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13.3 Comparison of Čech Cohomology and Sheaf Cohomology . . . . . . . . . . . 360
13.4 Singular Cohomology and Sheaf Cohomology . . . . . . . . . . . . . . . . . . 367
13.5 Soft Sheaves and Fine Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 370
13.6 de Rham Cohomology and Sheaf Cohomology . . . . . . . . . . . . . . . . . 375
13.7 Alexander–Spanier Cohomology and Sheaf Cohomology . . . . . . . . . . . . 376

14 Alexander and Alexander–Lefschetz Duality 381
14.1 Relative Alexander–Spanier Cohomology . . . . . . . . . . . . . . . . . . . . 381
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Chapter 1

Introduction

One of the main problems, if the not, “the” problem, of topology is to understand when
two spaces X and Y are similar or dissimilar. A related problem is to understand the
connectivity structure of a space in terms of its holes and “higher-order” holes. Of course,
one has to specify what “similar” means. Intuitively, two topological spaces X and Y are
similar if there is a “good” bijection f : X → Y between them. More precisely, “good” means
that f is a continuous bijection whose inverse f−1 is also continuous; in other words, f is a
homeomorphism. The notion of homeomorphism captures the notion proposed in the mid
1860’s that X can be deformed into Y without tearing or overlapping. The problem then
is to describe the equivalence classes of spaces under homeomorphism; it is a classification
problem.

The classification problem for surfaces was investigated as early as the mid 1860’s by
Möbius and Jordan. These authors discovered that two (compact) surfaces are equivalent iff
they have the same genus (the number of holes) and orientability type. Their “proof” could
not be rigorous since they did not even have a precise definition of what a 2-manifold is! We
have to wait until 1921 for a complete and rigorous proof of the classification theorem for
compact surfaces; see Gallier and Xu [17] for a historical as well as technical account of this
remarkable result.

What if X and Y do not have the nice structure of a surface or if they have higher-
order dimension? In the words of Dieudonné, the problem is a “hopeless undertaking;” see
Dieudonné’s introduction [8].

The reaction to this fundamendal difficulty was the creation of algebraic and differential
topology, whose major goal is to associate “invariant” objects to various types of spaces, so
that homeomorphic spaces have “isomorphic” invariants. If two spaces X and Y happen to
have some distinct invariant objects, then for sure they are not homeomorphic.

Poincaré was one of the major pioneers of this approach. At first these invariant objects
were integers (Betti numbers and torsion numbers), but it was soon realized that much more
information could be extracted from invariant algebraic structures such as groups, ring, and
modules.

7



8 CHAPTER 1. INTRODUCTION

Three types of invariants can be assigned to a topological space:

(1) Homotopy groups.

(2) Homology groups.

(3) Cohomology groups.

The above are listed in the chronological order of their discovery. It is interesting that
the first homotopy group π1(X) of the space X, also called fundamental group, was invented
by Poincaré (Analysis Situs, 1895), but homotopy basically did not evolve until the 1930s.
One of the reasons is that the first homotopy group is generally nonabelian, which is harder
to study.

On the other hand, homology and cohomology groups (or rings, or modules) are abelian,
so results about commutative algebraic structures can be leveraged. This is true in particular
if the ring R is a PID, where the structure of the finitely generated R-modules is completely
determined.

There are different kinds of homology groups. They usually correspond to some geometric
intuition about decomposing a space into simple shapes such as triangles, tetrahedra, ect,.
Cohomology is more abstract because it usually deal with functions on a space. However,
we will see that it yields more information than homology precisely because certain kinds of
operations on functions can be defined (cup and cap products).

As often in mathematics, some machinery that is created to solve a specific problem, here
a problem in topology, unexpectedly finds fruitful applications to other parts of mathematics
and becomes a major component of the arsenal of mathematical tools, in the present case
homological algebra and category theory . In fact, category theory, invented by Mac Lane and
Eilenberg, permeates algebraic topology and is really put to good use, rather than being a
fancy attire that dresses up and obscures some simple theory, as it is used too often.

In view of the above discussion, it appears that algebraic topology might involve more
algebra than topology. This is great if one is quite proficient in algebra, but not so good
news for a novice who might be discouraged by the abstract and arcane nature of homological
algebra. After all, what do the zig-zag lemma and the five lemma have to do with topology?

Unfortunately, it is true that a firm grasp of the basic concepts and results of homological
algebra is essential to really understand what are the homology and the cohomology groups
and what are their roles in topology.

One our goals is to attempt to demistify homological algebra. One should realize that
the homology groups describe what man does in his home; in French, l’homme au logis. The
cohomology groups describe what co-man does in his home; in French, le co-homme au logis,
that is, la femme au logis. Obviously this is not politically correct, so cohomology should be
renamed. The big question is: what is a better name for cohomology?
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In the following sections we give a brief description of the topics that we are going to
discuss in this book, and we try to provide motivations for the introduction of the concepts
and tools involved. These sections introduce topics in the same order in which they are
presented in the book. All historical references are taken from Dieudonné [8]. This is a
remarkable account of the history of algebraic and differential topology from 1900 to the
1960’s which contains a wealth of information.

1.1 Exact Sequences, Chain Complexes, Homology

and Cohomology

There are various kinds of homology groups (simplicial, singular, cellular, etc.), but they all
arise the same way, namely from a (possibly infinite) sequence called a chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

in which the Cp are vector spaces, or more generally abelian groups (typically freely gen-
erated), and the maps dp : Cp → Cp−1 are linear maps (homomorphisms of abelian groups)
satisfying the condition

dp ◦ dp+1 = 0 for all p ≥ 0. (∗1)

The elements of Cp are called p-chains and the maps dp are called boundary operators (or
boundary maps). The intuition behind Condition (∗1) is that elements of the form dp(c) ∈
Cp−1 with c ∈ Cp are boundaries , and “a boundary has no boundary.” For example, in R2,
the points on the boundary of a closed unit disk form the unit circle, and the points on the
unit circle have no boundary.

Since dp ◦ dp+1 = 0, we have Bp(C) = Im dp+1 ⊆ Ker dp = Zp(C) so the quotient
Zp(C)/Bp(C) = Ker dp/Im dp+1 makes sense. The quotient module

Hp(C) = Zp(C)/Bp(C) = Ker dp/Im dp+1

is the p-th homology module of the chain complex C. Elements of Zp are called p-cycles and
elements of Bp are called p-boundaries .

A condition stronger that Condition (∗1) is that

Im dp+1 = Ker dp for all p ≥ 0. (∗∗1)

A sequence satisfying Condition (∗∗1) is called an exact sequence. Thus, we can view the
homology groups as a measure of the failure of a chain complex to be exact. Surprinsingly,
exact sequences show up in various areas of mathematics.

For example, given a topological space X, in singular homology the Cp’s are the abelian
groups Cp = Sp(X;Z) consisting of all (finite) linear combinations of the form

∑
niσi, where
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ni ∈ Z and each σi, a singular p-simplex , is a continuous function σi : ∆p → X from the
p-simplex ∆p to the space X. A 0-simplex is a single point, a 1-simplex is a line segment,
a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a p-simplex is a higher-order
generalization of a tetrahedron. A p-simplex ∆p has p+1 faces , and the ith face is a (p−1)-
singular simplex σ◦φp−1

i : ∆p−1 → X defined in terms of a certain function φp−1
i : ∆p−1 → ∆p;

see Section 4.1. In the framework of singular homology, the boundary map dp is denoted by
∂p, and for any singular p-simplex σ, ∂σ is the singular (p− 1)-chain given by

∂σ = σ ◦ φp−1
0 − σ ◦ φp−1

1 + · · ·+ (−1)pσ ◦ φp−1
p .

A simple calculation confirms that ∂p ◦ ∂p+1 = 0. Consequently the free abelian groups
Sp(X;Z) together with the boundary maps ∂p form a chain complex denoted S∗(X;Z) called
the simplicial chain complex of X. Then the quotient module

Hp(X;Z) = Hp(S∗(X;Z)) = Ker ∂p/Im ∂p+1,

also denoted Hp(X), is called the p-th homology group of X. Singular homology is discussed
in Chapter 4, especially in Section 4.1.

Historically, singular homology did not come first. According to Dieudonné [8], singu-
lar homology emerged around 1925 in the work of Veblen, Alexander and Lefschetz (the
“Princeton topologists,” as Dieudonné calls them), and was defined rigorously and in com-
plete generality by Eilenberg (1944). The definition of the homology modules Hp(C) in terms
of sequences of abelian groups Cp and boundary homomorphisms dp : Cp → Cp−1 satisfying
the condition dp ◦ dp+1 = 0 as quotients Ker dp/Im dp+1 seems to have been suggested to H.
Hopf by Emmy Noether while Hopf was visiting Göttingen in 1925. Hopf used this definition
in 1928, and independently so did Vietoris in 1926, and then Mayer in 1929.

The first occurrence of a chain complex is found in Poincaré’s papers of 1900, although
he did not use the formalism of modules and homomorphisms as we do now, but matrices
instead. Poincaré introduced the homology of simplicial complexes , which are combinatorial
triangulated objects objects made up of simplices. Given a simplicial complex K, we have
free abelian groups Cp(K) consisting of Z-linear combinations of oriented p-simplices, and
the boundary maps ∂p : Cp(K)→ Cp−1(K) are defined by

∂pσ =

p∑
i=0

(−1)i[α0, . . . , α̂i, . . . , αp],

for any oriented p-simplex, σ = [α0, . . . , αp], where [α0, . . . , α̂i, . . . , αp] denotes the oriented
(p − 1)-simplex obtained by deleting vertex αi. Then we have a simplicial chain complex
(Cp(K), ∂p) denoted C∗(K), and the corresponding homology groups Hp(C∗(K)) are denoted
Hp(K) and called the simplicial homology groups of K. Simplicial homology is discussed in
Chapter 5. We discussed singular homology first because it subsumes simplicial homology,
as shown in Section 5.2.
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A simplicial complex K is a purely combinatorial object, thus it is not a space, but it has
a geometric realization Kg, which is a (triangulated) topological space. This brings up the
following question: if K1 and K2 are two simplicial complexes whose geometric realizations
(K1)g and (K2)g are homeomorphic, are the simplicial homology groups Hp(K1) and Hp(K2)
isomorphic?

Poincaré conjectured that the answer was “yes,” and this conjecture was first proved by
Alexander. The proof is nontrivial, and we present a version of it in Section 5.2.

The above considerations suggest that it would be useful to understand the relationship
between the homology groups of two spaces X and Y related by a continuous map f : X → Y .
For this, we define mappings between chain complexes called chain maps.

Given two chain complexes C and C ′, a chain map f : C → C ′ is a family f = (fp)p≥0 of
homomorphisms fp : Cp → C ′p such that all the squares of the following diagram commute:

0 C0
d0oo

f0

��

C1
d1oo

f1

��

· · ·oo Cp−1

dp−1oo

fp−1

��

Cp
dpoo

fp
��

Cp+1

dp+1oo

fp+1

��

· · ·oo

0 C ′0d′0

oo C ′1d′1

oo · · ·oo C ′p−1d′p−1

oo C ′pd′p

oo C ′p+1d′p+1

oo · · · ,oo

that is, fp ◦ dp+1 = d′p+1 ◦ fp+1, for all p ≥ 0.

A chain map f : C → C ′ induces homomorphisms of homology

Hp(f) : Hp(C)→ Hp(C
′)

for all p ≥ 0. Furthermore, given three chain complexes C,C ′, C ′′ and two chain maps
f : C → C ′ and g : C ′ → C ′′, we have

Hp(g ◦ f) = Hp(g) ◦Hp(f) for all p ≥ 0

and

Hp(idC) = idHp(C) for all p ≥ 0.

We say that the map C 7→ (Hp(C))p≥0 is functorial (to be more precise, it is a functor
from the category of chain complexes and chain maps to the category of abelian groups and
groups homomorphisms).

For example, in singular homology, a continuous function f : X → Y between two topo-
logical spaces X and Y induces a chain map f] : S∗(X;Z) → S∗(Y ;Z) between the two
simplicial chain complexes S∗(X;Z) and S∗(Y ;Z) associated with X and Y , which in turn
yield homology homomorphisms usually denoted f∗,p : Hp(X;Z)→ Hp(Y ;Z). Thus the map
X 7→ (Hp(X;Z))p≥0 is a functor from the category of topological spaces and continuous
maps to the category of abelian groups and groups homomorphisms. Functoriality implies
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that if f : X → Y is a homeomorphism, then the maps f∗,p : Hp(X;Z) → Hp(Y ;Z) are iso-
morphisms . Thus, the singular homology groups are topological invariants. This is one of
the advantages of singular homology; topological invariance is basically obvious.

This is not the case for simplicial homology where it takes a fair amout of work to prove
that if K1 and K2 are two simplicial complexes whose geometric realizations (K1)g and (K2)g
are homeomorphic, then the simplicial homology groups Hp(K1) and Hp(K2) isomorphic.

One might wonder what happens if we reverse the arrows in a chain complex? Abstractly,
this is how cohomology is obtained, although this point of view was not considered until at
least 1935.

A cochain complex is a sequence

0 d−1
// C0 d0

// C1 d1
// · · · // Cp−1 dp−1

// Cp dp // Cp+1 dp+1
// Cp+2 // · · · ,

in which the Cp are abelian groups, and the maps dp : Cp → Cp+1 are homomorphisms of
abelian groups satisfying the condition

dp+1 ◦ dp = 0 for all p ≥ 0 (∗2)

The elements of Cp are called cochains and the maps dp are called coboundary maps . This
time, it is not clear how coboundary maps arise naturaly. Since dp+1 ◦ dp = 0, we have
Bp = Im dp ⊆ Ker dp+1 = Zp+1, so the quotient Zp/Bp = Ker dp+1/Im dp makes sense and
the quotient module

Hp(C) = Zp/Bp = Ker dp+1/Im dp

is the pth cohomology module of the cochain complex C. Elements of Zp are called p-cocycles
and elements of Bp are called p-coboundaries .

There seems to be an unwritten convention that when dealing with homology we use
subscripts, and when dealing with cohomology we use with superscripts. Also, the “dual” of
any “notion” is the “co-notion.”

As in the case of a chain complex, a condition stronger that Condition (∗2) is that

Im dp = Ker dp+1 for all p ≥ 0. (∗∗2)

A sequence satisfying Condition (∗∗2) is also called an exact sequence. Thus, we can view
the cohomology groups as a measure of the failure of a cochain complex to be exact.

Given two cochain complexes C and C ′, a (co)chain map f : C → C ′ is a family f =
(fp)p≥0 of homomorphisms fp : Cp → C

′p such that all the squares of the following diagram
commute:

0 d−1
// C0 d0

//

f0

��

C1 d1
//

f1

��

· · · // Cp−1 dp−1
//

fp−1

��

Cp dp //

fp

��

Cp+1 dp+1
//

fp+1

��

· · ·

0
d
′−1

// C
′0

d
′0
// C
′1

d
′1
// · · · // C

′p−1

d
′p−1

// C
′p

d
′p
// C
′p+1

d
′p+1

// · · · ,
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that is, fp+1 ◦ dp = d
′p ◦ fp for all p ≥ 0. A chain map f : C → C ′ induces homomorphisms

of cohomology
Hp(f) : Hp(C)→ Hp(C ′)

for all p ≥ 0. Furthermore, this assignment is functorial (more precisely, it is a functor from
the category of cochain complexes and chain maps to the category of abelian groups and
their homomorphisms).

At first glance cohomology appears to be very abstract so it is natural to look for explicit
examples. A way to obtain a cochain complex is to apply the operator (functor) HomZ(−, G)
to a chain complex C, where G is any abelian group. Given a fixed abelian group A, for any
abelian group B we denote by HomZ(B,A) the abelian group of all homomorphisms from
B to A. Given any two abelian groups B and C, for any homomorphism f : B → C, the
homomorphism HomZ(f, A) : HomZ(C,A)→ HomZ(B,A) is defined by

HomZ(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ HomZ(C,A);

see the commutative diagram below:

B
f //

HomZ(f,A)(ϕ)   

C

ϕ

��
A.

The map HomZ(f, A) is also denoted by HomZ(f, idA) or even HomZ(f, id). Observe that
the effect of HomZ(f, id) on ϕ is to precompose ϕ with f .

If f : B → C and g : C → D are homomorphisms of abelian groups, a simple computation
shows that

HomR(g ◦ f, id) = HomR(f, id) ◦ HomR(g, id).

Observe that HomZ(f, id) and HomZ(g, id) are composed in the reverse order of the compo-
sition of f and g. It is also immediately verified that

HomZ(idA, id) = idHomZ(A,G).

We say that HomZ(−, id) is a contravariant functor (from the category of abelian groups
and group homomorphisms to itself). Then given a chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

we can form the cochain complex

0
HomZ(d0,id) // HomZ(C0, G) // · · · // HomZ(Cp, G)

HomZ(dp+1,id)// HomZ(Cp+1, G) // · · ·

obtained by applying HomZ(−, G), and denoted HomZ(C,G). The coboundary map dp is
given by

dp = HomZ(dp+1, id),
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which means that for any f ∈ HomZ(Cp, G), we have

dp(f) = f ◦ dp+1.

Thus, for any (p+ 1)-chain c ∈ Cp+1 we have

(dp(f))(c) = f(dp+1(c)).

We obtain the cohomology groups Hp(HomZ(C,G)) associated with the cochain complex
HomZ(C,G). The cohomology groups Hp(HomZ(C,G)) are also denoted Hp(C;G).

This process was applied to the simplicial chain complex C∗(K) associated with a sim-
plicial complex K by Alexander and Kolmogoroff to obtain the simplicial cochain com-
plex HomZ(C∗(K);G) denoted C∗(K;G) and the simplicial cohomology groups Hp(K;G)
of the simplicial complex K; see Section 5.4. Soon after, this process was applied to
the singular chain complex S∗(X;Z) of a space X to obtain the singular cochain complex
HomZ(S∗(X;Z);G) denoted S∗(X;G) and the singular cohomology groups Hp(X;G) of the
space X; see Section 4.6.

Given a continuous map f : X → Y , there is an induced chain map f ] : S∗(Y ;G) →
S∗(X;G) between the singular cochain complexes S∗(Y ;G) and S∗(X;G), and thus homo-
morphisms of cohomology f ∗ : Hp(Y ;G)→ Hp(X;G). Observe the reversal: f is a map from
X to Y , but f ∗ maps Hp(Y ;G) to Hp(X;G). We say that the map X 7→ (Hp(X;G))p≥0 is
a contravariant functor from the category of topological spaces and continuous maps to the
category of abelian groups and their homomorphisms.

So far our homology groups have coefficients in Z, but the process of forming a cochain
complex HomZ(C,G) from a chain complex C allows the use of coefficients in any abelian
group G, not just the integers. Actually, it is a trivial step to define chain complexes con-
sisting of R-modules in any commutative ring R with a multiplicative identity element 1,
and such complexes yield homology modules Hp(C;R) with coefficients in R. This process
immediately applies to the singular homology groups Hp(X;R) and to the simplicial ho-
mology groups Hp(K;R). Also, given a chain complex C where the Cp are R-modules, for
any R-module G we can form the cochain complex HomR(C,G) and we obtain cohomology
modules Hp(C;G) with coefficients in any R-module G; see Section 4.6 and Section 12.5.

We can generalize homology with coefficients in a ring R to modules with coefficients in
a R-module G by applying the operation (functor) −⊗R G to a chain complex C where the
Cp’s are R-modules, to get the chain complex denoted C⊗RG. The homology groups of this
complex are denoted Hp(C,G). We will discuss this construction in Section 4.5 and Section
12.5.

If the ring R is a PID, given a chain complex C where the Cp are R-modules, the homology
groups Hp(C;G) of the complex C⊗RG are determined by the homology groups Hp−1(C;R)
and Hp(C;R) via a formula called the Universal Coefficient Theorem for Homology; see
Theorem 12.38. This formula involves a term TorR1 (Hn−1(C);G) that corresponds to the fact
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that the operation − ⊗R G on linear maps generally does not preserve injectivity (− ⊗R G
is not left-exact). These matters are discussed in Chapter 12.

Similarly, if the ring R is a PID, given a chain complex C where the Cp are R-modules, the
cohomology groups Hp(C;G) of the complex HomR(C,G) are determined by the homology
groups Hp−1(C;R) and Hp(C;R) via a formula called the Universal Coefficient Theorem
for Cohomology; see Theorem 12.43. This formula involves a term Ext1

R(Hn−1(C);G) that
corresponds to the fact that if the linear map f is injective, then HomR(f, id) is not necessarily
surjective (HomR(−, G) is not right-exact). These matters are discussed in Chapter 12.

One of the advantages of singular homology (and cohomology) is that it is defined for all
topological spaces, but one of its disadvantages is that in practice it is very hard to compute.
On the other hand, simplicial homology (and cohomology) only applies to triangulable spaces
(geometric realizations of simplicial complexes), but in principle it is computable (for finite
complexes). One of the practical problems is that the triangulations involved may have a
large number of simplices. J.H.C Whiteahead invented a class of spaces called CW complexes
that are more general than triangulable spaces and for which the computation of the singular
homology groups is often more tractable. Unlike a simplicial complex, a CW complex is
obtained by gluing spherical cells. CW complexes are discussed in Chapter 6.

There are at least four other ways of defining cohomology groups of a space X by directly
forming a cochain complex without using a chain complex and dualizing it by applying
HomZ(−, G):

(1) If X is a smooth manifold, then there is the de Rham complex which uses the modules
of smooth p-forms Ap(X) and the exterior derivatives dp : Ap(X) → Ap+1(X). The
corresponding cohomology groups are the de Rham cohomology groups Hp

dR(X). These
are actually real vector spaces. De Rham cohomology is discussed in Chapter 3.

(2) If X is any space and U = (Ui)i∈I is any open cover of X, we can define the Čech
cohomology groups Ȟp(X,U) in a purely combinatorial fashion. Then we can define
the notion of refinement of a cover and define the Čech cohomology groups Ȟp(X,G)
with values in an abelian group G using a limiting process known as a direct limit (see
Section 9.3, Definition 9.8). Čech cohomology is discussed in Chapter 10.

(3) If X is any space, then there is the Alexander–Spanier cochain complex which yields the
Alexander–Spanier cohomology groups ApA-S(X;G). Alexander–Spanier cohomology is
discussed in Section 13.7 and in Chapter 14.

(4) Sheaf cohomology, based on derived functors and injective resolutions. This is the
most general kind of cohomology of a space X, where cohomology groups Hp(X,F)
with values in a sheaf F on the space X are defined. Intuitively, this means that the
modules F(U) of “coefficients” in which these groups take values may vary with the
open domain U ⊆ X. Sheaf cohomology is discussed in Chapter 13, and the algebraic
machinery of derived functors is discussed in Chapter 12.
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We will see that for topological manifolds, all these cohomology theories are equivalent;
see Chapter 13. For paracompact spaces, Čech cohomology, Alexander–Spanier cohomology,
and derived functor cohomology (for constant sheaves) are equivalent (see Chapter 13). In
fact, Čech cohomology and Alexander–Spanier cohomology are equivalent for any space; see
Chapter 14.

1.2 Relative Homology and Cohomology

In general, computing homology groups is quite difficult so it would be helpful if we had
techniques that made this process easier. Relative homology and excision are two such tools
that we discuss in this section.

Lefschetz (1928) introduced the relative homology groups Hp(K,L;Z), where K is a
simplicial complex and L is a subcomplex of K. The same idea immediately applies to
singular homology and we can define the relative singular homology groups Hp(X,A;R)
where A is a subspace of X. The intuition is that the module of p-chains of a relative chain
complex consists of chains of K modulo chains of L. For example, given a space X and
a subspace A ⊆ X, the singular chain complex S∗(X,A;R) of the pair (X,A) is the chain
complex in which each R-module Sp(X,A;R) is the quotient module

Sp(X,A;R) = Sp(X;R)/Sp(A;R).

It is easy to see that Sp(X,A;R) is actually a free R-module; see Section 4.2.

Although this is not immediately apparent, the motivation is that the groups Hp(A;R)
and Hp(X,A;R) are often “simpler” than the groups Hp(X;R), and there is an exact se-
quence called the long exact sequence of relative homology that can often be used to come
up with an inductive argument that allows the determination of Hp(X;R) from Hp(A;R)
and Hp(X,A;R). Indeed, we have the following exact sequence as shown in Section 4.2 (see
Theorem 4.8):

· · · // Hp+2(X,A;R)
∂∗p+2

// Hp+1(A;R)
i∗ // Hp+1(X;R)

j∗ // Hp+1(X,A;R)
∂∗p+1

// Hp(A;R)
i∗ // Hp(X;R)

j∗ // Hp(X,A;R)
∂∗p

// Hp−1(A;R) // · · ·

ending in
H0(A;R) // H0(X;R) // H0(X,A;R) // 0.
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Furthermore, if (X,A) is a “good pair,” then there is an isomorphism

Hp(X,A;R) ∼= Hp(X/A, {pt};R),

where pt stands for any point in X.

The long exact sequence of relative homology is a corollary of one the staples of homology
theory, the “zig-zag lemma.” The zig-zag lemma says that for any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of chain complexes X, Y, Z there is a long exact sequence of cohomology

· · · // Hp−1(Z)
δp−1

// Hp(X)
f∗ // Hp(Y )

g∗ // Hp(Z)
δp

// Hp+1(X)
f∗ // Hp+1(Y )

g∗ // Hp+1(Z)
δp+1

// Hp+2(X) // · · ·

The zig-zag lemma is fully proved in Section 2.5; see Theorem 2.19. There is also a homology
version of this theorem.

Another very important aspect of relative singular homology is that it satisfies the ex-
cision axiom, another useful tool to compute homology groups. This means that removing
a subspace Z ⊆ A ⊆ X which is clearly inside of A, in the sense that Z is contained in
the interior of A, does not change the relative homology group Hp(X,A;R). More precisely,
there is an isomorphism

Hp(X − Z,A− Z;R) ∼= Hp(X,A;R);

see Section 4.3 (Theorem 4.12). A good illustration of the use of excision and of the long
exact sequence of relative homology is the computation of the homology of the sphere Sn;
see Section 4.4. Relative singular homology also satisfies another important property: the
homotopy axiom, which says that if two spaces are homotopy equivalent, then their homology
is isomorphic; see Theorem 4.7.

Following the procedure for obtaining cohomology from homology described in Section
1.1, by applying HomR(−, G) to the chain complex S∗(X,A;R) we obtain the cochain com-
plex S∗(X,A;G) = HomR(S∗(X,A;R), G), and thus the singular relative cohomology groups
Hp(X,A;G); see Section 4.7. In this case, we can think of the elements of Sp(X,A;G) as lin-
ear maps (with values in G) on singular p-simplices in X that vanish on singular p-simplices
in A.



18 CHAPTER 1. INTRODUCTION

Fortunately, since each Sp(X,A;R) is a free R-module, it can be shown that there is a
long exact sequence of relative cohomology (see Theorem 4.33):

· · · // Hp−1(A;G)
δ∗p−1

// Hp(X,A;G)
(j>)∗ // Hp(X;G)

(i>)∗ // Hp(A;G)
δ∗p

// Hp+1(X,A;G)
(j>)∗ // Hp+1(X;G)

(i>)∗ // Hp+1(A;G)
δ∗p+1

// Hp+2(X,A;G) // · · ·
Relative singular cohomology also satisfies the excision axiom and the homotopy axioms (see
Section 4.7).

1.3 Duality; Poincaré, Alexander, Lefschetz

Roughly speaking, duality is a kind of symmetry between the homology and the cohomology
groups of a space. Historically, duality was formulated only for homology, but it was later
found that more general formulations are obtained if both homology and cohomology are
considered. We will discuss two duality theorems: Poincaré duality, and Alexander–Lefschetz
duality. Original versions of these theorems were stated for homology and applied to special
kinds of spaces. It took at least thirty years to obtain the versions that we will discuss.

The result that Poincaré considered as the climax of his work in algebraic topology
was a duality theorem (even though the notion of duality was not very clear at the time).
Since Poincaré was working with finite simplicial complexes, for him duality was a con-
struction which, given a simplicial complex K of dimension n, produced a “dual” complex
K∗; see Munkres [38] (Chapter 8, Section 64). If done the right way, the matrices of the
boundary maps ∂ : Cp(K)→ Cp−1(K) are transposes of the matrices of the boundary maps
∂∗ : Cn−p+1(K)→ Cn−p(K). As a consequence, the homology groups Hp(K) and Hn−p(K

∗)
are isomorphic. Note that this type of duality relates homology groups, not homology and
cohomology groups as it usually does nowadays, for the good reason that cohomology did
not exist until about 1935.

Around 1930, De Rham gave a version of Poincaré duality for smooth orientable, compact
manifolds. IfM is a smooth, oriented, and compact n-manifolds, then there are isomorphisms

Hp
dR(M) ∼= (Hn−p

dR (M))∗,

where (Hn−p(M))∗ is the dual of the vector space Hn−p(M). This duality is actually induced
by a nondegenerate pairing

〈−,−〉 : Hp
dR(M)×Hn−p

dR (M)→ R
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given by integration, namely

〈[ω], [η]〉 =

∫
M

ω ∧ η,

where ω is a differential p-form and η is a differential (n− p)-form. For details, see Chapter
3, Theorem 3.7. The proof uses several tools from the arsenal of homological algebra: the
zig-zag lemma (in the form of Mayer–Vietoris sequences), the five lemma, and an induction
on finite “good covers.”

Around 1935, inspired by Pontrjagin’s duality theorem and his introduction of the no-
tion of nondegenerate pairing (see the end of this section), Alexander and Kolmogoroff
independently started developing cohomology, and soon after this it was realized that be-
cause cohomology primarily deals with functions, it is possible to define various products.
Among those, the cup product is particularly important because it induces a multiplication
operation on what is called the cohomology algebra H∗(X;R) of a space X, and the cap
product yields a stronger version of Poincaré duality.

Recall that S∗(X;R) is the R-module
⊕

p≥0 S
p(X;R), where the Sp(X;R) are the sin-

gular cochain modules. For all p, q ≥ 0, it possible to define a function

^ : Sp(X;R)× Sq(X;R)→ Sp+q(X;R),

called cup product . These functions induce a multiplication on S∗(X;R) also called the
cup product, which is bilinear, associative, and has an identity element. The cup product
satisfies the following equation

δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd),

reminiscent of a property of the wedge product. This equation can be used to show that the
cup product is a well defined on cohomology classes:

^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R).

These operations induce a multiplication operation on H∗(X;R) =
⊕

p≥0H
p(X;R) which is

bilinear and associative. Together with the cup product, H∗(X;R) is called the cohomology
ring of X. For details, see Section 4.8.

The cup product for simplicial cohomology was invented independently by Alexander
and Kolmogoroff (in addition to simplicial cohomology) and presented at a conference held
in Moscow in 1935. Alexander’s original definition was not quite correct and he modified his
definition following a suggestion of Čech (1936), independently found by Whitney (1938),
who introduced the notation ^. Eilenberg extended the definition of the cup product to
singular cohomology (1944).

The significance of the cohomology ring is that two spaces X and Y may have isomorphic
cohomology modules but nonisomorphic cohomology rings. Therefore, the cohomology ring
is an invariant of a space X that is finer than its cohomology.
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Another product related to the cup product is the cap product. The cap product combines
cohomology and homology classes, it is an operation

_ : Hp(X;R)×Hn(X;R)→ Hn−p(X;R);

see Section 7.2.

The cap product was introduced by Čech (1936) and independently by Whitney (1938),
who introduced the notation _ and the name cap product . Again, Eilenberg generalized the
cap product to singular homology and cohomology.

The cup product and the cap product are related by the following equation:

a(b _ σ) = (a ^ b)(σ)

for all a ∈ Sn−p(X;R), all b ∈ Sp(X;R), and all σ ∈ Sn(X;R), or equivalently using the
bracket notation for evaluation as

〈a, b _ σ〉 = 〈a ^ b, σ〉,

which shows that _ is the adjoint of ^ with respect to the evaluation pairing 〈−,−〉.
The reason why the cap product is important is that it can be used to state a sharper

version of Poincaré duality. First we need to talk about orientability.

If M is a topological manifold of dimension n, it turns out that for every x ∈ M the
relative homology groups Hp(M,M − {x};Z) are either (0) if p 6= n, or equal to Z if p = n.
An orientation of M is a choice of a generator µx ∈ Hn(M,M −{x};Z) ∼= Z for each x ∈M
which varies “‘continuously” with x. A manifold that has an orientation is called orientable.

Technically, this means that for every x ∈M , locally on some small open subset U of M
containing x there is some homology class µU ∈ Hn(M,M − U ;Z) such that all the chosen
µx ∈ Hn(M,M − {x};Z) for all x ∈ U are obtained as images of µU . If such a µU can be
found when U = M , we call it a fundamental class of M and denote it by µM ; see Section
7.3. Readers familiar with differential geometry may think of the fundamental form as a
discrete analog to the notion of volume form. The crucial result is that a compact manifold
of dimension n is orientable iff it has a unique fundamental class µM ; see Theorem 7.7.

The notion of orientability can be generalized to the notion of R-orientability. One of
the advantages of this notion is that every manifold is Z/2Z orientable. We can now state
the Poincaré duality theorem in terms of the cap product.

If M is compact and orientable, then there is a fundamental class µM . In this case (if
0 ≤ p ≤ n) we have a map

DM : Hp(M ;Z)→ Hn−p(M ;Z)

given by
DM(ω) = ω _ µM .
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Poincaré duality asserts that the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;Z) and Hn−p(M ;Z); see Theorem 7.4.

Poincaré duality can be generalized to R-orientable manifolds for any commutative ring
R, to coefficients in any R-module G, and to noncompact manifolds if we replace cohomology
by cohomology with compact support (the modules Hp

c (X;R)); see Section 7.3, 7.4, and 7.5.
If R = Z/2Z Poincaré duality holds for all manifolds, orientable or not.

Another kind of duality was introduced by Alexander in 1922. Alexander considered a
compact proper subset A of the sphere Sn (n ≥ 2) which is a curvilinear cell complex (A has
some type of generalized triangulation). For the first time he defined the homology groups
of the open subset Sn−A with coefficients in Z/2Z (so that he did not have to bother with
signs), and he proved that for p ≤ n− 2 there are isomorphisms

Hp(A;Z/2Z) ∼= Hn−p−1(Sn − A;Z/2Z).

Since cohomology did not exist yet, the orginal version of Alexander duality was stated for
homology.

Around 1928, Lefschetz started investigating homology with coefficients in Z,Z/mZ, or
Q, and defined relative homology. In his book published in 1930, using completely different
methods from Alexander, Lefschetz proved a version of Alexander’s duality in the case where
A is a subcomplex of Sn. Soon after he obtained a homological version of what we call the
Lefschetz duality theorem in Section 14.3 (Theorem 14.9):

Hp(M,L;Z) ∼= Hn−p(M − L;Z),

where M and L are complexes and L is a subcomplex of M .

Both Alexander and Lefschetz duality can be generalized to the situation where in Alexan-
der duality A is an arbitrary closed subset of Sn, and in Lefschetz duality L is any compact
subset of M and M is orientable, but new kinds of cohomology need to be introduced: Čech
cohomology and Alexander–Spanier cohomology , which turn out to be equivalent. This is a
nontrivial theorem due to Dowker [10]. Then a duality theorem generalizing both Poincaré
duality and Alexander–Lefschetz duality can be proved. These matters are discussed in
Chapter 10, Section 13.7, and Chapter 14.

Proving the general version of Alexander–Lefschetz duality takes a significant amount
of work because it requires defining relative versions of Čech cohomology and Alexander–
Spanier cohomology, and to prove their equivalence as well as their equivalence to another
definition in terms of direct limits of singular cohomology groups (see Definition 14.13 and
Proposition 14.7).

Another mathematician who made important contributions, especially to duality theory,
is Pontrjagin. In a paper published in 1931 Pontrjagin investigates the duality between
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a closed subset A of Rn homeomorphic to a simplicial complex and Rn − A. Pontrjagin
introduces for the first time the notion of a nondegenerate pairing ϕ : U × V → G between
two finitely abelian groups U and V , where G is another abelian group (he uses G = Z or
G = Z/mZ). This is a bilinear map ϕ : U × V → G such that if ϕ(u, v) = 0 for all v ∈ V
then u = 0, and if ϕ(u, v) = 0 for all u ∈ U then v = 0. Pontrjagin proves that U and
V are isomorphic for his choice of G, and applies the notion of nondegenerate pairing to
Poincaré duality and to a version of Alexander duality for certain subsets of Rn. Pontrjagin
also introduces the important notion of direct limit (see Section 9.3, Definition 9.8) which,
among other things, plays a crucial role in the definition of Čech cohomology and in the
construction of a sheaf from a presheaf (see Chapter 11).

In another paper published in 1934, Pontrjagin states and proves his famous duality
theory between discrete and compact abelian topological groups. In this situation, U is
a discrete group, G = R/Z, and V = Û = Hom(U,R/Z) (with the topology of simple
convergence). Pontrjagin applies his duality theorem to a version of Alexander duality for
compact subsets of Rn and for a version of Čech homology (cohomology had not been defined
yet).

In the next section we introduce Čech Cohomology. It turns out that Čech cohomology
accomodates very general types of coefficients, namely presheaves and sheaves . In Chapters
9 and 11 we introduce these notions that play a major role in many area of mathematics,
especially algebraic geometry and algebraic topology.

One can say that from a historical point of view, all the notions we presented so far are
discussed in the landmark book by Eilenberg and Steenrod [12] (1952). This is a beautiful
book well worth reading, but it is not for the beginner. The next landmark book is Spanier’s
[47] (1966). It is easier to read than Eilenberg and Steenrod but still quite demanding.

The next era of algebraic topology begins with the introduction of the notion of sheaf by
Jean Leray around 1946.

1.4 Presheaves, Sheaves, and Čech Cohomology

The machinery of sheaves is applicable to problems designated by the vague notion of “pas-
sage from local to global properties.” When some mathematical object attached to a topo-
logical space X can be “restricted” to any open subset U of X, and that restriction is known
for sufficiently small U , what can be said about that “global” object? For example, consider
the continuous functions defined over R2 and their restrictions to open subsets of R2.

Problems of this type had arisen since the 1880’s in complex analysis in several variables
and had been studied by Poincaré, Cousin, and later H. Cartan and Oka. Beginning in 1942,
Leray considered a similar problem in cohomology. Given a space X, when the cohomology
H∗(U ;G) =

⊕
p≥0H

p(U ;G) is known for sufficiently small U , what can be said about
H∗(X;G) =

⊕
p≥0H

p(X;G)?
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Leray devised some machinery in 1946 that was refined and generalized by H. Cartan, M.
Lazard, A. Borel, Koszul, Serre, Godement, and others, to yield the notions of presheaves
and sheaves.

Given a topological space X and a class C of structures (a category), say sets, vector
spaces, R-modules, groups, commutative rings, etc., a presheaf on X with values in C consists
of an assignment of some object F(U) in C to every open subset U of X and of a map
F(i) : F(U) → F(V ) of the class of structures in C to every inclusion i : V → U of open
subsets V ⊆ U ⊆ X, such that

F(i ◦ j) = F(j) ◦ F(i)

F(idU) = idF(U),

for any two inclusions i : V → U and j : W → V , with W ⊆ V ⊆ U .

Note that the order of composition is switched in F(i ◦ j) = F(j) ◦ F(i).

Intuitively, the map F(i) : F(U) → F(V ) is a restriction map if we think of F(U) and
F(V ) as a sets of functions (which is often the case). For this reason, the map F(i) : F(U)→
F(V ) is also denoted by ρUV : F(U) → F(V ), and the first equation of Definition 9.1 is
expressed by

ρUW = ρVW ◦ ρUV .
Presheaves are typically used to keep track of local information assigned to a global object

(the space X). It is usually desirable to use to consistent local information to recover some
global information, but this requires a sharper notion, that of a sheaf.

The motivation for the extra condition that a sheaf should satisfy is this. Suppose we
consider the presheaf of continuous functions on a topological space X. If U is any open
subset of X and if (Ui)i∈I is an open cover of U , for any family (fi)i∈I of continuous functions
fi : Ui → R, if fi and fj agree on every overlap Ui ∩ Uj, then they fi patch to a unique
continuous function f : U → R whose restriction to Ui is fi.

Given a topological space X and a class C of structures (a category), say sets, vector
spaces, R-modules, groups, commutative rings, etc., a sheaf on X with values in C is a
presheaf F on X such that for any open subset U of X, for every open cover (Ui)i∈I of U
(that is, U =

⋃
i∈I Ui for some open subsets Ui ⊆ U of X), the following conditions hold:

(G) (Gluing condition) For every family (fi)i∈I with fi ∈ F(Ui), if the fi are consistent,
which means that

ρUiUi∩Uj(fi) = ρ
Uj
Ui∩Uj(fj) for all i, j ∈ I,

then there is some f ∈ F(U) such that ρUUi(f) = fi for all i ∈ I.

(M) (Monopresheaf condition) For any two elements f, g ∈ F(U), if f and g agree on all
the Ui, which means that

ρUUi(f) = ρUUi(g) for all i ∈ I,

then f = g.
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Many (but not all) objects defined on a manifold are sheaves: the smooth functions
C∞(U), the smooth differential p-forms Ap(U), the smooth vector fields X(U), where U is
any open subset of M .

Given any commutative ring R and a fixed R-module G, the constant presheaf GX is
defined such that GX(U) = G for all nonempty open subsets U of X, and GX(∅) = (0). The

constant sheaf G̃X is the sheaf given by G̃X(U) = the set of locally constant functions on
U (the functions f : U → G such that for every x ∈ U there is some open subset V of U

containing x such that f is constant on V ), and G̃X(∅) = (0).

In general, a presheaf is not a sheaf. For example, the constant presheaf is not a sheaf.
However, there is a procedure for converting a presheaf to a sheaf. We will return to this
process in Section 1.5.

Čech cohomology with values in a presheaf of R-modules involves open covers of the
topological space X.

Apparently, Čech himself did not introduce Čech cohomology, but he did introduce Čech
homology using the notion of open cover (1932). Dowker, Eilenberg, and Steenrod introduced
Čech cohomology in the early 1950’s.

Given a topological space X, a family U = (Uj)j∈J is an open cover of X if the Uj are
open subsets of X and if X =

⋃
j∈J Uj. Given any finite sequence I = (i0, . . . , ip) of elements

of some index set J (where p ≥ 0 and the ij are not necessarily distinct), we let

UI = Ui0···ip = Ui0 ∩ · · · ∩ Uip .

Note that it may happen that UI = ∅. We denote by Ui0···îj ···ip the intersection

Ui0···îj ···ip = Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uip

of the p subsets obtained by omitting Uij from Ui0···ip = Ui0 ∩ · · · ∩ Uip (the intersection of
the p+ 1 subsets).

Now given a presheaf F of R-modules, the R-module of Čech p-cochains Cp(U ,F) is the
set of all functions f with domain Jp+1 such that f(i0, . . . , ip) ∈ F(Ui0···ip); in other words,

Cp(U ,F) =
∏

(i0,...,ip)∈Jp+1

F(Ui0···ip),

the set of all Jp+1-indexed families (fi0,...,ip)(i0,...,ip)∈Jp+1 with fi0,...,ip ∈ F(Ui0···ip). Observe
that the coefficients (the modules F(Ui0···ip)) can “vary” from open subset to open subset.

We have p+ 1 inclusion maps

δpj : Ui0···ip −→ Ui0···îj ···ip , 0 ≤ j ≤ p.
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Each inclusion map δpj : Ui0···ip −→ Ui0···îj ···ip induces a map

F(δpj ) : F(Ui0···îj ···ip) −→ F(Ui0···ip)

which is none other that the restriction map ρ
Ui0···îj ···ip
Ui0···ip

which, for the sake of notational

simplicity, we also denote by ρji0···ip .

Given a topological space X, an open cover U = (Uj)j∈J of X, and a presheaf of R-
modules F on X, the coboundary maps δpF : Cp(U ,F)→ Cp+1(U ,F) are given by

δpF =

p+1∑
j=1

(−1)jF(δp+1
j ), p ≥ 0.

More explicitly, for any p-cochain f ∈ Cp(U ,F), for any sequence (i0, . . . , ip+1) ∈ Jp+2, we
have

(δpFf)i0,...,ip+1 =

p+1∑
j=0

(−1)jρji0···ip+1
(fi0,...,îj ,...,ip+1

).

Unravelling the above definition for p = 0 we have

(δ0
Ff)i,j = ρ0

ij(fj)− ρ1
ij(fi),

and for p = 1 we have

(δ1
Ff)i,j,k = ρ0

ijk(fj,k)− ρ1
ijk(fi,k) + ρ2

ijk(fi,j).

It is easy to check that δp+1
F ◦ δpF = 0 for all p ≥ 0, so we have a chain complex of

cohomology

0
δ−1
F // C0(U ,F)

δ0
F // C1(U ,F) // · · ·

δp−1
F // Cp(U ,F)

δpF // Cp+1(U ,F)
δp+1
F // · · ·

and we can define the Čech cohomology groups as follows.

Given a topological space X, an open cover U = (Uj)j∈J of X, and a presheaf of R-
modules F on X, the Čech cohomology groups Ȟp(U ,F) of the cover U with values in F are
defined by

Ȟp(U ,F) = Ker δpF/Im δp−1
F , p ≥ 0.

The classical Čech cohomology groups Ȟp(U ;G) of the cover U with coefficients in the R-
module G are the groups Ȟp(U , GX), where GX is the constant sheaf on X with values in
G.

The next step is to define Čech cohomology groups that do not depend on the open
cover U . This is achieved by defining a notion of refinement on covers and by taking direct
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limits (see Section 9.3, Definition 9.8). Čech had used such a method in defining his Čech
homology groups, by introducing the notion of inverse limit (which, curiously, was missed
by Pontrjagin whose introduced direct limits!).

Without going into details, given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space X,
we say that V is a refinement of U , denoted U ≺ V , if there is a function τ : J → I such that

Vj ⊆ Uτ(j) for all j ∈ J.

Under this notion refinement, the open covers of X form a directed preoder, and the family
(Ȟp(U ,F))U is what is called a direct mapping family so its direct limit

lim−→
U

Ȟp(U ,F)

makes sense. We define the Čech cohomology groups Ȟp(X,F) with values in F by

Ȟp(X,F) = lim−→
U

Ȟp(U ,F).

The classical Čech cohomology groups Ȟp(X;G) with coefficients in the R-module G are the
groups Ȟp(X,GX) where GX is the constant presheaf with value G. All this is presented in
Chapter 10.

A natural question to ask is how does the classical Čech cohomology of a space com-
pare with other types of cohomology, in particular signular cohomology. In general, Čech
cohomology can differ from singular cohomology, but for manifolds it agrees. Classical Čech
cohomology also agrees with de Rham cohomology of the constant presheaf RX . These
results are hard to prove; see Chapter 13.

1.5 Sheafification and Stalk Spaces

A map (or morphism) ϕ : F → G of presheaves (or sheaves) F and G on X consists of a
family of maps ϕU : F(U)→ G(U) of the class of structures in C, for any open subset U of
X, such that

ϕV ◦ (ρF)UV = (ρG)
U
V ◦ ϕU

for every pair of open subsets U, V such that V ⊆ U ⊆ X. Equivalently, the following
diagrams commute for every pair of open subsets U, V such that V ⊆ U ⊆ X

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V ).

The notion of kernel Kerϕ and image Imϕ of a presheaf or sheaf map ϕ : F → G is easily
defined. The presheaf Kerϕ is defined by (Kerϕ)(U) = KerϕU , and the presheaf Im ϕ is
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defined by (Im ϕ)(U) = Im ϕU . In the case or presheaves, they are also presheaves, but in
the case of sheaves, the kernel Kerϕ is indeed a sheaf, but the image Im ϕ is not a sheaf in
general.

This failure of the image of a sheaf map to be a sheaf is a problem that causes significant
technical complications. In particular, it is not clear what it means for a sheaf map to be
surjective, and a “good” definition of the notion of an exact sequence of sheaves is also
unclear.

Fortunately, there is a procedure for converting a presheaf F into a sheaf F̃ which is
reasonably well-behaved. This procedure is called sheafification. There is a sheaf map
η : F → F̃ which is generally not injective.

The sheafification process is universal in the sense that given any presheaf F and any
sheaf G, for any presheaf map ϕ : F → G, there is a unique sheaf map ϕ̂ : F̃ → G such that

ϕ = ϕ̂ ◦ ηF

as illustrated by the following commutative diagram

F ηF //

ϕ
��

F̃
ϕ̂

��
G;

see Theorem 11.11.

The sheafification process involves constructing a topological space SF from the presheaf
F that we call the stalk space of F . Godement called it the espace étalé. The stalk space
is the disjoint union of sets (modules) Fx called stalks . Each stalk F is the direct limit
lim−→(F(U))U3x of the family of modules F(U) for all “small” open sets U containing x (see
Definition 11.1). There is a surjective map p : SF → X which, under the topology given
to SF , is a local homeomorphism, which means that for every y ∈ SF , there is some open
subset V of SF containing y such that the restriction of p to V is a homeomorphism. The
sheaf F̃ consists of the continuous sections of p, that is, the continuous functions s : U → SF
such that p ◦ s = idU , for any open subset U of X. This construction is presented in detail
in Section 11.1.

The construction of the pair (SF , p) from a presheaf F suggests another definition of a
sheaf as a pair (E, p), where E is a topological space and p : E → X is a surjective local
homeomorphism onto another space X. Such a pair (E, p) is often called a sheaf space,
but we prefer to call it a stalk space. This is the definition that was given by H. Cartan
and M. Lazard around 1950. The sheaf ΓE associated with the stalk space (E, p) is defined
as follows: for any open subset U or X, the sections of ΓE are the continuous sections
s : U → E, that is, the continuous functions such that p◦s = id. We can also define a notion
of map between two stalk spaces.

As this stage, given a topological space X we have three categories:



28 CHAPTER 1. INTRODUCTION

(1) The category Psh(X) of presheaves and their morphisms.

(2) The category Sh(X) of sheaves and their morphisms.

(3) The category StalkS(X) of stalk spaces and their morphisms.

There is also a functor
S : PSh(X)→ StalkS(X)

from the category PSh(X) to the category StalkS(X) given by the construction of a stalk
space SF from a presheaf F , and a functor

Γ: StalkS(X)→ Sh(X)

from the category StalkS(X) to the category Sh(X), given by the sheaf ΓE of continuous
sections of E. Here, we are using the term functor in an informal way. A more precise
definition is given in Section 1.7.

Note that every sheaf F is also a presheaf, and that every map ϕ : F → G of sheaves is
also a map of presheaves. Therefore, we have an inclusion map

i : Sh(X)→ PSh(X),

which is a functor. As a consequence, S restricts to an operation (functor)

S : Sh(X)→ StalkS(X).

There is also a map η which maps a presheaf F to the sheaf ΓS(F) = F̃ . This map η is
a natural isomorphism between the functors id (the identity functor) and ΓS from Sh(X)
to itself.

We can also define a map ε which takes a stalk space (E, p) and makes the stalk space
SΓE. The map ε is a natural isomorphism between the functors id (the identity functor)
and SΓ from StalkS(X) to itself.

Then we see that the two operations (functors)

S : Sh(X)→ StalkS(X) and Γ: StalkS(X)→ Sh(X)

are almost mutual inverses, in the sense that there is a natural isomorphism η between ΓS
and id and a natural isomorphism ε between SΓ and id. In such a situation, we say that the
classes (categories) Sh(X) and StalkS(X) are equivalent . The upshot is that it is basically
a matter of taste (or convenience) whether we decide to work with sheaves or stalk spaces.

We also have the operator (functor)

ΓS : PSh(X)→ Sh(X)
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which “sheafifies” a presheaf F into the sheaf F̃ . Theorem 11.11 can be restated as saying
that there is an isomorphism

HomPSh(X)(F , i(G)) ∼= HomSh(X)(F̃ ,G),

between the set (category) of maps between the presheaves F and i(G) and the set (category)

of maps between the sheaves F̃ and G. In fact, such an isomorphism is natural, so in
categorical terms, i and ˜= ΓS are adjoint functors .

All this is explained in Sections 11.2 and 11.3.

1.6 Cokernels and Images of Sheaf Maps

We still need to define the image of a sheaf map in such a way that the notion of exact
sequence of sheaves makes sense. Recall that if f : A → B is a homomorphism of modules,
the cokernel Coker f of f is defined by B/Im f . It is a measure of the surjectivity of f . We
also have the projection map coker(f) : B → Coker f , and observe that

Im f = Ker coker(f).

The above suggests defining notions of cokernels of presheaf maps and sheaf maps. For a
presheaf map ϕ : F → G this is easy, and we can define the presheaf cokernel PCoker(ϕ). It
comes with a presheaf map pcoker(ϕ) : G → PCoker(ϕ).

If F and G are sheaves, we define the sheaf cokernel SCoker(ϕ) as the sheafification of
PCoker(ϕ). It also comes with a presheaf map scoker(ϕ) : G → SCoker(ϕ).

Then it can be shown that if ϕ : F → G is a sheaf map, SCoker(ϕ) = (0) iff the stalk
maps ϕx : Fx → Gx are surjective for all x ∈ X; see Proposition 11.18.

It follows that the “correct” definition for the image SIm ϕ of a sheaf map ϕ : F → G is

SIm ϕ = Ker scoker(ϕ).

With this definition, a sequence of sheaves

F ϕ // G ψ //H
is said to be exact if SIm ϕ = Kerψ. Then it can be shown that

F ϕ // G ψ //H
is an exact sequence of sheaves iff the sequence

Fx
ϕx // Gx

ψx //Hx

is an exact sequence of R-modules (or rings) for all x ∈ X; see Proposition 11.23. This
second characterization of exactness (for sheaves) is usually much more convenient than the
first condition.

The definitions of cokernels and images of presheaves and sheaves as well as the notion
of exact sequences of presheaves and sheaves are discussed in Sections 11.4 and 11.5.
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1.7 Injective and Projective Resolutions;

Derived Functors

In order to define, even informally, the concept of derived functor, we need to describe what
are functors and exact functors.

Suppose we have two types of structures (categories) C and D (for concreteness, think
of C as the class of R-modules over some commutative ring R with an identity element 1
and of D as the class of abelian groups), and we have a transformation T (a functor) which
works as follows:

(i) Each object A of C is mapped to some object T (A) of D.

(ii) Each map A
f // B between two objects A and B in C (of example, an R-linear map)

is mapped to some map T (A)
T (f) // T (B) between the objects T (A) and T (B) in D

(for example, a homomorphism of abelian groups) in such a way that the following
properties hold:

(a) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (A)
T (f) // T (B)

T (g) // T (C) makes sense in D, and

T (g ◦ f) = T (g) ◦ T (f).

(b) If A
idA // A is the identity map of the object A in C, then T (A)

T (idA)// T (A) is the

identity map of T (A) in D; that is,

T (idA) = idT (A).

Whenever a transformation T : C → D satisfies the Properties (i), (ii) (a), (b), we call it a
(covariant) functor from C to D.

If T : C → D satisfies Properties (i), (b), and if Properties (ii) and (a) are replaced by
the Properties (ii’) and (a’) below

(ii’) Each map A
f // B between two objects A and B in C is mapped to some map

T (B)
T (f) // T (A) between the objects T (B) and T (A) in D in such a way that the

following properties hold:

(a’) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (C)
T (g) // T (B)

T (f) // T (A) makes sense in D, and

T (g ◦ f) = T (f) ◦ T (g),
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then T is called a contravariant functor from C to D.

An example of a (covariant) functor is the functor Hom(A,−) (for a fixed R-module A)
from R-modules to R-modules which maps a module B to the module Hom(A,B) and a mod-
ule homomorphism f : B → C to the module homomorphism Hom(A, f) from Hom(A,B)
to Hom(A,C) given by

Hom(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ Hom(A,B).

Another example is the functor T from R-modules to R-modules such that T (A) = A⊗RM
for any R-module A, and T (f) = f ⊗R idM for any R-linear map f : A→ B.

An example of a contravariant functor is the functor Hom(−, A) (for a fixed R-module A)
from R-modules to R-modules which maps a module B to the module Hom(B,A) and a mod-
ule homomorphism f : B → C to the module homomorphism Hom(f, A) from Hom(C,A) to
Hom(B,A) given by

Hom(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(C,A).

Given a type of structures (category) C let us denote the set of all maps from an object
A to an object B by HomC(A,B). For all the types of structures C that we will dealing
with, each set HomC(A,B) has some additional structure; namely it is an abelian group.

Categories and functors were introduced by Eilenberg and Mac Lane, first in a paper
published in 1942, and then in a more complete paper published in 1945.

Intuitively speaking an abelian category is a category in which the notion of kernel and
cokernel of a map makes sense. Then we can define the notion of image of a map f as the
kernel of the cokernel of f , so the notion of exact sequence makes sense, as we did in Section
1.6. The categories of R-modules and the categories of sheaves (or presheaves) are abelian
categories. For more details, see Section 11.5.

A sequence of R-modules and R-linear maps (more generally objects and maps between
abelian categories)

0 // A
f // B

g // C // 0 (∗)

is a short exact sequence if

(1) f is injective.

(2) Im f = Ker g.

(3) g is surjective.

According to Dieudonné [8], the notion of exact sequence first appeared in a paper of
Hurewicz (1941), and then in a paper of Eilenberg and Steenrod and a paper of H. Cartan,
both published in 1945. In 1947, Kelly and Picher generalized the notion of exact sequence
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to chain complexes, and apparently introduced the terminology exact sequence. In their 1952
treatise [12], Eilenberg and Steenrod took the final step of allowing a chain complex to be
indexed by Z (as we do in Section 2.3).

Given two types of structures (categories) C and D in each of which the concept of
exactness is defined (abelian categories), given a (additive) functor T : C→ D, by applying
T to the short exact sequence (∗) we obtain the sequence

0 // T (A)
T (f) // T (B)

T (g) // T (C) // 0, (∗∗)

which is a chain complex (since T (g) ◦ T (f) = 0). Then the following question arises:

Is the sequence (∗∗) also exact?

In general, the answer is no, but weaker forms of presevation of exactness suggest them-
selves.

A functor T : C → D, is said to be exact (resp. left exact , right exact) if whenever the
sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (A) // T (B) // T (C) // 0

is exact in D (left exact if the sequence

0 // T (A) // T (B) // T (C)

is exact, right exact if the sequence

T (A) // T (B) // T (C) // 0

is exact).

If T : C→ D is a contravariant functor, then T is said to be exact (resp. left exact , right
exact) if whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A) // 0

is exact in D (left exact if the sequence

0 // T (C) // T (B) // T (A)
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is exact, right exact if the sequence

T (C) // T (B) // T (A) // 0

is exact).

For example, the functor Hom(−, A) is left-exact but not exact in general (see Section
2.1). Similarly, the functor Hom(A,−) is left-exact but not exact in general (see Section
2.2).

Modules for which the functor Hom(A,−) is exact play an important role. They are
called projective module. Similarly, modules for which the functor Hom(−, A) is exact are
called injective modules .

The functor − ⊗R M is right-exact but not exact in general (see Section 2.2). Modules
M for which the functor −⊗RM is exact are called flat .

A good deal of homological algebra has to do with understanding how much a module
fails to be projective, or injective (or flat).

Injective and projective modules also also characterized by extension properties.

(1) A module P is projective iff for any surjective linear map h : A → B and any linear

map f : P → B, there is some linear map f̂ : P → A lifting f : P → B in the sense
that f = h ◦ f̂ , as in the following commutative diagram:

P

f
��

f̂

��
A

h
// B // 0.

(2) A module I is injective if for any injective linear map h : A → B and any linear map

f : A → I, there is some linear map f̂ : B → I extending f : A → I in the sense that
f = f̂ ◦ h, as in the following commutative diagram:

0 // A

f
��

h // B

f̂~~
I.

See Section 12.1.

Injective modules were introduced by Baer in 1940 and projective modules by Cartan
and Eilenberg in the early 1950’s. Every free module is projective. Injective modules are
more elusive. If the ring R is a PID an R-module M is injective iff it is divisible (which
means that for every nonzero λ ∈ R, the map given by u 7→ λu for u ∈M is surjective).
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One of the most useful properties of projective modules is that every module M is the
image of some projective (even free) module P , which means that there is a surjective
homomorphism ρ : P → M . Similarly, every module M can be embedded in an injective
module I, which means that there is an injective homomorphism i : M → I. This second
fact is harder to prove (see Baer’s embedding theorem, Theorem 12.6).

The above properties can be used to construct inductively projective and injective resolu-
tions of a module M , a process that turns out to be remarkably useful. Intuitively, projective
resolutions measure how much a module deviates from being projective, and injective reso-
lutions measure how much a module deviates from being injective,

Hopf introduced free resolutions in 1945. A few years later Cartan and Eilenberg defined
projective and injective resolutions.

Given any R-module A, a projective resolution of A is any exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 // A // 0 (∗1)

in which every Pn is a projective module. The exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

obtained by truncating the projective resolution of A after P0 is denoted by PA, and the
projective resolution (∗1) is denoted by

PA p0 // A // 0.

Given any R-module A, an injective resolution of A is any exact sequence

0 // A
i0 // I0 d0

// I1 d1
// · · · // In

dn // In+1 // · · · (∗∗1)

in which every In is an injective module. The exact sequence

I0 d0
// I1 d1

// · · · // In
dn // In+1 // · · ·

obtained by truncating the injective resolution of A before I0 is denoted by IA, and the
injective resolution (∗∗1) is denoted by

0 // A
i0 // IA.

Now suppose that we have a functor T : C→ D, where C is the category of R-modules
and D is the category of abelian groups. If we apply T to PA we obtain the chain complex

0 T (P0)oo T (P1)
T (d1)oo · · ·T (d2)oo T (Pn−1)oo T (Pn)

T (dn)oo · · · ,oo (Lp)
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denoted T (PA). The above is no longer exact in general but it defines homology groups
Hp(T (PA)).

Similarly If we apply T to IA we obtain the cochain complex

0 // T (I0)
T (d0) // T (I1)

T (d1) // · · · // T (In)
T (dn) // T (In+1) // · · · , (Ri)

denoted T (IA). The above is no longer exact in general but it defines cohomology groups
Hp(T (IA)).

The reason why projective resolutions are so special is that even though the homology
groups Hp(T (PA)) appear to depend on the projective resolution PA, in fact they don’t; the
groups Hp(T (PA)) only depend on A and T . This is proved in Theorem 12.22.

Similarly, the reason why injective resolutions are so special is that even though the
cohomology groups Hp(T (IA)) appear to depend on the injective resolution IA, in fact they
don’t; the groups Hp(T (IA)) only depend on A and T . This is proved in Theorem 12.21.

Proving the above facts takes some work; we make use of the comparison theorems ; see
Section 12.2, Theorem 12.12 and Theorem 12.15. In view of the above results, given a functor
T as above, Cartan and Eilenberg were led to define the left derived functors LnT of T by

LnT (A) = Hn(T (PA)),

for any projective resolution PA of A, and the right derived functors RnT of T by

RnT (A) = Hn(T (IA)),

for any injective resolution IA of A. The functors LnT and RnT can also be defined on maps.
If T is right-exact, then L0T is isomorphic to T (as a functor), and if T is left-exact, then
R0T is isomorphic to T (as a functor).

For example, the left derived functors of the right-exact functor TB(A) = A ⊗ B (with
B fixed) are the “Tor” functors. We have TorR0 (A,B) ∼= A⊗B, and the functor TorR1 (−, G)
plays an important role in comparing the homology of a chain complex C and the homology
of the complex C ⊗R G; see Section 12.5. Čech introduced the functor TorR1 (−, G) in 1935
in terms of generators and relations. It is only after Whitney defined tensor products of
arbitrary Z-modules in 1938 that the defintion of Tor was expressed in the intrinsic form
that we are now familar with.

There are also versions of left and right derived functors for contravariant functors.
For example, the right derived functors of the contravariant left-exact functor TB(A) =
HomR(A,B) (with B fixed) are the “Ext” functors. We have Ext0

R(A,B) ∼= HomR(A,B),
and the functor Ext1

R(−, G) plays an important role in comparing the homology of a chain
complex C and the cohomology of the complex HomR(C,G); see Section 12.5. The Ext
functors were introduced in the context of algebraic topology by Eilenberg and Mac Lane
(1942).
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Everything we discussed so far is presented in Cartan and Eilenberg’s groundbreaking
book, Cartan–Eilenberg [7], published in 1956. It is in this book that the name homological
algebra is introduced. MacLane [29] (1975) and Rotman [40] give more “gentle” presentations
(see also Weibel [51] and Eisenbud [13]).

Derived functors can be defined for functors T : C→ D where C or D is a more general
category than the category of R-modules or the category of abelian groups. For example, in
sheaf cohomology, the category C is the category of sheaves of rings. In general, it suffices
that C and D are abelian categories.

We say that C has enough projectives if every object in C is the image of some projec-
tive object in C, and that C has enough injectives if every object in C can be embedded
(injectively) into some injective object in C.

There are situations (for example, when dealing with sheaves) where it is useful to know
that right derived functors can be computed by resolutions involving objects that are not
necessarily injective, but T -acyclic, as defined below.

Given a left-exact functor T : C→ D, an object J ∈ C is T -acyclic if RnT (J) = (0) for
all n ≥ 1.

The following proposition shows that right derived functors can be computed using T -
acyclic resolutions.

Proposition Given an additive left-exact functor T : C → D, for any A ∈ C suppose
there is an exact sequence

0 // A
ε // J0 d0

// J1 d1
// J2 d2

// · · · (†)

in which every Jn is T -acyclic (a right T -acyclic resolution JA). Then for every n ≥ 0 we
have a natural isomorphism between RnT (A) and Hn(T (JA)).

The above proposition is used several times in Chapter 13.

1.8 Universal δ-Functors

The most important property of derived functors is that short exact sequences yield long
exact sequences of homology or cohomology. This property was proved by Cartan and
Eilenberg, but Grothendieck realized how crucial it was and this led him to the fundamental
concept of universal δ-functor . Since we will be using right derived functors much more than
left derived functors we state the existence of the long exact sequences of cohomology for
right derived functors.

Theorem Assume the abelian category C has enough injectives, let 0 −→ A′ −→ A −→
A′′ −→ 0 be an exact sequence in C, and let T : C→ D be a left-exact (additive) functor.
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(1) Then for every n ≥ 0, there is a map

(RnT )(A′′)
δn−→ (Rn+1T )(A′),

and the sequence

0 // T (A′) // T (A) // T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (RnT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · ·

is exact. This property is similar to the property of the zig-zag lemma from Section 1.2.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T (A′)

��

// T (A)

��

// T (A′′)

��

δ0
A //

0 // T (B′) // T (B) // T (B′′)
δ0
B

//

and continuing with

· · · // RnT (A′)

��

// RnT (A)

��

// RnT (A′′)

��

δnA // (Rn+1T )(A′)

��

// · · ·

· · · // RnT (B′) // RnT (B) // RnT (B′′)
δnB

// (Rn+1T )(B′) // · · ·

is also commutative.

The proof of this result (Theorem12.25) is fairly involved and makes use of the Horseshoe
lemma (Theorem 12.19).
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The previous theorem suggests the definition of families of functors originally proposed by
Cartan and Eilenberg [7] and then investigated by Grothendieck in his legendary “Tohoku”
paper [21] (1957).

A δ-functors consists of a countable family T = (T n)n≥0 of functors T n : C → D that
satisfy the two conditions of the previous theorem. There is a notion of map, also called
morphism, between δ-functors.

Given two δ-functors S = (Sn)n≥0 and T = (T n)n≥0 a morphism η : S → T between S
and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → T n such that a certain
diagram commutes.

Grothendieck also introduced the key notion of universal δ-functor; see Grothendieck [21]
(Chapter II, Section 2.2).

A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn)n≥0 and every natural
transformation ϕ : T 0 → S0 there is a unique morphism η : T → S such that η0 = ϕ; we say
that η lifts ϕ.

The reason why universal δ-functors are important is the following kind of uniqueness
property that shows that a universal δ-functor is completely determined by the component
T 0.

Proposition Suppose S = (Sn)n≥0 and T = (T n)n≥0 are both universal δ-functors and
there is an isomorphism ϕ : S0 → T 0 (a natural transformation ϕ which is an isomorphism).
Then there is a unique isomorphism η : S → T lifting ϕ.

One might wonder whether (universal) δ-functors exist. Indeed there are plenty of them.

Theorem Assume the abelian category C has enough injectives. For every additive left-
exact functor T : C→ D, the family (RnT )n≥0 of right derived functors of T is a δ-functor.
Furthermore T is isomorphic to R0T .

In fact, the δ-functors (RnT )n≥0 are universal.

Grothendieck came up with an ingenious sufficient condition for a δ-functor to be uni-
versal: the notion of an erasable functor. Since Grothendieck’s paper is written in French,
this notion defined in Section 2.2 (page 141) of [21] is called effaçable, and many books and
paper use it. Since the English translation of “effaçable” is “erasable,” as advocated by Lang
we will use the the English word.

A functor T : C → D is erasable (or effaçable) if for every object A ∈ C there is some
object MA and an injection u : A → MA such that T (u) = 0. In particular this will be the
case if T (MA) is the zero object of D.

Our favorite functors, namely the right derived functors RnT , are erasable by injectives
for all n ≥ 1. The following result due to Grothendieck is crucial:

Theorem Let T = (T n)n≥0 be a δ-functor between two abelian categories C and D. If T n

is erasable for all n ≥ 1, then T is a universal δ-functor.
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Finally, by combining the previous results, we obtain the most important theorem about
universal δ-functors:

Theorem Assume the abelian category C has enough injectives. For every left-exact
functor T : C→ D, the right derived functors (RnT )n≥0 form a universal δ-functor such that
T is isomorphic to R0T . Conversely, every universal δ-functor T = (T n)n≥0 is isomorphic to
the right derived δ-functor (RnT 0)n≥0.

After all, the mysterious universal δ-functors are just the right derived functors of left-
exact functors. As an example, the functors ExtnR(A,−) constitute a universal δ-functor (for
any fixed R-module A).

The machinery of universal δ-functors can be used to prove that different kinds of co-
homology theories yield isomorphic groups. If two cohomology theories (Hn

S (−))n≥0 and
(Hn

T (−))n≥0 defined for objects in a category C (say, topological spaces) are given by univer-
sal δ-functors S and T in the sense that the cohomology groups Hn

S (A) and Hn
T (A) are given

by Hn
S (A) = Sn(A) and Hn

T (A) = T n(A) for all objects A ∈ C, and if H0
S(A) and H0

T (A)
are isomorphic, then Hn

S (A) and Hn
T (A) are isomorphic for all n ≥ 0. This technique willl

be used in Chapter 13 to prove that sheaf cohomology and Čech cohomology are isomorphic
for paracompact spaces.

In the next section, we will see how the machinery of right derived functors can be used
to define sheaf cohomology (where the category C is the category of sheaves of R-modules,
the category D is the catgeory of abelian groups, and T is the “global section functor”).

1.9 Sheaf Cohomology

Given a topological space X, we define the global section functor Γ(X,−) such that for every
sheaf of R-modules F ,

Γ(X,F) = F(X).

This is a functor from the category Sh(X) of sheaves of R-modules over X to the category
of abelian groups.

A sheaf I is injective if for any injective sheaf map h : F → G and any sheaf map
f : F → I, there is some sheaf map f̂ : G → I extending f : F → I in the sense that
f = f̂ ◦ h, as in the following commutative diagram:

0 // F
f

��

h // G

f̂��
I.

This is the same diagram that we used to define injective modules in Section 1.7, but here,
the category involved is the category of sheaves.

A nice feature of the category of sheaves of R-modules is that its has enough injectives.
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Proposition For any sheaf F of R-modules, there is an injective sheaf I and an injective
sheaf homomorphism ϕ : F → I.

As in the case of modules, the fact that the category of sheaves has enough injectives
implies that any sheaf has an injective resolution.

On the other hand, the category of sheaves does not have enough projectives. This is the
reason why projective resolutions of sheaves are of little interest.

Another good property is that the global section functor is left-exact. Then as in the
case of modules in Section 1.7, the cohomology groups induced by the right derived functors
RpΓ(X,−) are well defined.

The cohomology groups of the sheaf F (or the cohomology groups of X with values in F),
denoted by Hp(X,F), are the groups RpΓ(X,−)(F) induced by the right derived functor
RpΓ(X,−) (with p ≥ 0).

To compute the sheaf cohomology groups Hp(X,F), pick any resolution of F

0 // F // I0 d0
// I1 d1

// I2 d2
// · · ·

by injective sheaves In, apply the global section functor Γ(X,−) to obtain the complex of
R-modules

0 δ−1
// I0(X) δ0

// I1(X) δ1
// I2(X) δ2

// · · · ,
and then

Hp(X,F) = Ker δp/Im δp−1.

By Theorem 12.35 (stated in the previous section) the right derived functors RpΓ(X,−)
constitute a universal δ-functor, so all the properties of δ-functors apply.

In principle, computing the cohomology groups Hp(X,F) requires finding injective reso-
lutions of sheaves. However injective sheaves are very big and hard to deal with. Fortunately,
there is a class of sheaves known as flasque sheaves (due to Godement) which are Γ(X,−)-
acyclic, and every sheaf has a resolution by flasque sheaves. Therefore, by Proposition 12.27
(stated in the previous section) the cohomology groups Hp(X,F) can be computed using
flasque resolutions.

Then we compare sheaf cohomology (defined by derived functors) to the other kinds of

cohomology defined so far: de Rham, singular, Čech (for the constant sheaf G̃X).

If the space X is paracompact, then it turns out that for any sheaf F , the Čech cohomol-
ogy groups Ȟp(X,F) are isomorphic to the cohomology groups Hp(X,F). Furthermore, if

F is a presheaf, then the Čech cohomology groups Ȟp(X,F) and Ȟp(X, F̃) are isomorphic,

where F̃ is the sheafification of F . Several other results (due to Leray and Henri Cartan)
about the relationship between Čech cohomology and sheaf cohomology will be stated.

When X is a topological manifold (thus paracompact), for every R-module G, we will
show that the singular cohomology groups Hp(X;G) are isomorphic to the cohomology
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groups Hp(X, G̃X) of the constant sheaf G̃X . Technically, we will need to define soft and
fine sheaves.

We will also define Alexander–Spanier cohomology and prove that it is equivalent to sheaf
cohomology (and Čech cohomology) for paracompact spaces and for the constant sheaf G̃X .

In summary, for manifolds, singular cohomology, Čech cohomology, Alexander–Spanier
cohomology, and sheaf cohomology all agree (for the constant sheaf G̃X). For smooth mani-
folds, we can add de Rham cohomology to the above list of equivalent cohomology theories,
for the constant sheaf R̃X . All these results are presented in Chapter 13.

1.10 Suggestions On How to Use This Book

This book basically consists of two parts. The first part covers fairly basic material presented
in the first eight chapters. The second part deals with more sophisticated material including
sheaves, derived functors, and sheaf cohomology.

Chapter 3 on de Rham cohomology, Chapter 5 on simplicial homology and cohomology,
and Chapter 6 on CW-complexes, are written in such a way that they are pretty much
independent of each other and of the rest of book, and thus can be safely skipped. Readers
who have never heard about differential forms can skip Chapter 3, although of course they
will miss a nice facet of the global picture. Chapter 5 on simplicial homology and cohomology
was included mostly for historical sake, and because they have a strong combinatorial and
computational flavor. Chapter 6 on CW-complexes was included to show that there are
tools for computing homology goups and to compensate for the lack of computational flavor
of singular homology. However, CW-complexes can’t really be understood without a good
knowledge of singular homology.

Our feeling is that singular homology is simpler to define than the other homology the-
ories, and since it is also more general, we decided to choose it as our first presentation of
homology.

Our main goal is really to discuss cohomology, but except for de Rham cohomology, we
feel that a two step process where we first present singular homology, and then singular
cohomology as the result of applying the functor Hom(−, G), is less abrupt than discussing
Čech cohomology (or Alexander–Spanier cohomology) first. If the reader prefers, he/she
may to go directy to chapter 10.

In any case, we highy recommend first reading the first four sections of Chapter 2. Sec-
tions 2.5 and 2.6 can be skipped upon first reading. Next, either proceed with Chapter 3, or
skip it, but read Chapter 4 entirely.

After this, we recommend reading Chapter 7 on Poincaré duality, since this is one of the
jewels of algebraic topology.

The second part, starting with presheaves and sheaves in Chapter 9, relies on more
algebra, especially Chapter 12 on derived functors. However, this is some of the most



42 CHAPTER 1. INTRODUCTION

beautiful material, so do not be discouraged if the going is tough. Skip proofs upon first
reading and try to plow through as much as possible. Stop to take a break, and go back!

One of our goals is to fully prepare the reader to read books like Hartshorne [24] (Chapter
III). Others have expressed the same goal, we hope to more successful.

We have borrowed some proofs of Steve Shatz from Shatz and Gallier [46], and many
proofs in Chapter 12 are borrowed from Rotman [40]. Generally, we relied heavily on Bott
and Tu [2], Bredon [4], Godement [18], Hatcher [25], Milnor and Stasheff [35], Munkres
[38], Serre [44], Spanier [47], Tennison [48], and Warner [50]. These are wonderful books,
and we hope that reading our book will prepare the reader to study them. We express our
gratitude to these authors, and to all the others that have inspired us (including, of course,
Dieudonné).

Since we made the decision not to include all proofs (this would have doubled if not
tripled the size of the book!), we tried very hard to provide precise pointers to all omitted
proofs. This may be irritating to the expert, but we believe that a reader with less knowledge
will appreciate this. The reason for including a proof is that we feel that it presents a type
of argument that the reader should be exposed to, but this often subjective and a reflection
of our personal taste. When we omitted a proof, we tried to give an idea of what it would
be, except when it was a really difficult proof. This should be an incentive for the reader to
dig into these references.



Chapter 2

Homology and Cohomology

This chapter is an introduction to the crucial concepts and results of homological algebra
needed to understand homology and cohomology in some depth. The two most fundamental
concepts of homological algebra are:

(1) exact sequences.

(2) chain complexes.

Exact sequences are special kinds of chain complexes satisfying additional properties and the
purpose of cohomology (and homology) is to “measure” the extend to which a chain complex
fails to be an exact sequence. Remarkably, when this machinery is applied to topological
spaces or manifolds, it yields some valuable topological information about these spaces.

In their simplest form chain complexes and exact sequences are built from vector spaces
but a more powerful theory is obtained (at the cost of minor complications) if the vector
spaces are replaced by R-modules, where R is a commutative ring with a multiplicative
identity element 1 6= 0. In particular, if R = Z, then each space is just an abelian group. By
a linear map we mean an R-linear map.

In Section 2.1 we introduce exact sequences and prove some of their most basic properties.
Later in this chapter we prove two of their most important properties, namely the “zig-zag
lemma” for cohomology, or long exact sequence of cohomology, and the “five lemma.”

2.1 Exact Sequences

We begin with the notion of exact sequence.

Definition 2.1. A Z-indexed sequence of R-modules and R-linear maps between them

· · · // Ap−1

fp−1 // Ap
fp // Ap+1

fp+1 // Ap+2
// · · ·

43
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is exact if Im fp = Ker fp+1
1 for all p ∈ Z. A sequence of R-modules

0 −→ A
f−→ B

g−→ C −→ 0

is a short exact sequence if it is exact at A,B,C, which means that

1. Im f = Ker g.

2. f is injective.

3. g is surjective.

Observe that being exact at Ap+1, that is Im fp = Ker fp+1, implies that fp+1 ◦ fp = 0.

Given a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,

since g is surjective, f is injective, and Im f = Ker g, by the first isomorphism theorem we
have

C ∼= B/Ker g = B/Im f ∼= B/A.

Thus a short exact sequence amounts to a module B, a submodule A of B, and the quotient
module C ∼= B/A.

The quotient module B/Im f associated with the R-linear map f : A → B is a kind of
“dual” of the submodule Ker f which often comes up when dealing with exact sequences.

Definition 2.2. Given any R-linear map f : A→ B, the quotient module B/Im f is called
the cokernel of f and is denoted by Coker f .

Observe that Coker f = B/Im f ∼= C = Im g. Then given an exact sequence

· · · // Ap−2

fp−2 // Ap−1

fp−1 // Ap
fp // Ap+1

fp+1 // Ap+2
// · · · ,

we obtain short exact sequences as follows: if we focus on Ap, then there is a surjection
Ap −→ Im fp, and since Im fp = Ker fp+1 this is a surjection Ap −→ Ker fp+1, and by the
first isomorphism theorem and since Im fp−1 = Ker fp, we have an isomorphism

Ap/Im fp−1 = Ap/Ker fp ∼= Im fp = Ker fp+1.

This means that we have the short exact sequence

0 // Im fp−1
// Ap // Ker fp+1

// 0.

1A good mnemonic for this equation is ikea; i is the first letter in Im, and k is the first letter in Ker .



2.1. EXACT SEQUENCES 45

By a previous remark Coker fp−2
∼= Im fp−1, so we obtain the short exact sequence

0 // Coker fp−2
// Ap // Ker fp+1

// 0. (∗cok)

Short exact sequences of this kind often come up in proofs (for example, the Universal
Coefficient Theorems).

If we are dealing with vector spaces (that is, if R is a field), then a standard result of
linear algebra asserts that the isomorphism Ap/Ker fp ∼= Im fp yields the direct sum

Ap ∼= Ker fp ⊕ Im fp = Im fp−1 ⊕ Im fp.

As a consequence, if Ap−1 and Ap+1 are finite-dimensional, then so is Ap.

When the R-module C is free, a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

has some special properties that play a crucial role when we dualize such a sequence.

Definition 2.3. A short exact sequence of R-modules

0 −→ A
f−→ B

g−→ C −→ 0

is said to split (or to be a short split exact sequence) if the submodule f(A) is a direct
summand in B, which means that B is a direct sum B = f(A)⊕D for some submodule D
of B.

If a short exact sequence as in Definition 2.3 splits, since Im f = Ker g, f is injective and
g is surjective, then the restriction of g to D is a bijection onto C so there is an isomorphism
θ : B → A⊕C defined so that the restriction of θ to f(A) is equal to f−1 and the restriction
of θ to D is equal to g.

Proposition 2.1. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of R-modules. The following properties are equivalent.

(1) The sequence splits.

(2) There is a linear map p : B → A such that p ◦ f = idA.

(3) There is a linear map j : C → B such that g ◦ j = idC.

Symbolically, we have the following diagram of linear maps:

0 // A
f //

B
p
oo

g //
C

j
oo // 0.
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Proof. It is easy to prove that (1) implies (2) and (3). Since B = f(A) ⊕ D for some
submodule D of B, if π1 : A ⊕ D → A is the first projection and f−1 ⊕ idD : f(A) ⊕ D →
A ⊕ D be the isomorphism induced by f−1, then let p = π1 ◦ (f−1 ⊕ idD). It is clear that
p ◦ f = π1 ◦ (f−1 ⊕ idD) ◦ f = idA. Define j : C → D as the inverse of the restriction of g to
D (which is bijective, as we said earlier). Obviously g ◦ j = idC .

If (2) holds, let us prove that

B = f(A)⊕Ker p.

For any b ∈ B, we can write b = f(p(b)) + (b − f(p(b))). Obviously f(p(b)) ∈ f(A), and
since p ◦ f = idA we have

p(b− f(p(b))) = p(b)− p(f(p(b))) = p(b)− (p ◦ f)(p(b)) = p(b)− p(b) = 0,

so (b − f(p(b))) ∈ Ker p, which shows that B = f(A) + Ker p. If b ∈ f(A) ∩ Ker p, then
b = f(a) for some a ∈ A, so 0 = p(b) = p(f(a)) = a, and thus b = f(0) = 0. We conclude
that B = f(A)⊕Ker p, as claimed.

If (3) holds, let us prove that

B = f(A)⊕ Im j.

Since Im f = Ker g, this is equivalent to

B = Ker g ⊕ Im j.

For any b ∈ B, we can write b = (b − j(g(b))) + j(g(b)). Clearly j(g(b)) ∈ Im j, and since
g ◦ j = idC we have

g(b− j(g(b)) = g(b)− g(j(g(b))) = g(b)− (g ◦ j)(g(b)) = g(b)− g(b) = 0,

so (b − j(g(b))) ∈ Ker g. If b ∈ Ker g ∩ Im j, then b = j(c) for some c ∈ C, and so
0 = g(b) = g(j(c)) = c, thus b = j(c) = j(0) = 0. We conclude that B = Ker g ⊕ Im j.

Corollary 2.2. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of R-modules. If C is free then the exact sequence splits.

Proof. Pick a basis (ei)i∈I in C. Define the linear map j : C → B by choosing any vector
bi ∈ B such that g(bi) = ei (since g is surjective, this is possible) and setting j(ei) = bi.
Then

(g ◦ j)(ei) = g(bi) = ei.

so g ◦ j = idC , and by Proposition 2.2 the sequence splits since (3) implies (1).
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The following example is an exact sequence of abelian groups (Z-modules) that does not
split

0 //mZ i // Z π // Z/mZ // 0,

where i is the inclusion map and π is the projection map such that π(n) = n mod m, the
residue of n modulo m (with m ≥ 1). Indeed, any surjective homomorphism p from Z to
mZ would have to map 1 to m, but then p ◦ i 6= id.

Some of the fundamental and heavily used results about exact sequences include the “zig-
zag lemma” and the “five lemma.” We will encounter these lemma later on. The following
(apparently unnamed) result is also used a lot.

Proposition 2.3. Consider any diagram

A
f //

α

��

B
g //

β

��

C

γ

��
A′

f ′
// B′

g′
// C

in which the left and right squares commute and α, β, γ are isomorphisms. If the top row is
exact, then the bottom row is also exact.

Proof. The commutativity of the left and right squares implies that

γ ◦ g ◦ f = g′ ◦ f ′ ◦ α.

Since the top row is exact, g ◦ f = 0, so g′ ◦ f ′ ◦ α = 0, and since α is an ismorphism,
g′ ◦ f ′ = 0. It follows that Im f ′ ⊆ Ker g′.

Conversely assume that b′ ∈ Ker g′. Since β is an isomorphism there is some b ∈ B such
that β(b) = b′, and since g′(b′) = 0 we have

(g′ ◦ β)(b) = 0.

Since the right square commutes g′ ◦ β = γ ◦ g, so

(γ ◦ g)(b) = 0.

Since γ is an isomorphism, g(b) = 0. Since the top row is exact, Im f ⊆ Ker g, so there is
some a ∈ A such that f(a) = b, which implies that

(β ◦ f)(a) = β(b) = b′.

Since the left square commutes β ◦ f = f ′ ◦ α, and we deduce that

f ′(α(a)) = b′,

which proves that Ker g′ ⊆ Im f ′. Therefore, Im f ′ ⊆ Ker g′, as claimed.
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A common way to define cohomology is to apply duality to homology so we review duality
in R-modules to make sure that we are on firm grounds.

Definition 2.4. Given an R-module A, the R-module Hom(A,R) of all R-linear maps from
A to R (also called R-linear forms) is called the dual of A. Given any two R-modules A
and B, for any R-linear map f : A → B, the R-linear map f> : Hom(B,R) → Hom(A,R)
defined by

f>(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(B,R)

is called the dual linear map of f ; see the commutative diagram below:

A
f //

f>(ϕ)   

B

ϕ

��
R.

The dual linear map f> is also denoted by Hom(f,R) (or Hom(f, idR)).

If f : A→ B and g : B → C are linear maps of R-modules, a simple computation shows
that

(g ◦ f)> = f> ◦ g>.

Note the reversal in the order of composition of f> and g>. It is also immediately verified
that

id>A = idHom(A,R).

Here are some basic properties of the behavior of duality applied to exact sequences.

Proposition 2.4. Let g : B → C be a linear map between R-modules.

(a) If g is an isomorphism then so is g>.

(b) If g is the zero map then so is g>.

(c) If the sequence

B
g−→ C −→ 0

is exact, then the sequence

0 −→ Hom(C,R)
g>−→ Hom(B,R)

is also exact.

Proof. Properties (a) and (b) are immediate and left as an exercise.

Asume that the sequence B
g−→ C −→ 0 is exact which means that g is surjective. Let

ψ ∈ Hom(C,R) and assume that g>(ψ) = 0, which means that ψ◦g = 0, that is, ψ(g(b)) = 0
for all b ∈ B. Since g is surjective, we have ψ(c) = 0 for all c ∈ C, that is, ψ = 0 and g> is
injective.
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Proposition 2.5. If the following sequence of R-modules

A
f−→ B

g−→ C −→ 0

is exact, then the sequence

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R)

is also exact. Furthermore, if

0 −→ A
f−→ B

g−→ C −→ 0

is a split short exact sequence, then

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R) −→ 0

is also a split short exact sequence.

Proof. Since g is surjective, by Proposition 2.4(c), g> is injective. Since Im f = ker g, we
have g ◦ f = 0, so f> ◦ g> = 0, which shows that Im g> ⊆ Ker f>. Conversely, we prove that
if f>(ψ) = 0 for some ψ ∈ Hom(B,R), then ψ = g>(ϕ) for some ϕ ∈ Hom(C,R).

Since f>(ψ) = ψ ◦f , if f>(ψ) = 0 then ψ vanishes on f(A). Thus ψ induces a linear map
ψ′ : B/f(A) → R such that ψ = ψ′ ◦ π where π : B → B/f(A) is the canonical projection.
The exactness of the sequence implies that g induces an isomorphism g′ : B/f(A)→ C, and
we have the following commutative diagram:

R B
ψoo

π

��

g // C

B/f(A)

ψ′

cc

g′

;;

if we let ϕ = ψ′ ◦ (g′)−1, then we have a linear form ϕ ∈ Hom(C,R), and

g>(ϕ) = ϕ ◦ g = ψ′ ◦ (g′)−1 ◦ g = ψ,

as desired. Therefore, the dual sequence is exact at Hom(B,R).

If our short exact sequence is split, then there is a map p : B → A such that p ◦ f = idA,
so we get f> ◦ p> = idHom(A,R), which shows that f> is surjective, and p> : Hom(A,R) →
Hom(B,R) splits the dual sequence.
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� If f : A→ B is injective, then f> : Hom(B,R)→ Hom(A,R) is not necessarily surjective.
For example, we have the following short exact sequence

0 −→ Z ×2−→ Z π−→ Z/2Z −→ 0,

where ×2(n) = 2n, but the map (×2)> is not surjective. This is because for any ϕ ∈
Hom(Z,Z) we have (×2)>(ϕ) = ϕ ◦ ×2 and this function maps Z into 2Z. Thus the image
of (×2)> is not all of Hom(Z,Z).

Combining Corollary 2.2 and Proposition 2.5 we get the following result.

Proposition 2.6. If

0 −→ A
f−→ B

g−→ C −→ 0

is a short exact sequence and if C is a free R-module, then

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R) −→ 0

is a split short exact sequence.

The proposition below will be needed in the proof of the Universal Coefficient Theorem
for cohomology (Theorem 12.43).

Let M and G be R-modules, and let B ⊆ Z ⊆M be some submodules of M . Define B0

and Z0 by

B0 = {ϕ ∈ Hom(M,G) | ϕ(a) = 0 for all b ∈ B}
Z0 = {ϕ ∈ Hom(M,G) | ϕ(z) = 0 for all z ∈ Z}.

Proposition 2.7. For any R-modules M,G, and B ⊆ Z ⊆ M , if M = Z ⊕ Z ′ for some
submodule Z ′ of M , then then we have an isomorphism

Hom(Z/B,G) ∼= B0/Z0.

Proof. Define a map η : B0 → Hom(Z/B,G) as follows: For any ϕ ∈ B0, that is any
ϕ ∈ Hom(M,G) such that ϕ vanishes on B, let η(ϕ) ∈ Hom(Z/B,G) be the linear map
defined such that

η(ϕ)(α) = ϕ(z) for any z ∈ α ∈ Z/B.
For any other z′ ∈ α we have z′ = z + b for some b ∈ B, and then

ϕ(z + b) = ϕ(z) + ϕ(b) = ϕ(z)

since ϕ vanishes on B. Therefore any map ϕ ∈ B0 is constant on the each equivalence class
in Z/B, and η(ϕ) is well defined. The map η is surjective because if f is any linear map in
Hom(Z/B,G), we can define the linear map ϕ0 : Z → G by

ϕ0(z) = f([z]) for all [z] ∈ Z.
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Since f ∈ Hom(Z/B,G), we have ϕ0(b) = f([b]) = 0 for all b ∈ B. Since M = Z ⊕ Z ′, we
can extend ϕ0 to a linear map ϕ : M → G, for example by setting ϕ ≡ 0 on Z ′, and then ϕ
is a map in Hom(M,G) vanishing on B, and by definition η(ϕ) = f , since

η(ϕ)([z]) = ϕ(z) = ϕ0(z) = f([z]) for all [z] ∈ Z/B.

Finally, for any ϕ ∈ B0, since ϕ is constant on any equivalence class in Z/B, we have
η(ϕ) = 0 iff η(ϕ)([z]) = 0 for all [z] ∈ Z/B iff ϕ(z) = 0 for all z ∈ Z, iff ϕ ∈ Z0. Therefore
Ker η = Z0, and consequently by the First Isomorphism Theorem,

B0/Z0 ∼= Hom(Z/B,G),

as claimed.

We will also need the next proposition. Let M and G be R-modules, and let B be a
submodule of M . As above, let

B0 = {f ∈ Hom(M,G) | f |B ≡ 0},

the set of R-linear maps f : M → G that vanish on B.

Proposition 2.8. Let M and G be R-modules, and let B be a submodule of M . There is
an isomorphism

κ : B0 → Hom(M/B,G)

defined by
(κ(f))([u]) = f(u) for all [u] ∈M/B.

Proof. We need to check that the definition of κ(f) does not depend on the representative
u ∈M chosen in the equivalence class [u] ∈M/B. Indeed, if v = u+ b some b ∈ B, we have

f(v) = f(u+ b) = f(u) + f(b) = f(u),

since f(b) = 0 for all b ∈ B. The formula κ(f)([u]) = f(u) makes it obvious that κ(f) is
linear since f is linear. The mapping κ is injective. This is because if κ(f1) = κ(f2), then

κ(f1)([u]) = κ(f2)([u])

for all u ∈ M , and because κ(f1)([u]) = f1(u) and κ(f2)([u]) = f2(u), we get f1(u) = f2(u)
for all u ∈ M , that is, f1 = f2. The mapping κ is surjective because given any linear map
ϕ ∈ Hom(M/B,G), if we define f by

f(u) = ϕ([u])

for all u ∈M , then f is linear, vanishes on B, and clearly, κ(f) = ϕ. Therefore, we have the
isomorphism κ : B0 → Hom(M/B,G), as claimed.
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Remark: Proposition 2.8 is actually the special case of Proposition 2.7 where Z = (0), since
in this case Z0 = M and Z ′ = M . We feel that it is still instructive to give a direct proof of
Proposition 2.8.

If we look carefully at the proofs of Propositions 2.4–2.6, we see that they go through
with the ring R replaced by any fixed R-module A. This suggests looking at more general
versions of Hom.

2.2 The Functors Hom(−, A), Hom(A,−), and −⊗ A
In this section we consider several operators T on R-modules that map a module A to
another module T (A), and a module homomorphism f : A→ B to a module homomorphism
T (f) : T (A) → T (B), or to a homomorphism T (f) : T (B) → T (A) (note the reversal).
Given any two module homomorphism f : A→ B and g : B → C, if T does not reverse the
direction of maps then T (g ◦ f) = T (g) ◦ T (f), else T (g ◦ f) = T (f) ◦ T (g). We also have
T (idA) = idT (A) for all A. Such operators are called functors (covariant in the first case,
contravariant if it reverses the direction of maps).

We begin with the HomR(−, A)-functor, which reverses the direction of the maps.

Definition 2.5. Given a fixed R-module A, for any R-module B we denote by HomR(B,A)
the R-module of all R-linear maps from B to A. Given any two R-modules B and C, for
any R-linear map f : B → C, the R-linear map HomR(f, A) : HomR(C,A) → HomR(B,A)
is defined by

HomR(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ HomR(C,A);

see the commutative diagram below:

B
f //

HomR(f,A)(ϕ)   

C

ϕ

��
A.

Observe that HomR(f, A)(ϕ) is ϕ composed with f , that is its result is to pull back along
f any map ϕ from C to A to a map from B to A.2 The map HomR(f, A) is also denoted by
HomR(f, idA), or for short HomR(f, id). Some authors denote HomR(f, A) by f ∗.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

HomR(g ◦ f, A) = HomR(f, A) ◦ HomR(g, A).

Observe that HomR(f, A) and HomR(g, A) are composed in the reverse order of the compo-
sition of f and g. It is also immediately verified that

HomR(idA, A) = idHomR(A,A).

2A trick to remember that HomR(f,A) composes ϕ on the left of f is that f is the leftmost argument in
HomR(f,A).
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Thus, HomR(−, A) is a (contravariant) functor. To simplify notation, we usually omit the
subscript R in HomR(−, A) unless confusion arises.

Proposition 2.9. Let A be any fixed R-module and let g : B → C be a linear map between
R-modules.

(a) If g is an isomorphism then so is Hom(g, A).

(b) If g is the zero map then so is Hom(g, A).

(c) If the sequence

B
g // C // 0

is exact, then the sequence

0 // Hom(C,A)
Hom(g,A) // Hom(B,A)

is also exact.

The proof of Proposition 2.9 is identical to the proof of Proposition 2.4.

Proposition 2.10. Let M be any fixed R-module. If the following sequence of R-modules

A
f // B

g // C // 0

is exact, then the sequence

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M)

is also exact. Furthermore, if

0 // A
f // B

g // C // 0

is a split short exact sequence, then

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M) // 0

is also a split short exact sequence.

The proof of Proposition 2.10 is identical to the proof of Proposition 2.5. We say that
Hom(−,M) is a left-exact functor.

Remark: It can be shown that the sequence

A
f // B

g // C // 0

is exact iff the sequence

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M)

is exact for all R-modules M ; see Dummit and Foote [11] (Chapter 10, Theorem 33).
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Proposition 2.11. Let M be any fixed R-module. If

0 // A
f // B

g // C // 0

is a short exact sequence and if C is a free R-module, then

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M) // 0

is a split short exact sequence.

There is also a version of the Hom-functor, HomR(A,−), in which the first slot is held
fixed.

