , 0K <y
There are

(@14 Daz+ 1. (a; 4+ 1)
of these numbers. Hence .

Turorem 273:

i
dn) = [+ .

i=1
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More generally, if £ > @,

ox(n) = Z Z ZP?‘kPg’k- P

by1=0 by =0 =0
!
ik
=TT (1+2k +5# +- - +{%).

Hence

THEOREM 274:

H {a;+ 1)k
: -1
oy(n) = n (p’—-g—wi-—w)

=1 i
In particular,
THEOREM 275!

i a+1
a(n) = n (pf_,...._l_)

i=1 pi 1

16.8. Perfect numbers. 4 perfect number is a number »# such that
o(n) == 2n. In other words a number is perfect if it is the sum of its
divisors other than itself, Since 1 + 2 + 3 = 6, and

14+2+447+ 14 =28,

6 and 28 are perfect numbers.
The only general class of perfect numbers known occurs in Euclid.

TueoREM 276. If27H! — 1 is prime, then 2° (2" — 1) is perfect.
Write 2! — 1 = p, N p. Then, by Theorem 275

so that N is perfect.

Theorem 276 shows that to every Mersenne prime there corresponds a
perfect number. On the other hand, if N = 2"p is perfect, we have

oN)= Q"™ — I)(p+ 1) =2"p
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and so
pm2ﬁ+i . 1

Hence there is a Mersenne prime corresponding to any perfect number of
the form 2"p. But we can prove more than this.

Taeorem 277. Any even perfect number is a Euclid number, that is to
say of the form 2% (2"} — 1), where 2"t! — 1 s prime.

We can write any such number in the form N = 2"b, where n > ( and
b 1s odd. By Theorem 275, o (n) is multiplicative, and therefore

a(N) = (Mo (b)) = 2" = Do (d).
Since N is perfect,
o(N) = 2N = 2**1p:

and so

b 2n+1 o}
o (b) = an+l

The fraction on the right-hand side is in its lowest terms, and therefore

b= 2" — De, o) =2"¢,

where c is an integer.
If c > 1, b has at least the divisors b, ¢, ], so that

oYz b+ec+1=2"ct1>2"c=g@),
a contradiction, Hence ¢ = |, N = 2"(2"*! — 1), and
a(zn-i-i = 2n+1“
But, if 2**+!—1 is not prime, it has divisors other than itself and 1, and
a(2n+l - 1) - 2!’!"}“1'

Hence 27! — | is prime, and the theorem is proved.

The Euclid numbers corresponding to the Mersenne primes are the only
perfect numbers known. It seems probable that there are no odd perfect
numbers, but this has not been proved. The most that is known in this
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direction is that any odd perfect number must be greater than 1029, that it
must have at least 8 different prime factors and that its largest prime factor
must be greater than 100110."

16.9. The function r(n). We define »(n) as the number of representa-
tions of » in the form

nmAz-f-Bz,

where 4 and B are rational integers. We count representations as distinct
even when they differ only ‘trivially’, i.e. in respect of the sign or order of
A and B. Thus

0=0°+0% r(0)=1;
= (ED24+ 02 =0%+ &%, rl) =4
5= (22 + @ED? = (12 + (2%, r(5) = 8.

We know already (§ 15.1) that »(n) = 8 when » is a prime 4m + 1; the
representation is unique apart from its eight trivial variations. On the other
hand, () = 0 when » is of the form 4m + 3.

We define x (n), for n > 0, by

XM =0 QIm, xm=(=nI"D Q¢}n
Thus x (n) assumes the values 1,0, —1,0,1,...forn = 1,2,3,.... Since
%(rm" S | o %(n - 1) - -;—(n" —1) = %(n - D(n — 1) = 0 (mod 2)
When 7 and »’ are odd, x (n) satisfies
x(nn'y = x(mxn)

for all n and »'. In particular x (n) is multiplicative in the sense of § 5.5.
1t is plain that, if we write

(16.9.1) 3(m =Y x(d),
dijn

then

(16.9.2) d(n) == di(n) — d3(n),

¥ See end of chapter notes.
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where d; (n) and d3(n) are the numbers of divisors of n of the forms 4m + 1
and 4m + 3 respectively.
Suppose now that

(169.3) n=22N = 2w =2[[r e’

where p and g are primes 4m + 1 and 4m + 3 respectively. If there are no
factors g, so that I'g® is ‘empty’, then we define v as 1. Plainly

8(n) = 8(N).

The divisors of N are the terms in the product

(16.9.4) [Ta+p+--+O[[0+g+ -+
A divisor is 4m + | if it contains an even number of factors ¢, and 4m + 3

in the contrary case. Hence 8(N') is obtained by writing 1 for p and —1 for
g in (16.9.4); and

(16.9.5) sy =[]+ D]] ( +(b )

If any s is odd, i.e. if v is not a square, then
d(n) = 8(N) =0;
while
5m) =8y =[]+ 1D =dw

if v is a square.
Our object is to prove

TraeoreMm 278. Ifn 2 1, then
r(n) = 48(n).

We have therefore to show that r(n) is 4d(u) when v is a square, and
zero otherwise.
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16.10. Proof of the formula for r(n). We write (16.9.3) in the form

n= {1+ -0 [Jl@+bda-t)Y []e,
where @ and b are positive and unequal and
D~ az 4 bz .

This expression of p is unique (after § 15.1) except for the order of a and b.
The factors

1+i, axbi, g

are primes of k(7).
If

n=A> + B* = (4 + Bi)(4 — Bi),
then )
A+Bi=i'(1+ D" -2 [+ bt @— b2 [ 4,
A—Bi =i+ - ][] i@~ b) @+ b} ] 4%
where
t=0,1,2,0r3, ar+ar=a, ri+rn=r, Ssi+s=s

Plainly 51 == 57, so that every s is even, and v is a square. Unless this is so,
there is no representation.
We suppose then that

v=[ls =1

is a square. There is no choice in the division of the factors g between
A + Bi and A — Bi. There are

da+DJJer+D

choices in the division of the other factors. But

i

_............-.-_:.......I

1+
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is a unity, so that a change in o) and a2 produces no variation in 4 and B
beyond that produced by variation of ¢. We are thus left with

4 T+ 1 =4dw)

possibly effective choices, i.e. choices which may produce variation in 4
and B.

The trivial variations in a representation n = A2 + B2 correspond (i) to
multiplication of A + Bi by a unity and (ii) to exchange of A + Bi with its
conjugate. Thus

1A+ Bi)=A+Bi, i(d+Bi) = —B+A4i
iY(A + Bi) = —A—Bi, i*(A4+ Bi) =B — 4i,

and 4 — Bi,—B — Ai,~A + Bi, B + Ai are the conjugates of these four
numbers. Any change in ¢ varies the representation. Any change in the r
and ry also varies the representation, and in a manner not accozmted for by
any change in ¢; for

f+ (1 - D% [ e+ biy1 @ - bi)?)
=P+ - H% []{@+bd1(a - biy2)

is impossible, after Theorem 215, unless ry = #| and r; = r4t There are
therefore 4d () different sets of values of 4 and B, or of representations
of n; and this proves Theorem 278.

NOTES

§ 16.1. The argument follows P6lya and Szeg6o, Nos. 21, 25. Theorem 260 is widely
known as the Inclusion—Exclusion Theorem.

§§ 16.3~5, The function 12(n) occurs implicitly in the work of Euler as early as 1748,
but Mdbius, in 1832, was the first to investigate its properties systematically, See Landau,
Handbuch, 567-87 and 901,

§ 16.6. Ramanujan, Collected papers, 180. Our method of proof of Theorem 271 was
suggested by Professor van der Pol. Theorem 272 is due to Holder, Prace Mat. Fiz. 43
(1936), 1323, See also Zuckerman, American Math. Monthly, 59(1952), 230 and Anderson
and Apostol, Duke Math. Journ. 20 (1953), 211-16.

§§ 16.7-8. There is a very full account of the history of the theorems of these sections
in Dickson, History, i, chs. i—ii. References to the theorems referred to at the end of § 16.8
are given by Kishore (Math. Comp. 31 (1977), 274-9).

t Change of r; into 7, and ry into 71 (together with corresponding changes in ¢, &), a2) changes
A + Bi into its conjugate.
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Euler showed that any odd perfect number must take the form p"q%e’ ... g% with primes
Pqls..qr, and with @ = p = 1 (mod 4). It is now (2007} known that an odd perfect
number would have 1o exceed 103% (Brent, Cohen, and te Riele, Math. Comp. 57 (1991),
857-68). Moreover, Nielsen has announced (http://arxiv.org/pdf/math/0602485} that an odd
perfect number must have at least 9 distinct prime factors, It is known that the largest prime
factor must exceed 107 (Jenkins, Math. Comp. 72 (2003), no. 243, 15491554 (electronic)).
Indeed Goto and Ohno have announced that this bound can be increased to 108, Neilsen
(Integers 3 (2003), A 14, (clectronic)) has also shown that an odd perfect number » with k&

distinct prime factors must satisfy n < pall

§ 16.9. Theorem 278 was first proved by Jacobi by means of the theory of elliptic
functions. It is, however, equivalent to one stated by Gauss, D.4., § 182; and there had been
many incomplete proofs or statements published before. See Dickson, History, i, ch. vi,
and Bachmann, Niedere Zahlentheorie, i, ch. vii,
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GENERATING FUNCTIONS OF ARITHMETICAL
FUNCTIONS

17.1. The generation of arithmetical functions by means of Dirichlet
series. A Dirichlet series is a series of the form
2 a
(17.1.1) Fi)=)Y —.
L) ,,s
The variable s may be real or complex, but here we shall be concerned
with real values only. F(s), the sum of the series, is called the generating
Sunction of ap,.

The theory of Dirichlet series, when studied seriously for its own sake,
involves many delicate questions of convergence. These are mostly irrel-
evant here, since we are concerned primarily with the formal side of the
theory; and most of our resuits could be proved (as we explain later in
§ 17.6) without the use of any theorem of analysis or even the notion of
the sum of an infinite series. There are, however, some theorems which
must be considered as theorems of analysis; and, even when this is not so,
the reader will probably find it easier to think of the series which occur as
sums in the ordinary analytical sense.

We shall use the four theorems which follow. These are special cases of
more general theorems which, when they occur in their proper places in
the general theory, can be proved better by different methods. We confine
ourselves here to what is essential for our immediate purpose.

(DI a,n~ is absolutely convergent for a given s, then it is absolutely
convergent for all greater 5. This is obvious because

Jann =] < Jawn~]

when n 2 1 and 57 > s51. ‘
(2) If Y apn™* is absolutely convergent for s > so then the equation
(17.1.1) may be differentiated term by term, so that

aplogn
n®

(17.1.2) Fls)=->"
for s > sp. To prove this, suppose that

So <sp+d8=51 <5< 53
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Thenlogn < X (é)nil"s, where K(38) depends only on 8, and

a, logn
n&'

Xy
pot3é

< K@©)

for all s of the interval (54, 57). Since

2

is convergent, the series on the right of (17.1.2) is uniformly convergent in
(51, 52), and the differentiation is justifiable,
(3) If

2.4}
"-99+{;6

F(s)=) awn™ =0

for s > s, then a; = 0 for all #. To prove this, suppose that a,, is the first
non-zero coefficient. Then

—¥
(17.1.3) 0 = F(s) = apm™® [1 , Omi (m + 1)
Um m

+

Am+2 (m + 2
- m

)_ Ao ] = gmm {1 + G(5)},

say, If so < 51 < s, then
(m +k)“‘ < (m + i)“{‘"s‘) m4k\ "N
m h m m

1m0 2 amakl
G € e | ——e St Ll
166 !am!( m ) " kz_l(m+k)ﬂ

and

which tends to 0 when s — o0. Hence
11+ Gl > 3

for sufficiently large s; and (17.1.3) implies a,, = 0, a contradiction.
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1t follows that if

Eann"“ = Z Byt

fors > 51, thena, = B, for all n. We refer to this theorem as the ‘uniqueness
theorem’.

(4) Two absolutely convergent Dirichlet series may be multiplied in a
manner explained in § 17.4.

17.2. The zeta function. The simplest infinite Dirichlet series is

. © |
(17.2.1) £(s) = Z;—;.

n=l

It is convergent for s > 1, and its sum ¢ (s) is called the Riemann zeta
function. In particular’

o 1 b 4
(17.2.2) Q=) ==~
ot n? 6

If we differentiate (17.2.1) term by term with respect to s, we obtain

TrrorREM 279:

, o~ 1
;‘(s)mmz (ii" (s> 1),

The zeta function is fundamental in the theory of prime numbers. Its
importance depends on a remarkable identity discovered by Euler, which
expresses the function as a product extended over prime numbers only.

Taeorem 280: If s > | then

O

w— "
» P

¥ £(2n) is a rational muitipie of 72" for all positive integral . Thus {(4) == ;lurr“, and generally

22n--1
B,p; ’rzu

£{2n) = T

4

where 8, is Bernoulli’s number,
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Since p > 2, we have

(17.2.3) e } ~§-pms +p—2.y 4.

1 —p—*

for s > 1 (indeed for s > 0). If we take p = 2, 3,..., P, and multiply the
series together, the general term resulting is of the type

2”&233—033 P—OPS s nms

where
n=2%93% P% (g320a3>0,...,ap 20).

A number n will occur if and only if it has no prime factors greater than P,
and then, by Theorem 2, once only. Hence

1 -
n}__p—st” s’

ps<rP P)

v

the summation on the right-hand side extending over numbers formed from
the primes up to P.
These numbers include ail numbers up to P, so that

o0 o0
0< 3wt - 3wt < S,
n==} P) Pl
and the last sum tends to 0 when P -+ o0. Hence

. ‘
- . - . I
2= fim 3 et = Jm T

ne=1} {P) psP

the result of Theorem 280.
Theorem 280 may be regarded as an analytical expression of the
fundamental theorem of arithmetic.

17.3. The behaviour of {(s) when s — 1. We shall require later to
know how ¢ (s) and ¢’(s) behave when s tends to 1 through values greater
than 1.
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We can write £ (s) in the form

00 n+1

o0 o0
(17.3.1) £(s) = Zn_“ = /x"dx e Z f (n™* = xF)dx.
1 1 _

1

Here

since s > 1. Also
x .
) —8 | s
<™ —x =/st dt < —
n
n

ifn < x < nt+i, and so

nél
0 < f nf =x"Ndx < 12;
n

and the last term in (1?:3. 1) is positive and numerically less thans > n~2,
Hence

THEDREM 281:

£(s) = —— + 0(1).
s—1

Also
log £ (s) = log P + log{l + O(s — 1)},
and so
THEOREM 282:

log £ (s) = log + O(s — 1).

8§ -1
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We may also argue with

—¢'(s) = Z n"“logn
1

00 n+1

oc
:_wfx" iogxdx-{-z [ (nS log n—x"* log x) dx
i 1 2

much as with ¢ (s), and deduce

TueoreM 283:

g =~

o172 + O(1).

In particular,

i
s(s) ~ :

s—1

This may also be proved by observing that, if s > 1,

Q=2 =1 4 2° 437 4+ =227 447+ 67 +.-)
= PTS 2T 3T e

and that the last series converges to log 2 for s = 1. Hence'!

= DEE) = (1 =29 ()" > log 2—

- 21-s log2 =1

17.4. Multiplication of Dirichlet series. Suppose that we are given a
finite set of Dirichlet senes

(174.1) Z:a,,n”"“, Z: Ban™%, Z yalt S, ...,
¥ We assume here that
. in dn
md =2

whenever the senies on the right is convergent, a theorem not included in those of § 17.1. We do not
prove this theorem because we require it only for an alternative proof.
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and that we multiply them together in the sense of forming all possible
products with one factor selected from each series. The general term
resulting is

g

Wt S B i vt L = ayf Ve .. 0,

where n = uvw.... If now we add together all terms for which n has a given
value, we obtain a single term x,n™° where

(1742) Xn= ), GubvVe....

uvw,, s

The series Y xnn™°, with x, defined by (17.4.2), is called the formal
product of the series (17.4.1).

The simplest case is that in which there are only two series (17.4.1),
Y au~* and 3 By, If (changing our notation a little) we denote their
formal product by Y y,n™*, then

(17.4.3) Vo= 9 ouby= Y aPna = )_ naba,

uy=n din din

a sum of a type which occurred frequently in Ch. XVI. And if the two given
series are absolutely convergent, and their sums are F(s) and G(s), then‘

F()G(s) = Za,‘u Zﬁvv § Zauﬁv(w)”‘

= Zn Z ay Py = Zy,,n s

uv=n

since we may multiply two absolutely convergent series and arrange the
terms of the product in any order that we please.

THEOREM 284. [f the series
F(s)y=) aw™, G@)=)Y B~
are absolutely convergent, then
F(s)G(s) = D yun ™,
where y . is defined by (17.4.3).
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Conversely, if
H(s) =) _ 8" = F(s)G(s)

then it follows from the uniqueness theorem of § 17.1 that §, = y,.
Our definition of the formal product may be extended, with proper
precautions, to an infinite set of series. It is convenient to suppose that

o) = =y = ... = L.
Then the term

@y Bvyw. ..

in (17.4.2) contains only a finite number of factors which are not 1, and we
may define x, by (17.4.2) whenever the series is absolutely convergent.t

The most important case is that in which £(1) = 1, f(n) is multiplicative,
and the series (17.4.1) are

(1744 1+ PR+ PP E + PP E

for p =2, 3, 5,...; so that, for example, a, is f(2%) when u = 2% and 0
otherwise. Then, after Theorem 2, every n# occurs just once as a product
uvw... with a non-zero coefficient, and

Xn =L (PTY (P ... =f(n)
a)_az

when n = p"p,°.... It will be observed that the series (17.4.2) reduces to
a single term, so that no question of convergence arises.
Hence '

Tueorem 285, If f(1)= 1 and f(n) is multiplicative, then

2_fmn

is the formal product of the series (17.4.4).

In particular, 3" #~* is the formal product of the series
L4+p™ 4p % ...,

T We must assume absolute convergence because we havt.; not specified the order in which the terms
are to be taken.
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Theorem 280 says in some ways more than this, namely that (s}, the
sum of the series ) _n~* when s > 1, is equal to the product of the sums
of the series 1 +p~* + p~% . ... The proof can be generalized to cover the
more general case considered here. '

Tueorem 286. If f (n) satisfies the conditions of Theorem 285, and

(17.4.5) PO

is convergent, then

F&) =Y fon™ =[1{1+fp™ +rDp™ > +--}.
‘ P

‘We write
Fo&) =1+f(pp~  +f (PP~ * +---;

the absolute convergence of the series is a corollary of the convergence of
(17.4.5). Hence, arguing as in § 17.2, and using the multiplicative property
of f(n), we obtain

[1F6 =) feyn™
p<P 72

Since

PIOLRED WO B IO
a=1

i P+

the result follows as in § 17.2.

17.5. The generating functions of some special arithmetical func-
tions. The generating functions of most of the arithmetical functions which
we have considered are simple combinations of zeta functions. In this
section we work out some of the most important examples.

TaEoREM 287:
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This follows at once from Theorems 280, 262, and 286, since

1 _ - s
o= [Ta—2= =[] {1+u@p~+u@p > +...} =3 pnen~.
B n=1

THEOREM 288:

s—1) g
0 _gns s > 2).

By Theorem 287, Theorem 284, and (16.3.1)

(=1 g gl AT 2XA0)
5 “ml;§?“§;§"“(z) 2%
THeoREM 289:
o0
d
cz<)-Z-5—'2 (s> 1)
n=1
THEOREM 290:
22 a(n)
(@~ =3 —= (s>2).
n=1

These are special cases of the theorem

THEOREM 291

o

L (s —k) =

F B3

ox{n)

(s>1,s>k+1).

In fact
Nl &t 201 £ > oix(n)
(@86 -R=3 =3 =3 =3 d=3 —=

=] ra=] n=1 din n=

by Theorem 284,
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THEOREM 292:
Ts1(m) o= Calm)
= i
m*=12(s) ; n® (¢>1
By Theorem 271,
Cn(m) == Z ( ) Z u(dd;
dim,din d|m,dd’=n
and so

o~ Calm) =, p(d)d
Z n '—Z Z d'sds

n=1 n=1 dim,dd' =n
u(d’) I
Z Z ds— (S) Z as—t’
d|m
Finally
Zdﬁ-—&‘ = mwaZdS—l — mi_"a_g_l(m).
d|m dim
In particular,

THEOREM 293:
Zc,,(m) 6 a(m)
- n? 72 m

17.6. The analytical interpretation of the Mdbius formula. Suppose

that
gln) =Y f(d),

dn

and that ¥ (s) and G (s) are the generating functions of f(n) and g(n). Then,
if the series are absolutely convergent, we have

F(s)¢(s) = Zf @ Z = Z Y f@y= Z g _ G@);

n—l din
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and therefore .

G() g o= u(n) o h(n)
F o — —
=75 § - Z_j >

where

hmy = Y g@u().
din

It then follows from the uniqueness theorem of § 17.1 (3) that
h(n) = f(n),

which is the inversion formula of M6bius (Theorem 266). This formula then
appears as an arithmetical expression of the equivalence of the equations
G(s)
G(s) = {(OF (), F@)=——.
£(s)

We cannot regard this argument, as it stands, as a proof of the Mobius for-
mula, since it depends upon the convergence of the series for F(s). This
hypothesis involves a limitation on the order of magnitude of f(n), and
it is obvious that such limitations are irrelevant. The ‘real’ proof of the
Mobius formula is that given in § 16.4.

We may, however, take this opportunity of expanding some remarks which we made in
§ 17.1. We could construct a formal theory of Dirichlet serfes in which *analysis’ played no
part. This theory would include ail identities of the “Mdbius’ type, but the notions of the
sum of an infinite series, or the value of an infinite product, would never occur. We shall
not atfempt 1o construct such a theory in detail, but it is interesting to consider how it would
begin.

We denote the formal series ) apn™* by 4, and write

A== Ea,n“’.

In particular we write
[=1.1740.27540.35 4.,
Z=1.1541.2754+1.37%4+..,
M=pDI 4+ p22 5 +pu®3 ™+
By
A=8

we mean that g, = b, for all values of n,
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The equation
AX B=C

means that C is the formal product of 4 and B, in the sense of § 17.4. The definition may
be extended, as in § 17.4, to the product of any finite number of series, or, with proper
precautions, of an infinity. It is plain from the definition that

AXB=BxA, AxBxC=UxB)xC=A4Ax{BxC},
and so on and that
AxI=A
The equation
AxXZ=RB

means that

by = Zad,

dln

Let us suppose that there is a series L such that

ZxL=1,
Then
A=dAxImAx(ZxL)=AxZ)xL=8xL,
ie.
an = Y balnja.
din

The Mé&bius formula asserts that Iy = ﬁ(ﬂ), or that L —= M, or that
(17.6.1) ZxM=I

and this means that

> u@

din

is | when n =} and @ when n > | (Theorem 263).
We may prove this as in § 163, or we may continue as follows. We write

Ppai-p“’, Cp = i+p“‘+p_2‘+‘..’

where p is a prime (so that Py, for example, is the series 4 in whicha) = |, ap = — 1, and
the remaining coefficients are 0); and calculate the coefficient of n™° in the formal product
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of Pp and Qp. This coefficientis 1 if n =1, 1 — 1 =0if n is a positive power of p,and 0 in
all other cases; so that

pr p«"*‘-—f

for every p.
The series Pp, Op, and I are of the special type considered in § 17.4; and

ZﬂnQp, M:I-IPP,
ZxM =[] G x[]Pe

while
n(QP x Pp) = nI:I.

But the coefficient of n= in
sz xOyxOsgx.. . )xPrxPyxPsx..)
{a product of two series of the general type) is the same as in
G xPrxOyxPyxQsxPsx...
orin
(2 x P2y x (O3 x P3) x {Qs x P5) x ...

{which are each products of an infinity of series of the special type); in each case the x, of
§ 17.4 contains only a finite number of terms. Hence

ZxM =[G x[[P=]](@ xP)=[]I=L

it is plain that this proof of (17.6.1) is, at bottom, merely 2 translation into a different
language of that of § 16.3; and that, in a simple case like this, we gain nothing by the
translation. More complicated forrnulae become much easier to grasp and prove when
stated in the language of infinite series and products, and it is important to realize that we
can use it without analytical assumptions. Jn what follows, however, we continue to use the
language of ordinary analysis.

17.7. The function A(n). The function A(n), which is particularly
important in the analytical theory of primes, is defined by

An)y=logp (n=p™),
A(n)=0 (n # p™),

i.e. as being log p when 7 is a prime p or one of its powers, and 0 otherwise.
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From Theorem 280, we have

: i
log;'(s)leog(l" _3).
7 P

Differentiating with respect to s, and observing that

d 1 logp
5 BT, = o1
we obtain
logp
17.7.1
(b o “L -

The differentiation is legitimate because the derived series is uniformly
convergent fors > 1 4+ 6 > 1.} _
We may write (17.7.1) in the form

&) _
5 ngmgp

and the double series Y_ 3 p~ ™ log p is absolutely convergent whens > 1.
Hence it may be written as

Y p™logp=3 A(mn~*,
pm :

by the definition of A(n).

THEOREM 294:

(S)) =Y A~ (s> D).

Since

; od logn
~@ =3 —,

n=:1

¥ The ath prime py, is greater than #, and the series may be compared with 3 n™ log a.
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by Theorem 279, it follows that

°°A(n)_  Q— lognmm pw(nm <= logn
Znswmznsuznszns’

n=1 n= n=I n=1
and
OO o0 o0 o0
logn An) 1 A(n)

From these equations, and the uniqueness theorem of § 17.1, we deduce’

THEOREM 295:
A(n) = Z,u(g-) logd.
din

THEOREM 296:

logn == Z Add).
din

We may also prove these theorems directly. If n = [ p?, then
Y A@) =) logp.
dn Pln

The summation extends over all values of p, and all positive values of a
for which p?|n, so that log p occurs a times. Hence

Z logp = Zalogp = log Hp“ = logn.
P

This proves Theorem 296, and Theorem 295 follows by Theorem 266.
Again

mg{ ! ]:C’(S) gwiw{;‘?’(s)
ds { ¢ () 22(s) {ORER{ON N

t Compare § 17.6.
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so that

Z (n) logn Z win) Z A(n)'

n=1 el

Hence, as before, we deduce

THEOREM 297:

—u(n)logn = Zn(d)!\(d)
din

Similarly

_de _{ }
@ 9% 1t®

and from this (or from Theorems 297 and 267) we deduce
Treorem 298:

Any=—_ u(d)logd.
dln

17.8. Further examples of generating functions. We add a few
examples of a more miscellaneous character. We define di (n) as the num-
ber of ways of expressing n as the product of £ positive factors (of which
any number may be unity), expressions in which only the order of the
factors being different is regarded as distinct. In particular, d3(n) = d(n).
Then

TuroreM 299:

=3 di(:) s> 1).

Theorem 289 is a particular case of this theorem.
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Again

where A(n) = (—1)?, p being the total number of prime factors of n, when
muttiple factors are counted multiply. Thus

TaeorREM 300:

§2s) A
£(s) =2

Similarly we can prove

s>D.

TueoreMm 301

)
@ =2 w C7 D
where w(n) is the number of different prime factors of n.

A number 7 is said to be squarefree! if it has no squared factor. If we
write g(n) = 1 when n is squarefree, and g(n) = 0 when » has a squared
factor, so that g(n) = |u(n)|, then

{Gs) (1 —
¢@s) 1;1 1-p~
by Theorems 280 and 286. Thus

TarOoREM 302:

™) m}_“,%') s> 1),
n=1

¢ (2-9)

n=1

(ﬂ) Z | ()l s> 1).

t Some writers (in English) use the German word ‘quadratfrei’.
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More generally, if g;(n) = 0 or 1 according as » has or has .not a kth
power as a factor, then

TueoreMm 303:

2(5) o= qk(n)
chs) 2.

Another example, due to Ramanujan, is

TaroreMm 304:

24s) o {dm))?
m = g —-—n"sm— (S > 1)

This may be proved as follows. We have

)  1l-p* o 14p~°
¢Q2s) 1;[ (L—p=5* EI A —-p=)*

Now
1
¥ j;)s = Q400 +3x+6x7+...)
oo
=1+dx+%7+ . =3 ¢+ DA
I={
Hence

o I'[[Z(z+1)2 -}

P Wi=0

The coefficient of n~°, when n = p?P;z

4+ D2+ 12 = [dm)),

by Theorem 273.
More generally we can prove, by similar reasoning,
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Turorem 305. If s, s—a, s-b; and s—a--b are all greater than 1, then

L) — (s —b)i(s —a~b) _ i Ga(map(n)
{(2s —a—b) - ns ’

n=1

17.9. The generating function of »(n). We saw in § 16.10 that

rm) =4y x(d),
d|n

where x (n) is 0 when n is even and (—=1)2%~D when n is odd. Hence

PLETYPES BELLEPHOION

where
Lis)=1"—3"%45° ...,
ifs > 1.

THeOREM 306:

3 ’f:) = 4L(HL(s) (s> 1.
The function
) =17 -2743" —..
is expressible in terms of ¢ (s) by the formula
n(s) = (1~ 2178 (s);

but L(s), which can alsc be expressed in the form

1
10 =T1(1=p=)-
» 1 —x@p

is an independent function. It is the basis of the analytical theory of the
distribution of primes in the progressions 4m+1 and 4m+3.
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17.10. Generating functions of other types. The generating functions
discussed in this chapter have been defined by Dirichlet series; but any
function

F(s) =) _ ttntin(s)
may be regarded as a generating function of «,. The most usual form of
Un(s) is

Up(s) = e,

where A, is a sequence of positive numbers which increases steadily to
infinity. The most important cases are the cases A, = log n and A, = n.
When A, = log n, us(s) = n~* and the series is a Dirichlet series. When
An, = n, it is a power series in

Since

m™. n7% = (mn)"*,

and
XX = X

the first type of series is more important in the ‘multiplicative’ side of
the theory of numbers (and in particular in the theory of primes). Such
functions as

Doumx", Y emx, Y A

are extremely difficult to handle. But generating functions defined by power
series are dominant in the ‘additive’ theory." _
Another interesting type of series is obtained by taking

e~ x"
Hn(s) = ] —e=n — 1 —xn’

t See Chs. XIX-XX1.
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We write

o

x"
FO) =3 any—,
nest

and disregard questions of convergence, which are not interesting here."
A series of this type is called a ‘L.ambert series’. Then

o0 = 9] o0
Fy=) any x™=) bnx",
n=1 m=1 Nzt

where
0o
by = Za”"
niN
This relation between the g and b is that considered in §§ 16.4 and 17.6,

and it is equivalent to

$ES) (5) = g(s),
where f(s) and g(s) are the Dirichlet series associated with a, and 5,,.
Tuaeorem 307. If

F@ =) am™, gl)=D bn™",

then

Iix” :Zb,,x"

F(x)= ap
if and only if
$(8)f (5} = g(s).
Iff(s) = 3 u(mn, g(s) = 1, by Theorem 287. If f(s) = 3" ¢ (m)n™",
"
g =¢G-=3 —,
by Theorem 288. Hence we derive

T Al the series of this kind which we consider are absolutely convergent when 0 £ x < I,
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TurorREM 308:
i pmx"
o -
TaeOREM 309:
i @ (n)x" x
1—x" (1—x)2

Similarly, from Theorems 289 and 306, we deduce

Tuazorem 310:

2 3
X X
}:d(n)x"- — Tttt

n=1

TumoreM 311:
3

ir(n)x" =4[ 4+ v
— - I—x 1—x3 1 — x3 '

Theorem 311 is equivalent to a famous identity in the theory of elliptic
functions, viz.

THEOREM 312

A4+2c+ 2% + 227 +-..)?
3

x x x3
=1+4 ~ — .
+ (lwx B T 1= )

In fact, if we square the series

I+2+ 2%+ 2%+ = Y 2,
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the coefficient of x” is r(n), since every pair (m,, my) for which m% -Hn% =n
contributes a unit to it.t

NOTES

§ 17.1. There is a short account of the analytical theory of Dirichlet series in Titchmarsh,
Theory of functions, ch. ix; and fuller accounts, including the theory of series of the more

general type

Z ane

{referred to in § 17.10) in Hardy and Riesz, The general theory of Dirichlet’s series
{Cambridge Math. Tracts, no. 18, 1915), and Landau, Handbuch, 103-24, 723-75.

§ 17.2. There is a large literature concerned with the zeta function and its application to
the theory of primes. See in particular the books of Ingham and Landau, Titchmarsh, The
Riemann zeta-function {Oxford, 1951) and Edwards, Riemann 5 zeta-function (New York,
Academic Press, 1974), the last especially from the historical point of view.

For the value of £(2n) see Bromwich, Infinite series, ed. 2, 298.

§ 17.3. The proof of Theorem 283 depends on the formulae

X
0<n " logn—x""logx =fr_"“t{slcgr —1)dt <« '32“' login + 1},

n

validfor3 S ngx s n+ lands> .

There are proofs of the theorem referred to in the fooinote to p. 247 in Landauw, Handbuch,
106-7, and Titchmarsh, Theory of functions, 289-90,

§§ 17.5-10. Many of the identities in these sections, and others of similar character,
occur in Polys and Szeg6, Nos. 38-83, Some of them go back to Euler. We do not attempt
to assign them systematically to their discoverers, but Theorems 304 and 305 were first
medsby)r Ramanujan in the Messenger of Math. 45 (1916), 81--84 (Collected papers, 133-5

185).

§ 17.6. The discussion in small print was the result of conversation with Professor
Harald Bohr.

§ 17.10. Theorem 312 is due to Jacobi, Fundamenta nova (1829), § 40 (4) and § 65 (6).

Y Thus $ arises from 8 pairs, viz. (2, 1), (1, 2), and those derived by changes of sign.



- XVl

THE ORDER OF MAGNITUDE OF ARITHMETICAL
FUNCTIONS

18.1. The order of d(n). In the last chapter we discussed formal
relations satisfied by certain arithmetical functions, such as d(n), o (),
and ¢ (7). We now consider the behaviour of these functions for large val-
ues of n, beginning with d(n). It is obvious that d(n) 2> 2 whenn > 1,
while d(n) = 2 if n is a prime. Hence

Taeorem 313, The lower limit of d(ny asn — o0 is 2:

lim d(n) = 2.

P OO

It is less trivial to find any upper bound for the order of magnitude of d(n).
We first prove a negative theorem.

Tuzorem 314. The order of magnitude of d(n) is sometimes larger than
that of any power of log n: the equation

(18.1.1) d(n) = O{(logm)®}
is false for every A
Ifn=2" then

log n
log2

dny)=m+ 1~

In=(2.3)", then

2
d(n) = (m+ 1)2 ~ (5953-'-) ;
log 6

and so on. If

€A <!+
and
n=(2.3.p41)",

¥ The symbols 0, 5, ~ wese defined in § 1.6.
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then

logn
log(2.3...

' 141
d(n) = (m+ 1)'*! ~ { 5 )} > K(logn)*!,
{41

where K is independent of n. Hence (18.1.1) is false for an infinite sequence
of values of n.
On the other hand we can prove

TreorsMm 315;
d(n) = O(n®)

Jor all positive 8.

The assertions that d(n) = O(n®), for all posuwe 8, and that d(n) =
o(n®), for all positive 8, are equivalent, since n® = o(n‘5) when0 < & < 8.
We require the lemma

Tueorem 316. If fin) is multiplicative, and f(p™) — O as p™ — oo,
then f(n) ~» Qasn — o0,

Given any positive €, we have

) Lf(p™ < A forall p and m,
Q) If(PMi<1 if p">B,
(i) [f(p™l <e if p" > N(e),

where 4 and B are independent of p, m, and €, and N (¢) depends on € only.
If

a2

n=ppy’...p7,
then

f) =P (P .. ().

Of the factc:nrfs,m1 ,p2 s+ +«, Dot more than C are less than or equal to B, C
being independent of n and ¢. The product of the corresponding factors
F(p®) is numerically less than A and the rest of the factors of f(n) are
numerically less than 1.

The number of integers which can be formed by the multiplication of
factors p® < N(e) is M (¢), and every such number is less than P(e), M (¢)
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and P(¢) depending only on ¢. Hence, if n > P(¢) there is at least one
factor p® of n such that p® > N(¢) and then, by (iii),

Lf (P9 < e.
It follows that
|f(m)] < AC€.

when n > P(¢), and therefore that f(n) —> 0.
To deduce Theorem 315, we take f(n)=n"%d(n). Then f(n) is
multiplicative, by Theorem 273, and

-0

m ol
F(o™ = m+1 < 2m - 2 logp < 2 logp
pm T pm p™logp T log2 (pm)°

when p™ — oo, Hence f(n) — O when n — oo, and this is Theorem 315

(with o for O).
We can also prove Theorem 315 directly. By Theorem 273,
(18.1.2) am _ (“";’;!).
& i=1 \ Pi
Since
05 ing S eaaiogz —_ 2&5 gpals’
we have
a+1 1 1

a
£l4+—<14+—x .
P +p"5 s 1 Slog2 xp (810g2)

We use this in (18.1.2) for those p which are less than 2!/%; there are less
than 2'/% such primes. If p > 2!/, we have

5 2 ) a+ | < a—+ 1 <
p ¥ pas s 2&' - 1'
Hence
d(n) 1 21/8
18.1.3 — < — =
( ) nd p(l}ﬁ °xp (8 IogZ) < xp (é‘ log 2) o).

This is Theorem 315.
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We can use this type of argument to improve on Theorem 315. We
suppose € > ( and replace § in the last paragraph by

_ {1+ %e) log2
" loglogn
Nothing is changed until we reach the final step in (18.1.3) since it is here

that, for the first time, we use the fact that § is independent of n. This time
we have .

o (d(n)) - 2l (log m)/(+39 Jog log n  €log2logn
E\ e alog2 (1 +3e)log?2 = 2loglogn

for all n > ng(e) (by the remark at the top of p. 9). Hence

logd(n) < alogn + 2821087 _ (1 +¢)log2logn

2loglogn loglogn
We have thus proved part of _
THeEOREM 317: mlog d(n) log log » = log2;
logn

that is, if € > 0 then

d(n) < 2(1+€) logn/loglogn

Jorall n > no(€) and
(1814) dn) > 2(1—6) logn/loglogn
Jor an infinity of values of n.

Thus the true ‘maximum order’ of d(n) is about

220g nfloglogn

It follows from Theorem 315 that

logd(n)

— 0
logn

and so

d(n) = plogd(m)/logn __ &x
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where €, - 0 as n — 00, On the other hand, since
ziog n;( loglogn _ nlog 2/loglogn
and loglog n tends very slowly to infinity, €, tends very slowly to 0. To put
it roughly, d(n) is, for some », much more like a power of » than a power
of log n. But this happens only very rarely! and, as Theorem 313 shows,
d(n) is sometimes quite small.
To complete the proof of Theorem 317, we have to prove (18.1.4) fora

suitable sequence of n. We take n to be the product of the first » primes, so
that

n=2357.P  dmn=2 =¥,

where P is the th prime. It is reasonable to expect that such a choice of n
will give us a large value of d(n). The function

Fx) = Z log p
pPEx

is discussed in Ch. XXII, where we shall prove (Theorem 414) that
#{(x) > Ax
for some fixed positive 4 and all x 2> 2.} We have then

AP < 9(P) = "logp = logn,
psP

n(P)logP =logP Y 1> B(P) = logn,
p<p

and so
lognlog?2 logniog2
-
log P loglogn — log 4
- (1 —e€)lognlog?2
log logn

logd(n) =n(P)log2 =

for n > ng(e).

¥ See § 22.13.

¥ In fact, we prove {Theorem 6 and 420) that #(x) ~ x, but it is of interest that the much simpler
Theorern 4 14 suffices here.



18.2 (31820} ARITHMETICAL FUNCTIONS 347

18.2. The average order of d(n). If f(n) is an arithmetical function
and g(n) is any simple function of n such that ‘

(18.2.1) f+f @D+ +fm)~g)+ - +gn),

we say that f(n) is of the average order of g(n). For many arithmetical
functions, the sum of the lefi-hand side of (18.2.1) behaves much more
regularly for large n than does f(n) itself. For d(n), in particular, this is
true and we can prove very precise results about it.

TueoREM 318: d)+dQ2)+---+d(n) ~ nlogn.

n
Since logl +log2+ .-+ logn ~f20gtdr ~ nlogn,
1

the result of Theorem 318 is equivalent to
d)+d@)+ - -+dn) ~logl +log2+4 .-+ logn.
We may express this by saying
Turorem 319. The average order of d(n) is log n.

Both theorems are included in a more precise theorem, viz.

TrEoreM 320:
dD)+dQ@Q)+ - +d@n)=nlogn+ 2y — n+ O(/n),

where y is Euler s constant.?

We prove these theorems by use of the lattice £ of Ch. 111, whose vertices
are the points in the (x, y)-plane with integral coordinates. We denote by
D the region in the upper right-hand quadrant contained between the axes
and the rectangular hyperbola xy = n. We count the lattice points in D,
including those on the hyperbola but not those on the axes. Every lattice
point in D appears on a hyperbola

Xy =g (I <s<m;

t In Theorem 422 we prove that

; 1 ;
1+§+---+;—Eogn~ny+0(;),

where y is & constant, known as Fuler's constant.
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and the number on such a hyperbola is d(s). Hence the number of lattice
points in D is

d(1) +d2)+ - +d(n).

Of these points, n = [n] have the x-coordinate 1, [%n] have the
x-coordinate 2, and so on. Hence their number is

[ﬂ]+{g}+{g]+-~+[£~}=n(§+%+---+%)+0(n)
= nlogn + O(n),

since the error involved in the removal of any square bracket is less than 1.
This result includes Theorem 318.
Theorem 320 requires a refinement of the method, We write

u = [/n],
so that
2 = n+ O(Jn) = n+ O@)

and
1
logu = log {</n+ O(1)} = Llogn+ O (:7"’)

In Fig. 8 the curve GEFH is the rectangular hyperbola xy = n, and the
coordinates of 4, B, C, D are (0, 0), (0, %), (u, ), (1, 0). Since (u+1)* > n,
there is no lattice point inside the smal! triangle £ECF; and the figure is
symmeirical as between x and y. Hence the number of lattice points in D is
equal to twice the number in the strip between AY and DF, counting those on
DF and the curve but not those on AY, less the number in the square ADCB,
counting those on BC and CD but not those on AB and AD; and therefore

gd(l)mz([-’i'-]+[g}+...+ [2]) -+

i
=2n(1+~1~+---+-)—n+0(u).
2 u

Now

1 1
2(1~+»-+~-+—*)m2logu~}~2y~}~0(-l-),
2 u u
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Fic. 8.

50 that

3 d() = 2nlogu + 2y — Hn+O0) + O ("‘Z‘)
=1

=nlogn+ Qy — Dn + O(/n).

Although

1 n
- Zd(l) ~ logn,
U
it is not true that ‘most’ numbers n have about log » divisors. Actually
‘almost all’ numbers have about
(log n)'%82 = (log n)®~

divisors. The average log » is produced by the contributions of the small
proportion of numbers with abnormally large d(n).

T *Almost all’ is used in the sense of § 1.6. The theorem is proved in § 22.13,
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This may be seen in ancther way, if we assume some theorems of
Ramanujan. The sum

d*(1) + -+ d*(n)

is of order n(log m?-1 = n(log n)>;
B+ +dm)

is of order n(logn)*’~! = n(logn)7; and so on. We should expect these
sums to be of order n(log n)?, n(logn)3,. .., if d(n) were generally of the
order of log n. But, as the power of d(n) becomes larger, the numbers with
an abnormally large number of divisors dominate the average more and
more.

18.3. The order of o(n). The irregularities in the behaviour of o (n) are
much less proncunced than those of d(n).
Since 1|n and nln, we have first

THEOREM 321:
a(n) > n.

On the other hand,

THEOREM 322
o(n) = O(nH"‘s)
Jor every positive 8.

More precisely,

THEOREM 323:

W _
nloglogn

We shall prove Theorem 322 in the next section, but must postpone the

proof of Theorem 323, which, with Theorem 321, shows that the order of
a(n) is always ‘very nearly n’, to § 22.9.
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As regards the average order, we have

TueoreM 324. The average order of a(n) is én‘zn. More precisely,
o402+ - +o(n)y = annz + Ofn log n).
For
(1) +---+o@m) =Yy,

where the summation extends over all the lattice points in the region D of
§ 18.2. Hence

Son-$ ¥r- LA )

x=} pEnfx x=l
= %):(§+0(1>) (g+0(z>) = gﬁzfﬁo(nzé) + O().
x=1 : x=1

Now

by (17.2.2), and

1
Z p = O(log n).

x=1

Hence

Za(l)- Laln? ~+ O(n logn).

In particular, the average order of o (n) is éftzn.T

L3
t since o m ~ Ln?.
1
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18.4. The order of ¢(n). The function ¢(n) is also comparatively
regular, and its order is also always ‘nearly »’. In the first place

Treorem 325: ¢(n) <nif n> 1.
Next, if n = p™ and p > 1/¢ then

¢(n):n(l —_ 1) > n{l —€).
P

Hernce

P ()

THEOREM 326 lim == I,
: n

There are also two theorems for ¢(n) corresponding to Theorems 322
and 323.

THeorEM 327:
o)

15
Jor every positive 8.
THEOREM 328:

¢p(n)loglogn e
n

li

Theorem 327 is equivalent to Theorem 322, in virtue of
THEOREM 329:
a(m¢(n)

A <
n2

<1

{for a positive constant A).
To prove the last theorem we observe that, if n = []p?, then

_.a_

cr(n)--l—[p —I—»nnl__ ]

pln
and

pm=n[]a-p"

pin
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Hence '
oMo (n o
()¢()“H(1 a1y,
pln

which lies between 1 and [J(1 — p~2)." It follows that o (n)/n and n/¢ (n)
have the same order of magnitude, so that Theorem 327 is equivalent to

Theorem 322.
To prove Theorem 327 (and so Theorem 322) we write

1—8
o)’

Then f(n) is multiplicative, and so, by Theorem 316, it is sufficient to
prove that

f(n) =

f(p™—0
when p” — oo. But _
1 o(P™) " s 1 m5
Fom i TF (l _5) > = oo

We defer the proof of Theorem 328 to Ch. XXII.

18.5. The average order of ¢(n). The average order of ¢ (n) is 6n/m?.
More precisely

THeorEM 330:

3n?
Py =)+ + @) = 3 + O(nlogn).

For, by (16.3.1),

o) = Z Z‘Tj“: d'u(d)
m=! dim dd’<n
i: anM:] 1 i [n] n
=N ud Y d =< u(d)( 21 +2 )
el d'=1 2d=i d [d}

T By Theorem 280 and (17.2.2), we see that the 4 of Theorem 329 is in fact
By =6x?
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n 2
=1 r 7
1K@ 7o)
n
n? wn(d) 1
~ 40 31D 0 (n3

d=I}
o 4] o0 l
%n Z@-%O( defﬁ)+0(niogn)
3 n+1
.. + O(n) + O(nl )mﬁq-owo n
=% n nlogn) = - g ny,

by Theorem 287 and (17.2.2).
The number of terms in the Farey series §, is ®(n)+1, so that an
alternative form of Theorem 330 is

TueoreM 331. The number of terms in the Farey series of order n is
approximately 3n*/m?.

Theorems 330 and 331 may be stated more picturesquely in the language
of probability. Suppose that » is given, and consider ail pairs of integers
{p, q) for which

g >0, lsp<sgsn
and the corresponding fractions p/q. There are
Yn = gn(n+1) ~ in’
such fractions, and x,, the number of them which are in their lowest terms,

is ®(n). If, as is natural, we define ‘the probability that p and ¢ are prime
to one another’ as

Xn
o Y

we obtain

THEOREM 332 The probability that two integers should be prime to one
another is 6/m>.
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18.6. The number of squarefree numbers. An allied problem is that
of finding the probability that a number should be ‘squarefree’, i.e. of
determining approximately the number Q(x) of squarefree numbers not
exceeding x.

We can arrange all the positive integers n < y* in sets S, S2,.. ., such
that S; contains just those # whose largest square factor is 4. Thus S; is
the set of all squarefree n < y? The number of n belonging to Sy is

e(%)

and, when d > y, Sy is empty. Hence

[y]“ZQ(y—z)

d<gy
and so, by Theorem 268,
0% =) ul(d) [ ] D uld) ( + 0(1))
d<y d<y
z &@ +O(y)
dsy
d
= 22%4—0 (}’ZZQE) + O
axl d>y
6
2 o0 = mé +00y).

Replacing y? by x, we obtain

Treorem 333. The probability that a number should be squarefiee is
6/ more precisely

6x
Q) = 2T O(V/x).

T without square factors, a product of different primes: see § 17.8.



356 THE ORDER OF MAGNITUDE OF [Chap. X VIl

A number n is squarefree if u(n) = %I, or [x(n)| = 1. Hence an
alternative statement of Theorem 333 is

TuaeoreM 334:
u 6x
2 ln@m)| = —5 + 0.
n=1 T

It is natural to ask whether, among the squarefree numbers, those for
which p(n) = | and those for which w(n) = —1 occur with about the
same frequency. If they do so, then the sum

M@x) =) p(n)
n=1

should be of lower order than x; i.e.

THEOREM 335:
M(x) = o(x).

This is true, but we must defer the proof until § 22.17.

18.7. Theorder of »(n). The functionr(n) behaves in some ways rather
like d(n), as is to be expected after Theorem 278 and (16.9.2). If n = 3
(mod 4), thenr(n) = 0.1f n = (p1p2 ... p14+1)™, and every pis 4k + 1, then
r(n) == 4d(n). In any case »(n) < 4d(n). Hence we obtain the analogues
of Theorems 313, 314, and 315, viz.

Tueorem 336:
limr(n) = 0.
TurorEM 337:
r{n) = O{(log n)A}
is false for every A.
THEOREM 338:

r(n) = O(n’)

Jor every positive 8.
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There is also a theorem corresponding to Theorem 317; the maximum
order of r(n) is

i

A difference appears when we consider the average order.
Tueorem 339. The average order of rn) is o, i.e.

. r(DHr@y+ - Fr(n)
lim =7

o 0 n

More precisely
(18.7.1) r()+r2)y+ - +r(m)=nmn+ O(/n).

We can deduce this from Theorem 278, or prove it directly. The direct
proof is simpler. Since r(m), the number of solutions of 2+ y2 == m, is the
number of lattice points of L on the circle x2 -+ y* = m, the sum (18.7.1) is
one less than the number of lattice points inside or on the circle x2 43?2 = n.
If we associate with each such lattice point the lattice square of which it is
the south-west corner, we obtain an area which is included in the circle

P43y = (n+2)
and includes the circle
P4yt = (Yn— 205

and each of these circles has an area mn + O(/n).

This geometrical argument may be extended to space of any number of dimensions,
Suppose, for example, that #5(n} is the number of integral solutions of

x2+y2+z2wn

(solutions differing only in sign or order being again regarded as distinct). Then we can
prove

Tueorem 340;

A+ 7@ + -+ r3(n) = $mnd + O,
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If we use Theorem 278, we have

fx]

Y r =43 x@)=4 ) xw),

1€vex I dv Iguvex

the sum being extended over all the lattice points of the region D of § 18.2.
If we write this in the form

43 xw Y 1=4 ) xw[Z]

1<usx 1<vEx/u s
we obtain
THEOREM 341:
= ror=a(3]-[5]+5]-)

This formula is true whether x is an integer or not. If we sum separately
over the regions ADFY and DFX of § 18.2, and calculate the second part
of the sum by summing first along the horizontal lines of Fig. 8, we obtain

4 aw[Z]+4Y X xw.

us.J/x VE /X JSx<ugx/y

The second sum is O(/x)}, since Y x (#), between any limits, is 0 or +1,
and

> xw|z]= 3 xw: +0wm

usJ/x U /x

mx(1-§+31-—-.. "g;/]])wwx))

= x {%n +0 (:;—x)] + O(/x) = smx + O(x).

This gives the result of Theorem 339.
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NOTES

§ 18.1. Forthe pmof of Theorem 315 see Pélya and Szegh, No. 264,

Theorem 317 is due to Wigert, Arkiv for matematik, 3, no. 18 (1907), —9 (Landau,
Handbuch, 219-22). Wigert’s proof depends upon the ‘prime number theorem’ (Theorem
6), but Ramanujan (Collected papers, 85-86) showed that it is possible to prove it in a more
elementary way. Our proof is essentially Wigert’s, modified so as not to require Theorem 6.

§ 18.2. Theorem 320 was proved by Dirichlet, Abhandl. Akad. Berlin (1849), 65-83
(Werke, ii. 45-66).

A great deal of work has been done since on the very difficult problem (‘Dirichlet’s
divisor problem”) of finding better bounds for the error in the approximation. Suppose that
& is the lower bound of numbers 8 such that

d()) +d(2) +---+d(n) = nlogn + 2y ~ Dn + O@P).

Theoremn 320 shows that 6 < 2 Vorondi proved in 1903 that 6 3, and van der Corput in

1922 thatd < T%' and these numbers have been improved further by later writers. The cur-
rent (2007) record is due to Huxley (Proc. London Math. Soc. (3) 87 (2003), 591609} and

states that 8 < ;g’% On the other hand, Hardy and Landau proved independently in 1915
that 8 > L. The true value of 6 is still unknown. See also the note on § 18.7.
o

As regards the sums d2) +---+d2(n), etc., see Ramanuian, Collected papers, 1335,
and B. M. Wilson, Proc. London Math. Soc. {2) 21 (1922}, 235-55.

§ 18.3. Theorem 323 is due to Gronwall, Trans. American Math. Soc. 14(1913), 11322,
Theotem 324 stands as stated here in Bachmann, Analytische Zahientheorie, 402. The
substance of it is contained in the memoir of Dirichiet referred to under § 18.2, The error term
has been improved slightly to O(n{iog n)2/3) by Walfisz, Weylsche Exponentialsummen in
der neueren Zahlentheorie (Berlin, 1963). He similarly improved the error term in Theorem
330 to O(n(log n)2/3 (log log n)*/3).

§§ 18.4-5. Theorem 328 was proved by Landau, Archivd Math. u. Phys. (3) 5 (1903),
86-91 (Handbuch, 216-19); and Theorem 330 by Mertens, Journal fiir Math. 11 (1874),
289338 (Landau, Handbuch, 578-9). Dirichlet (1849) proved a slightly weaker form of
Theorem 330, i.e. with error O(n! %) for any ¢ > 0 (Dickson, History, i, 119).

§ 18.6. Theorem 333 is due to Gegenbauer, Denkschrifien Akad. Wien, 49, Abt. | (1885),
37-80 (Landaw, Handbuch, 580-2). The error term has been improved by various authors,
the current (2007} record being ox?), for any 8 > 53, due to Ha {Sci. China Ser. A 36
(1993}, 154-169).

Landau [Handbuch, ii. 588-9(] showed that Theorem 335 follows simply from the
‘prime number theorem’ (Theorem 6} and later [Sizzungsberichte Akad. Wien, 120, Abt..2
(1911), 973--88] that Theorem 6 follows readily from Theorem 335. Mertens conjectured
that )M (x)| < x/2 for all x > 1. However this was disproved by Odlyzko and te Riele
(J. Reine Angew. Math. 357 (19835), 138-160), who showed in fact that there are infinitely
many integral x for which M(x) > /x, and similarly for which M{x) < —./x. No specific
example of such an x > 1 is known, and Odlyzko and te Riele suggest that there is no
example below 10?0, or even 1039,

§ 18.7. For Theorem 339 See Gauss, Werke, ii. 272-5.

