

Haskell Data Analysis
Cookbook

Explore intuitive data analysis techniques and
powerful machine learning methods using
over 130 practical recipes

Nishant Shukla

BIRMINGHAM - MUMBAI

Haskell Data Analysis Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-633-1

www.packtpub.com

Cover image by Jarek Blaminsky (milak6@wp.pl)

www.packtpub.com

Credits

Author
Nishant Shukla

Reviewers
Lorenzo Bolla

James Church

Andreas Hammar

Marisa Reddy

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Shaon Basu

Technical Editors
Shruti Rawool

Nachiket Vartak

Copy Editors
Sarang Chari

Janbal Dharmaraj

Gladson Monteiro

Deepa Nambiar

Karuna Narayanan

Alfida Paiva

Project Coordinator
Mary Alex

Proofreaders
Paul Hindle

Jonathan Todd

Bernadette Watkins

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Ronak Dhruv

Valentina Dsilva

Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Nishant Shukla is a computer scientist with a passion for mathematics. Throughout
the years, he has worked for a handful of start-ups and large corporations including
WillowTree Apps, Microsoft, Facebook, and Foursquare.

Stepping into the world of Haskell was his excuse for better understanding Category Theory
at first, but eventually, he found himself immersed in the language. His semester-long
introductory Haskell course in the engineering school at the University of Virginia
(http://shuklan.com/haskell) has been accessed by individuals from over
154 countries around the world, gathering over 45,000 unique visitors.

Besides Haskell, he is a proponent of decentralized Internet and open source software. His
academic research in the fields of Machine Learning, Neural Networks, and Computer Vision
aim to supply a fundamental contribution to the world of computing.

Between discussing primes, paradoxes, and palindromes, it is my delight to
invent the future with Marisa.

With appreciation beyond expression, but an expression nonetheless—thank
you Mom (Suman), Dad (Umesh), and Natasha.

http://shuklan.com/haskell

About the Reviewers

Lorenzo Bolla holds a PhD in Numerical Methods and works as a software engineer in
London. His interests span from functional languages to high-performance computing to
web applications. When he's not coding, he is either playing piano or basketball.

James Church completed his PhD in Engineering Science with a focus on computational
geometry at the University of Mississippi in 2014 under the advice of Dr. Yixin Chen. While
a graduate student at the University of Mississippi, he taught a number of courses for the
Computer and Information Science's undergraduates, including a popular class on data
analysis techniques. Following his graduation, he joined the faculty of the University of
West Georgia's Department of Computer Science as an assistant professor. He is also
a reviewer of The Manga Guide To Regression Analysis, written by Shin Takahashi,
Iroha Inoue, and Trend-Pro Co. Ltd., and published by No Starch Press.

I would like to thank Dr. Conrad Cunningham for recommending me to Packt
Publishing as a reviewer.

Andreas Hammar is a Computer Science student at Norwegian University of Science and
Technology and a Haskell enthusiast. He started programming when he was 12, and over the
years, he has programmed in many different languages. Around five years ago, he discovered
functional programming, and since 2011, he has contributed over 700 answers in the Haskell
tag on Stack Overflow, making him one of the top Haskell contributors on the site. He is
currently working part time as a web developer at the Student Society in Trondheim, Norway.

Marisa Reddy is pursuing her B.A. in Computer Science and Economics at the University
of Virginia. Her primary interests lie in computer vision and financial modeling, two areas in
which functional programming is rife with possibilities.

I congratulate Nishant Shukla for the tremendous job he did in writing this
superb book of recipes and thank him for the opportunity to be a part of
the process.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

The accompanying source code is also available at https://github.com/BinRoot/
Haskell-Data-Analysis-Cookbook.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: The Hunt for Data	 7

Introduction	 8
Harnessing data from various sources	 8
Accumulating text data from a file path	 11
Catching I/O code faults	 13
Keeping and representing data from a CSV file	 15
Examining a JSON file with the aeson package	 18
Reading an XML file using the HXT package	 21
Capturing table rows from an HTML page	 24
Understanding how to perform HTTP GET requests	 26
Learning how to perform HTTP POST requests	 28
Traversing online directories for data	 29
Using MongoDB queries in Haskell	 32
Reading from a remote MongoDB server	 34
Exploring data from a SQLite database	 36

Chapter 2: Integrity and Inspection	 39
Introduction	 40
Trimming excess whitespace	 40
Ignoring punctuation and specific characters	 42
Coping with unexpected or missing input	 43
Validating records by matching regular expressions	 46
Lexing and parsing an e-mail address	 48
Deduplication of nonconflicting data items	 49
Deduplication of conflicting data items	 52
Implementing a frequency table using Data.List	 55
Implementing a frequency table using Data.MultiSet	 56
Computing the Manhattan distance	 58

ii

Table of Contents

Computing the Euclidean distance	 60
Comparing scaled data using the Pearson correlation coefficient	 62
Comparing sparse data using cosine similarity	 63

Chapter 3: The Science of Words	 65
Introduction	 66
Displaying a number in another base	 66
Reading a number from another base	 68
Searching for a substring using Data.ByteString	 69
Searching a string using the Boyer-Moore-Horspool algorithm	 71
Searching a string using the Rabin-Karp algorithm	 73
Splitting a string on lines, words, or arbitrary tokens	 75
Finding the longest common subsequence	 77
Computing a phonetic code	 78
Computing the edit distance	 80
Computing the Jaro-Winkler distance between two strings	 81
Finding strings within one-edit distance	 84
Fixing spelling mistakes	 86

Chapter 4: Data Hashing	 91
Introduction	 92
Hashing a primitive data type	 92
Hashing a custom data type	 95
Running popular cryptographic hash functions	 97
Running a cryptographic checksum on a file	 100
Performing fast comparisons between data types	 102
Using a high-performance hash table	 103
Using Google's CityHash hash functions for strings	 106
Computing a Geohash for location coordinates	 107
Using a bloom filter to remove unique items	 108
Running MurmurHash, a simple but speedy hashing algorithm	 110
Measuring image similarity with perceptual hashes	 112

Chapter 5: The Dance with Trees	 117
Introduction	 118
Defining a binary tree data type	 118
Defining a rose tree (multiway tree) data type	 120
Traversing a tree depth-first	 121
Traversing a tree breadth-first	 123
Implementing a Foldable instance for a tree	 125
Calculating the height of a tree	 127
Implementing a binary search tree data structure	 129
Verifying the order property of a binary search tree	 131

iii

Table of Contents

Using a self-balancing tree	 133
Implementing a min-heap data structure	 135
Encoding a string using a Huffman tree	 138
Decoding a Huffman code	 141

Chapter 6: Graph Fundamentals	 143
Introduction	 144
Representing a graph from a list of edges	 144
Representing a graph from an adjacency list	 145
Conducting a topological sort on a graph	 147
Traversing a graph depth-first	 149
Traversing a graph breadth-first	 150
Visualizing a graph using Graphviz	 151
Using Directed Acyclic Word Graphs	 152
Working with hexagonal and square grid networks	 154
Finding maximal cliques in a graph	 156
Determining whether any two graphs are isomorphic	 157

Chapter 7: Statistics and Analysis	 159
Introduction	 160
Calculating a moving average	 160
Calculating a moving median	 162
Approximating a linear regression	 165
Approximating a quadratic regression	 167
Obtaining the covariance matrix from samples	 168
Finding all unique pairings in a list	 170
Using the Pearson correlation coefficient	 171
Evaluating a Bayesian network	 173
Creating a data structure for playing cards	 175
Using a Markov chain to generate text	 178
Creating n-grams from a list	 179
Creating a neural network perceptron	 180

Chapter 8: Clustering and Classification	 185
Introduction	 186
Implementing the k-means clustering algorithm	 186
Implementing hierarchical clustering	 190
Using a hierarchical clustering library 	 193
Finding the number of clusters	 196
Clustering words by their lexemes 	 198
Classifying the parts of speech of words	 200
Identifying key words in a corpus of text	 201
Training a parts-of-speech tagger	 204

iv

Table of Contents

Implementing a decision tree classifier	 205
Implementing a k-Nearest Neighbors classifier	 210
Visualizing points using Graphics.EasyPlot	 213

Chapter 9: Parallel and Concurrent Design	 215
Introduction	 216
Using the Haskell Runtime System options	 216
Evaluating a procedure in parallel	 217
Controlling parallel algorithms in sequence	 219
Forking I/O actions for concurrency	 220
Communicating with a forked I/O action	 221
Killing forked threads	 223
Parallelizing pure functions using the Par monad	 225
Mapping over a list in parallel	 227
Accessing tuple elements in parallel	 228
Implementing MapReduce to count word frequencies	 229
Manipulating images in parallel using Repa	 232
Benchmarking runtime performance in Haskell	 235
Using the criterion package to measure performance	 237
Benchmarking runtime performance in the terminal	 239

Chapter 10: Real-time Data	 241
Introduction	 242
Streaming Twitter for real-time sentiment analysis	 242
Reading IRC chat room messages	 248
Responding to IRC messages	 249
Polling a web server for latest updates	 251
Detecting real-time file directory changes	 252
Communicating in real time through sockets	 254
Detecting faces and eyes through a camera stream	 256
Streaming camera frames for template matching	 259

Chapter 11: Visualizing Data	 263
Introduction	 264
Plotting a line chart using Google's Chart API	 264
Plotting a pie chart using Google's Chart API	 267
Plotting bar graphs using Google's Chart API	 269
Displaying a line graph using gnuplot	 272
Displaying a scatter plot of two-dimensional points	 274
Interacting with points in a three-dimensional space	 276
Visualizing a graph network	 279
Customizing the looks of a graph network diagram	 281

v

Table of Contents

Rendering a bar graph in JavaScript using D3.js	 284
Rendering a scatter plot in JavaScript using D3.js	 286
Diagramming a path from a list of vectors	 288

Chapter 12: Exporting and Presenting	 293
Introduction	 294
Exporting data to a CSV file	 294
Exporting data as JSON	 295
Using SQLite to store data	 297
Saving data to a MongoDB database	 298
Presenting results in an HTML web page	 300
Creating a LaTeX table to display results	 302
Personalizing messages using a text template	 304
Exporting matrix values to a file	 305

Index	 307

Preface
Data analysis is something that many of us have done before, maybe even without knowing
it. It is the essential art of gathering and examining pieces of information to suit a variety of
purposes—from visual inspection to machine learning techniques. Through data analysis, we
can harness the meaning from information littered all around the digital realm. It enables us
to resolve the most peculiar inquiries, perhaps even summoning new ones in the process.

Haskell acts as our conduit for robust data analysis. For some, Haskell is a programming
language reserved to the most elite researchers in academia and industry. Yet, we see it
charming one of the fastest growing cultures of open source developers around the world.
The growth of Haskell is a sign that people are uncovering its magnificent functional
pureness, resilient type safety, and remarkable expressiveness. Flip the pages of this
book to see it all in action.

Haskell Data Analysis Cookbook is more than just a fusion of two entrancing topics
in computing. It is also a learning tool for the Haskell programming language and an
introduction to simple data analysis practices. Use it as a Swiss Army Knife of algorithms
and code snippets. Try a recipe a day, like a kata for your mind. Breeze through the book
for creative inspiration from catalytic examples. Also, most importantly, dive deep into the
province of data analysis in Haskell.

Of course, none of this would have been possible without a thorough feedback from the
technical editors, brilliant chapter illustrations by Lonku (http://lonku.tumblr.com),
and helpful layout and editing support by Packt Publishing.

What this book covers
Chapter 1, The Hunt for Data, identifies core approaches in reading data from various external
sources such as CSV, JSON, XML, HTML, MongoDB, and SQLite.

Chapter 2, Integrity and Inspection, explains the importance of cleaning data through recipes
about trimming whitespaces, lexing, and regular expression matching.

http://lonku.tumblr.com

Preface

2

Chapter 3, The Science of Words, introduces common string manipulation algorithms,
including base conversions, substring matching, and computing the edit distance.

Chapter 4, Data Hashing, covers essential hashing functions such as MD5, SHA256,
GeoHashing, and perceptual hashing.

Chapter 5, The Dance with Trees, establishes an understanding of the tree data structure
through examples that include tree traversals, balancing trees, and Huffman coding.

Chapter 6, Graph Fundamentals, manifests rudimentary algorithms for graphical networks
such as graph traversals, visualization, and maximal clique detection.

Chapter 7, Statistics and Analysis, begins the investigation of important data analysis
techniques that encompass regression algorithms, Bayesian networks, and neural networks.

Chapter 8, Clustering and Classification, involves quintessential analysis methods that involve
k-means clustering, hierarchical clustering, constructing decision trees, and implementing the
k-Nearest Neighbors classifier.

Chapter 9, Parallel and Concurrent Design, introduces advanced topics in Haskell such as
forking I/O actions, mapping over lists in parallel, and benchmarking performance.

Chapter 10, Real-time Data, incorporates streamed data interactions from Twitter, Internet
Relay Chat (IRC), and sockets.

Chapter 11, Visualizing Data, deals with sundry approaches to plotting graphs, including line
charts, bar graphs, scatter plots, and D3.js visualizations.

Chapter 12, Exporting and Presenting, concludes the book with an enumeration of algorithms
for exporting data to CSV, JSON, HTML, MongoDB, and SQLite.

What you need for this book
ff First of all, you need an operating system that supports the Haskell Platform such as

Linux, Windows, or Mac OS X.

ff You must install the Glasgow Haskell Compiler 7.6 or above and Cabal,
both of which can be obtained from the Haskell Platform from
http://www.haskell.org/platform.

ff You can obtain the accompanying source code for every recipe on GitHub at
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook.

http://www.haskell.org/platform
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook

Preface

3

Who this book is for
ff Those who have begun tinkering with Haskell but desire stimulating examples to

kick-start a new project will find this book indispensable.

ff Data analysts new to Haskell should use this as a reference for functional
approaches to data-modeling problems.

ff A dedicated beginner to both the Haskell language and data analysis is blessed with
the maximal potential for learning new topics covered in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Apply the readString
function to the input, and get all date documents."

A block of code is set as follows:

main :: IO ()
main = do
 input <- readFile "input.txt"
 print input

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

main :: IO ()
main = do
 input <- readFile "input.txt"
 print input

Any command-line input or output is written as follows:

$ runhaskell Main.hs

Preface

4

New terms and important words are shown in bold. Words that you see on the screen,
in menus, or dialog boxes for example, appear in the text like this: "Under the Downloads
section, download the cabal source package."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you. Also, we highly suggest obtaining all source code from GitHub available at
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will be uploaded
on our website, or added to any list of existing errata, under the Errata section of that title.
Any existing errata can be viewed by selecting your title from http://www.packtpub.com/
support. Code revisions can also be made on the accompanying GitHub repository located at
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook

1
The Hunt for Data

In this chapter, we will cover the following recipes:

ff Harnessing data from various sources

ff Accumulating text data from a file path

ff Catching I/O code faults

ff Keeping and representing data from a CSV file

ff Examining a JSON file with the aeson package

ff Reading an XML file using the HXT package

ff Capturing table rows from an HTML page

ff Understanding how to perform HTTP GET requests

ff Learning how to perform HTTP POST requests

ff Traversing online directories for data

ff Using MongoDB queries in Haskell

ff Reading from a remote MongoDB server

ff Exploring data from a SQLite database

The Hunt for Data

8

Introduction

Data is everywhere, logging is cheap, and analysis is inevitable. One of the most fundamental
concepts of this chapter is based on gathering useful data. After building a large collection
of usable text, which we call the corpus, we must learn to represent this content in code. The
primary focus will be first on obtaining data and later on enumerating ways of representing it.

Gathering data is arguably as important as analyzing it to extrapolate results and form valid
generalizable claims. It is a scientific pursuit; therefore, great care must and will be taken to
ensure unbiased and representative sampling. We recommend following along closely in this
chapter because the remainder of the book depends on having a source of data to work with.
Without data, there isn't much to analyze, so we should carefully observe the techniques laid
out to build our own formidable corpus.

The first recipe enumerates various sources to start gathering data online. The next few
recipes deal with using local data of different file formats. We then learn how to download
data from the Internet using our Haskell code. Finally, we finish this chapter with a couple
of recipes on using databases in Haskell.

Harnessing data from various sources
Information can be described as structured, unstructured, or sometimes a mix of the
two—semi-structured.

In a very general sense, structured data is anything that can be parsed by an algorithm.
Common examples include JSON, CSV, and XML. If given structured data, we can design a
piece of code to dissect the underlying format and easily produce useful results. As mining
structured data is a deterministic process, it allows us to automate the parsing. This in effect
lets us gather more input to feed our data analysis algorithms.

Chapter 1

9

Unstructured data is everything else. It is data not defined in a specified manner. Written
languages such as English are often regarded as unstructured because of the difficulty in
parsing a data model out of a natural sentence.

In our search for good data, we will often find a mix of structured and unstructured text.
This is called semi-structured text.

This recipe will primarily focus on obtaining structured and semi-structured data from the
following sources.

Unlike most recipes in this book, this recipe does not contain any code.
The best way to read this book is by skipping around to the recipes that
interest you.

How to do it...
We will browse through the links provided in the following sections to build up a list of sources
to harness interesting data in usable formats. However, this list is not at all exhaustive.

Some of these sources have an Application Programming Interface (API) that allows more
sophisticated access to interesting data. An API specifies the interactions and defines how
data is communicated.

News
The New York Times has one of the most polished API documentation to access anything
from real-estate data to article search results. This documentation can be found at
http://developer.nytimes.com.

The Guardian also supports a massive datastore with over a million articles at
http://www.theguardian.com/data.

USA TODAY provides some interesting resources on books, movies, and music reviews.
The technical documentation can be found at http://developer.usatoday.com.

The BBC features some interesting API endpoints including information on BBC programs,
and music located at http://www.bbc.co.uk/developer/technology/apis.html.

Private
Facebook, Twitter, Instagram, Foursquare, Tumblr, SoundCloud, Meetup, and many other
social networking sites support APIs to access some degree of social information.

For specific APIs such as weather or sports, Mashape is a centralized search engine
to narrow down the search to some lesser-known sources. Mashape is located at
https://www.mashape.com/

http://developer.nytimes.com
http://www.theguardian.com/data
http://developer.usatoday.com
http://www.bbc.co.uk/developer/technology/apis.html
https://www.mashape.com/

The Hunt for Data

10

Most data sources can be visualized using the Google Public Data search located at
http://www.google.com/publicdata.

For a list of all countries with names in various data formats, refer to the repository located at
https://github.com/umpirsky/country-list.

Academic
Some data sources are hosted openly by universities around the world for research purposes.

To analyze health care data, the University of Washington has published Institute for
Health Metrics and Evaluation (IHME) to collect rigorous and comparable measurement
of the world's most important health problems. Navigate to http://www.healthdata.org
for more information.

The MNIST database of handwritten digits from NYU, Google Labs, and Microsoft Research is
a training set of normalized and centered samples for handwritten digits. Download the data
from http://yann.lecun.com/exdb/mnist.

Nonprofits
Human Development Reports publishes annual updates ranging from international data about
adult literacy to the number of people owning personal computers. It describes itself as having
a variety of public international sources and represents the most current statistics available for
those indicators. More information is available at http://hdr.undp.org/en/statistics.

The World Bank is the source for poverty and world development data. It regards itself as
a free source that enables open access to data about development in countries around
the globe. Find more information at http://data.worldbank.org/.

The World Health Organization provides data and analyses for monitoring the global health
situation. See more information at http://www.who.int/research/en.

UNICEF also releases interesting statistics, as the quote from their website suggests:

"The UNICEF database contains statistical tables for child mortality, diseases, water
sanitation, and more vitals. UNICEF claims to play a central role in monitoring the
situation of children and women—assisting countries in collecting and analyzing
data, helping them develop methodologies and indicators, maintaining global
databases, disseminating and publishing data. Find the resources at
http://www.unicef.org/statistics."

The United Nations hosts interesting publicly available political statistics at
http://www.un.org/en/databases.

http://www.google.com/publicdata
https://github.com/umpirsky/country-list
http://www.healthdata.org
http://yann.lecun.com/exdb/mnist
http://hdr.undp.org/en/statistics
http://data.worldbank.org/
http://www.who.int/research/en
http://www.unicef.org/statistics
http://www.un.org/en/databases

Chapter 1

11

The United States government
If we crave the urge to discover patterns in the United States (U.S.) government like Nicholas
Cage did in the feature film National Treasure (2004), then http://www.data.gov/
is our go-to source. It's the U.S. government's active effort to provide useful data. It is
described as a place to increase "public access to high-value, machine-readable datasets
generated by the executive branch of the Federal Government". Find more information at
http://www.data.gov.

The United States Census Bureau releases population counts, housing statistics, area
measurements, and more. These can be found at http://www.census.gov.

Accumulating text data from a file path
One of the easiest ways to get started with processing input is by reading raw text from a local
file. In this recipe, we will be extracting all the text from a specific file path. Furthermore, to do
something interesting with the data, we will count the number of words per line.

Haskell is a purely functional programming language, right? Sure, but
obtaining input from outside the code introduces impurity. For elegance
and reusability, we must carefully separate pure from impure code.

Getting ready
We will first create an input.txt text file with a couple of lines of text to be read by the
program. We keep this file in an easy-to-access directory because it will be referenced later.
For example, the text file we're dealing with contains a seven-line quote by Plato. Here's what
our terminal prints when we issue the following command:

$ cat input.txt

And how will you inquire, Socrates,

into that which you know not?

What will you put forth as the subject of inquiry?

And if you find what you want,

how will you ever know that

this is what you did not know?

http://www.data.gov/
http://www.data.gov
http://www.census.gov

The Hunt for Data

12

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The code will also be hosted on GitHub at https://github.com/
BinRoot/Haskell-Data-Analysis-Cookbook.

How to do it...
Create a new file to start coding. We call our file Main.hs.

1.	 As with all executable Haskell programs, start by defining and implementing the main
function, as follows:
main :: IO ()

main = do

2.	 Use Haskell's readFile :: FilePath -> IO String function to extract data
from an input.txt file path. Note that a file path is just a synonym for String.
With the string in memory, pass it into a countWords function to count the number
of words in each line, as shown in the following steps:
input <- readFile "input.txt"

print $ countWords input

3.	 Lastly, define our pure function, countWords, as follows:
countWords :: String -> [Int]

countWords input = map (length.words) (lines input)

4.	 The program will print out the number of words per line represented as a list of
numbers as follows:
$ runhaskell Main.hs

[6,6,10,7,6,7]

How it works...
Haskell provides useful input and output (I/O) capabilities for reading input and writing output
in different ways. In our case, we use readFile to specify a path of a file to be read. Using
the do keyword in main suggests that we are joining several IO actions together. The output
of readFile is an I/O string, which means it is an I/O action that returns a String type.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook
https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook

Chapter 1

13

Now we're about to get a bit technical. Pay close attention. Alternatively, smile and nod. In
Haskell, the I/O data type is an instance of something called a Monad. This allows us to use
the <- notation to draw the string out of this I/O action. We then make use of the string by
feeding it into our countWords function that counts the number of words in each line. Notice
how we separated the countWords function apart from the impure main function.

Finally, we print the output of countWords. The $ notation means we are using a function
application to avoid excessive parenthesis in our code. Without it, the last line of main would
look like print (countWords input).

See also
For simplicity's sake, this code is easy to read but very fragile. If an input.txt file does not
exist, then running the code will immediately crash the program. For example, the following
command will generate the error message:

$ runhaskell Main.hs

Main.hs: input.txt: openFile: does not exist…

To make this code fault tolerant, refer to the Catching I/O code faults recipe.

Catching I/O code faults
Making sure our code doesn't crash in the process of data mining or analysis is a substantially
genuine concern. Some computations may take hours, if not days. Haskell gifts us with type
safety and strong checks to help ensure a program will not fail, but we must also take care to
double-check edge cases where faults may occur.

For instance, a program may crash ungracefully if the local file path is not found. In the
previous recipe, there was a strong dependency on the existence of input.txt in our code.
If the program is unable to find the file, it will produce the following error:

mycode: input.txt: openFile: does not exist (No such file or directory)

Naturally, we should decouple the file path dependency by enabling the user to specify his/her
file path as well as by not crashing in the event that the file is not found.

Consider the following revision of the source code.

The Hunt for Data

14

How to do it…
Create a new file, name it Main.hs, and perform the following steps:

1.	 First, import a library to catch fatal errors as follows:
import Control.Exception (catch, SomeException)

2.	 Next, import a library to get command-line arguments so that the file path is dynamic.
We use the following line of code to do this:
import System.Environment (getArgs)

3.	 Continuing as before, define and implement main as follows:
main :: IO ()
main = do

4.	 Define a fileName string depending on the user-provided argument, defaulting to
input.txt if there is no argument. The argument is obtained by retrieving an array
of strings from the library function, getArgs :: IO [String], as shown in the
following steps:
args <- getArgs
 let filename = case args of
 (a:_) -> a
 _ -> "input.txt"

5.	 Now apply readFile on this path, but catch any errors using the library's catch ::
Exception e => IO a -> (e -> IO a) -> IO a function. The first argument
to catch is the computation to run, and the second argument is the handler to invoke
if an exception is raised, as shown in the following commands:
 input <- catch (readFile fileName)
 $ \err -> print (err::SomeException) >> return ""

6.	 The input string will be empty if there were any errors reading the file. We can now
use input for any purpose using the following command:
 print $ countWords input

7.	 Don't forget to define the countWords function as follows:
countWords input = map (length.words) (lines input)

Chapter 1

15

How it works…
This recipe demonstrates two ways to catch errors, listed as follows:

ff Firstly, we use a case expression that pattern matches against any argument passed
in. Therefore, if no arguments are passed, the args list is empty, and the last
pattern, "_", is caught, resulting in a default filename of input.txt.

ff Secondly, we use the catch function to handle an error if something goes wrong.
When having trouble reading a file, we allow the code to continue running by setting
input to an empty string.