Definition 2.6. Given a fixed R-module A, for any R-module B we denote by HomR(A,B)
the R-module of all R-linear maps from A to B. Given any two R-modules B and C, for
any R-linear map f : B → C, the R-linear map HomR(A, f) : HomR(A,B) → HomR(A,C)
is defined by

HomR(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ HomR(A,B);

see the commutative diagram below:

A

ϕ

��

HomR(A,f)(ϕ)

  
B

f
// C.

Observe that HomR(A, f)(ϕ) is f composed with ϕ, that is its result is to push forward
along f any map ϕ from A to B to a map from A to C.3 The map HomR(A, f) is also
denoted by HomR(idA, f), or for short HomR(id, f). Some authors denote HomR(A, f) by
f∗.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

HomR(A, g ◦ f) = HomR(A, g) ◦ HomR(A, f).

It is also immediately verified that

HomR(idA, A) = idHomR(A,A).

Thus, HomR(A,−) is a (covariant) functor.

The HomR(A,−)-functor has properties analogous to those of the HomR(−, A)-functor,
except that sequences are not reversed. Again, to simplify notation, we usually omit the
subscript R in HomR(A,−) unless confusion arises.

3A trick to remember that HomR(A, f) composes ϕ on the right of f is that f is the rightmost argument
in HomR(A, f).
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Proposition 2.12. Let M be any fixed R-module. If the following sequence of R-modules

0 // A
f // B

g // C

is exact, then the sequence

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C)

is also exact. Furthermore, if

0 // A
f // B

g // C // 0

is a split short exact sequence, then

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C) // 0

is also a split short exact sequence.

The proof of Proposition 2.12 is left as an exercise. We say that Hom(M,−) is a left-exact
functor.

� If f : A→ B is surjective, then Hom(C, f) : Hom(C,A)→ Hom(C,B) is not necessarily
surjective. For example, we have the following short exact sequence

0 −→ Z ×2−→ Z π−→ Z/2Z −→ 0,

where ×2(n) = 2n, but if C = Z/2Z, the map

Hom(Z/2Z, π) : Hom(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)

is not surjective. This is because any map ϕ : Z/2Z→ Z must map 1 to 0. In Z/2Z we have
1 + 1 = 0, so ϕ(1 + 1) = ϕ(0) = 0, but if ϕ(1) 6= 0, then ϕ(1 + 1) = ϕ(1) +ϕ(1) = 2ϕ(1) 6= 0
in Z, a contradiction. Therefore, Hom(Z/2Z,Z) = (0), and yet Hom(Z/2Z,Z/2Z) contains
the identity map.

Remark: It can be shown that the sequence

0 // A
f // B

g // C

is exact iff the sequence

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C)

is exact for all R-modules M . See Dummit and Foote [11] (Chapter 10, Theorem 28).
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Proposition 2.13. Let M be any fixed R-module. If

0 // A
f // B

g // C // 0

is a short exact sequence and if C is a free R-module, then

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C) // 0

is a split short exact sequence.

A more complete discussion of the functor Hom(−, A) is found in Munkres [38] (Chapter
5, §41), and a thorough presentation in MacLane [29], Cartan–Eilenberg [7], Rotman [40],
and Weibel [51].

Another operation on modules that plays a crucial role is the tensor product. Let M be a
fixed R-module. For any R-module A, we have the R-module A⊗RM , and for any R-linear
map f : B → C we have the R-linear map f ⊗R idM : B ⊗R M → C ⊗R M . To simplify
notation, unless confusion arises, we will drop the subscript R on ⊗R.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

(g ⊗ idM) ◦ (f ⊗ idM) = (g ◦ f)⊗ idM .

It is also immediately verified that

idM ⊗ idM = idM⊗M .

Thus, − ⊗M is a (covariant) functor. Similarly we have the functor M ⊗ − obtained by
holding the first slot fixed. This functor has the same properties as − ⊗M so we will not
consider it any further.

We would like to understand the behavior of the functor − ⊗M with respect to exact
sequences.

A crucial fact is that if f : B → C is injective, then f ⊗ idM may not be injective. For
example, if we let R = Z, then the inclusion map i : Z → Q is injective, but if M = Z/2Z,
then

Q⊗Z Z/2Z = (0),

since we can write
a⊗ b = (a/2)⊗ (2b) = (a/2)⊗ 0 = 0.

Thus, i⊗ idM : Z⊗ Z/2Z→ Q⊗ Z/2Z = i⊗ idM : Z⊗ Z/2Z→ (0), which is not injective.
Thus, −⊗M is not left-exact. However, it is right-exact, as we now show.

Proposition 2.14. Let f : A → B and f ′ : A′ → B′ be two R-linear maps. If f and f ′ are
surjective then

f ⊗ f ′ : A⊗ A′ → B ⊗B′

is surjective, and its kernel Ker (f ⊗f ′) is spanned by all tensors of the form a⊗a′ for which
either a ∈ Ker f or a′ ∈ Ker f ′.
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Proof. Let H be the submodule of A⊗A′ spanned by all tensors of the form a⊗a′ for which
either a ∈ Ker f or a′ ∈ Ker f ′. Obviously, f ⊗ f ′ vanishes on H, so it factors through a
R-linear map

Φ: (A⊗ A′)/H → B ⊗B′

as illustrated in the following diagram:

A⊗ A′

f⊗f ′ ''

π // (A⊗ A′)/H
Φ
��

B ⊗B′.

We prove that Φ is an isomorphism by defining an inverse Ψ for Φ. We begin by defining a
function

ψ : B ×B′ → (A⊗ A′)/H
by setting

ψ(b, b′) = a1 ⊗ a′1
for all b ∈ B and all b′ ∈ B′, where a1 ∈ A is any element such that f(a1) = b and a′1 ∈ A′
is any element such that f ′(a′1) = b′, which exist since f and f ′ are surjective. We need to
check that ψ does not depend on the choice of a1 ∈ f−1(b) and a′1 ∈ (f ′)−1(b′). If f(a2) = b
and f ′(a′2) = b′, with a2 ∈ A and a′2 ∈ A′, since we can write

a1 ⊗ a′1 − a2 ⊗ a′2 = (a1 − a2)⊗ a′1 + a2 ⊗ (a′1 − a′2),

and since f(a1−a2) = f(a1)−f(a2) = b−b = 0, and f ′(a′1−a′2) = f ′(a′1)−f ′(a′2) = b′−b′ = 0,
we see that a1 ⊗ a′1 − a2 ⊗ a′2 ∈ H, thus

a1 ⊗ a′1 = a2 ⊗ a′2
an ψ is well defined. We check immediately that ψ is R-bilinear, so ψ induces a R-linear
map

Ψ: B ⊗B′ → (A⊗ A′)/H.
It remains to check that Φ ◦ Ψ and Ψ ◦ Φ are identity maps, which is easily verified on
generators.

We can now show that −⊗M is right-exact.

Proposition 2.15. Suppose the sequence

A
f // B

g // C // 0

is exact. Then the sequence

A⊗M f⊗idM // B ⊗M g⊗idM // C ⊗M // 0

is exact. If f is injective and the first sequence splits, then f⊗ idM is injective and the second
sequence splits.
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Proof. Since the first sequence is exact, g is surjective and Proposition 2.14 implies that
g ⊗ idM is surjective, and that its kernel H is the submodule of B ⊗ M spanned by all
elements of the form b ⊗ z with b ∈ Ker g and z ∈ M . On the other hand the image D of
f ⊗ idM is the submodule spanned by all elements of the form f(a) ⊗ z, with a ∈ A and
z ∈M . Since Im f = Ker g, we have H = D; that is, Im (f ⊗ idM) = Ker (g ⊗ idM).

Suppose that f is injective and the first sequence splits. Let p : B → A be a R-linear
map such that p ◦ f = idA. Then

(p⊗ idM) ◦ (f ◦ idM) = (p ◦ f)⊗ (idM ◦ idM) = idA ⊗ idM = idA⊗M ,

so f ⊗ idM is injective and p⊗ idM splits the second sequence.

Proposition 2.15 says that the functor −⊗M is right-exact . A more complete discussion
of the functor −⊗M is found in Munkres [38] (Chapter 6, §50), and a thorough presentation
in MacLane [29], Cartan–Eilenberg [7], Rotman [40], and Weibel [51].

2.3 Abstract Chain Complexes and Their Cohomology

The notion of a chain complex is obtained from the notion of an exact sequence by relaxing
the requirement Im fp = Ker fp+1 to fp+1 ◦ fp = 0.

Definition 2.7. A (differential) complex (or chain complex ) is a Z-graded R-module

C =
⊕
p∈Z

Cp,

together with a R-linear map
d : C → C

such that dCp ⊆ Cp+1 and d◦d = 0. We denote the restriction of d to Cp by dp : Cp → Cp+1.

Given a complex (C, d), we define the Z-graded R-modules

B∗(C) = Im d, Z∗(C) = Ker d.

Since d ◦ d = 0, we have
B∗(C) ⊆ Z∗(C) ⊆ C

so the quotient spaces Zp(C)/Bp(C) make sense and we can define cohomology.

Definition 2.8. Given a differential complex (C, d) of R-modules, we define the cohomology
space H∗(C) by

H∗(C) =
⊕
p∈Z

Hp(C),
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where the pth cohomology group (R-module) Hp(C) is the quotient space

Hp(C) = (Ker d ∩ Cp)/(Im d ∩ Cp) = Ker dp/ Im dp−1 = Zp(C)/Bp(C).

Elements of Cp are called p-cochains or cochains , elements of Zp(C) are called p-cocycles or
cocycles , and elements of Bp(C) are called p-coboundaries or coboundaries . Given a cocycle
a ∈ Zp(C), its cohomology class a + Im dp−1 is denoted by [a]. A complex C is said to be
acyclic if its cohomology is trivial, that is Hp(C) = (0) for all p, which means that C is an
exact sequence.

We often drop the complex C when writing Zp(C), Bp(C) of Hp(C).

Typically, when dealing with cohomology we consider chain complexes such that Cp = (0)
for all p < 0:

0 d−1
// C0 d0

// C1 d1
// · · · // Cp−1 dp−1

// Cp dp // Cp+1 dp+1
// Cp+2 // · · ·

We can deal with homology by assuming that Cp = (0) for all p > 0. In this case, we have
a chain complex of the form

· · · // C−(p+1) d
−(p+1)

// C−p
d−p // C−(p−1) d

−(p−1)
// · · · // C−1 d−1

// C0 d0
// 0.

It is customary to use positive indices and to convert the above diagram to the diagram
shown below in which every negative upper index −p is replaced by the positive lower index
p

· · · // Cp+1

dp+1 // Cp
dp // Cp−1

dp−1 // · · · // C1
d1 // C0

d0 // 0.

An equivalent diagram is obtained by also reversing the direction of the arrows:

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · .oo

Which diagram is preferred is a matter of taste.4 We also denote the space H−p(C) (where
p ≥ 0) by Hp(C) and call it the pth homology space. Note that

Hp(C) = Ker dp/Im dp+1,

and if we write Zp(C) = Ker dp and Bp(C) = Im dp+1, we also have

Hp(C) = Zp(C)/Bp(C),

elements of Cp are called chains, elements of Zp(C) are called cycles , and elements of Bp(C)
are called boundaries . Singular homology defined in Section 4.6 is such an example.

4Notice that applying Hom(−, R) to the second diagram reverses all the arrows so that a complex of
cohomology is obtained. For this reason, we have a slight preference for the second diagram.
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Remark: When dealing with cohomology, it is customary to use superscripts for denoting
the cochains groups Cp, the cohomology groups Hp(C), the coboundary maps dp, etc., and
to write complexes with the arrows going from left to right so that the superscripts increase.
However, when dealing with homology, it is customary to use subscripts for denoting the
chains groups Cp, the homology groups Hp(C), the boundary maps dp, etc., and to write
homology complexes with decreasing indices and arrows going from left to right, or complexes
with increasing indices and arrows going from right to left. In homology, the boundary
maps dp : Cp → Cp−1 are usually denoted by ∂p, and in cohomology the coboundary maps
dp : Cp → Cp+1 are usually denoted by δp.

2.4 Chain Maps and Chain Homotopies

We know that homomorphisms between R-modules play a very important role in the theory
of R-modules. There are two notions of maps between chain complexes that also play an
important role in homology and cohomology theory.

Definition 2.9. Given two complexes (C, dC) and (D, dD), a chain map f : C → D is a
family f = (fp) of R-linear maps fp : Cp → Dp such that

dD ◦ fp = fp+1 ◦ dC for all p ∈ Z,

equivalently all the squares in the following diagram commute:

· · · dC // Cp−1 dC //

fp−1

��

Cp dC //

fp

��

Cp+1 dC //

fp+1

��

Cp+2 dC //

fp+2

��

· · ·

· · ·
dD

// Dp−1
dD

// Dp
dD

// Dp+1
dD

// Dp+2
dD

// · · ·

A chain map of complexes f : C → D induces a map f ∗ : H∗(C) → H∗(D) between the
cohomology spaces H∗(C) and H∗(D), which means that each map fp : Cp → Dp induces a
homomorphism (fp)∗ : Hp(C)→ Hp(D).

Proposition 2.16. Given a chain map of complexes f : C → D, for every p ∈ Z, the
function (fp)∗ : Hp(C)→ Hp(D) defined such that

(fp)∗([a]) = [fp(a)] for all a ∈ Zp(C)

is a homomorphism. Therefore, f : C → D induces a homomorphism f ∗ : H∗(C)→ H∗(D).

Proof. First, we show that if [a] is a cohomology class in Hp(C) with a ∈ Zp(C) (a is
a cocycle), then fp(a) ∈ Zp(D); that is, fp(a) is a cocycle. Since a ∈ Zp(C) we have
dC(a) = 0, and since by the commutativity of the squares of the diagram of Definition 2.9

dD ◦ fp = fp+1 ◦ dC ,
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we get
dD ◦ fp(a) = fp+1 ◦ dC(a) = 0,

which shows that fp(a) ∈ Zp(D), that is fp(a) is a cocycle.

Next we show that [fp(a)] does not depend on the choice of a in the equivalence class
[a]. If [b] = [a] with a, b ∈ Zp(C), then a− b ∈ Bp(C), which means that a− b = dC(x) for
some x ∈ Cp−1. We have

dD ◦ fp−1 = fp ◦ dC ,
which implies that

fp(a− b) = fp ◦ dC(x) = dD ◦ fp−1(x),

and since fp is linear we get fp(a) − fp(b) = dD ◦ fp−1(x), that is, fp(a) − fp(b) ∈ Im dD,
which means that [fp(a)] = [fp(b)]. Thus, (fp)∗([a]) = [fp(a)] is well defined.

The fact that (fp)∗ is a homomorphism is standard and follows immediately from the
definition of (fp)∗.

There are situations, for instance when defining Čech cohomology groups, where we have
different maps f : C → D and g : C → D betweeen two complexes C and D and yet we
would like the induced maps f ∗ : H∗(C)→ H∗(D) and g∗ : H∗(C)→ H∗(D) to be identical,
that is, f ∗ = g∗. A sufficient condition is the existence of a certain kind of map between C
and D called a chain homotopy.

Definition 2.10. Given two chain maps f : C → D and g : C → D, a chain homotopy
between f and g is a family s = (sp)p∈Z of R-linear maps sp : Cp → Dp−1 such that

dD ◦ sp + sp+1 ◦ dC = fp − gp for all p ∈ Z.

As a diagram, a chain homotopy is given by a family of slanted arrows as below, where we
write h = f − g:

· · · dC // Cp−1 dC //

hp−1

��

Cp dC //

hp

��
sp

||

Cp+1 dC //

hp+1

��
sp+1

||

· · ·

· · ·
dD

// Dp−1
dD

// Dp
dD

// Dp+1
dD

// · · ·

The following proposition clarifies this somewhat mysterious definition.

Proposition 2.17. Given two chain maps f : C → D and g : C → D between two complexes
C and D, if s is a chain homotopy between f and g, then f ∗ = g∗.

Proof. If [a] is a cohomology class in Hp(C), where a is a cocycle in Zp(C), that is a ∈ Cp

and dC(a) = 0, we have

((fp)∗ − (gp)∗)([a]) = [fp(a)− gp(a)] = [dD ◦ sp(a) + sp+1 ◦ dC(a)],
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and since a is a cocycle dC(a) = 0 so

((fp)∗ − (gp)∗)([a]) = [dD ◦ sp(a)] = 0,

since dD ◦ sp(a) is a coboundary in Bp(D).

2.5 The Long Exact Sequence of Cohomology or

Zig-Zag Lemma

The following result is the first part of one of the most important results of (co)homology
theory.

Proposition 2.18. Any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of complexes X, Y, Z yields a cohomology sequence

Hp(X)
f∗−→ Hp(Y )

g∗−→ Hp(Z)

which is exact for every p, which means that Im f ∗ = Ker g∗ for all p.

Proof. Consider the following diagram where the rows are exact:

0 // Xp−1 fp−1
//

dX

��

Y p−1 gp−1
//

dY

��

Zp−1 //

dZ

��

0

0 // Xp fp //

dX

��

Y p gp //

dY

��

Zp //

dZ

��

0

0 // Xp+1 fp+1
// Y p+1 gp+1

// Zp+1 // 0.

Since we have a short exact sequence, fp is injective, gp is surjective, and Im fp = Ker gp for
all p. Consequently gp ◦ fp = 0, and for for every cohomology class [a] ∈ Hp(X), we have

g∗ ◦ f ∗([a]) = g∗([fp(a)]) = [gp(fp(a))] = 0,

which implies that Im f ∗ ⊆ Ker g∗. To prove the inclusion in the opposite direction, we need
to prove that for every [b] ∈ Hp(Y ) such that g∗([b]) = 0 (where b ∈ Y p is a cocycle) there
is some [a] ∈ Hp(X) such that f ∗([a]) = [b].

If g∗([b]) = [gp(b)] = 0 then gp(b) must be a coboundary, which means that gp(b) = dZ(c)
for some c ∈ Zp−1. Since gp−1 is surjective, there is some b1 ∈ Y p−1 such that c = gp−1(b1).
Now g being a chain map the top right square commutes, that is

dZ ◦ gp−1 = gp ◦ dY ,
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so

gp(b) = dZ(c) = dZ(gp−1(b1)) = gp(dY (b1)),

which implies that

gp(b− dY (b1)) = 0.

By exactness of the short exact sequence, Im fp = Ker gp for all p, and there is some a ∈ Xp

such that

fp(a) = b− dY (b1).

If we can show that a is a cocycle, then

f ∗([a]) = [fp(a)] = [b− dY (b1)] = [b],

proving that f ∗([a]) = [b], as desired.

Thus, we need to prove that dX(a) = 0. Since fp+1 is injective, it suffices to show that
fp+1(dX(a)) = 0. But f is a chain map so the left lower square commutes, that is

dY ◦ fp = fp+1 ◦ dX ,

and we have

fp+1(dX(a)) = dY (fp(a)) = dY (b− dY (b1)) = dY (b)− dY ◦ dY (b) = 0

since b is a cocycle, so dY (b) = 0 and dY ◦ dY = 0 since Y is a differential complex.

In general, a short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of complexes does not yield an exact sequence

0 −→ Hp(X)
f∗−→ Hp(Y )

g∗−→ Hp(Z) −→ 0

for all (or any) p. However, one of the most important results in homological algebra is that
a short exact sequence of complexes yields a so-called long exact sequence of cohomology
groups.

This result is often called the “zig-zag lemma” for cohomology; see Munkres [38] (Chapter
3, Section 24). The proof involves a lot of “diagram chasing.” It is not particularly hard,
but a bit tedious and not particularly illuminating. Still, this is a very important result so
we provide a complete and detailed proof.
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Theorem 2.19. (Long exact sequence of cohomology, or zig-zag lemma for cohomology) For
any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of complexes X, Y, Z, there are homomorphisms δp : Hp(Z)→ Hp+1(X) such that we obtain
a long exact sequence of cohomology of the following form:

· · · // Hp−1(Z)
δp−1

// Hp(X)
f∗ // Hp(Y )

g∗ // Hp(Z)
δp

// Hp+1(X)
f∗ // Hp+1(Y )

g∗ // Hp+1(Z)
δp+1

// Hp+2(X) // · · ·

(for all p).

Proof. The main step is the construction of the homomorphisms δp : Hp(Z) → Hp+1(X).
We suggest that upon first reading the reader looks at the construction of δp and then skips
the proofs of the various facts that need to be established.

Consider the following diagram where the rows are exact:

�� �� ��
0 // Xp−1 fp−1

//

dX
��

Y p−1 gp−1
//

dY
��

Zp−1 //

dZ
��

0

0 // Xp fp //

dX
��

Y p gp //

dY
��

Zp //

dZ
��

0

0 // Xp+1 fp+1
//

dX
��

Y p+1 gp+1
//

dY
��

Zp+1 //

dZ
��

0

0 // Xp+2 fp+2
//

��

Y p+2 gp+2
//

��

Zp+2 //

��

0

To define δp([c]) where [c] ∈ Hp(Z) is a cohomology class (c ∈ Zp is a cocycle, that is
dZ(c) = 0), pick any b ∈ Y p such that gp(b) = c, push b down to Y p+1 by applying dY
obtaining dY (b), and then pull dY (b) back to Xp+1 by applying (fp+1)−1, obtaining a =
(fp+1)−1(dY (b)). Then, set

δp([c]) = [a].
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Schematically, starting with an element c ∈ Zp, we follow the path from right to left in the
diagram below.

Y p gp //

dY

��

Zp

b_

��

c = gp(b)�oo

dZ

��

Xp+1 fp+1
// Y p+1

a dY (b)�oo gp+1
// 0

In order to ensure that δp is well defined, we must check five facts:

(a) For any c ∈ Zp such that dZ(c) = 0 and any b ∈ Y p, if gp(b) = c, then dY (b) ∈ Im fp+1.
This guarantees that a = (fp+1)−1(dY (b)) is well-defined since fp+1 is injective.

(b) The element a ∈ Xp+1 is a cocycle; more precisely, if fp+1(a) = dY (b) for some b ∈ Y p,
then dX(a) = 0.

(c) The homology class [a] does not depend on the choice of b in (gp)−1(c); that is,
for all b1, b2 ∈ Y p and all a1, a2 ∈ Xp+1, if gp(b1) = gp(b2) = c and fp+1(a1) =
dY (b1), fp+1(a2) = dY (b2), then [a1] = [a2].

(d) The map δp is a linear map.

(e) The homology class [a] does not depend on the choice of the cocycle c in the cohomology
class [c]. Since δp is linear, it suffices to show that if c is a coboundary in Zp, then for
any b such that gp(b) = c and any a ∈ Xp+1 such that fp+1(a) = dY (b), then [a] = 0.

Recall that since f and g are chain maps, the top, middle, and bottom left and right squares
commute.

(a) Since Im fp+1 = Ker gp+1, it suffices to show that gp+1(dY (b)) = 0. However, since
the middle right square commutes and dZ(c) = 0 (c is a cocycle),

gp+1(dY (b)) = dZ(gp(b)) = dZ(c) = 0,

as desired.

(b) Since fp+2 is injective, dX(a) = 0 iff fp+2 ◦ dX(a) = 0, and since the lower left square
commutes

fp+2 ◦ dX(a) = dY ◦ fp+1(a) = dY ◦ dY (b) = 0,

so dX(a) = 0, as claimed.
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(c) Assume that gp(b1) = gp(b2) = c. Then gp(b1 − b2) = 0, and since Im fp = Ker gp,
there is some ã ∈ Xp such that b1 − b2 = fp(ã). Using the fact that the middle left square
commutes we have

fp+1(a1 − a2) = fp+1(a1)− fp+1(a2)

= dY (b1)− dY (b2) = dY (b1 − b2)

= dY (fp(ã)) = fp+1(dX(ã)),

and the injectivity of fp+1 yields a1 − a2 = dX(ã), which implies that [a1] = [a2].

(d) The fact that δp is linear is an immediate consequence of the fact that all the maps
involved in its definition are linear.

(e) Let c ∈ Zp be a coboundary, which means that c = dZ(c̃) for some c̃ ∈ Zp−1. Since
gp−1 is surjective, there is some b1 ∈ Y p−1 such that gp−1(b1) = c̃, and since the top right
sqare commutes dZ ◦ gp−1 = gp ◦ dY , and we get

c = dZ(c̃) = dZ(gp−1(b1)) = gp(dY (b1)).

By (c), to compute the cohomology class [a] such that δp([c]) = [a] we can pick any b ∈ Y p

such that gp(b) = c, and since c = gp(dY (b1)) we can pick b = dY (b1) and then we obtain

dY (b) = dY ◦ dY (b1) = 0.

Since fp+1 is injective, if a ∈ Xp+1 is the unique element such that fp+1(a) = dY (b) = 0,
then a = 0, and thus [a] = 0.

It remains to prove that

Im (gp)∗ = Ker δp and Im δp = Ker (fp+1)∗.

For any cohomology class [b] ∈ Hp(Y ) for some b ∈ Y p such that dY (b) = 0 (b is a
cocycle), since (gp)∗([b]) = [gp(b)], if we write c = gp(b) then c is a cocycle in Zp, and by
definition of δp we have

δp((gp)∗([b])) = δp([c]) = [(fp+1)−1(dY (b))] = [(fp+1)−1(0)] = 0.

Thus, Im (gp)∗ ⊆ Ker δp.

Conversely, assume that δp([c]) = 0, for some c ∈ Zp such that dZ(c) = 0. By definition
of δp, we have δp([c]) = [a] where a ∈ Xp+1 is given by fp+1(a) = dY (b) for any b ∈ Y p such
that gp(b) = c, and since [a] = 0 the element a must be a coboundary, which means that
a = dX(a1) for some a1 ∈ Xp. Then, by commutativity of the left middle square we have

dY (b) = fp+1(a) = fp+1(dX(a1)) = dY (fp(a1)),
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so dY (b − fp(a1)) = 0, that is b − fp(a1) is a cycle in Y p. Since Im fp = Ker gp we have
gp ◦ fp = 0, which implies that

c = gp(b) = gp(b− fp(a)).

It follows that (gp)∗([b− fp(a)]) = [c], proving that Ker δp ⊆ Im (gp)∗.

For any [c] ∈ Hp(Z), since δp([c]) = [a] where fp+1(a) = dY (b) for any b ∈ Y p such that
gp(b) = c, as dY (b) is a coboundary we have

(fp+1)∗(δp([c])) = (fp+1)∗([a]) = [fp+1(a)] = [dY (b)] = 0,

and thus Im δp ⊆ Ker (fp+1)∗.

Conversely, assume that (fp+1)∗([a]) = 0, for some a ∈ Xp+1 with dX(a) = 0, which
means that fp+1(a) = dY (b) for some b ∈ Y p. Since Im fp+1 = Ker gp+1 we have gp+1◦fp+1 =
0, so by commutativity of the middle right square

dZ(gp(b)) = gp+1(dY (b)) = gp+1(fp+1(a)) = 0,

which means that gp(b) is a cocycle in Zp, and since fp+1(a) = dY (b) by definition of δp

δp([gp(b)]) = [a],

showing that Ker (fp+1)∗ ⊆ Im δp.

The maps δp : Hp(Z) → Hp+1(X) are called connecting homomorphisms . The kind of
argument used to prove Theorem 2.19 is known as diagram chasing .

Remark: The construction of the connecting homomorphisms δp : Hp(Z) → Hp+1(X) is
often obtained as a corollary of the snake lemma. This is the approach followed in the
classical texts by MacLane [29] and Cartan–Eilenberg [7]. These books assume that the
reader already has a fair amount of background in algebraic topology and the proofs are
often rather terse or left to reader as “easy exercises” in diagram chasing. Bott and Tu [2]
refer to MacLane for help but as we just said MacLane leaves many details as exercises to the
reader. More recent texts such as Munkres [38], Rotman [41], Madsen and Tornehave [31], Tu
[49] and Hatcher [25] show more compassion for the reader and provide much more details.
Still, except for Hatcher and Munkres who give all the steps of the proof (for homology, and
sometimes quickly) certain steps are left as “trivial” exercises (for example, step (e)). At
the risk of annoying readers who have some familiarity with homological algebra we decided
to provide all gory details of the proof so that readers who are novice in this area have a
place to fall back if they get stuck, even if these proofs are not particularly illuminating (and
rather tedious).

The assignment of a long exact sequence of cohomology to a short exact sequences of
complexes is “natural” in the sense that it also applies to morphisms of short exact sequences
of complexes.
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Definition 2.11. Given two short exact sequences of complexes

0 // X
f // Y

g // Z // 0 and 0 // X ′
f ′ // Y ′

g′ // Z ′ // 0,

a morphism between these two exact sequences is a commutative diagram

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0,

where α, β, γ are chain maps.

The following proposition gives a precise meaning to the naturality of the assignment of
a long exact sequence of cohomology to a short exact sequences of complexes.

Proposition 2.20. For any morphism of exact sequences of chain complexes

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0,

the following diagram of cohomology commutes:

// Hp(X)
f∗ //

α∗

��

Hp(Y )
g∗ //

β∗

��

Hp(Z)

γ∗

��

δp // Hp+1(X) //

α∗

��
// Hp(X ′)

(f ′)∗
// Hp(Y ′)

(g′)∗
// Hp(Z ′)

(δ′)p
// Hp+1(X ′) //

Proof. A proof of Proposition 2.20 for homology can be found in Munkres [38] (Chapter 3,
Section 24, Theorem 24.2) and Hatcher [25] (Chapter 2, Section 2.1). The proof is a “diagram
chasing” argument which can be modified to apply to cohomology as we now show. The first
two squares commute because they already commute at the cochain level by definition of a
morphism so we only have to prove that the third square commutes.

Recall how δp(ξ) is defined where ξ = [c] ∈ Hp(Z) is represented by a cocycle c ∈ Zp:
pick any b ∈ Y p such that gp(b) = c, push b down to Y p+1 by applying dY obtaining dY (b),
and then pull dY (b) back to Xp+1 by applying (fp+1)−1, obtaining a = (fp+1)−1(dY (b)); set
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δp([c]) = [a]. Schematically,

Y p gp //

dY

��

Zp

b_

��

c = gp(b)�oo

dZ

��

Xp+1 fp+1
// Y p+1

a dY (b)�oo gp+1
// 0

Since a ∈ Xp+1 is a cocycle and α is a chain map α(a) ∈ X
′p+1 is a cocycle. Similarly

γ(c) ∈ Z ′p+1 is a cocycle, and by definition γ∗([c]) = [γ(c)]. We claim that

(δ′)p([γ(c)]) = [α(a)].

Since c = gp(b) we have γ(c) = γ ◦ gp(b) and since the diagram

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0

(∗)

commutes, we have γ(c) = γ ◦ gp(b) = g
′p ◦ β(b). Consider the following diagram:

Y
′p g

′p
//

dY ′

��

Z
′p

β(b)
_

��

γ(c) = g
′p(β(b))�oo

dZ′

��

X
′p+1 f

′p+1
// Y
′p+1

α(a) dY ′(β(b))�oo g
′p+1

// 0.

By commutativity of the diagram (∗), the fact that β is a chain map, and since fp+1(a) =
dY (b), we have

f
′p+1(α(a)) = β(fp+1(a)) = β(dY (b)) = dY ′(β(b)),

which shows that (δ′)p([γ(c)]) = [α(a)]. But δp([c]) = [a], so we get

(δ′)p(γ∗([c])) = (δ′)p([γ(c)]) = [α(a)] = α∗([a]) = α∗(δp([c])),

namely
(δ′)p ◦ γ∗ = α∗ ◦ δp,

as claimed.
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Given two complexes (X, dX) and (Y, dY ), the complex X ⊕ Y consists of the modules
Xp ⊕ Y p and of the maps

Xp ⊕ Y p
dpX⊕ d

p
Y // Xp+1 ⊕ Y p+1

defined such that (dpX ⊕ d
p
Y )(x + y) = dpX(x) + dpY (y), for all x ∈ Xp and all y ∈ Y p. It is

immediately verified that (dp+1
X ⊕ dp+1

Y ) ◦ (dPX ⊕ d
p
Y ) = 0. The following proposition is easy

to prove.

Proposition 2.21. For any two complexes (X, dX) and (Y, dY ), we have isomorphisms

Hp(X ⊕ Y ) ∼= Hp(X)⊕Hp(Y )

for all p.

Sketch of proof. It is easy to check that

Ker dpX⊕Y
∼= Ker dpX ⊕Ker dpY

Im dpX⊕Y
∼= Im dpX ⊕ Im dpY ,

from which the results follows.

In the next chapter we discuss an example of a long exact sequence of cohomology arising
from two open subsets U1, U2 of a manifold M that involves the cohomology space Hp(U1∪U2)
and the cohomology spaces Hp−1(U1 ∩ U2), Hp(U1) and Hp(U2). This long exact sequence
is known as the Mayer–Vietoris sequence. If U is covered by a finite family (Ui)

r
i=1 of

open sets and if this family is a “good cover,” then by an inductive argument involving
the Mayer–Vietoris sequence it is possible to prove that the cohomology spaces Hp(U) are
finite-dimensional.

Any decent introduction to homological algebra must dicsuss the “five lemma” (due to
Steenrod). Together with the zig-zag lemma, this one of its most useful results.

2.6 The Five Lemma

As a warm up, let us consider the “short five lemma,” from MacLane [29] (Chapter I, Section
3, Lemma 3.1).

Proposition 2.22. (Short Five Lemma) Consider the following diagram in which the rows
are exact and all the squares commute.

0 // A
f //

α

��

B

β

��

g // C

γ

��

// 0

0 // A′
f ′
// B′

g′
// C ′ //// 0

If α and γ are isomorphisms, then β is also an isomorphism.
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Proof. First we prove that β is injective. Assume that β(b) = 0 for some b ∈ B. Then
g′(β(b)) = 0, and since the right square commutes, 0 = g′(β(b)) = γ(g(b)). Since γ is
injective (it is an isomorphism), γ(g(b)) = 0 implies that

g(b) = 0.

Since the top row is exact and b ∈ Ker g = Im f , there is some a ∈ A such that

f(a) = b. (∗1)

Here is a summary of the situation so far:

0 // a ∈ A f //

α

��

b ∈ B

β

��

g // C

γ

��

// 0

0 // α(a) ∈ A′
f ′

// B′
g′

// C ′ //// 0

Since the left square commutes, using (∗1) we have

f ′(α(a)) = β(f(a)) = β(b) = 0.

Since the bottom row is exact, f ′ is injective so α(a) = 0, and since α is injective (it is
an isomorphism), a = 0. But then by (∗1) we have b = f(a) = 0, which shows that β is
injective.

We now prove that β is surjective. Pick any b′ ∈ B′. Since γ is surjective (it is an
isomorphism), there is some c ∈ C such that

γ(c) = g′(b′). (∗2)

Since the top row is exact, g is surjective so there is some b ∈ B such that

g(b) = c. (∗3)

Since the right square commutes, by (∗2) and (∗3) we have

g′(β(b)) = γ(g(b)) = γ(c) = g′(b′),

which implies g′(β(b)− b′) = 0. Since the bottom row is exact and β(b)− b′ ∈ Ker g′ = Im f ′

there is some a ∈ A′ such that
f ′(a′) = β(b)− b′. (∗4)

Since α is surjective (it is an isomorphism), there is some a ∈ A such that

α(a) = a′. (∗5)
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Here is a summary of the situation so far:

0 // a ∈ A f //

α

��

b ∈ B

β

��

g // c ∈ C
γ

��

// 0

0 // a′ ∈ A′
f ′
// β(b)− b′ ∈ B′

g′
// g′(b′) ∈ C ′ //// 0

Since the left square commutes, using (∗4) and (∗5) we obtain

β(f(a)) = f ′(α(a)) = f ′(a′) = β(b)− b′,

which implies that b′ = β(b− f(a)), showing that β is surjective.

Observe that the proof shows that if α and γ are injective, then β is injective, and if α
and γ are surjective, then β is surjective.

Proposition 2.23. (Five Lemma) Consider the following diagram in which the rows are
exact and all the squares commute.

// A
f1 //

α1

��

B
f2 //

α2

��

C
f3 //

α3

��

D
f4 //

α4

��

E //

α5

��
// A′

f ′1

// B′
f ′2

// C ′
f ′3

// D′
f ′4

// E ′ //

If α1, α2, α4, α5 are isomorphisms, then α3 is also an isomorphism.

Proof. The proof of Proposition 2.23 can be found in any book on homological algebra,
for example MacLane [29], Cartan–Eilenberg [7], and Rotman [41], but the reader may be
put off by the fact that half of the proof is left to the reader (at least, Rotman proves the
surjectivity part, which is slightly harder, and MacLane gives a complete proof of the short
five lemma). The five lemma is fully proved in Spanier [47] and Hatcher [25]. Because it is
a “fun” proof by diagram-chasing we present the proof in Spanier [47] (Chapter 4, Section
5, Lemma 11).

First, we prove that α3 is injective. Assume that α3(c) = 0 for some c ∈ C. Then
f ′3 ◦α3(c) = 0, and by commutativity of the third square, α4 ◦ f3(c) = 0. Since α4 is injective
(it is an isomorphism),

f3(c) = 0.

Since the top row is exact and c ∈ Ker f3 = Im f2, there is some b ∈ B such that

f2(b) = c.

Since the second square commutes,

f ′2 ◦ α2(b) = α3 ◦ f2(b) = α3(c) = 0,
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and since the bottom is exact and α2(b) ∈ Ker f ′2 = Im f ′1, there is some a′ ∈ A′ such that

f ′1(a′) = α2(b). (∗1)

Since α1 is surjective (it is an isomorphism) there is some a ∈ A such that

α1(a) = a′.

Here is a summary of the situation so far:

// a ∈ A f1 //

α1

��

b ∈ B f2 //

α2

��

c ∈ C f3 //

α3

��

D
f4 //

α4

��

E //

α5

��
// a′ ∈ A′

f ′1

// α2(b) ∈ B′
f ′2

// C ′
f ′3

// D′
f ′4

// E ′ //

By the commutativity of the first square and (∗1),

α2 ◦ f1(a) = f ′1 ◦ α1(a) = f ′1(a′) = α2(b),

and since α2 is injective (it is an isomorphism), b = f1(a). Since the top row is exact
f2 ◦ f1 = 0, so

c = f2(b) = f2 ◦ f1(a) = 0,

proving that α3 is injective.

Next we prove that α3 is surjective. Pick c′ ∈ C ′. Since α4 is surjective (it is an
isomorphism) there is some d ∈ D such that

α4(d) = f ′3(c′). (∗2)

Since the bottom row is exact f ′4 ◦ f ′3 = 0 and since the fourth square commutes we have

0 = f ′4 ◦ f ′3(c′) = f ′4 ◦ α4(d) = α5 ◦ f4(d).

Since α5 is injective (it is an isomorphism),

f4(d) = 0,

and since the top row is exact and d ∈ Ker f4 = Im f3, there is some c ∈ C such that

f3(c) = d. (∗3)

Since the third square commutes, using (∗3) and (∗2) we have

f ′3 ◦ α3(c) = α4 ◦ f3(c) = α4(d) = f ′3(c′),
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so f ′3(α3(c)− c′) = 0. Since the bottom row is exact and α3(c)− c′ ∈ Ker f ′3 = Im f ′2, there
is some b′ ∈ B′ such that

f ′2(b′) = α3(c)− c′. (∗4)

Since α2 is surjective (it is an isomorphism) there is some b ∈ B such that

α2(b) = b′. (∗5)

Here is a summary of the situation so far:

// A
f1 //

α1

��

b ∈ B f2 //

α2

��

c ∈ C f3 //

α3

��

d ∈ D f4 //

α4

��

E //

α5

��
// A′

f ′1

// b′ ∈ B′
f ′2

// α3(c)− c′ ∈ C ′
f ′3

// f ′3(c′) ∈ D′
f ′4

// E ′ //

Then using (∗4) and (∗5) and the fact that the second square commutes we have

α3(f2(b)) = f ′2(α2(b)) = f ′2(b′) = α3(c)− c′,

which implies that c′ = α3(c− f2(b)), showing that α3 is surjective.

Remark: The hypotheses of the five lemma can be weakened. One can check that the proof
goes through if α2 and α4 are isomorphisms, α1 is surjective, and α5 is injective.



Chapter 3

de Rham Cohomology

3.1 Review of de Rham Cohomology

Let M be a smooth manifold. The de Rham cohomology is based on differential forms. If
Ap(M) denotes the real vector space of smooth p-forms on M , then we know that there is a
mapping dp : Ap(M) → Ap+1(M) called exterior differentiation, and dp satisfies the crucial
property

dp+1 ◦ dp = 0 for all p ≥ 0.

Recall that A0(M) = C∞(M), the space of all smooth (real-valued) functions on M .

Definition 3.1. The sequence of vector spaces and linear maps between them satisfying
dp+1 ◦ dp = 0 given by

A0(M)
d0

−→ A1(M)
d1

−→ A2(M)
d2

−→ · · · d
p−1

−→ Ap(M)
dp−→ Ap+1(M)

dp+1

−→ · · ·

is called a differential complex .

We can package together the vector spaces Ap(M) as the direct sum A∗(M) given by

A∗(M) =
⊕
p≥0

Ap(M)

called the de Rham complex of M , and the family of maps (dp) as the map

d : A∗(M)→ A∗(M),

where d on the pth summand Ap(M) is equal to dp, so that

d ◦ d = 0.

Furthermore, we know that d is an anti-derivation, which means that

d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ, ω ∈ Ap(M), τ ∈ Aq(M).

75
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For example,if M = R3, then
d0 : A0(M)→ A1(M)

correspond to grad,
d1 : A1(M)→ A2(M)

corresponds to curl, and
d2 : A2(M)→ A3(M)

corresponds to div.

In fact, A∗(U) is defined for every open subset U of M , and A∗ is a sheaf of differential
complexes.

Definition 3.2. A form ω ∈ Ap(M) is closed if

dω = 0,

exact if
ω = dτ for some τ ∈ Ap−1(M).

Let Zp(M) denote the subspace of Ap(M) consisting of closed p-forms, Bp(M) denote
the subspace of Ap(M) consisting of exact p-forms, with B0(M) = (0) (the trivial vector
space), and let

Z∗(M) =
⊕
p≥0

Zp(M), B∗(M) =
⊕
p≥0

Bp(M).

Since d◦d = 0, we have Bp(M) ⊆ Zp(M) for all p ≥ 0 but the converse is generally false.

Definition 3.3. The de Rham cohomology of a smooth manifold M is the real vector space
H∗dR(M) given by the direct sum

H∗dR(M) =
⊕
p≥0

Hp
dR(M),

where the cohomology group (actually, real vector space) Hp
dR(M) is the quotient vector

space
Hp

dR(M) = Zp(M)/Bp(M).

Thus, the cohomology group (vector space) H∗dR(M) gives some measure of the failure of
closed forms to be exact.

Definition 3.4. A gradation of a vector space V is family (Vp) of subspaces Vp ⊆ V such
that

V =
⊕
p≥0

Vp.

In this case, we say that V is a graded vector space.
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Note that by definition H∗dR(M) is a graded vector space.

Exterior multiplication in A∗(M) induces a ring structure on the vector space H∗dR(M).
First, it is clear by definition that

B∗(M) ⊆ Z∗(M) ⊆ A∗(M).

We claim that Z∗(M) is a subring of A∗(M) and that B∗(M) is an ideal in Z∗(M).

Proof. Assume that dω = 0 and dτ = 0 for some ω ∈ Zp(M) and some τ ∈ Zq(M). Then
since d is an anti-derivation, we have

d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ = 0 ∧ τ + (−1)pω ∧ 0 = 0,

which shows that ω ∧ τ ∈ Z∗(M). Therefore, Z∗(M) is a subring of A∗(M).

Next, assume that ω ∈ Zp(M) and τ ∈ Bq(M), so that dω = 0 and τ = dα for some
α ∈ Aq−1(M). Then, we have

d(ω ∧ (−1)pα) = dω ∧ (−1)pα + (−1)pω ∧ (−1)pdα = 0 ∧ (−1)pα + ω ∧ τ = ω ∧ τ,

which shows that ω ∧ τ ∈ B∗(M), so B∗(M) is an ideal in Z∗(M)

Since B∗(M) is an ideal in Z∗(M), the quotient ring Z∗(M)/B∗(M) is well-defined, and
H∗dR(M) = Z∗(M)/B∗(M) is a ring under the multiplication induced by ∧. Therefore,
H∗dR(M) is an R-algebra.

A variant of de Rham cohomology is de Rham cohomology with compact support , where
we consider the vector space A∗c(M) of differential forms with compact support. As before,
we have the subspaces B∗c (M) ⊆ Z∗c (M), and we let

H∗dR,c(M) = Z∗c (M)/B∗c (M).

The Poincaré Lemma’s are the following results:

Proposition 3.1. The following facts hold:

Hp
dR(Rn) =

{
0 unless p 6= 0

R if p = 0,

and

Hp
dR,c(R

n) =

{
0 unless p 6= 0

R if p = n.

Theses facts also hold if Rn is replaced by any nonempty convex subset of Rn (or even a
star-shaped subset of Rn).
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3.2 The Mayer–Vietoris Argument

Let M be a smooth manifold and assume that M = U1 ∪ U2 for two open subsets U1 and
U2 of M . The inclusion maps ik : Uk → M and jk : U1 ∩ U2 → Uk for k = 1, 2 induce
a pullback map f : A∗(M) → A∗(U1) ⊕ A∗(U2) given by f = (i∗1, i

∗
2) and a pullback map

g : A∗(U1)⊕A∗(U2)→ A∗(U1 ∩U2) given by g = j∗1 − j∗2 . We have the following short exact
sequence.

Proposition 3.2. For any smooth manifold M , if M = U1 ∪ U2 for any two open subsets
U1 and U2, then we have the short exact sequence

0 // A∗(M)
f // A∗(U1)⊕A∗(U2)

g // A∗(U1 ∩ U2) // 0.

Proof. The proof is not really difficult. It involves the use of a partition of unity. For details,
see Bott and Tu [2] (Chapter 1, Proposition 2.3) or Madsen and Tornehave [31] (Chapter 5,
Theorem 5.1).

The short exact sequence given by Proposition 3.2 is called the Mayer–Vietoris sequence.

If we apply Theorem 2.19 to the Mayer–Vietoris sequence we obtain the long Mayer–
Vietoris cohomology sequence shown below:

· · · // Hp−1
dR (U1 ∩ U2)

δp−1

// Hp
dR(M)

f∗ // Hp
dR(U1)⊕Hp

dR(U2)
g∗ // Hp

dR(U1 ∩ U2)
δp

// Hp+1
dR (M)

f∗ // Hp+1
dR (U1)⊕Hp+1

dR (U2)
g∗ // Hp+1

dR (U1 ∩ U2)
δp+1

// Hp+2
dR (M) // · · ·

(for all p).

This long exact sequence implies that

Hp
dR(M) ∼= Im δp−1 ⊕ Im f ∗.

It follows that if the spaces Hp−1
dR (U1 ∩ U2), HP

dR(U1) and HP
dR(U2) are finite-dimensional,

then so is Hp
dR(M). This suggests an inductive argument on the number of open subsets

in a finite cover of M . For this argument to succeed, such covers must have some special
properties about intersections of these opens subsets; Bott and Tu call them good covers .
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Figure 3.1: The manifold M is a an open unit square of R2. Figure (i.) is a good cover of M
while Figure (ii.) is not a good cover of M since U1 ∩ U2 is isomorphic to the disjoint union
of two open disks.

Definition 3.5. Given a smooth manifold M of dimension n, an open cover U = (Uα)α∈I of
M is called a good cover if all finite nonempty intersections Uα1 ∩ · · ·∩Uαp are diffeomorphic
to Rn. A manifold which has a finite good cover is said to be of finite type. See Figure 3.1.

Fortunately, every smooth manifold has a good cover.

Theorem 3.3. Every smooth manifold M has a good cover. If M is a compact manifold,
then M has a finite good cover.

Proof Sketch. The proof of Theorem 3.3 makes use of some differential geometry. First,
using a partitition of unity argument we can prove that every manifold has a Riemannian
metric.

The second step uses the fact that in a Riemannian manifold, evey point p has a geodesi-
cally convex neighborhood U , which means that any two points p1, p2 ∈ U can be joined by
a geodesic that stays inside U . Now, any intersection of geodesically convex neighborhoods
is still geodesically convex, and a geodesically convex neighborhood is diffeomorphic to Rn,
so any open cover consisting of geodesically convex open subsets is a good cover.

The above argument can be easily adapted to prove that every open cover of a manifold
can be refined to a good open cover.

We can now prove that the de Rham cohomoloy spaces of a manifold endowed with a
finite good cover are finite-dimensional. To simply notation, we write Hp instead of Hp

dR.
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Theorem 3.4. If a manifold M has a finite good cover, then the cohomology vector spaces
Hp(M) are finite-dimensional for all p ≥ 0.

Proof. We proceed by induction on the number of open sets in a good cover (V1, . . . , Vp). If
p = 1, then V1 itself is diffeomorphic to Rn, and by the Poincaré lemma (Proposition 3.1)
the cohomology spaces are either (0) or Rn. Thus, the base case holds.

For the induction step, assume that the cohomology of a manifold having a good cover
with at most p open sets is finite-dimensional, and let U = (V1, . . . , Vp+1) be a good cover
with p + 1 open subsets. The open subset (V1 ∪ · · · ∪ Vp) ∩ Vp+1 has a good cover with p
open subsets, namely (V1 ∩ Vp+1, . . . , Vp ∩ Vp+1). See Figures 3.2 and 3.3 By the induction
hypothesis, the vector spaces Hp(V1 ∪ · · · ∪ Vp), Hp(Vp) and Hp((V1 ∪ · · · ∪ Vp) ∩ Vp+1) are
finite-dimensional for all p, so by the consequence of the long Mayer–Vietoris cohomology
sequence stated just before definition 3.5, with M = V1 ∪ · · · ∪ Vp+1, U1 = V1 ∪ · · · ∪ Vp, and
U2 = Vp+1, we conclude that the vector spaces Hp(U1 ∪ · · · ∪ Vp+1) are finite-dimensional for
all p, which concludes the induction step.

1 2

3

4

V V

V

V

1V 2V 3Vgg g 4V

Figure 3.2: A good cover of S2 consisting of four open sets. Note V1 ∩ V2 = V3 ∩ V4 = ∅.

As a special case of Theorem 3.4, we see that the cohomology of any compact manifold
is finite-dimensional.

A similar result holds de Rham cohomology with compact support, but we have to be a
little careful because in general, the pullback of a form with compact support by a smooth
map may not have compact support. Fortunately, the Mayer–Vietoris sequence only needs
inclusion maps between open sets.
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Figure 3.3: The inductive good cover construction applied to V1 ∪ V2 ∪ V3 ∪ V4, a good cover
of S2.

Given any two open subsets U, V of M , if U ⊆ V and i : U → V is the inlusion map,
there is an induced map i∗ : Apc(U)→ Apc(V ) defined such that

(i∗(ω))(p) = ω(p) if p ∈ U
(i∗(ω))(p) = 0 if p ∈ V − suppω.

We say that ω has been extended to V by zero. Notice that unlike the definition of the
pullback f ∗ω of a form ω ∈ Ap(V ) by a smooth map f : U → V where f ∗ω ∈ Ap(U),
the map i∗ pushes a form ω ∈ Apc(U) forward to a form i∗ω ∈ Apc(V ). If i : U → V and
j : V → W are two inclusions, then (j ◦ i)∗ = j∗ ◦ i∗, with no reversal of the order of i∗ and
j∗.

Let M be a smooth manifold and assume that M = U1 ∪ U2 for two open subsets U1

and U2 of M . The inclusion maps ik : Uk → M and jk : U1 ∩ U2 → Uk for k = 1, 2 induce
a map s : A∗c(U1) ⊕ A∗c(U2) → A∗c(M) given by s(ω1, ω2) = (i1)∗(ω1) + (i2)∗(ω2) and a
map j : A∗c(U1 ∩ U2) → A∗c(U1) ⊕ A∗c(U2) given by j(ω) = ((j1)∗(ω),−(j2)∗(ω)). We have
the following short exact sequence called the Mayer–Vietoris sequence for cohomoloy with
compact support .

Proposition 3.5. For any smooth manifold M , if M = U1 ∪ U2 for any two open subsets
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U1 and U2, then we have the short exact sequence

0 // A∗c(U1 ∩ U2)
j // A∗c(U1)⊕A∗c(U2) s // A∗c(M) // 0.

For a proof of Proposition 3.5, see Bott and Tu [2] (Chapter 1, Proposition 2.7). Observe
that compared to the Mayer–Vietoris sequence of Proposition 3.2, the direction of the arrows
is reversed.

If we apply Theorem 2.19 to the Mayer–Vietoris sequence of Proposition 3.5 we obtain
the long Mayer–Vietoris sequence for cohomology with compact support shown below:

· · · // Hp−1
dR,c(M)

δp−1
c

// Hp
dR,c(U1 ∩ U2)

j∗ // Hp
dR,c(U1)⊕Hp

dR,c(U2) s∗ // Hp
dR,c(M)

δpc

// Hp+1
dR,c(U1 ∩ U2)

j∗ // Hp+1
dR,c(U1)⊕Hp+1

dR,c(U2) s∗ // Hp+1
dR,c(M)

δp+1
c

// Hp+2
dR,c(U1 ∩ U2) // · · ·

(for all p). Then, using the above sequence and the Poincaré lemma, using basically the
same proof as in Theorem 3.4 we obtain the following result.

Theorem 3.6. If a manifold M has a finite good cover, then the vector spaces Hp
dR,c(M) of

cohomology with compact support are finite-dimensional for all p ≥ 0.

The long exact sequences of cohomology induced by Proposition 3.2 and Proposition 3.5
can be combined to prove a version of Poincaré duality. Following Bott and Tu [2] we give
a brief presentation of this result.

3.3 Poincaré Duality on an Orientable Manifold

Let M be a smooth orientable manifold without boundary of dimension n. In this section,
to simplify notation we write Hp(M) for HdR(M) and Hp

c (M) for HdR,c(M). For any form
ω ∈ Ap(M) and any form with compact support η ∈ An−pc (M), the support of the n-form
ω∧η is contained in both supports of ω an η, so ω∧η also has compact support and

∫
M
ω∧η

makes sense. Since B∗(M) is an ideal in Z∗(M) and by Stokes’ Theorem
∫
M
dω = 0, we

have a well-defined map

〈−,−〉 : Hp(M)×Hn−p
c (M) −→ R
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defined by

〈[ω], [η]〉 =

∫
M

ω ∧ η,

for any closed form ω ∈ Ap(M) and any closed form with compact support η ∈ An−pc (M).
The above map is clearly bilinear so it is a pairing. Recall that if the vector spaces Hp(M)
and Hn−p

c (M) are finite-dimensional (which is the case if M has a finite good cover) and if
the pairing is nondegenerate, then it induces a natural isomorphism between Hp(M) and
the dual space (Hn−p

c (M))∗ of Hn−p
c (M).

Theorem 3.7. (Poincaré duality) Let M be a smooth oriented n-dimensional manifold. If
M has a finite good cover, then the map

〈−,−〉 : Hp(M)×Hn−p
c (M) −→ R

is a nondegenerate pairing. This implies that we have isomorphisms

Hp(M) ∼= (Hn−p
c (M))∗

for all p with 0 ≤ p ≤ n. In particular, if M is compact then

Hp(M) ∼= (Hn−p(M))∗

for all p with 0 ≤ p ≤ n.

The proof of Theorem 3.7 uses induction on the size of a finite good cover for M . For
the induction step, the long exact sequences of cohomology induced by Proposition 3.2 and
Proposition 3.5 are combined in a clever way, and the five lemma (Proposition 2.23) is used.
Proofs of Theorem 3.7 are given in Bott and Tu [2] (Chapter 1, pages 44-46), and in more
details in Madsen and Tornehave [31] (Chapter 13).

The first step of the proof is to dualize the second long exact sequence of cohomology. It
turns out that this yields an exact sequence, and for this we need the following proposition.
This is actually a special case of Proposition 2.6, but it does not hurt to give a direct proof.

Proposition 3.8. Let A,B,C be three vector spaces and let ϕ : A → B and ψ : B → C be
two linear maps such that the sequence

A
ϕ // B

ψ // C

is exact at B. Then the sequence

C∗
ψ> // B∗

ϕ> // A∗

is exact at B∗.
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Proof. Recall that ϕ> : B∗ → A∗ is the linear map defined such that ϕ>(f) = f ◦ϕ for every
linear form f ∈ B∗ and similarly ψ> : C∗ → B∗ is given by ψ>(g) = g ◦ ψ for every linear
form g ∈ C∗. The fact that the first sequence is exact at B means that Imϕ = Kerψ, which
implies ψ ◦ ϕ = 0, thus ϕ> ◦ ψ> = 0, so Imψ> ⊆ Kerϕ>. Conversely, we need to prove that
Kerϕ> ⊆ Imψ>.

Pick any f ∈ Kerϕ>, which means that ϕ>(f) = 0, that is f ◦ ϕ = 0. Consequently
Imϕ ⊆ Ker f , and since Imϕ = Kerψ we have

Kerψ ⊆ Ker f.

We are going to construct a linear form g ∈ C∗ such that f = g ◦ ψ = ψ>(g). Observe that
it suffices to construct such a linear form defined on Imψ, because such a linear form can
then be extended to the whole of C.

Pick any basis (vi)i∈I in Imψ, and let (ui)i∈I be any family of vectors in B such that
ψ(ui) = vi for all i ∈ I. Then, by a familiar argument (ui)i∈I is linearly independent and it
spans a subspace D of B such that

B = Kerψ ⊕D.

Define g : C → K such that
g(vi) = f(ui), i ∈ I.

We claim that f = g ◦ ψ.

Indeed, f(ui) = g(vi) = (g ◦ ψ)(ui) for all i ∈ I, and if w ∈ Kerψ, since Kerψ ⊆ Ker f ,
we have

f(w) = 0 = (g ◦ ψ)(w) = 0.

Therefore, f = g ◦ ψ = ψ>(g), which shows that f ∈ Imψ>, as desired.

By applying Proposition 3.8 to the second long exact sequence of cohomology (of compact
support), we obtain the following long exact sequence:

· · · // Hp+2
c (U1 ∩ U2)∗

(δp+1
c )>

// Hp+1
c (M)∗

(s∗)> // Hp+1
c (U1)∗ ⊕Hp+1

c (U2)∗
(j∗)> // Hp+1

c (U1 ∩ U2)∗

(δpc )>

// Hp
c (M)∗

(s∗)> // Hp
c (U1)∗ ⊕Hp

c (U2)∗
(j∗)> // Hp

c (U1 ∩ U2)∗

(δp−1
c )>

// Hp−1
c (M)∗ // · · ·

(for all p).
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Let us denote by θpM : Hp(M) → (Hn−p
c (M))∗ the isomorphism given by Theorem 3.7.

The following propositions are shown in Bott and Tu [2] (Chapter 1, Lemma 5.6), and in
Madsen and Tornehave [31] (Chapter 13, Lemma 13.6 and Lemma 13.7).

Proposition 3.9. For any two open subsets U and V of a manifold M , if U ⊆ V and
i : U → V is the inclusion map, then the following diagrams commute for all p:

Hp(V ) i∗ //

θpV
��

Hp(U)

θpU
��

Hn−p
c (V )∗

i>∗

// Hn−p
c (U)∗.

Proposition 3.10. For any two open subsets U1 and U2 of a manifold M , if U = U1 ∪ U2

then the following diagrams commute for all p:

Hp(U1 ∩ U2) δp //

θpU1∩U2

��

Hp+1(U)

θp+1
U

��
Hn−p
c (U1 ∩ U2)∗

(−1)p+1(δn−p−1
c )>

// Hn−p−1
c (U)∗.

Using Proposition 3.9 and Proposition 3.10, we obtain a diagram in which the top and
bottom rows are exact and every square commutes. Here is a fragment of this diagram in
which we have omitted the labels of the horizontal arrows to unclutter this diagram:

// Hp−1(U1)⊕Hp−1(U2) //

θp−1
U1
⊕ θp−1

U2
��

Hp−1(U1 ∩ U2)

θp−1
U1∩U2
��

//

// Hn−p+1
c (U1)∗ ⊕Hn−p+1

c (U2)∗ // Hn−p+1
c (U1 ∩ U2)∗ //

// Hp(U) //

θpU
��

Hp(U1)⊕Hp(U2) //

θpU1
⊕ θpU2

��

Hp(U1 ∩ U2)

θpU1∩U2
��

//

// Hn−p
c (U)∗ // Hn−p

c (U1)∗ ⊕Hn−p
c (U2)∗ // Hn−p

c (U1 ∩ U2)∗ //

Now, here is the crucial step of the proof. Suppose we can prove that the maps θpU1
, θpU2

and θpU1∩U2
are isomorphisms for all p. Then, by the five lemma (Proposition 2.23), we can

conclude that the maps θpU are also isomorphisms.

We can now give the main part of the proof of Theorem 3.7 using induction on the size
of a finite good cover.
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Proof sketch of Theorem 3.7. Let U = (V1, . . . , Vp) be a good cover for the orientable mani-
fold M . We proceed by induction on p. If p = 1, then M = V1 is diffeomorphic to Rn and
by the Poincaré lemma (Proposition 3.1) we have

Hp
dR(Rn) =

{
0 unless p 6= 0

R if p = 0,

and

Hp
dR,c(R

n) =

{
0 unless p 6= 0

R if p = n,

so we have the desired isomorphisms.

Assume inductively that Poincaré duality holds for any orientable manifold having a
good cover with at most p open subsets, and let (V1, . . . , Vp+1) be a cover with p + 1 open
subsets. Observe that (V1 ∪ · · · ∪ Vp) ∩ Vp+1 has a good cover with p open subsets, namely
(V1∩Vp+1, . . . , Vp∩Vp+1). By the induction hypothesis applied to U1 = V1∪· · ·∪Vp, U2 = Vp+1,
and U = M = V1 ∪ · · · ∪ Vp+1, the maps θpU1

, θpU2
and θpU1∩U2

in the diagram shown just after
Proposition 3.10 are isomorphisms for all p, so by the five lemma (Proposition 2.23) we can
conclude that the maps θpU are also isomorphisms, establishing the induction step.

As a corollary of Poincaré duality, if M is an orientable and connected manifold, then
H0(M) ∼= R, and so Hn

c (M) ∼= R. In particular, if M is compact then Hn(M) ∼= R.

Remark: As explained in Bott and Tu [2], the assumption that the good cover is finite
is not necessary. Then, the statement of Poincaré duality is that if M is any orientable
manifold of dimension n, then there are isomorphisms

Hp(M) ∼= (Hn−p
c (M))∗

for all p with 0 ≤ p ≤ n, even if Hp(M) is infinite dimensional. However, the statement
obtained by taking duals, namely

Hp
c (M) ∼= (Hn−p(M))∗,

is generally false.

In Chapter 1 of their book, Bott and Tu derive more consequences of the Mayer–Vietoris
method. The interested reader is referred to Bott and Tu [2].

The de Rham cohomology is a very effective tool to deal with manifolds but one of the
drawbacks of using real coefficients is that torsion phenomena are overlooked. There are
other cohomology theories of finer grain that use coefficients in rings such as Z. One of the
simplest uses singular chains, and we discuss it in the next chapter.



Chapter 4

Singular Homology and Cohomology

4.1 Singular Homology

In this section we only assume that our space X is a Hausdorff topological space, and we
consider continuous maps between such spaces. Singular homology (and cohomology) arises
from chain complexes built from singular chains (and cochains). Singular chains are defined
in terms of certain convex figures generalizing line segments, triangles and tetrahedra called
standard n-simplices. We adopt the definition from Milnor and Stasheff [35].

Definition 4.1. For any integer n ≥ 0, the standard n-simplex ∆n is the convex subset of
Rn+1 consisting of the set of points

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.

The n + 1 points corresponding to the canonical basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0) are
called the vertices of the simplex ∆n.

The simplex ∆n is the convex hull of the n+ 1 points (e1, . . . , en+1) since we can write

∆n = {t0e1 + t1e2 + · · ·+ tnen+1 | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.

Thus, ∆n is a subset of Rn+1. In particular, when n = 0, the 0-simplex ∆0 consists of the
single points t0 = 1 on R. Some simplices are illustrated in Figure 4.1.

Remark: Other authors such as Bott and Tu [2] and Warner [50] define the n-simplex ∆n

as a convex subset of Rn. In their definition, if we denote the point corresponding to the
origin of Rn as e0, then

∆n = {t0e0 + t1e1 + · · ·+ tnen | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.
= {(t1, . . . , tn) ∈ Rn | t1 + · · ·+ tn ≤ 1, ti ≥ 0}.

Some of these simplices are illustrated in Figure 4.2.
These points of view are equivalent but one should be careful that the notion of face of

a singular simplex (see below) is defined slightly differently.

87
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01

∆0

∆
1 t t0 1+ =: 1

(0, 1)

(1, 0)

∆2
0t t1+: t2+ = 1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 4.1: The simplices ∆0,∆1,∆2.

Definition 4.2. Given a topological space X, a singular p-simplex is any continuous map
σ : ∆p → X (with p ≥ 0). If p ≥ 1, the ith face (map) of the singular p-simplex σ is the
(p− 1)-singular simplex

σ ◦ φp−1
i : ∆p−1 → X, 0 ≤ i ≤ p,

where φp−1
i : ∆p−1 → ∆p is the map given by

φp−1
0 (t1, . . . , tp) = (0, t1, . . . , tp)

φp−1
i (t0, . . . , ti−1, ti+1, . . . , tp) = (t0, . . . , ti−1, 0, ti+1, . . . , tp), 1 ≤ i ≤ p− 1

φp−1
p (t0, . . . , tp−1) = (t0, . . . , tp−1, 0).

Some singular 1-simplices and singular 2-simplices are illustrated in Figure 4.3.
Note that a singular p-simplex σ has p + 1 faces. The ith face σ ◦ φp−1

i is sometimes
denoted by σi. For example, if p = 1, since there is only one variable on R1 and ∆0 = {1},
the maps φ0

0, φ
0
1 : ∆0 → ∆1 are given by

φ0
0(1) = (0, 1), φ0

1(1) = (1, 0).

For p = 2, the maps φ1
0, φ

1
1, φ

1
2 : ∆1 → ∆2 are given by

φ1
0(t1, t2) = (0, t1, t2), φ1

1(t0, t2) = (t0, 0, t2), φ1
2(t0, t1) = (t0, t1, 0).

There does not seem to be any standard notation for the set of all singular p-simplicies
on X. We propose the notation S∆p(X).
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1

∆
0

1

0

∆
0 t1% %0 1:

∆ t t1 +: 1
(0, 1)

(1, 0)

2

(0, 0)

%2%0

∆ t t1 +: t2 + 1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0, 0, 0)

3 %%03

Figure 4.2: Some simplices according to the second definition.

Remark: In Definition 4.2 we may replace X by any open subset U of X, in which case a
continuous map σ : ∆p → U is called a singular p-simplex in U . If X is a smooth manifold,
following Warner [50], we define a differentiable singular p-simplex in U to be a singular
p-simplex σ which can be extended to a smooth map of some open subset of Rn+1 containing
∆p into U .

We now come to the crucial definition of singular p-chains. In the framework of singular
homology (and cohomology) we have the extra degree of freedom of choosing the coefficients.
The set of coefficients will be a commutative ring with unit denoted by R. Better results are
obtained if we assume that R is a PID. In most cases, we may assume that R = Z.

Definition 4.3. Given a topological space X and a commutative ring R, a singular p-chain
with coefficients in R is any formal linear combination α =

∑m
i=1 λiσi of singular p-simplices

σi with coefficients λi ∈ R. The singular chain group Sp(X;R) is the freeR-module consisting
of all singular p-chains; it is generated by the set S∆p(X) of singular p-simplices. We set
Sp(X;R) = (0) for p < 0. If p ≥ 1, given any singular p-simplex σ, its boundary ∂σ is the
singular (p− 1)-chain given by

∂σ = σ ◦ φp−1
0 − σ ◦ φp−1

1 + · · ·+ (−1)pσ ◦ φp−1
p .

Extending the map ∂ to Sp(X;R) by linearity, we obtain the boundary homomorphism

∂ : Sp(X;R)→ Sp−1(X;R).

When we want to be very precise, we write ∂p : Sp(X;R) → Sp−1(X;R). We define
S∗(X;R) as the direct sum

S∗(X;R) =
⊕
p≥0

Sp(X;R).
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∆
1(0, 1)

(1, 0)

σσ 0

σ1

∆2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

σ 0
σ1

σ 2

σ

Figure 4.3: Some singular simplices.

Then, the boundary maps ∂p yield the boundary map ∂ : S∗(X;R)→ S∗(X;R). For example,
the boundary of a singular 1-simplex σ is σ(0, 1) − σ(1, 0). The boundary of a singular 2-
simplex σ is

σ0 − σ1 + σ2,

where σ0, σ1, σ2 are the faces of σ, in this case, three curves in X. For example, σ0 is the
curve given by the map

(t1, t2) 7→ σ(0, t1, t2)

from ∆1 to X, where t1 + t2 = 1 and t1, t2 ≥ 0.

The following result is easy to check

Proposition 4.1. Given a topological space X and a commutative ring R, the boundary
map ∂ : S∗(X;R)→ S∗(X;R) satisfies the equation

∂ ◦ ∂ = 0.

We can put together the maps ∂p : Sp(X;R)→ Sp−1(X;R) to obtain the following chain
complex of homology

0 S0(X;R)
∂0oo S1(X;R)

∂1oo · · ·oo Sp−1(X;R)
∂p−1oo Sp(X;R)

∂poo · · ·
∂p+1oo
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in which the direction of the arrows is from right to left. Note that if we replace every
nonnegative index p by −p in ∂p, Sp(X;R) etc., then we obtain a chain complex as defined
in Section 2.3 and we now have all the ingredients to define homology groups. We have
the familiar spaces Zp(X;R) = Ker ∂p of singular p-cycles , and Bp(X;R) = Im ∂p+1 of
singular p-boundaries . By Proposition 4.1, Bp(X;R) is a submodule of Zp(X;R) so we
obtain homology spaces:

Definition 4.4. Given a topological space X and a commutative ring R, for any p ≥ 0 the
singular homology module Hp(X;R) is defined by

Hp(X;R) = ker ∂p/Im ∂p+1 = Zp(X;R)/Bp(X;R).

We set Hp(X;R) = (0) for p < 0 and define H∗(X;R) as the direct sum

H∗(X;R) =
⋃
p≥0

Hp(X;R)

and call it the singular homology of X with coefficients in R.

The spaces Hp(X;R) are R-modules but following common practice we often refer to
them as groups.

A singular 0-chain is a linear combination
∑m

i=1 λiPi of points Pi ∈ X. Because the
boundary of a singular 1-simplex is the difference of two points, if X is path-connected, it
is easy to see that a singular 0-chain is the boundary of a singular 1-chain iff

∑m
i=1 λi = 0.

Thus, X is path connected iff
H0(X;R) = R.

More generally, we have the following proposition.

Proposition 4.2. Given any topological space X, for any commutative ring R with an iden-
tity element, H0(X;R) is a free R-module. If (Xα)α∈I is the collection of path components
of X and if σα is a singular 0-simplex whose image is in Xα, then the homology classes [σα]
form a basis of H0(X;R).

Proposition 4.2 is proved in Munkres [38] (Chapter 4, Section 29, Theorem 29.2). In
particular, if X has m path-connected components, then H0(X;R) ∼= R⊕ · · · ⊕R︸ ︷︷ ︸

m

.

We leave it as an exercise (or look at Bott and Tu [2], Chapter III, §15) to show that the
homology groups of Rn are given by

Hp(Rn;R) =

{
(0) if p ≥ 1

R if p = 0.

The same result holds if Rn is replaced by any nonempty convex subset of Rn, or a space
consisting of a single point.
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The homology groups (with coefficients in Z) of the compact surfaces can be completely
determined. Some of them, such as the projective plane, have Z/2Z as a homology group.

If X and Y are two topological spaces and if f : X → Y is a continuous function between
them, then we have induced homomorphisms Hp(f) : Hp(X;R) → Hp(Y ;R) between the
homology groups of X and the homology groups of Y . We say that homology is functorial.

Proposition 4.3. If X and Y are two topological spaces and if f : X → Y is a continuous
function between them, then there are homomorphisms Hp(f) : Hp(X;R)→ Hp(Y ;R) for all
p ≥ 0.

Proof. To prove the proposition we show that there is a chain map between the chain com-
plexes associated with X and Y and apply Proposition 2.16. Given any singular p-simplex
σ : ∆p → X we obtain a singular p-simplex fσ : ∆p → Y obtained by composing with f ,
namely fσ = f ◦ σ. Since Sp(X;R) is freely generated by S∆p(X;R), the map σ 7→ fσ from
S∆p(X;R) to Sp(Y ;R) extends uniquely to a homomorphism Sp(f) : Sp(X;R) → Sp(Y ;R).
It is immediately verified that the following diagrams are commutative

Sp+1(X;R)

Sp+1(f)

��

∂Xp+1 // Sp(X;R)

Sp(f)

��
Sp+1(Y ;R)

∂Yp

// Sp(Y ;R),

which means that the maps Sp(f) : Sp(X;R) → Sp(Y ;R) form a chain map S(f). By
Proposition 2.16, we obtain homomorphisms Sp(f)∗ : Hp(X;R)→ Hp(Y ;R) for all p, which
we denote by Hp(f).

Following the convention that in homology subscripts are used to denote objects, the
map Sp(f) : Sp(X;R) → Sp(Y ;R) is also denoted f],p : Sp(X;R) → Sp(Y ;R), and the
map Hp(f) : Hp(X;R) → Hp(Y ;R) is also denoted f∗p : Hp(X;R) → Hp(Y ;R) (or simply
f∗ : Hp(X;R)→ Hp(Y ;R)).

Proposition 4.3 implies that if two spaces X and Y are homeomorphic, then X and Y
have isomorphic homology. This gives us a way of showing that some spaces are not home-
omorphic: if for some p the homology groups Hp(X;R) and Hp(Y ;R) are not isomorphic,
then X and Y are not homeomorphic.

Actually, it turns out that the homology groups of two homotopy equivalent spaces are
isomorphic. Intuitively, two continuous maps f, g : X → Y are homotopic is f can be
continuously deformed into g, which means that there is a one-parameter family F (−, t) of
continuous maps F (−, t) : X → Y varying continuously in t ∈ [0, 1] such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X. Here is the formal definition.
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Definition 4.5. Two continuous maps f, g : X → Y (where X and Y are topological spaces)
are homotopic if there is a continuous function F : X × [0, 1] → Y (called a homotopy with
fixed ends) such that

F (x, 0) = f(x), F (x, 1) = g(x) for all x ∈ X.

We write f ' g. See Figure 4.4.

X x I

(x,0)

Y

(x,1)

f

g

Figure 4.4: The homotopy F between X × I and Y , where X = [0, 1] and Y is the torus.

A space X is said to be contractible if the identity map idX : X → X is homotopic to
a constant function with domain X. For example, any convex subset of Rn is contractible.
Intuitively, a contractible space can be continuously deformed to a single point, so it is
topologically trivial. In particular, it cannot contain holes. An example of a contractible set
is shown in Figure 4.5.

A deformation retraction of a space X onto a subspace A is a homotopy F : X×[0, 1]→ X
such that F (x, 0) = x for all x ∈ X, F (x, t) = x for all x ∈ A and all t ∈ (0, 1], and
F (X, 1) = A. In this case, A is called a deformation retract of X. An example of deformation
retract is shown in Figure 4.6.

Topologically, homeomorphic spaces should be considered equivalent. From the point of
view of homotopy, experience has shown that the more liberal notion of homotopy equivalence
is the right notion of equivalence.
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Figure 4.5: A contractible set

Definition 4.6. Two topological spaces X and Y are homotopy equivalent if there are
continuous functions f : X → Y and g : Y → X such that

g ◦ f ' idX , f ◦ g ' idY .

We write X ' Y . See Figure 4.7.

A great deal of homotopy theory has to do with developing tools to decide when two
spaces are homotopy equivalent. It turns out that homotopy equivalent spaces have isomor-
phic homology. In this sense homology theory is cruder than homotopy theory. However,
homotopy groups are generally more complicated and harder to compute than homology
groups. For one thing, homotopy groups are generally nonabelian, whereas homology groups
are abelian,

Proposition 4.4. Given any two continuous maps f, g : X → Y (where X and Y are
topological spaces), if f and g are homotopic then the chain maps S(f), S(g) : S∗(X;R) →
S∗(Y ;R) are chain homotopic (see Definition 2.10).

Proofs of Proposition 4.4 can be found in MacLane [29] (Chapter II, Theorem 8.2) and
Hatcher [25] (Chapter 2, Theorem 2.10). The idea is to reduce to proof to the case where
the space Y is the cylinder X × [0, 1]. In this case we have the two continuous maps
b, t : X → X × [0, 1] given by b(x) = (x, 0) and t(x) = (x, 1), which are clearly homotopic.
Then one shows that a chain homotopy can be constructed between the chain maps S(t)
and S(b).

As a corollary of Proposition 4.4, we obtain the following important result.
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X

A

Figure 4.6: A deformation retract of the cylinder X onto its median circle A

Proposition 4.5. Given any two continuous maps f, g : X → Y (where X and Y are
topological spaces), if f and g are homotopic and Hp(f), Hp(g) : Hp(X;R) → Hp(Y ;R) are
the induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if X and
Y are homotopy equivalent then the homology groups Hp(X;R) and Hp(Y ;R) are isomorphic
for all p ≥ 0,

Proof. By Proposition 4.4 there is a chain homotopy between S(f) : S∗(X;R) → S∗(Y ;R)
and S(g) : S∗(X;R)→ S∗(Y ;R), and by Proposition 2.17 the induced homomorphisms
Hp(f), Hp(g) : Hp(X;R) → Hp(Y ;R) are identical. If f : X → Y and g : Y → X are two
maps making X and Y chain homotopic, we have g ◦ f ' idX and f ◦ g ' idY , so by the
first part of the proposition

Hp(g ◦ f) = Hp(g) ◦Hp(f) = Hp(idX) = idHp(X;R)

and
Hp(f ◦ g) = Hp(f) ◦Hp(g) = Hp(idY ) = idHp(Y ;R),

which shows that the maps Hp(f) : Hp(X;R) → Hp(Y ;R) are isomorphisms with inverses
Hp(g).

4.2 Relative Singular Homology Groups

A more flexible theory is obtained if we consider homology groups Hp(X,A) associated with
pairs of spaces (A,X), where A is a subspace of X (assuming for simplicity that R = Z,
that is, integer coefficients). The quotient space X/A is obtained from X by identifying A
with a single point. Then, if (X,A) is a “good pair,” which means that A is a nonempty
closed subspace that is a deformation retract of some neighborhood in X (for example if X
is a cell complex and A is a nonempty subcomplex), it turns out that

Hp(X,A) ∼= Hp(X/A, {pt}),
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=~

=~

£

Figure 4.7: The punctured torus is homotopically equivalent to the figure eight.

where pt stands for any point in X. (see Hatcher [25], Proposition 2.22).

It can also be shown that the homology groups Hp(X, {pt}) are equal to the reduced

homology groups of X, which are usually denoted by H̃p(X), or more precisely by H̃p(X;Z)
(see Hatcher [25], Proposition 2.22).

Definition 4.7. Given a nonempty space X, the reduced homology groups

H̃0(X;R) = Ker ε/Im ∂1

H̃p(X;R) = Ker ∂p/Im ∂p+1, p > 0

are defined by the augmented chain complex

0 Roo S0(X;R)εoo S1(X;R)
∂1oo · · ·oo Sp−1(X;R)

∂p−1oo Sp(X;R)
∂poo · · · ,

∂p+1oo

where ε : S0(X;R) → R is the unique R-linear map such that ε(σ) = 1 for every singular
0-simplex σ : ∆0 → X in S∆0(X), given by

ε
(∑

i

λiσi

)
=
∑
i

λi.

It is immediate to see that ε ◦ ∂1 = 0, so Im ∂1 ⊆ Ker ε. By definition H0(X;R) =
S0(X;R)/Im ∂1. The module S0(X;R) is a free R-module isomorphic to the direct sum⊕

σ∈S∆0 (X) R with one copy of R for every σ ∈ S∆0(X), so by choosing one of the copies of
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R we can define an injective R-linear map s : R → S0(X;R) such that ε ◦ s = id, and we
obtain the following short split exact sequence:

0 // Ker ε // S0(X;R)
ε //

R
s

oo // 0.

Thus
S0(X;R) ∼= Ker ε⊕R,

and since Im ∂1 ⊆ Ker ε, we get

S0(X;R)/Im ∂1
∼= (Ker ε/Im ∂1)⊕R,

which yields

H0(X;R) = H̃0(X;R)⊕R
Hp(X;R) = H̃p(X;R), p > 0.

In the special case where R = Z,

H0(X) = H̃0(X)⊕ Z
Hp(X) = H̃p(X), p > 0.

One of the reasons for introducing the reduced homology groups is that

H̃0({pt};R) = (0),

whereas
H0({pt};R) = R.

On the other hand
Hp({pt};R) = H̃p({pt};R) = (0), if p > 0.

Since A is a subspace of X, each singular simplex σ : ∆p → A yields a singular simplex
σ : ∆p → X by composing σ with the the inclusion map from A to X, so the singular complex
S∗(A;R) is a subcomplex of the singular complex S∗(X;R). Let Sp(X,A;R) be the quotient
module

Sp(X,A;R) = Sp(X;R)/Sp(A;R)

and let S∗(X,A;R) be the corresponding graded module (the direct sum of the Sp(X,A;R)).

The boundary map ∂X,p : Sp(X;R) → Sp−1(X;R) of the original complex S∗(X;R) re-
stricts to the boundary map ∂A,p : Sp(A;R) → Sp−1(A;R) of the complex S∗(A;R) so the
quotient map ∂p : Sp(X,A;R)→ Sp−1(X,A;R) induced by ∂X,p and given by

∂p(σ + Sp(A;R)) = ∂X,p(σ) + Sp−1(A;R)
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for every singular p-simplex σ is a boundary map for the chain complex S∗(X,A;R). The
chain complex S∗(X,A;R)

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

is called the singular chain complex of the pair (X,A).

Definition 4.8. Given a pair (X,A) where A is a subspace of X, the singular relative
homology groups Hp(X,A;R) of (X,A) are defined by

Hp(X,A;R) = Hp(S∗(X;R)/S∗(A;R)),

the singular homology groups of the chain complex S∗(X,A;R). For short, we often drop
the word “singular” in singular relative homology group.

Observe that the quotient module Sp(X,A;R) = Sp(X;R)/Sp(A;R) is a free module.
Indeed, the family of cosets of the form σ + Sp(A;R) where the image of the singular p-
simplex σ does not lie in A forms a basis of Sp(X,A;R).

The relative homology group Hp(X,A;R) is also expressed as the quotient

Hp(X,A;R) = Zp(X,A;R)/Bp(X,A;R),

where Zp(X,A;R) is the group of relative p-cycles, namely those chains c ∈ Sp(X;R) such
that ∂pc ∈ Sp−1(A;R), and Bp(X,A;R) is the group of relative p-boundaries , where c ∈
Bp(X,A;R) iff c = ∂p+1β + γ with β ∈ Sp+1(X;R) and γ ∈ Sp(A;R). An illustration of the
notion of relative cycle is shown in Figure 4.8 and of a relative boundary in Figure 4.9.

A single space X may be regarded as the pair (X, ∅), and so Hp(X, ∅;R) = Hp(X;R).

Definition 4.9. Given two pairs (X,A) and (Y,B) with A ⊆ X and B ⊆ Y , a map
f : (X,A) → (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B. A homotopy
F between two maps f, g : (X,A) → (Y,B) is a homotopy between f and g such that
F (A× [0, 1]) ⊆ B; we write f ' g. Two pairs (X,A) and (Y,B) are homotopy equivalent if
there exist maps f : (X,A) → (Y,B) and g : (Y,B) → (X,A) such that g ◦ f ' (idX , idA)
and f ◦ g ' (idY , idB).

Proposition 4.3 is easily generalized to pairs of spaces.

Proposition 4.6. If (X,A) and (Y,A) are pairs of spaces and if f : (X,A) → (Y,B) is
a continuous map between them, then there are homomorphisms Hp(f) : Hp(X,A;R) →
Hp(Y,B;R) for all p ≥ 0.
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Figure 4.8: Let X be the closed unit disk and A its circular boundary. Let p = 1. The red
curve is a relative cycle since its boundary is in A. We show the effect of collapsing A a
point, namely transforming X into a unit sphere.

Figure 4.9: Let X be the closed unit disk and A its circular boundary. Let p = 1. The burnt
orange triangle and the blue arc form a relative boundary.
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Proof sketch. Given any singular p-simplex σ : ∆p → X by composition with f we obtain
the singular p-simplex fσ : ∆p → Y , and since Sp(X;R) is freely generated by S∆p(X;R)
we get a homomorphism Sp(f) : Sp(X;R)→ Sp(Y ;R). Consider the composite map
ϕ : Sp(X;R)→ Sp(Y ;R)/Sp(B;R) given by

Sp(X;R)
Sp(f) // Sp(Y ;R)

πY,B // Sp(Y ;R)/Sp(B;R).

Since f(A) ⊆ B, the restriction of Sp(f) to simplices in A yields a map Sp(f) : Sp(A;R) →
Sp(B;R) so Sp(f)(Sp(A;R)) ⊆ Sp(B;R), which implies that ϕ vanishes on Sp(A;R). Thus
Sp(A;R) ⊆ Kerϕ, which means that there is a unique homomorphism

f],p : Sp(X;R)/Sp(A;R)→ Sp(Y ;R)/Sp(B;R)

making the following diagram commute:

Sp(X;R)
πX,A //

ϕ
((

Sp(X;R)/Sp(A;R)

f],p

��
Sp(Y ;R)/Sp(B;R).

One will verify that the maps f],p : Sp(X;R)/Sp(A;R) → Sp(Y ;R)/Sp(B;R) define a chain
map f] from S∗(X,A;R) = S∗(X;R)/S∗(A;R) to S∗(Y,B;R) = S∗(Y ;R)/S∗(B;R), and this
chain map induces a homomorphism Hp(f) : Hp(X,A;R)→ Hp(Y,B;R).

The homomorphism Hp(f) : Hp(X,A;R)→ Hp(Y,B;R) is also denoted by
f∗p : Hp(X,A;R)→ Hp(Y,B;R).

Proposition 4.5 is generalized to maps between pairs as follows.

Proposition 4.7. (Homotopy Axiom) Given any two continuous maps f, g : (X,A)→ (Y,B)
if f and g are homotopic and Hp(f), Hp(g) : Hp(X,A;R) → Hp(Y,B;R) are the induced
homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A) and
(Y,B) are homotopy equivalent then the homology groups Hp(X,A;R) and Hp(Y,A;R) are
isomorphic for all p ≥ 0,

Each pair (X,A) yields a short exact sequence of complexes

0 // S∗(A;R) i // S∗(X;R)
j // S∗(X;R)/S∗(A;R) // 0,

where the second map is the inclusion map and the third map is the quotient map. Therefore,
we can apply the zig-zag lemma (Theorem 2.19) to this short exact sequence. If we go back
to the proof of this theorem and consider only spaces of index p ≤ 0, then by changing each
negative index p to −p we obtain a diagram where the direction of the arrows is reversed
and where each cohomology group Hp correspond to the homology group H−p we obtain the
“zig-zag lemma” for homology. Thus we obtain the following important result.
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Theorem 4.8. (Long Exact Sequence of Relative Homology) For every pair (X,A) of spaces,
we have the following long exact sequence of homology groups

· · · // Hp+2(X,A;R)
∂∗p+2

// Hp+1(A;R)
i∗ // Hp+1(X;R)

j∗ // Hp+1(X,A;R)
∂∗p+1

// Hp(A;R)
i∗ // Hp(X;R)

j∗ // Hp(X,A;R)
∂∗p

// Hp−1(A;R) // · · ·

ending in
H0(A;R) // H0(X;R) // H0(X,A;R) // 0.

It is actually possible to describe the boundary maps ∂∗p explicitly: for every relative
cycle c, we have

∂∗p([c]) = [∂p(c)].

To define the reduced singular relative homology groups H̃p(X,A;R) when A 6= ∅, we
augment the singular chain complex

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

of the pair (X,A) by adding one more 0 to the sequence:

0 0oo S0(X,A;R)εoo S1(X,A;R)
∂1oo · · ·oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

Consequently, if A 6= ∅, we have

H̃p(X,A;R) = Hp(X,A;R) for all p ≥ 0.

In addition to the short exact sequence

0 // Sp(A;R) // Sp(X;R) // Sp(X;R)/Sp(A;R) // 0

that holds for all p ≥ 0, we add the following exact sequence

0 // R
id // R // 0 // 0

in dimension −1, and then we obtain a version of Theorem 4.9 for reduced homology.



102 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

Theorem 4.9. (Long Exact Sequence of Reduced Relative Homology) For every pair (X,A)
of spaces, we have the following long exact sequence of reduced homology groups

· · · // H̃p+2(X,A;R)
∂∗p+2

// H̃p+1(A;R)
i∗ // H̃p+1(X;R)

j∗ // H̃p+1(X,A;R)
∂∗p+1

// H̃p(A;R)
i∗ // H̃p(X;R)

j∗ // H̃p(X,A;R)
∂∗p

// H̃p−1(A;R) // · · ·

ending in

H̃0(A;R) // H̃0(X;R) // H̃0(X,A;R) // 0.

If we apply Theorem 4.9 to the pair (X, {pt}) where pt ∈ X, since H̃p({pt};R) = (0) for
all p ≥ 0, we obtain the following isomorphisms:

Hp(X, {pt};R) ∼= H̃p(X;R) for all p ≥ 0.

The following result is proved in Hatcher [25] (Proposition 2.22).

Proposition 4.10. If (X,A) is a good pair, which means that A is a nonempty closed
subspace that is a deformation retract of some neighborhood in X, then

Hp(X,A;R) ∼= Hp(X/A, {pt};R) ∼= H̃p(X/A;R).

Using Proposition 4.10 we obtain the following theorem which can be used to compute
the homology of a quotient space X/A from the homology of X and the homology of its
subspace A (see Hatcher [25], Theorem 2.13) .

Theorem 4.11. For every pair of spaces (X,A), if (X,A) is a good pair, then we have the
following long exact sequence of reduced homology groups

· · · // H̃p+2(X/A;R)
∂∗p+2

// H̃p+1(A;R)
i∗ // H̃p+1(X;R)

j∗ // H̃p+1(X/A;R)
∂∗p+1

// H̃p(A;R)
i∗ // H̃p(X;R)

j∗ // H̃p(X/A;R)
∂∗p

// H̃p−1(A;R) // · · ·
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ending in

H̃0(A;R) // H̃0(X;R) // H̃0(X/A;R) // 0.

4.3 Excision and the Mayer–Vietoris Sequence

One of the main reasons why the relative homology groups are important is that they satisfy
a property known as excision.

Theorem 4.12. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of
Z is contained in the interior of A, then the inclusion (X − Z,A − Z) −→ (X,A) induces
isomorphisms of singular homology

Hp(X − Z,A− Z;R) ∼= Hp(X,A;R), for all p ≥ 0.

See Figure 4.10. Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the
inclusion map (B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;R) ∼= Hp(X,A;R), for all p ≥ 0.

See Figure 4.11.

X

X

A

Z

Z-

Figure 4.10: Let X be the torus. This figure demonstrates the excision of the plum disk Z
from X.

The translation between the two versions is obtained by setting B = X − Z and Z =
X − B, in which case A ∩ B = A − Z. The proof of Theorem 4.12 is rather technical and
uses a technique known as barycentric subdivision. The reader is referred to Hatcher [25]
(Chapter 2, Section 2.1) and Munkres [38] (Chapter 4, Section 31).

The proof of Theorem 4.12 relies on a technical lemma about the relationship between the
chain complex S∗(X;R) and the chain complex SU∗ (X;R) induced by a family U = (Ui)i∈I
of subsets of X whose interiors form an open cover of X.
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A

B
B

BAh

Figure 4.11: Let X be the torus. This figure demonstrates the relationships between A, B
and A ∩B.

Definition 4.10. Given a topological space X, for any family U = (Ui)i∈I of subsets of X
whose interiors form an open cover of X, we say that a singular p-simplex σ : ∆p → X is
U-small if its image is contained in one of the Ui. The submodule SUp (X;R) of Sp(X;R)
consists of all singular p-chains

∑
λkσk such that each p-simplex σk is U -small.

It is immediate that the boundary map ∂p : Sp(X;R) → Sp−1(X;R) takes SUp (X;R)
into SUp−1(X;R), so SU∗ (X;R) is a chain complex. The homology modules of the complex
SU∗ (X;R) are denoted by HUp (X;R).

Proposition 4.13. Given a topological space X, for any family U = (Ui)i∈I of subsets of X
whose interiors form an open cover of X, the inclusions ιp : SUp (X;R) → Sp(X;R) induce
a chain homotopy equivalence; that is, there is a family of chain maps ρp : Sp(X;R) →
SUp (X;R) such that ρ ◦ ι is chain homotopic to the identity map of SU∗ (X;R) and ι ◦ ρ is
chain homotopic to the identity map of S∗(X;R). As a consequence, we have isomorphisms
HUp (X;R) ∼= Hp(X;R) for all p ≥ 0.

The proof of Proposition 4.13 is quite involved. It uses barycentric subdivision; see
Hatcher [25] (Chapter 2, Proposition 2.21) and Munkres [38] (Chapter 4, Section 31, Theorem
31.5).

Besides playing a crucial role in proving the excision axiom, Proposition 4.13 yields simple
proof of the Mayer–Vietoris sequence in singular homology. For arbitrary topological spaces,
partitions of unity are not available but the set-up of Proposition 4.13 yields an alternative
method of proof.

Theorem 4.14. (Mayer–Vietoris in singular homology) Given any topological space X, for
any two subsets A,B of X such that X = Int(A) ∪ Int(B), there is a long exact sequence of
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homology

// Hp(A ∩B;R)
ϕ∗ // Hp(A;R)⊕Hp(B;R)

ψ∗ // Hp(X;R)
∂∗ // Hp−1(A ∩B;R) //

where the maps ϕ and ψ are defined by

ϕ∗(c) = (i∗(c),−j∗(c))
ψ∗(a, b) = k∗(a) + l∗(b),

and where i, j, k, l are the inclusion maps shown in the diagram below:

A ∩B i //

j

��

A

k
��

B
l
// X.

If A ∩B 6= ∅, a similar sequence exists in reduced homology.

Proof. For simplicity of notation we suppress the ring R in writing Sp(−, R) or Hp(−, R).
We define a sequence

0 // Sp(A ∩B)
ϕ // Sp(A)⊕ Sp(B)

ψ // Sp(A) + Sp(B) // 0

for every p ≥ 0, where ϕ and ψ are given by

ϕ(c) = (i](c),−j](c))
ψ(a, b) = k](a) + l](b).

Observe that ψ ◦ϕ = 0. The map ϕ is injective, while ψ is surjective. We have Imϕ ⊆ Kerψ
since ψ ◦ ϕ = 0. The kernel of ψ consists of all chains of the form (c,−c) where c ∈ Sp(A)
and −c ∈ Sp(B) so c ∈ Sp(A ∩ B) and ϕ(c) = (c,−c), which shows that Kerψ ⊆ Imϕ.
Therefore the sequence is exact, and we have a short exact sequence of chain complexes

0 // S∗(A ∩B)
ϕ // S∗(A)⊕ S∗(B)

ψ // S∗(A) + S∗(B) // 0.

By the long exact sequence of homology we have the long exact sequence

// Hp(A ∩B)
ϕ∗ // Hp(A)⊕Hp(B)

ψ∗ // Hp(S∗(A) + S∗(B))
∂∗ // Hp−1(A ∩B) // .

However, since X = Int(A) ∪ Int(B), Proposition 4.13 implies that

Hp(S∗(A) + S∗(B)) ∼= Hp(X),

and we obtain the long exact sequence

· · · // Hp(A ∩B)
ϕ∗ // Hp(A)⊕Hp(B)

ψ∗ // Hp(X)
∂∗ // Hp−1(A ∩B) // · · · ,

as desired. A similar argument applies to reduced homology by augmenting the complexes
S∗(A ∩B), S∗(A)⊕ S∗(B), and S∗(A) + S∗(B) using the maps ε : S0(A ∩B)→ R,
ε⊕ ε : S0(A)⊕ S0(B)→ R⊕R, and ε : S0(A) + S0(B)→ R.



106 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

The Mayer–Vietoris sequence can be used to compute the homology of spaces in terms
of some of their pieces. For example, this is a way to compute the homology of the n-torus.

There are two more important properties of singular homology that should be mentioned:

(1) The axiom of compact support.

(2) The additivity axiom.

The additivity axiom implies that that the homology groups Hp(X,A;R) are determined
by the groups Hp(C,D;R) where (C,D) is a compact pair in (X,A), which means that
D ⊆ C ⊆ X, D ⊆ A ⊆ X, C is compact, and D is compact in C.

Let K(X,A) be the sets of all compact pairs of (X,A) ordered by inclusion. It is a
directed preorder.

Proposition 4.15. For any pair (X,A) of topological spaces with A ⊆ X, the following
properties hold:

(1) Given any homology class α ∈ Hp(X,A), there is a compact pair (C,D) in (X,A) and
a homology class β ∈ Hp(C,D;R) such that i∗(β) = α, where i : (C,D) → (X,A) is
the inclusion map.

(2) Let (C,D) be any compact pair in (X,A), and let β ∈ Hp(C,D;R) be any homology
class such that i∗(β) = 0. Then there exists a compact pair (C ′, D′) such that (C,D) ⊆
(C ′, D′) ⊆ (X,A) and j∗(β) = 0, where j : (C,D)→ (C ′, D′) is the inclusion map.

In short, Hp(X,A;R) is the direct limit

Hp(X,A;R) = lim−→
(C,D)∈K(X,A)

Hp(C,D;R).

Proposition 4.15 is proved in Massey [32] (Chapter VIII, Section 6, Proposition 6.1) and
Rotman [41] (Chapter 4, Theorem 4.16).