This theorem, like Theorem 320, has been the starting-point of a great deal of modem
work, the aim being the determination of the number 6 corresponding to the § of the nute
on § 18.2. The problem is very similar to the divisor probiem and the numbers 4 ’
occur in the same kind of way; but the analysis required is in some ways a little snmplzer See
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Landau, Forlesungen, ii. 183308, As with Theorem 32§ the current (2007) record is due to
Huxley (Proc. London Math. Soc. {3) 87 (2003), 591--609) and states again that 8 < ;H—é

'The error term in Theorem 340 has been investigated by a number of authors. The best
known result up to 2007 is due to Health. Brown (Number theory in progress, Vol. 2, 883-92,
{Berlin, [999)), and states that the error is O(na) forany 8 > 2 :

Atkinson and Cherwell (Quart. J. Math. Oxford, 20 (1949}, 635?“79) give ageneral method
of calculating the ‘average order’ of arithmetical functions belonging to a wide class. For
deeper methods, see Wirsing (dcta Math. Acad. Sei. Hungaricae 18 (1967), 411-67) and
Halasz (ibid. 19 (1968), 365-403).



XIX
PARTITIONS

19.1. The general problem of additive arithmetic. In this and the next
two chapters we shall be occupied with the additive theory of numbers. The
general problem of the theory may be stated as follows.

Suppose that 4 or

dy,d2,a3,...

is a given system of integers. Thus 4 might contain all the positive integers,
or the squares, or the primes. We consider all possible representations of
an arbitrary positive integer n in the form

n=ay e+ ag,

where s may be fixed or unrestricted, the @ may or may not be necessarily
different, and order may or may not be relevant, according to the particular
problem considered. We denote by r(#) the number of such representations.
Then what can we say about r(n)? For example, is »(n) always positive?
Is there always at any rate one representation of every n?

19.2. Partitions of numbers. We take first the case in which A is the set
1,2,3,...of all positive integers, s is unrestricted, repetitions are allowed,
and order is irrelevant, This is the problem of ‘unrestricted partitions’.

A partition of a number n is a representation of # as the sum of any
number of positive integral parts. Thus

544 1=342=34+1+1=2+2+1
w2 l4+I+1l=1414+141+1

has 7 partitions.! The order of the parts is irrelevant, so that we may,
when we please, suppose the parts to be arranged in descending order of
magnitude. We denote by p(n) the number of partitions of »; thus p(5)=17.

We can represent a partition graphically by an array of dots or ‘nodes’
such as

t We have, of course, to count the representation by one part only.
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A
the dots in a row corresponding to a part. Thus A represents the partition

T+4+4+3+3+1

of 18,
We might also read A by columns, in which case it would represent the

partition
54+44+44+2+1 4141

of 18. Partitions related in this manner are said to be conjugate.

A number of theorems about partitions follow immediately from this
graphical representation. A graph with m rows, read horizontally, repre-
sents a partition into m parts; read vertically, it represents a partition into
parts the largest of which is m. Hence

Tueorem 342. The number of partitions of n into m parts is equal to the
number of partitions of n into parts the largest of which is m.

Similarty,

TueoreM 343. The number of partitions of n into at most m parts is equal
to the number of partitions of n into parts which do not exceed m.

We shall make further use of ‘graphical” arguments of this character, but
usually we shall need the more powerful weapons provided by the theory
of generating functions.

19.3. The generating function of p(a). The generating functions
which are useful here are power series'

F(x)=)_ finx".

The sum of the series whose general coefficient is f(n) is called the
generating function of f(n), and is said to enumerate f(n).

t Compare § 17.10.
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The generating function of p(n) was found by Euler, and is

i
(1= x)(1 ~x)(1 —x%)...

v +]
(193.1) F(x) = =1+ Y p)x".
i

We can see this by writing the infinite product as

A+x+x24+--2)
(l+x2+x4;i“—j--)
(l+x3+x6+~°)

and multiplying the series together. Every partition of n contributes just 1
to the coefficient of x". Thus the partition

10=34+24+24+2+1

corresponds to the product of x* in the third row, x = x2+2%2 jn the second,

and x in the first; and this product contributes a unit to the coefficient of x'0.
This makes (19.3.1) intuitive, but (since we have to multiply an infinity
of infinite series) some development of the argument is necessary.
Suppose that 0 < x < 1, so that the product which defines F(x) is
convergent. The series

l4x+xi+ 142 +xb 4+ o 14"+ 4.,

are absolutely convergent, and we can rhultiply them together and arrange
the result as we please. The coefficient of x” in the product is

pm (n) *
. the number of partitions of n into parts not exceeding m. Hence

1

e "
(1—x)(1 ~x2)...(1 —xm) 1 +me(")x .

n=1

(1932) Fp(x) =

It is plain that

(19.3.3) pm(n) < p(n),
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that

(19.3.4) pm(n) = p(n)
for n € m, and that
(19.3.5) pm(n) — p(n),

when m — oc, for every n. And

m o 4]
(19.3.6) Fu(0) =1+ Y_px"+ Y pm(m)x".

=1 m+-1

The left-hand side is less than F(x) and tends to ¥(x) when m —» <.
Thus -

1+ p(mx" < Fu(x) < F(),

pazl

which is independent of m. Hence }_ p(n)x™ is convergent, and so, after
(19.3.3), 3" pm(n)x” converges, for any fixed x of the range 0 < x < I,
uniformly for all values of m. Finally, it follows from (19.3.5) that

o0 o0
1+ pmx" = lim (1 + zpm(n)x”) = lm Fu(x) = F(x).

nel e}

Incidentally, we have prdved that

1
(-1 =x%)...(1 —xm)

(19.3.7)

enumerates the partitions of n into parts which do not exceed m or (what
is the same thing, after Theorem 343) into at most m parts.

We have written out the proof of the fundamental formula (19.3.1) in
detail. We have proved it for 0 < x < 1, and its truth for |x| < 1 follows at
once from familiar theorems of analysis. In what follows we shall pay no
attention to such ‘convergence theorems’,! since the interest of the subject-
matter is essentially formal, The series and products with which we deal
are all absolutely convergent for smal! x (and usually, as heére, for [x| < 1).

t Except once in § 19.8, where again we are concemned with a fundamental identity, and onge in
§ 19.9, where the limit process involved is less obvious.
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The questions of convcrgcc, identity, and so on, which arise are trivial,
and can be settled at once by any reader who knows the elements of the
theory of functions, :

19.4. Other generating functions. [t is equally easy to. find the
generating functions which enumerate the partitions of n into parts
restricted in various ways. Thus

i

(19.4.1) SRS

enumerates partitions into odd parts;

1

(19.42) (=1 =1 —x5 ..

partitions into even parts;

(19.4.3) 1+ 00 +xH( +53)...
partitions into unequal parts;

(19.4.4) A +x0 +xH0 +55)...

partitions into parts which are both odd and unequal; and

‘ H

(19.4.5) (1 —x)(1 - —x5(1 - x5 ...

where the indices are the numbers 5m + | and 5m + 4, partitions into parts
each of which is of one of these forms.
Another function which will occur later is

xN
(1 —x2)(1 —x*) ... (1 —x?m)’

(19.4.6)

This enurncratcs the partitions of n — N into even parts not exceeding 2m,
or of 1 »(n — N) into parts not exceeding m; or again, after Theorem 343,
the partitions of 1 5(n — N) into at most m parts.
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Some properties of partitions may be deduced at once from the forms of
these generating functions. Thus

| —x% 1—x*1-xf

l—x 1—x2 1 ~x3"""
1

(1 —x)(1 —x3)H(1 =x%...

(1947 (A +x0)0+x3)1+x)...=

Hence

TueoreM 344. The number of partitions of n into unequal parts is equal
to the number of its partitions into odd parts.

It is interesting to prove this without the use of generating functions.
Any number / can be expressed uniquely in the binary scale, i.¢. as

l=2042b42c4 ... O<Ka<b<e.. )t
Hence a partition of » into odd parts can be written as
n=4l+0L3+5B5+ -
=YD 4 DI F Q22743 Q2B 45

and there is a (1,1) correspondence between this partition and the partition
into the unequal parts

281 bt od23 9b23 a3 g ok

19.5. Two theorems of Euler. There are two identities due to Euler
which give instructive illustrations of different methods of proof used
frequently in this theory.

THECREM 345:
A 41 +x)1 +x)...
4 G

x
=14 X X

1 —x? + (1 —xH)(1 —x% + (I —x2)(1 = x*)(1 — x%) he

! This is the arithmetic equivalent of the identity

11

A+ +x0+xh0 +xH . = —
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THEOREM 346:

(1 + x50+ +x5). ..

x2 : x6 xi2

—2 P 0= DHd =5 t A= T

= 14

In Theorem 346 the indices in the numerators are 1.2, 2.3, 34, ....

(i) We first prove these theorems by Euler’s device of the introduction
of a second parameter a.

Let

K@) = K(a,x) = (1 + ax)(1 + ax>)(1 + ax*)...
= 1-—!~C;a+C202+...,

where ¢, = c,(x) is independent of 4. Plainly

K(a) = (1 + ax)K (ax?)

or
I +c;a+cza2+ o= (14 ax)(d +c1ax2 +cza2x4+---).
Hence, equating coefficients, we obtain
c=x+cd,ea=cx +ext L om = emeo 13 o™, L,
and so
xom—1 ) xH3++(2m-1)
Oy 2= ————a Oy} =
mE T 2 T A 5530 - (1 — 2y
T =x)( =, (1 —x2m)

It follows that
(19.5.1) (A +ax)(1 + a1l + ax’). ..

a2x4
a=20 — T

S
- 1 —x?

and Theorems 345 and 346 are the special casesa = 1 and ¢ = x.
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(it} The theorems can also be proved by arguments independent of
the theory of infinite series, Such proofs are sometimes described as
‘combinatorial’. We select Theorem 3435.

We have seen that the lefi-hand side of the identity enumerates partitions
into odd and unequal parts: thus

15=1143+1=945+1=7+543

has 4 such partitions. Let us take, for example, the partition 11+3+1, and
represent it graphically as in B, the points on one bent line corresponding
to a part of the partition.

I
B C b

B

We can also read the graph (considered as an array of points) as in C or
D, along a series of horizonta! or vertical lines. The graphs C and D differ
only in orientation, and each of them corresponds to another partition of
15, viz. 6+3+3+1+1+1. A partition like this, symmetrical about the south-
easterly direction, is called by Macmahon a self~-conjugate partition, and the
graphs establish a (1,1} correspondence between self-conjugate partitions
and partitions into odd and unequal parts. The left-hand side of the identity
enumerates odd and unequal partitions, and therefore the identity will be
proved if we can show that its right-hand side enumerates self-conjugate
partitions.

Now our array of points may be read in a fourth way, viz. as in E,

*

E

Here we have a square of 32 points, and two “tails’, each representing a
partition of -%( 15 — 32) = 3 into 3 parts at most (and in this particular case
all I’s). Generally, a self-conjugate partition of n can be read as a square of
m? points, and two tails representing partitions of

3(n —m?)
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into m parts at most. Given the (self-conjugate) partition, then m and the
reading of the partition are fixed; conversely, given n, and given any square
m?* not exceeding n, there is a group of self-conjugate partitions of n based
upon a square of m? points.

Now

2

x™
(0 =x)( —x¥H...(1 —x?m)

is a special case of (19.4.6), and enumerates the number of partitions of
%(n ~ m?) into at most m parts, and each of these corresponds as we have
seen to a self-conjugate partition of n based upon a square of m? points.
Hence, summing with respect to m,

2
xm

1+; (1 —x3){ —xH ... (1 — x2m)

enumerates all self-conjugate partitions of n, and this proves the theorem.
incidentally, we have proved

Tueorem 346. The number of partitions of n into odd and unequal parts
is equal to the number of its self-conjugate partitions.

Our argument suffices to prove the more general identity (19.5.1), and
show its combinatorial meaning, The number of partitions of n into just m
odd and unequal parts’is equal to the number of self-conjugate partitions
of n based upon a square of m? points. The effect of putting 2 = 1 is to
obliterate the distinction between different values of m.

The reader will find it instructive to give a combinatorial proof of
Theorem 346. It is best to begin by replacing x? by x, and to use the
decomposition 1 + 2 + 3 + --- + m of m(m + 1). The square of (i) is
replaced by an isosceles right-angled triangle.

19.6. Further algebraical identities. We can use the method (i) of
§ 19.5 to prove a large number of algebraical identities. Suppose, for
example, that

7
Kj(@) = Kja,x) = 1+ an (I + @) ... +ax)) = Y~ cpa™

m=0
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Then

(1 + ax) Kj(a) = (1 + a0)Kj(ax).
Inserting the power series, and equating the coefficients of a™, we obtain
Cm + Cme 16T = (O + Cp—1)x™
or
(1 =x™em = ™ — /ey = X1 —x/ ™" ey,
forl <m< . Hence

THEOREM 348:

1- (1—x)(1—x/—1
2 Iy 2.3
(I+ax)(l+ax®).. . (14+ax/)=14ax l— + (qu)(l_xZ)

1 —x/Y. . (1 —x/—mtL s
+~-+a'”xil””(’"+n( (Zx—)x) ((1 xx,,,) )+-'-+ajx%f(’“).

If we write x2 for x, 1/x for a, and make j — o0, we obtain Theorem
345, Similarly we can prove

THEOREM 349:

i =14 | vl

A-a( —ady.. . U—axh ~ T¥T %
| 5 2 (1= x)(1 —x/+1)
T T A=)

In particular, if we put @ = 1, and make j — oo, we obtain

THEOREM 350:

! =14 — - x* '
A= —x2)... 1 —x (1--x)(1-x2)+”"
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19.7. Another formula for F(x). As a further example of
‘combinatorial’ reasoning we prove another theorem of Euler, viz.

THEOREM 351:
1 =14 x + x4
(1 -0 —x3(1 —x3)... (1—-x)?% " (1-x)2%(1 —x?)?
x9
+

S s A

The graphical representation of any partition, say

contains a square of nodes in the north-west corner. If we take the largest
such square, called the ‘Durfee square’ (here a square of 9 nodes), then the
graph consists of a square containing i% nodes and two tails; one of these
tails represents the partition of a number, say /, into not more than  parts,
the other the partition of a number, say m, into parts not exceeding i; and

n=i* 4l 4+m.

Inthe figwre n =20,i =3,I =6, m = 5.
The number of partitions of / (into at most / parts) is, after § 19.3, the
coefficient of x! in

1
(I —=x)(1 =~ x2)...(1 —xi)’

and the number of partitions of m (into parts not exceeding i) is the
coefficient of x in the same expansion. Hence the coefficient of = in

1 2
[(1-x)(1-x2),.,(z—~xf)} ’
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orof x" in

2
xi

(1 - x)2(1 —x)2 .. (1 —x)?’

is the number of possible pairs of tails in a partition of » in which the Durfee
square is i2. And hence the total number of partitions of » is the coefficient
of x” in the expansion of

x x?

taorttaoara - T

:-2

1

X
+ —x2(1 —x2)2.. . (1 — ¥)? oo

This proves the theorem.
There are also simple algebraical’ proofs.

19.8. A theorem of Jacobi. We shall require later certain special cases
of a famous identity which belongs properly to the theory of elliptic
functions,

TueoreM 352. If |x| <1, then

v ¢]
(19.8.1) [T{0 = + 5121 + 2 127h}
. n=}
=1+ Zx"z(z” 2 = Zx"zz"
n=1 —00

for all z except z = 0.

The two forms of the series are obviously equivalent.
Let us write

P(x,2) = Q(OR(x, 2z,

¥ We use the word ‘algebraical’ in its old-fashioned sense, in which it includes elementary manipu-
lation of power series or infinite products. Such proofs involve (though sometimes only superficially)
the use of limiting processes, and are, in the strict sense of the word, ‘analytical’; but the word ‘analyt-
ical’ is usually reserved, in the theory of numbers, for proofs which depend upon analysis of a deeper
kind ¢usually upon the theory of fupctions of a complex varisble).
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where

o0 o0
o =[]0 -, Rixz=[]a+x""2).
n=1

n==l

When |x] < 1 and z # 0, the infinite products

[Ta+uw, [Ta+w>'zn, [Ta+r'z"")

n=1 n==l n=]

are all convergent. Hence the products Q(x), R(x,2), R(x, z~1) and the
product P(x, z) may be formally multiplied out and the resulting terms col-
lected and arranged in any way we please; the resulting series is absolutely
convergent and its sum is equal to P(x, z). In particular,

P(r,z) = ) anx)z",

R 00
where a,(x) does not depend on z and
(19.8.2) a_n(x) = ap(x).

Provided x # 0, we can easily verify that

(1 +x2)R(x, 2x°) = R(x,2), RO,z7'x%) = (1 +z"x"HR(x,z7Y),

so that xzP(x, zx%) = P(x,z). Hence

oo

Z g, (02" = E a,(x)z".

a=—00 a=—00

Since this is true for ail values of z (except z = 0) we can ¢quate the
coefficients of z” and find that a,,1(x) = x2"*+1a,(x). Thus, forn > 0, we
have

(2n+1)+2n—D+-+1 n+1)?

pi1(X) =X ap(x) =x ag(x).

By (19.8.2) the same is true when n+1 < 0 and so a,(x) = x"zag (x) for all
n, provided x # 0. But, when x = @, the result is trivial. Hence

(19.8.3) P(x,z) = ag(x}S(x,2),
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where

S(x,z) = i g

e 00

To complete the proof of the theorem, we have to show that gg(x) = 1.

If z has any fixed value other than zero and if [x] < % (say), the products
Q(x), R(x,z), R(x,z~') and the series S(x, z) are all uniformly convergent
with respect to x. Hence P(x, z) and S(x, z) represent continuous functions
ofxand,as x — 0,

Pix,z) > P(0O,z)=1, S{,z)— 500,2)=1.

It follows from (19.8.3) that ag(x) — lasx — 0.
Putting z == i, we have

(19.8.4) SO =1+2) (~1)* = 5G4, —1).

nw=l

Again

00 o0
Rec,DRG, 7y = [T{a + o Ha — i H) = [T a +x*2),

=1 n=1

o0

ow =[Ja-*=T]{a-x*"a-x*"2%},
n=1

n=1

and so

(1985 PG =[]{0~x*"0 -4}
n=1

=[T{a == = x¥H2} = Pt ~1).

n=]

Clearly P(x%, —1) # 0, and so it follows from (19.8.3), (19.8.4), and
(19.8.5) that ag(x) = ag(x*). Using this repeatedly with x* x#,x%, ...
replacing x, we have

ag(x) = ap(x) = ... = ﬂc(xd'&)
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for any positive integer k. But |x| < 1 and so x¥ — 0ask — oco. Hence

ag(x) = lim ag(x) = 1.
x—0

This completes the proof of Theorem 352.

19.9. Special cases of Jacobi’s identity. If we write x* for x, —x! and
x' for z, and replace n by n+1 on the left-hand side of (19.8.1), we obtain

(19.9.1) ]‘[ (1 — xYortk=lyy _ doth+ly g 2ent2kyy
=0

o
. Z (_ l)nxkn2+fn

N —00

{(19.9.2) H {(1 + x”"“*“"‘f)(; _.x2b!+k+l)(§ _ x2kn+2k)}

n={}

" i xkn2+1n.

n=—00

Some special cases are particularly interesting.
(k= 1,1=0gives

1_[ ((2 wx2n+l)2(1 _x2n+2)} _ Z (__l)ﬂxnz’

n=0 n=:— 00
o o] o0

]_I {(1 +x2ﬂ+l)2(i Wx2n+2)} — Z xnz,
n=0_ n=—00

two standard formulae from the theory of elliptic functions.
(i) k = 3,1 = § in (19.9.1) gives

ol oo
I_I [(i _ x3n+i)(1 _ x3n+2)(1 — x3n+3)] -~ Z (_ﬂ_l)nxénﬁn-i-l)

n=>0 n=—oc
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or
ThHeOREM 353
(1 —x3(1 —xz)(l —x Z (- Z)nxzn(.'in-t-i)
n=m—00

This famous identity of Euler may also be written in the form

(19.9.3) (1 - -xHa-=x%...

o0 .
=1+ (=1)" [x;‘m@m—z) .+x§n(3n+1)}

nwsl

=1 -x-~x2+x5+x7—x]2wxis+....

(iii) k = I = 4 in (19.9.2) gives

[T{a+xa -2} = §° xintnsd)

nz==() A O

which may be transformed, by use of (19.4.7), into
Trmorem 354: |

(1 -x3)( —-xH{1 —x%) ..

) -— 3 6 10 PR
Ao (= = hr+x+x7+x 7+

Here the mdxces on the nght are the tnangular numbers. !
(1v)k_- =3 5 and k = 2’1”" 5 in (19.9.1) give

THEOREM 3155:

JTia == — x5+ (1 — x5+5)} = ¥ (— 1)t n(n+3)

n:=={) ne= 00

TuroreM 356:

I_I {(1 _xﬂn+2)(l Wx5ﬂ+3)(1 Wx5n+5)} - Z: (__l)nx%n(Sn-i-l)_

n==() =

t The numbers %n(n»% 1}
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We shall require these formulae later.
) 1 oy )
As a final application, we replace x by x7 and z by x2¢{ in (19.8.1). This
gives

00 oG
[T{ -+ +2 e} = 3 xinetgn
n=1 P e O

or

A+ hT{a-xa+x"pa +x"1¢hH})

n=1

] oo
= @+ gD,

n=0
where on the right-hand side we have combined the terms which correspond
ton = mand n = —m1. We deduce that

(19.9.4) (A =x"(1+x"0)0 +x"¢ )

n=1

— i ;" (l_-*__iit) xim(miwl)
14

=)

oG
_ Zxém(m+l);—m(z PPy R )

m=0

forall £ except £ =0 and { = — 1. We now suppose the value of x fixed
and that { lies in the closed interval «w% ¢ —%. The infinite product
on the left and the infinite series on the right 0of (19.9.4) are then uniformly
convergent with respect to . Hence each represents a continuous function
of ¢ in this interval and we may letf —» —1.

We have then

THEOREM 357:

(1 =23 = 3" (=) @m 4 D™+,

n=1 m==0)

This is another famous theorem of Jacobi.
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19.10. Applications of Theorem 353. Euler’s identity (19.9.3) has a
striking combinatorial interpretation. The coefficient of x” in

(1 -x)01 —xH(1 —x%. ..
is
(19.10.1) > b,

where the summation is extended over all partitions of n into unequal parts,
and v is the number of parts in such a partition. Thus the partition 3+2+1 of
6 contributes (—1)3 to the coefficient of x®. But (19.10.1) is E(n) — U(n),
where E(n) is the number of partitions of n into an even number of unequal
parts, and U (n) that into an odd number. Hence Theorem 353 may be
restated as

Turorem 358. E(n) = U(n) except when n= %k(Sk + 1), when
E(n) — Un) = (—DE.
Thus
T=6+1=54+2=44+3=44+241,

E(D =3, UMN=2 EN-UD=]1,
and
7=1.2.3.241), k=2

The identity may be used effectively for the calculation of p(n). For

(I=x—x*+x +x"~..) [i +Zp(n)x”]
I

_ i—x-x2+x5+x7—... 1
T Q-0 =x1 -x3)...

Hence, equating coefficients,

(19.10.2)
py—~pn—D~pn—2+pn~5+...

+ (—=fpln ~ 3Kk — D} + (= D¥p{n — 2kGk + D} +--- = 0.
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The number of terms on the left is about 2,/ (%n) for large n.
Macmahon used (19.10.2) to calculate p(n) up to n = 200, and found that

p(200) = 3972999029388.

19.11. Elementary proof of Theorem 358. There is a very beauti-
ful proof of Theorem 358, due to Franklin, which uses no algebraical
machinery.

We try to establish a (1,1) correspondence between partitions of the two
soris considered in § 19.10. Such a correspondence naturally cannot be
exact, since an exact correspondence would prove that E(n) = U(n) for
all n.

We take a graph G representing a partition of n into any number of
unequal parts, in descending order. We cal! the lowest line 48

L A L

» » - L ] L ] .- - L » » . -

/ A

. & a - LI | . s - -
E B

- - - - - -

e

A B
G H

(which may contain one point only) the ‘base’ 8 of the graph. From C, the
extreme north-east node, we draw the longest south-westerly line possible
in the graph; this also may contain one node only. This line CDE we call
the ‘slope’ o of the graph. We write 8 < o when, as in graph G, there are
more nodes in o than in 8, and use a similar notation in other cases. Then
there are three possibilities.

(a) B < 0. Wemove B into a position parallel to and outside o, as shown
in graph H. This gives a new partition into decreasing unequal parts, and
into a number of such parts whose parity is opposite to that of the number
in G. We call this operation O, and the converse operation (removing o
and placing it below 8) 2. It is plain that © is not possible, when 8 < o,
without violating the conditions of the graph.

(b) B =o. Inthis case O is possible (as in graph I) unless 8 meets o (as
in graph J), when it is impossible. £2 is not possible in either case.

(c} B > o. In this case O is always impossible. 2 is possible (as in
graph K) unless 8 meets o and B = o+1 (as in graph L). Q is impossi-
ble in the last case because it would lead to a partition with two equal
parts,
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L] L] L] - ./ L L] L] L] »
L] » » » - - L) L)
Wrrang renatesnndt

K | 9

To sum up, there is a (1, 1) correspondence between the two types of
partitions except in the cases exemplified by J and L. In the first of these
exceptional cases # is of the form

k+ G+ 1)+ + k=D =368 - k),

and in this case there is an excess of one partition into an even number
of parts, or one into an odd number, according as & is even or odd. In the
second case # is of the form

k+ 1)+ (k+2)+-- +2k =33k +k),

and the excess is the same. Hence E(n) — U (n) is 0 unless n = % Gk2 L k),
when E(n) — U(n) = (—1)*. This is Euler’s theorem.

19.12. Congruence properties of p(n). In spite of the simplicity of the
definition of p(n), not very much is known about its arithmetic properties.

The simplest arithmetic properties known were found by Ramanujan.
Examining Macmahon’s table of p(n), he was led first to conjecture,
and then to prove, three striking arithmetic properties associated with the
moduli 5, 7, and 11. No analogous results are known to modulus 2 or 3,
although Newman has found some further results to modulus 13.

TuroREM 359:

p(5m -+ 4) = 0 (mod 5).
THEOREM 360:

p(m -+ 58) =0 (mod 7).
TrEOREM 361*:

p(i1lm -+ 6) =0 (mod 11).
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We give here a proof of Theorem 359. Theorem 360 may be proved in
the same kind of way, but Theorem 361 is more difficult.
By Theorems 353 and 357,

x{(1 —x)(1 —x%). . J* =x(1 =0 —x%).. 1 =0 =2, )
- x(1 — x — x? +x )
x (1 =3x+5x—7x%4..)
ran—00 y=0
where
k= k(r,s) =1+ 3rQ@r+ 1)+ 3s(s + 1).

We consider in what circumstances £ is divisible by 5.
Now

200+ D? + (2s + 1) = 8k — 10r* — 5 = 8k (mod 5).
Hence &k = 0 (mod 5) implies
200+ 1?2 + (25 + 1)? = 0 (mod 5).
Also
20+ 1D*=0,2,0r3, Qs+ 1)?=0,1, or4 (mod 5),

and we get 0 on addition only if 2(r+1)? and (2s+1)? are each divisible by
5. Hence k can be divisible by 5 only if 2s+1 is divisible by 5, and thus the
coefficient of x>™+3 in

x{(1 —x)(1 = x%)...}*

is divisible by 5.

Next, in the binomial expanswn of {1 —x)™3, all the coefficients are divi-
sible by S, except those of 1, x°, x'¢,..., which have the remainder 1.7 We
may express this by writing

1 1
a—x5 s T3 (mod 5);

t Theorem 76 of Ch, VI.
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the notation, which is an extension of that used for polynomials in § 7.2,
implying that the coefficients of every power of x are congruent. It follows
that

1 —x°

—_— mm } d5
T {mod 5)
and
A =xH1 -xHa -x%. ..
(A= - -x3.. ]
Hence the coefficient of x>*3 in

(=51 —x19 ..
A0 -5, ..

= | (mod 5).

s 1=-xHA-x1...
(A -x0-x3...)

C=x {1 -0 =5 )

is a multiple of 5. Finally, since
x _x(l—xs)(lw-xm)...
Ad-x)q-x3... ~ (Q-x)1—-x%...
x(1+x+x0+..)01 +x10 404 ..,

the coefficient of x>"*5 in

x
(1 —x)(1 ~x2)(1 —x3)...

mx-i-Zp(n_ 1)x"
2

is a multiple of 5; and this i1s Theorem 359.

The proof of Theorem 360 is similar. We use the square of Jacobi’s series
1 — 3x + 5x° — 7x% + ... instead of the product of Euler’s and Jacobi’s
series, .

There are also congruences to moduli 52,72 and 112, such as

p(25m + 24) = 0 (mod 5%).
Ramanujan made the general conjecture that if
8 = 597°11°,
and

24n = 1 {mod §),
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then
p(n) =0 (mod 3).

It is only necessary to consider the cases § = 5%, 75, 11¢, since all others
would follows as corollaries.

Ramanujan proved the congruences for 52 72 112, Kretmar that for 53,
and Watson that for general 5°. But Gupta, in extending Macmahon’s table
up to 300, found that '

p(243) = 133978259344888

is not divisible by 73 = 343; and, since 24 . 243 = 1 (mod 343), this
contradicts the conjecture for 7°. The conjecture for 7% had therefore to be
modified, and Watson found and proved the appropriate modification, viz.
that p(n) = 0 (mod 7%) if b > 1 and 24n = 1 (mod 722-2),

D. H. Lehmer used a quite different method based upon the analytic
theory of Hardy and Ramanujan and of Rademacher to calculate p(n) for
particular #. By this means he verified the truth of the conjecture for the
first values of n associated with the moduli 11°> and 114. Subsequently
Lehner proved the conjecture for 11° and Atkin for general 11¢.

Dyson conjectured and Atkin and Swinnerton-Dyer proved certain
remarkable results from which Theorems 359 and 360, but not 361, are
immediate corollaries. Thus, let us define the rank of a partition as the
largest part minus the number of parts, so that, for example, the rank of
a partition and that of the conjugate partition differ only in sign. Next we
arrange the partitions of a number in five classes, each class containing
the partitions whose rank has the same residue (mod 5). Then, if n = 4
(mod 5), the number of partitions in each of the five classes is the same and
Theorem 359 is an immediate corollary. There is a similar result leading to
Theorem 360.

19.13. The Rogers—Ramanujan identities. We end this chapter with
two theorems which resemble Theorems 345 and 346 superficially, but are
much more difficult to prove. These are

THEOREM 362:

x x4 x°
1+

%t d-o0-x T T=xa —xH(1 —x?) e
1
TU-0~x8.. (-1 -2...
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(d—x)(1=x%...(1 —x™)

ie
o0 x’"2
(19.13.1) 1+Zl: Y R Ty
=11 1
- . (1 mx5m+l)(1 ._.x5m+4)'
THEOREM 363:
xz x6 xu
I+t (1 —x)(1'—x2) * (1 —x2)(1 —x3) +
]
T U= =% ... (1 =xH1 —x5).. .
ie.
oo nlm+1}
(19.13.2) 1+
|

> 1
= I;I (1 _x5m+2)(1 M_xSm-i»S)‘

The series here differ from those in Theorems 345 and 346 only in that x*
is replaced by x in the denominators. The peculiar interest of the formulae
lies in the unexpected part played by the number 5.

We observe first that the theorems have, like Theorems 345 and 346, a
combinatorial interpretation. Consider Theorem 362, for example. We can
exhibit any square m? as

m*=143+54+ - 4+Qm-1)

or as shown by the black dots in the graph M, in which m = 4. If we now take
any partition of n — m? into m parts at most, with the parts in descending
order, and add it to the graph, as shown by the circles of M, where m = 4
and n = 4%+11 = 27, we obtain a partition of »n (here 27 = 11+8+6+2) into
parts without repetitions or sequences, or parts whose minimal difference
is 2. The left-hand side of (19.13.1) enumerates this type of partition of n.



19,13 (364-5)} PARTITIONS : 388

* &2 = + = B 6 O D
ooooo a 2o G

+ a « & O o

M

On the other hand, the right-hand side enumerates partitions into num-
bers of the forms Sm -+ 1 and 5m + 4. Hence Theorem 362 may be restated
as a purely ‘combinatorial’ theorem, viz.

TueOREM 364, The number of partitions of n with minimal difference 2
is equal to the number of partitions into parts of the forms 5Sm + 1 and
5m+ 4. '

Thus, when n = 9, there are $ partitions of each type,
9, 841, 742, 643, 5+3+1
of the first kind, and

9, 64+1+1+1, 44+4+1, 4+14+1+1+1+1,
P+l 4141414141141

of the second.
Similarly, the combinatorial equivalent of Theorem 363 is

“TurorEM 365. The number of partitions of n into parts not less than 2,
and with minimal difference 2, is equal to the number of partitions of n into
parts of the forms Sm + 2 and 5m + 3.

We can prove this equivalence in the same way, starting from the identity
mim+1)=2+4+6+---+2m

The proof which we give of these theorems in the next section was found
independently by Rogers and Ramanujan. We state it in the form given by
Rogers. It is fairly straightforward, but unilluminating, since it depends
on writing down an auxiliary function whose genesis remains obscure. It
is natural to ask for an elementary proof on some such lines as those of
§ 19.11, and such a proof was found by Schur; but Schur’s proof is too
elaborate for insertion here. There are other proofs by Rogers and Schur,
and one by Watson based on different ideas. No proof is really easy (and it
would perhaps be unreasonable to expect an easy proof).
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19.14. Proof of Theorems 362 and 363. We write

o1 | > 1
Py=1,P Wg*i'm—xs, Qr:Qr(a)mEI—ax"-

Ar) = 3r(S5r+ 1),
and define the operator n by

nf(a) = flax).
We introduce the auxiliary function

o0
(19.14.1)  Hp = Hy(a@) = Y _ (1Y@ O~ (1 — a"x*™")P,Q,,

P&O

where m = 0, 1, or 2. Qur object is to expand H; and H; in powers of a.
We prove first that

(19.14.2) Hp— Hyy =a" ‘0w (m=1,2).
We have
oo
Hp — Hpt = ) (=)@ Cp P10y,
r=0
where

Cor =57 — "™ — x“_'"l)’ + g™ lyrim=D)
= g™l D — ) (- X,
Now
(0—axNQr=0rs1, (=xVPr=P_;, 1-x"=0,

and so

o0
Hp — Hpyooy = Z (M1)4!"“2.r'+m—lxl(r')ﬂw(.i'i':“l)};,;er’__i_1
Ff)

00
+ Z (— 1)r'aZJr'xMr)~~—1u'u'1-_-;““wi 0.
Ful
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In the second sum on the right-hand side of this identity we change » into
r + 1. Thus

od
Hp = Hn1 = ) (~1) DmrPrQrs1,
r=0
where
Dy = a2r+m—1xl(r)+r(m—1) _ a2(r+1)x).(r+l)—m(r+i)
- am—f'l'z"xl(")-i-?‘(m—i)(l _ a3-mx(2r+i)(3—m))

= a1y [ gV A= Gom g a3-»mx2r(3—m))] ,

since A(r + 1) — A(r) = Sr + 3. Also 0,4+ = 10, and so

Hpy — Hpy—y

o0
— ammlnZ(_l)raerA(r)wrG—m)(l _ a3mmx2r(3—m))PrQr

r==_0
=a" \nHs_,
which is (19.14.2).

If weput m =1 and m = 2 in (19.14.2) and remember that Hy = 0,
we have

(19.14.3) H) = nH,
Hy; — Hy = anH},

so that

(19.14.4) Hy = nHy + an*Hj.

We use this to expand H2 in powers of a. If
Hy=co4+cra+-- = cha‘,

where the ¢, are independezit of a, then cg = 1 and (19.“14.4) gives

et =Y cx’d+ Y et
Dot =3 2 esxatt,
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Hence, equating the coefficients of a°, we have

1 252 22 1)

s Ly = pomeCs—1

— = x*6-h
b x® (1—x)...(1--x% Pe.

Hencc
o0
Hy@ =Y ax¢ VP,
s=0

If we put @ = x, the right-hand side of this is the series in (19.13.1). Also
P,Q,(x) = Py and so, by (19.14.1),

o0
Ho(x) = Poo Z (—1) (1 — 2@+
r=>0

Tt POQIZ( l)rx)t(f') + Z ( 1)!" l(?‘”*l}+2(2f—i}}

r=1
- -POO{ i e Z (.___ i)r(xér(5r+l)+x§r(5r«—l))}.
r=1
Hence, by Theorem 356,

oo
Hy(x) = Poo [ [ {(1 =11 = *")(1 = x¥+%)}

n=0

1
= };!} (1 — x5n+l)(1 _x5n+4)'

This completes the proof of Theorem 362.
Again, by (19.14.3),

Hi(@) = nHa(@) = Ha(ax) = Y &% P,
s=0

and, for a = x, the right-hand side becomes the series in (19.13.2). Using
(19.14.1) and Theorcm 355, we complete the proof of Theorem 363 in the
same way as we did that of Theorem 362.
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19.15. Ramanujan’s continued fraction. We can write (19.14.14) in
the form

Hy(a,x) = Hy(ax, x) + aHy(ax?, x)
so that
Hy(ax; x) = Hy(@?, x) + axHz(ax, x).
Hence, if we define F(a) by

F(a) = F(a,x) == Hi(a,x) = nH(a,x) = Ha(ax,x)
0214
i—x "t (1 —x)(1 — x?) ey

gy QS

then F'{a) satisfies

F(ax") = F(ax**) 4+ ax"t Fax"12).

Hence, if
. F(ax")
I S F(axn+1)!
we have
- gxtl
un = 1 '+" ;
Upid1

and hence ug = F(a)/F(ax) may be developed formally as

F(a) ax ax*  ax3

Fao T3ty i+.

(19.15.1)

a ‘continued fraction’ of a different type from those which we considered
inCh. X,

We have no space to construct a theory of such fractions here. It is not
difficult to show that, when x| < 1,

ax ax* ax®
1 A o
14 i
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tends to a limit by means of which we can define the right-hand side of
(19.15.1). If we take this for granted, we have, in particular,

FO) |, * * X
F(x) 1+ I+14--
and so
I+x x* Ml-»xz—wx3~}~x9+..‘
I+14+- lox—xt4xT 4.

_q —xA —-xTy ... -xDHA - xB) ...
T =00 -5 .. (1~ =20

It is known from the theory of elliptic functions that these products and
series can be calculated for certain special values of x, and in particular
when x = e~ #"v* and & is rational. In this way Ramanujan proved that,
for example,

g= 2 g—4m  ,—bn {J(S + ,\/5) _ V341 }e§n'

L P T D 2 2

NOTES

§19.1. There are general accounts of the earlier theory of partitions in Bachmann, Niedere
Zahlentheorie, ii, ch. 3; Netto, Combinatorik (second ed. by Brun and Skolem, 1927); and
MacMahon, Combinatory analysis, ii. For references to later work, see the survey by
Gupta {J. Res. Nat. Bur Standards B74 (1970), 1-29); Andrews, Partitions, Andrews
and Eriksson, fnteger Partitions; Ono and Ahlgren (Notices Amer. Math. Soc., 48 (2001),
978-84Y;, Ono, The Web of Modularity.

§§19.3-5. All of the formulas of these sections are Euler's. More extensive developments
of these methods can be found in Andrews, Partitions, ch. 2 and Andrews and Ernksson,
Integer Partitions, ch. 5, For historical references, see Dickson, History, i, ch.3.

§19.6. Theorem 348 (the g-binomial theorem) and Theorem 349 (the g-binomial series)
ar¢ not in Euler’s works. Cauchy studied them, but probably they predate him. Further appi-
ications of these results appear in Andrews, Partitions, ch. 3, and Andrews and Eriksson,
ch. 7.

§19.7. While this formula is often attributed to Euler, its first published appearance is
by lacobi, Fundamenta nova, §64. Indeed, Jacobi needed a generalization of Theorem 351
for his original proof of Theorem 352.

§19.8, Theorem 352 is often referred to as Jacobi’s triple product identity, (Jacobi,
Fundamenta nova, §64). The theorem was known to Gauss, The proof given here is ascribed:
to Jacobi by Enneper; Mr. R. F. Whitehead drew our attention to it. Wright (/. London Math.
Soc. 40 (1965), 55-57) gives a simple combinatorial proof of Theorem 352, using arrays
of points as in §§19.5, 19.6, and 19.11. A full history of the method used by Wright and
an extensive application of it are given by Andrews (Memoirs of the Amer. Math. Soc.
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49 {1984)). Alternative proofs appear in Andrews, Partitions, ch. 2, and in Andrews and
Eriksson, Integer partitions, ch. 8.

§19.9. Theorem 353 is due to Euler; for references see Bachmann, Niedere Zahlentheorie
ii, 163, or Dickson, History, ii. 103. Theorem 354 was proved by Gauss in 1808 (Werke,
ii. 20), and Theorem 357 by Jacobi (Fundamenta nova, §66). Professor D. H. Lehmer
suggested the proof of Theorem 357 given here.

§19.10. MacMahon’s table is printed in (Proc. London Math Soc. (2) 17 (1918), 114~
15), and has subsequently been extended to 600 (Gupts, ibid 39 (1935}, 142-9, and
42 (1937), 546-9), and to 1000 (Gupta, Gwyther, and Miller, Roy. Soc. Math. Tables 4
{Cambridge, 1938)). Recently Sun Tae Soh has prepared a program for computing p(n) for
n < 22,000,000 {cf. http://trinitas. mju.ac. kr/intro2numbpart. html]}.

§19.11 F. Franklin, (Comptes rendus, 92 (1881), 448-50). We observe that, if we
use this method to prove Theorem 358, i.e. Theorem 353, we can shorten the proof of
Theorem 352 in §19.8. We proceed as before up 10 (19.8.3), Wethenputx = 33/2 z = —y1/2
and have

pen = [T{(1-*) (=) (1=22)] = [T 0 -

m=1

and

oo
Sxz)= (~1yy3nrth) - py )

R 00

by Theorem 353, so that ap{x) = 1.

§19.12. See Ramanujan, Collected Papers, nos. 25, 28, 30. These papers contain com-
plete proofs of the congruences to moduli 5 7, and 11 only. On p. 213 he states identities
which involve the congruences to moduli 52 and 72 as corollaries, and these identities were
proved later by Darling (Proc. London Math. Soc. {2) 19(1921), 350-72) and Mordell {ibid.
20 (1922}, 408-16}. An unpublished manuscript of Ramanujan dealt with many instances
of his conjecture; this document has been retrieved by Bemdt and Ono (The Andrews
Festschrift, Springer, 2001, pp. 39-110).

The papers referred to at the end of the section are Gupta’s mentioned in the Note to
§19.10; Kretmar (Bulletin de l'acad. des sciences de I'URSS (7) 6 (1933), 763-800);
Lehmer (Journal London Math. Soc. 11 {1936), 114-18 and Bull. Amer Math. Soc. 44
(1938), 84-90);, Watson (Journal fiir Math. 179 (1938), 97-128); Lehner (Proc. Amer
Math. Soc. 1 (1950), 172-81); Dyson (Eureka 8 (1994) 10-15); Atkin and Swinnerfon-
Dyer (Proc. London Math. Soc. (3) 4 (1954), 84-106). Atkin (Glasgow Math. J. 8 (1967),
14--32) proved the 11° result for general ¢ and has also found a number of other congruences
of a more complicated character.

More recently Ono, The Web of Modularity, and his colleagues have vastly expanded
our knowledge of partition function congruences. Andrews and Garvan {Bull Amer. Math.
Soc. 18 (1998}, 167-71) found the ‘crank’ conjectured by Dyson; Mahiburg (Proc. Nat.
Acad. Sci. 102 (2005), 15373-76) has related the crank to the cormucopia of congruences
discovered by Cno,

§§ 19.13~14. For the history of the Rogers—Ramanuijan identities, first found by Rogers
in 1894, see the note by Hardy reprinted on pp. 344--5 of Ramanujan’s Collected papers,
and Hardy, Ramanujan, ch. 6. Schur’s proofs appeared in the Berliner Sitzungsberichte
(1917), 302-21, and Watson’s in the Journal London Math. Soc. 4 (1929}, 4—-9 Hardy,
Ramanujan, 95-99 and 107-11, gives other variations of the proofs.
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Selberg, Avhandlinger Norske Akad. (1936}, no. 8, has generalized the argument of
Rogers and Ramanujan, and found similar, but less simple, formulae associated with the
number 7. Dyson, Journal London Math. Soc. 18 (1943), 35~-39, has pointed out that these
also may be found in Rogers's work, and has simplified the proofs considerably.

More recently, development of the theory and extension of the Rogers—Ramanujan iden-
tities has been very active. Accounts of these discoveries can be found in surveys by Alder
{Amer. Math. Monthly, 76 (1969}, 733-46); Alladi (Number Theory, Paris 1992-53, Cam-
bridge University Press (1995), 1-36); Andrews (ddvances in Math., 9(1972), 10-51; Bull.
Amer. Math. Soc., 80 (1974), 1033—52; Memoirs Amer. Math. Soc., 152 (1974) 1+-86 pp.;
Pac. J. Math. 114 (1984), 267--83). Applications in physics are surveyed by Berkovich and
MeCoy (Proc. ICM 1998, 111, 163-72). See also Andrews, Partitions.

Mr. C. Sudler suggested a substantial improvement in the presentation of the proof in
§ 19.14.

§19.13. Recent discoveries concerning the Rogers—Ramanujan continued fraction are
discussed in Andrews and Berndt, Ramanujan 5 Lost Notebook, Part I, chs, 1-8.
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THE REPRESENTATION OF ANUMBER
BY TWO OR FOUR SQUARES

20.1. Waring’s problem: the aumbers g(k) and G(k). Waring’s
problem is that of the representation of positive integers as sums of a fixed
number s of non-negative kth powers. It is the particular case of the general
problem of § 19.1 in which the q are

ok, 1% 2k 3% |

and s is fixed. When & = 1, the problem is that of partitions into s parts of
unrestricted form; such partitions are enumerated, as we saw in Ch. XIX,
by the function
1
(1-x)(1—x%)... A=x%
Hence we take & 2> 2.

It is plainly impossible to represent all integers if s is too small, for
example if s = 1. Indeed it is impossible if s < k. For the number of
values of x; for which x’{ < n does not exceed n'/% 4 1; and so the number
of sets of values xy, x3, . .., xzx—1 for which

XM+t <n
does not exceed
(nlﬂ: + l)k—l = n(k—vi)./k _*_Zo(n(k—;l)ﬂt).

Hence most numbers are not representable by & — 1 or fewer kth powers.
The first question that arises is whether, for a given £, there is any fixed
s = s(k) such that

(20.1.1) n=xfrxk 44X

is soluble for every n.

The answer is by no means obvious. For example, if the a of § 19.1 are the numbers
1,2,22,...,27, .,

then the number
2"t 1= 142428 4. 42"
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is not representable by less than m + | numbers a, and we have m + 1 — 00 when
n = 2"t | 5 oo. Hence it is not true that all numbers are representable by a fixed
number of powers of 2.

Waring stated without proof that every number is the sum of 4 squares,
of 9 cubes, of 19 biguadrates, ‘and so on’. His language implies that he
believed that the answer to our question is affirmative, that (20.1.1) is
soluble for each fixed &, any positive »n, and an 5 = s(k) depending only
on k. It is very improbable that Waring had any sufficient grounds for his
assertion, and it was not until more than 100 years later that Hilbert first
proved it true.

A number representable by s kth powers is plainly representable by any
larger number. Hence, if all numbers are representable by s kth powers,
there is a least value of s for which this is true. This least value of s is
denoted by g (k). We shall prove in this chapter that g(2) = 4, that is to say
that any number is representable by four squares and that four is the least
number of squares by which all numbers are representable. In Ch. XXI we
shall prove that g(3) and g(4) exist, but without determining their values.

There is another number in some ways still more interesting than g(k).
Let us suppose, to fix our ideas, that £ = 3. It is known that g(3) = 9;
every number is representable by ¢ or fewer cubes, and every number,
except 23 =2.2>4+7.1% and

239=2.4°+4.33+3. 13

can be represented by 8 or fewer cubes. In fact, all sufficiently large num-
bers are representable by 7 or fewer. Numerical evidence indicates that
only 15 other numbers, of which the largest is 454, require so many cubes
as 8, and that 7 suffice from 455 onwards.

It is plain, if this be so, that 9 is not the nurnber which is really most signi-
ficant in the problem. The facts that just two numbers require 9 cubes, and,
if it is a fact, that just 15 more require 8, are, so to say, arithmetica! flukes,
depending on comparatively trivial idiosyncrasies of special numbers.
The most fundamental and most difficult problem is that of deciding, not
how many cubes are required for the representation of e/l numbers, but
how many are required for the representation of all large numbers, i.e. of
all numbers with some finite number of exceptions.

We define G(k) as the least value of s for which it is true that all suf-
ficiently large numbers, i.e. all numbers with at most a finite number of
exceptions, are representable by s kth powers. Thus G (3) < 7. Onthe other
hand, as we shall see in the next chapter, G (3) > 4; there are infinitely
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many numnbers not representable by three cubes. Thus G(3) is 4, 5, 6, or 7;
it is still not known which.
It is plain that
G (k) < gk)
for every k. In general, G(k) is much smaller than g(k), the value of g(k)
being swollen by the difficulty of representing certain comparatively small
numbers.,

20.2. Squares. In this chapter we confine ourselves to the case k = 2.
Our main theorem is Theorem 369, which, combined with the trivial result
that no number of the form 8m + 7 can be the sum of three squares, shows
that

g2 =0G@) =4.
We give three proofs of this fundamental theorem. The first (§ 20.5) is
¢lementary and depends on the ‘method of descent’, due in principle to
Fermat. The second (§§ 20.6-9) depends on the arithmetic of quaternions.
The third (§ 20.11-12) depends on an identity which belongs properly to
the theory of elliptic functions (though we prove it by elementary algebra),
and gives a formula for the number of representations.

But before we do this, we return for a time to the problem of the
representation of a number by two squares.

TueOREM 366. A number n is the sum of two squares if and only if all
prime factors of n of the form 4m + 3 have even exponents in the standard

form of n.

This theorem is an immediate consequence of (16.9.5) and Theorem 278.
There are, however, other proofs of Theorem 366, some independent of
the arithmetic of k(/), which involve interesting and important ideas.

20.3. Second proof of Theorem 366, We have to prove that n is of the
form of x> + y? if and only if

(20.3.1) n = n?ny,

where n7 has no prime factors of the form 4m + 3.
We say that
n = x* -+ }’2

is a primitive representation of n if (x, y) == 1, and otherwise an imprimitive
representation.

t See §20.10. 1 See the footnote fo p. 372.
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TugoReM 367. If p=4m + 3 and p|n, then n has no primitive represen-
tations.

If n has a primitive representation, then

P2 +3%, @y =1,

andsop t x,p { y. Hence, by Theorem 57, there is a number / such that
y = Ix {mod p) and so

20+ 12 =x* +y* =0 (mod p).

It follows that
1+ 12 =0 (mod p)

and therefore that —1 is a quadratic residue of p, which contradicts
Theorem 82.

Tueorem 368. If p = 4m + 3, pfln, p°*! | n, and c is odd, then n has
no representations { primitive or imprimitive).

Suppose that # = x? + )%, (x,5) = d; and let p” be the highest power
of p which divides d. Then

x=dX, y=dY, (X,Y)=1,
n=d* X+ Y% =d*N,

say. The index of the highest power of p which divides N is ¢ — 2y, which
is positive because ¢ is odd. Hence

N=X*+7Y* (X,")=1, piN;

which contradicts Theorem 367.
It remains to prove that n is representable when » is of the form (20.3.1),
and it is plainly enough to prove n; representable. Also

(x% +Y¥) (x% *‘J’%) = (x1x3 + y1y2)? + (x1y2 — x1)?,

so that the product of two representable numbers is itself representable.

Since 2 = 12+ 1? is representable, the problem is reduced to that of proving

Theorem 251, i.e. of proving that if p = 4m + 1, then p is representable.
Since —1 is a quadratic residue of such a p, there is an / for which

I? = 1 (mod p).



2031 TWO OR FOUR SQUARES 397

Taking n = [+/p] in Theorem 36, we see that there are integers a and b
such that

I a 1
O<b<fp, |——— e
VP \p bl  byp
If we write
¢ = Ib + pa,
then

le| < /P, 0 <bt+c? <2p.
But ¢ = /b (mod p), and so
B 4 ¢ = b + 126? = b*(1 + 1%) = 0 (mod p);
and therefore
b+t =p,

20.4. Third and fourth proofs of Theorem 366. (1) Another proof
of Theorem 366, due (in principle at any rate) to Fermat, is based on the
‘method of descent’. Toprovethatp = 4m+ 1 is representable, we prove (i)
that some multiple of p is representable, and (ii) that the least representable
multiple of p must be p itself. The rest of the proof is the same.

By Theorem 86, there are numbers x, y such that

(20.4.1) *+y =mp, pitx, pty,

and 0 < m < p. Let mg be the least value of m for which (20.4.1) is soluble,
and write mg for m in (20.4.1). If mp = 1, our theorem is proved.

If mg > 1, then 1 < mp < p. Now mg cannot divide both x and y, since
this would involve

mg | (x* + ¥*) — m| mop — mo| p.
Hence we can choose ¢ and 4 so that
x| = X —~cmg, Y=y —dmg,

i} < jmo,  Iyil < Smo, xP+yi >0,

and therefore

(20.4.2) 0 <x?+y? <2(imo)’ < md.
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Now

x%+yf ﬁxz-{-y?'s{) (mod mp)
or
(20.4.3) x{ + ¥ = mim,

where 0 < m; < mg, by (20.4.2). Multiplying (20.4.3) by (20.4.1), with
m = mg, we obtain

m(z;mrp = (JC2 +y2) (x% +}’%) = (xx; + 1) + Gy~ Xz}’)z .
But

xx| +yy1 = x (x —cmg) + y (y —dmg) = mgX,
xy1 — x1y = x (¥ — dmg) ~ y {(x — cmg) = mgY,

where X = p — cx — dy, ¥ = ¢y — dx. Hence
mp=X2+Y* (0<m <mp),

which contradicts the definition of myg. It follows that mg must be 1.
(2) A fourth proof, due to Grace, depends on the ideas of Ch. I
By Theorem 82, there is a number / for which

> + 1= 0 (mod p).
We consider the points (x, y) of the fundamental lattice A which satisfy
y = Ix (mod p).

These points define a lattice M.T It is easy to see that the proportion of points
of A, in a large circle round the origin, which belong to M is asymptotically
1/p, and that the area of a fundamental parallelogram of M is therefore p.

Suppose that 4 or (£, 1) is one of the points of M nearest to the origin.
Then # = £ and so

—& = I’t = In (mod p),

and therefore B or (—7, ) is also a point of M, There is no point of M inside
the triangle OA4B, and therefore none within the square with sides O4, OB.

' We state the proof shortly, leaving some details to the reader.



20.4 (369-70)] TWOORFOUR SQUARES 399

Hence this square is a fundamental parallelogram of M, and therefore its
area is p. It follows that

g2 +n'=p.

20.5. The four-square theorem. We pass now to the principal theorem
of this chapter.

THEOREM 369 (LAGRANGE’S THEOREM). Every positive integer is the sum
of four squares.

Since
(20.5.1)
(3 +x3 +x3 +x3) 02 + ¥ +33 +53)
= {(xp)n + x2y2 + x3¥3 + x4ya)? + (x1y2 — X291 + X3ya + x4y3)2
+ (s — X391 + Xay2 — Xava)® + (X1ya — xXay1 + x2y3 — x3y2)%,

the product of two representable numbers is itself representable. Also 1 =
12 4 02 4 0% + 0%. Hence Theorem 369 will follow from

TueoreM 370. Any prime p is the sum of four squares.

Our first proof proceeds on the same lines as the proof of Theorem 366
in § 20.4 (1). Since 2 == 1% + 12 4 0% + 0%, we can take p > 2.

It follows from Theorem 87 that there is a multiple of p, say mp, such
that

mp =x§ +x% +x§ +x§,
with x1, x3, x3, x4 not all divisible by p; and we have to prove that the least
such multiple of p is p itself.

Let mgp be the least such multiple. If mp = 1, there is nothing more to
prove; we suppose therefore that mp > 1. By Theorem 87, mg < p.