There's more…
Conveniently, Haskell also comes with a doesFileExist :: FilePath -> IO Bool
function from the System.Directory module. We can simplify the preceding code by
modifying the input <- … line. It can be replaced with the following snippet of code:

exists <- doesFileExist filename
input <- if exists then readFile filename else return ""

In this case, the code reads the file as an input only if it exists. Do not forget to add the
following import line at the top of the source code:

import System.Directory (doesFileExist)

Keeping and representing data from a
CSV file

Comma Separated Value (CSV) is a format to represent a table of values in plain text. It's
often used to interact with data from spreadsheets. The specifications for CSV are described
in RFC 4180, available at http://tools.ietf.org/html/rfc4180.

In this recipe, we will read a local CSV file called input.csv consisting of various names
and their corresponding ages. Then, to do something useful with the data, we will find the
oldest person.

http://tools.ietf.org/html/rfc4180

The Hunt for Data

16

Getting ready
Prepare a simple CSV file with a list of names and their corresponding ages. This can be done
using a text editor or by exporting from a spreadsheet, as shown in the following figure:

The raw input.csv file contains the following text:

$ cat input.csv

name,age

Alex,22

Anish,22

Becca,23

Jasdev,22

John,21

Jonathon,21

Kelvin,22

Marisa,19

Shiv,22

Vinay,22

The code also depends on the csv library. We may install the library through Cabal using the
following command:

$ cabal install csv

Chapter 1

17

How to do it...
1.	 Import the csv library using the following line of code:

import Text.CSV

2.	 Define and implement main, where we will read and parse the CSV file, as shown in
the following code:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName

3.	 Apply parseCSV to the filename to obtain a list of rows, representing the tabulated
data. The output of parseCSV is Either ParseError CSV, so ensure that we
consider both the Left and Right cases:
 let csv = parseCSV fileName input
 either handleError doWork csv
handleError csv = putStrLn "error parsing"
doWork csv = (print.findOldest.tail) csv

4.	 Now we can work with the CSV data. In this example, we find and print the row
containing the oldest person, as shown in the following code snippet:
findOldest :: [Record] -> Record
findOldest [] = []
findOldest xs = foldl1
 (\a x -> if age x > age a then x else a) xs

age [a,b] = toInt a

toInt :: String -> Int
toInt = read

5.	 After running main, the code should produce the following output:
$ runhaskell Main.hs

["Becca", "23"]

We can also use the parseCSVFromFile function to directly
get the CSV representation from a filename instead of using
readFile followed parseCSV.

The Hunt for Data

18

How it works...
The CSV data structure in Haskell is represented as a list of records. Record is merely a list
of Fields, and Field is a type synonym for String. In other words, it is a collection of rows
representing a table, as shown in the following figure:

row 1 ...

row 2 ...

row 3 ...

last row ...

,[][

[]

[]

[] [

,

,

..
.

The parseCSV library function returns an Either type, with the Left side being a
ParseError and the Right side being the list of lists. The Either l r data type
is very similar to the Maybe a type which has the Just a or Nothing constructor.

We use the either function to handle the Left and Right cases. The Left case handles
the error, and the Right case handles the actual work to be done on the data. In this recipe,
the Right side is a Record. The fields in Record are accessible through any list operations
such as head, last, !!, and so on.

Examining a JSON file with the aeson
package

JavaScript Object Notation (JSON) is a way to represent key-value pairs in plain text. The
format is described extensively in RFC 4627 (http://www.ietf.org/rfc/rfc4627).

In this recipe, we will parse a JSON description about a person. We often encounter JSON in
APIs from web applications.

Getting ready
Install the aeson library from hackage using Cabal.

Prepare an input.json file representing data about a mathematician, such as the one in
the following code snippet:

$ cat input.json

{"name":"Gauss", "nationality":"German", "born":1777, "died":1855}

http://www.ietf.org/rfc/rfc4627

Chapter 1

19

We will be parsing this JSON and representing it as a usable data type in Haskell.

How to do it...
1.	 Use the OverloadedStrings language extension to represent strings as

ByteString, as shown in the following line of code:
{-# LANGUAGE OverloadedStrings #-}

2.	 Import aeson as well as some helper functions as follows:
import Data.Aeson
import Control.Applicative
import qualified Data.ByteString.Lazy as B

3.	 Create the data type corresponding to the JSON structure, as shown in the
following code:
data Mathematician = Mathematician
 { name :: String
 , nationality :: String
 , born :: Int
 , died :: Maybe Int
 }

4.	 Provide an instance for the parseJSON function, as shown in the following
code snippet:
instance FromJSON Mathematician where
 parseJSON (Object v) = Mathematician
 <$> (v .: "name")
 <*> (v .: "nationality")
 <*> (v .: "born")
 <*> (v .:? "died")

5.	 Define and implement main as follows:
main :: IO ()
main = do

6.	 Read the input and decode the JSON, as shown in the following code snippet:
 input <- B.readFile "input.json"

 let mm = decode input :: Maybe Mathematician

 case mm of
 Nothing -> print "error parsing JSON"
 Just m -> (putStrLn.greet) m

The Hunt for Data

20

7.	 Now we will do something interesting with the data as follows:
greet m = (show.name) m ++
 " was born in the year " ++
 (show.born) m

8.	 We can run the code to see the following output:
$ runhaskell Main.hs

"Gauss" was born in the year 1777

How it works...
Aeson takes care of the complications in representing JSON. It creates native usable data out
of a structured text. In this recipe, we use the .: and .:? functions provided by the Data.
Aeson module.

As the Aeson package uses ByteStrings instead of Strings, it is very helpful to tell
the compiler that characters between quotation marks should be treated as the proper
data type. This is done in the first line of the code which invokes the OverloadedStrings
language extension.

Language extensions such as OverloadedStrings are
currently supported only by the Glasgow Haskell Compiler (GHC).

We use the decode function provided by Aeson to transform a string into a data type. It
has the type FromJSON a => B.ByteString -> Maybe a. Our Mathematician data
type must implement an instance of the FromJSON typeclass to properly use this function.
Fortunately, the only required function for implementing FromJSON is parseJSON. The syntax
used in this recipe for implementing parseJSON is a little strange, but this is because we're
leveraging applicative functions and lenses, which are more advanced Haskell topics.

The .: function has two arguments, Object and Text, and returns a Parser a data type.
As per the documentation, it retrieves the value associated with the given key of an object.
This function is used if the key and the value exist in the JSON document. The :? function also
retrieves the associated value from the given key of an object, but the existence of the key and
value are not mandatory. So, we use .:? for optional key value pairs in a JSON document.

Chapter 1

21

There's more…
If the implementation of the FromJSON typeclass is too involved, we can easily let GHC
automatically fill it out using the DeriveGeneric language extension. The following is a
simpler rewrite of the code:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveGeneric #-}
import Data.Aeson
import qualified Data.ByteString.Lazy as B
import GHC.Generics

data Mathematician = Mathematician { name :: String
 , nationality :: String
 , born :: Int
 , died :: Maybe Int
 } deriving Generic

instance FromJSON Mathematician

main = do
 input <- B.readFile "input.json"
 let mm = decode input :: Maybe Mathematician
 case mm of
 Nothing -> print "error parsing JSON"
 Just m -> (putStrLn.greet) m

greet m = (show.name) m ++" was born in the year "++ (show.born) m

Although Aeson is powerful and generalizable, it may be an overkill for some simple JSON
interactions. Alternatively, if we wish to use a very minimal JSON parser and printer, we can use
Yocto, which can be downloaded from http://hackage.haskell.org/package/yocto.

Reading an XML file using the HXT package
Extensible Markup Language (XML) is an encoding of plain text to provide machine-readable
annotations on a document. The standard is specified by W3C (http://www.w3.org/
TR/2008/REC-xml-20081126/).

In this recipe, we will parse an XML document representing an e-mail conversation and extract
all the dates.

http://hackage.haskell.org/package/yocto
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

The Hunt for Data

22

Getting ready
We will first set up an XML file called input.xml with the following values, representing an
e-mail thread between Databender and Princess on December 18, 2014 as follows:

$ cat input.xml

<thread>
 <email>
 <to>Databender</to>
 <from>Princess</from>
 <date>Thu Dec 18 15:03:23 EST 2014</date>
 <subject>Joke</subject>
 <body>Why did you divide sin by tan?</body>
 </email>
 <email>
 <to>Princess</to>
 <from>Databender</from>
 <date>Fri Dec 19 3:12:00 EST 2014</date>
 <subject>RE: Joke</subject>
 <body>Just cos.</body>
 </email>
</thread>

Using Cabal, install the HXT library which we use for manipulating XML documents:

$ cabal install hxt

How to do it...
1.	 We only need one import, which will be for parsing XML, using the following line

of code:
import Text.XML.HXT.Core

2.	 Define and implement main and specify the XML location. For this recipe, the file is
retrieved from input.xml. Refer to the following code:
main :: IO ()
main = do
 input <- readFile "input.xml"

Chapter 1

23

3.	 Apply the readString function to the input and extract all the date documents. We
filter items with a specific name using the hasName :: String -> a XmlTree
XmlTree function. Also, we extract the text using the getText :: a XmlTree
String function, as shown in the following code snippet:
 dates <- runX $ readString [withValidate no] input
 //> hasName "date"
 //> getText

4.	 We can now use the list of extracted dates as follows:
 print dates

5.	 By running the code, we print the following output:
 $ runhaskell Main.hs

["Thu Dec 18 15:03:23 EST 2014", "Fri Dec 19 3:12:00 EST 2014"]

How it works...
The library function, runX, takes in an Arrow. Think of an Arrow as a more powerful version
of a Monad. Arrows allow for stateful global XML processing. Specifically, the runX function in
this recipe takes in IOSArrow XmlTree String and returns an IO action of the String
type. We generate this IOSArrow object using the readString function, which performs a
series of operations to the XML data.

For a deep insight into the XML document, //> should be used whereas /> only looks at
the current level. We use the //> function to look up the date attributes and display all the
associated text.

As defined in the documentation, the hasName function tests whether a node has a specific
name, and the getText function selects the text of a text node. Some other functions include
the following:

ff isText: This is used to test for text nodes

ff isAttr: This is used to test for an attribute tree

ff hasAttr: This is used to test whether an element node has an attribute node with a
specific name

ff getElemName: This is used to select the name of an element node

The Hunt for Data

24

All the Arrow functions can be found on the Text.XML.HXT.Arrow.XmlArrow
documentation at http://hackage.haskell.org/package/hxt/docs/Text-XML-
HXT-Arrow-XmlArrow.html.

Capturing table rows from an HTML page
Mining Hypertext Markup Language (HTML) is often a feat of identifying and parsing only
its structured segments. Not all text in an HTML file may be useful, so we find ourselves
only focusing on a specific subset. For instance, HTML tables and lists provide a strong and
commonly used structure to extract data whereas a paragraph in an article may be too
unstructured and complicated to process.

In this recipe, we will find a table on a web page and gather all rows to be used in the program.

Getting ready
We will be extracting the values from an HTML table, so start by creating an input.html file
containing a table as shown in the following figure:

The HTML behind this table is as follows:

$ cat input.html

<!DOCTYPE html>
<html>
 <body>
 <h1>Course Listing</h1>
 <table>
 <tr>
 <th>Course</th>
 <th>Time</th>
 <th>Capacity</th>
 </tr>
 <tr>

http://hackage.haskell.org/package/hxt/docs/Text-XML-HXT-Arrow-XmlArrow.html
http://hackage.haskell.org/package/hxt/docs/Text-XML-HXT-Arrow-XmlArrow.html

Chapter 1

25

 <td>CS 1501</td>
 <td>17:00</td>
 <td>60</td>
 </tr>
 <tr>
 <td>MATH 7600</td>
 <td>14:00</td>
 <td>25</td>
 </tr>
 <tr>
 <td>PHIL 1000</td>
 <td>9:30</td>
 <td>120</td>
 </tr>
 </table>
 </body>
</html>

If not already installed, use Cabal to set up the HXT library and the split library, as shown in
the following command lines:

$ cabal install hxt

$ cabal install split

How to do it...
1.	 We will need the htx package for XML manipulations and the chunksOf function

from the split package, as presented in the following code snippet:
import Text.XML.HXT.Core
import Data.List.Split (chunksOf)

2.	 Define and implement main to read the input.html file.
main :: IO ()
main = do
 input <- readFile "input.html"

3.	 Feed the HTML data into readString, thereby setting withParseHTML to yes and
optionally turning off warnings. Extract all the td tags and obtain the remaining text,
as shown in the following code:
 texts <- runX $ readString
 [withParseHTML yes, withWarnings no] input
 //> hasName "td"
 //> getText

The Hunt for Data

26

4.	 The data is now usable as a list of strings. It can be converted into a list of lists
similar to how CSV was presented in the previous CSV recipe, as shown in the
following code:
 let rows = chunksOf 3 texts
 print $ findBiggest rows

5.	 By folding through the data, identify the course with the largest capacity using the
following code snippet:
findBiggest :: [[String]] -> [String]
findBiggest [] = []
findBiggest items = foldl1
 (\a x -> if capacity x > capacity a
 then x else a) items

capacity [a,b,c] = toInt c
capacity _ = -1

toInt :: String -> Int
toInt = read

6.	 Running the code will display the class with the largest capacity as follows:
$ runhaskell Main.hs

{"PHIL 1000", "9:30", "120"}

How it works...
This is very similar to XML parsing, except we adjust the options of readString to
[withParseHTML yes, withWarnings no].

Understanding how to perform HTTP GET
requests

One of the most resourceful places to find good data is online. GET requests are common
methods of communicating with an HTTP web server. In this recipe, we will grab all the links
from a Wikipedia article and print them to the terminal. To easily grab all the links, we will
use a helpful library called HandsomeSoup, which lets us easily manipulate and traverse a
webpage through CSS selectors.

Chapter 1

27

Getting ready
We will be collecting all links from a Wikipedia web page. Make sure to have an Internet
connection before running this recipe.

Install the HandsomeSoup CSS selector package, and also install the HXT library if it is not
already installed. To do this, use the following commands:

$ cabal install HandsomeSoup

$ cabal install hxt

How to do it...
1.	 This recipe requires hxt for parsing HTML and requires HandsomeSoup for the easy-

to-use CSS selectors, as shown in the following code snippet:
import Text.XML.HXT.Core
import Text.HandsomeSoup

2.	 Define and implement main as follows:
main :: IO ()
main = do

3.	 Pass in the URL as a string to HandsomeSoup's fromUrl function:
 let doc = fromUrl "http://en.wikipedia.org/wiki/Narwhal"

4.	 Select all links within the bodyContent field of the Wikipedia page as follows:
 links <- runX $ doc >>> css "#bodyContent a" ! "href"
 print links

How it works…
The HandsomeSoup package allows easy CSS selectors. In this recipe, we run the
#bodyContent a selector on a Wikipedia article web page. This finds all link tags
that are descendants of an element with the bodyContent ID.

See also…
Another common way to obtain data online is through POST requests. To find out more, refer
to the Learning how to perform HTTP POST requests recipe.

http://en.wikipedia.org/wiki/Narwhal

The Hunt for Data

28

Learning how to perform HTTP POST
requests

A POST request is another very common HTTP server request used by many APIs. We will be
mining the University of Virginia directory search. When sending a POST request for a search
query, the Lightweight Directory Access Protocol (LDAP) server replies with a web page of
search results.

Getting ready
For this recipe, access to the Internet is necessary.

Install the HandsomeSoup CSS selector package, and also install the HXT library if it is not
already installed:

$ cabal install HandsomeSoup

$ cabal install hxt

How to do it...
1.	 Import the following libraries:

import Network.HTTP
import Network.URI (parseURI)
import Text.XML.HXT.Core
import Text.HandsomeSoup
import Data.Maybe (fromJust)

2.	 Define the POST request specified by the directory search website. Depending on the
server, the following POST request details would be different. Refer to the following
code snippet:
myRequestURL = "http://www.virginia.edu/cgi-local/ldapweb"

myRequest :: String -> Request_String
myRequest query = Request {
 rqURI = fromJust $ parseURI myRequestURL
 , rqMethod = POST
 , rqHeaders = [mkHeader HdrContentType "text/html"
 , mkHeader HdrContentLength $ show $ length
 body]
 , rqBody = body
 }
 where body = "whitepages=" ++ query

Chapter 1

29

3.	 Define and implement main to run the POST request on a query as follows:
main :: IO ()
main = do
 response <- simpleHTTP $ myRequest "poon"

4.	 Gather the HTML and parse it:
 html <- getResponseBody response
 let doc = readString [withParseHTML yes, withWarnings no]
 html

5.	 Find the table rows and print it out using the following:
 rows <- runX $ doc >>> css "td" //> getText
 print rows

Running the code will display all search results relating to "poon", such as "Poonam"
or "Witherspoon".

How it works...
A POST request needs the specified URI, headers, and body. By filling out a Request data
type, it can be used to establish a server request.

See also
Refer to the Understanding how to perform HTTP GET requests recipe for details on how to
perform a GET request instead.

Traversing online directories for data
A directory search typically provides names and contact information per query. By brute
forcing many of these search queries, we can obtain all data stored in the directory listing
database. This recipe runs thousands of search queries to obtain as much data as possible
from a directory search. This recipe is provided only as a learning tool to see the power and
simplicity of data gathering in Haskell.

Getting ready
Make sure to have a strong Internet connection.

Install the hxt and HandsomeSoup packages using Cabal:

$ cabal install hxt

$ cabal install HandsomeSoup

The Hunt for Data

30

How to do it...
1.	 Set up the following dependencies:

import Network.HTTP
import Network.URI
import Text.XML.HXT.Core
import Text.HandsomeSoup

2.	 Define a SearchResult type, which may either fault in an error or result in a
success, as presented in the following code:
type SearchResult = Either SearchResultErr [String]
data SearchResultErr = NoResultsErr
 | TooManyResultsErr
 | UnknownErr
 deriving (Show, Eq)

3.	 Define the POST request specified by the directory search website. Depending on
the server, the POST request will be different. Instead of rewriting code, we use the
myRequest function defined in the previous recipe.

4.	 Write a helper function to obtain the document from a HTTP POST request, as shown
in the following code:
getDoc query = do
 rsp <- simpleHTTP $ myRequest query
 html <- getResponseBody rsp
 return $ readString [withParseHTML yes, withWarnings
 no] html

5.	 Scan the HTML document and return whether there is an error or provide the
resulting data. The code in this function is dependent on the error messages
produced by the web page. In our case, the error messages are the following:
scanDoc doc = do
 errMsg <- runX $ doc >>> css "h3" //> getText

 case errMsg of
 [] -> do
 text <- runX $ doc >>> css "td" //> getText
 return $ Right text
 "Error: Sizelimit exceeded":_ ->
 return $ Left TooManyResultsErr
 "Too many matching entries were found":_ ->

Chapter 1

31

 return $ Left TooManyResultsErr
 "No matching entries were found":_ ->
 return $ Left NoResultsErr
 _ -> return $ Left UnknownErr

6.	 Define and implement main. We will use a helper function, main', as shown in the
following code snippet, to recursively brute force the directory listing:
main :: IO ()
main = main' "a"

7.	 Run a search of the query and then recursively again on the next query:
main' query = do
 print query
 doc <- getDoc query
 searchResult <- scanDoc doc
 print searchResult
 case searchResult of
 Left TooManyResultsErr ->
 main' (nextDeepQuery query)
 _ -> if (nextQuery query) >= endQuery
 then print "done!" else main' (nextQuery
 query)

8.	 Write helper functions to define the next logical query as follows:
nextDeepQuery query = query ++ "a"

nextQuery "z" = endQuery
nextQuery query = if last query == 'z'
 then nextQuery $ init query
 else init query ++ [succ $ last query]
endQuery = [succ 'z']

How it works...
The code starts by searching for "a" in the directory lookup. This will most likely fault in
an error as there are too many results. So, in the next iteration, the code will refine its
search by querying for "aa", then "aaa", until there is no longer TooManyResultsErr ::
SearchResultErr.

The Hunt for Data

32

Then, it will enumerate to the next logical search query "aab", and if that produces no result,
it will search for "aac", and so on. This brute force prefix search will obtain all items in the
database. We can gather the mass of data, such as names and department types, to perform
interesting clustering or analysis later on. The following figure shows how the program starts:

“a”

“aa”?

“aaa”??

Too Many Results!

Found aaa@virginia.edu

Too Many Results!

Using MongoDB queries in Haskell
MongoDB is a nonrelational schemaless database. In this recipe, we will obtain all data from
MongoDB into Haskell.

Getting ready
We need to install MongoDB on our local machine and have a database instance running in
the background while we run the code in this recipe.

MongoDB installation instructions are located at http://www.mongodb.org.
On Debian-based operating systems, we can use apt-get to install MongoDB,
using the following command line:

$ sudo apt-get install mongodb

Run the database daemon by specifying the database file path as follows:

$ mkdir ~/db

$ mongod --dbpath ~/db

Fill up a "people" collection with dummy data as follows:

$ mongo

> db.people.insert({first: "Joe", last: "Shmoe"})

Install the MongoDB package from Cabal using the following command:

$ cabal install mongoDB

http://www.mongodb.org

Chapter 1

33

How to do it...
1.	 Use the OverloadedString and ExtendedDefaultRules language extensions

to make the MongoDB library easier to use:
{-# LANGUAGE OverloadedStrings, ExtendedDefaultRules #-}
import Database.MongoDB

2.	 Define and implement main to set up a connection to the locally hosted database.
Run MongoDB queries defined in the run function as follows:
main :: IO ()
main = do
 let db = "test"
 pipe <- runIOE $ connect (host "127.0.0.1")
 e <- access pipe master db run
 close pipe
 print e

3.	 In run, we can combine multiple operations. For this recipe, run will only perform
one task, that is, gather data from the "people" collection:
run = getData

getData = rest =<< find (select [] "people") {sort=[]}

How it works...
A pipe is established by the driver between the running program and the database. This allows
running MongoDB operations to bridge the program with the database. The find function
takes a query, which we construct by evoking the select :: Selector -> Collection
-> aQueryOrSelection function.

Other functions can be found in the documentation at http://hackage.haskell.org/
package/mongoDB/docs/Database-MongoDB-Query.html.

See also
If the MongoDB database is on a remote server, refer to the Reading from a remote MongoDB
server recipe to set up a connection with remote databases.

http://hackage.haskell.org/package/mongoDB/docs/Database-MongoDB-Query.html
http://hackage.haskell.org/package/mongoDB/docs/Database-MongoDB-Query.html

The Hunt for Data

34

Reading from a remote MongoDB server
In many cases, it may be more feasible to set up a MongoDB instance on a remote machine.
This recipe will cover how to obtain data from a MongoDB hosted remotely.

Getting ready
We should create a remote database. MongoLab (https://mongolab.com) and MongoHQ
(http://www.mongohq.com) offer MongoDB as a service and have free options to set up a
small development database.

These services will require us to accept their terms and
conditions. For some of us, it may be best to host the
database in our own remote server.

Install the MongoDB package from Cabal as follows:

$ cabal install mongoDB

Also, install the helper following helper libraries as follows:

$ cabal install split

$ cabal install uri

How to do it...
1.	 Use the OverloadedString and ExtendedDefaultRules language extensions

required by the library. Import helper functions as follows:
{-# LANGUAGE OverloadedStrings, ExtendedDefaultRules #-}
import Database.MongoDB
import Text.URI
import Data.Maybe
import qualified Data.Text as T
import Data.List.Split

2.	 Specify the remote URI for the database connection as follows:
mongoURI =
 "mongodb://user:pass@ds12345.mongolab.com:53788/mydb"

https://mongolab.com
http://www.mongohq.com

Chapter 1

35

3.	 The username, password, hostname, port address number, and database name must
be extracted from the URI, as presented in the following code snippet:
uri = fromJust $ parseURI mongoURI

getUser = head $ splitOn ":" $ fromJust $ uriUserInfo uri

getPass = last $ splitOn ":" $ fromJust $ uriUserInfo uri

getHost = fromJust $ uriRegName uri

getPort = case uriPort uri of
 Just port -> show port
 Nothing -> (last.words.show) defaultPort

getDb = T.pack $ tail $ uriPath uri

4.	 Create a database connection by reading the host port of the remote URI as follows:
main :: IO ()
main = do
 let hostport = getHost ++ ":" ++ getPort
 pipe <- runIOE $ connect (readHostPort hostport)
 e <- access pipe master getDb run
 close pipe
 print e

5.	 Optionally authenticate to the database and obtain data from the "people"
collection as follows:
run = do
 auth (T.pack getUser) (T.pack getPass)
 getData

getData = rest =<< find (select [] "people") {sort=[]}

See also
If the database is on a local machine, refer to the Using MongoDB queries in Haskell recipe.

The Hunt for Data

36

Exploring data from a SQLite database
SQLite is a relational database that enforces a strict schema. It is simply a file on a machine
that we can interact with through Structured Query Language (SQL). There is an easy-to-use
Haskell library to send these SQL commands to our database.

In this recipe, we will use such a library to extract all data from a SQLite database.

Getting ready
We need to install the SQLite database if it isn't already set up. It can be obtained from
http://www.sqlite.org. On Debian systems, we can get it from apt-get using the
following command:

$ sudo apt-get install sqlite3

Now create a simple database to test our code, using the following commands:

$ sqlite3 test.db "CREATE TABLE test \

(id INTEGER PRIMARY KEY, str text); \

INSERT INTO test (str) VALUES ('test string');"

We must also install the SQLite Haskell package from Cabal as follows:

$ cabal install sqlite-simple

This recipe will dissect the example code presented on the library's documentation page
available at http://hackage.haskell.org/package/sqlite-simple/docs/
Database-SQLite-Simple.html.