Sketch of proof. The proof of (1) is not difficult and relies on the fact that for any singular p-
chain a ∈ Sp(X;R) there is a compact subset C of X such that a ∈ Sp(C;R). For simplicity

of exposition assume that A = ∅. If a =
∑k

i=1 λiσi ∈ Sp(X,R) is a cycle representing the
homology class α, with λi ∈ R and each σi a p-simplex σi : ∆p → X, since ∆p is compact and
each σi is continuous, C = σ1(∆p)∪ · · ·∪σk(∆p) is a compact subset of X and a ∈ Sp(C;R).

Let b =
∑k

i=1 λiσ
′
i ∈ Sp(C,R) be the p-chain in which σ′i : ∆p → C is the corestriction of σi

to C. We need to check that b is a p-cycle. By definition of the inclusion i we have a = i](b),
and since a is a p-cycle we have

i] ◦ ∂(b) = ∂ ◦ i](b) = ∂a = 0.

Since i is an injection, i] is also an injection, thus ∂b = 0, which means that b ∈ Sp(C;R) is
indeed a p-cycle, and if β denotes the homology class of b, we have i∗(β) = α. The above
argumemt is easily adapted to the case where A 6= ∅. The proof of (2) is similar an left as
an exercise.
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The above fact suggests the following axiom of homology called the Axiom of compact
support :

Given any pair (X,A) with A ⊆ X and given any homology class α ∈ Hp(X,A), there is
a compact pair (C,D) in (X,A) and a homology class β ∈ Hp(C,D;R) such that i∗(β) = α,
where i : (C,D)→ (X,A) is the inclusion map.

This axiom is another of the axioms of a homology theory; see Munkres [38] (Chapter 3,
Section 26, Axiom 8), or Spanier [47] (Chapter 4, Section 8, No. 11).

To state the additivity axiom we need to define the topological sum of a family of spaces.

Definition 4.11. If (Xi)i∈I is a family of topological spaces we define the topological sum⊔
i∈I Xi of the family (Xi)i∈I as the disjoint union of the spaces Xi, and we give it the

topology for which a subset Z ⊆
⊔
i∈I Xi is open iff Z ∩Xi is open for all i ∈ I.

Then the Additivity axiom states that for any family of topological spaces (Xi)i∈I there
is an isomorphism

Hp

(⊔
i∈I

Xi;R
)
∼=
⊕
i∈I

Hp(Xi;R) for all p ≥ 0.

The above axiom introduced by Milnor is stated in Bredon [4] (Chapter IV, Section 6),
May [34] (Chapter 13, Section1), and Hatcher [25] (Chapter 2, Section 2.3), where it is stated
for relative homology and for a wedge sum of spaces.

The additivity axiom is a general property of chain complexes. Indeed, homology com-
mutes with sums, products, and direct limits; see Spanier [47] (Chapter 4, Section 1, Theorem
6 and Theorem 7). This axiom is only needed for infinite sums.

4.4 Some Applications of Singular Homology

It is remarkable that Proposition 4.7, Theorem 4.9 or its version Theorem 4.11, and Theorem
4.12, can be used to compute the singular homology of some of the familiar simple spaces.
We show below how to compute the homology groups of the spheres.

Recall that the n-dimensional ball Dn and the the n-dimensional sphere Sn are defined
respectively as the subspaces of Rn and Rn+1 given by

Dn = {x ∈ Rn | ‖x‖2 ≤ 1}
Sn = {x ∈ Rn+1 | ‖x‖2 = 1}.

Furthermore, Sn = ∂Dn+1, the boundary of Dn+1, and Dn/∂Dn is homeomorphic to Sn

(n ≥ 1). We also know that Dn is contractible for all n ≥ 1, so its homology groups are
given by

H0(Dn;R) = R

Hp(D
n;R) = (0), p > 0,
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or equivalently
H̃p(D

n;R) = (0), p ≥ 0.

Proposition 4.16. The reduced homology of Sn is given by

H̃p(S
n;R) =

{
R if p = n

(0) if p 6= n,

or equivalently the homology of Sn is given by

H0(S0;R) = R⊕R
Hp(S

0;R) = (0), p > 0,

and for n ≥ 1,

Hp(S
n;R) =

{
R if p = 0, n

(0) if p 6= 0, n.

Proof. For simplicity of notation, we drop the ring R in writing homology groups. Since
S0 = {−1, 1}, by the excision axiom (Theorem 4.7) we get

Hp(S
0, {−1}) ∼= Hp({1}, ∅) = Hp({1})

for all p ≥ 0. The long exact sequence of Theorem 4.9 for the pair (S0, {−1}) gives the exact
sequence

// Hp({−1}) // Hp(S
0) // Hp(S

0, {−1}) // Hp−1({−1}) //

If p ≥ 1, since Hp({−1}) = Hp({1}) = (0) and Hp(S
0, {−1}) ∼= Hp({1}), we get Hp(S

0) =
(0). If p = 0, since H0({−1}) = H0({1}) = R, we get H0(S0) = R⊕R.

If n ≥ 1, then since Dn/∂Dn is homeomorphic to Sn and ∂Dn = Sn−1 is a deformation
restract of Dn, the long exact sequence of Theorem 4.11 for the pair (Dn, ∂Dn) = (Dn, Sn−1)
yields the exact sequence

// H̃p(D
n) // H̃p(D

n/Sn−1) = H̃p(S
n) // H̃p−1(Sn−1) // H̃p−1(Dn−1) //

and if p ≥ 1, since H̃p(D
n) = H̃p−1(Dn−1) = (0), we get

H̃p(S
n) ∼= H̃p−1(Sn−1) p ≥ 1.

We conclude by induction on n ≥ 1.

The most convenient setting to compute homology groups is the homology of cell com-
plexes or simplicial homology; see Chapter 6. For example, cellular homology can used to
compute the homology of the real and complex projective spaces RPn and CPn; see Section
6.2, and also Hatcher [25], Munkres [38], and Bredon [4].
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Example 4.1. The real projective space RPn is the quotient of Rn+1−{0} by the equivalence
relation ∼ defined such that for all (u1, . . . , un+1) ∈ Rn+1 − {0} and all (v1, . . . , vn+1) ∈
Rn+1 − {0},

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ R− {0}) (v1, . . . , vn+1) = α(u1, . . . , un+1).

Equivalently, RPn is the quotient of the subset Sn of Rn+1 defined by

Sn = {(u1, . . . , un+1) ∈ Rn+1 | u2
1 + · · ·+ u2

n+1 = 1},

in other words, the n-sphere, by the equivalence relation ∼ on Sn defined so that for all
(u1, . . . , un+1) ∈ Sn and all (v1, . . . , vn+1) ∈ Sn,

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (v1, . . . , vn+1) = ±(u1, . . . , un+1).

This says that two points on the sphere Sn are equivalent iff they are antipodal. We have a
quotient map π : Sn → RPn.

The complex projective space CPn is the quotient of Cn+1−{0} by the equivalence relation
∼ defined such that for all (u1, . . . , un+1) ∈ Cn+1 − {0} and all (v1, . . . , vn+1) ∈ Cn+1 − {0},

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ C− {0}) (v1, . . . , vn+1) = α(u1, . . . , un+1).

Equivalently, CPn is the quotient of the subset Σn of Cn+1 defined by

Σn = {(u1, . . . , un+1) ∈ Cn+1 | |u1|2 + · · ·+ |un+1|2 = 1},

by the equivalence relation ∼ on Σn defined so that for all (u1, . . . , un+1) ∈ Σn and all
(v1, . . . , vn+1) ∈ Σn,

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ C, |α| = 1) (v1, . . . , vn+1) = α(u1, . . . , un+1).

If we write uj = xj + iyj with xj, yj ∈ R, we have (u1, . . . , un+1) ∈ Σn iff

x2
1 + y2

1 + · · ·+ x2
n+1 + y2

n+1 = 1,

iff (x1, y1, . . . , xn+1, yn+1) ∈ S2n+1. Therefore we can identify Σn with S2n+1, and we can
view CPn as the quotient of S2n+1 by the above equivalence relation. We have a quotient
map π : S2n+1 → CPn.

For R = Z, we have

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =


Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise.
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The homology of the n-torus T n = S1 × · · · × S1︸ ︷︷ ︸
n

exhibits a remarkable symmetry:

Hp(T
n;R) = R⊕ · · · ⊕R︸ ︷︷ ︸

(np)

.

The homology of the n-torus T n can be computed by induction using the Mayer–Vietoris
sequence (Theorem 4.14).

Surprisingly, computing the homology groups Hp(SO(n);Z) of the rotation group SO(n)
is more difficult. It can be shown that the groups Hp(SO(n);Z) are directs sums of copies of
Z and Z/2Z, but their exact structure is harder to obtain. For more on this topic, we refer
the reader to Hatcher [25] (Chapter 3, Sections 3.D and 3.E).

Proposition 4.7, Theorem 4.8, and Theorem 4.12, state three of the properties that were
singled out as characterizing homology theories by Eilenberg and Steenrod [12]. These
properties hold for most of the known homology theories, and thus can be taken as axioms
for homology theory; see Sato [43], MacLane [29], Munkres [38], or Hatcher [25].

One of the most spectacular applications of homology is a proof of a generalized version
of the Jordan curve theorem. First, we need a bit of terminology.

Given two topological spaces X and Y , an embedding is a homeomorphism f : X → Y
of X onto its image f(X). A m-cell or cell of dimension m is any space B homeomorphic
to the closed ball Dm. A subspace A of a space X separates X if X − A is not connected.

Proposition 4.17. Let B be a k-cell in Sn. Then Sn − B is acyclic, which means that
Hp(S

n −B) = (0) for all p 6= 0. In particular B does not separate Sn.

Proposition 4.17 is proved in Munkres [38] (Chapter 4, Section 36, Theorem 36.1). See
also Bredon [4] (Chapter IV, Corollary 19.3).

Proposition 4.18. Let n > k ≥ 0. For any embedding h : Sk → Sn we have

H̃p(S
n − h(Sk)) =

{
Z if p = n− k − 1

0 otherwise.

This implies that H̃p(S
n − h(Sk)) ∼= H̃p(S

n−k−1).

Proposition 4.18 is proved in Munkres [38] (Chapter 4, Section 36, Theorem 36.2) and
Bredon [4] (Chapter IV, Theorem 19.4). The proof uses an induction on k and a Mayer-
Vietoris sequence. Proposition 4.18 implies the following generalization of the Jordan curve
theorem for n ≥ 1.

Theorem 4.19. (Generalized Jordan curve theorem in Sn) Let n > 0 and let C be any subset
of Sn homeomorphic to Sn−1. Then Sn −C has precisely two components, both acyclic, and
C is their common topological boundary.
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Theorem 4.19 is proved in Munkres [38] (Chapter 4, Section 36, Theorem 36.3) and
Bredon [4] (Chapter IV, Theorem 19.5), in which it is called the Jordan–Brouwer separation
theorem.

The first part of the theorem is obtained by applying Proposition 4.18 in the case where
k = n − 1. In this case we see that H̃0(Sn − C) = Z, so H0(Sn − C) = Z ⊕ Z and this
implies that Sn − C has precisely two path components. The proof of the second part uses
Proposition 4.17.

One might think that because C is homeomorphic to Sn−1 the two components W1 and
W2 of Sn−C should be n-cells, but this is false in general. The problem is that an embedding
of Sn−1 into Sn can be very complicated. There is a famous embedding of S2 into S3 called
the Alexander horned sphere for which the sets W1 and W2 are not even simply connected;
see Bredon [4] (Chapter IV, page 232) and Hatcher [25] (Chapter 2, Example 2B.2). In the
case n = 2, things are simpler; see Hatcher [25] (Chapter 2, Section 2.B) and Bredon [4]
(Chapter IV, pages 235-236).

The classical version of the Jordan curve theorem is stated for embeddings of Sn−1 into
Rn.

Theorem 4.20. (Generalized Jordan curve theorem in Rn) Let n > 1 and let C be any
subset of Rn homeomorphic to Sn−1. Then Rn − C has precisely two components, one of
which is bounded and the other one is not. The bounded component is acyclic and the other
has the homology of Sn−1.

Proof. Using the inverse stereographic projection from the north pole N we can embed C
into Sn. By Theorem 4.19 Sn − C has two acyclic components. Let V be the component
containing N . Obviously the other component U is bounded and acyclic. It follows that
Sn − U is homeomorphic to Dn so we can view V as being a subset of Dn. Next we follow
Bredon [4] (Chapter IV, Corollary 19.6). Consider the piece of the long exact sequence of
the pair (V, V − {N}):

H̃p+1(V ) // Hp+1(V, V − {N}) // H̃p(V − {N}) // H̃p(V )

By Theorem 4.19 the homology of V is acyclic, so we have the following isomorphisms

H̃p(V − {N}) ∼= Hp+1(V, V − {N})
∼= Hp+1(Dn, Dn − {0})
∼= H̃p(D

n − {0})
∼= H̃p(S

n−1),

where the second isomorphism holds by excision since V ⊆ Dn, the third holds from the
long exact sequence of (Dn, Dn − {0}), and the fourth by homotopy.
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Later on, to define orientable manifolds we will need to compute the groups Hp(M,M −
{x};R) where M is a topological manifold and x is any point in M .

Recall that a topological manifold M of dimension n, for short an n-manifold , is a topo-
logical space such that for every x ∈M , there is some open subset U of M containing x and
some homeomorphism ϕU : U → Ω (called a chart at x) onto some open subset Ω ⊆ Rn. We
have the following result.

Proposition 4.21. If M is a topological manifold of dimension n and if R is any commu-
tative ring with a multiplicative identity element, then

Hp(M,M − {x};R) ∼= Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R) ∼= H̃p−1(Sn−1)

for all p ≥ 0. Consequently

Hp(M,M − {x};R) ∼=

{
R if p = n

(0) if p 6= n.

Proof. By shrinking U is necessary we may assume that U is homeomorphic to Rn, so by
excision with X = M,A = U , and Z = M − U (see Theorem 4.12), we obtain

Hp(M,M − {x};R) ∼= Hp(U,U − {x};R) ∼= Hp(Rn,Rn − {x};R).

By Theorem 4.9 the long exact sequence of homology yields an exact sequence

H̃p+1(Rn;R) // H̃p+1(Rn,Rn − {x};R) // H̃p(Rn − {x};R) // H̃p(Rn;R).

Since Rn is contractible, H̃p+1(Rn;R) = (0) and H̃p(Rn;R) = (0) so we have isomorphisms

H̃p+1(Rn,Rn − {x};R) ∼= H̃p(Rn − {x};R)

for all p ≥ 0. Since H̃p+1(Rn,Rn − {x};R) = Hp+1(Rn,Rn − {x};R) for p ≥ 1, we get

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R)

for all p ≥ 1. For p = 0, the end of the long exact sequence given by Theorem 4.8 yields

H0(Rn − {x};R) // H0(Rn;R) // H0(Rn,Rn − {x};R) // 0,

and since H0(Rn;R) = R and H0(Rn − {x};R) = R or R ⊕ R when n = 1, we obtain
H0(Rn,Rn − {x};R) = (0). Since homology (and reduced homology) of negative index are
(0), we obtain the isomorphisms

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R)

for all p ≥ 0. To finish the proof, observe that Sn−1 is a deformation retract fo Rn−{x}, so
by the homotopy axiom (Proposition 4.7) we get

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Sn−1;R)

for all p ≥ 0. We conclude by using Proposition 4.16.
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If M is an n-manifold, since the groups Hn(M,M−{x};R) are all isomorphic to R, a way
to define a notion of orientation is to pick some generator µx from Hn(M,M − {x};R), for
every x ∈ M . Since Hn(M,M − {x};R) is a ring with a unit, generators are just invertible
elements. To say that M is orientable means that we can pick these µx ∈ Hn(M,M−{x};R)
in such a way that they “vary continuously” with x. We will how to do this in Section 7.1.

In the next section, we show how singular homology can be generalized to deal with more
general coefficients.

4.5 Singular Homology with G-Coefficients

In the previous sections, given a commutative ring R with an identity element, we defined
the singular chain group Sp(X;R) as the free R-module generated by the set S∆p(X) of
singular p-simplices σ : ∆p → X. Thus, a singular chain c can be expressed as a formal
linear combination

c =
m∑
k=1

λiσi,

for some λi ∈ R and some σi ∈ S∆p(X).

If A is a subset of X, we defined the relative chain group Sp(X,A;R) as the quotient
Sp(X;R)/Sp(A;R). We observed that Sp(X,A;R) is also a free R-module, and a basis of
Sp(X,A;R) consists of the cosets σ + Sp(A;R) where the image of the singular simplex
σ : ∆p → X does not lie in A.

Experience shows that it is fruitful to generalize homology to allow coefficients in any
R-module G. Intuitively, a chain with coefficients in G is a formal linear combination

c =
m∑
k=1

giσi,

where the gi are elements of the module G. We may think of such chains as “vector-valued”
as opposed to the orginal chains which are “scalar-valued.” As we will see shortly, the usual
convention is to swap gi and σi so that these formal sums are of the form

∑
σigi.

A rigorous way to proceed is to define the module Sp(X;G) of singular p-chains with
coefficients in G as the tensor product

Sp(X;G) = Sp(X;R)⊗R G.

It is a R-module.

Since the R-module Sp(X;R) is freely generated by S∆p(X), it is a standard result of
linear algebra that we have an isomorphism

Sp(X;R)⊗R G ∼=
⊕

σ∈S∆p (X)

G,
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the direct sum of copies of G, one for each σ ∈ S∆p(X).

Recall that this direct sum is the R-module of all functions c : S∆p(X)→ G that are zero
except for finitely many σ. For any g 6= 0 and any σ ∈ S∆p(X), if we denote by σg the
function from S∆p(X) to G which has the value 0 for all arguments except σ where its value
is g, then every c ∈ Sp(X;R)⊗R G = Sp(X;G) which is not identically 0 can be written in
a unique way as a finite sum

c =
m∑
k=1

σigi

for some σi ∈ S∆p(X) and some nonzero gi ∈ G. Observe that in the above expression the
“vector coefficient” gi comes after σi, to conform with the fact that we tensor with G on the
right.

Since we will always tensor over the ring R, for simplicity of notation we will drop the
subscript R in ⊗R. Now given the singular chain complex (S∗(X;R), ∂∗) displayed below

0 S0(X;R)
∂0oo S1(X;R)

∂1oo · · ·oo Sp−1(X;R)
∂p−1oo Sp(X;R)

∂poo · · · ,oo

(recall that ∂i ◦ ∂i+1 = 0 for all i ≥ 0) we can form the homology complex

0 S0(X;R)⊗G∂0⊗idoo S1(X;R)⊗G∂1⊗idoo · · ·oo Sp(X;R)⊗G · · ·∂p⊗idoo

denoted (S∗(X;R) ⊗ G, ∂∗ ⊗ id) obtained by tensoring with G, and since by definition
Sp(X;G) = Sp(X;R)⊗G, we have the homology complex

0 S0(X;G)
∂0⊗idoo S1(X;G)

∂1⊗idoo · · ·oo Sp(X;G)
∂p⊗idoo · · ·oo

denoted (S∗(X;G), ∂∗ ⊗ id) (of course, G∗(X;G) = S∗(X;R)⊗G).

Definition 4.12. Let R be a commutative ring with identity and let G be a R-module. The
singular homology modules Hp(X;G) with coefficients in G are the homology groups of the
above complex; that is,

Hp(X;G) = Hp(S∗(X;G)) p ≥ 0.

If ε : S0(X;R) → R is the map of Definition 4.7, then we obtain an augmentation map
ε⊗ id : S0(X;R)⊗G→ R⊗G ∼= G, that is, a map ε⊗ id : S0(X;G)→ G, and we obtain an
augmented complex with G is dimension −1.

The corresponding homology groups are denoted H̃p(X;G) and are called the reduced
singular homology groups with coefficients in G. As in Section 4.2 we can pick an injective
map s : R → S0(X;R) such that ε ◦ s = id, and since R ⊗ G ∼= G and the short exact
sequence

0 // Ker ε // S0(X;R)
ε //

R
s

oo // 0
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splits, by tensoring with G we get the short split exact sequence

0 // (Ker ε)⊗G // S0(X;R)⊗G
ε⊗id //

R⊗G ∼= G
s⊗id
oo // 0;

see Munkres [38] (Chapter 6, Section 51, Exercise 1). Thus

S0(X;G) = S0(X;R)⊗G ∼= ((Ker ε)⊗G)⊕G,

and since H0(X;G) = S0(X;G)/Im(∂1 ⊗ id), H̃0(X;G) = (Ker (ε ⊗ id))/Im(∂1 ⊗ id) ∼=
((Ker ε)⊗G)/Im(∂1 ⊗ id), and since Im ∂1 ⊆ Ker ε, we get

S0(X;G)/Im(∂1 ⊗ id) ∼= (((Ker ε)⊗G)/Im(∂1 ⊗ id))⊕G,

which shows that

H0(X;G) ∼= H̃0(X;G)⊕G
Hp(X;G) ∼= H̃p(X;G), p ≥ 1.

More generally, if A is a subset of X, we have the chain complex (S∗(X,A;R), ∂∗) dis-
played below

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·oo

where Sp(X,A;R) = Sp(X;R)/Sp(A;R), and by tensoring with G and writing

Sp(X,A;G) = Sp(X,A;R)⊗G,

we obtain the chain complex (S∗(X,A;R)⊗G, ∂∗ ⊗G)

0 S0(X,A;G)
∂0⊗idoo S1(X,A;G)

∂1⊗idoo · · ·oo Sp(X,A;G)
∂p⊗idoo · · ·oo

denoted (S∗(X,A;G), ∂∗ ⊗G).

Definition 4.13. Let R be a commutative ring with identity and let G be a R-module.
For any subset A of the space X, the relative singular homology modules Hp(X,A;G) with
coefficients in G are the homology groups of the above complex; that is,

Hp(X,A;G) = Hp(S∗(X,A;G)) p ≥ 0.

Similarly, the reduced relative singular homology modules H̃p(X,A;G) with coefficients
in G are the homology groups of the complex obtained by tensoring the reduced homology
complex of (X,A) with G. As in Section 4.2, if A 6= ∅ we have

Hp(X,A;G) ∼= H̃p(X,A;G), p ≥ 0.
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A continuous map h : (X,A)→ (Y,B) gives rise to a chain map

h]⊗id : S∗(X,A;R)⊗G→ S∗(Y,B;R)⊗G

which induces a homology homomorphism

h∗ : H∗(X,A;G)→ H∗(Y,B;G).

As we know, we have a short exact sequence

0 // Sp(A;R) // Sp(X;R) // Sp(X,A;R) // 0,

and since Sp(X,A;R) is free, it is a split exact sequence. Therefore, by tensoring with G we
obtain another short exact sequence

0 // Sp(A;R)⊗G // Sp(X;R)⊗G // Sp(X,A;R)⊗G // 0;

that is, a short exact sequence

0 // Sp(A;G) // Sp(X;G) // Sp(X,A;G) // 0,

By Theorem 2.19, we obtain a long exact sequence of homology.

Theorem 4.22. (Long Exact Sequence of Relative Homology) For every pair (X,A) of
spaces, for any R-module G, we have the following long exact sequence of homology groups

· · · // Hp+2(X,A;G)
∂∗p+2

// Hp+1(A;G)
i∗ // Hp+1(X;G)

j∗ // Hp+1(X,A;G)
∂∗p+1

// Hp(A;G)
i∗ // Hp(X;G)

j∗ // Hp(X,A;G)
∂∗p

// Hp−1(A;G) // · · ·
ending in

H0(A;G) // H0(X;G) // H0(X,A;G) // 0.

The version of Theorem 4.22 for reduced homology also holds.

It is easily checked that if x ∈ X is a point then

Hp({x};G) =

{
G if p = 0

(0) if p 6= 0.

It is quite easy to see that the homotopy axiom also holds for homology with coefficients
in G (see Munkres [38], Chapter 6, Section 51).
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Proposition 4.23. (Homotopy Axiom) Given any two continuous maps f, g : (X,A) →
(Y,B) if f and g are homotopic and Hp(f), Hp(g) : Hp(X,A;G) → Hp(Y,B;G) are the
induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A) and
(Y,B) are homotopy equivalent then for any R-module G the homology groups Hp(X,A;G)
and Hp(Y,A;G) are isomorphic for all p ≥ 0,

The excision axiom also holds but the proof requires a little more work (see Munkres
[38], Chapter 6, Section 51).

Theorem 4.24. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of Z
is contained in the interior of A, then for any R-module G the inclusion (X−Z,A−Z) −→
(X,A) induces isomorphisms of singular homology

Hp(X − Z,A− Z;G) ∼= Hp(X,A;G), for all p ≥ 0.

Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the inclusion map
(B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;G) ∼= Hp(X,A;G), for all p ≥ 0.

As a consequence, since the homotopy axiom, the excision axiom and the long exact
sequence of homology exists, the proof of Proposition 4.16 goes through with G-coefficients.
The homology of Dn is given by

H0(Dn;G) = G

Hp(D
n;G) = (0), p > 0,

or equivalently
H̃p(D

n;G) = (0), p ≥ 0,

and we have the following result.

Proposition 4.25. For any R-module G the reduced homology of Sn is given by

H̃p(S
n;G) =

{
G if p = n

(0) if p 6= n,

or equivalently the homology of Sn is given by

H0(S0;G) = G⊕G
Hp(S

0;G) = (0), p > 0,

and for n ≥ 1,

Hp(S
n;G) =

{
G if p = 0, n

(0) if p 6= 0, n.



118 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

Relative singular homology with coefficients in G satisfies the axioms of homology theory
singled out by Eilenberg and Steenrod [12]. The Universal Coefficient Theorem for homology
(Theorem 12.42) shows that if R is a PID, then the module Hp(X,A;G) can be expressed
in terms of the modules Hp(X,A;R) and Hp−1(X,A;R) for any R-module G.

For example, we find that the homology groups of the real projective space with values
in an R-module G are given by

Hp(RPn;G) =


G for p = 0, n

G/2G for p odd, 0 < p < n

Ker (G
2−→ G) for p even 0 < p < n

(0) otherwise

if n is odd and

Hp(RPn;G) =


G for p = 0

G/2G for p odd, 0 < p < n

Ker (G
2−→ G) for p even 0 < p ≤ n

(0) otherwise.

if n is even, where the map G
2−→ G is the map g 7→ 2g.

Although homology theory is a very interesting subject, we proceed with cohomology,
which is our primary focus.

4.6 Singular Cohomology

Roughly, to obtain cohomology from homology we dualize everything.

Definition 4.14. Given a topological space X and a commutative ring R, for any p ≥ 0
we define the singular cochain group Sp(X;R) as the dual HomR(Sp(X;R), R) of the R-
module Sp(X;R), namely the space of all R-linear maps from Sp(X;R) to R. The elements
of Sp(X;R) are called singular p-cochains . We set Sp(X;R) = (0) for p < 0.

Since Sp(X;R) is the free R-module generated by the set S∆p(X) of singular p-simplices,
every linear map from Sp(X;R) to R is completely determined by its restriction to S∆p(X),
so we may view an element of Sp(X;R) as an arbitrary function f : S∆p(X) → R assigning
some element of R to every singular p-simplex σ. Recall that the set of functions from S∆p(X)
to R forms a R-module under the operations of multiplication by a scalar and addition given
by

(λf)(σ) = λ(f(σ))

(f + g)(σ) = f(σ) + g(σ)
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for any singular p-simplex σ ∈ S∆p(X) and any scalar λ ∈ R. Any singular p-cochain
f : S∆p(X) → R can be evaluated on any singular p-chain α =

∑m
i=1 λiσi, where the σi are

singular p-simplices in S∆p(X), by

f(σ) =
m∑
i=1

λif(σi).

All we need to get a chain complex is to define the coboundary map δp : Sp(X;R) →
Sp+1(X;R).

It is quite natural to say that for any singular p-cochain f : S∆p(X)→ R, the value δpf
should be the function whose value (δpf)(α) on a singular (p+ 1)-chain α is given by

(δpf)(α) = ±f(∂p+1α).

If we write 〈g, β〉 = g(β) for the result of evaluating the singular p-cochain g ∈ Sp(X;R) on
the singular p-chain β ∈ Sp(X;R), then the above is written as

〈δpf, α〉 = ±〈f, ∂p+1α〉,

which is reminiscent of an adjoint. It remains to pick the sign of the right-hand side. Bott
and Tu [2] and Warner [50] pick the + sign, whereas Milnor and Stasheff [35] pick the sign
(−1)p+1, so that

〈δpf, α〉+ (−1)p〈f, ∂p+1α〉 = 0.

Milnor and Stasheff explain that their choice of sign agrees with the convention that
whenever two symbols of dimension m and n are permuted, the sign (−1)mn should be
introduced. Here δ is considered to have sign +1 and ∂ is considered to have sign −1.
MacLane explains that the choice of the sign (−1)p+1 is desirable if a generalization of
cohomology is considered; see MacLane [29] (Chapter II, Section 3).

Regarless of the choice of sign, δp+1 ◦ δp = 0. Since the + sign is simpler, this is the one
that we adopt. Thus, δpf is defined by

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;R).

If we let A = Sp+1(X;R), B = Sp(X;R) and ϕ = ∂p+1, we see that the definition of δp is
equivalent to

δp = ∂>p+1.

The cohomology complex is indeed obtained from the homology complex by dualizing spaces
and maps.

We define the direct sum S∗(X;R) as

S∗(X;R) =
⊕
p≥0

Sp(X;R).



120 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

Definition 4.15. Given a topological space X and a commutative ring R, for any p ≥ 0,
the coboundary homomorphism

δp : Sp(X;R)→ Sp+1(X;R)

is defined by

〈δpf, α〉 = 〈f, ∂p+1α〉,

for every singular p-cochain f : S∆p(X)→ R and every singular (p+1)-chain α ∈ Sp+1(X;R);
equivalently,

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;R).

We obtain a coboundary map

δ : S∗(X;R)→ S∗(X;R).

The following proposition is immediately obtained.

Proposition 4.26. Given a topological space X and a commutative ring R, the coboundary
map δ : S∗(X;R)→ S∗(X;R) satisfies the equation

δ ◦ δ = 0.

We now have all the ingredients to define cohomology groups. Since the Sp(X;R) together
with the coboundary maps δp form the chain complex

0 δ−1
// S0(X;R) δ0

// S1(X;R) // · · · δ
p−1
// Sp(X;R) δp // Sp+1(X;R) δp+1

// · · ·

as in Section 2.3, we obtain the familar spaces Zp(X;R) = Ker δp of singular p-cocycles ,
and Bp(X;R) = Im δp−1 of singular p-coboundaries . By Proposition 4.26, Bp(X;R) is a
submodule of Zp(X;R) so we obtain cohomology spaces:

Definition 4.16. Given a topological space X and a commutative ring R, for any p ≥ 0 the
singular cohomology module Hp(X;R) is defined by

Hp(X;R) = ker δp/Im δp−1 = Zp(X;R)/Bp(X;R).

We set Hp(X;R) = (0) if p < 0 and define H∗(X;R) as the direct sum

H∗(X;R) =
⋃
p≥0

Hp(X;R)

and call it the singular cohomology of X with coefficients in R.
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It is common practice to refer to the spaces Hp(X;R) as groups even though they are
R-modules.

Until now we have been very compulsive in adding the term singular in front of every
notion (chain, cochain, cycle, cocycle, boundary, coboundary, etc.). From now on we will
drop this term unless confusion may arise. We may also drop X or R in Hp(X;R) etc.
whenever possible (that is, not causing confusion).

At this stage, one may wonder if there is any connection between the homology groups
Hp(X;R) and the cohomology groups Hp(X;R). The answer is yes and it is given by the
Universal Coefficient Theorem. However, even to state the universal coefficient theorem
requires a fair amount of homological algebra, so we postpone this topic until Section 12.5.
Let us just mention the following useful isomorphisms in dimension 0 and 1:

H0(X;R) = HomR(H0(X;R), R)

H1(X;R) = HomR(H1(X;R), R).

It is not hard to see that H0(X;R) consists of those functions from X to R that are constant
on path-components. Readers who want to learn about Universal Coefficient Theorems
should consult Section 12.5. If R is a PID, then the following result proved in Milnor and
Stasheff [35] (Appendix A, Theorem A.1) gives a very clean answer.

Theorem 4.27. Let X be a topological space X and let R be a PID. If the homology group
Hp−1(X;R) is a free R-module or (0), then the cohomology group Hp(X;R) is canonically
isomorphic to the dual HomR(Hp(X;R), R) of Hp(X;R).

In particular, Theorem 4.27 holds if R is a field.

There is a generalization of singular cohomology which is useful for certain applications.
The idea is to use more general coefficients. We can use a R-module G as the set of coeffi-
cients.

Definition 4.17. Given a topological space X, a commutative ring R, and a R-module G,
for any p ≥ 0 the singular cochain group Sp(X;G) is the R-module HomR(Sp(X;R), G) of
R-linear maps from Sp(X;R) to G. We set Sp(X;G) = (0) for p < 0.

Following Warner [50], since Sp(X;R) is the free R-module generated by the set S∆p(X)
of singular p-simplices, we can view Sp(X;G) as the set of all functions f : S∆p(X) → G.
This is also a R-module. As a special case, if R = Z, then G can be any abelian group. As
before, we obtain R-modules Zp(X;G) and Bp(X;G) and coboundary maps δp : Sp(X;G)→
Sp+1(X;G) defined by

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;G).

We get the chain complex

0 δ−1
// S0(X;G) δ0

// S1(X;G) // · · · δ
p−1
// Sp(X;G) δp // Sp+1(X;G) δp+1

// · · ·

and we obtain cohomology groups.
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Definition 4.18. Given a topological space X, a commutative ring R, and a R-module G,
for any p ≥ 0 the singular cohomology module Hp(X;G) is defined by

Hp(X;G) = ker δp/Im δp−1 = Zp(X;G)/Bp(X;G).

We set Hp(X;G) = (0) if p < 0 and define H∗(X;G) as the direct sum

H∗(X;G) =
⋃
p≥0

Hp(X;G)

and call it the singular cohomology of X with coefficients in G.

Warner uses the notation Hp
∆(X;G) instead of Hp(X;G). When more than one coho-

mology theory is used, this is a useful device to distinguish among the various cohomology
groups.

Cohomology is also functorial, If f : X → Y is a continuous map, then we know from
Proposition 4.3 that there is a chain map f],p : Sp(X;R) → Sp(Y ;R), so by applying
HomR(−, G) we obtain a cochain map f ],p : Sp(Y ;G) → Sp(X;G) which commutes with
coboundaries, and thus a homomorphism Hp(f) : Hp(Y ;G) → Hp(X;G). This fact is
recorded as the following proposition.

Proposition 4.28. If X and Y are two topological spaces and if f : X → Y is a continuous
function between them, then there are homomorphisms Hp(f) : Hp(Y ;G) → Hp(X;G) for
all p ≥ 0.

The map Hp(f) : Hp(Y ;G)→ Hp(X;G) is also denoted by f ∗p : Hp(Y ;G)→ Hp(X;G).

We also have the following version of Proposition 4.5 for cohomology.

Proposition 4.29. Given any two continuous maps f, g : X → Y (where X and Y are
topological spaces), if f and g are homotopic and Hp(f), Hp(g) : Hp(Y ;G)→ Hp(X;G) are
the induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if X
and Y are homotopy equivalent then the cohomology groups Hp(X;G) and Hp(Y ;G) are
isomorphic for all p ≥ 0,

For any PID R, there is a Universal Coefficient Theorem for cohomology that yields an
expression for Hp(X;G) in terms of Hp−1(X;R) and Hp(X;R); see Theorem 12.48. There
is also a version of the Mayer–Vietoris exact sequence for singular cohomology.

Given any topological space X, for any two subsets A,B of X such that X = Int(A) ∪
Int(B), recall from Theorem 4.14 that we have a short exact sequence

0 // Sp(A ∩B)
ϕ // Sp(A)⊕ Sp(B)

ψ // Sp(A) + Sp(B) // 0
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for every p ≥ 0, where ϕ and ψ are given by

ϕ(c) = (i](c),−j](c))
ψ(a, b) = k](a) + l](b).

Because Sp(A) ⊕ Sp(B) is free and because Sp(A ∩ B) is a submodule of both Sp(A) and
Sp(B), we can choose bases in Sp(A) and Sp(B) by completing a basis of Sp(A ∩B), and as
a consequence we can define a map p : Sp(A) ⊕ Sp(B) → Sp(A ∩ B) such that p ◦ ϕ = id.
Therefore the above sequence splits, and if we apply HomR(−, R) to it we obtain a short
exact sequence

0 // Hom(Sp(A) + Sp(B), R)
ψ⊥ // Sp(A)⊕ Sp(B)

ϕ⊥ // Sp(A ∩B) // 0 (∗)

where ϕ⊥ = Hom(ϕ,R) and ψ⊥ = Hom(ψ,R). Since the inclusions ιp : Sp(A) + Sp(B) →
Sp(X) form a chain homotopy equivalence, which means that there are maps ρp : Sp(X) →
Sp(A) + Sp(B) such that ρ ◦ ι and ι ◦ ρ are chain homotopic to id, by applying HomR(−, R)
we see that there is also a chain homotopy equivalence between Hom(Sp(A) + Sp(B), R)
ans Hom(Sp(X), R) = Sp(X), so the long exact sequence associated with the short exact
sequence (∗) yields the following result.

Theorem 4.30. (Mayer–Vietoris in singular cohomology) Given any topological space X,
for any two subsets A,B of X such that X = Int(A)∪ Int(B), there is a long exact sequence
of cohomology

// Hp(X;R) // Hp(A;R)⊕Hp(B;R) // Hp(A ∩B;R) // Hp+1(X;R) // · · ·

If A ∩B 6= ∅, a similar sequence exists in reduced cohomology.

There is a notion of singular cohomology with compact support and generalizations of
Poincaré duality. Some of the steps still use the Mayer–Vietoris sequences and the five
lemma, but the proof is harder and requires two kinds of induction. Basically, Poincaré
duality asserts that for any orientable manifold M of dimension n and any commutative ring
R with an identity element, there are isomorphisms

Hp
c (M ;R) ∼= Hn−p(M ;R).

On left-hand side Hp
c (M ;R) denotes the pth singular cohomology group with compact sup-

port, and on the right-hand side Hn−p(M ;R) denotes the (n−p)th singular homology group.
By manifold, we mean a topological manifold (thus, Hausdorff and paracompact), not nec-
essarily a smooth manifold, so this is a very general theorem. For details, the interested
reader is referred to Chapter 7 (Theorem 7.13), and for comprehensive presentations includ-
ing proof, to Milnor and Stasheff [35] (Appendix A), Hatcher [25] (Chapter 3), and Munkres
[38] (Chapter 8).
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If M is a smooth manifold and if R = R, a famous result of de Rham states that de
Rham cohomology and singular cohomology are isomorphic, that is

HdR(M) ∼= H∗(M ;R).

This is a hard theorem to prove. A complete proof can be found Warner [50] (Chapter 5).
Another proof can be found in Morita [36] (Chapter 3). These proofs use Čech cohomology,
which we discuss next. It should be pointed that Chapter 5 of Warner [50] covers far more
than the de Rham theorem. It provides a very thorough presentation of sheaf cohomology
from an axiomatic point of view and shows the equivalence of four “classical” cohomology
theories for smooth manifolds: Alexander-Spanier, de Rham, Singular, and Čech cohomology.
Warner’s presentation is based on an approach due to Henri Cartan written in the early 1950’s
and based on fine sheaves. In Chapter 13 we develop sheaf cohomology using a more general
and more powerful approach due to Grothendieck based on derived functors and δ-functors.
This material is very technical; don’t give up, it will probably require many passes to be
digested.

4.7 Relative Singular Cohomology Groups

In this section R is any commutative with unit 1 and G is any R-module.

Reduced singular cohomology groups H̃p(X;G) are defined by dualizing the augmented
chain complex

0 Roo S0(X;R)εoo S1(X;R)
∂1oo · · ·oo Sp−1(X;R)

∂p−1oo Sp(X;R)
∂poo · · ·

∂p+1oo

by applying HomR(−, G). We have

H̃0(X;G) = HomR(H̃0(X;R), G)

H̃p(X;G) = Hp(X;G) p ≥ 1.

In fact, it can be shown that

H0(X;G) ∼= H̃0(X;G)⊕G;

see Munkres [38] (Chapter 5, Section 44).

To obtain the relative cohomology groups we dualize the chain complex of relative ho-
mology

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

by applying HomR(−, G), where Sp(X,A;R) = Sp(X,R)/Sp(A,R). We obtain the chain
complex

0 δ−1
// S0(X,A;G) δ0

// S1(X,A;G) // · · · δ
p−1
// Sp(X,A;G) δp // Sp+1(X,A;G) δp+1

//· · ·
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with Sp(X,A;G) = HomR(Sp(X,A;R), G) and δp = HomR(∂p, G) for all p ≥ 0 (and δ−1 is
the zero map). More explicitly

δp(f) = f ◦ ∂p+1 for all f ∈ Sp(X,A;G);

that is

δp(f)(σ) = f(∂p+1(σ)) for all f ∈ Sp(X,A;G) = HomR(Sp(X,A;R), G)

and all σ ∈ Sp+1(X;A;R);

Note that Sp(X,A;G) = HomR(Sp(X;R)/Sp(A;R), G) is isomorphic to the submodule
of Sp(X;G) = HomR(Sp(X;R), G) consisting of all linear maps with values in G defined on
singular simplices in Sp(X;R) that vanish on singular simplices in Sp(A;R). Consequently,
the coboundary map

δp : Sp(X,A;G)→ Sp+1(X,A;G)

is the restriction of δpX : Sp(X;G)→ Sp+1(X;G) to Sp(X,A;G) where δpX is the coboundary
map of absolute cohomology.

Definition 4.19. Given a pair of spaces (X,A), the singular relative cohomology groups
Hp(X,A;G) of (X,A) arise from the chain complex

0 δ−1
// S0(X,A;G) δ0

// S1(X,A;G) // · · · δ
p−1
// Sp(X,A;G) δp // Sp+1(X,A;G) δp+1

//· · ·

and are given by

Hp(X,A;G) = Ker δp/Im δp−1, p ≥ 0.

As in the case of absolute singular cohomology, a continuous map f : (X,A)→ (Y,B) in-
duces a homomorphism of relative cohomology f ∗ : H∗(Y,B)→ H∗(X,A). This is because by
Proposition 4.6 the map f induces a chain map f] : S∗(X,A;R)→ S∗(Y,B;R), and by apply-
ing HomR(−, G) we obtain a cochain map f ] : S∗(Y,B;G) → S∗(X,A;G) which commutes
with coboundaries, and thus induces homomorphisms Hp(f) : Hp(Y,B;G)→ Hp(X,A;G).

Proposition 4.31. If (X,A) and (Y,B) are pairs of topological spaces and if f : (X,A) →
(Y,B) is a continuous function between them, then there are homomorphisms
Hp(f) : Hp(Y,B;G)→ Hp(X,A;G) for all p ≥ 0.

The map Hp(f) : Hp(Y,B;G) → Hp(X,A;G) is also denoted by f ∗p : Hp(Y,B;G) →
Hp(X,A;G).

We also have the following version of Proposition 4.5 for relative cohomology which is
the cohomological version of Proposition 4.7.
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Proposition 4.32. (Homotopy Axiom) Given any two continuous maps f, g : (X,A) →
(Y,B), if f and g are homotopic and Hp(f), Hp(g) : Hp(Y,B;G) → Hp(X,A;G) are the
induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A)
and (Y,B) are homotopy equivalent then the cohomology groups Hp(X,A;G) and Hp(Y,B;G)
are isomorphic for all p ≥ 0,

To obtain the long exact sequence of relative cohomology we dualize the short exact
sequence

0 // S∗(A;R) i // S∗(X;R)
j // S∗(X,A;R) // 0

where S∗(X,A;R) = S∗(X,R)/S∗(A,R) by applying Hom(−, G) and we obtain the sequence

0 // S∗(X,A;G)
j> // S∗(X;G) i> // S∗(A;G) // 0,

where by definition S∗(X,A;G) = HomR(S∗(X;R)/S∗(A;R), G), and as before S∗(A;G) =
HomR(S∗(A;R), G) and S∗(X;G) = HomG(S∗(X;R), G).

Since Sp(X,A;R) = Sp(X,R)/Sp(A,R) is a free module for every p, by Proposition 2.6
the sequence of chain complexes

0 // S∗(X,A;G)
j> // S∗(X;G) i> // S∗(A;G) // 0

is exact (this can also be verified directly; see Hatcher [25], Section 3.1). Therefore, we can
apply the zig-zag lemma for cohomology (Theorem 2.19) to this short exact sequence and
we obtain the following cohomological version of Theorem 4.8.

Theorem 4.33. (Long Exact Sequence of Relative Cohomology) For every pair (X,A) of
spaces, we have the following long exact sequence of cohomology groups

· · · // Hp−1(A;G)
δ∗p−1

// Hp(X,A;G)
(j>)∗ // Hp(X;G)

(i>)∗ // Hp(A;G)
δ∗p

// Hp+1(X,A;G)
(j>)∗ // Hp+1(X;G)

(i>)∗ // Hp+1(A;G)
δ∗p+1

// Hp+2(X,A;G) // · · ·

There is also a version of Theorem 4.33 for reduced relative cohomology with A 6= ∅. As
in the case of reduced homology with A 6= ∅, we have

H̃p(X,A,G) = Hp(X,A,G) for all p ≥ 0.
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By setting A = {pt}, the version of Theorem 4.33 for relative cohomology yields the isomor-
phisms

Hp(X, {pt};G) ∼= H̃p(X;G) for all p ≥ 0.

Finally, the excision property also holds for relative cohomology.

Theorem 4.34. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of
Z is contained in the interior of A, then the inclusion (X − Z,A − Z) −→ (X,A) induces
isomorphisms of singular cohomology

Hp(X − Z,A− Z;G) ∼= Hp(X,A;G), for all p ≥ 0.

Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the inclusion map
(B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;G) ∼= Hp(X,A;G), for all p ≥ 0.

The proof of Theorem 4.34 does not follow immediately by dualization of Theorem 4.12.
For details the reader is referred to Munkres [38] (Chapter 5, §44) or Hatcher [25] (Section
3.1).

Proposition 4.32, Theorem 4.33, and Theorem 4.34 state three of the properties that were
singled out as characterizing cohomology theories by Eilenberg and Steenrod [12]. As in the
case of homology, these properties hold for most of the known cohomology theories, and thus
can be taken as axioms for cohomology theory; see Sato [43], MacLane [29], Munkres [38],
or Hatcher [25].

For any PID R, there is a Universal Coefficient Theorem for cohomology that yields an
expression for Hp(X,A;G) in terms of Hp−1(X,A;R) and Hp(X,A;R); see Theorem 12.48.

4.8 The Cup Product and The Cohomology Ring

We will see later in Section 12.5 (the Universal Coefficient Theorem for Cohomology, Theorem
12.48) that the homology groups of a space with values in a PID R determine its cohomology
groups with values in any R-module G. One might then think that cohomology groups are
not useful, but this is far from the truth for several reasons.

First, cohomology groups arise naturally as various “obstructions,” such as the Ext-
groups discussed in Section 12.5, or in the problem of classifying, up to homotopy, maps
from one space into another. We will also see that in some cases only cohomology can
be defined, as in the case of sheaves. But another reason why cohomology is important is
that there is a natural way to define a multiplication operation on cohomology classes that
makes the direct sum of the cohomology modules into a (graded) algebra. This additional
structure allows the distinction between spaces that would not otherwise be distinguished
by their homology (and cohomology).
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We would like to define an operation ^ that takes two cochains c ∈ Sp(X;R) and
d ∈ Sq(X;R) and produces a cochain c ^ d ∈ Sp+q(X;R). For this, we define two affine
maps λp : ∆p → ∆p+q and ρq : ∆q → ∆p+q by

λp(ei) = ei 1 ≤ i ≤ p+ 1

ρq(ei) = ep+i, 1 ≤ i ≤ q + 1.

For any singular (p+q)-simplex σ : ∆p+q → X, observe that σ ◦λp : ∆p → X is a singular
p-simplex and σ ◦ ρq : ∆q → X is a singular q-simplex. See Figure 4.12.
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Figure 4.12: Two ways of embedding a 1-simplex and a 2-simplex into a 3-simplex. For the
top figure, p = 1 and q = 2, while for the bottom figure, p = 2 and q = 1.

Recall from Definition 4.14 that a singular p-cochain is a R-linear map from Sp(X;R) to
R, where Sp(X;R) is the R-module of singular p-chains. Since Sp(X;R) is the free R-module
generated by the set S∆p(X) of singular p-simplices, every singular p-cochain c is completely
determined by its restriction to S∆p(X), and thus can be viewed as a function from S∆p(X)
to R.

Definition 4.20. If σ : ∆p+q → X is a singular simplex, we call σ ◦ λp the front p-face of σ,
and σ ◦ ρq the back q-face of σ. See Figure 4.13. Given any two cochains c ∈ Sp(X;R) and
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d ∈ Sq(X;R), their cup product c ^ d ∈ Sp+q(X;R) is the cochain defined by

(c ^ d)(σ) = c(σ ◦ λp)d(σ ◦ ρq)

for all singular simplices σ ∈ S∆p+q(X). The above defines a function
^ : Sp(X;R)× Sq(X;R)→ Sp+q(X;R).

Since c(σ ◦ λp) ∈ R and d(σ ◦ ρq) ∈ R, we have (c ^ d)(σ) ∈ R, as desired.
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Figure 4.13: A 2-simplex embedded in a torus, where p = 1 = q. The front 1-face is the blue
edge while the back 1-face is the maroon edge.

Remark: Other authors, including Milnor and Stasheff [35], add the sign (−1)pq to the
formula in the definition of the cup product.

The reader familar with exterior algebra and differential forms will observe that the cup
product can be viewed as a generalization of the wedge product.

Recall that S∗(X;R) is the R-module
⊕

p≥0 S
p(X;R), and that ε : S0(X;R)→ R is the

unique homomorphism such that ε(x) = 1 for every point x ∈ S0(X;R). Thus ε ∈ S0(X;R)
and since ∂0ε = ε ◦ ∂1 = 0, the cochain ε is actually a cocycle and its cohomology class
[ε] ∈ H0(X;R) is denoted by 1.

The following proposition is immediate from the definition of the cup-product.

Proposition 4.35. The cup product operation ^ in S∗(X;R) is bilinear, associative, and
has the cocycle ε as identity element. Thus S∗(X;R) is an associative graded ring with unit
element.

The following technical property implies that the cup product is well defined on cocycles.
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Proposition 4.36. For any two cochains c ∈ Sp(X;R) and d ∈ Sq(X;R) we have

δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd).

Again, note the analogy with the exterior derivative on differential forms. A proof of
Proposition 4.35 can be found in Hatcher [25] (Chapter 3, Section 3.2, Lemma 3.6) and
Munkres [38] (Chapter 6, Theorem 48.1).

The formula of Proposition 4.36 implies that the cup product of cocycles is a cocycle,
and that the cup product of a cocycle with a coboundary in either order is a coboundary, so
we obtain an induced cup product on cohomology classes

^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R).

The cup product is bilinear, associative, and has 1 has identity element.

A continuous map f : X → Y induces a homomorphisms of cohomology fp∗ : Hp(X;R)→
Hp(y;R) for al p ≥ 0, and the cup product behaves well with respect to these maps.

Proposition 4.37. Given any continuous map f : X → Y , for all ω ∈ Hp(X;R) and all
η ∈ Hq(X;R), we have

f (p+q)∗(ω ^X η) = fp∗(ω) ^Y f
q∗(η).

Thus, f ∗ = (fp∗)p≥0 is a homomorphism between the graded rings H∗(X;R) (with the cup
product ^X) and H∗(Y ;R) (with the cup product ^Y ).

Proposition 4.37 is proved in Hatcher [25] (Chapter 3, Section 3.2, Proposition 3.10) and
and Munkres [38] (Chapter 6, Theorem 48.3).

Definition 4.21. Given a topological space X, its cohomology ring H∗(X;R) is the graded
ring

⊕
p≥0H

p(X;R) equipped with the multiplication operation^ induced by the operations

^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R) for all p, q ≥ 0.1 An element ω ∈ Hp(X;R) is said
to be of degree (or dimension) p, and we write p = deg(ω).

Although the cup product is not commutative in general, it is skew-commutative in the
following sense.

Proposition 4.38. For all ω ∈ Hp(X;R) and all η ∈ Hq(X;R), we have

ω ^ η = (−1)pq(η ^ ω).

1To be very precise, we have a family of multiplications ^p,q : Hp(X;R)×Hq(X;R)→ Hp+q(X;R), but
this notation is too heavy and never used.
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The proof of Proposition 4.38 is more complicated than the proofs of the previous propo-
sitions. It can be found in Hatcher [25] (Chapter 3, Section 2, Theorem 3.14). Another way
to prove Proposition 4.38 is to first define the notion of cross-product and to define the cup
product in terms of the cross-product. This is the approach followed by Bredon [4] (Chapter
VI, Sections 3 and 4), and Spanier [47] (Chapter 5, Section 6).

The cohomology ring of most common spaces can be determined explicitly, but in some
cases requires more machinery (such as Poincaré duality). Let us mention four examples.

Example 4.2. In the case of the sphere Sn, the cohomology ring H∗(Sn;R) is the graded
ring generated by one element α of degree n subject to the single relation α2 = 0.

The cohomology ring H∗(T n;R) of the n-torus T n (with T n = S1 × · · · × S1 n times) is
isomorphic to the exterior algebra

∧
Rn, with n-generators α1, . . . , αn of degree 1 satisfying

the relations αiαj = −αjαi for all i 6= j and α2
i = 0.

The cohomology ring H∗(RPn,Z/2Z) of real projective space RPn with respect to R =
Z/2Z is isomorphic to the truncated polynomial ring Z/2Z[α]/(αn+1), with α an element of
degree 1. It is also possible to determine the cohomology ring H∗(RPn,Z), but it is more
complicated; see Hatcher [25] (Chapter 3, Theorem 3.12, and before Example 3.13).

The cohomology ring H∗(CPn,Z) of complex projective space CPn with respect to R = Z
is isomorphic to the truncated polynomial ring Z[α]/(αn+1), with α an element of degree 2;
see Hatcher [25] (Chapter 3, Theorem 3.12).

The cup product can be generalized in various ways. A first generalization is the cup
product

^ : Sp(X;R)× Sq(X;G)→ Sp+q(X;G)

where G is any R-module, using the exact same formula

(c ^ d)(σ) = c(σ ◦ λp)d(σ ◦ ρq)

with c ∈ Sp(X;R) and d ∈ Sq(X;G), for all singular simplices σ ∈ S∆p+q(X). Since
c(σ ◦ λp) ∈ R and d(σ ◦ ρq) ∈ G, their product is in G so the above definition makes sense.

The formula
δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd)

of Proposition 4.36 still holds, but associativity only holds in a restricted fashion. Still, we
obtain a cup product

^ : Hp(X;R)×Hq(X;G)→ Hp+q(X;G)

Another generalization involves relative cohomology. For example, if A and B are open
subset of a manifold X, there is a well-defined cup product

^ : Hp(X,A;R)×Hq(X,B;R)→ Hp+q(X,A ∪B;R);
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see Hatcher [25] (Chapter 3, Section 3.2) and Milnor and Stasheff [35] (Appendix A, pages
264-265).

There are a number of interesting applications of the cup product but we will not go into
this here, and instead refer the reader to Hatcher [25] (Chapter 3, Section 3.2), Bredon [4]
(Chapter VI), and Spanier [47] (Chapter 5).



Chapter 5

Simplicial Homology and Cohomology

In Chapter 4 we introduced the singular homology groups and the singular cohomology
groups and presented some of their properties. Historically, singular homology and coho-
mology was developed in the 1940’s, starting with a seminal paper of Eilenberg published in
1944 (building up on work by Alexander and Lefschetz among others), but it was not the
first homology theory. Simplicial homology emerged in the early 1920’s, more than thirty
years after the publication of Poincaré’s first seminal paper on “analysis situ” in 1892. Until
the early 1930’s, homology groups had not been defined and people worked with numerical
invariants such as Betti numbers and torsion numbers. Emmy Noether played a significant
role in introducing homology groups as the main objects of study.

One of the main differences between singular homology and simplicial homology is that
singular homology groups can be assigned to any topological space X, but simplicial ho-
mology groups are defined for certain combinatorial objects called simplicial complexes . A
simplicial complex is a combinatorial object that describes how to contstruct a space from
simple building blocks generalizing points, line segments, triangles, and tetrahedra, called
simplices . These building blocks are required to be glued in a “nice” way. Thus, simplicial
homology is not as general as singular homology, but it is less abstract, and more computa-
tional. The crucial connection betweeen simplicial homology and singular homology is that
the simplicial homology groups of a simplicial complex K are isomorphic to the singular
homology groups of the space Kg built up from K, called its geometric realization.

Proving this result takes a fair amount of work and the introduction of various tech-
niques (Mayer–Vietoris sequences, categories with models and acyclic models; see Spanier
[47] Chapter 4). As a consequence, if two simplicial complexes K and K ′ have homeomor-
phic geometric realizations Kk and K ′g, then the simplicial homology groups of K and K ′

are isomorphic. Thus, simplicial homology is subsumed by singular homology, but the more
computational flavor of simplicial homology should not be overlooked as it provides tech-
niques not offered by singular homology. In Chapter 6 we will present another homology
theory based on spaces called CW complexes built up from spherical cells. This homology
theory is also equivalent to singular homology but it is more computational.

133



134 CHAPTER 5. SIMPLICIAL HOMOLOGY AND COHOMOLOGY

5.1 Simplices and Simplicial Complexes

In this section we define simplicial complexes. A simplicial complex is a combinatorial object
which describes how to build a space by putting together some basic building blocks called
simplices. The building blocks are required to be “glued” nicely, which means roughly that
they can only be glued along faces (a notion to be define rigoroulsy). The building blocks
(simplices) are generalizations of points, line segments, triangles, tetrahedra. Simplices are
very triangular in nature; in fact, they can be defined rigorously as convex hulls of affinely
independent points.

To be on firm grounds we need to review some basics of affine geometry. For more
comprehensive expositions the reader should consult Munkres [38] (Chapter 1, Section 1),
Rotman [41] (Chapter 2), or Gallier [16] (Chapter 2). The basic idea is that an affine space
is a vector space without a prescribed origin. So properties of affine spaces are invariant not
only under linear maps but also under translations. When we view Rn as an affine space we
often refer to the vectors in Rn as points .

Given n + 1 points, a0, a1, . . . , an ∈ Rm, these points are affinely independent iff the n
vectors, (a1 − a0 . . . , an − a0), are linearly independent.

Note that Munkres uses the terminology geometrically independent instead of affinely
independent.

Given any sequence of n points a1, . . . , an in Rm, an affine combination of these points
is a linear combination

λ1a1 + · · ·+ λnan,

with λi ∈ R, and with the restriction that

λ1 + · · ·+ λn = 1. (∗)

Condition (∗) ensures that an affine combination does not depend on the choice of an
origin. An affine combination is a convex combination if the scalars λi satisfy the extra
conditions λi ≥ 0, in addition to λ1 + · · ·+ λn = 1.

A function f : Rn → Rm is affine if f preserves affine combinations, that is,

f(λ1a1 + · · ·+ λpap) = λ1f(a1) + · · ·+ λpf(ap),

for all a1, . . . , ap ∈ Rn and all λ1, . . . , λp ∈ R with λ1 + · · ·+ λp = 1.

A simplex is just the convex hull of a finite number of affinely independent points, but
we also need to define faces, the boundary, and the interior, of a simplex.

Definition 5.1. Given any n+1 affinely independent points, a0, . . . , an in Rm, the n-simplex
(or simplex) σ defined by a0, . . . , an is the convex hull of the points a0, . . . , an, that is, the
set of all convex combinations λ0a0 + · · · + λnan, where λ0 + · · · + λn = 1, and λi ≥ 0 for
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all i, 0 ≤ i ≤ n. The scalars λ0, . . . , λn are called barycentric coordinates . We call n the
dimension of the n-simplex σ, and the points a0, . . . , an are the vertices of σ.

Given any subset {ai0 , . . . , aik} of {a0, . . . , an} (where 0 ≤ k ≤ n), the k-simplex gen-
erated by ai0 , . . . , aik is called a face of σ. A face s of σ is a proper face if s 6= σ (we
agree that the empty set is a face of any simplex). For any vertex ai, the face generated by
a0, . . . , ai−1, ai+1, . . . , an (i.e., omitting ai) is called the face opposite ai. Every face which is
a (n− 1)-simplex is called a boundary face.

The union of the boundary faces is the boundary of σ, denoted as ∂σ, and the complement

of ∂σ in σ is the interior
◦
σ = σ − ∂σ of σ. The interior

◦
σ of σ is sometimes called an open

simplex .

It should be noted that for a 0-simplex consisting of a single point {a0}, ∂{a0} = ∅, and
◦
{a0}= {a0}. Of course, a 0-simplex is a single point, a 1-simplex is the line segment (a0, a1),
a 2-simplex is a triangle (a0, a1, a2) (with its interior), and a 3-simplex is a tetrahedron
(a0, a1, a2, a3) (with its interior), as illustrated in Figure 5.1.

1

a0

a0 a1

a0 a1

a2

a0

a3

a2

a1

Figure 5.1: Examples of simplices.

We now state a number of properties of simplices whose proofs are left as an exercise.
Clearly, a point x belongs to the boundary ∂σ of σ iff at least one of its barycentric coordi-

nates (λ0, . . . , λn) is zero, and a point x belongs to the interior
◦
σ of σ iff all of its barycentric

coordinates (λ0, . . . , λn) are positive, i.e., λi > 0 for all i, 0 ≤ i ≤ n. Then, for every x ∈ σ,

there is a unique face s such that x ∈ ◦s, the face generated by those points ai for which
λi > 0, where (λ0, . . . , λn) are the barycentric coordinates of x.
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A simplex σ is convex, arcwise connected, compact, and closed. The interior
◦
σ of a

simplex is convex, arwise connected, open, and σ is the closure of
◦
σ.

We now need to put simplices together to form more complex shapes. We define ab-
stract simplicial complexes and their geometric realizations. This seems easier than defining
simplicial complexes directly, as for example, in Munkres [38].

Definition 5.2. An abstract simplicial complex (for short simplicial complex ) is a pair,
K = (V,S), consisting of a (finite or infinite) nonempty set V of vertices , together with a
family S of finite subsets of V called abstract simplices (for short simplices), and satisfying
the following conditions:

(A1) Every x ∈ V belongs to at least one and at most a finite number of simplices in S.

(A2) Every subset of a simplex σ ∈ S is also a simplex in S.

If σ ∈ S is a nonempty simplex of n + 1 vertices, then its dimension is n, and it is called
an n-simplex . A 0-simplex {x} is identified with the vertex x ∈ V . The dimension of an
abstract complex is the maximum dimension of its simplices if finite, and ∞ otherwise.

We will often use the abbreviation complex for abstract simplicial complex, and simplex
for abstract simplex. Also, given a simplex s ∈ S, we will often use the notation s ∈ K.

The purpose of Condition (A1) is to insure that the geometric realization of a complex is
locally compact. Recall that given any set I, the real vector space R(I) freely generated by I
is defined as the subset of the cartesian product RI consisting of families (λi)i∈I of elements
of R with finite support, which means that λi = 0 for all but finitely many indices i ∈ I
(where RI denotes the set of all functions from I to R). Then every abstract complex (V,S)
has a geometric realization as a topological subspace of the normed vector space R(V ) with
the norm

‖(λv)v∈V ‖ =
(∑
v∈V

λ2
v

)1/2

.

Since λv = 0 for all but finitely many indices v ∈ V this sum is well defined.

Definition 5.3. Given a simplicial complex, K = (V,S), its geometric realization (also
called the polytope of K = (V,S)) is the subspace Kg of R(V ) defined as follows: Kg is the
set of all families λ = (λa)a∈V with finite support, such that:

(B1) λa ≥ 0, for all a ∈ V ;

(B2) The set {a ∈ V | λa > 0} is a simplex in S;

(B3)
∑

a∈V λa = 1.
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The term polyhedron is sometimes used instead of polytope, and the notation |K| is also
used instead of Kg.

For every simplex s ∈ S, we obtain a subset sg of Kg by considering those families
λ = (λa)a∈V in Kg such that λa = 0 for all a /∈ s. In particular, every vertex v ∈ V is
realized as the point vg ∈ Kg whose coordinates (λa)a∈V are given by λv = 1 and λa = 0 for
all a 6= v. We sometimes abuse notation and denote vg by v. By (B2), we note that

Kg =
⋃
s∈S

sg.

It is also clear that for every n-simplex s, its geometric realization sg can be identified with
an n-simplex in Rn.

Figure 5.2 illustrates the definition of a complex, where V = {v1, v2, v3, v4} and S =
{∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}, {v2, v4}, {v1, v2, v3}, {v2, v3, v4}}.
For clarity, the two triangles (2-simplices) are drawn as disjoint objects even though they
share the common edge, (v2, v3) (a 1-simplex) and similarly for the edges that meet at some
common vertex. 1

v1

v2

v3 v3

v2

v4
v1

v1

1

v2 v2 v2v2

v1

v3
v3 v3 v3

v4

v4
v4

Figure 5.2: A set of simplices forming a complex.

The geometric realization of the complex from Figure 5.2 is shown in Figure 5.3. 1

v1

v2

v3

v4

Figure 5.3: The geometric realization of the complex of Figure 5.2.
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1

v1

v1

v1

v2v2

v2

v3
v3 v3

v4v4

v4

v5

v5

v6

v6

w1

w2

w3
w4

i. ii. iii.

Figure 5.4: Collections of simplices not forming a complex.

Some collections of simplices violating Condition (A2) of Definition 5.2 are shown in
Figure 5.4. In Figure (i), V = {v1, v2, v3, v4, v5, v6, w1, w2, w3, w4} and S contains the two 2-
simplices {v1, v2, v3}, {v4, v5, v6}, neither of which intersect at along an edge or at a vertex of
either triangle. In other words, S does not contain the 2-simplex {w1, w2, w3}, a violation of
Condition (A2). In Figure (ii), V = {v1, v2, v3, v4, v5, v6} and S = {∅, {v1}, {v2}, {v3}, {v4},
{v5}, {v6}, {v1, v2}, {v2, v3}, {v1, v3}, {v4, v5}, {v5, v6}, {v4, v6}, {v1, v2, v3}, {v4, v5, v6}}. Note
that the two 2-simplices meet along an edge {v3, v4} which is not contained in S, another
violation of Condition (A2). In Figure (iii), V = {v1, v2, v3, v4} and S contains the two
2-simplices {v1, v2, v3}, {v2, v3, v4} but does not contain the edge {v1, v2} and the vertex v1.

Some geometric realizations of “legal” complexes are shown in Figure 5.5. 1

Figure 5.5: Examples of geometric realizations of complexes.

Note that distinct complexes may have the same geometric realization. In fact, all the
complexes obtained by subdividing the simplices of a given complex yield the same geometric
realization.

Given a vertex a ∈ V , we define the star of a, denoted as St a, as the finite union of the

interiors
◦
sg of the geometric simplices sg such that a ∈ s. Clearly, a ∈ St a. The closed star

of a, denoted as St a, is the finite union of the geometric simplices sg such that a ∈ s.
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We define a topology on Kg by defining a subset F of Kg to be closed if F ∩ sg is closed
in sg for all s ∈ S. It is immediately verified that the axioms of a topological space hold.

Definition 5.4. A topological space X is triangulable if it is homeomorphic to the geometric
realization Kg (with the above topology) of some simplicial complex K.

Actually, we can find a nice basis for this topology, as shown in the next proposition.

Proposition 5.1. The family of subsets U of Kg such that U ∩ sg = ∅ for all but finitely
many s ∈ S, and such that U ∩ sg is open in sg when U ∩ sg 6= ∅, forms a basis of open sets
for the topology of Kg. For any a ∈ V , the star St a of a is open, the closed star St a is the
closure of St a and is compact, and both St a and St a are arcwise connected. The space Kg

is locally compact, locally arcwise connected, and Hausdorff.

We also observe that for any two simplices s1, s2 of S, we have

(s1 ∩ s2)g = (s1)g ∩ (s2)g.

We say that a complex K = (V,S) is connected if it is not the union of two complexes
(V1,S1) and (V2,S2), where V = V1 ∪ V2 with V1 and V2 disjoint, and S = S1 ∪ S2 with S1

and S2 disjoint. The next proposition shows that a connected complex contains countably
many simplices.

Proposition 5.2. If K = (V,S) is a connected complex, then S and V are countable.

Next we give several examples of simplicial complexes whose geometric realizations are
classical surfaces. These complexes have additional properties that make them triangulations
but we will not discuss triangulations here. Figure 5.6 shows a triangulation of the sphere.

1

d

d d

a b

c

Figure 5.6: A triangulation of the sphere.

The geometric realization of the above triangulation is obtained by pasting together the
pairs of edges labeled (a, d), (b, d), (c, d). The geometric realization is a tetrahedron.
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1

a

e

d

a

b

i

f

b

c

j

g

c

a

e

d

a

Figure 5.7: A triangulation of the torus.

Figure 5.7 shows a triangulation of a surface called a torus .
The geometric realization of the above triangulation is obtained by pasting together the

pairs of edges labeled (a, d), (d, e), (e, a), and the pairs of edges labeled (a, b), (b, c), (c, a).

Figure 5.8 shows a triangulation of a surface called the projective plane and denoted by
RP2.

1

d

e

f

a

c

j

g

b

b

k

h

c

a

f

e

d

Figure 5.8: A triangulation of the projective plane.

The geometric realization of the above triangulation is obtained by pasting together the
pairs of edges labeled (a, f), (f, e), (e, d), and the pairs of edges labeled (a, b), (b, c), (c, d).
This time, the gluing requires a “twist”, since the the paired edges have opposite orientation.
Visualizing this surface in R3 is actually nontrivial.

Figure 5.9 shows a triangulation of a surface called the Klein bottle.
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1

a

e

d

a

b

i

f

b

c
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g

c

a

d

e

a

Figure 5.9: A triangulation of the Klein bottle.

The geometric realization of the above triangulation is obtained by pasting together
the pairs of edges labeled (a, d), (d, e), (e, a), and the pairs of edges labeled (a, b), (b, c),
(c, a). Again, some of the gluing requires a “twist”, since some paired edges have opposite
orientation. Visualizing this surface in R3 not too difficult, but self-intersection cannnot be
avoided.

The notion of subcomplex is defined as follows.

Definition 5.5. Given a simplicial complex K = (V,S), a subcomplex L of K is a simplicial
complex L = (VL,SL) such that VL ⊆ V and SL ⊆ S

Finally, the notion of map between simplicial complexes is defined as follows.

Definition 5.6. Given two simplicial complexes and K1 = (V1,S1) and K2 = (V2,S2),
a simplicial map f : K1 → K2 is a function f : V1 → V2 such that whenever {v1, . . . , vk}
is a simplex in S1, then {f(v1, ) . . . , f(vk)} is simplex in S2. Note that the f(vi) are not
necessarily distinct. If L1 is a subcomplex of K1 and L2 is a subcomplex of K2, a simplicial
map f : (K1, L1)→ (K2, L2) is a simplicial map f : K1 → K2 which carries every simplex of
L1 to a simplex of L2.

A simplicial map f : K1 → K2 induces a continuous map f̂ : (K1)g → (K2)g, namely the

function f̂ whose restriction to every simplex sg ∈ (K1)g is the unique affine map mapping
vi to f(vi) in (K2)g, where s = {v1, . . . , vk} ∈ S1.

5.2 Simplicial Homology Groups

In order to define the simplicial homology groups we need to describe how a chain complex
C∗(K), called a simplicial chain complex, is associated to a simplicial complex K. First, we
assume that the ring of homology coefficients is R = Z.



142 CHAPTER 5. SIMPLICIAL HOMOLOGY AND COHOMOLOGY

Let K = (V,S) be a simplicial complex, for short a complex. The chain complex C∗(K)
associated with K consists of free abelian groups Cp(K) made out of oriented p-simplices.
Every oriented p-simplex σ is assigned a boundary ∂pσ. Technically, this is achieved by
defining homomorphisms,

∂p : Cp(K)→ Cp−1(K),

with the property that ∂p−1 ◦ ∂p = 0. As in the case of singular homology, if we let Zp(K)
be the kernel of ∂p and

Bp(K) = ∂p+1(Cp+1(K))

be the image of ∂p+1 in Cp(K), since ∂p ◦ ∂p+1 = 0, the group Bp(K) is a subgroup of the
group Zp(K), and we define the simplicial homology group Hp(K) as the quotient group

Hp(K) = Zp(K)/Bp(K).

What makes the homology groups of a complex interesting is that they only depend on
the geometric realization Kg of the complex K and not on the various complexes representing
Kg. We will return to this point later.

The first step is to define oriented simplices. Given a complex K = (V,S), recall that an
n-simplex is a subset σ = {α0, . . . , αn} of V that belongs to the family S. Thus, the set σ
corresponds to (n+ 1)! linearly ordered sequences s : {1, 2, . . . , n+ 1} → σ, where each s is a
bijection. We define an equivalence relation on these sequences by saying that two sequences
s1 : {1, 2, . . . , n + 1} → σ and s2 : {1, 2, . . . , n + 1} → σ are equivalent iff π = s−1

2 ◦ s1 is a
permutation of even signature (π is the product of an even number of transpositions).

Definition 5.7. The two equivalence classes associated with a simplex σ are called oriented
simplices , and if σ = {α0, . . . , αn}, we denote the equivalence class of s as [s(1), . . . , s(n+1)],
where s is one of the sequences s : {1, 2, . . . , n + 1} → σ. We also say that the two classes
associated with σ are the orientations of σ.

Two oriented simplices σ1 and σ2 are said to have opposite orientation if they are the two
classes associated with some simplex σ. Given an oriented simplex, σ, we denote the oriented
simplex having the opposite orientation by −σ, with the convention that −(−σ) = σ.

For example, if σ = {a0, a1, a2} is a 2-simplex (a triangle), there are six ordered se-
quences, the sequences 〈a2, a1, a0〉, 〈a1, a0, a2〉, and 〈a0, a2, a1〉, are equivalent, and the se-
quences 〈a0, a1, a2〉, 〈a1, a2, a0〉, and 〈a2, a0, a1〉, are also equivalent. Thus, we have the two
oriented simplices, [a0, a1, a2] and [a2, a1, a0]. We now define p-chains.

Definition 5.8. Given a complex, K = (V,S), a simplicial p-chain on K is a function c
from the set of oriented p-simplices to Z, such that

(1) c(−σ) = −c(σ), iff σ and −σ have opposite orientation;

(2) c(σ) = 0, for all but finitely many simplices σ.
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We define addition of p-chains pointwise, i.e., c1 + c2 is the p-chain such that (c1 + c2)(σ) =
c1(σ) + c2(σ), for every oriented p-simplex σ. The group of simplicial p-chains is denoted by
Cp(K). If p < 0 or p > dim(K), we set Cp(K) = {0}.

To every oriented p-simplex σ is associated an elementary p-chain c, defined such that

c(σ) = 1,

c(−σ) = −1, where −σ is the opposite orientation of σ, and

c(σ′) = 0, for all other oriented simplices σ′.

We will often denote the elementary p-chain associated with the oriented p-simplex σ
also by σ.

The following proposition is obvious, and simply confirms the fact that Cp(K) is indeed
a free abelian group.

Proposition 5.3. For every complex, K = (V,S), for every p, the group Cp(K) is a free
abelian group. For every choice of an orientation for every p-simplex, the corresponding
elementary chains form a basis for Cp(K).

The only point worth elaborating is that except for C0(K), where no choice is involved,
there is no canonical basis for Cp(K) for p ≥ 1, since different choices for the orientations of
the simplices yield different bases.

If there are mp p-simplices in K, the above proposition shows that Cp(K) = Zmp .

As an immediate consequence of Proposition 5.3, for any abelian group G and any func-
tion f mapping the oriented p-simplices of a complex K to G and such that f(−σ) = −f(σ)

for every oriented p-simplex σ, there is a unique homomorphism, f̂ : Cp(K)→ G, extending
f .

We now define the boundary maps ∂p : Cp(K)→ Cp−1(K).

Definition 5.9. Given a complex, K = (V,S), for every oriented p-simplex,

σ = [α0, . . . , αp],

we define the boundary, ∂pσ, of σ by

∂pσ =

p∑
i=0

(−1)i[α0, . . . , α̂i, . . . , αp],

where [α0, . . . , α̂i, . . . , αp] denotes the oriented (p − 1)-simplex obtained by deleting vertex
αi. The boundary map, ∂p : Cp(K) → Cp−1(K), is the unique homomorphism extending ∂p
on oriented p-simplices. For p ≤ 0, ∂p is the null homomorphism.
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One must verify that ∂p(−σ) = −∂pσ, but this is immediate.

If σ = [α0, α1], then
∂1σ = α1 − α0.

If σ = [α0, α1, α2], then

∂2σ = [α1, α2]− [α0, α2] + [α0, α1] = [α1, α2] + [α2, α0] + [α0, α1].

If σ = [α0, α1, α2, α3], then

∂3σ = [α1, α2, α3]− [α0, α2, α3] + [α0, α1, α3]− [α0, α1, α2].

If σ is the chain
σ = [α0, α1] + [α1, α2] + [α2, α3],

shown in Figure 5.10 (a), then

∂1σ = ∂1[α0, α1] + ∂1[α1, α2] + ∂1[α2, α3]

= α1 − α0 + α2 − α1 + α3 − α2

= α3 − α0.

On the other hand, if σ is the closed cycle,

σ = [α0, α1] + [α1, α2] + [α2, α0],

shown in Figure 5.10 (b), then

∂1σ = ∂1[α0, α1] + ∂1[α1, α2] + ∂1[α2, α0]

= α1 − α0 + α2 − α1 + α0 − α2

= 0.
1

σ1 σ2 σ3

α0 α1 α2 α3

(a)

σ0

σ1σ2

α0 α1

α2

(b)

Figure 5.10: (a) A chain with boundary α3 − α0. (b) A chain with 0 boundary.

We have the following fundamental property:
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Proposition 5.4. For every complex, K = (V,S), for every p, we have ∂p−1 ◦ ∂p = 0.

Proof. For any oriented p-simplex, σ = [α0, . . . , αp], we have

∂p−1 ◦ ∂pσ =

p∑
i=0

(−1)i∂p−1[α0, . . . , α̂i, . . . , αp],

=

p∑
i=0

i−1∑
j=0

(−1)i(−1)j[α0, . . . , α̂j, . . . , α̂i, . . . , αp]

+

p∑
i=0

p∑
j=i+1

(−1)i(−1)j−1[α0, . . . , α̂i, . . . , α̂j, . . . , αp]

= 0.

The rest of the proof follows from the fact that ∂p : Cp(K)→ Cp−1(K) is the unique homo-
morphism extending ∂p on oriented p-simplices.

Proposition 5.4 shows that the family (Cp(K))p≥0 together with the boundary maps
∂p : Cp(K)→ Cp−1(K) form a chain complex

0 C0(K)
∂0oo C1(K)

∂1oo · · ·oo Cp−1(K)
∂p−1oo Cp(K)

∂poo · · ·
∂p+1oo

denoted C∗(K) called the (oriented) simplicial chain complex associated with the complex
K.

Definition 5.10. Given a complex, K = (V,S), the kernel Ker ∂p of the homomorphism
∂p : Cp(K)→ Cp−1(K) is denoted by Zp(K), and the elements of Zp(K) are called p-cycles .
The image ∂p+1(Cp+1) of the homomorphism ∂p+1 : Cp+1(K)→ Cp(K) is denoted by Bp(K),
and the elements of Bp(K) are called p-boundaries . The p-th (oriented) simplicial homology
group Hp(K) is the quotient group

Hp(K) = Zp(K)/Bp(K).

Two p-chains c, c′ are said to be homologous if there is some (p + 1)-chain d such that
c = c′ + ∂p+1d.

We will often omit the subscript p in ∂p.

As an example, consider the simplicial complex K1 displayed in Figure 5.11. This complex
consists of 6 vertices {v1, . . . , v6} and 8 oriented edges (1-simplices)

a1 = [v2, v1] a2 = [v1, v4] b1 = [v2, v3] b2 = [v3, v4]

c1 = [v2, v5] c2 = [v5, v4] d1 = [v2, v6] d2 = [v6, v4].
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v1 v3

v2

v4

v5 v6

a1

a2

b1

b2

c1

c2

d1

d2

Figure 5.11: A 1-dimensional simplicial complex.

Since this complex is connected, we claim that

H0(K1) = Z.

Indeed, given any two vertices, u, u′ in K1, there is a path

π = [u0, u1], [u1, u2], . . . , [un−1, un],

where each ui is a vertex in K1, with u0 = u and un = u′, and we have

∂1(π) = un − u0 = u′ − u,

which shows that u and u′ are equivalent. Consequently, any 0-chain
∑
nivi is equivalent to(∑

ni
)
v0, which proves that

H0(K1) = Z.

If we look at the 1-cycles in C1(K1), we observe that they are not all independent, but
it is not hard to see that the three cycles

a1 + a2 − b1 − b2 b1 + b2 − c1 − c2 c1 + c2 − d1 − d2

form a basis of C1(K1). It follows that

H1(K1) = Ker ∂1/Im ∂2 = Ker ∂1 ≈ Z⊕ Z⊕ Z.

This reflects the fact that K1 has three one-dimensional holes.

Next, consider the 2-dimensional simplicial complex K2 displayed in Figure 5.12. This
complex consists of 6 vertices {v1, . . . , v6}, 9 oriented edges (1-simplices)

a1 = [v2, v1] a2 = [v1, v4] b1 = [v2, v3] b2 = [v3, v4]

c1 = [v2, v5] c2 = [v5, v4] d1 = [v2, v6] d2 = [v6, v4]

e1 = [v1, v3],
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and two oriented triangles (2-simplices)

A1 = [v2, v1, v3] A2 = [v1, v4, v3].

We have

∂2A1 = a1 + e1 − b1 ∂2A2 = a2 − b2 − e1.

It follows that
∂2(A1 + A2) = a1 + a2 − b1 − b2,

and A1 + A2 is a diamond with boundary a1 + a2 − b1 − b2. Since there are no 2-cycles,

v1 v3

v2

v4

v5 v6

a1

a2

b1

b2

c1

c2

d1

d2

e1

Figure 5.12: A 2-dimensional simplicial complex with a diamond.

H2(K2) = 0.

In order to compute
H1(K2) = Ker ∂1/Im ∂2,

we observe that the cycles in Im ∂2 belong to the diamond A1 +A2, and so the only cycles in
C1(K2) whose equivalence class is nonzero must contain either c1 + c2 or d1 + d2. Then, any
two cycles containing c1 + c2 (resp. d1 +d2) and passing through A1 +A2 are equivalent. For
example, the cycles a1 + a2− c1− c2 and b1 + b2− c1− c2 are equivalent since their difference

a1 + a2 − c1 − c2 − (b1 + b2 − c1 − c2) = a1 + a2 − b1 − b2

is the boundary ∂2(A1 +A2). Similarly, the cycles a1 + e1 + b2− c1− c2 and a1 + a2− c1− c2

are equivalent since their difference is

a1 + e1 + b2 − c1 − c2 − (a1 + a2 − c1 − c2) = e1 + b2 − a2 = ∂2(−A2).
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Generalizing this argument, we can show that every cycle is equivalent to either a multiple
of a1 + a2 − c1 − c2 or a multiple of a1 + a2 − d1 − d2, and thus

H1(K2) ≈ Z⊕ Z,

which reflects the fact that K2 has two one-dimenensional holes. Observe that one of the
three holes of the complex K1 has been filled in by the diamond A1 + A2. Since K2 is
connected, H0(K2) = Z.

Now, consider the 2-dimensional simplicial complex K3 displayed in Figure 5.13. This
complex consists of 8 vertices {v1, . . . , v8}, 16 oriented edges (1-simplices)

a1 = [v5, v1] a2 = [v1, v6] b1 = [v5, v3] b2 = [v3, v6]

c1 = [v5, v7] c2 = [v7, v6] d1 = [v5, v8] d2 = [v8, v6]

e1 = [v1, v2] e2 = [v2, v3] f1 = [v1, v4] f2 = [v4, v3]

g1 = [v5, v2] g2 = [v2, v6] h1 = [v5, v4] h2 = [v4, v6],

and 8 oriented triangles (2-simplices)

A1 = [v5, v1, v2] A2 = [v5, v2, v3] A3 = [v1, v6, v2] A4 = [v2, v6, v3]

B1 = [v5, v1, v4] B2 = [v5, v4, v3] B3 = [v1, v6, v4] B4 = [v4, v6, v3].

It is easy to check that

∂2A1 = a1 + e1 − g1 ∂2A2 = g1 + e2 − b1

∂2A3 = a2 − g2 − e1 ∂2A4 = g2 − b2 − e2

∂2B1 = a1 + f1 − h1 ∂2B2 = h1 + f2 − b1

∂2B3 = a2 − h2 − f1 ∂2B4 = h2 − b2 − f2.

If we let
A = A1 + A2 + A3 + A4 and B = B1 +B2 +B3 +B4,

then we get
∂2A = ∂2B = a1 + a2 − b1 − b2,

and thus,
∂2(B − A) = 0.

Thus, D = B − A is a 2-chain, and as we can see, it represents an octahedron. Observe
that the chain group C2(K3) is the eight-dimensional abelian group consisting of all linear
combinations of Ais and Bjs, and the fact that ∂2(B −A) = 0 means that the kernel of the
boundary map

∂2 : C2(K3)→ C1(K3)

is nontrivial. It follows that B − A generates the homology group

H2(K3) = Ker ∂2 ≈ Z.
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v1

v2

v3

v4

v5

v6

v7 v8

a1

a2

b1

b2

c1

c2

d1

d2

e1 e2

f 1 f 2

g1

g2

h1

h2

Figure 5.13: A 2-dimensional simplicial complex with an octahedron.

This reflects the fact that K3 has a single two-dimenensional hole. The reader should check
that as before,

H1(K3) = Ker ∂1/Im ∂2 ≈ Z⊕ Z.

Intuitively, this is because every cycle outside of the ocahedron D must contain either c1 +c2

or d1 + d2, and the “rest” of the cycle belongs to D. It follows that any two distinct cycles
involving c1 + c2 (resp. d1 + d2) can be deformed into each other by “sliding” over D. The
complex K3 also has two one-dimensional holes. Since K3 is connected, H0(K3) = Z.

Finally, consider the 3-dimensional simplicial complex K4 displayed in Figure 5.14 ob-
tained from K3 by adding the oriented edge

k = [v2, v4]

and the four oriented tetrahedra (3-simplices)

T1 = [v1, v2, v4, v6] T2 = [v3, v4, v2, v6]

T3 = [v1, v4, v2, v5] T4 = [v3, v2, v4, v5].

We get

∂3T1 = [v2, v4, v6]− [v1, v4, v6] + [v1, v2, v6]− [v1, v2, v4]

∂3T2 = [v4, v2, v6]− [v3, v2, v6] + [v3, v4, v6]− [v3, v4, v2]

∂3T3 = [v4, v2, v5]− [v1, v2, v5] + [v1, v4, v5]− [v1, v4, v2]

∂343 = [v2, v4, v5]− [v3, v4, v5] + [v3, v2, v5]− [v3, v2, v4].
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f 1
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Figure 5.14: A 3-dimensional simplicial complex with a solid octahedron.

Observe that

∂(T1 + T2 + T3 + T4) = −[v1, v4, v6] + [v1, v2, v6]− [v3, v2, v6] + [v3, v4, v6]

− [v1, v2, v5] + [v1, v4, v5]− [v3, v4, v5] + [v3, v2, v5]

= B3 − A3 − A4 +B4 − A1 +B1 +B2 − A2

= B1 +B2 +B3 +B4 − (A1 + A2 + A3 + A4)

= B − A.

It follows that
∂3 : C3(K4)→ C2(K4)

maps the solid octahedron T = T1 + T2 + T3 + T4 to B−A, and since Ker ∂2 is generated by
B − A, we get

H2(K4) = Ker ∂2/Im ∂3 = 0.

We also have
H3(K4) = Ker ∂3/Im ∂3 = Ker ∂3 = 0,

and as before,
H0(K4) = Z and H1(K4) = Z⊕ Z

The complex K4 still has two one-dimensional holes but the two-dimensional hole of K3 has
been filled up by the solid octahedron.

For another example of a 2-dimensional simplicial complex with a hole, consider the
complexK5 shown in Figure 5.15. This complex consists of 16 vertices, 32 edges (1-simplicies)
oriented as shown in the Figure, and 16 triangles (2-simplicies) oriented according to the
direction of their boundary edges. The boundary of K5 is

∂2(K5) = a1 + a2 + a3 + b1 + b2 + b3 + c1 + c2 + c3 + d1 + d2 + d3 + e+ f + g + h.
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Figure 5.15: A 2-dimensional simplicial complex with a hole.

As a consequence, the outer boundary a1 + a2 + a3 + b1 + b2 + b3 + c1 + c2 + c3 + d1 + d2 + d3

is equivalent to the inner boundary −(e+ f + g+h). It follows that all cycles in C2(K5) not
equivalent to zero are equivalent to a multiple of e+ f + g + h, and thus

H1(K5) = Z,

indicating that K5 has a single one-dimensional hole. Since K5 is connected,
H0(K5) = Z, and H2(K5) = 0 since Ker ∂2 = 0.

If K = (V,S) is a finite dimensional complex, as each group Cp(K) is free and finitely
generated, the homology groups Hp(K) are all finitely generated.

As we said in the introduction, the simplicial homology groups have a computational
flavor, and this is one of the main reasons why they are attractive and useful. In fact, if K
is any finite simplicial complex, there is an algorithm for computing the simplicial homology
groups of K. This algorithm relies on a matrix reduction method (The Smith Normal Form)
involving some simple row operations reminiscent of row-echelon reduction. This algorithm
is described in detail in Munkres [38] (Chapter 1, Section 11) and Rotman [41] (Chapter 7).

The generalization of simplicial homology to coefficients in any R-module G is immediate,
where R is any commutative ring with an identity element. Simply define the chain group
Cp(K;G) as the R-module of functions c from the set of oriented p-simplices to G, such that

(1) c(−σ) = −c(σ), iff σ and −σ have opposite orientation;

(2) c(σ) = 0, for all but finitely many simplices σ.

A p-chain in Cp(K;G) is a “vector-valued” formal finite linear combination∑
i

σigi,
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with gi ∈ G and σi an oriented p-simplex. Equivalently we can define the complex C∗(K;G)
as the complex C∗(K)⊗R G. When G = R, each module Cp(K;R) is a free module.

Then we have the simplicial chain complex C∗(K;G) and the corresponding simplicial
homology groups Hp(K;G).

Given two simplicial complexes K1 and K2, a simplicial map f : K1 → K2 induces a ho-
momorphism f],p : Cp(K1;G)→ Cp(K2;G) between the modules of oriented p-chains defined
as follows: For any p-simplex {v0, . . . , vp} in K1, we set

f]([v0, . . . , vp]) =

{
[f(v0), . . . , f(vp)] if the f(vi) are pairwise distinct

0 otherwise.

It is easy to check that the f],p commute with the boundary maps, so f] = (f],p)p≥0 is a
chain map between the chain complexes C∗(K1;G) and C∗(K2;G) which induces homomor-
phisms

f∗,p : Hp(K1;G)→ Hp(K2;G) for all p ≥ 0.

This assignment is functorial; see Munkres [38] (Chapter I, Section 12).

The relative simplicial homology groups are also easily defined (by analogy with relative
singular homology). Given a complex K and a subcomplex L of K, we define the relative
simplicial chain complex C∗(K,L;R) by

Cp(K,L;R) = Cp(K;G)/Cp(L;R).

As in the case of singular homology, Cp(K,L;R) is a free R-module, because it has a basis
consisting of the cosets of the form

σ + Cp(L;R),

where σ is an oriented p-simplex of K that is not in L. We obtain the relative simplicial
homology groups Hp(K,L;R). We define the chain complex Cp(K,L;G) as Cp(K,L;R)⊗RG,
and we obtain relative simplicial homology groups Hp(K,L;G) with coefficients in G.

Given two pairs of simplicial complexes (K1, L1) and (K2, L2), where L1 is a subcomplex
of K1 and L2 is a subcomplex of K2, as in the absolute case a simplicial map f : (K1, L1)→
(K2, L2) induces a homomorphism f],p : Cp(K1, L1;G)→ Cp(K2, L2;G) between the modules
of oriented p-chains, and thus homomorphisms

f∗,p : Hp(K1, L1;G)→ Hp(K2, L2;G) for all p ≥ 0.

Again, this assignment is functorial.

One can prove a version of the excision axiom for relative simplicial homology see Munkres
[38] (Chapter I, Section 9). One can also prove a version of the homotopy axiom (see Munkres
[38] (Chapter II), and that we have a long exact sequence of homology of a pair (K,L); see
Munkres [38] (Chapter III, Section 23).
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Simplicial homology assigns homology groups to a simplicial complex K, not to a topo-
logical space. We can view the groups Hp(K) as groups assigned to the geometric realization
Kg of K, which is a space. Let us temporarily denote these groups by H∆

p (Kg). Now the
following question arises:

If K and K ′ are two simplicial complexes whose geometric realizations Kg and K ′g are
homeomorphic, are the groups H∆

p (Kg) and H∆
p (K ′g) isomorphic, that is, are the groups

Hp(K) and Hp(K
′) isomorphic?

If the answer to this question was no, then the simplicial homology groups would not be
useful objects for classifying spaces up to homeomorphism, but fortunately the answer is yes.
However, the proof of this fact is quite involved. This can be proved directly as in Munkres
[38] (Chapter II), or by proving that the simplicial homology group Hp(K) is isomorphic to
the singular homology group Hp(Kg) of the geometric realization of K. The proof of this
isomorphism also requires a lot of work.

In order to prove the equivalence of simplicial homology with singular homology we
introduce a variant of the simplicial homology groups called ordered simplicial homology
groups .

Definition 5.11. Let K = (V,S) be a simplicial complex. An ordered p-simplex of K is a
(p + 1)-tuple (v0, . . . , vp) of vertices in V , where the vi are vertices of some simplex σ of K
but need not be distinct .

For example, if {v, w} is a 1-simplex, then (v, w, w, v) is an ordered 3-simplex.

Let C ′p(K;R) be the free R-module generated by the ordered p-simplices, called the group
of ordered p-chains , and define the boundary map ∂′p : C ′p(K;R)→ C ′p−1(K;R) by

∂′p(v0, . . . , vp) =

p∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vp),

where (v0, . . . , v̂i, . . . , vp) denotes the ordered (p− 1)-simplex obtained by deleting vertex vi.

It is easily checked that ∂′p ◦ ∂′p+1 = 0, so we obtain a chain complex C ′∗(K;R) called
the ordered simplicial chain complex of K. This is a huge and redundant complex, but it is
useful to prove the equivalence of simplicial homology and singular homology.

Given a simplicial complex K and a subcomplex L, the relative ordered simplicial chain
complex C ′∗(K,L;R) of (K,L) is defined by

C ′∗(K,L;R) = C ′∗(K;R)/C ′∗(L;R).

We obtain the ordered relative simplicial homology groups H ′p(K,L;R).

Theorem 5.5 below is proved in Munkres [38] (Chapter I, Section 13, Theorem 13.6) and
in Spanier [47] (Chapter 4, Section 3, Theorem 8, and Section 5, Corollary 12). The proof



154 CHAPTER 5. SIMPLICIAL HOMOLOGY AND COHOMOLOGY

uses a techniques known as “categories with models” and “acyclic models.” These results
are proved for R = Z, but because the oriented chain modules Cp(K,L;R) and the ordered
chain modules C ′p(K,L;R) are free R-modules, it can be checked that the constructions and
the proofs go through for any commutative ring with an identity element 1.

Assuming for simplicity that L = ∅, the idea is to define two chain maps ϕ : Cp(K;R)→
C ′p(K;R) and ψ : C ′p(K;R)→ Cp(K;R) that are chain homotopy inverses. To achieve this,
pick a partial order ≤ of the vertices of K = (V,S) that induces a total order on the vertices
of every simplex in S, and define ϕ by

ϕ([v0, . . . , vp]) = (v0, . . . , vp) if v0 < v1 < · · · < vp,

and ψ by

ψ((w0, . . . , wp)) =

{
[w0, . . . , wp] if the wi are pairwise distinct

0 otherwise.

Then it can be shown that ϕ and ψ are natural transformations (with respect to simpli-
cial maps) and that they are chain homotopy inverses. The maps ϕ and ψ can also be
defined for pairs of complexes (K,L), as chain maps ϕ : Cp(K,L;R) → C ′p(K,L;R) and
ψ : C ′p(K,L;R)→ Cp(K,L;R) which are chain homotopic.

Theorem 5.5. For any simplicial complex K and any subcomplex L of K, there are (natural)
isomorphims

Hp(K,L;R) ∼= H ′p(K,L;R) for all p ≥ 0

between the relative simplicial homology groups and the ordered relative simplicial homology
groups.

Theorem 5.5 follows from the special case of the theorem in which L = ∅ by the five
lemma (Proposition 2.23). This is a common trick in the subject which is used over and over
again (see the proof of Theorem 5.6).

By naturality of the long exact sequence of homology of the pair (K,L), the chain map
ϕ : C∗(K,L;R)→ C ′∗(K,L;R) yields the following commutative diagram:

· · · // Hp(L;R) //

��

Hp(K;R) //

��

Hp(K,L;R) //

��

Hp−1(L;R) //

��

Hp−1(K;R) //

��

· · ·

· · · // H ′p(L;R) // H ′p(K;R) // H ′p(K,L;R) // H ′p−1(L;R) // H ′p−1(K;R) // · · ·

in which the horizontal rows are exact. If we assume that the isomorphisms of the theorem
hold in the absolute case, then all vertical arrows except the middle one are isomorphisms,
and by the five lemma (Proposition 2.23), the middle arrow is also an isomorphism.

The proof that the simplicial homology group Hp(K;Z) is isomorphic to the singular
homology group Hp(Kg;Z) is nontrivial. Proofs can be found in Munkres [38] (Chapter 4,
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Section 34), Spanier [47] (Chapter 4, Sections 4 and 6), Hatcher [25] (Chapter II, Section 2.1),
and Rotman [41] (Chapter 7). These proofs use variants of acyclic models, Mayer–Vietoris
sequences, and the five lemma.