If my is even, then x; + x7 + x3 + x4 is even and so either (i) xy, x3, x3,
x4, are all even, or (ii) they are all odd, or (iii) two are even and two are
odd. In the last case, let us suppose that x;, x2 are even and x3, x4 are odd.
Then in all three cases

xy+Xx2, Xp—Xx3, x3+x3, X3—X4

are all even, and so

2 2 2 2
1 X1+ x2 Xy =X x3 + x4 X3 — X4
2”"”"_( 2 )*’( 2.)*'( 2 )*’( 2 )
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is the sum of four integral squares. These squares are not all divisible by
p, since x1, x2, x3, x4 are not all divisible by p. But this contradicts our
definition of mo. Hence mg must be odd.

Next, x3, x2, X3, X4, are not all divisible by my, since this would imply

m3 |mgp — melp,

which is impossible. Also mg is odd, and therefore at least 3. We can
therefore choose by, b3, b3, bs so that

Yi == Xj — bf?ﬂ(} (i = 13 23 3! 4)

satisfy
Wil < 3mo, M +¥+yi+¥i> 0.
Then
0 <)} +52 +33 +5% <4 (dmo)’ = m,
and '
¥} +¥3+ ¥4+, =0 (mod mp).
It follows that

A4 +xi+xg=mp (m <p),
WA+ +yi=mom (0 <my < mg);
and so, by (20.5.1),
(20.5.2) mgmip = 2% + 23 4+ 23 + 22,

where z), 23, 23, z4 are the four numbers which occur on the right-hand side
of (20.5.1). But

2= ) xyi= 3 x%(—bmg)=Y xf =0 (mod mp);
and similarly z;, 23, z4 are divisible by mq. We may therefore write
ziz=mgt; ((=1,234;
and then (20.5.2) becomes
mp=8+8+4+12,

which contradicts the definition of mg because m < myg.
It follows that mg = 1,
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20.6. Quaternions. In Ch. XV we deduced Theorem 251 from the
arithmetic of the Gaussian integers, a subclass of the complex numbers of
ordinary analysis. There is a proof of Theorem 370 based on ideas which
are similar, but more sophisticated because we use numbers which do not
obey all the laws of ordinary algebra.

Quaternions' are ‘hyper-complex’ numbers of a special kind. The
numbers of the system are of the form

(20.6.1) a = ag + ariy + aziz + aii,

where agp, aj, a3, a3 are real numbers (the coordinates of @), and iy, 1, i3
elements characteristic of the system. Two quatcmnons are equal if their
‘coordinates are equal.

These numbers are combined according to rules which resemble those of
ordinary algebra in all respects but one. There are, as in ordinary algebra,
operations of addition and multiplication. The laws of addition are the same
as in ordinary algebra; thus

o + B = (ap + apii + aziz + aziz) + (bo + biiy + bziy + bs3iz)
= (ap + bo) + (a1 + b1)iy + (a2 + b2)iz + (a3 + b3)is.
Multiplication is associative and distributive, but not generally commuta-

tive. It is commutative for the coordinates, and between the coordinates
and iy, iy, 2; but
2 .. 2

.2
Je o Jo = je = —}
(20.6.2) ., . A L, . .
iy =1 = ~I3lz, 3l = 12 = —I)3, Iy = I3 = —21}.

Generally,

(20.6.3) aff = (ap + ayiy + aziz + aaiz) (bg + byiy + baiz + b3ia)
= ¢p + iy 4+ c2iy + ¢3i3,

where

co = apbp — a1b) — azby — azbs,
cy = aphy + ayby + azbz — azba,

6.4
(20.64) ¢y = agby — a1bs + axby + a3 by,
¢y = aghs + aiby — axby + a3 by.

T We take the elements of the algebra of quaternions for granted. A reader who knows nothing of
quaternions, but accepts what is stated here, will be able to follow §§ 20.7-9.
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In particular,

(20.6.5)
(ao + ayiy + azi2 + a3iz) (ap — ayiy — aziz — asiz)
ma§+a%+a%+ﬂ§,
the coefficients of /1, iz, i3 in the product being zero.

We shall say that the quaternion o is integral if ag, a1, a2, a3 are either
(i) all rational integers or (ii) all halves of odd rational integers. We are
interested only in integral quaternions; and henceforth we use ‘quaternion’
to mean ‘integral quaternion’. We shall use Greek letters for quaternions,
except that, when a; == a2 = a3 = 0 and so & = ap, we shall use ag both
for the quaternion

ag+0.51 +0.i2+0.43

and for the rationa! integer ay.
The quaternion

(20.6.6) o = gg - ayi} — aziz — aszis
is called the conjugate of @ = ag + ajiy + aziz + azi3, and
(20.6.7) Na = a@ = da = a} + a} + a3 + a

the norm of «. The norm of an integral quaternion is a rational integer. We
shall say that & is odd or even according as Na is odd or even.
It follows from (20.6.3), (20.6.4), and (20.6.6) that

and so
(20.6.8) N(ap) =af.af=cof.Ba=a . NB.G=ait NB=NaNB.

We define o}, when a # 0, by

(20.6.9) al=2,
o

so that

(20.6.10) ' =g g =1.
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If  and a~! are both integral, then we say that o is a unity, and write
@ = €. Since ee~! = 1, NeNe™! = | and so Ne = 1. Conversely, if o
is integral and N = 1, then o' = & is also integral, so that o is a unity.
Thus a unity may be defined alternatively as an integral quaternion whose
normis 1.

If ay, a;, az, a3 are al! integral, and aﬁ + a? e a% + a% = |, then one of
a,... must be 1 and the rest 0. If they are all halves of odd integers, then
each of @, . .. must be }. Hence there are just 24 unities, viz.

(20.6.11) 1, iy, iy, +i3, 3 E1xi:iti).
If we write
(20.6.12) =5 (1 +ij+ i +i3),

then any integral quaternion may be expressed in the form
(20.6.13) kop + kiiy + kaiz + kiia,

where kg, k1, ko, k3 are rational integers; and any quaternion of this form is
integral. It is plain that the sum of any two integral quaternions is integral.
Also, after (20.6.3) and (20.6.4),

pr=d (=1 +ii+iz+i)=p-—1,
pit =3 (-1 + i +i—i3) =—p+i1+i
ip= 3 (—14i~ia+i3)=—p+i +is,

with similar expressions for pis, etc. Hence al! these products are integral,
and therefore the product of any two integral quatermions is integral.
If € is any unity, then e and ¢ are said to be associates of a. Associates
have equal norms, and the associates of an integral quaternion are integral.
If y = af, then y is said to have « as a left-hand divisor and 8 as a
right-hand divisor. If @ = ag or B == by, then a8 = Ba and the distinction
of right and left is unnecessary.

20.7. Preliminary theorems about integral quaternions. Oursecond
proof of Theorem 370 is similar in principle to that of Theorem 251
contained in §§ 12.8 and 15.1. We need some preliminary theorems.

Tuzorem 371. If a is an integral quaternion, then one at least of its
associates has integral coordinates; and if o is odd, then one at least of its
associates has non-integral coordinates.
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(1) If the coordinates of « itself are not integral, then we can choose the
signs so that

a = (bo+brit + baiz + b3iz) + 3(E1 £iy iz ki) =B+ ¥,

say, where bg, by, by, by are even. Any associate of 8 has integral coordi-
nates, and y ¥, an associate of y, is 1. Hence ay, an associate of a, has
integral coordinates.

(2) If @ is odd, and has integral coordinates, then

a = (b + byiy + baip + b3is) +(co+ it +eziz+caia) = B+ y,

say, where by, by, b;, b3 are even, each of cg, ¢1, €2, c3is 0 or 1, and (since'
Na is odd) either one is 1 or three are. Any associate of § has integral
coordinates. It is therefore sufficient to prove that each of the quaternions

I, f, 2, i3, l4ip4iy, l4iy4+iy, 14+,  i14iz+is

has an associate with non-integral coordinates, and this is easily verified.
Thus, if y = {; then yp has non-integral coordinates. If

y=l+ih+ia=0+ii+i+i)—i1i=A+u

or
y=ii+h+ia=0+i+iz+iz)~1=2r+u,
then
re=A d(l—iy—iy—i) =2
and the coordinates of ye are non-integral.

TueoreM 372. If k is an integral quaternion, and m a positive integer,
then there is an integral quaternion A such that

Nk —md) < m?.

The case m = 1 is trivial, and we may suppose m > 1. We use the form
(20.6.13) of an integral quaternion, and write

Kk =kop + kiiy +kyip + kaiz, X =logp + hiy + bis + ki3,
where kg, . .., lp, . . . are integers. The coordinates of x — mA are
Lko — mlo), L{ko + 2ky — m(lp + 211}, %[ko + 2kz — m(lo + 212)},
3 ko + 2k — m(lo + 21)}.
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We can choose Iy, {1, [z, /3 in succession so that these have absolute values
not exceeding %m, %m, %m, %m; and then

N —mlr) € -f%m2+3.;l;—m2 < m?.

Tueorem 373. If « and B are integral quaternions, and f # 0, then
there are integral quaternions A and y such that

a=A8+y, Ny <NB.

We take _ B
k=apf, m=pp=NB,
and determine A as in Theorem 372. Then

(@ —AB)B =Kk — Am=kK — mh,
N -lﬁ)Nﬁ.—-N(x —mA) < m?,
Ny =N(a - A8}y <m=N§g.

20.8. The highest commeon right-hand divisor of two quaternions.
We shall say that two integral quaternions « and S have a highest common
right-hand divisor & if (i) é is a right-hand divisor of @ and 8, and (ii) every
right-hand divisor of o and 8 is a right-hand divisor of §; and we shall prove
that any two integral quaternions, not both 0, have a highest common right-
hand divisor which is effectively unique. We could use Theorem 373 for
the construction of a ‘Euclidean algorithm’ similar to those of §§ 12.3 and
12.8, but it is simpler to use ideas like those of §§ 2.9 and 15.7.

We call a system S of integral quatemions, one of which is not 0, a
right-ideal if it has the properties

DacS. feS—>atpes,
(ii) @ € § — Aa € § for all integral quaternions A:

the latter property corresponds to the characteristic property of the ideals
of § 15.7. If § is any integral quaternion, and § is the set (A8) of all left-
hand multiples of § by integral quaternions A, then it is plain that S is a
right-ideal. We call such a right-ideal a principal right-ideal.

Tueorem 374, Every right-ideal is a principal right-ideal.

Among the members of §, not 0, there are some with minimum norm:
we call one of these 5. If yeS,Ny < Nétheny = 0.
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If @ € § then o — AS €S, for every integral A, by (i) and (ii). By The-
orem 373, we can choose A so that Ny = N(a — A§) < N4. But then
y = 0,a = A4, and so S is the principal right-ideal (A8).

We can now prove

TueorEM 375, Any two integral quaternions a and B, not both 0, have a
highest common right-hand divisor 8, which is unique except for a left-hand
unit factor, and can be expressed in the form

(20.8.1) d = ua +vi,

where ju and v are integral.

The set § of all quaternions ua + vB is plainly a right-idea! which, by
Theorem 374, is the principal right-ideal formed by all integral multiples
A8 ofacertain 8. Since S includes 8, 3 can be expressed in the form (20.8.1).
Since § includes @ and B, § is a common right-hand divisor of o and 8;
and any such divisor is a right-hand divisor of every member of §, and
therefore of 8. Hence & is a highest common right-hand divisor of « and 8.

Finally, if both 8 and &’ satisfy the conditions, 8’ = A8 and § = A'§/,
where A and A’ are integral. Hence § = 2'A8,1 = A'A, and A and )\’ are
unities.

If 5 is a unity ¢, then all highest common r:ght-hand divisors of o and 8
are unities, In this case

pa+vp=e¢,

for some integral u’, v'; and
(e 'Wa+ €WV =1;
so that
(20.8.2) po+vB =1,
for some integral u, v. We then write
(20.8.3) (@, B)r = 1.

We could of course establish a similar theory of the highest common
teft-hand divisor.

If o and B have a common right-hand divisor §, not a unity, then No and
N B have the common right-hand divisor N8 > 1. There is one important
case in which the converse is true.
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TuroreMm 376. Ifa isintegral and B = m, a positive rational integer, then
a necessary and sufficient condition that (o, B), = listhat (Na,Nf) = |,
or (what is the same thing) that (Na,m) = 1.

For if (&, B)» = 1 then (20.8.2) is true for appropriate u, v. Hence
N(ua) = N —v8) = (1 — mv){(1 —mv),
NuNa =1 — mv — mv + m>Nv,

and (Na,m) divides every term in this equation except 1. Hence
(Na,m)=1.Since N8 = m*, the two forms of the condition are equivalent.

20.9. Prime qusternions and the proof of Theorem 370. An integral
quaternion 7, not a unity, is said to be prime if its only divisors are the
unities and its associates, i.e. if # = «f implies that eithercx or 8 i1s a
unity. It is plain that all associates of a prime are prime. If # = aff, then
Na = NaNp, so that r is certainly prime if N is a rational prime. We
shall prove that the converse is also true.

THeoreM 377. An integral quaternion nt is prime if and only if its norm
N is a rational prime.

Since Np = p°, a particular case of Theorem 377 is
THeOREM 378. A rational prime p cannot be a prime quaternion.

We begin by proving Theorem 378 (which is all that we shall actually
need).
Since
2=+ ~i),
2 is not a prime quaternion. We may therefore suppose p odd.
By Theorem 87, there are integers r and s such that

O<r<p, O<s<p, §+r2+sz*—_—*0(modp).
If
o = 1 + siy — ris,

then
Na =1 +r2+s2§0(modp),

and (Na, p) > 1. It follows, by Theorem 376, that o and p have a common
right-hand divisor § which is not a unity. If

a =88, p=8&4,
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then & is not a unity; for if it were then § would be an associate of p, in
which case p would divide all the coordinates of

o = 88 = 8182_1;),

and in particular 1. Hence p = 5,8, where neither § nor 4; is a unity, and
0 p is not prime.

To complete the proof of Theorem 377, suppose that 7w is prime and p a
rational prime divisor of N7r. By Theorem 376, 7 and p have-a common
right-hand divisor 7’ which is not a unity. Since 7 is prime, 7’ is an
associate of # and Nn’ = Nx. Also p = An’, where A is integral; and
p* = NAN®' = NANm,sothat N) is 1 or p. If NA were 1, p would be an
associate of 7’ and 7, and so a prime quaternion, which we have seen to
be impossible. Hence N7 = p, a rational prime.

It is now easy to prove Theorem 370. If p is any rational prime, p = Am,
where NA = Nz = p. If & has integral coordinates ay, a1, a3, a3, then

p=Nm =aj+a}+a5+dj.

If not then, by Theorem 371, there is an associate 77’ of w which has integral
coordinates. Since :
p=Nm=Nr,

the conclusion follows as before.

The analysis of the preceding sections may be developed so as to lead
to a complete theory of the factorization of integral quaternions and of the
representation of rational integers by sums of four squares, In particular it
leads to formulae for the number of representations, analogous to those of
§§ 16.9—10. We shall prove these formulae by a different method in § 20.12,
and shall not pursue the arithmetic of quaternions further here. There is
however one other interesting theorem which is an immediate consequence
of our analysis. If we suppose p odd, and select an associate 7’ of # whose
coordinates are halves of odd integers (as we may by Theorem 371), then

p=Nr=Nr'=(bo+3?+ b1+ )+ b2+ )* + (b3 + D)2,
where by, . . . are integers, and
4p = (2bg + 1)? + (2b; + 1) + (2b3 + 1)2 + (2b3 + 1)2.

Hence we obtain
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Tueorem 379. Ifpisanodd prime, then 4p is the sum of four odd integral
squares.

Thus4.3 =12 = 124+ 12 + 12 + 3% (but 4 . 2 = 8 is not the sum of
four odd integral squares).

20.10. The values of g(2) and G (2). Theorem 369 shows that
GR2) g <4
On the other hand,
@m)? =0 (mod 4), (2m+1)> =1 (mod 8),

so that
x2 =01, or 4 (mod 8)

and
x* + y* + 2% % 7 (mod 8).
Hence no number 8m + 7 is representable by three squares, and we obtain

THEOREM 380:
g(2) = G(2) = 4.

Ifx2 + y2 422=0 {mod 4), then all of x, y, z are even, and
2
107+ +2%) = (37 + ' + 32)°

is representable by three squares. It follows that no number 4%(8m+7) is
the sum of three squares. It can be proved that any number not of this form
is the sum of three squares, so that

n#4°8m+7)

is a necessary and sufficient condition for n to be representable by three
squares; but the proof depends upon the theory of ternary quadratic forms
and cannot be included here.
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20.11. Lemmas for the third proof of Theorem 369. Our third proof
of Theorem 369 is of a quite different kind and, although ‘elementary’,
belongs properly to the theory of elliptic functions.

The coefficient r4(n) of x™" 1n

4
o0
A4+ 4 )t = ( 3 x’”’)
e —00
is the number of solutions of
nzm%—i—m%-%m%-%mﬁ

in rational integers, solutions differing only in the sign or order of the m
being reckoned as distinct. We have to prove that this coefficient is positive
for every n.

By Theorem 312

x x3
(1+ZX+2x4+---)2=1+4( - +---),
l—-x 1-—x3
and we proceed to find a transformation of the square of the right-hand
side.

In what follows x is any number, real or complex, for which |x| < 1. The
sertes which we use, whether simple or multiple, are absolutely convergent
for [x] < 1. The rearrangements to which we subject them are all justified
by the theorem that any absolutely convergent series, simple or multiple,
may be summed in any manner we please.

We write

so that

a—x)2
We require two preliminary lemmas.

THEOREM 381:

o0 o0
Z Um(l + up) = Znun.
n=1

m=1
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For
P P e
TrEOREM 382;
i‘ (I am(1 - tm) = )0:0; @1 — Ditgnz.
For
é %% = g(nm-l émzw
= i‘r i(“l)’”“‘lxzmr _ i_"; z’f;z,-

> f rx¥r 2 > (2n — Dx¥n-2
Z T G mz} 1—xn2
= A=

20.12. Third proof of Theorem 369: the number of representations.
We begin by proving an identity more general than the actual one we need.

TuroreM 383. If 0 is real and not an even multiple of =, and if

L=L(x,0) = zcot }6 +u;sinb + uysin26 + - - -,
Ty = T1(x,0) = (4 cot §6)° + ui (1 + w1) cos
4+ u2{l +uz)cos280 +---,
T2 = T2 (x,8) = {u1(1 — cos ) + 2uz(1 — cos 26)
+ 3uz(1 —cos36) +---},

then
LPP=T1T+T.
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We have

oa 2
I2=ttcotio+ Y u,sinng
C0t3

n=1

o0 oc o0
= ( cot %6)2 + 3 Z un cot 16 sinng + Z Z Uty SIN MO sin nd

ri=} muxl n=l
= (Jcot 6)° + 51 + 8
= (g cot 38)" + 81 + 82,
say. We now use the identities

L cot18sinng = § +cos® + c0s26 + - -- +cos(n — DB + 1 cosng,

2 sin m@ sin n@ = cos(m — n)8 — cos{(m + n)o,

which give
-
S = Z“" {3 +cos6 +cos28 + - - - +cos(n — 1)0 + %cosn&} .
n=1l
oo 00
Sy = % Z Z tmun{cos(m — n)@ — cos(m -+ n)o}.
m=1 n=1
and

[+ #]
L? = (} cot %é’)2 +Co+ Z C cos k8,
k=1

say, on rearranging S, and Sz as series of cosines of multiples of 8.7

t To justify this rearrangement we have to prove that

oo

thl(% +jcos@|+--- + %|cusn8})

n=]
and

o0 oo
2 2 lumllunl( costm + m8| + [cos(m — mE)

m=1n=1

are convergent. But this is an immediate consequence of the absolute convergence of

o0 oo oo
Y im0 it
LT

m=1 n=1
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oC
We consider Cyp first. This coefficient includes a contribution % > up
1

o
from Sy, and a contribution % > uﬁ from the terms of S» for which m = n.
1

Hence

o0 o
=3D (untud) =13 nuy,

n=1 n==]

by Theorem 381.
Now suppose £ > 0. Then S; contributes

iuk"}" Z Up = 2!‘&+ZH&+I

n=k+1

to Cy, while S> contributes

l 1 i
5 Z Bmlp + 5 Z Umty — 5 Z UmHg,

-k n—m=k m--n=k
where m 2 1,n 2 1 in each summation. Hence

ko]

o0 o
. 1
Cy = sk + Z Ug+i + ZWWH—I - % Zuﬂ‘kml—

las] I=1 I=1
The reader will easily verify that
wpsg—r = wi (1 + uy + ug_y)
and

Wil + Wlpg = wg (U — Ugy)).

Hence

o0
Ck“"k{;lg'f“Z(“I—“k-H)'—%Z(I'i'NI'FWc z)l
] I=1

=“k{§+“l+“2+“‘+"k“j(k_l)““(ul+u2+“‘+“kwl)}
:uk(i-kukw%k), -
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and so
2 oo o0
L? = (}l cot %6) + % Znu,, + Z“" (F +ux — %k) cos kf
nexl k=1

00 o0
= (Jcot 16)" + ¥ ur(1 + ux) cosk6 + & 3 kg (1 — cosk6)
K] k=t

== T1(x,8) + T2 (x,8).
THEOREM 384:

(§+u;wu3+u5-—u7+---)2
=T%+%(u;+2u2+3u3+5u5+6u5+7u7+9u9+-”),

where in the last series there are no terms in ug, ug, u12,. ...

We put 8 == %Jl’ in Theorem 383. Then we have

o0
15— E D" (1 + tzm),

o0 o0
=32 @m—Duzm1+2)  (2m— Duam-2.

m=1 m=1

Now, by Theorem 382,

o0
=1~ Z (2m — Dugp-2,

and so
Ti+ T3 = gg + 3(u1 + 2u2 -+ 3uz + Sus +-- ),
¥rom Theorems 312 and 384 we deduce

THeEOREM 385!

G422 +2* 420+ ) = 14+8Y muy,
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where m runs through all positive integral values which are not multiples

of 4.
Finally,

¢ romx™ ' o %
SE mu,,,-:-—SE lnxmmSE mzx""wSEC,.x",
=1

Pz ]

where

c,,:zzm

mindim

is the sum of the divisors of n which are not multiples of 4.
It is plain that ¢, > 0 for all n > 0, and so r4(n) > 0. This provides us
with another proof of Theorem 369; and we have also proved

THEOREM 386. The number of representations of a positive integer n as
the sum of four squares, representations which differ only in order or sign
being counted as distinct, is 8 times the sum of the divisors of n which are
not mulitiples of 4.

20.13. Representations by a larger number of squares. There are
similar formulae for the numbers of representations of n by 6 or 8 squares.
Thus

re(m) =16y x(dd* -4y x(dd?,
din din

where dd’ = n and x(d), as in § 16.9, is 1, —1, or 0 according as d is
4k + 1,4k — 1, or 2k; and

rg(n) = 16(—1)" Y (~1)%d°.
dln

These formulae are the arithmetical equivalents of the identities

12x + 2252 + 323 + |
P+x2  14+x% 14x6

( 1%x 3253 52x5 )
— 4 + PR I

(I+2x+2x4+-~)6m1+16(

l—x 1-2 1—x3
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and

13x 2352 333
2+ 3+"' .
P+x 1—x 1 +x

(1+2x+2x4+---)8zi+16( +

These identities also can be proved in an elementary manner, but have their
roots in the theory of the elliptic modular functions. That 75(n) and rg(n)
are positive for all n is trivial after Theorem 369.

The formulae for ry(n), where s = 10, 12,. . ., involve other arithmetical
functions of a more recondite type. Thus rjo{n) involves sums of powers
of the complex divisors of n.

The corresponding problems for representations of n by sums of an odd
number of squares are more difficult, as may be inferred from § 20.10.
When s is 3, 5, or 7 the number of representations is expressible as a finite
sum involving the symbol (2) of Legendre and Jacobi.

NOTES

§ 20.1. Waring made his assertion in Meditationes algebraicae (1770), 2045, and
Lagrange proved that g(2) = 4 later in the same year. There is an exhaustive account of
the history of the four-square theorem in Dickson, History, ii, ch. viii.

Hilbert’s proof of the existence of g(k) for every k& was published in Gdttinger
Nachrichten (1909}, 17-36, and Math. Annalen, 67 (1909), 281-305. Previous writers
had proved its existence when k = 3,4, 5, 6, 7, §, and 10, but its value had been determined
only for k = 3. The value of g{k) is now known for all &: that of G(k) for k¥ = 2 and
k = 4 only, The determinations of g (k) rest on a previous determination of an upper bound
for G(k).

See also Dickson, History, i, ch. 25, and cur notes on Ch. XXI.

Lord Saltoun drew my attention to an error on p. 394,

§ 20.3. This proof is due to Hermite, Journal de math. (1), 13 (1848), 15 (Euvres,
i. 264).

§ 20.4. The fourth proof is due to Grace, Journal London Math. Soc. 2 {1927), 3-8.
Grace also gives a proof of Theorem 369 based on simple properties of four-dimensional
lattices,

§ 20.5. Bachet enunciated Theorem 369 in 1621, though he did not profess to have
proved it. The proof in this section is substantially Euler’s.

§§ 20.6-9. These sections are based on Hurwitz, Vorlesungen iiber die Zahlentheorie
der Quaternionen (Berlin, 1919). Hurwitz develops the theory in much greater detail, and
uses it to find the formulae of § 20.12. We go so far only as is necessary for the proof of
Theorem 370; we do not, for example, prove any general theorem concerning uniqueness

_of facterization. There is another account of Hurwitz's theory, with generalizations, in
BDickson, Algebren und ihre Zahlentheorie (Ziirich, 1927), ch. 9.

Lipschitz {Untersuchungen tiber die Summen vor Quadrat, Bonn, 1886) was the first
to develop and publish an arthmetic of quaternions, though Hamilton, the inventor of
quaternions, gave the same method in an unpublished letter in 1856 (see The Mathematical
papers of Sir. Wm. R. Hamilton (ed. Halberstam and Ingram), xviii and Appendix 4).
Lipschitz {like Hamilton) defines an integral quatemion in the most obvious manner, viz.
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as one with integral coordinsates, but his theory is much more complicated than Hurwitz’s.
Later, Dickson { Proc. London Math. Soc, (2) 20 (1922), 225-32] worked out an alternative
and much simpler theory based on Lipschitz's definition. We followed this theory in our
first edition, but it is less satisfactory than Hurwitz's: it is not true, for example, in Dickson’s
theory, that any two integral quaternions have a highest common right-hand divisor.

'§ 20.10. The ‘three-square theorem’, which we do not prove, is due to Legendre,
Essai sur la théorie des nombres (1798), 202, 398-9, and Gauss, D.A., § 291. Gauss
determined the number of representations, See Landau, Vorlesungen, i. 114-25. Thereis a
proof, depending on the methods of Liouville, referred to in the note on § 20.13 below, in
Uspensky and Heaslet, 465-74 and another proof, due to Ankeny {(Proc. American Math.
Soc. 8 (1957), 316-19) depending only on Minkowski's theorem (our Theorem 447) and
Dirichlet’s theorem (our Theorem 15).

§3 20.11-12. Ramanuian, Collected papers, 138 et seq.

§ 20.13. The resuits for 6 and 8 squares are due to Jacobi, and are contained implicitly
in the formulae of §§ 40-42 of the Fundamenta nova. They are stated explicitly in Smith’s
Report on the theory of numbers (Collected papers, i. 306-7). Liouville gave formulae for
12 and 10 squares in the Journal de math. (2) 9 (1864), 296-8, and 11 (1866), I-8. Glaisher,
Proc. London Math. Soc. (2) 5 {1907}, 479-90, gave a systemnatic table of formulae for
rygin) up to 25 == 18, based on previous work published in vols. 3639 of the Quarterly
Journal of Math. The formulae for 14 and 18 squares contain functions defined only as
the coefficients in cerfain modular functions and not arithmetically. Ramanujan (Collected
papers, no. 18) continues Glaisher’s table up to 25 = 24,

Baoulyguine, in 1914, found general formulae for r2;(n) in which every function which
occurs has an arithmetical definition. Thus the formula for ro.(n) contains functions
3 ¢xy1,x2,...,%), where ¢ is a polynomial, { has one of the values 25 ~ 8,25 -~ 16, ...,
and the summation is over all solutions of x% 4 x% oo Ar,2 = n. There are references to
Boulyguine's work in Dickson’s History, §. 317.

Uspensky developed the elementary methods which seem to have been used by Liouville
in a series of papers published in Russian: references will be found in a later paper in Trans.
Amer. Math. Soc. 30 (1928), 385404, He carries his analysis up to 25 == 12, and states that
his methods enable him to prove Boulyguine's general formmiae,

A more analytic method, applicabie also to representations by an odd number of squares,
has been developed by Hardy, Mordell, and Ramanujan. See Hardy, Thars. Amer. Math. Soc.

"21(1920), 25584, and Ramanujan, ch. 9; Mordell, Quarterly Journal of Math. 48 (1920),
93-194, and Trans. Camb. Phil. Soc. 22 {1923), 361-72; Estermann, Acta arithmetica, 2
(1936), 47-79; and nos. 18 and 21 of Ramanujan’s Collected papers.

We defined Legendre'’s symbol in § 6.5. Jacobi’s generalization is defined in the more
systematic treatises, e.g. in Landan, Vorlesungen, i. 47. .

Self-contained formulae for the number of representations of a positive integer as the
sum of squares are nowadays seen to be explained by the theory of modular forms (see, for
example, Chapter 11 of H. lwaniec, Topics in classical automorphic forms, Amer, Math,
Soc., 1997). Indeed one may consider positive-definite quadratic forms

"

OX1y..., %) = Z aix;x; (ay = aj; integers)
£ jmd

in complete generality by such methods.

An elegant result for such forms has been proved by Conway and Schneeberger (unpub-
lished). This states that if 0 represents every positive integer up to and including 15,
then it represent all positive inttegers. One cannot reduce the number 15, since in fact
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xt + Zx% + 51'% + Sxﬁ represents all positive integers except 15. A more difficult version
of this result has been established by Bhargava (Quadratic forms and their applications
{Dublin, [999), 27-37, Contemp. Math,, 272, Amer. Math. Soc., Providence, RI, 2000),
referring to forms

Qx1,-.. %)= Y ayxixj (ay integers),
1IS<n

In this case, if every integer up to 290 is represented then all integers are represented.



XXI
REPRESENTATION BY CUBES AND HIGHER POWERS

21.1. Biquadrates. We defined ‘Waring’s problem’ in § 20.1 as the
problem of determining g(k) and G'(X), and solved it completely when
k = 2. The general problem is much more difficult. Even the proof of
the existence of g(k) and (F(k) requires quite elaborate analysis; and the
value of G(k) is not known for any & but 2 and 4. We give a summary of
the present state of knowledge at the end of the chapter, but we shall prove
only a few special theorems, and these usually not the best of their kind
that are known.

1t is easy to prove the existence of g(4).

Tueorem 387. g(4) exists, and does not exceed 50.

The proof depends on Theorem 369 and the identity

(21.1.1) 6@+ +F+d) =@+ b +@—b*+(c+d)*
+ @ —d)* + @+e)* + (a— o)
+B+d)+ b~ + @+d)*
+@-d*+ B+t + B -0t

We denote by B, a number which is the sum of s or fewer biquadrates.
Thus (21.1.1) shows that

6 (a® + b* +¢* ~+~-:1'2)2 = By,
and therefore, afier Theorem 369, that
(21.1.2) 6x% = By,

for every x.
Now any positive integer n is of the form

n==6N+r,
where N > 0and ris 0, 1, 2, 3, 4, or 5. Hence (again by Theorem 369)

n=6(x}+x}+x3+x3)+r
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and therefore, by (21.1.2),
n—=Biy+Bia+Bio+Bia+r=584i+r=2~8s3

(since r is expressible by at most 5 1’s). Hence g(4) exists and is at
most 53.
It is easy to improve this result a little. Any n > 81 is expressible as

n=6N +1,

where N > 0,and ¢t = 0,1,2,81,16, or 17, according as n=0,1,2,3,4,
or 5 (mod 6). But

1=14 2=14+1% 81=3% 16=2% 17=2%+1%
Hence ¢ = B>, and therefore
n == B4g + By = Bsy,

so that any n 2> 81 is Bsp.
On the other hand it is easily verified that n = Byg 1f 1 €£n< 80
In fact only

79=4.2°+15.14

requires 19 biquadrates.

21.2. Cubes: the existence of G(3) and g(3). The proofofthe existence
of g(3) is more sophisticated (as is natural because a cube may be negative).
We prove first

TueorEM 388:
G3) g1

We denote by C; a number which is the sum of s non-negative cubes.
We suppose that z runs through the values 7,13,19,... congruent to
I (mod 6), and that /; is the interval

$(z) = 112° + & + 1) + 12523 < n < 142° = ¢ ().

It is plain that ¢ (z +6) < ¥ (z) for large z, so that the intervals /, ultimately
overlap, and every large n lies in some ;. It is therefore sufficient to prove
that every n of I, is the sum of 13 non-negative cubes.
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We prove that any # of I, can be expressed in the form

(1.2.1) n=N+82° + 6mz°,
where |

(21.2.2) N=Cs, 0<mx<z°
We shall then have

m =3 +x3 +x3 +x3,
where 0 < x; < 2°; and so
n=N+82° + 62 (2 + x% +x% +x2)
4
=N+ {@+x)° + (2 —x)?)

im=1

=Cs + Cg = Cp3.

It remains to prove (21.2.1). We define r, s, and N by
n=6r(modz’) (1 <r<2),
n=s+4(mod6) (05K,

N=r+D}+0~-0>4+2E -n*+ 2%
Then N = Cs and |

0<N <@ +1)7+322 41252 = ¢p(z) — 82° < n — &7,

so that
(21.2.3) 82 <n~N < 142°.

Now

N=(+1P+0¢-1P -2 =6r=n=n—8° (mod 2%).

Also x3 = x (mod 6) for every %, and so
N=r+l4r-—142 —r) 45z =22 + sz
=(2+s)z=24s=n—2

- mn—8=n— 82 (mod 6).

421
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Hence n — N—82° is a multiple of 6z°. This proves (21.2.1), and the
inequality in (21.2.2) follows from (21.2.3).

The existence of g(3) is a corollary of Theorem 388. It is however
interesting to show that the bound for G(3) stated in the theorem is also a
bound for g(3).

21.3. A bound for g(3). We must begin by proving a sharpened form
of Theorem 388, with a definite limit beyond which all numbers are Cy3.

Treorem 389. Ifn 2 107, then n = Cy3.
We prove first that ¢ (z -+ 6) < ¥ (z) if z 2= 373, or that

1A+ (2 + 1)° + 1252 < 14¢ - 6)°,

i.e.

6\° 3 128 128 1
21.3.1 14{1—=) 124+ 224 224
( ) ( :) +x3+¢6+:6 +:9

if ¢t 2 379. Now

if0 < 8 < 1. Heace

if £ > 6; and so (21.3.1) is satisfied if
54 3 128 1
14(1—7) 245+ + 5

orif

3 128 1

This is clearly true if t > 7. 54 4+ 1 = 379,
It follows that the mtervals I, overlap from z = 373 onwards, and n
certainly lies in an 7, if

n > 14(373)°,
which is less than 1025,
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We have now to consider representations of numbers less than 102, It
is known from tables that all numbers up to 40000 are Cy, and that, among
these numbers, only 23 and 239 require as many cubes as 9.

Hence

n==0C (1<n<239), n=C (40 < n < 40000).
Next,if ¥V Zz land m = [N%] , we have
N—m = (N§)3 —m < 3N§(Né —m) < 3N§,
Now let us suppose that
240 < n < 107

andput n=2404+N, O<N < 10%,

Then
N=m+N, m=[N5], 0<N <3N},
{ P4
Ni=m+Ny, m=[N], 0<N; <3N},
} 2
Ns=my+Ns, mg=[N;], O<Ns<3N,.
Hence

(2132) 1 =240+N =240+ Ns +m® +m} + m3 + m3 + m3,

Here
2 2 3
0<Ns <3N] <3BN)I <.

<3, 3%3@)23(%)33(%)43\/(%)5

(5 (1_02)@)5 35000,

27 27
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Hence

240 < 240 + Ns < 35240 < 40000,

and so 240 + N5 is Cg; and therefore, by (21.3.2), n is Cj3. Hence all
positive integers are sums of 13 cubes.

THEOREM 390:
g(3) < 13.

The true value of g(3) is 9, but the proof of this demands Legendre’s
theorem (§ 20.10) on the representation of numbers by sums of three
squares. We have not proved this theorem and are compelled to use Theo-
rem 369 instead, and it is this which accounts for the imperfection of our
result.

21.4. Higher powers. In § 21.1 we used the identity (21.1.1) to deduce
the existence of g(4) from that of g(2). There are similar identities which
enable us to deduce the existence of g(6) and g(8) from that of g(3) and
g(4). Thus

(21.4.1) 60 + 8+ +d)P =) (atbxc)
+2) (@xb)*+36) d°.
On the right there are
16 +2.12436.4=184
sixth powers. Now any # is of the form
60N +r (0 r<59);

and

g(3) g3 3
ON = 605" = 03 (¢ + 5+ + )’

which, by (21.4.1), is the sum of 184g(3) sixth powers. Hence n is the
sum of

184g(3) + r < 184g(3) + 59

sixth powers; and so, by Theorem 390,
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TueoreMm 391:

£g(6) < 184g(3) + 59 < 2451.

Again, the identity
(214.2) 5040(a® + b* + % + d*)*
=6) 2a)®+60) (axb)?

+Y (Qatbtc)®+6) (@kbicxd)®
has
6.4+60.12+48+6.8 = 840

eighth powers on its right-hand side. Hence, as above, any number 5040N
is the sum of 840g(4) eighth powers. Now any number up to 5039 is the
sum of at most 273 eighth powers of 1 or 2. Hence, by Theorem 387,

TueorEM 392:
g(8) < 540g(4) + 273 « 42273.

The results of Theorems 391 and 392 are, numerically, very poor; and
the theorems are really interesting only as existence theorems. It is known
that g(6) = 73 and that g(8) = 279.

21.5. Alower bound for g(k). We have found upper bounds for g(k),
and a fortiori for G(k), for k = 3, 4, 6, and 8§, but they are a good deal
larger than those given by deeper methods. There is also the problem of
finding lower bounds, and here elementary methods are relatively much
more effective. It is indeed quite easy to prove all that is known at present.

We begin with g(k). Let us write g = [(%)k] . The number
n=2%g—1<3
can only be represented by the powers 1% and 2*. In fact
n=(q — 1)2* + 2F - 1%,

* ‘The worst number is 4863 = 18, 28 + 255 . 18,
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and so # requires just

g—1+2F—1=2k4 g2

kth powers. Hence

‘THEOREM 393;
gk 22t +g-2.

In particular g(2) =2 4, g(3) 2 9, g 2 19, g(5) =2 37,.... Itis
known that g(k) = 2% + ¢ — 2 for all values of k up to 400 except perhaps
4 and 5, and it is quite likely that this is true for every £.

21.6. Lowerbounds for G(k). Passingto G(k), we prove firsta general
theorem for every k.

THEOREM 394:
Gkyzk+1fork 2

Let A(N) be the number of numbers n < N which are representable in
the form

(21.6.1) n=xf x4 42k,

where x; > 0. We may suppose the x; arranged in ascending order of
magnitude, so that

(21.6.2) 0<x << < SNVE

Hence A(N) does not exceed the number of solutions of the inequalities
(21.6.2), which is

N!,’kl X

=Y 3 X 3

xk—-O Xi— ;m(}xk_g"‘o x=0

The summation with respect to x; gives xz + 1, that with respect to x; gives

Z G+ 1) = (x3 + i)(x;; +2)
xpu0

¥
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that with respect to x3 gives

X3

Z (x3+ D(x3+2) (x4 + 1)(xa +2)(x4 +3)
21 n 3! ’

x3=0
and so on; so that

k

(21.6.3) B(N) = % I1 ([Nifk] + Y

!
el k!

for large N.
On the other hand, if G(k) <k, all but a finite number of n are
representable in the form (21.6.1), and

ANY >N —C,

where C is independent of N. Hence
N
N—~C <AN) < B(N)~ L

which is plainly impossible when & > 1. It follows that G(k) > k.

Theorem 394 gives the best known universal lower bound for G(k).
There are arguments based on congruences which give equivalent, or better,
results for special forms of k. Thus

x}=0,1, or — 1 (mod 9),

and so at least 4 cubes are required to represent a number N = 9m % 4.
This proves that G(3) > 4, a special case of Theorem 394,

Again
(21.6.4) x*=0or 1 (mod 16),
and so all numbers 16m+15 require at least 15 biquadrates. It follows that
G(4) > 15. This is a much better result than that given by Theorem 394,
and we can improve it slightly.

It follows from (21.6.4) that, 1f 16n is the sum of 15 or fewer biguadrates,
each of these biquadrates must be a multiple of 16. Hence

15 15
16n =Y x} =Y (2)*
i=l i=1
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and so

15
fux

Hence, if 16n is the sum of 15 or fewer biquadrates, so is #n. But 31 is not
the sum of 15 or fewer biquadrates; and so 16™. 31 is not, for any m. Hence

TuroreM 395:
G@4) =2 16.
More generally
THEOREM 396:
G2%) =22 ife > 2.
The case @ = 2 has been dealt with already. If 6 > 2, then
k=2 >0+2 |
Hence, if x is even,
¥ =0 (mod 2°+?),
while if x is odd then
W = (1 +2m% =142 m £ 2PV 20— Dym?
=1—2"'m(m — 1)=1 (mod 2°*?),
Thus
(21.6.5) x¥ =0 or 1 (mod 29+2).

Now let n be any odd number and suppose that 2°+2n is the sum of
20+2 . 1 or fewer kth powers. Then each of these powers must be even,
by (21.6.5), and so divisible by 2% Hence 2f—9-2 In, and so # is even; a
contradiction which proves Theorem 396.

It will be observed that the last stage in the proof fails for 6 = 2, when
a special device is needed.

There are three more theorems which, when they are applicable, give
better results than Theorem 394.
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Tueorem 397. Ifp > 2and 0 > 0, then G{p®(p — 1)} > pP*L.

For example,
GG =29
Ifk=p°(p—1),then8 + 1 < 3% < k. Hence
*=0 (modpe"'k)
if plx. On the other hand, if p{x, we have
o — 21 o (mod p+1)

by Theorem 72. Hence, if p?*'n, where p{n, is the sum of p?*! — 1

or fewer kth powers, each of these powers must be divisible by p?*!

and so by p*. Hence p* |p®+'n, which is impossible; and therefore
Gk 2 p**1.

Treorem 398. Ifp > 2and9 > 0, then G{3p°(p — 1)} = (PP 1),

For example, G(10) =2 12.
It is plain that

k=3p(p—1D2p>0+1,
except in the trivial case p = 3, 8 = 0, £ = 1. Hence
x* =0 (mod p?+1)
if p| x. On the other hand, if p{x, then
w2 = PP 5 (modpeﬂ')
by Theorem 72. Hence pP+1(x2¥ — 1), i.e.
PPHIGE - ek + ).

Since p > 2, p cannot divide both x¥ ~ 1 and xf + 1, and so one of x* — 1,
and x* + 1 is divisible by p?+!. It follows that

* =0, 1,-01' — 1 (mod p?*h)
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for every x; and therefore that numbers of the form

p9+im:i: %(p9+1 -1

require at least 3 (p?*! — 1) kth powers.
Turorem 399. If6 2 2,1 then G(3.29) 2 20+2,

" This is a trivial corollary of Theorem 396, since G(3.2¢) > G(2¢) >
2942, We may sum up the results of this section in the following
theorem.

Tueorem 400. G (k) has the lower bounds

() 2°*2ifkis2® or3.2° and 9 > 2;

(i) PPt ifp > 2andk = pP(p— 1);
(i) 3P+ ~ D ifp > 2andk = 30°(p ~ 1);
(iv) k + 1 in any case.

These are the best known lower bounds for G(k). It is easily verified
that none of them exceeds 4k, so that the lower bounds for G(k) are much
smaller, for large k, than the lower bound for g(k) assigned by Theorem
393. The value of g (k) is, as we remarked in § 20.1, inflated by the difficulty
of representing certain comparatively small numbers.

It is to be observed that £ may be of several of the special forms mentioned
in Theorem 400. Thus

6=33-1)=7-1=113-1),

so that 6 is expressible in two ways in the form (ii) and in one in the form
(iif). The lower bounds assigned by the theorem are

32=9, 7'=7, lu3-1)=6  6+1=7
and the first gives the strongest result.

¥ The theorerm is true for 6 == 0 and 8 = 1, but is then included in Theorems 394 and 397.
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21.7. Sums affected with signs: the number v(k). It is also natural
to consider the representation of an integer n as the sum of s members of

the set

(21.7.1) 0, 1k 2k . —1k 2k _3k
or in the form

(21.7.2) n=xf kxk £ £xk

We use v(k) to denote the least value of s for which every n is representable
in this manner.

The problem is in most ways more tractable than Waring’s problem,
but the solution is in one way still more incomplete. The value of g(k) is
known for many k, while that of v(k) has not been found for any & but 2.
The main difficulty here lies in the determination of a lower bound for v(k);
there is no theorem corresponding effectively to Theorem 393 or even to
Theorem 394.

TheoreM 401: v(k) exists for every k.

It is obvious that, if g(k) exists, then v(k) exists and does not exceed
g (k). But the direct proof of the existence of v(k) is very much easier than
that of the existence of g(k).

We require a lemma.

THeOoREM 402:
L k-1
Z(wl)*““"( . ) x+rf =kix+d,
r=0

where d is an integer independent of x.
The reader familiar with the elements of the calculus of finite differ-

ences will at once recognize this as a well-known property of the (k—1)th
difference of x*. 1t is plain that, if

Or(x) = Apx + -
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is a polynomial of degree &, then

AGi(x) = O (x + 1) — Op (x) = kak~! TR
A2Qr(x) = k(k — DA 2 4 -,

A*1Ou(x) = k! Agx + d,

where d is independent of x. The lemma is the case O {x) == x*, In fact
d= -é»(k — Dk, but we make no use of this.

It follows at once from the lemma that any number of the form kfx +d
is expressible as the sum of

E(k:l )zzj,w1

r=0
numbers of the set (21.7.1); and
nwd:k!}cw, —1 kD) << JGY
for any »n and appropriate / and x. Thus
n=((k!x+d)+1,
and z is the sum of
2=ty g2ty La

numbers of the set (21.7.1).
We have thus proved more than Theorem 401, viz.

TarorREM 40)3:

vik) < 2871+ L.
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21.8. Upper bounds for v(k). The upper bound in Theorem 403 is
generally much too large.

It is plain, as we observed in § 21.7, that v(k) < g(k). We can also find
an upper bound for v(k) if we have one for G(k). For any number from a
certain N (k) onwards is the sum of G(k) positive kth powers, and

n+y* > Nk

for some y, so that

Gk
A S
: 1
and
(21.8.1) vk) €< Gk) + 1.

For all but a few small £, this is a much better bound than g(k).

The bound of Theorem 403 can also be improved substantially by more
elementary methods. Here we consider only special values of k for which
such elementary arguments give bounds better than (21.8.1).

(1) Squares. Theorem 403 gives v(2) < 3, which also follows from the
identities

e+ 1= (x+1)2—%?
and
x=x— (x— 12 +1%

On the other hand, 6 cannot be expressed by two squares, since it is not
the sum of two, and x2 — y? = (x — y)(x + y) is either odd or a multiple
of 4. '

THEOREM 404
v(2) = 3.
(2) Cubes. Since

nw—n= (n— Dnn+ 1) =0 (mod6)



434 REPRESENTATION BY CUBES AND FChap. XXI

for any n, we have
n=n—6x=n - G+17~@x—1)>3 -2

for any »n and some integral x. Hence v(3) < 5.
On the other hand,

¥y} =0,1,0r — 1 (mod 9);
and so numbers 9m+4 require at least 4 cubes. Hence v(3) 2 4.

TuroreEM 405: v(3) is 4 or 5.

It is not known whether 4 or 5 is the correct value of v(3). The identity
6x = (x+ 1P +(x— 1) —2x°

shows that every multiple of 6 is representable by 4 cubes. Richmond and
Mordell have given many similar identities applying to other arithmetical
progressions. Thus the identity

6x+3mx3-~(x‘—4)3+(2x—5)3—(:2x—4)3

shows that any odd multiple of 3 is representable by 4 cubes.
(3) Biquadrates. By Theorem 402, we have

(21.8.2) G+3)* -3+ +3c+ DV —x =24x 4 d

(where d = 36). The residues of 0%, 14, 34, 2% (mod24) are 0, 1, 9, 16
respectively, and we can easily verify that every residue (mod 24) is the
sum of 4 at most of 0, &1, £9, +16, We express this by saying that 0, 1,
9, 16 are fourth power residues (mod 24), and that any residue (mod 24) is
representable by 4 of these fourth power residues. Now we can express any
ninthe formn = 24x 4+ d +r, where 0 € r < 24; and (21.8.2) then shows
that any n is representable by 8 + 4 = 12 numbers +y*. Hence v(4) < 12.
On the other hand the only fourth power residues (mod 16) are 0 and 1,
and so a number 16m+8 cannot be represented by 8 numbers #+y* unless
they are all odd and of the same sign. Since there are nurnbers of this form,
e.g. 24, which are not sums of 8 biquadrates, it follows that v(4) = 9.

THEOREM 406

2<v(4) < 12.
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(4) Fifth powers. In this case Theorem 402 does not lead to the best
result; we use instead the identity

(21.8.3) (x4+3P° ~2x+2 +x° + (x—1)°
—20(x - 3)° + (x — 4)° = 720x — 360.

A little calculation shows that every residue (mod 720) can be represented
by two fifth power residues. Hence v(5) € 8 + 2 = 10.

The only fifth power residues (mod 11) are 0, 1, and —1, and so numbers
of the form 11m=5 require at least 5 fifth powers.

Tueorem 407
5<v(5) <10

21.9. The problem of Prouhet and Tarry: the number P(%,j). There
is another curious problem which has some connexion with that of § 21.8
(though we do not develop this connexion here).

Suppose that the a and b are integers and that

Sp=Swa)=al +ab+-- +df =) af;
and consider the system of &k equations
(21.9.1) Sp(a) =Sp(h) (1 < h<k).

It is plain that these equations are satisfied when the b are a permutation
of the a; such a solution we call a trivial solution.

It is easy to prove that there are no other solutions when s < %. It is
sufficient to consider the case s = k. Then

by+by+ - +by, B4 bt ., B4 b

have the same values as the same functions of the g, and therefore! the
elementary symmetric functions

N b, Y biby, ..., biba.. by

¥ By Newton’s relations between the coefficients of an equation and the sums of the powers of
its roots. ;
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have the same values as the same functions of the a. Hence the g and the
b are the roots of the same algebraic equation, and the b are a permutation
of the 4.

Whens > k there may be non-trivial solutions, and we denote by P(k, 2)
the least value of s for which this is true. It is plain first (since there are no
non-trivial solutions when s < &) that

(21.9.2) Pk,2) 2 k+ L.
We may generalize our problem a little. Let us take j > 2, write
Spy = a}' + azu o ai'“
and consider the set of k(j — 1) equations
(21.9.3) Spi=8m=...=8; 1 <h<<k).

A non-trivial solution of (21.9.3) is one in which no two sets a;,(1 < i < 5)
and a;,(1 < i < 5) with u # v are permutations of one another. We write
P(k,j) for the least value of s for which there is a non-trivial solution,
Clearly a non-trivial solution of (21.9.3) forj > 2 includes a non-trivial
solution of (21.9.1) for the same 5. Hence, by (21.9.2),

TraeoreEM 408:
Pk, 2 Pk,2) 2k + 1.

In the other direction, we prove that

THEOREM 409:
P(k,j) < k(e + 1)+ 1.

Write s = %k(kﬂ)ﬂ and suppose that n > s!s*j. Consider all the sets
of integers

(21.9.4) ai, az,..., ds

for which
1<a, <n (1<r<s),

There are n° such sets.
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Since 1 € @, < n we have

s < Si(a) € sn.

Hence there are at most

k
[T n* — s+ 1) < skndhEtD = kel
=1

different sets
(21.9.5) Si(a@), $2(a), . .., Sk(a).
Now

sUj.snt < nf,

and so at least s!j of the sets (21.9.4) have the same set (21.9.5). But the
number of permutations of s things, like or unlike, is at most s!, and so
there are at least j sets (21.9.4), no two of which are permutations of one
another and which have the same set (21.9.5). These provide a non-trivial
solution of the equations (21.9.3) with

5= k(k+1) + 1.
21.10. Evaluation of P(k,j) for particular k and j. We prove

TueoreMm 410. P(k,j) =k + 1 fork = 2,3, and 5 and all j.

By Theorem 408, we have only to prove that P(k,j) < & + | and for
this it is sufficient to construct actual solutions of (21.9.3) for any given .
By Theorem 337, for any fixed j, there is an # such that

n:c%+d]2=c%+d22m...mcj-2+¢{,-2,

where all the numbers c1, ¢2, ..., ¢;, d1,. . ., d; are positive and no two are
equal. If we put

Ay = Cuy, A2 =dy, Q= —Cy, A4y~ ~dy,
it follows that

Slu = 0, SZu = 2"1 S3u - O (I “-<-.. u “'-<-..j)s
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and so we have a non-trivial solution of 21.93)fork = 3,5 = 4.
Hence P(3,/) € 4 and so P(3,j) =

Fork = 2and k = 5, we use thc properttes of the quadratic field k(p)
found in Chapters X1l and XV. By Theorem 255, r = 3+pand 7w = 3+p°
are conjugate primes with 77 = 7. They are not associates, since

T m? 9 +6p + p? 8 5
—_—= — p + p »
S %1 7 777
which is not an integer and so, a fortiori, not a unity. Now let ¥ > ( and

let w2 = 4, — B, where A,, B, are rational integers. If 7|4, we have

JTﬁ'lAu, /4 |AH) xlBﬂp

in k(p), and Nr|B2,7|B2,7|By in k(1). Finally 7|7, n7|7%, 7|n24"},
7t{m in k(p), which is false. Hence 7 t A, and, similarly, 7 t B,,.
If we write ¢, = 77744, d, = 77"¥B,, we have

2 + cydy +d2 = N(cy — dup) = TV HNa® = 79,

Hence, if we put a1, = ¢y, ayy = dy, a3, = —{c, + dy), we have Sy, = 0
and

So = €2 +d? + (cy + du)? = 2(2 + cydy +d3) =2 . 7%,

Since at least two of (a1, @2u, 43,) are divisible by 7% but not by 7/-4+1,
no set is a permutation of any other set and we have a non-trivial solution
of (21.9.3) with £k = 2 and s = 3. Thus P(2,/) = 3.

Incidentally, we have also

Say=ct+ddt(cu+d) =202+ cudy +d3 =2.7Y

and so, for any j, we have a non-trivial solution of the equations

Loy  xd+yl+d=xd+rtd=. = +y}+2
and
(21.10.2) x?+y?+z?mxg+y§+z§=...=_5‘.‘+yf+%4

Fork = 5, we write

A =Cy, Ay =dy, ay=—Cy—dy, ag = —aly,

asy = —d3y, Ay ~ 83y
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andhave Si, = Sy = Ssu =0, Suu=4.7%, Sup=4.7Y.
As before, we have no trivial solutions and so P(5,f) = 6.

The fact that, in the last solution for example, Sj,; = Siz = S5, = 0
does not make the solution so special as appears at first sight. For, if

Ay = A (I <r<s, 1 €ug))
is one solution of (21.9.3), it can easily be verified that, for any d,
Ay == Apy + d

is another such solution. Thus we can readily obtain solutions in which
none of the § is zero,

The case j = 2 can be handled successfully by methods of little use for
largerj. i ay, az,...,as, by,.. ., bs, is a solution of (21.9.1), then

(21.10.3)

il(as+d)h+b{']=i{a?+(b£+d)hl A<h<k+)
i=1

=]
for every 4. For we may reduce these to

B b k-1

2 (’,’) Sh-t@yd' =) (?)Sh_;(b)d’ Q<h<k+D)

fe ] I=]

and these follow at once from (21.9.1).