How to do it…
1.	 Use the OverloadedStrings language extension and import the relevant libraries,

as shown in the following code:
{-# LANGUAGE OverloadedStrings #-}

import Control.Applicative
import Database.SQLite.Simple
import Database.SQLite.Simple.FromRow

http://www.sqlite.org
http://hackage.haskell.org/package/sqlite-simple/docs/Database-SQLite-Simple.html
http://hackage.haskell.org/package/sqlite-simple/docs/Database-SQLite-Simple.html

Chapter 1

37

2.	 Define a data type for each SQLite table field. Provide it with an instance of the
FromRow typeclass so that we may easily parse it from the table, as shown in
the following code snippet:
data TestField = TestField Int String deriving (Show)

instance FromRow TestField where
 fromRow = TestField <$> field <*> field

3.	 And lastly, open the database to import everything as follows:
main :: IO ()
main = do
 conn <- open "test.db"
 r <- query_ conn "SELECT * from test" :: IO [TestField]
 mapM_ print r
 close conn

2
Integrity and Inspection

This chapter will cover the following recipes:

ff Trimming excess whitespace

ff Ignoring punctuation and specific characters

ff Coping with unexpected or missing input

ff Validating records by matching regular expressions

ff Lexing and parsing an e-mail address

ff Deduplication of nonconflicting data items

ff Deduplication of conflicting data items

ff Implementing a frequency table using Data.List

ff Implementing a frequency table using Data.MultiSet

ff Computing the Manhattan distance

ff Computing the Euclidean distance

ff Comparing scaled data using the Pearson correlation coefficient

ff Comparing sparse data using cosine similarity

Integrity and Inspection

40

Introduction

The conclusions drawn from data analysis are only as robust as the quality of the data itself.
After obtaining raw text, the next natural step is to validate and clean it carefully. Even the
slightest bias may risk the integrity of the results. Therefore, we must take great precautionary
measures, which involve thorough inspection, to ensure sanity checks are performed on our
data before we begin to understand it. This section should be the starting point for cleaning
data in Haskell.

Real-world data often has an impurity that needs to be addressed before it can be processed.
For example, extraneous whitespaces or punctuation could clutter data, making it difficult
to parse. Duplication and data conflicts are another area of unintended consequences of
reading real-world data. Sometimes it's just reassuring to know that data makes sense
by conducting sanity checks. Some examples of sanity checks include matching regular
expressions as well as detecting outliers by establishing a measure of distance. In this
chapter, we will cover each of these topics.

Trimming excess whitespace
The text obtained from sources may unintentionally include beginning or trailing whitespace
characters. When parsing such an input, it is often wise to trim the text. For example, when
Haskell source code contains trailing whitespace, the GHC compiler ignores it through
a process called lexing. The lexer produces a sequence of tokens, effectively ignoring
meaningless characters such as excess whitespace.

In this recipe, we will use built-in libraries to make our own trim function.

Chapter 2

41

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Import the isSpace :: Char -> Bool function from the built-in
Data.Char package:
import Data.Char (isSpace)

2.	 Write a trim function that removes the beginning and trailing whitespace:
trim :: String -> String
trim = f . f
 where f = reverse . dropWhile isSpace

3.	 Test it out within main:
main :: IO ()
main = putStrLn $ trim " wahoowa! "

4.	 Running the code will result in the following trimmed string:
$ runhaskell Main.hs

wahoowa!

How it works...
Our trim function lazily strips the whitespace from the beginning and ending parts of the
string. It starts by dropping whitespace letters from the beginning. Then, it reverses the string
to apply the same function again. Finally, it reverses the string one last time to bring it back to
the original form. Fortunately, the isSpace function from Data.Char handles any Unicode
space character as well as the control characters \t, \n, \r, \f, and \v.

There's more…
Ready-made parser combinator libraries such as parsec or uu-parsinglib could be used
to do this instead, rather than reinventing the wheel. By introducing a Token type and parsing
to this type, we can elegantly ignore the whitespace. Alternatively, we can use the alex lexing
library (package name, alex) for this task. These libraries are overkill for this simple task, but
they allow us to perform a more generalized tokenizing of text.

Integrity and Inspection

42

Ignoring punctuation and specific
characters

Usually in natural language processing, some uninformative words or characters, called stop
words, can be filtered out for easier handling. When computing word frequencies or extracting
sentiment data from a corpus, punctuation or special characters might need to be ignored.
This recipe demonstrates how to remove these specific characters from the body of a text.

How to do it...
There are no imports necessary. Create a new file, which we will call Main.hs, and perform
the following steps:

1.	 Implement main and define a string called quote. The back slashes (\) represent
multiline strings:
main :: IO ()
main = do
 let quote = "Deep Blue plays very good chess-so what?\
 \Does that tell you something about how we play chess?\
 \No. Does it tell you about how Kasparov envisions,\
 \understands a chessboard? (Douglas Hofstadter)"
 putStrLn $ (removePunctuation.replaceSpecialSymbols) quote

2.	 Replace all punctuation marks with an empty string, and replace all special symbols
with a space:
punctuations = ['!', '"', '#', '$', '%'
 , '(', ')', '.', ',', '?']

removePunctuation = filter (`notElem` punctuations)

specialSymbols = ['/', '-']

replaceSpecialSymbols = map $
 (\c ->if c `elem` specialSymbols then ' ' else c)

3.	 By running the code, we will find that all special characters and punctuation are
appropriately removed to facilitate dealing with the text's corpus:
$ runhaskell Main.hs

Deep Blue plays very good chess so what Does that tell you
something about how we play chess No Does it tell you about how
Kasparov envisions understands a chessboard Douglas Hofstadter

Chapter 2

43

There's more...
For more powerful control, we can install MissingH, which is a very helpful utility we can use
to deal with strings:

$ cabal install MissingH

It provides a replace function that takes three arguments and produces a result as follows:

Prelude> replace "hello" "goodbye" "hello world!"

"goodbye world!"

It replaces all occurrences of the first string with the second string in the third argument. We
can also compose multiple replace functions:

Prelude> ((replace "," "").(replace "!" "")) "hello, world!"

"hello world"

By folding the composition (.) function over a list of these replace functions, we can
generalize the replace function to an arbitrary list of tokens:

Prelude> (foldr (.) id $ map (flip replace "") [",", "!"]) "hello,
 world!"

"hello world"

The list of punctuation marks can now be arbitrarily long. We can modify our recipe to use our
new and more generalized functions:

removePunctuation = foldr (.) id $ map (flip replace "")
 ["!", "\"", "#", "$", "%", "(", ")", ".", ",", "?"]

replaceSpecialSymbols = foldr (.) id $ map (flip replace " ")
 ["/", "-"]

Coping with unexpected or missing input
Data sources often contain incomplete and unexpected data. One common approach to
parsing such data in Haskell is using the Maybe data type.

Imagine designing a function to find the nth element in a list of characters. A naïve
implementation may have the type Int -> [Char] -> Char. However, if the function is
trying to access an index out of bounds, we should try to indicate that an error has occurred.

Integrity and Inspection

44

A common way to deal with these errors is by encapsulating the output Char into a Maybe
context. Having the type Int -> [Char] -> Maybe Char allows for some better error
handling. The constructors for Maybe are Just a or Nothing, which will become apparent
by running GHCi and testing out the following commands:

$ ghci

Prelude> :type Just 'c'

Just 'c' :: Maybe Char

Prelude> :type Nothing

Nothing :: Maybe a

We will set each field as a Maybe data type so that whenever a field cannot be parsed, it will
simply be represented as Nothing. This recipe will demonstrate how to read the CSV data
with faulty and missing info.

Getting ready
We create an input set of CSV files to read in. The first column will be for laptop brands, the
next column will be for their models, and the third column will be for the base cost. We should
leave some fields blank to simulate an incomplete input. We name the file input.csv:

Also, we must install the csv library:

$ cabal install csv

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Import the CSV library:
import Text.CSV

2.	 Create a data type corresponding to the CSV fields:
data Laptop = Laptop { brand :: Maybe String
 , model :: Maybe String
 , cost :: Maybe Float
 } deriving Show

Chapter 2

45

3.	 Define and implement main to read the CSV input and parse relevant info:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName
 let csv = parseCSV fileName input
 let laptops = parseLaptops csv
 print laptops

4.	 From a list of records, create a list of laptop data types:
parseLaptops (Left err) = []
parseLaptops (Right csv) =
 foldl (\a record -> if length record == 3
 then (parseLaptop record):a
 else a) [] csv

parseLaptop record = Laptop{ brand = getBrand $ record !! 0
 , model = getModel $ record !! 1
 , cost = getCost $ record !! 2 }

5.	 Parse each field, producing Nothing if there is an unexpected or missing item:
getBrand :: String -> Maybe String
getBrand str = if null str then Nothing else Just str

getModel :: String -> Maybe String
getModel str = if null str then Nothing else Just str

getCost :: String -> Maybe Float
getCost str = case reads str::[(Float,String)] of
 [(cost, "")] -> Just cost
 _ -> Nothing

How it works...
The Maybe monad allows you to have two states: Just something or Nothing. It provides a
useful abstraction to produce an error state. Each field in these data types exists in a Maybe
context. If a field doesn't exist, then we simply regard it as Nothing and move on.

Integrity and Inspection

46

There's more...
If a more descriptive error state is desired, the Either monad may be more useful. It also
has two states, but they are more descriptive: Left something, or Right something. The
Left state is often used to describe the error type, whereas the Right state holds the
desired result. We can use the Left state to describe different types of errors instead of
just one behemoth Nothing.

See also
To review CSV data input, see the Keeping and representing data from a CSV file recipe in
Chapter 1, The Hunt for Data.

Validating records by matching regular
expressions

A regular expression is a language for matching patterns in a string. Our Haskell code can
process a regular expression to examine a text and tell us whether or not it matches the rules
described by the expression. Regular expression matching can be used to validate or identify
a pattern in the text.

In this recipe, we will read a corpus of English text to find possible candidates of full names in
a sea of words. Full names usually consist of two words that start with a capital letter. We use
this heuristic to extract all the names from an article.

Getting ready
Create an input.txt file with some text. In this example, we use a snippet from a New York
Times article on dinosaurs (http://www.nytimes.com/2013/12/17/science/earth/
outsider-challenges-papers-on-growth-of-dinosaurs.html)

Other co-authors of Dr. Erickson's include Mark Norell, chairman of paleontology
at the American Museum of Natural History; Philip Currie, a professor of dinosaur
paleobiology at the University of Alberta; and Peter Makovicky, associate curator of
paleontology at the Field Museum in Chicago.

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Import the regular expression library:
import Text.Regex.Posix ((=~))

http://www.nytimes.com/2013/12/17/science/earth/outsider-challenges-papers-on-growth-of-dinosaurs.html
http://www.nytimes.com/2013/12/17/science/earth/outsider-challenges-papers-on-growth-of-dinosaurs.html

Chapter 2

47

2.	 Match a string against a regular expression to detect words that look like names:
looksLikeName :: String -> Bool
looksLikeName str = str =~ "^[A-Z][a-z]{1,30}$" :: Bool

3.	 Create functions that remove unnecessary punctuation and special symbols. We will
use the same functions defined in the previous recipe entitled Ignoring punctuation
and specific characters:
punctuations = ['!', '"', '#', '$', '%'
 , '(', ')', '.', ',', '?']
removePunctuation = filter (`notElem` punctuations)

specialSymbols = ['/', '-']
replaceSpecialSymbols = map $
 (\c -> if c `elem` specialSymbols
 then ' ' else c)

4.	 Pair adjacent words together and form a list of possible full names:
createTuples (x:y:xs) = (x ++ " " ++ y) :
 createTuples (y:xs)
createTuples _ = []

5.	 Retrieve the input and find possible names from a corpus of text:
main :: IO ()
main = do

 input <- readFile "input.txt"
 let cleanInput =
 (removePunctuation.replaceSpecialSymbols) input

 let wordPairs = createTuples $ words cleanInput

 let possibleNames =
 filter (all looksLikeName . words) wordPairs

 print possibleNames

6.	 The resulting output after running the code is as follows:
$ runhaskell Main.hs

["Dr Erickson","Mark Norell","American Museum","Natural
History","History Philip","Philip Currie","Peter Makovicky","Field
Museum"]

Integrity and Inspection

48

How it works...
The =~ function takes in a string and a regular expression and returns a target that we parse
as Bool. In this recipe, the ^[A-Z][a-z]{1,30}$ regular expression matches the words
that start with a capital letter and are between 2 and 31 letters long.

In order to determine the usefulness of the algorithm presented in this recipe, we will
introduce two metrics of relevance: precision and recall. Precision is the percent of retrieved
data that is relevant. Recall is the percent of relevant data that is retrieved.

Out of a total of 45 words in the input.txt file, four correct names are produced and a total
eight candidates are retrieved. It has a precision of 50 percent and a recall of 100 percent.
This is not bad at all for a simple regular expression trick.

See also
Instead of running regular expressions on a string, we can pass them through a lexical analyzer.
The next recipe entitled Lexing and parsing an e-mail address will cover this in detail.

Lexing and parsing an e-mail address
An elegant way to clean data is by defining a lexer to split up a string into tokens. In this
recipe, we will parse an e-mail address using the attoparsec library. This will naturally
allow us to ignore the surrounding whitespace.

Getting ready
Import the attoparsec parser combinator library:

$ cabal install attoparsec

How to do it…
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Use the GHC OverloadedStrings language extension to more legibly use the Text
data type throughout the code. Also, import the other relevant libraries:
{-# LANGUAGE OverloadedStrings #-}
import Data.Attoparsec.Text
import Data.Char (isSpace, isAlphaNum)

Chapter 2

49

2.	 Declare a data type for an e-mail address:
data E-mail = E-mail
 { user :: String
 , host :: String
 } deriving Show

3.	 Define how to parse an e-mail address. This function can be as simple or as
complicated as required:
e-mail :: Parser E-mail
e-mail = do
 skipSpace
 user <- many' $ satisfy isAlphaNum
 at <- char '@'
 hostName <- many' $ satisfy isAlphaNum
 period <- char '.'
 domain <- many' (satisfy isAlphaNum)
 return $ E-mail user (hostName ++ "." ++ domain)

4.	 Parse an e-mail address to test the code:
main :: IO ()
main = print $ parseOnly e-mail "nishant@shukla.io"

5.	 Run the code to print out the parsed e-mail address:
$ runhaskell Main.hs

Right (E-mail {user = "nishant", host = "shukla.io"})

How it works…
We create an e-mail parser by matching the string against multiple tests. An e-mail
address must contain some alphanumerical username, followed by the 'at' sign (@),
then an alphanumerical hostname, a period, and lastly the top-level domain.

The various functions used from the attoparsec library can be found in the Data.
Attoparsec.Text documentation, which is available at https://hackage.haskell.
org/package/attoparsec/docs/Data-Attoparsec-Text.html.

Deduplication of nonconflicting data items
Duplication is a common problem when collecting large amounts of data. In this recipe,
we will combine similar records in a way that ensures no information is lost.

https://hackage.haskell.org/package/attoparsec/docs/Data-Attoparsec-Text.html
https://hackage.haskell.org/package/attoparsec/docs/Data-Attoparsec-Text.html

Integrity and Inspection

50

Getting ready
Create an input.csv file with repeated data:

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 We will be using the CSV, Map, and Maybe packages:
import Text.CSV (parseCSV, Record)
import Data.Map (fromListWith)
import Control.Applicative ((<|>))

2.	 Define the Item data type corresponding to the CSV input:
data Item = Item { name :: String
 , color :: Maybe String
 , cost :: Maybe Float
 } deriving Show

3.	 Get each record from CSV and put them in a map by calling our doWork function:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName
 let csv = parseCSV fileName input
 either handleError doWork csv

4.	 If we're unable to parse CSV, print an error message; otherwise, define the doWork
function that creates a map from an association list with a collision strategy defined
by combine:
handleError = print

doWork :: [Record] -> IO ()
doWork csv = print $
 fromListWith combine $
 map parseToTuple csv

Chapter 2

51

5.	 Use the <|> function from Control.Applicative to merge the nonconflicting fields:
combine :: Item -> Item -> Item

combine item1 item2 =
 Item { name = name item1
 , color = color item1 <|> color item2
 , cost = cost item1 <|> cost item2 }

6.	 Define the helper functions to create an association list from a CSV record:
parseToTuple :: [String] -> (String, Item)
parseToTuple record = (name item, item)
 where item = parseItem record

parseItem :: Record -> Item
parseItem record =
 Item { name = record !! 0
 , color = record !! 1
 , cost = case reads(record !! 2)::[(Float,String)] of
 [(c, "")] -> Just c
 _ -> Nothing }

7.	 Executing the code shows a map filled with combined results:
$ runhaskell Main.hs

fromList

[("glasses",

 Item {name = "glasses", color = "black", cost = Just 60.0})

, ("jacket",

 Item {name = "jacket", color = "brown", cost = Just 89.99})

, ("shirt",

 Item {name = "shirt", color = "red", cost = Just 15.0})

]

How it works...
The Map data type offers a convenient function fromListWith :: Ord k => (a -> a
-> a) -> [(k, a)] -> Map k a to easily combine data in the map. We use it to find out
whether a key already exists. If so, we combine the fields in the old and new items and store
them under the key.

Integrity and Inspection

52

The true hero in this recipe is the <|> function form Control.Applicative. The <|>
function takes its arguments and returns the first one that is not empty. Since both String
and Maybe implement Applicative typeclass, we can reuse the <|> function for a
more manageable code. Here are a couple of examples of it in use:

$ ghci

Prelude> import Control.Applicative

Prelude Control.Applicative> (Nothing) <|> (Just 1)

Just 1

Prelude Control.Applicative> (Just 'a') <|> (Just 'b')

Just 'a'

Prelude Control.Applicative> "" <|> "hello"

"hello"

Prelude Control.Applicative> "" <|> ""

""

There's more...
If you're dealing with larger numbers, it may be wise to use Data.Hashmap.Map instead
because the running time for n items is O(min(n, W)), where W is the number of bits in an
integer (32 or 64).

For even better performance, Data.Hashtable.Hashtable provides O(1) performance for
lookups but adds complexity by being in an I/O monad.

See also
If the corpus contains inconsistent information about duplicated data, see the next recipe on
Deduplication of conflicting data items.

Deduplication of conflicting data items
Unfortunately, information about an item may be inconsistent throughout the corpus. Collision
strategies are often domain-dependent, but one common way to manage this conflict is by
simply storing all variations of the data. In this recipe, we will read a CSV file that contains
information about musical artists and store all of the information about their songs and
genres in a set.

Chapter 2

53

Getting ready
Create a CSV input file with the following musical artists. The first column is for the name of
the artist or band. The second column is the song name, and the third is the genre. Notice
how some musicians have multiple songs or genres.

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 We will be using the CSV, Map, and Set packages:
import Text.CSV (parseCSV, Record)
import Data.Map (fromListWith)
import qualified Data.Set as S

2.	 Define the Artist data type corresponding to the CSV input. For fields that may
contain conflicting data, store the value in its corresponding list. In this case,
song- and genre-related data are stored in a set of strings:
data Artist = Artist { name :: String
 , song :: S.Set String
 , genre :: S.Set String
 } deriving Show

3.	 Extract data from CSV and insert it in a map:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName
 let csv = parseCSV fileName input
 either handleError doWork csv

4.	 Print out any error that might occur:
handleError = print

5.	 If no error occurs, then combine the data from the CSV and print it out:
doWork :: [Record] -> IO ()
doWork csv = print $
 fromListWith combine $
 map parseToTuple csv

Integrity and Inspection

54

6.	 Create a map from an association list with a collision strategy defined by combine:
combine :: Artist -> Artist -> Artist
combine artist1 artist2 =
 Artist { name = name artist1
 , song = S.union (song artist1) (song artist2)
 , genre = S.union (genre artist1)
 (genre artist2) }

7.	 Make the helper functions create an association list from the CSV records:
parseToTuple :: [String] -> (String, Artist)
parseToTuple record = (name item, item)
 where item = parseItem record

parseItem :: Record -> Artist
parseItem record =
 Artist { name = nameStr
 , song = if null songStr
 then S.empty
 else S.singleton songStr
 , genre = if null genreStr
 then S.empty
 else S.singleton genreStr
 }
 where nameStr = record !! 0
 songStr = record !! 1
 genreStr = record !! 2

8.	 The output of the program will be a map with the following information that will
be collected:
fromList [
("Daft Punk", Artist
 { name = "Daft Punk",
 song = fromList ["Get Lucky","Around the World"],
 genre = fromList ["French house"]}),
("Junior Boys", Artist
 { name = "Junior Boys",
 song = fromList ["Bits & Pieces"],
 genre = fromList ["Synthpop"]}),
("Justice", Artist
 { name = "Justice",
 song = fromList ["Genesis"],
 genre = fromList ["Electronic rock","Electro"]}),
("Madeon", Artist
 { name = "Madeon",
 song = fromList ["Icarus"],
 genre = fromList ["French house"]})]

Chapter 2

55

How it works...
The Map data type offers a convenient function fromListWith :: Ord k => (a -> a
-> a) -> [(k, a)] -> Map k a to easily combine data in Map. We use it to find out
whether a key already exists. If so, we combine the fields in the old and new items and store
them under the key.

We use a set to efficiently combine these data fields.

There's more...
If dealing with larger numbers, it may be wise to use Data.Hashmap.Map instead because
the running time for n items is O(min(n, W)), where W is the number of bits in an integer
(32 or 64).

For even better performance, Data.Hashtable.Hashtable provides O(1) performance for
lookups but adds complexity by being in an I/O monad.

See also
If the corpus contains nonconflicting information about duplicated data, see the previous
section on Deduplication of nonconflicting data items.

Implementing a frequency table using
Data.List

A frequency map of values is often useful to detect outliers. We can use it to identify
frequencies that seem out of the ordinary. In this recipe, we will be counting the number
of different colors in a list.

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 We will use the group and sort functions from Data.List:
import Data.List (group, sort)

2.	 Define a simple data type for colors:
data Color = Red | Green | Blue deriving (Show, Ord, Eq)

Integrity and Inspection

56

3.	 Create a list of these colors:
main :: IO ()
main = do
 let items = [Red, Green, Green, Blue, Red, Green, Green]

4.	 Implement the frequency map and print it out:
 let freq =
 map (\x -> (head x, length x)) . group . sort $ items
 print freq

How it works...
Grouping identical items after sorting the list is the central idea.

See the following step-by-step evaluation in ghci:

Prelude> sort items

[Red,Red,Green,Green,Green,Green,Blue]

Prelude> group it

[[Red,Red],[Green,Green,Green,Green],[Blue]]

Prelude> map (\x -> (head x, length x)) it

[(Red,2),(Green,4),(Blue,1)]

As we may expect, sorting the list is the most expensive step.

See also
A cleaner version of the code is possible by using Data.MultiSet described in the next
recipe, Implementing a frequency table using Data.MultiSet.

Implementing a frequency table using
Data.MultiSet

A frequency map of values is often useful to detect outliers. We will use an existing library that
does much of the work for us.

Chapter 2

57

Getting ready
We will be using the multiset package from Hackage:

$ cabal install multiset

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 We will use the fromList and toOccurList functions from Data.MultiSet:
import Data.MultiSet (fromList, toOccurList)

2.	 Define a simple data type for colors:
data Color = Red | Green | Blue deriving (Show, Ord, Eq)

3.	 Create a list of these colors:
main :: IO ()
main = do
 let items = [Red, Green, Green, Blue, Red, Green, Green]

4.	 Implement the frequency map and print it out:
 let freq = toOccurList . fromList $ items
 print freq

5.	 Run the code to display the frequency list:
$ runhaskell Main.hs

[(Red, 2), (Green, 4), (Blue, 1)]

How it works...
The toOccurList :: MultiSet a -> [(a, Int)] function creates a frequency map
from a list. We construct MuliSet using the provided fromList function.

See also
If importing a new library is not desired, see the previous recipe on Implementing a
frequency map using Data.List.

Integrity and Inspection

58

Computing the Manhattan distance
Defining a distance between two items allows us to easily interpret clusters and patterns.
The Manhattan distance is one of the easiest to implement and is used primarily due to
its simplicity.

The Manhattan distance (or Taxicab distance) between two items is the sum of the absolute
differences of their coordinates. So if we are given two points (1, 1) and (5, 4), then the
Manhattan distance will be |1-5| + |1-4| = 4 + 3 = 7.

We can use this distance metric to detect whether an item is unusually far away from
everything else. In this recipe, we will detect outliers using the Manhattan distance. The
calculations merely involve addition and subtraction, and therefore, it performs exceptionally
well for a very large amount of data.

Getting ready
Create a list of comma-separated points. We will compute the smallest distance between
these points and a test point:

$ cat input.csv

0,0

10,0

0,10

10,10

5,5

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Import the CSV and List packages:
import Text.CSV (parseCSV)

Chapter 2

59

2.	 Read in the following points:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName
 let csv = parseCSV fileName input

3.	 Represent the data as a list of floating point numbers:
 let points = either (\e -> []) (map toPoint . myFilter)
 csv

4.	 Define a couple of points to test the function:
 let test1 = [2,1]
 let test2 = [-10,-10]

5.	 Compute the Manhattan distance on each of the points and find the smallest result:
 if (not.null) points then do
 print $ minimum $ map (manhattanDist test1) points
 print $ minimum $ map (manhattanDist test2) points
 else putStrLn "Error: no points to compare"

6.	 Create a helper function to convert a list of strings to a list of floating point numbers:
toPoint record = map (read :: String -> Float) record

7.	 Compute the Manhattan distance between two points:
manhattanDist p1 p2 =
 sum $ zipWith (\x y -> abs (x - y)) p1 p2

8.	 Filter out records that are of incorrect size:
myFilter = filter (\x -> length x == 2)

9.	 The output will be the shortest distance between the test points and the list of points:
$ runhaskell Main.hs

3.0
20.0

See also
If the distance matches more closely to the traditional geometric space, then read the next
recipe on Computing the Euclidean distance.

Integrity and Inspection

60

Computing the Euclidean distance
Defining a distance between two items allows us to easily interpret clusters and patterns. The
Euclidean distance is one of the most geometrically natural forms of distance to implement.
It uses the Pythagorean formula to compute how far away two items are, which is similar to
measuring the distance with a physical ruler.