Given a simplicial complex K, the idea is to define a chain map θ : C ′∗(K;Z)→ S∗(Kg;Z)
that induces isomorphisms θ∗,p : H ′p(K;Z) → Hp(Kg;Z) for all p ≥ 0. This can be done as
follows: let `(e1, . . . , ep+1) be the unique affine map from ∆p to Kg such that `(ei+1) = (vi)g
for i = 0, . . . , p. Then let

θ((v0, . . . , vp)) = `(e1, . . . , ep+1).

It is also easy to define θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z) for pairs of complexes (K,L) with
L a subcomplex of K. Then we define the chain map η : C∗(K,L;Z) → S∗(Kg, Lg;Z) as
the composition η = θ ◦ ϕ, where ϕ : C∗(K,L;Z) → C ′∗(K,L;Z) is the chain map between
oriented and ordered homology discussed earlier. The following important theorem shows
that η induces an isomorphism between simplicial homology and singular homology.

Theorem 5.6. Given any pair of simplicial complexes (K,L), where L is a subcomplex of
K, the chain map η : C∗(K,L;Z)→ S∗(Kg, Lg;Z) induces isomorphisms

Hp(K,L;Z) ∼= Hp(Kg, Lg;Z) for all p ≥ 0.

Proof sketch. By Theorem 5.5 it suffices to prove that the homology groups H ′p(K,L;Z)
and the singular homology groups Hp(Kk, Lg;Z) are isomorphic. Again, we use the trick
which consists in showing that Theorem 5.6 follows from the special case of the theorem in
which L = ∅ by the five lemma (Proposition 2.23). Indeed, by naturality of the long exact
sequence of homology of the pair (K,L), the chain map θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z)
yields the following commutative diagram

· · · // H ′p(L;Z) //

��

H ′p(K;Z) //

��

H ′p(K,L;Z) //

��

H ′p−1(L;Z) //

��

H ′p−1(K;Z) //

��

· · ·

· · · // Hp(Lg;Z) // Hp(Kg;Z) // Hp(Kg, Lg;Z) // Hp−1(Lg;Z) // Hp−1(Kg;Z) // · · ·

in which the horizontal rows are exact. If we assume that the isomorphisms of the theorem
hold in the absolute case, then all vertical arrows except the middle one are isomorphisms,
and by the five lemma (Proposition 2.23), the middle arrow is also an isomorphism.

The proof of the isomorphims H ′p(K;Z) ∼= Hp(Kg;Z) proceed in two steps. We follow
Spanier’s proof Spanier [47] (Theorem 8, Chapter 4, Section 6). Rotman’s proof is nearly
the same; see Rotman [41] (Chapter 7), but beware that there appears to be some typos at
the bottom of page 151.

Step 1 . We prove our result for a finite simplicial complex K by induction on the number
n of simplices on K.

Base case, n = 1. For any abstract simplex s, let s be the simplicial complex consisting
of all the faces of s (including s itself). The following result will be needed.
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Proposition 5.7. Given any abstact simplex s, there are isomorphisms

H ′p(s;Z) ∼= Hp(sg;Z) for all p ≥ 0.

Proposition 5.7 is Corollary 4.4.2 in Spanier [47] (Chapter 4, Section 4). Intuitively,
Proposition 5.7 is kind of obvious, since s corresponds to the combinatorial decomposition
of a simplex, and sg is a convex body homeomorphic to some ball Dm. Their corresponding
homology should be (0) for p > 0 and Z for p = 0.

A rigorous proof of Proposition 5.7 uses the following results:

(1) We have the following isomorphisms between unreduced and reduced homology:

H ′0(K;Z) ∼= H̃ ′0(K;Z)⊕ Z

H ′p(K;Z) ∼= H̃ ′p(K;Z) p ≥ 1

in ordered homology, and

H0(Kg;Z) ∼= H̃0(Kg;Z)⊕ Z
Hp(Kg;Z) ∼= H̃p(Kg;Z) p ≥ 1

in singular homology. This is Lemma 4.3.1 in Spanier [47] (Chapter 4, Section 3).

(2) For any abstract simplex s, the reduced chain complex of ordered homology of s is
acyclic; that is,

H̃ ′p(s;Z) = (0) for all p ≥ 0.

This is Corollary 4.3.7 in Spanier [47] (Chapter 4, Section 3). A more direct proof
of the second fact (oriented simplicial homology) is given in Rotman [41] (Chapter 7,
Corollary 7.18). It is easily adapted to ordered homology.

(3) A chain complex C is said to be contractible if there is a chain homotopy between the
identity chain map idC of C and the zero chain map 0C of C. Then a contractible
chain complex is acyclic; that is, Hp(C) = (0) for all p ≥ 0. This is Corollary 4.2.3 in
Spanier [47] (Chapter 4, Section 2).

(4) Let X be any star-shaped subset of Rn. Then the reduced singular complex of X is
chain contractible. This is Lemma 4.4.1 in Spanier [47] (Chapter 4, Section 4).

Induction step, n > 1. We will need the following facts:

(1) The Mayer–Vietoris sequence holds in ordered homology. This is not hard to prove;
see Spanier [47] (Chapter 4, Section 6).

(2) The Mayer–Vietoris sequence holds in reduced singular homology; this is Theorem
4.14.
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(3) If K1 and K2 are are subcomplexes of a simplicial complex K, then the Mayer–Vietoris
sequence of singular homology holds for (K1)g and (K2)g. This is Lemma 4.6.7 in
Spanier [47] (Chapter 4, Section 6). Actually, the above result is only needed in
the following situation: if s is any simplex of K of highest dimension, then K1 =
K − {s} and K2 = s; this is Lemma 7.20 in Rotman [41] (Chapter 7). Since a
Mayer–Vietoris sequence arises from a long exact sequence of homology, the chain map
θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z) induces a commutative diagram in which the top and
bottom arrows are Mayer–Vietoris sequences and the vertical maps are induced by θ;
see below.

Assume inductively that our result holds for any simplicial complex with less than n > 1
simplices. Pick any simplex s of maximal dimension, and let K1 = K − {s} and K2 = s, so
that K = K1 ∪K2. Since n > 1 and s has maximal dimension, both K1 and K1 ∩K2 are
complexes (Condition (A2) is satisfied) and have less than n simplices, so by the induction
hypothesis

H ′p(K1;Z) ∼= Hp((K1)g;Z) for all p ≥ 0

and
H ′p(K1 ∩K2;Z) ∼= Hp((K1 ∩K2)g;Z) for all p ≥ 0.

By Proposition 5.7 we also have

H ′p(K2;R) = H ′p(s;Z) ∼= Hp(sg;Z) = Hp((K2)g;R) for all p ≥ 0.

Now Fact (3) (of the induction step) implies that we have the following diagram in which
the horizontal rows are exact Mayer–Vietoris sequences (for a more direct argument, see
Rotman [41] (Chapter 7, Proposition 7.21)), and where we have suppressed the ring Z to
simplify notation.

H ′p(K1 ∩ s) //

��

H ′p(K1)⊕H ′p(s) //

��

H ′p(K) //

��

H ′p−1(K1 ∩ s) //

��

H ′p−1(K1)⊕H ′p−1(s)

��
Hp((K1 ∩ s)g) // Hp((K1)g)⊕Hp(sg) // Hp(Kg) // Hp−1((K1 ∩ s)g) // Hp−1((K1)g)⊕Hp−1(sg)

Since all horizontal arrows except the middle one are isomorphisms, by the five lemma
(Proposition 2.23) the middle vertical arrow is also an isomorphism, which establishes the
induction hypothesis. Therefore, we proved Theorem 5.6 for finite simplicial complexes.

Step 2 . We prove our result for an infinite simplicial complex K. We resort to a direct
limit argument. Let (Kα) be the family of finite subcomplexes of K under the inclusion
ordering. It is a directed family. A version of this argument is given in Munkres [38]
(Chapter 4, Section 34, Lemma 44.2). Spanier proves that

H ′p(K;Z) ∼= lim−→H ′p(Kα;Z)
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and that

Hp(Kg;Z) ∼= lim−→Hp((Kα)g;Z).

The first result is Theorem 4.3.11 in Spanier [47] (Chapter 4, Section 3). This is an imme-
diate consequence of the fact that homology commutes with direct limits; see Spanier [47]
(Theorem 4.1.7, Chapter 4, Section 1). The second result is the axiom of compact support
for singular homology (Theorem 4.15). This completes the proof.

Theorem 5.6 proves the claim we made earlier that any two complexes K and K ′ that
have homeomorphic geometric realizations have isomorphic simplicial homology groups, a
result first proved by Alexander and Veblen.

The proofs of Theorem 5.6 found in the references cited earlier all assume that the ring
of coefficients is R = Z. However, close examination of Spanier’s proof shows that the only
result that makes use of the fact that R = Z is Proposition 5.7. If Proposition 5.7 holds for
any commutative ring R with an identity element, then so does the theorem.

Fact (1) of Step 1 holds for any ring, in fact for any R-module G.

Fact (2) of Step 1 is a corollary of Theorem 4.3.6, which itself depends on Lemma 4.3.2;
see Spanier [47] (Chapter 4, Section 3). One needs to find right inverses to the augmentation
maps ε : C ′0(K;R)→ R and ε : C ′0(K ∗w;R)→ R, where K ∗w is the cone with base K and
vertex w; see Spanier [47] (Chapter 3, Section 2). This is essentially the argument we gave
in Section 4.2 just after Definition 4.7.

Actually, this argument can be generalized to any R-module G, as explained in Section
4.5 just after Definition 4.12, so we have the following generalization of Proposition 5.7: For
any abstract simplex s and any R-module G, we have

H ′p(s;G) ∼= Hp(sg;G) for all p ≥ 0.

By tensoring with G, the chain map θ yields a chain map (also denoted θ) θ : C ′∗(K,L;G)→
S∗(Kg, Lg;G). The chain map ϕ : C∗(K,L;R) → C ′∗(K,L;R) can also be generalized to a
chain map (also denoted ϕ) ϕ : C∗(K,L;G)→ C ′∗(K,L;G) by tensoring with G. We define
ϕ : C∗(K,L;G)→ S∗(Kg, Lg;G) as η = θ ◦ ϕ. Then we obtain a more general version of the
isomorphism between simplicial homology and singular homology.

Theorem 5.8. For any commutative ring R with an identity element 1 and for any R-
module G, given any pair of simplicial complexes (K,L), where L is a subcomplex of K, the
chain map η : C∗(K,L;G)→ S∗(Kg, Lg;G) induces isomorphisms

Hp(K,L;G) ∼= Hp(Kg, Lg;G) for all p ≥ 0.

In summary, singular homology subsumes simplicial homology. Still, simplicial homology
is much more computational.
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5.3 The Euler–Poincaré Characteristic of a

Simplicial Complex

In this section we assume that we are considering simplicial homology groups with coefficients
in Z. A fundamental invariant of finite complexes is the Euler–Poincaré characteristic. We
saw earlier that the simplicial homology groups of a finite simplicial complex K are finitely
generated abelian groups. We can assign a number χ(K) to K by making use of the fact
that the structure of finitely generated abelian groups can be completely described. It turns
out that every finitely generated abelian group can be expressed as the sum of the special
abelian groups Zr and Z/mZ. The crucial result is the following.

Proposition 5.9. Let G be a free abelian group finitely generated by (a1, . . . , an) and let H
be any subgroup of G. Then H is a free abelian group and there is a basis, (e1, ..., en), of G,
some q ≤ n, and some positive natural numbers, n1, . . . , nq, such that (n1e1, . . . , nqeq) is a
basis of H and ni divides ni+1 for all i, with 1 ≤ i ≤ q − 1.

A neat proof of Proposition 5.9 can be found in Samuel [42]; see also Dummit and Foote
[11] (Chapter 12, Theorem 4).

Remark: Actually, Proposition 5.9 is a special case of the structure theorem for finitely
generated modules over a principal ring. Recall that Z is a principal ring, which means that
every ideal I in Z is of the form dZ, for some d ∈ N.

We abbreviate the direct sum Z⊕ · · · ⊕ Z︸ ︷︷ ︸
m

of m copies of Z as Zm. Using Proposition

5.9, we can also show the following useful result:

Theorem 5.10. (Structure theorem for finitely generated abelian groups) Let G be a finitely
generated abelian group. There is some natural number, m ≥ 0, and some natural numbers
n1, . . . , nq ≥ 2, such that H is isomorphic to the direct sum

Zm ⊕ Z/n1Z⊕ · · · ⊕ Z/nqZ,

and where ni divides ni+1 for all i, with 1 ≤ i ≤ q − 1.

Proof. Assume that G is generated by A = (a1, . . . , an) and let F (A) be the free abelian
group generated by A. The inclusion map i : A → G can be extended to a unique homo-
morphism f : F (A) → G which is surjective since A generates G, and thus G is isomorphic
to F (A)/f−1(0). By Proposition 5.9, H = f−1(0) is a free abelian group and there is a
basis (e1, ..., en) of G, some p ≤ n, and some positive natural numbers k1, . . . , kp, such that
(k1e1, . . . , kpep) is a basis of H, and ki divides ki+1 for all i, with 1 ≤ i ≤ p − 1. Let r,
0 ≤ r ≤ p, be the largest natural number such that k1 = . . . = kr = 1, rename kr+i as ni,
where 1 ≤ i ≤ p− r, and let q = p− r. Then, we can write

H = Zp−q ⊕ n1Z⊕ · · · ⊕ nqZ,
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and since F (A) is isomorphic to Zn, it is easy to verify that F (A)/H is isomorphic to

Zn−p ⊕ Z/n1Z⊕ · · · ⊕ Z/nqZ,

which proves the proposition.

Observe that G is a free abelian group iff q = 0, and otherwise Z/n1Z ⊕ · · · ⊕ Z/nqZ is
the torsion subgroup of G. Thus, as a corollary of Proposition 5.10, we obtain the fact that
every finitely generated abelian group G is a direct sum, G = Zm⊕T , where T is the torsion
subroup of G and Zm is the free abelian group of dimension m.

One verifies that m is the rank (the maximal dimension of linearly independent sets in
G) of G, denoted rank(G). The number m = rank(G) is called the Betti number of G and
the numbers n1, . . . , nq are the torsion numbers of G. It can also be shown that q and the
ni only depend on G.

In the early days of algebraic topology (between the late 1890’ and the early 1930’s), an
aera of mathematics started by Henri Poincaré in the late 1890’s, homology groups had not
been defined and people worked with Betti numbers and torsion coefficients. Emmy Noether
played a crucial role in introducing homology groups into the field.

Figure 5.16: Leonhard Euler, 1707–1783 (left), and Henri Poincaré, 1854–1912 (right).

Definition 5.12. Given a finite complex K = (V,S) of dimension m, if we let mp be the
number of p-simplices in K, we define the Euler–Poincaré characteristic χ(K) of K by

χ(K) =
m∑
p=0

(−1)p mp.

In order to prove Theorem 5.12 we make use of Proposition 5.11 stated below.

Proposition 5.11 follows from the fact that Q is a flat Z-module. By tensoring with Q
with obtain an exact sequence in which the spaces E ⊗Z Q, F ⊗Z Q, and G⊗Z Q, are vector
spaces over Q whose dimensions are equal to the ranks of the abelian groups being tensored
with; see Proposition 12.9. A proof of Proposition 5.11 is also given in Greenberg and Harper
[19] (Chapter 20, Lemma 20.7 and Lemma 20.8).
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Proposition 5.11. If

0 // E // F // G // 0

is a short exact sequence of homomorphisms of abelian groups and if F has finite rank, then

rank(F ) = rank(E) + rank(G).

In particular, if G is an abelian group of finite rank and if H is a subgroup of G, then
rank(G) = rank(H) + rank(G/H).

The following remarkable theorem holds:

Theorem 5.12. Given a finite complex K = (V,S) of dimension m, we have

χ(K) =
m∑
p=0

(−1)p r(Hp(K)),

the alternating sum of the Betti numbers (the ranks) of the homology groups of K.

Proof. We know that Cp(K) is a free group of rank mp. Since
Hp(K) = Zp(K)/Bp(K), by Proposition 5.11, we have

r(Hp(K)) = r(Zp(K))− r(Bp(K)).

Since we have a short exact sequence

0 −→ Zp(K) −→ Cp(K)
∂p−→ Bp−1(K) −→ 0,

again, by Proposition 5.11, we have

r(Cp(K)) = mp = r(Zp(K)) + r(Bp−1(K)).

Also, note that Bm(K) = 0, and B−1(K) = 0. Then, we have

χ(K) =
m∑
p=0

(−1)p mp

=
m∑
p=0

(−1)p (r(Zp(K)) + r(Bp−1(K)))

=
m∑
p=0

(−1)p r(Zp(K)) +
m∑
p=0

(−1)p r(Bp−1(K)).
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Using the fact that Bm(K) = 0, and B−1(K) = 0, we get

χ(K) =
m∑
p=0

(−1)p r(Zp(K)) +
m∑
p=0

(−1)p+1 r(Bp(K))

=
m∑
p=0

(−1)p (r(Zp(K))− r(Bp(K)))

=
m∑
p=0

(−1)p r(Hp(K)).

A striking corollary of Theorem 5.12 (together with Theorem 5.6) is that the Euler–
Poincaré characteristic, χ(K), of a complex of finite dimension m only depends on the
geometric realization Kg of K, since it only depends on the homology groups Hp(K) =
Hp(Kg) of the polytope Kg. Thus, the Euler–Poincaré characteristic is an invariant of all
the finite complexes corresponding to the same polytope, X = Kg. We can say that it is the
Euler–Poincaré characteristic of the polytope X = Kg, and denote it by χ(X). In particular,
this is true of surfaces that admit a triangulation. The Euler–Poincaré characteristic in
one of the major ingredients in the classification of the compact surfaces. In this case,
χ(K) = m0 −m1 + m2, where m0 is the number of vertices, m1 the number of edges, and
m2 the number of triangles in K.

Going back to the triangulations of the sphere, the torus, the projective space, and the
Klein bottle, we find that they have Euler–Poincaré characteristics 2 (sphere), 0 (torus), 1
(projective space), and 0 (Klein bottle).

5.4 Simplicial Cohomology

In this section G is any R-module over a commutative ring R with an identity element 1.
The relative (and absolute) simplicial cohomology groups of a pair of simplicial complexes
(K,L) (where L is a subcomplex of K) are defined the same way that the singular relative
cohomology groups are defined from the singular homology groups by applying HomR(−;G),
as in Section 4.7.

Given the chain complex of relative simplicial homology

0 C0(K,L;R)
∂0oo C1(K,L;R)

∂1oo · · ·oo Cp−1(K,L;R)
∂p−1oo Cp(K,L;R)

∂poo · · ·
∂p+1oo

by applying HomR(−, G), where Cp(K,L;R) = Cp(K,R)/Cp(L,R), we obtain the chain
complex

0 δ−1
// C0(K,L;G) δ0

// C1(K,L;G) // · · · δ
p−1
// Cp(K,L;G) δp // Cp+1(K,L;G) δ

p+1
// · · ·
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with Cp(K,L;G) = HomR(Cp(K,L;R), G) and δp = HomR(∂p, G) for all p ≥ 0 (and δ−1 is
the zero map). More explicitly

δp(f) = f ◦ ∂p+1 for all f ∈ Cp(K,L;G);

that is

δp(f)(σ) = f(∂p+1(σ)) for all f ∈ Cp(K,L;G) = HomR(Cp(K,L;R), G)

and all σ ∈ Cp+1(K;L;R);

Definition 5.13. Given a pair of complexes (K,L) with L a subcomplex of K, the simplicial
relative cohomology groups Hp(K,L;G) of (K,L) arise from the chain complex

0 δ−1
// C0(K,L;G) δ0

// C1(K,L;G) // · · · δ
p−1
// Cp(K,L;G) δp // Cp+1(K,L;G) δ

p+1
// · · ·

and are given by
Hp(K,L;G) = Ker δp/Im δp−1, p ≥ 0.

To obtain the long exact sequence of relative simplicial cohomology we dualize the short
exact sequence

0 // C∗(L;R) i // C∗(K;R)
j // C∗(K,L;R) // 0

where C∗(K,L;R) = C∗(K,R)/C∗(L,R) by applying Hom(−, G) and we obtain the sequence

0 // C∗(K,L;G)
j> // C∗(K;G) i> // C∗(L;G) // 0,

where by definition C∗(K,L;G) = HomR(C∗(K;R)/C∗(L;R), G), and as before C∗(L;G) =
HomR(C∗(L;R), G) and C∗(K;G) = HomG(C∗(K;R), G).

Since Cp(K,L;R) = Cp(K,R)/Cp(L,R) is a free module for every p, by Proposition 2.6
the sequence of chain complexes

0 // C∗(K,L;G)
j> // C∗(K;G) i> // C∗(L;G) // 0

is exact. A version of Theorem 4.33 for relative simplicial cohomology in then obtained.

Given two pairs of simplicial complexes (K1, L1) and (K2, L2), where L1 is a subcomplex
of K1 and L2 is a subcomplex of K2, a simplicial map f : (K1, L1) → (K2, L2) induces
a homomorphism f],p : Cp(K1, L1;R) → Cp(K2, L2;R) between the modules of oriented p-
chains, and thus by applying HomR(−, G) we get a homomorphism f ],p : Cp(K2, L2;G) →
Cp(K1, L1;G) commuting with coboundaries which induces homomorphisms

f ∗,p : Hp(K2, L2;G)→ Hp(K1, L1;G) for all p ≥ 0.
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Again, this assignment is functorial.

If R is a PID, then the simplicial cohomology group Hp(K,L;G) is isomorphic to the
singular cohomology group Hp(Kg, Lg;G) for every p ≥ 0. This result is easily obtained
from the Universal Coefficient Theorem for cohomology, or by an argument about free chain
complexes; see Munkres [38] (Chapter 5, Section 45, Theorem 45.5).

Theorem 5.13. Let (K,L) be any pair of simplicial complexes with L a subcomplex of K.
If R is a PID, then for any R-module G we have isomorphisms

Hp(K,L;G) ∼= Hp(Kg, Lg;G) for all p ≥ 0

between the relative simplicial homology of the pair of complexes (K,L) and the relative
singular homology of the pair of geometric realizations (Kg, Lg).

Proof. The proof shows the stronger result that if Hp−1(K,L;R) ∼= Hp−1(Kg, Lg;R) and
Hp(K,L;R) ∼= Hp(Kg, Lg;R), then Hp(K,L;G) ∼= Hp(Kg, Lg;G).

Let η : C∗(K,L;R) → S∗(Kg, Lg;R) be the chain map of Theorem 5.6. By the natu-
rality part of Universal Coefficient Theorem for cohomology (Theorem 12.43), we have the
commutative diagram

0 // Ext1
R(Hp−1(Kg, Lg;R), G) //

ExtR1 (η∗)

��

Hp(Kg, Lg;G) //

(HomR(η,G))∗

��

HomR(Hp(Kg, Lg;R), G) //

HomR(η∗,id)

��

0

0 // Ext1
R(Hp−1(K,L;R), G) // Hp(K,L;G) // HomR(Hp(K,L;R), G) // 0.

By Theorem 5.6 the chain map η induces isomorphisms Hp−1(K,L;R) ∼= Hp−1(Kg, Lg;R)
and Hp(K,L;R) ∼= Hp(Kg, Lg;R), so the first and the third map in the above diagram are
isomorphisms. By the short five lemma (Proposition 2.22) we conclude that the middle map
is an isomorphism.

In summary, simplicial cohomology is subsumed by singular cohomology (at least whene
R is a PID). Nevertheless, simplicial cohomology is much more amenable to computation
than singular cohomology. In particular, simplicial cohomology can be used to compute the
cohomology ring of various spaces; see Munkres [38] (Chapter 5, Section 49).

Indeed, it is possible to define a cup product on the simplicial cohomology of a complex.
If K = (V,S) is a simplicial complex, let ≤ be a partial order of the vertices of K that
induces a total order on the vertices of every simplex in S.

Definition 5.14. Given a simplicial complex K = (V,S) and a partial order of its vertices
as above, define a map

^∆ : Cp(K;R)× Cq(K;R)→ Cp+q(K;R)
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by
(c ^∆ d)([v0, . . . , vp+q]) = c([v0, . . . , vp]) d([vp, . . . , vp+q])

ifr v0 < v1 < · · · < vp+q, for all simplicial p-cochains c ∈ Cp(K;R) and all simplicial
q-cochains d ∈ Cq(K;R).

It can be shown that the map ^∆ : Cp(K;R) × Cq(K;R) → Cp+q(K;R) induces a cup
product

^∆ : Hp(K;R)×Hq(K;R)→ Hp+q(K;R)

which is bilinear and associative and independent of the partial order ≤ chosen on V ; see
Munkres [38] (Chapter 5, Section 49, Theorem 49.1 and Theorem 49.2).

It can also be shown that if η : C∗(K;R)→ S∗(Kg;R) is the chain map of Theorem 5.6,
then η∗ = HomR(η,R) carries the cup product ^ of singular cohomology to the cup product
^∆ of simplicial cohomology of Definition 4.20. If h : K1 → K2 is a simplicial map between
two simplicial complexes, then h∗ preserves cup products; see Munkres [38] (Chapter 5,
Section 49, Theorem 49.1 and Theorem 49.2).
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Chapter 6

Homology and Cohomology of CW
Complexes

Computing the singular homology (or cohomology) groups of a space X is generally very
difficult. J.H.C. Whitehead invented a class of spaces called CW complexes for which the
computation of the singular homology groups is much more tractable. Roughly speaking, a
CW complex X is built up inductively starting with a collection of points, in such a way that
if the space Xn has been obtained at stage n, then the space Xn+1 is obtained from Xn by
gluing, or as it is customary to say attaching, a collection of closed balls whose boundaries
are glued to Xn in a specific fashion. Every compact manifold is homotopy equivalent to a
CW complex, so the class of CW complexes is quite rich. It also plays an important role in
homotopy theory. In this short chapter, we describe CW complexes and explain how their
homology and cohomology can be computed.

6.1 CW Complexes

First we define closed and open cells, and then we describe the process of attaching space
(or adjunction space). Recall that the n-dimensional ball Dn, the n-dimensional open ball
IntDn, and the n-dimensional sphere Sn, are defined by

Dn = {x ∈ Rn | ‖x‖2 ≤ 1}
IntDn+1 = {x ∈ Rn+1 | ‖x‖2 < 1}

Sn = {x ∈ Rn+1 | ‖x‖2 = 1}.

Furthermore, Sn = ∂Dn+1 = Dn+1 − Int Dn+1, the boundary of Dn+1, and Dn/∂Dn is
homeomorphic to Sn (n ≥ 1). When n = 0 we set IntD0 = D0 = {0}, and ∂D0 = S−1 = ∅.

Definition 6.1. A (closed) cell of dimension m ≥ 0 (or closed m-cell) is a space homeomor-
phic to Dm, and an open cell of dimension m ≥ 0 (or open m-cell) is a space homeomorphic
to IntDm.

167
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Observe that an open or closed 0-cell is a point. We will usually denote an open m-cell
by em (or simply e), and its closure by em (or simply e). The set e− e is denoted by ė.

Given two topological spaces X and Y , given a closed subset A of X, and given a
continuous map f : A→ Y , we would like to define the space X ∪f Y obtained by gluing X
and Y “along A.” We will define X ∪f Y as a quotient space of the disjoint union X t Y of
X and Y with the topology in which a subset Z ∈ X tY is open iff Z ∩X is open in X and
Z ∩ Y is open in Y . See Figure 6.1. More generally, recall the definition of the topological
sum of a family of spaces (Definition 4.11).

Definition 6.2. If (Xi)i∈I is a family of topological spaces we define the topological sum⊔
i∈I Xi of the family (Xi)i∈I as the disjoint union of the spaces Xi, and we give it the

topology for which a subset Z ⊆
⊔
i∈I Xi is open iff Z ∩Xi is open for all i ∈ I.

We will also need the notion of coherent union.

Definition 6.3. Given a topological space X, if (Xi)i∈I is a family of subspaces of X such
that X =

⋃
i∈I Xi, we say that the topology of X is coherent with the family (Xi)i∈I if a

subset A ⊆ X is open in X iff A ∩ Xi is open in Xi for all i ∈ I. We say that X is the
coherent union of the family (Xi)i∈I .

Given X, Y,A, and f : A→ Y as above, we form the quotient space of XtY by identifying
each set

f−1(y) ∪ {y}

for each y ∈ Y to a point. This means that we form the quotient set corresponding to the
partition of X t Y into the subsets of the form f−1(y) ∪ {y} for all y ∈ Y , and all singleton
sets {x} for all x ∈ X − A. Observe that if y /∈ f(A), then f−1(y) = ∅, so in this case the
subset f−1(y) ∪ {y} reduces to {y}.

Definition 6.4. Given two topological spaces X and Y , given a closed subset A of X, and
given a continuous map f : A → Y , the adjunction space determined by f (or attaching
space determined by f), denoted by X ∪f Y , is the quotient space of the disjoint sum X t Y
corresponding to the partition of X t Y into the subsets of the form f−1(y) ∪ {y} for all
y ∈ Y , and all singleton sets {x} for all x ∈ X −A. The map f is called the adjunction map
(or attaching map). See Figure 6.1.

Observe that the adjunction map f : A→ Y needs not be injective, that is, it could cause
some collapsing of parts of A. For example, if X = D1, A = S1, Y = {0} and f : A → Y
is the constant function that “collapses” S1 onto {0}, then the adjunction space X ∪f Y is
homeomorphic to the sphere S2. See Figure 6.2.

If π : X t Y → X ∪f Y is the quotient map, then it is easy to show that π maps Y
homeomorphically onto a closed subspace of X ∪f Y .
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(x, 0) (x,1)

(x,1,1)

X Y

X Y

f

f

gf

Figure 6.1: Let X be the unit square in R2 and Y be the boundary of the unit cube in
R3. Let A be the vertical lines x = 0 and x = 1. The attaching map f : A → Y is defined
via f(x, 0) = (1, 1, x) = f(x, 1). The upper figure shows an open set in X ∪f Y as defined
in Definition 4.11. The lower figure shows the three dimensional rendering of the quotient
space X ∪f Y .

Recall that a topological space X is normal if the singleton subset {x} is closed for all
x ∈ X, and if for any two closed subsets A and B of X there exist two disjoint open subsets
U and V of X such that A ⊆ U and B ⊆ V . Since every singleton subset is closed, a normal
space is Hausdorff.

The following result is shown in Munkres [38] (Chapter 4, Theorem 37.2).

Proposition 6.1. Given X, Y,A, and f : A → Y as in Definition 6.4, if X and Y are
normal, then X ∪f Y is also normal, and in particular Hausdorff.

A CW complex can be defined intrinsically or by an inductive definition involving the
process of attaching cells. We begin with the second definition since it is easier to grasp. To
simplify matters we begin with the definition of a finite CW complex.

Definition 6.5. A finite CW complex X of dimension n is defined inductively as follows:
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X

Y

X Ygf

Figure 6.2: Let X be the unit disk in R2 and Y be a point. Let A be the circular boundary
of X. The attaching map f : A→ Y collapses A to a point and wraps the disk into a sphere
as depicted by the four stage rendering of X ∪f Y .

(1) Let X0 be a finite set of points (0-cells) with the discrete topology.

(2) If p < n and if Xp has been constructed, let Ip+1 be a finite (possibly empty) index set,
let
⊔
i∈Ip+1

Dp+1
i be the disjoint union of closed (p+1)-balls, and if we write Spi = ∂Dp+1

i

let gp+1 :
⊔
i∈Ip+1

Spi → Xp be a continuous map (an attaching map). Then Xp+1 is the
adjunction space

Xp+1 =

( ⊔
i∈Ip+1

Dp+1
i

)
∪gp+1 X

p.

Either n = 0 and X = X0, or n ≥ 1 in which case X0 6= ∅ and In 6= ∅, that is, there is some
open n-cell, and we let X = Xn. The subspace Xp is called the p-skeleton of X.

If πCW
p+1 is the quotient map

πCW
p+1 :

( ⊔
i∈Ip+1

Dp+1
i

)
tXp →

( ⊔
i∈Ip+1

Dp+1
i

)
∪gp+1 X

p = Xp+1,

then we write ep+1
i = πCW

p+1(IntDp+1
i ).

It is not hard to see that ep+1
i is an open (p+ 1)-cell (i.e. πCW

p+1 maps IntDp+1
i homeomor-

phically onto ep+1
i ). Furthermore, since πCW

p+1 maps Xp homeomorphically onto a subspace
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of Xp+1, we can view πCW
p+1 as the inclusion on Xp and as gp+1 on

⊔
i∈Ip D

p+1
i . It follows

that the open (p + 1)-cells ep+1
i are disjoint from all the open cells in Xp. Since πCW

p+1 is

a homeomorphism on each Int Dp+1
i , we have ep+1

i ∩ ep+1
j = ∅ for all i 6= j. It follows by

induction that X = Xn is the disjoint union of all the open cells epi for p = 0, . . . , n and all
i ∈ Ip.

Since X0 is normal, by Proposition 6.1 we conclude that X = Xn is normal, thus Haus-
dorff. It is also clear that a finite CW complex is compact.

Example 6.1.

(1) A 0-dimensional CW complex is simply a discrete set of points. A 1-dimensional CW
complex X consists of 0-cells and 1-cells, where each 1-cell e1

i is homeomorphic to the
open line segment (−1, 1), whose boundaries If we view each 1-cell as a directed edge
and each 0-cell as a node (or vertex), then the CW complex X is a (directed) graph
in which several edges may have the same endpoints and an edge may have identical
endpoints (self-loops).

(2) The n-sphere Sn (n ≥ 1) is homeomorphic to the CW complex with one 0-cell e0, one
n-cell en, and with the attaching map gn : Sn−1 → e0, the constant map, with Sn = Xn.
See Figure 6.2. This is equivalent to viewing Sn as the quotient Dn/∂Dn = Dn/Sn−1.
When n = 0, S0 is the CW complex consisting of two disjoint 0-cells,

(3) The n-ball Dn (n ≥ 1) is homeomorphic to the CW complex X with one 0-cell e0, one
(n− 1)-cell en−1, and one n-cell en. First, Xn−1 = Sn−1 as explained in (2), and then
Dn = Xn is obtained using as attaching map the identity map gn : Sn−1 → Sn−1.

(4) The real projective space RP2 is is homeomorphic to the CW complex X with one
0-cell e0, one 1-cell e1, and one 2-cell e2. First, X1 is obtained by using the constant
map g1 : S0 → e0 as attaching map, and then X2 is obtained by using as attaching map
the map g2 : S1 → S1 that sends S1 around S1 twice (g2(eiθ) = e2iθ). Observe that
X1 = RP1. This suggest a recursive method for obtaining a cell structure for RPn.

(5) The projective space RPn(n ≥ 0) is homeomorphic to the CW complex X with exactly
one p-cell ep for p = 0, . . . , n; that is, the set of cells {e0, e1, . . . , en}. We have X0 =
{e0}, and assuming that Xn−1 = RPn−1 has been constructed, Xn = RPn is obtained
by using the quotient map gn : Sn−1 → RPn−1 that identifies two antipodal points as
attaching map; see Example 4.1.

(6) The complex projective space CPn(n ≥ 0) is homeomorphic to the CW complex X
with exactly one 2p-cell e2p for p = 0, . . . , n; that is, the set of cells {e0, e2, . . . , e2n}. We
have X0 = {e0}, and assuming that X2n−2 = CPn−1 has been constructed, X2n = CPn
is obtained by using the quotient map g2n : S2n−1 → CPn−1 as attaching map; see
Example 4.1.
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(7) The 2-torus T 2 = S1 × S1 is homeomorphic to the CW complex X with one 0-cell
e0, two 1-cells e1

1, e
1
2, and one 2-cell e2. First X1 is obtained by using the constant

map g1 : S0 t S0 → e0 as attaching map. The space X1 consists of two circles on a
torus in R3 (in orthogonal planes) intersecting in a common point . Then T 2 = X2 is
obtained by using the map g2 : S1 → X1 that “wraps” S1 around the two circles of X1,
as attaching map; think of the construction of a torus from a square in which opposite
sides are glued in two steps. See Figure 6.3.

X

X

X0

1

2

Figure 6.3: The CW complex construction of the torus T 2.

Remark: Ambitious readers should read Chapter 6 of Milnor and Stasheff [35], where a
cell structure for the Grassmann manifolds is described. This is a generalization of the cell
structure for RPn.

The definition of a CW complex can be generalized by allowing the index sets Ip to be
infinite and by allowing the sequence of p-skeleta Xp to be infinite.

Definition 6.6. A CW complex X is defined inductively as follows:

(1) Let X0 be a set of points (0-cells) with the discrete topology. If X0 = ∅ then let X = ∅.

(2) If Xp has been constructed (p ≥ 0) and if Xp 6= ∅, let Ip+1 be a (possibly empty)
index set, let

⊔
i∈Ip+1

Dp+1
i be the disjoint union of closed (p+ 1)-balls, and if we write

Spi = ∂Dp+1
i let gp+1 :

⊔
i∈Ip+1

Spi → Xp be a continuous map (an attaching map). Then
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Xp+1 is the adjunction space

Xp+1 =

( ⊔
i∈Ip+1

Dp+1
i

)
∪gp+1 X

p.

Supppose X0 6= ∅. If there is a smallest n ≥ 0 such that Ip = ∅ for all p ≥ n+ 1, then we let
X = Xn and we say that X has dimension n. In this case, note that Xn must have some
open n-cell. Otherwise we let X =

⋃
p≥0X

p, and we give X the topology for which X is the
coherent union of the family (Xp)p≥0; that is, a subset Z of X is open iff Z ∩Xp is open in
Xp for all p ≥ 0. Each subspace Xp is called a p-skeleton of X.

As before if πCW
p+1 is the quotient map πCW

p+1 :

(⊔
i∈Ip+1

Dp+1
i

)
tXp → Xp+1, then we write

ep+1
i = πCW

p+1(IntDp+1
i ),

and it is not hard to see that ep+1
i is an open (p + 1)-cell (i.e. πCW

p+1 maps Int Dp+1
i homeo-

morphically onto ep+1
i ). It follows that X is the disjoint union of the cells epi for all p ≥ 0

and all i ∈ Ip.
For every p-ball Dp

i , the restriction to Dp
i of the composition of the quotient map πCW

p

from

(⊔
i∈Ip D

p
i

)
t Xp−1 to Xp with the inclusion Xp −→ X is a map from Dp

i to X

denoted by fi (or fpi if we want to be very precise) and called the characteristic map of

epi = πCW
p (Int Dp

i ). It is not hard to show that fi(D
p
i ) = (epi ), fi(S

p−1
i ) = ˙(epi ), and fi is a

homeomorphism of IntDp
i onto epi .

One should be careful that the terminology “open cell” is slightly misleading. Although
an open cell epi is open in Xp, it may not be open in X. Consider the example of the torus
T 2 from Example 6.1(7). The open cell e1

1 = π1(IntD1
1) of X1 is not open in T 2.

Example 6.2. The infinite union X = RP∞ =
⋃
n≥0 RP

n is an infinite CW complex whose
n-skeleton Xn is RPn. The CW complex RP∞ has infinitely many n-cells en, one for each
dimension.

Similarly, the infinite union X = CP∞ =
⋃
n≥0 CP

n is an infinite CW complex whose
2n-skeleta X2n and X2n+1 are both CPn. The CW complex CP∞ has infinitely many n-cells
e2n, one for each even dimension.

Definition 6.7. A subcomplex of a CW complex X is a subspace A of X which is a union
of open cells ei of X such that the closure ei of each open cell ei in A is also in A.

It is easy to show by induction over skeleta that a subcomplex is a closed subspace; see
Munkres [38] (Chapter 4, Section 38, page 217). The following proposition states a crucial
compactness property of CW complexes.
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Proposition 6.2. If X is a CW complex then the following properties hold and are all
equivalent.

(1) If a subspace A of X has no two points in the same open cell, then A is closed and
discrete.

(2) If a subspace C of X is compact, then C is contained in a finite union of open cells.

(3) Each open cell of X is contained in a finite subcomplex of X.

Proposition 6.2 is proved in Bredon [4] (Chapter IV, Section 8, Proposition 8.1). As a
collollary we have the following result.

Proposition 6.3. If X is a CW complex then any compact subset C of X is contained in a
finite subcomplex.

Proof. By Proposition 6.2(2) the compact subset C is contained in a union of a finite number
of open cells of X. By Proposition 6.2(3) each of these open cells is contained in a finite
subcomplex. But the union of this finite number of finite subcomplexes is a finite subcomplex
which contains C.

It can be shown that a CW complex X is normal; see Munkres [38] (Chapter 4, Section
38). In fact, more can be proved.

Proposition 6.4. Let X be a CW complex as defined in Definition 6.6. Then the following
properties hold:

(1) The space X is the disjoint union of a collection of open cells.

(2) X is Hausdorff.

(3) For each open p-cell ei of the collection, there is a continuous map fi : D
p → X that

maps Int Dp homeomorphically onto ei and carries Sp−1 = ∂Dp into a finite union of
open cells ekj , each of dimension k < p.

(4) A set Z is closed in X iff Z ∩ ei is closed in ei for all open cells ei.

Proposition 6.4 is proved in Munkres [38] (Chapter 4, Section 38, Theorem 38.2 and
Theorem 38.3). A similar development can be found in Hatcher [25] (Appendix, Topology
of cell complexes).

Property (3) is what is referred to as “closure-finiteness” by J.H.C. Whitehead. Property
(4) expresses the fact that X has the “weak topology.” This explains the CW in CW
complexes!

It is easy to see that Properties (3) and (4) imply that fi(D
p) = ei and fi(S

p−1) = ėi.
The map fi is called a characteristic map for the open cell ei.
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The properties of Proposition 6.4 can be taken as the definition of a CW complex. This
is what J.H.C. Whitehead did originally, and this is the definition used by Munkres [38] and
Milnor and Stasheff [35]. Then it can be shown that this alternate definition is equivalent to
our previous definition (Definition 6.6). This is proved in Munkres [38] (Chapter 4, Section
38, Theorem 38.2 and Theorem 38.3).

Since our primary goal is to determine the homology (and cohomology) groups of CW
complexes, we will not go into a more detailed study of these spaces. Let us just mention
that every CW complex X is normal, paracompact, compactly generated (which means that
X is the union of its compact subsets and that a set A ⊆ X is closed in X iff A∩C is closed
in C for every compact subset C of X), and a finite CW complex is an ENR (Euclidean
neighborhood retract).

We will also need the fact that a subcomplex A of a CW complex is a deformation
retract of a neighborhood of X. The following result is proved in Hatcher [25] (Appendix,
Proposition A.5).

Proposition 6.5. For any CW complex X and any subcomplex A of X, there is a neigh-
borhood N(A) of X that deformation retracts onto A. In other words, (X,A) is a good
pair.

For a more comprehensive exposition of CW complexes we refer the interested reader to
Hatcher [25] (Appendix, Topology of cell complexes), Bredon [4] (Chapter IV, Sections 8-14),
and Massey [32] (Chapter IX). Rotman [41] also contains a rather thorough yet elementary
treatment.

6.2 Homology of CW Complexes

One of the nice features of CW complexes is the fact that it is possible to assign to each CW
complex X a chain complex SCW

∗ (X;R) called its cellular chain complex, where

SCW
p (X;R) = Hp(X

p, Xp−1;R),

the relative p-th singular homoloy group of the pair (Xp, Xp−1), where Xp is the p-skeleton
of X (by convention X−1 = ∅). The module Hp(X

p, Xp−1;R) is a free R-module whose
dimension (when finite) is equal to the number of p-cells in X. This means that we can view
Hp(X

p, Xp−1;R) as the set of formal linear combinations
∑

i λie
p
i , where λi ∈ R and the epi

are open p-cells. Furthermore, the homology of the cellular complex agrees with the singular
homology. That is, if we write HCW

p (X;R) = Hp(S
CW
∗ (X;R)), then

HCW
p (X;R) ∼= Hp(X;R) for all p ≥ 0,

where Hp(X;R) is the pth singular homology module of X. In many practical cases, the
number of p-cells is quite small so the cellular complex SCW

∗ (X;R) is much more manageable
than the singular complex S∗(X;R).
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We will need of few properties of the modules Hk(X
p, Xp−1;R). By convention, if X is

a CW complex we set X−1 = ∅. Then H0(X0, X−1;R) = H0(X0;R).

Proposition 6.6. If X is a CW complex, then the following properties hold:

(a) We have Hk(X
p, Xp−1;R) = (0) for k 6= p and Hp(X

p, Xp−1;R) is a free R-module
with a basis in one-to-one correspondence with the p-cells of X.

(b) Hk(X
p;R) = (0) for all k > p. In particular, if X has finite dimension n then

Hp(X;R) = (0) for all p > n.

Sketch of proof. To prove (a) we use Proposition 6.5 which says that (Xp, Xp−1) is a good
pair. By Proposition 4.10

Hk(X
p, Xp−1;R) ∼= Hk(X

p/Xp−1, {pt};R) ∼= H̃k(X
p/Xp−1;R).

Then we use Corollary 2.25 from Hatcher [25] (Chapter 2, Section 2.1), the fact that Xp/Xp−1

is the wedge sum of p-spheres (the disjoint sum of p-spheres glued at the south pole, the
basepoint), and Proposition 4.16.

To prove (b) first observe that Hk(X
0;R) = (0) for all k > 0. Next consider the following

piece of the long exact sequence of homology of the pair (Xp, Xp−1):

Hk+1(Xp, Xp−1;R) // Hk(X
p−1;R) // Hk(X

p;R) // Hk(X
p, Xp−1;R).

If k 6= p, p− 1, then the first and the fouth groups are zero by (a), so we have isomorphisms

Hk(X
p;R) ∼= Hk(X

p−1;R) k 6= p, p− 1.

Thus if k > p, by induction we get

Hk(X
p) ∼= Hk(X

0) = (0),

proving (b).

Proposition 6.6(a) implies that we can view Hp(X
p, Xp−1;R) as the set of formal linear

combinations
∑

i λie
p
i , where λi ∈ R and the epi are open p-cells.

Proposition 6.7. If X is a CW complex, then we have Hk(X
p;R) ∼= Hk(X;R) for all k < p.

Sketch of proof. Consider the following piece of the long exact sequence of homology of the
pair (Xp, Xp−1):

Hk+1(Xp+1, Xp;R) // Hk(X
p;R) // Hk(X

p+1;R) // Hk(X
p+1, Xp;R).

If k < p then k+ 1 < p+ 1 so the first and fourth groups are zero and we have isomorphisms

Hk(X
p;R) ∼= Hk(X

p+1;R) k < p.
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By induction, if k < p then

Hk(X
p;R) ∼= Hk(X

p+m;R) for all m ≥ 0.

If X is finite-dimensional, we are done. Otherwise, following Milnor and Stasheff [35] (Ap-
pendix A, Corollary A.3), we use the fact that

Hk(X;R) ∼= lim−→
r≥0

Hk(H
r;R),

because every singular simplex of X is contained in a compact subset, and hence in some
Xr. A similar proof is given in Hatcher [25] (Chapter 2, Lemma 2.34).

We now show that we can form a chain complex with the modules Hp(X
p, Xp−1;R).

Recall that Sk(X
p, Xp−1;G) = Sk(X

p;G)/Sk(X
p−1;G), so we have the quotient map

πk : Sk(X
p;G)→ Sk(X

p, Xp−1;G) which yields the map jk : Hk(X
p;G)→ Hk(X

p, Xp−1;G).
Consider the following pieces of the long exact sequence of homology of the pairs (Xp+1, Xp),
(Xp, Xp−1), and (Xp−1, Xp−2):

Hp+1(Xp+1, Xp;R)
∂p+1 // Hp(X

p;R) // Hp(X
p+1;R) // Hp(X

p+1, Xp;R)

Hp(X
p−1;R) // Hp(X

p;R)
jp // Hp(X

p, Xp−1;R)
∂p // Hp−1(Xp−1;R)

Hp−1(Xp−2;R) // Hp−1(Xp−1;R)
jp−1 // Hp−1(Xp−1, Xp−2;R) // Hp−2(Xp−2;R).

Observe that by Proposition 6.6 the modules showed in red are (0); that is, we have

Hp(X
p+1, Xp;R) = Hp(X

p−1;R) = Hp−1(Xp−2;R) = (0),

and by Proposition 6.7 we have Hp(X
p+1;R) ∼= Hp(X;R). We form the following diagram

(0)

(0)

))

Hp(X)

55

Hp(X
p)

jp

((

66

· · · // Hp+1(Xp+1, Xp)
dp+1 //

∂p+1 66

Hp(X
p, Xp−1)

dp //

∂p ))

Hp−1(Xp−1, Xp−2) // · · ·

Hp−1(Xp−1)
jp−1

44

(0)

55
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in which for simplicity of notation we omitted the ring R, and where dp+1 = jp ◦ ∂p+1 and
dp = jp−1 ◦∂p. Since ∂p ◦ jp = 0 (because the sequence on that descending diagonal is exact),
we have

dp ◦ dp+1 = jp−1 ◦ ∂p ◦ jp ◦ ∂p+1 = 0.

Therefore, the modules Hp(X
p, Xp−1;R) together with the boundary maps

dp : Hp(X
p, Xp−1;R) → Hp−1(Xp−1, Xp−2;R) form a chain complex. Recall that we set

X−1 = ∅.

Definition 6.8. Given a CW complex X, the cellular chain complex SCW
∗ (X;R) associ-

ated with X is the chain complex where SCW
p (X;R) = Hp(X

p, Xp−1;R) and the boundary
maps dp : Hp(X

p, Xp−1;R)→ Hp−1(Xp−1, Xp−2;R) are given by dp = jp−1 ◦ ∂p as in the dia-
gram above. We denote the cellular homology module Hp(S

CW
∗ (X;R)) of the chain complex

SCW
∗ (X;R) by HCW

p (X;R).

The reason for introducing the modules HCW
p (X;R) is that they are isomorphic to the

singular homology modules Hp(X;R), and in practice they are usually much easier to com-
pute.

Theorem 6.8. Let X be a CW complex. There are isomorphisms

HCW
p (X;R) ∼= Hp(X;R) for all p ≥ 0

between the cellular homology modules and the singular homology modules of X.

Proof. Exactness of the left ascending diagonal sequence in the diagram above shows that

Hp(X;R) ∼= Hp(X
p;R)/Im ∂p+1.

Since jp is injective, it maps Im ∂p+1 isomorphically onto Im jp ◦ ∂p+1 = Im dp+1 and it maps
Hp(X

p;R) isomorphically onto Im jp = Ker ∂p, so

Hp(X;R) ∼= Ker ∂p/Im dp+1.

Since jp−1 is injective, Ker ∂p = Ker dp, thus we obtain an isomorphism

Hp(X;R) ∼= Ker dp/Im dp+1 = HCW
p (X;R),

as claimed.

Theorem 6.8 has the following immediate corollaries:

(1) If the CW complex X has no p-cells then Hp(X;R) = (0).

(2) If the CW complex X has k p-cells, then Hp(X;R) is generated by at most k elements.
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(3) If the CW complex X has no two of its cells in adjacent dimensions, then Hp(X;R)
is a free R-module with a basis in one-to-one correspondence with the p-cells in X.
This is because whenever there is some p-cell, then there are no (p − 1)-cells and no
(p+ 1)-cells so Xp−2 = Xp−1 and Xp = Xp+1, which implies that Hp−1(Xp−1, Xp−2) =
Hp+1(Xp+1, Xp) = (0) and then we have the piece of the cellular chain complex

Hp+1(Xp+1, Xp) = (0) 0 // Hp(X
p, Xp−1)

dp // (0) = Hp−1(Xp−1, Xp−2),

and Hp(X;R) = Ker dp = Hp(X
p, Xp−1).

Property (3) immediately yields the homology of CPn. Indeed, recall from Example 6.1
that as a CW complex CPn has n+ 1 cells

e0, e2, e4, · · · , e2n.

Therefore, we get

Hp(CPn;R) =

{
R for p = 0, 2, 4, . . . , 2n

(0) otherwise.

We also get the homology of CP∞:

Hp(CP∞;R) =

{
R for p even

(0) otherwise.

Computing the homology of RPn is more difficult. The problem is to figure out what are
the boundary maps dp.

Generally, in order to be able to compute the cellular homology groups, we need a method
to “compute” the boundary maps dp. This can indeed be done in principle, and often in
practice although this can be tricky, using the notion of degree of a map of the sphere to
itself. To simplify matters assume that R = Z, although any abelian group G will do.

Let f : Sn → Sn be a continuous map. We have the homomorphism f∗ : H̃n(Sn;Z) →
H̃n(Sn;Z), and since H̃n(Sn;Z) ∼= Z, the homomorphism f∗ must be of the form f∗(α) = dα
for some d ∈ Z.

The integer d is called the degree of f and is denoted by degf . The degree is an important
invariant of a map f : Sn → Sn. Intuitively, the degree d = deg f measures how many times
f wraps around Sn (and preserves or reverses direction). For example, it can be shown that
the degree of the antipodal map −1 : Sn → Sn given by −1(x) = −x is (−1)n+1.

Our intention is not to discuss degree theory, but simply to point out that this notion can
be used to determine the boundary maps dn. Detailed expositions about degrees of maps
can be found in Hatcher [25] (Chapter 2, Section 2.2), Bredon [4] (Chapter IV, Sections 6
and 7), and Rotman [41] (Chapter 6).

To compute dp, for every open p-cell epi ∈ X considered as a chain in Hp(X
p, Xp−1;R)

and for any open (p − 1)-cell ep−1
j ∈ X considered as a chain in Hp−1(Xp−1, Xp−2;R), we

define a map fij : Sp−1 → Sp−1 as follows:
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1. Let qp−1 : Xp−1 → Xp−1/Xp−2 be the quotient map.

2. Recall that Xp−1/Xp−2 is homeomorphic to the wedge sum of (p − 1)-spheres Sp−1,
one for each j ∈ Ip−1 (this is the disjoint sum of (p− 1)-spheres with their south pole
identified). Let qj : Xp−1/Xp−2 → Sp−1 be the projection onto the jth sphere. It is the
map that collapses all the other spheres in the wedge sum except the jth one onto a
point (the south pole). Then we let

fij = qj ◦ qp−1 ◦ fi|Sp−1,

where fi : D
p
i → X is the characteristic map of the cell epi and fi|Sp−1 is the restriction

of fi to Sp−1.

The following proposition is proved in Hatcher [25] (Chapter 2, Section 2.2, after Theorem
2.35) and in Bredon [4] (Chapter IV, Section 10, Theorem 10.3).

Proposition 6.9. Let X be a CW complex. Then the boundary map dp : Hp(X
p, Xp−1;Z)→

Hp−1(Xp−1, Xp−2;Z) of the cellular complex SCW
∗ (X;Z) associated with X is given by

dp(e
p
i ) =

∑
j

dije
p−1
j

where dij = degfij is the degree of the map fij : Sp−1 → Sp−1 defined above as the composition
fij = qj ◦ qp−1 ◦ fi|Sp−1.

The sum in Proposition 6.9 is finite because fi maps Sp−1 into a the union of a finite
number of cells of dimension at most p−1 (by Proposition 6.4(3)). The degrees di,j are often
called incidence numbers .

The boundary map d1 : H1(X1, X0;Z) → H0(X0;Z) is much easier to compute than it
appears. Recall that X1 is a graph in which every 1-cell ei (an edge) is attached to some
0-cells (nodes) x and y, with x attached to −1 and y attached to +1 (x and y may be
identical). Then it is not hard to show that

d1(e) = y − x.

Details of this computation are given in Bredon [4] (Chapter IV, Section 10).

As an ilustration of Proposition 6.9 we can compute the homology groups of RPn.

Example 6.3. Recall that as a CW complex RPn has a cell structure with n+ 1 cells

e0, e1, e2, . . . , en.

It follows that the cellular cell complex is of the form

0 // Z dn // Z dn−1 // · · · // Z d3 // Z d2 // Z d1 // Z // 0.
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One finds that dk,k1 = 1+(−1)k; see Hatcher [25] (Chapter 2, Example 2.43). It follows that
dk is either 0 of multiplication by 2 according to the parity of k. Thus if n is even we have
the chain complex

0 // Z 2 // Z 0 // · · · 2 // Z 0 // Z 2 // Z 0 // Z // 0

and if n is odd we have the chain complex

0 // Z 0 // Z 2 // · · · 2 // Z 0 // Z 2 // Z 0 // Z // 0.

From this we get

Hp(RPn;Z) =


Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise,

as stated in Section 4.4.

Similarly we find that the homology of RP∞ is given by

Hp(RP∞;Z) =


Z for p = 0

Z/2Z for p odd

(0) otherwise,

Other examples are given in Hatcher [25] (Chapter 2, Section 2.2). A slightly differ-
ent approach to incidence numbers is presented in Massey [32] (Chapter IX, Sections 5-7).
Massey shows that for special types of CW complexes called regular complexes there is a
procedure for computing the incidence numbers (see Massey [32] (Chapter IX, Section 7).

The generalization of cellular homology to coefficients in an R-module G is immediate.
We define the R-modules SCW

p (X;G) by

SCW
p (X;G) = Hp(X

p, Xp−1;G),

where as before we set X−1 = ∅. The only change in Proposition 6.6 is that

Hp(X
p, Xp−1;G) ∼=

⊕
epi |i∈Ip

G

is the direct sum of copies of G, one for each open p-cell of X. This means that we can view
Hp(X

p, Xp−1;R) as the set of formal “vector-valued” linear combinations
∑

i e
p
i gi, where

gi ∈ G and the epi are open p-cells. Then Proposition 6.7 goes through, the boundary maps
are defined as before and we get the following theorem.

Theorem 6.10. Let X be a CW complex. For any R-module G there are isomorphisms

HCW
p (X;G) ∼= Hp(X;G) for all p ≥ 0

between the cellular homology modules and the singular homology modules of X.

In the next section we take a quick look at cellular cohomology.
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6.3 Cohomology of CW Complexes

In this section since we will make use of the Universal Coefficient Theorem for cohomology
we assume that R is a PID, and we let G be any R-module.

By the version of the Universal Coefficient Theorem for cohomology given by Theorem
12.45, since the modules Hp(X

p, Xp−1;R) are free (with X−1 = ∅ as before) we have

Hp(Xp, Xp−1;G) ∼= HomR(Hp(X
p, Xp−1;R), G)

Hk(Xp, Xp−1;G) = (0) k 6= p.

Proposition 6.11. If X is a CW complex, then the following properties hold:

(a) We have Hk(Xp, Xp−1;G) = (0) for all k 6= p, and
Hp(Xp, Xp−1;G) ∼= HomR(Hp(X

p, Xp−1;R), G).

(b) We have Hk(Xp;G) ∼= (0) for all k > p.

(c) We have Hk(Xp;G) ∼= Hk(X;G) for all k < p.

Proof. (a) has already been proved.

(b) We have the following piece of the long exact sequence of cohomology for the pair
(Xp, Xp−1):

Hk(Xp, Xp−1;G) // Hk(Xp;G) // Hk(Xp−1;G) // Hk+1(Xp, Xp−1;G),

and if k 6= p − 1, p we know that Hk(Xp, Xp−1;G) = Hk+1(Xp, Xp−1;G) ∼= (0), so we have
isomorphisms

Hk(Xp;G) ∼= Hk(Xp−1;G) for all k 6= p− 1, p.

If we assume that k > p, then by induction on p we get

Hk(Xp;G) ∼= Hk(X0;G) ∼= (0).

(c) To prove (c) we will use the fact that Hk(X,X
p;G) = (0) for all k ≤ p. This is

proved in Hatcher [25] (Chapter 2, Lemma 2.34) using a construction known as the “mapping
telescope.” In Milnor and Stasheff [35] it is is claimed that Hk(X,X

p;G) ∼= Hk(X
p+1, Xp;G),

and since Hk(X
p+1, Xp;G) = (0) for all k 6= p+ 1 we conclude that Hk(X,X

p;G) = (0) for
all k ≤ p.

By the Universal Coefficient Theorem for cohomology (Theorem 12.45) we deduce that

Hk(X,Xp;G) = (0) for all k ≤ p.

Consider the following piece of the long exact sequence of cohomology of the pair (X,Xp):

Hk(X,Xp;G) // Hk(X;G) // Hk(Xp;G) // Hk+1(X,Xp;G).
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If k < p then k + 1 ≤ p and we know that Hk(X,Xp;G) = Hk+1(X,Xp;G) = (0), so we get
isomorphisms

Hk(X;G) ∼= Hk(Xp;G) for all k < p,

as claimed

In particular, Proposition 6.11 implies that Hp(X;G) ∼= Hp(Xp+1;G).

Recall that Sk(X
p, Xp−1;G) = Sk(X

p;G)/Sk(X
p−1;G), so we have the quotient map

πk : Sk(X
p;G)→ Sk(X

p, Xp−1;G) which yields the map jk : Hk(Xp, Xp−1;G)→ Hk(Xp;G).
Consider the following pieces of the long exact sequences of cohomology for the pairs (Xp−1,
Xp−2), (Xp, Xp−1), and (Xp+1, Xp):

Hp−2(Xp−2;G) // Hp−1(Xp−1, Xp−2;G)
jp−1
// Hp−1(Xp−1;G) // Hp−1(Xp−2;G)

Hp−1(Xp−1;G) δp−1
// Hp(Xp, Xp−1;G)

jp // Hp(Xp;G) // Hp(Xp−1;G)

Hp(Xp+1, Xp;G) // Hp(Xp+1;G) // Hp(Xp;G) δp // Hp+1(Xp+1, Xp;G).

Since by Proposition 6.11 we also have

Hp−1(Xp−2;G) = Hp(Xp−1;G) = Hp(Xp+1, Xp;G) = (0),

and Hp(X;G) ∼= Hp(Xp+1;G), we have the following diagram:

(0)

Hp−1(Xp−1)
δp−1

))

55

· · · // Hp−1(Xp−1, Xp−2) dp−1
//

jp−1 44

Hp(Xp, Xp−1) dp //

jp ((

Hp+1(Xp+1, Xp) // · · ·

Hp(Xp)
δp

55

))
Hp(X)

66

(0)

(0)

55

in which for simplicity of notation we omitted the module G, and where dp−1 = δp−1 ◦ jp−1

and dp = δp ◦ jp. Since jp ◦ δp−1 = 0 (because the sequence on that diagonal is exact), we
have

dp ◦ dp−1 = δp ◦ jp ◦ δp−1 ◦ jp−1 = 0.

Definition 6.9. Given a CW complex X, the modules Hp(Xp, Xp−1;G) together with
the coboundary maps dp : Hp(Xp, Xp−1;G) → Hp+1(Xp+1, Xp;G) form a cochain complex
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S∗CW(X;G) called the cellular cochain complex associated with X. The cohomlogy modules
associated with the cochain complex S∗CW(X;G) are denoted by

Hp
CW(X;G) = Hp(S∗CW(X;G))

and called the cellular cohomology modules of the cochain complex S∗CW(X;G).

Theorem 6.12. Let X be a CW complex. For any PID R and any R-module G there are
isomorphisms

Hp
CW(X;G) ∼= Hp(X;G) for all p ≥ 0

between the cellular cohomology modules and the singular cohomology modules of X. Fur-
thermore, the cellular cochain complex S∗CW(X;G) is isomorphic to the cochain complex
HomR(SCW

∗ (X;R), G) (the dual of the cellular chain complex SCW
∗ (X;R) with respect to G).

Proof. The above diagram shows that

Hp(X;G) ∼= Ker δp.

We will need the following simple proposition

Proposition 6.13. If the following diagram is commutative and if j : A→ B is surjective

A
d //

j ��

C

B
δ

??

then

Ker δ = Ker d/Ker j.

Proof. Define a map ϕ : Ker δ → Ker d/Ker j as follows: for any b ∈ Ker δ, let

ϕ(b) = a+ Ker j

for any a ∈ Ker d such that j(a) = b. Since j is surjective, there is some a ∈ A such
that j(a) = b. Furthermore, for any a ∈ A such that j(a) = b ∈ Ker δ, since d = δ ◦ j
we have d(a) = δ(j(a)) = δ(b) = 0, so a ∈ Ker d. This map is well defined because if
another a′ ∈ Ker d is chosen such that j(a′) = b, then j(a′) = j(a) so j(a′ − a) = 0, that is,
a′ − a ∈ Ker j, so a+ Ker j = a′ + Ker j.

The map ϕ is injective because if ϕ(b) = Ker j, since ϕ(b) = a+ Ker j for any a ∈ Ker d
such that j(a) = b, we have a+ Ker j = Ker j, which implies that a ∈ Ker j so b = j(a) = 0.
The map ϕ is surjective because for any a+ Ker j with a ∈ Ker d, by definition of ϕ we have
ϕ(j(a)) = a+ Ker j. Therefore ϕ : Ker δ → Ker d/Ker j is an isomorphism.
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Since jp is surjective Proposition 6.13 show that

Ker δp = Ker dp/Ker jp,

which yields Hp(X;G) ∼= Ker dp/Ker jp. But Ker jp = Im δp−1 so

Hp(X;G) ∼= Ker dp/Im δp−1.

Since jp−1 is surjective, Im δp−1 = Im dp−1, and finally we obtain

Hp(X;G) ∼= Ker dp/Im dp−1 = Hp
CW(X;G),

as claimed.

By the naturality part of the Universal Coefficient Theorem for cohomology (Theorem
12.43) applies to the chain map π : S∗(X

p;R)→ S∗(X
p, Xp−1;R) and the naturality part of

the long exact sequence of relative cohomology of the pair (Xp, Xp−1), since by definition

Hp(X
p;R) = Hp(S∗(X

p;R)), Hp(X
p, Xp−1;R) = Hp(S∗(X

p, Xp−1;R)),

S∗(Xp;G) = HomR(S∗(X
p;R), G), S∗(Xp, Xp−1;G) = HomR(S∗(X

p, Xp−1;R), G),

Hp(Xp;G) = Hp(S∗(Xp;G)), Hp(Xp, Xp−1;G) = Hp(S∗(Xp, Xp−1;G)),

we obtain the following diagram:

Hp(Xp, Xp−1;G)

hp

��

jp // Hp(Xp;G) δp //

h
��

Hp+1(Xp+1, Xp;G)

hp+1

��
HomR(Hp(X

p, Xp−1;R), G)
j∗p

// HomR(Hp(X
p;R), G)

∂∗p+1

// HomR(Hp+1(Xp+1, Xp;R), G).

The left square commutes due to naturality (Theorem 12.43), and the right square also
commutes due to naturality (of the long exact sequence of relative cohomology), so the big
rectangle commutes. Furthermore, by Theorem 12.45 the maps hp and hp+1 are isomor-
phisms. But the composition of the two maps on the top row is dp, the cellular coboundary
map, and the composition of the two maps on the bottom row is d∗p+1 = HomR(dp+1;G) since
dp+1 = jp ◦ ∂p+1 which implies that d∗p+1 = ∂∗p+1 ◦ j∗p , so we have the commutative diagram

Hp(Xp, Xp−1;G)

hp

��

dp // Hp+1(Xp+1, Xp;G)

hp+1

��
HomR(Hp(X

p, Xp−1;R), G)
d∗p+1

// HomR(Hp+1(Xp+1, Xp;R), G),

which shows that the cellular cochain complex S∗CW(X;G) is isomorphic to the cochain
complex HomR(SCW

∗ (X;R), G).

As a consequence, although this is not obvious a priori, the cellular cochain complex
S∗CW(X;G) is isomorphic to the cochain complex obtained by applying HomR(−, G) to the
cellular chain complex SCW

∗ (X;R). Also, the cellular cohomology modules “compute” the
singular cohomology modules.
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6.4 The Euler–Poincaré Characteristic of a

CW Complex

In this section we generalize the Euler–Poincaré formula obtained for simplicial complexes
in Section 5.3 to CW complexes. Let us assume that our ring R is R = Z and that G = Z.
In this case we abbreviate Hp(X;Z) as Hp(X). We know that if X is a finite CW complex
then its homology groups Hp(X;Z) are finitely generated abelian groups. More generally we
have the following definition.

Definition 6.10. Let X be a topological space. We say that X is of finite type if Hp(X)
if a finitely generated abelian group for all p ≥ 0, and X is of bounded finite type if it is of
finite type and Hp(X) = 0 for all but a finite number of indices p.

We can now define a famous invariant of a space.

Definition 6.11. If X is a space of bounded finite type, then its Euler–Poincaré character-
istic χ(X) is defined as

χ(X) =
∑
p

(−1)p rankHp(X).

Since X is of finite bounded type the above sum contains only finitely many nonzero terms.
The natural number rankHp(X) = rankHp(X;Z) is called the p-th Betti number of X and
is denoted by bp.

If X is a finite CW complex of dimension n, then each p-skeleton has a finite number of
p-cells, say ap. Remarkably χ(X) =

∑n
p=0(−1)pap, a formula generalizing Euler’s formula in

the case of a convex polyhedron. We can now prove the following beautiful result.

Theorem 6.14. (Euler–Poincaré) Let X be a finite CW complex of dimension n and let ap
be the number of p-cells in X. We have

χ(X) =
∑
p

(−1)p rankHp(X) =
n∑
p=0

(−1)pap.

Proof. As usual let Bp = Im dp+1 ⊆ SCW
p (X) be the group of p-boundaries and let Zp =

Ker dp ⊆ SCW
p (X) be the group of p-cycles. By definition HCW

p (X) = Zp/Bp, by Theorem
6.8 we have HCW

p (X) ∼= Hp(X), and SCW
p (X) is a free abelian group of rank ap (the number

of p-cells). Observe that Bn = B−1 = (0). We have the exact sequence

0 // Zp // SCW
p (X) // Bp−1

// 0

which (by Proposition 5.11) shows that

ap = rank(SCW
p (X)) = rank(Zp) + rank(Bp−1), (∗)
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and the exact sequence

0 // Bp
// Zp // Hp(X) // 0

which (by Proposition 5.11) shows that

rank(Zp) = rank(Bp) + rank(Hp(X)). (∗∗)

From equation (∗∗) we obtain∑
p

(−1)p(rank(Bp) + rank(Hp(X))) =
∑
p

(−1)p rank(Zp),

and from equation (∗) we obtain∑
p

(−1)p rank(Zp) =
∑
p

(−1)p(ap − rank(Bp−1)),

so we obtain∑
p

(−1)p(rank(Bp) + rank(Hp(X))) =
∑
p

(−1)p(ap − rank(Bp−1))∑
p

(−1)p rank(Bp) +
∑
p

(−1)p rank(Hp(X)) =
∑
p

(−1)pap +
∑
p

(−1)p−1 rank(Bp−1).

The sums involving the B∗ cancel out because Bn = B−1 = (0), and we obtain∑
p

(−1)pap =
∑
p

(−1)p rank(Hp(X))) = χ(X),

as claimed.

Theorem 6.14 proves that the number
∑n

p=0(−1)pap is the same for all cell structures (of
CW complexes) defining a given space X. It is a topological invariant.

For example, if X = S2, we know that as a CW complex S2 has two cells e0 and e2, so
we get

χ(S2) = 1 + (−1)2 × 1 = 2.

As a consequence, if X is any CW complex homeomorphic to S2 with V 0-cells, E 1-cells
and F 2-cells, we must have

F − E + V = 2,

a famous equation due to Euler (for convex polyhedra in R3). More generally, since the
n-sphere Sn has a structure with one 0-cell and one n-cell, we see that

χ(Sn) = 1 + (−1)n.
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This is the Euler–Poincaré characteristic of any convex polytope in Rn+1, a formula proved
by Poincaré.

For the the real projective plane RP2 we have a CW cell structure with three cells e0, e1, e2,
so we get

χ(RP2) = 1.

In general
χ(RP2n) = 1 and χ(RP2n+1) = 0.

For the torus T 2, we have a CW cell structure with four cells e0, e1
1, e

1
2, e

2, so we get

χ(T 2) = 0.

More generally, since the homology groups of the n-torus T n are given by

Hp(T
n) = Z(np),

using the fact that 0 = (1− 1)n =
∑n

p=0(−1)p
(
n
p

)
, we have

χ(T n) =
n∑
p=0

(−1)p
(
n

p

)
= 0.

If R is any ring and if X is a space of bounded finite type, then its Euler–Poincaré
characteristic χR(X) is defined as

χR(X) =
∑
p

(−1)p rankHp(X;R),

where rank Hp(X;R) is the rank of R-module Hp(X;R). Since Proposition 5.11 actually
holds for finitely generated modules over an integral domain R (see Proposition 12.9), and
since the rest of the proof of Theorem 6.14 does not depend on the ring R, we have the
following slight generalization of Theorem 6.14.

Theorem 6.15. (Euler–Poincaré) Let X be a finite CW complex of dimension n and let ap
be the number of p-cells in X. For any integral domain R, we have

χR(X) =
∑
p

(−1)p rankHp(X;R) =
n∑
p=0

(−1)pap.

Thus, for finite CW complexes, the Euler–Poincaré characteristic

χR(X) =
∑
p

(−1)p rankHp(X;R)
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is independent of the ring R, as long as it is an integral domain. This fact is also noted in
Greenberg and Harper in the special case where R is a PID; see [19] (Chapter 20, Remark
20.19).

We also have the following proposition showing that for any space X of bounded finite
type, the Euler–Poincaré characteristic χR(X) =

∑
p(−1)p rank Hp(X;R) is independent

the ring R, provided that it is a PID.

Proposition 6.16. Let X be any space of bounded finite type and let R be any PID. Then
we have

χR(X) =
∑
p

(−1)prankHp(X;R) = χ(X) =
∑
p

(−1)prankHp(X;Z).

Proof. We use the Universal Coefficient Theorem for homology (Theorem 12.38) and the
following two facts:

TorZ(Z/mZ, A) ∼= Ker (A
m−→ A),

and
Z/mZ⊗Z A ∼= A/mA,

where A is any abelian group. Since

Hp(X;R) ∼= (Hp(X;Z)⊗Z R)⊕ TorZ1 (Hp−1(X;Z), R),

every term Zk in Hp(X;Z) after being tensored with R yields the term Rk in Hp(X;R), and
every term Z/mZ in Hp(X;Z) after being tensored with R yields the term Z/mZ ⊗Z R ∼=
R/mR in Hp(X;R), and the term TorZ(Z/mZ, R) ∼= Ker (R

m−→ R) in Hp+1(X;R). Since

R is a PID, we have Ker (R
m−→ R) = sR for some natural number s, so we have the exact

sequence
0 // sR // R //mR // 0,

and since R is a PID it is an integral domain so the module mR is free over R and the above
sequence splits, which implies that

R ∼= sR⊕mR,

and thus
R/mR ∼= sR.

Either sR 6∼= R, in which case R/mR ∼= sR is a torsion term that does not contribute to the
sum

∑
p(−1)p rank Hp(X;R), or R/mR ∼= sR ∼= R, in which case the contributions of the

terms Z/mZ⊗Z R ∼= R and TorZ(Z/mZ, R) ∼= R to the sum
∑

p(−1)p rankHp(X;R) cancel

out since they have the signs (−1)p and (−1)p+1, which proves that∑
p

(−1)prankHp(X;R) =
∑
p

(−1)prankHp(X;Z),

as claimed.
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Proposition 6.16 justifies using the ring Z in the definition of the Euler–Poincaré charac-
teristic. This remark is also made in Greenberg and Harper; see [19] (Chapter 20, Remark
20.19).



Chapter 7

Poincaré Duality

Our goal is to state a version of the Poincaré duality for singular homology and cohomology.
The basic version is that if M is a “nice” n-manifold, then there are isomorphisms

Hp(M ;Z) ∼= Hn−p(M ;Z) (∗)

for all p ≥ 0. Here, nice means compact and orientable, a notion that will be defined in
Section 7.1.

The isomorphisms (∗) are actually induced by an operation

_ : Sp(M ;Z)× Sn(M ;Z)→ Sn−p(M ;Z)

combining a chain and a cochain to make a chain, called cap product , which induces an
operation

_ : Hp(M ;Z)×Hn(M ;Z)→ Hn−p(M ;Z)

combining a homology class and a cohomology class to make a homology class. Furthermore,
if M is orientable, then there is a unique special homology class µM ∈ Hn(X;Z) called the
fundamental class of M , and Poincaré duality means that the map

c 7→ c _ µM

is an isomorphism between Hp(M ;Z) and Hn−p(M ;Z).

All this can be generalized to coefficients in any commutative ring R with an identity
element and to compact manifolds that are R-orientable, a notion defined in Section 7.1.

It is even possible to generalize Poincaré duality to noncompact R-orientable manifolds,
by replacing singular cohomology by the more general notion of singular cohomology with
compact support. We will sketch all this in the following sections. We begin with the notion
of orientation.

191
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7.1 Orientations of a Manifold

Since 0-dimensional manifolds constitute a degenerate case of little interest (discrete sets of
points), we assume that n > 0.

If M is a topological manifold of dimension n and if R is any commutative ring with
multiplicative unit, we saw in Proposition 4.21 that

Hp(M,M − {x};R) ∼=

{
R if p = n

(0) if p 6= n.

Since the groups Hn(M,M −{x};R) are all isomorphic to R, a way to define a notion of
orientation is to pick some generator µx from Hn(M,M − {x};R), for every x ∈ M . Since
Hn(M,M−{x};R) is a ring with a unit, generators are just invertible elements. To say that
M is orientable means that we can pick these µx ∈ Hn(M,M − {x};R) in such a way that
they “vary continuously” with x.

A way to achieve this is introduce the notion of fundamental class of M at a subspace A.

Definition 7.1. Given an n-manifold M and any subset A of M , a R-fundamental (ho-
mology) class of M at the subspace A is a homology class µA ∈ Hn(M,M − A;R) such
that

ρAx (µA) = µx ∈ Hn(M,M − {x};R)

is a generator ofHn(M,M−{x};R) for all x ∈ A, where ρAx : Hn(M,M−A;R)→ Hn(M,M−
{x};R) is the homomorphism induced by the inclusion M − A ⊆ M − {x}. If A = M , we
call µM a R-fundamental (homology) class of M .

An R-orientation of M is an open cover U = (Ui)i∈I together with a family (µUi)i∈I of
fundamental classes of M at Ui such that whenever Ui ∩ Uj 6= ∅, then

ρUiUi∩Uj(µUi) = ρ
Uj
Ui∩Uj(µUj), (†)

where ρUiUi∩Uj : Hn(M,M−Ui;R)→ Hn(M,M−Ui∩Uj;R) and ρ
Uj
Ui∩Uj : Hn(M,M−Uj;R)→

Hn(M,M −Ui ∩Uj;R) are the homomorphisms induced by the inclusions Ui ∩Uj ⊆ Ui and
Ui ∩ Uj ⊆ Uj.

When R = Z, we use the terminology fundamental classes and orientations (we drop the
prefix R). For simplicity of notation, we write µi instead of µUi .

Observe that if (U = (Ui)i∈I , (µi)i∈I) is a R-orientation of M , since ρUix = ρ
Ui∩Uj
x ◦ ρUiUi∩Uj

and ρ
Uj
x = ρ

Ui∩Uj
x ◦ ρUjUi∩Uj , the condition ρUiUi∩Uj(µi) = ρ

Uj
Ui∩Uj(µj) implies that

ρUix (µi) = ρUjx (µj) for all x ∈ Ui ∩ Uj,

that is, the R-orientation is indeed consistent.
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Remark: Readers familiar with differential geometry will observe the analogy between a
fundamental class and a (global) volume form in the case where the n-manifold is smooth. In
the smooth case, there is a tangent space at every point x ∈M , and an orientation is given by
a nonzero global section ω of the bundle

∧n T ∗M . In the absence of the tangent bundle, the
substitute is the orientation bundle whose fibres are the homology rings Hn(M,M−{x};R).

For any x ∈M , for any chart ϕU : U → Ω where U is an open subset of M containing x, if
D is a closed ball of center ϕU(x) contained in Ω ⊆ Rn, then B = ϕ−1

U (D) is a compact subset
of M and we call it a compact and convex subset of M at x. Then, a minor modification
of Proposition 4.21 can be used to show the following fact (which is proved in Bredon [4],
Chapter VI, Proposition 7.1).

Proposition 7.1. Given a topological n-manifold M , for any point x ∈M and any compact
and convex subset B of M at x, the homomorphism ρBx : Hn(M,M − B;R) → Hn(M,M −
x;R) induced by the inclusion M −B ⊆M − x is an isomorphism.

Proposition 7.1 shows that for any small enough compact subset B, the manifold M
has an R-fundamental class at B. It is also easy to sbow that Proposition 7.1 implies that
condition (†) in Definition 7.1 can be replaced by the condition

ρUix (µi) = ρUjx (µj) for all x ∈ Ui ∩ Uj.

Some textbooks use this condition instead of (†).
If a manifold M has an R-fundamental class, then it has an R-orientation, since for any

open cover U = (Ui)i∈I of M we have ρMx = ρUix ◦ ρMUi , so we can take µi = ρMUi(µM) ∈
Hn(M,M −Ui;R). The converse holds if either M is compact or if R = Z/2Z. In the latter
case, since Z/2Z = {0, 1}, the only generator is 1 so this case is trivial.

Remark: There are other ways of defining R-orientability. One can define the orientation
bundle MR of M by taking the disjoint union of the groups Hn(M,M − {x};R) where x
ranges over M , and giving it a suitable topology that amounts to a local consistency condition
for R-orientatbility. Then, an R-orientation is a continuous section s : M → MR that picks
a generator of Hn(M,M − {x};R) for every x ∈ M . We refer the reader to Hatcher [25]
(Chapter 3, Section 3.3), Bredon [4] (Chapter VI, Section 7), and Spanier [47] (Chapter 6,
Sections 2 and 3). The notion of R-orientation in Definition 7.1 corresponds to the notion
of a U -compatible family in Spanier [47] (Chapter 6, Sections 3). Milnor and Stasheff [35]
use a condition using the notion of a small cell, as defined in Spanier [47] (Chapter 6,
Sections 3). The equivalence of the condition of Definition 7.1 with the orientation bundle
condition amounts to the proof of Theorem 4 in Spanier [47] (Chapter 6, Sections 3); see
also Proposition 7.3 in Bredon [4] (Chapter VI, Section 7).

It can also be shown that a connected nonorientable n-manifold has a two-sheeted con-
nected covering space which is orientable. This implies that every simply connected manifold
is orientable; see Hatcher [25] (Chapter 3, Section 3.3, Proposition 3.25).



194 CHAPTER 7. POINCARÉ DUALITY

We see that we are naturally led to the study of the groups Hn(M,M −K;R), where K
is a compact subset of M . We have the following theorems.

Theorem 7.2. (Vanishing) Let M be an n-manifold. We have Hp(M ;R) = (0) if p > n.

Theorem 7.2 is proved in Hatcher [25] (Chapter 3, Theorem 3.26 and Proposition 3.39),
May [34] (Chapter 20, Section 4), and Bredon [4] (Chapter VI, Theorem 7.8). The proof is
quite technical.

Theorem 7.3. Let M be an n-manifold. For any compact subset K, we have Hp(M,M −
K;R) = (0) if p > n. For any homology class α ∈ Hp(M,M − K;R), we have α = 0
iff ρKx (α) = 0 for all x ∈ K, where ρKx : Hp(M,M − K;R) → Hp(M,M − x;R) is the
homomorphism induced by the inclusion M −K ⊆M − x.

Theorem 7.3 is proved in Hatcher [25] (Chapter 3, Lemma 3.27), in May [34] (Chapter 20,
Section 3), in Milnor and Stasheff [35] (Appendix A, Lemma A.7), and Bredon [4] (Chapter
VI, Theorem 7.8).

The proof technique used to prove Theorems 7.2 and 7.3 as well as a number of other
results, is a type of induction on compact subsets involving some limit argument. It is nicely
presented in Bredon [4] (Chapter VI, Section VI), where it is called the Bootstrap Lemma.
Omitting proofs, here is a presentation of this method.

The Bootstrap Method

Given an n-manifold M , we would like to prove some property PM(A) about closed
subsets A of M . Consider the following five properties:

(i) If A is a compact and convex subset of M , then PM(A) holds.

(ii) If PM(A), PM(B) and PM(A∩B) hold for some closed subsets A and B, then PM(A∪B)
holds.

(iii) if A1 ⊇ A2 ⊇ · · ·Ai ⊇ Ai+1 ⊇ · · · is a sequence of compact subsets and if PM(Ai) holds

for all i, then P
(⋂

iAi

)
holds.

(iv) If (Ai)i∈I is a family of disjoint compact subsets with disjoint neigborhoods and if

PM(Ai) holds for all i, then P
(⋃

iAi

)
holds.

(v) For any closed subset A, if PM(A ∩W ) holds for all open subsets W of M such that
the closure of W is compact, then PM(A) holds.

We have the following proposition shown in Bredon [4] (Chapter VI, Section 7, Lemma
7.9) and called the Bootstrap Lemma.

Proposition 7.4. (Bootstrap Lemma) Let M be any n-manifold.
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(1) Let PM(A) be a property about compact subsets A of M . If (i), (ii), and (iii) hold,
then PM(A) holds for all compact subsets A of M .

(2) If M is a separable metric space, PM(A) be a property about closed subsets A of M ,
and all four statements (i)–(iv) hold, then PM(A) holds for all closed subsets A of M .

(3) Let PM(A) be a property about closed subsets A of M . If all five statements (i)–(v)
hold, then PM(A) holds for all closed subsets A of M .

When applying Proposition 7.4 to prove Theorems 7.2 and 7.3, Property (ii) is proved
using a Mayer–Vietoris sequence and the five lemma (see Bredon [4], Chapter VI, Section
7).

The next theorem tells us what the group Hn(M ;R) looks like.

Theorem 7.5. Let M be an n-manifold. If M is connected then

Hn(M ;R) =


R if M is compact and orientable

Ker (R
2−→ R) if M is compact and not orientable

(0) if M is not compact.

Here, the map R
2−→ R is the map r 7→ 2r.

Theorem 7.5 is proved in [4] (Chapter VI, Corollary 7.12) and Hatcher [25] (Chapter 3,
Therorem 3.26, Lemma 3.27 and Proposition 3.29), In particular, Theorem 7.5 shows that
if R = Z and if M is compact and not orientable then Hn(M ;R) = (0), and that if M is
compact then Hn(M ;Z/2Z) = Z/2Z.

Theorem 7.5 yields a crisp characterization of the orientability of a compact n-manifold
(when R = Z) in terms of the vanishing of Hn(M ;Z).

Proposition 7.6. If M is a connected and compact n-manifold, then either Hn(M ;Z) = (0)
and M is not orientable, or Hn(M ;Z) ∼= Z, M is orientable, and the homomorphisms
Hn(M ;Z) = Hn(M, ∅;Z) −→ Hn(M,M − {x};Z) are isomorphisms for all x ∈M .

Proposition 7.6 is a special case of Corollary 8 in Spanier [47] (Chapter 6, Section 3). It
is also proved in May [34] (Chapter 20, Section 3). This second proof only uses Theorem 7.5
together with the Universal Coefficient Theorem for homology (Theorem 12.42), but it is a
nice proof worth presenting.

Proof. Since M is a compact manifold, for any x ∈M , the manifold M−{x} is not compact.
By Theorem 7.5, we have Hn(M − {x};R) = (0). The long exact sequence of relative
homology of the pair (M,M − {x}) yields the exact sequence

Hn(M − {x};R) // Hn(M ;R) // Hn(M,M − {x};R),
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and since Hn(M − {x};R) = (0) we deduce that

Hn(M ;R) −→ Hn(M,M − {x};R) ∼= R

is an injective homomorphism for every ring R. We would like to conclude that if R = Z
and if Hn(M ;Z) 6= (0), then Hn(M ;Z) ∼= Z and the above map is an isomorphism.

Since TorZ(Z,Z/pZ) = (0) (see the discussion after Theorem 12.42), by Theorem 12.41
we have

Hn(M ;Z/pZ) ∼= Hn(M ;Z)⊗ Z/pZ

and similarly
Hn(M,M − {x};Z/pZ) ∼= Hn(M,M − {x};Z)⊗ Z/pZ

for all p > 0. Since Hn(M ;R) −→ Hn(M,M − {x};R) ∼= R is an injective homomorphism
for every ring R, the homomorphism

Hn(M ;Z)⊗ Z/pZ // Hn(M,M − {x};Z)⊗ Z/pZ ∼= Z/pZ (∗)

is injective for all p > 0. If Hn(M ;Z) 6= (0), then we must have Hn(M ;Z) ∼= Z, since every
abelian subgroup of Z is of the form mZ for some m > 0, but mZ ∼= Z (both are freely
generated, send m to 1). Finally, the map Hn(M ;Z) −→ H(M,M − {x};Z) must be an
isomorphism since otherwise 1 would be mapped to some m > 1, but then the map (∗) would
not be injective for p = m (since m⊗ z = 0 for all z ∈ Z/mZ).

Finally, we have our major result.

Theorem 7.7. Let M be an n-manifold. For any compact subset K of M , if M is R-
orientable, then there is a unique R-fundamental class µK of M at K. In particular, if M
is compact or if R = Z/2Z, then M has a unique R-fundamental class µM .

Theorem 7.7 is proved in Hatcher [25] (Chapter 3, Lemma 3,27), in May [34] (Chapter
20, Section 3), and in Milnor and Stasheff [35] (Appendix A, Theorem A.8).

The fundamental class of a compact orientable manifold M is often denoted by [M ].

An important (and deep fact) about a compact manifold M is that its homology groups
are finitely generated. This is not easy to prove; see Bredon [4] (Appendix E, Corollary E.5),
and Hatcher [25] (Appendix, Topology of Cell Complexes, Corollaries A.8 and A.9). As a
consequence, using the Universal Coefficient Theorem for cohomology (Theorem 12.48) we
have the following result about the cohomology group Hn(M ;R) (see Bredon [4], Chapter
VI, Section 7, Corollary 7.14).

Proposition 7.8. For any n-manifold M , if M is compact, then

Hn(M ;R) =

{
R if M is orientable

R/2R if M is not orientable.
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It should also be noted that if M is a smooth manifold, then the notion of orientability
in terms of Jacobians of transition functions or the existence of a volume form, as defined
for instance in Warner [50] or Tu [49], is equivalent to the notion of orientability given in
Definition 7.1. This is proved (with a bit of handwaving) in Bredon [4] (Chapter VI, Section
7, Theorem 7.15).

The second step to state the Poincaré duality Theorem is to define the cap-product.

7.2 The Cap Product

Recall the definition of the maps λp : ∆p → ∆p+q and ρq : ∆q → ∆p+q defined in Section 4.8.

Definition 7.2. Given a cochain c ∈ Sp(X;R) and a chain σ ∈ Sn(X;R) (with n ≥ p ≥ 0),
define the cap product c _ σ as the chain in Sn−p(X;R) given by

c _ σ = c(σ ◦ ρp)(σ ◦ λn−p)

where σ ◦ λn−p is the front (n− p)-face of ∆n and σ ◦ ρp is the back p-face of ∆n.

Since σ ◦ ρp ∈ Sp(X;R) and σ ◦ λn−p ∈ Sn−p(X;R) we have c(σ ◦ ρp) ∈ R, and indeed
c(σ ◦ ρp)(σ ◦ λn−p) ∈ Sn−p(X;R).

Definition 7.2 is designed so that

a(b _ σ) = (a ^ b)(σ)

for all a ∈ Sn−p(X;R), all b ∈ Sp(X;R), and all σ ∈ Sn(X;R), or equivalently using the
bracket notation for evaluation as

〈a, b _ σ〉 = 〈a ^ b, σ〉,

which shows that _ is the adjoint of ^ with respect to the evaluation pairing 〈−,−〉.
The reader familiar with exterior algebra and differential forms will observe that the cap

product is type a of contraction (or hook).

Remark: There are several variants of Definition 7.2. Our version is the one adopted by
Munkres [38] (Chapter 8, Section 66). Milnor and Stasheff [35] use the same formula except
for the presence of the sign (−1)p(n−p) (also recall their sign convention for the coboundary
operator). Hatcher [25] (Chapter 3, Section 3.3) uses the formula

c _ σ = c(σ ◦ λp)(σ ◦ ρn−p).

Bredon [4] (Chapter VI, Section 5) uses the above formula, with the sign (−1)p(n−p) as in
Milnor and Stasheff. In the end, this makes no difference but one has to be very careful
about signs when stating the formula for ∂(c _ σ).
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Proposition 7.9. For any c ∈ Sp(X;R) and any σ ∈ Sn(X;R), we have

∂(c _ σ) = (−1)n−p(δc _ σ) + c _ ∂σ.

Furthermore, we have
ε _ σ = σ

for all σ ∈ Sn(X;R), and
c _ (d _ σ) = (c ^ d) _ σ,

for all c ∈ Sp(X;R), all d ∈ Sq(X;R), and all σ ∈ Sp+q+r(X;R).

Proposition 7.9 is from Munkres [38] (Chapter 8, Section 66, Theorem 66.1). As a conse-
quence of the first formula, we see that the cap product induces an operation on cohomology
and homology classes

_ : Hp(X;R)×Hn(X;R)→ Hn−p(X;R)

(if 0 ≤ p ≤ n), also called cap product . The following properties are immediate consequences
of Proposition 7.9.

Proposition 7.10. For any a ∈ Hn(X;R) we have

1 _ a = a,

and
ω _ (η _ a) = (ω ^ η) _ a,

for all ω ∈ Hp(X;R), all η ∈ Hq(X;R), and all a ∈ Hp+q+r(X;R).

Recall that ε : S0(X;R) → R is the unique homomorphism such that ε(x) = 1 for every
point x ∈ S0(X;R). Given any cochain c ∈ Sp(X;R) and any chain σ ∈ Sp(X;R), the
operation (evaluation) (c, σ) 7→ c(σ) is bilinear, and it is easy to check that it induces a
bilinear map 〈−,−〉 : Hp(X;R)×Hp(X;R) −→ R called the Kronecker index .

Proposition 7.11. Let M be an n-manifold. For all ω ∈ Hp(X;R) and all a ∈ Hp(X;R),
we have

ε∗(ω _ a) = 〈ω, a〉,
with 0 ≤ p ≤ n.

Proposition 7.11 is proved in Munkres [38] (Chapter 8, Section 66, Theorem 66.3). There
is also a version of the cap product for relative homology and cohomology,

_ : Hp(X,A;R)×Hn(X,A ∪B;R)→ Hn−p(X,B;R),

where A and B are open in X. We will need the version where B = ∅ in the proof of the
Poincaré duality theorem, namely

_ : Hp(X,A;R)×Hn(X,A;R)→ Hn−p(X;R).

Proposition 7.10 also holds for this version of the cap product.
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7.3 Cohomology with Compact Support

We define a subcomplex S∗c (X;R) of S∗(X;R) where each module Spc (X;R) consists of
cochains with compact support as follows.

Definition 7.3. A cochain c ∈ Sp(X;R) is said to have compact support if there is some
compact subset K ⊆ X such that such that c ∈ Sp(X,X − K;R), or equivalently if c
has value zero on every singular simplex in X − K. For such a cochain c we see that δc
also vanishes on all singular simplices in X −K, so the modules Spc (X;R) of cochains with
compact support form a subcomplex S∗c (X;R) of S∗(X;R) whose cohomology modules are
denoted Hp

c (X;R) and called cohomology groups with compact support .

It turns out that the group Hp
c (X;R) can be conveniently expressed as the direct limit of

the groups of the form Hp(X,X −K;R) where K is compact. Observe that if K and L are
any two compact subsets of X and if K ⊆ L, then Sp(X;X −K;R) ⊆ Sp(X,X −L;R) , so
we have a module homomorphism ρKL : Hp(X,X −K;R) → Hp(X,X − L;R). The family
K of all compact subsets of X ordered by inclusion is a directed set since the union of two
compact sets is compact, so the direct limit

lim−→
K∈K

Hp(X,X −K;R)

of the mapping family (Hp(X,X −K;R)K∈K, (ρ
K
L )K⊆L) is well-defined; see Section 9.3.

Proposition 7.12. We have isomorphisms

Hp
c (X;R) ∼= lim−→

K∈K
Hp(X,X −K;R)

for all p ≥ 0. Furthermore, if X is compact, then Hp
c (X;R) ∼= Hp(X;R).

Proposition 7.12 is actually not hard to prove; see Hatcher [25] (Chapter, Section 3.3,
just after Proposition 3.33). Intuitively, X is approximated by larger and larger compact
subsets K. If K is very large, X − K is very small, so the group Hp(X,X − K;R) is a
“good” approximation of Hp

c (X;R).

Remark: Unlike the case for ordinary singular cohomology, if f : X → Y is a continuous
map, there is not necessarily an induced map f ∗ : Hp

c (X;R) → Hp
c (Y ;R). The problem is

that if K is a compact subset of Y , then f−1(K) is not necessarily compact. However, proper
maps have this property and induce a corresponding map between cohomology groups with
compact support. Fortunately, the maps invoved in Poincaré duality are inclusions and they
are proper.

We know from Theorem 7.7 that if K is compact and if the n-manifold M is R-orientable,
then there is a unique R-fundamental class µK ∈ Hn(M,M−K;R) of M at K. In particular,
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if M itself is compact and R-orientable, then there is a R-fundamental class µM . In this case
(if 0 ≤ p ≤ n) we have a map

DM : Hp(M ;R)→ Hn−p(M ;R)

given by
DM(ω) = ω _ µM .

Poincaré duality asserts that this map is an isomorphism. To extend this isomorphism
to cohomology with compact support when M is R-orientable we need to define DM for
noncompact spaces. We do this as follows.

Recall that there is a cap product

_ : Hp(M,M −K;R)×Hn(M,M −K;R)→ Hn−p(M ;R).

Since there is an isomorphism

Hp
c (M ;R) ∼= lim−→

K∈K
Hp(M,M −K;R),

for any ω ∈ Hp
c (M ;R) we pick some representative ω′ in the equivalence class defining ω in

lim−→Hp(M,M − K;R), namely some ω′ ∈ Hp(M,M − K;R) for some compact subset K,
and since µK ∈ Hn(M,M −K;R) we set

DM(ω) = ω′ _ µK ∈ Hn−p(M ;R).

We need to prove that the above definition does not depend on the choice of the repre-
sentative ω′ ∈ Hp(M,M − K;R). If ω′′ ∈ Hp(M,M − L;R) is another representative for
some compact subset such that K ⊆ L, then it is easy to show that the diagram

Hp(M,M −K;R) //

−_µK ))

Hp(M,M − L;R)

−_µLuu
Hn−p(M ;R)

is commutative, and thus
DM : Hp

c (M ;R)→ Hn−p(M ;R)

as specified above is indeed well-defined.