We choose 4 to be the number which occurs most frequently as a
difference between two a or two b. We are then able to remove a good
many terms which occur on both sides of the identity (21.10.3).

We write

[ai,....ask =1by,..., b5k

to denote that Sp(a) = Sp(b) fort < h < k.
Then

{0,311 ={1,2])s.
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Using (21.10.3), with d = 3, we get

[1,2,6): = [0,4, 5]
Starting from the last equation and taking d = 5 in (21.10.3), we obtain
[0,4,7,1113 = [},2,9, 10]5.
From this we deduce in succession
[1,2,10,14,18]4 = [0,4,8,16,17]s (d=T),
[0,4,9,17,22,26]s = [1,2,12,14,24,25]s (d =8),

[1,2,12,13,24,30,35,39]¢ = [0,4,9,15,26,27,37,38)s (d = 13),
©[0,4,9,23,27,41,46,50); = [1,2,11,20,30,39,48,49); (d = 11).

The example’
[0, 18,27,58,64,89,10115 = {1, 13,38,44,75, 84, 102],

‘shows that P(k,2) < k+1 fork = 6; and these results, with Theorem 408,
give -
. Tueorem 411. Ifk < 7, Pk, 2) = k + 1.

21.11. Further problems of Diophantine analysis. We dnd this
chapter by a few unsystematic remarks about a number of Diophantine
“equations which are suggested by Fermat’s problem of Ch. XIII/
(1) 4 conjecture of Euler. Can a kth power be the sum of s positive kth
-powers? is

-—

(21.11.1) xf o pxk =

soluble in positive integers? ‘Fermat’s last theorem’ asserts the impossi-
bility of the equation when 5 == 2 and k¥ > 2, and Fuler extended the
conjecture to the values 3,4,...,k — 1 of . For k = 5, s = 4, however,
the conjecture is faise, since

27° + 84 + 110% + 133° = 1445,

T This may be proved by starting with
{1,8,12,15,20,23,27,34]; = [0,7,11,17,18,24,28,35};

and taking & == 7, 11, 13, 17, 19 in succession.
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The equation
(21.11.2) b+t =y

has also attracted much attention. The case k = 2 is familiar.t Whenk = 3,
we can derive solutions from the analysis of § 13.7. If weput A = 1 and
a == -3bin (13.7.8), and then write — %q for b, we obtain

(21.113) x=1-9¢, y=—1, u=-9¢% v=9¢°-3g;
and so, by (13.7.2),
9¢*)’ + 3¢~ 9¢*) + (1 - 9¢°)° = 1.
If we now replace g by & /1 and multiply by 5'2, we obtain the identity
@L114) O + GEn’ - %Y + (0 - 96°n) = ().
All the cubes are positive if
0<t& <9 iy,

so that any twelfth power 1'2 can be expressed as a sum of three positive
cubes in at least [9_’1‘ n] ways.

When k > 3, little is known. A few particular solutions of (21.11.2) are
known for £ = 4, the smallest of which is

(21.11.5) 30% + 120 4+ 2724 43154 = 35342
t See §13.2.
! The identity
(4r? — yhHY 1 2479)% + 20207 = (@t +yHt

gives an infinity of biquadrates expressible as sums of 5 biquadrates (with two equal pairs); and the
identity

& =+ @y 4 Qo+ =263 eyt
gives an infinity of solutions of
<t +ad +xf =5f 455

(all with yy = y9).
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For k = 5, there are an infinity included in the identity
(21.11.6) (75y° — %) + (& +250%)° + (° —250°)°
4 (10x3y2)5 + (S(bgw")5 = (x° + 75y5)5.
All the powers are positive if 0 < 25y° < x° < 75y°. No solution is known

with k > 6.
(2) Equal sums of two kth powers. Is

2L1L.7) X+ =55+ )4
soluble in positive integers? More generally, is

(21.11.8) S pyk = =kt

soluble for given £ and r?

The answers are affirmative when & = 2, since, by Theorem 337, we
can choose 7 so as to make (») as large as we please. We shall now prove
that they are also affirmative when &k = 3.

TheoreM 412. Whatever r, there are numbers which are representable
as sums of two positive cubes in at least r different ways.

We use two identities, viz.

(21.11.9) x3 _y3 wx:; +y?

if

(21.11.10) X = _l_ﬂ_l" Ym_..ﬁWL.’
yl X3

and

(21.11.11) x%+y_%=X3 3

if

@1.11.12) o X320, vex® -y

X3xys Y T T
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Each identity is an obvious corollary of the other, and either may be deduced
from the formulae of § 13.7.1 From (21.11 9Yyand (21.11.11) it follows that

(21.11.13) X 4+3 =1+

Here x3, y» are rational if x;, y; are rational.
Suppose now that r is given, that x; and y) are rational and positive and
that

X1
471y,

is large. Then X, Y are positive, and X /Y is nearly x/2y,; and x3, y; are
positive and x3/y; is nearly X /2Y or x; /4y;.

Starting now with x7, y; in place of x1, y1, and repeating the argument,
we obtain a third pair of rationals x3, y3 such that

AR =x3 4y =03+
and x3 /3 is nearly x; /42y, . After r applications of the argument we obtain
(21.11.14) B+y=d 4= =245,
all the numbers involved being positive rationals, and
LY S A L id
Yo yYr ¥ yr

all being nearly equal, so that the ratios x,/y,(s = 1,2, ...,r) are certainly
unequal. If we multiply (21.11.14) by /*, where ! is the least common
multiple of the denominators of xy,yi,...,x,,Jr, we obtain an integral
solution of the system (21.11.14),

Solutions of

4 4 4 4
Xy typ=x3+5;
T lifweputa = band A = 1 in (13.7.8), we obtain
x=8a+1, y=16a~1, uwmdba~16a®, v=2a+ 16a%:
and if we replace u by $g, and use (13.7.2), we obtain

@-200 4+ -1 =@ +9° - @+ 1),
an identity equivalent to (21,11.11).
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can be deduced from the formulae (13.7.11); but no solution of

it 4y} =8 48 =ad 4y

is known. And no solution of (21.11.7) is known for k > 5.
We showed how to construct a solution of (21.10.2) for any j.
Swinnerton-Dyer has found a parametric solution of

21.11.15) X405 +x =y ++ 5

which yields solutions in positive integers. A numerical solution is

(21.11.16) 49° + 75° + 107° = 39° + 92° + 100°.

The smallest result of this kind for sixth powers is

(21.11.17) 3% 4 195 4 226 = 106 + 15% + 238,
NOTES

A great deal of work has been done on Waring's problem during the last hundred years,
and it may be worth while to give a short summary of the results. We have already referred
to Waring’s original statement, to Hilbert’s proof of the existence of g{(k), and to the proof
that g(3) = 9 (Wieferich, Math. Annalen, 66 (1909), 93101, corrected by Kempner, ibid.
72 (1912), 387-97 and simplified by Scholz, Jber. Deutsch. Math. Ver. 58 (1955), Abt. 1,
45-48).

Landau [ibid. 66 (1909}, 102-5] proved that G(3)} < 8 and it was not until 1942 that
Linnik {Comptes Rendus (Doklady) Acad. Sci, USSR, 35 (1942), 162] announced a proof
that G(3) < 7. Dickson [Bull. Amer. Math. Soc. 45 (1939) 588-91] showed that 8 cubes
suffice for all but 23 and 239. See G. .. Watson, Math. Gazette, 37 (1953), 209-11, fora
simple proof that G(3) < 8 and Journ. London Math. Soc. 26 (1951), 153-6 for one that
G(3) < 7 and for further references. After Theorem 394, G(3) 2 4, so that G(3) is 4, 5,
6, or 7; it is still uncertain which, though the evidence of tables points very strongly to 4
or 5. See Western, ibid. 1 (1926), 244-50. Deshouillers, Hennecart, and Landreau {Math.
Comp. 69 (2000), 421--39) have offered evidence to the effect that 7 373 170 279 850 is
the largest integer that cannot be represented as the sum of four positive integral cubes.

Hardy and Littlewood, in a series of papers under the genera title ‘Some problems of
" partitio numerorum’, published between 1920 and 1928, developed a new analytic method
for the study of Waring’s problem. They found upper bounds for G(k) for any &, the first
being

k2251 4 5

and the second a more complicated function of k which is asymptotic to £2%~2 for large k.
In particular they proved that :

(@)  GW<19, GO, GE)<87, G193, GEB) < 425.
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Their method did not lead to any new result for G(3); but they proved that ‘almost all’
numbers are sums of 5 cubes,

Davenport, Acta Math. 71 (1939), 123-43, has proved that almost all are sums of 4.
Since numbers 9m:d-4 require at least 4 cubes, this is the final result.

Hardy and Littlewood also found an asymptotic formula for the number of representa-
tions for n by s kth powers, by means of the so-called ‘singular series’. Thus r4 2 (n), the
number of representations of n by 21 biquadrates, is approximately

{2F (%)]21 ¥ {l + 1.331 cos (lmr + ﬁx) + 0-379cos (1mr - gn’) + ]
r(2) " 8" T 16 47 8) "

(the later terms of the series being smaller). There is a detailed account of all this work
(except on its ‘numerical’ side) in Landau, Vorlesungen, i. 235-339,
As regards g(k), the best results known, up to 1933, for small &, were

g4 £ 37, g(5) <58, g(6) <478, g(7) <3806, g(8) < 31353

(due to Wieferich, Baer, Baer, Wieferich, and Kempner respectively). All these had been
found by elementary methods similar to those used in §§ 21.1-4. The results of Hardy and
Littlewood made it theoretically possible te find an upper bound for g(&) for any k, though
the calculations required for comparatively large k& would have been impracticable, James,
however, in a paper published in Trans. Amer. Math. Soc. 36 (1934), 395444, succeeded
in proving that

%) g(6) < 183, g(7) <322, g(8) £ 595.

He also found bounds for g(9) and g(10}.

The later work of Vinogradov made it possible to obtain much more satisfactory results,
Vinogradov's earlier researches on Waring's problem had been published in 1924, and there
is an aceount of his method in Landau, Vorlesungen, i. 340-58. The method then used by
Vinogradov resembled that of Hardy and Littlewood in principle, but led more rapidly 1o
some of their results and in particular {o a comparatively simple proof of Hilbert’s theorem,
It eould also be used to find an upper bound for g(k). In his later work Vinogradov made very
important improvements, based primarily on 2 new and powerful method for the estimation
of certain trigonometrical sums, and obtained results which were, for large &, far better than
any known before. Thus he proved that

Gk) < 6klogk + (4 + log 216)k;

so that G(k) is at most of order klog k. Vinogradov’s proof was afterwards simplified
considerably by Heilbronn, who proved that

(c) G(k)géklogk-f—{4+3log(3+%)}k+3.

The resulting upper bound for G(k) is better than that of (a) for k > 6 (and naturally far better
for large values of k). Vinogradov (1947) improved his result to G{k} < k(G logk + 11),
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Tong (1957) and Chen (1958) replaced the number 11 in this by 9 and 5.2 respectively,
while Vinogradov (fzv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 637-42) proved that

{d) Gk) < kQ2logk + 4loglogk + 2logloglogk 4+ 13)

for all & in excess of 170,000,

More has been proved since conceming smaller & : in particular, the value of G(4) is now
known. Davenport [dnnals of Math. 40 (1939), 731-47] proved that G(4) < 16, so that,
after Theorem 395, G(4) = 16; and that any number not congruent to 14 or 15 (mod 16} is
a sum of 14 biguadrates, He also proved [Amer. Journal of Math. 64 (1942), 199-207] that
G(5 £ 23 and G(6) < 36. It has been proved by Davenport’s method that G(7) < 53 (Rao,
J. Indian Math. Soc. § (1941}, 117-21 and Vaughan, Proc, London Math. Soc. 28 (1974),
387). Narasimkamurti (J. Indian Math. Soc. 5 (1941), 11-12) proved that G(8) < 73 and
found upper bounds for £ = 9 and 10, subsequently improved by Cook and Vaughan (Acta
Arith. 33 (19717), 231-53). The last-named proved that

G(®) €91, G(10) £ 107, G(11) < 122, G(12) € 137,

Vaughan’s method leads to G(k) < &(3logk + 4.2) (k = 9), which is better than (d) for
k € 2.131 x 167 (approx.) and otherwise worse.

Vinogradov’s work also led to very remarkable results concerning g(k). if we know
that G{k) does not exceed some upper bound G(k), so that numbers greater than C(k) are
representable by G(k) or fewer kth powers, then the way is open to the determination of
an upper bound for g(k). For we have only to study the representation of numbers up to
C(k), and this is logically, for a given k, a question of computation. It was thus that James
determined the bounds set out in (5); but the results of such work, before Vinogradov’s, were
inevitably unsatisfactory, since the bounds {a) for G{k) found by Hardy and Littlewood are
(except for quite small values of &} much too large, and in particular larger than the lower
bounds for g(k) given by Theorem 393,

iIf

gk = 2% + [(%)k] -2

is the lower bound for g(k) assigned by Theorem 393, and if, for the moment,
we take G(k) to be the upper bound for G(k) assigned by (d), then g(k) is
of much higher order of magnitude than G(k). In fact gk) > G(k) for k = 7. Thus if

k 2 7, if all numbers from C{k) on are representable by G(k) powers, and all numbers
below C(k) by g(k) powers, then

g(k) = gtk).

And it is not necessary to determine the C(k) corresponding to this particular G(k), it is
sug' icient to know the C(k) corresponding to any G(k) < g(k), and in particular to G(k) ==
gk
This type of argument led to an ‘almost complete’ sclution of the origina! form of
Waring’s problem. The first, and deepest, part of the solution rests on an adaptation of
Vinogradov’s method. The second depends on an ingenious use of a ‘method of ascent’, a
simple case of which appears in the proof, in § 21.3, of Theorem 390,
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Let us write
A= [(%)"], B=3F-2%4, D= [(g)*].
The final result is that
() gy =25 +4-2
for all k > 2 for which
) Bg2k-4-2
I this case the value of g(k) is fixed by the number
ne=264— 1= (4 - D28+ 2F -k

used in the proof of Theorem 393, a comparatively small number representable only by
powers of 1 and 2. The condition (f) is satisfied for 4 < &k < 471 600000 (Kubina and
Wunderlich, Math. Comp. 55 (1990), 815-20) and may wel| be true for all k > 3. It can
only be false for at most a finite pumber of k (Mahler, Mathematika 4 (1957}, 122-4).

Itisknownthat B # 2K —4—1 and that B # 2* — 4 (exceptfork = 1).IfB > 2 _4+1,
the formula for g{k) is different, In this case,

gk) =24 4+D—-3if 2* <AD+A+D
and
gk)=2* + A4+ D -2 if X =AD+A+D.

It is readily shown that 2 < AD + 4 + D.

Most of these results were found independently by Dickson [Amer. Journal of Math. 58
(1936), 521-9, 530-5] and Pillai {Jouwrnal Indian Math. Soc. {2) 2 (1836}, 1644, and Proc.
Indian Acad. Sci. (A), 4 {1936), 261]. They were completed by Pillai [ibid. 12 (1940},
36-40]1 who proved that g(6) = 73, by Rubugunday [Jowrnal indian Math. Soc. (2) 6
(1942), 192-8] who proved that B # 2% — 4; by Niven [dmer. Journal of Math. 66 (1944),
137-43] who proved (e) when B = 2F — 4— 2, a case previously unsolved; by Jing-run Chen
{Chinese Math. Acta 6 (1965}, 165-27) who proved that g(5)== 37, and by Balasubramanian,
Deshouillers, and Press, who have shown that g(4) = 19 (C. R. Acad. Sci. Paris. Sér. |
Matk. 303 (1986), 8588 and 161-3).

It will be observed that there is much more uncertainty about the value of (G(k) than
about that of g(k); the most striking case is k¥ = 3. This is natural, since the value of G{k)
depends on the deeper properties of the whole sequence of integers, and that of g (k) on the
more trivial properties of special numbers near the beginning.

Vaughan, The Hardy-Littlewood Method, gives an excellent account of the topic and a
full bibliography.

Much progress has been accomplished on topics associated with Waring's problem over
the past three decades. A fairly comprehensive survey may be found in the paper of Vaughan
and Wooley in Surveys in Number Theory, Papers from the Millenial Conference in Number
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Theory, (A. K. Peters, Ltd., MA, 2003). Tn brief, there have been two phases of activity. Inthe
first phase, pursued more or less independently by Thanigasalam and Vaughan throughout
the early 1980's, the methods originally developed by Davenport (as cited earlier) were
refined to perfection. The papers of Vaughan (Proc. London Math. Soc. (3) 52 (1986), -
4563 and J. London Math. Soc. {2) 33 (1986), 227-36) represent the culmination of this
activity, in which it is shown that G(5) € 21, G(6) € 31, G(7) £ 45, (F(8) € 62 and
G(9) £ 82. Vaughan also proved that ‘almost ali’ positive integers are sums of 32 eighth
powers, a conclusion that is best possible.

The landscape was then transformed at the end of the 1980°s with the introduction by
Vaughan of smooth numbers (that is, integers all of whose prime divisors are ‘small’)
into the Hardy-Littlewood method (see Acta Math. 162 (1989), 1-71). This led inter
alia to the bounds G(3) < 19, G(6) £ 29, G(7) < 41, GB) £ 57, G(9) < 75,...,
G(20) < 248. Subsequently, 2 new iterative element (‘repeated efficient differencing’)
was found by Wooley (Ann. of Math. (2) 135 (1992), 131-64) that delivered the sharper
bounds G(6) < 27, G(7) < 36, G(B) £ 47, G(9) £ 55,..., G(20) € 146, and for larger
exponents k, the upper bound G(k) < k(logk + loglogk + O(1)). The latter provided the
first sizeable progress on Vinogradov’s estimate (), from 1959. Wooley also showed that
‘almost all’ positive integers are the sum of 64 16th powers, and also the sum of 128 32nd
powers, each of which are best possible conclusions. The sharpest bounds currently (2007)
available from this circle of ideas are

GEY<17, GBY<s24, GNK33 GBIL42, GO <LH,..., GROHLI42

{see work of Vaughan and Wooley spanning the 1990°s summarised in Acta Arith.
{2000), 203-285), and

Gk) < k(logk + loglogk 4+ 2 4 Ofloglog &/ log k))

{see Wooley, J. London Math. Soc. (2) 51 (1995}, 1-13).

Further progress has been made on the topic of sums of fourth powers beyond the con-
clusions of Davenport {1939) summarised above, Thus, Vaughan (Acta Mazh. 162 (1989),
1-71} has shown that whenever n is a large enough integer congruent to some number 7
modulo 16, with 1 € r < 12, then n is the sum of 12 fourth powers, Kawada and Wooley
{/. Reine Angew. Math. 512 (1999), 173-223) obtained a similar conclusion for sums of 11
fourth powers whenever n is congruent {o some integer r modulo 16 with | € r < 10.

§ 21.1. Liouville proved, in 1859, that g{4) < 53. This upper bound was improved
gradually until Wieferich (1909) proved that g(4) € 37 by elementary methods. Dickson
{1933) improved this t¢ 35 by the methods described above and Dress (Comptes Rendus
272A(1971), 457-9) reduced it further to 30 by an adaptation of Hilbert’s method of proof
that g(k) exists. We have already referred to the proof by Balasubramanian, Deshouillers,
and Dress that g(4) = 19,

Complementing work of Davenport (dnn. of Math. (2) 40 (1939), 731-47) showing
that G(4) == 16, Deshouillers, Hennecart, Kawada, Landreau, and Wooley (/. Théor.
Nombres Bordeaux 12 (2000), 411-22 and Mém. Soc. Fr. (N.5.) No. 100 (2005), vi+120pp.)
have recently established that the largest integer that is not the sum of 16 fourth powers.is
13792. Amongst other devices, the proof makes use of the identity x* + 3% + (x + y)* =
2(x* + xy + y*)2, which also appears in the display preceding equation (21,10.1) above,

References to the older literature refevant to this and the next few sections will be found
in Bachmann, Niedere Zahlentheorie, ii. 32848, or Dickson, History, ii, ¢ch, xxv.

§§ 21.2-3, See the note on § 20.1 and the historical note above.
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§ 21.4. The proof for g(6) is due to Fleck. Maillet proved the existence of 2(8) by a more
complicated identity than (21.4.2); the latter is due to Hurwitz. Schur found a similar proof
for g(10).

§ 21.5. The special numbers n considered here were observed by Euler (and probably
by Waring).

§ 21.6, Theorem 394 is due to Maillet and Hurwitz, and Theorems 395 and 396 to
Kempner, The other lower bounds for G{k) were investigated systematically by Hardy and
Littlewood, Proc. London Math. Soc. (2} 28 (1928), 518-42.

§8 21.7-8. For the results of these sections see Wright, Jowrnal London Math. Soc. 9
(1934), 267-72, where further references are given; Mordell, ibid. 11 (1936), 208-18; and
Richmond, ibid. 12 (1937), 206,

Hunter, Journal London Math. Soc. 16: {(1941), 177-9 proved that 9 < v(4) € 10; we
have incorporated in the text his simple proof that v(4) 2 9. For inequalities satisfied by
v(k) for 6 < k < 20, see Fuchs and Wright, Quart. J. Math. {Oxford), 10 (1939), 190-209
and Wright, J. fiir Math. 311/312 (1979}, 170-3. ’

Vaserstein has shown that v(8) < 28 {J Number Theory 28 (1988), 66-68), and
A. Choudhry bas proved that v(7) < 12 (J. Number Theory 81 (2000), 266-9). Both
conclusions depend on the existence of remarkable polynomial identities too lengthy to
record here,

§§ 21.9-10. Prouhet [{Comptes Rendus Paris, 33 (1851}, 225] found the first non-trivial
result in this problem. He gave a rule to separate the first jEH positive integers into f sets
of /¥ members, which provide a solution of (21.9.3) with 5 = jX. For a simple proof of
Prouhet's rule, see Wright, Proc. Edinburgh Math, Soc. (2) 8 (1949), 138-42. See Dickson,
History, i, ch. xxiv, and Gloden and Palama, Bibliographie des Multigrades (Luxembourg,
1948), for general references. Theorem 408 is due to Bastien [Sphinx-Oedipe 8 (1913),
171-2] and Theorem 409 to Wright [Bull. American Math. Soc. 54 (1948), 755-7].

§ 21.10. Theorem 410 is due to Gloden [Mehrgradige Gleichungen, Groningen, 1944,
7180}, For Theorem 411, see Tarry, L 'intermédiaire des mathématiciens, 20(1913), 68-70,
and Escott, Quarterly Journal of Math. 41 (1910), 152,

A. Létac found the examples

[1,25,31,84,87,134,158,182,198]3 = (2, 18,42,66,113,116,169,175, 199)g

I412,%11881, £20231, 20885, +23738)9
= [+436, £11857, +20449, +20667, £23750]s,

which show that P(k,2) = k 4+ 1| fork = 8 and k = 9, See A. Létac, Gazeta Matematica
48 (1942), 6869, and A. Gloden, loc. cit.
P. Borwein, Lisonék and Percival (Math. Comp. 72 (2003}, 2063--70) found the example

{499, 2100, 188, 4301, £313]g == [+7], +131, 3180, 2307, +308]9,

which provides a smaller solution than that available earlier, again confirming that P(k, 2) =
k + 1 for k = 9. As the result of what is probably best described as independently joint
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work of Shuwen Chen, Kuosa, and Meyrignac (see htip://euler.free.fr/esip/eslp.htm for
more details), in 1999 an example equivalent to

[£22, 461,486, £127, +140, £151]3; = [£35,+47, 494, 1121, 2146, £ 148154

was discovered that confirms that P(k,2) =k 4+ 1 fork = 11.

§21.11. The mostimportant result in this section is Theorem 412, The relations (21.11.9)-
(21.11.12) are due to Vieta, they were used by Fermat to find solutions of {21.11.14) for
any r (see Dickson, History, ii. 550-1). Fermat aysumed without proof that all the pairs x;,
¥ (s = 1,2,...,r) would be different. The first complete proof was found by Mordell,
but not published.

Of the other identities and equations which we quote, {21.11.4) is due to Gérardin
[L'intermédiaire des math. 19 {1912), 7} and the corollary to Mahler [Journal London
Math. Soc. 11 (1936), 136-8], (21.11.6) to Sastry {ibid. 9 (1934), 242-6], the paramet-
ric solution of (21.11.15) to Swinnerton-Dyer [Proc. Cambridge Phil. Soc. 48 (1952},
516-8], (21.11.16) to Moessner [Proc. Ind. Math. Soc. A 10 (1939), 296--306], (21.11.17)
to Subba Rao [Journal London Math. Soc. 9 (1934), 172-3], and (21.11.5) to Norrie.
Patterson found a further solution and Leech & further solutions of {21.11.2) for k = 4
[Bull. Amer. Math. Soc. 48 {1942), 736 and Proc. Cambridge Phil. Soc. 54 (1958), 554—
5]. The identities quoted in the footnote to p. 441 were found by Fauquembergue and
Gérardin respectively. For detailed references to the work of Norrie and the last two authors
and to much similar work, see Dickson, History, ii. 650—4. Lander and Parkin [Math.
Computation 21 (1967), 101-3] found the result which disproves Euler’s conjecture for
k = 5, 5 = 4. Elkies (Math. Comp. 51 (1988), 825-35) has found solutions of (21.11.1)
which disprove it for £ = 4, s = 3. The smallest counter example, computed by Frye, is
958004 + 217519% 4 414560% = 422481%. Brudno (Math. Comp. 30 (1976), 646-8) gives
a two-pararneter solution of the equation x? +xg = xg B y? + yg + yg. of which (21.11.17)
is a particular solution.

For a survey of the subject of equal sums of like powers see Lander, American Math.
Monthly 75 (1968), 1061-73.



XX1I
THE SERIES OF PRIMES (3)

22.1. The functions #(x) and y¥(x). In this chapter we return to the
problems concerning the distribution of primes of which we gave a pre-
liminary account in the first two chapters. There we proved nothing except
Euclid’s Theorem 4 and the slight extensions contained in §§ 2.1—6. Here
we develop the theory much further and, in particular, prove Theorem 6
(the Prime Number Theorem). We begin, however, by proving the much
simpler Theorem 7.

Our proof of Theorems 6 and 7 depends upon the properties of a function
¥ (x) and (to a lesser extent) of a function ¥ (x). We write'

(22.1.1) P x) = Zlogp log[]r
pPEx
and
(22.1.2) Y @)=Y logp= z A(n)
: P

(in the notation of § 17.7). Thus
Y(10) =3log2 + 2log3 +log5 +log7,

there being a contribution log 2 from 2, 4, and 8, and a contribution log 3
from 3 and 9. If p™ is the highest power of p not exceeding x, log p occurs m
times in ¥ (x). Also p™ is the highest power of p which divides any number
up to x, so that

(22.1.3) Y (x) = log U(x),

where U(x) is the least common multipie of all numbers up to x. We can
also express ¥ (x) in the form

(22.1.4) U (x) = v [:zg; ] log p.

psx

! Throughout this chapter x (and y and ) are not necessarily integral. On the other hend, m, n, k. &,
£1c., are positive integers and p, as usual, is a prime. We suppose always that x > 1,
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The definitions of #(x) and ¥ (x) are more complicated than that of 7 {x), bgt they
are in reality more ‘natural’ functions. Thus ¥ (x) is, after (22.1.2), th'e ‘sum funcnon" of
A(n), and A(n) has (as we saw in § 17.7) a simple generating function. The generating
fanctions of #(x), and still more of m(x), are much more complicated. And even the
arithmetical definition of W (x), when written in the form (22.1.3), is very elementary and
patural.

Since p? < x,p° < x, ... are equivalent to p < xi,p < xé,.. ., we have
- ]
Q215  $E =0+ (x%) + 9 (xs) foe= Y BGM™.

The series breaks off when x!/™ < 2, i.e. when

logx
m > _iog >

It is obvious from the definition that #(x) < xlogx forx 2 2. 4 fortiori
¢ (x!/™) < x'™logx < x? logx

ifm 2 2; and

Z 8 (x/™) = 0 {x% (10gx)2} ,

mz2
since there are only O(log x) terms in the series. Hence

THEOREM 413:
Yx) =8 () +0 [x% (1ogx)2] .

We are interested in the order of magnitude of the functions. Since

@y =Y 1, #@)= ) logp,
PEX pEx

it is natural to expect # (x) to be ‘about log x times’ w{x). We shall sce later that this is so.
We prove next that #{x) is of order x, so that Theorem 413 tells us that ¥ (x) is *about the
same as’ # (x) when x is large.
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22.2. Proof that #(x) and ¥{x) are of order x. We now prove

TueoreM 414, The functions ¥ (x) and v (x) are of order x:
(22.2.1) Ax < 3(x) < Ax, Ax < {r{x) < Ax (x = 2).

It is enough, after Theorem 413, to prove that

(22.2.2) # (x) < Ax
and
(22.2.3) ¥(x) > 4Ax (x = 2).

In fact, we prove a result a littie more precise than (22.2.2), viz,
TueoREM 415:
?(n) <2nlog2 foralinz= 1.
By Theorem 73,

_ (@Cm+ 1) _ 2m-+1)2m)...(m+2)
Tmtm+ 1) m!

is an integer. It occurs twice in the binomial expansion of (1 + 1)?"*! and
50 2M < 22"+l and M < 22™,

Ifm+1 <p < 2m+1, pdivides the numerator but not the denominator
+f M. Hence

(AL

m+1<psim+1
and
d2m+ 1) —dm+1) = Y  logp <logM < 2m log2.
m+1<p<2m+1

Theorem 4135 is trivial for n = 1 and for n == 2. Let us suppose it truc.
foralln < ng — 1. If ny is even, we have

P(no) == 3(np —~ 1) <2(ng — 1)log2 < 2nglog 2.
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If ng is odd, say ng = 2m + 1, we have

Pg) =C2m+ 1N =0Cm+ 1) —Fm+ 1)+ dm+ 1)
< 2mlog2 +2(m+ 1)log2
=202m+ 1)log2 =2nplog2,
since m + 1 < ng. Hence Theorem 415 is true for n = ny and so, by
induction, for all n. The inequality (22.2.2) follows at once.

We now prove (22.2.3). The numbers 1,2,...,n include just [n/p]
multiples of p, just [n/p?] multiples of p?, and so on. Hence

THEGREM 416:

n =[]/,
p
where
Jn,p) = [p,,,]
mzl
We write
(2n)‘
= [T r*.
psin
so that, by Theorem 416,
o 2n n
a0 n-B((EH[E)
m=1

Each term in round brackets is 1 or 0, according as [2r/p™] is odd or even,
In particular, the term is 0 if p™ > 2n. Hence

log 2n
logp

(22.2.5) k, < [

and

log N = Z kplogp < Z [loan] logp = ¥(2n)

PS2n P<2n logp
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by (22.1.4). But

@n)! n+ln+2 2n

= — . . — = R
(22.2.6) N= =t = > 2

and so
v (2n) = nlog2.

Forx > 2, weput n = [3x] = 1 and have

Yix) = ¢¥(2n) = nlog2 > jxlog2,
which is (22.2.3).

22.3. Bertrand’s postulate and a ‘formula’ for primes. From Theorem 414, we can
deduce

Tueorem 417. There is a number B such that, for every x > 1, there is a prime p
satisfving

x <p< Bx.
For, by Theorem 414,
Cix < #{x) < Cox xz22)
for some fixed Cy, Cp. Hence
HCax/Cy) > €y {(Cax/Cy) = Cax > #(x)

and so there is a prime between x and Chx/Cy. i we put 8 = max(C2/Cy, 2), Theorem 417
1s immediate.

We can, however, refine our argument a little to prove a more precise resuit.

Tueonem 418 (Bertrand 5 Postulate). If n 22 1, there is at least one prime p such that
(22.3.1) n<ps2m
that is, if pr is the r-th prime,
(22.3.2) Prel <2pr

for every r.

The fwo parts of the theorem are clearly equivalent, Let us suppose that, for some
n > 29 = 512, there is no prime satisfying (22.3.1). With the notatzon of § 22.2, legp be &

prime factor of N, so that kp > 1. By our hypothesis, p < n. If % §n < p < n, we have

2p £ 2n < 3p, p2>gnz>2n
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R P

Hencep < %n for every prime factor p of N and so

and (22.2.4) becomes

(223.3) 3 togp< Y logp= ﬁ(%n) < $nlog2
pIN psin

by Theorem 415.
Next, if kp == 2, we have, by (22.2.5)

2logp S kplogp < log(2n), p < /(2w

and so there are at most ,/(2n) such values of . Hence

Y kplogp < /(2n)log (2m),

k22
and so
(22.3.4) log N < Y logp+ ¥ kplogp < Y logp + /(2n) log (2n)
k1 ko222 PIN
< 3nlog2 + /(2n) log (2n)
by (22.3.3)

On the other hand, N is the largest term in the expansion of 221 = (] 4 1)2", 50 that

L 2n 2n B 2n
= (2) o (B) ot (u20 ) <30
Hence, by (22.3.4),

2nlog2 < log (2n) + logN < $nlog2 4 {1+ /(2n)} log (2n),

which reduces to
(22.3.5) 2nlog2 < 3{1 + /2m}log (2n).
We now write
¢ = log (n/512) o
I0log 2 i

s0 that 2n = 210U+L) Since n > 512, we have ¢ > 0. (22.3.5) becomes

210048 <30 (2545 4 1) (1 + 3,



223 (459)} THE SERIES OF PRIMES 457
whence

25 <3025 (1 +2‘5"5¢) (1+8) < (1—2‘5) (£+2—5) (A+2) < 1+2.

But
2% = exp(Sclog2) > 1+ Slog2>1+¢,

a contradiction. Hence, if n > 512, there must be a prime satisfying (22.3.1).
Each of the primes

2,3,5,7,13,23,43,83, 163,317,631

is less than twice its predecessor in the list. Hence one of them, at least, satisfies (22.3.1)
for any » < 630. This completes the proof of Theorem 418.
We prove next

THEOREM 419, If

s 4]
a= Y pml0~2" = .02030005000000070 ...,

s
we have
(22.3.6) Pn = [102“a] ~ 102" [102"".:].
By (2.22),

and so the series for o is convergent. Again

o0 o0
0<10" Y a0 < ¥ 471072

4§ me=n4-1
[+ ¢]
=MEZ”;I (§)2’""1 < (%)2”(1 _i %) <A <L
Hence
[zoz”a] = 102" Zu:p,,,la*z"'
m=]
and, similarly,

-1
[202"‘2:] = 102" ,’Zp,,,zo“z"‘.

: m=1
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It foliows that
n n—1
[102"a] —102"" [202““‘{1] =10" (Epmlo-z”’- Y p,,,lo—z"') = Pn.
m=} m=1}

Although (22.3.6) gives a ‘formula’ for the nth prime py, it is not a very useful one. To
calculate p,, from this formula, it is necessary to know the value of  correct to 2" decimal
places; and to do this, it is necessary to know the values of p1, pa2,...,pn.

There are 2 number of similar formulae which suffer from the same defect. Thus, let us
suppose that 7 is an integer greater than one. We have then

Pngf'n

by (22.3.2). Indeed, for r 2> 4, this follows from Theorem 20. Hence we may write

o o]
ay = Ep,,.r“”‘z

m=}

and we can deduce that
pom ] P e

by arguments similar to those used above.

Any one of these formulae {or any similar one) would attain a different status if the exact
value of the number o or @, which occurs in it could be expressed independently of the
primes. There seems no likelihood of this, but it cannot be ruled out as entirely impossible.

For another formula for p,, see § 1 of the Appendix.

22.4. Proof of Theorems 7 and 9. It is easy to deduce Theorem 7 from
Theorem 414. In the first place

?x) = Zlogp < logxz 1 =m(x)logx
pEx PSx
and so

(22.4.1) 2 > & A
logx logx

On the other hand, if 0 < § < 1,
B(x) = Z logp 2 (1 —§)logx Z 1

xl—équx xl—squ
= (1-8) logx{m (x)—m (x' %)} > (1-8) log x {m (x)~x" %}
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and so

2 (x) < Ax -
(1—-—8logx logx

(22.4.2) @) <x 4+

We can now prove
THEOREM 420:
_® YW

logx logx

n(x)

After Theorems 413 and 414 we need only consider the first assertion.
It follows from (22.4.1) and (22.4.2) that

1-8
m(x)logx < x "%logx N 1 .
#(x) % (x) ] ~§&

-
For any € > 0, we can choose § = 8(¢) so that

! <14 te
1—38 2
and then choose xg = x¢(d, €) = xp(¢€) so that

x!"%logx Alogx

500 < 5 < 7€
for all x > xp. Hence
n(x)logx
1 ——
T <1l4e€

for all x > xp. Since € is arbitrary, the first part of Theorem 420 follows at
once.

Theorem 9 is (as stated in § 1.8) a corollary of Theorem 7. For, in the
first place,

Apn

log pn’

n=mna{p,) < Pn > Anlogp, > Anlogn.

Secondly,
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so that

A
Jon < 22 < an, o<
OE Pn

and
pn < Anlogp, < Anlogn.
22.5. Two formal transformations. We introduce here two elementary
formal transformations which will be useful throughout this chapter.
TueoreM 421. Suppose that ¢, ¢2, . . . is a sequence of numbers, that

C®O) =) cn

net
and that f(t) is any function of t. Then

@25.1) Y cnflmy= Y C{fm) —fn+ 1} + CO) (Ix)) .
nex nsx—1

If, in addition, ¢; = 0 for j < n1 and f(t) has a continuous derivative for

t 2 n, then

(2252) Y enfm = Cef @~ [ Cof@ar
nex m

if we write N = [x], the sum on the left of (22.5.1) is

CY (1) +{C2) — C}f @)+« + [CN) — C(N — D}F(N)
=C{fD) ~f@}+---+CWN — D{fWV — 1) — (V)
+ C(NF (V).

Since C(N) = C(x), this proves (22.5.1). To deduce (22.5.2) we observe
that C(t) = C(n) whenn €< f < n+ 1 and so
m+1
o ifm s+ D) == [ coroa,

Also C(t) = 0 whent < nj.

¥ In our applications, my = 1 or 2. If n; = 1, there is, of course, no restriction on the ¢,. I ny = 2,
we have o) = 0.
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Hweputc, = 1 and /() = 1/¢t, we have C{x) = [x] and (22.5.2)

becomes
yi. [x] f [,
néx
= logx+y + K,
where
o0

y=1— f tw—[t

1

is independent of x and

Cfe—=ID, x-k_ [0 I
E_f L _fr—d+0(x) o(;).

x

Thus we have

THeOREM 422

1 i
Z—:iogx-!ry-f-O(—),
n x

agx
where y is a constant (known as Eulers constant).
22.6. An important sum. We prove first the lemma

THROREM 423

g iog“' (E«) = 0 (x) (h > 0).

Since log ¢ increases with ¢, we have, forn > 2,

of () < [t (e

n—1
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Hence

x

|
ngziogh (;) fiog if =
o[ %
|

since the infinite integral is convergent. Theorem 423 follows at once.
If we put A = 1, we have

du = Ax,

Z logn = [x]logx + O (x) = xlogx + O(x).

nsx
But, by Theorem 416,
D logn=> j(xl,p)logp= Y [p,,] logp = Z ] A(n)
nEx pex mex

in the notation of § 17.7. If we remove the square brackets in the last sumn,
we introduce an error less than

2_AM =¥ =0x)

nex

and so

S ZAM) =Y logn + O(x) = xlogx + O().
n

nLx nEx
If we remove a factor x, we have

THEGREM 424

3 AW ogx + O(1).

nex n
From this we can deduce
TueEOREM 425:;

1
322 ogx+0q).

Psx
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For

A(n) I 1
> Z°gp ):Zogp

n<x : P i P

<i logn iy
nin—1) "

=2

If, in (22.5.2), we put f(£) = 1/t and ¢ = A(n), so that C(x) = ¥ (x),

we have
YA _ ¥ ‘*‘f V@,
n X t
2

nsx

and so, by Theorems 414 and 424, we have

(22.6.1) f %er = logx + O (1).

From (22.6.1) we can deduce ‘
(2262) lim{y(0) /x} <1, hm{y@)/x}>1

For, if lim {y(x) /x} = 1 + 8, where § > 0, we have ¥(x) > (1 + 28)x
for all x greater than some xp. Hence

wdt f W(f) f (1+ i8)4:1'1 > (1+ %6) logx — A4,

in contrad:ctmn to (22 6.1). If we suppose that im{y¥ (x)/x} = 1 — &, we
get a similar contradiction.
By Theorem 420, we can deduce from (22.6.2)

TraeOREM 426

i/ < /]

Ifrx)y/ Togx tends fo a limit as x — oo, the limit is 1.
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Theorem 6 would follow at once if we could prove that 7 (x) / 15*5 tends
to a limit. Unfortunately this is the real difficulty in the proof of Theorem 6,

22.7. The sum Tp~! and the product II(1 - p~1). Since

1 1 i 1
(22.7.1) 0 < log (T:;:T) m; = 5;2* + 3}? + -
1 + 1 + !
<y = e
2p%  2p3 2p(p— 1)

and
i
Zp(pwi)

is convergent, the series

N

-1

must be convergent, By Theorem 19, Eip~ is divergent and so the product

(22.7.2) [Ta-r
must diverge also (to zero).
From the divergence of the product (22.7.2) we can deduce that
r{x) = o(x),

i.e, almost all numbers are composite, without using any of the resuits of §§ 22.1-6. Of
course, this result is weaker than Theorem 7, but the very simple proof is of sotne interest,
We choose 7 30 that

M=p\p2..pr SX <p1...PrPr+l

and & the positive integer such that k&M € x < (k 4+ 1)M. Let H be the number of
positive integers which (i) do not exceed {k 4 )M and {ii} are not divisible by any of
the primes py, ..., pr, 1.e. are prime to M. These numbers clearly include all the primes
Prits-- +Pr(x)- Hence

rx)sr+H.

By definition ¢{M) is the number of integers prime to Af and less than or equal to M, so
that A == (k + 1}¢(A). But x 2 kM and so, by (16.1.3),

,
54{fc+1)¢(M)<2¢(M>=21—[(l_gw)ﬂg
i=1

x kM M Pi
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as r — 0o, since the product (22.7.2) diverges. Also

fg d < ! - 0,
X Pr-1br Pr}
As x -» 00, 50 does r and we have
wix) < £+£ 50
x . x X

that is, w(x) = o(x).
We can prove the divergence of I1(1 — p~!) independently of that of
3" p~! as follows. It is plain that

......._,1....._..): (1+1+‘-—+ ) -

the last sum being extended over all n composed of prime factors p < V.
Since all n < NV satisfy this condition,

n( lhl)zil>logN—A
l—-p —n

psN

by Theorem 422. Hence the product (22.7.2) is divergent.

If we use the results of the last two sections, we can obtain much more
exact information about _ p~!. In Theorem 421, let us put cp = logp/p,
and ¢, = 0 if n 1s not a prime, so that

C(x) = logp

psx

= logx + t{x),
where r(x) = O(l )} by Theorem 425, With f(¢) = 1/ log ¢, (22.5.2) becomes

(22.7.3) Z_ logx f:logf

X X
14 T(x) +f dt +f T(t)dt
log x ) tlogt tlog®t
2

= loglogx + By + E(x),
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where
T t(td
T{t)dt
By =1 —loglog2 -+
=1 togiog2+ [ S0
: 2
and
(22.7.4)

T frwdt (1 7 at \ (_1“»)
E(x)“iogx ftlogzt (iogx) +0( tlogzt) =0 logx /"~

Hence we have

TueoreM 427

Zl = loglog x + By + o(1),

p<x
where B is a constant.

22.8. Mertens’s theorem. Itisinteresting to push ourstudy of'the series
and product of the last section a little further.

TueoReM 428. In Theorem 427,

(22.8.1) B;=y-§—Z{log(l-—}’)+}~},

p

where y is Euler 5 constant.
THEOREM 429 (MERTENS'S THEOREM):
1 (1 — l) ~ 7
p<x p logx
As we saw in § 22.7, the series in (22.8.1) converges. Since

Sjep(D)-Eln(-D)-)

psx P
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Theorem 429 follows from Theorems 427 and 428. Hence it is enough to
prove Theorem 428. We shall assume that!

o0
(22.8.2) y = ~I"(1) = — / e~ log x dx.
0
If§ > 0, we have

i 1 i 1
0<-—log{l— - <
< Og( p1+5) pk+8 < 2p1+6(p1+8 -D ZP(P -1

by calculations similar to those of (22.7.1). Hence the series

' 1 l
F@) = Z {1"3 (1 - p1+a) + pk+5}

4

is uniformly convergent for all § > 0 and so
F(&) — F0)

as § — O through positive values,
We now suppose § > 0. By Theorem 280,

F(8) = g(8) —log (1 +8),

where
g® =) p 7
P

If, in Theorem 421, we put ¢, == 1/p and ¢, = 0 when n is not prime, we
have

1
Clx) = Z - = loglogx + By 4+ E(x)
px P

by (22.7.3). Hence, if £ () = ¢, (22.5.2) becomes

X

S p it =x70Cw) +a/z—‘-50(:) dr.
psX 2

t See, for example, Whittaker and Watson, Moders analysis, ch. xii.
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Leiting x — 00, we have

g®) =35 f 18 dt

oo
=4 f t~1-%(loglogt + B1)dt + 8 f 1B dt.
2 2

Now, if we put t = e*/%,

oo

o
= 5[:”"5 loglog tdt = fe"“ log (E) du= —y —logé
8
1

2
by (22.8.2), and

o0
5[!m1w8df =1.
1

Hence
o0

g(®) +logd — B +y = 5[:“1-55(:) dt— 8 fr‘*‘s(logiogz + By)dt.
2

Now, by (22.7.4), if T = exp(1/./8),

090
E (I) AS dt
5 f 1+5 <4 _[ iog T J 1+
T

<A3!0gT+£f <A\/5—>0,

asd — 0. Also

2

f t~1-3(loglog t + B)) dt
1

2

< f V(| loglog t] + |B)dt = A4
1
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since the integral converges at ¢ = 1. Hence
g(d) +logéd > B~y

as § — 0.
But, by Theorem 282,

logZ(1+8)+logd—> 0
as & — 0 and so
F(8) - By —y.
Hence
By =y + F(0),

which is (22.8.1).

469

22.9. Proof of Theorems 323 and 328. We are now able to prove

Theorems 323 and 328. If we write

¥ logl
film = 20 ;’g BT s =

we have to show that

lim fi(n) = 1, limfa(n) =1.

ne? loglogn’

It will be enough to find two functions Fy (1), F3(), each tending to 1 as

t = o0 and such that
(229.1) Sfilm) 2 Fi(logn), f2(n) <

forall n > 3 and

, i
(22.9.2) f(n) 2 F2(),  film) < 0

for an infinite increasing sequence ny, n3, n4, . . . .

Fi(log n)
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By Theorem 329, f1(n)f2(n) < 1 and so the second inequality in (22.9.1)
follows from the first; similarly for (22.9.2).

Let py, p2,...,pr-p be the primes which divide n and which do not
exceed log n and let p,..p41,... , pr be those which divide n and are
greater than log n. We have

logn
loglogn

(logn)? < pr_piy...0r <0, p<

and so

$(n) - 1 1 V11 1
2 =110 5)> () TT(-5)

1 log n/ loglog n
> (1= 53) (1-5)-
' P
Hence the first part of (22.9.1) is true with

logn
i t/logt 1
Fi(t) = ¢&¥ H - = ——
1) = e” log (1 t) n(l p)'

pst

p<logn

But, by Theorem 429, as t — oc,

1 t/logt 1
F;(t)'v(l--m) m1+0(-—w)-~+},
t fogt

To prove the first part of (22.9.2), we write

m=[lr" G2z,

psel -
so that
log n; = j&(e’) < Aje’
by Theorem 414. Hence

loglogn; < Ag +j + logj.
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Again

1
— p-1 1-p7 =
[Ta-r">Tlo-7= gy,

psel
by Theorem 280. Hence

B o (1)) _ e~V (1 —pl )
Sanj) = nje? loglogn;  loglogn; | I—[ L~p~!

e’ 1
Z , : — Foli
G+ (4o +j + log)) Pl:!f (1 _p—l) 2(/)

(say). This is the first part of (22.9.2). Again,asj — 00, {(j+ 1) — 1
and, by Theorem 429,

. J
F ~~ —
2D~ TG+ D+ + logh)
22.10. The number of prime factors of n. We define w(n) as the num-

ber of different prime factors of n, and £2(n) as its total number of prime
factors; thus

oM =r, QW =atat-ta,

whenn =p{'... p&.
Both a)(n) and §2(n) behave irregularly for large #. Thus both functions
are 1 when » is prime, while

logn
Q E=
() log?2
when n is a power of 2. If
h=mp2...Pr

is the product of the first » primes, then

wn) =r=mn(p), logn = 3(p,)
and so, by Theorems 420 and 414,
?pr)  logn

w(n) ~
logp, loglogn
(when n —> oo through this particular sequence of values).
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Trrorem 430. The average order of both w(n) and Q(n) is loglog n.
More precisely

(22.10.1) Z w{n) = x loglogx + Bix + o(x),
nex

(22.102) - ) " Q(n) = xloglogx + Bax + o(x),
nex

where B\ is the number in Theorems 427 and 428 and
1
By = By + —_——,
‘ ; p(p=1D

We write

ﬁgw(n) ZI“ZL]

ngx pln

since there are just [x/p] values of n < x which are multiples of p. Removing
the square brackets, we have

(22.10.3) $1 =Y % + 0fn(x)} = xloglogx + Bix + o(x)

psX
by Theorems 7 and 427.
Similarly
(22.10.4) =y Qm=y Y 1= Z [;,,]
n<x nsx pMin
so that

S2— 851 =Y [x/p",

where 2: denotes summation over all p™ < x for which m 2 2. If we
remove the square brackets in the last sum the error introduced is less than

' rlogp  Y(x) —9(x)
< = -
Z I< Z log2 log2 ()
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by Theorem 413. Hence

S5 -8 =xz:!p*m + o(x).
The series
1
3 M Ve R

is convergent and so

Y pm =B, — By +o(1)
as x — 0. Hence
8§ — 81 = (B2 — By)x + o(x)

and (22. 10.2) follows from (22.10.3).

22.11. The normal order of w(n) and 2(n). The functions w(n) and
£2(n) are irregular, but have a definite ‘average order’ logiog n. There is
another interesting sense in which they may be said to have ‘on the whole’
a definite order. We shall say, roughly, that £ (n) has the normal order F(n)
if f(n) is approximately F(n) for almost all values of n. More precisely,
suppose that

(22.11.1) (1—€e)F(n) <f(n) <(1+€)F(n)

for every positive € and almost all values of #n. Then we say that the normal
order of f(n) is F'(n). Here ‘almost all’ is used in the sense of §§ 1.6 and
9.9. There may be an exceptional ‘infinitesimal’ set of n for which (22.11.1)
is false, and this exceptional set will naturally depend upon €.

A function may possess an average order, but no normal order, or
conversely. Thus the function

f(n) =0 (neven),  f(n) =2 (nodd)
has the average order 1, but no normal order. The function
Sy =2" (ma=2"), fmy=1 (n#2™

has the normal order I, but no average order.

[
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Tueorem 431, The normal order of w(n) and Q(n) is loglog n. More
precisely, the number of n, not exceeding x, for which

@2.112)  |f(n) —loglogn| > (loglog n)3+*,

where [ (n) is w(n) or Q (n), is o(x) for every positive 8.
It is sufficient to prove that the number of »# for which

(22.11.3) If (m) — loglog x| > (loglogx)1+?

is o(x); the distinction between loglog » and loglog x has no importance.
For

loglogx — 1 < loglogn < loglogx

when x'/¢ < n < x, so that loglog » is practically loglog x for all such
values of n; and the number of other values of n in question is

Oy = o(x).

Next, we need only consider the case f(n) = w(n). For Q(n) = w(n)
and, by (22.10.1) and (22.10.2),

2 {Qm —wm} = 0.

n<x

Hence the number of n < x for which

Qn) —wn) > (loglogx)%

is

o(mmimT):oax
(loglogx)2

so that one case of Theorem 431 follows from the other.
Let us consider the number of pairs of different prime factors p,q of
n (i.e. p # q), counting the pair g, p distinct from p, g. There are w(n)
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possible values of p and, with each of these, just w(n) — 1 possible values

of g. Hence
w(n) (w(n) — 1}—21_ZI~ZK
pgin Pl
Summing over all n < x, we have

Z[w(n)} —Zw(n)mz 21—21)

in Pl

-2z

> [%] gpgx% gx;p-l—zm()(x),

Psx

since the series is convergent. Next

[p ]—xZw——l-O(x)

PasX pq<x

First

Hence, using (22.10.1), we have

(22.11.4) D HomP=x)_ L O(x loglog x).
nsx Pgsx pq
Now
2
1 i
(22.11.5) Z Y —< -1,
‘ < ? ) P (pzs:r: P )

since, if pg < x thenp < x and ¢ < x, while, if p < \/x and ¢ < /x, then
Pq < x. The outside terms in (22.11.5) are each

{loglogx + 0(1)']2 = (log log.ac)2 + O(log log x)
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and therefore
(22.11.6) 3" {w(m)? = x(loglog x)* + O(x loglogx).
n<x _
It follows that
(22.11.7) ’
Z {w(m) — lc:glngx}2
nsx

= Z {w(m)* — 2loglogx Zm(n) + [.1c](log1|0gx)2
nex nex

= x(loglog x)? + O(x loglog x)

- 2loglog x {x loglog x + O(x)} + {x + O(1)}} (hoglc:'gaut)2
= x{loglog x)? — 2x(loglog x)? + x(loglog x)? + O@x log log x)
= O(x loglog x),

by (22.10.1) and (22.11.6).
If there are more than nx numbers, not exceeding x, which satisfy
(22.11.3) with f (n) = w(n), then

Z {w{n) — loglogx}? > nx(loglogx)'+%,
ngx

which contradicts (22.11.7) for sufficiently large x; and this is true for every
positive 7. Hence the number of » which satisfy (22.11.3) is o(x); and this
proves the theorem.

22.12. A note on round numbers. A number is usually called ‘round’
if it is the product of a considerable number of comparatively small factors.
Thus 1200 =2% . 3 . 52 would certainly be called round. The roundness of
a number like 2187 = 37 is obscured by the decimal notation.

It is a matter of common observation that round numbers are very rare,
the fact may be verified by any one who will make a habit of factoriz-
ing numbers which, like numbers of taxi-cabs or railway carriages, are
presented to his attention in a random manner. Theorem 431 contains the
mathematical explanation of this phenomenon.
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Either of the functions w(n) or §2(n) gives a natural measure of the
‘roundness’ of n, and each of them is usually about loglog n, a function of
n which increases very slowly. Thus loglog 107 is a little less than 3, and
loglog 1080 is a little larger than S. A number near 107 (the limit of the
factor tables) will usually have about 3 prime factors; and a number near
1089 (the number, approximately, of protons in the universe) about 5 or 6.
A number like

6092087 == 37 .229.719

is in a sense a “typical’ number.

These facts seem at first very surprising, but the real paradox lies a little
deeper. What is really surprising is that most numbers should have so many
factors and not that they should have so few., Theorem 431 confains two
assertions, that «w(n) is usually not much larger than loglog n and that it is
usually not much smaller; and it is the second assertion which lies deeper
and is more difficult to prove. That w(n) is usually not much larger than
loglog n can be deduced from Theorem 430 without the aid of (22.11.6).