We can use this distance metric to detect whether an item is unusually far away from
everything else. In this recipe, we will detect outliers using the Euclidean distance. It is
slightly more computationally expensive than measuring the Manhattan distance since it
involves multiplication and square roots; however, depending on the dataset, it may provide
more accurate results.

Getting ready
Create a list of comma-separated points. We will compute the smallest distance between
these points and a test point.

$ cat input.csv

0,0

10,0

0,10

10,10

5,5

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Import the CSV and List packages:
import Text.CSV (parseCSV)

Chapter 2

61

2.	 Read in the following points:
main :: IO ()
main = do
 let fileName = "input.csv"
 input <- readFile fileName
 let csv = parseCSV fileName input

3.	 Represent the data as a list of floating point numbers:
 let points = either (\e -> []) (map toPoint .
 myFilter) csv

4.	 Define a couple of points to test out the function:
 let test1 = [2,1]
 let test2 = [-10,-10]

5.	 Compute the Euclidean distance on each of the points and find the smallest result:
 if (not.null) points then do
 print $ minimum $ map (euclidianDist test1) points
 print $ minimum $ map (euclidianDist test2) points
 else putStrLn "Error: no points to compare"

6.	 Create a helper function to convert a list of strings to a list of floating point numbers:
toPoint record = map (read String -> Float) record

7.	 Compute the Euclidean distance between two points:
euclidianDist p1 p2 = sqrt $ sum $
 zipWith (\x y -> (x - y)^2) p1 p2

8.	 Filter out records that are of incorrect size:
myFilter = filter (\x -> length x == 2)

9.	 The output will be the shortest distance between the test points and the list of points:
$ runhaskell Main.hs

2.236068

14.142136

See also
If a more computationally efficient distance calculation is required, then take a look at the
previous recipe, Computing the Manhattan distance.

Integrity and Inspection

62

Comparing scaled data using the Pearson
correlation coefficient

Another way to measure how closely two items relate to each other is by examining their
individual trends. For example, two items that both show an upward trend are more closely
related. Likewise, two items that both show a downward trend are also closely related. To
simplify the algorithm, we will only consider linear trends. This calculation of correlation
is called the Pearson correlation coefficient. The closer the coefficient is to zero, the less
correlated the two data sets will be.

The Pearson correlation coefficient for a sample is calculated using the following formula:

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Implement main to compute the correlation coefficient between two lists of numbers:
main :: IO ()
main = do
 let d1 = [3,3,3,4,4,4,5,5,5]
 let d2 = [1,1,2,2,3,4,4,5,5]
 let r = pearson d1 d2
 print r

2.	 Define the function to compute the Pearson coefficient:
 pearson xs ys = (n * sumXY - sumX * sumY) /
 sqrt ((n * sumX2 - sumX*sumX) *
 (n * sumY2 - sumY*sumY))

 where n = fromIntegral (length xs)
 sumX = sum xs
 sumY = sum ys
 sumX2 = sum $ zipWith (*) xs xs
 sumY2 = sum $ zipWith (*) ys ys
 sumXY = sum $ zipWith (*) xs ys

Chapter 2

63

3.	 Run the code to print the coefficient.
$ runhaskell Main.hs

0.9128709291752768

How it works...
The Pearson correlation coefficient measures the degree of linear relationship between
two variables. The magnitude of this coefficient describes how strongly the variables are
related. If positive, the two variables change together. If negative, as one variable increases,
the other decreases.

Comparing sparse data using cosine
similarity

When a data set has multiple empty fields, comparing the distance using the Manhattan or
Euclidean metrics might result in skewed results. Cosine similarity measures how closely
two vectors are oriented with each other. For example, the vectors (82, 86) and (86, 82)
essentially point in the same direction. In fact, their cosine similarity is equivalent to the
cosine similarity between (41, 43) and (43, 41). A cosine similarity of 1 corresponds to vectors
that point in the exact same direction, and 0 corresponds to vectors that are completely
orthogonal to each other.

41 43 82 86

As long as the angles between the two vectors are equal, their cosine similarity is equivalent.
Applying a distance metric such as the Manhattan distance or Euclidean distance in this
case produces a significant difference between the two sets of data.

Integrity and Inspection

64

The cosine similarity between the two vectors is the dot product of the two vectors divided by
the product of their magnitudes.

How to do it...
Create a new file, which we will call Main.hs, and perform the following steps:

1.	 Implement main to compute the cosine similarity between two lists of numbers.
main :: IO ()
main = do
 let d1 = [3.5, 2, 0, 4.5, 5, 1.5, 2.5, 2]
 let d2 = [3, 0, 0, 5, 4, 2.5, 3, 0]

2.	 Compute the cosine similarity.
 let similarity = dot d1 d2 / (eLen d1 * eLen d2)
 print similarity

3.	 Define the dot product and Euclidean length helper functions.
dot a b = sum $ zipWith (*) a b
eLen a = sqrt $ dot a a

4.	 Run the code to print the cosine similarity.
$ runhaskell Main.hs

0.924679432210068

See also
If the data set is not sparse, consider using the Manhattan or Euclidean distance metrics
instead, as detailed in the recipes Computing the Manhattan distance and Computing the
Euclidean distance.

3
The Science of Words

In this chapter, we will cover the following recipes:

ff Displaying a number in another base

ff Reading a number from another base

ff Searching for a substring using Data.ByteString

ff Searching a string using the Boyer–Moore–Horspool algorithm

ff Searching a string using the Rabin-Karp algorithm

ff Splitting a string on lines, words, or arbitrary tokens

ff Finding the longest common subsequence

ff Computing a phonetic code

ff Calculating the edit distance between two strings

ff Computing the Jaro–Winkler distance between two strings

ff Finding strings within one-edit distance

ff Fixing spelling mistakes using edit distance

The Science of Words

66

Introduction

Many interesting analysis techniques can be used on a large corpus of words. Whether it be
examining the structure of a sentence or the content of a book, these recipes will introduce
us to some useful tools.

When manipulating strings for data analysis, some of the most common functions are among
substring search and edit distance computations. Since numbers are often found in a corpus
of text, this chapter will start by showing how to represent numbers in an arbitrary base as a
string. We will cover a couple of string-searching algorithms and then focus on extracting text
to study not only the words but also how the words are used together.

Many practical applications can be constructed given the simple set of tools provided in
this section. For example, in the last recipe, we will demonstrate a way to correct spelling
mistakes. How we use these algorithms is entirely up to our creativity, but at least having
them at our disposal is an excellent start.

Displaying a number in another base
Strings are a natural way to represent numbers in different bases due to the inclusion of
letters as digits. This recipe will tell us how to convert a number to a string that can be
printed as output.

How to do it...
1.	 We will need to import the following two functions:

import Data.Char (intToDigit, chr, ord)
import Numeric (showIntAtBase)

Chapter 3

67

2.	 Define a function to represent a number in a particular base as follows:
n 'inBase' b = showIntAtBase b numToLetter n ""

3.	 Define the mapping between numbers and letters for digits larger than
nine as follows:
numToLetter :: Int -> Char
numToLetter n
 | n < 10 = intToDigit n
 | otherwise = chr (ord 'a' n – 10)

4.	 Print out the result using the following code snippet:
main :: IO ()
main = do
 putStrLn $ 8 'inBase' 12
 putStrLn $ 10 'inBase' 12
 putStrLn $ 12 'inBase' 12
 putStrLn $ 47 'inBase' 12

5.	 The following is the printed output when running the code:
$ runhaskell Main.hs

8

a

10

3b

How it works...
The showIntAtBase function takes in a base, the desired number, and its mapping from
number to printable digit. We order our digits in the following manner: 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f, and so on, up to 36 characters. Putting it all together, we get a convenient
way to represent a decimal number in any base.

See also
To read a string representing a number from another base as a decimal integer, refer to the
Reading a number from another base recipe.

The Science of Words

68

Reading a number from another base
Decimal, binary, and hexadecimal are widely used numeral systems that are often
represented using a string. This recipe will show how to convert a string representation of a
number in an arbitrary base to its decimal integer. We use the readInt function, which is the
dual of the showIntAtBase function described in the previous recipe.

How to do it...
1.	 Import readInt and the following functions for character manipulation as follows:

import Data.Char (ord, digitToInt, isDigit)
import Numeric (readInt)

2.	 Define a function to convert a string representing a number in a particular base to a
decimal integer as follows:
str 'base' b = readInt b isValidDigit letterToNum str

3.	 Define the mapping between letters and numbers for larger digits, as shown in the
following code snippet:
letterToNum :: Char -> Int
letterToNum d
 | isDigit d = digitToInt d
 | otherwise = ord d - ord 'a' + 10

isValidDigit :: Char -> Int
isValidDigit d = letterToNum d >= 0

4.	 Print out the result using the following line of codes:
main :: IO ()
main = do
 print $ "8" 'base' 12
 print $ "a" 'base' 12
 print $ "10" 'base' 12
 print $ "3b" 'base' 12

5.	 The printed output is as follows:
[(8,"")]

[(10,"")]

[(12,"")]

[(47,"")]

Chapter 3

69

How it works...
The readInt function reads an unsigned integral value and converts it to the specified
base. It takes in the base as the first argument, valid characters as the second argument,
and its mapping from character to number as the third argument. We order our digits in the
following order: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, and so on up to 36 characters. Putting
it all together, we get a convenient way to convert a string representation of a number in an
arbitrary base to a decimal number.

This recipe assumes that a valid string is passed into the base function for
conversion. Further error checks are necessary to ensure that erroneous
input such as "a" 'base' 4 should not result in an answer.

See also
To do the reverse, refer to the Displaying a number in another base recipe.

Searching for a substring using
Data.ByteString

There are many algorithms to search for a string within another string. This recipe will use
an existing breakSubstring function in the Data.ByteString library to do most of the
heavy lifting.

The ByteString documentation establishes its merits by declaring the following claim:

"[A ByteString is] a time- and space-efficient implementation of byte vectors using
packed Word8 arrays, suitable for high performance use, both in terms of large
data quantities, or high speed requirements. Byte vectors are encoded as strict
Word8 arrays of bytes, held in a ForeignPtr, and can be passed between C and
Haskell with little effort."

More information and documentation can be obtained on the package web page at
http://hackage.haskell.org/package/bytestring/docs/Data-ByteString.
html.

How to do it...
1.	 Import the breakSubstring function as well as the Data.ByteString.Char8

package as follows:
import Data.ByteString (breakSubstring)
import qualified Data.ByteString.Char8 as C

http://hackage.haskell.org/package/bytestring/docs/Data-ByteString.html
http://hackage.haskell.org/package/bytestring/docs/Data-ByteString.html

The Science of Words

70

2.	 Pack the strings as a ByteString and feed them into breakSubstring which
has the following type: ByteString -> ByteString -> (ByteString,
ByteString). Then determine whether the string is found:
substringFound :: String -> String -> Bool

substringFound query str =
 (not . C.null . snd) $
 breakSubstring (C.pack query) (C.pack str)

3.	 Try out some tests in main as follows:
main = do
 print $ substringFound "scraf" "swedish scraf mafia"
 print $ substringFound "flute" "swedish scraf mafia"

4.	 Executing main will print out the following results:
True

False

How it works...
The breakSubstring function recursively checks if the pattern is a prefix of the string. To
lazily find the first occurrence of a string, we can call snd (breakSubstring pat str).

There's more...
Another elegant way to quickly find a substring is by using the isInfixOf function
provided by both Data.List and Data.ByteString. Moreover, we can also use the
OverloadedStrings language extension to remove verbiage, as shown in the following
code snippet:

{-# LANGUAGE OverloadedStrings #-}
import Data.ByteString (isInfixOf)

main = do
 print $ isInfixOf "scraf" "swedish scraf mafia"
 print $ isInfixOf "flute" "swedish scraf mafia"

See also
Depending on the length of the pattern we're trying to find and the length of the whole string
itself, other algorithms may provide better performance. Refer to the Searching a string using
the Boyer-Moore-Horspool algorithm and Searching a string using the Rabin-Karp algorithm
recipes for more details.

Chapter 3

71

Searching a string using the
Boyer-Moore-Horspool algorithm

When searching for a pattern in a string, we refer to the pattern as the needle and the whole
corpus as the haystack. The Horspool string search algorithm implemented in this recipe
performs well for almost all pattern lengths and alphabet sizes, but is ideal for large alphabet
sizes and large needle sizes. Empirical benchmarks can be found by navigating to the
following URL:

http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm

By preprocessing the query, the algorithm is able to efficiently skip redundant comparisons. In
this recipe, we will implement a simplified version called Horspool's algorithm, which achieves
the same average best case as the Boyer-Moore algorithm, benefits from having a smaller
overhead cost, but may in very rare circumstances suffer the same worst-case running time as
the naive search when the algorithm performs too many matches. The Boyer-Moore algorithms
should only be used if the extra prepossessing time and space required are acceptable.

How to do it...
1.	 We will be using a couple Data.Map functions as follows:

import Data.Map (fromList, (!), findWithDefault)

2.	 For convenience, define tuples representing character indices as follows:
indexMap xs = fromList $ zip [0..] xs

revIndexMap xs = fromList $ zip (reverse xs) [0..]

3.	 Define the search algorithm to use the recursive bmh' function as follows:
bmh :: Ord a => [a] -> [a] -> Maybe Int

bmh pat xs = bmh' (length pat - 1) (reverse pat) xs pat

4.	 Recursively find the pattern in the current index until the index moves past the length
of the string, as shown in the following code snippet:
bmh' :: Ord a => Int -> [a] -> [a] -> [a] -> Maybe Int

bmh' n [] xs pat = Just (n + 1)
bmh' n (p:ps) xs pat
 | n >= length xs = Nothing
 | p == (indexMap xs) ! n = bmh' (n - 1) ps xs pat
 | otherwise = bmh' (n + findWithDefault

http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm

The Science of Words

72

 (length pat) (sMap ! n) pMap)
 (reverse pat) xs pat
 where sMap = indexMap xs
 pMap = revIndexMap pat

5.	 Test out the function as follows:
main :: IO ()
main = print $ bmh "Wor" "Hello World"

6.	 The following printed output displays the first index of the matching substring:
Just 6

How it works...
This algorithm compares the desired pattern to a moving window through the text. The
efficiency comes from how quickly the moving window shifts left to right through this text. In
the Horspool algorithm, the query is compared to the current window character by character
from right to left, and the window shifts by the size of the query in the best case.

Another version of the Horspool algorithm designed by Remco Niemeijer can be found at
http://bonsaicode.wordpress.com/2009/08/29/programming-praxis-string-
search-boyer-moore.

There's more...
The Boyer-Moore algorithm ensures a faster worst case, but also endures slightly more
initial overhead. Refer to the following commands to use the Boyer-Moore algorithm from
the Data.ByteString.Search package:

$ cabal install stringsearch

Import the following libraries:

import Data.ByteString.Search
import qualified Data.ByteString.Char8 as C

Feed two ByteString types to the indices function to run the search as follows:

main = print $ indices (C.pack "abc") (C.pack "bdeabcdabc")

This will print out the following indices:

[3,7]

http://bonsaicode.wordpress.com/2009/08/29/programming-praxis-string-search-boyer-moore
http://bonsaicode.wordpress.com/2009/08/29/programming-praxis-string-search-boyer-moore

Chapter 3

73

By benchmarking the performance of this library, we can see that longer search needles
really improve runtime. We modify the code to search through a huge corpus of words from
a file called big.txt to find multiple needles. Here, we use the deepseq function to force
evaluation, so Haskell's lazy nature won't ignore it, as shown in the following code:

shortNeedles = ["abc", "cba"]
longNeedles = ["very big words", "some long string"]

main = do
 corpus <- BS.readFile "big.txt"
 map (\x -> (not.null) (indices x corpus)) shortNeedles
 'deepseq' return ()

We can compile this code with special runtime system (RTS) control for easy profiling
as follows:

$ ghc -O2 Main.hs –rtsopts

$./Main +RTS -sstder

We use the text from norvig.com/big.txt as our corpus. Searching for 25 long needles
takes just about 0.06 seconds; however, searching for 25 short needles takes a sluggish
0.19 seconds.

See also
For another efficient string searching algorithm, refer to the Searching a string using the
Rabin-Karp algorithm recipe.

Searching a string using the Rabin-Karp
algorithm

The Rabin-Karp algorithm finds a pattern in a body of text by matching a unique representation
of the pattern against a moving window. The unique representation, or hash, is computed by
considering a string as a number written in an arbitrary base of 26 or greater.

The advantage of Rabin-Karp is in searching for many needles in a haystack. It's not very
efficient to search for just a single string. After the initial preprocessing of the corpus, the
algorithm can quickly find matches.

The Science of Words

74

Getting ready
Install the Data.ByteString.Search library from Cabal as follows:

$ cabal install stringsearch

How to do it...
1.	 Use the OverloadedStrings language extension to facilitate the ByteString

manipulations in our code as follows. It essentially allows polymorphic behavior for
strings so that the GHC compiler may infer it as a ByteString type when necessary:
{-# LANGUAGE OverloadedStrings #-}

2.	 Import the Rabin-Karp algorithms as follows:
import Data.ByteString.Search.KarpRabin (indicesOfAny)
import qualified Data.ByteString as BS

3.	 Define a couple of patterns to find and obtain the corpus from a big.txt file,
as shown in the following code snippet:
main = do
 let needles = ["preparing to go away"
 , "is some letter of recommendation"]
 haystack <- BS.readFile "big.txt"

4.	 Run the Rabin-Karp algorithm on all the search patterns as follows:
 print $ indicesOfAny needles haystack

5.	 The code prints out all indices found for each needle as a list of tuples. The first
element of the tuple is the position in the haystack that the needle was found.
The second element of the tuple is a list of indices of the needles. In our recipe,
we find one instance of "preparing to go away" and two instances of "is some
letter of recommendation."
$ runhaskell Main.hs

[(3738968,[1]),(5632846,[0]),(5714386,[0])]

Chapter 3

75

How it works...
In Rabin-Karp, a fixed window moves from left to right, comparing the unique hash values for
efficient comparisons. The hash function converts a string to its numerical representation.
Here's an example of converting a string into base b equal to 256: "hello" = h' * b4 + e' *
b3 + l' * b2 + l' * b1 + o' * b0 (which results in 448378203247), where each letter h' =
ord h (which results in 104), and so on.

See also
To see another efficient string searching algorithm, refer to the Searching a string using the
Boyer-Moore-Horspool algorithm recipe.

Splitting a string on lines, words, or
arbitrary tokens

Useful data is often interspersed between delimiters, such as commas or spaces, making
string splitting vital for most data analysis tasks.

Getting ready
Create an input.txt file similar to the following one:

$ cat input.txt

first line

second line

words are split by space

comma,separated,values

or any delimiter you want

Install the split package using Cabal as follows:

$ cabal install split

The Science of Words

76

How to do it...
1.	 The only function we will need is splitOn, which is imported as follows:

import Data.List.Split (splitOn)

2.	 First we split the string into lines, as shown in the following code snippet:
main = do
 input <- readFile "input.txt"
 let ls = lines input
 print $ ls

3.	 The lines are printed in a list as follows:
["first line","second line"

, "words are split by space"

, "comma,separated,values"

, "or any delimiter you want"]

4.	 Next, we separate a string on spaces as follows:
 let ws = words $ ls !! 2
 print ws

5.	 The words are printed in a list as follows:
["words","are","split","by","space"]

6.	 Next, we show how to split a string on an arbitrary value using the following lines
of code:
 let cs = splitOn "," $ ls !! 3
 print cs

7.	 The values are split on the commas as follows:
["comma","separated","values"]

8.	 Finally, we show splitting on multiple letters as shown in the following code snippet:
 let ds = splitOn "an" $ ls !! 4
 print ds

9.	 The output is as follows:
["or any d","limit","r you want"]

Chapter 3

77

Finding the longest common subsequence
One way to compare string similarity is by finding their longest common subsequence.
This is useful in finding differences between mutations of data such as source code or
genome sequences.

A subsequence of a string is the same string with zero or more of the indices removed. So,
some possible subsequences of "BITCOIN" could be "ITCOIN", "TON", "BIN", or even "BITCOIN"
itself, as shown in the following figure:

BITCOIN

B
B

I

I
I

T
T

T

C

C

O
O

O

I

I

N
N
N
N

original
sequence

subsequences

The longest common subsequence is exactly what it sounds like. It is the longest
subsequence common to both strings. For example, the longest common subsequence
of "find the lights" and "there are four lights" is "the lights."

Getting ready
Install the data-memocombinators package from Cabal. This allows us to minimize
redundant computations to improve runtime as follows:

$ cabal install data-memocombinators

How to do it...
1.	 The only import we will need is this handy package to easily support memoization:

import qualified Data.MemoCombinators as Memo

2.	 Create a convenience function to enable memoization of functions that take in two
string arguments, as shown in the following code snippet:
memoize :: (String -> String -> r) -> String -> String -> r
memoize = Memo.memo2
 (Memo.list Memo.char) (Memo.list Memo.char)

The Science of Words

78

3.	 Define the largest common subsequence function as follows:
lcs :: String -> String -> String

lcs = memoize lcs'
 where lcs' xs'@(x:xs) ys'@(y:ys)
 | x == y = x : lcs xs ys
 | otherwise = longer (lcs xs' ys) (lcs xs ys')
 lcs' _ _ = []

4.	 Internally, define a function that returns the longer length string.
 longer as bs
 | length as > length bs = as
 | otherwise = bs

5.	 Run the function on two strings as follows.
main :: IO ()
main = do
 let xs = "find the lights"
 let ys = "there are four lights"
 print $ lcs xs ys

6.	 The following is the longest common subsequence between the two strings:
"the lights"

How it works...
The algorithm is implemented naively, with memoization added to the recursive calls. If
the first two items of a list are the same, then the longest common subsequence is the
lcs function applied to the remaining parts of the list. Otherwise, the longest common
subsequence is the longer of the two possibilities.

Naively, this algorithm will stall when given two strings as small as 10 characters each. Since
the code breaks down to multiple identical subproblems, we can easily use a simple memoize
function that remembers already computed values, improving the runtime dramatically.

Computing a phonetic code
If we're dealing with a corpus of English words, then we can categorize them into phonetic
codes to see how similar they sound. Phonetic codes work for any alphabetical strings, not
just actual words. We will use the Text.PhoneticCode package to compute the Soundex
and Phoneix phonetic codes. The package documentation can be found on Hackage at
http://hackage.haskell.org/package/phonetic-code.

http://hackage.haskell.org/package/phonetic-code

Chapter 3

79

Getting ready
Install the phonetic code library from Cabal as follows:

$ cabal install phonetic-code

How to do it...
1.	 Import the phonetic code functions as follows:

import Text.PhoneticCode.Soundex (soundexNARA,
 soundexSimple)
import Text.PhoneticCode.Phonix (phonix)

2.	 Define a list of similar-sounding words as follows:
ws = ["haskell", "hackle", "haggle", "hassle"]

3.	 Test out the phonetic codes on these words, as shown in the following code snippet:
main :: IO ()
main = do
 print $ map soundexNARA ws
 print $ map soundexSimple ws
 print $ map phonix ws

4.	 The output will be printed as follows:
$ runhaskell Main.hs

["H240","H240","H240","H240"]

["H240","H240","H240","H240"]

["H82","H2","H2","H8"]

Notice how phonix produces a finer categorization than soundex.

How it works...
The algorithms perform simple string manipulations based on heuristic
English-language-dependent patterns.

There's more...
Metaphone is an improvement over the Soundex algorithm and can be found at
http://aspell.net/metaphone.

http://aspell.net/metaphone

The Science of Words

80

Computing the edit distance
The edit distance or Levenshtein distance is the minimum number of simple string operations
required to convert one string into another. In this recipe, we will compute the edit distance
based on only insertions, deletions, and substitutions of characters.

Getting ready
Review the equation shown in the following figure obtained from the Wikipedia article about
the Levenshtein distance (http://en.wikipedia.org/wiki/Levenshtein_distance):

Here, a and b are the two strings, and i and j are numbers representing their lengths.

The Haskell code will be a direct translation of this mathematical formula.

Also, install the data-memocombinators package from Cabal. This allows us to minimize
redundant computations to improve runtime.

$ cabal install data-memocombinators

How to do it...
1.	 The only import we will need is the ability to easily memoize functions using the

following line of code:
import qualified Data.MemoCombinators as Memo

2.	 Define the Levenshtein distance function exactly as described in the formula using
the following code snippet:
lev :: Eq a => [a] -> [a] -> Int
lev a b = levM (length a) (length b)
 where levM = memoize lev'
 lev' i j
 | min i j == 0 = max i j
 | otherwise = minimum

http://en.wikipedia.org/wiki/Levenshtein_distance

Chapter 3

81

 [(1 + levM (i-1) j)
 , (1 + levM i (j-1))
 , (ind i j + levM (i-1) (j-1))]

3.	 Define the indicator function that returns 1 if the characters don't match.
 ind i j
 | a !! (i-1) == b !! (j-1) = 0
 | otherwise = 1

4.	 Create a convenience function to enable memoization of functions that take in two
string arguments:
memoize = Memo.memo2 (Memo.integral) (Memo.integral)

5.	 Print out the edit distance between two strings:
main = print $ lev "mercury" "sylvester"

6.	 The result is as follows:
$ runhaskell Main.hs

8

How it works...
This algorithm recursively tries all deletions, insertions, and substitutions and finds the
minimum distance from one string to another.

See also
Another measurement is described in the Computing the Jaro-Winkler distance between two
strings recipe.

Computing the Jaro-Winkler distance
between two strings

The Jaro-Winkler distance measures string similarity represented as a real number between 0
and 1. The value 0 corresponds to no similarity, and 1 corresponds to an identical match.

The Science of Words

82

Getting ready
The algorithm behind the function comes from the following mathematical formula presented
in the Wikipedia article about the Jaro-Winkler distance http://en.wikipedia.org/
wiki/Jaro%E2%80%93Winkler_distance:

In the preceding formula, the following are the representations of the variables used:

ff s1 is the first string.

ff s2 is the second string.

ff m is the number of identical characters within a distance of at the most half the
length of the longer string. These are called matching characters.

ff t is half the number of matching characters that are not in the same index. In other
words, it is half the number of transpositions.