7.4 The Poincaré Duality Theorem

The following theorem is a very general version of Poincaré duality applying to compact as
well as noncompact manifolds.
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Theorem 7.13. (Poincaré Duality Theorem) Let M be an n-manifold and let R be a PID.
If M is R-orientable, then the map

DM : Hp
c (M ;R)→ Hn−p(M ;R)

defined in Section 7.3 is an isomorphism for all p ≥ 0. In particular, if R = Z/2Z, the above
map is an isomorphism whether M is orientable or not.

If M is compact and R-orientable, then the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;R) and Hn−p(M ;R).

A proof of Theorem 7.4 can be found in Milnor and Stasheff [35] (Appendix A, pages
277-279), Hatcher [25] (Chapter 3, Theorem 3.35), and Greenberg and Harper [19] (Part
III, Section 26, Theorem 26.6). Although the proof in these texts is not presented as an
application of the Bootstrap Lemma, it is.

The proof of Case (1) of the Bootstrap Lemma is instructive (see Milnor and Stasheff
[35], Appendix A, page 278). Consider case where M = Rn and B is any closed ball.
Then we know by Proposition 7.1 that Hn(Rn,Rn − B;R) ∼= R with generator µB, and
Hp(Rn,Rn −B;R) = (0) for all p 6= n. By Theorem 12.48 or Theorem 4.27 we have

Hn(Rn,Rn −B;R) ∼= HomR(Hn(Rn,Rn −B;R), R) ∼= HomR(R,R) ∼= R

with a generator a such that 〈a, µB〉 = 1. Now Proposition 7.10 applied to the cap product

_ : Hn(Rn,Rn −B;R)×Hn(Rn,Rn −B;R)→ H0(Rn;R)

implies that
1 = 〈a, µB〉 = 〈1 ^ a, µB〉 = 〈1, a _ µB〉,

and by definition of 1 (as the cohomology class of ε), a _ µB is a generator of H0(Rn;R) ∼= R.
Thus −_ µB maps Hn(Rn,Rn−B;R) isomorphically to H0(Rn;R), and since all the other
modules are zero for p 6= n, by passing to the direct limit over the balls B as they become
larger it follows that DM maps H∗c (Rn;R) onto H∗(Rn;R).

Theorem 7.13 actually holds for any commutative ring R with an identity element, not
necessarily a PID. The only change in the proof occurs in Step (1); see Hatcher [25] (Chapter
3, Case (1) in the proof of Theorem 3.35), May [34] (Chapter 20, Section 5, page 159), and
Greenberg and Harper [19] (Part III, Section 26, page 221).

Since the sphere Sn is compact and orientable, we can obtain its cohomology from its
homology. Recall from Proposition 4.16 that for n ≥ 1 we have

Hp(S
n;R) =

{
R if p = 0, n

(0) if p 6= 0, n.
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Thus we obtain

Hp(Sn;R) =

{
R if p = 0, n

(0) if p 6= 0, n.

Similarly, since the n-torus T n = S1 × · · · × S1︸ ︷︷ ︸
n

is compact and orientable, its cohomology is

given by

Hp(T n;R) = R⊕ · · · ⊕R︸ ︷︷ ︸
(np)

.

As in the case of the sphere, it is identical to its homology, which reconfirms that these
spaces are very symmetric.

Applications of Poincaré duality often involve the Universal Coefficient Theorems (see
Section 12.5). The reader is referred to Hatcher [25] (Chapter 3) for some of these applica-
tions. In particular, one will find a proof of the fact that the cohomology ring H∗(CPn;Z)
is isomorphic to Z[α]/(αn+1), with α of degree 2. As an application of Poincaré duality, we
prove an important fact about compact manifolds of odd dimension.

Recall from Section 6.4 that the Euler–Poincaré characteristic χ(M) of a compact n-
dimensional manifold is defined by

χ(M) =
n∑
p=0

(−1)p rankHp(M ;Z).

The natural numbers rankHp(M ;Z) are the Betti numbers of M and are denoted by bp.

Proposition 7.14. If M is a compact topological manifold (orientable or not) of odd di-
mension, then its Euler–Poincaré characteristic is zero, that is, χ(M) = 0.

Proof. Let dim M = 2m + 1. If M is orientable, by Poincaré duality H2m+1−p(M ;Z) ∼=
Hp(M ;Z) for p = 0, . . . , 2m+ 1, so rank(Hp(M ;Z)) = rank(H2m+1−p(M ;Z)), but by Propo-
sition 12.49, we have

Hn(M ;Z) ∼= Fn ⊕ Tn−1

where Hn(M ;Z) = Fn ⊕ Tn with Fn free and Tn a torsion abelian group, so
rank(H2m+1−p(M ;Z)) = rank(H2m+1−p(M ;Z)). Therefore,

rank(Hp(M ;Z)) = rank(H2m+1−p(M ;Z)),
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and since 2m+ 1 is odd we get

χ(M) =
2m+1∑
p=0

(−1)p rankHp(M ;Z)

=
2m+1∑
p=0

(−1)p rankH2m+1−p(M ;Z)

= −
2m+1∑
p=0

(−1)2m+1−p rankH2m+1−p(M ;Z)

= −χ(M),

so χ(M) = 0.

If M is not orientable we apply Poincaré duality with R = Z/2Z. In this case each
Hp(M ;Z/2Z) and each H2m+1−p(M ;Z/2Z) is a vector space and their rank is just their
dimension. Because Z/2Z is a field, H2m+1−p(M ;Z/2Z) and H2m+1−p(M ;Z/2Z) are dual
spaces of the same dimension, and as above we conclude that

2m+1∑
p=0

(−1)p dimHp(M ;Z/2Z) = 0.

If we can show that

χ(M) =
2m+1∑
p=0

(−1)p dimHp(M ;Z/2Z),

we are done. Since Z/2Z is a field it is a PID, and the above equation follows from Proposition
6.16. For the sake of those readers who have not read Chapter 6 we provide the proof in the
special case R = Z/2Z.

By the Universal Coefficient Theorem for Homology (Theorem 12.38) and the fact that

Z/mZ⊗Z Z/nZ ∼= TorZ(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z,

every term Zk in Hp(M ;Z) when tensored with Z/2Z gives a term (Z/2Z)k in Hp(M ;Z/2Z),
every term Z/qZ in Hp(M ;Z) with q > 2 when tensored with Z/2Z yields (0), and every
term (Z/2Z)h in Hp(M ;Z) when tensored with Z/2Z yields a term (Z/2Z)h in Hp(M ;Z/2Z),
and the same term (Z/2Z)h in Hp+1(M ;Z/2Z) as the contribution of TorZ1 ((Z/2Z)h,Z/2Z).
The contribution of the two terms (Z/2Z)h to the sum

∑2m+1
p=0 (−1)p dimHp(M ;Z/2Z) cancel

out since their respective signs are (−1)p and (−1)p+1, so

χ(M) =
2m+1∑
p=0

(−1)p dimHp(M ;Z/2Z),

which concludes the proof.
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In the next section we present an even more general version of Poincaré Duality for
cohomology and homology with coefficients in any R-module G and any commutative ring
with identity element 1.

7.5 The Poincaré Duality Theorem with Coefficients

in G

The first step is to define a version of the cap product that accomodates coefficients in G.
This is easy to do, simply define the cap product

_ : Sp(X;G)× Sn(X;R)→ Sn−p(X;G)

using a variant of the formula of Definition 7.2, namely

c _ σ = (σ ◦ λn−p)c(σ ◦ ρp),

where we switched the order of the two expressions on the right-hand side to conform with
the convention that a chain in Sn−p(X;G) is a formal combination of the form

∑
σigi with

gi ∈ G and σi a (n − p)-simplex. Since σ ◦ ρp ∈ Sp(X;R), σ ◦ λn−p ∈ Sn−p(X;R), and
c ∈ Sp(X;G), we have c(σ ◦ ρp) ∈ G, and indeed (σ ◦ λn−p)c(σ ◦ ρp) ∈ Sn−p(X;G).

If a ∈ Sn−p(X;R), b ∈ Sp(X;G) and σ ∈ Sn(X;R), by the definition at the end of
Section 4.8 we have

〈a ^ b, σ〉 = a(σ ◦ λn−p)b(σ ◦ ρp)

and
b _ σ = (σ ◦ λn−p)b(σ ◦ ρp),

so if 〈f, s〉 with f ∈ Sp(X;R) and s ∈ Sp(X;G) is defined the right way, the identity

〈a, b _ σ〉 = 〈a ^ b, σ〉

will hold. But the definition of a pairing 〈−,−〉 : Sp(X;R) × Sp(X;G) → G is standard,
namely

〈f,
∑

σigi〉 =
∑

f(σi)gi,

where f ∈ Sp(X;R) and
∑
σigi is a singular p-simplex in Sp(X;G) (where the σi are p-

simplices).

It is even possible to define a paring 〈−,−〉 : Sp(X;G) × Sp(X;G′) → G ⊗ G′, where G
and G′ are two different R-modules; see Spanier [47] (Chapter 5, Section 5, page 243). In
summary, the equation

〈a, b _ σ〉 = 〈a ^ b, σ〉

holds for this more general version of cup products and cap products.
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The formula
∂(c _ σ) = (−1)n−p(δc _ σ) + c _ ∂σ.

of Proposition 7.9 still holds for any c ∈ Sp(X;G) and any σ ∈ Sn(X;R), so we obtain a
cap product

_ : Hp(X;G)×Hn(X;R)→ Hn−p(X;G);

see Munkres [38] (Chapter 8, Section 66).

There is also a relative version of the cup product

_ : Hp(X,A;G)×Hn(X,A ∪B;R)→ Hn−p(X,B;G)

with A and B two open subsets of X which will be used in the version of Poincaré duality
with coefficients in G; see May [34] (Chapter 20, Section 2).

Next we promote singular cohomology with coefficients in G to cohomology with compact
support. All one has to do is replace R by G everywhere. We obtain the cohomology groups
with compact support Hp

c (X;G). It is easy to verify that that Proposition 7.12 also holds.

Proposition 7.15. We have isomorphisms

Hp
c (X;G) ∼= lim−→

K∈K
Hp(X,X −K;G)

for all p ≥ 0. Furthermore, if X is compact, then Hp
c (X;G) ∼= Hp(X;G).

Given a R-orientable manifold M we also have to generalize the mapping
DM : Hp

c (M ;R)→ Hn−p(M ;R) to a mapping

DM : Hp
c (M ;G)→ Hn−p(M ;G),

and for this we use the cup product

_ : Hp(M,M −K;G)×Hn(M,M −K;R)→ Hn−p(X;G).

Since there is an isomorphism

Hp
c (M ;G) ∼= lim−→

K∈K
Hp(M,M −K;G),

for any ω ∈ Hp
c (M ;G) we pick some representative ω′ in the equivalence class defining ω in

lim−→Hp(M,M − K;G), namely some ω′ ∈ Hp(M,M − K;G) for some compact subset K,
and since µK ∈ Hn(M,M −K;R) we set

DM(ω) = ω′ _ µK ∈ Hn−p(M ;G).

Then we prove that the above definition does not depend on the choice of the representative
ω′ ∈ Hp(M,M −K;G just as in the case where G = R. In conclusion, we obtain our map

DM : Hp
c (M ;G)→ Hn−p(M ;G).

Using this map, the following version Poincaré duality can be proved.
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Theorem 7.16. (Poincaré Duality Theorem for Coefficients in a Module) Let M be an n-
manifold, let R be any commutative ring with unit 1, and let G be any R-module. If M is
R-orientable, then the map

DM : Hp
c (M ;G)→ Hn−p(M ;G)

defined above is an isomorphism for all p ≥ 0. In particular, if R = Z/2Z, the above map is
an isomorphism whether M is orientable or not.

If M is compact and R-orientable, then the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;G) and Hn−p(M ;G).

Theorem 7.16 is proved in May [34] (Chapter 20, Section 5). The proof also implicitly
uses the Bootstrap Lemma. Except for Case (1), it is basically identical to the proofs in
Milnor and Stasheff [35] (Appendix A, pages 277-279) and Hatcher [25] (Chapter 3, Theorem
3.35).

We will se later on that there is an even more general version of duality known as
Alexander–Lefschetz duality; see Chapter 14.
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Persistent Homology
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Chapter 9

Presheaves and Sheaves; Basics

9.1 Presheaves

Roughly speaking, presheaves (and sheaves) are a way of packaging local information about
a topological space X in a way that is mathematically useful. We can imagine that above
every open subset U of X there is a “balloon” F(U) of information about U , often a set of
functions, and that this information is compatible with restriction; namely if V is another
open set contained in U , then the balloon of information F(V ) is obtained from F(U) by
some restriction function ρUV .

The typical example is as follows: given a topological space X (for simplicity, you may
assume that X = R, or X = Rn), for every (nonempty) open subset U of X, let C0(U) be
the set of all real-valued functions f : U → R. For any open subset V ⊆ U , we obtain a
function ρUV : C0(U)→ C0(V ) by restricting any function f : U → R to V . See Figure 9.1.

Observe that if W ⊆ V ⊆ U , then

ρUW = ρVW ◦ ρUV

and
ρUU = idU .

See Figure 9.2.

The assignment U 7→ C0(U) is a presheaf on X. In the above example each C0(U) can
be viewed as a set, but also as a real vector space, or a ring, or even as an algebra, since
functions can be added, rescaled, and multiplied pointwise.

More generally, we can pick a class of structures, say sets, vector spaces, R-modules
(where R is a commutative ring with a multiplicative identity), groups, commutative rings,
R-algebra, etc., and assign an object F(U) in this class to every open subset U of X, and
for every pair of open subsets U, V such that V ⊆ U , if we write i : V → U for the inclusion
map from V to U , then we assign to i a map F(i) : F(U) → F(V ) which is a morphism of
the class of of objects under consideration. This means that if the F(U) are sets, then the

209
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UV

C (U)0

Figure 9.1: The elevated blue balloon is schematic representation of a presheaf of real valued
functions over the open set U ⊆ R2. Each “function” is represented as blue and green dotted
lines, where the green dash is the restriction of the function on V .

F(i) are just functions; if the F(U) are R-modules then the F(i) are R-linear maps; if the
F(U) are groups then the F(i) are group homomorphisms; if the F(U) are rings then the
F(i) are ring homomorphisms, etc.

A fancy way to proceed would be assume that we have a category C and that objects of
C are assigned to open subsets of X and morphisms of C are assigned to inclusion maps,
so that a presheaf is a contravariant functor. For our purposes it is not necessary to assume
such generality.

Definition 9.1. Given a topological space X and a class C of structures (a category), say
sets, vector spaces, R-modules, groups, commutative rings, etc., a presheaf on X with values
in C consists of an assignment of some object F(U) in C to every open subset U of X and
of a map F(i) : F(U) → F(V ) of the class of structures in C to every inclusion i : V → U
of open subsets V ⊆ U ⊆ X, such that

F(i ◦ j) = F(j) ◦ F(i)

F(idU) = idF(U),

for any two inclusions i : V → U and j : W → V , with W ⊆ V ⊆ U .

Note that the order of composition is switched in F(i ◦ j) = F(j) ◦ F(i).

Intuitively, the map F(i) : F(U) → F(V ) is a restriction map if we think of F(U) and
F(V ) as a sets of functions (which is often the case). For this reason, the map F(i) : F(U)→
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W
V

U

Figure 9.2: A schematic representation of the nested presheaves of continuous functions
associated with the open subsets W ⊆ V ⊆ U ⊆ R2. The wavy plane with the bold dashed
line represents the graph of a continuous real-valued function with domain in U . If this
function is restricted to the different colored “balloons,” (which have been opened to show
the graph of the continuous function), the domain is restricted appropriately, namely to
either V or W , as evidenced by the color change.

F(V ) is also denoted by ρUV : F(U) → F(V ), and the first equation of Definition 9.1 is
expressed by

ρUW = ρVW ◦ ρUV .
See Figure 9.1 and 9.2. Here are some examples of presheaves.

Example 9.1.

(1) The constant presheaf GX with values in G ∈ C, defined such that GX(U) = G for all
open subsets U of X, and ρUV is the identity function of G for all open subsets U, V .
A variant of the constant presheaf which comes up in cohomology has GX(∅) = (0)
instead of GX(∅) = G when G is an algebraic structure with an identity element 0.

(2) If Y is another topological space, then C0
Y is the presheaf defined so that C0

Y (U) is the
set of all continuous functions f : U → Y from the open subset U of X to Y .

(3) If Y = (R,+, usual metric topology), then C0
Y is the presheaf of real-valued continuous

functions on X. It is presheaf of R-algebras.

(4) If Y = (R,+, trivial topology), then C0
Y is the presheaf of all real-valued functions on

X. It is presheaf of R-algebras.
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(5) If M is a smooth manifold, then then C∞ is the presheaf defined so that C∞(U) is the
set of all smooth real-valued functions f : U → R from the open subset U of M .

A map between two presheaves is defined as follows.

Definition 9.2. Given a topological space X and a fixed class C of structures (a category),
say sets, vector spaces, R-modules, groups, commutative rings, etc., a map (or morphism)
ϕ : F → G of presheaves F and G on X consists of a family of maps ϕU : F(U) → G(U) of
the class of structures in C, for any open subset U of X, such that

ϕV ◦ (ρF)UV = (ρG)
U
V ◦ ϕU

for every pair of open subsets U, V such that V ⊆ U ⊆ X. Equivalently, the following
diagrams commute for every pair of open subsets U, V such that V ⊆ U ⊆ X (and i : V → U
is the corresponding inclusion map):

F(U)
ϕU //

F(i)

��

G(U)

G(i)

��
F(V ) ϕV

// G(V ),

or using the restriction notation (ρF)UV for F(i) and (ρG)
U
V for G(i),

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V ).

See Figure 9.3.

Remark: In fancy terms, a map of presheaves is a natural transformation.

Given three presheaves F ,G,H on X and two maps of presheaves ϕ : F → G and ϕ : G →
H, the composition ψ ◦ ϕ of ϕ and ψ is defined by the family of maps

(ψ ◦ ϕ)U = ψU ◦ ϕU

for all open subsets U of X. It is easily checked that ψ ◦ ϕ is indeed a map of presheaves
from F to H.

Definition 9.3. Given two presheaves F and G on X, a presheaf map ϕ : F → G is injective
if every map ϕU : F(U) → G(U) is injective, surjective if every map ϕU : F(U) → G(U) is
surjective (for each open subset U of X). Two presheaves F and G are isomorphic if there
exists some presheaf map ϕ : F → G and ψ : G → F such that ψ ◦ ϕ = id and ϕ ◦ ψ = id.
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U

V

F Gρ

(V )

(U)

G

G

(V )

(U)F

F

ρ (( )) UU

VV

U

V

φ

φ

Figure 9.3: The two purple “eggplants” represent the elements of the presheaves F and G.
The presheaf map ϕU : F(U)→ G(U) maps the left “eggplant” to the right “eggplant” in a
manner which preserves restrictions associated with the inclusion V ⊆ U ⊆ R2.

It is not hard to see that a presheaf map is an isomorphism iff it is injective and surjective.

If F and G are presheaves of algebraic structures (modules, groups, commutative rings,
etc.) then there is a notion of kernel, image, and cokernel of a map of presheaves. This
allows the definition of exact sequences of presheaves. We will come back to this point later
on.

9.2 Sheaves

In Section 9.1 we defined the notion of a presheaf. Presheaves are typically used to keep
track of local information assigned to a global object (the space X). It is usually desirable
to use to consistent local information to recover some global information, but this requires
a sharper notion, that of a sheaf.

Expositions on the subject of sheaves tend to be rather abstract and assume a significant
amount of background. Our goal is to provide just enough background to have a good
understanding of the sheaficiation process and of the subtleties involving exact sequences of
presheaves and sheaves. We should mention some of the classics, including (in alphabetic
order) Bredon [4], Eisenbud and Harris [14], Forster [15], Godement [18], Griffith and Harris
[20], Gunning [23], Hartshorne [24], Hirzebruch [26], Kashiwara and Shapira [27], MacLane
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and Moerdijk [30], Mumford [37], Narasimham [39], Serre FAC [44], Shafarevich [45], Spanier
[47]. One of the most accessible (and quite thorough) presentations is found in Tennison
[48].

The motivation for the extra condition that a sheaf should satisfy is this. Suppose we
consider the presheaf of continuous functions on a topological space X. If U is any open
subset of X and if (Ui)i∈I is an open cover of U , for any family (fi)i∈I of continuous functions
fi : Ui → R, if fi and fj agree on every overlap Ui ∩ Uj, then they fi patch to a unique
continuous function f : U → R whose restriction to Ui is fi.

Definition 9.4. Given a topological space X and a class C of structures (a category), say
sets, vector spaces, R-modules, groups, commutative rings, etc., a sheaf on X with values in
C is a presheaf F on X such that for any open subset U of X, for every open cover (Ui)i∈I of
U (that is, U =

⋃
i∈I Ui for some open subsets Ui ⊆ U of X), the following conditions hold:

(G) (Gluing condition) For every family (fi)i∈I with fi ∈ F(Ui), if the fi are consistent,
which means that

ρUiUi∩Uj(fi) = ρ
Uj
Ui∩Uj(fj) for all i, j ∈ I,

then there is some f ∈ F(U) such that ρUUi(f) = fi for all i ∈ I. See Figure 9.4.

(M) (Monopresheaf condition) For any two elements f, g ∈ F(U), if f and g agree on all
the Ui, which means that

ρUUi(f) = ρUUi(g) for all i ∈ I,

then f = g.

Obviously, Condition (M) implies that in Condition (G) the element f obtained by patch-
ing the fi is unique.

Another notation often used for F(U) is Γ(U,F). An element of Γ(U,F) is called a section
above U , and elements of Γ(X,F) = F(X) are called global sections . This terminology
is justified by the fact that many sheaves arise as continuous sections of some surjective
continuous map p : E → X; that is, continuous functions s : U → E such that p ◦ s = idU ;
see Example 9.2 (1).

For any two open subsets U and V with V ⊆ U , for any s ∈ Γ(U,F) = F(U), it is often
convenient to abbreviate ρUV (s) by s|V .

Remarks:

1. If F(U) = ∅ for some open subset U of X, then F is the trivial sheaf such that
F(V ) = ∅ for all open subsets V of X. This is because there is a restriction function
ρXU : F → ∅, but the only function with range ∅ is the empty function with domain ∅
so F(X) = ∅. Since there is restriction function ρXV : F(X) → F(V ) for every open
subset V of X, we deduce that F(V ) = ∅ for all open subsets of X. This observation is
due to Godement [18]. From now on, we rule out the above possibility. Note that it is
ruled out automatically for sheaves of algebraic structures having an identity element.
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Ui

f i

Uj

fj

U

Figure 9.4: A schematic representation Condition (G) for the set U = Ui ∪ Uj ⊆ R2. The
element fi ∈ F(Ui) is represented by the wavy peach plane with the bold peach dotted
line in the peach “balloon” while the element fj ∈ F(Uj) is represented by the wavy green
plane with the bold green dotted line. Where the two “balloons” intersect, the peach plane
overlaps the green plane. In other words ρUiUi∩Uj(fi) = ρ

Uj
Ui∩Uj(fj).

2. Assuming that F is not the trivial sheaf, then Conditions (G) and (M) apply to all
open subsets U of X and all families of open covers (Ui)i∈I of U , including the case
where U = ∅ and I = ∅. In this case, Conditions (G) and (M) implies that F(∅) is a
one-element set. In the case of groups, modules, groups, commutative rings, etc., we
have F(∅) = {0}.

3. Condition (G) applies to open subsets U that are the disjoint union of open subsets
Ui ⊆ U . In this case, every family (fi)i∈I with fi ∈ F(Ui) must patch to yield some
global element f ∈ F(U) such that ρUUi(f) = fi. Thus, the gluing condition imposes
some consistency among the local pieces fi ∈ F(Ui), even if the Ui are pairwise disjoint.
This is a major difference with presheaves, where unrelated and inconsistent objects
may be assignned to disjoint open subsets.

4. If F is a sheaf of R-modules or commutative rings, then Condition (M) can be replaced
by the following condition which is often more convenient:

(M) (Monopresheaf condition) For any element f ∈ F(U), if f is zero on the Ui, which
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means that
ρUUi(f) = 0 for all i ∈ I,

then f = 0.

5. If F is a sheaf of R-modules or commutative rings, then Conditions (M) and (G) can
be stated as an exactness condition. For any nonempty subset U of X, for any open
cover (Ui)i∈I of U , define the maps f : F(U) →

∏
i∈I F(Ui) and g :

∏
i∈I F(Ui) →∏

i,j∈I F(Ui ∩ Uj) by

f(s) = (ρUUi(s))i∈I

g((si)i∈I) = (ρUiUi∩Uj(si)− ρ
Uj
Ui∩Uj(sj))(i,j)∈I×I .

Then Conditions (M) and (G) are equivalent to the hypothesis that the sequence

0 // F(U)
f //
∏
i∈I

F(Ui)
g //

∏
(i,j)∈I×I

F(Ui ∩ Uj)

is exact.

6. Intuitively, we may think of the elements f ∈ F(U) (the sections above U) as abstract
functions. In fact, this point of view can be justified rigorously. For every sheaf F on
a space X, we can construct a “big” space E with a continuous projection function
p : E → X so that for every open subset U of X, every s ∈ F(U) can be viewed as a
function s̃ : U → E (a section of p, see Example 9.2 (1) below). In fact, p is a local
homeomorphism. We will investigate the construction of E in Section 11.1.

Here are some examples of sheaves.

Example 9.2.

1. Let p : E → X be a surjective continuous map between two topological spaces E and
X. We define the sheaf Γ[E, p] of (continuous) sections of p on X as follows: for every
open subset U of X,

Γ[E, p](U) = Γ(U,Γ[E, p]) = {s : U → E | p ◦ s = id and s is continuous};

equivalently, the following diagram commutes:

E

p

��
U

s
>>

� � // X

where the horizontal arrow is inclusion; see Figure 9.5. For the sake of notational
simplicity, the sheaf Γ[E, p] is often denoted by ΓE.
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S2

UX

E
S
1

S3

Figure 9.5: A schematic representation of the sheaf of sections Γ[E, p] where X is the circular
base and E be the solid gray upside-down “lamp shade”. Note p−1(x) for x ∈ X is a twisted
orange “spaghetti strand.” We illustrate three elements of Γ[E, p](U) as bold blue, green,
and purple wavy disks which connect the various preimages in a continuous manner, namely
p ◦ s(u) = u for u ∈ U .

2. If Y is another topological space, E = X×Y , and p : X×Y → X is the first projection,
then the sheaf Γ[E, p] in (1) corresponds to the presheaf on X of Example 9.1 (2–4),
which is actually a sheaf. Indeed, since p is the map (x, y) 7→ x, every continuous
section s of p above U is a function of the form x 7→ (x, f(x)), where f : U → Y is
a continuous function. Therefore, there is a bijection between the set of continuous
sections of p above U and the set of continuous functions from U to Y . See Figure 9.6.

3. If Y is given the discrete topology, E = X × Y , and p : X × Y → X is the first
projection, then the sheaf Γ[E, p] in (1) corresponds to the sheaf of locally constant
functions with values in Y , because every continuous section s of p above U is a function
of the form x 7→ (x, f(x)), where f : U → Y is a locally constant function. Recall that
a function f : U → Y is locally constant if for every x ∈ U there is some open subset
V of U containing x such that f is constant on V . For any x ∈ U , since Y is discrete
the set {f(x)} is open, and since f is continuous V = f−1(f(x)) is some open subset of
U containing x and f is constant on V (with value f(x)). A locally constant function
must have a constant value on a connected open subset. See Figure 9.7.

The sheaf of locally constant functions on X with values in Y is denoted ỸX (or Y +
X if

the “tilde” notation is already used). Beware that in general this is not the constant
presheaf YX with values in Y . Indeed if X is the union of two disjoint open subsets
U1 and U2 and if Y has at least two distinct elements y1, y2, then we can pick the
family (y1, y2) with y1 ∈ YX(U1) = Y and y2 ∈ YX(U2) = Y , and since U1 ∩ U2 = ∅, by
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(x, f(x))

UX

X x Y

Figure 9.6: Let X be the closed unit disk, Y = [0, 1], and E = X × Y be the solid grey
cylinder. Each p−1(x) is straight orange “spaghetti strand.” We illustrate an element of
Γ[E, p](U) associated with the function f : U → Y as a wavy purple disk.

Condition (G) there should be some element y ∈ YX(X) = Y such that ρXU1
(y) = y1

and ρXU2
(y) = y2. But since YX is the constant presheaf, ρXU1

= ρXU2
= id, so we should

have y = y2 = y2, which is impossible since y1 6= y2. The sheaf ỸX of locally constant
functions with values in Y is usually called (confusingly) the constant sheaf with values
in Y .

4. Given a smooth manifold M , the smooth real-valued functions on M form a sheaf C∞.
For every open subset U of M , let C∞(U) be the R-algebra of smooth functions on U .

5. Given a smooth manifold M , the differential forms on M form a sheaf A∗X . For
every open subset U of M , let Ap(U) be the vector space of of p-forms on U , and let
A∗X(U) = Ap(U). Then it is easy to check that we obtain a sheaf of vector spaces; the
restriction maps are the pullbacks of forms.

We just observed that in general the constant presheaf with values in Y in not a sheaf.
Here is another example of a presheaf which is not a sheaf.

Example 9.3. Let X be any topological space with at least two points (for example, X =
{0, 1}), and let F1 be the presheaf given by

F1(U) =

{
Z if U = X

(0) if U 6= X is an open subset,

with all ρUV equal to the zero map except if U = V = X (in which case it is the identity).
It is easy to check that Condition (M) fails. In particular if X = {0, 1} with the discrete
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X U

X x Y

Figure 9.7: Let X be the closed unit disk, Y = [0, 1], and E = X × Y be the solid grey
cylinder. Each p−1(x) is straight orange “spaghetti strand” composed of disjoint open points.
An element of Γ[E, p](U) is illustrated as the purple “jump” function.

topology, then X = {0} ∪ {1}, where {0} and {1} are open sets in X. Let f ∈ F1(X) be
f = 1, while g ∈ F1(X) is g = −1. Then

ρX{0}(f) = 0 = ρX{1}(g),

where f 6= g.

The notion of a map ϕ : F → G between two sheaves F and G is exactly as in Definition
9.2. Two sheaves F and G are isomorphic if there exist some sheaf morphisms ϕ : F → G
and ψ : G → F such that ψ ◦ ϕ = id and ϕ ◦ ψ = id.

It turns out that every sheaf is isomorphic to a sheaf of sections as in Example 9.2(1),
but to prove this we need the notion of direct limit; see Section 9.6.

Definition 9.5. Given a topological space X, for every (nonempty) open subset U of X,
for every presheaf (or sheaf) F on X, the restriction F|U of F to U is defined so that for
every open subset V to U ,

(F|U)(V ) = F(V ).

If F is a sheaf, it is immediate that F|U is a also a sheaf. Given two preshaves (or sheaves)
F and G on X, the presheaf Hom(F ,G) is defined by

Hom(F ,G)(U) = Hom(F|U,G|U)

for every open subset U of X. If F and G are sheaves, it is easy to see that Hom(F ,G) is
also a sheaf.

The next section is devoted to direct limits, an indispensible tool in sheaf theory and the
cohomology of sheaves.
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9.3 Direct Mapping Families and Direct Limits

We begin our study of direct limits with the following two definitions.

Definition 9.6. A directed set is a set I equipped with a preorder ≤ (where ≤ is a reflexive
and transitive relation) such that for all i, j ∈ I, there is some k ∈ I such that i ≤ k and
j ≤ k. A subset J of I is said to be cofinal in I if for every i ∈ I there is some j ∈ J such
that i ≤ j. For example, 2Z is cofinal in Z, where 2Z = {2x | x ∈ Z}.

Definition 9.7. A direct mapping family of sets (or R-modules, or commutative rings, etc.)
is a pair ((Fi)i∈I , (ρ

i
j)i≤j) where (Fi)i∈I is a family of sets (R-modules, commutative rings,

etc.) Fi whose index set I is a directed set, and for all i, j ∈ I with i ≤ j, ρij : Fi → Fj is a
map (R-linear, ring homomorphism, etc.) so that

ρii = id

ρik = ρjk ◦ ρ
i
j

for all i, j, k ∈ I with i ≤ j ≤ k, as illustrated below

Fi
ρik //

ρij   

Fk

Fj.
ρjk

>>

Here are two examples of direct mapping families.

Example 9.4.

1. Let X be a topological space and pick any point x ∈ X. Then the family of open
subsets U of X such that x ∈ U forms a directed set under the preorder U ≺ V
iff V ⊆ U . If C0(U) is the set of continuous R-valued functions defined in U and if
ρUV : C0(U)→ C0(V ) is the restriction map, then the family of sets (rings) (C0(U))U3x
(for all open subsets U of X containing x) forms a direct mapping family.

2. More generally, if F is a presheaf on X, then the family of sets (R-modules, etc.)
(F(U))U3x forms a direct mapping family, with ρUV : F(U)→ F(V ) whenever V ⊆ U ,
the presheaf restriction map.

The direct limit of a direct mapping family ((Fi)i∈I , (ρ
i
j)i≤j) is obtained as a quotient of

a disjoint union of the Fi.

Definition 9.8. The direct limit (or inductive limit) lim−→Fi of the direct mapping family

((Fi)i∈I , (ρ
i
j)i≤j) of sets (R-modules, commutative rings, etc.) is defined as follows:
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First form the disjoint union
∐

i∈I Fi. Next let ∼ be the equivalence relation on
∐

i∈I Fi
defined by:

fi ∼ fj iff ρik(fi) = ρjk(fj) for some k ∈ I with k ≥ i, j,

for any fi ∈ Fi and any fj ∈ Fj; see Figure 9.8. Finally the direct limit lim−→Fi is given by

lim−→
i∈I

Fi =

(∐
i∈I

Fi

)
/ ∼ .

It is clear that ∼ is reflexive and symmetric but we need to check transitivity. This is
where the fact that I is a directed set is used. If fi ∼ fj and fj ∼ fk, then there exist
p, q ∈ I such that i, j ≤ p, j, k ≤ q, ρip(fi) = ρjp(fj) and ρjq(fj) = ρkq(fk). Since I is a directed
preorder there is some r ∈ I such that p, q ≤ r. We claim that

ρir(fi) = ρkr(fk),

showing that fi ∼ fk. This is because

ρir(fi) = ρpr ◦ ρip(fi) = ρpr ◦ ρjp(fj) = ρjr(fj) = ρqr ◦ ρjq(fj) = ρqr ◦ ρkq(fk) = ρkr(fk),

as illustrated by the following diagram:

Fr

Fp

ρpr

;;

Fq

ρqr

cc

fi ∈ Fi

ρip
;;

ρir

00

fj ∈ Fj

ρjp
cc

ρjq
;;ρjr

OO

fk ∈ Fk

ρkq
cc

ρkr

nn

For every index i ∈ I, we have the canonical injection εi : Fi →
∐

i∈I Fi, and thus, a
canonical map πi : Fi −→ lim−→Fi, namely

πi : f 7→ [εi(f)]∼ = [εi(f)].

(Here, [x]∼ = [x] means equivalence class of x modulo ∼.) It is obvious that πi = πj ◦ ρij for
all i, j ∈ I with i ≤ j as illustrated in the diagram below

Fi
ρij //

πi
""

Fj

πj
||

lim−→Fi.

If each Fi is a R-module, then lim−→Fi is also a R-module (a ring, etc.). We define addition
by

[fi] + [fj] = [ρik(fi) + ρjk(fj)], for any k ∈ I with k ≥ i, j
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Figure 9.8: An illustration of the equivalence relation ∼ used in the direct limit construction.
Since ρ5

12(f5) = ρ9
12(f9), f5 ∼ f9.

and multiplication by a scalar as

λ[fi] = [λfi].

If the Fi are rings, then we define multiplication by

[fi] · [fj] = [ρik(fi) · ρ
j
k(fj)], for any k ∈ I with k ≥ i, j.

The direct limit (lim−→Fi, (πi)i∈I)) is characterized by the important universal mapping
property : For every set (R-module, commutative ring, etc.) G and every family of maps
θi : Fi → G so that θi = θj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

θi ��

Fj

θj��
G,

there is a unique map ϕ : lim−→Fi → G, so that

θi = ϕ ◦ πi, for all i ∈ I
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as illustrated in the diagram below

Fi
ρij //

πi

##

θi

��

Fj

πj

{{

θj

��

lim−→Fi

ϕ

��
G.

The universal mapping property of the direct limit implies that it is unique up to iso-
morphism.

Remark: The direct limit lim−→Fi is actually a colimit ; it is an initial object in a suitably
defined category. Unfortunately, following common practice (probably due to some obscure
historical tradition) it is called a direct limit.

The following proposition gives a useful criterion to show that an object is a direct limit.

Proposition 9.1. Given a direct mapping family ((Fi)i∈I , (ρ
i
j)i≤j) of sets (R-modules, com-

mutative rings, etc.), suppose G is a set (R-module, ring, etc.) and (θi)i∈I is a family of
maps θi : Fi → G such that θi = θj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

θi   

Fj

θj~~
G.

If the following two conditions are satisfied

(a) For every g ∈ G, there is some i ∈ I and some fi ∈ Fi such that g = θi(fi)

(b) For all i, j ∈ I, for any fi ∈ Fi and any fj ∈ Fj,

θi(fi) = θj(fj) iff ∃k such that i ≤ k, j ≤ k and ρik(fi) = ρjk(fj),

then (G, (θi)i∈I) is a direct limit of the direct mapping family ((Fi)i∈I , (ρ
i
j)i≤j).

Proof. It suffices to prove that (G, (θi)i∈I) satisfies the universal mapping family. Let H be
a set (R-module, commutative ring, etc.) and (ηi)i∈I is a family of maps ηi : Fi → H such
that ηi = ηj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

ηi   

Fj

ηj~~
H.



224 CHAPTER 9. PRESHEAVES AND SHEAVES; BASICS

We need to prove that there is a unique map ϕ : G → H such that the following diagrams
commute

Fi
ρij //

θi

""
ηi

��

Fj

θj

{{
ηj

��

G

ϕ

��
H.

By (a), since every g ∈ G is of the form g = θi(fi) for some fi ∈ Fi, then we must have

ϕ(g) = ϕ(θi(fi)) = ηi(fi).

Thus, if ϕ exists, it is unique. It remains to show that the definition of ϕ(g) as ηi(fi) does
not depend on the choice of fi. If fj ∈ Fj is another element such that θj(fj) = g, then
θi(fi) = θj(fj), which by (b) means that there is some k ∈ I such that, i ≤ k, j ≤ k and
ρik(fi) = ρjk(fj). But then since the following diagrams commute

Fi
ρik //

ηi   

Fk

ηk~~
H

Fj
ρjk //

ηj ��

Fk

ηk��
H ,

we have
ηi(fi) = ηk(ρ

i
k(fi)) = ηk(ρ

j
k(fj)) = ηj(fj),

which shows that ϕ(g) is well defined.

We will also need the notion of map between two direct mapping families and of the
direct limit of such a map.

Definition 9.9. Given any two direct mapping families ((Fi)i∈I , ((ρF )ij)i≤j) and ((Gi)i∈I ,
((ρG)ij)i≤j) of sets (R-modules, commutative rings, etc.) over the same directed preorder
I, a map from ((Fi)i∈I , ((ρF )ij)i≤j) to ((Gi)i∈I , ((ρG)ij)i≤j) is a family ϕ = (ϕi)∈I of maps
ϕi : Fi → Gi (of sets, of R-modules, commutative rings, etc.) such that the following dia-
grams commute for all i ≤ j:

Fi
(ρF )ij //

ϕi

��

Fj

ϕj

��
Gi

(ρG)ij

// Gj.
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Let ϕ = (ϕi)∈I be a map between two direct mapping families ((Fi)i∈I , ((ρF )ij)i≤j) and
((Gi)i∈I , ((ρG)ij)i≤j). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit of the first fam-
ily and (G = lim−→Gi, ηi : Gi → G) for the direct limit of the second family, the commutativity
of the following diagrams

Fi
(ρF )ij //

ϕi

��

Fj

ϕj

��
Gi

(ρG)ij //

ηi

��

Gj

ηj
��

G

shows that if we write ψi = ηi ◦ ϕi, then following diagrams commute

Fi
(ρF )ij //

ψi ��

Fj

ψj��
G,

therefore by the universal mapping property of the direct limit (F = lim−→Fi, θi : Fi → F ),
there is a unique map Φ: F → G such that the following diagrams commute:

Fi
ϕi //

θi

��

Gi

ηi

��
F

Φ // G.

Definition 9.10. Let ϕ = (ϕi)∈I be a map between two direct mapping families ((Fi)i∈I ,
((ρF )ij)i≤j) and ((Gi)i∈I , ((ρG)ij)i≤j). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit
of the first family and (G = lim−→Gi, ηi : Gi → G) for the direct limit of the second family, the
direct limit Φ = lim−→ϕi is the unique map Φ: lim−→Fi → lim−→Gi such that all diagrams below
commute:

Fi
ϕi //

θi

��

Gi

ηi

��
F Φ // G.

We will also need a generalization of the notion of map of direct mapping families for
families indexed by different index sets. Such maps will be needed to define the notion of
homomorphism induced by a continuous map in Čech cohomology.
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Definition 9.11. Given any two direct mapping families ((Fi)i∈I , ((ρF )ik)i≤k) and ((Gj)j∈J ,
((ρG)jl )j≤l) of sets (R-modules, commutative rings, etc.) over the directed preorders I and
J , a map from ((Fi)i∈I , ((ρF )ik)i≤k) to ((Gj)j∈J , ((ρG)jl )j≤l) is pair (τ, ϕ), where τ : I → J
is an order-preserving map and ϕ is a family ϕ = (ϕi)∈I of maps ϕi : Fi → Gτ(i) (of sets,
of R-modules, commutative rings, etc.) such that the following diagrams commute for all
i ≤ k:

Fi
(ρF )ik //

ϕi

��

Fk

ϕk

��
Gτ(i)

(ρG)
τ(i)
τ(k)

// Gτ(k).

Let (τ, ϕ = (ϕi)∈I) be a map between two direct mapping families ((Fi)i∈I , ((ρF )ik)i≤k)
and ((Gj)j∈J , ((ρG)jl )j≤l). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit of the
first family and (G = lim−→Gj, ηj : Gj → G) for the direct limit of the second family, the
commutativity of the following diagrams

Fi
(ρF )ik //

ϕi

��

Fk

ϕk

��
Gτ(i)

(ρG)
τ(i)
τ(k) //

ητ(i)

!!

Gτ(k)

ητ(k)

}}
G

shows that if we write ψi = ητ(i) ◦ ϕi, then following diagrams commute

Fi
(ρF )ik //

ψi   

Fk

ψk~~
G,

therefore by the universal mapping property of the direct limit (F = lim−→Fi, θi : Fi → F ),
there is a unique map Φ: F → G such that the following diagrams commute:

Fi
ϕi //

θi

��

Gτ(i)

ητ(i)

��
F

Φ // G.
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Definition 9.12. Let (τ, ϕ = (ϕi)∈I) be a map between two direct mapping families ((Fi)i∈I ,
((ρF )ik)i≤k) and ((Gj)j∈J , ((ρG)jl )j≤l). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit
of the first family and (G = lim−→Gj, ηj : Gj → G) for the direct limit of the second family, the
direct limit Φ = lim−→ϕi is the unique map Φ: lim−→Fi → lim−→Gj such that all diagrams below
commute:

Fi
ϕi //

θi

��

Gτ(i)

ητ(i)

��
F Φ // G.
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Chapter 10

Čech Cohomology with Values in a
Presheaf

10.1 Čech Cohomology of a Cover

Given a topological space X and a presehaf F , there is a way of defining cohomology groups
Ȟp(X,F) as a limit process involving the definition of some cohomology groups Ȟp(U ,F)
associated with open covers U = (Uj)j∈J of the space X. Given two open covers U and V , we
can define when V is a refinement of U , and then we define the cohomology group Ȟp(X,F)
as the direct limit of the directed system of groups Ȟp(U ,F). When the presheaf F has
some special properties and when nice covers exist, the limit process can be bypassed.

Throughout this chapter R will denote a fixed commutative ring with unit. Let F be
a presheaf of R-modules on X. We always assume that that F(∅) = (0), as in the case of
a sheaf. Our first goal is to define R-modules of cochains, Cp(U ,F). Here a decision must
be made, namely whether we use sequences of indices with or without repetitions allowed.
This is one of the confusing aspects of the set up of Čech cohomology, as the literature
uses both approaches typically without any justification. In order to deal correctly with
the passage to a finer cover it is necessary to allow repetitions of indices. However, it can
also be shown that using special kinds of cochains called alternating cochains, isomorphic
cohomology R-modules are obtained. As a corollary, one may indeed assume that sequences
without repetitions are used. Note that in the sequel, when we refer to “groups” we usually
mean R-modules.

Given any finite sequence I = (i0, . . . , ip) of elements of some index set J (where p ≥ 0
and the ij are not necessarily distinct), we let

UI = Ui0···ip = Ui0 ∩ · · · ∩ Uip .
Note that it may happen that UI = ∅ (this is another confusing point: some authors only
consider sequences I = (i0, . . . , ip) for which Ui0···ip 6= ∅). We denote by Ui0···îj ···ip the inter-
section

Ui0···îj ···ip = Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uip

229
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of the p subsets obtained by omitting Uij from Ui0···ip = Ui0 ∩ · · · ∩ Uip (the intersection of
the p+ 1 subsets). See Figure 10.1.

U i

U i0

U i0

U i0

U i0

U i1

U i1

U i1

U i1

U i2

U i2
3U i 3

U i 3

Ui0 i1 i2 i 3

Ui0 i1 i2 i 3

^

=

= h

h h h

h U i 3

Figure 10.1: An illustration of Ui0i1i2i3 and Ui0i1 î2i3 .

Then we have p+ 1 inclusion maps

δpj : Ui0···ip −→ Ui0···îj ···ip , 0 ≤ j ≤ p.

For example, if p = 0 we have the map

δ0
0 : Ui0 −→ X

for p = 1, we have the two maps

δ1
0 : Ui0 ∩ Ui1 −→ Ui1 , δ1

1 : Ui0 ∩ Ui1 −→ Ui0 ,

for p = 2, we have the three maps

δ2
0 : Ui0∩Ui1∩Ui2 −→ Ui1∩Ui2 , δ2

1 : Ui0∩Ui1∩Ui2 −→ Ui0∩Ui2 , δ2
2 : Ui0∩Ui1∩Ui2 −→ Ui1∩Ui2 .

Definition 10.1. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of abelian groups F on X, the R-module of Čech p-cochains Cp(U ,F) is the set of
all functions f with domain Jp+1 such that f(i0, . . . , ip) ∈ F(Ui0···ip); in other words,

Cp(U ,F) =
∏

(i0,...,ip)∈Jp+1

F(Ui0···ip),

the set of all Jp+1-indexed families (fi0,...,ip)(i0,...,ip)∈Jp+1 with fi0,...,ip ∈ F(Ui0···ip).
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In particular, for p = 0 we have

C0(U ,F) =
∏
j∈J

F(Uj)

so a 0-cochain is a J-indexed family f = (fj)j∈J with fj ∈ F(Uj), and for p = 1 we have

C1(U ,F) =
∏

(i,j)∈J2

F(Ui ∩ Uj)

so a 1-cochain is a J2-indexed family f = (fi,j)(i,j)∈J2 with fi,j ∈ F(Ui ∩ Uj).

Remark: Since F(∅) = (0), for any cochain f ∈ Cp(U ,F), if Ui0···ip = ∅ then fi0···ip = 0.
Therefore, we could define Cp(U ,F) as the set of families fi0···ip ∈ F(Ui0···ip) corresponding
to tuples (i0, . . . , ip) ∈ Jp+1 such that Ui0···ip 6= ∅. This is the definition adopted by several
authors, including Warner [50] (Chapter 5, Section 5.33).

Each inclusion map δpj : Ui0···ip −→ Ui0···îj ···ip induces a map

F(δpj ) : F(Ui0···îj ···ip) −→ F(Ui0···ip)

which is none other that the restriction map ρ
Ui0···îj ···ip
Ui0···ip

which, for the sake of notational

simplicity, we also denote by ρji0···ip .

Definition 10.2. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the coboundary maps δpF : Cp(U ,F)→ Cp+1(U ,F) are given
by

δpF =

p+1∑
j=1

(−1)jF(δp+1
j ), p ≥ 0.

More explicitly, for any p-cochain f ∈ Cp(U ,F), for any sequence (i0, . . . , ip+1) ∈ Jp+2, we
have

(δpFf)i0,...,ip+1 =

p+1∑
j=0

(−1)jρji0···ip+1
(fi0,...,îj ,...,ip+1

).

Unravelling Definition 10.2, for p = 0 we have

(δ0
Ff)i,j = ρ0

ij(fj)− ρ1
ij(fi),

and for p = 1 we have

(δ1
Ff)i,j,k = ρ0

ijk(fj,k)− ρ1
ijk(fi,k) + ρ2

ijk(fi,j).
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U1

U1

U2

U2

U2

f 1

f2

f12
F
F

F (

(
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)
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Figure 10.2: An illustration of X in Example 10.1. Figure (ii.) illustrates the associated
presheaf F .

Example 10.1. As an explicit example of Definitions 10.1 and 10.2, let X be the union of
two open sets, namely X = U1 ∪ U2. See Figure 10.2.

Then

C0(U ,F) = F(U1)×F(U2)

C1(U ,F) = F(U11)×F(U12)×F(U21)×F(U22)

C2(U ,F) = F(U111)×F(U112)×F(U121)×F(U122)×F(U211)×F(U212)

×F(U221)×F(U222),

where

U11 = U1 ∩ U1 = U1, U12 = U1 ∩ U2 = U21, U22 = U2 ∩ U2 = U2

U111 = U1 ∩ U1 ∩ U1 = U1, U222 = U2 ∩ U2 ∩ U2 = U2

U112 = U121 = U211 = U1 ∩ U1 ∩ U2 = U1 ∩ U2 ∩ U2 = U221 = U212 = U122.

In general Cp(U ,F) is a product with 2p+1 factors. A typical element of C0(U ,F) has the
form (f1, f2) where f1 is an element of the group associated with U1 and f2 is an element of
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the group associated with U2. A typical element of C1(U ,F) has the form (f1,1, f1,2, f2,1, f2,2)
where f1,1 is an element of the group associated with U11 = U1, f1,2 is an element of the
group associated with U12 = U1 ∩ U2 f2,1 is another element of the group associated with
U21 = U12, and f2,2 is an element of the group associated with U22. In general f1,2 6= f2,1. A
typical element of C2(U ,F) has the form

(f1,1,1, f1,1,2, f1,2,1, f1,2,2, f2,1,1, f2,1,2, f2,2,1, f2,2,2),

where f1,1,1 is an element of the group associated with U111 = U1, f1,1,2 is an element of
the group associated with U112 = U1 ∩ U2,, f1,2,1 is an element of the group associated
with U112, f1,2,2 is an element of the group associated with U112, f2,1,1 is an element of the
group associated with U112, f2,1,2 is an element of the group associated with U112, f2,2,1 is an
element of the group associated with U112, and f2,2,2 is an element of the group associated
with U222 = U2. In general, a typical element of Cp(U ,F) is a 2p+1-tuple.

The coboundary map δ0
F : C0(U ,F) → C1(U ,F) takes f ∈ C0(U ,F), say f = (f1, f2),

and makes it into element of C1(U ,F) by calculating

(δ0
Ff)1,1 = ρ0

11(f1)− ρ1
11(f1) = 0

(δ0
Ff)1,2 = ρ0

12(f2)− ρ1
12(f1)

(δ0
Ff)2,1 = ρ0

21(f1)− ρ1
21(f2)

(δ0
Ff)2,2 = ρ0

22(f2)− ρ1
22(f2) = 0.

In other words

δ0
F(f1, f2) = (0, ρ0

12(f2)− ρ1
12(f1), ρ0

21(f1)− ρ1
21(f2), 0) ∈ C1(U ,F).

The coboundary map δ1
F : C1(U ,F)→ C2(U ,F) takes f ∈ C1(U ,F), say

f = (f1,1, f1,2, f2,1, f2,2), and makes it into element of C2(U ,F) by calculating

(δ1
Ff)1,1,1 = ρ0

111(f1,1)− ρ1
111(f1,1) + ρ2

111(f1,1) = ρ2
111(f1,1)

(δ1
Ff)1,1,2 = ρ0

112(f1,2)− ρ1
112(f1,2) + ρ2

112(f1,1) = ρ2
112(f1,1)

(δ1
Ff)1,2,1 = ρ0

121(f2,1)− ρ1
121(f1,1) + ρ2

121(f1,2)

(δ1
Ff)1,2,2 = ρ0

122(f2,2)− ρ1
122(f1,2) + ρ2

122(f1,2) = ρ0
122(f2,2)

(δ1
Ff)2,1,1 = ρ0

211(f1,1)− ρ1
211(f2,1) + ρ2

211(f2,1) = ρ0
211(f1,1)

(δ1
Ff)2,1,2 = ρ0

212(f1,2)− ρ1
212(f2,2) + ρ2

212(f2,1)

(δ1
Ff)2,2,1 = ρ0

221(f2,1)− ρ1
221(f2,1) + ρ2

221(f2,2) = ρ2
221(f2,2)

(δ1
Ff)2,2,2 = ρ0

222(f2,2)− ρ1
222(f2,2) + ρ2

222(f2,2) = ρ2
222(f2,2).

In other words

δ1
F(f1,1, f1,2, f2,1, f2,2) = (ρ2

111(f1,1), ρ2
112(f1,1), ρ0

121(f2,1)− ρ1
121(f1,1) + ρ2

121(f1,2), ρ0
122(f2,2),

ρ0
211(f1,1), ρ0

212(f1,2)− ρ1
212(f2,2) + ρ2

212(f2,1), ρ2
221(f2,2), ρ2

222(f2,2)).
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Families of the form (δ0
Ff)i,j form the group (R-module) B1(U ,F) of Čech coboundaries,

and the group (R-module) Z0(U ,F) of Čech cocycles consists of the families (fj)j∈J ∈
C0(U ,F) such that (δ0

Ff) = 0; that is, families (fj)j∈J ∈ C0(U ,F) such that

ρ0
ij(fj) = ρ1

ij(fi)

for all i, j ∈ J .

Families of the form (δ1
Ff)i,jk form the group (R-module) B2(U ,F) of Čech coboundaries,

and the group (R-module) Z1(U ,F) of Čech cocycles consists of the families (fij)(i,j)∈J2 ∈
C1(U ,F) such that (δ1

Ff) = 0; that is, families (fi,j)(i,j)∈J2 ∈ C1(U ,F) such that

ρ1
ijk(fi,k) = ρ2

ijk(fi,j) + ρ0
ijk(fj,k)

for all i, j, k ∈ J .

In general the definition of Bp(U ,F) and Zp(U ,F) is as follows.

Definition 10.3. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the R-module Bp(U ,F) of Čech p-boundaries is given by
Bp(U ,F) = Im δp−1

F for p ≥ 1 with B0(U ,F) = (0), and the R-module Zp(U ,F) of Čech
p-cocycles is given by Zp(U ,F) = Ker δpF , for p ≥ 0.

It is easy to check that δp+1
F ◦ δpF = 0 for all p ≥ 0, so we have a chain complex of

cohomology

0
δ−1
F // C0(U ,F)

δ0
F // C1(U ,F) // · · ·

δp−1
F // Cp(U ,F)

δpF // Cp+1(U ,F)
δp+1
F // · · ·

and we can define the Čech cohomology groups as follows. Let G be a R-module, and write
GX for the constant presheaf on X such that GX(U) = G for every nonempty open subset
U ⊆ X (with GX(∅) = (0)).

Definition 10.4. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the Čech cohomology groups Ȟp(U ,F) of the cover U with
values in F are defined by

Ȟp(U ,F) = Zp(U ,F)/Bp(U ,F), p ≥ 0.

The classical Čech cohomology groups Ȟp(U ;G) of the cover U with coefficients in the R-
module G are the groups Ȟp(U , GX).

The groups Ȟp(U ,F) and Ȟp(U , GX) are in fact R-modules.

If F is a sheaf, then Ȟ0(U ,F) is independent of the cover U .
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Proposition 10.1. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, if F is a sheaf, then

Ȟ0(U ,F) = F(X) = Γ(X,F),

the module of global sections of F .

Proof. We saw earlier that a 0-cocycle is a family (fj)j∈J ∈ C0(U ,F) such that

ρ0
ij(fj) = ρ1

ij(fi)

for all i, j ∈ J . Since F is a sheaf, the fi patch to a global section f ∈ F(X) such that
ρXUi(f) = fi for all i ∈ I.

The module of p-cochains Cp(U ,F) consists of the set of all families (fi0,...,ip)(i0,...,ip)∈Jp+1

with fi0,...,ip ∈ F(Ui0···ip). This is not a very economical definition. It turns out that the

same Čech cohomology groups are obtained using the more economical notion of alternating
cochain.

Definition 10.5. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, a cochain f ∈ Cp(U ,F) is alternating if it satisfies the
following conditions:

(a) fi0,...,ip = 0 whenever two of the indices i0, . . . , ip are equal.

(b) fσ(i0),...,σ(ip) = sign(σ)fi0,...,ip , for every permutation σ of the set {0, . . . , p} (where
sign(σ) denotes the sign of the permutation σ).

The set of alternating p-cochains forms a submodule C
′p(U ,F) of Cp(U ,F).

It is easily checked that ∂pFf is alternating if f is alternating. As a consequence the
alternating cochains yield a chain complex (C

′∗(U ,F), δF). The corresponding cohomology
groups are denoted by Ȟ

′p(U ,F). The following proposition is shown in FAC [44] (Chapter
1, §3, Subsection 20).

Proposition 10.2. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the Čech cohomology groups Ȟp(U ,F) and Ȟ

′p(U ,F) are
isomorphic for all p ≥ 0.

The proof of Proposition 10.2 consists in definining a suitable chain homotopy. It also
justifies the fact that we may assume that the index set J is totally ordered (say by ≤), and
using cochains fi0,...,ip where the indices form a strictly increasing sequence i0 < i1 < · · · < ip;
Bott and Tu [2] use this approach (Chapter II, §8).

Our next goal is to define Čech cohomology groups Ȟp(X,F) that are independent of
the open cover U chosen for X. Such groups are obtained as direct limits of direct mapping
families of modules, as defined in Section 9.6. The direct limit construction is applied to the
preorder of refinement among open coverings.
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10.2 Čech Cohomology with Values in a Presheaf

First we need to define the notion of refinement of a cover.

Definition 10.6. Given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space X, we say that
V is a refinement of U , denoted U ≺ V ,1 if there is a function τ : J → I such that

Vj ⊆ Uτ(j) for all j ∈ J.

See Figure 10.3. We say that two covers U and V are equivalent if V ≺ U and U ≺ V .

V

V

5

6

V
V V3

4V

V

1

2

U
U

U

1

2

3

U

V

Figure 10.3: Let U = U1 ∪ U2 ∪ U3. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6. Then U ≺ V
with τ : {1, 2, 3, 4, 5, 6} → {1, 2, 3} where τ(1) = 1, τ(2) = 1, τ(3) = 2, τ(4) = 2, τ(5) = 3,
τ(6) = 3 since V1 ⊆ U1, V2 ⊆ U1, V3 ⊆ U2, V4 ⊆ U2, V5 ⊆ U3, V6 ⊆ U3.

Let τ : J → I be a function such that

Vj ⊆ Uτ(j) for all j ∈ J

as above. Then we can define a homomorphism from Cp(U ,F) to Cp(V ,F) denoted by τ p

as follows: for every p-cochain f ∈ Cp(U ,F), let τ pf ∈ Cp(V ,F) be the p-cochain given by

(τ pf)j0···jp = ρUV (fτ(j0)···τ(jp))

1This is the notation used by Bott and Tu [2]. Serre uses the opposite notation V ≺ U in FAC [44]
(Chapter 1, §3, Subsection 22).
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for all (j0, . . . , jp) ∈ Jp+1, where ρUV denotes the restriction map associated with the inclusion
of Vj0···jp into Uτ(j0)···τ(jp).

For example, if we take the refinement U ≺ V illustrated by Figure 10.3, set p = 0, and
take a cochain f = (f1, f2, f3) ∈ C0(U ,F), where f1 is an element of the group associated
with U1, f2 is an element of the group associated with U2, and f3 is an element of the group
associated with U3, we calculate τ 0f ∈ C0(V ,F) as

(τ 0f)1 = ρU1
V1

(fτ(1)) = ρU1
V1

(f1)

(τ 0f)2 = ρU1
V2

(fτ(2)) = ρU1
V2

(f1)

(τ 0f)3 = ρU2
V3

(fτ(3)) = ρU2
V3

(f2)

(τ 0f)4 = ρU2
V4

(fτ(4)) = ρU2
V4

(f2)

(τ 0f)5 = ρU3
V5

(fτ(5)) = ρU3
V5

(f3)

(τ 0f)6 = ρU3
V6

(fτ(6)) = ρU3
V6

(f3).

In other words

τ 0(f1, f2, f3) = (ρU1
V1

(f1), ρU1
V2

(f1), ρU2
V3

(f2), ρU2
V4

(f2), ρU3
V5

(f3), ρU3
V6

(f3)).

Note that even if the jk’s are distinct, τ may not be injective so the τ(jk)’s may not be
distinct. This is why it is necessary to define the modules Cp(U ,F) using families indexed
by sequences whose elements are not necessarily distinct.

It is easy to see that the map τ p : Cp(U ,F)→ Cp(V ,F) commutes with δF so we obtain
homomorphisms

τ ∗p : Hp(U ,F)→ Hp(V ,F).

Proposition 10.3. Given any two open covers U and V of a space X, if U ≺ V and if
τ1 : J → I and τ2 : J → I are functions such that

Vj ⊆ Uτ1(j) and Vj ⊆ Uτ2(j) for all j ∈ J,

then τ ∗p1 = τ ∗p2 for all p ≥ 0.

Proof Sketch. Following Serre (see FAC [44], Chapter 1, §3, Subsection 21), given any f ∈
Cp(U ,F), let

(kpf)j0···jp−1 =

p−1∑
h=0

(−1)hρh(fτ1(j0)···τ1(jh)τ2(jh)···τ2(jp−1))

for all (j0, . . . , jp−1) ∈ Jp, where ρh denotes the restriction map associated with the inclusion
of Vj0···jp−1 into Uτ1(j0)···τ1(jh)τ2(jh)···τ2(jp−1). Then, it can be verified that

δF ◦ kp(f) + kp+1 ◦ δF(f) = τ p2 (f)− τ p1 (f),

which means that the maps kp : Cp(U ,F) → Cp−1(V ,F) define a chain homotopy, and by
Proposition 2.17, we have τ ∗p1 = τ ∗p2 for all p ≥ 0.
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Proposition 10.3 implies that if U ≺ V , then there is a homomorphism

ρUV : Ȟp(U ,F)→ Ȟp(V ,F).

It is easy to check that the relation U ≺ V among covers is a directed preorder; indeed,
given any two covers U = (Ui)i∈I and V = (Vj)j∈J , the cover W = (Ui ∩ Vj)(i,j)∈I×J is a
common refinement of both U and V , so U ≺ W and V ≺ W . It is also immediately verified
that if U ≺ V ≺ W , then

ρUW = ρVW ◦ ρUV
and that

ρUU = id.

Furthermore, if U and V are equivalent, then because

ρVU ◦ ρUV = id and ρUV ◦ ρVU = id,

we see that

ρUV : Ȟp(U ,F)→ Ȟp(V ,F)

is an isomorphism.

Consequently, it appears that the family (Ȟp(U ,F))U is a direct mapping family of
modules indexed by the directed set of open covers of X.

However, there is a set-theoretic difficulty, which is that the family of open covers of X
is not a set because it allows arbitrary index sets.2

A way to circumvent this difficulty is provided by Serre (see FAC [44], Chapter 1, §3,
Subsection 22). The key observation is that any covering (Ui)i∈I is equivalent to a covering
(U ′λ)λ∈L whose index set L is a subset of 2X . Indeed, we can take for (U ′λ)λ∈L the set of all
open subsets of X that belong to the family (Ui)i∈I .

As we noted earlier, if U = (Ui)i∈I and V = (Vj)j∈J are equivalent, then there is an
isomorphism between Ȟp(U ,F) and Ȟp(V ,F), so we can define

Ȟp(X,F) = lim−→
U

Ȟp(U ,F)

with respect to coverings U = (Ui)i∈I whose index set I is a subset of 2X . Another way to
circumvent the set theoretic difficulty is to use a device due to Godement ([18], Chapter 5,
Section 5.8).

In summary, we have the following definition.

2Most textboook presentations of Čech cohomology ignore this subtle point.
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Definition 10.7. Given a topological space X and a presheaf F of R-modules on X, the
Čech cohomology groups Ȟp(X,F) with values in F are defined by

Ȟp(X,F) = lim−→
U

Ȟp(U ,F)

with respect to coverings U = (Ui)i∈I whose index set I is a subset of 2X . The classical Čech
cohomology groups Ȟp(X;G) with coefficients in the R-module G are the groups Ȟp(X,GX)
where GX is the constant presheaf with value G.

Remark: Warner [50] and Bott and Tu [2] (second edition) define the classical Čech co-

homology groups Ȟp(X;G) as the groups Ȟp(X, G̃X), where G̃X is the sheaf of locally
constant functions with values in G. Although this is not obvious, if X is paracompact,
then the groups Ȟp(X,GX) are Ȟp(X, G̃X) are isomorphic; this is proved in Proposition
13.15. As a consequence, for manifolds (which by definition are paracompact), this makes
no difference. However, Alexander–Lefschetz duality is proved for the classical definition of
Čech cohomology corresponding to the case where the constant presheaf GX is used, and
this is why we used it in our definition.

Next, we will investigate the relationship between de Rham cohomology and classical
Čech cohomology for the constant sheaf R̃X (corresponding to coefficients in R), and singular

cohomology and classical Čech cohomology for the constant sheaf Z̃X (corresponding to
coefficients in Z). For manifolds, the de Rham cohomology and the classical Čech cohomology

for the constant sheaf R̃X are isomorphic, and the singular cohomology and the classical
Čech cohomology for the constant sheaf Z̃X are also isomorphic. Furthermore, we will see
that if our spaces have a good cover U , then the Čech cohomology groups Ȟp(U , R̃X) are
independent of U and in fact isomorphic to the de Rham cohomology groups Hp

dR(X), and

similarly the Čech cohomology groups Ȟp(U , Z̃X) are independent of U and in fact isomorphic
to the singular cohomology groups Hp(X;Z) (if X is triangularizable).

Theorem 10.4. Let M be a smooth manifold. The de Rham cohomology groups are isomor-
phic to the Čech cohomology groups with values in the sheaf R̃M , and also isomorphic to the
Čech cohomology groups associated with good covers (with values in the sheaf R̃M):

Hp
dR(M) ∼= Ȟp(M, R̃M) ∼= Ȟp(U , R̃M),

for all p ≥ 0 and all good covers U of M .

By a previous remark, since manifolds are paracompact, the above theorem also holds
with the constant presheaf RM instead of the sheaf R̃M .

Theorem 10.4 is proved in Bott and Tu [2] (Theorem 8.9 and Proposition 10.6). The
technique used for proving the first isomorphism is based on an idea of André Weil. The idea
is to use a double complex known as the Čech–de–Rham complex. A complete exposition is
given in Chapter 2, Section 8, of Bott and Tu [2], and we only give a sketch of the argument.
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Let M be a smooth manifold. The differential p-forms on M form a sheaf ApX with
Γ(U,ApX) = Ap(U), the vector space of p-forms on the open subset U ⊆ X. We define the
double complex AC∗,∗ by

ACp,q =
⊕

I,|I|=p+1

Γ(UI ,AqX).

There are two differentials

d : ACp,q → ACp,q+1 and δ : ACp,q → ACp+1,q

and we have d ◦ d = 0 and δ ◦ δ = 0. We associate to the double complex AC∗,∗ the single
complex AC∗ defined by

ACn =
⊕
p+q=n

ACp,q,

with the differential Dn : ACn → ACn+1 given by

Dn = δ + (−1)nd.

It is easily verified that

Dn+1 ◦Dn = 0.

The cohomology of the complex (AC∗, D) is denoted by HD{AC∗(U ,A∗X)}. It is shown in
Bott and Tu [2] (Proposition 8.8) that there is an isomorphism

H∗dR(M) ∼= HD{AC∗(U ,A∗X)}.

Furthermore, if U is a a good cover, it is shown in Bott and Tu [2] (before Theorem 8.9)
that there is an isomorphism

Ȟp(U , R̃M) ∼= HD{AC∗(U ,A∗X)}.

Consequently, we obtain an isomorphism

Hp
dR(M) ∼= Ȟp(U , R̃M)

for all good covers U and all p ≥ 0. Since every smooth manifold has a good cover (see
Theorem 3.3), and since the good covers are cofinal in the set of all covers of M (with index
set in 2M), following Bott and Tu [2] (Proposition 10.6), we obtain the isomorphism

Ȟp(M, R̃M) ∼= Ȟp(U , R̃M)

for all good covers U and all p ≥ 0.

We now turn to singular cohomology.
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Theorem 10.5. If X is a paracompact topological manifold and if G is a R-module over a
commutative ring R, then the singular cohomology groups Hp(X;G) are isomorphic to the

Čech cohomology groups Ȟp(X, G̃X):

Hp(X;G) ∼= Ȟp(X, G̃X) for all p ≥ 0.

If X is a topological space and if U is a good cover of X, then we have isomorphisms between
the singular cohomology groups Hp(X;Z) and the Čech cohomology groups Ȟp(X, Z̃X) and

Ȟp(U , Z̃X):

Hp(X,Z) ∼= Ȟp(U , Z̃X) ∼= Ȟp(X, Z̃X) for all p ≥ 0.

In particular, the above holds if X is a smooth manifold.

By a previous remark, since our spaces are paracompact, the above theorem also holds
with the constant presheaf GX (or ZX) instead of the sheaf G̃X (or Z̃X)).

The proof of the isomorphism Hp(X;G) ∼= Ȟp(X, G̃X) takes a lot of work. A version
of this proof can be found in Warner [50] (Chapter 5). Another type of cohomology known
as sheaf cohomology is introduced, and it is shown that both singular cohomology and
Čech cohomology agree with sheaf cohomology if X is paracompact and locally Euclidean.
Sheaf cohomology is a special case of Grothendieck’s approach to cohomology using derived
functors. This is a very general and poweful approach which is discussed in Chapter 13.

The other isomorphisms involving good covers are proved in Bott and Tu [2] using double
complexes; see Chapter III, §15, Theorem 15.8.

If should be noted that if the space X is not well-behaved, then singular cohomology and
singular homology may differ. For example, if X is the topologist’s sine curve (a space which
is connected but neither locally connected nor path connected), it can be shown that

H1(X;Z) = (0)

Ȟ1(X;Z) = Z;

see Munkres [38] (Chapter 8, §73).
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Chapter 11

Presheaves and Sheaves; A Deeper
Look

11.1 Stalks and The Sheafification of a Presheaf

In the case where F is a presheaf on a topological space X and x is any given point in X, the
direct limit lim−→(F(U))U3x of the direct mapping family (F(U))U3x plays an important role.

In particular, these limits called stalks can be used to construct a sheaf F̃ from a presheaf
F ; furthermore, the sheaf F̃ is the “smallest” sheaf extending F , in a technical sense that
will be explained later. If F is already a sheaf, then F̃ is isomorphic to F .

Definition 11.1. If F is a presheaf on a topological space X and x is any given point in
X, the direct limit lim−→(F(U))U3x of the direct mapping family (F(U))U3x, as defined in
Example 9.4 (2), is called the stalk of F at x, and is denoted by Fx. For every open subset
U such that x ∈ U , we have a projection map ρU,x : F(U)→ Fx, and we write fx = ρU,x(f)
for every f ∈ F(U). One calls fx the germ of f at x. See Figure 11.1.

If F is the presheaf (actually a sheaf) of continuous functions given by F(U) = C0(U),
the set of continuous functions defined on an open subset U containing x, then Fx is just
the set of germs of locally defined functions near x. Indeed, two locally defined functions
f ∈ C0(U) and g ∈ C0(V ) near x are equivalent iff their restrictions to U ∩ V agree.

For an arbitrary sheaf F , the stalk Fx is the set of equivalence classes defined such that
for any two open subsets U and V both containing x, the “local” sections f ∈ F(U) and
g ∈ F(V ) are equivalent, written f ∼ g, iff there is some open subset W containing x such
that W ⊆ U ∩ V and ρUW (f) = ρVW (g). So, we can also think of the elements of Fx are
“abstract germs” of local sections near x.

For a constant presheaf GX on X with values in G, we have GX,x = G for all x ∈ X.
Beware that for some pathological presheaves F (for example, of abelian groups), it is possible
that Fx = (0) for all x ∈ X, even though F is not the constant presheaf with value 0. An

243



244 CHAPTER 11. PRESHEAVES AND SHEAVES; A DEEPER LOOK

x

sx

tx

U

U

U

U

1

2

3

4

ρU3
U4

ρ
U4

ρ
U4

U2

U1

F
x

F (U1)

F (U2 )

F (U3 )
F (U4 )

S

t

S

t

S

t

S

t

Figure 11.1: A schematic representation of Fx for x ∈ R2. We illustrate the direct limit
construction for two germs, sx and tx. Elements of the presheaf F are the spherical balloons.
Since U4 ⊆ U3 ⊆ U2 ⊆ U1, the presheaf restriction maps imply that all images of s are
equivalent to the image of s in U4, and all the images of t are equivalent to the image of
t in U4. By continuing this process, we form the equivalence classes sx and tx, which we
illustrate as little disks centered on the radial stalk extending from x ∈ R2.

example is given by the following presheaf. Let X be any topological space with at least two
points (for example, X = {0, 1}), and let F1 be the presheaf given by

F1(U) =

{
Z if U = X

(0) if U 6= X is an open subset,

with all ρUV equal to the zero map except if U = V = X (in which case it is the identity). It
is easy to check that F1,x = (0) for all x ∈ X.

The following result will be needed in Section 11.4.

Proposition 11.1. Let F be a presheaf on a topological space X. If F satisfies Condition
(M), then for any open subset U of X, for any sections s, t ∈ F(U), we have

s = t iff sx = tx for all x ∈ U.
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Proof. Obviously if s = t then sx = tx for all x ∈ U . Conversely, for every x ∈ U , there is
some open subset Ux ⊆ U containing x such that ρUUx(s) = ρUUx(t), and by Condition (M),
we conclude that s = t.

A map ϕ : F → G between two presheaves F and G on a topological space X induces
maps of stalks ϕx : Fx → Gx for all x ∈ X. When F and G are sheaves, these maps carry a
lot of information about ϕ.

To define ϕx : Fx → Gx we proceed as follows. Any element γ ∈ Fx is an equivalence
class γ = sx for some section s ∈ F(U) and some open subset U of X containing x. Let

ϕx(sx) = (ϕU(s))x,

where ϕU : F(U)→ G(U) is the map defining ϕ on U . We need to prove that this definition
does not depend on the choice of the representative in the equivalence class γ. If t ∈ F(V )
is another section such that s ∼F t, then there is some open subset W such that W ⊆ U ∩V
and (ρF)UW (s) = (ρF)VW (t). Since ϕ is a map of presheaves, the following diagrams commute

F(U)
ϕU //

(ρF )UW
��

G(U)

(ρG)UW
��

F(W ) ϕW
// G(W )

F(V )
ϕV //

(ρF )VW
��

G(V )

(ρG)VW
��

F(W ) ϕW
// G(W ),

and we get

(ρG)
U
W (ϕU(s)) = ϕW ((ρF)UW (s)) = ϕW ((ρF)VW (t)) = (ρG)

V
W (ϕV (t)),

which shows that ϕU(s) ∼G ϕV (t), thus (ϕU(s))x = (ϕV (t))x. Therefore, ϕx is well defined
and suggests the following definition of a map of stalks, which a special instance of Definition
9.10.

Definition 11.2. A map ϕ : F → G between two presheaves F and G on a topological space
X induces maps of stalks ϕx : Fx → Gx for all x ∈ X defined as follows: for every γ ∈ Fx, if
γ = sx for some section s ∈ F(U) and some open subset U of X containing x, set

ϕx(sx) = (ϕU(s))x.

See Figure 11.2. By the above argument this definition does not depend on the choice of the
representative chosen in the equivalence class γ.

If ϕ : F → G and ψ : G → H are two maps of presheaves, it is immediately verified that

(ψ ◦ ϕ)x = ψx ◦ ϕx

and
(idF)x = idFx ,

for all x ∈ X (where idF denotes the identity map of the presheaf F).
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Figure 11.2: A schematic representation of ϕx : Fx → Gx which maps the dark purple “stick”
onto the plum “stick”. The result of this stalk mapping is the same as first mapping the
presheaf element F(U) onto G(U) and then using the direct limiting procedure to compute
the stalk of ϕU(s) where s ∈ F(U).

Proposition 11.2. Let F and G be two presheaves on a topological space X, and let ϕ : F →
G and ψ : F → G be two maps of presheaves. If G satisfies Condition (M) (in particular, if
G is a sheaf) and if ϕx = ψx for all x ∈ X, then ϕ = ψ.

Proof. We need to prove that ϕU(s) = ψU(s) for any open subset U of X and any s ∈ F(U).
Since ϕx = ψx for every x ∈ X, for every x ∈ U we have

ϕx(sx) = ψx(sx),

that is,
(ϕU(s))x = (ψU(s))x.

The above equations means that there is some open subset Ux of X such that Ux ⊆ U and

(ρG)
U
Ux(ϕU(s)) = (ρG)

U
Ux(ψU(s)).

Since the family (Ux)x∈U is an open cover of U , Condition (M) implies that ϕU(s) = ψU(s),
and so ϕ = ψ.

Proposition 11.2 shows that if ϕ : F → G is a map of sheaves, then ϕ is uniquely deter-
mined by the family of stalk maps ϕx : Fx → Gx.
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Next, given a presheaf F on X, we construct a sheaf F̃ and a presheaf map η : F → F̃
such that F satisfies Condition (M) iff η is injective, and F is a sheaf iff η is an isomorphism.
We follow Godement’s exposition [18] (Chapter II, Section 1.2), which we find to be one of
the most lucid.

The key idea is to make the disjoint union
∐

x∈X Fx of all the stalks into a topological

space denoted SF , with a projection function p : SF → X, and to let F̃ be the sheaf Γ[SF , p]
of continuous sections of p, as in Example 9.2(1). See Figures 11.3 and 11.4.
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Fx2

x2

SF

Figure 11.3: A schematic representation of
∐

x∈X Fx for X = R2. The top picture illustrates
five “stalks” before taking the disjoint union. Once the disjoint union is formed, the “stalks”
are lined up in parallel planes.

If we let SF =
∐

x∈X Fx be the disjoint union of all the stalks, we denote by p the
function p : SF → X given by p(γ) = x for all γ ∈ Fx. For every (nonempty) open subset U
of X, we view each “abstract” section s ∈ F(U) as the actual function s̃ : U → SF given by

s̃(x) = sx, x ∈ U.

By definition, s̃ is a section of p. The final step is to give SF the finest topology which
makes all the functions s̃ continuous. Consequently, a subset Ω of SF is open iff for every
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open subset U of X and every s ∈ F(U), the subset

{x ∈ U | s̃(x) = sx ∈ Ω}

is open in X. The space SF endowed with the above topology is called the stalk space of
the presheaf F , and we let F̃ be the sheaf Γ[SF , p] of continuous sections of p. See Figure
11.4.

Fx2

x2x

s~ s~

2 s
x

s
x

Fx

SF

2
1

1

Ω

U

Fx2

x2x

Fx

SF

Figure 11.4: A schematic representation of the region around “first plane” in SF where
X = R2. The top picture illustrates two sections s̃1 and s̃2. The bottom picture illustrates
the relationship between Ω, an open “spherical” set of SF , and U , an open set ofX containing
x. Both s̃1 and s̃2 are open sets in SF .

We claim that s̃(U) is open in SF . It suffices to show that for any sx ∈ s̃(U) (with
x ∈ U and s ∈ F(U)), for any open subset V containing x, and for any t ∈ F(V ), the subset
{x ∈ U ∩ V | t̃(x) = tx = sx = s̃(x)} is open in X. However, tx = sx means that there is
some open subset W ⊆ U ∩ V containing x such that ρUW (t) = ρVW (s) on W , which means
that {x ∈ U ∩ V | tx = sx} is indeed open in X.

Clearly, every open subset Ω of SF is the union of the open subsets s̃(U) such that
s̃(U) ⊆ Ω, and these form a basis of this topology, because for any sx ∈ s̃(U) ∩ t̃(V ), some
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open subset of the form ρ̃UW (s)(W ) = ρ̃VW (t)(W ) is contained in s̃(U) ∩ t̃(V ), for some open
subset W ⊆ U ∩ V containing x.

The function p is continuous because

p−1(U) =
⋃

s∈F(V )
V⊆U, V open

s̃(V ).

For any open subset U of X and any s ∈ F(U), since s̃ is the inverse of the restriction of p
to s̃(U), we see that p is a local homeomorphism.

In summary, we proved the following proposition.

Proposition 11.3. Let F be a presheaf on a topological space X. The stalk space SF
together with the finest topology that makes all the maps s̃ : U → SF continuous has a basis
for its topology consisting of the subsets of the form s̃(U), for all open subsets U of X and
all s ∈ F(U). Furthermore, the projection map p : SF → X is a local homeomorphism.

It should be noted that the topology of SF is not assumed to be Hausdorff. In fact,
in many interesting examples it is not. We called the space SF the stalk space of F . In
Godement [18] and most of the French literature, the space SF is called “espace étalé.” A
rough translation is “spread over space” or “laid over space.”

Definition 11.3. Given any presheaf F on a topological space X, the map η : F → F̃ is
defined such that for every open subset U of X, for every s ∈ F(U),

ηU(s) = s̃.

It is easily checked that η = (ηU) is indeed a map of presheaves. We now take a closer

look a the map η : F → F̃

Proposition 11.4. Let F be a presheaf on a topological space X. The presheaf F satisfies
Condition (M) iff the presheaf map η : F → F̃ is injective

Proof. We follow Serre’s proof in FAC [44] (Chapter I, Section 3). First assume that F
satisfies Condition (M). We have to prove that for every open subset U of X, for any two
elements s, t ∈ F , if s̃ = t̃, then s = t. Now, s̃ = t̃ iff sx = tx for all x ∈ U , which means
that there is some open subset Ux of U containing x such that

ρUUx(s) = ρUUx(t).

Since the family (Ux)x∈U is an open cover of U , by Condition (M) we must have s = t.

Conversely, assume that ηU : F(U) → F̃(U) is injective. Pick any s, t ∈ F(U), and
assume there is some open cover (Ui)i∈I of U such that ρUUi(s) = ρUUi(t) for all i ∈ I. By
definition of a direct limit, for any x ∈ U ,

s̃(x) = sx = (ρUUi(s))x and t̃(x) = tx = (ρUUi(t))x,
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so if ρUUi(s) = ρUUi(t) then s̃(x) = t̃(x) for all x ∈ U ; that is, s̃ = t̃. Since ηU is injective, we
conclude that s = t, which means that Condition (M) holds.

The next proposition characterizes when η is an isomorphism.

Proposition 11.5. Let F be a presheaf on a topological space X and assume that F satisfies
Condition (M). The presheaf map η : F → F̃ is surjective iff Condition (G) holds. As a
consequence, η is an isomorphism iff F is a sheaf.

Proof. Again, we follow Serre’s proof in FAC [44] (Chapter I, Section 3). By Proposition
11.4 Condition (M) holds iff η is injective, so we may assume that η is injective.

First assume that F satisfies Condition (G). For any open subset U of X, for any con-
tinuous section f : U → SF , for any x ∈ U , since f(x) ∈ Fx, there is some open sub-
set Ux of U containing x and some sx ∈ F(Ux) such that f(x) = (sx)x. Since s̃x and
f both invert p on Ux, we see that the restriction of f to Ux agrees with s̃x. Observe
that (ρUUx∩Uy(s

x))z = (ρUUx∩Uy(s
y))z = f(z) for all x, y ∈ U and all z ∈ Ux ∩ Uy, that is,

˜ρUUx∩Uy(s
x) = ˜ρUUx∩Uy(s

y). Since η is injective, we get

ρUUx∩Uy(s
x) = ρUUx∩Uy(s

y).

But then, by Condition (G), the sx patch to some s ∈ F(U) such that ρUUx(s) = sx, thus
ηU(s) = s̃ agrees with s̃x = f |Ux on each Ux, which means that ηU(s) = f . See Figure 11.5.

Conversely, assume that ηU is surjective (and injective) for every open subset U of X.
Let (Ui)i∈I be some open cover of U and let (si)i∈I be a family of elements si ∈ F(Ui) such
that

ρUUi∩Uj(si) = ρUUi∩Uj(sj)

for all i, j. It follows that the sections fi = s̃i and fj = s̃j agree on Ui ∩Uj, so they patch to
a continuous section f : U → SF which agrees with fi on each Ui. Since ηU is assumed to
be surjective, there is some s ∈ F(U) such that ηU(s) = f . Then, if we write s′i = ρUUi(s), we

see that s̃′i = fi. Since fi = s̃i = s̃′i for all i and since η is injective, we conclude that si = s′i;
that is, ρUUi(s) = si, which shows that Condition (G) holds.

Propositions 11.4 and 11.5 show that the Conditions (M) and (G) in the definition of a
sheaf (Definition 9.4) are not as arbitrary as they might seem. They are just the conditions
needed to ensure that a sheaf is isomorphic to a sheaf of sections of a certain space.

Remark: We proved earlier that for any open subset U of X, for any two continuous sections
f and g in Γ(U, SF), the subset W = {x ∈ U | f(x) = g(x)} is open. If the stalk space SF
is Hausdorff, then W is also closed. It follows that if U is a connected open subset of X,
if two continuous sections f and g in Γ(U, SF) agree at some point, then f = g. In other
words, the principle of analytic continuation holds. If F is the sheaf of continuous functions
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Figure 11.5: A schematic representation of the proof that a presheaf F which satisfies Con-
ditions (M) and (G) implies η is surjective. The top two diagrams are related to F while

the bottom diagram is related to F̃ . Note that X is R.

on Rn, the principle of analytic continuation fails so SF is not Hausdorff. However, if F is
the sheaf of holomorphic functions on a complex analytic manifold, then SF is Hausdorff.

If we examine more closely the construction of the sheaf F̃ from a presheaf F , we see
that we actually used two constructions:

(1) Given a presheaf F , we constructed the stalk space SF and we gave it a topology that
made the projection p : SF → X into a local homeomorphism. This is the construction
S (“stalkification”), which constructs the stalk space (SF , p) from a presheaf F .

(2) Given a pair (E, p), where p : E → X is a local homeomorphism, we constructed the
sheaf Γ[E, p] (abbreviated as ΓE) of continuous sections of p.

Observe that the construction F 7→ F̃ is the composition of S and Γ, that is, F̃ = ΓSF ,
and Proposition 11.5 shows that if F is a sheaf, then ΓSF is isomorphic to F .

It is natural to take a closer look at the properties of a pair (E, p), where p : E → X is a
local homeomorphism, and to ask what is the effect of applying the operations Γ and S to
the space E. We will see that the stalk space SΓE is isomorphic to the original space E.

The upshot of all this is that the constructions S and Γ are essentially inverse of each
other, modulo some isomorphisms. To make this more precise we need to define what kind
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of objects are in the domain of Γ, and what are the maps between such objects.1

11.2 Stalk Spaces (or Sheaf Spaces)

As we just explained, given a presheaf F , the construction of the stalk space SF yields a
pair (SF , p), where p : SF → X is the projection, and by Proposition 11.3 the map p is a
local homeomorphism. This suggests the following definition.

Definition 11.4. A pair (E, p) where E is a topological space and p : E → X is a surjective
local homeomorphism is called a stalk space (or sheaf space2). A map (or morphism) of stalk
spaces (E1, p1) and (E2, p2) is a continuous map ϕ : E1 → E2 such that the following diagram
commutes:

E1
ϕ //

p1 !!

E2

p2}}
X.

Observe that the commutativity of the diagram implies that ϕ maps fibres of E1 to fibres
of E2.

The main construction on a stalk space (E, p) is the construction Γ described in Example
9.2 (1), which yields the sheaf Γ[E, p] (abbreviated ΓE) of continuous sections of p, with

Γ[E, p](U) = Γ(U,Γ[E, p]) = {s : U → E | p ◦ s = id and s is continuous}

for any open subset U of X. This construction also applies to maps of stalk spaces (it is
functorial).

Definition 11.5. Given a map ϕ : E1 → E2 of stalk spaces (E1, p1) and (E2, p2) we obtain a
map of sheaves Γϕ : ΓE1 → ΓE2 defined as follows: For every open subset U of X, the map
(Γϕ)U : Γ(U,E1)→ Γ(U,E2) is given by

(Γϕ)U(f) = ϕ ◦ f,

as illustrated by the diagram below:

E1
ϕ //

p1 !!

E2

p2}}
U

f
>>

� � // X.

1Actually, S and Γ are functors between certain categories.
2The terminology “sheaf space” is used by Tennison [48]. Godement uses the terminology “espace étalé.”
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It is immediately checked that Γϕ is a map of sheaves. Also, if ϕ : E1 → E2 and ψ : E2 →
E3 are two maps of stalk spaces, then

Γ(ψ ◦ ϕ) = Γψ ◦ Γϕ,

and ΓidE = idΓE. This means that the construction Γ is functorial.

Here are a few useful properties of stalk spaces. In particular, we will see that the fibres
of a stalk space are isomorphic to the stalks of the sheaf ΓE of continuous sections.

Proposition 11.6. Let (E, p) be a stalk space. Then the following properties hold:

(a) The map p is an open map.

(b) For any open subset U of X and any continuous section f ∈ Γ(U,E), the subset f(U)
is open in E; such open subsets form a basis for the topology of E.

(c) For any commutative diagram

E1
ϕ //

p1   

E2

p2~~
X

where (E1, p2) and (E2, p2) are stalk spaces, the map ϕ is continuous iff it is an open
map iff it is a local homeomorphism.

Proof. (a) Let V be any nonempty open subset in E. For any x ∈ p(V ) let e ∈ E be any
point in E such that p(e) = x. Since p is a local homeomorphism, there is some open subset
W of E containing e such that p(W ) is open in X. Then p(W ) is some open subset of p(V )
containing x, so p(W ) is open. See Figure 11.6.

(b) For any e ∈ f(U), since p is a local homeomorphism there is some open subset W of
E containing e such that p(W ) is open in X and p maps W homeomorphically onto p(W ).
It follows that p maps f(U) ∩W homeomorphically onto U ∩ V , where V = p(W ) (since f
is a section of p). Since U ∩V is open in X, the subset f(U)∩W is an open subset of f(W )
containing e, which shows that f(U) is open. Using (a), it is easy to see that open subsets
of the form f(U) form a basis for the topology of E.

(c) A proof can be found in Tennison [48] (see Chapter 2, Lemma 3.5).

The next proposition tells us that the fibres of a stalk space are stalks of the sheaf ΓE.

Proposition 11.7. Let (E, p) be a stalk space. For any x ∈ X, the stalk (ΓE)x of the sheaf
ΓE of continuous sections of p is isomorphic to the fibre p−1(x) at x. Furthermore, as a
subspace of E, the fibre p−1(x) has the discrete topology.
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E

X

p

V

p(V)

x

e

= p(e)

W

p(W)

Figure 11.6: A schematic representation of the stalk space (E, p) where E is the rectangle
and X its red edge. The open set V may be thought of as a section f ∈ Γ(p(V ), E).

Proof. Pick any x ∈ X. For any open subset U of X with x ∈ U we have a map
EvalU,x : Γ(U,E)→ p−1(x) given by

EvalU,x(f) = f(x)

for any continuous section f : U → E of p. For any open subset V such that V ⊆ U and
x ∈ V the following diagram commutes

Γ(U,E)
θUV //

EvalU,x %%

Γ(V,E)

EvalV,xyy
p−1(x),

where the map θUV : Γ(U,E) → Γ(V,E) is the restriction map. We use Proposition 9.1 to
prove that (p−1(x),EvalU,x) is a direct limit. By the universal mapping property, p−1(x) is
isomorphic to the direct limit (ΓE)x of the direct mapping family ((Γ(U,E))U , (θ

U
V )).

(a) We need to show that for every e ∈ p−1(x), there is some open subset U of X and
some section f ∈ Γ(U,E) such that f(x) = e. Since p is a local diffeomorphism,
there is some open subset W of E such that e ∈ W and the restriction p|W maps W
homeomorphically onto an open subset U = p(W ) of X. Then the inverse f of p|W is
a continuous section in Γ(U,E) such that f(x) = e. Observe that p−1(x) ∩W = {e},
which shows that the fibre p−1(x) has the discrete topology.



11.2. STALK SPACES (OR SHEAF SPACES) 255

(b) For any x ∈ X, suppose that EvalU,x(f) = f(x) = g(x) = EvalV,x(g) where f ∈ Γ(U,E)
and g ∈ Γ(V,E), with x ∈ U ∩ V . Then, by Proposition 11.6 both f(U) and g(V ) are
open in E so W = f(U) ∩ g(U) is open and f and g agree on p(W ) (since they are
both the inverse of p on U ∩ V ), which by Proposition 11.6 is open. This means that

θUp(W )(f) = θUp(W )(g),

which shows that Condition (b) of Proposition 9.1 is also satisfied.

Therefore, the stalk (ΓE)x of the sheaf ΓE is isomorphic to the fibre p−1(x) at x.

Proposition 11.7, when combined with Definition 11.3, has the following corollaries.

Proposition 11.8. For any presheaf F on a space X, the map η : F → F̃ induces isomor-
phisms of stalks ηx : Fx → F̃x for all x ∈ X.

Proof. By construction the stalk Fx of F at x is equal to the fibre p−1(x) of the stalk space

SF , and F̃ = ΓSF , the sheaf of continuous sections of p, so F̃x = (ΓSF)x. By Proposition

11.7, we have Fx ∼= F̃x. It remains to show that ηx is a stalk isomorphism. The stalk
map ηx : Fx → F̃x as given by Definition 9.10 is the unique map that makes the following
diagrams commute

F(U)
ηU //

ρU,x

��

Γ(U, SF)

ρ̃U,x

��

Fx ηx
// F̃x

for all open subsets U of X with x ∈ U . Since p−1(x) = Fx, by Proposition 11.7, there

are isomorphisms θx : F̃x → p−1(x) and thus θx : F̃x → Fx such that the following diagrams
commute:

Γ(U, SF)

ρ̃U,x

{{

EvalU,x

##
F̃x θx

// Fx.

Consequently, the diagrams

F(U)
ηU //

ρU,x

��

Γ(U, SF)

EvalU,x

��
Fx θx◦ηx

// Fx

all commute. However, for all s ∈ F(U), we have

ρU,x(s) = sx = s̃(x) = EvalU,x(ηU(s)) = (EvalU,x ◦ ηU)(s),
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so the above diagrams also commute with id instead of θx ◦ ηx, and by uniqueness of such a
map making all these diagrams commute, we must have

θx ◦ ηx = id.

Since θx is an isomorphism, so must be ηx.

Proposition 11.9. For any stalk space (E, p), there is a stalk space isomorphism ε : E →
SΓE.

Proof sketch. For every x ∈ X, by Proposition 11.7 there are isomorphisms εx : p−1(x) →
(ΓE)x. Since the fibre of SΓE at x is equal to (ΓE)x, the bijections εx define a bijection
ε : E → SΓE such that p = Γp ◦ ε, where Γp : SΓE → X is the projection associated with
the stalk space SΓE. It remains to check that ε is continuous, which is shown in Tennison
[48] (Chapter II, Theorem 3.10).

Strictly speaking the map ε : E → SΓE depends on E, so it should really be denoted by
εE. It can be shown that the family ε of maps εE is natural in the following sense: for every
map ϕ : E1 → E2 of stalk spaces (E1, p1) and (E2, p2), the following diagram commutes:

E1

εE1 //

ϕ

��

SΓE1

SΓϕ

��
E2 εE2

// SΓE2.

The construction of the stalk space SF (and of the sheaf F̃) from a presheaf F is functorial
in the following sense.

Proposition 11.10. Given any map of preshaves ϕ : F → G, there is a map of stalk spaces
Sϕ : SF → SG induced by the stalk maps ϕx : Fx → Gx for all x ∈ X, and a map of sheaves
ϕ̃ : F̃ → G̃.

Proof. Since SF is the disjoint union of the stalks Fx of F and SG is the disjoint union of
the stalks Gx of G, the stalk maps ϕx : Fx → Gx define a map Sϕ : SF → SG. It can be
checked that the following diagram commutes

SF Sϕ //

p1 !!

SG

p2}}
X

and that Sϕ is continuous using Proposition 11.6(c). The map ϕ̃ : F̃ → G̃ is obtained from
Sϕ : SF → SG by applying Γ as in Definition 11.5
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It is easy to check that if ϕ : F → G and ψ : G → H are maps of presheaves, then

S(ψ ◦ ϕ) = Sψ ◦ Sϕ and SidF = idSF . Similarly ψ̃ ◦ ϕ = ψ̃ ◦ ϕ̃ and ĩdF = idF̃ .

Strictly speaking the map η : F → F̃ depend on F , so it should really be denoted by
ηF : F → F̃ . It is easy to check that the family η of maps ηF is natural in the following
sense: given any presheaf map ϕ : F → G, the following diagram commutes:

F ηF //

ϕ

��

F̃
ϕ̃

��

G ηG
// G̃.

Remark: If F is a presheaf on a space X, we define the presheaf F (+) as follows: for every
open subset U of X,

F (+)(U) = Ȟ0(U,F|U),

where Ȟ0(U,F|U) is a Čech cohomology groups defined in Section 10.1. Then it can be
shown that F (+) satisfies Condition (M), and that F (+)(+) is isomorphic to the sheafification

F̃ of F .

The results of the previous sections can be put together to show that the construction
F 7→ F̃ = ΓSF of a sheaf from a presheaf (the sheafification of F) is universal, and that the
constructions S and Γ are essentially mutual inverses.