22.13. The normal order of d(n). If n = p{'p3* ... p%, then

wn)=r, QM=ay1+ax+---+a,

dimy =0 +a)(] +az)...(1 +a,).
Also

2€<1+ag 2
and
pw(n) <dn) < pAdOR
Hence, after Theorem 431, the normal order of log d(n) is
j

log2loglogn.

t Roughly, if x (x) were of higher order than loglog x, and w{n) were larger than x (1) for & fixed
propartion of numbers less than x, then
Y wim

nsx

would be larger than a fixed multiple of xx (x}, in contradiction to Theorem 430,
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Turorem 432. If € is positive, then

(22.13.1) g-e)loglogn . g(py o p(l+e)loglogn

for almost all numbers n.
Thus d{n) is ‘usually’ about
ziog logn — (log n)Iogz - (log n)'ﬁg-...
We cannot quite say that ‘the normal order of d(n) is 2loglogn> gince the
inequalities (22.13.1) are of a less precise type than (22.11.1); but one may
say, more roughly, that ‘the normal order of d(n) is about 2!°81987>,

It should be observed that this normal order is notably less than the
average order log n. The average

;t-{d(l) +d(2) 4+ - +d(n)}

is dominated, not by the ‘normal’ » for which d(n) has its most commeon
magnitude, but by the small minority of »n for which d(n) is very much
larger than log n.! The irregularities of w(n) and $2(n) are not sufficiently
violent to produce a similar effect.

22.14. Selberg’s theorem. We devote the next three sections to the

proof of Theorem 6. Of the earlier results of this chapter we use only
Theorems 420—4 and the fact that

(22.14.1) ¥ (x) = O(x),

which is part of Theorem 414. We prove first

THEOREM 430 (SELBERG'S THEOREM):

(22.14.2) Y logx+ Y A(n)ﬂr(z) = 2xlogx + O(x)

nex

and

(22.14.3) Y A(mlognt Y A(mAn) = 2xlogx + O(x).

nEx mnsx

? See the remarks 4t the ends of §§ 18.1 and 18.2.
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It is easy to see that (22.14.2) and (22.14.3) are equivalent. For

Y amv(Z) = Am Y Am =Y AmA®

ngx nex mex/n mnsx

and, if weputc, = A(n) and f(¢) = log? in (22.5.2),

(22.14.4)
ZA [ v,
(mlogn = Y(x)logx — | ——dt = Y (x) logx + O(x)
nex % !
by (22.14.1).

In our proof of (22.14.3) we use the Mbius function u(n) defined in
§ 16.3. We recall Theorems 263, 296, and 298 by which

(22.14.5) dud=1 (n=1), Y udy=0 (n>1),

din din
(22.14.6) A(my=—Y p(d)logd, logn=Y A(d).
din din
Hence
22.14.7) Y A®A (E) =-Y AW u@logd
hin hin d|i
n
=~ ud)logd Y AG) =~ u(d)logdlog (5)
din k{ﬁ din
= A(n)logn + Z: wid) 10g2d.
din

Again, by (22.14.5),

> u(d) log? (Z») = log? x,

dil
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but, forn > 1,
Y u(d) log? (2) = 3" u(d)(log?d — 2log x logd)
din din
= 2A(n)logx — A(m) logn+ Y A(RA(K)

hk=n
by (22.14.6) and (22.14.7). Hence, if we write
_ 2 (%
s@ =Y. 3 n@diog (3)
ngx din
we have
S(x) = logzx + 2¢(x) logx — Z A(m)logn + Z AMAK)
nax hk<x
=Y Amlogn+ Y A(mA(m) + Ok)
ngx mrsx

by (22.14.4). To complete the proof of (22.14.3), we have only to show
that

(22.14.8) S(x) = 2xlogx + O(x).
By (22.14.5),
S@ -yt =3. 3 u@ flog? () - v*}
n<x din

- S [5] o () -

since the number of n < x, for which d|n, is [x/d]. If we remove the square
brackets, the error introduced is less than

i () 77} =009
d<x
by Theorem 423. Hence

(22.14.9) SG)=xY ﬁé@ [10g2 (g) - y2] +O().
d<x
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Now, by Theorem 422,

(2214100 Y &5;_) flog? (5) - v?]
55 ) 5 1o (9)

The sum of the various error terms is at most

(22.14.11)
E ‘—11— llog (g) + y] 0 (Z«) =0 (%) Elog (2) + O(1)

= O(1)
by Theorem 423. Also
(22.14.12)

dgﬁ%{wg(z)wl >3
> 40 (a,) 7= 25 Tw o (5) -}

logx—y + Z —210gx+0(1)
2gngx

by (22.14.5), (22.14.6), and Theorem 424. (22.14.8) follows when we
combine (22.14.9)422.14.12).

22.15. The functions R(x) and V(£). After Theorem 420 the Prime
Number Theorem (Theorem 6) is equivalent to

THEOREM 434

¥(x) ~x,
and it is this last theorem that we shall prove. If we put

W {(x) = x+ R(x)
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in (22.14.2) and use Theorem 424, we have

(22.15.1) R(x)logx + Z(:x AR (ﬁ-) = OW).

Our object is to prove that R(x) = o(x).!
If we replace n by m and x by x/n in (22.15.1), we have

*(O)ee() T amn()=0()

Hence

logx[R(x) logx + Z AR (E) }

nex
—ZA(n){ ( )log( )+ 3 A(m)R( )]
n<x m<x/n
= O(xlogx) + O xz Aln) = O(x log x),
asx
that is
R(x) log?x = — Z A(DR (‘E) log n
+ Z A(m)A(n)R( ) + O(xlogx),
whence e _
(22.15.2) IR(x)| log x < Z:a,, ( )! + O(x log x),
where

an = A(m)logn+ ) A(h)A(k)
hk=n

t Of course, this would be a triviat deduction if R(x} = O forall x (or if R(x) < O forall x). Indeed,
more would follow, viz. R(x) = O(x/log x). But it is possible, so far as we know at this stage of our
argument, that R{(x) is usually of order x, but that its positive and negative values are so distributed
that the sum over # on the left-hand sids of (22.15.1) is of opposite sign to the first term and largely
offsets it.
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and

Za,, = 2xlogx + O(x)
nex

by (22.14.3).
We now replace the sum on the right-hand side of (22.15.2) by an integral.

To do so, we shall prove that

R(E)| =2 [ |7 ()] togias + 06t
l

(22.153) ) an
ngx

We remark that, if 1 > ¢ 2 0,

RO — RN =1v@) - () —t+7]

HR(H)] —~ IRE)|f <
YW — YUY+t —1 =F@) - F(),

where
F@)=¢ 0 +1=0(0)
and F'(¢) is a steadily increasing function of ¢. Also

@2154) ¥ n{,:(%%;:(ﬂi})}:él’(i)——Ix}F(*[;*j)

nex—1l

=0 (xz %) = O(x logx).

B

We prove (22.15.3) in two stages. First, if we put

cp =0, Cn = ap = 2 j logtdt,  f(n) = ‘R (E)i

n—1
in (22.5.1), we have

{x]

Clx) = Za,,—zfiog:d:=0(x)
nex 1
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and

(22.15.5)

Salk(@)|-2 Z k()| [ vare
- ¥ co kG- (,,H)\}m o (55)
- (m_1 " [ (;) _F (n — 1) }) + O(x) = O(x logx)

by (22.15.4).
Next

G )l/ curs~ [ 83 oara
)]~ £
s f (7 2) - 2 psci < o= (2

n—1

nm

1)“1?(;)]'

Hence

(22.15.6)

S IR ()| [ oate [ [R(Z)]1opra
2gnsx 8 n—-1 1 ‘ '
=0 (ngl n {F (%) -~ F (ni 1)}) 4+ O(xlogx) = O(xlogx).

Combining (22.15.5) and (22.15.6) we have (22.15.3).
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Using (22.15.3) in (22.15.2) we have

(22.15.7) IR(x)i logzx < 2[ !R (1;)! logtdt + O(xlogx).
1

We can make the significance of this inequality a little clearer if we
introduce a new function, viz.

(22.15.8) ViE)=e R ) =eCy(f) -1
= e-‘f{ > A(n)} ~ 1.

n<et

If we write x = % and ¢ = xe™7, we have

x £ & £
[ R ()| rogrds = [ wemie - man =x [ Wl [ gan
1 ¢ @ B

£ ¢
w*—wlrffiV(lf.l)Idﬁ?a"C,
g 0

on changing the order of integration. (22.15.7) becomes

£ £
(22.15.9) £\VeE) <2 f [ [V (n)| dndg + OG).
0

0

Since ¥ (x) = O(x), it follows from (22.15.8) that ¥ (£) is bounded as
£ — oc. Hence we may write

¢
—_ —1
o= Wm VE)l, B=Tim f V)l dn,
£aroo 3 4

since both these upper limits exist. Clearly

(22.15.10) V(&) <a+o(l)
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and

&
f V (m)ldn < BE +o(&).
0

Using this in (22.15.9), we have

£
£217(@E) <2 f (BE -+ o@)}dE + OE) = BE + o(&?)

and so

V(€ < B +o(l)
Hence
(22.15.11) a<B.

22.16. Completion of the proof of Theorems 434, 6, and 8. By
{22.15.8), Theorem 434 is equivalent to the statement that V(§) — 0
as & — 00, that is, that @ = 0. We now suppose that @ > 0 and prove that,
in that case, 8 < « in contradiction to (22.15.11). We require two further
lemmas.

TueoreM 435. There is a fixed positive number Ay, such that, for every
positive &y, &, we have

&
fV(r;)dn < Ap.
&

If we putx = ¥, t = &7, we have

£
1
fV(n)dn--[ v - =00

0 !
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by (22.6.1). Hence

2] ky £
f V(n)dn = f V(n)dn — f V(n)dn = O(1)
E 0 0

and this is Theorem 435.

Tueorem 436. If ng > 0 and V (ng) = O, then
o
[ v+ olar < o + 05
¢

We may write (22.14.2) in the form

yx)logx+ Y AlmA(n) = 2xlogx + O(x).

mrsx

Ifx > xp 2 1, the same result is true with x¢ substituted for x. Subtracting,
we have

Y0 logx ~ Y(xo)logxo+ ) . A(m)A(n)

Xp<MRSX

= 2(x logx — xg log xg) + O(x).
Since A(n) =2 0,
0 < Y(x)logx — Yr{xp)logxg € 2(xlogx — xg log xg) + O(x),
whence
IR(x) logx — R(xg) log xo} < xlogx — xp logxe + O(x).

We put x = e"+% xo = %, so that R(xg) = 0. We have, since
0<r<a,

Vim+t)i<l— (——@w) e T+ 0 (—1—)
no+1t no

=1—e"+0(/n) < t+ O0(/ng)
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and so

o [ 1 1
[;V(no+r)ldrgftdt+0(—) -»icz ~i~0( )

no e
¢ G

We now write
3a? + 44,
8 = e S CE
pL

take ¢ to be any positive number and consider the behaviour of ¥ (5) in
the interval £ < n € ¢ + 8§ — a. By (22.15.8), ¥V (n) decreases steadily as
n increases, except at its discontinuities, where ¥ (n) increases. Hence, in
our interval, either V' (n9) = 0 for some ng or V'(n) changes sign at most
once. In the first case, we use (22.15.10) and Theorem 436 and have

44 no+a {48

[W(n) = f f [ waan

no-ta
< a(no—;)+ Yo +ag +8—no— ) +o(l)
=a (8 — Ja) +o(l) = '8 + o(1)

for large ¢, where

a’=a(l—%)<a.

In the second case, if V' (7) changes sign just once at n == 7, in the
interval £ < n < ¢ +6 —a, we have

o P n [+é—a
f V)l dn = f V(n)dn| + f Vin)dn| < 24,
4 [4 ni

while, if V' (n) does not change sign at all in the interval, we have

t+é—a _ t4é—a

f Wl dn = [ Vinydn| < 4,
4 [4
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by Theorem 435. Hence

L8 {+é—a r+4

/|V(n)|dn: f + f ¥ (mldn
{

{ {é—a
< 24; + 0% + o(1) = "8 + 0(1),

where

2 44 2
aﬂ=2Al+a =a(w_l._ﬁmzfz_)=a(1—-3~):a’.

s 44, + 3a? 28
Hence we have always

r+8
f V(mldn < a's + o(1),
4

where o(1) > Oas & — oo, If M = [£/35],

fIV(n)Idn= 3 f 1V(n)ldn+fw(n>1dn
0 m=0 g Ms

< &'Mé + olM) + OQ) = o'E + o(£).

Hence

£
B= i“iiié— f Vldn <o <a,
[

489

in contradiction to (22.15.11). It follows that @ = 0, whence we have
Theorem 434 and Theorem 6. As we saw on p. 10, Theorem 8 is a trivial

deduction from Theorem 6.

22.17. Proof of Theorem 335. Theorem 335 is a simple consequence

of Theorem 434. We have
x
> umlog(>) = 0w

n<x
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by Theorem 423 and so

M(x)logx = Z u(n)logn 4+ O(x).

nex

By Theorem 297, with the notation of § 22.15,

- " udm)logn = ZZu( ) Ad) = Z nOAd)

nex ngx din

5w () - Sros (5)
- Ex o [7]+ E R ([Z]) =53+ 54

(say). Now, by (22.14.5),

83~Zu<k)[-]—22u<k)—l

n<x kin

By Theorem 434, R(x) = o(x); that is, for any € > 0, there is an integer
N = N(¢) such that [R(x)| < ex forall x > N. Again, by Theorem 414,
IR(x)| < Ax forall x = 1. Hence

si< TRl T Ble T 4[]

= XN <ks
< exlog(x/N) + 4x {logx — log(x/N)} + O(x)
= ex logx 4+ Ox).

Since ¢ is arbitrary, it follows that §4 = o(xlogx) and so
—M(x)logx = §3 + 84 + O(x) = o(xlogx),

whence Theorem 335.

22.18. Products of k prime factors. Let k£ 2> 1 and consider a positive
integer n which is the product of just £ prime factors, i.e.

(22.18.1) n=pip2. Pk
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In the notation of § 22.10, Q(n) = k. We write 1;(x) for the number of
such n € x. If we impose the additional restriction that all the p in (22.18.1)
shall be different, n is squarefree and w(n) = Q(n) = k. We write 7z (x)
for the number of these (squarefree) n < x. We shall prove

TuEOREM 437!

x(loglog x)¥-1
k — Dllogx

wrlx) ~ tilx) ~

For k = 1, this result would reduce to Theorem 6, if, as usual, we take
0! = 1.
To prove Theorem 437, we introduce three auxiliary functions, viz.

Li() =)

where the summation in each case extends over all sets of primes py, ps, . . .,
DPr such that p; ... pp < x, two sets being considered different even if they
differ only in the order of the p. If we write ¢, for the number of ways in
which n can be represented in the form (22.18.1), we have

Hy(x) = Zc,,, Py (x) = Zc,, logn.
nEx HEx

sn (X): i,l’(X)m 10( .. )’
Pp...pi k Z k Z BElpp2...Pk

If all the p in (22.18.1) are different, ¢, = k!, while in any case ¢, < k!. If
n is not of the form (22.18.1), ¢, = 0. Hence

(22.18.2) Kime(x) < i (x) < klng(x) k2 1).

Again, for k 2 2, consider those n which are of the form (22.18.1) with at
least two of the p equal. The number of these n < x is p (x) — mz (x). Every
such n can be expressed in the form (22.18.1) with px_; = p; and so

(22.18.3)
a@ -mED < Y 1< Y 1= *k22).

pppi_ <x PP Pr1 X
We shall prove below that

(22.18.4) H(x) ~ kx(loglogx)*~} (% = 2).
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By (22.5.2) with £ (t) = log ¢, we have

X

i {x) = i (x) logx—f
2

L1ap

Now 74 (x) < x and so, by (22.18.2), [T (¢) = O(t) and

fﬂk(f) dt = 0Cx).

2

Hence, fork = 2,

(22.18.5) M) =

9 (x) ( x * Jx(loglog x)* !
+ 0 ~
logx logx log x

by (22.18.4). But this is also true for £ = 1 by Theorem 6, since I1;(x) =
7{x). When we use (22.18.5) in (22.18.2) and (22.18.3), Theorem 437
follows at once.

We have now to prove (22.18.4). Forall k > 1

kOpr1() = ) {log(paps ... pe+1) + 10g(p1p3pa . .. prs1)
P Pray €X

+ oo+ log(pipz ... pid)
=Gk+1) Y log(paps-. pk+1)—(k+2)20k(pl)

PloPki1SX prsx

and, if we put Lo(x) == 1,

o 5 e E b (),

ProPrsx n Qp}

Hence, if we write

Jie(x) = O (x) — kxlp 1 (x),
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we have
(22.186) M =E+DY £ (:-}) :
psx
We use this to prove by induction that
(22.18.7) fitr) =0 [x(loglogx)*“*} *k>1).
First

fi(x) = 9 (x) —x =3 (x) —x = o(x)

by Theorems 6 and 420, so that (22.18.7) is true for £ = 1. Let us suppose
(22.18.7) true for £ = K 2 1 so that, for any € > 0, there is an xp =
xp(K, €) such that

k) < ex(ioglogx)"{‘1

for all x 2 xg. From the definition of fx (x), we see that

| fx)l <D

for 1 € x < x¢, where D depends only on X and €. Hence

Z Jx G)‘ < e(loglogx)* ! E ol

pPsx/xg psxjxp P

< 2ex(loglog 0k

for large enough x, by Theorem 427. Again

2.

xfxp<psx

Jx (g)l < Dn(x) < Dx.

Hence, by (22.18.6), since K + 1 € 2K,
| fc+1(x)] < 2x {2e(loglog x)* + D} < Sex(loglog x)¥

forx > x; = x1(¢,D,K) = x1(€,K). Since € is arbitrary, this implies
(22.18.7) for k = K + 1 and it follows for all £ > 1 by induction.
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After (22.18.7), we can complete the proof of (22.18.4) by showing that

(22.18.8) Li(x) ~ (loglogx)* (k2 1).

In (22.18.1), ifevery p; < x!7% then n < x; conversely, if » < x, then
pi & x forevery i. Hence .

k k
> ;1;) < Li(x) < (Z;})

xl/k psx
But, by Theorem 427,
1 1 log x
Z — ~ loglogx, Z — ~ log A loglog x
psx P p<xl ik p

and (22.18.8) follows at once.

22.19. Primes in an interval. Suppose that € > 0, so that
(22.19.1)

(x -+ €x) (x) = x+ €x x +O(x)
X TEX) W) = Jogx + log(l+€)  logx log x

€x x
=—to|l—]).
logx (Iog x)
The last expression is positive provided that x > xg(e). Hence there is
always a prime p satisfying

(22.19.2) x<p<{(lt+e)x

when x > xp(e). This result may be compared with Theorem 418. The
latter corresponds to the case € = 1 of (22.19.2), but holds for all x 2 1.
If we put € == | in (22.19.1), we have

(22.19.3) 7(2x) — () = ——+o0 (_x“) ~ 7 (x).

logx log x
Thus, to a first approximation, the number of primes between x and 2x is
the same as the number less than x. At first sight this is surprising, since we
know that the primes near x ‘thin out’ (in some vague sense) as x increases.
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In fact, 7(2x) — 27 (x) —» oc 8s x —+» oc (though we cannot prove this
here), but this is not inconsistent with (22.19.3), which is equivalent to

m(2x) — 2n(x) = O{mw(x)}.

22.20. A conjecture about the distribution of prime pairs p,p + 2.
Although, as we remarked in § 1.4, it is not known whether there is an
infinity of prime-pairs p, p-+2, there is an argument which makes it plausible
that

2CHx

(22.20.1) Pa(x) ~ Togn)?’

where P2(x) is the number of these pairs with p < x and
p(p—2) } l 1 }
22.20.2 Cy == ——t = I ————— %,
(22.202) ? Hl(pwi)z -G

We take x any large positive number and write

N=Hp.

PSV/x

We shall call any integer n which is prime to N, i.¢. any n not divisible by ahy
prime p not exceeding /x, a special integer and denote by ${X) the number
of special integers which are less than or equal to X. By Theorem 62,

SNy =¢N) =N [] (; - ;-’) = N B(x)

PSVx

(say). Hence the proportion of special integers in the interval (1, N) is
B(x). It is easily seen that the proportion is the same in any complete set
of residues (mod N) and so in any set of »N consecutive integers for any
positive integral r.

If the proportion were the same in the interval (1, x), we should have -

2e7¥x
log x

§(x) = xB(x) ~
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by Theorem 429. But this is false. For every composite » not exceed?ng x
has a prime factor not exceeding /x and so the special # not exceeding x
are just the primes between 4/x (exclusive) and x (inclusive). We have then

s )~ —
x) = n(x) — A{J/x log
by Theorem 6. Hence the proportion of special integers in the interval (1,x)
is about %ey times the proportion in the interval (1, N).
There is nothing surprising in this, for, in the notation of § 22.1,

log N = B (/%) ~ /x

by Theorems 413 and 434, and so N is much greater than x. The proportion
of special integers in every interval of length N need not be the same as that
in a particular interval of (much shorter) length x.} Indeed, S(/x) = 0,
and so in the particular interval (1, 4/x) the proportion is 0. We observe
that the proportion in the interval (N — x, N) is again about 1/ log x, and
that in the interval (N — /x, N} is again 0.

Next we evaluate the number of pairs n,n + 2 of special integers for
which n < N. If n and n + 2 are both special, we must have

n = l{mod 2), n = 2(mod 3)
and
n=1,23,...,p-3,orp— 1 (modp) 3 <p < /%)
The number of different possible residues for n (mod N) is therefore
[ e-2=37 J] (1 —5) = N By (x)
I<psv 3gpsys © P

(say) and this is the number of special pairs n,n + 2 with n < N.

Thus the proportion of special pairs in the interval (1, N) is B (x) and
the same is clearly true in any interval of rN consecutive integers. In the
smaller interval (1, x), however, the proportion of special integers is about
%e” times the proportion in the longer intervals, We may therefore expect
(and it is here only that we ‘expect’ and cannot prove) that the proportion

t Considerations of this kind explain why the usual ‘probability’ arguments lead to the wrong
asympiotic value for = (x).
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. 2 .
of special pairs n,n + 2 in the interval (1,x) is about (3e”)" times the
proportion in the longer intervals. But the special pairs in the interval (1, x)
are the prime pairs p, p + 2 in the interval (,/x, x). Hence we should expect
that

Py(x) — Pa(y/x) ~ Le?xBi(x).

By Theorem 429,
— 4
BOo) ~ 2e
logx
and so
I B
1% B (x) ~ .
1€ e B
But
By (x) 1 (1-2/p) pip—2)
—_— = _— =2 = = 20,
- 12
B@P T, A= (p=D)

as x — 00. Since P3(/x) = O(/x), we have finally the result (22.20.1).

NOTES

§§ 22.1, 2, and 4. The theorems of these sections are essentially Tchebychef™s. Theo-
rem 416 was found independently by de Polignac. Theorem 415 is an improvement of a
result of Tchebychef’s; the proof we give here is due to ErdSs and Kalmar.

There is full information about the history of the theory of primes in Dickson’s History
(i, ch. xviii), in Ingham’s tract (introduction and ch. i}, and in Landau’s Hendbuck (3102
and 883-5); and we do not give detailed references.

There is also an elaborate account of the early history of the theory in Torelli, Sulia
totalita dei numeri primi, Atti della R. Acad. di Napoli {2) 11 {1902), 1-222; and shorter
ones in the introductions to Glaisher’s Factor table for the sixth million (London, 1883)
and Lehmer’s table referred to in the note on § 1.4.

§22.2 Various authors have given versions of Theorem 414 with explicit numerical
constants. Thus Tchebychef (Mem. Acad. Sc. St. Petersburg 7, (1856-1854), 15-33) showed
that

0.921.. )x £ 0(x) < (1.165.. )x

for large enough x, and used this in his proof of Berirand’s postulate. Diamond and Erdds
{Enseign. Math. (2) 26 (1980), 313-21) have shown that elementary methods of the kind
used by Tchebychef allow one to get upper and lower bound constants as close 1o | as
desired. Unfortunately, since their paper actually uses the Prime Number Theorem in the
course of the argument, their result does not produce an independent proof of the theorem.
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§ 22.3. ‘Bertrand’s postulate’ ig that, for every n > 3, there is a prime p satisfying
n < p < 2n — 2. Bertrand verified this for n < 3, 000, 000 and Tchebychef proved it for all
n > 3 in 1850. Our Theorem 418 states a little less but the proof could be modified to prove
the better result. Qur proof is due to Erd0s, Acta Litt. Ac. Sci. (Szeged), 5 (1932), 1948,

For Theorem 419, see L. Moser, Math. Mag. 23 (1950), 163-4. See also Mills, Bull.
American Math. Soc. 53 (1947), 604; Bang, Norsk. Mar. Tidsskr. 34 {1952}, 117-18; and
Wright, American Math. Monthly, 58 (1951), 61618 and 59 (1952), 99 and Journal London
Math. Soc. 29 {1954), 63-71.

§ 22.7. Euler proved in 1737 that Y. p~! and [J¢1 — p~ 1) are divergent.

§ 22.8. For Theorem 429 see Mertens, Journial fiir Math. 78 (1874), 46-62. For another
proof (given in the first two editions of this book) see Hardy, Journal London Math. Soc.
10 (1935), 91-94.

§ 22.10. Theorem 434 is stated, in 2 rather more precise form, by Hardy and Ramanujan,
Quarterly Journal of Math. 48 {1917}, 7692 (no. 35 of Ramanujan’s Collected papers). It
may be older, but we cannot give any reference.

§8 22.1{-13. These theorems were first proved by Hardy and Ramanuian in the paper
referred to in the preceding note. The proof given here is due to Turén, Journal London
Math. Soc. 9 (1934), 274-6, except for a simplification suggested to us by Mr. Marshall
Hall. Turdn [ibid. 11 (1936), 125-33] has generalized the theorems in two directions.

In fact the function {(w (n) — loglogn) /. /loglog n is normally distributed, in the sense
that, for any fixed real z, one has

. w(n) —loglogn

l F4
S BRI

x~ ¥ {n X

as x -» 00. The same is true if w(n) is replaced by $2(n). These results are due to Erdfs
and Kac (dmer. J. Math. 62, (1940) 738-42),

There is a massive literature on the distribution of values of additive functions. See,
for example, Kubilius, Probabilistic methods in the theory of numbers (Providence, R.I.,
AM.S,, 1964) and Kac, Statistical independence in probability. analysis and number theory
(Washington, D.C., Math. Assoc. America, 1959},

§§ 22.14-16_ A. Selberg gives his theorem in the forms

F(x)logx + Z 7 (i) logp = 2xlogx + Ox)
psx 7

Z logzp + ): logplogp’ = 2xlogx + O(x).
psx PP &x

These may be deduced without difficulty from Theorem 433, There are two essentially
different methods by which the Prime Number Theorem may be deduced from Selberg’s
theorem. For the first, due to Erdds and Selberg jointly, see Proc. Nat. Acad. Sci. 35 (1949),
37484 and for the second, due to Selberg slone, see Annals of Math. 50 (1949), 305-13.
Both methods are more ‘elementary’ (in the logical sense) than the one we give, since they
avoid the use of the integral calculus at the cost of a little complication of detail. The method
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which we use in §§ 22.15 and 16 is based essentially on Selberg’s own method. For the use
of ¥ (x) instead of ¥ (x), the introduction of the integral calculus and other minor changes,
see Wright, Proc. Roy. Soc. Edinburgh, 63 (1951), 257-67.

For an alternative exposition of the elementary proof of Theorem 6, see van der Corput,
Collogues sur la théorie des nombres (Liége 1956). See Errera (ibid. 111-18) for a shont
{non-elementary) proof, The same volume (pp. 9-66) contains a reprint of the original paper
in which de Ia Vallée Poussin (contemporaneously with Hadamard, but independently) gave
the first proof (1896).

Later work by de la Vallée Poussin showed that

m{x) = [: i(;i;? + O{xexp [—c\/@?})
tp(x)mx-{-O(xexp{—c\/@E})

for a certain positive constant ¢. These have been improved by subsequent authors, the best
known ervor tertn now being O (x exp l —¢ (logx)3/* (loglogx)~1/3 }) , due independently

to Korobov (Uspehi Mat. Nauk 13 (1958). no. 4 (82), 185-92) and Vinogradov (fzv. Akad.
Nauk SSSR. Ser. Mat, 22 (1958), 161-64).

For an alternative to the work of § 22.15, see V. Nevanlinna, Soc. Sci. Fennica: Comm.
Phys. Math. 273 (1962), 1-7. The same author {4nn. Acad. Sci. Fennicae 4 1343 (1964),
1-52) gives a comparative account of the various elementary proofs.

Two other, quite different, elementary proofs of the prime number theorem have also
been given. These are by Daboussi (C. R. Acad. Sci. Paris Sér. I Math. 298 (1984}, 161-64)
and Hildebrand (Marhkeriatika 33 (1986), 23-30) respectively.

Various authors have shown that the elementary proof based on Selberg’s formulae can
be adapted to prove an explicit error term in the Prime Number Theorem. In particular
Diamond and Steinig (/nvent. Math. 11 (1970), 199-258) showed in this way that

mix) = A EE;-&—O xexp(—~ log x))

and
¥ (x) = x + O(x exp(— log® x))

for any fixed 9 < -1, Sec also Lavrik and Sobirov {Dokl, Akad. Nauk SSSR, 211 (1973),
534-6), Srinivasan and Sampath {J. Indian Math. Soc. (N.5.), 53 (1988), 1-50), and Lu
{Rocky Mountain J. Math. 29 (1599%), 979-1053).

§ 22.18. Landau proved Theorem 437 in 1900 and found more detailed asymptotic
expansions for m; (x) and 7 (x) in 1911, Subsequently Shah {1933) and 8. Selberg (1940)
obtained results of the latter type by more elementary means. For our proof and references
to the literature, see Wright, Proc. Edinburgh Math. Soc, 9 (1954), 87-90,

§ 22.20. This type of argument can be applied to obtain similar conjectural asymptotic
formulae for the number of prime-triplets and of longer blocks of primes. See Cherwel] and
Wright, Quart. J. Math. 11 (1960), 6063 amd Pdlya American Math. Monthly 66 (1959),
375-84. Hardy and Littlewood [Acta Marh. 44 {1923), 1-70 (43)] found these formulae by
a different {analytic) method (also subject to an unproved hypothesis). They give references
to work by Staeckel and others. See alse Cherwell, Quarterly Jowrnal of Math. (Oxford),
17 (1946}, 4662, for another simple heuristic method.

v
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The formulae agree very well with the results of counts. D, H_and E. L.ehmer have carried
these out for various prime pairs, triplets, and quadruplets up to 40 million and Golubew has
counted quintuplets,. .., 9-plets up to 20 million {Osterreich Akad Wiss. Math.-Naturwiss.
Kl 1971, no. 1, 19-22), See also Leech {Marh. Comp. 13 (1959), 56) and Bohman (BT,
Nordisk Tidskr: Inform. behandl. 13 {1973), 242-4).



XXII
KRONECKER’S THEOREM

23.1. Kronecker’s theorem in one dimension. Dirichlet’s Theorem
201 asserts that, given any set of real numbers 91, %,,..., 0, we can
make nid;,nda,...,nd; all differ from integers by as little as we please.
This chapter is occupied by the study of a famous theorem of Kronecker
which has the same general character as this theorem of Dirichlet but lies
considerably deeper. The theorem is stated, in its general form, in § 23.4,
and proved, by three different methods, in §§ 23.7-9. For the moment
we consider only the simplest case, in which we are concerned with a
single .

Suppose that we are given two numbers ¢ and «. Can we find an integer
n for which

ng — o

is nearly an integer? The problem reduces to the simplest case of Dirichlet’s
problem when « = 0.

It is obvious at once that the answer is no longer unrestrictedly affirma-
tive. If ¥ is a rational number a/b, in its lowest terms, then (n?) = nd —[nd]
has always one of the values

P2 b—1

23.1.1 -,
( ) O g T3

If0 < o < 1, and « is not one of (23.1.1), then
r
|3 ——a’ (r=0,1,...,b)

has a positive minimum g, and n¥ — o cannot differ from an integer by
less than u.

Plainly 4 < 1/2b,and 4 — 0 when b — oc; and this suggests the truth
of the theorem which follows.

Tueorem 438. If ¥ is irrational, a is arbitrary, and N and € are positive,
then there are integers n and p such that n > N and

(23.1.2) nd —p—al <e¢.
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We can state the substance of the theorem more picturesquely by using
the language of § 9.10. It asserts that there are n for which (n#) is as near
as we please to any number in (0, 1), or, in other words,

Tueorem 439. If ¥ is irrational, then the set of points (ni?) is dense in
the interval (0, 1).1

Either of Theorems 438 and 439 may be called ‘Kronecker’s theorem in
one dimension’.

23.2. Proofs of the one-dimensional theorem. Theorems 438 and 439
are easy, but we give several proofs, to illustrate different ideas important
in this field of arithmetic. Some of our arguments are, and some are not,
- extensible to space of more dimensions.

(i) By Theorem 201, with & = 1, there are integers n; and p such that
[m1® — p| < €. The point (n; ) is therefore within a distance € of either 0
or 1. The series of points

(m1?), 2ny?), Gnid),...,

continued so long as may be necessary, mark a chain (in one direction or
the other) across the interval (0, 1) whose mesh? is less than €. There is
therefore a point (kn;#) or (n?#) within a distance € of any « of (0, 1).

(ii) We can restate (i) so as to avoid an appeal to Theorem 201, and we
do this explicitly because the proof resulting will be the model of our first
proof in space of several dimensions.

We have to prove the set S of points P, or (n?) with n == 1,2,3,...,
dense in (0, 1). Since & is irrational, no point falls at 0, and no two points
coincide, The set has therefore a limit point, and there are pairs (P, Pyqr),
with » > 0, and indeed with arbitrarily large r, as near to one another as
we please.

We call the directed stretch P, P,.., a vector. If we mark off a stretch
P Q, equal to Py Pny, and in the same direction, from any Py, then O is
another point of S, and in fact Py, ,. It is to be understood, when we make
this construction, that if the stretch P,, ) would extend beyond O or 1, then
the part of it so extending is to be replaced by a congruent part measured
from the other end 1 or 0 of the interval (0, 1).

There are vectors of length less than ¢, and such vectors, with r > N,
extending from any peint of § and in particular from P;. If we measure off

Y We may seem to have lost something when we state the theorem thus (viz. the inequality n > N).
But it is plrin that, if there are points of the set as near as we please to every a of (0, 1), then among
these points there are points for which n is as Iarge as we please.

! The distance between consecutive points of the chain,
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such a vector repeatedly, starting from P; we obtain a chain of points with
the same properties as the chain of (i), and can complete the proof in the
same way.

(iii) There is another interesting ‘geometrical’ proof which cannot be
extended, easily at any rate, to space of many dimensions.

We represent the real numbers, as in § 3.8, on a circle of unit circumfer-
ence instead of on a straight line. This representation automatically rejects
integers; 0 and 1 are represented by the same point of the circle and so,
generally, are (n#) and nd.

To say that § is dense on the circle is to say that every « belongs to the
derived set 8. If o belongs to S but not to §’, there is an interval round
« free from points of §, except for « itself, and therefore there are points
near o belonging neither to S nor to 8. It is therefore sufficient to prove
that every « belongs either to S or to .

If @ belongs neither to S nor to 57, there is an interval (& — §, o + &),
with positive § and &', which contains no point of § inside it; and among
all such intervals there is a greatest.* We call this maximum interval /{a)
the excluded interval of «.

It is plain that, if @ is surrounded by an excluded interval /(«), then
o — ¥ is surrounded by a congruent excluded interval /(a — ¢). We thus
define an infinite series of intervals

Ha), o —9), [(a —28), ...

similarly disposed about the points &, o — 9, @ — 21,... . No two of these
intervals can coincide, since @ is irrational; and no two can overlap, since
two overlapping intervals would constitute together a larger interval, free
from points of S, about one of the points. This is a contradiction, since the
circumference cannot contain an infinity of non-overlapping intervals of
equal fength. The contradiction shows that there can be no interval /{w),
and so proves the theorem.

(iv) Kronecker’s own proof is rather more sophisticated, but proves a
good deal more, It proves

Tueorem 440, If & is irrational, o is arbitrary, and N positive, then
there is an n > N and a p for which

3
P —p—oa -
in P E<n

¥ We leave the formal proof, which depends upon the construction of ‘Dedekind sections’ of the
possible values of § and &', and is of a type familiar in elementary analysis, to the reader,
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 Itwill be observed that this theorem, unlike Theorem 438, gives a definite
bound for the ‘error’ in terms of n, of the same kind (though not so precise)
as those given by Theorems 183 and 193 whena = 0.
By Theorem 193 there are coprime integers ¢ > 2N and r such that

1
(23.2.1) igd —r| < E

Suppose that Q is the integer, or one of the two integers, such that
(23.2.2) lge — 01 < §.
We can express ( in the form
(23.2.3) Q = vr — ugq,
where u and v are integers and
(23.2.4) vl < 1q.
Then
qv? —u—a) =v(gd —r) —~ (ga - Q),

and therefore

1
(23.2.5) lqv® — u - a)| < ’i“"b”*"%m 3

by (23.2.1), (23.2.2), and (23.2.4). If now we write
n=g-+v, pP=r+u,

then

(23.2.6) N<39<n<iq

and

1
|m§‘—p-~a|Q!vﬁmuwalﬁlqzﬁ‘—rl<—+l=gg
q9 49 4

k4

b QRS

by (23.2.1), (23.2.5), and (23.2.6).
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It is possible to refine upon the 3 of the theorem, but not, by this method,
in a very interesting way. We return to this question in Ch. XXIV.

23.3. The problem of the reflected ray. Before we pass to the general
proof of Kronecker’s theorem, we shall apply the special case already
proved to a simple but entertaining problem of plane geometry solved by
Konig and Szics.

The sides of a square are reflecting mirrors. A ray of light Jeaves a point
inside the square and is reflected repeatedly in the mirrors. What is the
nature of its path?’

TuroreM 441, Either the path is closed and periodic or it is dense in the
square, passing arbitrarily near to every point of the square. A necessary
and sufficient condition for periodicity is that the angle between a side
of the square and the initial direction of the ray should have a rational
tangent.

In Fig. 9 the parallels to the axes are the lines

where / and m are integers. The thick square, of side 1, round the origin is
the square of the problem and P, or (q, b), is the starting-point. We construct
ali images of P in the mirrors, for direct or repeated reflection. A moment’s
thought will show that they are of four types, the coordinates of the images
of the different types being

(A)a+ 2L b+ 2m; Bya+2l,—-b+2m-+1;
(C) —a+20+1,b+2m;, (D)—a+2141,-b+2m+1;

where / and m are arbitrary integers.} Further, if the velocity at # has
direction cosines A, 1, then the corresponding images of the velocity have
direction cosines

(AyA,u; Bya,—u; () —Apu; (D) —A,—pu.
We may suppose, on grounds of symmetry, that i 1s positive.

* It ray happen exceptionally that the ray passes through a corner of the square. In this case we
assume that it returns aiong its former path, This is the convention suggested by considerations of
continuity.

1 The x-coordinate takes ali values derived from a by the repeated use of the substitutions x” == [ —x
and x’ = w1 - x, The figure shows the images corresponding to non-negative / and m.
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If we think of the plane as divided into squares of unit side, the interior
of a typical square beirig

(23.3.1) l—%<x<l+%, m—%<y<m+%,

then each square contains just one image of every point in the original
square

1 1 n 1.
-7 <X < 3, <Y < n;

and, if the image in (23.3.1) of any point in the original square is of type
A, B, C, or D, then the image in (23.3.1) of any other point in the original
square is of the same type.

We now imagine P moving with the ray. When P meets a mirror at (, it
‘coincides with an irnage; and the image of P which momentarily coincides
with P continues the motion of P, in its original direction, in one of the
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squares adjacent to the fundamental square. We follow the motion of the
image, in this square, until it in its turn meets a side of the square. It is
plain that the original path of P will be continued indefinitely in the same
line L, by a series of different images.

The segment of L in any square (23.3.1) is the image of a straight portion
of the path of P in the original square. There is a one-to-one correspondence
between the segments of L, in different squares (23.3.1), and the portions
of the path of P between successive reflections, each segment of L being
an image of the corresponding portion of the path of P,

The path of P in the oniginal square will be periodic if P retumns to its
original position moving in the same direction; and this will happen if
and only if L passes through an image of type A of the original P. The
coordinates of an arbifrary point of L are

x=a+ At y=b+ ut.
Hence the path will be periodic if and only if
At == 20, ut = 2m
for some ¢ and integral /, m; i.e. if A/ is rational.

It remains to show that, when A/ is irrational, the path of P approaches
arbitrarily near to every point (§, n) of the square. It is necessary and
sufficient for this that L should pass arbitrarily near to some image of (¢, n)
and sufficient that it should pass near some image of (¢, n) of type A, and
this will be so if
(23.3.2) la+ At — & -2 < e, b+ put —n—2m| < ¢

for every £ and 5, any positive €, some positive ¢, and appropriate integral
/ and m.

We take
= n+2m-—b
u 4

when the second of (23.3.2) is satisfied automatically. The first inequality
then becomes

(23.3.3) Im® — 1| < 3¢,
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where

_ A N I P
19-—;:, w = (b n)m s(a—&).

Theorem 438 shows that, when & is irrational, there are / and m, large
enough to make ¢ positive, which satisfy (23.3.3).

23.4. Statement of the general theorem. We pass to the general prob-
lem in space of k dimensions. The numbers 9, 9;,..., Y are given, and
we wish to approximate to an arbitrary set of numbers o3, o2, . . ., o, inte-
gers apart, by equal multiples of #1,92,..., 0. It is plain, after § 23.1,
that the ¥ must be irrational, but this condition 1s not a sufficient condition
for the possibility of the approximation.

Suppose for example, to fix our ideas, that k = 2, that 9, ¢, a, 8 are
positive and less than 1, and that & and ¢ (whether rational or irrational)
satisfy a relation

at +bp+c=0
with integral a, b, c. Then
ant® + b.ng

and
a{n®) + b(n¢)

are integers, and the point whose coor-
dinates are (n?) and {n¢) lics on one or
other of a finite number of straight lines.
Thus Fig. 10showsthecasea = 2,6 =3,
when the point lies on one or other of
the lines 2x + 3y = v(v==1,2,3,4). It
is plain that, if (¢, B8) does not lie on
one of these lines, it is impossible to
approXximate to it with more than a certain
accuracy.
We shall say that a set of numbers

EUEZ&'--sEr Fis. 10
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is linearly independent if no linear relation
a1 +axk2+---+ak =0,

with integral coefficients, not all zero, holds between them. Thus, if
P1,p2, - - -, Dr are different primes, then

logpi,logps,...,logp,
are linearly independent; for
ailogpy + azlogpr + - -+ a,logp, =0
is
PP p =1,

which contradicts the fundamental theorem of anthmetic.
We now state Kronecker’s theorem in its general form.

TuroreM 442. If
'91:1,2$---’§ka1

are linearly independent, a1, aa, ..., ay are arbitrary, and N and € are
positive, then there are integers

n>N, pu.p2....Pk
such that
tnﬂm“pm_am! < € (mﬂ I,z,-.‘,k).

We can also state the theorem in a form corresponding to Theorem 439,
but for this we must extend the definitions of § 9.10 to k~-dimensional space.

If the coordinates of a point P of k-dimensional space are x1,x2,...,X,
and & is positive, then the set of points x}, x;, . . ., x; for which

Ix:n_xmiga (m=l’2:---:k)

is called a neighbourhood of P. The phrases limit point, derivative, closed,
dense in itself, and perfect are then defined exactly as in § 9.10. Finally, if
we describe the set defined by

0€xy<]l (m=1,2,...,k)
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as the ‘unit cube’, then a set of points § is dense in the unit cube if every
point of the cube is a point of the derived set S,

TueoREM 443. If #1,%3,..., 0, | are linearly independent, then the set
of points

(nty), (nd2), ..., ()

is dense in the unit cube.

23.5. The two forms of the theorem. There is an alternative form of
Kronecker’s theorem in which both hypothesis and conclusion assert a
little less.

TrEOREM 444. If 81,2, ..., O arelinearly independent, ay,ay, . .., af
are arbitrary, and T and € are positive, then there is a real number t, and
integers p1,p2, - - - s Pk, Such that

t>T
and
|t0y — pm — am| <€ (m=1,2,...,k).

The fundamental hypothesis in Theorem 444 is weaker than in Theorem
442, since it only concerns linear relations homogeneous in the . Thus
# = /2,9 = | satisfy the condition of Theorem 444 but not that of
Theorem 442; and, in Theorem 444, just one of the ¥ may be rational. The
conclusion is also weaker, because 7 is not necessarily integral.

It is easy to prove that the two theorems are equivalent. It is useful to
have both forms, since some proofs lead most naturally to one form and
some to the other.

(1) Theorem 444 implies Theorem 442. We suppose, as we may, that
every © lies in (0, 1) and that € < 1. We apply Theorem 444, with k + 1
fork,N+ 1 forT,and —é-e for €, to the systems

2,02, 1 apaz,. .., 0,0

The hypothesis of linear independence is then that of Theorem 442; and
the concluston is expressed by

(23.5.1) t>N+1,
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(23.5.2) [tOm — Pm — Om| < € (m=1,2,...,k),
(23.5.3) It — pra1l < Se.

From (23.5.1) and (23.5.3) it follows that p;,.; > N, and from (23.5.2) and
(23.5.3) that

| Pka1Om =~ Pm — Um| < {10 — P — @m| + |t — piy1] < €.

These are the conclusions of Theorem 442, with n = pg ;.

(2) Theorem 442 implies Theorem 444. We now deduce Theorem 444
from Theorem 442. We observe first that Kronecker’s theorem (in either
form) is ‘additive in the «’; if the result is true for a set of ¥ and for
ay,...,d, and also for the same set of & and for By,..., B, then it is
true for the same & and for a; + B1,...,ax + Bi. For if the differences of
pV from a, and of g from B, are nearly integers, then the difference of
{p+ q)9 from« + B is nearly an integer.

If 94,4y,. .., 04 are linearly independent, then so are

LI
Oert’ Bk
We apply Theorem 442, with N = T, to the system
“ﬁ—i,...,lwfzt—; (5 4 AR I
Pt Brert
There are integers n > N, py,...,py such that

n¥,

(23.5.4)

~DPm—Op| <€ (m=12,...,k).
Pr+1

Ifwetaket == n/9;. 1, then the inequalities (23.5.4) are k of those required,
and

1 —nl =0 < ¢,
Alsot 2 n > N = T. We thus obtain Theorem 444, for
Py Ok Prts @1,. .., 0,0,
We can prove it similarly for
PP 0k 0,0, 0,004,

and the full theorem then follows from the remark at the beginning of (2).
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23.6. An illustration. Kronecker’s theorem is one of those mathematical theorems
which assert, roughly, that ‘what is not impossible will happen some times however
improbable it may be’. We can illustrate this ‘astronomically’.

Suppose that & spherical planets revolve round a point O in concentric coplanar circles,
their angular velocities being 2rw;, 2mws3,..., 2wy, that there is an observer at O, and
that the apparent diameter of the inmost planet P, observed from O, is greater than that of
any outer planet.

1f the planets are all in conjunction at time ¢ = 0 (so that P occults all the other planets),
then their angular coordinates at time ¢ are 2 tewy . ... Theorem 201 shows that we can choose
a t, as large as we please, for which all these angles are as near as we please to integral
muitiples of 2x. Hence occultation of the whole system by P will recur continually, This
conclusion holds for all angular velocities.

1f the angular coordinates are initially « [, az,.. ., &g, then such an occultation may never
ocecur. For example, two of the planets might be originally in opposition and have equal
angular velocities. Suppose, however, that the angular velocities are linearly independent.
Then Theorem 444 shows that, for appropriate ¢, as large as we please, all of

2rtwy oy, ... 2ty + oy

will be as near as we please to multiples of 2x; and then occultations will recur whatever
the initial positions.

23.7. Lettenmeyer’s proof of the theorem. We now suppose that
k = 2, and prove Kronecker’s theorem in this case by a ‘geometrical’
method due to Lettenmeyer. When & = 1, Lettenmeyer’s argument reduces
to that used in § 23.2 (ii).

We take the first form of the theorem, and write #, ¢ for #;, 2. We may
Suppose

O<?<l, O<gd<l;

and we have to show that if #, ¢, I are linearly independent then the points
P, whose coordinates are

(n?), (¢) (n=12..)

are dense in the unit square. No two P, coincide, and no P, lies on a side
of the square.
We call the directed stretch

PpPpy, (n>0,r>0
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a vector. If we take any point P, and draw a vector P, Q equal and paraliel
to the vector P, P, then the other end Q of this vector is a point of the set
(and in fact P, ,). Here naturally we adopt the convention corresponding
to that of § 23.2 (ii), viz. that, if P, meets a side of the square, then
it is continued in the same direction from the corresponding point on the
opposite side of the square.

Since no two points P, coincide, the set (P,) has a limit point; there
are therefore vectors whose length is less than any positive ¢, and vectors
of this kind for which 7 is as large as we please. We call these vectors ¢-
vectors, There are e-vectors, and e-vectors with arbitrarily large », issuing
from every P,, and in particular from P,. If

€ < min(?,¢,1 — 3,1 ~¢),

then all e-vectors issuing from P are unbroken, i.e. do not meet a side of
the square.

Two cases are possible a priori.

(1) There are two €-vectors which are not paraliel.! In this case we mark
them off from P; and construct the lattice based upon P and the two other
ends of the vectors. Every point of the square is then within a distance € of
some lattice point, and the theorem follows.

(2) All ¢-vectors are parallel. In this case all e-vectors issuing from 2,
lie along the same straight line, and there are points P,, P on this line with
arbitrarily large suffixes r,s. Since Py, P,, P, are collinear,

5 ¢ 1 9 ) 1
O=[(r?) (r¢) 1| =|rd —[rd] ro —I[re] 1,
s9) (s¢) 1 5P —[s#] s¢—Is¢] 1

and so

P ¢ i
[ré} fr¢p] r—1'=0,
[s?] [s¢p] s—1

¥ In the sense of elementary geometry, where we do not distinguish two directions on one straight
line.
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or
ad + b +c =0,

where a, b, ¢ are integers. But #, ¢, 1 are linearly independent, and therefore
a, b, c are all zero. Hence, in particular,

r¢l r—1) 0

[s¢] s—1 7
or

[s¢]  [r¢]

s—1 re-1

We can make s — o<, since there are P; with arbitrarily large s; and we
then obtain

o Isgl e
¢Mhms—1mr-i’

which is impossible because ¢ is irrational.
It follows that case (2) is impossible, so that the theorem is proved.

23.8. Estermann’s proof of the theorem. Lettenmeyer’s argument
may be extended to space of ¥ dimensions, and leads to a general proof of
Kronecker’s theorem; but the ideas which underlie it are iHustrated ade-
quately in the two-dimensional case. In this and the next section we prove
the general theorem by two other quite different methods.

Estermann’s proof is inductive. His argument shows that the theorem is
true in space of k dimensions if it is true in space of k—1. It also shows
incidentally that the theorem is true in one-dimensional space, so that the
proof is seif-contained; but this we have proved already, and the reader
may, if he pleases, take it for granted.

The theorem in its first form states that, if #,%,,..., 9, are linearly
independent, «, a3, . ..,a; are arbitrary, and ¢ and w are positive, then
there are integers n, py, p2,. . . , Pr such that

(23.8.1) n>w
and

(23.8.2) NSy —pm —am|l <€ (m=12,...,k).
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Here the emphasis is on large positive values of n. It is convenient now
to modify the enunciation a little, and consider both positive and negative
values of n. We therefore assert a little more, viz. that, given a positive €
and w, and a ) of either sign, then we can choose n and the p to satisfy
(23.8.2) and

(23.8.3) nl > @, signn = sign A,

the second equation meaning that » has the same sign as A. We have to
show (a) that this is true for & if it is true for k — 1, and (b) that it is true
when k == 1,

There are, by Theorem 201, integers

s> 0, by, by,..., b
such that
(23.8.4) lsOm — bml < 3 (m=1,2,...,k).
Since ¥ is irrational, s¥ — by # 0; and the & numbers

sOm — b
O = —
sty — by

(of which the last is 1) are linearly independent, since a linear relation
between them would involve one between 8y,. .., 9, L.

Suppose first that £ > 1, and assume the truth of the theorem for k1.
We apply the theorem, with k—1 for £, to the system

¢1!¢29 "'s‘pk%l (for ?91s192,---,19k—£),
Bi=a1 -1, Pr=ar—apdy, ..., PBro1 =g —xdr_y
(forabazy v ,akm}),

z€ (fore),  A(stx —by) (forA),

(2385) = Q= (w+ D)IsVg — el + lax| (for w).
There are integers ¢k, ¢1,¢2,. . .,cx—; such that

(23.8.6) lekl > 2,  signeg = sign (A (s9 — b))},
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and
(23.8.7) ckPm — cm — Bl < 3¢ (m=1,2,... .k~ 1).
The inequality (23.8.7), when expressed in terms of the ¢ is

2388) |k (o — by) —m — | < ke (m=1,2,....k).
s — by
Here we have included the value £ of m, as we may do because the left-hand
side of (23.8.8) vanishes when m = k.
We have supposed & > 1. Whenk = 1, (23.8. 8) is trivial, and we have
only to choose ¢ to satisfy (23.8.6), as plainly we may.,
We now choose an integer NV so that

Cyp + Oy

238. N kT3
(23.8.9) ‘ e

and take

nmNS, Pm mme'E‘Cm.

Then
Inly — pm — Al = [IN(sOm — b)) — Cm — s}
Cp oy
< W( Pm — bm) ~ Cm — O | + |50 — By
sy —

< %Hffe =¢ (m=12,...,k),
by (23.8.4), (23.8.8), and (23.8.9). This is (23.8.2). Next

Cy + o
s% — by

by (23.8.5) and (23.8.6); so that [N| >  and

Ckl — |
., Jel =l

(23.8.10) > :
jsy — byl

> w41,

|n] = |N|s = [N| > w.

Finally, n has the sign of N, and so, after (23.8.9) and (23.8.10), the sign of

. Ck
SO — by
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This, by (23.8.6), is the sign of A,
Hence n and the p satisfy all our demands, and the induction from & — |

to k is established.

23.9. Bohr’s proof of the theorem. There are also a number of ‘ana-
lytical’ proofs of Kronecker’s theorem, of which perhaps the simplest is
one due to Bohr. All such proofs depend on the facts that

e(x) = ™
has the period 1 and is equal to 1 if and only if x is an integer.

We observe first that

T

1 y ec:T -1
im - “dt = i =0
g f = Jm

0

if ¢ is real and not zero, and 1s 1 if ¢ = 0. It follows that, if
(23.9.1) X(®) =Y b,
vzl
where no two ¢, are equal, then
(23.9.2) b, = llm — f x (e dt.

We take the second form of Kronecker’s theorem (Theorem 444), and
consider the function

(23.9.3) o) = \F(),
where
k
(23.9.4) FO)y=1+ ) e®nt —ap),
=]

of the real variable 7. Obviously

Py < k+ 1.
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1f Kronecker’s theorem is true, we can find a large ¢ for which every term
in the sum is nearly 1 and ¢ (¢) is nearly k + 1. Conversely, if ¢ (¢) is nearly
k + 1 for some large 1, then (since no term can exceed 1 in absolute value)
every term must be nearly 1 and Kronecker’s theorem must be true, We
shall therefore have proved Kronecker’s theorem if we can prove that

(23.9.5) fim ¢ =k + 1.
f—ro0

The proof is based on certain formal relations between F(7) and the
function
(23'9'6) w(xlyxZ&'“sxk)g 1 +x oo X3 b 4 Xk

of the k variables x. If we raise ¢ to the pth power by the multinomial
theorem, we obtain

(23.9.7) ¥P = Za,,lr,,z,._.,,.kx?‘xgz Al

Here the coefficients a are positive; their individual values are irrelevant,
but their sum is

(23.9.8) Y a=yP(,1,...,1) = (k+ 1)

We also require an upper bound for their number. There are p + 1 of them
when k& = 1; and

(x4 4+ x)?