How to do it...
1.	 We will need access to the elemIndices function, which is imported as follows:

import Data.List (elemIndices)

2.	 Define the Jaro-Winkler function based on the following formula:
jaro :: Eq a => [a] -> [a] -> Double

jaro s1 s2
 | m == 0 = 0.0
 | otherwise = (1/3) * (m/ls1 + m/ls2 + (m-t)/m)

3.	 Define the variables used, as follows:
 where ls1 = toDouble $ length s1

 ls2 = toDouble $ length s2

 m' = matching s1 s2 d

 d = fromIntegral $
 max (length s1) (length s2) 'div' 2 – 1

 m = toDouble m'

 t = toDouble $ (m' - matching s1 s2 0) 'div' 2

http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

Chapter 3

83

4.	 Define a helper function to convert an integer to Double type:
toDouble :: Integral a => a -> Double

toDouble n = (fromIntegral n) :: Double

5.	 Define a helper function to find the number of matching characters within a specified
distance, as shown in the following code snippet:
matching :: Eq a => [a] -> [a] -> Int -> Int

matching s1 s2 d = length $ filter
 (\(c,i) -> not (null (matches s2 c i d)))
 (zip s1 [0..])

6.	 Define a helper function to find the number of matching characters from a specific
character at a specified index as follows.
matches :: Eq a => [a] -> a -> Int -> Int -> [Int]

matches str c i d = filter (<= d) $
 map (dist i) (elemIndices c str)
 where dist a b = abs $ a - b

7.	 Test out the algorithm by printing out a couple of examples as follows:
main = do
 print $ jaro "marisa" "magical"
 print $ jaro "haskell" "hackage"

8.	 The similarities are printed out as such, implying "marisa" is closer to "magical" than
"haskell" is to "hackage".
$ runhaskell Main.hs

0.746031746031746

0.7142857142857142

See also
Another way to compute string similarity is defined in the previous recipe entitled
Computing the Edit Distance.

The Science of Words

84

Finding strings within one-edit distance
This recipe will demonstrate how to find strings that are one-edit distance away from a
specified string. This function can be used to correct spelling.

Getting ready
The algorithm in this recipe is based heavily on Peter Norvig's spell corrector algorithm
described at http://norvig.com/spell-correct.html. Take a look at and study
the edits1 Python function implemented there.

How to do it...
1.	 Import a couple of character and list functions as follows:

import Data.Char (toLower)
import Data.List (group, sort)

2.	 Define a function to return strings that are one-edit distance away, as shown in the
following code snippet:
edits1 :: String -> [String]

edits1 word = unique $
 deletes ++ transposes ++ replaces ++ inserts
 where splits = [(take i word', drop i word') |
 i <- [0..length word']]

3.	 Create a list of strings with one character deleted, as follows:
 deletes = [a ++ (tail b) |
 (a,b) <- splits, (not.null) b]

4.	 Create a list of strings with two characters swapped, as follows:
 transposes = [a ++ [b!!1] ++ [head b] ++ (drop 2 b) |
 (a,b) <- splits, length b > 1]

5.	 Create a list of strings with one of the characters replaced by another letter in the
alphabet, as follows:
 replaces = [a ++ [c] ++ (drop 1 b)
 | (a,b) <- splits
 , c <- alphabet
 , (not.null) b]

http://norvig.com/spell-correct.html

Chapter 3

85

6.	 Create a list of strings with one character inserted anywhere, as follows:
 inserts = [a ++ [c] ++ b
 | (a,b) <- splits
 , c <- alphabet]

7.	 Define the alphabet and a helper function to convert a string to lowercase as follows:
 alphabet = ['a'..'z']
 word' = map toLower word

8.	 Define a helper function to obtain unique elements from a list, as follows:
 unique :: [String] -> [String]
 unique = map head.group.sort

9.	 Print out all possible strings that are one-edit distance away from the following string,
as follows:
main = print $ edits1 "hi"

The result is, as follows:

["ahi","ai","bhi","bi","chi","ci","dhi","di","ehi","ei","fhi","fi","ghi",
"gi","h","ha","hai","hb","hbi","hc","hci","hd","hdi","he","hei","hf","hfi
","hg","hgi","hh","hhi","hi","hia","hib","hic","hid","hie","hif","hig","h
ih","hii","hij","hik","hil","him","hin","hio","hip","hiq","hir","his","hi
t","hiu","hiv","hiw","hix","hiy","hiz","hj","hji","hk","hki","hl","hli","
hm","hmi","hn","hni","ho","hoi","hp","hpi","hq","hqi","hr","hri","hs","hs
i","ht","hti","hu","hui","hv","hvi","hw","hwi","hx","hxi","hy","hyi","hz"
,"hzi","i","ih","ihi","ii","jhi","ji","khi","ki","lhi","li","mhi","mi","n
hi","ni","ohi","oi","phi","pi","qhi","qi","rhi","ri","shi","si","thi","ti
","uhi","ui","vhi","vi","whi","wi","xhi","xi","yhi","yi","zhi","zi"]

More intuitively, we've created a neighborhood of words that are different by only 1 insertion,
deletion, or substitution, or transpositions. The following figure tries to show this neighborhood:

hi

gi hh

ii hj

ahi hia

The Science of Words

86

There's more...
We can recursively apply edit1 to find strings that are an arbitrary edit distance away.
However, for values of n greater than three, this will take an unacceptably long time. In the
following code, edits1' is a function that takes in a list of strings and produces all strings
that are one-edit distance away from these. Then in editsN, we simply apply the edits1'
function iteratively as follows:

edits1' :: [String] -> [String]
edits1' ls = unique $ concat $ map edits1 ls

editsN :: String -> Int -> [String]
editsN word n = iterate edits1' (edits1 word) !! n

See also
This function is very useful in implementing a spell corrector described in the Fixing spelling
mistakes recipe.

Fixing spelling mistakes
When gathering human-provided data, spelling mistakes may sneak in. This recipe will
correct a misspelled word using Peter Norvig's simple heuristic spellchecker described
at http://norvig.com/spell-correct.html.

This recipe is just one approach to a very difficult problem in machine learning. We can
use it as a starting point or as an influence to implement a more powerful solution with
better results.

Getting ready
Refer to Norvig's spell-correction Python algorithm located at http://norvig.com/spell-
correct.html.

The core algorithm works as follows:

ff Transform raw text into lowercase alphabetical words

ff Compute a frequency map of all the words

ff Define functions to produce all strings within an edit distance of one or two

ff Find all possible candidates of a misspelling by looking up valid words within this edit
distance of one or two

ff Finally, pick out the candidate with the highest frequency of occurrence in the
trained corpus

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

Chapter 3

87

The Haskell algorithm below mimics this Python code.

How to do it...
1.	 Import the following functions:

import Data.Char (isAlpha, isSpace, toLower)
import Data.List (group, sort, maximumBy)
import Data.Ord (comparing)
import Data.Map (fromListWith, Map, member, (!))

2.	 Define a function to automatically correct the spelling of each word in a sentence:
autofix :: Map String Int -> String -> String

autofix m sentence = unwords $
 map (correct m) (words sentence)

3.	 Get the words from a body of text.
getWords :: String -> [String]

getWords str = words $
 filter (\x -> isAlpha x || isSpace x) lower

 where lower = map toLower str

4.	 Compute a frequency map of the words provided, as follows:
train :: [String] -> Map String Int

train = fromListWith (+) . ('zip' repeat 1)

5.	 Find strings one-edit distance away as follows:
edits 1 :: String -> [String]

edits1 word = unique $
 deletes ++ transposes ++ replaces ++ inserts

 where splits = [(take i word', drop i word')
 | i <- [0..length word']]

 deletes = [a ++ (tail b)
 | (a,b) <- splits
 , (not.null) b]

 transposes = [a ++ [b !! 1] ++ [head b] ++ (drop 2 b)

The Science of Words

88

 | (a,b) <- splits, length b > 1]

 replaces = [a ++ [c] ++ (drop 1 b)
 | (a,b) <- splits, c <- alphabet
 , (not.null) b]

 inserts = [a ++ [c] ++ b |
 (a,b) <- splits, c <- alphabet]

 alphabet = ['a'..'z']

 word' = map toLower word

6.	 Find words that are apart by an edit distance of two:
knownEdits2 :: String -> Map String a -> [String]

knownEdits2 word m = unique $ [e2
 | e1 <- edits1 word
 , e2 <- edits1 e1
 , e2 'member' m]

7.	 Define a helper function to obtain unique elements from a list, as follows:
unique :: [String] -> [String]

unique = map head.group.sort

8.	 Find known words from a list of strings as follows:
known :: [String] -> Map String a -> [String]

known ws m = filter ('member' m) ws

9.	 Correct a spelling mistake by returning the most common candidate as follows:
correct :: Map String Int -> String -> String

correct m word = maximumBy (comparing (m!)) candidates
 where candidates = head $ filter (not.null)
 [known [word] m
 , known (edits1 word) m
 , knownEdits2 word m
 , [word]]

Chapter 3

89

10.	 Gather a list of known words used in common literature from big.txt. The file is
available at http://norvig.com/big.txt, or we can make our own. Test out the
spell corrector as follows:
main :: IO ()

main = do
 rawText <- readFile "big.txt"
 let m = train $ getWords rawText
 let sentence = "such codez many hsakell very spel so korrect"
 print $ autofix m sentence

11.	 The correct spellings are printed out as follows:
$ runhaskell Main.hs

"such code many haskell very spell so correct"

How it works...
The algorithm assumes that spelling mistakes occur one- or two-edit distances away.
It establishes a list of known words within one- or two-edit distances and returns the most
commonly used word based on the frequency map generated by reading in a corpus of
real-world text.

There's more...
This algorithm runs quickly, but it is very simplistic. This recipe provides a starting point to
implement a spell corrector, but is certainly not state of the art. Some improvements that
can be added to the code could involve parallelizing, caching, or designing better heuristics.

See also
For more in-depth analysis about the edit1 function, refer to the Finding strings within
one-edit distance recipe.

http://norvig.com/big.txt

4
Data Hashing

In this chapter, we will cover the following recipes:

ff Hashing a primitive data type

ff Hashing a custom data type

ff Running popular cryptographic hash functions

ff Running a cryptographic checksum on a file

ff Performing fast comparisons between data types

ff Using a high-performance hash table

ff Using Google's CityHash hash functions for strings

ff Computing Geohash for location coordinates

ff Using a bloom filter to remove unique items

ff Running MurmurHash, a simple but speedy hashing algorithm

ff Measuring image similarity with perceptual hashes

Data Hashing

92

Introduction

A hash is a lossy way of representing an object into a small and typically fixed-length value.
Hashing data embellishes us with speedy lookups and lightweight handling of massive datasets.

The output of a hashing function is referred to as a digest. One of the principal properties
of a good hashing function is that it must be deterministic, which means a given input must
always produce the same corresponding output. Sometimes, two different inputs may end up
producing the same output, and we call that a collision. Given a hash alone, we cannot invert
the process to rediscover the object within an adequate time. To minimize the chances of a
collision, another property of a hash function called uniformity is used. In other words, the
probability of each output occurring should be nearly the same.

We will start by first producing a simple digest from an input. Then in the next recipe, we will
run the hashing algorithm on our custom-made data type.

Another important application of hashing is in cryptography. We will cover some of the most
popular cryptographic hashing algorithms such as SHA-512. We will also apply these hashes
on files for computing checksums to ensure file integrity.

Lastly, we will cover many nontraditional hashing approaches including CityHash, GeoHashing,
bloom filters, MurmurHash, and pHash.

Hashing a primitive data type
This recipe demonstrates how to use a simple hash function on various primitive data types.

Chapter 4

93

Getting ready
Install the Data.Hashable package from Cabal as follows:

$ cabal install hashable

How to do it…
1.	 Import the hashing function with the following line:

import Data.Hashable

2.	 Test the hash function on a string as follows; this function is actually a wrapper
around the hashWithSalt function with a default salt value:
main = do
 print $ hash "foo"

3.	 Test out the hashWithSalt functions using different initial salt values as follows:
 print $ hashWithSalt 1 "foo"
 print $ hashWithSalt 2 "foo"

4.	 We can also hash tuples and lists as follows:
 print $ hash [(1 :: Int, "hello", True)
 , (0 :: Int, "goodbye", False)]

5.	 Notice in the following output how the first three hashes produce different results
even though their input is the same:
$ runhaskell Main.hs

7207853227093559468
367897294438771247
687941543139326482
6768682186886785615

How it works…
Hashing with a salt means applying the hash function only after slightly modifying it. It's as
if we "salted up" the input before processing it through the hash function. Even the slightest
change in salt values produces dramatically different hashed digests.

Data Hashing

94

We need this concept of a salt for better password security. Hash functions always produce
the same output for the same input, and this is both good and bad. There are databases
of rainbow tables for every commonly used password in existence for all major hashing
algorithms. If a website with a login system service (such as Packt Publishing) stores the
password using cryptographic hashes, but without being salted, then it's no better than plain
text if the password itself is considered weak. If a service such as Packt Publishing uses salt
in its cryptographic hashing (and it should), then it's an added layer of security and rainbow
tables are rendered useless.

There's more…
The previous code produced a hash of a string, but the algorithm is not limited to just strings.
The following data types also implement hashable:

ff Bool

ff Char

ff Int

ff Int8

ff Int16

ff Int32

ff Int64

ff Word

ff Word8

ff Word16

ff Word32

ff Word64

ff ByteString

ff List of hashable items

ff Tuple of hashable items

ff Maybe of a hashable item

See also
For using a hash function on a custom-made data type, refer to the Hashing a custom data
type recipe.

Chapter 4

95

Hashing a custom data type
Even a custom-defined data type can be hashed easily. Dealing with hashed digests is often
useful when the data itself is too space consuming to manage directly. By referencing a data
by its digest, we can easily skip the cost of carrying around whole data types. This is especially
useful in data analysis.

Getting ready
Install the Data.Hashable package from Cabal as follows:

$ cabal install hashable

How to do it…
1.	 Use the GHC language extension DeriveGeneric to autodefine the hash functions

for our custom data types as follows:
{-# LANGUAGE DeriveGeneric #-}

2.	 Import the relevant packages using the following lines of code:
import GHC.Generics (Generic)
import Data.Hashable

3.	 Create a custom data type and let GHC autodefine its hashable instance as follows:
data Point = Point Int Int
 deriving (Eq, Generic)

instance Hashable Point

4.	 In main, create three points. Let two of them be the same, and let the third point be
different, as shown in the following code snippet:
main = do
 let p1 = Point 1 1
 let p2 = Point 1 1
 let p3 = Point 3 5

5.	 Print the hash values of identical points as follows:
if p1 == p2
 then putStrLn "p1 = p2"
 else putStrLn "p1 /= p2"
 if hash p1 == hash p2
 then putStrLn "hash p1 = hash p2"
 else putStrLn "hash p1 /= hash p2"

Data Hashing

96

6.	 Print the hash values of different points as follows:
 if p1 == p3
 then putStrLn "p1 = p3"
 else putStrLn "p1 /= p3"
 if hash p1 == hash p3
 then putStrLn "hash p1 = hash p3"
 else putStrLn "hash p1 /= hash p3"

7.	 The output will be as follows:
$ runhaskell Main.hs

p1 = p2

hash p1 = hash p2

p1 /= p3

hash p1 /= hash p3

There's more…
We can define a custom hashing function on our own data types by providing an instance for
Hashable. The Hashable instance only requires the implementation of hashWithSalt ::
Int -> a -> Int. To help implement hashWithSalt, we also have two useful functions:

ff Hashing a pointer with salt is performed as shown in the following code snippet:
hashPtrWithSalt :: Ptr a -- pointer to the data to hash
 -> Int -- length, in bytes
 -> Int -- salt
 -> IO Int -- hash value

ff Hashing a byte array with salt is performed as shown in the following code snippet:
hashByteArrayWithSalt
 :: ByteArray# -- data to hash
 -> Int -- offset, in bytes
 -> Int -- length, in bytes
 -> Int -- salt
 -> Int -- hash value

See also
To hash a built-in primitive, refer to the Hashing a primitive data type recipe.

Chapter 4

97

Running popular cryptographic hash
functions

A cryptographic hash function has specific properties that make it different from other hash
functions. First of all, producing a possible input message from a given hash digest output
should be intractable, meaning that it must take an exponentially long time to solve in practice.

For example, if a hash produces the digest 66fc01ae071363ceaa4178848c2f6224, then
in principle, discovering the content used to generate a digest should be difficult.

In practice, some hash functions are easier to crack than others. For example, MD5 and
SHA-1 are considered trivial to crack and should not be used, but are demonstrated later
for completeness. More information about how MD5 and SHA-1 are insecure can be found
at http://www.win.tue.nl/hashclash/rogue-ca and https://www.schneier.
com/blog/archives/2005/02/cryptanalysis_o.html respectively.

Getting ready
Install the Crypto.Hash package from Cabal as follows:

$ cabal install cryptohash

How to do it…
1.	 Import the cryptographic hash function library as follows:

import Data.ByteString.Char8 (ByteString, pack)
import Crypto.Hash

2.	 Define each hash functions by explicitly associating the data types as follows:
skein512_512 :: ByteString -> Digest Skein512_512
skein512_512 bs = hash bs

skein512_384 :: ByteString -> Digest Skein512_384
skein512_384 bs = hash bs

skein512_256 :: ByteString -> Digest Skein512_256
skein512_256 bs = hash bs

skein512_224 :: ByteString -> Digest Skein512_224

http://www.win.tue.nl/hashclash/rogue-ca
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

Data Hashing

98

skein512_224 bs = hash bs

skein256_256 :: ByteString -> Digest Skein256_256
skein256_256 bs = hash bs

skein256_224 :: ByteString -> Digest Skein256_224
skein256_224 bs = hash bs

sha3_512 :: ByteString -> Digest SHA3_512
sha3_512 bs = hash bs

sha3_384 :: ByteString -> Digest SHA3_384
sha3_384 bs = hash bs

sha3_256 :: ByteString -> Digest SHA3_256
sha3_256 bs = hash bs

sha3_224 :: ByteString -> Digest SHA3_224
sha3_224 bs = hash bs

tiger :: ByteString -> Digest Tiger
tiger bs = hash bs

whirlpool :: ByteString -> Digest Whirlpool
whirlpool bs = hash bs

ripemd160 :: ByteString -> Digest RIPEMD160
ripemd160 bs = hash bs

sha512 :: ByteString -> Digest SHA512
sha512 bs = hash bs

sha384 :: ByteString -> Digest SHA384
sha384 bs = hash bs

sha256 :: ByteString -> Digest SHA256
sha256 bs = hash bs

sha224 :: ByteString -> Digest SHA224

Chapter 4

99

sha224 bs = hash bs

sha1 :: ByteString -> Digest SHA1
sha1 bs = hash bs

md5 :: ByteString -> Digest MD5
md5 bs = hash bs

md4 :: ByteString -> Digest MD4
md4 bs = hash bs

md2 :: ByteString -> Digest MD2
md2 bs = hash bs

3.	 Test out each cryptographic hash function on the same input, as shown in the
following code snippet:
main = do
 let input = pack "haskell data analysis"
 putStrLn $ "Skein512_512: " ++ (show.skein512_512) input
 putStrLn $ "Skein512_384: " ++ (show.skein512_384) input
 putStrLn $ "Skein512_256: " ++ (show.skein512_256) input
 putStrLn $ "Skein512_224: " ++ (show.skein512_224) input
 putStrLn $ "Skein256_256: " ++ (show.skein256_256) input
 putStrLn $ "Skein256_224: " ++ (show.skein256_224) input
 putStrLn $ "SHA3_512: " ++ (show.sha3_512) input
 putStrLn $ "SHA3_384: " ++ (show.sha3_384) input
 putStrLn $ "SHA3_256: " ++ (show.sha3_256) input
 putStrLn $ "SHA3_224: " ++ (show.sha3_224) input
 putStrLn $ "Tiger: " ++ (show.tiger) input
 putStrLn $ "Whirlpool: " ++ (show.whirlpool) input
 putStrLn $ "RIPEMD160: " ++ (show.ripemd160) input
 putStrLn $ "SHA512: " ++ (show.sha512) input
 putStrLn $ "SHA384: " ++ (show.sha384) input
 putStrLn $ "SHA256: " ++ (show.sha256) input
 putStrLn $ "SHA224: " ++ (show.sha224) input
 putStrLn $ "SHA1: " ++ (show.sha1) input
 putStrLn $ "MD5: " ++ (show.md5) input
 putStrLn $ "MD4: " ++ (show.md4) input
 putStrLn $ "MD2: " ++ (show.md2) input

Data Hashing

100

4.	 The final output can be seen in the following screenshot:
$ runhaskell Main.hs

See also
To run one of these cryptographic hash functions on a file to perform an integrity check, refer
to the Running a cryptographic checksum on a file recipe.

Running a cryptographic checksum on a file
One of the most effective methods to determine whether a file on a computer is different
from another file elsewhere is by comparing their cryptographic hashes. If the two hashes are
equal, it's only highly probable that the files are equal, but not strictly necessary due to the
possibility of collisions.

Chapter 4

101

After downloading a file online, such as Arch Linux from https://www.archlinux.org/
download, it is a good idea to ensure the cryptographic hashes match up. For example,
have a look at the following screenshot:

The preceding screenshot shows the corresponding hashes for the Arch Linux download as of
late May, 2014.

Notice how both MD5 and SHA1 hashes are provided. This recipe will show how to compute
these hashes in Haskell to ensure data integrity.

We will compute the SHA256, SHA512, and MD5 hashes of its own source file.

Getting ready
Install the Crypto.Hash package from Cabal as follows:

$ cabal install cryptohash

How to do it…
Create a file named Main.hs and insert the following code:

1.	 Import the relevant packages as follows:
import Crypto.Hash
import qualified Data.ByteString as BS

2.	 Define the MD5 hash function as follows:
md5 :: BS.ByteString -> Digest MD5
md5 bs = hash bs

3.	 Define the SHA256 hash function as follows:
sha256 :: BS.ByteString -> Digest SHA256
sha256 bs = hash bs

4.	 Define the SHA512 hash function as follows:
sha512 :: BS.ByteString -> Digest SHA512
sha512 bs = hash bs

https://www.archlinux.org/download
https://www.archlinux.org/download

Data Hashing

102

5.	 Open a file of the ByteString type using the readFile function provided by the
Data.ByteString package as follows:
main = do
 byteStr <- BS.readFile "Main.hs"

6.	 Test out the various hashes on the file as follows:
 putStrLn $ "MD5: " ++ (show.md5) byteStr
 putStrLn $ "SHA256: " ++ (show.sha256) byteStr
 putStrLn $ "SHA512: " ++ (show.sha512) byteStr

7.	 The following output is generated:
$ runhaskell Main.hs

MD5: 242334e552ae8ede926de9c164356d18

SHA256:

50364c25e0e9a835df726a056bd5370657f37d20aabc82e0b1719a343ab505d8

SHA512: 1ad6a9f8922b744c7e5a2d06bf603c267ca6becbf52b2b22f8e5a8e2d
82fb52d87ef4a13c9a405b06986d5d19b170d0fd05328b8ae29f9d92ec0bca
80f7b60e7

See also
To apply the cryptographic hash functions on data types instead, refer to the Running popular
cryptographic hash functions recipe.

Performing fast comparisons between data
types

The StableName package allows us to establish constant time comparisons of arbitrary data
types. The Hackage documentation elegantly describes this (http://hackage.haskell.
org/package/base-4.7.0.0/docs/System-Mem-StableName.html):

"Stable names solve the following problem: suppose you want to build a hash table
with Haskell objects as keys, but you want to use pointer equality for comparison;
maybe because the keys are large and hashing would be slow, or perhaps because
the keys are infinite in size. We can't build a hash table using the address of the
object as the key, because objects get moved around by the garbage collector,
meaning a re-hash would be necessary after every garbage collection."

http://hackage.haskell.org/package/base-4.7.0.0/docs/System-Mem-StableName.html
http://hackage.haskell.org/package/base-4.7.0.0/docs/System-Mem-StableName.html

Chapter 4

103

How to do it…
1.	 Import the built-in StableName package as follows:

import System.Mem.StableName

2.	 Create a custom data type as follows:
data Point = Point [Int]

3.	 In main, define two points as follows:
 main = do
 let p1 = Point [1..]
 let p2 = Point [2,4]

4.	 Get the stable name of each point and display it using the following set of commands:
sn1 <- makeStableName p1
sn2 <- makeStableName p2
print $ hashStableName sn1
print $ hashStableName sn2

5.	 Notice in the following result how we can easily obtain the stable name of arbitrary
data types:
$ runhaskell Main.hs

22

23

Using a high-performance hash table
Haskell already comes with a Data.Map module based on size-balanced binary trees.
There exist better-optimized hash table libraries such as Data.HashMap from the
unordered-containers package.

For example, both Data.Map and Data.HashMap have insertion and lookup time
complexities of O(log n); however, the latter uses a large base, so in practice these
operations are constant time. More documentation on Data.HashMap can be found at
http://hackage.haskell.org/package/unordered-containers-0.2.4.0/docs/
Data-HashMap-Lazy.html.