11.3 The Equivalence of Sheaves and Stalk Spaces

The following theorem shows the universality of the sheafification construction F 7→ F̃ .

Theorem 11.11. Given any presheaf F and any sheaf G, for any presheaf map ϕ : F → G,
there is a unique sheaf map ϕ̂ : F̃ → G such that

ϕ = ϕ̂ ◦ ηF

as illustrated by the following commutative diagram

F ηF //

ϕ
��

F̃
ϕ̂

��
G.

Proof. First we prove that if ϕ̂ : F̃ → G exists, then it is unique. Since ϕ = ϕ̂ ◦ ηF , for every
x ∈ X, by considering the stalk maps we must have

ϕx = ϕ̂x ◦ ηx.
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However, by Proposition 11.8, the map ηx is an isomorphism, which shows that ϕ̂x = ϕx◦η−1
x

is uniquely defined. Since G is a sheaf, by Proposition 11.2 the map ϕ̂ is uniquely determined.

We now show the existence of the map ϕ̂. By Proposition 11.10, the presheaf map
ϕ : F → G yields the sheaf map ϕ̃ : F̃ → G̃. Furthermore, since G is a sheaf, by Proposition
11.5, the map ηG : G → G̃ is an isomorphism. Therefore, we get the sheaf map ϕ̂ = η̃−1

G ◦ ϕ̃
from F̃ to G. Using the naturality of η we see that ϕ = η̃−1

G ◦ ϕ̃ ◦ ηF = ϕ̂ ◦ ηF .

We now go back to the constructions S and Γ to make the equivalence of sheaves and
stalk spaces more precise. The “right” framework to do so is category theory, but we prefer
to remain more informal.

The situation is that we have three kinds of objects and maps between these objects
(categories):

(1) The class (category) PSh(X) whose objects are presheaves over a topological space X
and whose maps (morphisms) are maps of presheaves.

(2) The class (category) Sh(X) whose objects are sheaves over a topological space X and
whose maps (morphisms) are maps of sheaves.

(3) The class (category) StalkS(X) whose objects are stalk spaces over a topological space
X and whose maps (morphisms) are maps of stalk spaces.

Definition 11.2 implies that the operation S maps an object F of PSh(X) to an object
(SF , p : SF → X) of StalkS(X), and a map ϕ : F → G between objects of PSh(X) to a map
Sϕ : SF → SG between objects in StalkS(X), in such that a way that S(ψ ◦ ϕ) = Sψ ◦ Sϕ
and SidF = idSF . In sophisticated terms,

S : PSh(X)→ StalkS(X)

is a functor from the category PSh(X) to the category StalkS(X).

Definition 11.5 implies that the operation Γ maps an object (E, p) from StalkS(X) to
an object ΓE in Sh(X), and a map ϕ : E1 → E2 between two objects (E1, p1) and (E2, p2)
in StalkS(X) to a map Γϕ : ΓE1 → ΓE2 between objects in Sh(X), in such a way that
Γ(ψ ◦ ϕ) = Γψ ◦ Γϕ and ΓidE = idΓE. In sophisticated terms,

Γ: StalkS(X)→ Sh(X)

is a functor from the category StalkS(X) to the category Sh(X).

Note that every sheaf F is also a presheaf, and that every map ϕ : F → G of sheaves is
also a map of presheaves. Therefore, we have an inclusion map

i : Sh(X)→ PSh(X),
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which is a functor. As a consequence, S restricts to an operation (functor)

S : Sh(X)→ StalkS(X).

We also defined the map η which maps a presheaf F to the sheaf ΓS(F) = F̃ , and showed
in Proposition 11.5 that this map is an isomorphism iff F is a sheaf. We also showed that
η is natural. This can be restated as saying that η is a natural isomorphism between the
functors id (the identity functor) and ΓS from Sh(X) to itself.

We also defined the map ε which takes a stalk space (E, p) and makes the stalk space
SΓE, and proved in Proposition 11.9 that ε : E → SΓE is an isomorphism. This can be
restated as saying that ε is a natural isomorphism between the functors id (the identity
functor) and SΓ from StalkS(X) to itself. Then, we see that the two operations (functors)

S : Sh(X)→ StalkS(X) and Γ: StalkS(X)→ Sh(X)

are almost mutual inverses, in the sense that there is a natural isomorphism η between ΓS
and id and a natural isomorphism ε between SΓ and id. In such a situation, we say that the
classes (categories) Sh(X) and StalkS(X) are equivalent . The upshot is that it is basically
a matter of taste (or convenience) whether we decide to work with sheaves or stalk spaces.3

We also have the operator (functor)

ΓS : PSh(X)→ Sh(X)

which “sheafifies” a presheaf F into the sheaf F̃ . Theorem 11.11 can be restated as saying
that there is an isomorphism

HomPSh(X)(F , i(G)) ∼= HomSh(X)(F̃ ,G),

between the set (category) of maps between the presheaves F and i(G) and the set (category)

of maps between the sheaves F̃ and G. In fact, such an isomorphism is natural, so in
categorical terms i and ˜= ΓS are adjoint functors . This is as far as we will go with our
excursion into category theory. The reader should consult Tennison [48] for a comprehensive
treatment of a preshaves and sheaves in the framework of abelian categories .

In Sections 11.2 and 11.3 we have considered presheaves and sheaves of sets. If F is a
sheaf of R-modules, then it is immediately verified that for every x ∈ X the stalk Fx at x is
an R-module, and similarly if F is a sheaf of rings, then Fx is a ring.

Minor modifications need to be made to the notion of a stalk space to extend the equiva-
lence between sheaves of R-modules, rings, etc. and stalk spaces. We simply need to assume
that every fibre p−1(x) (with x ∈ X) is a R-module, ring, etc., and that the R- module
operations, ring operations, etc., are continuous.

More precisely, we have the following definitions.

3Actually, if we deal with sheaves of modules or rings, it turns out that stalk spaces have a better behavior
when it comes to images of morphisms, or quotients.
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Definition 11.6. A stalk space of R-modules is a pair (E, p : E → X) where p is a surjective
local homeomorphism, and the following conditions hold:

(1) Every fibre p−1(x) (with x ∈ X) is a R-module.

(2) For every λ ∈ R, the function from E to itself given by e 7→ λ · e is continuous, where
· is scalar multiplication in the fibre p−1(p(e)).

(3) There is a continuous function −E : E → E such that for all e ∈ E, −Ee = −e, where
−e is the additive inverse of e in the fibre p−1(p(e)).

(4) If we set E u E = {(e1, e2) ∈ E × E | p(e1) = p(e2)}, then there is a continuous
function +E : E uE → E such that e1 +E e2 = e1 + e2, where + is addition in the fibre
p−1(p(e1)) (= p−1(p(e2))).

A map of stalk spaces of R-modules (E1, p1) and (E2, p2) is a map ϕ : (E1, p1)→ (E2, p2)
of stalk spaces such that for every x ∈ X, the restriction of ϕ to the fibre p−1

1 (x) is a R-linear
map between p−1

1 (x) and p−1
2 (x).

Definition 11.7. A stalk space of commutative rings is a pair (E, p : E → X) where p is a
surjective local homeomorphism, and the following conditions hold:

(1) Every fibre p−1(x) (with x ∈ X) is a commutative ring.

(2) There is a continuous function −E : E → E such that for all e ∈ E, −Ee = −e, where
−e is the additive inverse of e in the fibre p−1(p(e)).

(3) If we set E u E = {(e1, e2) ∈ E × E | p(e1) = p(e2)}, then there is a continuous
function +E : E uE → E such that e1 +E e2 = e1 + e2, where + is addition in the fibre
p−1(p(e1)) (= p−1(p(e2))).

(4) There is a continuous function ∗E : E uE → E such that e1 ∗E e2 = e1 ∗ e2, where ∗ is
multiplication in the fibre p−1(p(e1)) (= p−1(p(e2))).

A map of stalk spaces of rings (E1, p1) and (E2, p2) is a map ϕ : (E1, p1) → (E2, p2) of
stalk spaces such that for every x ∈ X, the restriction of ϕ to the fibre p−1

1 (x) is a ring
homomorphism between p−1

1 (x) and p−1
2 (x).

Definition 11.8. Given a stalk space of R-modules (or rings) (E, p) over a space X, for
every subset Y of X, we define the restriction (E, p)|Y of (E, p) to Y as the stalk space
(π−1(Y ), p|π−1(Y )).

The reader is referred to Tennison [48] for more details on the equivalence between sheaves
with an algebraic structure and stalk spaces with the same algebraic structure on the fibres.
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11.4 Properties of Maps of Presheaves and Sheaves

If f : A → B is a homomorphism between two R-modules A and B, recall that the kernel
Ker (f) of f is defined by

Ker (f) = {u ∈ A | f(u) = 0},

the image Im(f) of f is defined by

Im(f) = {v ∈ B | (∃u ∈ A)(v = f(u))},

the cokernel Coker(f) of f is defined by

Coker(f) = B/Im(f),

and the coimage Coim(f) of f is defined by

Coim(f) = A/Ker (f).

Furthermore, f is injective iff Ker (f) = (0), f is surjective iff Coker(f) = (0), and there is
an isomorphism Coim(f) ∼= Im(f). A sequence of R-modules

A
f // B

g // C

is exact at B if Im(f) = Ker (g).

We would like to generalize the above notions to maps of presheaves and sheaves of R-
modules or commutative rings. In the case of presheaves, everything works perfectly, but in
the case of sheaves, there are two problems:

(1) In general, the presheaf image of a sheaf is not a sheaf.

(2) In general, the presheaf quotient of two sheaves is not a sheaf.

A way to fix these problems is to apply the sheafification process to the presheaf, but
in the case of the image of a sheaf morphism ϕ : F → G, this has the slightly unpleasant

consequence that Ĩm(ϕ) is a not a subsheaf of G. This small problem can be avoided by
defining the image of a sheaf morphism as the kernel of its cokernel map (as this would be
the case in an abelian category).

From now on in this section we assume that we are dealing with presheaves and sheaves
of R-modules or commutative rings. We follow closely Tennison [48], so many proof are
omitted.

We begin with kernels. If ϕ : F → G is a map of presheaves on a space X, then for every
open subset U of X, define (Kerϕ)U by

(Kerϕ)U = KerϕU = {s ∈ F(U) | ϕU(s) = 0}.
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If V is some open subset of U , the commutativity of the diagram

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V )

implies that is s ∈ (Kerϕ)U , that is, ϕU(s) = 0, then

ϕV ((ρF)UV (s)) = (ρG)
U
V (ϕU(s)) = (ρG)

U
V (0) = 0,

so (ρF)UV (s) ∈ (Kerϕ)V . This shows that the (Kerϕ)U together with the restriction functions
ρUV (as a function from (Kerϕ)U to (Kerϕ)V ) is a presheaf.

Definition 11.9. If ϕ : F → G is a map of presheaves on a space X, then for every open
subset U of X, define (Kerϕ)U by

(Kerϕ)U = KerϕU = {s ∈ F(U) | ϕU(s) = 0}.

Then the (Kerϕ)U together with the restriction functions ρUV (as a function from (Kerϕ)U
to (Kerϕ)V ) is a presheaf called the presheaf kernel of ϕ and denoted Kerϕ.

If F and G are sheaves, then Kerϕ is a sheaf.

Proposition 11.12. If F is a sheaf and G satisfies Condition (M), then Kerϕ is a sheaf.
In particular, if F and G are sheaves, then Kerϕ is a sheaf.

Proof. Since F is a sheaf, it satisfies Condition (M), and it is easy to show that Kerϕ also
satisfies Condition (M).

Let U be any open subset of X, let (Ui)i∈I be any open cover of U , and let (si)i∈I be a
family of sections si ∈ (Kerϕ)Ui such that (ρF)UUi(si) = (ρF)UUj(sj) for all i, j. Since F is a

sheaf, there is some s ∈ F(U) such that (ρF)UUi(s) = si for all i ∈ I. Since ϕUi(si) = 0, the
commutativity of the diagram

F(U)
ϕU //

(ρF )UUi
��

G(U)

(ρG)UUi
��

F(Ui) ϕUi
// G(Ui)

implies that
0 = ϕUi(si) = ϕUi((ρF)UUi(s)) = (ρG)

U
Ui

(ϕU(s))

for all i ∈ I. Since G satisfies Condition (M), then ϕU(s) = 0, which means that s ∈
(Kerϕ)U .
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The next proposition generalizes the property that a module or (ring) map f : A→ B is
injective iff Ker f = (0).

Proposition 11.13. Let ϕ : F → G be a map of presheaves. The following two conditions
are equivalent.

(i) Kerϕ = (0) (the trivial zero sheaf).

(ii) ϕU is injective for all open subsets U of X.

These imply

(iii) ϕx is injective for all x ∈ X, which is equivalent to (i) and (ii) if F satisfies Condition
(M).

Proof. The equivalence of (i) and (ii) is immediate by definition of (Kerϕ)U .

Assume that (ii) holds, and suppose that ϕx(γ) = 0 for some γ ∈ Fx (with x ∈ X).
This means that there is some open subset U of X containing x and some s ∈ F(U) such
that sx = γ and (ϕU(s))x = 0, which in turn means that there is some open subset V ⊆ U
containing x such that

(ρG)
U
V (ϕU(s)) = 0.

Since
(ρG)

U
V (ϕU(s)) = ϕV ((ρF)UV (s)),

we get ϕV ((ρF)UV (s)) = 0, and since ϕV is injective, (ρF)UV (s) = 0. But, (ρF)UV (s) = 0 implies
that γ = ((ρF)UV (s))x = 0, so ϕx is injective.

Conversely, assume that ϕx is injective for all x ∈ X and that F satisfies Condition (M).
Suppose ϕU(s) = 0 for some s ∈ F(U) (where U is any open subset of X). Then

ϕx(sx) = (ϕU(s))x = 0

for all x ∈ U , and since ϕx is injective for all x, we deduce that sx = 0 for all x ∈ U . Since
F satisfies Condition (M), by Proposition 11.1 (with t = 0), we conclude that s = 0, which
shows that ϕU is injective.

Definition 11.10. A map of presheaves ϕ : F → G is injective if any of the Conditions (i)
and (ii) of Proposition 11.13 holds. A map of sheaves ϕ : F → G is injective if any of the
Conditions (i)–(iii) of Proposition 11.13 holds.

Remark: A presheaf or sheaf map ϕ : F → G is said to a monomorphism if for every
presheaf H any two presheaf maps ψ1, ψ2 : H → F , if ϕ ◦ ψ1 = ϕ ◦ ψ2, then ψ1 = ψ2. It can
be shown that being a monomorphism is equivalent to any of the conditions of Proposition
11.13; see Tennison [48] (Chapter III, Theorem 3.5).

The following two propositions are stated without proof; see Tennison [48] (Chapter III)
for details.
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Proposition 11.14. If ϕ : F → G is a map of presheaves, then

(Kerϕ)x = Kerϕx

for all x ∈ X.

Proposition 11.15. If ϕ : (E1, p1)→ (E2, p2) is a map of stalk spaces, then Γϕ : ΓE1 → ΓE2

is an injective map of sheaves iff ϕ is injective iff ϕ is a homeomorphism onto an open
subspace of E2.

The notions of subpresheaves and subsheaves are defined as follows.

Definition 11.11. Given two presheaves F and G on a space X, we say that F is a sub-
presheaf of G if for every open subset U of X, the R-module (resp. ring) F(U) is a submodule
(resp. subring) of G(U). If F and G are sheaves and the above condition holds for all open
subets U of X we say that F is a subsheaf of G.

Remark: In terms of stalk spaces, in view of Proposition 11.15, we say that (E1, p1) is a
substalk space of (E2, p2) if E1 is an open subset of E2, p1 is the restriction of p2 to E1, and
the fibre p−1

1 (x) is a submodule (resp. subring) of the fibre p−1
2 (x) for all x ∈ X.

The following proposition will be needed.

Proposition 11.16. Let G be a sheaf and assume that F and F ′ are two subsheaves of G.
Then F = F ′ iff Fx = F ′x for all x ∈ X (as submodules or subrings).

Proof. First, we prove that if Fx ⊆ F ′x for all x ∈ X (as submodules or subrings) then F is
a subsheaf of F ′. For any open subset U for X, for any section s ∈ F(U), since Fx ⊆ F ′x
for all x ∈ U , there is an open cover (Ux)x∈U of U and a family of sections tx ∈ F ′(Ux) such

that (ρF)UUx(s) = (ρF ′)
U
Ux

(tx) for all x ∈ U . It follows that (ρF ′)
Ux
Ux∩Uy(t

x) = (ρF ′)
Uy
Ux∩Uy(t

y) for

all x, y and since F ′ is a sheaf there is a unique section t ∈ F ′(U) such that (ρF ′)
U
Ux

(t) = tx

for all x ∈ U . Therefore, we obtain a map ϕU : F(U) → F ′(U) by setting ϕU(s) = t, and
it is easy to see that these maps define a sheaf map ϕ : F → F ′. At first glance it is not
obvious that ϕ is an inclusion map, but it is as the following argument shows. Note that the
composition i′ ◦ϕ where i′ is the inclusion of F ′ in G agrees on stalks with the inclusion i of
F in G, so by Proposition 11.2 we have i′ ◦ ϕ = i, so ϕ is an inclusion.

Now, if Fx = F ′x for all x ∈ X, by the above F is a subsheaf of F ′ and F ′ is a subsheaf
of F so F = F ′.

If F = F ′, then obviously Fx = F ′x for all x ∈ X.

Let us now consider cokernels and images. Let ϕ : F → G be a map of presheaves. For
every open subset U of X, define PCokerU by

PCokerU = G(U)/ϕU(F(U)) = G(U)/Im ϕU ,
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the quotient module (resp. quotient ring) of G(U) modulo ϕU(F(U)), which is well defined
since ϕU(F(U)) is a submodule (resp. subring) of G(U) because ϕU is a homomorphism.

For any open subset V ⊆ U , the commutativity of the diagram

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V )

implies that for any s ∈ F(U), we have

(ρG)
U
V (ϕU(s)) = ϕV ((ρF)UV (s)),

which shows that (ρG)
U
V (ϕU(s)) ∈ Im(ϕV ), that is, (ρG)

U
V (Im(ϕU)) ⊆ Im(ϕV ). If we let

pcokerU : G(U) → G(U)/Im(ϕU) be the projection map, then pcokerV ◦ (ρG)
U
V : G(U) →

G(V )/Im(ϕV ) vanishes on Im(ϕU), which implies that there is a unique map
(ρG)

U
V : G(U)/Im(ϕU)→ G(V )/Im(ϕV ) making the following diagram commute:

G(U)

(ρG)UV

��

pcokerU // G(U)/Im(ϕU)

(ρG)UV

��
G(V )

pcokerV

// G(V )/Im(ϕV )

Therefore, the PCokerU together with the restriction functions (ρG)
U
V define a presheaf.

Definition 11.12. If ϕ : F → G is a map of presheaves on a space X, then for every open
subset U of X, define PCokerU by

PCokerU = G(U)/ϕU(F(U)) = G(U)/Im ϕU .

Then the PCokerU together with the restriction functions (ρG)
U
V define a presheaf called the

presheaf cokernel of ϕ, and denoted PCoker(ϕ). The projection maps pcokerU : G(U) →
G(U)/Im(ϕU) define a presheaf map pcoker(ϕ) : G → PCoker(ϕ).

Obviously, pcoker(ϕ) ◦ ϕ = 0 as illustrated in the diagram below:

F ϕ // G pcoker(ϕ) // PCoker(ϕ).

In fact, pcoker(ϕ) is characterized by a universal property of this kind; see Tennison [48]
(Chapter III) for details.

If ϕ : F → G is a map of sheaves, in general the presheaf cokernel PCoker(ϕ) is not a
sheaf. To obtain a sheaf, we sheafify it.
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Definition 11.13. If ϕ : F → G is a map of sheaves on a space X, then the sheaf cokernel

of ϕ, denoted SCoker(ϕ), is the sheafification ˜PCoker(ϕ) of the presheaf cokernel PCoker(ϕ)
of ϕ. The composition

G pcoker(ϕ) // PCoker(ϕ)
ηPCoker(ϕ) // ˜PCoker(ϕ) = SCoker(ϕ)

defines a presheaf map scoker(ϕ) : G → SCoker(ϕ) (ηPCoker(ϕ) : PCoker(ϕ) → ˜PCoker(ϕ) is
the canonical map of Definition 11.3).

Again, scoker(ϕ) ◦ ϕ = 0 as illustrated in the diagram below:

F ϕ // G scoker(ϕ) // SCoker(ϕ).

In fact, scoker(ϕ) is characterized by a universal property of this kind; see Tennison [48]
(Chapter III) for details.

The following propositions generalize the characterization of the surjectivity of a module
(resp. ring) homomorphism f : A→ B in terms of its cokernel to presheaves and sheaves.

Proposition 11.17. Let ϕ : F → G be a map of presheaves on a space X. Then the following
conditions are equivalent:

(i) PCoker(ϕ) = (0).

(ii) For every open subset U of X, the map ϕU is surjective.

Proof. The equivalence of (i) and (ii) follows immediately from the definitions.

Proposition 11.18. Let ϕ : F → G be a map of sheaves on a space X. Then the following
conditions are equivalent:

(i) SCoker(ϕ) = (0).

(ii) For every x ∈ X, (PCoker(ϕ))x = (0).

(iii) For every x ∈ X, ϕx is surjective.

(iv) For every open subset U of X, for every t ∈ G(U), there is some open cover (Ui)i∈I
of U and a family (si)i∈I of sections si ∈ F(Ui) such that ϕUi(si) = (ρG)

U
Ui

(t) for all
i ∈ I.

Any of the conditions of Proposition 11.17 implies the above conditions.
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Proof. The equivalence of (i) and (ii) goes as follows. Since SCoker(ϕ) is a sheaf, by
Proposition 11.2 (with ψ the zero map), SCoker(ϕ) = (0) iff (SCoker(ϕ))x = (0) for all
x ∈ X. But by Proposition 11.8 the stalks (SCoker(ϕ))x and (PCoker(ϕ))x are isomorphic,
so (SCoker(ϕ))x = (0) iff (PCoker(ϕ))x = (0) for all x ∈ X.

To prove the equivalence of (ii) and (iii) we need to unwind the definitions. We have
(PCoker(ϕ))x = (0) iff for every open subset U of containing x and any s ∈ PCoker(ϕ)(U)
there is some open subset V ⊆ U containing x such that (ρG)

U
V (s) = 0 iff for every open

subset U of containing x and any t ∈ G(U) there is some open subset V ⊆ U containing x
such that (ρG)

U
V (t) ∈ ϕV (F(V )) iff ϕx is surjective.

Assume (iii) holds. For any open subset U of X and for any t ∈ G(U), for any x ∈ U ,
since ϕx is surjective, there is some α ∈ Fx such that ϕx(α) = tx. If α is represented by
some fx ∈ F(Vx) for some open subset Vx of U containing x, to say that ϕx(α) = tx means
that there is some open subset Ux of Vx containing x such that (ρG)

Vx
Ux

(ϕVx(f
x)) = (ρG)

U
Ux

(t).
However, the commutativity of the diagram

F(Vx)
ϕVx //

(ρF )VxUx
��

G(Vx)

(ρG)VxUx
��

F(Ux) ϕUx
// G(Ux)

shows that (ρG)
Vx
Ux

(ϕVx(f
x)) = ϕUx((ρF)VxUx(f

x)), and thus

ϕUx((ρF)VxUx(f
x)) = (ρG)

U
Ux(t).

If we let sx = (ρF)VxUx(f
x), then we have a family (sx)x∈U of sections sx ∈ F(Ux) such that

the Ux form an open cover of U and ϕUx(s
x) = (ρG)

U
Ux

(t) for all x ∈ U , which is (iv).

The implication (iv) =⇒ (iii) is immediate. Indeed, any γ ∈ Gx is represented by some
section t ∈ G(U) for some open subset U containing x, and by (iv), we have ϕx((si)x) =
(ϕUi(si))x = tx for any of the si ∈ F(Ui) given by (iv) since ϕUi(si) = (ρG)

U
Ui

(t) for all
i ∈ I.

It is important to note that in the case of a map of sheaves ϕ : F → G, unlike the case of
presheaves, Condition (i) (SCoker(ϕ) = (0)) does not imply that the maps ϕU are surjective
for all open subsets U . We can only assert a local version of the surjectivity of the ϕU , as in
condition (iv).

An example of the failure of surjectivity of the ϕU is provided by X = C (the complex
numbers), the sheaf of holomorphic functions F = Cω, and ϕ = d, the differentiation operator
on F (here, G = F). For any x ∈ C, locally near x a holomorphic function f can be integrated
as a holomorphic function g such that d/dz(g) = f , but if U is not simply connected there are
holomorphic functions which cannot be expressed as d/dz(g) for some holomorphic function
g, for example f = 1/z on U = {z ∈ C | z 6= 0}.
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Definition 11.14. A map of presheaves ϕ : F → G is surjective if any of the Conditions (i)
and (ii) of Proposition 11.17 holds. A map of sheaves ϕ : F → G is surjective if any of the
Conditions (i)–(iv) of Proposition 11.18 holds.

Remark: A presheaf map ϕ : F → G is said to an epimorphism if for every presheaf H
any two presheaf maps ψ1, ψ2 : G → H, if ψ1 ◦ ϕ = ψ2 ◦ ϕ, then ψ1 = ψ2. Similarly, A
sheaf map ϕ : F → G is said to an epimorphism if for every sheaf H any two sheaf maps
ψ1, ψ2 : G → H, if ψ1 ◦ ϕ = ψ2 ◦ ϕ, then ψ1 = ψ2. It can be shown that being a presheaf
epimorphism is equivalent to any of the conditions of Proposition 11.17, and being a sheaf
epimorphism is equivalent to any of the conditions of Proposition 11.18; see Tennison [48]
(Chapter III, Theorems 4.7 and 4.8). Technically, Definition 11.14 defines the notions of
presheaf epimorphism and sheaf epimorphism. A presheaf morphism is surjective on sections
(i.e. all ϕU are surjective). The failure of a sheaf morphism to be a surjection on sections is
closely related to sheaf cohomology.

We can combine Propositions 11.13, 11.17, and 11.18 to obtain the following criteria for
a map of presheaves or a map of sheaves to be an isomorphism.

Proposition 11.19. Let ϕ : F → G be a map of presheaves on a space X. Then the following
conditions are equivalent:

(i) ϕ is an isomorphism.

(ii) For every open subset U of X, ϕU is bijective.

If F and G are sheaves, then we have the further equivalent condition:

(iii) ϕx is bijective for all x ∈ X.

Proof. By definition ϕ is a presheaf isomorphism iff there is some presheaf morphism ψ : G →
F such that ψ◦ϕ = idF and ϕ◦ψ = idG iff there is some ψ : G → F such that ψU ◦ϕU = idF(U)

and ϕU ◦ψU = idG(U) for all open subsets U iff ϕU is an isomorphism for all open subsets U .
It remains to check that the inverses ψU : G(U)→ F(U) are compatible with the restriction
functions, which is easy to do. This proves that (i) and (ii) are equivalent.

It is clear that (i) implies (iii). Now, assume that F and G are sheaves and that the ϕx
are bijective. Since each ϕx is injective, we know from Proposition 11.13 that ϕU is injective
for every open subset U . We now prove that because the ϕx are surjective, each ϕU is also
surjective.

By Proposition 11.18(iv), for every open subset U of X, for every t ∈ G(U), there is
some open cover (Ui)i∈I of U and a family (si)i∈I of sections si ∈ F(Ui) such that ϕUi(si) =
(ρG)

U
Ui

(t) for all i ∈ I. By applying ρUiUi∩Uj to both sides of the equation ϕUi(si) = (ρG)
U
Ui

(t)

and ρ
Uj
Ui∩Uj to both sides of the equation ϕUj(sj) = (ρG)

U
Uj

(t) and using the fact that

(ρG)
Ui
Ui∩Uj(ϕUi(si)) = ϕUi∩Uj((ρF)UiUi∩Uj(si))

(ρG)
Uj
Ui∩Uj(ϕUj(sj)) = ϕUi∩Uj((ρF)

Uj
Ui∩Uj(sj))
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as shown by the commutativity of the diagrams

F(Ui)
ϕUi //

(ρF )
Ui
Ui∩Uj

��

G(Ui)

(ρG)
Ui
Ui∩Uj

��
F(Ui ∩ Uj) ϕUi∩Uj

// G(Ui ∩ Uj)

F(Uj)
ϕUj //

(ρF )
Uj
Ui∩Uj

��

G(Uj)

(ρG)
Uj
Ui∩Uj

��
F(Ui ∩ Uj) ϕUi∩Uj

// G(Ui ∩ Uj),

we get

ϕUi∩Uj((ρF)UiUi∩Uj(si)) = ϕUi∩Uj((ρF)
Uj
Ui∩Uj(sj)) = (ρG)

U
Ui∩Uj(t),

and since ϕUi∩Uj is injective, we conclude that

(ρF)UiUi∩Uj(si) = (ρF)
Uj
Ui∩Uj(sj)

for all i, j. Since F is a sheaf, there is some s ∈ F(U) such that (ρF)UUi(s) = si for all i. We
claim that ϕU(s) = t. For this, observe that

(ρG)
U
Ui

(ϕU(s)) = ϕUi((ρF)UUi(s)) = ϕUi(si) = (ρG)
U
Ui

(t)

for all i, and since G is a sheaf, by Condition (M) we get

ϕU(s) = t,

as claimed. Therefore, ϕU is surjective.

We also have the following result that we state without proof. The proof consists in
unwinding the defintions; see Tennison [48] (Chapter III, Proposition 4.11).

Proposition 11.20. Let ϕ : F → G be a map of presheaves on a space X. Then

(PCoker ϕ)x = Coker ϕx = Gx/Im ϕx

for all x ∈ X. If F and G are sheaves, then

(SCoker ϕ)x = Coker ϕx

for all x ∈ X.

In general, if ϕ : F → G is a presheaf morphism, even if ϕ is surjective and F is a sheaf
G need not be a sheaf. However, it is under the following conditions.

Proposition 11.21. Let F be a sheaf and G be a presheaf. If ϕ : F → G is a presheaf
isomorphism, then G is a sheaf.
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Proof. Let ψ : G → F be the inverse of ϕ. For any open subset U of X and any open cover
(Ui)i∈I of U , let s, t ∈ G(U) be such that (ρG)

U
Ui

(s) = (ρG)
U
Ui

(t) for all i. Since

ψUi((ρG)
U
Ui

(s)) = (ρF)UUi(ψU(s))

ψUi((ρG)
U
Ui

(t)) = (ρF)UUi(ψU(t)),

we get
(ρF)UUi(ψU(s)) = (ρF)UUi(ψU(t))

for all i, and since F is a sheaf, we must have ψU(s) = ψU(t). Since ψU is injective, s = t;
that is, G satisfies Condition (M).

Next, let (ti)∈I be a family with ti ∈ G(Ui) such that (ρG)
Ui
Ui∩Uj(ti) = (ρG)

Uj
Ui∩Uj(tj) for all

i, j. Since

ψUi∩Uj((ρG)
Ui
Ui∩Uj(ti)) = (ρF)UiUi∩Uj(ψUi(ti))

ψUi∩Uj((ρG)
Uj
Ui∩Uj(tj)) = (ρF)

Uj
Ui∩Uj(ψUj(tj)),

we get
(ρF)UiUi∩Uj(ψUi(ti)) = (ρF)

Uj
Ui∩Uj(ψUj(tj))

for all i, j. Since F is a sheaf, there is some s ∈ F(U) such that

(ρF)UUi(s) = ψUi(ti)

for all i ∈ I. Now, since ϕUi and ψUi are mutual inverses, we get

(ρG)
U
Ui

(ϕU(s)) = ϕUi((ρF)UUi(s)) = ϕUi(ψUi(ti)) = ti

for all i ∈ I, which shows that Condition (G) holds with ϕU(s) ∈ G(U). Therefore, G is a
sheaf.

Remark: The notions of image and quotient of a map of stalk spaces do not present the
difficulties encountered with sheaves. If ϕ : (E1, p1) → (E2, p2) is a map of stalk spaces,
because ϕ is a local homeomorphism (see Proposition 11.6(c)), the subspace ϕ(E1) is open
in E2, and so it is a substalk space of (E2, p2). Similarly, if (E1, p1) is a substalk space of
(E2, p2), then for every x ∈ X we can form the quotient Hx = p−1

2 (x)/p−1
1 (x) and make the

disjoint union of the Hx into a stalk space by giving it the quotient topology of the topology
of E2. This what Serre does in FAC [44] (Chapter 1, Section 7.1).

11.5 Exact Sequences of Presheaves and Sheaves

The key to the “correct” definition of an exact sequence of sheaves is the appropriate notion
of image of a sheaf morphism.
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Definition 11.15. If ϕ : F → G is map of presheaves on a space X, then the (presheaf)
image of ϕ, denoted PImϕ, is the kernel Ker pcoker(ϕ) of the cokernel map pcoker(ϕ) : G →
PCoker(ϕ). If ϕ : F → G is map of sheaves on a space X, then the (sheaf) image of ϕ,
denoted SIm ϕ, is the kernel Ker scoker(ϕ) of the cokernel map scoker(ϕ) : G → SCoker(ϕ).

It is not hard to check that if ϕ : F → G is a map of presheaves, then (PImϕ)(U) = ImϕU ,
while if ϕ : F → G is map of sheaves, then (SIm ϕ)x = Im ϕx for all x ∈ X.

Remark: The image Imϕ of a map of sheaves ϕ : F → G is often defined as the sheafification

P̃Im ϕ of the presheaf PIm ϕ. The small problem with this approach is that this sheaf is

not a subsheaf of G. There is an injective morphism from P̃Im ϕ into G so the image of ϕ

should really be the image of P̃Im ϕ by that morphism. It seems to us that using SIm ϕ for
the image of ϕ is a cleaner approach (which agrees with the definition of image in an abelian
category).

If ϕ : F → G is map of sheaves and PIm ϕ is a sheaf, then SIm ϕ = PIm ϕ. Indeed, both
are subsheaves of G and their stalks are equal to Im ϕx for all x, so by Proposition 11.16
they are equal. As a consequence, we obtain the following result.

Proposition 11.22. If ϕ : F → G is an injective map of sheaves, then SIm ϕ = PIm ϕ.

Proof. Indeed, since ϕ is injective there is a presheaf isomorphism from F to PIm ϕ, and
by Proposition 11.21 we conclude that PIm ϕ is sheaf, so by the fact stated just before this
proposition SIm ϕ = PIm ϕ.

Definition 11.16. Let

· · · // F ϕ // G ψ //H // · · ·

be a sequence of maps of preshaves (over a space X). We say that the sequence is exact at
G as a sequence of presheaves if

PIm ϕ = Kerψ.

We say that it is an exact sequence of presheaves if it is exact at each point where it makes
sense.

If the sequence consists of sheaves, then we say that it is exact at G as a sequence of
sheaves if

SIm ϕ = Kerψ.

It is an exact sequence of sheaves if it is exact at each point where it makes sense.

We have the following result stating more convenient conditions for checking that a
sequence is an exact sequence of presheaves or an exact sequence of sheaves.

Proposition 11.23. The following facts hold:
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(i) If the sequence

F ϕ // G ψ //H

is an exact sequence of presheaves, then for every open subset U of X

F(U)
ϕU // G(U)

ψU //H(U)

is an exact sequence of R-modules (or rings).

(ii) The sequence

F ϕ // G ψ //H

is an exact sequence of sheaves iff the sequence

Fx
ϕx // Gx

ψx //Hx

is an exact sequence of R-modules (or rings) for all x ∈ X.

(iii) If the sequence of sheaves

F ϕ // G ψ //H

is exact as a sequence of presheaves then it is exact as a sequence of sheaves.

Proof. A complete proof is given in Tennison [48] (Chapter III, Theorem 6.5). We only give
the proof of (ii). By definition, the sequence is exact iff SIm ϕ = Kerψ iff by Proposition
11.16

(SIm ϕ)x = (Kerψ)x

for all x ∈ X. But, by definition

(SIm ϕ)x = (Ker (scokerϕ))x

= Ker ((scokerϕ)x : Gx −→ (SCoker ϕ)x) by Proposition 11.14

= Ker ((scokerϕ)x : Gx −→ (Gx/Im ϕx)) by Proposition 11.20

= Im ϕx.

Therefore, SIm ϕ = Kerψ iff Im ϕx = (Kerψ)x = Kerψx, as claimed.

As a corollary of Proposition 11.23, we have the following result.

Proposition 11.24. The following facts hold as sequences of preseaves or sheaves:

(i) The sequence

0 // F ϕ // G

is exact iff ϕ is injective (a monomorphism).
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(ii) The sequence

F ϕ // G // 0

is exact iff ϕ is surjective (an epimorphism).

(iii) For any map ϕ : F → G of preshaves the sequence

0 // Kerϕ // F ϕ // G // PCoker ϕ // 0

is exact, and for any map ϕ : F → G of sheaves the sequence

0 // Kerϕ // F ϕ // G // SCoker ϕ // 0

is exact.

We now discuss the preservation of exactness by various operations (functors). Some
examples of these operations are:

1. The inclusion map i : Sh(X) → PSh(X) which maps a sheaf to the corresponding
presheaf, and a morphism ϕ : F → G to the corresponding presheaf morphism.

2. The sheafification operation ΓS : PSh(X) → Sh(X) which maps a presheaf F to its

sheafification F̃ , and a map of preshaves ϕ : F → G to the map of sheaves ϕ̃ : F̃ → G̃.

3. For every open subset U of X, for every presheaf F ∈ PSh(X), we have the operation
Γ(U,−), “sections over U ,” given by

Γ(U,F) = F(U),

which yields an R-module (or a ring). Any presheaf morphism ϕ : F → G is mapped
to the R-module (or ring) homomorphism ϕU : F(U)→ G(U).

4. For every open subset U of X, for every sheaf F ∈ Sh(X), we have the operation
Γ(U,−), “sections over U ,” given by

Γ(U,F) = F(U),

which yields an R-module (or a ring). Any presheaf morphism ϕ : F → G is mapped
to the R-module (or ring) homomorphism ϕU : F(U)→ G(U).

The common thread between these examples is that we have two types of structures
(categories) C and D, and we have a transformation T (a functor) which works as follows:

(i) Each object A of C is mapped to some object T (A) of D.
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(ii) Each map A
f // B between two objects A and B in C is mapped to some map

T (A)
T (f) // T (B) between the objects T (A) and T (B) in D in such a way that the

following properties hold:

(a) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (A)
T (f) // T (B)

T (g) // T (C) makes sense in D, and

T (g ◦ f) = T (g) ◦ T (f).

(b) If A
idA // A is the identity map of the object A in C, then T (A)

T (idA)// T (A) is the

identity map of T (A) in D; that is,

T (idA) = idT (A).

Whenever a transformation T : C → D satisfies the Properties (i), (ii) (a), (b), we call it a
(covariant) functor from C to D.

If T : C → D satisfies Properties (i), (b), and if Properties (ii) and (a) are replaced by
the Properties (ii’) and (a’) below

(ii’) Each map A
f // B between two objects A and B in C is mapped to some map

T (B)
T (f) // T (A) between the objects T (B) and T (A) in D in such a way that the

following properties hold:

(a’) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (C)
T (g) // T (B)

T (f) // T (A) makes sense in D, and

T (g ◦ f) = T (f) ◦ T (g),

then T is called a contravariant functor from C to D.

An example of a (covariant) functor is the functor Hom(A,−) (for a fixed R-module
A) from R-modules to R-modules (abelian groups if R is not commutative) which maps a
module B to the module Hom(A,B) and a module homomorphism f : B → C to the module
homomorphism Hom(A, f) from Hom(A,B) to Hom(A,C) given by

Hom(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ Hom(A,B);

see Section 2.2.
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An example of a contravariant functor is the functor Hom(−, A) (for a fixed R-module
A) from R-modules to R-modules (abelian groups if R is not commutative) which maps a
module B to the module Hom(B,A) and a module homomorphism f : B → C to the module
homomorphism Hom(f, A) from Hom(C,A) to Hom(B,A) given by

Hom(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(C,A);

see Section 2.2.

Given a type of structures (category) C let us denote the set of all maps from an object
A to an object B by HomC(A,B). For all the types of structures C that we will dealing
with, each set HomC(A,B) has some additional structure; namely it is an abelian group.

Definition 11.17. A type of structures (category) C is an Ab-category (or a pre-additive
category) if for all A,B ∈ C the set of maps HomC(A,B) is an abelian group (with addition
operation +A,B and a zero map 0A,B), and if the following distributivity axioms hold: for all
A,B,C,D ∈ C, for all maps f ∈ HomC(A,B),g1, g2 ∈ HomC(B,C) and h ∈ HomC(C,D),

f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2

(g1 + g2) ◦ h = g1 ◦ h+ g2 ◦ h.

If C and D are two Ab-categories, a functor T : C→ D is additive if for all A,B ∈ C and
all f, g ∈ HomC(A,B),

T (f + g) = T (f) + T (g).

Observe that if T is an additive functor, then T (0A,B) = 0T (A),T (B). For simplicity of
notation we usually drop the subscript A,B in +A,B and 0A,B.

The category of R-modules is an Ab-category. The category of sheaves (or presheaves) of
R-modules or rings is also an Ab-category. The functors HomR(A,−), HomR(−, A), −⊗B,
and Γ(U,−) are additive.

Definition 11.18. An Ab-category C is an additive category if there is a zero object 0,
with a unique map 0 −→ A and a unique map A −→ 0 for all A ∈ C, and if the notion of
direct sum makes sense for any two objects A,B ∈ C.

Intuitively speaking an abelian category if an additive category in which the notion of
kernel and cokernel of a map makes sense. Then we can define the notion of image of a map
f as the kernel of the cokernel of f , so the notion of exact sequence makes sense.

Technically, an abelian category C is an additive catgeory such that the following three
properties hold:

1. Every map (that is, a map in C(A,B) for any A,B ∈ C) has a kernel and a cokernel.

2. Every monomorphism is the kernel of its cokernel.
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3. Every epimorphism is the cokernel of its kernel.

For precise definitions, see Weibel [51], MacLane [29], or Cartan–Eilenberg [7]. For our
purposes it is enough to think of an abelian category as an additive category in which the
notion of exact sequence makes sense. The categories of R-modules and the categories of of
sheaves (or presheaves) are abelian categories.

Definition 11.19. Given two types of structures (categories) C and D in each of which the
concept of exactness is defined (abelian categories), an additive functor T : C → D is said
to be exact (resp. left exact , right exact) if whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (A) // T (B) // T (C) // 0

is exact in D (left exact if the sequence

0 // T (A) // T (B) // T (C)

is exact, right exact if the sequence

T (A) // T (B) // T (C) // 0

is exact). If T : C→ D is a contravariant additive functor, then T is said to be exact (resp.
left exact , right exact) if whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A) // 0

is exact in D (left exact if the sequence

0 // T (C) // T (B) // T (A)

is exact, right exact if the sequence

T (C) // T (B) // T (A) // 0

is exact).
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For example, the functor Hom(−, A) is left-exact but not exact in general. The proof that
Hom(−, A) is left-exact is identical to the proof of Proposition 2.5 except that R is replaced
by any R-module A and f> is replaced by Hom(f, A). Similarly, the functor Hom(A,−)
is left-exact but not exact in general. Modules for which the functor Hom(A,−) is exact
play an important role. They are called projective module. Similarly, modules for which the
functor Hom(−, A) is exact are called injective modules .

Another important functor is given by the tensor product of modules. Given a fixed
R-module M , we have a functor T from R-modules to R-modules such that T (A) = A⊗RM
for any R-module A, and T (f) = f ⊗R idM for any R-linear map f : A → B. This functor
usually denoted − ⊗R M is right-exact; see Section 2.2. Modules M for which the functor
−⊗RM is exact are called flat .

Here is a result giving us more exact or left exact functors.

Proposition 11.25. The following results hold:

(1) The inclusion functor i : Sh(X)→ PSh(X) is left-exact.

(2) The sheafification functor ΓS : PSh(X) → Sh(X) which maps a presheaf F to its

sheafification F̃ , is exact.

(3) For every open subset U of X, the functor Γ(U,−) (sections over U) from PSh(X) to
abelian groups is exact.

(4) For every open subset U of X, the functor Γ(U,−), (sections over U) from Sh(X) to
abelian groups is left-exact.

Proof. A proof of Proposition 11.25 can be found in Tennison [48] (Chapter III, Theorem
6.9). We simply indicate how to prove (1) and (4).

(1) if

0 // F ϕ // G ψ //H // 0

is exact as sheaves, then by Proposition 11.24 ϕ is injective. It follows from Proposition
11.22 that PIm ϕ = SIm ϕ, and then exactness at G (in the sense of sheaves) means that

PIm ϕ = SIm ϕ = Kerψ,

which is exactness in the sense of presheaves.

(4) By (1), if

0 // F ϕ // G ψ //H // 0

is exact as sheaves, then

0 // F ϕ // G ψ //H
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is exact as presheaves. By Proposition 11.23 we deduce that the sequence

0 // F(U)
ϕU // G(U)

ψU //H(U)

is exact for all open subsets of X.

One of the most useful applications of sheaves is that they can be used to generalize the
notion of manifold. In the next section, we sketch this approach.

11.6 Ringed Spaces

The notion of a manifold X captures the intuition that many spaces look locally like familiar
spaces, such as Rn (which means that for every point x ∈ X there is some open subset U
containing x which “looks” like Rn, more precisely U is homeomorphic to Rn), and that
certain types of functions can be defined on them; for example continuous functions, smooth
functions, analytic functions, etc. The notion of a ringed space provides an abstract way of
specifying which are the “nice” functions on a space.

Definition 11.20. A ringed space is a pair (X,OX) where X is a topological space and OX
is a sheaf of commutative rings called the structure sheaf .

The next step is to define the notion of map between two ringed spaces (X,OX) and
(Y,OY ). The basic idea is that such a map f is a continuous map between the underlying
spaces X and Y that pulls back the sheaf of functions on Y to the sheaf of functions on X.
For simplicity, let us first assume that OX and OY are both sheaves of functions respectively
on X and Y . Let f : X → Y be a continuous function (where V is some open subset of Y ).
Given any function h ∈ OY (V ), denote the restriction of h ◦ f to f−1(V ) by f ∗h. Then f
should be a map of ringed spaces if the following condition holds: For every open subset V
of Y ,

if h ∈ OY (V ) then f ∗h ∈ OX(f−1(V )).

See Figure 11.7.

Observe that the assignment h 7→ f ∗h defines a map

f ∗V : OY (V )→ OX(f−1(V ))

which is a ring homomorphism. Thus, to define the notion of map of ringed spaces, it seems
natural to require that there is a map of sheaves between OY and some sheaf over the base
space Y whose sections over any open subset V of Y come from sections of OX over f−1(V ).
Such a sheaf corresponds to the notion of direct image of a sheaf.
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Figure 11.7: A schematic illustration of f ∗h where X = R2 and Y = R. The green plane in
the peach balloon is the pull back of the section h ∈ OY (V ).

Definition 11.21. Given any continuous function f : X → Y between two topological spaces
X and Y , for any sheaf F on X, define the presheaf f∗F on Y by

f∗F(V ) = F(f−1(V ))

for all open subsets V of Y . It is easily verified that f∗F is a sheaf on Y called the direct
image of F under f .

We can now define the notion of morphism of ringed spaces (X,OX) and (Y,OY ) even if
OX and OY are not sheaves of functions.

Definition 11.22. A map (or morphism) between two ringed spaces (X,OX) and (Y,OY )
is a pair (f, g), where f : X → Y is a continuous function and g : OY → f∗OX is a map of
sheaves, with each gV : OY (V )→ f∗OX(V ) a ring homomorphisms for every open subset V
of Y .

Given two maps of ringed spaces (f1, g1) : (X,OX) → (Y,OY ) and (f2, g2) : (Y,OY ) →
(Z,OZ), their composition is the ring space map (f2, g2) ◦ (f1, g1) : (X,OX)→ (Z,OZ) given
by the pair of maps

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1).

A map of ringed spaces (f, g) : (X,OX) → (Y,OY ) is an isomorphism iff there is some ring
map (f ′, g′) : (Y,OY ) → (X,OX) such that (f, g) ◦ (f ′, g′) = (id, id) and (f ′, g′) ◦ (f, g) =
(id, id). Given a ringed space (X,OX), for every open subset U ot C it is clear that (U,OX |U)
is a ringed space on U .
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We can now use the above notions to define a far reaching definition of the notion of a
manifold. The idea is that a ringed space (X,OX) is a certain type of manifold (also called
a variety in the algebraic case) if it it is locally isomorphic to some other ringed space of the
required type. The sheaf OX specifies the “nice” functions on X.

Definition 11.23. Given two ringed spaces (X,OX) and (Y,OY ), we say that (X,OX) is
locally isomorphic to (Y,OY ) if for every x ∈ X there is some open subset U of X containing
x and some open subset V of Y such that the ringed spaces (U,OX |U) and (V,OY |V ) are
isomorphic.

Here are some examples illustrating that familiar types of manifolds can be cast in the
framework of ringed spaces.

Example 11.1.

1. A topological (or continuous) manifold M is a ringed space which is locally isomor-
phic to (Rn, C(Rn)), where C(Rn) is the sheaf of algebras of continuous (real-valued)
functions on Rn.

2. A smooth manifold M is a ringed space which is locally isomorphic to (Rn, C∞(Rn)),
where C∞(Rn) is the sheaf of algebras of smooth (real-valued) functions on Rn.

3. A complex analytic manifold M is a ringed space which is locally isomorphic to
(Cn,Hol(Cn)), where Hol(Cn) is the sheaf of smooth (complex-valued) functions on
Cn.

To illustrate the power of the notion of ringed space, if we had defined the notion of affine
variety (where the functions are given by ratios of polynomials), then an algebraic variety is
a ringed space which is locally isomorphic to an affine variety.

More generally, in algebraic geometry the central notion is that of a scheme, which is a
ringed space locally isomorphic to an affine scheme (an affine scheme is a ringed space locally
isomorphic to the “spectrum” of a ring, whatever that is). Ambitious readers are referred to
Hartshorne [24] for an advanced treatment of algebraic geometry based on schemes.



Chapter 12

Derived Functors, δ-Functors, and
∂-Functors

12.1 Projective, Injective, and Flat Modules

We saw in Section 2.2 that the functors Hom(M,−) and Hom(−,M) are left-exact but not
exact in general, and that the functor −⊗M is right-exact but not exact in general. Thus
it is natural to take a closer look at the modules for which these functors are exact.

Definition 12.1. An R-module M is projective if the functor Hom(M,−) is exact, injective
if the functor Hom(−,M) is exact, and flat if the functor −⊗M is exact.

Observe that the trivial module (0) is injective, projective, and flat. The above definition
does not tell us what kind of animals these modules are. The propositions of this section give
somewhat more illuminating characterizations. Recall that for any linear map h : A → B,
we have Hom(M,h)(ϕ) = h ◦ ϕ for all ϕ ∈ Hom(M,A); see Definition 2.6.

Proposition 12.1. Let P be an R-module. Then the following properties are equivalent:

(1) P is projective.

(2) For any surjective linear map h : A→ B and any linear map f : P → B, there is some

linear map f̂ : P → A lifting f : P → B in the sense that f = h ◦ f̂ , as in the following
commutative diagram:

P

f
��

f̂

��
A

h
// B // 0.

(3) Any exact sequence
0 // A // B // P //// 0

splits.

281



282 CHAPTER 12. DERIVED FUNCTORS, δ-FUNCTORS, AND ∂-FUNCTORS

(4) There is a free module F and some other module Q such that F ∼= P ⊕Q.

Proof. This is a standard result of commutative algebra. Proofs can be found in Dummit
and Foote [11], Rotman [40], MacLane [29], Cartan–Eilenberg [7], and Weibel [51], among
others. We only show that (1) is equivalent to (2) and that (2) implies (3).

Since Hom(P,−) is left exact, to say that it is exact means that if

A
h // B // 0

is exact, then the sequence

Hom(P,A)
Hom(P,h) // Hom(P,B) // 0

is also exact. This is equivalent to saying that if h : A → B is surjective, then the map
Hom(P, h) : Hom(P,A)→ Hom(P,B) is surjective, which by definition of Hom(P, h) means

that for any linear map f ∈ Hom(P,B) there is some f̂ ∈ Hom(P,A) such that f = h ◦ f̂ as
in

P

f

��

f̂

��
A

h
// B // 0,

which is exactly (2).

Suppose

0 // A
f // B

g // P //// 0

is an exact sequence. We have the diagram

P
j

��
B g

// P // 0

and since P is projective the lifting property gives a map j : P → B such that g ◦ j = idP ,
which show that (3) holds.

Proposition 12.1(4) shows that projective modules are almost free, in the sense that they
are a summand of a free module. It also shows that free modules are projective, an invaluable
fact. Another fact that we will need later is that every module is the image of some projective
module.

Proposition 12.2. For every R-module M , there is some projective (in fact, free) module
P and a surjective homomorphism ρ : P →M .
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Proof. Pick any set S of generators for M (possibly M itself) and let P = R(S) be the free
R-module generated by S. The inclusion map i : S →M extends to a surjective linear map
ρ : P →M .

Injective modules are more elusive, although the diagram in 12.1(2) dualizes. Recall that
for any linear map h : A → B, we have Hom(h,M)(ϕ) = ϕ ◦ h for all ϕ ∈ Hom(B,M); see
Definition 2.5.

Proposition 12.3. Let I be an R-module. Then the following properties are equivalent:

(1) I is injective.

(2) For any injective linear map h : A → B and any linear map f : A → I, there is some

linear map f̂ : B → I extending f : A → I in the sense that f = f̂ ◦ h, as in the
following commutative diagram:

0 // A

f
��

h // B

f̂~~
I.

(3) Any exact sequence
0 // I // B // C //// 0

splits.

Proof. This is also a standard result of commutative algebra. Proofs can be found in Dummit
and Foote [11], Rotman [40], MacLane [29], Cartan–Eilenberg [7], and Weibel [51], among
others. We only show that (1) is equivalent to (2) and that (2) implies (3). Since Hom(−, I)
is left exact, to say that it is exact means that if

0 // A
h // B

is exact, then the sequence

Hom(B, I)
Hom(h,I) // Hom(A, I) // 0

is also exact. This is equivalent to saying that if h : A → B is injective, then the map
Hom(h, I) : Hom(B, I) → Hom(A, I) is surjective, which by definition of Hom(h, I) means

that for any linear map f ∈ Hom(A, I) there is some f̂ ∈ Hom(B, I) such that f = f̂ ◦ h as
in

0 // A

f

��

h // B

f̂��
I,
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which is exactly (2).

Suppose

0 // I
f // B

g // C //// 0

is an exact sequence. We have the diagram

0 // I
f // B

p
��

I

and since I is injective the lifting property gives a map p : B → I such that p ◦ f = idI ,
which is (3).

The following theorem due to Baer shows that to test whether a module is injective it is
enough to check the extension property (Proposition 12.3(2)) for sequences 0 // A // R
for all ideals A of the ring R.

Theorem 12.4. (Baer Representation Theorem) An R-module I is injective iff it has the
extension property with respect to all sequences 0 // A // R where A is an ideal of the
ring R.

A proof can be found in Dummit and Foote [11], Rotman [40], MacLane [29], Cartan–
Eilenberg [7], and Weibel [51], among others.

As a corollary of Theorem 12.4, it is possible to characterize injective modules when the
ring R is a PID.

Definition 12.2. An R-module M is divisible if for every nonzero λ ∈ R, the multiplication
map given by u 7→ λu for all u ∈M is surjective.

Proposition 12.5. If the ring R has no zero divisors then any injective module is divisible.
Furthermore, if R is a PID then a module is injective iff it is divisible.

A proof can be found in Dummit and Foote [11], Rotman [40], MacLane [29], Cartan–
Eilenberg [7].

The reader should check that the Z-module Q/Z is injective. A result dual to the state-
ment of Proposition 12.2 holds for injective modules but is harder to prove.

Theorem 12.6. (Baer Embedding Theorem) For every R-module M , there is some injective
module I and an injection i : M → I.

A particularly short poof of Theorem 12.6 can be found in Godement [18]. It uses the
fact that if M is a projective module, then HomR(M,Q/Z) is an injective module.

Finally, we come to flat modules.
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Proposition 12.7. Let M an N be any two R-modules. If M ⊕ N is flat, then M and N
are flat. Every projective module is flat. Direct sums of flat modules are flat.

A proof of Proposition 12.7 can be found in Rotman [41]. The following result gives us
a precise idea of what a flat module is when the ring R is a PID.

Proposition 12.8. If the ring R has nonzero divisors, then any flat module is torsion-free.
Furthermore, if R is a PID then a module is a flat module iff it is torsion-free.

A proof of Proposition 12.8 can be found in Weibel [51] (Chapter 3, Section 3.2), Bourbaki
[3] (Chapter I, §2, Section 4, Proposition 3), and as a exercise in Dummit and Foote [11]. In
particular, Q is a flat Z-module.

More generally, if R is an integral domain and if K is its fraction field, then K is a
flat R-module; see Atiyah and MacDonald [1] (Chapter 3, Corollary 3.6) or Bourbaki [3]
(Chapter II, §2, Section 4, Theorem 1). This last result has an interesting application.

If M is a finitely generated R-module where R is an integral ring, recall that the rank
rankM of M is the largest number of linearly independent vectors in M . Since the fraction
field K of R is a field, the tensor product M ⊗R K is a vector space, and it is easy to see
that the dimension of the vector space M ⊗R K is equal to the rank of M ; see Matsumura
[33] (Chapter 4, Section 11, page 84).

Proposition 12.9. Let R be an integral ring. For any finitely generated R-module A,B,C,
if there is a short exact sequence

0 // A // B // C // 0,

then
rankB = rankA+ rankC.

Proof. Since the fraction field K of R is a flat R-module, if we tensor with K we get the
short exact sequence

0 // A⊗R K // B ⊗R K // C ⊗R K // 0,

in which all the modules involved are vector spaces over K. But then this is a split exact
sequence and we have

dimB ⊗R K = dimA⊗R K + dimC ⊗R K.

By a previous remark, rankA = dimA⊗R K and similarly with B and C, so we obtain

rankB = rankA+ rankC,

as claimed.
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In the special case where R = Z and A,B,C are finitely generated abelian groups, the
equation of Proposition 12.9 is obtained by tensoring with Q. Another proof of this formula
(for abelian groups) is given in Greenberg and Harper [19] (Chapter 20, Lemma 20.7 and
Lemma 20.8).

This is an equation which is used in proving the Euler–Poincaré formula; see Theorem
6.14.

It can be shown that Q/Z is an injective Z-module which is not flat and the Z-module
Q⊕ Z is flat but neither projective nor injective.

We are now ready to discuss (projective and injective) resolutions, one of the most im-
portant technical tools in homological algebra.

12.2 Projective and Injective Resolutions

We saw in Section 12.1 that in general there are modules that are not projective or not
injective (or neither). Then it is natural to ask whether it is possible to quantify how much a
module deviates from being projective or injective. Let us first consider the projective case.

We know from Proposition 12.2 that given any module M , there is some projective (in
fact, free) module P0 and a surjection p0 : P0 → M . It follows that M is isomorphic to
P0/Ker p0, but the module K0 = Ker p0 may not be projective, so we repeat the process.
There is some projective module P1 and a surjection p1 : P1 → K0. Again K0 is isomorphic
to P1/Ker p1, but K1 = Ker p1 may not be projective. We repeat the process.

By induction, we we obtain exact sequences

0 // Kn
in // Pn

pn // Kn−1
// 0

with Pn projective, Kn = Ker pn, and in the inclusion map for all n ≥ 1, and the starting
sequence

0 // K0
i0 // P0

p0 //M // 0,

as illustrated by the following diagram:

· · · // P3
d3 //

p3   

P2
d2 //

p2   

P1
d1 //

p1   

P0
p0 //M // 0

· · · K2

i2

>>

!!

K1

i1

>>

!!

K0

i0

>>

!!
· · · 0

==

0

==

0

==

0

If we define dn : Pn → Pn−1 by

dn = in−1 ◦ pn (n ≥ 1),
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then since in−1 is injective we have

Ker dn = Ker pn = Kn,

and since pn is surjective we have

Im dn = Im in−1 = Kn−1.

Therefore, Im dn+1 = Ker dn for all n ≥ 1. We also have Im d1 = K0 = Ker p0 and p0 is
surjective, therefore the top row is an exact sequence. In summary, we proved the following
result:

Proposition 12.10. For every R-module M , there is some exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 //M // 0

in which every Pn is a projective module. Furthermore, we may assume that the Pn are free.

Exact sequences of the above from are called resolutions.

Definition 12.3. Given any R-module M , a projective (resp. free, resp. flat) resolution of
M is any exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 //M // 0 (∗)

in which every Pn is a projective (resp. free, resp. flat) module. The exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

obtained by truncating the projective resolution of M after P0 is denoted by PM or P•, and
the projective resolution (∗) is denoted by

PM p0 //M // 0.

An exact sequence (∗) where the Pi are not necessarily projective (nor free, nor flat) is called
a left acyclic resolution of M .

Remark: Following the convention for writing complexes with lower indices discussed in
Section 2.3, the exact sequence (∗) of Definition 12.3 can also be written as

0 Moo P0
p0oo P1

d1oo · · ·oo Pn−1
dn−1oo Pn

dnoo · · ·oo (∗∗)

and the truncated sequence

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo
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is still denoted by PM or P•. The projective resolution (∗∗) is denoted by

0 Moo PM .
p0oo

Proposition 12.10 shows that every module has some projective (resp. free, resp. flat)
resolution. A projective resolution may stop after finitely many steps, which means that
there is some m such that Pn = (0) for all n ≥ m. For example, if the ring R is a PID,
since every submodule of a free module is free, every R-module has a free resolution with
two steps:

0 // P1
d1 // P0

p0 //M // 0.

If we apply the functor Hom(−, B) to the exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from a projective resolution of a module A by dropping the term A, exactness is
usually lost but we still obtain the chain complex Hom(PA, B) given by

0 // Hom(P0, B) // · · · // Hom(Pn−1, B) // Hom(Pn, B) // · · · ,

with the maps Hom(Pn−1, B)
Hom(dn,B) // Hom(Pn, B).

Consequently, we have the cohomology groups Hp(Hom(PA, B)) of the cohomology com-
plex Hom(PA, B).

These cohomology modules seem to depend of the choice of the projective resolution
PA. However, the remarkable fact about projective resolutions is that these cohomology
groups are independent of the projective resolution chosen. This is what makes projective
resolutions so special. In our case where we applied the functor Hom(−, B), the cohomology
groups are denoted by ExtnR(A,B) (the “Ext” groups). Since Hom(−, B), is left exact, the
exact sequence

P1
d1 // P0

p0 // A // 0

yields the exact sequences

0 // Hom(A,B)
Hom(p0,B) // Hom(P0, B)

Hom(d1,B) // Hom(P1, B).

This implies that Hom(A,B) is isomorphic to Ker Hom(d1, B) = H0(Hom(PA, B)) that is,

Ext0
R(A,B) ∼= Hom(A,B).

If A is a projective module, then we have the trivial resolution 0 // A id // A // 0 , and
ExtnR(A,B) = (0) for all n ≥ 1.
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If the ring R is a PID, then every module A has a free resolution

0 // P1
d1 // P0

p0 // A // 0 ,

so ExtnR(A,B) = (0) for all n ≥ 2. The group Ext1
R(A,B) plays a a crucial role in the

universal coefficient theorem for cohomology which expresses the cohomology groups of a
complex in terms of its cohomology. The cohomology complex is obtain from the homology
complex by appying the functor Hom(−, R).

If we apply the functor −⊗B to the exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from a projective resolution of a module A by dropping the term A, exactness is
usually lost but we still obtain the chain complex PA ⊗B given by

0 P0 ⊗Boo · · ·oo Pn−1 ⊗Boo Pn ⊗Boo · · ·oo

with maps Pn ⊗B
dn⊗idB // Pn−1 ⊗B.

This time, we have the homology groups Hp(P
A⊗B) of the homology complex PA⊗B.

As before, these homology groups are independent of the resolution chosen. These ho-
mology groups are denoted by TorRn (A,B) (the “Tor” groups). Because −⊗B is right-exact,
we have an isomorphism

TorR0 (A,B) ∼= A⊗B.
If the ring R is a PID, then TorR0 (A,B) = (0) for all n ≥ 2. The group TorR1 (A,B) plays
a crucial role in the universal coefficient theorem that expresses the homology groups with
coefficients in an R-module B in terms of the homology groups with coefficients in R.

Using Theorem 12.6, we can dualize the construction of Proposition 12.10 to show that
every module has an injective resolution, a notion defined below.

Definition 12.4. Given any R-module M , an injective resolution of M is any exact sequence

0 //M
i0 // I0 d0

// I1 d1
// · · · // In

dn // In+1 // · · · (∗)

in which every In is an injective module. The exact sequence

I0 d0
// I1 d1

// · · · // In dn // In+1 // · · ·

obtained by truncating the injective resolution of M before I0 is denoted by IM or I•, and
the injective resolution (∗) is denoted by

0 //M
i0 // IM .

An exact sequence (∗) where the I i are not necessarily injective is called a right acyclic
resolution of M .
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Proposition 12.11. Every R-module M has some injective resolution.

Proof. Using Theorem 12.6 we can find an injective module I0 and an injection i0 : M → I0.
Let C1 = Coker i0 be the cokernel of i0. If C1 is not injective then by Theorem 12.6 we can
find an injective module I1 and an injection i1 : C1 → I1. Let C2 = Coker i1. If C2 is not
injective we repeat the process. By induction we obtain exact sequences

0 // Cn in // In
pn // Cn+1 // 0,

where Cn+1 = Coker in = In/Im in and pn is the projection map for all n ≥ 0, starting with

0 //M i0 // I0 p0
// C1 // 0,

as illustrated by the following diagram:

0 //M i0 // I0 d0
//

p0   

I1 d1
//

p1   

I2 d2
//

p2   

I3 // · · ·

C1

i1

>>

  

C2

i2

>>

  

C3

i3

>>

  

· · ·

0

>>

0

>>

0

>>

0 · · ·

If we define dn : In → In+1 by

dn = in+1 ◦ pn (n ≥ 0),

then we immediately check Ker dn = Ker pn = Im in and Im dn = Im in+1, so the top row is
exact; that is, it is an injective resolution of M .

If we apply the functor Hom(A,−) to the exact sequence

I0 d0
// I1 d1

// · · · // In dn // In+1 // · · ·

obtained by truncating the injective resolution of B before I0 we obtain the complex

Hom(A, I0) // Hom(A, I1) // · · · // Hom(A, In) // Hom(A, In+1) // · · ·

with maps Hom(A, In)
Hom(A,dn) // Hom(A, In+1) .

We have the cohomology groups Hp(Hom(A, IB)) of the complex Hom(A, IB). Remark-
ably, as in the case of projective resolutions, these cohomology groups are independent of the
injective resolution chosen. This is what makes injective resolutions so special. In our case
where we applied the functor Hom(A,−) we obtain some cohomology modules Ext′pR(A,B).
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It is natural to ask whether the modules Ext′pR(A,B) are related to the cohomology
modules ExtpR(A,B) induced by the functor Hom(−, B) and defined in terms of projective
resolutions. The answer is that they are isomorphic; see Rotman [41] or Weibel [51] for a
thorough exposition.

We now return to the fundamental property of projective and injective resolutions, a kind
of quasi-uniqueness. To be more precise, there is a chain homotopy equivalence between the
complexes PA and P

′A arising from any two projective resolutions of a module A (a similar
result holds for injective resolutions). To understand this, let us review the notions of
chain map and chain homotopy from Section 2.4 in the context of projective and injective
resolutions.

Definition 12.5. Let A and B be two R-modules, let

PA ε // A // 0 (∗)

and

P
′B ε′ // B // 0 (∗∗)

be two complexes, and let f : A → B be a map of R-modules. A map (or morphism) from
PA to P

′B over f (or lifting f) is a family g = (gn)n≥0 of maps gn : Pn → P ′n such that the
following diagrams commute for all n ≥ 1:

Pn

gn

��

dPn // Pn−1

gn−1

��
P ′n

dP
′

n

// P ′n−1

P0

g0

��

ε // A

f

��
P ′0 ε′

// B.

Given two morphisms g and h from PA to P
′B over f , a chain homotopy between g and h

is a family s = (sn)n≥0 of maps sn : Pn → P ′n+1 for n ≥ 0, such that

gn − hn = sn−1 ◦ dPn + dP
′

n+1 ◦ sn, n ≥ 1

and
g0 − h0 = dP

′

1 ◦ s0,

as illustrated in the diagrams

· · · // Pn+1

dPn+1 //

∆n+1

��

Pn
dPn //

∆n

��
sn

}}

Pn−1

dPn−1 //

∆n−1

��
sn−1

}}

· · ·

· · · // P ′n+1
dP
′

n+1

// P ′n
dP
′

n

// P ′n−1
dP
′

n−1

// · · ·
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and

· · · // P1

dP1 //

∆1

��

P0

∆0

��
s0

��
· · · // P ′1

dP
′

1

// P ′0

where ∆n = gn − hn.

In particular, a special case of Definition 12.5 is the case where (∗) and (∗∗) are projective
resolutions. Dually, we have a definition that specializes to injective resolutions.

Definition 12.6. Let A and B be two R-modules, let

0 // A
ε // IA (∗)

and

0 // B
ε′ // I′B (∗∗)

be two complexes, and let f : A → B be a map of R-modules. A map (or morphism) from
IA to I′B over f (or lifting f) is a family g = (gn)n≥0 of maps gn : In → I

′n such that the
following diagrams commute for all n ≥ 0:

A

f

��

ε // I0

g0

��
B

ε′
// I
′0

In

gn

��

dnP // In+1

gn+1

��
I
′n

dn
P ′

// I
′n+1

Given two morphisms g and h from IA to I′B over f , a chain homotopy between g and h is
a family s = (sn)n≥1 of maps sn : In → I

′n−1 for n ≥ 1, such that

gn − hn = sn+1 ◦ dnI + dn−1
I′ ◦ s

n, n ≥ 1

and
g0 − h0 = s1 ◦ d0

I ,

as illustrated in the diagrams

I0
d0
I //

∆0

��

I1

s1

~~

//

∆1

��

· · ·

I
′0

d0
I′

// I
′1 // · · ·



12.2. PROJECTIVE AND INJECTIVE RESOLUTIONS 293

and

· · · // In−1

dn−1
I //

∆n−1

��

In
dnI //

∆n

��
sn

}}

In+1
dn+1
I //

∆n+1

��
sn+1

}}

· · ·

· · · // I
′n−1

dn−1
I′

// I
′n

dn
I′

// I
′n+1

dn+1
I′

// · · ·

where ∆n = gn − hn.

We now come to the small miracle about projective resolutions.

Theorem 12.12. (Comparison Theorem, Projective Case) Let A and B be R-modules. If

PA ε // A // 0 is a chain complex with all Pn in PA projective and if XB ε′ // B // 0
is an exact sequence (a left resolution of B), then any R-linear map f : A → B lifts to a
morphism g from PA to XB as illustrated by the following commutative diagram:

· · · // P2

g2

��

dP2 // P1

g1

��

dP1 // P0

g0

��

ε // A

f

��

// 0

· · · // X2
dX2

// X1
dX1

// X0
ε′
// B // 0.

Any two morphisms from PA to XB lifting f are chain homotopic.

Proof. Here is a slightly expanded version of the classical proof from Cartan–Eilenberg [7]
(Chapter V, Proposition 1.1). We begin with a crucial observation.

If we have a diagram

P
θ

~~
f
��

A ϕ
// B

ψ
// C

in which

(1) P is projective.

(2) The lower sequence is exact (i.e., Im ϕ = Kerψ).

(3) ψ ◦ f = 0,

then there is a map θ : P → A lifting f (as shown by the dotted arrow above).
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Proof. Indeed, ψ ◦ f = 0 implies that Im f ⊆ Kerψ = Im ϕ; so, we have Im f ⊆ Im ϕ, and
we are reduced to the usual diagram

P
θ

||
f
��

A ϕ
// Im ϕ // 0

where ϕ is surjective.

We now prove our theorem.

We begin by proving the existence of the lift, stepwise, by induction. Since we have
morphisms ε : P0 → A and f : A → B, we get a morphism f ◦ ε : P0 → B and we have the
diagram

P0

f◦ε
��

g0

}}
X0

// B // 0.

As P0 is projective, the map g0 : P0 → X0 exists and makes the diagram commute. Assume
the lift exists up to level n. We have the diagram

Pn+1

dPn+1 // Pn
dPn //

gn

��

Pn−1

gn−1

��

// · · ·

Xn+1
dXn+1

// Xn
dXn

// Xn−1
// · · · ,

(†)

so we get a map gn ◦ dPn+1 : Pn+1 → Xn and a diagram

Pn+1

gn◦dPn+1

��

gn+1

{{
Xn+1

// Xn
dXn

// Xn−1.

But, by commutativity in (†), we get

dXn ◦ gn ◦ dPn+1 = gn−1 ◦ dPn ◦ dPn+1 = 0.

Observe that in the above step we only use the fact that the first sequence is a chain complex.
Now, Pn+1 is projective and the lower row in the above diagram is exact, so there is a lifting
gn+1 : Pn+1 → Xn+1, as required.

Say we have two lifts g = (gn) and h = (hn). We construct the chain homotopy (sn), by
induction on n ≥ 0.
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For the base case, we have the diagram

P0
ε //

s0

}}
h0

��
g0

��

A //

f
��

0

X1
dX1

// X0
ε′
// B // 0.

As ε′(g0 − h0) = (f − f)ε = 0, the lower row is exact and P0 is projective, we get our lifting
s0 : P0 → X1 with g0 − h0 = dX1 ◦ s0.

Assume, for the induction step, that we already have s0, . . . , sn−1. Write ∆n = gn − hn,
then we get the diagram

Pn
dPn //

∆n

��

Pn−1
//

∆n−1

��

sn−1

{{

Pn−2
//

∆n−2

��

· · ·

Xn+1
// Xn

dXn

// Xn−1
// Xn−2

// · · ·
(††)

There results a map ∆n − sn−1 ◦ dPn : Pn −→ Xn and a diagram

Pn

∆n−sn−1◦dPn
��

Xn+1
dXn+1

// Xn
dXn

// Xn−1.

As usual, if we show that dXn ◦ (∆n− sn−1 ◦ dPn ) = 0, then there will be a lift sn : Pn → Xn+1

making the diagram

Pn

∆n−sn−1◦dPn
��

sn

{{
Xn+1

dXn+1

// Xn
dXn

// Xn−1

commute. Now, by the commutativity of (††), we have dXn ◦∆n = ∆n−1 ◦ dPn ; so

dXn ◦ (∆n − sn−1 ◦ dPn ) = ∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn .

By the induction hypothesis, ∆n−1 = gn−1 − hn−1 = sn−2 ◦ dPn−1 + dXn ◦ sn−1, and therefore

∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = sn−2 ◦ dPn−1 ◦ dPn + dXn ◦ sn−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = 0.

Hence, sn exists and we are done.



296 CHAPTER 12. DERIVED FUNCTORS, δ-FUNCTORS, AND ∂-FUNCTORS

Note that Theorem 12.12 holds under hypotheses weaker than the assumption that both

If PA ε // A // 0 and XB ε′ // B // 0 are projective resolutions. It suffices that the
first sequence is a chain complex with all Pn projective and that the second sequence is exact
(with arbitrary Xn).

There are two important corollaries of the Comparison Theorem.

Proposition 12.13. Given any R-linear map f : A→ B between some R-modules A and B,

if PA ε // A // 0 and P
′B ε′ // B // 0 are any two projective resolutions of A and

B, then f has a lift g from PA to P
′B. Furthermore, any two lifts of f are chain homotopic.

Recall that a homotopy equivalence between two chain complexes C and D consists of a
pair (g, h) of chain maps g : C → D and h : D → C such that h ◦ g is chain homotopic to
idC and g ◦ h is chain homotopic to idD.

We have the following important result which plays a key role in showing that the notion
of derived functor does not depend on the choice of a projective resolution.

Theorem 12.14. Given any R-module A, if PA ε // A // 0 and P
′A ε′ // A // 0 are

any two projective resolutions of A, then PA and P
′A are homotopy equivalent.

Proof. By Proposition 12.13, the identity map id: A → A has a lift g from PA and P
′A

and a lift h from P
′A and PA. Then h ◦ g is a lift of idA from PA to PA, and since the

identity map idP of the complex PA is also a lift of idA, by Proposition 12.13 there f is a
chain homotopy from h◦ g to idPA . Similarly, g ◦h is a lift of idA from P

′A to P
′A, and since

the identity map idP′ of the complex P
′A is also a lift of idA, by Proposition 12.13 there is

a chain homotopy from g ◦ h to idP′A . Therefore, g and h define a homotopy equivalence
between PA and P

′A.

Since the definition of an injective module is obtained from the definition of a projective
module by changing the direction of the arrows it is not unreasonable to expect that a version
of Theorem 12.12 holds. The proof is basically obtained by changing the direction of the
arrows, but it takes a little more than that. Indeed, some quotients show up in the proof.
Paraphrazing Lang [28]: “The books on homological algebra that I know of in fact carry out
the projective case, and leave the injective case to the reader.”

Theorem 12.15. (Comparison Theorem, Injective Case) Let A and B be R-modules. If

0 // A ε′ //XA is an exact sequence (a right resolution of A) and if 0 // B ε′ // IB
is a chain complex with all In in IB injective, then any R-linear map f : A → B lifts to a
morphism g from XA to IB as illustrated by the following commutative diagram:

0 // A

f

��

ε //// X0

g0

��

d0
X // X1

g1

��

d1
X // X2

g2

��

d2
X // · · ·

0 // B
ε′
// I0

d0
I

// I1

d1
I

// I2

d2
I

// · · · .
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Any two morphisms from XA to IB lifting f are chain homotopic.

Proof. We begin with a crucial observation dual to the crucial observation of the proof of
Theorem 12.12.

If we have a diagram

A
ψ // B

f
��

ϕ // C

θ��
I

in which

(1) I is injective.

(2) The upper sequence is exact (i.e., Im ψ = Kerϕ).

(3) f ◦ ψ = 0,

then there is a map θ : C → I lifting f (as shown by the dotted arrow above).

Proof. Indeed, f ◦ ψ = 0 implies that Im ψ ⊆ Ker f ; so we have Kerϕ = Im ψ ⊆ Ker f ,
that is Kerϕ ⊆ Ker f . It follows that there is a unique map f : B/Kerϕ→ I such that the
following diagram commutes:

B
π //

f
$$

B/Kerϕ

f
��
I.

The map ϕ : B → C factors through the quotient map ϕ : B/Kerϕ→ C as ϕ = ϕ ◦ π so we
have the commutative diagram

B

π

��

ϕ

$$
0 // B/Kerϕ

f
��

ϕ // C

θ
zz

I

and since I is injective there is a map θ : C → I lifting f as shown in the diagram above.
Since f = f ◦ π, the commutativity of the above diagram yields f = f ◦ π = θ ◦ ϕ, which
shows that θ lifts f , as claimed.

Using the above fact, the proof of the theorem proceeds by induction and is very similar
to the proof of Theorem 12.12. Lang [28] gives most of the details.
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Note that Theorem 12.15 holds under hypotheses weaker than the assumption that both

0 // A ε′ //XA and 0 // B ε′ // IB are injective resolutions. It suffices that the first
sequence is exact (with arbitrary Xn) and that the second sequence is a chain complex with
all In injective.

Analogously to the projective case we have the following important corollaries.

Proposition 12.16. Given any R-linear map f : A → B between some R-modules A and

B, if 0 // A ε // IA and 0 // B ε′ // I′B are any two injective resolutions of A and
B, then f has a lift g from IA to I′B. Furthermore, any two lifts of f are chain homotopic.

The following result plays a key role in showing that the notion of derived functor does
not depend on the choice of an injective resolution.

Theorem 12.17. Given any R-module A, if 0 // A ε // IA and 0 // A ε′ // I′ A are
any two injective resolutions of A, then IA and I′A are homotopy equivalent.

At this stage we are ready to define the central concept of this chapter, the notion of
derived functor. A key observation is that the existence of projective resolutions or injective
resolutions depends only on the fact that for every object A there is some projective object
P and a surjection ρ : P → A, and there is some injective object I and an injection ε : A→ I.

If C is an abelian category then the notions of projective and injective objects make sense
since they are defined purely in terms of conditions on maps.

Definition 12.7. Given an abelian category C, we say that C has enough injectives if for
every object A ∈ C there is some injective object I ∈ C and a monomorphism ε : A → I
(which means that ker ε = 0) (resp. enough projectives if for every A ∈ C there is some
projective object P ∈ C and an epimorphism ρ : P → A (which means that coker ρ = 0)).

If can be shown that if an abelian category C has enough projectives, then the results of
this section (in particular Proposition 12.13 and Theorem 12.14) hold. Similarly, if an abelian
category C has enough injectives, then the results of this section (in particular Proposition
12.16 and Theorem 12.17) hold.

As we saw, the category of R-modules has enough injectives and projecticves. Now, it
turns out that the category of sheaves (which is abelian) has enough injectives, but does not
have enough projectives (as we saw, cokernels and quotients are problematic).

Derived functors have the property that any short exact sequence yields a long coho-
mology (or homology) exact sequence, and that it is so naturally (as in Theorem 2.19 and
Proposition 2.20). To prove these facts requires some rather technical propositions involving
projective and injective resolutions. We content ourselves with stating these results. Futher-
more, since our ultimate goal is to apply derived functors to the category of sheaves to obtain
sheaf cohomology, and since the category of sheaves does not have enough projectives but
has enough injectives, we will focus our attention on results involving injectives.
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We need to define what we mean by an exact sequence of chain complexes. If A = (A, dA),
B = (B, dB) and C = (C, dC) are three chain complexes and f : A → B and g : B → C are
two chain maps with f = (fn) and g = (gn),we say that the the sequence of complexes

0 // A
f //B

g // C // 0

is exact iff the sequence

0 // An
fn // Bn gn // Cn // 0

is exact for every n.

Proposition 12.18. (Horseshoe Lemma, Projective Case) Consider the diagram (in some
abelian category C)

...

��

...

��
P ′1

��

P ′′1

��
P ′0

ε′

��

P ′′0

ε′′

��
0 // A′

ϕ //

��

A
ψ // A′′ //

��

0

0 0

where the left column is a projective resolution P′ : PA′ ε′ // A′ // 0 of A′, the right

column P′′ : PA′′ ε′′ // A′′ // 0 is a projective resolution of A′′, and the row is an exact

sequence. Then there is a projective resolution P : PA ε // A // 0 of A and chain maps
f : P′ → P and g : P→ P′′ such that the sequence

0 // P′
f // P

g // P′′ // 0

is exact.

A proof of Proposition 12.18 can be found in Rotman [40] (Chapter 6, Lemma 6.20).

Proposition 12.19. (Horseshoe Lemma, Injective Case) Consider the diagram (in some
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abelian category C)

...
...

I
′1

OO

I
′′1

OO

I
′0

OO

I
′′0

OO

0 // A′

ε′

OO

ϕ // A
ψ // A′′

ε′′

OO

// 0

0

OO

0

OO

where the left column is an injective resolution I′ : 0 // A′
ε′ // IA′ of A′, the right column

I′′ : 0 // A′′ ε′′ // IA′′ is an injective resolution of A′′, and the row is an exact sequence.

Then there is an injective resolution I : 0 // A
ε // IA of A and chain maps f : I′ → I

and g : I→ I′′ such that the sequence

0 // I′
f // I

g // I′′ // 0

is exact.

We will also need a generalization of the Horseshoe Lemma for chain maps of exact
sequences.

Proposition 12.20. Suppose we have a map of exact sequences (in some abelian category
C)

0 // A′

f ′

��

ϕ // A
ψ //

f

��

A′′

f ′′

��

// 0

0 // B′
ϕ′

// B
ψ′

// B′′ // 0

and that we have some injective resolutions 0 // A′
εA
′
// IA′ , 0 // A′′

εA
′′
// IA′′ ,

0 // B′
εB
′
// IB′ and 0 // B′′

εB
′′
// IB′′ of the corners A′, A′′, B′, B′′, and chain maps

F ′ : IA′ → IB′ over f ′ and F ′′ : IA′′ → IB′′ over f ′′. Then there exist injective resolutions

0 // A εA // IA of A and 0 // B εB // IB of B and a chain map F : IA → IB over f
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such that the following diagram commmutes

0 // IA′

F ′

��

// IA

F

��

// IA′′

F ′′

��

// 0

0 // IB′ // IB // IB′′ // 0

and has exact rows.

There is also a version of Proposition 12.20 for projective resolutions; see Rotman [40]
(Chapter 6, Lemma 6.24). The reader should enjoy the use of three-dimensional diagrams
involving cubes.

12.3 Left and Right Derived Functors

Let C and D be two abelian categories, and let T : C→ D be an additive functor. Actually,
in all our examples C is either the category of R-modules, the category of presheaves, or the
category or sheaves, and D is either the category of R-modules or the catgeory of abelian
groups, so the reader may assume this if the abstract nature of abelian categories makes
her/him uncomfortable.

Assume that C has enough injectives. For any A ∈ C, if 0 // A
ε // IA is an injective

resolution of A, then if we apply T to IA we obtain the cochain complex

0 // T (I0)
T (d0) // T (I1)

T (d1) // · · · // T (In)
T (dn) // T (In+1) // · · · , (Ri)

denoted T (IA). If T : C → D is a contravariant functor and if we apply T to IA we obtain
the chain complex

0 T (I0)oo T (I1)
T (d0)oo · · ·T (d1)oo T (In)oo T (In+1)

T (dn)oo · · · ,oo (Li)

also denoted T (IA).

Now assume that C has enough projectives. For any A ∈ C, if PA ε // A // 0 is a
projective resolution of A, then if we apply T to PA we obtain the chain complex

0 T (P0)oo T (P1)
T (d1)oo · · ·T (d2)oo T (Pn−1)oo T (Pn)

T (dn)oo · · · ,oo (Lp)

denoted T (PA). If T : C→ D is a contravariant functor and if we apply T to PA we obtain
the cochain complex

0 // T (P0)
T (d1) // T (P1)

T (d2) // · · · // T (Pn−1)
T (dn) // T (Pn) // · · · , (Rp)

also denoted T (PA). The above four complexes have (co)homology that defines the left and
right derived functors of T .
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Definition 12.8. Let C and D be two abelian categories, and let T : C→ D be an additive
functor.

(Ri) Assume that C has enough injectives. For any A ∈ C, if 0 // A ε // IA is an
injective resolution of A, then the cohomology groups of the complex T (IA) are denoted
by

RnT (IA) = Hn(T (IA)), n ≥ 0.

(Li) If T : C → D is a contravariant functor, then the homology groups of the complex
T (IA) are denoted by

LnT (IA) = Hn(T (IA)), n ≥ 0.

(Lp) Now assume that C has enough projectives. For any A ∈ C, if PA ε // A // 0
is a projective resolution of A, then the homology groups of the complex T (PA) are
denoted by

LnT (PA) = Hn(T (PA)), n ≥ 0.

(Rp) If T : C → D is a contravariant functor, then the cohomology groups of the complex
T (PA) are denoted by

RnT (PA) = Hn(T (PA)), n ≥ 0.

The reason for using RnT or LnT is that the chain complexes T (IA) in (Ri) and T (PA)
in (Rp) have arrows going to the right since they are cohomology complexes so the corre-
sponding functors are RnT , and the chain complexes T (IA) in (Li) and T (PA) in (Lp) have
arrows going to the left since they are homology complexes so the corresponding functors
are LnT .

In the rest of this chapter we always assume that C and D are abelian categories and
that C has enough injectives or projectives, as needed.

All the operators introduced in Definition 12.8 are actually functors so let us clarify what
are the categories invoved. In Cases (Li) and (Ri) the domain category is the set of all in-

jective resolutions 0 // A ε // IA for all A ∈ C, and a morphism from 0 // A ε // IA

to 0 // B
ε′ // I′B is simply a map f : A → B. To be absolutely precise RnT (IA) and

LnT (IA) should be denoted RnT ( 0 // A ε // IA ) and LnT ( 0 // A ε // IA ) but for
the sake of notational simplicity we use the former notation.

In Cases (Lp) and (Rp) the domain category is the set of all projective resolutions

PA ε // A // 0 (A ∈ C), and a morphism from PA ε // A // 0 to P
′B ε′ // B // 0

is simply a map f : A→ B. Again, to be absolutely precise LnT (PA) and RnT (PA) should be

denoted LnT ( PA ε // A // 0 ) RnT ( PA ε // A // 0 ) but we use the simpler notation.
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In both cases the codomain category is D. Definition 12.8 describes how RnT and LnT
act on objects. We also have to explain how they act on maps f : A → B. First, consider
Case (Ri).

If 0 // A ε // IA is any injective resolution of A and 0 // B ε′ // I′B is any injective

resolution of B, then by Proposition 12.16 the map f has a lift g from IA to I′B as illustrated
by the following commutative diagram

0 // A

f

��

ε //// I0

g0

��

d0
I // I1

g1

��

d1
I // I2

g2

��

d2
I // · · ·

0 // B
ε′

// I
′0

d0
I′

// I
′1

d1
I′

// I
′2

d2
I′

// · · · .

Since T is a functor, T (g) is a chain map from T (IA) to T (I′B) lifting T (f) as illustrated by
the following commutative diagram

0 // T (A)

T (f)

��

T (ε) //// T (I0)

T (g0)

��

T (d0
I)
// T (I1)

T (g1)

��

T (d1
I)
// T (I2)

T (g2)

��

T (d2
I)
// · · ·

0 // T (B)
T (ε′)

// T (I
′0)

T (d0
I′ )
// T (I

′1)
T (d1

I′ )
// T (I

′2)
T (d2

I′ )
// · · · .

By Proposition 2.16, T (g) induces a homomorphism of cohomology T (gn)∗ : Hn(T (IA)) →
Hn(T (I′B)) for all n ≥ 0. Furthermore, if h is another lift of f , since by Proposition 12.16
any two lifts of f are chain homotopic say by the chain homotopy (sn)n≥0, since T is additive
by applying T to the equations

gn − hn = sn+1 ◦ dnI + dn−1
I′ ◦ s

n

we obtain
T (gn)− T (hn) = T (sn+1) ◦ T (dnI ) + T (dn−1

I′ ) ◦ T (sn),

which shows that (T (sn))n≥0 is a chain homotopy between T (g) and T (h), and by Proposi-
tion 2.17 we have T (gn)∗ = T (hn)∗. Therefore, the homomorphism T (gn)∗ : Hn(T (IA)) →
Hn(T (I′B)) is independent of the lift g of f , and we define RnT (IA, I

′
B)(f) : RnT (IA) →

RnT (I′B) by
RnT (IA, I

′
B)(f) = T (gn)∗.

In Case (Li), a lift g of f induces a chain map T (g) between the homology complexes T (I′B)
and T (IA). The map T (gn)∗ : Hn(T (I′B))→ Hn(T (IA)) is a homomorphism of homology and
we obtain a well-defined map LnT (I′B, IA)(f) : LnT (I′B) → LnT (IA) (independent of the
lifting g) given by

LnT (I′B, IA)(f) = T (gn)∗.
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In Case (Lp) we use projective resolutions PA ε // A // 0 and P
′B ε′ // B // 0

and Proposition 12.13. In this case T (g) is a chain map of homology from T (PA) to T (P
′B),

and T (gn)∗ : Hn(T (PA)) → Hn(T (P
′B)) is the induced map of homology. We obtain a

well-defined map of homology (independent of the lifting g) LnT (PA,P
′B)(f) : LnT (PA)→

LnT (P
′B) given by

LnT (PA,P
′B)(f) = T (gn)∗.

In Case (Rp), we use projective resolutions and Proposition 12.13. This time T (g) is a
chain map of cohomology from T (P

′B) to T (PA) and T (gn)∗ : Hn(T (P
′B))→ Hn(T (PA)) is

the induced map of cohomology. We obtain a well-defined map of cohomology (independent
of the lifting g) RnT (P

′B,PA)(f) : RnT (P
′B)→ RnT (PA) given by

RnT (P
′B,PA)(f) = T (gn)∗.

In summary we make the following definition.

Definition 12.9. Let A,B ∈ C be objects in C and let f : A→ B be any map.

(Ri) If 0 // A
ε // IA is any injective resolution of A and 0 // B

ε′ // I′B is any

injective resolution of B, then we define RnT (IA, I
′
B)(f) : RnT (IA)→ RnT (I′B) by

RnT (IA, I
′
B)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (IA)) → Hn(T (I′B)) is independent of the
lift g.

(Li) We define LnT (I′B, IA)(f) : LnT (I′B)→ LnT (IA) by

LnT (I′B, IA)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (I′B)) → Hn(T (IA)) is independent of the
lift g.

(Lp) If PA ε // A // 0 is any projective resolution of A and P
′B ε′ // B // 0 is any

projective resolution of B, then we define LnT (PA,P
′B)(f) : LnT (PA) → LnT (P

′B)
by

LnT (PA,P
′B)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (PA))→ Hn(T (P
′B)) is independent of the

lift g.

(Rp) We define RnT (P
′B,PA)(f) : RnT (P

′B)→ RnT (PA) by

RnT (P
′B,PA)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (P
′B))→ Hn(T (PA)) is independent of the

lift g.
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It is an easy exercise to check that RnT and LnT are additive functors, contravariant in
Cases (Li) and (Rp).

The next two theorems are absolutely crucial results. Indeed, they show that even though
the objects RnT (IA) (and LnT (IA)) depend on the injective resolution IA chosen or A, this
dependency is inessential because any other resolution I′A for A yields an object RnT (I′A)
isomorphic to RnT (IA). Similarly if PA and P

′A are two different resolutions for A then
LnT (PA) and LnT (P

′A) are isomorphic. The key to these isomorphisms are the Comparison
theorems. These isomorphisms are actually isomorphisms of functors known as natural
transformations that we now define. A natural transformation is a simple generalization of
the notion of morphism of presheaves.

Definition 12.10. Given two categories C and D and two functors F,G : C → D betwen
them, a natural transformation η : F → G is a family η = (ηA)A∈C of maps ηA : F (A)→ G(A)
in D such that the following diagrams commute for all maps f : A → B between objects
A,B ∈ C:

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (B) ηB

// G(B).

We are now ready to state and prove our crucial theorems.

Theorem 12.21. Let 0 // A
εA // IA and 0 // A

ε′A // I′A be any two injective resolu-
tions for any A ∈ C. If T : C→ D is any additive functor, then there are isomorphisms

ηnA : RnT (IA)→ RnT (I′A)

for all n ≥ 0 that depend only on A and T . Furthermore, for any map f : A → B, for any

injective resolutions 0 // B
εB // IB and 0 // B

ε′B // I′B of B the following diagrams

RnT (IA)
ηnA //

RnT (IA,IB)(f)

��

RnT (I′A)

RnT (I′A,I
′
B)(f)

��
RnT (IB)

ηnB

// RnT (I′B)

commute for all n ≥ 0.

If T : C→ D is a contravariant additive functor, then there are isomorphisms

ηAn : LnT (IA)→ LnT (I′A)
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for all n ≥ 0 that depend only on A and T . Furthermore, the following diagrams

LnT (IB)
ηBn //

LnT (IB ,IA)(f)

��

LnT (I′B)

LnT (I′B ,I
′
A)(f)

��
LnT (IA)

ηAn

// LnT (I′A)

commute for all n ≥ 0.

Proof. By Theorem 12.17 the complexes IA and I′A are homotopy equivalent, which means
that there are chain maps g : IA → I′A and h : I′A → IA both lifting idA such that h◦g is chain
homotopic to idIA and g ◦ h is chain homotopic to idI′A

. Since T is additive, T (h) ◦ T (g) is
chain homotopic to idT (IA) and T (g) ◦ T (h) is chain homotopic to idT (I′A). These chain maps
induce cohomology homomorphisms for all n ≥ 0 and by Proposition 2.17, we obtain

T (hn)∗ ◦ T (gn)∗ = idT (IA)

T (gn)∗ ◦ T (hn)∗ = idT (I′A).

Therefore, T (gn)∗ : Hn(T (IA))→ Hn(T (I′A)) is an isomorphism of cohomology.

We still have to show that this map depends only on T and A. This is because by
Proposition 12.16, any two lifts g and g′ of idA are chain homotopic, so T (g) and T (g′) are
chain homotopic, and by Proposition 2.17 we have T (gn)∗ = T (g′n)∗. As a consequence, it
is legitimate to set ηnA = T (gn)∗, a well-defined isomorphism ηnA : RnT (IA)→ RnT (I′A).

Finally, we need to check that the ηnA yield a natural transformation. For any map
f : A→ B we need to show that the following diagram commutes:

RnT (IA)
ηnA //

RnT (IA,IB)(f)

��

RnT (I′A)

RnT (I′A,I
′
B)(f)

��
RnT (IB)

ηnB

// RnT (I′B).

The map ηnA is given by a lifting gA of idA from IA to I′A, and the map RnT (I′A, I
′
B)(f)

is given by a lifting h′ of f from I′A to I′B. Thus h′ ◦ gA is a lifting of f ◦ idA = f from
IA to I′B. Similarly the map ηnB is given by a lifting gB of idB from IB to I′B, and the map
RnT (IA, IB)(f) is given by a lifting h of f from IA to IB. Thus gB ◦h is a lifting of idA◦f = f
from IA to I′B. Since T is a functor, T (h′) ◦ T (gA) and T (gB) ◦ T (h) both lift T (f), and by
Proposition 12.16 they are chain homotopic, so

T (h′n)∗ ◦ T (gnA)∗ = T (gnB)∗ ◦ T (hn)∗

or equivalently
RnT (I′A, I

′
B)(f) ◦ ηnA = ηnB ◦RnT (IA, IB)(f)

as desired. The proof in the case of a contravariant functor is similar.
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We have a similar theorem for projective resolutions using Proposition 12.13 and Theorem
12.14 instead of Proposition 12.16 and Theorem 12.17.