= (x4 o+ x)? + (I;) Axi+ - +x )P g+ 4 xf,

so that the number is multiplied at most by p+1 when we pass from k — |
to k. Hence the number of the a does not exceed (p + 1)*.1
We now form the corresponding power

FP = {1 + e(1t — ay) + - -+ + e(t — ap)}?

of F'. This is a sum of the form (23.9.1), obtained by replacing x, in (23.9.7)
by e(¥,1 — a,). When we do this, every product x7' ... x;* in (23.9.7) will
give rise to a different c,, since the equality of two ¢, would imply a linear

1 The actual number is (pIk).
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relation between the 7.1 It follows that every coefficient b, has an absolute
value equal to the corresponding coefficient @, and that

dolbi=) a=(k+DP.
Suppose now that, in contradiction to (23.9.5),
(23.9.9) limg() <k+1.
Then there is a A and a 7p such that, for ¢t > g,
IFi] <A <k+1,

and
1 p 1 A
ﬁ}-; f |F()Pdt < Iim? f APdt = AP,
¢ Lt
Hence

T
. —1
iby| = iim;f{F(r)]P e < lim}»:le(t){Pdt < A
0 0

and therefore a < AP for every a. Hence, since there are at most (p + 1)t
of the a, we deduce

(k+1)P =Y a< (p+ 1k,

F
(23.9.10) (E_}i) < (p+ DX

But A < k+ 1,and so

p
(5.'*“_1) = %7,
A

¥ 1t is here only that we use the linear independence of the 9, and this is naturally the kemnel of the
proof.
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where 8§ > (. Thus

e < (p+F,
which is impossible for large p because
e P(p+ 1) >0

when p — o0, Hence (23.9.9) involves a contradiction for large p, and this
proves the theorem.

23.10. Uniform distribution. Kronecker’s theorem, important as it is,
does not tell the full truth about the sets of points (n#) or (n?), (nd,), ...
with which it is concerned, These sets are not merely dense in the unit
interval, or cube, but ‘uniformly distributed’.

Returning for the moment to one dimension, we say that a set of points
Py in (0,1) is uniformly distributed if, roughly, every sub-interval of (0,1)
contains its proper quota of points. To put the definition precisely, we
suppose that [ is a sub-interval of (0, 1), and use 7 both for the interval and
for its length. If »n; is the number of the points Py, Ps,.. ., P, which fall in
I, and

nr

(23.10.1)
n

— 1,

whatever /, when n ~» o0, then the set is uniformly distributed. We can
also write (23.10.1) in either of the forms

(23.10.2) ny ~ nl, n; = nl + o(n).

Tueorem 445. If ¥ is irrational then the points (n®) are uniformly
distributed in (0, 1).

Llet0 <€ < *}%. By Theorem 439, we can choose j so that 0 < (j#) =
8 < e. Wewrite K == [1/8). If 0 < h < K, the interval [ is that in which
W) <x < ((h+ 1))

Here Ix extends beyond the point | and we are using the circular representa-
tion of § 23.2 (iii). We denote by n,(n) the number of (#), (28),..., (n®),
which liein /5. If (¢7) lies in Ig, where ¢ is a positive integer, then ({t+#/}9)
lies in /5 and conversely. Hence, if n > Aj,

na(n) — np(kj) = no(n — k).
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But 15 (k) < #j and ng(n — kj) = no(n) — hj. Hence

no(n) — hj < np(n) < no(n) + Af

and so
(23.10.3) im % 1 0<h<k),
n—00 110(n)
Now
Ko | K
D amy <n <Y nun)
= h=0
and we deduce from (23.10.3) that
. no(n) _ — no(n) 1
23.10.4 < 1 < 1 < —.
(23.104) K+1 5,2 S A% 0 SK

If I is the interval (&, B) and 8 — & 2 €, there are integers «, k such that
0 W) <o ({ut+11d) € ({u+k}jd) < B < ({u+k + 1}1/9),
so that

u+k—1 wtk
> ) S <) malm).
h=u+1t Aot

Hence, by (23.10.3), we have

k-1< lim < Tim 2
n— oo No(n) n— o0 1j0{n)

and so, using (23.10.4),

<k+1

k-1 . Ny — k41
€ lm— <lim— € ——.
K+ SH, sime X
But
K1 K+ 1S, k—1)8 < I < (k-+ 1)
Hence
I-25 . mp —ny I4+28
im—- < Tim 2 <
g Shmo shmo <5

Since we can choose € (and so &) as small as we please, (23.10.1) follows.
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The definition of uniform distribution may be extended at once to space
of k dimensions, and Kronecker’s general theorem may be sharpened in
the same way. But the proof is more complicated.

It is natural to inquire what happens in the exceptional cases when the
¢ are connected by one or more linear relations. Suppose, to fix our ideas,
that & = 3. If there is one relation, the points P, are limited to certain
planes, as they were limited to certain lines in § 23.4; if there are two, they
are limited to lines. Analogy suggests that the distribution on these planes
or lines should be dense, and indeed uniform; and it can be proved that this
is so, and that the corresponding theorems in space of & dimensions are
also true.

NOTES

§ 23.1. Kronecker first stated and proved his theorem in the Berliner Sitzungs berichte,
1884 [ Werke, iii (i), 47-110]. For a fuller account and a bibliography of later work inspired
by the theorem, see Cassels, Diophantine approximation. The one-dimensional theorem
seems to be due to Tchebychef: see Koksma, 76.

§ 23.2. For proof (iil) see Hardy and Littlewood, Acta Marh 37 {1914), 155-91,
especially 161-2.

§ 23.3. Konig and Sz8ucs, Rendiconti del circolo matematico di Palermo, 36 (1913),
7950,

§ 23.7. Lettenmeyer, Proc. London Math. Soc. (2), 21 {1923}, 306-14.

§ 23.8. Estermann, Journal London Math. Soc. 8 (1933), 18-20,

§ 23.9. H. Bohr, Journal London Math. Soc. 9 (1934), 5-6; for a variation see Proc.
London Math. Soc. (2) 21 {1923), 315-16. There is another simple proofby Bohr and Jessen
in Journal London Math. Soc. 7(1932), 2745,

§ 23.10. Theorem 445 seems to have been found independently, at about the same time,
by Bohi, Sierpinski, and Weyl. See Koksma, 92. The particular form of the proof given was
suggested by Dr. Miclave (Proc. American Math. Soc. 39 (1973), 279-80).

The best proof of the theorem is no doubt that given by Weyl in a very important paper in
Math. Annalen, 77 (1916}, 313--52. Wey! proves that a necessary and sufficient condition
for the uniform distribution of the numbers

(), @), 3,
in (0, 1} is that

Y elhf ()} = o(n)

y== ]

for every integral k. This principle has many important applications, particularly to the
problems mentioned at the end of the chapter.

For a detailed account of the subject of uniform distribution, see Kuipers and
Niederreiter.



XXV
GEOMETRY OF NUMBERS

24.1. Introduction and restatement of the fundamental theorem.
This chapter is an introduction to the ‘geometry of numbers’, the sub-
ject created by Minkowski on the basis of his fundamental Theorem 37
and its generalization in space of n dimensions.

We shall need the n-dimensional generalizations of the notions which
we used in §§ 3.9-11; but these, as we said in § 3.11, are straightforward.
We define a lattice, and equivalence of lattices, as in § 3.5, parallelograms
being replaced by n-dimensional parallelepipeds; and a convex region as
in the first definition of § 3.9.T Minkowski’s theorem is then

THEOREM 446. Any convex region in n-dimensional space, symmetrical
about the origin and of volume greater than 2", contains a point with
integral coordinates, not all zero.

Any of the proofs of Theorem 37 in Ch. IIl may be adapted to prove
Theorem 446: we take, for example, Mordell’s, The planes

xr=2}7r/f (r=132,-°°,n)

divide space into cubes of volume (2/1)". If N (¢) is the number of comers
of these cubes in the region R under consideration, and ¥ the volume of R,
then

Q2/O"N@) > V

whent — o0, and N(t) > " if ¥V > 2" and ¢ is sufficiently large. The
proof may then be completed as before.
if &y, 69,. .., &, are linear forms in x,x72,...,xy, say

(24.1-2) Er mar'lxi +ar’2x2 + "'+ar’n.xn (?’m 1,2,»..,"),
with real coefficients and determinant

@y 12 . . . O g
(24.1.2) a=|. .. . .. .l#o,

an’ 1 an’z L3 x L an,n

t The sccond definition can also be adapted to n dimensions, the line / becoming an (n—1)-
dimensional ‘plane’ (whereas the line of the first definition remains & ‘line’). We shall use
three-dimensional language: thus we shall call the region x3| < 1.jx2] < 1,..., lxn| < 1 the ‘unit
cube’.
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then the points in &-space corresponding to integral x1,x2,...,x, form a
lattice AT: we call A the determinant of the lattice. A region R of x-space
is transformed into a region P of £-space, and a convex R into a convex pi
Also

fffd€1d§'2 ...d&,,MIA[ff...fdnde“.dxm

so that the volume of P is |A| times that of R. We can therefore restate
Theorem 446 in the form

TueoreM 447, If A is a lattice of determinant A, and P is a convex region
symmetrical about O and of volume greater than 2"{ A\, then P contains a
point of A other than O.

We assume throughout the chapter that A # 0.

24.2. Simple applications. The theorems which follow will all have
the same character. We shall be given a system of forms &,, usually linear
and homogeneous, but sometimes (as in Theorem 455) non-homogeneous,
and we shall prove that there are integral values of the x, (usually not all 0)
for which the &, satisfy certain inequalities. We can obtain such theorems
at once by applying Theorem 447 to various simple regions P. '

(1) Suppose first that P is the region defined by

isfl < ll? |€2l < AZS"" IEH; < A‘ﬂ‘

This is convex and symmetrical about O, and its volume is 2"A A3 ... A, If
AtAz...An > |A], P contains a lattice point other than O; if A1y ...
A 2 |Al, there is a lattice point, other than O, inside P or on its boundary. !

We thus obtain

Tusorem 448, If £1,&3,....&, are homogeneous lnear forms in
X1, X2, ... ,Xn, With real coefficients and determinant A, and A1, A2,. .., Ay

t In§ 3.5 we used L for a lattice of lines, A for the corresponding point-lattice. It is more convenient
now to reserve Greek letters for configurations in *Z-space’.

! ‘The invariance of convexity depends on two properties of linear transformations viz. (1) that lines
and planes are transformed into lines and planes, and (2) that the order of points on a line is unalieted.

! We pass here, by an appeal to continuity, from a result concerning an open region to one concerning
the corresponding closed region. We might, of course, make a similar change in the general theorems
446 and 447: thus any closed convex region, symmetrical about O, and of volume not less than 27,
has a lattice point, other than O, inside it or on its boundary. We shall not again refer explicitly to such
trivial appeals to continuity.
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are positive, and
(24.2.1) Ahy .. Ap 2 AL
then there are integers Xi,Xy, .. ., Xp, not all 0, for which
(242.2) &l < Ay, 1&20 €Az, 1Sl S A
In particular we can make |§1| < YAl for each r.
(2) Secondly, suppose that P is defined by
(24.2.3) 611+ [E2] 4+ -+ 1Ea| < A

Ifn = 2, Pisasquare; if n = 3, an octahedron. In the general case it consists
of 2" congruent parts, one in each ‘octant’. It is obviously symmetrical
about O, and it is convex because

& + WE'| < pig) + u'1E|
for positive u and p’. The volume in the positive octant &, > 0 is

1§ F—gymmeei gy N
fdétfdéz---f d’g’,.:n—':.

If A" > n!)Aj then the volume of P exceeds 27| A, and there is a lattice
point, besides O, in P. Hence we obtain

THEOREM 449. There are integers xy,x3, ... ,X,, not all 0, for which
(24.2.4) 1)+ 1E2] + - - + [€al < (RYADY™,

Since, by the theorem of the arithmetic and geometric means,

nlE1&y .. Eal'" < 18+ [E2) + -0 + 16l

we have also

Tueorem 450. There are integers x1,X3,. .., xp, not all 0, for which

(24.2.5) [E152. .. &1 < n™"nljA|.
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(3) As a third application, we define P by

g+ +g <Ak
this region is convex because
(uk + g < (u + wWHuEr + WE?)

for positive u and . The volumne of P is A"J,, where'

fdd dE, = ki
ff §1dba-. nml‘(in-%l)

gl +Ed 4+ 421
Hence we obtain

Tueorem 451, There are integers xi,Xx2, - - . ,Xn, not all 0, for which

A 2/n
(24.2.6) 8?+E§+---+§3g4(2')

Theorem 451 may be expressed in a different way. 4 quadratic form Q
in xy,x2,...,x, is a function

Q(x1,x3,...,xp) = Z Z Ay sXrXs

rael s=1

with a5, = a, 5. The determinant D of O is the determinant of its coeffi-
cients. If O > 0 forall x1,x3,...,x,, not all 0, then Q is said to be positive
definite. 1t is familiar? that O can then be expressed in the form

Q=tf+E+--+&2,

where &1, £, . . ., &, are linear forms with real coefficients and determinant
D. Hence Theorem 451 may be restated as

TreoreM 452. [f ) is a positive definite quadratic form in x1,x3, . .. ,Xp,
with determinant D, then there are integral values of xy,x3, . . ., xp, not all
0, for which

(242.7) @<ty
t See, for example, Whmaker and Watson, Modern analysis, ed. 3 {1920), 258. Forn = 2 and

n =3 we pet the values wAZ and 3::'3. for the volumnes of a circle or a sphere.
$ See, for example, Bochet, introduction to higher algebra, ch. 10, or Ferrar, Algebra, ch. 11.
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24.3. Arithmetical proof of Theorem 448. There are various proofs
of Theorem 448 which do not depend on Theorem 446, and the great
importance of the theorem makes it desirable to give one here. We confine
ourselves for simplicity to the case n = 2. Thus we are given linear forms

(24.3.1) §E=ox+ By, n=yx+3dy,

with real coefficients and determinant A = «d — By # 0, and positive
numbers A, 4 for which Au 2 |A}; and we have to prove that

(24.3.2) & < A, Inl €,

for some integral x and y not both 0. We may plainly suppose A > 0.

We prove the theorem in three stages: (1) when the coefficients are inte-
gral and each of the patrs o, £ and y, & is coprime; (2) when the coefficients
are rational; and (3) in the general case.

{1) We suppose first that o, 8, v, and § are integers and that

(a3 ﬂ) = (Y35) =1,

Since {a, 8) = 1, there are iritegers p and g for whichag — 8p = 1. The
linear transformation

ax+By=X, px+qy=Y
establishes a (1, 1) correlation between integral pairs x, y and X, Y; and
E=X, n=rX+AY,

where r = yq — §p is an integer. It is sufficient to prove that |£] < A and
In} € u for some integral X and Y not both 0,
Hiaglthenuy 2 A,and X =0,Y = lgivesE =0, |nf = A < u.
If ) > I, we take

n= (4], mmﬁ'; th& kszT
in Theorem 36. Then
O<xg Al A

1 The & here is naturally not the & of this section.
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and
7 Y A A

A
—— - Zlx = Z<u,
A X Shav1l [g+1 S K

IPX + AY| = AX

so that X = & and ¥ = h satisfy our requirements.
(2) We suppose next that o, 8, ¥, and 8 are any rational numbers. Then
we can choose p and o so that

£ =pt=ax+py, n=o0on=yx+¥8y,

where o', 8, v/, and &' are integers, (@', ) = i,~(y’,5") = 1, and A’ ==
a's’ — By’ = paA. Also pA .o = A', and therefore, after (1), there are
integers x, y, not both 0, for which

IE'1 < oA, 1| € ou.

These inequalities are equivalent to (24.3.2), so that the theorem is proved
in case (2).

(3) Finally, we suppose a, 8,y, and § unrestricted. If we put ¢ =
' JA,. .., & = EJA,...,then A" = a'8’ — 'y’ = 1. If the theo-
rem has been proved when A = 1, and A’u’ > 1, then there are integral
x,y, not both 0, for which

EI<A, 1<y

and these inequalities are equivalent to (24.3.2), with A = X' /A,u =
“ VA, Au = A. We may therefore suppose without loss of generality
that A = 1.}

We can choose a sequence of rational sets a,;;, 8, ¥n, 8» such that

ep8p ~ Buym =1

and ap - ,8, — B,..., when n — 00. It follows from (2) that there
are integers x, and y,, not both 0, for which

(24.3.3) [0tnXn + Baynl < A, 1¥nXn + 8ayal < 1.
Also
lxp! = 18a{tnXn + Bnyn) — Bu(¥nxn + Snyn)| < AMnl + wiBal,

t A similar appeal to homogeneity would enable us to reduce the proof of any of the theorems of
this chapter to its proof in the case in which A has any assigned value.
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so that x,, is bounded; and similarly y, is bounded. It follows, since x, and
yn are integral, that some pair of integers x,y must occur infinitely often
among the pairs x,,y,. Taking x, = x,y, = y in (24.3.3), and making
n -> oo, through the appropriate values, we obtain (24.3.2).

It is important to observe that this method of proof, by reduction to the case of rational
or integral coefficients, cannot be used for such a theorem as Theorem 450. This (when

rn = 2) asserts that i{n} < %EAI for appropriate x, y. If we try to use the argument of (3)
above, it fails because x,, and y, are not necessarily bounded. The failure is natural, since
the theorem is trivial when the coefficients are rational: we can obviously choose x and y

sothat§ =0, [£7] = 0 < }|Al

24.4. Best possible inequalities. It is easy to see that Theorem 448 is
the best possible theorem of its kind, in the sense that it becomes false if
(24.2.1) is replaced by

(24.4.1) AMAz. .. x> kA

withany k < 1. Thus if &, = x,, foreach 7, sothat A = I, and A, = vk,
then (24.4.1) is satisfied; but |&,| < A, < 1 implies x, == 0, and there is no
solution of (24.2.2) exceptx; = x3 = ... = 0.

It is natural to ask whether Theorems 449-51 are similarly ‘best pos-
sible’. Except in one special case, the answer is negative; the numerical
constants on the right of (24.2.4), (24.2.5), and (24 2.6) can be replaced by
smaller numbers,

The special case referred to is the case n = 2 of Theorem 449. This
asserts that we can make

(24.4.2) 11+ Inl < J/2lAD,

and it is easy to see that this is the best possibleresult. If & = x+y, 7 = x—y,
then A == —2 and (24.4.2) is |§| + || € 2. But

&1+ Inl = max(|§ + nl, i§ — 7l) = max(j2x|, [2y]),
and this cannot be less than 2 unless x = y = 0.1 _
Theorem 450 is not a best possible theorem even when n = 2. It then

asserts that

(24.4.3) €0l < 1Al

T Actually the case # = 2 of Theoremn 449 is equivalent to the corresponding case of Theorem 448,
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and we shall show in § 24.6 that the » here may be replaced by the smaller
constant 5~ i, We shall alsomake a corresponding improvement in Theorem
451. This asserts (when n = 2) that

£2 4+ n? <4nlAl,

§
and we shall show that 47r~! = [.27... may be replaced by (%)I =
1.15....

1
We shall also show that 5-% and (3)? are the best possible constants,
When r > 2, the determination of the best possible constants is difficult.

24.5. The best possible inequality for £ + »*. If
Q(x,y) = ax?® + 2bxy + (?y2

is a quadratic form in x and y (with real, but not necessarily integral,
coefficients);

x=pX' +q/, y=r'+sy (ps—gr==xl)
is a unimodular substitution in the sense of § 3.6; and

Q(x, y) = dx? + 20Xy + cy? = Q' (¢, ),
then we say that O is equivalent to (’, and write O ~ Q. It is easily
verified that a’c’ — 2 = ac — b?, so that equivalent forms have the same
determinant. It is plain that the assertions that |Q] < & for appropriate
integral x, y, and that || < # for appropriate integral x/, ', are equivalent
to one another.

Now let xg, yp be coprime integers such that M = Q(xg,yg) # 0. We
can choose x1, y; so that xgy; — x1yp = 1. The transformation

(24.5.1) x =xox +xy, y=yox'+y1y

is unimodular and transforms Q(x, ) into Q'(x',y’) with
a' = ax} + 2bxoyo + ¢y = Q(xo,y0) = M

If we make the further unimodular transformation

(245.2) x? = x!f + nyﬂ’ y? =yﬂ',
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where n is an integer, a’ = M is unchanged and 5’ becomes
b = b’ +na' = b +nM.

Since M # 0, we can choose n so that —[M| < 25" < |M|. Thus we
transform Q(x, y) by unimodular substitutions into

Q”(x", }’”) - Mx:fz + anxnyn + cuynz
with —|M| < 2b” < IM|.F

We can now improve the results of Theorems 450 and 451, for n = 2.
We take the latter theorem first.

TueoreM 453. There are integers x, y, not both 0, for which

)
(24.5.3) 40t <(3)? 148

and this is true with inequality unless

1
(24.5.4) E2 4 n? ~ (D2 18162 +xy + 7).
We have
(24.5.5) E2 4 5% = ax? + 2bxy + o? = Q(x,),
where
a=a’+y% b=aB+ys, c=pF+8,
(24.5.6) [ ac — b = (@b — ByY: = A% > 0.

Then @ > 0 except when x = y = 0, and there are at most a finite number
of integral pairs x, y for which O is less than any given k. It follows that,
among such integral pairs, not both 0, there is one, say (xg, yg), for which
Q assumes a positive minimum value m. Clearly xo and yp are coprime
and so, by what we have just said,  is equivalent to a form Q”, with
a” = mand — m < 2b" < m. Thus (dropping the dashes) we may suppose
that the form is

mx® 4+ 2bxy + cy?,

 Areader familiar with the elements of the theory of quadratic forms will recognize Gauss’s method
for transforming {0 into 2 ‘reduced’ form.



532 GEOMETRY OF NUMBERS {Chap. XXIV

where —m < 2b < m. Then ¢ > m, since otherwise x = 0,y = 1 would
give a value less than m; and

(24.5.7) A =mc— b > m* — tm* = Im?,

1
sothat m < (3)7 1A,
This proves (24.5.3). There can be equality throughout (24.5.7) only if
c=mand b= %m, in vuzhich case O ~ m(x2 + xy + y*). For this form the

minimum is plainly (3)(A].

24.6. The best possible inequality for |£p|. Passing to the product
[€nl, we prove

TueoreM 454. There are integers x, y, not both 0, for which
(24.6.1) g0l < 57H1Al;
and this is true with inequality unless
(24.62) gn~ 572 |Al G2 +xp — ).

The proofis a little less straightforward than that of Theorem 453 because
we are concerned with an ‘indefinite form’. We write

(24.6.3) £n = ax’ + 2bxy + ¢* = Q(x,),
where

a=ay, 2b=oad+ By, c=p8s
(24.6.4) I 4 —ac) = A? > 0.

We write m for the lower bound of |Q(x, y)|, for x and y not both zero; we
may plainly suppose that m > 0 since there is nothing to prove if m = 0.
There may now be no pair x, y such that |Q(x, »)| = m, but there must be
pairs for which |Q(x, )| is as near to m as we please. Hence we can find
a coprime pair xg and yp so that m < |M| < 2m, where M = Q(xg, yp).
Without loss of generality we may take M > 0. If we transform as in
§ 24.5, and drop the dashes, our new quadratic form is

QOx,y) = Mx? + 2bxy + c?,
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where

(24.6.5) m< M <2m, M <2b€EM
and

(24.6.6) 4% — Mc) = A% > 0.

By the definition of m, |Q(x,y)| 2 m for all integral pairs x,y other
than 0,0. Hence if, for a particular pair, Q(x,y) < m, it follows that
QO(x,y) < —m. Now, by (24.6.5) and (24.6.6),

b?
00,1)=c< — < ;M <m.

M
Hence ¢ € —m and we write C = —¢ 2 m > 0. Again
Q(l ;j’) — 126l -C<M-C<M-m<m
and so M — |2b| — C € —m, that is
(24.6.7) 26l 2M+m—C,

KM+m—C<0,wehave C > M +m 2 2m and
= 4(b* + MC) > 4MC = 8m? > Sm*.
HM+m— C = 0, we have from (24.6.7)

A2 = 4pr £ AMC > (M +m — C)* + 4MC
= (M —m+ C)? + 4Mm > 5m*,

Equality canoccuronly if M —m+C = mand M = m,sothatM = C =m
“and || = m. This corresponds to one or other of the two (equivalent) forms

m(x? + xy — y?) and m(x? — xy — y?). For these, |Q(1,0)] = m = 5"ZA.
For all other forms, 5m? < AZ and so we may choose xp, yg so that

Sm? < SM? < A%

This is Theorem 454.
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24.7. A theorem concerning non-homogeneous forms. We prove
next an important theorem of Minkowski concerning non-homogeneous
forms

(24.7.1) E—p=ax+By—p, n—o0=yx+38y—oa.

THEOREM 455. If &€ and n are homogeneous linear forms in x, y, with
determinant A # 0, and p and o are real, then there are integral x, y for
which

(24.7.2) i€ — p)(n— o)l < 1Al
and this is true with inequality unless

(24.7.3)
E=0u, n=¢v, 0p=4, p=0(f+3), o=9¢(+3),

where u and v are forms with integral coefficients (and determinant 1), and
fand g are integers.

It will be observed that this theorem differs from all which precede in
that we do not exclude the values x = y = 0. It would be false if we did
not allow this possibility, for example if £ and 5 are the special forms of
Theorem 454 and p =0 = 0.

It will be convenient to restate the theorem in a different form. The
points in the plane £, n corresponding to integral x, y form a lattice A of
determinant A. Two points P, Q are equivalent with respect to A if the
vector PQ is equal to the vector from the origin to a point of A;! and
(&€ — p,n — o), with integral x, y, is equivalent to (—p, —c). Hence the
theorem may be restated as

Tueorem 456. If A is a lattice of determinant A in the plane of (€,1),
and Q is any given point of the plane, then there is a point equivalent to Q
Jor which
(24.7.4) Enl < § 1AL,
with inequality except in the special case (24.7.3).

t See p. 42. It is the same thing to say that the corresponding points in the {x, ¥) plane are equivalent
with respect to the fundamental fattice.
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In what follows we shall be concerned with three sets of variabies, (x,y),
(&,n), and (&', ') We call the planes of the last two sets of variables
and nr’.

We may suppose A = 1.7 By Theorem 450 (and a fortiori by Theorem
454), there is a point Py of A, other than the origin, and corresponding to
X0, VO for which

(24.7.5) igomol < 3.

We may suppose xg and yg coprime (so that Py is ‘visible’ in the sense of
§ 3.6). Since & and ng satisfy (24.7.5), and are not both 0, there is a real
positive A for which

(24.7.6) (&) + (A1)’ = 1.
We put
(24.1.7) "= A&, 7 =1"'y.

Then the lattice A in 7 corresponds to a lattice A’ in 7/, also of determi-
nant 1. If O’ and Py correspond to O and Py, then Py, like Py, is visible;
and O’ P = 1, by (24.7.6). Thus the points of A’ on O'F’, are spaced out at
unit distances, and, since the area of the basic parallelogram of A’ is 1, the
other points of A’ lie on lines parallel to (Y P which are at unit distances
~ from one another.

We denote by S’ the square whose centre is O’ and one of whose sides

bisects O'F perpendicularly.? Each side of §' is 1; §' lies in the circle

F; I; 2
£24n%=2(3)" =13,
and |
(24.7.8) 7| < L (g2 +9?) < 4

at all points of §'.

If 4’ and B’ are two points inside ', then each component of the vector
A'B' (measured paraliel to the sides of the square) is less than 1, so that 4’
and B’ cannot be equivalent with respect to A’. It follows from Theorem

t See the footnote to p. 528.
:_ The reader should draw a figure.
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42 that there is a point of ' equivalent to (¢ (the point of 7’ corresponding
to 0). The corresponding point of 7 is equivalent to (7, and satisfies

(24.7.9) Enl = &' < L.

This proves the main clause of Theorem 456 (or 455).

If there is equality in (24.7.9), there must be equality in (24.7.8), so that
&'} = 5] = % This is only possible if $' has its sides parallel to the
coordinate axes and the point of §' in question is at a corner. In this case P
must be one of the four points (31, 0), (0, 4 1): let us suppose, for example,
that it is (1, 0).

The lattice A’ can be based on O'F) and O'P}, where Pl isonn’ = 1. We
may suppose, selecting P} appropriately, that it is (¢, 1), where 0 € ¢ < 1.
If the point of S’ equivalent to Q' is, say, (3,1), then (3 — ¢, — 1),
i.e. (§ —¢,—3), is another point equivalent to (0’ and this can only be at a
corner of §', as it mustbe, if ¢ = 0. Hence P} is (0,1), A’ is the fundamental
lattice in 7', and ', being equivalent to ( %, %), has coordinates

E=f+3, n=g+1,

where / and g are integers. We are thus led to the exceptional case (24.7.3),
and it is plain that in this case the sign of equality is necessary.

24.8. Arithmetical proof of Theorem 455. We also give an arithmeti-
cal proof of the main ¢lause of Theorem 455, We transform it as in Theorem
456, and we have to show that, givet 1 and v, we can satisfy (24.7.4) with
an x and a y congruent fo 4 and v to modulus 1,

We again suppose A = 1. As in § 24.7, there are integers xg, yo, which
we may suppose coprime, for which

[(@xo + Byo)(yxo + 8y0)| < 4.
We choose x; and yl‘ so that xpy1 — x1yp = 1. The transformation
x = xox +x1y', y=yox' +y1y
changes £ and 7 into forms £'-= o'x' + 8,0 = y'x’ + &y for which

'y’ = Waxo + ByoX(yxo + 8y0)| < 3.
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Hence, reverting to our original notation, we may suppose without loss of
generality that

(24.8.1) layl < 1.
It follows from (24.8.1) that there is a real A for which
Mol +2"%yt =1
and
2 [(ax + By)(rx + 8)| < AP(ax + ﬁy)2 + 272 (yx + 8y)?
=x? 4 2bxy + &v* = (x + by)* + py?,

for some b, c, p. The determinant of this quadratic form is, on the one hand,
the square of that of A(ax + By) and A~ (yx + 8y),! that is to say 1, and on

the other the square of that of x+ by and p 2 y, that is to say p; and therefore
p=1 Thus

2|(ax + BY)(yx + )| < (x + by)? + ¥,

We can choosey = v (mod 1) so that |y| < %, and then x == 4 (mod 1) so
that |x + by| < 5, and then

el < {3+ W)’} =+

We leave it to the reader to discriminate the cases of equality in this
altemative proof.

24.9. Tchebotaref’s theorem. It has been conjectured that Theorem
455 could be extended to n dimensions, with 27" in place of ; but this
has been proved only for n = 3 and n = 4. There is, however, a theorem
of Tchebotaref which goes some way in this direction.

TugoreM 457. If &1,&;,...,&, are homogeneous linear forms in
X1,X2, . .., Xn, With real coefficients and determinant A; p1, p2, . . ., pp are
real; and m is the lower bound of

161 — p1)(E2 — p2) ... (En — pu)l,

¥ See(24.5.5)and (24.5.6).
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then
(24.9.1) m<2 A

We may suppose A = | and m > 0. Then, given any positive ¢, there
are integers x},x3, ... ,x; for which

(24.9.2) .
n|§£*—9f|wl(%'f—ﬂt)(s;‘**ﬁz)---( Pn)|“‘“—mw§,, 08 <6
We put

51

& = (G=1,2,...,n).

s*

Thené&{,. .., &, are linear forms in x; —xj,...,Xp —X,, With a determinant
D whose absolute value is

1= ([Tler - o) = ’—;’i;

and the points in &’-space corresponding to integral x form a lattice A’
whose determinant is of absolute value (1 — 8)/m. Since

nlgl_p!! 2= m,

every point of A’ satisfies

[Tl +1=TT|%

The same inequality is satisfied by the point symmetrical about the origin,
sothat []]¢/ — 1] > 1 — @ and

z1-80.

é’*—p

2493) TTlE2 - 1] ={EP - D) EF-1)... G2 - )] =0 -9

We now prove that when € and 8 are small, there is no point of A', other
than the origin, in the cube C' defined by

(24.9.4) & < VU1 + (1 - 8)Y%)
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If there is such a point, it satisfies

(24.9.5) —1<E?-1<1-62<1 @F=12,...,m.
If
(24.9.6) 2 - 1> —(1-0)°

for some i, then ‘E,-’z — i| < (1 —8)? for that i, and ]5;2 e II < 1 forevery
i, so that

TTlEe? -1 <a -6y
in contradiction to (24.9.3). Hence (24.9.6) is impossible, and therefore

~1SEP—1<-(1-6? (=12,...,n);
and hence
(24.9.7) < /1-0-6?%} <y (=12,...,n.

Thus every point of A’ in C’ is very near to the origin when € and 8 are
small.
But this leads at once to a contradiction. For if (£,...,£,) is a point
“of A’, then so is (N§;,...,N§&,) for every integral N. If @ is small, every
coordinate of a lattice point in C” satisfies (24.9.7), and at least one of them
is not 0, then plainly we can choose N so that (N&{, ..., NE}), while still
in C’, is at a distance at least % from the origin, and therefore cannot satisfy
(24.9.7). The contradiction shows that, as we stated, there is no point of
A’, except the origin, in C’.
It is now easy to complete the proof of Theorem 457. Since there is no
point of A’, except the origin, in 7, it follows from Theorem 447 that the
volume of C’ does not exceed

2" D} =21 — 8)/m;
and therefore that
2m {1+ (1 - 0)}} 1" < 2°(1 - 6).
Dividing by 2", and making 6 — 0, we obtain
m < 2”%",

the result of the theorem.
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24.10. A converse of Minkowski’s Theorem 446, There is a partial
converse of Theorem 446, which we shall prove for the case n = 2,
The result is not confined to convex regions and we therefore first redefine
the area of a bounded region P, since the definition of §3.9 may no longer
be applicable.

Forevery p > 0, we denote by A(p) the lattice of points (pox, py), where
x, y take all integral values, and write g (o) for the number of points of A (o)
(apart from the origin O) which belong to the bounded region P. We call

(24.10.1) V= lim p2e(p)
p—r

the area of P, if the limit exists. This definition embodies the only prop-
erty of area which we require in what follows, It is clearly equivalent to
any natural definition of area for elementary regions such as polygons,
ellipses, etc.

We prove first

Treorem 458, If P is a bounded plane region with an area V which is
less than 1, there is a lattice of determinant 1 which has no point (except
perhaps O) belonging to P.

Since P is bounded, there is a number N such that
(24.10.2) ~NCELSN, —-Ngn<N
for every point (£, ) of P. Let p be any prime such that
(24.10.3) p > N%.

Let u be any integer and A, the lattice of points (£, ) where

X uX +pY

—. =

VP vp

and X, Y take all integral values. The determinant of A, is 1. If Theorem

458 is false, there is a point T, belonging to both A, and P and not coinciding
with O. Let the coordinates of 7}, be

Xu M = uXy +pl,
VP “ VP

£E=

su =
If X, = 0, we have

Vo1l = In N < /p
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by (24.10.2) and (24.10.3). It follows that Y, = 0 and T}, is O, contrary to
our hypothesis. Hence X, # 0 and

0 < [Xul = P&l S NJp <p.
Thus
(24.10.4) X. # 0(mod p).

If T, and T, coincide, we have
Xu=Xy, uXy+pY,=vXy+pY,

and so

Xu(t—v) =0, u=vimodp)
by (24.10.4). Hence the p points

(24.10.5) T0, Ty, T2, ..., Tpey

are all different. Since they all belong to P and to A (p—i) , it follows that

)
g (p ’) 2 Pp.
But this is false for large enough p, since
p_lg (p”%) >V <l

by (24.10.1). Hence Theorem 458 is true.

For our next result we require the idea of visible points of a lattice
introduced in Ch. III. A point T of A{(p) is visible (i.e. visible from the
origin} if 7 is not O and if there is no point of A(p) on OT between O and
7. We write /(o) for the number of visible points of A{p) belonging to P
and prove the following lemma.

TreoREM 459

P (o) — 5_(25 as p— 0.



542 GEQMETRY OF NUMBERS [Chap. XXIV

The number of points of A(p) other than O, whose coordinates satisfy
(24.10.2) is

2[N/p]+ D? - 1.

Hence

(24.10.6) fe)=gp)=0 (p>N)
and

(24.10.7) f(p) < glp) < IN?*/p?
for all p.

Clearly (ox, py) is a visible point of A(p) if, and only if, x, y are coprime.-
More generally, if m is the highest common factor of x and y, the point
(px, py) is a visible point of A(mp) but not of A(kp) for any integral
k # m. Hence

g(p) = Zf(mp)

By Theorem 270, it follows that

[+ 4]
f(p) = u(mgmp).

m=1

The convergence condition of that theorem is satisfied trivially since, by
(24.10.6), f (mp) = g(mp) = 0 for mp > N. Again, by Theorem 287,

and so

(24.10.8) P (p) — — Z £ ("" m?p’g(mp) — V} .

Now let € > 0. By (24.10.1), there is a number g1 = p)(¢) such that

\m2p%g(mp) ~ V| < €
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whenever mp < py. Again, by (24.10.7),
|mplg(mp) — V| < ON? + V

for all m, If we write M = [p1/p], we have, by (24.10.8),

@) - | <e 3 SN +r) 5 -
— — { —— ————
$(2) m=21 m? . muM+1 m?2
€n ON“ +V
Je,
& "My <F
if p is small enough to make

M = [p;/p] > ON?* + V)/e.

Since ¢ is arbitrary, Theorem 459 follows at once.

We can now show that the condition 7 < 1 of Theorem 458 can be
relaxed if we confine our result to regions of a certain special form. We say
that the bounded region P is a star region provided that (i) O belongs to P,
(1) P has an area V defined by (24.10.1), and (iii) if T is any point of P, then
so is every point of OT between O and 7. Every convex region containing
O is a star region; but there are star regions which are not convex. We can
nOW prove

THEOREM 1. Il'f P is a star region, symmetrical about O and of area
V <20Q2) = gzrz there is a lattice of determinant 1 which has no point
(except O) in P,

We use the same notation and argument as in the proof of Theorem 458,
If Theorem 460 is false, there is a T, different from O, belonging to A,
and to P, ;

If T, is not a visible point of A(p™ %), we have m > 1, where m is the
highest common factor of X, and uX,, + pY¥,. By (24.10.4), p t X, and so
pt m. Hence m|Y,. If we write X, = mX], ¥, = mY, the numbers X and
uX, + pY, are coprime. Thus the point T, whose coordinates are

X, uX,+pY,
Jr' N/ 2
belongs to A, and is a visible point of A (p‘ilf ). But T, lies on OT, and so

belongs to the star region P. Hence, if T, is not visible, we may replace it
by a visible point.
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Now P contains the p points

(24‘10'9) TO: Tl) AL | Tp—l;

all visible points of A(p™ 1), all different (as before) and none coinciding
with O. Since P is symmetrical about O, P also contains the p points

(24.10.10) T, T1s---» Tp—1s

where 'I’,‘l is the point (—§,, —n,). All these p points are visible points of
A( p‘i), all are different and none is O. Now T, and T, cannot coincide
(for then each would be O). Again, if ¥ # v and T, and T, coincide, we
have

Xu = _Xv, uXu "'i"pYu — ""VX‘; ‘_va
u—vX, =0, X,=0 or u=v(modp),

both impossible. Hence the 2p points hsted in (24.10.9) and (24.10.10) are
all different, all visible points of A( _p””i) and all belong to P so that

(24.10.11) f(p-%) >2

But, by Theorem 459, as p — 00,
p_lf(p"%) - 6V/n? <2

by hypothesis, and so (24.10.11) is false for large enough p. Theorem 460
follows.

The above proofs of Theorems 458 and 460 extend at once to n
dimensions. In Theorem 460, £(2) is replaced by ¢ (n).

NOTES

§ 24.1. Minkowski’s writings on the geometry of numbers are contained in his books
Geometrie der Zahlen and Diophantische Approximationen, already referred to in the note
on § 3.10, and in a number of papers reprinted in his Gesammelte Abhandlungen (1.eipzig,
1911). The fundamental theorem was first stated and proved in a paper of 1891 (Gesammelte
Abhandlungen, i. 265). There is a very full account of the history and bibliography of the
subject, up to 1936, in Koksma, chs. 2 and 3, and a survey of later progress by Davenport
in Proc. International Congress Math. (Cambridge, Mass., 1950), 1 (1952), 166-74. More
recent accounts of the whotle subject are given by Cassels, Geometry of numbers, Gruber
and Lekkerkerker, Geometry of Numbers (North Holland, Amsterdam, 1987}; and Erdds,
Gruber, and Hammer, Lattice points (Longman Scientific, Harlow, 1989).
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Siegel [Acta Math, 65 (1935), 307-23] has shown that if V' is the volume of & convex
and symmetrical region R containing no lattice point but O, then

r=v+vtyud,

where each 7 is a multiple integral over R. This formula makes Minkowski’s theorem
evident.

Minkowski (Geometrie der Zahlen, 211-19) proved a further theorem which includes
and goes beyond the fundamental theorem. We suppose R convex and symmetrical, and
write AR for R magnified linearly about O by a factor A. We define A1, A2, .. ., Ap as follows:
A1 is the least A for which AR has & lattice point Py on its boundary; A2 the least for which
AR has a lattice point Ps, not collinear with O and Py, on its boundary; A; the least for
which AR has a lattice point P3, not coplanar with O, Py, and P5, on its boundary; and so
on. Then

O<i<A2<... € An

(X2, for example, being equal to A1 if AR has a second lattice point, not collinear with O
and Py, on its boundary); and

Afdz.. AV €20

The fundamental theorem is equivalent to ATV < 27. Davenport [Quarterly Journal of
Math. (Oxford), 10 {1939), 117-21] has glven a shcrt proof of the more general theorem.
See also Bambah, Woods, and Zassenhaus (J. Australian Math. Soc. 5 (1965), 453-62) and
Henk (Rend. Circ. Mat. Palermo (11) Vol 1, Suppl. 70 (2002) 377-84).

§ 24.2. All these applications of the fundamental theorem were made by Minkowski,

Siegel, Math. Annalen, 87 (1922}, 36-8, gave an analytic proof of Theorem 448: see
also Mordell, ibid, 103 (1930), 3847

Hlaics, Math. Zeitschrift, 47 (1941), 427-67, has proved an interesting conjecture of
Minkowski concerning the ‘boundary case’ of Theorem 448, Suppose that A = 1, so that
there are integral xy,x2,...,x, suchthat & < 1 forr = 1,2,...,n Can the x, be chosen
so that £, < 1 for every r? Minkowski’s conjecture, now established by Haids, was that
this is true except when the £, can be reduced, by a change of order and a unimodular
substitution, {o the forms

£y =x;, Emagixptxy, ..., Enmmoupx b auxz b dxa

The conjecture had been proved before only forn < 7.

The first general results concerning the minima of definite quadratic forms were found
by Hermite in 1847 ((Euvres, i, 100 ef 1eq.): these are not quite so sharp as Minkowski’s.

§ 24.3. The first proof of this character was found by Hurwitz, Géttinger Nachrichten
(1897}, 139-45, and is reproduced in Landau, dlgebraische Zahlen, 34-40. The proof was
afterwards simplified by Weber and Wellstein, Marh. Annalen, 73 (1912}, 275-85, Mordell,
Journal London Math. Soc. 8 {1933), 17982, and Rado, ibid. 9 {1934), 1645 and 10
(1933), 115. The proof given here is substantially Rado’s (reduced to two dimensions).

§ 24.5. Theorem 453 is in Gauss, D.4., § {71, The corresponding results for forms in n
variables are known only for n € 8: see Koksma, 24, and Mordell, Journal London Math.
Soc, 19 {1944), 3-6.

§ 24.6. Theorem 454 was first proved by Korkine and Zolotareff, Math. Annalen 6
{1873), 366-89 (369). Our proof is due to Professor Davenport. See Macbeath, Journal
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London Math. Soc. 22 (1947, 261-2, for another simple proof. There is a close connexion
between Theorems 193 and 454.

Theorem 454 is the first of a series of theorems, due mainly to Markoff, of which there
is a systematic account in Dickson, Studies, ch. 7. If £7 is not equivalent either to the form
in(24.62)orto

;
(@) 872141 (x® + 29— ),
then |
Eni < 872 {A]
for appropriate x, y; if it is not equivalent either to the form in (24.6.2), to (@), or to
® @2 1A (52 + 11y - 57),
then

6l < 5(221)" % (A[;

and so on. The numbers on the right of these inequalities are
1
© " m (9m2 — 4) z

where m is one of the ‘Markoff numbers’ 1, 2, 5, 13, 29,...; and the numbers {c) have

the limit % See also Cassels, Diophantine approximation, ch. 2 for an alternative proof of
these theorems.

There is a similar set of theorems assoctated with rational approximations to an irrational
&, of which the simplest is Theorem 193: see §§ 11,810, and Koksma, 31-33.

Davenport [Proc. London Math. Soc. (2) 44 (1938), 412-31, and Journal London Math.
Soc. 16 (1941), 98-101] has solved the corresponding problem for n = 3. We can make

|E1£283] < % [A]

unless

16283 ~ 3] (xl' +0x2 + 92x3),

where the product extends over the roots 8 of g3 4+6%2-20-1=0. Mordetl, in Journal
London Math. Soc. 17 (1942), 107-15, and a series of subsequent papers in the Journal
and Proceedings, has obtained the best possible inequality for the minimum of a general
binary cubic form with given determinant, and has shown how Davenport’s result can be
deduced from it; and this has been the starting-point for a considerable body of work, by
Mordeli, Mahler, and Davenport, on lattice points in non-convex regions.

The corresponding problem for n > 3 has not yet been solved.

Minkowski [Géttinger Nachrichien (1904}, 311-35; Gesammelte Abhandlungen, ii,
3-42] found the best possible sesult for |£;] + i} + [£3], viz.

|
611+ 121+ 1l < (B 181) 7

No simple proof of this result is known, nor any corresponding result with n > 3.
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An alternative formulation of Theorem 454 states that if O(x, ¥) is an indefinite quadratic
form of determinant D, then there sre integer values xg,)p, not both zero, for which
1@ txg,70)] < 2/1DT75. It is natural to ask what happens for quadratic forms in more
than 2 variables. It was conjectured by Oppenheim in 1929 that if ( is an indefinite form
in n > 3 variables, and not proportional to an integral form, then Q(x1,...,x,) atiains
arbitrarily small values at integral arguments x, . .., X, not ail zero, This was proved by
Margulis, (Dynamical systems and ergodic theory (Warsaw, 1986), 399-409).

§§ 24.7-8. Minkowski proved Theorem 455 in Math, Annalen, 54 (1901), 91124
(Gesammelte Abhandlungen, i. 32056, and Diophantische Approximationen, 42-T). The
proof in § 24.7 is due to Heilbronn and that in § 24.8 to Landau, Journal fiir Math. 165
(1931), 1-3: the two proofs, though very different in form, are based on the same idea.
Davenport [Acta Math. 80 (1948), 65-95] solved the corresponding problem for indefinite
ternary quadratic forms.

§ 24.9. The conjecture mentioned at the beginning of this section is usually aurbuted
to Minkowski, but Dyson [4nnals of Math. 49 (1948), 82-109] remarks that he can find
no reference to it in Minkowski's published work. The statement is easy to prove when the
coefficients of the forms are rational, Remak {Math. Zeitschrift, 17 (1923}, 1-34 and 18
{1923), 173-200] proved the truth of the conjecture for n = 3, Dyson [loc. cit.] for n == 4.
Davenport [Journal London Math. Soc. 14 {1939), 47-51] gave a much shorier proof for
=3

The Remak-Davenport-Dyson approach depends on the observation that Minkowski’s
conjecture follows from the following two conjectures.

Conjecture I : For each lattice L in n-dimensional Euclidean space, there is an ellipsoid
of the form )

a;x%+---+a,,x,2, <1

which contains n linearly independent points of L on its boundary and has no point of L in
its interior other than O.

Conjecture 11: Let L be a lattice of dererminant | in n-dimensional Euclidean space and let
5 be a sphere centred at O which contains n linearly independent points of L on its boundary
but no point of L in its interior other than O. Then the family ((\/r/2)S+ A4 : A € L) covers
the whole space.

Woods in a series of three papers (Mathematika 12 {1965), 13842, 143-50 and J.
Number Theory 4 {1972), 157-80) gave a simple proof of Conjecture I for n = 4 and
proved it for n = 5, 6. For Conjecture I, Bambah and Woods (/. Number Theory 12 (1980},
27-48) pgave a simple proof for n = 4. Around the same time, Skubenko (Zap. Nauén.
Sem. Leningrad. Oudel. Mat. Inst. Steklov. (LOMI} 33 (1973), 6-36 and Trudy Mar. Inst.
Steklov 142 (1976), 240-53) outlined a proof for » £ 5. A complete proof forn = 5, on
the lines suggested by Skubenko, was given by Bambah and Woods (/. Number Theory 12
(1980), 27-48). McMallen {J. Amer. Math. Soc. |8 (2005), 711-34) later proved Conjecture
1 for all n. This, together with the results on Conjecture If mentioned above, implies that
Minkowski’s conjecture is proved for all n £ 6. Another proof for n = 3 was given by
Birch and Swinnerton-Dyer (Muathematica 3 (1956), 25-39) and still another approach via
factorization of matrices was explored by Macbeath (Proc. Glasgow Math. Assoc. 51961),
86- 89) and later by Narzullaev in a series of papers. Gruber (1976) and Ahmedov (1977)
showed however that this approach will not be successful for large ».

Techebotaref’s theorem appeared in Bulletin Univ. Kasan (2) 94 {1934), Heft 7, 3-16; the
proofis reproduced in Zentralblatt fiir Math. 18 (1938), 110-11. Moxdell [ Merteliahrsschrift
" d. Naturforschenden Ges. in Ziirich, 85 {1940), 47-50] has shown that the result may be
sharpened a little. See also Davenport, Journal London Math. Soc. 21 (1946), 28-34.
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For more details, including asymptotic results and references, the reader is referred to
Gruber and Lekkerkerker, Geometry of Numbers, and Bambah, Dumir, and Hans-Gill,
{Number Theory, 15-41, Birkhauser, Basel 2000).

Minkowski’s conjecture for n = 2 (i.e. Theorem 455) can be interpreted as a problem
on non-homogenecous binary indefinite quadratic forms. Its generalization to indefinite
quadratic forms in » variables has aroused the interest of various writers including Bambah,
Birch, Blaney, Davenport, Dumir, Foster, Hans-Gill, Madhu Raka, Watson, and Woods.
In particular, Watson (Proc. London Math. Soc. (3) 12 {1962), 564-76) found the optimal
result for » > 21 and made a corresponding conjecture for 4 < » < 21. This conjecture
was later proved by Dumir, Hans-Gill, and Woods {J. Number Theory 4 (1994), 190-197).
Positive values of quadratic forms and asymmetric inequalities have also been studied and
analogous results obtained. For references and related results see Bambah, Dumir, and
Hans-Gill loc. cit.

§ 24.10. Minkowski [Gesammelte Abkandiungen {Leipzig, 1911), i. 268§, 270, 277] first
conjectured the n-dimensional generalizations of Theorems 458 and 460 and proved the
latter for the n-dimensional sphere [loc. cit. it 95). The first proof of the general theorems
was given by Hlawka [Math. Zeitschrift, 49 (1944), 285-3121. Our proof is due to Rogers
[Annals of Math. 48 (1947), 9941002 and Nature 159 (1947), 104-5]. See also Rogers,
Packing and Covering for an account of the Minkowski-Hlawka theorems and subsequent
improvements,



XXV
ELLIPTIC CURVES

25.1. The congruent number problem. A congruent number is aratio-
nal number ¢ that is the area of a right triangle, all of whose sides have
rational length. We observe that if the triangle has sides a, b, and ¢, and if s
is a rational number, then 524 is also a congruent number whose associated
triangle has sides sa, sb, and sc. So it is enough to ask which squarefree
integers n are congruent numbers.

If we take c to be the length of the hypotenuse, then we are looking for
squarefree integers n such that there are rational numbers a, b, ¢ satisfying

1
(25.1.1) a* + b =c? and Eab:n.

A simple algebraic calculation shows that the positive solutions to the
simultaneous equations (25.1.1) are in one-to-one correspondence with
the positive solutions to the equation

(25.1.2) y? =x3 — n%x
via the transformations

n{a+c) 2nt(a + ¢) y 2nx x? 4 n?
X = e Y= " g .
b b2 x y y

Thus » is a congruent number if and only if (25.1.2) has a solution in
positive rational numbers x and y.

Equation (25.1.2) is an example of a Diophantine equation, similar to
those discussed in Chapter XIII. Equations of this shape are called elliptic
curves, although we must note that the name is somewhat unfortunate,
since elliptic curves and ellipses have very little to do with one another.
More generally, an elliptic curve is given by an equation of the form

(25.1.3) E:y? =x* + 4x + B,
with the one further requirement that the discriminant
(25.1.4) A = 44% + 2782

should not vanish. The discriminant condition ensures that the cubic poly-
nomial has distinct (complex) roots and that the locus of £ in the real plane
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is nonsingular. For convenience, we shall generally assume that the coef-
ficients 4 and B are integers. It is also convenient to write E(R) for the
solutions to (25.1.3) in real numbers, E(Q) for the solutions in rational
numbers, and so on.

Elliptic curves form a family of Diophantine equations. They have many
fascinating properties, some of which we shall touch upon in this chapter.
Elliptic curves have provided the testing ground for numerous theorems
and conjectures in number theory, and there are many number theoretic
problems, such as the congruent number problem, whose solution leads
naturally to one or more elliptic curves. Most notable among the recent
applications of elliptic curves is Wiles’ proof of Fermat’s Last Theorem.
Wiles makes extensive use of elliptic curves, despite the fact that when
n > 4, the Fermat equation x" 4 y" = z" is itself most defintely not an
elliptic curve.

25.2. The addition law on an elliptic curve. In studying the solutions
of equation (25.1.3), each nonzero number u gives an equivalent equation

(25.2.1) Y2 = X3 +utax +ubB

via the identification (x,y) = (@~ 2X,u>Y). We say that (25.1.3) and
(25.2.1) define isomorphic elliptic curves. If 4, B, and u are all in a given
field k, we say that the curves are isomorphic over k, in which case there
is a natural bijection between the solutions of (25.1.3) and (25.2.1) with
coordinates in k.

The j-invariant of E is the quantity

44> 44
443 +27B2 A

J(E) =

If £ and E’ are isomorphic, then j(E) = j(E’), and over an algebraically
closed field such as C, the converse is true. Over other fields, such as Q,
the situation is slightly more complicated, since the value of u is restricted.
There are three cases, depending on whether one of 4 or B vanishes.

Tumorem 461, Let E and E' be elliptic curves given by equations
Ey=x*+Ax+B and E:y’=x*4+A'x+ B

having coefficients in some field k. Then E and E' are isomorphic over k if
and only if j(E) = j(E') and one of the following conditions holds:

(@) A=A"=0 and B/B isa6thpowerink,
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()) B=B =0 and A/A isadthpowerink,
() ABA'B # 0 and AB' /A'Bisasquareink.
Suppose first that 4B # 0, so j(E) # 0 andj(E) # 1. If E and E’ are

isomorphic over k, then the relations 4’ = u*4 and B’ = *B immediatcly
imply that j(E') = j(E), so A'B’ # 0, and also

AB  AuSB
— =38}
A'B u*4B

is a square in .
Conversely, suppose that j(E) = j(E') and AB'/A'B = u? for some
u € K. The j-invariant assumption implies that

A E)  2TE) 4P
B2 A—4(F) 4-—4(E) B?
Hence
A*B?  [(4B\? . A*B® (4B} 6
A= mE= (A’B) A=A and B=rm= (A’B) b

so E and E’ are isomorphic over k. The cases A = 0 and B = 0 are handled
similarly.

One of the properties that makes an elliptic curve £ such a fascinating
object is the existence of a composition law that aliows us to ‘add’ points
to one another. In order to do this, we visualize the real solutions (x, y) of
(25.1.3) as points in the Cartesian plane. The geometric description of the
addition law on E is then quite simple. Let P and () be distinct points on
E and let L be the line through P and Q. Then the fact that £ is given by
an equation (25.1.3) of degree 3 means that L intersects E in three points.”
Two of these points are P and . If we let R denote the third pointin LN E,
then the sum of P and Q is defined by

P + Q = (the reflection of R across the x-axis).

In order to add P to itself, we let O approach P, so L becomes the tangent
line to E at P. The addition law on E is illustrated in Figure 11.