In this recipe, we will use the unordered-contains library from Hackage to create a mapping of
word size to a set of words of that size.

http://hackage.haskell.org/package/unordered-containers-0.2.4.0/docs/Data-HashMap-Lazy.html
http://hackage.haskell.org/package/unordered-containers-0.2.4.0/docs/Data-HashMap-Lazy.html

Data Hashing

104

Getting ready
Download a large corpus of text and name the file big.txt as follows:

$ wget norvig.com/big.txt

Install the Data.HashMap package using Cabal as follows:

$ cabal install unordered-containers

How to do it…
1.	 Import the HashMap package as follows:

import Data.HashMap.Lazy
import Data.Set (Set)
import qualified Data.Set as Set

2.	 Create a helper function to define an empty hash map using the following line
of code:
emptyMap = empty :: HashMap Int (Set String)

3.	 Define a function to insert a word to the hash map using the following code snippet:
insertWord m w = insertWith append key val m
 where append new old = Set.union new old
 key = length w
 val = Set.singleton w

4.	 Find all words of a specific length from a map as follows:
wordsOfLength len m = Set.size(lookupDefault Set.empty len
 m)

5.	 Construct the hashmap from a corpus of text using the following line of code:
constructMap text = foldl (\m w -> insertWord m w) emptyMap
 (words text)

6.	 Read the large corpus of text, construct the hash map, and print the number of words
of each length, as shown in the following code snippet:
main = do
 text <- readFile "big.txt"
 let m = constructMap text
 print [wordsOfLength s m | s <- [1..30]]

Chapter 4

105

7.	 The output is as follows:
$ runhaskell Main.hs

[59,385,1821,4173,7308,9806,11104,11503,10174,7948,5823,4024,2586,
1597,987,625,416,269,219,139,115,78,51,50,27,14,17,15,11,7]

If we plot the data, we can discover an interesting trend as shown in the following figure:

How it works…
Technical specifics about the library are explained in the following blog post by the author:

http://blog.johantibell.com/2012/03/announcing-unordered-
containers-02.html

http://blog.johantibell.com/2012/03/announcing-unordered-containers-02.html
http://blog.johantibell.com/2012/03/announcing-unordered-containers-02.html

Data Hashing

106

Using Google's CityHash hash functions for
strings

Google's CityHash hash functions are optimized for hashing strings, but are not meant to be
cryptographically secure. CityHash is ideal for implementing a hash table dealing with strings.
We will use it in this recipe to produce both 64-bit and 128-bit digests.

Getting ready
Install the cityhash package from Cabal as follows:

$ cabal install cityhash

How to do it…
1.	 Import the relevant packages as follows:

import Data.Digest.CityHash
import Data.ByteString.Char8 (pack)
import Data.Word (Word64)
import Data.LargeWord (Word128)

2.	 Test the various hashing function on an input string using the following code snippet:
main = do
 (pack str) (1 :: Word128) let str = "cityhash"
 print $ cityHash64 (pack str)
 print $ cityHash64WithSeed (pack str) (1 :: Word64)
 print $ cityHash64WithSeed (pack str) (2 :: Word64)
 print $ cityHash128 (pack str)
 print $ cityHash128WithSeed
 print $ cityHash128WithSeed (pack str) (2 :: Word128)

3.	 Display the output as follows:
$ runhaskell Main.hs

11900721293443925155

10843914211836357278

12209340445019361150

116468032688941434670559074973810442908

218656848647432546431274347445469875003

45074952647722073214392556957268553766

Chapter 4

107

How it works…
Google describes its package on its blog announcement at http://google-opensource.
blogspot.com/2011/04/introducing-cityhash.html as follows:

"The key advantage of our approach is that most steps contain at least two
independent mathematical operations. Modern CPUs tend to perform best
with this type of code."

See also
To see a more generic hashing function, refer to the Hashing a primitive data type and
Hashing a custom data type recipes.

Computing a Geohash for location
coordinates

A Geohash is a practical encoding of latitude-longitude coordinates. It does not behave like
a typical hash function since minor changes in location only produce minor changes in the
output digest. Geohash allows efficient proximity search and arbitrary precision determined
by the specified length of the digest.

Getting ready
Install the Geohashing library as follows:

$ cabal install geohash

How to do it…
1.	 Import the Geohash library as follows:

import Data.Geohash

2.	 Create a geohash of a latitude-longitude coordinate pair as follows:
 main = do
 let geohash1 = encode 10 (37.775, -122.419)
 putStrLn $ "geohash1 is " ++ (show geohash1)

3.	 Display the geohash using the following code snippet:
case geohash1 of
 Just g -> putStrLn $ "decoding geohash1: " ++
 (show.decode) g
 Nothing -> putStrLn "error encoding"

http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html
http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html

Data Hashing

108

4.	 Create a geohash of another similar latitude-longitude coordinate pair as follows:
let geohash2 = encode 10 (37.175, -125.419)
putStrLn $ "geohash2 is " ++ (show geohash2)

5.	 Display the geohash using the following code snippet:
case geohash2 of
Just g -> putStrLn $ "decoding geohash2: " ++ (show.decode)
 g
Nothing -> putStrLn "error encoding"

6.	 The output is as follows. Notice how the geohash appears to share the same prefix
due to their closeness.
$ runhaskell Main.hs

geohash1 is Just "9q8yyk9pqd"

decoding geohash1: Just (37.775000631809235,-122.4189966917038)

geohash2 is Just "9nwg6p88j6"

decoding geohash2: Just (37.175001204013824,-
 125.4190045595169)

Using a bloom filter to remove unique items
A bloom filter is an abstract data type that tests whether an item exists in a set. Unlike a
typical hash map data structure, a bloom filter only takes up a constant amount of space.
The advantage comes in handy when dealing with billions of data, such as representations
of DNA strands as strings: "GATA", "CTGCTA", and so on.

In this recipe, we will use a bloom filter to try to remove unique DNA strands from a list.
This is often desired because a typical DNA sample may contain thousands of strands that
only appear once. The major disadvantage of a bloom filter is that false positive results for
membership are possible. The bloom filter may accidentally claim that an element exists.
Though false negatives are not possible: a bloom filter will never claim that an element does
not exist when it actually does.

Chapter 4

109

Getting ready
Import the bloom filter package from Cabal as follows:

$ cabal install bloomfilter

How to do it…
1.	 Import the bloom filter package as follows:

import Data.BloomFilter (fromListB, elemB, emptyB, insertB)
import Data.BloomFilter.Hash (cheapHashes)
import Data.Map (Map, empty, insertWith)
import qualified Data.Map as Map

2.	 Create a function to remove the unique elements from a list. First check to see if
each item exists in the bloom filter; if so, add it to a hash map. If not, add it to the
bloom filter, as presented in the following code snippet:
removeUniques strands = foldl bloomMapCheck
 (emptyBloom, emptyMap) strands

 where emptyBloom = emptyB (cheapHashes 3) 1024
 emptyMap = empty :: Map String Int
 bloomMapCheck (b, m) x
 | elemB x b = (b, insertWith (+) x 1 m)
 | otherwise = (insertB x b, m)

3.	 Run the algorithm on a couple of DNA strand examples as follows:
main = do
let strands = ["GAT", "GATC", "CGT", "GAT"
 , "GAT", "CGT", "GAT", "CGT"]
print $ snd $ removeUniques strands

4.	 We see the following strands that likely occur at least twice:
$ runhaskell Main.hs

fromList [("CGT",2),("GAT",3)]

Data Hashing

110

How it works…
A bloom filter is composed of a couple of hashing functions and a list of numbers initialized
at zero. When inserting an element to this data structure, hashes are computed from each of
the hashing functions and the corresponding item in the list is updated. Membership tests on
a bloom filter are conducted by computing each of the hash functions in the input and testing
whether all corresponding list elements are above some threshold value.

For example, in the preceding figure, three hash functions are applied to every input. When a
hash is calculated for x, y, and z, the corresponding element in the list representing the bloom
filter is incremented. We can determine whether w exists in this bloom filter by computing the
three hashes and checking if corresponding indices are all at a desired value. In this case,
w does not exist in the bloom filter.

Running MurmurHash, a simple but speedy
hashing algorithm

Sometimes, the priority of a hashing function should be in maximizing its computation speed.
The MurmurHash algorithm exists for this reason. When dealing with massive data sets,
speed is essential.

There are negative qualities of a fast hashing algorithm. If hashing
algorithm A is 10 times faster than hashing algorithm B, then it's also
10 times faster to stumble upon the content used to create a digest
with A than with B using a random content search. A hashing algorithm
should be fast, but not so fast as to impact the security of the algorithm.

Chapter 4

111

Getting ready
Install the Murmur hashing algorithm from Cabal as follows:

$ cabal install murmur-hash

How to do it…
1.	 Import the Murmur hashing algorithm as follows:

import Data.Digest.Murmur32

2.	 Define a custom data type and implement an instance to use Murmur as follows:
data Point = Point Int Int
 instance (Hashable32 Point) where
 hash32Add (Point x y) h = x `hash32Add` (y `hash32Add` h)

3.	 Run the hashing algorithm on various inputs, using the following code snippet:
main = do
 let p1 = Point 0 0
 let p2 = Point 2 3
 putStrLn $ "hash of string: "
 ++ (show.hash32) "SO FAST WOW."
 putStrLn $ "hash of a data-type: " ++ (show.hash32) p1
 putStrLn $ "hash of another data-type: " ++ (show.hash32)
 p2

4.	 The following hashes are produced:
$ runhaskell Main.hs

hash of string: Hash32 0xa18fa3d2

hash of a data-type: Hash32 0x30408e22

hash of another data-type: Hash32 0xfda11257

Data Hashing

112

Measuring image similarity with perceptual
hashes

A perceptual hash produces a small digest from an image file where slight changes in the
images only produce a slight change in the hash. This can be useful to quickly compare
thousands of images.

Getting ready
Install the pHash library from www.phash.org. On a Debian-based system, we can install it
by using apt-get as follows:

$ sudo apt-get install libphash0-dev

Install the phash library from Cabal as follows:

$ cabal install phash

Find three nearly identical images. We will use the following image:

www.phash.org

Chapter 4

113

This is the second image that we will be using

And the following image is the third:

Data Hashing

114

How to do it…
1.	 Import the phash library as follows:

import Data.PHash
import Data.Maybe (fromJust, isJust)

2.	 Hash an image as follows:
main = do
 phash1 <- imageHash "image1.jpg"
 putStrLn $ "image1: " ++ show phash1

3.	 Hash a similar image as follows:
 phash2 <- imageHash "image2.jpg"
 putStrLn $ "image2: " ++ show phash2

4.	 Hash a slightly different image as follows:
 phash3 <- imageHash "image3.jpg"
 putStrLn $ "image3: " ++ show phash3

5.	 Compute the similarity of the first two images using the following code snippet:
 if isJust phash1 && isJust phash2
 then do putStr "hamming distance between image1 and
 image2: "
 print $ hammingDistance (fromJust phash1) (fromJust
 phash2)
 else print "Error, could not read images"

6.	 Compute the similarity of the first to the third image as follows:
 if isJust phash1 && isJust phash3
 then do putStr "hamming distance between image1 and
 image3: "
 print $ hammingDistance
 (fromJust phash1) (fromJust phash3)
 else print "Error, could not read images"

Chapter 4

115

7.	 The output hashes are as follows:
$ runhaskell Main.hs

image1: Just (PHash 14057618708811251228)

image2: Just (PHash 14488838648009883164)

image3: Just (PHash 9589915937059962524)

hamming distance between image1 and image2: 4

hamming distance between image1 and image3: 10

How it works…
It's much easier to visualize how similar these hashes are in hexadecimal (or binary),
since Hamming distance operates in bits.

The hexadecimal representation of the three images are as follows:

ff Image 1: c316b1bc36947e1c

ff Image 2: c912b1fc36947e1c

ff Image 3: 851639bc3650fe9c

By comparing these values, we can see that images 1 and 2 differ by only four, whereas
images 1 and 3 differ by a whopping 10 characters.

5
The Dance with Trees

Everything from creating simple binary trees to practical applications such as Huffman
encoding is covered in this section:

ff Defining a binary tree data type

ff Defining a rose tree (multiway tree) data type

ff Traversing a tree depth-first

ff Traversing a tree breadth-first

ff Implementing a Foldable instance for a tree

ff Calculating the height of a tree

ff Implementing a binary search tree data structure

ff Verifying the order property of a binary search tree

ff Using a self-balancing tree

ff Implementing a min-heap data structure

ff Encoding a string using a Huffman tree

ff Decoding a Huffman code

The Dance with Trees

118

Introduction

Trees are a common data structure used in a variety of data analysis techniques. A tree is a
hierarchical connection of nodes under one all-encompassing mighty root node. Every node
can have zero or more children, but each child node associates with only one parent. Also,
the root is the only special case that has no parent node. All nodes without children are also
referred to as leaf nodes.

In Haskell, we can very gracefully represent a tree since the recursive nature of the data
structure makes use of the recursive nature of functional programming. This section will
cover creating our own trees as well as using existing implementations from libraries.

We will implement heaps and Huffman trees, which are some of the most notable examples
of trees in data analysis. In other chapters throughout the book, we also run into HTML/XML
traversal, hierarchical clustering, and decision trees, which all depend heavily on the tree
data structure.

Defining a binary tree data type
In a binary tree, each node has at most two children. We will define a data structure to
encompass the left and right subtrees of each node.

Getting ready
The code in the recipe will represent the following tree. The root node is labeled n3 with a
value of 3. It has a left node n1 of value 1, and a right node n2 of value 2.

Chapter 5

119

n3: 3

n1: 1 n2: 2

How to do it...
1.	 This code requires no imports. We can jump in and define the data structure

recursively. A tree can either be a node with values or null/empty:
data Tree a = Node { value	:: a
 , left :: (Tree a)
 , right:: (Tree a) }
 | Leaf
 deriving Show

2.	 In main, create the tree shown in the preceding diagram and print it out:
main = do
 let n1 = Node { value = 1, left = Leaf, right = Leaf }
 let n2 = Node { value = 2, left = Leaf, right = Leaf }
 let n3 = Node { value = 3, left = n1, right = n2 }
 print n3

3.	 The full tree is printed out as follows:
$ runhaskell Main.hs

Node { value = 3

 , left = Node { value = 1

 , left = Leaf

 , right = Leaf }

 , right = Node { value = 2

 , left = Leaf

 , right = Leaf }

 }

The Dance with Trees

120

See also
If the nodes in a tree need more than two children, then see the next section, Defining a rose
tree (multiway tree) data type.

Defining a rose tree (multiway tree)
data type

A rose tree relaxes the limitation of at most two children per node. It can have an arbitrary
number of elements. Rose trees are common when parsing HTML to represent the Document
Object Model (DOM).

Getting ready
We will be representing the following tree in this recipe. The root node has three children:

n2: 2n1: 1 n3: 3

n4: 6

How to do it...
We will not need any imports for this recipe:

1.	 The rose tree data type is similar to that of the binary tree, except that instead of left
and right children, it will store an arbitrary list of children:
data Tree a = Node { value :: a
 , children :: [Tree a] }
 deriving Show

2.	 Construct the tree from the preceding diagram and print it out:
main = do
 let n1 = Node { value = 1, children = [] }
 let n2 = Node { value = 2, children = [] }
 let n3 = Node { value = 3, children = [] }
 let n4 = Node { value = 6, children = [n1, n2, n3] }
 print n4

Chapter 5

121

3.	 The printed output will be as follows:
$ runhaskell Main.hs

Node { value = 6

 , children = [Node { value = 1

 , children = [] }

 , Node { value = 2

 , children = [] }

 , Node { value = 3

 , children = [] }]

 }

How it works...
Instead of using dedicated left and right fields to represent child nodes, a rose tree uses a
list data structure to represent an arbitrary number of children. A rose tree can be used to
emulate a binary tree if each node is restricted to have at most two children.

See also
To represent a binary tree, it may be simpler to use the previous recipe, Defining a binary tree
data type.

Traversing a tree depth-first
This recipe will demonstrate one way to traverse through a tree. The algorithm starts at the
root node and continues exploring nodes along the entire length of a branch before going
back to explore more shallow nodes.

Since we will examine each node before recursively examining its child nodes, we call this a
pre-order traversal. Instead, if we examine each node afterwards, then we call this approach
post-order traversal. Anything in-between is an in-order traversal, but naturally, there is no
unique in-order traversal for rose trees.

The biggest advantage in using the depth-first approach is the minimal space complexity.
Video game AIs often use depth-first approaches in determining the ideal move to take
against an opponent. However, in enormous or infinite trees, a depth-first search may
never terminate if we keep visiting subsequent child nodes.

The Dance with Trees

122

Getting ready
We will traverse the following tree in a depth-first fashion. Starting at node r, we first explore
node n1, followed by n2, then go back up to find n3, and backtrack all the way to finally end
at n4.

r: 0

n4: 4n1: 1

n2: 2 n3: 3

How to do it...
1.	 We will use an existing rose tree implementation from Data.Tree:

import Data.Tree (rootLabel, subForest, Tree(..))
import Data.List (tails)

2.	 This function will traverse a tree depth-first:
depthFirst :: Tree a -> [a]

depthFirst (Node r forest) =
 r : concat [depthFirst t | t <- forest]

3.	 Here's a depth-first implementation of adding all the values in a tree:
add :: Tree Int -> Int

add (Node r forest) = r + sum [add t | t <- forest]

4.	 Define a tree to represent the preceding diagram:
someTree :: Tree Int

someTree = r
 where r = Node { rootLabel = 0, subForest = [n1, n4] }
 n1 = Node { rootLabel = 1, subForest = [n2, n3] }
 n2 = Node { rootLabel = 2, subForest = [] }
 n3 = Node { rootLabel = 3, subForest = [] }
 n4 = Node { rootLabel = 4, subForest = [] }

Chapter 5

123

5.	 Test out the depth-first functions:
main = do
 print $ depthFirst someTree
 print $ add someTree

6.	 This will print the following two lines of output:
$ runhaskell Main.hs

[0,1,2,3,4]

10

How it works…
In this recipe, we use the built-in rose tree data structure from Data.Tree. Similar
to our implementation in the previous recipe, it has the Tree data type having the
following constructor:

data Tree a = Node { rootLabel :: a
 , subForest :: Forest a }

We recursively run the depthFirst algorithm on every child node and append it to the
node's value, thereby creating a list that represents the tree traversal.

See also
If traversing a tree by the tree level is preferred, then take a look at the next section,
Traversing a tree breadth-first.

Traversing a tree breadth-first
In a breadth-first search approach to traversing a tree, nodes are visited in the order of the
depth of the tree. The root is visited, then its children, then each of their children, and so on
and so forth. This process requires a greater space complexity than the depth-first traversal
but comes in handy for optimizing search algorithms.

For example, imagine trying to find all relevant topics from a Wikipedia article. Traversing
all the links within the article in a breadth-first fashion will help ensure the topics start out
with relevance.

The Dance with Trees

124

Getting ready
Examine the tree in the following diagram. A breadth-first traversal will start at the root node r,
then continue to the next level, encountering n1 and n4, finally followed by n2 and n3.

r: 0

n4: 4n1: 1

n2: 2 n3: 3

How to do it...
1.	 We will be using an existing implementation of a rose tree from Data.Tree:

import Data.Tree (rootLabel, subForest, Tree(..))
import Data.List (tails)

2.	 Implement the breadth-first traversal of a tree:
breadthFirst :: Tree a -> [a]

breadthFirst t = bf [t]
 where bf forest | null forest = []
 | otherwise = map rootLabel forest ++
 bf (concat (map subForest forest))

3.	 For demonstration, implement a function to add the values of each node in a tree.
add :: Tree Int -> Int

add t = sum $ breadthFirst t

4.	 Create a tree based on the preceding diagram:
someTree :: Tree Int

someTree = root
 where root = Node { rootLabel = 0, subForest = [n1, n4] }
 n1 = Node { rootLabel = 1, subForest = [n2, n3] }
 n2 = Node { rootLabel = 2, subForest = [] }
 n3 = Node { rootLabel = 3, subForest = [] }
 n4 = Node { rootLabel = 4, subForest = [] }

Chapter 5

125

5.	 Test out the breadth-first algorithms in main:
main = do
 print $ breadthFirst someTree
 print $ add someTree

6.	 The printed output is as follows:
$ runhaskell Main.hs

[0,1,4,2,3]

10

How it works…
In this recipe, we use the built-in rose tree data structure from Data.Tree. Similar to
our implementation in one of the previous recipes, it has the Tree data type with the
following constructors:

data Tree a = Node { rootLabel :: a
 , subForest :: Forest a }

We perform the breadth-first search by creating a list that begins with the values of the node's
direct children. Then, the values of the children's children are appended, and so on until the
tree is fully traversed.

See also
If space complexity becomes an issue, then the previous recipe, Traversing a tree depth-first,
might offer a better approach.

Implementing a Foldable instance for a tree
The idea of traversing a tree can be generalized by implementing a Foldable instance.
Usually, folds are used on lists; for example, foldr1 (+) [1..10] traverses a list of
numbers to produce a grand sum. Similarly, we can apply foldr1 (+) tree to find
the sum of all nodes in a tree.

The Dance with Trees

126

Getting ready
We will be folding through the following tree to obtain a sum of all node values.

r: 0

n4: 4n1: 1

n2: 2 n3: 3

How to do it...
1.	 Import the following built-in packages:

import Data.Monoid (mempty, mappend)
import qualified Data.Foldable as F
import Data.Foldable (Foldable, foldMap)

2.	 The tree from Data.Tree already implements Foldable, so we will define our own
tree data type for demonstration purposes:
data Tree a = Node { value :: a
 , children :: [Tree a] }
 deriving Show

3.	 Implement the foldMap function for the Foldable instance. This implementation
will give us a post-order traversal of the tree:
instance Foldable Tree where
 foldMap f Null = mempty
 foldMap f (Node val xs) = foldr mappend (f val)
 [foldMap f x | x <- xs]

4.	 Define a function to fold through a tree to find the sum of all nodes:
add :: Tree Integer -> Integer

add = F.foldr1 (+)

Chapter 5

127

5.	 Construct a tree that represents the one in the preceding diagram:
someTree :: Tree Integer

someTree = root
 where root = Node { value = 0, children = [n1, n4] }
 n1 = Node { value = 1, children = [n2, n3] }
 n2 = Node { value = 2, children = [] }
 n3 = Node { value = 3, children = [] }
 n4 = Node { value = 4, children = [] }

6.	 Test out the folding by running the add function on a tree:
main :: IO ()
main = print $ add someTree

7.	 The result gets printed out as follows:
$ runhaskell Main.hs

10

How it works...
The function that is necessary to define a Foldable instance is either foldMap or foldr.
In this recipe, we define the foldMap :: (Foldable t, Data.Monoid.Monoid m) =>
(a -> m) -> t a -> m function that essentially maps a function f over every node in a
tree, and glues it together using mappend from Data.Monoid.

See also
Other ways to traverse through elements of a tree are discussed in the previous two sections,
Traversing a tree depth-first and Traversing a tree breadth-first.

Calculating the height of a tree
The height of a tree is the length of the longest downward path from the root node. For
example, the height of a balanced binary tree should be around log to the base 2 of the
number of nodes.

The Dance with Trees

128

Getting ready
As long as we're consistent, the height of a tree can be defined as either the number of nodes
or the number of edges in the longest path. In this recipe, we will count by using the number
of nodes. The longest path of this tree contains three nodes and two edges. Therefore, this
tree has a height of three units.

Sunny Overcast

Normal High Strong

Root

Rain

Weak

� � � �

�

How to do it...
1.	 Import the maximum function from Data.List and the built-in tree data

structure from Data.Tree:
import Data.List (maximum)
import Data.Tree

2.	 Define a function to calculate the height of a tree:
height :: Tree a -> Int

height (Node val []) = 1
height (Node val xs) = 1 + maximum (map height xs)

3.	 Construct a tree on which we will run our algorithm:
someTree :: Tree Integer

someTree = root
 where root = 0 [n1, n4]
 n1 = 1 [n2, n3]
 n2 = 2 []
 n3 = 3 []
 n4 = 4 []

Chapter 5

129

4.	 Test out the function in main:
main = print $ height someTree

5.	 The height of the tree will be printed as follows:
$ runhaskell Main.hs

3

How it works...
The height function recursively finds the maximum height among its child trees and returns
one plus that value.

Implementing a binary search tree data
structure

A binary search tree restricts an order property on a binary tree. This order property requires
that among every node, the nodes in the left subtree must not be greater, and that the nodes
in the right subtree must not be less than the current node.

How to do it...
1.	 Create a binary BSTree module to expose our binary search tree data structure.

Insert the following code in a file called BSTree.hs:
module BSTree (insert, find, single) where

2.	 Define the data structure for a binary tree:
data Tree a = Node	 {value	:: a
 , left :: (Tree a)
 , right :: (Tree a)}
 | Null
 deriving (Eq, Show)

3.	 Define a convenience function to create a one-node tree:
single :: a -> Tree a

single n = Node n Null Null

4.	 Implement a function to insert new values in the binary search tree:
insert :: Ord a => Tree a -> a -> Tree a

insert (Node v l r) v'

The Dance with Trees

130

 | v' < v = Node v (insert l v') r
 | v' > v = Node v l (insert r v')
 | otherwise = Node v l r

insert _ v' = Node v' Null Null

5.	 Implement a function to find a node with a specific value in a binary search tree:
find :: Ord a => Tree a -> a -> Bool

find (Node v l r) v'
 | v' < v = find l v'
 | v' > v = find r v'
 | otherwise = True

find Null v' = False

6.	 Now, test out the BSTree module by creating a new file that can be called Main.hs
with the following code:
import BSTree

7.	 In main, construct a binary search tree by calling the insert function on
various values:
main = do
 let tree = single 5
 let nodes = [6,4,8,2,9]
 let bst = foldl insert tree nodes

8.	 Print out the tree and test out the find function:
 print bst
 print $ find bst 1
 print $ find bst 2

9.	 The output should be as follows:
$ runhaskell Main.hs

Node { value = 5

 , left = Node { value = 4

 , left = Node { value = 2

 , left = Null

 , right = Null }

 , right = Null }

 , right = Node { value = 6

Chapter 5

131

 , left = Null

 , right = Node { value = 8

 , left = Null

 , right = Node { value = 9

 , left = Null

 , right = Null }

 }

 }

 }

False

True

How it works...
The core functions of a binary search tree data structure are insert and find, and are
used for inserting and finding elements in a binary search tree respectively. Finding a node is
accomplished by traversing the tree and taking advantage of its order property. If the value is
lower than expected, it will check the left node; otherwise, if the value is greater, it will check
the right node. Eventually, this recursive algorithm either finds the desired node or ends up at
a leaf node and consequently does not find the node.