Theorem 12.22. Let PA εA // A // 0 and P
′A ε

′A
// A // 0 be any two projective res-

olutions for any A ∈ C. If T : C→ D is any additive functor, then there are isomorphisms

ηAn : LnT (PA)→ LnT (P
′A)

for all n ≥ 0 that depend only on A and T . Furthermore, for any map f : A → B, for

any projective resolutions PB εB // B // 0 and P
′B ε

′B
// B // 0 of B, the following

diagrams

LnT (PA)
ηAn //

LnT (PA,PB)(f)

��

LnT (P
′A)

LnT (P
′A,P

′B)(f)

��
LnT (PB)

ηBn

// LnT (P
′B)

commute for all n ≥ 0.

If T : C→ D is a contravariant additive functor, then there are isomorphisms

ηnA : RnT (PA)→ RnT (P
′A)

for all n ≥ 0 that depend only on A and T . Furthermore, the following diagrams

RnT (PB)
ηnB //

RnT (PB ,PA)(f)

��

RnT (P
′B)

RnT (P
′B ,P

′A)(f)

��
RnT (PA)

ηnA

// RnT (P
′A)

commute for all n ≥ 0.

Theorem 12.21 and Theorem 12.22 suggest defining RnT and LnT as functors with do-
main C rather than projective or injective resolutions.

Definition 12.11. Let C and D be two abelian categories, and let T : C→ D be an additive
functor.

(Ri) Assume that C has enough injectives and for every object A in C choose (once and for

all) some injective resolution 0 // A
ε // IA . The right derived functors RnT of T

are defined for every A ∈ C by

RnT (A) = RnT (IA) = Hn(T (IA)), n ≥ 0,

and for every map f : A→ B, by

RnT (f) = RnT (IA, I
′
B)(f), n ≥ 0.
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(Li) If T : C → D is a contravariant functor, then the left derived functors LnT of T are
defined for every A ∈ C by

LnT (A) = LnT (IA) = Hn(T (IA)), n ≥ 0,

and for every map f : A→ B, by

LnT (f) = LnT (I′B, IA)(f), n ≥ 0.

(Lp) Now assume that C has enough projectives and for every object A in C choose (once

and for all) some projective resolution PA ε // A // 0 . The left derived functors
LnT of T are defined for every A ∈ C by

LnT (A) = LnT (PA) = Hn(T (PA)), n ≥ 0,

and for every map f : A→ B, by

LnT (f) = LnT (PA,P
′B)(f), n ≥ 0.

(Rp) If T : C→ D is a contravariant functor, then the right derived functors RnT of T are
defined for every A ∈ C by

RnT (A) = RnT (PA) = Hn(T (PA)), n ≥ 0,

and for every map f : A→ B, by

RnT (f) = RnT (P
′B,PA)(f), n ≥ 0.

Observe that in (Li) and (Rp) the derived functors are contravariant. Any other choice of

injective resolutions or projective resolutions yields derived functors (R̂nT )n≥0 and (L̂nT )n≥0

that are naturally isomorphic to the derived functors (RnT )n≥0 and (LnT )n≥0 associated
to the original fixed choice of resolutions (in the sense that the (ηnA)A∈C and (ηAn )A∈C in
Theorems 12.21 and 12.22 are natural transformations with all ηnA and all ηAn isomorphisms.
For example, in Case (Ri), for all maps f : A→ B we have the commutative diagrams

RnT (A)
ηnA //

RnT (f)

��

R̂nT (A)

R̂nT (f)

��

RnT (B)
ηnB

// R̂nT (B)

for all n ≥ 0).
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One of the main reasons for defining the derived functors (RnT )n≥0 and (LnT )n≥0 is to
investigate properties of T , in particular how much does T preserve exactness. For T fixed,
the objects RnT (A) (or LnT (A)) (groups if D is the category of abelian goups) are important
invariants of the object A.

It turns out that more useful information is obtained if either R0T is isomorphic to T
or L0T is isomorphic to T . The following proposition gives sufficient conditions for this to
happen.

Proposition 12.23. Let C and D be two abelian categories, and let T : C → D be an
additive functor.

(1) If T is left-exact then R0T is naturally isomorphic to T . If T is right-exact and con-
travariant then L0T is naturally isomorphic to T .

(2) If T is right-exact then L0T is naturally isomorphic to T . If T is left-exact and con-
travariant then R0T is naturally isomorphic to T .

Proof. (1) Let 0 // A
ε // IA be an injective resolution of A. Since T is left-exact we

have the exact sequence

0 // T (A)
T (ε) // T (I0)

T (d0) // T (I1).

Since T (ε) is injective It follows that T (A) is isomorphic to Im T (ε) = KerT (d0). The chain
complex T (IA) given by

0 // T (I0)
T (d0) // T (I1)

T (d1) // T (I2) // · · ·

yields R0T (A) = H0(T (IA)) = KerT (d0), so T (A) is isomorphic to R0T (A). We leave it as
an exercise to show that these isomorphisms constitute a natural transformation. The case
where T is right-exact and contravariant is left as an exercise.

(2) Let PA ε // A // 0 be a projective resolution of A. Since T is right-exact we have
the exact sequence

0 T (A)oo T (P 0)
T (ε)oo T (P 1).

T (d1)oo

Since T (ε) is surjective T (A) is isomorphic to T (P 0)/KerT (ε) = T (P 0)/ImT (d1). The chain
complex T (PA) given by

0 T (P 0)oo T (P 1)
T (d1)oo T (P 2)

T (d2)oo · · ·oo

yields L0T (A) = H0(T (PA)) = T (P 0)/ImT (d1), so T (A) is isomorphic to L0T (A). We leave
it as an exercise to show that these isomorphisms constitute a natural transformation. The
case where T is left-exact and contravariant is also left as an exercise.
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Remark: We will show later that in Case (Ri) R0T is left-exact, in Case (Li) L0T is right-
exact, in Case (Lp) L0T is right-exact, and in Case (Rp) R0T is left-exact. These properties
also proved in Rotman [40]. As a consequence, the conditions of Proposition 12.23 are
necessary and sufficient.

Example 12.1. We know that the contravariant functor TB(A) = Hom(A,B) with B fixed
is left-exact. Its right derived functors are the “Ext” functors

ExtnR(A,B) = (RnTB)(A),

with
Ext0

R(A,B) = Hom(A,B).

We also know that the functor T ′A(B) = Hom(A,B) with A fixed is left-exact. Its right
derived functors are also “Ext” functors

Ext
′n
R (A,B) = (RnT ′A)(B),

with
Ext

′0
R(A,B) = Hom(A,B).

It turns out that ExtnR(A,B) and Ext
′n
R (A,B) are isomorphic; see Rotman [40] (Chapter 7,

Theorem 7.8).

The functor TB(A) = A⊗B with B fixed is right-exact. Its left derived functors are the
“Tor” functors

TorRn (A,B) = (LnTB)(A),

with
TorR0 (A,B) = A⊗B.

Similarly the functor TA(B) = A ⊗ B with A fixed is right-exact. Its left derived functors
are also the “Tor” functors

Tor
′R
n (A,B) = (LnTA)(B),

with
Tor

′R
0 (A,B) = A⊗B.

It turns out that TorRn (A,B) and Tor
′R
n (A,B) are isomorphic; see Rotman [40] (Chapter 7,

Theorem 7.9). It can be shown that for all R-modules A and B, the R-module TorRn (A,B)
is a torsion module for all n ≥ 1; see Rotman [40] (Chapter 8, Theorem 8.21).

Since Hom is not right-exact, its left derived functors convey no obvious information
about Hom. Similarly, since ⊗ is not left-exact, its right derived functors convey no obvious
information about it.

Altough quite trivial the following proposition has significant implications, namely that
the family of right derived functors (RnT )n≥0 are universal δ-functors, and that the family
of left derived functors (LnT )n≥0 are universal ∂-functors; See Section 12.4.
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Proposition 12.24. Let C and D be two abelian categories, and let T : C → D be an
additive functor.

(1) For every injective object I, we have RnT (I) = (0) for all n ≥ 1, and T (I) is isomorphic
to R0T (I). If T is contravariant we have LnT (I) = (0) for all n ≥ 1, and T (I) is
isomorphic to L0T (I).

(2) For every projective object P , we have LnT (P ) = (0) for all n ≥ 1, and T (P ) is
isomorphic to L0T (P ). If T is contravariant we have RnT (P ) = (0) for all n ≥ 1, and
T (P ) is isomorphic to R0T (P ).

Proof. (1) if I is injective we can pick the resolution

0 // I id // I // 0,

which yields the complex T (I) given by

0 // T (I) // 0,

and obviously R0T (I) = H0(T (I)) = T (I) and Hn(T (I)) = (0) for all n ≥ 1. The proof for
the other cases is similar and left as an exercise.

It should also be noted that if T is an exact functor then RnT = (0) and LnT = (0) for
all n ≥ 1.

Proposition 12.24 implies that if A or B is a projective R-module (in particular, a free
module), then

TorRn (A,B) = (0) for all n ≥ 1.

It can also be shown that the above property holds if A or B is a flat R-module; see Rotman
[40] (Chapter 8, Theorem 8.7). Proposition 12.24 also implies that if A is a projective
R-module (in particular, a free module) or if B is an injective R-module then

ExtnR(A,B) = (0) for all n ≥ 1.

We now come to the most important properties of derived functors, that short-exact
sequences yield long exact sequences of cohomology or homology.

Theorem 12.25. (Long exact sequence, Case (Ri)) Assume the abelian category C has
enough injectives, let 0 −→ A′ −→ A −→ A′′ −→ 0 be an exact sequence in C, and let
T : C→ D be an additive left-exact functor.

(1) Then for every n ≥ 0, there is a map

(RnT )(A′′)
δn−→ (Rn+1T )(A′),
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and the sequence

0 // T (A′) // T (A) // T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (RnT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · ·

is exact.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T (A′)

��

// T (A)

��

// T (A′′)

��

δ0
A //

0 // T (B′) // T (B) // T (B′′)
δ0
B

//

and continuing with

· · · // RnT (A′)

��

// RnT (A)

��

// RnT (A′′)

��

δnA // (Rn+1T )(A′)

��

// · · ·

· · · // RnT (B′) // RnT (B) // RnT (B′′)
δnB

// (Rn+1T )(B′) // · · ·

is also commutative.

Proof. We have injective resolutions (from the collection of resolutions picked once and for

all) 0 // A′ ε′ // IA′ and 0 // A′′ ε′′ // IA′′ for A′ and A′′. We are in the situation where
we can apply the Horseshose Lemma (Proposition 12.19) to obtain an injective resolution

0 // A ε // ÎA for A as illustrated in the following diagram in which all rows and columns
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are exact:

...
...

...

0 // I
′1

OO

// Î1

OO

// I
′′1

OO

// 0

0 // I
′0

OO

// Î0

OO

// I
′′0

OO

// 0

0 // A′

ε′

OO

// A //

ε

OO

A′′

ε′′

OO

// 0

0

OO

0

OO

0

OO

.

Since all the rows are exact we obtain an exact sequence of complexes

...
...

...

0 // I
′2

OO

// Î2 //

OO

I
′′2

OO

// 0

0 // I
′1

OO

// Î1

OO

// I
′′1

OO

// 0

0 // I
′0

OO

// Î0

OO

// I
′′0

OO

// 0

0

OO

0

OO

0

OO

.

denoted by

0 // IA′ // ÎA // IA′′ // 0

Observe that the injective resolution ÎA for A given by the Horseshoe Lemma may not be
the original resolution that was picked originally and this is why it is denoted with hats. In
the end, we will see that Theorem 12.21 implies that this does not matter.

If we apply T to this complex we obtain another sequence of complexes

0 // T (IA′) // T (̂IA) // T (IA′′) // 0
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as illustrated below

...
...

...

0 // T (I
′2)

OO

// T (Î2) //

OO

T (I
′′2)

OO

// 0

0 // T (I
′1)

OO

// T (Î1)

OO

// T (I
′′1)

OO

// 0

0 // T (I
′0)

OO

// T (Î0)

OO

// T (I
′′0)

OO

// 0

0

OO

0

OO

0

OO

.

Because the I
′n are injective and the rows

0 // I
′n // În // I

′′n // 0

are exact, by Proposition 12.3 these sequence split and since T is an additive functor the
sequences

0 // T (I
′n) // T (În) // T (I

′′n) // 0

also split and thus are exact. Therefore the sequence

0 // T (IA′) // T (̂IA) // T (IA′′) // 0

is a short exact sequence, so our fundamental theorem applies (Theorem 2.19) and we obtain
a long exact sequence of cohomology

0 // H0(T (IA′)) // H0(T (̂IA)) // H0(T (IA′′))

// H1(T (IA′)) // · · · // · · ·

// Hn(T (IA′)) // Hn(T (̂IA)) // Hn(T (IA′′))

// Hn+1(T (IA′)) // · · · // · · · // · · ·
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namely the following long exact sequence:

0 // R0T (A′) // R̂0T (A) // R0T (A′′)

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (R̂nT )(A) // (RnT )(A′′)

// (Rn+1T )(A′) // · · · // · · · // · · ·

The right derived functors R̂nT may not be those corresponding to the original choice of
injective resolutions but we can use Theorem 12.21 to replace it by the isomorphic derived
functors RnT corresponding to the original choice of injective resolutions and adjust the
isomorphisms. Since T is left-exact, by Proposition 12.23 we may also replace the R0T
terms (as well as the R̂0T terms) by T and adjust the isomorphisms. After all this, we do
obtain the promised long exact sequence.

To prove naturality we use Proposition 12.20. Assume we have a commutative diagram

0 // A′

f ′

��

// A

f

��

// A′′

f ′′

��

// 0

0 // B′ // B // B′′ // 0

with exact rows. We have injective resolutions 0 // A′
εA
′
// IA′ , 0 // A′′

εA
′′
// IA′′ ,

0 // B′
εB
′
// IB′ and 0 // B′′

εB
′′
// IB′′ of the corners A′, A′′, B′, B′′, and chain maps

A′ : IA′ → IB′ over f ′ and A′′ : IB′′ → IB′′ over f ′′. Then there exist injective resolutions

0 // A εA // ÎA of A and 0 // B εB // ÎB of B and a chain map A : ÎA → ÎB over f
such that the following diagram commmutes

0 // IA′

A′

��

// ÎA

A

��

// IA′′

A′′

��

// 0

0 // IB′ // ÎB // IB′′ // 0

Since the InA′ and the InB′ are injective, every row of the diagram above splits, thus after



316 CHAPTER 12. DERIVED FUNCTORS, δ-FUNCTORS, AND ∂-FUNCTORS

applying T we obtain a commutative diagram with exact rows

0 // T (IA′)

T (A′)

��

// T (̂IA)

T (A)

��

// T (IA′)

T (A′′)

��

// 0

0 // T (IB′) // T (̂IB) // T (IB′′) // 0.

We now conclude by applying Proposition 2.20 and replacing the terms R̂nT by RnT as we
did before.

Remark: If T is not left-exact, the proof of Theorem 12.25 shows that R0T is left-exact.

A similar theorem holds for the left derived functors LnT of a (right-exact) functor; we
obtain a long exact sequence of homology type involving the LnT applied to A′, A,A′′, and
L0T is right-exact.

Theorem 12.26. (Long exact sequence, Case (Lp)) Assume the abelian category C has
enough projectives, let 0 −→ A′ −→ A −→ A′′ −→ 0 be an exact sequence in C, and let
T : C→ D be an additive right-exact functor.

(1) Then for every n ≥ 1, there is a map

(LnT )(A′′)
∂n−→ (Ln−1T )(A′),

and the sequence

· · · // LnT (A′) // LnT (A) // LnT (A′′)
∂n

// Ln−1T (A′) // · · · · · ·

// · · · · · · // L1T (A′′)
∂1

// T (A′) // T (A) // T (A′′) // 0

is exact.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,
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then the induced diagram

· · · // (LnT )(A′) //

��

(LnT )(A) //

��

(LnT )(A′′)
∂An //

��

(Ln−1T )(A′) //

��

· · ·

· · · // (LnT )(B′) // (LnT )(B) // (LnT )(B′′)
∂Bn

// (Ln−1T )(B′) // · · ·

and ending with

· · · // L1T (A′′)

��

∂A1 // T (A′) //

��

T (A) //

��

T (A′′) //

��

0

· · · // L1T (B′′)
∂B1

// T (B′) // T (B) //// T (B′′) // 0

is also commutative.

Remark: If T is not right-exact, the proof of Theorem 12.25 shows that L0T is right-exact.

If C has enough injectives and T is a contravariant (right-exact) functor, we have a version
of Theorem 12.26 showing that there is a long-exact sequence of homology type involving the
LnT applied to A′, A,A′′, with the terms A′, A,A′′ appearing in reverse order (Case (Li)).
As a consequence, L0T is right-exact. This case does not seem to arise in practice.

If C has enough projectives and T is a contravariant (left-exact) functor, we have a
version of Theorem 12.25 showing that there is a long-exact sequence of cohomology type
involving the RnT applied to A′, A,A′′ with the terms A′, A,A′′ appearing in reverse order
(Case (Rp)). As a consequence, R0T is left-exact.

Remember: Right derived functors go with left-exact functors; left derived functors go
with right-exact functors.

There are situations (for example, when dealing with sheaves) where it is useful to know
that right derived functors can be computed by resolutions involving objects that are not
necessarily injective, but T -acyclic, as defined below.

Definition 12.12. Given a left-exact functor T : C → D, an object J ∈ C is T -acyclic if
RnT (J) = (0) for all n ≥ 1.

The following proposition shows that right derived functors can be computed using T -
acyclic resolutions.

Proposition 12.27. Given an additive left-exact functor T : C→ D, for any A ∈ C suppose
there is an exact sequence

0 // A
ε // J0 d0

// J1 d1
// J2 d2

// · · · (†)

in which every Jn is T -acyclic (a right T -acyclic resolution JA). Then for every n ≥ 0 we
have a natural isomorphism between RnT (A) and Hn(T (JA)).
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Proof. The proof is a good illustration of the use of the long exact sequence given by Theorem
12.25. First, observe that if

0 // A
f // B

g // C // 0

is a short exact sequence and if T is left-exact, then KerT (g) ∼= T (Ker g).

Proof. Since the above is a short exact sequence

A ∼= Im f = Ker g,

and as T is a functor
T (A) ∼= T (Ker g).

Since T is left-exact we obtain the exact sequence

0 // T (A)
T (f) // T (B)

T (g) // T (C),

so
T (A) ∼= Im T (f) = KerT (g),

and thus
KerT (g) ∼= T (A) ∼= T (Ker g),

as claimed.

Since (†) is exact and T is left-exact we obtain the exact sequence

0 // T (A)
T (ε) // T (J0)

T (d0) // T (J1),

which implies that
R0T (A) ∼= T (A) ∼= KerT (d0) = H0(T (JA)).

Let Kn = Ker dn for all n ≥ 1. The exact sequence (†) implies that Imdn = Ker dn+1 = Kn+1

and the surjection pn : Jn → Kn+1 has kernel Kn so we have the short exact sequence

0 // Kn // Jn
pn // Kn+1 // 0 (∗)

for all n ≥ 1. We also have the short exact sequence

0 // A // J0 p0
// K1 // 0. (∗∗)

If we denote the injection of Kn+1 into Jn+1 by εn+1, then we can factor dn as

dn = εn+1 ◦ pn.
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We have the following commutative diagram

0 // A ε // J0 d0
//

p0 !!

J1 d1
//

p1 !!

J2 d2
//

p2 !!

J3 // · · ·

K1

ε1

==

!!

K2

ε2

==

!!

K3

ε3

==

!!

· · ·

0

==

0

==

0

==

0 · · ·

If we apply T we get
T (dn) = T (εn+1) ◦ T (pn).

Since εn+1 is injective, the sequence 0 // Kn+1 εn+1
// Jn+1 is exact, and since T is left

exact we see that 0 // T (Kn+1)
T (εn+1) // T (Jn+1) is also exact, so T (εn+1) is injective.

It follows that the restriction of T (εn+1) to Im T (pn) is an isomorphism onto the image of
T (dn), which implies that

Im T (dn) ∼= Im T (pn), n ≥ 0.

If we apply Theorem 12.25 to (∗∗), the long exact sequence begins with

0 // T (A) // T (J0)
T (p0) // T (K1) // R1T (A) // R1T (J0) = (0),

which yields

R1T (A) ∼= T (K1)/Im T (p0) = T (Ker d1)/Im T (p0) ∼= KerT (d1)/Im T (d0) = H1(T (JA)).

So far, we proved that R0T (A) ∼= H0(T (JA)) and R1T (A) ∼= H1(T (JA)). To prove that
RnT (A) ∼= Hn(T (JA)) for n ≥ 2 again we use the long exact sequence applied to (∗∗), which
gives

Rn−1T (J0) // Rn−1T (K1) // RnT (A) // RnT (J0),

and since J0 is T -acyclic Rn−1T (J0) = RnT (J0) = (0) for n ≥ 2, so we obtain isomorphisms

Rn−1T (K1) ∼= RnT (A), n ≥ 2.

The long exact sequence applied to (∗) yields

Rn−i−1T (J i) // Rn−i−1T (Ki+1) // Rn−iT (Ki) // Rn−iT (J i),

and since J i is T -acyclic Rn−i−1T (J i) = Rn−iT (J i) = (0) so we have the isomorphisms

Rn−i−1T (Ki+1) ∼= Rn−iT (Ki), 1 ≤ i ≤ n− 2.
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By induction we obtain

Rn−1T (K1) ∼= R1T (Kn−1), n ≥ 2.

However, we showed that Rn−1T (K1) ∼= RnT (A), so we obtain

RnT (A) ∼= Rn−1T (K1) ∼= R1T (Kn−1).

The long exact sequence applied to (∗) yields

T (Jn−1)
T (pn−1) // T (Kn) // R1T (Kn−1) // R1T (Jn−1) = (0)

which implies that

RnT (A) ∼= R1T (Kn−1)
∼= T (Kn)/Im T (pn−1)

= T (Ker dn)/Im T (pn−1)
∼= KerT (dn)/Im T (dn−1) = Hn(T (JA)).

Therefore we proved that RnT (A) ∼= Hn(T (JA)) for all n ≥ 0, as claimed.

Another proof of Proposition 12.27 can be found in Lang [28] (Chapter XX, §6, Theorem
6.2).

A similar proposition holds for left T -acyclic resolutions and the left derived functors
LnT .

Proposition 12.27 has an interesting application to de Rham cohomology. Say M is a
smooth manifold. Recall that for every p ≥ 0 we have the sheaf ApM of differential forms on
M (where for every open subset U of M , ApM(U) = Ap(U) is the vector space of smooth
p-forms on U).

Proposition 12.28. If R̃M denotes the sheaf of locally constant real-valued functions on a
smooth manifold M , then

0 // R̃M
ε // A0

M
d // A1

M
d // · · · d // ApM

d // Ap+1
M

d // · · ·

is a resolution of R̃M , where ε is the inclusion map.

Proof. The above fact is proved using Proposition 11.23(ii) by showing that for every x ∈M ,
the stalk complex

0 // R // A0
M,x

// A1
M,x

// · · · // ApM,x
// Ap+1

M,x
// · · ·
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is exact. Since M is a smooth manifold, we may assume that M is an open subset of Rn, and
use a fundamental system of convex open neighborhoods of x to compute the direct limit
ApM,x = lim−→(Ap(U))U3x. If U is convex, the complex

0 // R // A0(U) // A1(U) // · · · // Ap(U) // Ap+1(U) // · · ·

is exact by the Poincaré lemma (Proposition 3.1). Since a direct limit of exact sequences is
exact, we conclude that

0 // R // A0
M,x

// A1
M,x

// · · · // ApM,x
// Ap+1

M,x
// · · ·

is exact. For details, see Brylinski [6] (Section 1.4, Proposition 1.4.3).

If Γ(M,−) is the global section functor with Γ(M,ApM) = Ap(M), then it can also be
shown that the sheaves ApM are Γ(M,−)-acyclic. This is because the sheaves ApM are soft,
and soft sheaves on a paracompact space are Γ(M,−)-acyclic; see Godement [18] (Chapter 3,
Section 3.9), or Brylinski [6] (Section 1.4, Theorem 1.4.6 and Proposition 1.4.9), or Section
13.5.

Now, it is also true that sheaves have enough injectives (we will see this in the next

chapter). Therefore, we conclude that the cohomology groups RpΓ(M,−)(R̃M) and the de

Rham cohomology groups Hp
dR(M) are isomorphic. The groups RpΓ(M,−)(R̃M) are called

the sheaf cohomology groups of the sheaf R̃M and are denoted by Hp(M, R̃M). We will also
show in the next chapter that for a paracompact space M , the Čech cohomology groups
Ȟp(M,F) and the sheaf cohomology groups Hp(M,F) = RpΓ(M,−)(F) are isomorphic
(where Γ(M,−) is the global section functor, Γ(M,F) = F(M)); thus, for smooth manifolds
we have isomorphisms

Hp(M, R̃M) ∼= Ȟp(M, R̃M) ∼= Hp
dR(M),

proving part of Theorem 10.4.

Theorems 12.25 and 12.26 suggest the definition of families of functors originally proposed
by Cartan and Eilenberg [7] and then investigated by Grothendieck in his legendary “Tohoku”
paper [21] (1957).

12.4 Universal δ-Functors and ∂-Functors

In his famous Tohoku paper [21] Grothendieck introduced the terminology “∂-functor” and
“∂∗-functor;” see Chapter II, Section 2.1. The notion of ∂-functor is a slight generalization of
the notion of “connected sequence of functors” introduced earlier by Cartan and Eilenberg [7]
(Chapter 3). Since ∂-functor have a cohomological flavor and ∂∗-functor have a homological
flavor, everybody now appears to use the terminology δ-functor instead of ∂-functor and
∂-functor for ∂∗-functor.
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Definition 12.13. Given two abelian categories C and D, a δ-functorconsists of a countable
family T = (T n)n≥0 of additive functors T n : C → D, and for every short exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 in the abelian category C and every n ≥ 0 of a map

T n(A′′)
δn−→ T n+1(A′)

such that the following two properties hold:

(i) The sequence

0 // T 0(A′) // T 0(A) // T 0(A′′)
δ0

// T 1(A′) // · · · // · · ·

// T n(A′) // T n(A) // T n(A′′)
δn

// T n+1(A′) // · · · // · · · // · · ·

is exact (a long exact sequence).

(ii) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T 0(A′)

��

// T 0(A)

��

// T 0(A′′)

��

δ0
A //

0 // T 0(B′) // T 0(B) // T 0(B′′)
δ0
B

//

and continuing with

· · · // T n(A′)

��

// T n(A)

��

// T n(A′′)

��

δnA // T n+1(A′)

��

// · · ·

· · · // T nB′) // T n(B) // T n(B′′)
δnB

// T n+1(B′) // · · ·

is also commutative.
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In particular, T 0 is left-exact.

The notion of morphism of δ-functors is defined as follows.

Definition 12.14. Given two δ-functors S = (Sn)n≥0 and T = (T n)n≥0 a morphism η : S →
T between S and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → T n such
that the following diagrams commute

Sn(A′′)
δnS //

(ηn)A′′
��

Sn+1(A′)

(ηn+1)A′
��

T n(A′′)
δnT

// T n+1(A′)

for all n ≥ 0 and for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0.

Morphisms of δ-functors are composed in the obvious way. The notion of isomorphism is
also obvious (each ηn is an an isomorphism). Grothendieck introduced the important notion
of universal δ-functor; see Grothendieck [21] (Chapter II, Section 2.2).

Definition 12.15. A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn)n≥0

and every natural transformation ϕ : T 0 → S0 there is a unique morphism η : T → S such
that η0 = ϕ; we say that η lifts ϕ.

Proposition 12.29. Suppose S = (Sn)n≥0 and T = (T n)n≥0 are both universal δ-functors
and there is an isomorphism ϕ : S0 → T 0 (a natural transformation ϕ which is an isomor-
phism). Then, there is a unique isomorphism η : S → T lifting ϕ.

Proof. Since ϕ is an isomorphism, it has an inverse ψ : T 0 → S0, that is, we have ψ◦ϕ = idS0

and ϕ ◦ ψ = idT 0 . Since S is universal there is a unique lift η : S → T of ϕ and since T is
universal there is a unique lift θ : T → S of ψ. But θ ◦ η lifts ψ ◦ ϕ = idS0 and η ◦ θ lifts
ϕ ◦ ψ = idT 0 . However, idS is a lift of idS0 and idT is a lift of idT 0 , so by uniqueness of lifts
we must have θ ◦ η = idS and η ◦ θ = idT , which shows that η is an isomorphism.

Proposition 12.29 shows a significant property of a universal δ-functor T : it is completely
determined by the component T 0.

One might wonder whether (universal) δ-functors exist. Indeed there are plenty of them.

Theorem 12.30. Assume the abelian category C has enough injectives. For every additive
left-exact functor T : C → D, the family (RnT )n≥0 of right derived functors of T is a δ-
functor. Furthermore T is isomorphic to R0T .

Proof. Now that we have done all the hard work the proof is short: apply Theorem 12.25.
The second property follows from Proposition 12.23.
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In fact, the δ-functors (RnT )n≥0 are universal. Before explaining the technique due to
Grothendieck for proving this fact, let us take a quick look at ∂-functors.

Definition 12.16. Given two abelian categories C and D, a ∂-functor consists of a countable
family T = (Tn)n≥0 of additive functors Tn : C → D, and for every short exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 in the abelian category C and every n ≥ 1 of a map

Tn(A′′)
∂n−→ Tn−1(A′)

such that the following two properties hold:

(i) The sequence

· · · // Tn(A′) // Tn(A) // Tn(A′′)
∂n

// Tn−1(A′) // · · · · · ·

// · · · · · · // T1(A′′)
∂1

// T (A′) // T (A) // T (A′′) // 0

is exact.

(ii) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram

· · · // Tn(A′) //

��

Tn(A) //

��

Tn(A′′)
∂An //

��

Tn−1(A′) //

��

· · ·

· · · // Tn(B′) // Tn(B) // Tn(B′′)
∂Bn

// Tn−1(B′) // · · ·

and ending with

· · · // T1(A′′)

��

∂A1 // T (A′) //

��

T (A) //

��

T (A′′) //

��

0

· · · // T1(B′′)
∂B1

// T (B′) // T (B) //// T (B′′) // 0

is also commutative.



12.4. UNIVERSAL δ-FUNCTORS AND ∂-FUNCTORS 325

In particular, T0 is right-exact.

Definition 12.17. Given two ∂-functors S = (Sn)n≥0 and T = (Tn)n≥0 a morphism η : S →
T between S and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → Tn such
that the following diagrams commute

Sn(A′′)
∂Sn //

(ηn)A′′
��

Sn−1(A′)

(ηn−1)A′
��

Tn(A′′)
∂Tn

// Tn−1(A′)

for all n ≥ 1 and for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0.

Morphisms of ∂-functors are composed in the obvious way. The notion of isomorphism
is clear (each ηn is an an isomorphism). Grothendieck also introduced the important notion
of universal ∂-functor; see Grothendieck [21] (Chapter II, Section 2.2).

Definition 12.18. A ∂-functor T = (Tn)n≥0 is universal if for every ∂-functor S = (Sn)n≥0

and every natural transformation ϕ : S0 → T0 there is a unique morphism η : S → T such
that η0 = ϕ; we say that η lifts ϕ.

Proposition 12.31. Suppose S = (Sn)n≥0 and T = (Tn)n≥0 are both universal ∂-functors
and there is an isomorphism ϕ : S0 → T0 (a natural transformation ϕ which is an isomor-
phism). Then, there is a unique isomorphism η : S → T lifting ϕ.

The proof of Proposition 12.31 is the same as the proof of Proposition 12.29. Proposition
12.31 shows a significant property of a universal ∂-functor T : it is completely determined by
the component T0.

There are plenty of (universal) ∂-functors.

Theorem 12.32. Assume the abelian category C has enough projectives. For every additive
right-exact functor T : C → D, the family (LnT )n≥0 of left derived functors of T is a ∂-
functor. Furthermore T is isomorphic to L0T .

Proof. Now that we have done all the hard work the proof is short: apply Theorem 12.26.
The second property follows from Proposition 12.23.

Grothendieck came up with an ingenious sufficient condition for a δ-functor to be uni-
versal: the notion of an erasable functor. Since Grothendieck’s paper is written in French,
this notion defined in Section 2.2 (page 141) of [21] is called effaçable, and many books and
paper use it. Since the English translation of “effaçable” is “erasable,” as advocated by Lang
we will use the the English word.
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Definition 12.19. An additive functor T : C → D is erasable (or effaçable) if for every
object A ∈ C there is some object MA and an injection u : A→MA such that T (u) = 0. In
particular this will be the case if T (MA) is the zero object of D. We say that T coerasable (or
coeffaçable) if for every object A ∈ C there is some object MA and a surjection u : MA → A
such that T (u) = 0.

In many cases if T is erasable by injectives (which means that MA can be chosen to be
injective) and T is coerasable by projectives (which means that MA can be chosen to be
projective). However, this is not always desirable.

The following proposition shows that our favorite functors, namely right derived functors,
are erasable functors (and left derived functors are coerasable by projectives).

Proposition 12.33. Assume the abelian category C has enough injectives. For every addi-
tive (left-exact) functor T : C→ D the right derived functors RnT are erasable by injectives
for all n ≥ 1. Assume the abelian category C has enough projectives. For every additive
(right-exact) functor T : C → D the left derived functors LnT are coerasable by projectives
for all n ≥ 1.

Proof. For every A ∈ C there is an injection u : A→ I into some injective I. Applying RnT
we get a map RnT (u) : RnT (A)→ RnT (I), but by Proposition 12.24 we have RnT (I) = (0)
for all n ≥ 1. The proof in the projective case is similar and left as an exercise.

The following theorem shows the significance of the seemingly strange notion of erasable
functor.

Theorem 12.34. (Grothendieck) Let T = (T n)n≥0 be a δ-functor between two abelian cate-
gories C and D. If T n is erasable for all n ≥ 1, then T is a universal δ-functor.

Proof Idea. Theorem 12.34 is Proposition 2.2.1 on page 141 of Grothendieck’s Tohoku [21].
The proof takes two third of a page. Even if you read French, you are likely to be frustrated.
All the pieces are there but as Grothendieck says

“Des raisonnements standarts montrent que le morphisme ainsi défini ne dépend pas
du choix particulier de la suite exacte 0 // A //M // A′ // 0 , puis le fait que ce
morphisme est fonctoriel, et “permute à ∂.”

Roughly translated, the above says that the details constitute “standard reasoning.” No
doubt that experts in the field will have no trouble supplying the details but for the rest of
us, where is a complete proof?

Let us explain the beginning of the proof. The proof is by induction on n; we shall treat
only the case n = 1; the other cases are very similar. Let S = (Sn)n≥0 be another δ-functor
and let u0 : T 0 → S0 be a given map of functors. If A is an object of C, the erasability of
T 1 shows that there is an exact sequence

0 // A v //MA
p // A′′ // 0 (†)
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such that the map δT in the induced sequence

T 0(MA)
T (p) // T 0(A′′)

δT // T 1(A) 0 // T 1(MA)

is surjective. Since T is a δ-functor we have the commutative diagram

T 0(MA)
T (p) //

u0(MA)

��

T 0(A′′)
δT //

u0(A′′)
��

T 1(A) 0 //

u1

��

T 1(MA)

S0(MA)
S(p)

// S0(A′′)
δS
// S1(A),

Since Ker δT = Im T (p), since the left square commutes

u0(A′′) ◦ T (p) = S(p) ◦ u0(MA),

and since the bottom row is exact, we get

δS ◦ u0(A′′) ◦ T (p) = δS ◦ S(p) ◦ u0(MA) = 0,

which proves that

Ker δT ⊆ Ker δS ◦ u0(A′′).

Therefore there is a unique map u1 : T 1(A) → S1(A) making the second square commute.
It remains to check that u1 has the required properties and that it does not depend on the
choice of the exact sequence (†). Lang [28] actually spells out most of the details but leaves
out the verification that the argument does not depend on choice of the short exact sequence;
see Chapter XX, §7, Theorem 7.1.

Remark: There is a version of Theorem 12.34 for a contravariant ∂-functor which is erasable.

Combining Theorem 12.34 and Theorem 12.30 we obtain the most important result of
this chapter.

Theorem 12.35. Assume the abelian category C has enough injectives. For every additive
left-exact functor T : C→ D, the right derived functors (RnT )n≥0 form a universal δ-functor
such that T is isomorphic to R0T . Conversely, every universal δ-functor T = (T n)n≥0 is
isomorphic to the right derived δ-functor (RnT 0)n≥0.

Proof. The first statement is obtained by Combining Theorem 12.34 and Theorem 12.30.
Conversely, if T = (T n)n≥0 is a universal δ-functor, then T 0 is left-exact, so by the first part
of the theorem applied to T 0, (RnT 0)n≥0 is a universal δ-functor with R0T 0 isomorphic to
T 0, thus T and (RnT 0)n≥0 are isomorphic by Proposition 12.29.
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After all, the mysterious universal δ-functors are just the right derived functors of left-
exact functors. As an example, the functors ExtnR(A,−) constitute a universal δ-functor (for
any fixed R-module A).

Of course there is a version of Theorem 12.34 for coerasable ∂-functors.

Theorem 12.36. (Grothendieck) Let T = (Tn)n≥0 be a ∂-functor between two abelian cate-
gories C and D. If Tn is coerasable for all n ≥ 1, then T is a universal ∂-functor.

Remark: There is a version of Theorem 12.36 for a contravariant δ-functor which is co-
erasable.

Combining Theorem 12.36 and Theorem 12.32 we obtain the other most important result
of this section.

Theorem 12.37. Assume the abelian category C has enough projectives. For every additive
right-exact functor T : C→ D the left derived functors (LnT )n≥0 form a universal ∂-functor
such that T is isomorphic to L0T . Conversely, every universal ∂-functor T = (Tn)n≥0 is
isomorphic to the left derived ∂-functor (LnT0)n≥0.

After all, the mysterious universal ∂-functors are just the left derived functors of right-
exact functors. For example, the functors TorRn (A,−) and TorRn (−, B) constitute universal
∂-functors.

Remark: Theorem 12.35 corresponds to Case (Ri). If C has enough injectives there is also
a version of Theorem 12.35 for a contravariant right-exact functor T saying that (LnT )n≥0

is a contravariant universal ∂-functor (Case (Li)). There doesn’t seem to be any practical
example of this case.

Theorem 12.37 corresponds to Case (Lp). If C has enough projectives there is a version of
Theorem 12.37 for a contravariant left-exact functor T saying that (RnT )n≥0 is a contravari-
ant universal δ-functor (Case (Rp)). As an example, the functors ExtnR(−, B) constitute a
contravariant universal δ-functor (for any fixed R-module B).

12.5 Universal Coefficient Theorems

Suppose we have a homology chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

where the Ci are R-modules over some commutative ring R with a multiplicative identity
element (recall that di ◦ di+1 = 0 for all i ≥ 0). Given another R-module G we can form the
homology complex

0 C0 ⊗R G
d0⊗idoo C1 ⊗R G

d1⊗idoo · · ·oo Cp ⊗R G
dp⊗idoo · · · ,oo
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obtained by tensoring with G, denoted C ⊗R G, and the cohomology complex

0
HomR(d0,G) // HomR(C0, G) // · · · // HomR(Cp, G)

HomR(dp+1,G)// HomR(Cp+1, G) // · · ·

obtained by applying HomR(−, G), and denoted HomR(C,G).

The question is: what is the relationship between the homology groups Hp(C ⊗RG) and
the original homology groups Hp(C) in the first case, and what the relationship between the
cohomology groups Hp(HomR(C,G)) and the original homology groups Hp(C) in the second
case?

The ideal situation would be that

Hp(C ⊗R G) ∼= Hp(C)⊗R G and Hp(HomR(C,G)) ∼= HomR(Hp(C), G)),

but this is generally not the case. If the ring R is nice enough if the modules Cp are nice
enough, then Hp(C ⊗RG) can be expressed in terms of Hp(C)⊗RG and TorR1 (Hp−1(C), G),
where TorR1 (−, G) is a one of the left-derived functors of −⊗R G, and Hp(HomR(C,G)) can
be expressed in terms of HomR(Hp(C), G)) and Ext1

R(Hp−1(C), G), where Ext1
R(−, G) is one

of the right-derived functors of HomR(−, G); both derived functors are defined in Section
12.3. These formulae are known as universal coefficient theorems.

Following Rotman [41] (Chapter 8), we give universal coefficients formulae that are gen-
eral enough to cover all the cases of interest in singular homology and singular cohomology,
for (commutative) rings that are hereditary and modules that are projective.

Definition 12.20. A commutative ring R (with an identity element) is hereditary if every
ideal in R is a projective module.

Every PID is hereditary (and every semisimple ring is hereditary). The reason why
hereditary rings are interesting is that if R is hereditary, then every submodule of a projective
R-module is also projective. In fact, a theorem of Cartan and Eilenberg states that a ring
is hereditary iff every submodule of a projective R-module is also projective; see Rotman
[41] (Chapter 4, Theorem 4.23). The next theorem is a universal coefficient theorem for
homology.

Theorem 12.38. (Universal Coefficient Theorem for Homology) Let R be a commutative
hereditary ring, G be any R-module, and let C be a chain complex of projective R-modules.
Then there is a split exact sequence

0 // Hn(C)⊗R G
µ // Hn(C ⊗R G)

p // TorR1 (Hn−1(C), G) // 0

for all n ≥ 0. (It is assumed that Hn(C) = (0) for all n < 0.) Thus, we have an isomorphism

Hn(C ⊗R G) ∼= (Hn(C)⊗R G)⊕ TorR1 (Hn−1(C), G)
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for all n ≥ 0. Furthermore, the maps involved in the exact sequence of the theorem are
natural, which means that for any chain map ϕ : C → C ′ between two chain complexes C
and C ′ the following diagram commutes:

0 // Hn(C)⊗R G
µ //

ϕ∗⊗id

��

Hn(C ⊗R G)
p //

(ϕ⊗id)∗
��

TorR1 (Hn−1(C), G) //

TorR1 (ϕ∗)
��

0

0 // Hn(C ′)⊗R G
µ′
// Hn(C ′ ⊗R G)

p′
// TorR1 (Hn−1(C ′), G) // 0.

(†)

Proof. Theorem 12.38 is proved in Rotman [41] and we follow this proof (Chapter 8, Theorem
8.22). We warn the reader that in all the proofs that we are aware of (including Rotman’s
proof), the details involved in verifying that the maps µ and p are natural are omitted (or
sketched). We decided to provide complete details, which makes the proof quite long. The
reader is advised to skip such details upon first reading.

We begin by observing that we have some exact sequences

0 // Zn(C)
in // Cn

dBn // Bn−1(C) // 0 (∗)

and
0 // Bn−1(C) // Zn−1(C) // Hn−1(C) // 0.

The first sequence (∗) is exact by definition of Zn(C) as Zn(C) = Ker dn and Bn−1(C) as
Bn−1(C) = Im dn, where the map dBn : Cn → Bn−1(C) is the corestriction of dn : Cn →
Cn−1 to Bn−1(C). The second sequence is exact by definition of Hn−1(C), as Hn−1(C) =
Zn−1(C)/Bn−1(C) = Ker dn−1/Im dn. From now on, to simplify notation we drop the ar-
gument (C) in Zn(C), Bn(C), Hn(C). These can be spliced using the diagram of exact
sequences

0 // Zn
in // Cn

dBn ""

d̃n // Zn−1
// Hn−1

// 0

Bn−1

ιn−1

;;

$$
0

<<

0

to form an exact sequence

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

Here ιn−1 is the inclusion map of Bn−1 into Zn−1 and d̃n : Cn → Zn−1 is the corestriction of
dn : Cn → Cn−1 to Zn−1. Since every Cn is projective and R is hereditary, the submodules
Zn−1 and Bn−1 of Cn−1 are also projective. This implies that the short exact sequence (∗)
splits (by Proposition 12.1 (3)) and that the exact sequence (∗∗) is a projective resolution
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of Hn−1. If we tensor (∗∗) with G and drop the term Hn−1 we obtain the homology chain
complex

0 // Zn ⊗G
in⊗id // Cn ⊗G

d̃n⊗id // Zn−1 ⊗G // 0

denoted L, and by definition of TorR(−, G), we have

TorRj (Hn−1, G) = Hj(L), j ≥ 0.

Because (∗) is a split exact sequence, the sequence obtained by tensoring (∗) with G is also
exact, so in ⊗ id is injective. This implies that TorR2 (Hn−1, G) = (0). We can compute
TorRj (Hn−1, G) for j = 0, 1 as follows:

TorR1 (Hn−1, G) = H1(L) = Ker (d̃n ⊗ id)/Im (in ⊗ id) ∼= Ker (d̃n ⊗ id)/(Zn ⊗G)

Hn−1 ⊗G = TorR0 (Hn−1, G) = H0(L) = (Zn−1 ⊗G)/Im(d̃n ⊗ id).

Since dn = in−1 ◦ d̃n, we have

dn ⊗ id = (in−1 ◦ d̃n)⊗ id = (in−1 ⊗ id) ◦ (d̃n ⊗ id),

and since in−1 ⊗ id is injective, Ker (dn ⊗ id) = Ker (d̃n ⊗ id), which implies that

TorR1 (Hn−1, G) ∼= Ker (dn ⊗ id)/(Zn ⊗G).

Now look at the sequence

Cn+1
dn+1 // Cn

dn // Cn−1

and tensor it with G to obtain the sequence

Cn+1 ⊗G
dn+1⊗id // Cn ⊗G

dn⊗id // Cn−1 ⊗G.

One verifies that

Im(dn+1 ⊗ id) ⊆ Zn ⊗G ⊆ Ker (dn ⊗ id) ⊆ Cn ⊗G.

By the Third Isomorphism Theorem, we have

(Ker (dn ⊗ id)/Im(dn+1 ⊗ id))/[(Zn ⊗G)/Im(dn+1 ⊗ id)] ∼= Ker (dn ⊗ id)/(Zn ⊗G),

which may be rewritten as an exact sequence

0 −→ (Zn ⊗G)/Im(dn+1 ⊗ id) −→ (Ker (dn ⊗ id)/Im(dn+1 ⊗ id)) −→
Ker (dn ⊗ id)/(Zn ⊗G) −→ 0.
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The middle term is just Hn(C⊗G), while the first term is isomorphic to Hn(C)⊗G because

Im(dn+1 ⊗ id) = {dn+1(c)⊗ g ∈ Cn ⊗G | c ∈ Cn+1, g ∈ G} = Bn ⊗G,

and the third term is isomorphic to TorR1 (Hn−1, G), so we obtain the exact sequence of the
theorem.

It remains to prove that this sequence splits. Since (∗) splits, we have an isomorphism

Cn ∼= Zn ⊕Bn−1

and by tensoring with G we obtain

Cn ⊗G ∼= (Zn ⊗G)⊕ (Bn−1 ⊗G).

The reader should check that this implies that Zn ⊗ G is a summand of Ker (dn ⊗ id). It
follows from this that Zn ⊗ G/(Bn ⊗ G) is a summand of Ker (dn ⊗ id)/(Bn ⊗ G), and the
sequence of the theorem splits.

Suppose we have a chain map ϕ : C → C ′ between two chain complexes C and C ′. First
we prove that the left square of the diagram (†) commutes, that is the following diagram
commutes:

Hn(C)⊗R G
µ //

ϕ∗⊗id

��

Hn(C ⊗R G)

(ϕ⊗id)∗
��

Hn(C ′)⊗R G
µ′
// Hn(C ′ ⊗R G).

(†1)

Since
Hn(C)⊗G = (Zn/Bn)⊗G ∼= (Zn ⊗G)/(Bn ⊗G),

the linear map ϕ∗ ⊗ id : Hn ⊗G→ H ′n ⊗G is given by

(ϕ∗ ⊗ id)([c⊗ g]) = [ϕ(c)⊗ g]′, (∗1)

where [c⊗ g] is the equivalence class of c⊗ g ∈ Zn⊗G modulo Bn⊗G and [ϕ(c)⊗ g]′ is the
equivalence class of ϕ(c)⊗ g ∈ Z ′n⊗G modulo B′n⊗G. Since ϕ is a chain map, ϕ(Bn) ⊆ B′n
and ϕ(Zn) ⊆ Z ′n, so for any d⊗ g′ ∈ Bn ⊗G we have

(ϕ∗ ⊗ id)([c⊗ g + d⊗ g′]) = [ϕ(c)⊗ g]′ + [ϕ(d)⊗ g′]′ = [ϕ(c)⊗ g]′

since ϕ(d)⊗ g′ ∈ B′n ⊗G, and ϕ(c)⊗ g ∈ Z ′n ⊗G. Thus, the map ϕ∗ ⊗ id is well defined.

Since
Hn(C ⊗R G) = Ker (dn ⊗ id)/(Bn ⊗G),

the linear map µ : Hn(C)⊗R G→ Hn(C ⊗R G) is given by

µ([c⊗ g]) = [c⊗ g], (∗2)
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where c ∈ Zn is a cycle and g is any element in G, and where equivalence classes are taken
modulo Bn ⊗ G. If c ∈ Zn is a cycle then dn(c) = 0 so (dn ⊗ id)(c ⊗ g) = dn(c) ⊗ g = 0,
which implies that c⊗ g ∈ Ker (dn ⊗ id). If d⊗ g′ ∈ Bn ⊗G, then

µ([c⊗ g + d⊗ g′]) = [c⊗ g] + [d⊗ g′] = [c⊗ g]

because d ⊗ g′ ∈ Bn ⊗ G, so the map µ is well defined. The map µ′ : Hn(C ′) ⊗R G →
Hn(C ′ ⊗R G) is given by

µ′([c′ ⊗ g]′) = [c′ ⊗ g]′, (∗3)

where c′ ∈ Z ′n is a cycle and g is any element in G, and where the equivalence classes are
taken modulo B′n ⊗G.

The linear map (ϕ⊗ id)∗ : Hn(C ⊗G)→ Hn(C ′ ⊗G) is given by

(ϕ⊗ id)∗([c⊗ g]) = [ϕ(c)⊗ g]′ (∗4)

where [c⊗ g] is the equivalence class of c⊗ g ∈ Ker (dn⊗ id) modulo Bn⊗G and [ϕ(c)⊗ g] ∈
Ker (d′n ⊗ id) is the equivalence class of ϕ(c)⊗ g ∈ Ker (d′n ⊗ id) modulo B′n ⊗G. Since ϕ is
a chain map, we have ϕ ◦ dn = d′n ◦ ϕ, so

(d′n ⊗ id)(ϕ(c)⊗ g) = d′n(ϕ(c))⊗ g = ϕ(dn(c))⊗ g = (ϕ⊗ id)((dn ⊗ id)(c⊗ g)) = 0

so ϕ(c)⊗ g ∈ Ker (d′n⊗ id). Since ϕ is a chain map ϕ(Bn) ⊆ B′n, and for any d⊗ g ∈ Bn⊗G

(ϕ⊗ id)∗([c⊗ g + d⊗ g′]) = [ϕ(c)⊗ g]′ + [ϕ(d)⊗ g′]′ = [c⊗ g]′

since ϕ(d)⊗ g′ ∈ B′n ⊗G. Therefore, (ϕ⊗ id)∗ is well defined. Then we have

(ϕ⊗ id)∗(µ([c⊗ g])) = (ϕ⊗ id)∗([c⊗ g]), by (∗2)

= [ϕ(c)⊗ g]′, by (∗4)

= µ′([ϕ(c)⊗ g]′), by (∗3)

= µ′([ϕ∗([c])⊗ g]′)

= µ′((ϕ∗ ⊗ id)([c⊗ g])), by (∗1),

which shows that
(ϕ⊗ id)∗ ◦ µ = µ′ ◦ (ϕ∗ ⊗ id),

so the left square of the diagram (†) commutes.

Next we prove that the right square of the diagram (†) commutes, that is the following
diagram commutes:

Hn(C ⊗R G)
p //

(ϕ⊗id)∗
��

TorR1 (Hn−1(C), G)

TorR1 (ϕ∗)
��

Hn(C ′ ⊗R G)
p′
// TorR1 (Hn−1(C ′), G).

(†2)
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To figure out what Tor1(ϕ∗) is we go back to the projective resolution (∗∗) of Hn−1

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

If ϕ : Cn → C ′n is a chain map, we claim that the following diagram commutes:

Zn
in //

ϕ|Zn
��

Cn
d̃n //

ϕ

��

Zn−1
//

ϕ|Zn−1

��

Hn−1

ϕ∗
��

Z ′n i′n

// C ′n
d̃′n

// Z ′n−1
// H ′n−1.

(∗∗1)

The leftmost square commutes because in and i′n are inclusions, the middle square commutes
because ϕ is a chain map, and the rightmost square commutes because Hn−1 = Zn−1/Bn−1

and H ′n−1 = Z ′n−1/B
′
n−1 and by the definition of ϕ∗ : Hn−1 → H ′n−1, namely ϕ∗([c]) = [ϕ(c)],

for any c ∈ Zn. Therefore we obtain a lifting of ϕ∗ between two projective resolutions of
Hn−1 and H ′n−1 so by applying −⊗G we obtain

Zn ⊗G
in⊗id //

(ϕ|Zn)⊗id

��

Cn ⊗G
d̃n⊗id //

ϕ⊗id

��

Zn−1 ⊗G
(ϕ|Zn−1)⊗id

��
Z ′n ⊗G i′n⊗id

// C ′n ⊗G
d̃′n⊗id

// Z ′n−1 ⊗G,
(∗∗2)

and if we denote the upper row by C and the lower row by C ′, as explained just after Defini-
tion 12.8, the maps TorRj (ϕ∗) : TorRj (Hn−1, G) → TorRj (H ′n−1, G) are the maps of homology

TorRj (ϕ∗) : Hj(C)→ Hj(C ′) induced by the chain map of the diagram (∗∗2) and are indepen-
dent of the lifting of ϕ∗ in (∗∗1). Since

TorR1 (Hn−1(C), G) ∼= Ker (d̃n ⊗ id)/(Zn ⊗G) = Ker (dn ⊗ id)/(Zn ⊗G)

and
TorR1 (H ′n−1(C), G) ∼= Ker (d̃′n ⊗ id)/(Z ′n ⊗G) = Ker (d′n ⊗ id)/(Z ′n ⊗G),

the map TorR1 (ϕ∗) : TorR1 (Hn−1(C), G)→ TorR1 (Hn−1(C ′), G) is the unique linear map given
by

TorR1 (ϕ∗)([c⊗ g]Zn⊗G) = [ϕ(c)⊗ g]Z′n⊗G (∗5)

for any c ∈ Cn and any g ∈ G such that c⊗ g ∈ Ker (dn ⊗ id). If (dn ⊗ id)(c⊗ g) = 0, that
is, dn(c)⊗ g = 0, since ϕ is a chain map

(d′n ⊗ id)(ϕ(c)⊗ id) = d′n(ϕ(c))⊗ g = ϕ(dn(c))⊗ g = (ϕ⊗ id)(dn(c)⊗ g) = 0.

Also, for any d⊗ g′ ∈ Zn ⊗G, since ϕ is a chain map ϕ(Zn) ⊆ Z ′n, and we have

TorR1 (ϕ∗)([c⊗ g + d⊗ g′]Zn⊗G) = [ϕ(c)⊗ g]Z′n⊗G + [ϕ(d)⊗ g′]Z′n⊗G = [ϕ(c)⊗ g]Z′n⊗G,
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so TorR1 (ϕ∗) is well defined. Since

Hn(C ⊗R G) = Ker (dn ⊗ id)/(Bn ⊗G)

the map p : Hn(C ⊗R G)→ TorR1 (Hn−1(C), G) is given by

p([c⊗ g]Bn⊗G) = [c⊗ g]Zn⊗G (∗6)

for any c ⊗ g ∈ Ker (dn ⊗ id). Since Bn ⊗ G ⊆ Zn ⊗ G, this map is well defined. Similarly,
the map p′ : Hn(C ′ ⊗R G)→ TorR1 (Hn−1(C ′), G) is given by

p′([c′ ⊗ g]B′n⊗G) = [c′ ⊗ g]Z′n⊗G (∗7)

for any c′ ⊗ g ∈ Ker (d′n ⊗ id). Then we have

TorR1 (ϕ∗)(p([c⊗ g]Bn⊗G)) = TorR1 (ϕ∗)([c⊗ g]Zn⊗G), by (∗6),

= [ϕ(c)⊗ g]Z′n⊗G, by (∗5),

and

p′((ϕ⊗ id)∗([c⊗ g]Bn⊗G)) = p′([ϕ(c)⊗ g]B′n⊗G), by (∗1),

= [ϕ(c)⊗ g]Z′n⊗G, by (∗7).

Therefore
TorR1 (ϕ∗) ◦ p = p′ ◦ (ϕ⊗ id)∗,

which proves that the second square of the diagram (†) commutes.

However, the splitting is not natural. This means that a splitting of the upper row may
not map to a splitting of the lower row. Also, the theorem holds if the Cn are flat; what is
needed is that if R is hereditary, then any submodule of a flat R-module is flat (see Rotman
[41], Theorem 9.25 and Theorem 11.31).

A weaker version of Theorem 12.38 is proved in Munkres for R = Z and where the Cn are
free abelian groups; see Munkres [38] (Chapter 7, Theorem 55.1). This version of Theorem
12.38 is also proved in Hatcher; see Hatcher [25] (Chapter 3, Appendix 3.A, Theorem 3.A.3).
Theorem 12.38 is proved in Spanier for free modules over a PID; see Spanier [47] (Chapter
5, Section 2, Theorem 8).

Remark: The injective map µ : Hn(C)⊗G→ Hn(C ⊗G) is given by µ([c⊗ g]) = [c⊗ g] if
we view Hn(C) as isomorphic to (Zn ⊗ G)/(Bn ⊗ G), or by µ([c] ⊗ g) = [c ⊗ g] if we don’t
use this isomorphism; see Spanier [47] (Chapter 5, Section 1, page 214).

Whenever TorR1 (Hn−1(C), G) vanishes we obtain the “ideal result.” This happens in the
following two cases.
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Proposition 12.39. If C is a complex of vector spaces and if V is a vector space over the
same field K, then we have

Hn(C ⊗K V ) ∼= Hn(C)⊗K V

for all n ≥ 0.

Proposition 12.40. If C is a complex of free abelian groups, G is an abelian group, and if
either Hn−1(C) or G is torsion-free, then we have

Hn(C ⊗Z G) ∼= Hn(C)⊗Z G

for all n ≥ 0.

As a corollary of Theorem 12.38, we obtain the following result about singular homology,
since Z is a PID, and the abelian groups in the complex S∗(X,A;Z) are free.

Theorem 12.41. If X is a topological space, A is a subset of X, and G is any abelian group,
then we have the following isomorphism of relative singular homology:

Hn(X,A;G) ∼= (Hn(X,A;Z)⊗Z G)⊕ TorZ1 (Hn−1(X,A;Z), G)

for all n ≥ 0.

Proof. By definition Hn(X,A;Z) = Hn(S∗(X,A;Z)) and Hn(X,A;G) = Hn(S∗(X,A;G)).
But by definition S∗(X,A;G) ∼= S∗(X,A;Z) ⊗Z G, and the Sn(X,A;Z) are free abelian
groups, and thus projective.

Theorem 12.41 shows that the singular homology groups with coefficients in an abelian
group G are determined by the singular homology groups with integer coefficients.

Since the modules in the relative chain complex S∗(X,A;R) are free, and thus projective,
and a PID is hereditary, Theorem 12.38 has the following corollary.

Theorem 12.42. If X is a topological space, A is a subset of X, R is a PID, and G is any
R-module, then we have the following isomorphism of relative singular homology:

Hn(X,A;G) ∼= (Hn(X,A;R)⊗R G)⊕ TorR1 (Hn−1(X,A;R), G)

for all n ≥ 0.

Theorem 12.42 is also proved in Spanier [47] (Chapter 5, Section 2, Theorem 8). The
reader should be warned that the assumption that R is a PID is missing in the statement of
his Theorem 8. This is because Spanier reminds the reader earlier on page 220 that R is a
PID. Spanier also proves a more general theorem similar to Theorem 12.38 but applying to



12.5. UNIVERSAL COEFFICIENT THEOREMS 337

a chain complex C such that C ⊗G is acyclic and with R a PID; see Theorem 14 in Spanier
[47] (Chapter 5, Section 2).

If G is a finitely generated abelian group and A is any abelian group, then TorZ1 (A,G)
can be computed recursively using some simple rules. It is customary to drop the subscript
1 in TorZ1 (−,−).

The main rules that allow us to use a recursive method are

TorR
(⊕
i∈I

Ai, B
)
∼=
⊕
i∈I

TorR(Ai, B)

TorR
(
A,
⊕
i∈I

Bi

)
∼=
⊕
i∈I

TorR(A,Bi)

TorR(A,B) ∼= TorR(B,A)

TorR(A,B) ∼= (0) if A or B is flat (in particular, projective, or free),

which hold for any commutative ring R (with an identity element) and any R-modules.
When R = Z, we also have

TorZ(Z, A) = (0)

and

TorZ(Z/mZ, A) ∼= Ker (A
m−→ A),

where A is an abelian group and the map A
m−→ A is multiplication by m. The proof of this

last equation involves a clever use of a free resolution.

Proof. It is immediately checked that the sequence

0 // Z m // Z // Z/mZ // 0

is exact, and since Z is a free abelian group, the above sequence is a free resolution of Z/mZ.
Then, since TorZ(−, A) is the left derived functor of −⊗A, we deduce that TorZj (Z/mZ, A) =
(0) for all j ≥ 2, and the long exact sequence given by Theorem 12.26 yields the exact
sequence

0 // TorZ1 (Z/mZ, A) // Z⊗Z A
m⊗id // Z⊗Z A // (Z/mZ)⊗Z A // 0

But Z⊗Z A ∼= A, so we obtain an exact sequence

0 // TorZ1 (Z/mZ, A)
j // A m // A // (Z/mZ)⊗Z A // 0,

and since j is injective and Im j = Kerm, we get TorZ(Z/mZ, A) ∼= Ker (A
m−→ A), as

claimed.
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We also use the following identities about tensor products:(⊕
i∈I

Ai

)
⊗R B ∼=

⊕
i∈I

Ai ⊗R B

A⊗R B ∼= B ⊗R A
R⊗R A ∼= A,

which hold for any commutative ring R (with an identity element) and any R-modules.
When R = Z, we also have

Z/mZ⊗Z A ∼= A/mA

where A is an abelian group. These rules imply that

TorZ(Z/mZ,Z) = (0)

and

Z/mZ⊗Z Z/nZ ∼= TorZ(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z.

For details, see Munkres [38] (Chapter 7, Section 54) and Hatcher [25] (Chapter 3, Appendix
3.A, Proposition 3.A.5).

Regarding the cohomology complex obtained by using HomR(−, G), we have the following
theorem.

Theorem 12.43. (Universal Coefficient Theorem for Cohomology) Let R be a commutative
hereditary ring, G be any R-module, and let C be a chain complex of projective R-modules.
Then there is a split exact sequence

0 // Ext1
R(Hn−1(C), G)

j // Hn(HomR(C,G)) h // HomR(Hn(C), G) // 0

for all n ≥ 0. (It is assumed that Hn(C) = (0) for all n < 0.) Thus, we have an isomorphism

Hn(HomR(C,G)) ∼= HomR(Hn(C), G)⊕ Ext1
R(Hn−1(C), G)

for all n ≥ 0. Furthermore, the maps in the exact sequence of the theorem are natural, which
means that for any chain map θ : C → C ′ between two chain complexes C and C ′ we have
the following commutative diagram

0 // Ext1
R(Hn−1(C ′), G)

j′ //

Ext1
R(θ∗)

��

Hn(HomR(C ′, G)) h′ //

(HomR(θ,id))∗

��

HomR(Hn(C ′), G) //

HomR(θ∗,id)

��

0

0 // Ext1
R(Hn−1(C), G)

j
// Hn(HomR(C,G))

h
// HomR(Hn(C), G) // 0.
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Proof. Theorem 12.43 is proved by modifying the proof of Theorem 12.38 by replacing the
functor −⊗RG by the functor HomR(−, G). Again, we warn the reader that in all the proofs
that we are aware of (Rotman leaves the entire proof to the reader), the details involved
in verifying that the maps j and h are natural are omitted (or sketched). The dualization
process (applying Hom(−, G)) also causes technical complications that do not come up when
tensoring with G. In particular it is no longer obvious how to identify Hom(Hn(C), G), and
some auxiliary proposition is needed (Proposition 2.7). We decided to provide complete
details, which makes the proof quite long. The reader is advised to skip such details upon
first reading.

Recall from the beginning of the proof of Theorem 12.38 that we have the split short
exact sequence

0 // Zn(C)
in // Cn

dBn // Bn−1(C) // 0 (∗)

and the exact sequence

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0 (∗∗)

where d̃n : Cn → Zn−1 is the corestriction of dn : Cn → Cn−1 to Zn−1 and dBn : Cn → Bn−1(C)
is the corestriction of dn : Cn → Cn−1 to Bn−1(C). Since every Cn is projective and R is
hereditary, the exact sequence (∗∗) is a projective resolution of Hn−1. If we apply Hom(−, G)
to (∗∗) and drop the term Hn−1 we obtain the cohomology chain complex

0 // Hom(Zn−1, G)
Hom(d̃n,id) // Hom(Cn, G)

Hom(in,id) // Hom(Zn, G) // 0

denoted C, and by definition of ExtjR(−, G), we have

ExtjR(Hn−1, G) = Hj(C).

Since the sequence (∗) is a split exact sequence and in is injective, Hom(in, id) is surjective,
and this implies that

Ext2
R(Hn−1, G) = H2(C) = Hom(Zn, G)/Im Hom(in, id) = Hom(Zn, G)/Hom(Zn, G) = (0).

We also have

Ext1
R(Hn−1, G) = H1(C) = Ker Hom(in, id)/Im Hom(d̃n, id).

From the original chain complex

0 C0
d0oo C1

d1oo · · ·oo Cn−1
dn−1oo Cn

dnoo Cn+1
dn+1oo · · ·oo

we have
Hn = Ker dn/Im dn+1 = Zn/Bn, (∗1)
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and from the complex

0
HomR(d0,id) // HomR(C0, G) // · · · // HomR(Cn−1, G)

HomR(dn,id) // HomR(Cn, G) // · · ·

we have
Hn(Hom(C,G)) = Ker Hom(dn+1, id)/Im Hom(dn, id). (∗2)

Since dn = in−1 ◦ d̃n, with dn : Cn → Cn−1, d̃n : Cn → Zn−1, and in−1 : Zn−1 → Cn−1 we have

Hom(dn, id) = Hom(d̃n, id) ◦ Hom(in−1, id).

Since Hom(Cn−1, G)
Hom(in−1,G) // Hom(Zn−1, G) is a surjection, we have

Im Hom(d̃n, id) = Im Hom(dn, id). (∗3)

Consequently
Ext1

R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id). (∗4)

We claim that

Im Hom(dn, id) ⊆ Ker Hom(in, id) ⊆ Ker Hom(dn+1, id). (∗5)

Since Hom(dn, id) : Hom(Cn−1, G) → Hom(Cn, G) is given by ϕ 7→ ϕ ◦ dn for all ϕ ∈
Hom(Cn−1, G), we have

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}.

Also, since Hom(dn+1, id) : Hom(Cn, G) → Hom(Cn+1, G) is given by ϕ 7→ ϕ ◦ dn+1 for
all ϕ ∈ Hom(Cn, G), and Hom(in, id) : Hom(Cn, G) → Hom(Zn, G) is given by ϕ 7→ ϕ ◦ in
for all ϕ ∈ Hom(Cn, G), we see that ϕ ∈ Ker Hom(dn+1, id) iff ϕ ◦ dn+1 = 0 iff ϕ vanishes on
Bn = Im dn+1, and ϕ ∈ Ker Hom(in, id) iff ϕ ◦ in = 0 iff ϕ vanishes on Zn = Im in. Therefore

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Zn}

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Bn}.

Since Zn = Ker dn, any function ψ◦dn ∈ ImHom(dn, id) vanishes on Zn, so ImHom(dn, id) ⊆
Ker Hom(in, id), and since Bn ⊆ Zn, any function ϕ ∈ Hom(Cn, G) that vanishes on Zn also
vanishes on Bn, so Ker Hom(in, id) ⊆ Ker Hom(dn+1, id).

Then we can apply the third isomorphism theorem and we get(
Ker Hom(dn+1, id)/Im Hom(dn, id)

)
/
(
Ker Hom(in, id)/Im Hom(dn, id)

)
∼= Ker Hom(dn+1, id)/Ker Hom(in, id),
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and this can be rewritten as the exact sequence

0 −→ Ker Hom(in, id)/Im Hom(dn, id) −→ Ker Hom(dn+1, id)/Im Hom(dn, id) −→
Ker Hom(dn+1, id)/Ker Hom(in, id) −→ 0.

Since
Ext1

R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id)

the first term in the exact sequence is Ext1
R(Hn−1, G), and the second term isHn(Hom(C,G)),

so our exact sequence can be written as

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Ker Hom(dn+1, id)/Ker Hom(in, id) // 0. (†)

It remains to figure out what is Ker Hom(dn+1, id)/Ker Hom(in, id). We will show that this
term is isomorphic to Hom(Hn, G).

We proved earlier that

Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Zn}
Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Bn},

so

Ker Hom(dn+1, id)/Ker Hom(in, id) =

{ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}/{ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}.

We use Proposition 2.7 to conclude that

Ker Hom(dn+1, id)/Ker Hom(in, id) =

{ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}/{ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}
= B0

n/Z
0
n
∼= Hom(Zn/Bn, G) = Hom(Hn, G),

where

B0
n = {ϕ ∈ Hom(Cn, G) | ϕ(a) = 0 for all b ∈ Bn}

Z0
n = {ϕ ∈ Hom(Cn, G) | ϕ(z) = 0 for all z ∈ Zn}.

Since the exact sequence (∗) splits, we have Cn = Zn ⊕ Z ′n for some submodule Z ′n of Cn,
and we can apply Proposition 2.7 to M = Cn, Z = Zn, and B = Bn. Therefore, the exact
sequence (†) yields

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Hom(Hn, G) // 0. (††)

We now prove that the exact sequence (††) splits. For this, we use the fact that since the
exact sequence (∗) splits we have an isomorphim

Cn ∼= Zn ⊕Bn−1.
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Applying Hom(−, G), we get

Hom(Cn, G) ∼= Hom(Zn, G)⊕ Hom(Bn−1, G). (∗6)

Recall that

Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}
Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}.

We deduce from the above that

Ker Hom(in, id) ∼= Hom(Bn−1, G), (∗7)

so by (∗4) we obtain

Ext1
R(Hn−1, G) = Hom(Bn−1, G)/Im Hom(dn, id). (∗8)

Since (∗5) implies that Ker Hom(in, id) ⊆ Ker Hom(dn+1, id), we have

Ker Hom(dn+1, id) ∼= {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} ⊕ Hom(Bn−1, G).

Now by Proposition 2.8 there is an isomorphism

κ : {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} → Hom(Zn/Bn, G), (∗9)

where κ is given by
(κ(ϕ))([z]) = ϕ(z) for all [z] ∈ Zn/Bn. (∗κ)

Since Zn/Bn = Hn, we obtain

Ker Hom(dn+1, id) ∼= Hom(Hn, G)⊕ Hom(Bn−1, G). (∗10)

We now take the quotient modulo Im Hom(dn, id). Since we showed that Im Hom(dn, id) ⊆
Ker Hom(in, id) ∼= Hom(Bn−1, G), we get

Ker Hom(dn+1, id)/Im Hom(dn, id) ∼= Hom(Hn, G)⊕ Hom(Bn−1, G)/Im Hom(dn, id),

and by (∗8) this means that

Hn(Hom(C,G)) ∼= Hom(Hn, G)⊕ Ext1
R(Hn−1, G),

which proves that the exact sequence (††) splits.

To prove naturality of the exact sequence (††) we first give another expression for
Hom(Zn/Bn, G) = Hom(Hn, G) in terms of the inclusion map γn : Bn → Zn as in Spanier
[47] (Chapter 5, Section 5, Theorem 3). We claim that

Hom(Hn, G) = Hom(Zn/Bn, G) ∼= Ker Hom(γn, id). (∗11)
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Indeed, since γn : Bn → Zn we have Hom(γn, id) : Hom(Zn, G)→ Hom(Bn, G), and we have
ϕ ∈ Ker Hom(γn, id) iff ϕ ◦ γn = 0 iff ϕ vanishes on Bn, thus

Ker Hom(γn, id) = {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0},

but we know (∗9) that this last term is isomorphic to Hom(Zn/Bn, G) = Hom(Hn, G). We
now prove the naturality of (††).

Let θ : C → C ′ be a chain map. First we prove that the diagram

Hn(HomR(C ′, G)) h′ //

(HomR(θ,id))∗

��

HomR(Hn(C ′), G)

HomR(θ∗,id)

��
Hn(HomR(C,G))

h
// HomR(Hn(C), G)

(†1)

commutes, which in view of (∗2) and (∗11) is equivalent to the commutativity of the following
diagram

Ker Hom(d′n+1, id)/Im Hom(d′n, id)

(Hom(θ,id))∗

��

h′ // Ker Hom(γ′n, id)

Hom(θ∗,id)

��
Ker Hom(dn+1, id)/Im Hom(dn, id)

h
// Ker Hom(γn, id),

(†2)

where the various maps involved are defined below. Recall that

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}
Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}

Ker Hom(γn, id) = {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0}.

The map (Hom(θ, id))∗ is given by

(Hom(θ, id))∗([ϕ′]) = [ϕ′ ◦ θ] (∗12)

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|B′n ≡ 0, the map Hom(θ∗, id) is given by

Hom(θ∗, id)(ϕ′) = ϕ′ ◦ (θ|Zn) (∗13)

for any ϕ′ ∈ Hom(Z ′n, G) such that ϕ′|B′n ≡ 0, the map h is given by

h([ϕ]) = ϕ|Zn (∗14)

for any ϕ ∈ Hom(Cn, G) such that ϕ|Bn ≡ 0, and the map h′ is given by

h′([ϕ′]) = ϕ′|Z ′n (∗15)

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|B′n ≡ 0. The map (Hom(θ, id))∗ is well defined because
θ is a chain map so for any ψ′ ◦ d′n ∈ Im Hom(d′n, id) we have

(Hom(θ, id))∗([ϕ′ + ψ′ ◦ d′n]) = [ϕ′ ◦ θ + ψ′ ◦ d′n ◦ θ]) = [ϕ′ ◦ θ + ψ′ ◦ θ ◦ dn]) = [ϕ′ ◦ θ].
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If ϕ′|B′n ≡ 0, then because θ is a chain map, for any c ∈ Cn+1

(ϕ′ ◦ θ)(dn+1(c)) = ϕ′(d′n+1(θ(c))) = 0

so (ϕ′ ◦ θ)|Bn ≡ 0. The map Hom(θ∗, id) is well defined because θ(Zn) ⊆ Z ′n since θ is a
chain map, and if ϕ′|B′n ≡ 0 for any ϕ′ ∈ Hom(Z ′n, G), then using the same reasoning as
above (ϕ′ ◦ θ)|Bn ≡ 0. The map h is well defined because if ϕ ∈ Hom(Cn, G) with ϕ|Bn ≡ 0
then ϕ|Zn vanishes on Bn since Bn ⊆ Zn, and for any ψ ◦ dn ∈ Im Hom(dn, id), we have

(ϕ+ ψ ◦ dn)|Zn = ϕ|Zn + (ψ ◦ dn)|Zn = ϕ|Zn,

since dn|Zn ≡ 0 (Zn = Ker dn). Similarly the map h′ is well defined.

Then by (∗15) an (∗13) we have

Hom(θ∗, id)(h′([ϕ′])) = Hom(θ∗, id)(ϕ′|Z ′n) = (ϕ′|Z ′n) ◦ (θ|Zn),

and by (∗12) and (∗14)

h((Hom(θ, id))∗([ϕ′]) = h([ϕ′ ◦ θ]) = (ϕ′ ◦ θ)|Zn.

Since θ(Zn) ⊆ Z ′n, we have

(ϕ′|Z ′n) ◦ (θ|Zn) = (ϕ′ ◦ θ)|Zn,

which proves that the diagram (†2) commutes.

We now prove that the diagram

Ext1
R(Hn−1(C ′), G)

j′ //

Ext1
R(θ∗)

��

Hn(HomR(C ′, G))

(HomR(θ,id))∗

��
Ext1

R(Hn−1(C), G)
j
// Hn(HomR(C,G))

(†3)

commutes, which in view of (∗2) and (∗4) is equivalent to the commutativity of the following
diagram

Ker Hom(i′n, id)/Im Hom(d′n, id)

Ext1(θ∗)
��

j′ // Ker Hom(d′n+1, id)/Im Hom(d′n, id)

(Hom(θ,id))∗

��
Ker Hom(in, id)/Im Hom(dn, id)

j
// Ker Hom(dn+1, id)/Im Hom(dn, id),

(†4)

where the maps involved (besides the right vertical map) are defined below.

To figure out what Ext1(θ∗) is we go back to the projective resolution (∗∗) of Hn−1

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)
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If θ : Cn → C ′n is a chain map, we showed during the proof of Theorem 12.38 that the
following diagram commutes:

Zn
in //

θ|Zn
��

Cn
d̃n //

θ
��

Zn−1
//

θ|Zn−1

��

Hn−1

θ∗
��

Z ′n i′n

// C ′n
d̃′n

// Z ′n−1
// H ′n−1.

(∗∗1)

Therefore we obtain a lifting of θ∗ between two projective resolutions of Hn−1 and H ′n−1 so
by applying Hom(−, G) we obtain the commutative diagram

0 // Hom(Z ′n−1, G)

Hom(θ|Zn−1,id)
��

Hom(d̃′n,G) // Hom(C ′n−1, G)

Hom(θ|Cn,id)
��

Hom(i′n,id) // Hom(Z ′n, id)

Hom(θ|Zn,id)

��
0 // Hom(Zn−1, G)

Hom(d̃n,G) // Hom(Cn−1, G)
Hom(in,id) // Hom(Zn, id),

(∗∗2)

and if we denote the upper row by C ′ and the lower row by C, as explained just after Defini-
tion 12.8, the maps ExtjR(θ∗) : ExtjR(H ′n−1, G)→ ExtjR(Hn−1, G) are the maps of cohomology

ExtjR(θ∗) : Hj(C ′)→ Hj(C) induced by the chain map of the diagram (∗∗2) and are indepen-
dent of the lifting of θ∗ in (∗∗1).

Recall that

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}
Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}.

Since by (∗4)

Ext1
R(Hn−1, G) = Ker Hom(in, id)/Im Hom(d̃n, id) = Ker Hom(in, id)/Im Hom(dn, id)

and similarly for Ext1
R(H ′n−1, G), the cohomology map Ext1

R(θ∗) is given by

Ext1
R(θ∗)([ϕ

′]) = [ϕ′ ◦ θ], (∗16)

for all ϕ′ ∈ Hom(C ′n, G) such that ϕ′|Z ′n ≡ 0. It is well defined because θ is a a chain map
and for any ψ′ ◦ d′n ∈ Im Hom(d′n, id) we have

Ext1
R(θ∗)([ϕ

′ + ψ′ ◦ d′n]) = [ϕ′ ◦ θ + ψ′ ◦ d′n ◦ θ] = [ϕ′ ◦ θ + ψ′ ◦ θ ◦ dn] = [ϕ′ ◦ θ].

The map j : Ker Hom(in, id)/Im Hom(dn, id) → Ker Hom(dn+1, id)/Im Hom(dn, id) is the
quotient of the inclusion map Ker Hom(in, id) −→ Ker Hom(dn+1, id) given by

j([ϕ]) = [ϕ], (∗17)
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for any ϕ ∈ Hom(Cn, G) such that ϕ|Zn ≡ 0. This map is well defined because for any
ψ ◦ dn ∈ Im Hom(dn, id) we have

j([ϕ+ ψ ◦ dn]) = [ϕ+ ψ ◦ dn] = [ϕ],

because Bn ⊆ Zn and Zn = Ker dn so ψ ◦ dn vanishes on Bn. The map j′ is defined
anagolously. By (∗12) and (∗17) we have

(Hom(θ, id))∗(j′([ϕ′]) = (Hom(θ, id))∗([ϕ′]) = [ϕ′ ◦ θ]

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|Z ′n ≡ 0, and by (∗16) and (∗17) we have

j(Ext1
R(θ∗)([ϕ

′])) = j([ϕ′ ◦ θ]) = [ϕ′ ◦ θ].

Therefore,
(Hom(θ, id))∗ ◦ j′ = j ◦ Ext1(θ∗),

which proves that (†4) commutes, and finishes the proof of naturality.

As in the case of homology, the splitting is not natural.

Spanier proves a version of Theorem 12.43 for a chain complex C such that ExtR(C,G)
is acyclic and with R a PID; see Theorem 3 in Spanier [47] (Chapter 5, Section 5).

Remarks:

(1) Under the isomorphism κ : {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} → Hom(Zn/Bn, G), the map

h : Hn(Hom(C,G))→ {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0}

is given by h([ϕ]) = ϕ|Zn for any [ϕ] ∈ Hn(Hom(C,G)). Composing with the isomor-
phism κ, we obtain the surjection (also denoted h)

h : Hn(Hom(C,G))→ Hom(Hn(C), G)

given by
(h([ϕ]))([z]) = ϕ(z),

for any [ϕ] ∈ Hn(Hom(C,G)) and any [z] ∈ Hn(C); this matches Spanier’s defi-
nition; see Spanier [47] (Chapter 5, Section 5, page 242). In Munkres, the map
h : Hn(Hom(C,G)) → Hom(Hn(C), G) is defined on page 276 ([38], Section 45), and
called the Kronecker map (it is denoted by κ rather than h).

(2) We can prove that

Ext1
R(Hn−1, G) ∼= Coker Hom(γn−1, id) = Hom(Bn−1, G)/Im Hom(γn−1, id). (∗18)
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This will establish a connection with Spanier’s proof of the naturality of the exact
sequence (††); see Spanier [47] (Chapter 5, Section 5).

Recall from (∗4) that Ext1
R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id). We already

showed in (∗7) that Ker Hom(in, id) ∼= Hom(Bn−1, G) so we just have to prove that

Im Hom(dn, id) ∼= Im Hom(γn−1, id). (∗19)

This is because

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Im Hom(γn−1, id) = {ψ ◦ γn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)}

and since dn : Cn → Bn−1 is a surjection and γn : Bn → Zn is an injection,

{ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
∼= {ψ|Bn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Cn−1, G)}

and

{ψ ◦ γn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)}
∼= {ψ|Bn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)},

but since Bn−1 ⊆ Zn−1 ⊆ Cn−1, the sets of the right-hand sides of the two equations
above are identical.

Therefore, we proved that the exact sequence

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Hom(Hn, G) // 0. (††)

is equivalent to the exact sequence

0 // Coker Hom(γn−1, id) // Hn(Hom(C,G)) // Ker Hom(γn, id) // 0, (††2)

which is the exact sequence found in the middle of page 243 in Spanier (and others,
such as Munkres and Hatcher); see Spanier [47] (Chapter 5, Section 5). We can now
refer to Spanier’s proof of naturality of this sequence.

Whenever Ext1
R(Hn−1(C), G) vanishes, we obtain the “ideal result.”

Recall form Definition 12.2 that a R-module M is divisible if for every nonzero λ ∈ R,
the multiplication map given by u 7→ λu for all u ∈M is surjective. Here, we let R = Z and
M be an abelian group.
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Proposition 12.44. If C is a complex of free abelian groups, G is an abelian group, and if
either Hn−1(C) or G is divisible, then we have an isomorphism

Hn(HomZ(C,G)) ∼= HomZ(Hn(C), G)

for all n ≥ 0.

We also have the following generalization of Theorem 4.27 to G-coefficients.

Proposition 12.45. If R is a PID, G is an R-module, C is a complex of free R-modules,
and if Hn−1(C) is a free R-module or (0), then we have an isomorphism

Hn(HomR(C,G)) ∼= HomR(Hn(C), G)

for all n ≥ 0.

Proposition 12.46. If C is a complex of vector spaces and V is a vector space, both over
the same field K, then we have an isomorphism

Hn(HomK(C, V )) ∼= HomK(Hn(C), V )

for all n ≥ 0. In particular, for V = K, we have isomorphisms

Hn(HomK(C,K)) ∼= HomK(Hn(C), K) = Hn(C)∗,

where Hn(C)∗ is the dual of the vector space Hn(C), for all n ≥ 0.

Since the modules S∗(X,A;Z) are free abelian groups, Theorem 12.43 yields the following
result showing that the singular cohomology groups with coefficients in an abelian group G
are determined by the singular homology groups with coefficients in Z.

Theorem 12.47. If X is a topological space, A is a subset of X, and G is any abelian group,
then there is an isomorphism relative singular cohomology

Hn(X,A;G) ∼= HomZ(Hn(X,A;Z), G)⊕ Ext1
Z(Hn−1(X,A;Z), G)

for all n ≥ 0.

Theorem 12.47 is also proved in Munkres [38] (Chapter 7, Section 53, Theorem 53.1) and
in Hatcher [25] (Chapter 3, Section 3.1, Theorem 3.2).

Since the modules S∗(X,A;R) are free, Theorem 12.43 has the following corollary.

Theorem 12.48. If X is a topological space, A is a subset of X, R is any PID, and G is
any R-module, then there is an isomorphism of relative singular cohomology

Hn(X,A;G) ∼= HomR(Hn(X,A;R), G)⊕ Ext1
R(Hn−1(X,A;R), G)

for all n ≥ 0.
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If A is a finitely generated abelian group and G is any abelian group, then Ext1
Z(A,G)

can be computed recursively. It is customary to drop the superscript 1 in Ext1
R(−,−). We

have the identities

ExtR

(⊕
i∈I

Ai, B
)
∼=
∏
i∈I

ExtR(Ai, B)

ExtR

(
A,
∏
i∈I

Bi

)
∼=
∏
i∈I

ExtR(A,Bi)

ExtR(A,B) ∼= (0) if A is projective or B is injective,

for any commutative ring R and any R-modules. If the index set I is finite, we can replace∏
by
⊕

. When R = Z we also have

ExtR(Z, G) ∼= (0)

ExtZ(Z/mZ, G) ∼= G/mG,

where G is an abelian group. This last equation is proved as follows.

Proof. We know that the sequence

0 // Z m // Z // Z/mZ // 0

is a free resolution of Z/mZ. Since ExtZ(−, G) is the right derived functor of HomZ(−, G),
we deduce that ExtjZ(Z/mZ, G) = (0) for all j ≥ 2, and the long exact sequence given by
Theorem 12.25 yields the exact sequence

0 // Hom(Z/mZ, G) //Hom(Z, G)
Hom(m,G) //Hom(Z, G) //Ext1

Z(Z/mZ, G) // 0.

Since Hom(Z, G) ∼= G, we obtain an exact sequence

0 // Hom(Z/mZ, G) // G m // G
p // Ext1

Z(Z/mZ, G) // 0,

and since p is surjective and Imm = Ker p, we have

Ext1
Z(Z/mZ, A) ∼= G/Ker p ∼= G/mG,

as claimed.

We also use the following rules for HomR(−,−):

HomR

(⊕
i∈I

Ai, B
)
∼=
∏
i∈I

HomR(Ai, B)

HomR

(
A,
∏
i∈I

Bi

)
∼=
∏
i∈I

HomR(A,Bi)
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for any commutative ring and any R-modules. If the index set I is finite, we can replace
∏

by
⊕

. When R = Z, we also have

HomZ(Z, G) ∼= G

HomZ(Z/mZ, G) ∼= Ker (G
m−→ G),

where G is an abelian group. The above formula is proved as follows.

Proof. We have the exact sequence

0 // Z m // Z // Z/mZ // 0.

Since HomZ(−, G) is right-exact, we obtain the exact sequence

0 // HomZ(Z/mZ, G) // HomZ(Z, G)
HomZ(m,G) // HomZ(Z, G).

Since Hom(Z, G) ∼= G, we obtain an exact sequence

0 // HomZ(Z/mZ, G) // G m // G,

which yields HomZ(Z/mZ, G) ∼= Ker (G
m−→ G), as claimed.

These rules imply that
HomZ(Z/mZ,Z) ∼= (0)

and
HomZ(Z/mZ,Z/nZ) ∼= ExtZ(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z.

For details, see Munkres [38] (Chapter 7, Sections 52 and 54) and Hatcher [25] (Chapter 3,
Section 3.1).

If A is a finitely generated abelian group, we know that A can be written (uniquely) as
a direct sum

A = F ⊕ T
where A is a free abelian group and F is a torsion abelian group. Then, the above rules
imply the following useful result that allows to compute integral cohomology from integral
homology.

Proposition 12.49. Let C be a chain complex of free abelian groups. If Hn−1(C) and Hn(C)
are finitely generated and if we write Hn(C) = Fn ⊕ Tn where Fn is the free part of Hn(C)
and Tn is the torsion part of Hn(C) (and similarly Hn−1(C) = Fn−1 ⊕ Tn−1), then we have
an isomorphism

Hn(HomZ(C,Z)) ∼= Fn ⊕ Tn−1.

In particular, the above holds for the singular homology groups Hn(X;Z) and the singular
cohomology groups Hn(X;Z) of a topological space X; that is,

Hn(X;Z) ∼= Fn ⊕ Tn−1

where Hn(X;Z) = Fn ⊕ Tn with Fn free and Tn a torsion abelian group.
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Proof. Using the above rules, since Tn is a finitely generated torsion abelian group it is a
direct sum of abelian groups of the form Z/mZ, and since Fn is a finitely generated free
abelian group it is of the form Zn, so we have

HomZ(Hn(C),Z) = HomZ(Fn⊕ Tn,Z) ∼= HomZ(Fn,Z)⊕HomZ(Tn,Z) ∼= HomZ(Fn,Z) ∼= Fn,

and

ExtZ(Hn−1(C),Z) = ExtZ(Fn−1 ⊕ Tn−1,Z) ∼= ExtZ(Fn−1,Z)⊕ ExtZ(Tn−1,Z)
∼= ExtZ(Tn−1,Z) ∼= Tn−1.

By Theorem 12.43, we conclude that Hn(HomZ(C,Z)) ∼= Fn ⊕ Tn−1.

Proposition 12.49 is found in Bott and Tu [2] (Chapter III, Corollary 15.14.1), Hatcher
[25] (Chapter 3, Corollary 3.3), and Spanier [47] (Chapter 5, Section 5, Corollary 4). As
an application of Proposition 12.49, we can compute the cohomology groups of the real
projective spaces RPn and of the complex projective space CPn. Recall from Section 4.2
that the homology groups of CPn and RPn are given by

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =


Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise.

Using Proposition 12.49, we obtain

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =


Z for p = 0 and for p = n odd

Z/2Z for p even, 0 < p ≤ n

(0) otherwise.

Spanier [47] (Chapter 5, Sections 2 and 5) and Munkres [38] (Chapter 7, Section 56)
discuss other types of universal coefficient theorems.

There is also a notion of tensor product C ⊗D of chain complexes C and D, and there
are formulae relating the homology of C ⊗D to the homology of C and the homology of D.
There are also formulae relating the cohomology of C ⊗D to the cohomology of C and the
cohomology of D. Such formulae are known as Künneth Theorems (or Künneth Formulae).
We will not discuss these theorems and instead refer the reader to Munkres [38] (Chapter 7,
Sections 58 and 60), Hatcher [25] (Chapter 3, Sections 3.2 and 3.B), Spanier [47] (Chapter
5), and Rotman [41] (Chapter 11).
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Chapter 13

Cohomology of Sheaves

In this chapter we apply the results of Sections 12.3 and 12.4 to the case where C is the
abelian category of sheaves of R-modules on a topological space X, D is the (abelian)
category of abelian groups, and T is the left-exact global section functor Γ(X,−), with
Γ(X,F) = F(X) for every sheaf F on X. It turns out that the category of sheaves has
enough injectives, thus the right derived functors RpΓ(X,−) exist, and for every sheaf F on
X, the cohomology groups RpΓ(X,−)(F) are defined. These groups denoted by Hp(X,F)
are called the cohomology groups of the sheaf F (or the cohomology groups of X with values
in F).

In principle, computing the cohomology groups Hp(X,F) requires finding injective reso-
lutions of sheaves. However injective sheaves are very big and hard to deal with. Fortunately,
there is a class of sheaves known as flasque sheaves (due to Godement) which are Γ(X,−)-
acyclic, and every sheaf has a resolution by flasque sheaves. Therefore, by Proposition 12.27,
the cohomology groups Hp(X,F) can be computed using flasque resolutions.

If the space X is paracompact, then it turns out that for any sheaf F , the Čech cohomol-
ogy groups Ȟp(X,F) are isomorphic to the cohomology groups Hp(X,F). Furthermore, if

F is a presheaf, then the Čech cohomology groups Ȟp(X,F) and Ȟp(X, F̃) are isomorphic,

where F̃ is the sheafification of F . Several other results (due to Leray and Henri Cartan)
about the relationship between Čech cohomology and sheaf cohomology will be stated.

When X is a topological manifold (thus paracompact), for every R-module G, we will
show that the singular cohomology groups Hp(X;G) are isomorphic to the cohomology

groups Hp(X, G̃X) of the constant sheaf G̃X . Technically, we will need to define soft and
fine sheaves.

We will also define Alexander–Spanier cohomology and prove that it is equivalent to sheaf
cohomology (and Čech cohomology) for paracompact spaces and for the constant sheaf G̃X .

353
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13.1 Cohomology Groups of a Sheaf of Modules

It is convenient to use for a definition of an injective sheaf the condition of Proposition 12.3
which applies to abelian categories.

Definition 13.1. A sheaf I is injective if for any injective sheaf map h : F → G and any
sheaf map f : F → I, there is some sheaf map f̂ : G → I extending f : F → I in the sense
that f = f̂ ◦ h, as in the following commutative diagram:

0 // F
f

��

h // G

f̂��
I.

We need to prove that the category of sheaves of R-modules has enough injectives.

Proposition 13.1. For any sheaf F of R-modules, there is an injective sheaf I and an
injective sheaf homomorphism ϕ : F → I.

Proof. We know that the category of R-modules has enough injectives (see Theorem 12.6).
For every x ∈ X, pick some injection Fx −→ Ix with Ix an injective R-module, which always
exists by Theorem 12.6. Define the “skyscraper sheaf” Ix as the sheaf given by

Ix(U) =

{
Ix if x ∈ U
(0) if x /∈ U

for every open subset U of X (we use a superscript in IX to avoid the potential confusion
with the stalk at x). It is easy to check that there is an isomorphism

HomSh(X)(F , Ix) ∼= HomR(Fx, Ix)

for any sheaf F , and this implies that Ix is an injective sheaf. We also have a sheaf map
from F to Ix. Consequently we obtain an injective sheaf map

F −→
∏
x∈X

Ix.

Since a product of injective sheaves is injective, F is embedded into an injective sheaves.

Remark: The category of sheaves does have enough projectives. This is the reason why
projective resolutions of sheaves are of little interest.

As we explained in Section 12.2, since the category of sheaves is an abelian category
and since it has enough injectives, Proposition 12.11 holds for sheaves; that is, every sheaf
has some injective resolution. Since the global section functor on sheaves is left-exact (see
Proposition 11.25(4)), as a corollary of Theorem 12.21 we make the following definition.
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Definition 13.2. Let X be a topological space, and let Γ(X,−) be the global section functor
from the abelian category Sh(X) of sheaves of R-modules to the category of abelian groups.
The cohomology groups of the sheaf F (or the cohomology groups of X with values in F),
denoted by Hp(X,F), are the groups RpΓ(X,−)(F) induced by the right derived functor
RpΓ(X,−) (with p ≥ 0).

To compute the sheaf cohomology groups Hp(X,F), pick any resolution of F

0 // F // I0 d0
// I1 d1

// I2 d2
// · · ·

by injective sheaves In, apply the global section functor Γ(X,−) to obtain the complex of
R-modules

0 δ−1
// I0(X) δ0

// I1(X) δ1
// I2(X) δ2

// · · · ,
and then

Hp(X,F) = Ker δp/Im δp−1.

By Theorem 12.35 the right derived functors RpΓ(X,−) constitute a universal δ-functor,
so all the properties of δ-functors apply.

In algebraic geometry it is useful to consider sheaves defined on a ringed space generalizing
modules.

Definition 13.3. Given a ringed space (X,OX), an OX-module (or sheaf of modules over
X) is a sheaf F of abelian groups on X such that for every open subset U , the group F(U)
is an OX(U)-module, and the following conditions hold for all open subsets V ⊆ U :

OX(U)×F(U)

(ρOUV ,ρF
U
V )

��

// F(U)

ρFUV
��

OX(V )×F(V ) // F(V ).

Any sheaf of R-modules on X can be viewed as an OX-module with respect to the
constant sheaf R̃X . There is an obvious notion of morphism of OX-modules induced by the
notion of morphism of sheaves. The category of OX-modules on a ringed space (X,OX) is
denoted by Mod(X,OX). Proposition 13.1 has the following generalization.

Proposition 13.2. For any sheaf F of OX-modules, there is an injective OX-module I and
an injective morphism ϕ : F → I.

A proof of Proposition 13.2 can be found in Hartshorne [24] (Chapter III, Section 2,
Proposition 2.2). As a consequence, we can define the cohomology groups Hp(X,F) of the
OX-module F over the ringed space (X,OX) as the groups induced by the right derived
functors RpΓ(X,−) of the functor Γ(X,−) from the category Mod(X,OX) of OX-modules
to the category of abelian groups (with p ≥ 0).

We now turn to flasque sheaves.
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13.2 Flasque Sheaves

The notion of flasque sheaf is due to Godement (see [18], Chapter 3). The word flasque is
French and it is hard to find an accurate English translation for it. The closest appoximations
we can think of are flabby , limp, or soggy ; a good example of a “flasque” object is a slab of
jello, or a jellyfish. Most authors use the French word “flasque” so we will use it too.

Definition 13.4. A sheaf F on a topological space X is flasque if for every open subset U
of X the restriction map ρXU : F(X)→ F(U) is surjective.

We will see shortly that injective sheaves are flasque. Although this is not obvious from
the definition, the notion of being flasque is local.

Proposition 13.3. Let F be an OX-module. If F is flasque, so is F � U for every open
subset U of X. Conversely, if for every x ∈ X, there is a neighborhood U such that F � U
is flasque, then F is flasque.