! The intersection points must be counted with appropriate multiplicity, and there are some special
cases that we shal! deal with presently.
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Line is tangenfto Eat |

i 2P 3

Addition of distinct points Adding a point to itself

1. 11, The addition law on an efliptic curve

The one situation in which addition fails is when the line L is vertical.
For later convenience, we define the negation of a point P = (x,y) to be
its reflection across the x-axis,

—P = (x, ~y).

The line L through P and - P intersects £ in only these two points, so there
is no third point R to use in the addition law. To remedy this situation, we
adjoin an idealized point O to the plane. This point (O, which we call the
point at infinity, has the property that it lies on every vertical line and on no
other lines.’ Further, the tangent line to E at O is defined to have a triple
order contact with E at . Then the geometric addition law on E is defined
for all patrs of points, In particular, the special rules relating to the point
O are

2522y P+ (~P)=0 and P+ O =P forallpointsPonk,

We now use a small amount of analytic geometry and calculus to derive
formulac for the addition law. Let P = (xp, yp) and @ = (xg, yo) be two
points on the curve E. If P == —Q, then P + Q = (@, so we assume that
P # — (. We denote by

Ly=3x+v

¥ Those who are familiar with the projective plane % will recognize that O is one of the points on
the line at infinity. The projective plane may be constructed by adjoining to the affine plane A2 one
additional point for each direction, i.c. for each line through (0, 0).
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the line through P and Q if they are distinct, or the tangent line to £ at P
if they coincide. Explicitly,

_yo-yr

X — X .
23.2. A and v "— =it R
xg — Xxp xQ -~ Xp
3x5 + A4 ~x} +dxp — 2B
(2524) A= and v= , ifP = Q.
2yp 2yp

We compute the intersection of £ and L by solving the equation
(25.2.5) Gx+v)2=x>+A4x+ B,

The intersection of E and L includes the points P and Q, so two of the roots
of the cubic equation (25.2.5) are xp and xg. (If P == Q, then xp will appear
as a double root, since L is tangent to £ at P). Letting R = (xg, yg) denote
the third intersection point of £ and L, equation (25.2.5) factors as

(25.2.6) X~ 2% 4 (4 -2 x + (B - B?)

= {(x —xp) (x — x0) (x — xg).
Comparing the quadratic terms of (25.2.6) gives the formula
(25.2.7) ' xg = A* — xp — xg,

and then the formula for L gives the corresponding yg = Axg + v. Finally,
the sum of P and () is computed by reflecting across the y-axis,

(25.2.8) P+ Q= (xg,—yr).

For later use, we compute explicitly the duplication formula

2
3x,%+A) x4 — 24x% — 8Bxp + A
-_ = .

2529) xp =
@223 xar ( 2y 4x3 + 4dxp + 4B

Tueorem 462. Let E be an elliptic curve. The addition law described
above has the following properties:
(a) [Identity] P4O=0Q+P=Pforall PeE.
(b) [Inverse] P+ {(~-Py=0forallPecE.
(¢)* [Associativity] (P+ @ +R=P+(Q+R) forallP Q RcE.
(d) [Commutativity] P+ Q = Q + Pforall P,Q € E.
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The identity and inverse formulae are true by construction, since we have
placed ¢ to lic on every vertical line and to have a tangent line with a triple
order contact. Commutativity is also clear, since P + 0 is computed using
the line through P and O, while Q-+ P is computed using the line through O
and P, which is the same line. The associative law is more difficult. It may
be proven by a long and tedious algebraic calculation using the addition
formulae and considering many special cases, or it may be proven using
more advanced techniques from algebraic geometry or complex analysis.

The content of Theorem 462 is that the set of points of E forms a com-
mutative group with identity element O. Repeated addition and negation
allows us to ‘multiply’ points of E by an arbitrary integer m. This function
from E to itself is called the multiplication-by-m map,

Im| terms
(25.2.10) ¢m:E — E, m(P) =mP =sign(m) P+ P+ - -+ P).

(By convention, we also define ¢o(P) = O).

Theorem 462 says that the set of points of E forms a commutative group.
The next result says that the same is true if we take points whose coordinates
lie in any field.

TusoreM 463. Let E be an elliptic curve given by an equation (25.1.3)
whose coefficients A and B are in a field k and let

E(k) = {(x,y) e k*: y* =x> + Ax + B} U {0},

Then the sum and difference of two points in E(k) is again in E(k), so E(k)
is a commutative group.

The proof is immediate, since a brief examination of the formulae for
addition on E show that if 4 and B are in £ and if the coordinates of P and 0
are in k, then the coordinates of P & ( are also in . The crucial feature of
the addition formulae is that they are all given by rational functions; at no
stage are we required to take roots. Thus E (k) is closed under addition and
subtraction, and Theorem 462 says that the addition law has the requisite
properties to make E(k) into a commutative group.

If k is a field of arithmetic interest, for example Q or k(#) or a finite field
Fp, then a description of the solutions to the Diophantine equation

Y =x*+A4x+B withx,yck
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may be accomplished by describing the group E(k). To illustrate, we
describe (without proof) the group of points with rational coordinates on
the four curves

Ei:yt=x*+1, Es:y? = x* ~— 43x + 166,
E3:y2=x3—2, E4:y2mx3+i'?.

The curve £, has no nontrivial rational points, so £;(Q) = {O} .The curve
E; has finitely many rational points. More precisely, E2(Q) is a cyclic
group with 7 elements,

E3(Q) = {(3,18), (—5,%16), (11, £32), O}.

The curves E3 and E4, by way of contrast, have infinitely many rational
points. The group £3(Q) is freely generated by the single point P = (3, 5),
in the sense that every point in E3(QQ) has the form nP for a unique n ¢ Z.
Similarly, the points P = (—2, 3) and Q = (2, 5) freely generate £4(Q)
in the sense that every point in £4(Q) has the form mP + nQ for a unique
pair of integers m, n € Z. We note that none of these assertions conceming
Ey, Er, E3, E4 is obvious.

It is quite easy to characterize the points of order 2 on an elliptic curve.

TueOREM 464. A4 point P = (x,y) # O on an elliptic curve E is a point
of order 2, i.e. satisfies 2P = O, ifand only if y = 0.

According to the geometric description of the addition law, a point P has
order 2 if and only if the tangent line to E at P is vertical. The slope of the
tangent line L at P = (x, y) satisfies

Zy% = 3x* + 4,

hence L is vertical if and only if y = 0. (Note that it is not possible to have
both y = 0 and 3x2 + 4 = 0, since y = O implies that x> + Ax + B = 0,
and the condition A 3 0 ensures that x> + 4x -+ B = 0 and its derivative
do not have a common root.)

The multiplication-by-m map (25.2.10) is defined by rational functions in
the sense that x,,,p and y,,p can be expressed as elements of Q(4, B, xp, yp).
For example, the duplication formula (25.2.9) gives such an expression for
x2p. Maps E — E defined by rational functions and sending O to O are
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calied endomaorphisms of E. Endomorphisms can be added and multiplied
(composed) according to the rules

(¢ + ¥)P) = ¢(P)+¥(P) and (p¥)(P) = o (¥(P)),

and one can show that with these operations, the set of endomorphisms
End(E) becomes a ring.

For most elliptic curves (over fields of characteristic 0), the only
endomorphisms are the multiplication-by-m maps, so for these curves
End(F) = Z. Curves that admit additional endomorphisms are said to
have complex multiplication (or CM, for short). Examples of such curves
include

Es:y* = x> + Ax, which has the endomorphism ¢;(x,y) = (—x, iy),
and

Es: yz = x> + B, which has the endomorphism Pp(x,y) = (px,y).

(Here i = /—landp = e3*! are as in Chapter XIL.) These endomor-
phisms satisfy

¢} (P)=—P and ¢.(P)+6,(P)+P=0.

One can show that End(Es) is isomorphic to the ring of Gaussian integers
and that End(Eg) is the ring of integers in k(o). This is typical in the sense
that the endomorphism ring of a CM elliptic curve over a field of character-
istic 0 is always a subring of a quadratic imaginary field. In particular, the
composition of endomorphisms is commutative, i.e. ¢{(Y (P)) = ¥ (¢ (P))
forall P e E} '

25.3. Other equations that define elliptic curves. A homogeneous
polynomial equation

(25.3.1) FX.Y,2)= »_ ApX'VZF =0
itftke=d

* The hardest part of the proof is the distributive law, i.e. to show that the mere fact that ¢ is defined
by rational functions implies that ¢ satisfies ¢(F + ) = ¢ (P} + ¢(().

¢t However, it should be noted that there are eiliptic curves defined over finite fields whose
endomorphism rings are noncomemutative.
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is nonsingular if the simultaneous equations

3 3 0
= Y. Z2)=—F(X,Y,2)==F(X,Y,2)=0
FX,Y,2) BXF(X’ ,Z) Yz ( ) 37 ( )
have no {(complex) solutions otherthan X = Y = Z = 0. One canshow that
any nonsingular equation (25.3.1) of degree 3 with a specified nontrivial
solution Py = (xp : yp : zp) is an elliptic curve in the sense that it may be
transformed by rational functions into an equation of the form

(25.3.2) ¥+ aixy + a3y = x° + aax® + asx + aq,

with the point Py being sent to the point O sitting at infinity. Further, if &
is a field containing all of the 4;; and containing the coordinates xg, yo, zo
of Pg, then & also contains the new coefficients ay, . . ., as. An equation of
the form (25.3.2) is called a generalized Weierstrass equation.

The following example illustrates this general principle and is useful for
applications.

TuroreM 465. The nonzero solutions to the equation
(25.3.3) X} 4y3=4
are mapped bijectively, via the function

124 X-Y
25.3.4 ,¥) —> , )
(25.34) . 1) (X 77y Y)

to the solutions (with x # 0) of the equation
(25.3.5) 2 = x> — 43242,

The inverse map is given by

(25.3.6) (x,y) —> (36’4 +y 364~y ) .

6x = 6

It is an elementary calculation to verify that the maps (25.3.4) and
{25.3.6) take the curves (25.3.3) and (25.3.5) to one another and that
the composition of the maps is the identity. The curve (25.3.3) has three
points at infinity, corresponding to setting Z = 0 in the homogeneous form
X} 4+Y3 = AZ. The transformation (25.3.4) identifies the point (1: — 1: 0)
on (25.3.3) with the unique point at infinity on (25.3.5).
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The discriminant of a generalized Weierstrass equation (25.3.2) is given
by the rather complicated expression’

(253.7) A= malaﬁ + aazas + a;aza3 lZa;aga(, + a;aﬁ
+ 8a1a3a2a4 + a1a3 + 36a;a3a6 - 8a1aza§
— 48a%alag + 8a§a2a§ — 30a¥a§a4 + 72a%a4a6
+ 16a1a§a3a4 + 36a;a2ag + 144aiara3as — 96a;a3a§
— 16a3a3 — 64a3ag + 16a3a5 + T2aza}as + 288azasas
~ 27a} — 216a3as — 432a} — 64a;.

One can check at some length that the curve is nonsingular if and only
if A #0.

The most general transformation preserving the Weierstrass equation
form (25.3.2) is

(2538) x=u'x +r and y=u’y +ulsx' +t with u#£0,

Th?zeffect of the transformation (25.3.8) on the discriminant is A’ =
WA,

When investigating integral or rational points on an elliptic curve
(25.3.2), it is often advantageous to impose a minimality condition on
the equation that is analogous to writing a fraction in lowest terms. An
equation (25.3.2) is called a (global) minimal Weierstrass equation if for
all transformations (25.3.8) with », s, ¢ € Q and u ¢ Q?*, the discriminant

|Aj is minimized subject to the condition a;,...,a¢ € Z.

If the characteristic of & is not equal to 2 or 3, then the substitution

x—-x’—iazwla lax 1a3 laa :
1 2y Y= y 2 1 24 I 6 2 2“3&

' The astute reader will have noted that this new discriminant £25.3. 7)is 15 times our old discriminant
(25.1.4), The extra factor is of importance only when working with the prime p = 2, in which case the
new version is the more appropriate.
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transforms (25.3.2) into the shorter Weierstrass form (25.1.3) with

I 1, 1 I,
4= a; 4 alaz — —a@ia3 + —a; — aq,

48 2 3
1 1 1 1 59 I
B = —@a‘? 72ala2 -+ 24a1a3 lsagaz “4 i2ala4 + gazazas
_1a 2a3+1aa~—a
FRC Y M S

25.4. Points of finite order. A point P € E has finite order if some
positive multiple mP of P is equal to O. The order of P is the smallest such
value of m. For example, Theorem 464 says that P has order 2 if and only if
yp = 0. Using the theory of eiliptic functions, one can show that the points
of order m in E(C) form a product of two cyclic groups of order m. In this
section, we prove an elegant theorem of Nagell and Lutz that characterizes
the points of finite order in £(Q). In particular, there are only finitely many
such points, and the theorem gives an effective method for finding all of
them.

TuaeoreMm 466. Let E be an elliptic curve given by an equation (25.1.3)
having integer coefficients and let P = (x,y) € E(Q) be a point of finite
order. Then the coordinates of P are integers, and either y = 0 or else

VA,

It is often convenient to move the ‘point at infinity’ on the equation
(25.1.3) to the point (0, 0) by introducing the change of coordinates

(25.4.1) Z == —, W oz

The new equation for the elliptic curve is
(25.4.2) E:w =23 4+ Azw® + Bw?,

and the point (O is now the point (z, w) = (0, 0). (The three points on the
curve with y == 0, i.e. the points of order 2, have been moved “to infinity’.)
We observe that the transformation (25.4.1) sends lines to lines; for exam-
ple, the line y == Ax + v in the (x, y)-plane becomes the line 1 = Az +vwin
the (z, w)-plane. This means that we can add points on £ in the (z, w)-plane
using the same procedure that we used in the (x, y)-plane. We now derive
explicit formulae for the (z, w) addition law.
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TreoreM 467. Let E be an elliptic curve given by (25.4.2) and let P =
(zp, wp) and Q = (zg, wg) be points on E. Set

2 2
Zo “+2zpzg + 2p —t—Awf,

(25.4.3) o= s
1 —Azg (wQ +wp)— B (wé + wpwg + w}%)

B = wp —uzp,

Then the z-coordinate of P + (Q is given by the formula

2408 + 3Ba’B
44 = .
(254.4) ZpaQ 11 Aa? 4 B +zp + 29
(Ifzp = zg and wp # wo, then a is formally equal to 00, 50 (25.4.4) must
be interpreted as &« — 00 and B/t — —zp, which yields zp,g = —zp in
this case.t)

The proof of Theorem 467 is not difficult, but it requires a certain amount
of algebraic manipulation of formulae. Suppose first that zp #£ zp, so the
line w = oz ++ 8 through P and ( has slope

wo - wp
o= 22
Z0) - &P

The points P and Q both satisfy (25.4.2). Subtracting gives
(254.5) wo —wp = (2 — 23) + 4 (2gwh — zewh) + B (wh — w})
= (2% — B) + Azg (wh ~ w})
+4 (20— z7) wh+ B (wh —w}).

Every term in (25.4.5) is divisible by either wg — wp orzg — zp, s0 a small
amount of algebra yields

(25.4.6)
wgo — wp 22Q+ZPZQ +25 + AW}

o = = .
29 —zr i—AzQ(wQ+wP)-B(w2Q+wPWQ+W%)

Y Ifalso 8= 0, then the formulae need a stmall further modification that we leave to the reader,
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Similarly, if P == O, then the slope of the tangent line is

dw 32% + Awf,
54, = —{P) = .
@>47) i A Py E——
We observe that (25.4.6) becomes equal to (25.4.7) if we make the sub-
stitution (zp, wg) = (zp, wp), so we may also use (25.4.6) in this
case.

The line L: w = az+ B intersects the curve E at the points Pand Qand a
third point R. Substituting w = az + £ into (25.4.2) gives a cubic equation
whose roots, with appropriate multiplicities, are zp, zp, and zz. Thus there
is a constant C so that

2 +Az(az+ B +B(az + B — (az + B)
= C(z — zp)z — zp){z — zg).

Comparing the coefficients of z? and 2> yields

24aB + 3Ba’p
1+ Aa? + Ba?’

The points P, Q, and R satisfy P+ @ + R = O, so P + Q = —R. Finally
we note that the negative of a point on E in the (z,w) plane is given by
~(z,w) = (~z, ~w), s0 the z-coordinate of P + O is —zg.

It remains to deal with the case zp = zg and wp # wg. Then the line L
through P and @ is the line z = zp, and, provided B # 0, the line L intersects
E at 3 points in the zw-plane. The third point R = (zz, wgr) necessarily
satisfies zz = zp, since it lieson L, and then zpy g = z_g = —~zp = ~zp.
This completes the proof of Theorem 467,

We shall prove that points of finite order have integral coordinates by
demonstrating that there are no primes dividing their denominators. For
this purpose we fix a prime p and let

—Zp —ZQ ™ IR =

Ry, = (% GQ:p’{bl.

It is easily verified that R, is closed under addition, subtraction, and mul-
tiplication, so R, is a subring of Q. Further, divisibility may be defined in
R, just as it was for Z. The unities in R, i.¢. the elements with multiplica-
tive inverses, are precisely those rational numbers whose numerators and
denominators are both relatively prime to p. We may reduce ciements of
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R, modulo p, and the theory of congruences descnbed in §§ 5.2 and 5.3
remains valid.

We define the p-adic valuation vy(a) of a nonzero integer a to be the expo-
nent of the largest power of p that divides 4, and we extend the definition
to rational numbers by setting

Vp (%) = vp (@) — vp (D).

We also formally set v,(0) = ¢o to be larger than every real number. Notice
that R, is characterized by

Rp-{aez@vp(a) }
The following properties of v, are easily verified:?
(254.8) vp (@B) = vp (@) +vp (B,
(25.4.9) vp (@ + B) > min {vp (@), v, (B)} .
Further, in the case of unequal valuation we have equality in (25.4.9),
(25.4.10)  vp (@) # vp (B) = v, (@ + B) = min {v, (&), v (B)}.

Tueorem 468. Let E be an elliptic curve given by equations (25.1.3) and
(25.4.2) having integer coefficients and let P = (x,y) = (z, w) be a point
on E having rational coordinates. Then

Vp (x) <0 == vp (¥) <0 &> v, @) >0 &= v (W) > 0.
If any of these equivalent conditions is true, then
Vvp(x) = =2w (2), v ()= —3vp(z), and v, (W) =3y, (2).

All of the assertions of Theorem '468 are immediate consequences
of the basic valuation rules (25.4.8), (25.4.9), and (25.4.10) applied to
equations (25.1.3) and (25.4.2) defining E.

Tureorem 469. Let E be an elliptic curve given by an equation (25.4.2)
having integer coefficients. Let P and Q be points of E whose (z, w)-
coordinates are in Rp, and suppose that these points satisfy

(25.4.11) zp =2p =0 (modp*) forsomek > 1.

t Rp is an example of a local ring. i1.¢. a ring with a single maximal ideal.
! Properties (25.4.8) and (25.4.9) say that the function vy 1 @ — Zis a discrete valuation.
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Then the z-coordinate of their sum satisfies

(25.4.12) zpyg = zp + 2g (mod p**).

In particular, (25.4.11) implies that zp, g = 0 (mod 7).

Theorem 468 and (25.4.11) tell us that wp = wg = 0(mod p**). We
begin by ruling out the exceptional case in Theorem 467. Suppose that
zp = zgy. Subtracting (25.4.2) evaluated at P from (25.4.2) evaluated at
yields

(wg — wp) (1 — Azp (wg -+ wp) — B (wzg + wpwg + wé)) = (),

The second factor is congruent to 1 modulo p, hence wg = wp.
Having ruled out the case zp = zgp and wp # wq, we see that the
quantities o and 8 defined by (25.4.3) of Theorem 467 satisfy

@ =0 (mod p*) and B =0 (mod p*¥).
Then (25.4.4) in Theorem 467 gives

240 + 3Ba?
i +iaz —i—Bog 4 2p + 20 =zp +2g (mod p°*).

apyg =

Theorem 469 provides the tools needed to prove the integrality statement
in Theorem 466. Let P = (xp,yp) € E () be a point of finite order. We
are required to prove that xp and yp are integers. If yp = 0,502P = O
from Theorem 464, then equation (25.1.3) of £ shows that xp is an integer
and we are done. We assume henceforth that yp # 0.

Suppose to the contrary that there is some prime p dividing the denom-
inator of xp. Switching to (z, w) coordinates, Theorem 469 tells us that
plzp. Let k = v{zp) > 0, so p¥|zp and p*+1 t zp. Repeated application of
(25.4.12) from Theorem 469 yields

(25.4.13) Znp = nzp (mod pSk) foralln > 1.

We now make use of the assumption that P has finite order, so mP = O
for some m = 1. Setting n = m in (25.4.13) and using the fact that zpy = 0
gives

(25.4.14) 0 =20 =zZwp =mzp (mod p°*).
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If p + m, then (25.4.14) contradicts our assumption that P+ 4§ zp, which
proves that p does not divide the denominator of xp and yp.

It remains to deal with the case that p divides m. We write m = pm’, set
P =m'P,and let &’ = v(zp'). (Note that &' = k > | from (25.4.13) with
n = m'.) Since P’ has order p, the same argument yields

0 = zp = zppr = pzpr  (mod psk').

Hence p°* ! divides zp/, which is again a contradiction. This completes
the proof that the (x, y)-coordinates of points of finite order are integers.

Now that we know that points of finite order have integral coordinates,
the second part of Theorem 466 is easy. First, Theorem 464 says that
2P = O if and only if y == , so we may assume that P = (x, y) has order
m 2 3. Then P and 2P are both points of finite order, so from our previous
work we know that they both have integral coordinates. The duplication
formula (25.2.9) says that

x?, - ZAxt% — 8Bxp 4 A%
4x} + 44xp + 4B

3

(25.4.15) x2p =

and a standard Euclidean algorithm or resultant calculation yields the
identity

(25.4.16) (3x* + 44) (x* — 24x” — 8Bx + 4%)
— (3x® — Sdx — 27B) (x* + Ax + B) = 44% + 278% = A,

Combining (25.4.15) and (25.4.16) with the basic relation y2 = x>+ 4x+ B
gives

(254.17)  yp (4 (3xh +44) x2p — (3x3 — 54xp — 27B)) = A.

Al of the quantities in (25.4.17) are integers, which proves that y3|A.

25.5. The group of rational points. Points of finite order in E(Q) are
effectively determined by Theorem 466, Points of infinite order are far more
difficuit to characterize. A fundamental theorem, due to Mordell for E((})
and gencralized by Weil, states that every point in E(Q) can be written
as a linear combination of points taken from a finite set of generators,
where note that addition is always via the composition law on the elliptic
curve E.
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Turorem 470. Let E be an elliptic curve given by an equation (25.1.3)
having rational coefficients. Then the group of rational points E(Q) is
finitely generated.

A standard algebraic result says that every finitely generated abelian
group is the direct sum of a finite group and a freely generated group. Thus
Theorem 470 implies the following more precise statement.

Tueorem 471. Let E be an elliptic curve given by an equation (25.1.3)
having rational coefficients. There exists a finite set of points Py,..., Py
in E(Q) such that every point in P € E(Q) can be uniquely written in
the form

P=mPi+mPy+ - +nP+T,

with ny,...,n, € Z and T a point of finite order. The nonnegative integer
¥, which is uniquely determined by E(Q), is called the rank of E(Q).

We begin with an elementary lemma and some rank 0 cases of Theo-
rem 470, after which we state a weak form of the theorem and use it to
deduce the full theorem via a Fermat-style descent argument.

Tueorem 472. Let E be an elliptic curve given by an equation (25.1.3)
having rational coefficients and let P = (x,y) be a point of E with rational
coordinates. Then the coordinates of E may be written in the form

a b , '
P = (d_f' ‘?3—) with ged (a,d) = (b,d) = 1.
Theorem 472 is a consequence of Theorem 468, but we give a short direct
proof, We write the coordinates of P = {(a/u, b/v) as fractions in lowest
terms with positive denominators and substitute into (25.1.3) to obtain

(a number prime to v) _ (a number prime to u)
v2 N T
Hence v? = 13, and on comparing the prime factorizations of v and u, we
see that there is an integer d such that v = d° and u = 42,
Some of the Diophantine equations that we studied in Chapter XIII were

elliptic curves. The next two theorems reformulate those results to prove a
few rank O cases of Theorem 470.

Tueorem 473. The elliptic curve E: y* = x* + x has rank zero. Its group
of rational points E (@) = {(0,0), O} is a cyclic group of order 2.
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Let P = (a/d?, b/d>) € E(Q). Then

(25.5.1) P=a+ad* = a(a2 +d4),

and the fact that gcd{a, d) = 1 implies that the factors in (25.5.1) are squares,
say

a=u* and & +d* =+
Eliminating a yields #* + d* = v, and then Theorem 226 tells us that
udv = 0. By assumption, d # 0, and v = 0 forces u = d = 0, so the only

solution is w = 0. Hence g = 0 and P == (0, 0).

TusoreM 474, For each value of B & {16, —144, —432,3888), the
elliptic curve

Eg: y2 =x' +B
has rank 0, that is, Eg(QQ) is finite.
. Theorem 465 gives a map from the curve
CaXP+Y=4

to the curve E_43542 This map, with at most a couple of exceptions,
identifies the set of rational points C4((Q) with the set of rational points

E_4302(Q).

An argument similar to that given in the proof of Theorem 472 shows that
every rational point in C4((Q) has the form (a/c, b/c), where the fractions
are in lowest terms. Thus

@ + B = A’
Theorem 228 for A = 1 and Theorem 232 for 4 = 3 tell us that
G@Q={(1,0,0,1)} and G(@Q) =0,

from which it follows that £_432(Q) and E33sz(Q) are finite.
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It is an algebraic exercise to verify that the following formula gzves a
well-defined map from Ep to E_27p that is at most 3-to-1 on Ez(Q)T

E};:y2 =x>+B — Ew.z-,rg:y = x> — 27B,
(x,3) > ((x> +48) /%,y (x* — 8B) /x°).

Taking B = 16 gives £16(Q) — E_432(Q), 50 E16(Q) is finite, and
similarly taking B = —144 shows that £_144(Q) is finite,

We now take up the proof of Theorem 470, which is traditionally divided
into two parts. The first part we state without proof, since it requires tools
beyond our disposal,?

Tueorem 475. Let E be an elliptic curve given by an equation (25.1.3)
having rational coefficients. Then the quotient group E(Q) /2E(Q) is finite,
i.e. there is a finite set of points O, ..., O € E(Q) such that every Q in
E(QQ) can be written in the form

Q=0 +2¢
for some 1 < i< kandsome Q' € E(Q).

The second part of the proof of Theorem 470 is a descent argument very
much in the spirit of Fermat. Making a change of varibles of the form
x = u’x’ and y = u’y’ for an appropriate rational number u, we may
assume that the equation (25.1.3) defining E has integer coefficients,

For the descent, we shall use height functions to measure the arithmetic

size of points in £(Q). The height of arational number ¢ € Q is the quantity
H()=H (g) —max {|al,[b]} for r:% € Q with ged (a,b) = 1,

and the height of a point P = (xp, yp) € E(Q) is then defined by
HWP)=Hxp) fP# O, and H(O) =1

It is clear that there are only finitely many rational numbers of height less
than any given bound, and similarly for points in E{((}), since each rational
x-coordinate gives at most two rational y-coordinates.

' The map is exnctly 3-to-1 on complex points Eg(C) — E_314(C). Maps between eliiptic curves
defined by rational functions are called isogenies.
! If the cubic equation x + Ax -+ B in (25.1.3) has a rational root, then Theorem 470 admits an

elementary, albeit lenpthy, proof, which may be found, for example, in Silverman-Tate, Rational
Points on Elliptic Curves, Chapter HE.
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The key to performing the descent is to understand the effect of the group
Jaw on the heights of points. '

Tueorem 476. Let E be an elliptic curve given by an equation (25.1.3)
having integer coefficients. There are constants c; and ¢y > 0so that

(25.5.2) HP + Q) < aHPYHWQ)? forall P,Q e EQ),
(25.5.3) HQ2P) > aHP)* foradlPe EWQ).

The height function satisfies / > 1, so both (25.5.2) and (25.5.3) are
true with ¢; = ¢3 = 1 ifeither P = @ or @ = ©. Similarly, if P+ Q0 = O,
then (25.5.2) is true with ¢; = 1. We consider the remaining cases.

We use Theorem 472 to write

- _ aP bP _ ’ _ aQ bQ

P = (xP’yP) = (E’ 2‘;) and Q = (xQd"Q) — (dz s d3
Assuming that P % (, the addition formulae (25.2.3), (25.2.7), (25.2.8)
give

(25.5.4)

_(ya-yr\
o=\ y,) TR

_ (xpxPQ +- A) (xp 4 xQ) + 2B — 2ypyo
(xp — xg)*
(apag + 4d3d3) (apd} + agd3 ) + 2Bd}dl — 2bpdrbody

(apd2 - anp)

The height of a rational number can only decrease if there is cancellation
between numerator and denominator, so (25.5.4) and the triangle inequality
yield

(25.5.5) H (xp+g) < c3max {lapl?,|dp|*, 1bpdp|}
x max {lagl?, |dg|*, lbodpl} .



25.5] ELLIPTIC CURVES 369

(Explicitly, we may take c3 = 4 + 2|4 + 2|B|.) Next we observe that since
P and @ are points on the curve, their coordinates satisfy

b} = a} + Aapd} + Bd% and bz@ = aé’z + Aagdé + Bdg.
Hence

(25.5.6) |bp| < c4 max {lapl>’?, |dp)’}  and

€
bl < camax {lagl®’?, |dpl} .
(Explicitly ¢4 = 1 + |4| + }B}.) Substituting (25.5.6) into (25.5.5) yields

H (xp+g)<csci max{lapt?, dp|*} max {lagl?, ldgi*}
=ciH(PYH(Q),
which completes the proof of (25.5.2) for P # (. The proof for P = Q is
similar using the duplication formula (25.2.9) and may safely be left to the
reader.
We turn now to the lower bound (25.5.3). If the polynomial x> + Ax + B

has any rational roots, then we first insist that the positive constant c;
satisfies

(255.7) cp<min{HE) % &eQ and £ +4£+B=0}.

Theorem 464 then tells us that (25.5.3) is true if 2P = O, so0 we may
assume that 2P # Q.
To ease notation, we write

44
Xp = —
P=3%
as a fraction in lowest terms. We define polynomials
FX,Z)=X* —24X%7% — 8BXZ3 + 4%Z%,
G(X,Z) = 4X3Z 4 44XZ° + 4BZ*,

and we use them to homogenize the duplication formula (25.2.9). Thus the
x-coordinate of 2P is given by

Fla,d)

25.5.8; = .
( ) x2p )
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The Euclidean algorithm or the theory of resultants tells us how to find
relationships that eliminate either X or Z from F and G, cf. (25.4.16).
Explicitly, if we define polynomials

(25.5.9)  fi(X,2) = 12X%Z + 164Z>
(25.5.10) g1(X,Z) = 3X> — 54XZ* — 27BZ’,
(25.5.11) f(X,2) =4 (44 +27B%) X° — 44°BX?Z
+ 44 (34° + 22B°X) 2% + 12B (4° + 8B%) Z°,
(25.5.12) ga(X,2) = A2BX> + A (54° + 32B%) X*Z
1+ 2B (134 + 96B8%) X2% ~ 34% (4% + 88%) Z°,

then an elementary, but tedious, calculation verifies the two formal
identities

(25.5.13) HX,DFX,2) +g1(X,Z)GX,2Z) = 4AZ7,
(25.5.14) HX,ZDIFX,Z) + g2(X,2)G(X,Z) = 4AX7,

Here A = 443 4- 2782 # 0 is the discriminant of E, as usual.
We substitute X = « and Z = § into (25.5.13) and (25.5.14) to obtain

(25.5.15) fila, 8)F(a,8) + g1 (o, 8)G(ax, 8) = 4AS7.
(25.5.16) Sfle, 8)F (a,8) + gale, 5)G(a, §) = 4Aa’.

From (25.5.15) and (25.5.16) and the fact that gcd(er, 8) = 1, we see that
ged(F(a, 8), G(a, 8)) | 4A.

Hence there is at most a factor of 4 A cancellation between the numerator
and the denominator of (25.5.8), so

max {F(«, 8), G(a, §)}
(25.5.17) Hxp) 2 ' 4A]
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The identities (25.5.15) and (25.5.16) also allow us to estimate

(25.5.18) 4287 < 2max {] file, )I , Ig1(e, )1}
x max {|F(x,8)}, 1G(x, )i},
(25.5.19) [4A87| < 2max {1 f2(e, 8)1, Ig2(ex, )1}

x max {|F (e, 8)!,]G(,d)I}.

Looking at the explicit expressions (25.5.9)-(25.5.12) for f1, g1, /2, and g3,
we see that

(25.5.20) max {i f1 (e, 81, Ig1 (@, )|, | faler, )1 , g2 (e, 8)1}
< esmax {lal®, 181},

where ¢s depends only on 4 and B. Combining (25.5.18), (25.5.19), and
(25.5.20) yields

(25521)  4]A|max {|e], 51}
< 2cs max {lel, 181} - max {IF (@,8) |, |G (&,8) |},
and then (25.5.17) and (25.5.21) imply that
H(x2p) 2 (2¢5)™! max {ja|, |81}* > c2H (xp)",

where we may take any positive ¢; < (2¢5) " satisfying (25.5.7). This
completes the proof of (25.5.3).

Theorem 476 is written in multiplicative form, in the sense that it relates
sums of points on E to products of their heights. It is convenient to rewrite
it using the logarithmic height

h(P) = log H(P).
With this notation, the two inequalities of Theorem 476 become

(25.5.22) AP+ Q) <2(P)+ 2+ C) forall P,Q € E (Q),
(25.5.23) h(2P) 2 4h(P) — forall P € E(Q),
where Cy and C; are nonnegative constants depending only on £.

We shall now prove that there is a set of points S C £ (QQ) of bounded
height such that every point in £(Q) is a linear combination of the points
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in S. This implies finite generation of £(Q) (Theorem 470), since sets of
bounded height are finite.

Theorem 475 tells us that there is a finite set of points 0y, . .., O € E (Q)
such that every point in E(Q) differs from some (; by a point in 2E(Q).
We set

I

Ci+C

4

where C; and C; are the constants appearing in (25.5.22) and (25.5.23),
respectively, and we define our finite set of points S C £(Q) by

(25.5.25) = {R e E(Q):h(R) < 2C3 + 1}.

Note in particular that Oy, ..., Ok are in S.

Let Py € E(Q) be an arbitrary nongero point in E({}). We inductively
define a sequence of indices jg, j1, /2, . . . and points Py, Py, Py, ... in E(Q)
satisfying

(25.5.26) Po=2P1+ @, Pi=2P,+Q),, Py=2P3+Qj,....

The choice of the successive P; and j; need not be unique, but Theorem 475
ensures that at each stage there is at least one choice. We apply first (25.5.23)
and then (25.5.22) to show that the heights of the P; are rapidly decreasing.
Thus

(@5527)  KP) < 3 (H@QP) +C) = 1 (Pioy — Q) +C)
1

< 7 (h(Pim) +20(Q) + €1 + )
1

h(P:‘—l) + (s,

where C3 is defined by (25.5.24), and we have used the fact that A(— Q) =
h((2), since A(Q) depends only on xg.
We apply (25.5.27), starting at P, and working backwards to Pg,

1 11 1 1
h(Pn)SE;:“h(PO)*(1+24*4+ +2n z)(?3-~<.*2—,,'}1():’9)+2C'3.

Hence if we choose # to satisfy 2" > h(Py), then the point P, is in the set
S defined by (25.5.25). Finally, using back-substitution on the sequence of
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equations (25.5.26) shows that

n
Py=2"P, 4+ 27,

i=l

so the original point Py is a linear combination of points in 8. This com-
pletes the proof that the finite set S is a generating set for the group

E@Q.

25.6. The group of points modulo p. It is instructive to investigate
elliptic curves whose coefficients lie in other fields, for example the field
of p elements, which we denote by ]P'p.* The mod p points on the curve,

E®) = {(x,5) € F:y? = + 4x + B(mod p)} U {0},

can be added to one another via the usual addition formulae (25.2.2)—
(25.2.8), and they satisfy the usual properties as described in Theorem 462.
We can use the Legendre symbol (§ 6.5) to count the number of points in

E(F,) by applying the fact that the congruence y* = a(mod p) has 1 + (g»)
solutions. Thus

P! 3 -1, 3
HE(Ep)=1+ 3 (z + (L;*_%iiﬁ)) —p 1+ Y (x +Ax+3)_

x=0 x=0 p

We would expect the quantity (i%x—tg) to be +1 and —1 approximately

equaily often, so #E(F,) should be approximately p + 1. The validity of
this heuristic argument is put into a precise form in a theorem due to Hasse,

TueoreM 477*, Let p be a prime number and let E be an elliptic curve
with coefficients in the finite field ¥, of p elements. Then the number of
points of E with coordinates in F,, satisfies the estimate

[#E (Fp) — (p+ 1)| < 2./p.

¥ For simplicity, we assume that p is an odd prime. In order to work with elliptic curves over F; or
over other fields of characteristic 2, it is necessary to use a generalized Weierstrass aquation (25.3.2)
with a correspondingly more complicated expression (25.3.7) for the discriminant as discussed in
§253, '
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25.7. Integer points on elliptic curves. Elliptic curves frequently have
infinitely many points with rational coordinates, since the sum of two
rational points is again a rational point. The situation for points with integer
coordinates is much different, since a perusal of the rational functions used
in the addition formulae (25.2.2)-(25.2.8) makes it clear that the sum of
integer points need not be an integer point.

The principal theorem in this area, due to Siegel, says that an elliptic
curve has only finitely many integer points. We start by proving three
elementary cases of Siegel’s theorem, continue with an example showing
the close connection between integer points on (elliptic) curves and the
theory of Diophantine approximation (Chapter XI), and conclude with the
full statement of Siegel’s result.

THEOREM 478%. The equation
(25.7.1) yY=x347

has no solutions in integers.'

Suppose that (x, y) is an integer solution to (25.7.1). Note that x cannot
be even, since a number of the form 8k + 7 cannot be a square. We rewrite
(25.7.1) as

(25.7.2) P4l=x+8=x+2)(x*-2x +4).
Since x is odd, we have
X2 4+4=x~1)2+3=3 (mod 4),

- so there exists some prime p = 3 (mod 4) dividing xX*— 2x + 4. Then
(25.7.2) implies that

y2 = —1 (mod p),

which is a contradiction of Theorem 82. Hence (25.7.1) has no integer
solutions.

Tueorem 479*. The only solutions in integers to the equation
(25.7.3) ¥ =x -2
are (x,y} = (3, £5).

¥ In fact, equation {25.7.1) has no solutions in rational numbers, but the proof requires different
methods and is significantly more difficult.
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We work in the ring of integers in the quadratic field & (~/—2) ,which
according to Theorem 238 is the set of numbers of the form

a+bv—2 with abelZ.

The field k(~/=2) is a Euclidean field (Theorem 246), so its elements have
unique factorization into primes, and its only unities are +1 (Theorem
240).

We now suppose that (x, y) is a solution in rational integers to (25.7.3).
Qur first observation is that x and y must be odd, since if 2 | x, then

y2 = -2 {(mod 8),

which is not possible.
In the ring of integers of k(+/—2) we have the factorization

(25.7.4) =y +2=@+ V-2 —V-2).

Any common factor of y 4 /2 and y — /=2 must divide their sum 2y and
their difference 2+/—2. But neither factor in (25.7.4) is divisible by V=2,
since y is odd, so they have no common prime factors. Hence (25.7.4)
implies that each factor is a cube in the ring of integers of k(v/—2), say

(25.7.5) y+ 2= £ and y—-/2=1n
Subtracting the second equation in (25.7.5) from the first yields
(25.7.6) WA= - = - (E +En+nY).

The equations (25.7.5) are complex conjugates of one another, so if we
write £ = a + b/~2, then n = a — b/—2, and (25.7.6) becomes

2v/~2 = 2b/=2 (3a* — 2b%) .
Hence b= 1| and @ = %1, which yields y = +5 and x = 3.

Tueorem 480*. Let A be a nonzero integer. Then every solution in
integers to the equation

433 =4 satisfies 2 +y? < 24!
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The elementary proof of Theorem 480 hinges on the fact that the cubic
form x> + y* factors as

X4y =+ —xy+yh) =4
Sincex +y # 0, we have [x +y| 2> 1, s0

1
1 > ¢ —xy +5%) = - (5 + 7).

It is natural to attempt to repeat the proof of Theorem 480 for equations
such as

X +2y =4
by using the factorization
o+ V2IE — V2 + Vayh = 4.

It turns out that the integers in the field k(</2) satisfy the fundamen-
tal theorem, but the existence of infinitely many unities prevents the
elementary proof from succeeding. In general, the existence of integral
points on elliptic curves is closely tied up with the theory of Diophantine
approximation.

THrOREM 481*. Let d be an integer that is not a perfect cube and let A
be a nonzero integer. Then the equation

(25.7.7) x +dy =4
has only finitely many solutions in integers.

In order to prove Theorem 481, we require a result on Diophantine
approximation that is stronger than Theorem 191. Such estimates were
proven by Thue, Siegel, Gelfond, and Dyson before culminating in the
following theorem of Roth (see the Notes to Chapter XI).

Tueorem 482*. Let & be an algebraic number of degree at least 2 as
defined in § 11.5. Then for every € > 0 there is a positive constant C,
depending on & and €, so that

5-¢l>

Jor all rational numbers a/b written in lowest terms with b > 0.
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The proof of Theorem 482, or even a weaker version in which the expo-
nent on b is any value strictly smaller than the degree of &, would take us
too far afield. So we shall be content to use Theorem 482 in order to prove
Theorem 481.

To ease notation, we let § = +/d and we let Lo = % (—1 + +/=3)be a
cube root of unity as in Chapter XII. We also replace y by —y, so equation
(25.7.7) factors completely as

2 —dy = (x — §)(x — pdy)(x — p28y) = A.

We divide by y° to obtain

(25.7.8) (f -~ 5) (f - ps) (f - p25) = %.
y y y y

The real number x/y cannot be close to either of the complex numbers pé
or p?s. Indeed,

X NEY
- —pd|l 21 &) mx ——,
’}’ pl/ m (pd) 5

and similarly for |x/y— p25[. Hence (25.7.8) leads to the estimate

()

y

Al
3 =
vl

Thus there is a constant ', which is independent of x and y, such that

C S *_val.

25.7.9 >
( ) vy

We now apply Theorem 482 with € = % to the algebraic rzumbelr-%_l ,which
gives a corresponding lower bound

(25.7.10)

X 3 > C
y T

Combining (25.7.9) and (25.7.10) yields

(€702 = |y,
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which shows that y takes on only finitely many values. Finally, the equation
x3 + 2y = 4 shows that each value of y leads to only finitely many values
forx.

An argument similar to, but significantly more complicated than, the
proof of Theorem 481 was used by Siegel to show that an analogous result
is true for all elliptic curves.

TueoreM 483*. Let E be an elliptic curve given by an equation having
rational coefficients. Then E has only finitely many points with integer
coordinates. In particular, the equation

- Y =x +Ax+B withAd, B €Z and 44> +27B* #0

has only finitely many solutions in integers.

Siegel’s proof of Theorem 483 yields a stronger result saying, in effect,
that the numerators and the denominators of the coordmates of rational
points have approximately the same size.

Tueorem 484*. Let E be an elliptic curve given by an equation having
rational coefficients and let Py, P7, Ps3, . . . € E(Q) be a sequence of distinct
rational points. Write the x-coordinate of P; as a fractionxp; = a,/ ;. Then

log |a;
lim g |o;) _
i—=oo log | B;l

25.8. The L-series of an elliptic curve. Let £ be an elliptic curve given
by a minimal Weierstrass equation’ (25.3.2). For every prime p, we reduce
the coefficients of (25.3.2) modulo p and, provided that p f A, we obtain
an elliptic curve E, defined over the finite field F,. Theorem 477 tells us
that the quantity

(25.8.1) a, =p+ 1 —#EF,) satisfies [a,] < 2./P.

(If piA, we still define @, using (25.8.1). One can show in this case that
ap € {—1,0,1}.)

It is convenient to encapsulate all of this mod p information into a
generating function. The L-series of E is the infinite product

1 1
(25.8.2) LE,s)=]] — x

t rrwei ignore the primes p = 2 and p = 3, then it suffices to take an equation {25.1. 3) with 4, B € Z
and ged(4*, B2) 12th power free.
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The product (25.8.2) defining the L-series can be fonﬂaily expanded into
a Dirichlet series

dn
(25.8.3) LED=) =

nzl

using the geometric series

k
. ap
*Z 1_ap—~s+pI23 Z:( ) :

1 —app™ k>o k30

TueoreM 485*. The coefficients a, of the L-series L(E,s) have the
Jollowing properties:

(25.84)  amp = ama, for all relatively prime m and n.
(25.8.5) apay = apen + pagi-1 for all prime powers pk withk = 1.
(25.8.6) la,| <dm)/n foralln>

(Here d(n) is the number of divisors of n, see § 16.7.)

The proofs of (25.8.4) and (25.8.5) are formal computations. First,
comparing (25.8.2) and (25.8.3), we see that

(25.8.7) LE,s) =[] Z £

p k>0

Hence if we factornas n = pf* pg p, , then

Oy ww (k1@ k2 - -« (f Ky,
n P P P

In particular, @, = apma, if god (m,n) = 1.
Next, for each prime p { A, we factor

(25.88) 1-apX +pX?=(1—-0pX) (1 — BpX) witha,B, €C.
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For p|A, we set a, = ap and B, = 0, and then in all cases, the p-factor in
(25.8.2) is equal to

1 1 3
(25.8.9) L —app™' 1 — Bpp™* (gl’“) (Z )

(For p|A, we set 0% = 1 by convention.)
Comparing (25.8.9) and (25.8.7) yields

k+1 _ gk+1
o ﬁp

(25.8.10) ap = Y _ ap=

a j—
* i+f=k P ﬁp

Using (25.8.10) and the relation a8, = p from (25.8.8), we compute

k+l k41 k-2 k
- B ak -~ BT+ app -8
apay = (o + Bp) ( ~ ﬂj: ) - 3 - ﬁpp ( )

= dphrt + Paph-t.

We verify (25.8.6) by applying Theorem 477, which tells us that
lay| < 2,/p. This implies that the roots of the quadratic polynomial (25.8.8)
are complex conjugates, hence «, and 8, are complex conjugates whose
product is equal to p. They thus satisfy '

(25.8.11) lap| = {Bp] = VP
Applying (25.8.11) to (25.8.10) gives
| < 3 |aish| = 30 P2 = G+ )P = (MM,
i4j=k i+j=k

Then the multiplicativity (25.8.4) of the a, and the multiplicativity of d(n)
from Theorem 273 imply that |a,) < d(n)/n.

THEOREM 486*. The L-series L{E,s) defined by (25.8.2) and (25.8.3),
considered as a function of the complex variable s, is absolutely convergent



25.8 (4871 ELLIPTIC CURVES 581

for all Re(s) > %and defines a nonvanishing holomorphic function in that
region.

The estimate (25.8.6) in Theorem 485 says that the Dirichlet coefficients
of L(E,s) satisfy la,} < d(n)/n. Theorem 315 tells us that the sum of
divisors function is quite small,

d(n)} = om®) for any & > 0.
We write ¢ = Re{s) and estimate the Dirichlet series (25.8.3) by

dem—("n}:mmo > —

1
"U—*ima

a
2|7

nzl nzl nzl

Hence the Dirichlet series i1s absolutely convergent for Re(s) > % -+ 8, and
since & is arbitrary, L(E, s) defines a holomorphic function on Re(s) > %
Finally, the nonvanishing of L(E, 5s) on the region Re(s) > % follows from
its product expansion (25.8.2).

Although the series (25.8.2) defining L(E, s) only converges for Re(s) >
%, the function that it defines is similar to the Riemann ¢-function in the
sense that it has an analytic continuation and satisfies a functional equation.
The next theorem represents a pinnacle of modern number theory, but its
proof is far beyond the scope of this book.

Tueorem 487*, The L-series L(E,s) has an analytic continuation to the
entire complex plane. Further, there is an integer N g, the conductor of E,
that divides the discriminant A such that the function

E(E,s) = Ni/* @n) 2T S)L(E, 5)
satisfies the functional equation
E(E,2 —s5) = xE(E,s) foralls e C.

The L-series of an elliptic curve is built up out of purely local (mod p)
information. A conjecture of Birch and Swinnerton-Dyer predicts that
L(E, s) contains a significant amount of global information concerning the
rational points on the curve. For example, they conjecture that the order of
vanishing of L(E, s) at s = 1 equals the rank of the group of rational points
E(Q). In particular, L(E, 1) should vanish if and only if E(Q) contains
infinitely many points. The small amount of progress that has been made



582 ELLIPTIC CURVES [Chag. XXV

on the conjecture of Birch and Swinnerton-Dyer, as described in the next
theorem, requires a vast panoply of mathematical tools for its proof.

TueoreM 488*. If I(E, 1) # 0, then E(Q) has rank O; and if L(E, 1) =
0and L'(E, 1) # 0, then E(Q) has rank 1.

25.9. Points of finite order and modular curves. We have seen in
§ 25.4 that any particular elliptic curve has only finitely many points of
finite order having rational coordinates. In this section, we change our
perspective and attempt to classify all elliptic curves having a point of a
given finite order. Thus, for a given integer N = 1, we aim to describe the
set of ordered pairs

. E is an elliptic curve and P is
(25.9.1) [(E’ P): a point of exact order N on £ } ’

up to the natural equivalence relation in which any two pairs (£, P;)
and (E,, P2) are considered to be identical if there is an isomorphism
¢ : Ey — E; satisfying ¢(P;) = P5. This is an example of what is known
as a moduli problem.

For example, if N = 1, then we simply want to classify elliptic curves
up to isomorphism. We already know how to do this using the j-invariant,
since two curves £y and E; are isomorphic if and only if their j-invariants
F(E1) and j(E2) are equal, cf. Theorem 461.

THeoreMm 489. Let E be an elliptic curve given by an equation (25.1.3)
with coefficients in a field k, and let P € E(k) be a point with coordinates
in k and satisfying 2P # © and 3P # O. Then there is a change of
coordinates (25.3.8) with u, r, s, t€ k that transforms E into an equation
of the form

(25.9.2) P+rw+Dy+w=x +w? withP = (0,0).
The discriminant of the elliptic curve (25.9.2) is

(25.9.3) .
A=— 3(w4+3w3+8vw2+3w2w20vw+w+ 16v2—v),

The values of w and v are uniquely determined by E and P

Proof. We begin with the transformation

x+—>x+xp and yr— y+yp,
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which has the effect of moving P to the point (0, 0) and puts £ into the
form

y2 + Ay = x3 +B;x2 + Chx.

The assumption that 2P # O tells us that 4; # 0 (cf. Theorem 464), so
the substitution

yr—y+(Ci/A)x
puts E into the form
(25.9.4) 2 + dyxy + Bay = x> + Cax?.

We note that the nonvanishing of the discriminant of (25.9.4) implies
that B, # 0. Further, since 2P = (—C3, 42C; — Bp), we see that

P=0 &= 2P =—-P &> xpp=xp &= Cy=0.

Thus our assumption that 3P # O implies that C; # 0, so we may make
the substitutions

X (Bz/Cz)zx and y+—> (Bz/Cz)Sy.

This puts £ into the desired form (25.9.2) with w = 4,C/By — | and
v=C3/B3.

The formula for the discriminant of (25.9.2) follows directly from the
general discriminant formula (25.3.7).

In order to see that w and v are uniquely determined, we look at which
change of variables (25.3.8) preserves the form of the equation (25.9.2)
while simultaneously fixing the point (0, 0). The assumption that (0, 0) is
fixed means that » = ¢ = 0 in (25.3.8), and then the substitutions x — u’x
and y — 13y + u?sx transform (25.9.2) into

(25.9.5) V+u w4+ 14290 +u">wy
= x° 4y 2 (v + 5%+ (w+ l)s)x2 + u%vsx.

Comparing the x terms of (25.9.2) and (25.9.5) shows that s = 0 (note that
v # 0 since A # 0), and then the y and x* terms show that &> = #? = I,
so u = 1. Hence only the identity transformation preserves both equation
(25.9.2) and the point (0, 0), and thus w and v are uniquely determined by
Eand P, O
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We now show that solving our moduli problem (25.9.1) is equivalent to
describing the solutions to a certain polynomial equation. In other words,
the set of pairs (£, P) consisting of an elliptic curve E and a point P of
order N is naturally parametrized by the solutions of a polynomial equation
Yy (W, ¥)=10.

Tusorem 490. For any given values of w and v such that the discriminant
(25.9.3) does not vanish, let E,, , be the elliptic curve

(25.9.6) Eupyiy? 4 (w+ Dxy+ vy =x0 + v’

and let P,,, = (0,0) € E,.,. Let N > 4 be an integer.

(a) There is a nonzero polynomial VN (W, V) with integer coefficients

' having the property that P, . is a point of order N if and only if
Wa(w, vy =0.

(b) Let E be any elliptic curve given by an equation with coefficients in a
field k and let Q € E(k) be a point of exact order N. Then there is a
change of variables (25.3.8) with u, r, s, t € k that puts E into the form
(25.9.6) and sends Q to P = (0, 0). The curve E and point Q uniquely
determine w and v.

Proof. (a) We treat Ew y as an elliptic curve over the field Q(W, V) of
rational functions in two variables. Then the coordinates of the multiples of

Pywy =(0,0) € Ewy

are quotients of polynomials in Q[W¥, V']. More precisely, since the ring
QIW, V] has unique factorization, an argument similar to that used in
Theorem 472 shows that if N Py y # O, then we can write N Pw.y as

PN(W, V) Qn(W,V)
Yy (W, V)2 ey (W, V)3

NPW'V = ( ) with WN,Q)N,SZN € Z[W,Z] .
The polynomial Wy (W, V) vanishes at (W,V)=(w, v) if and only
if P,, € E,, is a point of order N, so it remains to prove that
NPwy # O.

We first consider the multiple

V2 VW VW2 4+ V2w — p3
4Py y == .

wz ° w3
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From this formula for 4Py y we see that for most choices of integers w
and v, the coordinates of the point 4P, , are fractions that are nof integers.
For example, this is the case if jw| > 1 and ged(2, v) = 1. It follows from
Theorem 466 that for such integer values of w and v, the point 4P, , is not
a point of finite order, and hence that nP,, , % O foralln > 1. This implies
that nPyw y # O for all n > | when we treat # and V as indeterrrunates,
since otherwise P, , € E,, would have finite order when we substitute
particular values for W and V.

(b) This is the special case of Theorem 489 in which we start with a point
of finite order N > 4. [

Here are the polynomials Wx (W, V) for some small values of N:

W (W, V)=W —V,

We(W,V)=W? W +V,

(W, V)= W3 — VW + V2,

W (W, V)= VW + W3 —3vw? +2V*w,

Wo(W, V) =W — w4+ vw> + w3 —3vw? 4372w — v3,

The polynomials Ws and W are linear in ¥, so we can eliminate ¥ from the
equation Wy (', V) = 0 and create a universal one-parameter family of
elliptic curves with a point of order 5 or 6. For example, up to isomorphism,
every ¢lliptic curve with a point P of order 6 can be put into the form

y:Z + (w4 Dxy 4 (w = wz)y =x + {W - wz)xz, P =(0,0).

It is also possible to parametrize the solutions to Wy (W, V) = OforN = 7,
8, and 9. For example, the curve W7 (W, V') = 0 may be parametrized using
the parameter Z = V/W.Then W = Z — Z? and V = 22— 73, so every
elliptic curve with a point P of order 7 can be put in the form

V4Q4z—my+ G -y ="+ -2%% P=(00).