A binary search tree does not guarantee the tree to be balanced, and therefore, a speedy
O(log n) lookup is not to be expected. There is always a possibility for a binary search tree to
end up looking like a list data structure (consider, for example, when we insert nodes in the
following order [1,2,3,4,5] and examine the resulting structure).

See also
Given a binary tree, the order property can be verified using the following recipe titled Verifying
the order property of a binary search tree. To use a balanced binary tree, refer to the recipe,
Using a self-balancing tree.

Verifying the order property of a binary
search tree

Given a binary tree, this recipe will cover how to verify if it actually satisfies the order property
such that all elements in the left subtree are of lesser value, and that all values of the right
subtree are of greater value.

The Dance with Trees

132

Getting ready
We will be verifying whether or not the following tree is a binary search tree:

r: 0

n4: 4n1: 1

n2: 2 n3: 3

How to do it...
No imports are necessary for this recipe. Perform the following steps to find if the tree is a
binary search tree:

1.	 Define a data structure for a binary tree:
data Tree a = Node { value :: a
 , left :: (Tree a)
 , right :: (Tree a)}
 | Null
 deriving (Eq, Show)

2.	 Construct a tree based on the preceding diagram:
someTree :: Tree Int

someTree = root
 where root = Node 0 n1 n4
 n1 = Node 1 n2 n3
 n2 = Node 2 Null Null
 n3 = Node 3 Null Null
 n4 = Node 4 Null Null

3.	 Define the function to verify whether or not a tree obeys the binary order property:
valid :: Ord t => Tree t -> Bool

valid (Node v l r) = leftValid && rightValid
 where leftValid = if notNull l

Chapter 5

133

 then valid l && value l <= v
 else True
 rightValid = if notNull r
 then valid r && v <= value r
 else True
 notNull t = t /= Null

4.	 Test out the function in main:
main = print $ valid someTree

5.	 Clearly, the tree does not obey the order property, and therefore, the output is
as follows:
$ runhaskell Main.hs

False

How it works...
The valid function recursively checks if the left subtree contains elements less than the
current node and if the right subtree contains elements greater than the current node.

Using a self-balancing tree
An AVL tree is a balanced binary search tree. The heights of each subtree differ by at most one.
On each insertion or deletion, the tree shifts around its nodes through a series of rotations to
become balanced. A balanced tree ensures the height is minimized, which guarantees lookups
and insertions to be within O(log n) time. In this recipe, we will use an AVL tree package directly,
but self-balancing trees also exist within the Data.Set and Data.Map implementations.

Getting ready
We will be using the AvlTree package to use Data.Tree.AVL:

$ cabal install AvlTree

How to do it...
1.	 Import the relevant AVL tree packages:

import Data.Tree.AVL
import Data.COrdering

The Dance with Trees

134

2.	 Set up an AVL tree from a list of values and read the minimum and maximum values
from it:
main = do
 let avl = asTree fstCC [4,2,1,5,3,6]
 let min = tryReadL avl
 let max = tryReadR avl
 print min
 print max

3.	 The minimum and maximum values are printed out as follows:
$ runhaskell Main.hs

Just 1

Just 6

How it works...
The asTree :: (e -> e -> COrdering e) -> [e] -> AVL e-function takes in an
ordering property and a list of elements to produce an AVL tree out of the corresponding
elements. The function fstCC :: Ord a => a -> a -> COrdering a comes from
Data.Cordering and is defined as:

A combining comparison for an instance of 'Ord' which keeps the first argument if
they are deemed equal. The second argument is discarded in this case.

There's more…
The implementation of Haskell's Data.Set and Data.Map functions efficiently uses
balanced binary trees. We can rewrite the recipe by simply using Data.Set:

import qualified Data.Set as S

main = do
 let s = S.fromList [4,2,1,5,3,6]
 let min = S.findMin s
 let max = S.findMax s
 print min
 print max

Chapter 5

135

Implementing a min-heap data structure
A heap is a binary tree with both a shape property and a heap property. The shape property
enforces the tree to behave in a balanced way by defining each node to have two children
unless the node is in the very last level. The heap property ensures that each node is less than
or equal to either of its child nodes if it is a min-heap, and vice versa in case of a max-heap.

Heaps are used for constant time lookups for maximum or minimum elements. We will use a
heap in the next recipe to implement our own Huffman tree.

Getting started
Install the lens library for easy data manipulation:

$ cabal install lens

How to do it...
1.	 Define the MinHeap module in a file MinHeap.hs:

module MinHeap (empty, insert, deleteMin, weights) where

import Control.Lens (element, set)
import Data.Maybe (isJust, fromJust)

2.	 We will use a list to represent a binary tree data structure for demonstration
purposes only. It is best to implement the heap as an actual binary tree (as we have
done in the previous sections), or we should use an actual array that will give us
constant time access to its elements. For simplicity, we will define the root node to
start at index 1. Given a node at index i, the left child will always be located at 2*i,
and the right child at 2*i + 1:
data Heap v = Heap { items :: [Node v] }
 deriving Show

data Node v = Node { value :: v, weight :: Int }
 deriving Show

3.	 We define a convenience function to initiate an empty heap:
empty = Heap []

4.	 Insertion of a node in a heap is done by appending the node to the end of the array
and percolating it up:
insert v w (Heap xs) = percolateUp position items'
 where items' = xs ++ [Node v w]
 position = length items' - 1

The Dance with Trees

136

5.	 Deleting a node from a heap is done by swapping the root node with the last element,
and then percolating down from the root node:
deleteMin (Heap xs) = percolateDown 1 items'
 where items' = set (element 1) (last xs) (init xs)

6.	 Create a function to view the minimum:
viewMin heap@(Heap (_:y:_)) =
 Just (value y, weight y, deleteMin heap)
viewMin _ = Nothing

7.	 Percolating down from a node means ensuring the heap property holds for the
current node; otherwise, swap the node with the greater or lesser (depending on
the max or min heap) child. This process is recursively applied all the way down
to the leaf nodes:
percolateDown i items
 | isJust left && isJust right = percolateDown i'
 (swap i i' items)
 | isJust left = percolateDown l (swap i l items)
 | otherwise = Heap items

8.	 Define the left, right, i', l, and r variables:
 where left = if l >= length items
 then Nothing
 else Just $ items !! l
 right = if r >= length items
 then Nothing
 else Just $ items !! r
 i' = if (weight (fromJust left)) <
 (weight (fromJust right))
 then l else r
 l = 2*i
 r = 2*i + 1

9.	 Percolating a node up means to recursively swap a node with its parent until the heap
property of the tree holds:
percolateUp i items
 | i == 1 = Heap items
 | w < w' = percolateUp c (swap i c items)
 | otherwise = Heap items
 where w = weight $ items !! i
 w' = weight $ items !! c
 c = i `div` 2

Chapter 5

137

10.	 We define a convenience function to swap items at two indices in a list:
swap i j xs = set (element j) vi (set (element i) vj xs)
 where vi = xs !! i
 vj = xs !! j

11.	 To view the weights of each node in the array representation of a heap, we can define
the following function:
weights heap = map weight ((tail.items) heap)

12.	 Finally, in a different file that we can name Main.hs, we can test out the min-heap:
import MinHeap

main = do
 let heap = foldr (\x -> insert x x)
 empty [11, 5, 3, 4, 8]
 print $ weights heap
 print $ weights $ iterate deleteMin heap !! 1
 print $ weights $ iterate deleteMin heap !! 2
 print $ weights $ iterate deleteMin heap !! 3
 print $ weights $ iterate deleteMin heap !! 4

13.	 The output of the weights in the array representation of the heap is as follows:
$ runhaskell Main.hs

[3,5,4,8,11]

[4,5,11,8]

[5,8,11]

[8,11]

[11]

There's more…
The code in this recipe is for understanding the heap data structure, but it is by no means
efficient. Better implementations of heaps exist on Hackage, including the Data.Heap
library that we will explore:

1.	 Import the heap library:
import Data.Heap (MinHeap, MaxHeap, empty, insert, view)

2.	 Define a helper function to construct a min-heap from a list:
minheapFromList :: [Int] -> MinHeap Int
minheapFromList ls = foldr insert empty ls

The Dance with Trees

138

3.	 Define a helper function to construct a max-heap from a list:
maxheapFromList :: [Int] -> MaxHeap Int
maxheapFromList ls = foldr insert empty ls

4.	 Test out the heaps:
main = do
 let myList = [11, 5, 3, 4, 8]
 let minHeap = minheapFromList myList
 let maxHeap = maxheapFromList myList
 print $ view minHeap
 print $ view maxHeap

5.	 The view functions return a tuple in a Maybe data structure. The first element of the
tuple is the value from performing a lookup, and the second element is the new heap
with that value removed:
$ runhaskell Main.hs

Just (3, fromList [(4,()),(11,()),(5,()),(8,())])

Just (11, fromList [(8,()),(3,()),(5,()),(4,())])

Encoding a string using a Huffman tree
A Huffman tree allows efficient encoding of data by calculating a probability distribution of
characters to optimize the space taken per character. Imagine compressing this book into one
piece of paper and back without any information loss. Huffman trees allow this type of optimal
lossless data compression based on statistics.

In this recipe, we will implement a Huffman tree from a source of text and produce a string
representation of its Huffman codes.

For example, the string "hello world" contains 11 characters, which, depending on the
encoding and architecture, may take up as few as 11 bytes of space to represent. The
code in this recipe will transform the string into just 51 bits, or 6.375 bytes.

Getting ready
Make sure to be connected to the Internet since this recipe will download text from
http://norgiv.com/big.txt to analyze probability distribution of many characters. We
will be using the min-heap that was implemented in the previous recipe by importing MinHeap.

http://norgiv.com/big.txt

Chapter 5

139

How to do it...
1.	 Import the following packages. We will be using our previous MinHeap module, so be

sure to include the code from the previous recipe:
import Data.List (group, sort)
import MinHeap
import Network.HTTP (getRequest, getResponseBody
 , simpleHTTP)
import Data.Char (isAscii)
import Data.Maybe (fromJust)
import Data.Map (fromList, (!))

2.	 Define a function to return an association list of characters to its frequency:
freq xs = map (\x -> (head x, length x)) .
 group . sort $ xs

3.	 The data structure of a Huffman tree is simply a binary tree:
data HTree = HTree { value :: Char
 , left :: HTree
 , right :: HTree }
 | Null
 deriving (Eq, Show)

4.	 Construct a Huffman tree with one value:
single v = HTree v Null Null

5.	 Define a function to construct a Huffman tree from a min-heap:
htree heap = if length (items heap) == 2
 then case fromJust (viewMin heap) of
 (a,b,c) -> a
 else htree $ insert newNode (w1 + w2) heap3

 where (min1, w1, heap2) = fromJust $ viewMin heap
 (min2, w2, heap3) = fromJust $ viewMin heap2
 newNode = HTree { value = ' '
 , left = min1
 , right = min2 }

The Dance with Trees

140

6.	 Get a map of Huffman codes from the Huffman tree:
codes htree = codes' htree ""

 where codes' (HTree v l r) str
 | l==Null && r==Null = [(v, str)]
 | r==Null = leftCodes
 | l==Null = rightCodes
 | otherwise = leftCodes ++ rightCodes
 where leftCodes = codes' l ('0':str)
 rightCodes = codes' r ('1':str)

7.	 Define a function to encode a string to text using the Huffman codes:
encode str m = concat $ map (m !) str

8.	 Test out the entire process by executing the following in main. Downloading and
calculating the frequency might take a couple of minutes:
main = do
 rsp <- simpleHTTP (getRequest
 "http://norvig.com/big.txt")
 html <- fmap (takeWhile isAscii) (getResponseBody rsp)
 let freqs = freq html
 let heap = foldr (\(v,w) -> insert (single v) w)
 empty freqs
 let m = fromList $ codes $ htree heap
 print $ encode "hello world" m

9.	 The string representation of the Huffman tree is then printed as follows:
$ runhaskell Main.hs

"010001110011110111110001011101000100011011011110010"

How it works...
First, we obtain a source of data to analyze by downloading the text from http://norvig.
com/big.txt. Next, we obtain the frequency map of each character and throw it in a heap.
The Huffman tree is constructed from this min-heap by combining the two lowest frequency
nodes until only one node is left in the min-heap. Finally, the Huffman codes are used on a
sample "hello world" string to see the encoding.

See also
To read an encoded Huffman value, see the next section, Decoding a Huffman code.

http://norvig.com/big.txt
http://norvig.com/big.txt

Chapter 5

141

Decoding a Huffman code
This code relies heavily on the previous recipe, Encoding a string using a Huffman tree.
The same Huffman tree data structure is used next to decode a string representation
of a Huffman coding.

Getting ready
Read the previous recipe, Encoding a string using a Huffman tree. The same HTree data
structure is used in this recipe.

How to do it...
We traverse down the tree until we hit a leaf node. Then, we prepend the character found and
restart from the root node. This process continues until no input is available:

decode :: String -> HTree -> String
decode str htree = decode' str htree
 where decode' "" _ = ""
 decode' ('0':str) (HTree _ l _)
 | leaf l = value l : decode' str htree
 | otherwise = decode' str l
 decode' ('1':str) (HTree v _ r)
 | leaf r = value r : decode' str htree
 | otherwise = decode' str r
 leaf tree = left tree == Null && right tree == Null

See also
To encode data using a Huffman tree, see the previous recipe, Encoding a string using a
Huffman tree.

6
Graph Fundamentals

In this chapter, we will cover the following recipes:

ff Representing a graph from a list of edges

ff Representing a graph from an adjacency list

ff Conducting a topological sort on a graph

ff Traversing a graph depth-first

ff Traversing a graph breadth-first

ff Visualizing a graph using Graphviz

ff Using Directed Acyclic Word Graphs

ff Working with hexagonal and square grid networks

ff Finding maximal cliques in a graph

ff Determining whether any two graphs are isomorphic

Graph Fundamentals

144

Introduction

This section on graphs is a natural extension to the previous one about trees. Graphs are
an essential data structure for representing networks, and this chapter will cover some
important algorithms.

A graph relieves some of the restrictions from a tree, which allows one to represent network
data such as biological gene relationship, social networks, and road topologies. Haskell
supports multiple graph data structure libraries with various helpful tools and algorithms.
This section will cover basic topics such as graph representation, topological sort, traversal,
and graph-specific packages.

Representing a graph from a list of edges
A graph can be defined by a list of edges, where an edge is a tuple of vertices. In the
Data.Graph package, a vertex is simply Int. In this recipe, we use the buildG function
to construct a graph data structure out of a list of edges.

Getting ready
We will be constructing the graph represented in the following diagram:

4

21

3

Chapter 6

145

How to do it...
Create a new file, which we will name Main.hs, and insert the following code:

1.	 Import the Data.Graph package:
import Data.Graph

2.	 Construct a graph using the buildG function from the imported library:
myGraph :: Graph

myGraph= buildG bounds edges
 where bounds = (1,4)
 edges = [(1,3), (1,4)
 , (2,3), (2,4)
 , (3,4)]

3.	 Print out the graph, its edges, and its vertices:
main = do
 print $ "The edges are " ++ (show.edges) myGraph
 print $ "The vertices are " ++ (show.vertices) myGraph

How it works...
A list of edges is fed to the buildG :: Bounds -> [Edge] -> Graph function to form
a graph data structure. The first argument specifies the lower and upper bounds for the
vertices, and the second argument specifies the list of edges that make up the graph.

This graph data type is actually a Haskell array of vertices to a list of vertices. It uses
the built-in Data.Array package, meaning we can use all the functions provided in
Data.Array in our graphs.

See also
For another way to construct a graph, see the next recipe, Representing a graph from an
adjacency list.

Representing a graph from an adjacency list
It may be more convenient to construct a graph given an adjacency list. In this recipe,
we will use the built-in package Data.Graph to read a mapping of a vertex to a list of
connected vertices.

Graph Fundamentals

146

Getting ready
We will be constructing the graph represented in the following diagram:

4

21

3

How to do it...
Create a new file, which we will name Main.hs, and insert the following code:

1.	 Import the Data.Graph package:
import Data.Graph

2.	 Use the graphFromEdges' function to obtain a tuple that contains the graph. A
graph data structure, Graph, is in the first element of the tuple returned. The second
element of the tuple contains mappings from a vertex number to its corresponding
value, Vertex -> (node, key, [key]):
myGraph :: Graph

myGraph = fst $ graphFromEdges' [("Node 1", 1, [3, 4])
 , ("Node 2", 2, [3, 4])
 , ("Node 3", 3, [4])
 , ("Node 4", 4, [])]

3.	 Print out some graph computations:
main = do
 putStrLn $ "The edges are "++ (show.edges) myGraph
 putStrLn $ "The vertices are "++ (show.vertices) myGraph

4.	 Running the code displays the edges and vertices of the graph:
$ runhaskell Main.hs

The edges are [(0,2), (0,3), (1,2), (1,3), (2,3)]

The vertices are [0, 1, 2, 3]

Chapter 6

147

How it works...
We may notice that the keys of each vertex have been automatically assigned by the
algorithm. The graphFromEdges' function actually returns a tuple of the type (Graph,
Vertex -> (node, key, [key])), where the first element is the graph data structure,
and the second element is a mapping of the vertex number to its actual key.

Just like the previous recipe, this graph data structure is actually an array from the Data.
Array package, meaning we can use all the functions provided in Data.Array in our graphs.

See also
If we instead wish to create a graph from a list of edges, the previous recipe, Representing a
graph from an adjacency list does the job.

Conducting a topological sort on a graph
If a graph is directed, the topological sort is one of the natural orderings of the graph. In a
network of dependencies, the topological sort will reveal a possible enumeration through all
the vertices that satisfy such dependencies.

Haskell's built-in graph package comes with a very useful function, topSort, to conduct a
topological sort over a graph. In this recipe, we will be creating a graph of dependencies
and enumerating a topological sort through it.

Getting ready
We will be reading the data from the user input. Each pair of lines will represent a dependency.

Create a file input.txt with the following pairs of lines:

$ cat input.txt

understand Haskell

do Haskell data analysis

understand data analysis

do Haskell data analysis

do Haskell data analysis

find patterns in big data

Graph Fundamentals

148

This file describes a list of dependencies, which are as follows:

ff One must understand Haskell in order to do Haskell data analysis

ff One must understand data analysis to do Haskell data analysis

ff One must do Haskell data analysis to find patterns in big data

We will use the topsort algorithm provided by Data.Graph.
Beware, this function does not detect cyclic dependencies.

How to do it...
In a new file, which we will call Main.hs, insert the following code:

1.	 Import the following from the graph, map, and list packages:
import Data.Graph
import Data.Map (Map, (!), fromList)
import Data.List (nub)

2.	 Read from the input and construct a graph from the dependencies. Run our
topological sort on the graph and print out a valid order:
main = do
 ls <- fmap lines getContents
 let g = graph ls
 putStrLn $ showTopoSort ls g

3.	 Construct a graph from a list of strings, where each pair of lines represents
a dependency:
graph :: Ord k => [k] -> Graph

graph ls = buildG bounds edges
 where bounds = (1, (length.nub) ls)
 edges = tuples $ map (mappingStrToNum !) ls
 mappingStrToNum = fromList $ zip (nub ls) [1..]
 tuples (a:b:cs) = (a, b) : tuples cs
 tuples _ = []

4.	 Sort the graph topologically and print out a valid ordering of the items:
showTopoSort :: [String] -> Graph -> String

showTopoSort ls g =
 unlines $ map (mappingNumToStr !) (topSort g)
 where mappingNumToStr = fromList $ zip [1..] (nub ls)

Chapter 6

149

5.	 Compile the code and feed it with the text file of dependencies:
$ runhaskell Main.hs < input.txt

understand data analysis

understand Haskell

do Haskell data analysis

find patterns in big data

Traversing a graph depth-first
Using depth-first search, one can traverse a graph to view the nodes in the desired order.
Implementing a topological sort, solving mazes, and finding connected components are all
examples of useful algorithms that rely on a depth-first traversal of a graph.

How to do it...
Start editing a new source file, which we will name Main.hs:

1.	 Import the required packages:
import Data.Graph
import Data.Array ((!))

2.	 Construct the graph from the adjacency list:
graph :: (Graph, Vertex -> (Int, Int, [Int]))

graph = graphFromEdges' [(1, 1, [3, 4])
 , (2, 2, [3, 4])
 , (3, 3, [4])
 , (4, 4, [])]

3.	 Scan the graph depth-first:
depth g i = depth' g [] i
depth' g2(gShape, gMapping) seen i =
 key : concat (map goDeeper adjacent)
 where goDeeper v = if v `elem` seen
 then []
 else depth' g (i:seen) v
 adjacent = gShape ! i
 (_, key, _) = gMapping i

Graph Fundamentals

150

4.	 Print out the list of vertices visited:
main = print $ depth graph 0

5.	 Run the algorithm to see the order of traversal.
$ runhaskell Main.hs

[1, 3, 4, 4]

We start at node 1 (which is at index 0). We traverse the first edge to 3. From number 3, we
traverse to the first edge to 4. Since 4 has no outbound edges, we traverse back to 3. Since
3 has no remaining outbound edges, we traverse back to 1. From 1, we traverse the second
edge to 4.

Traversing a graph breadth-first
Using breadth-first search, one can traverse a graph to view the nodes in the desired order.
In an infinite graph, a depth-first traversal may never return back to the starting node. One of
the most notable examples of a breadth-first traversal algorithm is finding the shortest path
between two nodes.

In this recipe, we will print out the breadth-first traversal of the nodes in a graph.

How to do it...
Insert the following code in a new file, which can be called Main.hs:

1.	 Import the required packages:
import Data.Graph
import Data.Array ((!))

2.	 Construct the graph from a list of edges:
graph :: Graph
graph = buildG bounds edges
 where bounds = (1,7)
 edges = [(1,2), (1,5)
 , (2,3), (2,4)
 , (5,6), (5,7)
 , (3,1)]

3.	 Scan the graph breadth-first:
breadth g i = bf [] [i]
 where bf :: [Int] -> [Int] -> [Int]
 bf seen forest | null forest = []
 | otherwise = forest ++
 bf (forest ++ seen)

Chapter 6

151

 (concat (map goDeeper forest))
 where goDeeper v = if elem v seen
 then [] else (g ! v)

4.	 Print out the list of vertices visited depth-first:
main = do
 print $ breadth graph 1

5.	 Running the code shows the traversal:
$ runhaskell Main.hs

[1, 5, 2, 7, 6, 4, 3, 1]

Visualizing a graph using Graphviz
One can easily draw an image that represents a graph using the graphviz library. In the
world of data analysis, visually interpreting an image can reveal peculiarities about the data
that the human eye can easily pick up. This recipe will let us construct a diagram out of
the data we are dealing with. More visualization techniques are explained in Chapter 11,
Visualizing Data.

Getting ready
Install the graphviz library from http://www.graphviz.org/Download.php as the
Haskell package requires it.

Next, install the package from cabal by running the following command:

$ cabal install graphviz

How to do it...
In a new file, insert the following code. We will name our file Main.hs:

1.	 Import the package:
import Data.GraphViz

2.	 Create the graph from nodes and edges:
graph :: DotGraph Int

graph = graphElemsToDot graphParams nodes edges

http://www.graphviz.org/Download.php

Graph Fundamentals

152

3.	 Use the default parameters for creating the graph. This function can be modified to
modify the graph's visual parameters:
graphParams :: GraphvizParams Int String Bool () String

graphParams = defaultParams

4.	 Create the code from the corresponding edges:
nodes :: [(Int, String)]

nodes = map (\x -> (x, "")) [1..4]

edges:: [(Int, Int, Bool)]

edges= [(1, 3, True)
 , (1, 4, True)
 , (2, 3, True)
 , (2, 4, True)
 , (3, 4, True)]

5.	 Execute main to output the graph:
main = addExtension (runGraphviz graph) Png "graph"

3

4

1 2

Using Directed Acyclic Word Graphs
We use Directed Acyclic Word Graphs (DAWG) to retrieve very quickly from a large corpus
of strings at an extremely small cost in space complexity. Imagine compressing all words in a
dictionary using a DAWG to perform efficient lookups for words. It is a powerful data structure
that can come in handy when dealing with a large corpus of words. A very nice introduction
to DAWGs can be found in Steve Hanov's blog post here: http://stevehanov.ca/blog/
index.php?id=115.

We can use this recipe to incorporate a DAWG in our code.

http://stevehanov.ca/blog/index.php?id=115
http://stevehanov.ca/blog/index.php?id=115

Chapter 6

153

Getting ready
Install the DAWG package using cabal:

$ cabal install dawg

How to do it...
We name a new file Main.hs and insert the following code:

1.	 Import the following packages:
import qualified Data.DAWG.Static as D
import Network.HTTP (simpleHTTP, getRequest,
 getResponseBody)
import Data.Char (toLower, isAlphaNum, isSpace)
import Data.Maybe (isJust)

2.	 In main, download a large corpus of text to store:
main = do
 let url = "http://norvig.com/big.txt"
 body <- simpleHTTP (getRequest url) >>= getResponseBody

3.	 Look up some strings from the DAWG constructed by the corpus:
 let corp = corpus body
 print $ isJust $ D.lookup "hello" corp
 print $ isJust $ D.lookup "goodbye" corp

4.	 Construct a getter function:
getWords :: String -> [String]

getWords str = words $ map toLower wordlike
 where wordlike =
 filter (\x -> isAlphaNum x || isSpace x) str

5.	 Create a DAWG from the corpus dictionary:
corpus :: String -> D.DAWG Char () ()

corpus str = D.fromLang $ getWords str

6.	 Running the code reveals that the two words indeed exist in the massive corpus.
Notice that there will be a time-consuming prepossessing step to build the DAWG:
$ runhaskell Main.hs

True

True

Graph Fundamentals

154

A naive approach may be to use the isInfixOf function from Data.
List to perform a substring search. On a typical ThinkPad T530 with 8 GB
RAM on an Intel i5 processor, performing the isInfixOf operation takes
around 0.16 seconds on average. However, if we preprocess a DAWG data
structure, lookups take less than 0.01 seconds!