Proof. The first statement is trivial, let us prove the converse. Given any open set V of
X, let s be a section of F over V . Let T be the set of all pairs (U, σ), where U is an
open in X containing V , and σ is an extension of s to U . Partially order T by saying that
(U1, σ1) ≤ (U2, σ2) if U1 ⊆ U2 and σ2 extends σ1, and observe that T is inductive, which
means that every chain has an upper bound. Zorn’s lemma provides us with a maximal
extension of s to a section σ over an open set U0. Were U0 not X, there would exist an
open set W in X not contained in U0 such that F � W is flasque. Thus we could extend
the section ρU0

U0∩W (σ) to a section σ′ of F . Since σ and σ′ agree on U0 ∩W by construction,
their common extension to U0 ∪W extends s, a contradiction.

Proposition 13.4. Every OX-module may be embedded in a canonical functorial way into a
flasque OX-module. Consequently, every OX-module has a canonical flasque resolution (i.e.,
a resolution by flasque OX-modules.)

Proof. Let F be an OX-module, and define a presheaf C0(X,F) by

U 7→
∏
x∈U

Fx.

It is immediate that C0(X,F) is actually a sheaf and that we have an injection of OX-
modules F −→ C0(X,F). An element of C0(X,F) over any open set U is a collection (sx)
of elements indexed by U , each sx lying over the OX,x-module Fx. Such a sheaf is flasque
because every U -indexed sequence sx can be extended to an X-indexed sequence by assigning
any arbitrary element of Fx to any x ∈ X−U . hence Mod(X,OX) possesses enough flasque
sheaves.

If Z1 is the (sheaf) cokernel of the canonical injection F −→ C0(X,F), we define
C1(X,F) to be the flasque sheaf C0(X,Z1). In general, Zn is the cokernel of the injec-
tion
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Zn−1 −→ C0(X,Zn−1), and Cn(X,F) is the flasque sheaf C0(X,Zn). Putting all this infor-
mation together, we obtain the desired flasque resolution of F

0 −→ F −→ C0(X,F) −→ C1(X,F) −→ C2(X,F) −→ · · ·

as claimed.

Remark: The resolution of F constructed in Proposition 13.4 will be called the canonical
flasque resolution of F or the Godement resolution of F .

Given two sheaves of R-modules F ′ and F ′′, we obtain a presheaf F ′ ⊕F ′′ by setting

F = (F ′ ⊕F ′′)(U) = F ′(U)⊕F ′′(U)

for every open subset U of X. Actually, F ′⊕F ′′ is a sheaf. We call F ′ and F ′′ direct factors
of F .

Here is the principal property of flasque sheaves.

Theorem 13.5. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of OX-modules,
and assume F ′ is flasque. Then this sequence is exact as a sequence of presheaves. If both
F ′ and F are flasque, so is F ′′. Finally, any direct factor of a flasque sheaf is flasque.

Proof. Given any open set, U , we must prove that

0 // F ′(U)
ϕ // F(U)

ψ // F ′′(U) // 0

is exact. By Proposition 11.25(4), the sole problem is to prove that F(U) −→ F ′′(U) is
surjective. By restricting attention to U , we may assume U = X; hence, we are going to
prove that a global section of F ′′ may be lifted to a global section of F . Let s′′ be a global
section of F ′′, then by Proposition 11.18(iv), locally s′′ may be lifted to sections of F . Let
T be the family of all pairs (U, σ) where U is an open in X, and σ is a section of F over U
whose image, σ′′, in F ′′(U) equal ρXF ′′(U)(s

′′). Partially order T as in the proof of Proposition
13.3 and observe that T is inductive. Zorn’s lemma provides us with a maximal lifting of s′′

to a section σ ∈ F(U0).

Were U0 not X, there would exist x ∈ X − U0, a neighborhood, V , of x, and a section
τ of F over V which is a local lifting of ρXV (s′′). The sections ρU0

U0∩V (σ), ρVU0∩V (τ) have the
same image under ψ in F ′′(U0∩V ) so their difference maps to 0. Since SImϕ = Kerψ, there
is a section t of F ′(U0 ∩ V ) such that

ρU0
U0∩V (σ) = ρVU0∩V (τ) + ϕ(t).

Since F ′ is flasque, the section t is the restriction of a section t′ ∈ F ′(V ). Upon replacing τ
by τ + ϕ(t′) (which does not affect the image in F ′′(V )), we may assume that ρU0

U0∩V (σ) =
ρVU0∩V (τ); that is, that σ and τ agree on the overlap U0 ∩ V . Clearly, we may extend σ (via
τ) to U0 ∪ V , contradicting the maximality of (U0, σ); hence, U0 = X.
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Now suppose that F ′ and F are flasque. If s′′ ∈ F ′′(U), then by the above, there is a
section s ∈ F(U) mapping onto s′′. Since F is also flasque, we may lift s to a global section,
t, of F . The image, t′′, of t in F ′′(X) is the required extension of s′′ to a global section of
F ′′.

Finally, assume that F is flasque, and that F = F ′ ⊕ F ′′ for some sheaf F ′′. For any
open subset U of X and any section s ∈ F ′(U), we can make s into a section ŝ ∈ F(U) by
setting the component of s̃(U) in F ′′(U) equal to the zero section. Since F is flasque, there
is some section t ∈ F(X) such that ρXU (t) = s̃. But t = t1 + t2 for some unique t1 ∈ F ′(X)
and t2 ∈ F ′′(X), and since ρXU is linear,

s+ 0 = s̃ = ρXU (t) = ρXU (t1) + ρXU (t2)

with ρXU (t1) ∈ F ′(U) and ρXU (t2) ∈ F ′′(U), so s = ρXU (t1) with t1 ∈ F ′(X), which shows that
F ′ is flasque.

The following general proposition from Tohoku ([21], Section 3.3) implies that flasque
sheaves are Γ(X,−)-acyclic. It will also imply that soft sheaves are Γ(X,−)-acyclic (see
Section 13.5). Since the only functor involved is the global section functor, it is customary
to abbreviate Γ(X,−)-acyclic to acyclic.

Proposition 13.6. Let T be an additive functor from the abelian category C to the abelian
category C′, and suppose that C has enough injectives. Let X be a class of objects in C
which satisfies the following conditions:

(i) C possesses enough X-objects,

(ii) If A is an object of C and A is a direct factor of some object in X, then A belongs to
X,

(iii) If 0 −→ A′ −→ A −→ A′′ −→ 0 is exact and if A′ belongs to X, then
0 −→ T (A′) −→ T (A) −→ T (A′′) −→ 0 is exact, and if A also belongs to X, then A′′

belongs to X.

Under these conditions, every injective object belongs to X, for each M in X we have
RnT (M) = (0) for n > 0, and finally the functors RnT may be computed by taking X-
resolutions.

Proof. The following proof is due to Steve Shatz. Let I be an injective of C. By (i), I admits
a monomorphism into some object M of the class X. We have an exact sequence

0 // I
ϕ //M // Coker ϕ // 0,

and as I is injective and ϕ : I →M is an injective sheaf map, there is a map p : M → I such
that p ◦ ϕ = id as in the following diagram

0 // I

id
��

ϕ //M

p
~~

I,
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and by Proposition 2.1(2), the above sequence is split so I is a direct factor of M ; hence
(ii) implies I lies in X. Let us now show that RnT (M) = (0) for n > 0 if M lies in X.
Now, C possesses enough injectives, so if we set C0 = Coker(M −→ I0) and inductively
Ci+1 = Coker(Ci −→ Ii+1) where the maps M −→ I0 and Ci −→ Ii+1 are injections and the
Ii are injective, we have the exact sequences

0 −→M −→ I0 −→ C0 −→ 0

0 −→ C0 −→ I1 −→ C1 −→ 0

0 −→ C1 −→ I2 −→ C2 −→ 0

· · · · · · · · · · · · · · · · · · · · ·
0 −→ Cn −→ In+1 −→ Cn+1 −→ 0

· · · · · · · · · · · · · · · · · · · · ·

Here, each Ii is injective, so lies in X. As M belongs to X, (iii) shows that C0 lies in X. By
induction, Ci belongs to X for every i ≥ 0. Again, by (iii), the sequences

0 −→ T (M) −→ T (I0) −→ T (C0) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 −→ T (Cn) −→ T (In+1) −→ T (Cn+1) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

are exact. Then, as in the proof of Proposition 12.11 we obtain the exact sequence

0 −→ T (M) −→ T (I0) −→ T (I1) −→ T (I2) −→ · · ·

and this proves that RnT (M) = (0) for positive n. Finally, by Proposition 12.27, the functors
RnT may be computed from arbitrary X-resolutions (which exist by (i)).

Using Theorem 13.5, Proposition 13.6 applied to the family of flasque sheaves yields the
following result.

Proposition 13.7. Flasque sheaves are acyclic, that is Hp(X,F) = (0) for every flasque
sheaf F and all p ≥ 1, and the cohomology groups Hp(X,F) of any arbitrary sheaf F can be
computed using flasque resolutions.

In view of Proposition 13.2, we also have the following result.

Proposition 13.8. If (X,OX) is a ringed space, then the right derived functors of the
functor Γ(X,−) from the category Mod(X,OX) of OX-modules to the category of abelian
groups coincide with the sheaf cohomology functors Hp(X,−).

Proof. The right derived functors of the functor Γ(X,−) from the category Mod(X,OX) of
OX-modules to the category of abelian groups is computed using resolutions of injectives in
the category Mod(X,OX). But injective sheaves are flasque, and flasque sheaves are acyclic,
so by Proposition 12.27 these resolutions compute sheaf cohomology.

Our next goal is to compare Čech cohomology and sheaf cohomology.
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13.3 Comparison of Čech Cohomology and Sheaf Co-

homology

We begin by proving that for every space X, every open cover U of X, every sheaf F of
R-modules on X, and every p ≥ 0, there is a homomorphism

Ȟp(U ,F) −→ Hp(X,F).

For every open subset U of X let U/U denote the induced covering of U consisting of
all open subsets of the form Ui ∩ U , with Ui ∈ U . Then it is immediately verified that the
presheaf Cp(U ,F) defined by

Cp(U ,F)(U) = Cp(U/U ,F)

for any open subset U of X is a sheaf. The crucial property of the sheaves Cp(U ,F) is that
the complex

0 // F // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · ·

is a resolution of the sheaf F .

Proposition 13.9. For every open cover U of the space X, for every F of R-modules on
X, the complex

0 // F // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · ·

is a resolution of the sheaf F .

Sketch of proof. We follow Brylinski [6] (Section 1.3, Proposition 1.3.3). By Proposition
11.23(ii) it suffices to show that the stalk sequence

0 // Fx // C0(U ,F)x
δ // · · · // Cp(U ,F)x

δ // Cp+1(U ,F)x
δ // · · ·

is exact for every x ∈ X, and since direct limits of exact sequences are still exact it suffice to
show that for every x ∈ X, there is some open neighborhood V of x such that the sequence

0 // F(W ) // C0(UW ,F) δ // · · · // Cp(U/W ,F) δ // Cp+1(U/W ,F) δ // · · ·

is exact for every open subset W of V . Pick V = Ui0 for some open subset Ui0 in such that
x ∈ Ui0 . Then for W ⊆ V = Ui0 , the open cover {Ui ∩W | Ui ∈ U} contains W = W ∩ Ui0 .
The map with domain F(W ) is clearly injective and we conclude by using the following
simple proposition which is proved in Brylinski [6] (Section 1.3, Lemma 1.3.2) and Bredon
[5] (Chapter III, Lemma 4.8):
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Proposition 13.10. If U = (Ui)i∈I is an open cover of X and if Ui = X for some index i,
then for any presheaf F of R-modules we have Ȟp(U ,F) = (0) for all p > 0.

It follows that the above sequence is exact.

Proposition 13.11. For every space X, every open cover U of X, every sheaf F of R-
modules on X, and every p ≥ 0, there is a homomorphism

Ȟp(U ,F) −→ Hp(X,F)

from Čech cohomology to sheaf cohomology. Consequently there is also a homomorphism

Ȟp(X,F) −→ Hp(X,F)

for every p ≥ 0.

Proof. By Proposition 13.9, we have a resolution 0 // F // C∗(U ,F) of the sheaf F .

For every injective resolution 0 // F // I of F , by Theorem 12.15, there is a map of
resolutions from C∗(U ,F) to I lifting the identity and unique up to homotopy. Thus, there is
a homomorphism of cohomology Ȟp(U ,F) −→ Hp(X,F). Since Ȟp(X,F) is a direct limit
of the Ȟp(U ,F), we obtain the homomorphism Ȟp(X,F) −→ Hp(X,F) by passing to the
limit.

In general, the homomorphism Ȟp(X,F) −→ Hp(X,F) of Proposition 13.11 is neither
injective nor surjective. We will seek conditions that imply that it is an isomorphism.

The strategy to prove that the maps Ȟp(X,F) −→ Hp(X,F) are isomorphisms is to
prove that (under certain conditions) the family of functors (Ȟp(X,F))p≥0 is a universal
δ-functor. Since for a sheaf, Ȟ0(X,F) ∼= Γ(X,F) = F(X), by Proposition 12.31 we obtain
the desired isomorphisms.

We begin by proving that the functors Ȟp(U ,−) on sheaves are erasable. Next, we will
show that the family (Ȟp(U ,−))p≥0 is a δ-functors on sheaves. To do this, we will first show
that they constitute a δ-functor on preshaves, and then use the fact that if X is paracompact
and if F is a presheaf, then Ȟp(X,F) ∼= Ȟp(X, F̃) for all p ≥ 0.

Proposition 13.12. For every space X, every open cover U of X, if the sheaf F is flasque
then

Ȟp(U ,F) = (0) p ≥ 1.

Consequently the functors Ȟp(U ,−) on sheaves are erasable for all p ≥ 1.

Proof. Proposition 13.12 is proved in Godement [18] (Chapter 5, Theorem 5.2.3), Hartshorne
[24] (Chapter III, Proposition 4.3), and Bredon [5] (Chapter III, Corollary 4.10).

Observe that since F is assumed to be flasque, the sheaves Cp(U ,F) are also flasque
because the restriction of F to any open subset Ui0···ip is flasque and a product of flasque
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sheaves is flasque. Thus by Proposition 13.9 0 // F // C∗(U ,F) is a resolution of F
by flasque sheaves. By Proposition 13.7 the cohomology groups Hp(X,F) can be computed
using this resolution, but by definition this resolution computes the cohomology groups
Ȟp(U ,F), so we get

Hp(X,F) = Ȟp(U ,F), for all p ≥ 0.

However since F is flasque, by Proposition 13.7 we have Hp(X,F) = (0) for all p ≥ 1,
so Ȟp(U ,F) = (0) for all p ≥ 1. Since every sheaf can be embedded in a flasque sheaf
(Proposition 13.4), the functors Ȟp(U ,−) are erasable for all p ≥ 1.

Remark: In fact, it can be shown that Ȟp(U ,F) = (0) for all p ≥ 1 if F is an injective
presheaf, but this is harder to prove. Thus, the functors Ȟp(U ,−) on presheaves are erasable
for all p ≥ 1.

The next important fact is that, on presheaves , the functors Cp(U ,−) are exact.

Proposition 13.13. For every space X and every open cover U of X, the functor Cp(U ,−)
from presheaves to abelian groups is exact for all p ≥ 0.

Proof. If
0 // F ′ // F // F ′′ // 0 (∗)

is an exact sequence of presheaves, then the sequence

0 // Cp(U ,F ′) // Cp(U ,F) // Cp(U ,F ′′) // 0

is of the form

0 //
∏

(i0,...,ip)

F ′(Ui0···ip) //
∏

(i0,...,ip)

F(Ui0···ip) //
∏

(i0,...,ip)

F ′′(Ui0···ip) // 0.

But since (∗) is an exact sequence of presheaves, every sequence

0 // F ′(Ui0···ip) // F(Ui0···ip) // F ′′(Ui0···ip) // 0

is exact, and since exactness is preserved under direct products, the sequence

0 //
∏

(i0,...,ip)

F ′(Ui0···ip) //
∏

(i0,...,ip)

F(Ui0···ip) //
∏

(i0,...,ip)

F ′′(Ui0···ip) // 0.

is exact.

As a corollary of Proposition 13.13, every exact sequence of presheaves

0 // F ′ // F // F ′′ // 0
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yields an exact sequence of Čech complexes

0 // C∗(U ,F ′) // C∗(U ,F) // C∗(U ,F ′′) // 0,

and thus, by Theorem 2.19, a long exact sequence of Čech cohomology groups over the cover
U . By passing to the limit over covers, we obtain the short exact sequence

0 // C∗(X,F ′) // C∗(X,F) // C∗(X,F ′′) // 0,

which yields a long exact sequence of Čech cohomology groups. Thus, for presheaves , the
family of functors (Ȟp(X,F))p≥0 is a δ-functor (and even a universal δ-functor, in view of a
previous remark). The difficulty is that for sheaves, in general, it fails to be a δ-functor.

Fortunately, the functors Ȟp(X,F) are still left-exact on sheaves . Thus, given an exact
sequence of sheaves

0 // F ′ ϕ // F ψ // F ′′ // 0 (∗)
we can consider the exact sequence of presheaves

0 // F ′ // F // G // 0

where G = PCoker(ϕ), and we obtain a long exact sequence of cohomology whose rows

// Ȟp(X,F ′) // Ȟp(X,F) // Ȟp(X,G) // (∗∗)

involve the Čech cohomology groups Ȟp(X,F ′), Ȟp(X,F), and Ȟp(X,G). The exactness

of (∗) means that F ′′ = SCoker(ϕ), with SCoker(ϕ) = ˜PCoker(ϕ), the sheafification of
PCoker(ϕ) = G, so

F ′′ = G̃.
Thus, if we can show that

Ȟp(X,G) ∼= Ȟp(X, G̃) (†)
for every presheaf G, by replacing Ȟp(X,G) by Ȟp(X, G̃) = Ȟp(X,F ′′) in (∗∗) we obtain a
long exact sequence with rows

// Ȟp(X,F ′) // Ȟp(X,F) // Ȟp(X,F ′′) //

which constitutes a long exact sequence of cohomology associated with (∗), and the family
(Ȟp(X,F))p≥0 is a δ-functor. This is where the paracompactness condition comes in to save
the day.

A space X is paracompact if it is Hausdorff and if every open cover has an open, locally
finite, refinement. An open cover U = (Ui)i∈I of X is locally finite if for every point x ∈ X,
there is some open subset V containing x such that V ∩ Ui 6= ∅ for only finitely many i ∈ I.
Every metric space is paracompact, and so is every locally compact and second-countable
space.

Assume that X is paracompact. The key fact due to Godement is the following somewhat
bizarre result which implies the crucial fact (†).



364 CHAPTER 13. COHOMOLOGY OF SHEAVES

Proposition 13.14. Assume the space X is paracompact. For any presheaf F on X, if
F̃ = (0) (the sheafification of F is the zero sheaf), then

Ȟp(X,F) = (0), for all p ≥ 0.

Proposition 13.14 is proved Godement [18], Chapter 5, Theorem 5.10.2. Another proof
can be found in Bredon [5] (Chapter III, Theorem 4.4. See also Spanier [47] (Chapter
6, Theorem 16). None of these proofs are particularly illuminating. The significance of
Proposition 13.14 is that it implies (†).

Proposition 13.15. Assume the space X is paracompact. For any presheaf F on X, we
have isomorphisms

Ȟp(X,F) ∼= Ȟp(X, F̃) for all p ≥ 0.

Proof. We follow Godement [18] (Chapter 5, page 230). Let η : F → F̃ be the morphism

from F to its sheafification F̃ , and let K = Ker η and I = PIm η, as presheaves. We have
the exact sequences of presheaves

0 // K // F // I // 0

and

0 // I // F̃ // F̃/I // 0.

Furthermore, we have

K̃ = (0) and
˜̃F/I = (0).

Is suffices to prove that Kx = (0) and (F̃/I)x = (0) for all x ∈ X. In the first case, by
definition of η, for every open subset U of X and every s ∈ F(U) we have ηU(s) = s̃, with
s̃(x) = sx for all x ∈ U , so s ∈ Ker ηU = K(U) iff sx = 0 for all x ∈ U , which implies that
Kx = (0).

To prove that (F̃/I)x = (0) we use the fact (which is not hard to prove) that for any

two presheaves F and G, we have (F/G)x = Fx/Gx. Then (F̃/I)x = F̃x/Ix, but it is easily

shown that Ix = F̃x since any continuous section in F̃(U) agrees locally with some section
of the form s̃ ∈ I(V ) for some V ⊆ U .

By taking the long cohomology sequence associated with the first exact sequence we
obtain exact sequences

Ȟp(X,K) // Ȟp(X,F) // Ȟp(X, I) // Ȟp+1(X,K)

for all p ≥ 0, and since K̃ = (0), by Proposition 13.14, we have

Ȟp(X,K) = Ȟp+1(X,K) = (0),
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which yields isomorphisms

Ȟp(X,F) ∼= Ȟp(X, I), p ≥ 0.

Similarly, by taking the long cohomology sequence associated with the second exact sequence
we obtain exact sequences

0 // Ȟ0(X, I) // Ȟ0(X, F̃) // Ȟ0(X, F̃/I)

and

Ȟp(X, F̃/I) // Ȟp+1(X, I) // Ȟp+1(X, F̃) // Ȟp+1(X, F̃/I)

for all p ≥ 0, and since
˜̃F/I = (0), by Proposition 13.14, we have

Ȟp(X, F̃/I) = Ȟp+1(X, F̃/I) = (0),

so we obtain isomorphisms

Ȟp(X, I) ∼= Ȟp(X, F̃), p ≥ 0.

It follows that
Ȟp(X,F) ∼= Ȟp(X, F̃), p ≥ 0,

as claimed.

By putting the previous results together, we proved the following important theorem.

Theorem 13.16. Assume the space X is paracompact. For any sheaf F on X, we have
isomorphisms

Ȟp(X,F) ∼= Hp(X,F) for all p ≥ 0

between Čech cohomology and sheaf cohomology. Furthermore, for every presheaf F , we have
isomorphisms

Ȟp(X,F) ∼= Hp(X, F̃) for all p ≥ 0.

Remark: The fact that for a paracompact space, every short exact sequence of sheaves
yields a long exact sequence of cohomology is already proved in Serre’s FAC [44] (Chapter
1, Section 25, Proposition 7).

Observe that all that is needed to prove Proposition 13.15 is the fact that for any presheaf
F , if F̃ = (0), then

Ȟp(X,F) = (0), for all p ≥ 0.

This condition holds if X paracompact (this is the content of Proposition 13.14), but there
are other situations where it holds (perhaps for specific values of p). For example, for any
space X (not necessarily paracompact), it is shown in Godement ([18] Chapter 5, Lemma
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on page 227) that for any presheaf F , if F̃ = (0), then Ȟ0(X,F) = (0). As a consequence,
for any space X, for any sheaf F on X, we have isomorphisms

Ȟp(X,F) ∼= Hp(X,F), p = 0, 1;

see Godement ([18] Chapter 5, Corollary of Theorem 5.9.1 on page 227).

Grothendieck shows that the map Ȟ2(X,F) −→ H2(X,F) is injective and gives an
example where is it not an isomorphism; see Tohoku [21] (Section 3.8, Example, pages 177–
179).

We now briefly discuss conditions not involving the space X but instead the cover U that
yield isomorphisms between the Čech cohomology groups Ȟp(U ,F) and the sheaf cohomology
groups Hp(X,F).

First we state a result due to Leray involving the vanishing of certain sheaf cohomology
groups on various open sets.

Theorem 13.17. (Leray) For any topological space X and any sheaf F on X, for any open
cover U , if Hp(Ui0···ip ,F) = (0) for all p > 0 and all (i0, . . . , ip), then

Ȟp(X,F) ∼= Hp(X,F), for all p ≥ 0.

A proof of Theorem 13.17 can be found in Bredon [5] (Chapter III, Theorem 4.13). The
proof involves a double complex. Leray’s Theorem is used in algebraic geometry where X
is a scheme and F is a quasi-coherent sheaf; see Hartshorne [24] (Chapter III, Section 4,
Theorem 4.5), and EGA III [22] (1.4.1).

Next, we state a result due to Henri Cartan involving the vanishing of certain Čech
cohomology groups on various open sets.

Theorem 13.18. (H. Cartan) For any topological space X and any sheaf F on X, for any
open cover U , if U is a basis for the topology of X closed under finite intersections and if
Ȟp(Ui0···ip ,F) = (0) for all p > 0 and all (i0, . . . , ip), then

Ȟp(X,F) ∼= Hp(X,F), for all p ≥ 0.

A proof of Theorem 13.18 is given in Grothendieck [21] (Section 3.8, Corollary 4), and
in more details in Godement [18] (Chapter 5, Theorem 5.92).

We now compare singular cohomology and sheaf cohomology (for constant sheaves). To
do so, we will need to introduce soft sheaves and fine sheaves.
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13.4 Singular Cohomology and Sheaf Cohomology

If R is a commutative ring with an an identity element and G is an R-module, how can we
relate the singular cohomology groups Hp(X;G) to some sheaf cohomology groups? The

answer is to consider the cohomology groups Hp(X, G̃X) of the constant sheaf G̃X (the
sheafification of the constant sheaf G). The key idea is to consider some suitable resolution

of G̃X by acyclic sheaves such that the complex obtained by applying the global section
functor to this resolution yields the singular cohomology groups, and to apply Proposition
12.27 to conclude that we have isomorphisms Hp(X;G) ∼= Hp(X, G̃X), provided some mild
assumptions on X.

The natural candidate for the sheaves involved in a resolution of G̃X are the presheaves
Sp(−;G) given by

U 7→ Sp(U ;G),

where Sp(U ;G) is the R-module of singular cochains on the open subset U , as defined in
Definition 4.17, replacing X by U .

The first problem is that the preshaves Sp(−;G) satisfy axiom (G), but in general fail to
satisfy axiom (M). To fix this problem we consider the sheafification Sp(−;G) of Sp(−, G).
The coboundary maps δp : Sp(U ;G)→ Sp+1(U ;G) induce maps δp : Sp(−;G)→ Sp+1(−;G),

where we wrote δ instead of δ̃ to simplify the notation. Then, we obtain a complex

0 // G̃X
// S0(−;G) δ // S1(−;G) δ // S2(−;G) δ // · · · . (∗)

When is this a resolution of G̃X and when are the sheaves Sp(−;G) acyclic?

It turns out that if X is locally Euclidean, then the complex (∗) is exact; that is, a resolu-
tion. There is a more general condition implying that the complex (∗) is a resolution, namely
that X is an HLC-space (X is homologically locally connected). Any locally contractible
space, any manifold, or any CW-complex is HLC; for details, see Bredon [5] (Chapter II,
Section 1). For our purposes, it suffices to assume that X is a topological manifold. The
proof that the complex (∗) is a resolution if M is a topological manifold can be found in
Warner [50] (Chapter V, Section 5.31). It is very technical.

Furthermore, if X is paracompact, then the sheaves Sp(−;G) are acyclic. These sheaves
are generally not flasque but they are soft sheaves, in fact, fines sheaves, and soft sheaves
are acyclic; we will see this in the next section. By Proposition 12.27, if we apply the global
section functor Γ(X,−) to the resolution (∗), we obtain the complex S∗(X;G) (of modules)

0 // S0(X;G) δ // S1(X;G) δ // S2(X;G) δ // · · ·

whose cohomology is isomorphic to the sheaf cohomology H∗(X, G̃X).

However, there is a new problem: the cohomology groups of the complex S∗(X;G) involve
the modules Sp(X;G), but the singular cohomology groups involve the modules Sp(X;G);



368 CHAPTER 13. COHOMOLOGY OF SHEAVES

how do we know that these groups are isomorphic? They are indeed isomorphic if X is
paracompact.

Let us settle this point before dealing with soft sheaves. Assume that X is paracompact.
If F is a presheaf on X and if F̃ is its sheafification, the natural map η : F → F̃ induces the
map η : F(X)→ F̃(X) given by η = ηX , as in Definition 11.3; that is, for every s ∈ F(X),

η(s) = s̃

with s̃(x) = sx for all x ∈ X. Define the presheaf F(X)0 by

F(X)0 = {s ∈ F(X) | η(s) = 0} = Ker η.

Then we have the following result.

Proposition 13.19. Assume the space X is paracompact. For every presheaf F , if F
satisfies condition (G) then the sequence

0 // F(X)0
// F(X) θ // F̃(X) // 0

is exact.

The only thing that needs to be proved is that θ is surjective. This is proved in Warner [50]
(Chapter V, Proposition 5.27) and in Bredon [5] (Chapter I, Theorem 6.2). As a consequence
of Proposition 13.19, we have an exact sequence of cochain complexes

0 // S∗(X;G)0
// S∗(X;G) // S∗(X;G) // 0. (†)

We claim that if we can prove that

Hp(S∗(X;G)0) = (0) for all p ≥ 0,

then we have isomorphisms

Hp(X;G) = Hp(S∗(X;G)) ∼= Hp(S∗(X;G)), for all p ≥ 0.

Proof. This follows easily by taking the long exact sequence of cohomology associated with
the exact sequence (†). We have exact sequences

Hp(S∗(X;G)0) // Hp(X;G) // Hp(S∗(X;G)) // Hp+1(S∗(X;G)0)

for all p ≥ 0, and since by hypothesis Hp(S∗(X;G)0) = Hp+1(S∗(X;G)0) = (0), we obtain
the isomorphisms

Hp(X;G) = Hp(S∗(X;G)) ∼= Hp(S∗(X;G)), for all p ≥ 0,

as claimed.
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Now, it is shown in Warner [50] (Chapter 5, Section 5.32) that indeed

Hp(S∗(X;G)0) = (0) for all p ≥ 0.

This is a very technical argument involving barycentric subdivision and a bit of topology.

In summary, we have shown that ifX is paracompact and a topological manifold, provided
that the sheaves Sp(−;G) are acyclic, then we have isomorphisms

Hp(X;G) ∼= Hp(X, G̃X), for all p ≥ 0

between singular cohomology and sheaf cohomology of the constant sheaf G̃X .

The sheaves Sp(−;G) are indeed acyclic because they are soft, and soft sheaves over
a paracompact space are acyclic; this will be proved in Section 13.5. Assuming that this
result has been proved, we have the following theorem showing the equivalence of singular
cohomology and sheaf cohomology for the constant sheaf G̃X and a (paracompact) topological
manifold X.

Theorem 13.20. Assume X is a paracompact topological manifold. For any R-module G,
there are isomorphisms

Hp(X;G) ∼= Hp(X, G̃X), for all p ≥ 0

between singular cohomology and sheaf cohomology of the constant sheaf G̃X .

Remark: There is a variant of singular cohomology that uses differentiable singular sim-
plices instead of singular simplices as defined in Definition 4.2. Given a topological space
X, if p ≥ 1, a differentiable singular p-simplex is any map σ : ∆p → X that can be ex-
tended to a smooth map of a neighborhood of ∆p. Then, Sp∞(U ;G) denotes the R-module
of functions which assign to each differentiable singular p-simplex an element of G (for
p ≥ 1), and S0

∞(U ;G) = S0(X;G). Elements of Sp∞(U ;G) are called differentiable singular
p-cochains . Then, we obtain the cochain complex S∗∞(X;G) and its cohomology groups
denoted Hp

∆∞(X;G) are called the differentiable singular cohomology groups of X with co-
efficients in G. Each Sp∞(−;G) is a presheaf satisfying condition (M), and we let Sp∞(−;G)
be its sheafification. As in the continuous case, we obtain a version of Theorem 13.20.

Theorem 13.21. Assume X is a paracompact topological manifold. For any R-module G,
there are isomorphisms

Hp
∆∞(X;G) ∼= Hp(X, G̃X), for all p ≥ 0

between differentiable singular cohomology and sheaf cohomology of the constant sheaf G̃X .

Details can be found in Warner [50] (Chapter 5, Sections 5.31, 5.32). The significance of
differentiable singular cohomology is that it yields a stronger version of the equivalence with
de Rham cohomology when G = R and X is a smooth manifold; see Section 13.6.
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13.5 Soft Sheaves and Fine Sheaves

Roughly speaking a sheaf is soft if it satisfies the condition for being flasque for closed subsets
of X; that is, for every closed subset A of X, the restriction map from F(X) to F(A) is
surjective. The problem is that sheaves are only defined over open subsets!

The remedy is to work with stalk spaces (E, p). Since every sheaf F is isomorphic to the

sheaf of sections F̃ associated with the stalk space (SF , π), this is not a problem, although
at times it is a little awkward.

If (E, p) is a stalk space of R-modules on X with p : E → X, and Γ[E, p] is the sheaf of
continuous sections associated with (E, p) (see Example 9.2 (1)), following Godement [18]
(Chapter 1, bottom of page 110), for every subset Y of X (not necessarily open) we define

Γ(Y,Γ[E, p]) = {s : Y → E | p ◦ s = id and s is continuous}

as the set of all continuous sections from Y viewed as a subspace of X. We usually abuse
notation a little and denote the sheaf Γ[E, p] associated with the stalk space (E, p) by F .
We write Γ(Y,F) for Γ(Y,Γ[E, p]). Then we can make the following definition.

Definition 13.5. If F is the sheaf induced by a stalk space (E, p) of R-modules on X, we
say that the sheaf F is soft if the restriction map from Γ(X,F) to Γ(A,F) is surjective for
every closed subset A of X.

In order to prove that soft sheaves are acyclic, which is one of our main goals, we need
to assume that X is paracompact. Then, we will see that every flasque sheaf is soft.

Given a sheaf F and its sheafification F̃ , the sheaf isomorphism η : F → F̃ ensures that
F is flasque iff F̃ is flasque, so there is no problem.

In this section, we will content ourselves with stating the properties of soft sheaves that
are needed to finish the proof of the equivalence of singular cohomology and sheaf cohomology
(for the constant sheaves G̃X), and the proof of the equivalence of de Rham cohomology and

sheaf cohomology (for the constant sheaves R̃X). Details and proofs can be found in Bredon
[5] (Chapter II, Section 9) and Godement [18] (Chapters 3, 4, 5). Soft sheaves are also
discussed in Brylinski [6] (Chapter I, Section 1,4), but a different definition is used.

Proposition 13.22. Let F be the sheaf induced by a stalk space (E, p) of R-modules over a
space X, let Y be any subset of X and let s ∈ Γ(Y,F) be any section over Y . If Y admits
a fundamental system of paracompact neighborhoods,1 then s has an extension to some open
neighboorhood of Y in X.

Proposition 13.22 is proved in Godement [18] (Chapter III, Theorem 3.3.1) and Bredon
[5] (Chapter I, Theorem 9.5). As an immediate corollary we obtain the following result.

1This means that there is a familyN of paracompact neighborhoods of A such that for every neighborhood
V of A there is some W in N such that W ⊆ V .
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Proposition 13.23. Let F be the sheaf induced by a stalk space (E, p) of R-modules over a
space X. If X is paracompact and F is flasque, then F is soft.

To prove that soft sheaves on a paracompact space are acyclic, we need the following two
propositions.

Proposition 13.24. If X is paracompact, for any exact sequence of sheaves (induced by
stalk spaces)

0 // F ′ // F // F ′′ // 0,

if F ′ is soft then the sequence

0 // Γ(X,F ′) // Γ(X,F) // Γ(X,F ′′) // 0,

is exact.

A proof of Proposition 13.24 is given in Bredon [5] (Chapter II, Theorem 9.9); see also
Godement [18] (Chapter 3, Theorem 3.5.2).

Proposition 13.25. If X is paracompact, for any exact sequence of sheaves (induced by
stalk spaces)

0 // F ′ // F // F ′′ // 0,

if F ′ and F are soft then F ′ is also soft.

A proof of Proposition 13.25 is given in Bredon [5] (Chapter II, Theorem 9.10); see also
Godement [18] (Chapter 3, Theorem 3.5.3).

It is also easy to see that every direct factor of a soft sheaf is soft; the proof given for
flasque sheaves in Theorem 13.5 applies. But now (as in the case of flasque sheaves) the
assumptions of Proposition 13.6 apply, and we imediately get the following result.

Proposition 13.26. For any sheaf F induced by a stalk space (E, p), if X is paracompact
and F is soft, then F is ayclic, that is

Hp(X,F) = (0) for all p ≥ 1.

Neither Godement nor Bredon have Proposition 13.6 from Tohoku at their disposal, so
they need to prove Proposition 13.26; see Godement [18] (Chapter 4, Theorem 4.4.3) and
Bredon [5] (Chapter, Theorem 9.11).

Going back to singular cohomology, it remains to prove that the sheaves Sp(X;G) are
soft.

Proposition 13.27. If the space X is paracompact, then the sheaves (of singular cochains)
Sp(X;G) are soft.
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A proof of Proposition 13.27 is given in Godement [18] (Chapter 3, Section 3.9, Example
3.9.1).

Propositions 13.26 and 13.27 conclude the proof of Theorem 13.20.

Another way to prove Proposition 13.27 is to prove that the sheaves Sp(X;G) are fine
and that fine sheaves are soft.

If F is the sheaf induced by a stalk space (E, p) where p : E → X is a continuous
surjection, for any subset Y of X, the sheaf F|Y is the sheaf of continuous sections of the
stalk space (p−1(Y ), p|p−1(Y )).

Given two sheaves F and G induced by stalk spaces over the same space X we have a
definition of the presheaf Hom(F ,G) analogous to Definition 9.5:

Hom(F ,G)(U) = Hom(F|U,G|U)

for every open subset U of X, where Hom(F|U,G|U) denotes the set of maps between the
sheaves F|U and G|U . Even though Hom(F ,G) is a sheaf if F and G are sheaves induced by
stalk spaces, because we need to work with stalk spaces when dealing with soft sheaves, with
some abuse of notation, we also denote the sheafification of the above presheaf byHom(F ,G).
Then, we have the following definition due to Godement [18] (Chapter 3, Section 3.7).

Definition 13.6. For any sheaf F on X induced by the stalk space (E, p), we say that F is
fine if Hom(F ,F) is soft.

The following results about fine and soft sheaves are proved in Godement [18] (Chapter
3, Section 3.7) and in Bredon [5] (Chapter II, Section 9).

Proposition 13.28. Assume the space X is paracompact. If OX is any sheaf of rings with
unit induced by a stalk space and if OX is soft, then any OX-module is soft.

This is Theorem 3.7.1 in Godement [18].

Proposition 13.29. Assume the space X is paracompact. If OX is sheaf of rings with unit
induced by a stalk space, then OX is soft iff every x ∈ X has some open neighborhood U such
that for any two disjoint open subsets S, T contained in U , there is some section s ∈ OX(U)
such that s ≡ 1 on S and s ≡ 0 on T .

This is Theorem 3.7.2 in Godement [18].

Proposition 13.30. Assume the space X is paracompact. A sheaf F induced by a stalk space
(E, p) is fine iff for any two disjoint open subsets S, T in X, there is a sheaf homomorphism
ϕ : F → F such that ϕ ≡ 1 in a neighborhood of S and ϕ ≡ 0 in a neighborhood of T . Every
fine sheaf is soft.
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See Godement [18] (Section 3.7, page 157) and Bredon [5] (Chapter II,Theorem 9.16).
Since every soft sheaf is acyclic, so is every fine sheaf (over a paracompact space).

Remark: If X is paracompact, then any injective sheaf on X is fine; see Bredon [5] (Chapter
II, Exercise 17). The following diagram summarizes the relationships between injective,
flasque, fine, and soft sheaves (assuming that X is paracompact):

injective +3

��

flasque

��
fine +3 soft.

Godement proves that the sheaves Sp(−;G) are fine (Godement, Example 3.7.1, page
161); see also Bredon [5] (Chapter III, page 180).

Besides being acyclic, fine sheaves behave well with respect to tensor products, which,
historically motivated their introduction.

Given two sheaves F and G of R-modules, the presheaf F ⊗ G is defined by

(F ⊗ G)(U) = F(U)⊗ G(U)

for any open subset U of X. Actually, the presheaf F ⊗ G is a sheaf. If F and G are
induced by stalk spaces of R-modules, with a minor abuse of notation we let F ⊗ G be the
sheafification of the above sheaf.

Proposition 13.31. Assume the space X is paracompact. For any fine sheaf F and any
sheaf G induced by stalk spaces on X, the sheaf F ⊗ G is fine.

Proposition 13.31 is proved in Godement [18] (Chapter 3, Theorem 3.7.3), Bredon [5]
(Chapter II, Corollary 9.18), and Warner [50] (Chapter V, Section 5.10).

Proposition 13.31 can used to create resolutions. Indeed, suppose that we have a resolu-
tion

0 // R̃X
// C0 // C1 // C2 // · · ·

of the locally constant sheaf R̃X by fine and torsion-free sheaves Cp (which means that each
stalk Cpx is a torsion-free R-module, where by stalk we mean the fibre over x ∈ X in the stalk
space defining Cp). Then it can be shown that for any sheaf F of R-modules, the complex

0 // R̃X ⊗F // C0 ⊗F // C1 ⊗F // C2 ⊗F // · · · (∗)

is a resolution of F ∼= R̃X ⊗ F by fine sheaves; See Warner [50] (Chapter V, Section 5.10),

Theorem 5.15). Furhermore, if X is paracompact and if the R is a PID, resolutions of R̃X by
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fine and torsion-free sheaves do exist; for example, the sheaves Sp(X;R) of singular cochains
are fine and torsion-free; see Warner [50] (Chapter V, Section 5.31).

Thus, if X is paracompact and if R is a PID, we can define the sheaf cohomology groups
Hp(X,F) in terms of the resolution (∗) as

Hp(X,F) = Hp(Γ(C∗ ⊗F)).

Since fine sheaves are acyclic, it follows that these groups are independent of the fine and
torsion-free resolution of R̃X chosen.

This method to define sheaf cohomology in terms of resolutions of fine sheaves is due to
Henri Cartan and is presented in Chapter V of Warner [50]. It is also the approach used by
Bredon [5].

The advantage of this method is that it does not require the machinery of derived functors.
The disadvantage is that it relies on fine sheaves, and thus on paracompactness, and assumes
that the ring R is a PID. This makes it unsuitable for more general spaces and sheaves that
arise naturally in algebraic geometry.

Fine sheaves are often defined in terms of partitions of unity, as in Warner [50] (Chapter
V, Definition 5.10) or Spanier [47] (Chapter 6, Section 8). Given a sheaf F induced by a
stalk space (E, p), the support of a map ϕ : F → F , denoted by supp(ϕ), is the closure of
the set of elements x ∈ E such that ϕ(x) 6= 0.

Definition 13.7. Given a sheaf F induced by a stalk space of rings (E, p) over X, we say
that F is p-fine if for each locally finite open cover U = (Ui)i∈I of X, for each i ∈ I there is
some map ϕi : F → F such that

(a) supp(ϕi) ⊆ Ui.

(b)
∑
ϕi = id.

This sum makes sense because U is locally finite.

The family (ϕi)i∈I is called a partition of unity for F subordinate to the cover U .

Then, if X is paracompact, using a partition of unity, it is not hard to show to the sheaves
Sp(−;G) and Sp∞(−;G) are p-fine; see Warner [50] (Chapter V, Sections 5.31 and 5.32, pages
193–196).

It is not obvious that on a paracompact space, a sheaf is fine iff it is p-fine. It is shown in
Brylinski [6] (Chapter 1, Proposition 1.4.9) that a p-fine sheaf is soft. It is shown in Warner
that a p-fine sheaf is acyclic; see [50] (Chapter V, Section 5.20, page 179). Therefore, both
fine sheaves and p-fine sheaves are acyclic. It is also claimed in Exercise 13 in Bredon ([5],
Chapter II, page 170) that Definition 13.6 is equivalent to Definition 13.7 for a paracompact
space; thus, a sheaf is soft iff it is p-soft.
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Remark: There is a slight generalization of the various cohomology theories involving “fam-
ilies of support.” A family of support on X is a family Φ of closed subsets of X satisfying
certain closure properties. Interesting families of support also paracompactifying . Then,
given a sheaf F induced by a stalk space, for any section s ∈ Γ(X,F), the support |s| of s
is the closed set of x ∈ X such that s(x) 6= 0. We define ΓΦ by

ΓΦ(X,F) = {s ∈ Γ(X,F) | |s| ∈ Φ}.

Then, we can define the cohomology groups Hp
Φ(X,F) by considering the (left-exact) functor

ΓΦ instead of Γ. We can also define Φ-soft and Φ-fine sheaves, and the results that we have
presented generalize to paracompactifying families of support Φ. For details on this approach,
see Godement [18] and Bredon [5].

Another example of a p-fine sheaf is the sheaf ApX of differential forms on a smooth mani-
fold X. Here, since we have to use stalk spaces, we are really dealing with the sheafification of
the sheaf of differential forms, but we will use the same notation. This will allow us to finish
the discussion of the comparison between the de Rham cohomology and sheaf cohomology
started with Proposition 12.28.

13.6 de Rham Cohomology and Sheaf Cohomology

Let X be a smooth manifold. Recall that we proved in Proposition 12.28 that the sequence

0 // R̃X
ε // A0

X
d // A1

X
d // · · · d // ApX

d // Ap+1
X

d // · · ·

is a resolution of the locally constant sheaf R̃M . As we stated in the previous section, we
have the following result.

Proposition 13.32. For any (paracompact) smooth manifold X, the sheaves ApX (actually,
the sheafifications of the sheaves ApX) are p-fine and fine sheaves.

That the ApX are fine sheaves is proved in Godement [18] (Chapter 3, Example 3.7.1,
page 158). That the ApX are p-fine sheaves is proved in Warner [50] (Chapter V, Section
5.28) and Brylinski [6] (Section 1.4, page 139). Since fine sheaves and p-fine sheaves are
equivalent and thus acyclic, by Proposition 12.27 the sheaf cohomology groups of the sheaf
R̃X are computed by the resolution of fine (and p-fine) sheaves

0 // R̃X
ε // A0

X
d // A1

X
d // · · · d // ApX

d // Ap+1
X

d // · · ·

Thus, in view of Theorem 13.16 and Theorem 13.20, we obtain the following version of the
de Rham theorem:

Theorem 13.33. Let X be a (paracompact) smooth manifold. There are isomorphisms

Hp
dR(X) ∼= Hp(X, R̃X) ∼= Ȟp(X, R̃X) ∼= Hp(X;R)

between de Rham cohomology, the sheaf cohomology of the locally constant sheaf R̃X , Čech
cohomology of R̃X , and singular cohomology over R.
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Theorem 13.21 also yields an isomorphism

Hp
dR(X) ∼= Hp

∆∞(X;R)

between de Rham cohomology and differentiable singular cohomology with coefficients in R.
It is possible to give a more explicit definition of the above isomorphism using integration.

For any p ≥ 1, define the map kp : Ap(X)→ Sp∞(X;R) by

kp(ω)(σ) =

∫
σ

ω,

for any p-form ω ∈ Ap(X) and any differentiable singular p-simplex σ in X. Using Stokes’
theorem, it can be shown that the kp induce a cochain map

k : A∗(X)→ S∗∞(X;R).

The above map induces a map of cohomology, and a strong version of the de Rham theorem
is this:

Theorem 13.34. For any smooth manifold X, the cochain map k : A∗(X) → S∗∞(X;R)
induces an isomorphism

k∗p : Hp
dR(X)→ Hp

∆∞(X;R)

for every p ≥ 0, between de Rham cohomology and differentiable singular cohomology.

For details, see Warner [50] (Chapter 5, Sections 5.35–5.37). Chapter 5 of Warner also
contains a treatment of the multiplicative structure of cohomology.

There is yet another cohomology theory, Alexander–Spanier cohomology . It turns out
to be equivalent to Čech cohomology, but it occurs naturally in a version of duality called
Alexander–Lefschetz duality.

Alexander–Spanier cohomology is discussed extensively in Warner [50] (Chapter V), Bre-
don [5] (Chapters I, II, III), and Spanier [47] (Chapter 6).

13.7 Alexander–Spanier Cohomology and Sheaf Coho-

mology

Let X be a paracompact space, and let G be an R-module.

Definition 13.8. For any open subset U of X, for any p ≥ 0, let Ap(U ;G) denote the
G-module of all functions f : Up+1 → G. The homomorphism

dp : Ap(U ;G)→ Ap+1(U ;G)
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is defined by

dpf(x0, . . . , xp+1) =

p+1∑
i=0

(−1)if(x1, . . . , x̂i, . . . , xp+1),

for all f ∈ Ap(U ;G) and all (x0, . . . , xp+1) ∈ Up+2.

It is easily checked that dp+1 ◦ dp = 0 for all p ≥ 0, so we obtain a cochain complex

0 // A0(U ;G) d0
// A1(U ;G) d1

// A2(U ;G) d2
// · · ·

denoted by A∗(U ;G). If V ⊆ U then there is a restriction homomorphism

ρUV : Ap(U ;G)→ Ap(V ;G),

so we obtain a presheaf Ap(−;G) of R-modules called the presheaf of Alexander–Spanier
p-cochains . The presheaf Ap(−;G) satisfies Condition (G) for p ≥ 1 but not Condition (M).

Let ApA-S(−;G) be the sheafification of Ap(−;G). As in the case of singular cohomology
we obtain a complex

0 // G̃X
// A0

A-S(−;G) δ // A1
A-S(−;G) δ // A2

A-S(−;G) δ // · · · . (∗)

The following result is proved in Warner [50] (Chapter 5, Section 5.26).

Proposition 13.35. The sheaves ApA-S(−;G) are fine and the complex (∗) is a resolution of

G̃X .

By Proposition 12.27, if we apply the global section functor Γ(X,−) to the resolution
(∗), we obtain the complex A∗A-S(X;G) (of modules)

0 // A0
A-S(X;G) δ0

// A1
A-S(X;G) δ1

// A2
A-S(X;G) δ2

// · · ·

whose cohomology is isomorphic to the sheaf cohomology H∗(X, G̃X).

Now, since X is paracompact and since the presheaves Ap(−;G) satisfy Condition (G),
Proposition 13.19 implies that the sequence of cochain complexes

0 // A∗0(X;G) // A∗(X;G) // A∗A-S(X;G) // 0

is exact, with
Ap0(X;G) = {f ∈ Ap(X;G) | fx = 0 for all x ∈ X}.

Then, we have isomorphisms

Ap(X;G)/Ap0(X;G) ∼= ApA-S(X;G)
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for all p ≥ 0, and the sheaf cohomology groups Hp(X; G̃X) are the cohomology groups of
the complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · ·

Now, the elements of Ap0(X;G) can be described as functions f ∈ Ap(X;G) that are
locally zero.

Definition 13.9. A function f ∈ Ap(X;G) is locally zero if there is some open cover U =
(Ui)i∈I of X such that f(x0, . . . xp) = 0 for all (x0, . . . , xp) ∈ Up+1

i in any Ui ∈ U .

Equivalently, if we write

Up+1 =
⋃
i∈I

Up+1
i ⊆ Xp+1,

then f ∈ Ap(X;G) is locally zero if there is some open cover U = (Ui)i∈I of X such that f
vanishes on Up+1.

It follows that the restriction of δ to Ap0(X;G) has its image in Ap+1
0 (X;G), because if f

vanishes on Up+1, then δf vanishes on Up+2. It follows that we obtain the quotient complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · ·

as above. By definition, its cohomology groups are the Alexander–Spanier cohomology
groups.

Definition 13.10. For any topological space X, the Alexander–Spanier complex is the
complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · ·

where the Ap(−;G) are the Alexander–Spanier presheaves and Ap0(X;G) consists of the
functions in Ap(X;G) that are locally zero. The cohomology groups of the above complex
are the Alexander–Spanier cohomology groups and are denoted by Hp

A-S(X;G).

Observe that the Alexander–Spanier cohomology groups are defined for all topological
spaces, not necessarily paracompact. However, we proved that if X is paracompact, then
they agree with the sheaf cohomology groups of the sheaf G̃X .

Theorem 13.36. If the space X is paracompact, then we have isomorphisms

Hp
A-S(X;G) ∼= Hp(X; G̃X) for all p ≥ 0

between Alexander–Spanier cohomology and the sheaf cohomology of the constant sheaf G̃X .
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In view of Theorem 13.16, we also have the following theorem (proved in full in Warner
[50], Chapter 5, Section 5.26, pages 187- 188).

Theorem 13.37. If the space X is paracompact, then we have isomorphisms

Hp
A-S(X;G) ∼= Ȟp(X; G̃X) for all p ≥ 0

between Alexander–Spanier cohomology and the Čech cohomology of the constant sheaf G̃X

(classical Čech cohomology).

Theorem 13.37 is also proved in Spanier [47] (Chapter 6, Section 8, Corollary 8). In fact,
the above isomorphisms hold even if X is not paracompact, a theorem due to Dowker; see
Theorem 14.5, and also Spanier [47] (Chapter 6, exercise 6.D.3).

Remark: The cohomology of the complex

0 // A0(X;G) d0
// A1(X;G) d1

// A2(X;G) d2
// · · ·

is trivial; that is, its cohomology group are all equal to G; see Spanier [47] (Chapter 6,
Section 4, Lemma 1).
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Chapter 14

Alexander and Alexander–Lefschetz
Duality

Our goal is to present various generalizations of Poincaré duality. These versions of duality
involve taking direct limits of direct mapping families of singular cohomology groups which,
in general, are not singular cohomology groups. However, such limits are isomorphic to
Alexander–Spanier cohomology groups, and thus to Čech cohomology groups. These duality
results also require relative versions of homology and cohomology. Thus, in preparation for
Alexander–Lefschetz duality we need to define relative Alexander–Spanier cohomology and
relative Čech Cohomology.

14.1 Relative Alexander–Spanier Cohomology

Given a topological space X, let us denote by ApA-S(X;G) the Alexander–Spanier cochain
modules

ApA-S(X;G) = Ap(X;G)/Ap0(X;G),

where Ap0(X;G) is the set of functions in Ap(X;G) that are locally zero (which means that
there is some open cover U = (Ui)i∈I of X such that f(x0, . . . xp) = 0 for all (x0, . . . , xp) ∈
Up+1
i in any Ui ∈ U). Recall that if we write

Up+1 =
⋃
i∈I

Up+1
i ⊆ Xp+1,

then f ∈ Ap(X;G) is locally zero if there is some open cover U = (Ui)i∈I of X such that f
vanishes on Up+1.

If h : X → Y is a continuous map, then we have an induced cochain maps

hp] : Ap(Y ;G)→ Ap(X;G)

given by
hp](ϕ)(x0, . . . , xp) = ϕ(h(x0), . . . , h(xp))

381
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for all (x0, . . . , xp) ∈ Xp+1 and all ϕ ∈ Ap(Y ;G).

If ϕ vanishes on Vp+1, where V is some open cover of Y , since h is continuous we see that
h−1(V) is an open cover of X and then hp] vanishes on (h−1(V))p+1. It follows that hp] maps
Ap0(Y ;G) into Ap0(X;G), so there is an induced map

hp] : ApA-S(Y ;G)→ ApA-S(X;G),

and thus a module homomorphism

hp∗ : Hp
A-S(Y ;G)→ Hp

A-S(X;G).

If A is a subspace of X and i : A → X is the inclusion map, then the homomorphisms
ip] : ApA-S(X;G)→ ApA-S(A;G) are surjective. Therefore

ApA-S(X,A;G) = Ker ip]

is a submodule of ApA-S(X;G) called the module of relative Alexander–Spanier p-cochains ,
and by restriction we obtain a cochain complex

0 // A0
A-S(X,A;G) d0

// A1
A-S(X,A;G) d1

// A2
A-S(X,A;G) d2

// // · · · . (∗)

Definition 14.1. If X is a topological space and if A is a subspace of X, the relative
Alexander–Spanier cohomology groups Hp

A-S(X,A;G) are the cohomology groups of the com-
plex (∗).

Observe that by definition the sequence

0 // A∗A-S(X,A;G) // A∗A-S(X;G) // A∗A-S(A;G) // 0

is an exact sequence of cochain complexes. Therefore by Theorem 2.19 we have the following
long exact sequence of cohomology:

· · · // Hp−1
A-S (A;G)

δ∗p−1

// Hp
A-S(X,A;G) // Hp

A-S(X;G) // Hp
A-S(A;G)

δ∗p

// Hp+1
A-S (X,A;G) // Hp+1

A-S (X;G) // Hp+1
A-S (A;G)

δ∗p+1

// Hp+2
A-S (X,A;G) // · · ·
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A continuous map h : (X,A) → (Y,B) (with h(A) ⊆ B) also yields the commutative
diagram

0 // A∗A-S(Y,B;G) //

h]

��

A∗A-S(Y ;G) //

(h|X)]

��

A∗A-S(B;G) //

(h|A)]

��

0

0 // A∗A-S(X,A;G) // A∗A-S(X;G) // A∗A-S(A;G) // 0.

in which the rows are exact, and a diagram chasing argument proves the existence of a map
h] making the left square commute. We define the homomorphism

h∗ : H∗A-S(Y,B;G)→ H∗A-S(X,A;G)

induced by h : (X,A)→ (Y,B) as the homomorphism induced by the cochain homomorphism

h] : A∗A-S(Y,B;G)→ A∗A-S(X,A;G)

given by the above commutative diagram.

The Alexander–Spanier relative cohomology modules are also limits of certain cohomol-
ogy groups defined in terms of open covers. This characterization is needed to prove that
relative Alexander–Spanier cohomology satisfies the homotopy axiom, and also to prove later
on its equivalence with relative classical Čech cohomology defined in Section 14.2. We now
sketch this development

The first step is to give another characterization of A∗A-S(X,A;G) in terms of A∗0(X;G)
and a certain submodule of A∗(X;G).

Definition 14.2. For any space X and any subspace A of X, we define Ap(X,A;G) as
the submodule of Ap(X;G) consisting of all functions in Ap(X;G) which are locally zero on
A. More precisely, there is some open cover U of X such that f ∈ Ap(X;G) vanishes on
Up+1 ∩ Ap+1.

It is immediate that d : A∗(X;G)→ A∗(X;G) restricts to A∗(X,A;G) so A∗(X,A;G) is
a cochain complex. Observe that A∗(X, ∅;G) = A∗(X;G)

Proposition 14.1. Let (X,A) be a pair of spaces with A ⊆ X. There is an isomorphism

A∗A-S(X,A;G) ∼= A∗(X,A;G)/A∗0(X;G).

Proof. The surjective homomorphism ip] : ApA-S(X;G)→ ApA-S(A;G) induced by the inclusion
i : A→ X is defined by

i]([f ]) = [f |A],

where on the left-hand side [f ] is the equivalence class of f ∈ Ap(X;G) modulo Ap0(X;G),
and on the right-hand side [f |A] is the equivalence modulo Ap0(A;G) of the restriction of f
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to Ap. If f ′ = f + g where g is locally zero on X, there is some open cover U of X such that
g vanishes on Up+1, and g|A vanishes on Up+1 ∩ Ap+1. Since f ′|A = f |A + g|A this shows
that [f ′|A] = [f |A] and the above map is well defined. This reasoning also shows that the
map ϕ given by the composition

A∗(X;G) π // A∗(X;G)/A∗0(X;G) i] // A∗(A;G)/A∗0(A;G) = A∗A-S(A;G)

is given by
ϕ(f) = [f |A],

and that the kernel of ϕ is equal to A∗(X,A;G), so we have an exact sequence

0 // A∗(X,A;G) ι // A∗(X;G)
ϕ // A∗A-S(A;G) // 0,

and A∗0(X;G) ⊆ A∗(X,A;G). Since A∗0(X;G) ⊆ A∗(X,A;G), Kerϕ = A∗(X,A;G), and the
following diagram commutes

A∗(X;G) π //

ϕ
))

A∗(X;G)/A∗0(X;G)

i]

��
A∗A-S(A;G),

we have Ker i] ∼= A∗(X,A;G)/A∗0(X;G), and we conclude that we have the isomorphism

A∗A-S(X,A;G) ∼= A∗(X,A;G)/A∗0(X;G),

as claimed.

Observe that A∗A-S(X, ∅;G) = A∗A-S(X;G).

The next step is to define some cohomology groups based on open covers of (X,A), and
for this we need a few facts about open covers.

Definition 14.3. Given a pair of topological spaces (X,A) where A is a subset of X, a pair
(U ,UA) is an open cover of (X,A) if U = (Ui)i∈I is an open cover of X and UA = (Ui)i∈IA is
a subcover of U which is a cover of A; that is, IA ⊆ I and A ⊆

⋃
i∈IA Ui.

Recall from Definition 10.6 that given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space
X, we say that V is a refinement of U , denoted U ≺ V , if there is a function τ : J → I
(sometimes called a projection) such that

Vj ⊆ Uτ(j) for all j ∈ J.

Definition 14.4. Given a pair of topological spaces (X,A) where A is a subset of X, for
any two open covers (U ,UA) and (V ,VA) of (X,A), with U = (Ui)i∈I , I

A ⊆ I, V = (Vj)j∈J ,
JA ⊆ J , we say that (V ,VA) is a refinement of (U ,UA), written (U ,UA) ≺ (V ,VA), if there
is a function τ : J → I (sometimes called a projection) such that τ(JA) ⊆ IA

Vj ⊆ Uτ(j) for all j ∈ J.
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Let Cov(X,A) be the preorder of open covers (U ,UA) of (X,A) under refinement. If
(U ,UA) and (V ,VA) are two open covers of (X,A), if we let

W = {Ui ∩ Vj | (i, j) ∈ I × J}

and

WA = {Ui ∩ Vj | (i, j) ∈ IA × JA},

we see that (W ,WA) is an open cover of (X,A) that refines both (U ,UA) and (V ,VA).
Therefore, Cov(X,A) is a directed preorder.

We also define Cov(X) as the preorder of open covers of X under refinement; it is a
directed preorder. However, observe that Cov(X) is not equal to Cov(X, ∅), because even if
A = ∅, a cover of (X, ∅) consists of a pair (U ,UA) where UA is a subcover of U associated
with some index set IA ⊆ I which is not necessarily empty. Covers in Cov(X) correspond to
those covers (U , ∅) in Cov(X, ∅) for which IA = ∅. In the end this will not matter but this
a subtle point that should not be overlooked.

We are ready to show that A∗A-S(X,A;G) is the limit of cochain complexes associated
with covers (U ,UA) of (X,A).

Definition 14.5. Let (X,A) be a pair of topological spaces with A ⊆ X. For any open
cover (U ,UA) of (X,A), let Ap(U ,UA;G) be the submodule of Ap(X;G) given by

Ap(U ,UA;G) = {f : Up+1 → G | f(x0, . . . , xp) = 0 if (x0, . . . , xp) ∈ (UA)p+1 ∩ Ap+1}.

The homomorphism

dp : Ap(U ,UA;G)→ Ap+1(U ,UA;G)

is defined as in Definition 13.8 by

dpf(x0, . . . , xp+1) =

p+1∑
i=0

(−1)if(x1, . . . , x̂i, . . . , xp+1).

It is easily checked that dp+1 ◦ dp = 0 for all p ≥ 0, so the modules Ap(U ,UA;G) form a
cochain complex.

Remark: The module Ap(U ,UA;G) can be viewed as an ordered simplicial cochain complex;
see Spanier [47] (Chapter 6, Section 4).

If (V ,VA) is a refinement of (U ,UA), then the restriction map is a cochain map

ρU ,U
A

V,VA : Ap(U ,UA;G)→ Ap(V ,VA;G),
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so the directed family (Ap(U ,UA;G))(U ,UA)∈Cov(X,A) together with the family of maps ρU ,U
A

V,VA

with (U ,UA) ≺ (V ,VA) is a direct mapping family.

Remark: As usual, one has to exercise some care because the set of all covers of (X,A) is
not a set. This can be delt with as in Serre’s FAC [44] or as in Eilenberg and Steenrod [12]
(Chapter IX, page 238).

The remarkable fact is that if A 6= ∅ then we have an isomorphism

A∗A-S(X,A;G) ∼= lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G),

and if A = ∅ we have an isomorphism

A∗A-S(X;G) ∼= lim−→
U∈Cov(X)

Ap(U , ∅;G).

To prove the above isomorphism, first if A 6= ∅ we define a map

λ : A∗(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G),

where A∗(X,A;G) is the module defined in Definition 14.2, and if A = ∅ we define a map

λ : A∗(X;G)→ lim−→
U∈Cov(X)

Ap(U , ∅;G).

Assume A 6= ∅. For any f ∈ Ap(X,A;G), there is some open cover UA of A consisting
of open subsets of X such that f vanishes on (UA)p+1 ∩ Ap+1, and we let U be the open
cover of X obtained by adding X itself to the cover UA and giving it some new index, say
k. Then (U ,UA) is an open cover of (X,A) and by restriction f determines an element
f |(U ,UA) ∈ Ap(U ,UA;G). Passing to the limit, we obtain a homomorphism

λp : Ap(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G).

Theorem 14.2. If A 6= ∅ then the map

λ : A∗(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

A∗(U ,UA;G)

is surjective and its kernel is given by Kerλ = A∗0(X;G). Consequently, we have an isomor-
phism

A∗A-S(X,A;G) ∼= lim−→
(U ,UA)∈Cov(X,A)

A∗(U ,UA;G).
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If A = ∅ then the map
λ : A∗(X;G)→ lim−→

U∈Cov(X)

A∗(U , ∅;G)

is surjective and its kernel is given by Kerλ = A∗0(X;G). Consequently, we have an isomor-
phism

A∗A-S(X;G) ∼= lim−→
U∈Cov(X)

A∗(U , ∅;G).

Proof. We follow Spanier’s proof, see Spanier [47] (Chapter 6, Section 4, Theorem 1). Assume
that A 6= ∅. First we prove that λ is surjective. Pick any u ∈ Ap(U ,UA;G), and define fu by

fu(x0, . . . , xp) =

{
u(x0, . . . , xp) if (x0, . . . , xp) ∈ Up+1

0 otherwise.

Then fu vanishes on (UA)p+1 ∩Ap+1, and therefore fu|(U ,UA) ∈ Ap(X,A;G). By definition,
we have fu| = u, so λ is surjective.

Next we prove that Kerλ = A∗0(X;G). A function f ∈ Ap(X,A;G) is in the kernel of
λ iff there is some open cover (U ,UA) such that f |(U ,UA) = 0. Thus, λ(f) = 0 iff there is
some open covering U such that f vanishes on Up+1. By the definition of A∗0(X;G), we have
λ(f) = 0 iff f ∈ A∗0(X;G).

The case where A = ∅ is similar but slightly simpler.

An important corollary of Theorem 14.2 is the following characterization of the relative
Alexander–Spanier cohomology groups as certain limits of simpler cohomology groups (in
fact, simplicial cohomology).

Theorem 14.3. Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅ then we have an
isomorphism

Hp
A-S(X,A;G) ∼= lim−→

(U ,UA)∈Cov(X,A)

Hp(U ,UA;G), for all p ≥ 0.

If A = ∅ then we have an isomorphism

Hp
A-S(X;G) ∼= lim−→

U∈Cov(X)

Hp(U , ∅;G), for all p ≥ 0.

Proof. It is shown in Spanier [47] (Chapter 4) that cohomology commutes with direct limits
(this is a general categorical fact about direct limits). Using Theorem 14.2 we obtain our
result.

Spanier uses Theorem 14.3 to prove that Alexander–Spanier cohomology satisfies the
homotopy axiom; see Spanier [47] (Chapter 6, Section 5). Actually, Spanier proves that
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Alexander–Spanier cohomology satisfies all of the Eilenberg–Steenrod axioms. A more de-
tailed treatment of Alexander–Spanier cohomology is found in Spanier [47] (Chapter 6, Sec-
tions 4–9).

In order to state the most general version of Alexander–Lefschetz duality (not restricted to
the compact case), it is necessary to introduce Alexander–Spanier cohomology with compact
support

Definition 14.6. A subset A of a topological space X is said to be bounded if its closure A
is compact. A subset B ⊆ X is said to be cobounded if its complement X − B is bounded.
A function h : X → Y is proper if it is continuous and if h−1(A) is bounded in X whenever
A is bounded in Y .

It is immediate to check that the composition of two proper maps is proper. A proper
map h between (X,A) and (Y,B) (where A ⊆ X and B ⊆ Y ) is a proper map from X to Y
such that h(A) ⊆ B.

Definition 14.7. Let (X,A) be a pair of spaces with A ⊆ X. The module Apc(X,A;G)
is the submodule of Ap(X,A;G) consisting of all functions f ∈ Ap(X,A;G) such that f is
locally zero on some cobounded subset B of X. If f ∈ Ap(X,A;G) is locally zero on B, so
is δf , thus the family of modules Apc(X,A;G) with the restrictions of the δp is a cochain
complex which is a subcomplex of A∗(X,A;G). Since A∗0(X;G) ⊆ A∗c(X,A;G), we obtain
the cochain complex A∗A-S,c ∗ (X,A;G), with

A∗A-S,c(X,A;G) = A∗c(X,A;G)/A∗0(X;G).

The Alexander–Spanier cohomology modules of (X,A) with compact support Hp
A-S,c(X,A;G)

are the cohomology modules of the cochain complex A∗A-S,c(X,A;G).

If h : (X,A) → (Y,B) is a proper map, then h] maps A∗A-S,c(Y,B;G) to A∗A-S,c(X,A;G)
and induces a homomorphism

h∗ : Hp
A-S,c(Y,B;G)→ Hp

A-S,c(X,A;G).

Properties of Alexander–Spanier cohomology with compact support are investigated in
[47] (Chapter 6, Sections 6). We just mention the following result.

Proposition 14.4. Let (X,A) be a pair of spaces with A ⊆ X. If A is a cobounded subset
of X, then there is an isomorphism

H∗A-S,c(X,A;G) ∼= H∗A-S(X,A;G).

In particular, Proposition 14.4 applies to the situation where (X,A) is a compact pair ,
which means that X is compact and A is a closed subset of X.
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We conclude this section by mentioning that Alexander–Spanier cohomology enjoys a
very simple definition of the cup product. Indeed, given f1 ∈ Ap(X;G) and f2 ∈ Aq(X;G)
we define f1 ^ f2 ∈ Ap+q(X;G) by

(f1 ^ f2)(x0, . . . , xp+q) = f1(x0, . . . , xp)f2(xp, . . . , xp+q).

If f1 is locally zero on A1 then so is f1 ^ f2, and if f2 is locally zero on A1 then so is f1 ^ f2.
Consequently ^ induces a cup product

^ : ApA-S(X;G)× AqA-S(X;G)→ Ap+qA-S (X;G).

One verifies that
δ(f1 ^ f2) = δf1 ^ f2 + (−1)pf1 ^ δf2,

so we obtain a cup product

^ : Hp
A-S(X;G)×Hq

A-S(X;G)→ Hp+q
A-S (X;G)

at the cohomology level.

It is also easy to deal with relative cohomology; see Spanier [47] (Chapter 6, Section 5).

14.2 Relative Classical Čech Cohomology

In this section we deal with classical Čech cohomology, which means that given an open cover
U = (Ui)i∈I of the space X and given a R-module G, the module Cp(U , G) of Čech p-cochains
can be defined as the R-module of functions f : Ip+1 → G such that for all (i0, . . . , ip) ∈ Ip+1,

f(i0, . . . , ip) = 0 if Ui0···ip = ∅,

where Ui0···ip = Ui0 ∩ · · · ∩ Uip .

Our first goal is to explain how a continuous map h : X → Y induces a homomorphism
of Čech cohomology

hp∗ : Ȟp(Y,G)→ Ȟp(X,G).

For this, it necessary to take a closer look at the behavior of open covers of Y under h−1.

If V = (Vi)i∈I is an open cover of Y , then since h is continuous h−1(V) = (h−1(Vi))i∈I is
an open cover of X, with the same index set I. We also denote h−1(Vi) by h−1(V )i or V ′i .

If W = (Wj)j∈J is a refinement of V = (Vi)i∈I and if τ : J → I is a function such that

Wj ⊆ Vτ(j) for all j ∈ J,

since
h−1(Wj) ⊆ h−1(Vτ(j)),
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if we write W ′
j = h−1(Wj) and V ′i = h−1(Vi), then we have

W ′
j ⊆ V ′τ(j) for all j ∈ J,

which means that h−1(W) is a refinement of h−1(V) (as open covers of X).

Let Cov(X) be the preorder of open covers U of X under refinement and let Cov(Y ) be
the preorder of open covers V of Y under refinement. Observe that what we just showed
implies that the map V 7→ h−1(V) between Cov(Y ) and Cov(X) is an order-preserving map.

For any tuple (i0, . . . , ip) ∈ Ip+1, we have

h−1(Vi0···ip) = h−1(Vi0 ∩ · · · ∩ Vip) = h−1(Vi0) ∩ · · · ∩ h−1(Vip),

and if we let h−1(V )i0···ip = h−1(Vi0) ∩ · · · ∩ h−1(Vip), then

h−1(Vi0···ip) = h−1(V )i0···ip .

Note that it is possible that Vi0···ip 6= ∅ but h−1(Vi0···ip) = h−1(V )i0···ip = ∅.

Given a continuous map h : X → Y and an open cover V = (Vi)i∈I of Y , we define a
homomorphism from Cp(V , G) to Cp(h−1(V), G) (where h−1(V) is an open cover of X).

Definition 14.8. Let h : X → Y be a continuous map between two spaces X and Y and let
V = (Vi)i∈I be some open cover of Y . The R-module homomorphism

hp]V : Cp(V , G)→ Cp(h−1(V), G)

if defined as follows: for any f ∈ Cp(V ;G), for all (i0, . . . , ip) ∈ Ip+1,

hp]V (f)(i0, . . . , ip) =

{
f(i0, . . . , ip) if h−1(V )i0···ip 6= ∅
0 if h−1(V )i0···ip = ∅.

The module homomorphism hp]V : Cp(V , G) → Cp(h−1(V), G) induces a module homo-
morphism of Čech cohomology groups

hp∗V : Ȟp(V ;G)→ Ȟp(h−1(V);G).

For every refinement W of V (V ≺ W), we have a commutative diagram

Ȟp(V ;G)
hp∗V //

ρVW
��

Ȟp(h−1(V);G)

ρ
h−1(V)

h−1(W)

��
Ȟp(W ;G)

hp∗W // Ȟp(h−1(W);G),
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where the restriction map ρVW : Ȟp(V ;G)→ Ȟp(W ;G) is defined just after 10.3 (and similarly

for ρ
h−1(V)

h−1(W) : Ȟp(h−1(V);G)→ Ȟp(h−1(W);G)). If we define the map τh : Cov(Y )→ Cov(X)

by τh(V) = h−1(V), then we see that τh and the family of maps

hp∗V : Ȟp(V ;G)→ Ȟp(h−1(V);G)

define a map from the direct mapping family (Ȟp(V ;G))V∈Cov(Y ) to the direct mapping
family (Ȟp(U ;G))U∈Cov(X), and by the discussion just before Definition 9.12 we obtain a
homomorphism between their direct limits, that is, a homomorphism

hp∗ : Ȟp(Y ;G)→ Ȟp(X;G).

In order to define the relative Čech cohomology groups we need to consider a few more
properties of the open covers of a pair (X,A). Let h : (X,A)→ (Y,B) be a continuous map
(recall that h : X → Y is continuous and h(A) ⊆ B). If (V ,VB) is any open cover of (Y,B)
(with index sets (I, IB)) then (h−1(V), h−1(VB)) is an open cover of (X,A) with the same
index sets I and IB.

If (W ,WB) (with index sets (J, JB)) is a refinement of (V ,VB) (with index set (I, IB))
with projection function τ : J → I, it is immediate to check that (h−1(W), h−1(WB)) is a
refinement of (h−1(V), h−1(VB)). It follows that the map

(V ,VB) 7→ (h−1(V), h−1(VB))

is an order preserving map between Cov(Y,B) and Cov(X,A). As before, for any tuple
(i0, . . . , ip) in Ip+1 or in (IA)p+1 we write

h−1(V )i0···ip = h−1(Vi0···ip) = h−1(Vi0) ∩ · · · ∩ h−1(Vip).

It is possible that Vi0···ip 6= ∅ but h−1(Vi0···ip) = h−1(V )i0···ip = ∅.
Definition 14.9. Let (X,A) be a pair of spaces with A ⊆ X. For every open cover (U ,UA)
of (X,A), the module Cp(U ,UA;G) is the submodule of Cp(U ;G) defined as follows:

Cp(U ,UA;G) = {f : Ip+1 → G | for all (i0, . . . , ip) ∈ Ip+1

f(i0, . . . , ip) = 0 if Ui0···ip = ∅ or if (i0, . . . , ip) ∈ (UA)p+1 ∩ Ap+1}.

Observe that if A = ∅, then Cp(U ,UA;G) = Cp(U ;G) for any UA. In this case, we will
restrict ourselves to covers for which UA = ∅, to ensure that direct limits are taken over
Cov(X) in order to obtain the Čech cohomology groups of Definition 10.7.

The analogy between the above definition of Cp(U ,UA;G) and the Alexander–Spanier
modules

Ap(U ,UA;G) = {f : Up+1 → G | f(x0, . . . , xp) = 0 if (x0, . . . , xp) ∈ (UA)p+1 ∩ Ap+1}

of Definition 14.5 is striking. Indeed, it turns out that they induce isomorphic cohomology.

It is immediately checked that the coboundary maps dp : Cp(U ;G)→ Cp+1(U ;G) restrict
to the Cp(U ,UA;G) and we obtain a cochain complex C∗(U ,UA;G).
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Definition 14.10. Let (X,A) be a pair of spaces with A ⊆ X. For every open cover (U ,UA)
of (X,A), the Čech cohomology modules Ȟp(U ,UA;G) are the cohomology modules of the
complex C∗(U ,UA;G).

Observe that if A = ∅ then Ȟp(U ,UA;G) = Ȟp(U ;G) for any UA.

If (V ,VA) is a refinement of (U ,UA) then there is a cochain map

ρU ,U
A

V,VA : Cp(U ,UA;G)→ Cp(V ,VA;G),

One need to prove that ρU ,U
A

V,VA does not depend on the projection map τ : J → I, but this can

be done as in Serre’s FAC [44] or as in Eilenberg and Steenrod [12] (Chapter IX, Theorem
2.13 and Corollary 2.14).

Therefore, the directed family (Cp(U ,UA;G))(U ,UA)∈Cov(X,A) together with the family of

maps ρU ,U
A

V,VA with (U ,UA) ≺ (V ,VA) is a direct mapping family.

Remark: As usual, one has to exercise some care because the set of all covers of (X,A) is
not a set. This can be delt with as in Serre’s FAC [44] or as in Eilenberg and Steenrod [12]
(Chapter IX, page 238).

Definition 14.11. Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅ then the relative
Čech cohomology modules Ȟp(X,A;G) are defined as the direct limits

Ȟp(X,A;G) = lim−→
(U ,UA)∈Cov(X,A)

Ȟp(U ,UA;G).

If A = ∅, then the (absolute) Čech cohomology modules Ȟp(X;G) are defined as the direct
limits

Ȟp(X;G) = lim−→
U∈Cov(X)

Ȟp(U ;G).

It is clear that the absolute Čech cohomology modules Ȟp(X;G) are equal to the classical
Čech cohomology modules Ȟp(X;GX) of the constant presheaf GX as defined in Definition
10.7, since direct limits are taken over Cov(X).

At this stage, we could proceed with a study of the properties of the relative Čech
cohomology modules as in Eilenberg and Steenrod [12], but instead we will state a crucial
result due to Dowker [10] which proves that the relative Čech cohomology modules and
the relative Alexander–Spanier cohomology modules are isomorphic; this is also true in the
absolute case. This way, we are reduced to a study of the properties of the Alexander–
Spanier cohomology modules, which is often simpler. For example the proof of the existence
of the long exact cohomology sequence in Čech cohomology is quite involved (see Eilenberg
and Steenrod [12] (Chapter IX), but is is quite simple in Alexander–Spanier cohomology.

This does not mean that Čech cohomology is not interesting. On the contrary, it arises
naturally whenever the notion of cover is involved, and it plays an important role in algebraic
geometry. It also lends itself to generalizations by extending the notion of cover.
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Theorem 14.5. (Dowker) Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅ then the
Alexander–Spanier cohomology modules Hp

A-S(X,A;G) and the Čech cohomology modules
Ȟp(X,A;G) are isomorphic:

Hp
A-S(X,A;G) ∼= Ȟp(X,A;G) for all p ≥ 0.

If A = ∅ then we have isomorphisms

Hp
A-S(X;G) ∼= Ȟp(X;G) for all p ≥ 0.

A complete proof of Theorem 14.5 is given in Dowker [10]; see Theorem 2. Dowker is
careful to parametrize the Alexander–Spanier cohomology modules and the Čech cohomology
modules with a directed preorder of covers Ω, so that he does not run into problems when
taking direct limits when A = ∅. The proof of Theorem 14.5 is also proposed as a sequence
of problems in Spanier [47] (Chapter 6, Problems D1, D2, D3).

14.3 Alexander–Lefschetz Duality

Given aR-orientable manifoldM , Alexander–Lefschetz duality is a generalization of Poincaré
duality that asserts that the Alexander–Spanier cohomology group Hp

A-S(K,L;G) and the
singular homology group Hn−p(M − L,M −K;G) are isomorphic, where L ⊆ K ⊆ M and
L and K are compact. Actually, the method for proving this duality yields an isomorphism
between a certain direct limit H

p
(K,L;G) of singular cohomology groups Hp(U, V ;G) where

U is any open subset of M containing K and V is any any open subset of M containing L,
and the singular homology group Hn−p(M − L,M −K;G).

Furthermore, it can be shown that H
p
(K,L;G) and Hp

A-S(K,L;G) are isomorphic, so
Alexander–Lefschetz duality can indeed be stated as an isomorphism between Hp

A-S(K,L;G)
and Hn−p(M −L,M −K;G). Since Alexander–Lefschetz cohomology and Čech cohomology
are isomorphic, Alexander–Lefschetz duality can also be stated as an isomorphism between
Ȟp(K,L;G) and Hn−p(M − L,M − K;G), and this is what certain authors do, including
Bredon [4] (Chapter 8, Section 8).

Definition 14.12. Given any topological space X, for any pair (A,B) of subsets of X, let
N(A,B) be the set of all pairs (U, V ) of open subsets of X such that A ⊆ U and B ⊆ V
ordered such that (U1, V1) ≤ (U2, V2) iff U2 ⊆ U1 and V2 ⊆ V1 (reverse inclusion).

Clearly N(A,B) is a directed preorder, and if (U1, V1) ≤ (U2, V2) then there is an in-
duced map of singular cohomology ρU1,V1

U2,V2
: Hp(U1, V1;G) → Hp(U2, V2;G), so the family

(Hp(U, V ;G))(U,V )∈N(A,B) together with the maps ρU1,V1

U2,V2
is a direct mapping family.

Definition 14.13. Given any topological space X, for any pair (A,B) of subsets of X, the
modules H

p
(A,B;G) are defined

H
p
(A,B;G) = lim−→

(U,V )∈N(A,B)

Hp(U, V ;G) for all p ≥ 0.
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The restriction maps Hp(U, V ;G) −→ Hp(A,B;G) yield a natural homomorphism

ip : H
p
(A,B;G)→ Hp(A,B;G)

between H
p
(A,B;G) and the singular cohomology module Hp(A,B;G). In general, ip nei-

ther injective nor surjective. Following Spanier [47] (Chapter 6, Section 1), we say that the
pair (A,B) is tautly imbedded in X if every ip is an isomorphism.

Remark: The notation H
p
(A,B;G) is borrowed from Spanier [47] (Chapter 6, Section 1).

Bredon denotes the direct limit in Definition 14.13 by Ȟp(A,B;G); see Bredon [4] (Chapter
8, Section 8). He then goes on to say that if X is a manifold and A and B are closed then
this group (which is really H

p
(A,B;G)) is naturally isomorphic to the Čech cohomology

group. This is indeed true, but this is proved by showing that H
p
(A,B;G) is isomorphic to

the Alexander–Spanier cohomology module Hp
A-S(A,B;G) and then using the isomorphism

between the Alexander–Spanier cohomology modules and the Čech cohomology modules.
Since these results are nontrivial, we find Bredon’s notation somewhat confusing.

It is shown in Spanier ([47], Chapter 6, Section 1, Corollary 11) that if A, B and X are
compact polyhedra then the pair (A,B) is taut in X, which means that there are isomor-
phisms H

p
(A,B;G) ∼= Hp(A,B;G), so we can simply use singular cohomology. This is the

set-up in which Lefschetz duality was originally proved. We also have the following useful
result about manifolds; see Spanier ([47], Chapter 6, Section 9, Corollary 7).

Proposition 14.6. If X is a manifold then H
∗
(X;G) ∼= H∗(X;G).

The following result shows that when X is a manifold and (A,B) is a closed pair, the
groups H

p
(A,B;G) are just the Alexander–Spanier cohomology groups.

Proposition 14.7. Let X be a manifold. For any pair (A,B) of closed subsets of X, there
are isomorphisms

Hp
A-S(A,B;G) ∼= H

p
(A,B;G) for all p ≥ 0.

Proposition 14.7 is proved in Spanier [47] (Chapter 6, Section 9, Corollary 9).

We are now ready state the main result of this chapter. Let M be a R-orientable manifold.
By Theorem 7.7, for any compact subset K of M , there is a unique R-fundamental class
µK ∈ Hn(M,M −K;R) of M at K.

Asume that L ⊆ K ⊆ M , V ⊆ U , K ⊆ U , and L ⊆ V , with K,L compact. Then
U −K ⊆ U −L and {V, U −L} is an open cover of U . We know from Section 7.5 that there
is a relative cap product

_ : Sp(U, V ;G)× Sn(U, V ∪ (U −K);R)→ Sn−p(U,U −K;G).

We claim that the above cap product induces a cap product

_ : Sp(U, V ;G)× Sn(U,U −K;R)→ Sn−p(U − L,U −K;G).
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Since U −K ⊆ L ∪ (U −K), we have a homomorphism

i : Sn(U,U −K;R)→ Sn(U, V ∪ (U −K);R),

where the equivalence class of a ∈ Sn(U ;R) mod Sn(U −K;R) is mapped to the equivalence
class of a mod Sn(L ∪ (U − K);R). Recall that a cochain f ∈ Sp(U, V ;G) is a cochain
in Sp(U ;G) that vanishes on simplices in V . Also since U = V ∪ (U − L), any chain σ in
Sn(U, V ∪ (U −K);R) = Sn(V ∪ (U − L), V ∪ (U −K);R) is represented by a sum of the
form

a+ b+ c,

with a ∈ Sn(V ;R), b ∈ Sn(U − L;R) and c ∈ Sn(V ∪ (U − K);R). Since Sn(V ;R) ⊆
Sn(V ∪ (U − K);R), we see that a ∈ Sn(V ∪ (U − K);R) and so σ is also represented by
some element b+ d with b ∈ Sn(U − L;R) and d ∈ Sn(V ∪ (U −K);R). Then we have

f _ (b+ d) = f _ b+ f _ d,

with f _ b ∈ Sn−p(U − L;G), and since f vanishes on V and d ∈ Sn(V ∪ (U −K);R) the
term f _ d belongs to Sn−p(U − K;G), so in the end f _ (b + d) represents a cycle in
Sn−p(U − L,U −K;G). Passing to cohomology and homology, since by excision

Hn(M,M −K;R) ∼= Hn(U,U −K;R)

Hn−p(M − L,M − L;G) ∼= Hn−p(U − L,U −K;G),

the cap product

_ : Sp(U, V ;G)× Sn(U,U −K;R)→ Sn−p(U − L,U −K;G)

induces a cap product

_ : Hp(U, V ;G)×Hn(M,M −K;R)→ Hn−p(M − L,M −K;G).

If M is a R-orientable manifold, for any pair (K,L) of compact subsets of M such that
L ⊆ K and for any pair (U, V ) ∈ N(K,L), we obtain a map

_ µK : Hp(U, V ;G)→ Hn−p(M − L,M −K;G),

and by a limit argument, we obtain a map

_ µK : H
p
(K,L;G)→ Hn−p(M − L,M −K;G);

for details see Bredon [4] (Chapter 8, Section 8).

Theorem 14.8. (Alexander–Lefschetz duality) Let M be a R-orientable manifold where R
is any commutative ring with an identity element. For any R-module G, for any pair (K,L)
of compact subsets of M such that L ⊆ K, the map ω 7→ ω _ µK yields an isomorphism

H
p
(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.

Thus we also have isomorphisms

Hp
A-S(K,L;G) ∼= Ȟp(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.
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Theorem 14.8 is proved in Bredon [4] where it is called the Poincaré–Alexander–Lefschetz
duality (Chapter 8, Section 8, Theorem 8.3) by using the Bootstrap Lemma (Proposition
7.4). It is also proved in Spanier [47] (Chapter 6, Section 2, Theorem 17), except that the
isomorphism goes in the opposite direction and does not use the fundamental class µK .

If we let K = M and L = ∅, since for a manifold we have H
p
(M ;G) ∼= Hp(M ;G), then

Theorem 14.8 yields isomorphisms

Hp(M ;G) ∼= Hn−p(M ;G),

which is Poincaré duality if M is compact and R-orientable.

In the special case where K = M , we get a version of Lefschetz duality for M compact:

Theorem 14.9. (Lefschetz Duality, Version 1) Let M be a compact R-orientable n-manifold
where R is any commutative ring with an identity element. For any R-module G, for any
compact subset L of M , we have isomorphisms

Hp
A-S(M,L;G) ∼= Ȟp(M,L;G) ∼= Hn−p(M − L;G) for all p ≥ 0.

A version of Lefschetz duality where M and L are compact and triangulable, in which
case singular cohomology suffices, is proved in Munkres [38] (Chapter 8, Theorem 72.3).

Spanier proves a slightly more general version. A pair (X,A) is called a relative n-
manifold if X is a Hausdorff space, A is closed in X, and X − A is an n-manifold.

Theorem 14.10. (Lefschetz Duality, Version 2) Let (X,A) be a compact relative n-manifold
such that X −A is R-orientable where R is any commutative ring with an identity element.
For any R-module G, there are isomorphisms

Hp
A-S(X,A;G) ∼= Ȟp(X,A;G) ∼= Hn−p(X − A;G) for all p ≥ 0.

Theorem 14.9 is proved in Spanier [47] (Chapter 8, Section 2, Theorem 18).

There are also version of Poincaré and Lefschetz duality for manifolds with boundary
but we will omit this topic. The interested reader is referred to Spanier [47] (Chapter 8,
especially Section 2).

We now turn to two versions of Alexander duality.

14.4 Alexander Duality

Alexander duality correspond to the special case of Alexander–Lefschetz duality in which
L = ∅. We begin with a version of Alexander duality in the situation where M = Rn.
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Theorem 14.11. (Alexander Pontrjagin duality) Let A be a compact subset of Rn. For any
commutative ring R with an identity element, for any R-module G, we have isomorphisms

Hn−p−1
A-S (A;G) ∼= Ȟn−p−1(A;G) ∼= H̃p(Rn − A;G) for all p ≤ n.

Proof. By Theorem 14.8 with M = Rn, K = A and L = ∅, there are isomorphisms

Ȟn−p−1(A;G) ∼= Hp+1(Rn,Rn − A;G) for all p ≤ n− 1.

We also have the long exact sequence of reduced homology of the pair (Rn,Rn − A), which
yields exact sequences

H̃p+1(Rn;G) // H̃p+1(Rn,Rn − A;G) // H̃p(Rn − A;G) // H̃p(Rn;G),

and since H̃p+1(Rn;G) ∼= H̃p(Rn;G) ∼= (0), we conclude that

Hp+1(Rn,Rn − A;G) = H̃p+1(Rn,Rn − A;G) ∼= H̃p(Rn − A;G),

which proves our result.

Here is another version of Alexander duality in which M = Sn. Recall from Section 4.7
that the relationship between the cohomology and the reduced cohomology of a space X is

H0(X;G) ∼= H̃0(X;G)⊕G
Hp(X;G) ∼= H̃p(X;G), p ≥ 1.

Theorem 14.12. (Alexander duality) Let A be a proper closed nonempty subset of Sn. For
any commutative ring R with an identity element, for any R-module G, we have isomor-
phisms

H̃p(S
n − A;G) ∼=

{
Ȟn−p−1(A;G) if p 6= n− 1
˜̌H0(A;G) if p = n− 1,

or equivalently
˜̌Hn−p−1(A;G) ∼= H̃p(S

n − A;G) for all p ≤ n.

Proof. The case n = 0 is easily handled, so assume n > 0. By Theorem 14.8 with M = Sn,
K = A and L = ∅, there are isomorphisms

Ȟn−p−1(A;G) ∼= Hp+1(Sn, Sn − A;G) for all p ≤ n− 1.

We also have the long exact sequence of reduced homology of the pair (Sn, Sn − A), which
yields exact sequences

H̃p+1(Sn;G) // H̃p+1(Sn, Sn − A;G) // H̃p(S
n − A;G) // H̃p(S

n;G).
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By Proposition 4.16 the reduced homology of Sn is given by

H̃p(S
n;G) =

{
G if p = n

(0) if p 6= n,

It follows that we have isomorphisms

Hp+1(Sn, Sn − A;G) = H̃p+1(Sn, Sn − A;G) ∼= H̃p(S
n − A;G)

for p 6= n− 1. If p = n− 1 we have the following commutative diagram

0 // H0(Sn) //

��

Ȟ0(A) //

��

˜̌H0(A) //

��

0

Hn(Sn − A) 0 // Hn(Sn) // Hn(Sn, Sn − A) // H̃n−1(Sn − A) 0 //

in which the left vertical solid arrow is an isomorphism by Poincaré duality, the right vertical
solid arrow is an isomorphism by Theorem 14.8, the bottom row is exact by the long exact
sequence of reduced homology, and the top one because

Ȟ0(A) ∼= ˜̌H0(A)⊕G

and H0(Sn) ∼= Hn(Sn) ∼= G. We have zero maps on the bottom because the inclusion map
Sn − A −→ Sn factors through a contractible space Sn − {pt}. It is easy to see that the

kernel of the map from Ȟ0(A) to H̃n−1(Sn−A) is isomorphic to H0(Sn), so this map factors

through ˜̌H0(A) as the dotted arrow, and using the commutative diagram and the fact that
the rows are exact it is easy to show that the dotted arrow is an isomorphism.

Remark: This version involving Čech (or Alexander–Spanier) cohomology is a generaliza-
tion of Alexander’s original version that applies to a polyhedron in Sn, and only requires
singular cohomology; see Munkres [38] (Chapter 8, Theorem 72.4).

An interesting corollary of Theorem 14.9 is the following generalization of the version
of the Jordan curve theorem stated in Theorem 4.19. For comparison with Theorem 14.13
below think of M as Sn and of A as C.

Theorem 14.13. (Generalized Jordan curve theorem) Let M be a connected, orientable,
compact n-manifold, and assume that H1(M ;R) = (0) for some ring R (with unity). For
any proper closed subset A of M , the module Ȟn−1(A;R) is a free R-module such that if r
is its rank, then r + 1 is equal to the number of connected components of M − A.

Proof. The number of connected component of M−A is equal to the rank s of H0(M−A;R),

and since H0(M−A;R) ∼= H̃0(M−A;G)⊕R we have s = t+1 with t = rank(H̃0(M−A;G)).
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By the long exact sequence of reduced homology of the pair (M,M −A) we have the exact
sequence

H1(M ;R) // H1(M,M − A;R) // H̃0(M − A;R) // H̃0(M ;R).

Since H1(M ;R) = (0) and since M is connected H̃0(M ;R) = (0) so we get the isomorphism

H̃0(M − A;R) ∼= H1(M,M − A;R).

By Lefschetz duality (Theorem 14.9) we have

H1(M,M − A;R) ∼= Ȟn−1(A;R),

and thus
Ȟn−1(A;R) ∼= H̃0(M − A;R),

which shows that Ȟn−1(A;R) is a free R-module whith rank r = t = s − 1, where s is the
number of connected component of M − A.

Recall that given two topological spaces X and Y we say that there is an embedding of
X into Y if there is a homeomorphism f : X → Y of X onto its image f(X). As a corollary
of Theorem 14.13 we get the following result.

Proposition 14.14. Let M be a connected, orientable, and compact n-manifold M . If
H1(M ;Z) = (0), then no nonorientable compact (n− 1)-manifold N can be embedded in M .

Proof. If the (n − 1)-manifold N is nonorientable, then by Proposition 7.8 Hn−1(N ;Z) ∼=
Z/2Z, and since N is a manifold Hn−1(N ;Z) ∼= Ȟn−1(N ;Z), so Ȟn−1(N ;Z) ∼= Z/2Z, which
contradicts Theorem 14.13 (since Z/2Z is not free).

Proposition 14.14 implies that RP2n cannot be embedded into S2n+1. In particular RP2

cannot be embedded into S3.

More applications of duality are presented in Bredon [4] (Chapter 8, Section 10). In
particular, it is shown that for all n ≥ 2 (not just even) the real projective space RPn cannot
be embedded in Sn+1.

We conclude this chapter by stating a generalization of Alexander–Lefschetz duality for
cohomology with compact support.

14.5 Alexander–Lefschetz Duality for Cohomology

with Compact Support

The Alexander–Spanier cohomology modules with compact support HA-S,c(X,A;G) were
defined in Section 14.7. Alexander–Lefschetz duality (Theorem 14.8) can be generalized to
arbitrary closed pairs (K,L) (not necessarily compact), using the modules HA-S,c(X,A;G)
instead of the modules HA-S(X,A;G), in a way which is reminiscent of the general Poincaré
Duality Theorem (Theorem 7.13).
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Theorem 14.15. (Alexander–Lefschetz duality) Let M be a R-orientable manifold where R
is any commutative ring with an identity element. For any R-module G, for any pair (K,L)
of closed subsets of M such that L ⊆ K, there is an isomorphism

Hp
A-S, c(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.

Theorem 14.15 is proved in Spanier [47] (Chapter 6, Section 9, Theorem 10) and in Dold
[9] (Chapter VIII, Section 7, Proposition 7.14). It should be noted that Spanier’s proof
provides an isomorphism in the other direction (from homology to cohomology) and does
not involve the cap product. However, Dold’s version uses a version of the cap product
obtained by a limit argument.
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1958. Second Printing, 1998.

[19] Marvin J. Greenberg and John R. Harper. Algebraic Topology: A First Course. Addison
Wesley, first edition, 1981.

[20] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley Inter-
science, first edition, 1978.

[21] Alexander Grothendieck. Sur quelques points d’algèbre homologique. Tôhoku Mathe-
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