However, as the value of N increases, it is no longer possible to describe
the solutions to Wy (W, V') =0 using a single parameter. The modular curve
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X 1(N) is defined to be the plane curve given by the equation’
X1 (N) = {(w,v): Un(w,v) = O}

The increasing complexity of Xj(N) as N increases may be measured by
studying the points of X (V) having complex coordinates, i.e. the complex
solutions to the equation ¥y = 0. For N < 10 and N =12, the complex
points X1 (N )Y{(C) form a sphere (a 0-holed torus), and it is exactly in these
cases that X, (N) is parametrizable by a single parameter. The curves X;(11)
and X (13) turn out themselves to be elliptic curves, so their complex points
are 1-holed tori. As N increases, the complex points X (N)(C) form a gn-
holed torus, where the genus gy goes to infinity with N. For prime values
of N, the genus gx is approximately N/12.

Mazur used modular curves to prove the following strong uniformity
bound for rational points of finite order on elliptic curves.

THEOREM 491*. Let E be an elliptic curve given by an equation with
rational coefficients and let P € E(Q) be a point of exact order N. Then
either N < 10or N = 12.

In order to prove Theorem 491, one shows that if N = 11 or N > 13,
then the only solutions to Wy (w,v) = 0 in rational numbers w and v are
solutions for which the discriminant (25.9.3) vanishes. Since such solutions
(w, v) do not correspond to actual elliptic curves, Theorem 491 then follows
from Theorem 490. The proof that ¥y {(w, v) = 0 has no nontrivial rational
solutions requires a detailed analysis of the curve X (V) and deep tools
from modern algebraic geometry.

25.10. Elliptic curves and Fermat’s last theorem. Fermat’s last the-
orem, already alluded to in Chapter XIII, was stated by Fermat in the 17th
century and proven by Andrew Wiles in the 20th,

Tusorem 492*. Let n > 3 be an integer. Then the equation
A"+ b ="
has no solutions in nonzero integers a, b, c.

¥ This definition of X; (N} is not quite accurate, although it will suffice for our purposes. In general,
the equation Wy = 0 has singularities and is missing points *at infinity.’ The correct definition of Xy (V)
is that it is the desingularization of the compactification of the curve ¥y = 0.

! For example, X1 (5KC) is the compactification of the set {(w,) € Cliw—v= ). Thissetis a
copy of the complex plane C, and the (one point} compactification of C is a two-dimensional sphere,
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It clearly suffices to prove Theorem 492 for n = 4 and n = p an odd
prime, and since Theorems 226 and 228 cover the cases n = 4 and n = 3,
respectively, it suffices to prove that there are no solutions in nonzero
integers to the equation

(25.10.1) @ +bP =cP, wherep 2 5isprime.

Dividing by any common factor, we may further assume that a,5, and ¢
are pairwise relatively prime.

Setting u = a/c and v == b/c, Fermat’s last theorem reduces to the
statement that the equation

(25.10.2) u? 4+ y? = |

has no solutions in nonzero rational numbers u and v. This equation defines
acurve, but it is most definitely not an elliptic curve.? Soinstead of working
directly with (25.10.2), we use a hypothetical solution to (25.10.1) to define
an elliptic curve

Egpe: Y2 = X(X + aP)(X — bP).

Using the general discriminant formula (25.3.7) from § 25.3, we find that
the discriminant of £, 5, ist

(25.10.3) Agpe = 16a2b% (e + 1) = 16 (abc)? .

An elliptic curve whose discriminant is {¢ssentially) a perfect 2pth power
would be a strange animal, indeed! The proof of Fermat’s last theorem lies
in showing that such a curve cannot exist and comes down to proving the
following two statements:

The elliptic curve £, 5 . is not modular.
¢ The elliptic curve E, 3 . is modular.

There are a number of equivalent definitions of what it means for an
elliptic curve to be modular, but unfortunately, as bare definitions, they
are not very illuminating. In keeping with the scope of this book, we
give a definition that is purely algebraic, but we note that the underlying
motivation lies in the analytic theory of modular forms and L-series.

t The complex points of the compactified Fermat curve »” + v = | form an £~UEZ2 poted
torus, 50 the Fermat curve is an elliptic curve only forn= 3.
} After a simple change of variables, the discriminant {25.3.7) becomes simply (abc)?.
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For each N > 1 we defined in § 25.9 the modular curve X (¥) whose
points classify pairs (C, P) consisting of an elliptic curve C and a point
P of order N. (We call the elliptic curve C to distinguish it from £.) We
now say that an elliptic curve E is modular if E can be covered by some
modular curve, i.e. if there is a covering map

(25.10.4) Xi(NYy > E

defined by rational functions. The smallest N for which there exists a
covering map (25.10.4) is called the conductor of E.

After Frey suggested that the elliptic curves £, 5 - created from putative
Fermat equation solutions should not be modular, Serre described a ‘level-
lowering” conjecture which implied that if £, p . were modular, then the
special form (25.10.3) of its discriminant would force the conductor to
divide 4. But the complex points of X (N) for N < 4 are spheres (0-holed
tori), and a sphere cannot be continuously mapped onto the complex points
of an elliptic curve (a 1-holed torus). Ribet subsequently proved Serre’s
conjecture, which showed that Frey's intuition was correct: the elliptic
curve E, p o is not modular.

It is not clear why this should be surprising. The points of X; (V) solve
a classification problem related to elliptic curves, but there is no reason,
a priori, to expect any particular elliptic curve to admit a covering map
from some X, (V). However, earlier work of Eichler, Shimura, Taniyama,
and Weil suggested that every elliptic curve given by an equation with
rational coefficients should be modular.

Thus the final step in the proof of Fermat’s last theorem was to show
that all, or at least most, elliptic curves are modular. This was done by
Wiles, who, with assistance by Taylor for one step of the proof, proved
that every semistable elliptic curve is modular.? Since the Egape curves, if
they existed, would be semistable, this completed the proof of Fermat’s
last thecrem. Building on Wiles’” work, Breuil, Conrad, Diamond, and
Taylor subsequently completed the proof of the full modularity conjecture,
whose proof is far beyond the scope of this book.

Tueorem 493*. Every elliptic curve given by an equation with rational
coefficients is modular.

t Aside from some special conditions st 2 and 3, an elliptic curve ¥? = X3 + AX + B is semistable
ifged(4,8) = L
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NOTES

§ 25.1. Some cases of rational right triangles with rational area were studied in ancient
Greece, but the systematic study of congnient numbers began with Arab scholars during
the 10th century. Arab mathematicians tended to use the equivalent characterization, also
known to the Greeks, that # is a congruent number if and only if there is a rational number
x such that both x2 + n and x2 — n are squares of rational numbers. See Dickson History,
it, ch. xvi, for additional information on the mathematical history of congruent numbers.

There exists a vast literature on elliptic curves,! including many textbooks devoted to
their number theoretic properties. The reader may consult the books of Cassels, Knapp,
Koblitz, Lang, Silverman, and Silverman—Tate for proofs of the unproven theorems in this
chapter {other than those in §§ 25.8-25.10) and for much additional basic material,

§ 25.2. The genesis of the name ‘elliptic curve’ is from the integrals that arise when
computing the arc length of an ellipse. Afier an algebraic substitution, such integrals take

the form f Rix)dx/+/ x3 + Ax + B for some rational function R(x). These elliptic integrals

may be viewed as integrals [ R(x)dx/y on the curve (Riemann surface) PR =x3+Ax+ B,
hence the name elliptic curve.

Special cases of the duplication and composition law on elliptic curves, described alge-
braically, date back to Diophantus, but it appears that the first geometric description via
secant lines is due to Newton, Mathematical Papers, iv, 1674—1684, Camb, Lniv. Press,
1971, 110-115. A nice historical survey of the composition law is given by Schappacher,
Sém. Théor. Nomb. Paris 1988-1989, Progr. Math. 91 (1990), 159-84.

A proof that addition on an elliptic curve is associative {Theorem 462(c)) may be found
in the standard texts listed earlier.

Theorem 463 was first observed by Poincaré, Jour Math. Pures Appl. 7 (1901).

Elliptic curves with complex mulitiplication have many special properties not shared
by general elliptic curves. In particulas, if the endomorphism ring of suchacurve E is a
subring of the quadratic imaginary field k, then Abel, Jacobi, Kronecker,. .. proved that the
coordinates of the points of finite order in E can be used to generate abelian extensions
of k that are natural analogues of the cyclotomic extensions of @, i.e. the extensions of
generated by roots of unity. In particular, k{(j(E)) is the Hilbert class field of k, the maximal
abelian unramified extension of k.

§ 25.3. It is easy to create a Weierstrass equation that is minimal except possibly for
the primes 2 and 3. An algorithm of Tate (Lecture Notes in Math, {Springer), 476 (1975),
33-52) handles all primes.

§ 25.4. Theorem 466 was proven independently by Nagell (Wid Akad. Skrifter Oslo 1,
1 (1935)) and Lutz (/. Reine Angew. Math. 177 (1937), 237—47). The proof that we give
follows Tate’s 1961 Haverford lectures as they appear in Silverman-Tate, Rational points
on elliptic curves.

A modern formulation of Theorem 469 says that the group of p-adic points E(Qp)hasa
filtration by subgroups Ey {Qp) = {(z,w) € E(Qp) 1 vp(2) > &k} fork == 1,2,.... Further,
the map P +» 2p induces an isomorphismn Ex(Qp )/ Ey .1 (Qp) — p]‘ Z/p*+1 Z. The groups
E1(Qp) and pZ, are isomorphic as p-adic Lie groups via a map P — I (zp), where
£(T) € Qp [ T] is a certain p-adically convergent power series.

See also Theorem 491 and the notes for Section 25.9 for uniform bounds for points of
finite order,

§ 25.5. Theorem 470 is due to Mordell, Proc Camb, Philos. Soc., 21 (1922), 179-92.
It was generalized by Weil (dcta Math. 52 (1928), 281-315) to number fields and to

t MathSciNet lists atmost 2000 papers whose title includes the phrase “elliptic curve’,
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abelian varieties (higher dimensional analogues of elliptic curves), and thus is known as
the Mordell-Weil theorem. Theorem 475, or more generally the finiteness of the quotient
EM@Q/mE(Q) for all m 2 |, is called the *weak’ Mordell-Weil theorem. The structure
theorem for finitely generated abelian groups is well-known and may be found in any basic
algebra text. :

It is conjectured that there are elliptic curves for which E((Q) has arbitrarily high rank.
The largest known example is a curve of rank at least 28 that was discovered by Elkies in
May 2006. (See Elkies survey article arxiv.org/abs/3709.2908).

Somewhat surprisingly, there is still no proven algorithm for computing the group of
rational points on an elliptic curve. All known proofs of Theorem 475 are ineffective in
the sense that they do not provide an algorithm for constructing a suitable set of points
1,....O covering all of the congruence classes in the finite quotient group E(QY2E ().
If such points are known, then the remainder of the proof of Theorem 470 is effective, since
the constants in Theorem 476 may easily be made effective. There is also an algorithm,
due to Manin (Reussian Math. Surveys, {6) 26 (1971), 7-78), that is effective conditional on
various standard, but very deep, conjectures. In practice, therc are powerful computer
programs, such as Cremona’s mwrank (www.maths.nott.ac.uk/personal/jec/mwrank/),
that are usually able to compute generators for E(Q) if the coefficients of £ are not
too large.

Theorem 476 suggests that the height function & : £((Q) — [0, 00) resembles a quadratic
form. Néfon (Ann. of Math. (2) 82 (1965), 249-331) and Tate (unpublished) proved that
the limit A(P) = liMp—s oo n“"zh(m") exists, differs frem A by O(1), and is a quadratic form
on £() whose extension to £ (Q) @ R is nondegenerate. The function h, which is called
the canonical (or Néron—Tate) height, has many applications. For example, Néron (op. cit.)

showed that # {P € £ (Q) :h (P) < T} ~ Cp.7V/2 2k E@Q) 557 s oo,

§ 25.6. Theorem 477 is due to Hasse, Yorldufige Mitteilung, Nachr. Ges. Wiss. Géttin-
gen I, Math.-Phys. Ki. Fachgr. 1 Math. 42 (1933), 253-62. A vast generalization to varieties
of arbitrary dimension was proposed by Weil (Bull. Amer. Math. Soc. 55 {1949), 497-508)
and proven by Deligne (/HES Publ. Matk. 43 (1974), 273--307).

It is an interesting computational problem to compute #E(¥F,) when p is large. The first
polynomial time algorithm is due to Schoof (Math. Comp. 44 (1985), 483-94), who also
used it to give the first polynomial time algorithm for computing square roots in Fp. A more
practical version, although not provably polynomial time, was devised by Elkies and Atkins
and is now known as the SEA algorithm (/. Théor Nombres Bordeaux, 7 (1995}, 219-54),
Satoh (J. Ramanujan Math. Soc. 15 (2000), 247-70) used cohomological ideas to give a
faster algorithm to count #£(F,;) when g is a large power of a small prime. Such point
counting aigorithms have applications to cryptography.

Given two points P and (@ in E(Fp) such that Q is a maltiple of P, the problem of
determining an integer m with @ = mP is called the elliptic curve discrete logarithm
problem (ECLDP). The fastest known algorithms for solving the ECDLP are collision
algorithms that take O(,/p) steps. These exponential-time algorithms may be contrasted
with the subexponential index calculys, which solves the analogous problem for F; in

3
0 (e‘“"gp)u (log I"iix"}m) steps. The lack of an efficient algorithm to solve the ECDLP

led Koblitz (Math. Comp. 48 (1977), 203-9) and V. Miller (Lecture Notes in Comput. Sci,
(Springer), 218 (1986}, 417-26) independently to suggest the use of elliptic curves for the
construction of public key cryptographic protocols. Thus in addition to any purely intrinsic
mathematical interest that the ECDLP might inspire, the existence or nonexistence of faster
algorithmns to solve the ECDLP is of great practical and finanical importance,

§ 25.7. Theorem 478 is due to V.A. Lebesgue (1869) and Theorem 479 is due to Fermat.
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Theorem 483 is due to Siegel (J. London Math. Soc. | {1926), 6668 and Collected
Works, Springer, 1966, 209-66), who gave two different proofs, neither of which provided
an effective bound for the size of the solutions. This was remedied by Baker (/. London
Math. Soc. (1968) 43, 1-9), whose estimates for linear forms in logarithms (Mathematika
13 (1966), 204-16; 14 (1967), 102-7; 14 (1967), 220-8) provide effective Diophantine
approximation estimates that can be used to prove effective bounds for integer points on
elliptic curves. Building on work of Vojta (4dnn. of Math. 133 (1591), 509-48), Faltings
{Ann. of Math. 133 (1991), 549-76) generalized Siegel’s theorem by proving that an affine
subvariety of an abelian variety has only finitely many integral points.

it is trivial to produce Weierstrass equations (25.1.3) having arbitrarily many integer
solutions by clearing the denominators of rational solutions. Using this method, Silverman
{J. London Matk. Soc. 28 (1983), 1-7) showed that if there exists an elliptic curve E
whose group of rational points E{QQ) has rank r, then there exist infinitely many Weierstrass
equations (25.1.3) having > (log max {|4], |B1})/"+2 integer solutions.

Lang (Elliptic Curves: Diophantine Analysis, Springer, 1978, page 140} conjectured
that the number of integer points on a minimal Weierstrass equation should be bounded by
a quantity depending only on the rank of the group of rational peints. This conjecture was
proven for elliptic curves with integral j-invariant by Silverman (J. Reine Angew. Math.
378 (1987), 60-100) and, conditional on the abc-conjecture of Masser and Oesterlé (see
notes to ch. X1}, for all elliptic curves by Hindry and Silverman (/nvent. Math. 93 (1988),
419-50).

§ 25.8. The quantity ap, defined by (25.8.1) is called the trace of Frobenius, because it

is the trace of the p-power Frobenius map in the Galois group Gal((Q/Q) acting as a linear
map on the group of points of I-power order in E, where [ is any prime other than p.

A conjecture of Sato and Tate (independently) describes the vanatzon of ap, and thus of
#E(Fp), as p varies. Theorem 477 says that there is an angle 0 € 2- such that

cos 65 = ap/2./p. The Sato-Tate conjecture asserts that for0 € « < ﬁ < %, the density

of {pior < 6 < B} within the set of primes is 2 [# sin® (1) dr. Taylor (JHES publ. Math.
submitted 2006), building on earlier joint work with Clozel and M. Harris {THES Publ.
Math. submitted 2006} and with M. Harmis and Sheppard-Barron (4Ann. of Math. to appear),
has proven the Sato-Tate conjecture for elliptic curves whose j-invariant is not an integer.

Theorem 487 was proven by Deuning (Nachr Akad, Wiss. Géttingen. Math-Phys. KI,
Math.-Phys.-Chem. Abt. (1953}, 85-94) for eiliptic curves with complex muitiplication, by
Wiles (Ann. of Math. 141 (1995), 443-551), with assistance from Taylor {4nn. of Math. 141
{199%), 553-72), for semistable eliptic curves (roughly, curves given by an equation {25.1.3)
with ged{4, B) = 1), and in full generality by Breuil, B. Conrad, Diamond, and Taylor, J.
Amer. Math. Soc. 14 (2001), 843-939. See § 25.10 and its notes for the connections with
Fermat’s last theorem,

The conjecture that ord,..yL(E, s) = rank E{(Q)}, and a refined version describing the
leading Taylor coefficient of L(E,s) at 5 = 1, were proposed by Birch and Swinnerton.
Dyer (J. Reine Angew. Math. 218 (1965), 79-108). An early partial result of Coates
and Wiles (Invent. Math. 39 (1997), 223-51) showed that if £ has complex multiplica-
tion and if L(E, 1} #0, then E{Q) is finite. Theorem 488 is an amalgamation of work
of Gross and Zagier (Invent. Math. 84 (1986), 225-320) and Kolyvagin (Jzv. Akad.
Nauk SSSR Ser Mat. 52 (1988), 522-40, 670-1), combined with Wiles’ et al. proof
of the Modularity Conjecture {essentially Theorem 487). The conjecture of Birch and
Swinnerton-Dyer is one of the seven Millennium Problems proposed by the Clay Mathe-
matics Institute {www.claymath.org/miliennium/). Gross and Zagier (op. cit.) further show

that if L(E, 1) =0 and L' (E, 1) % 0, then L' (£, 1) = rQk(P), where r € Q, € is the value of
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an elliptic integral, and A(#) is the canonical height of a point P € £(Q) constructed using
a method due to Heegner, :

A weak form of the Birch-Swinnerton-Dyer conjecture implies that every integer
m = 5,6,7 (mod 8) is a congruent number. Assuming the same weak form of the Birch-
Swinnerton-Dyer conjecture, Tunnell (fnvent. Marh. 72 (1983), 323-34) proved that if m
is a squarefree odd integer and if the number of integer solutions to 22+ + 822 = m
is twice the number of integer solutions to 2xZ 4 y% 4 3227 = m, then m is a congruent
number. He also showed that the converse holds unconditionally, and that similar results
hold for squarefree even integers.

§ 25.9. The analytic theory of modular curves and modular functions was extensively
studied starting in the 19th century (see, e.g., Kicpert, Math. Ann. 32 (1888), 1-135 and
37 (1890), 368-98) and continues to the present day. We have taken a purely algebraic
approach, but the reader should be aware that in deing so, we have missed out on much of
the theory.

The history of Theorem 491 is quite interesting. Beppo Levi {Attf Accad. Sci. Torino 42
(1906), 73964 and 43 (1908), 99-120, 413-34, 672-81) computed equations of various
medular curves X' (V) and proved that X; (N) has no nontrivial rational points for N = 14,
16, and 20, thereby showing that no elliptic curve can have a rational point of these orders.
Prime values of N are more difficult, with N = 11 being handled by Billing and Mahler (J.
London Math. Soc. 15 {1940), 32-43), N == 17 by Ogg (Invent. Math. 12 {1971), 105-11),
and N = I3 by Mazur and Tate (Invent. Math. 22 (1973), 41-9). Mzazur then proved the
general result (Theorem 491) in IHES Pubi. Math, 47 (1978), 33-186.

. Mazur’s theorem was extended to quadratic number fields by Kamienny (Invent, Math,
109 (1992), 221-9), to number fields of degree at most 8 by Kamienny and Mazwr, and
to number fields of degree st most 14 by Abramovich. Merel (Invent. Math. 124 (1996),
437-49) then proved uniform boundedness for all number fields. Merel’s theorem states
that a point of finite order in £(k) has order bounded by a constant depending only on the
degree of the number field .

§ 25.10. After earlier work by Frey, Hellegouarch, Kubert, and others relating Fermat
curves and modular curves, Frey (Ann. Univ. Sarav. Ser Math. | (1986), iv4-40) suggested
that the £, , . curves should not be modular. Serre (Duke Math. J. 54 (1987), 179-230)
formulated a conjecture on modular representations that implies Frey’s conjecture. Ribet
(Invent. Math. 160 (1990), 431--76) then proved Serre’s conjecture, thereby showing that
E, b 18 not modular.

Despite their strikingly different statements, Theorem 487 on the analytic continuation
of L-series and Theorem 493 on the modularity of elliptic curves are closely related to one
another via the theory of modular forms, Work of Eichler (4rck. Math. 5 (1954), 355-66),
Shimura (J. Math. Soc. Japan 10 (1958), 1--28), and Weil (Math. Ann. 168 (1967), 149-56)
shows that, up to some technical conditions, the two theorems are equivalent. Thus the
history of the proof of Theorem 487, which is described in the notes to.§ 25.8, is equally
the history of the proof of Theorem 493,

For a brief, but technical, overview of the proof of Fermat’s last theorem, see Stevens,
Modular forms and Fermat s last theorem, Springer, 1997, 1 15. And for the enterprising
reader, the remaining 550+ pages of this instructional conference proceedings provide
further details of the many pieces that fit sungly together to form a proof of this famous
350-year-old problem.
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1. Another formula for p,. We can use Theorem 80 to write down a
formula for 7z (n) and so one for p,. These formulae do not suffer from the
disadvantage of those described in § 22.3. In theory, they could be used
to calculate w{n) and p,, but at the cost of much heavier calculation than
the Sieve of Eratosthenes; indeed the calculation is prohibitive except for
fairly small n, It follows from Theorem 80 that

(j — 2)! = a(mod j), (G2 _5)

where a = 1 or 0, according as j is a prime or composite. Hence we have

n{n) —2+E{(J 2)! —J[U 7 2)':” (n 25),

J=

while 7(1) =0, 71(2) = 1,and 7 (3) = 7 (4) = 2.
We now write

xX—=)y

(x #»),
Ix =yl ] 7
so that f(x,y) = | or 0 according as x > y orx < y. Then f(n, 7 (j)) =
or 1 according as n < 7w (j) or n > n(j), i.e. asJr ZPnOrj < pp. Butp,,
2" by Theorem 418. Hence

fe =0, 1) =] {1+

—1

1+Zf(nn(;))mi+zi~—,0u

This is our formula for p,.

There is a considerable literature on formulae for primes of various kinds.
See, for example, Dudley (dmerican Math. Monthly 76 (1969), 23-28),
Golomb (ibid. 81 (1974), 752-4) and Gandhi’s review of the latter paper
(Math. Rev. 50 (1975), 963), which give further references.

2. A generalization of Theorem 22. Theorem 22 can be generalized
to a larger number of variables. Thus suppose that P;(x;,...,%) and
Oi(x1,...,x;) are polynomials with mteger coefficients, that a;,...,q,
are positive integers and that

m
F = F(xly PR ,xk) = ZP;‘(X}, . xk)aQ‘(xl’ 'xk)



594 APPENDIX

If F takes only prime values for all possible non-negative values of
X1, ..., Xi, thenF must be aconstant. On the other hand, Davis, Matijasevic,
Putnam, and Robinson have shown how to construct a polynomial
R(x1,...,xz), all of whose positive values are prime for nor-negative inte-
gral values of xi,...,x; and for which the range of these positive values
is precisely the primes, but all of whose negative values are composite.
With k = 42, the degree of R need be no more than 5. The least value so far
found for k is 10, when the degree of R is 15905. See Matijasevic, Zapiski
naucn, Sem. Leningrad. Otd. mat. Inst. Steklov 68 (1977), 62-82 (Russian,
English summary) for this last result and Jones, Sato, Wada, and Wiens,
American Math. Monthly 83 (1976), 449-65 for an account of this whole
topic and full references.

3. Unsolved problems concerning primes. Apart from the correction
of a trivial error, the unsolved problems listed in § 2.8 are the same as those
listed in the first edition (1938) of this book. None of these conjectures has
been proved or disproved in the intervening 70 years. But there have been
substantial advances towards their proof and we describe some of them
here.

Goldbach enunciated his ‘theorem’ {mentioned in § 2.8) that every even
n > 3 is the sum of two primes in a letter to Euler in 1742. Vinogradov
proved in 1937 that every sufficiently large odd number is the sum of three
primes, Estermann, Introduction, gives Vinogradov’s proof. Let E(x) be
the number of even integers less than x which are not the sum of two primes.
Estermann, van der Corput, and Chudakov proved that £{x) = o{x) and
Montgomery and Vaughan (dcta Arith. 27 (1975), 353-70) improved this
to E(x) = O(x'~?) for a suitable & > 0. See this last paper for references.
Ramaré¢ (4nn. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 645-706) has
shown that every positive integer is a sum of at most 6 primes. As of 2007,
it has been verified that the Goldbach hypothesis is true for n < 5 x 107
(Oliveira e Silva, see http://www.ieeta.pt/tos/goldbach html).

Let us write P to denote any number that is a prime or the product of
two primes. Chen has proved that every sufficiently large even number is
a sum of a prime and a P; (see Ross, J. London Math. Soc. (2) 10 (1975),
500506 for the simplest proof) and also that there are infinitely many
primes p such that p 4 2 is a P;. There is a P; between n? and (n + 1)?
(Chen, Sci Sinica 18 (1975), 611-27) and there is a prime between n—n®
and n, where 8 = (.525 (Baker, Harman, and Pintz, Proc. London Math.
Soc. (3) 83 (2001), 532-562). All the results mentioned in this paragraph
have been found by the modern sieve method; see Halberstam and Roth,
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ch. 4 for an elementary exposition and Halberstam and Richert for a fuller
treatment.

Friedlander and Iwaniec (4nn. of Math. (2) 148 (1998), 945-1040) have
shown that there are infinitely many primes of the form a* + b*. Similarly
Heath-Brown (4cta Math. 186 (2001), 1-84) has shown that there are
infinitely many primes of the shape a® + 2b>. This latter result has been
extended to arbitrary binary cubic forms by Heath-Brown and Moroz (Proc.
London Math. Soc. (3) 84 (2002), 257-288). Results of this type give the
sparsest polynomial sequences currently known to contain infinitely many
primes. It would be very interesting to have a similar result for primes
of the shape 4a> + 2747, since this would show that there are infinitely
many cubic polynomials with integer coefficients and prime discriminant.
It would also resolve the open conjecture that there are infinitely many
non-isomorphic elliptic curves defined over the rationals and having prime
conductor.

It follows from the Prime Number Theorem that for numbers around x the
average gap between consecutive primes is asymptotically log x. However
it is known that gaps which are much smaller, and much larger, can occur.
On the one hand, Goldston, Pintz, and Yildinm, (in work still to appear, as
of 2007) have shown that

> 00 10gpn
and even that
.. Pntt — Pn

] f

1"@*5’% (log pn)/%(log logp,,,)z =
In the other direction Pintz {(J. Number Theory 63 (1997), 286--3031) has
proved that there are infinitely many primes p,, for which
(log log px)(log log log log p,)

(log log log p)?

Pnet —Pn 2 2(e” + o(1)) log py

{where y is Euler’s constant).

One of the most remarkable recent results on primes is due to Green and
Tao (Annals of Marh. to appear), and states that the primes contain arbitrar-
ily long arithmetic progressions. The longest such progression currently
known (2007) has length 23, and consists of the primes

56211383760397 + 44546738095860k (kK =0,2,...,22),
found by Frind, Underwood, and Jobling,
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The references give the section and page where the definition of the symbol
in question is to be found. We include all symbols which occur frequently
in standard senses, but not symbols which, like S(m, ) in § 5.6, are used
only in particular sections. -

Symbols in the list are sometimes also used temporaniy for other
purposes, as is y in § 3.11 and elsewhere.

General analytical symbols

0,0, ~, <,=,|f|,4 (unspecified constant) § 1.6 p. 7-8
min{x, y), max{x, y) §5.1 p- 57

e(t) = 2" §5.6 p. 65

[x] §6.11 p. 93

x),x §11.3 p. 201

[ag, ay, . . .,an] (continued fraction) § 10.1 p. 165
Pn, qn (convergents) §10.2 p. 167

a, §§ 10.5,10.9 pp. 170, 178
G §§ 10.7, 10.9 pp. 175,179

Symbols of divisibility, congruence, etc.

bla,bta §L.1  p.1-2
{a,b),(a, b,..., k) §29 p. 24
{a, b} §5.1 p.57-8
x = g (mod m), x # a (mod m) §52 p. 58
f(x) = g(x) (mod m) §7.2 p. 104
(x)i f(x) (mod m) §73 p. 105
m(modm) —(modm) §78 p. 113
k(l) §12.2 p.230
k(i) §12.2 p.230
k(p) § 122 p. 231
k() §14.1 p. 264
Bla, B ta, a = g (mod y) [in k(i) and other fields)
§§ 12.6 (p. 235), 12.9 (p. 241), 14.4 (p. 268), 15.2 (p. 285)
€ (unity) §§ 12.4 (p. 233), 12.6 (p. 235), 14.4 (p. 268)
No (norm) §§ 12.6 (p. 235), 12.9 (p. 241-2), 14.4 (p. 269)
17, 117 () §5.1 p.57(tn)

pln
a
aRp, aNp, (_p) §6.5 pp. 85
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Special numbers and functions
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Pn

F, (Fermat number)
M, (Mersenne number)
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§2.4
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§3.1
§§4.2, 18.2
§5.5
§5.6
§16.3
§16.7
§16.9
§169
§172
§17.7
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§ 20.1
§21.7
§21.9
§22.1
§22.1
§22.10
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p.7

p.7

p. 17
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p. 451
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p.471-2

We add references to the definitions of a small number of words and phrases
which a reader may find difficulty in tracing because they do not occur in

the headings of sections.

standard form of n

of the same order of magnitude

almost all (integers)
almost all (real numbers)
squarefree

highest common divisor

§
§
asymptotically equivalent, asymptotic to  §
§
§
§

unimodular transformation

least common multiple
coprime
multiplicative function

1.2 p.3
1.6 p.8
1.6 p9
16 p9
9.10 p. 156
26 p.20
§29 p.24
§36 p.34
§5.1 p.57
§5.1 p.58
§55 p. 64
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primitive root of unity

a belongs to d (mod m)
primitive root of m
minimal residue (mod m)
Euclidean number
Euclidean construction
algebraic field

simple field

Euclidean field
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linear independence of numbers

§5.6
§6.8

§6.8

§6.11
§11.5
§11.5
§14.1
§ 14.7
§ 14.7
§17.8
§23.4
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GENERAL INDEX

Note: References to footnotes are denoted
by {f.n.) after the page number.
Some symbols which have special-
ized meanings, or which are easily
confused, are included at the begin-
ning of this index.

— [implies] vi
- [tends to] vi
= [logically equivalent] vi
= fcongruent] vi, 58, 1034
. [and] vi, 2
Q,0,~, <, >, = T8
~ 9
* 16(fn.)

HE

[x] [integer part] 93

fag, ..., an] [continued fraction] 165
(x) 20]

X201

fa, 8] [basis for lattice] 295

{p} [class of multiples] 296

additive theory of numbers 254, 318, 361
aggrepates, theory of 227
algebraic equation 203
algebraic field 264
see also k()
algebraic integer 229, 265
algebraic number 2034, 204 (f.n.),
229, 264
degree 204
enumerability of aggregate of 205
order of approximation to 202-3, 206
primitive equation satisfied by 265-6
algorithm
continued fraction 172-§
Euclid's, see Euclid’s algorithm
almost all 9, 156
approximation
closest 20810, 212, 21617
good 194, 196-7
order of 202-3
to quadratic irrational 203
rapid 198
to reals by rationals 37

simple 198, 199
Dirichiet’s argument 201-2
simultanecus 200, 21718, 227
ares
of bounded region 540
of convex region 38
arithmetic, see fundamental theorem of
arithmetic
associate 83, 113
in k() 2334, 236
ink(py 244
asterisk on Theorem number 16 (fin.)
asymptotic equivalence 9
average order 347, 360

Bachet’s problem 147-8
basis
of integers of k(¥) 268
of lattice 295
Bauer’s congruence 1268, 137
consequences 1324
Bermouilli’s numbers 115, 118
Bertrand’s postulate 455-7, 497-8
best possible inequality 529-30
binomial coefficients 79-81
to prime exponent 80-1
binomia! expansion to prime exponent
80-1, 110
biquadrates, representation by sums of
41920
biquadratic field 299-300
Birch—Swinnerton-Dyer conjecture
weak form of 592
Borel-Bernstein theorem 215
boundary of open region 38
bounded region 38

Cantor’s diagonal argument 205
Cantor’s ternary set 158
Carmichaei number 89, 101
Catalan’s conjecture 263
Chinese remainder theorem
121-2, 137
class of residues 58-9 .
in k(p) 244
closed region 38
closed set 155
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cn () [Ramanujan’s sum] 678, 77
evatuation 308--10
generating function 326-8
combinatorial argument, even and odd
partitions 380
combinatorial proofs 368, 371, 3‘?9-80
common factor 58
complete quotient, see continued fraction
complete system of incongruent
residues 59
complex multiplication 556
composite number 2
long biocks 6
see aiso prime number
computers, uses of 19, 27, 293
congruence 58
algebraic, number of roots 123
to composite modulus 122-3
to coprime moduli 121
history 77
ink{p) 243
to lem of moduli 60
mod p? 86, 91
to prime modulus 81, 107, 306
to prime power modutus 1234
properties 60
system of linear 120 -
unique solution 121-2, 137
see also linear congruence
conjugate, in k{(/m} 268
conjugate pariitions 362
construction, see Euclidean construction
continued fraction 52, 165, 197
algorithm 172-5
approximation by convergents 175-6,
194-7, 198
bounded quotients 212-15
complete quotient 170, 178
finite 165
infinite simple 177-8
irrational 178-80
periodic 184-7
Ramanujan’s 38290
representation of rational number 170-2
simple 168
and simple approximation 196, 199
and solutions of Pell’s equation 271
uniqueness of representation of number
169,172,174, 179
see also convergents to a continued
fraction

GENERAL INDEX

continuity, arguments from 524 (fn.)
continuum, Farey dissection 36-7
convergents to a continued fraction 166,
175-6, 186
consecutive 210-11
even and odd 169, 178
successive 168, 180~1
convex region 38-9, 44, 523
area 39
equivalence of definitions 38
symmetrical, contains lattice points 524
coprime numbers 58
probability 354
see also p{m)
cubes
equal sums of two 257-9, 262
expression of rational number as sum of
three 255, 261, 262
representation of number by sums of
4242
see also Fermat's last theorem; g(k);
G(k); Waring’s problem
cubic form, minimum 547
cyclotomic field 300, 300 (fn.)

decimal 130
irrational 1456
length of period 147-8
mixed recurring  141-2, 143
pure recurring 141
- recurring 141
in scales other than ten 144-5, 149--51
terrminating 140, 142
uniqueness 1401
degree of algebraic number 204, 264
dense 155, 503
dense in itself 155
derivative of a set 155
derived set 153, 503
descent, method of 248,
251, 398, 397
determinant
of a lattice 523-4
of a quadratic form 526
diagonal argument 205
digits, missing, see missing digits
Diophantine equation 549, 550
ax+by=n 25
x2 +y*=n 313-14
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2_l=12M
x2 e mf =1 271
x4yt = 2% 245
x3 ~{~y3 = 325 253
2+ +23 =16 257-61
x* gyt = 22 247-8
x* 4% =24 247
x4+ v = a4 260
xn+yn =2zn 245
oyt =] 263
egual sums of three 5th or 6th
powers 444
equal sums of two kth powers 442
kth power as sum of kth powers 440
history 261
see also Fermat’s last theorem
Dirichlet’s divisor problem 347, 359
Dirichlet series 318, 341, 581
convergence 318
differentiation 318
formal theory 329-3)
multiptication 320, 326
uniqueness 320
Dirichlet’s pigeonhole principle 201--2,
227 .
Dirichlet’s problem 501
Dirichlet's theorem [on primes in an
arithmetical progression} 16
divisibility
ink(,/m) 268
of polynomials (mod m) 1056
tests for 146-7, 164
divisible 1
divisor |
m k(i) 235 ”
in k{,/m) 268
see alse din); op(n); o(m)
dy (n) [number of expressions in k
factors] 334
generating function 334
d(n) [number of divisors] 310
average order 347-50
generating function 327
generating function of {d(m)}* 336
normal order 4778
order of magnitude 342-6, 359
in terms of prime factorization 311
duplication formula 553, 564
Durfee square 371 '

e
frrational 46, 55
transcendental 208, 21822, 228
Eisenstein’s theorem [on residues mod p?]
135,137
elliptic curve discrete logarithm problem
(ECDLP) 590
elliptic curves
addition law on 550-6
congruent numbers 54950
and Ferment's last theorem 586-8
integer points on 574-8
L-geries of 578-82
modulo p points 573
points of finite order 55964
and modular curves 382-6
rational points group 564-73
eiliptic functions 372-7, 38990, 395,
410-11, 416
Jacobi's identity 372-7
elliptic integrals 589
endomorphism 555-6
enumerable set 156
E(Q) 564, 565
equivalence of congruent
numbers 59
equivalent numbers 181-4
Eratosthenes’ sieve 4-5
see also sieve methods
Euclidean algorithm 570
Euclidean construction 17, 71, 204
and Fermat primes 71
of regular pentagon 52
of regular polygon 71-6
of regalar 17-gon
geometrical details 76
proof of possibility 71-6
see aiso quadrature of circle
Euclidean field 274, 2756
fundamental thecrem of arithmetic
in 275
real 27680, 281
Euctidean number 204
Euclid npumber 312
Euclid's algorithm 174, 231--2
history 234 _
Euchid’s first theorem [on prime divisors of
a product] 34
source in Euclid 12
Euclid’s sccond theorem [existence of
infinitely many primes] 5, 14
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Euclid’s second theorem [existence of
infinitely many primes] (continued)
proofs 14, 17, 20
source in Euclid 13
Euler-Maclaurin sum formula 115
Euler’s conjecture fon sums of powers)
4402
Euler’s constant, see ¥
Euler's function, see ¢(m)
Euler's identities 366-9, 376, 378
combinatorial proofs 368-9
Euler’s theorem [on even/odd partitions]
378-80

factorial
divisibility by 80
residue of (p—-1)! mod p 87
factors, tables of 12
factor theorem mod m 1056
Farey arc 36
Farey dissection 36-7
Farey point 36
Farey series, see 3y
Fermat-Euler theorem 78
Fermat prime, and Euclidean
construction 72
Fermat's conjecture [on primality of Fj,]
7.18
Fermat's last theorem 91, 245, 261-2
exposnent two 2457
exponent three 248-53
exponent four 247-8
exponent five 300
Fermat’s numbers, see Fjy
Fermat’s theorem [on congruence mod p]
78, 108
converse 89-90
history 101
in k(,/5) 28890
in k(i) 285-6
Lagrange's proof 11{0--11
mod p? 135-6
Fibonacei numbers
prime 192-3
prime divisors 192-3, 290
Fibonacci series 190-3, 197
history 197 (fn)
field
algebraic, see k(1?)
biquadratic 300

cyclotomic 300, 300 {(fn.)
Euciidesn, see Euclidean field
guadratic, see quadratic field
rational, see k(1)
simple 274, 276, 301
Iy [Farey series] 28, 354
characteristic properties 28-9
proof by construction of next
term 31-2
proof by induction 29-31
proof using lattices 35
history 44
successive terms 28-9
Fp {Fermat’s numbers] 18, 100, 102
condition for primality 160-1
factorization of Fs5 18
probabilistic argument against primality
18 (fn.)
formal product of series 324-5
four-square representation theorem, see
representation of integers
fraction, see continued fraction
frequency of a digit 159
fundamenta!l Jattice 33, 534 (fn)
linear transformation 334
fundamental theorem of arithmetic 3-4,
2314
analytical expression 321
in Euclidean field 275
false in some fields 273-4
history 12, 234, 244
in k(i) 238-4}
ink(o) 243
proofs 25
use of, in proofs of irationality 49

games, see Nim

¥ [Euler’s constant] 47 (fn.), 347, 461
problem of irrationality 46

Gaussian integer, see k{i)

Gauss’s lemma 92-4

Gauss’s sum, see S(m, n)

generatized Weierstrass equation 557
discriminant 558

generating function 318, 3317, 343
non-Dirichlet 33841, 362

geometry of numbers 523

g(k) [number of kth powers to represent all

numbers] 394.-5

existence of g(3) 422-4
existence of g(4) 419-20, 448
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existence of g(6) 424-5 gene{al 307
existence of g(8) 425 Mibius 305-6

lower bound 425-6

value of g(2) 409

value of g(3} 424

value of g(4) 419-20, 448
valie of g(6) 423

value of v{(R) 425

see also vik)

G{k) {number of kth powers to
represent all large enough
integers] 394--5

existence of G(3) 420-2

lower bounds 42630

value of G(2) 409
Goldbach’s conjecture 23, 594
golden section 52, 208

highest common divisor 24, 57, 232
divisible by every common divisor 25,
2324
formula in terms of prime factors 57
of Gaussian integers 240
in non-simple fields 2934
relationship with lcm 57
right-hand, of quaternions 405-7
homogeneous linear forms, values at lattice
points 524-5
boundary case {Hajés) 545

ideal 295-9
principal 295, 297-8
see also right-ideal; principal right-ideal
inclusion-exclusion theorem 302-3, 316
index 89 (fin.)
inequality, best possible 529-30
integer 1, 267
of k(,/m) 265
of k(p) 241-4
as sum of powers, see representation of
integers
see also algebraic integer; Gaussian
integer; quadratic integer; rational
integer
integral lattice, see lattice
integral part 93
integral polynomial 103
interior point 38
inverse map 357
inversion formula

irrationality of algebraic numbers 229
irrational number 45
approximation by rationals 37,
198-201, 203
continued fraction representation 178-9
decimal representation 145-6
e 46,53-4
examples known 46-7, 145, 163
fractional parts of multiples dense in
interval 501-2
geometric proof for /5§ 52
logarithms 53
n 46, 54-3
n? 54-5
rational powers of ¢ 54
roots of algebraic equations 46, 48
roots of integers 47-8
isomorphic elliptic curves 550

Jacobi's identity 372-7
j-invariant of £ 550

k(1) [field of rationals} 230 (fa.)
k(/2)
primes 287
unities 270
(/24 /D) 299-300
k(J2+41) 299
k(/5)
primes 287-8
unities 288
k(exp 22i/5) [cyclotomic field] 300, 301
k(i) [Gaussian integers} 231, 23541
fundamental theorem of arithmetic
in 238-41
histery 244 (fn.)
primes 283-4
unique factorization in 231
k(. /m) 264
integers of 267-70
when Euclidean 276-80
k{p} 231
and Fermat's last theorem 249
fundamental theorem of arithmetic
in 243
integers in 241-4
primes 2867
unique factorization in 231
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k(#) [algebraic field] 264
Kloosterman’s sum, see S(u, v, n)
Kronecker's theorern 501-2, 522
analytical proof {(Bohr) 517-20
astronomical illustration 512
geometrical proof (Lettenmeyer) 503,
512-14
inductive proof (Estermann)
514-17
equivalence of two forms 511
general form 509-10
homogeneous form 510
in k dimensions 50812
in one dimension 501-5
proof by e-chaining 5062
representation on circle 503
with bound for error 504

Lagrange’s theorem, see representation of
integers
A(m) [parity of number of prime
factors] 335
generating function 335
A{n) [log p if i is 2 power of p] 3314,
451 :

generating function 332-3
and pu(n) 334
Lambert series 339
lattice 32--3, 295, 540
determinant of 5234
equivalence 33, 35, 41
equivalence in n dimensions 523
equivalent points 42-3
fundamental parallelogram 41
in n dimensions 523
least common multiple 57
formula in terms of prime factors 57
relationship with highest common
divisor 57
Legendre’s symbol 85, 101, 573
Leudesdorf’s theorem 130-2, 137
Li {logarithm integral} 13
limit point of set 155, 164
linear congruence 60-2
division through 61
existence of solution 62
aumber of solutions 62
uniqueness of solution 62
linear forms, homogeneous
values taken 524-5, 5279

values taken by product of 526,
529-30, 532
at equivalent points 534
values taken by sum of moduli 525, 529
values taken by sum of squares 526,
529-32
linear forms, non-homogeneous 534
values taken by product of 534-6,
537-9
linear independence 508-9
of logarithms of primes 509
Liouville numbers 2068
Licuville’s theorem 206-7, 227
log 9(fn.)
slowness of growth 9-10
logarithmic height 571
logarithm integral, see Li
Lucas series 190-3
Lucas’s test for primality 19, 290--3, 301
see also Mp

Markoff number 546
measure of a set 156 (f.n.)
measure zero 155, 158, 205
see alfso nuli set
Mersenne number, see Mp
Mertens’s theoremm 466-9
method of descent 248, 251, 395, 397
minimal Weierstrass equation 558
Minkowski’s theorem 37-8, 39-40
applications 5246, 545
converse 540
developments 40-3
generalization 545
Hajos's proof 44
in higher dimensions 43, 5234, 545
Minkowski’s proofs 39, 44
Mordell’s proof 40, 44
Minkowski’s theorem on
non-homogeneocus forms 5347
missing digits
integers 154-5
decimals 157-8
Mobius function, see 1(n)
Mibbius inversion formula 305-6
analytical interpretation 328-31
modular curve 585-6
moduli problem 582, 584
modulus [collection of numbers] 23-5, 27,
33, 231 (fn), 295
characterization 24
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modulus [of congruence] 58, §8 {f.n.), 88
Mp [Mersenne number] 19, 21 (fn),
26, 190
composite 100
Lucas's test for primality 19, 2903,
-
see also perfect number
muitiplication-by-m map 554
multiplicative function 64, 77, 305
‘condition for limit zero 343-5
multiplicative theory of nurabers 338
(n) [Mobius function] 304, 316
generating function 326
Mx) {sum of u(n) for n up to x] 356
Mertens’s conjecture 356, 359
order of magnitude 356, 489-90

N {is a non-residue of] 84
neighbourhood of real number 155
Nim 1514, 164
losing position 164
non-negative integer 1
non-residue, see quadratic non-residue
norm
k() 235
mk(,/m) 268
ink{p) 241
normal number 158-64
examples 164, 164 (fn.)
normal order 473
null set 156,212,216
number 1
see also algebraic..; composite..;
coprime..; integer; irrational..;
normal..; perfect..; prime..; rational.;
round..; squarefree..; transcendental..

aXn) [number of different prime factors]
335,471
average order 472-3
generating function of 20" 335
normal order 473-6
£2(m) [total number of prime
factors] 471
average order 472-3
normal order 4736
open region 38
area 39,42
order, average 347, 360
order fof a number, mod m] 88-9

order of approximation 2023
order of magnitude 8

P2 [prime or product of 2 primes] 594
paraflelograms, tiling of plane by 43
partial quotient 165
partition 361-2
conjugate 362
graphical representation 361-2
into an even or odd number of parts
378, 379-80
rank 383
restricted, generating functions 365-6
seif-conjugate 368-9
uprestricted 361
see also p(r)
Pell’s equation 271, 281
perfect number 20, 311-13
even 312-13
and Mersenne primes 312
odd 312
perfect set 155, 158
petiod of continued fraction 184-5
¢(m) [Euler’s function] 63-5, 232
average order 353-4
generating function 327
inversion 65, 303
order of magnitude 352-3, 469-71
and trigonometric sums 65-70
value 64, 65, 303

irrationality 46, 54-5
irrationality of 72 54-5
transcendence [transcendentality] 208,
223-7, 228
7y {x) {number of products up to x of k
different primes] 491
asympiotic expansions 499
asymptotic value 491-4
(x} fnumber of primes up to x] 7
asymptotic value 45860
forrnula 593
and jogarithemn integral 13
order of magnitude 11, 15
rate of growth 21
values 4-5
see also prime number theorem
Pk, 7) [Provhet—Tarry number] 435-7
valuesf 43740, 449
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Pn [nth prime] 5
approximate value 12
formula for 6, 593
order of magnitude 12, 460
rate of increase 14, 17
size 21
p(n) [number of partitions] 361
calculation 378
congruence properties 380-3, 391
generating function 362-5
table of values 379, 391
point at infinity 552
point-lattice, see lattice
polygon, constructible regular, see
Euctidean construction
polynomial 56970, 584, 585
composite values 22, 82, 146, 5934
divisibility by a prime power 105-6
mtegral 103-4
linear factorization mod p 108
primitive 263
polynomial equation, homogeneous 5567
positive integer 1
primality
tests for related to Fermat's theorem
98-100, 102
Wilson’s theorem as test for 86
prime factorization
in k(/m) 270
uniqueness, see fundamental theorem of
arithmetic
prime factorization theorem 2
prime factors
number of, see win); 2{n)
of a product 3
prime number 2-3
in arithmetical progressions 15-16, 27,
1456
average distribution 5
between x and (1+e)x 494
conjectures 23, 5945
distribution, see prime number theorem
existence of infinitely many, see
Euclid’s second theorem
expressible as sum of two squares 284
first few 3-4
of the form 3n + 1 287
of the form 4n 4 1 16, 87-8,
284,337
of the form 4n + 3 15, 112, 337
ofthe formSmx 1 192

of the form Sm%2 192
of the form6n + 1 95
of the form 6n+ 5 16, 95
ofthe form8n 4| 94
of the form 8a 3 94
oftheform8n+ 5 16
of the form 10nt] 95,98
of the form 10r£3 95,98
of the form n® +1 22
of the form an? + bn + ¢ 23
of the form 27 + 1 18
formulae for 1-2, 458
history 497
large 5, 19, 26
recurrence formula 7
regular 261
sum of reciprocals 20, 464-6, 497
tables 4-5, 12
use of computers 26
see also composite number; primes
prime number theorem 7, 10-11, 451,
4634
numerical evidence 11
proof 478-89
prime-pairs 6
distribution 6, 13, 4957
existence of infinitely many 6
primes
of k(/2) 287
of k(/5) 287-8
of k(i) 233, 2367
of k(./m) 268,270,283
of k(p) 286-7
problems 23, 594-5
prime-triplets 6
distribution 13, 499
existence of infinitely many 6
primitive equation 265
primitive pelynomial 265
primitive root 72 (fn.), 89, 148
of a prime, number of 89, 306
of unity 67
principal right-ideal in k(i) 405-6
probability arguments 3534, 496 (fn.)
product, see formal product
of series
products of & primes see 3 (x); 7 (x)
Prouhet and Tarry’s problem
435-7, 449
pseado-prime 90, 102
existence of infinitely many 90
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¥(x) [sum function of A] 45]
order of magnitude 451-2
Pythagoras’ theorem [on irrationality of
J2) 47
history 50
pythagorean triples 245-7

qi (n) {indicator that a1 has no kth power
factors] 335-6
generating function 335-6 |
g(n) [indicator that » is squarefTee] 335
generating function 335
quadratfrei, see squarefree .
quadratic field 264~5, 267-8, 28]-2
arithmetic in non-simple 293-5
simpie complex 275-6, 281
see also k(\/m)
quadratic form 526
determinant invariant under unimodular
substitution 530
indefinite 532
positive definite 526
prime values 23
values taken by positive definite form
526, 530
quadratic integer 229
quadratic irrational, order of
approximation 203
quadratic non-residue 84
muitiplicative properties 87
of p? 126
properties 87-8, 102
quadratic number 229, 265
quadratic reciprocity 957
history 101
quadratic residue 83, 396
multiplicative properties 87-8
the number —3 as 95
the number 2 as 94-5
the number 5 as 95, 98
of P2 126
properties B7-8
quadratic surd, as periodic continued
fraction 185-9
quadrature of circle 223, 227
quaternions 395, 416-17
algebra of 4013
highest common right-hand divisor
405-7
prime 407-9

properties of integral 4035
quotient, complete, see continued fraction
quotient of continued fraction 165
Q(x) [number of squarefree numbers up to
x] 355-6

R [is a residue of] 84
Ramanujan’s continued fraction 389-90
Ramanujan’s sum, see cp{m)
rank of algebraic equation 205
rank of partition 383
rational integer 1, 229 {fn.)
rational number 28
approximation by rationals 198, 203
representation by continued fraction
170-2
reciprocals, sum of 1545
reciprocity, see quadratic reciprocity
reflected ray problem 505-8
region 37
regular prime 26}
remainder 173 (fn.)
represeniation of integers
by sums of squares 313-14, 41516,
417; see aiso squares
by sums of four squares (Lagrange’s
theorem)} 255, 399415, 416
by sums of two cubes 442—4, 450
by sums of kth powers 3934
see also r(n)
representative of class of residues 59
residue 58,92
class of 59
ink{p) 243
mod p? 135-6
mod a product 634
see also quadratic residue
Riemann zeta function, see £ (5)
right-ideal in k(5) 405
r{n) [mumber of representations as sum of
2 squares] 313-14
average order 356-8, 360
formula 315-16
generating function 337
order of magnitude 3568
see also representation of integers
Rogers—Ramanuian identities 383-8, 392
root of congruence 103
to prime meodulus 106-7
root of polynomial (mod m) 103
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root of unity 67-8
mod p? 124

round number 4767

R(x) [yr(x) — x] 481

Selberg’s theorem 478-81, 498
set theory, see aggregates, theory of
Siegel’s theorem 574
sieve methods 4, 594
o {n) [sum of kth powers of divisors] 310
generating function 327
generating function of g0 337
o €n) [sum of divisors] 311
generating function 327
order of magnitude 3501, 469-71
simptle field 274, 276, 300
simply normal 159
singular series 445
Stm, n) {Gauss’s sum] 66, 77
S, g) [not Gauss’s sum)] 95 (fin)
squarefree 20 :
integer 264
number 335, 355-6
squares
sum of three 409, 417
sum of two 3959
see also representation of integers
standard form 3
unigueness, see fundamental theorem of
arithmetic
star region 543
lattice without points in 5434
sum of coliection of sets 156
surd, see quadratic surd
S(u, v, n) {(Kloosterman’s sum] 68-70, 77

tables

of factors 12

of primes 12
T4 €x) [number of products up to x of &

primes] 491

asymptotic expansion 490-4, 499
Tchebotaref’s theorem 537-9
Tchebychef™s theorem 11, 459
Theodorus’ preofs of irrationality 50-1, 55
theory of numbers

additive 2354, 338, 361

multiplicative 338
#(x) [sum of log p for p up to x] 346, 451

order of magnitude 453-5
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t(m) [set of numbers leas than and prime
tom] 126
trace of Frobenius 591
transcendental number 203
aggregate of, not enumerable 205
construction 2068
e 218-22
examples 208, 227
n 223-7
powers 228

uniform distribution 520, 522
in k dimensions 522
of multiples of an irrational number
520-2
unimodular transformation 34
unique factorization 231
in quadratic fields 2945
see also fundamental theorem of
arithmetic
unities
of k(i) 233,235
of k(,/2) 270
of k(\/5) 288
of k{./m) 268

vector 502, 513
visible point of lattice 36, 535, 541
number of, in bounded
region 541-3
v(k) {number of signed kth powers to
represent all numbers} 431
beunds for v(5) 435
existence 43]1-2
upper bounds 433-5
von Staudt’s theorem 115-19
history 119
vulgar fraction 28
F(£) 486

Waring's problem 393-5,
416, 444-9
see aiso representation of integers;
squares
Weierstrass equation 557
generalized 557
discriminant 558
minimal 558
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Wilson’s theorem 85-6, zeta function, see {(s)

101, 110 {{s) [Riemann zeta function} 3201, 341
generalized 132, 137 and arithmetical functions 326-8
history 101, 119 behaviouras s — 1 321-3, 341
Lagrange's proof 110-11} Euler’s product 320
modp? 101, 135-6 value fors = 2n 320 (fn.), 341

Wolstenholme’s theorem 11214
generalizations 130--2, 133, 134
history 119
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