Working with hexagonal and square grid
networks

Sometimes, the graph we're dealing with has a strict structure, such as a hexagonal or square
grid. Many video games use a hexagonal grid layout to facilitate diagonal movement because
moving diagonally in a square grid complicates the values of the traveled distance. On the
other hand, square grid structures are often used within graphs to traverse pixels for image
manipulation algorithms such as flood fill.

There is a very useful library in the Haskell package listing to deal with such topologies. We
can obtain the indices of a grid to traverse the world, which is essentially a path embedded
in a graph. For each grid index, we can query the library to find the neighboring indices,
effectively using grids as a graph.

Chapter 6

155

Getting started
Review the package documentation located at https://github.com/mhwombat/grid/
wiki.

Install the grid package using cabal:

$ cabal install grid

How to do it...
In a new file, which we will name Main.hs, insert the following code:

1.	 Import the following libraries:
import Math.Geometry.Grid (indices, neighbours)
import Math.Geometry.Grid.Hexagonal (hexHexGrid)
import Math.Geometry.Grid.Square (rectSquareGrid)
import Math.Geometry.GridMap ((!))
import Math.Geometry.GridMap.Lazy (lazyGridMap)

2.	 In main, print out some examples of hexagonal and grid functions:
main = do
 let putStrLn' str = putStrLn ('\n':str)
 putStrLn' "Indices of hex grid:"
 print $ indices hex
 putStrLn' "Neighbors around (1,1) of hex grid:"
 print $ neighbours hex (1,1)
 putStrLn' "Indices of rect grid:"
 print $ indices rect
 putStrLn' "Neighbors around (1,1) of rect grid:"
 print $ neighbours rect (1,1)
 putStrLn' "value of hex at index (1,1)"
 print $ hexM ! (1,1)

3.	 Use a helper function to construct a hexagonal grid:
hex = hexHexGrid 4

4.	 Use a helper function to construct a square grid:
rect = rectSquareGrid 3 5

5.	 Create a hexagonal grid with the associated numerical values:
hexM = lazyGridMap hex [1..]

https://github.com/mhwombat/grid/wiki
https://github.com/mhwombat/grid/wiki

Graph Fundamentals

156

Finding maximal cliques in a graph
Haskell comes with a luxury of vital graph libraries, conveniently one of which is the clique
detection library from Data.Algorithm.MaximualCliques. A clique in a graph is a
subgraph where all the nodes have connections between themselves, and is depicted
as follows:

0

2

1

4

3

5

For example, the preceding graph contains two cliques shaded in different colors. Perhaps,
the graph represents web pages that link to each other. We can visually infer that there might
be two clusters of Internet communities due to the structure of the graph. As the network of
connections increases, finding the greatest clique becomes an exponentially difficult problem.

In this recipe, we will use an efficient implementation of the maximal clique problem.

Getting started
Install the clique library using cabal:

$ cabal install maximal-cliques

How to do it...
Write the following code in a new file, which we will name Main.hs:

1.	 Import the required library:
import Data.Algorithm.MaximalCliques

2.	 In main, print out the max cliques:
main = print $ getMaximalCliques edges nodes

Chapter 6

157

3.	 Create the following graph:
edges 1 5 = True
edges 1 2 = True
edges 2 3 = True
edges 2 5 = True
edges 4 5 = True
edges 3 4 = True
edges 4 6 = True
edges _ _ = False

4.	 Determine the node range:
nodes = [1..6]

How it works...
The library applies the recursive Bron-Kerbosch pivoting algorithm for identifying a maximal
clique in an undirected graph. The core idea in the algorithm is to intelligently backtrack until
a maximum clique is found.

Determining whether any two graphs are
isomorphic

Graphs can have arbitrary labels, but their topology may be isomorphic. In the world of data
analysis, we can examine different graphical networks and identify clusters of nodes that have
identical connection patterns. This helps us discover when two seemingly different graphical
networks end up with the same network mapping. Maybe then we can declare a one-to-one
isomorphism between the nodes and learn something profound about the nature of the graphs.

We will use the isIsomorphic function from Data.Graph.Automorphism to detect
whether two graphs are identical in their connection.

In this recipe, we will let the library calculate whether the two graphs in the following diagram
are isomorphic in their connections:

A3

A4

A1

A4 B3 B4

B1 B2

Graph Fundamentals

158

Getting started
Install the Automorphism library:

$ cabal install hgal

How to do it...
Write the following code in a new file, which we will name Main.hs:

1.	 Import the following packages:
import Data.Graph
import Data.Graph.Automorphism

2.	 Construct a graph:
graph = buildG (0,4) [(1, 3), (1, 4)
 , (1, 2), (2, 3)
 , (2, 4), (3, 4)]

3.	 Construct another graph:
graph' = buildG (0,4) [(3, 1), (3, 2)
 , (3, 4), (4, 1)
 , (4, 2), (1, 2)]

4.	 Check whether the graphs have the same topology:
main = print $ isIsomorphic graph graph'

7
Statistics and Analysis

One core motivation to analyze big data is to find intrinsic patterns. This chapter contains
recipes that answer questions about data deviation from the norm, existence of linear and
quadratic trends, and probabilistic values of a network. Some of the most fascinating results
can be uncovered by the following recipes:

ff Calculating a moving average

ff Calculating a moving median

ff Approximating a linear regression

ff Approximating a quadratic regression

ff Obtaining the covariance matrix from samples

ff Finding all unique pairings in a list

ff Using the Pearson correlation coefficient

ff Evaluating a Bayesian network

ff Creating a data structure for playing cards

ff Using a Markov chain to generate text

ff Creating n-grams from a list

ff Constructing a neural network perception

Statistics and Analysis

160

Introduction

The first two recipes deal with summarizing a series of data. For example, assume someone
asks, "How old is everyone?". A valid response could be to enumerate through the age of each
person, but depending on the number of people, this could take minutes if not hours. Instead,
we can answer in terms of the average or in terms of the median to summarize all the age
values in one simple number.

The next two recipes are about approximating an equation that most closely fits a collection
of points. Given two series of coordinates, we can use a linear or quadratic approximation to
predict other points.

We can detect relationships between numerical data through covariance matrices and
Pearson correlation calculations as demonstrated in the corresponding recipes.

The Numeric.Probability.Distribution library has many useful functions for deeper
statistical understanding as demonstrated in the Bayesian network and playing cards recipes.

We will also use Markov chains and n-grams for further interesting results.

Finally, we will create a neural network from scratch to learn a labelled set of data.

Calculating a moving average
Summarizing a list of numbers into one representative number can be done by calculating
the average. The equation for the arithmetic mean is to add up all the values and divide by
the number of values. However, if the values being summed over are extremely large, the total
sum may overflow.

In Haskell, the range for Int is at least from -2^29 to 2^29-1. Implementations are allowed
to have an Int type with a larger range. If we try to naively average the numbers 2^29-2 and
2^29-3 by first calculating their sum, the sum may overflow, producing an incorrect calculation
for the average.

Chapter 7

161

A moving average (or running average) tries to escape this drawback. We will use an
exponential smoothing strategy, which means numbers that were seen previously contribute
exponentially less to the value of the running mean. An exponential moving average reacts
faster to recent data. It can be used in situations for detecting price oscillations or spiking a
neuron in a neural network.

The equation of a running mean is as follows, where α is a smoothening constant, st is the
moving average value at time t, and x is the value of the raw data:

Getting ready
Create an input.txt file with a list of numbers separated by lines. We will be computing the
moving average over these numbers:

$ cat input.txt

4

3

2

5

3

4

1

3

12

3

How to do it…
1.	 Create a helper function to convert the raw text input into a list of Double as follows:

clean raw = map (\s -> read s :: Double) (lines raw)

2.	 Calculate the moving average of a list of numbers using an exponential smoothing
technique. We hardcode the smoothening constant a to be 0.95 as shown here:
avg :: [Double] -> Double
avg (x:xs) = a*x + (1-a)*(avg xs)
where a = 0.95
avg [] = 0

Statistics and Analysis

162

3.	 Compute the true arithmetic mean to compare differences in the following manner:
mean xs = (sum xs) / (fromIntegral (length xs))

4.	 Print out the results of computing the moving average and arithmetic mean to notice
how the values are not equal, but reasonably close:
main = do
rawInput <- readFile "input.txt"
let input = clean rawInput
print input
putStrLn $ "mean is " ++ (show.mean) input
putStrLn $ "moving average is " ++ (show.avg) input

5.	 We will see the following output:
$ runhaskell Main.hs

[4.0,3.0,2.0,5.0,3.0,4.0,1.0,3.0,12.0,3.0]
mean is 4.0
moving average is 3.9478627675211913

There's more…
The smoothening constant should be changed according to the fluctuation of the data. A small
smoothening constant remembers previous values better and produces an average influenced
by the grander structure of the data. On the other hand, a larger value of the smoothening
constant puts superior emphasis on recent data, and easily forgets stale data. We should use
a larger smoothening constant if we want our average to be more sensitive to new data.

See also
Another way to summarize a list of numbers is explained in the Calculating a moving
median recipe.

Calculating a moving median
The median of a list of numbers has an equal number of values less than and greater than
it. The naive approach of calculating the median is to simply sort the list and pick the middle
number. However, on a very large dataset, such a computation would be inefficient.

Another approach of finding a moving median is to use a combination of a minheap and a
maxheap to sort the values while running through the data. We can insert numbers in either
heap as they are seen, and whenever needed, the median can be calculated by adjusting the
heaps to be of equal or near equal size. When the heaps are of equal size, it is simple to find
the middle number, which is the median.

Chapter 7

163

Getting ready
Create a file, input.txt, with some numbers:

$ cat input.txt

3

4

2

5

6

4

2

6

4

1

Also, install a library for dealing with heaps using Cabal as follows:

$ cabal install heap

How to do it…
1.	 Import the heap data structure:

import Data.Heap
import Data.Maybe (fromJust)

2.	 Convert the raw input as a list of numbers as follows:
clean raw = map (\s -> read s :: Int) (lines raw)

3.	 Segregate the numbers in the list into the appropriate heaps. Put small numbers in the
maxheap, and big numbers in the minheap, as shown in the following code snippet:
median (x:xs) maxheap minheap = case viewHead maxheap of
 Just theMax -> if x < theMax
 then median xs (insert x maxheap) minheap
 else median xs maxheap (insert x minheap)
 Nothing -> median xs (insert x maxheap) minheap

Statistics and Analysis

164

4.	 When there are no more numbers to read, start manipulating the heaps until both
are of equal size. The median will be the number between the values in both heaps,
as presented in the following code snippet:
median [] maxheap minheap
 | size maxheap + 1 < size minheap =
 median [] (insert minelem maxheap) $
 (snd.fromJust.view) minheap
 | size minheap + 1 < size maxheap =
 median [] ((snd.fromJust.view) maxheap) $
 insert maxelem minheap
 | size maxheap == size minheap =
 (fromIntegral maxelem + fromIntegral minelem)/2.0
 | size maxheap > size minheap = fromIntegral maxelem
 | otherwise = fromIntegral minelem
 where maxelem = fromJust (viewHead maxheap)
 minelem = fromJust (viewHead minheap)

5.	 Test out the code in main as follows:
main = do
 rawInput <- readFile "input.txt"
 let input = clean rawInput
 print $ input
print $ median input
 (empty :: MaxHeap Int) (empty :: MinHeap Int)

6.	 The output is as follows:
$ runhaskell Main.hs

[3,4,2,5,6,4,2,6,4,1]

4.0

How it works…
First, we traverse the list of numbers to build up a minheap and maxheap in an attempt to
efficiently separate the stream of incoming numbers. Then we move values between the
minheap and maxheap until their sizes differ by at most one item. The median is the extra
item, or otherwise the average of the minheap and maxheap values.

See also
For summarizing a list of numbers differently, refer to the Calculating a moving average recipe.

Chapter 7

165

Approximating a linear regression
Given a list of points, we can estimate the best fit line using a handy library, Statistics.
LinearRegression.

It computes the least square difference between points to estimate the best fit line. An
example of a linear regression of points can be seen in the following figure:

A best-fit line is drawn through five points using linear regression

Getting ready
Install the appropriate library using cabal as follows:

$ cabal install statistics-linreg

How to do it…
1.	 Import the following packages:

import Statistics.LinearRegression
import qualified Data.Vector.Unboxed as U

2.	 Create a series of points from their coordinates, and feed it to the
linearRegression function, as shown in the following code snippet:
main = do
 let xs =
 U.fromList [1.0, 2.0, 3.0, 4.0, 5.0] :: U.Vector Double
 let ys =
 U.fromList [1.0, 2.0, 1.3, 3.75, 2.25]::U.Vector Double

 let (b, m) = linearRegression xs ys

 print $ concat ["y = ", show m, " x + ", show b]

Statistics and Analysis

166

3.	 The resulting linear equation will be as follows:
$ runhaskell Main.hs

"y = 0.425 x + 0.785"

How it works…
We can look up the source code for the linearRegression function from the
Statistics.LinearRegression library, http://hackage.haskell.org/package/
statistics-linreg-0.2.4/docs/Statistics-LinearRegression.html.

The Wikipedia article on least square approximations (http://en.wikipedia.org/wiki/
Linear_least_squares_(mathematics)) puts it best in writing:

"The least squares approach to solving this problem is to try to make as small as
possible the sum of squares of "errors" between the right- and left-hand sides of
these equations, that is, to find the minimum of the function"

The core calculations involve finding the mean and variance of the two random variables,
as well as the covariance between them. Thorough mathematics behind the algorithm is
detailed in http://www.dspcsp.com/pubs/euclreg.pdf.

If we take a look at the library's source code, we can discover the underling equations:

α = µY - β * µX

β = covar(X,Y)/σ2X

f(x) = βx + α

See also
If the data does not follow a linear trend, try the Approximating a quadratic regression recipe.

http://hackage.haskell.org/package/statistics-linreg-0.2.4/docs/Statistics-LinearRegression.html
http://hackage.haskell.org/package/statistics-linreg-0.2.4/docs/Statistics-LinearRegression.html
http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
http://www.dspcsp.com/pubs/euclreg.pdf

Chapter 7

167

Approximating a quadratic regression
Given a collection of points, this recipe will try to find a best fit quadratic equation. In the
following figure, the curve is a best fit quadratic regression of the points:

Getting ready
Install the dsp package to use Matrix.LU as follows:

$ cabal install dsp

In order to perform a quadratic regression, we will use the least square polynomial fitting
algorithm described in Wolfram MathWorld available at http://mathworld.wolfram.
com/LeastSquaresFittingPolynomial.html.

How to do it…
1.	 Import the following packages:

import Data.Array (listArray, elems)
import Matrix.LU (solve)

2.	 Implement the quadratic regression algorithm, as shown in the following
code snippet:
fit d vals = elems $ solve mat vec
where mat = listArray ((1,1), (d,d)) $ matrixArray
 vec = listArray (1,d) $ take d vals
 matrixArray = concat [polys x d
 | x <- [0..fromIntegral (d-1)]]
 polys x d = map (x**) [0..fromIntegral (d-1)]

http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

Statistics and Analysis

168

3.	 Test out the function as follows, using some hardcoded data:
main = print $ fit 3 [1,6,17,34,57,86,121,162,209,262,321]

4.	 The following values of the quadratic equation 3x2 + 2x + 1 is printed:
 $ runhaskell Main.hs

 [1.0,2.0,3.0]

How it works…
In this recipe, a design matrix, mat, multiplied with a parameter vector that we desire to find
produces the response vector, vec. We can visualize each of these arrays and matrices in the
following equation:

After constructing the design matrix and the response vector, we use the dsp library to solve
this matrix equation and obtain a list of coefficients for our polynomial.

See also
If the data follows a linear trend, refer to the Approximating a linear regression recipe.

Obtaining the covariance matrix from
samples

A covariance matrix is a symmetric square matrix whose elements in row i and column j
correspond to how related they are. More specifically, each element is the covariance of the
variables represented by its row and column. Variables that move together in the same direction
have a positive covariance, and variables with the opposite behavior have a negative covariance.

Chapter 7

169

Let's assume we are given four sets of data of three variables as shown in the following table:

Observation

1
2
3
4

Feature 1 Feature 2 Feature 3

1 0 1
1 1 1
0 0 0
0 1 1

Notice how Feature 1 and Feature 3 appear to be similar in their patterns, yet
Feature 1 and Feature 2 appear to be uncorrelated. Similarly, Feature 2 and
Feature 3 are significantly correlated.

The covariance matrix will be a 3 x 3 symmetric matrix with the following elements:

1 1,2 1,3

1,2 2 2,3

1,3 2,3 3

var cov cov
cov var cov
cov cov var

 
 
 
  

Getting ready
Install the hstats library using cabal as follows:

$ cabal install hstats

Alternatively, install the package by performing the following steps:

1.	 Download the source code of the package from http://hackage.haskell.org/
package/hstats-0.3/hstats-0.3.tar.gz.

2.	 Remove the haskell98 dependency from the cabal file, hstats.cabal.

3.	 In the same directory, run the following command line:
$ cabal install

http://hackage.haskell.org/package/hstats-0.3/hstats-0.3.tar.gz
http://hackage.haskell.org/package/hstats-0.3/hstats-0.3.tar.gz

Statistics and Analysis

170

How to do it…
1.	 Import the hstats package as follows:

import Math.Statistics

2.	 Create a matrix out of a list of lists, and run the covMatrix function on it using the
following code snippet:
main = do print $ covMatrix matrixArray
 where matrixArray = [[1,1,0,0]
 , [0,1,0,1]
 , [1,1,0,1]]

3.	 Check the output:
$ runhaskell Main.hs

[[0.333, 0.000, 0.167]

, [0.000, 0.333, 0.167]

, [0.167, 0.167, 0.250]]

Notice how the uncorrelated features have a zero value, as we expected.

Finding all unique pairings in a list
Comparing all pairs of items is a common idiom in data analysis. This recipe will cover how to
create a list of element pairs out of a list of elements. For example, if there is a list [1, 2, 3],
we will create a list of every possible pair-ups [(1, 2), (1, 3), (2, 3)].

Notice that the order of pairing does not matter. We will create a list of unique tuple pairs so
that we can compare each item to every other item in the list.

How it works…
Create a new file, which we call Main.hs, and insert the code explained in the following steps:

1.	 Import the following packages:
import Data.List (tails, nub, sort)

2.	 Construct all unique pairs from a list of items as follows:
pairs xs = [(x, y) | (x:ys) <- tails (nub xs), y <- ys]

Chapter 7

171

3.	 Print out all unique pairings of the following list:
main = print $ pairs [1,2,3,3,4]

4.	 The output will be as follows:
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

See also
We can apply the pairs algorithm to the Using the Pearson correlation coefficient recipe.

Using the Pearson correlation coefficient
The Pearson correlation coefficient is a number that ranges between -1.0 and 1.0, signifying
the linear relationship of two numerical series. A value of 1.0 means strong linear correlation,
a -1.0 is a strong negative correlation, and a 0.0 means the series is uncorrelated.

A brilliantly informative diagram was created by Kiatdd on http://en.wikipedia.org/
wiki/File:Correlation_coefficient.gif, which is shown in the following figure:

For example, Nick is quite a generous movie critic who consistently awards movies with high
ratings. His friend John might be a more dramatic critic who offers a wider range of ratings,
yet the two friends tend to always agree on which movies they prefer.

We can use the Pearson correlation coefficient to detect that there is a strong linear
correspondence between how these two rate movies.

http://en.wikipedia.org/wiki/File:Correlation_coefficient.gif
http://en.wikipedia.org/wiki/File:Correlation_coefficient.gif

Statistics and Analysis

172

Getting ready
Install the hstats library using cabal as follows:

$ cabal install hstats

Create a file with five star rating values on each line, corresponding to the rating given by
different people.

In our example, three people have given five ratings each, using the following command:

$ cat ratings.csv

4,5,4,4,3

2,5,4,3,1

5,5,5,5,5

Notice how the first two people rate in similar trends, but the third person has a very different
rating trend. The algorithm in this recipe will compute the Pearson correlation coefficient
pairwise and sort the results to find the two people who rate most similarly.

How to do it…
1.	 Import the following packages:

import Math.Statistics (pearson)
import Text.CSV
import Data.List (tails, nub, sort)

2.	 Create a function as follows to calculate the similarities from a list of lists:
calcSimilarities (Left err) = error "error parsing"
calcSimilarities (Right csv) = head $ reverse $ sort $ zip
 [pearson (convertList a) (convertList b)
 | (a,b) <- pairs csv]
 $ (pairs csv)

3.	 Convert a list of String to a list of Double as follows:
convertList :: [String] -> [Double]

convertList = map read

4.	 Create all possible pairs from a list of items as follows:
pairs xs = [(x, y) | (x:ys) <- tails (nub xs), y <- ys]

Chapter 7

173

5.	 Test the code by finding the two people who rate items most similarly to each other,
as shown in the following code snippet:
main = do
 let fileName = "ratings.csv"
 input <- readFile filename

 let csv = parseCSV fileName input

 print $ calcSimilarities csv

6.	 The output will be as follows:
$ runhaskell Main.hs

(0.89442719909999159,(["4","5","4","4","3"],["2","5","4","3","
 1"]))

Evaluating a Bayesian network
A Bayesian network is a graph of probabilistic dependencies. Nodes in the graph are events,
and edges represent conditional dependence. We can build a network from prior knowledge
to find out new probabilistic properties of the events.

We will use Haskell's probabilistic functional programming library to evaluate such a network
and find interesting probabilities.

Getting ready
Install the probability library using cabal as follows:

$ cabal install probability

We will be representing the following network. Internalize the following figure to get an intuitive
grasp of the variable names:

C

BA

ED

Statistics and Analysis

174

Event C depends on events A and B. Meanwhile, events D and E depend on event C. Through
the power of the Probabilistic Functional Programming library, in this recipe, we will find the
probability of event E given only information about event D.

How to do it…
1.	 Import the following packages:

import qualified Numeric.Probability.Distribution as Dist
import Numeric.Probability.Distribution ((??), (?=<<),)

2.	 Create a helper function to define conditional probabilities as follows:
prob p = Dist.choose p True False

3.	 Define the probability of variable A, P(A) as follows:
a :: Dist.T Rational Bool
a = prob 0.2

4.	 Define the probability of variable B, P(B) as follows:
b :: Dist.T Rational Bool
b = prob 0.05

5.	 Define the probability of variable C given A and B, P(C | AB) as follows:
c :: Bool -> Bool -> Dist.T Rational Bool
c False False = prob 0.9
c False True = prob 0.5
c True False = prob 0.3
c True True = prob 0.1

6.	 Define the probability of D given C, P(D | C) as follows:
d :: Bool -> Dist.T Rational Bool
d False = prob 0.1
d True = prob 0.4

7.	 Define the probability of E given C, P(E | C) as follows:
e :: Bool -> Dist.T Rational Bool
e False = prob 0.5
e True = prob 0.2

8.	 Define a data structure for the network as follows:
data Network = N {aVal :: Bool
, bVal :: Bool
, cVal :: Bool
, dVal :: Bool
, eVal :: Bool }
deriving (Eq, Ord, Show)

Chapter 7

175

9.	 Construct the network according to the preceding figure:
bNetwork :: Dist.T Rational Network
bNetwork = do a' <- a
 b' <- b
 c' <- c a' b'
 d' <- d c'
 e' <- e c'
 return (N a' b' c' d' e')

10.	 Calculate the probability of E given D, P(E | D) as follows:
main = print $ eVal ?? dVal ?=<< bNetwork

11.	 The output represented as a fraction is as follows:
$ runhaskell Main.hs

3643 % 16430

Creating a data structure for playing cards
Many probability and statistic problems are posed using playing cards. In this recipe, we will
create a data structure and useful functions for the cards.

There are a total of 52 playing cards in a standard deck. Each card has one of the following
four suits:

ff Spades

ff Hearts

ff Diamonds

ff Clubs

Also, each card has one out of 13 ranks as follows:

ff Integers between 2 and 10 inclusive

ff Jack

ff Queen

ff King

ff Ace

Statistics and Analysis

176

Getting ready
Install the probability library using cabal as follows:

$ cabal install probability

Review the sample code on the probability package about collections at
http://hackage.haskell.org/package/probability-0.2.4/docs/src/
Numeric-Probability-Example-Collection.html.

The recipe is based heavily on the probability example given in the link.

How to do it…
1.	 Import the following packages:

import qualified Numeric.Probability.Distribution as Dist
import Numeric.Probability.Distribution ((??))
import Control.Monad.Trans.State (StateT(StateT, runStateT),
evalStateT)
import Control.Monad (replicateM)
import Data.List (delete)

2.	 Create a data structure of the suits on a card as follows:
data Suit = Club | Spade | Heart | Diamond
 deriving (Eq,Ord,Show,Enum)

3.	 Create a data structure for the ranks of a card as follows:
data Rank = Plain Int | Jack | Queen | King | Ace
 deriving (Eq,Ord,Show)

4.	 Define a shortcut type for a card to be a tuple of a rank and a suit as follows:
type Card = (Rank,Suit)

5.	 Describe the plain cards as follows:
plains :: [Rank]
plains = map Plain [2..10]

6.	 Describe the face cards as follows:
faces :: [Rank]
faces = [Jack,Queen,King,Ace]

7.	 Create a helper function as follows to detect whether it is a face card:
isFace :: Card -> Bool
isFace (r,_) = r `elem` faces

http://hackage.haskell.org/package/probability-0.2.4/docs/src/Numeric-Probability-Example-Collection.html
http://hackage.haskell.org/package/probability-0.2.4/docs/src/Numeric-Probability-Example-Collection.html

Chapter 7

177

8.	 Create a helper function as follows to detect whether it is a plain card:
isPlain :: Card -> Bool
isPlain (r,_) = r `elem` plains

9.	 Define all the rank cards as follows:
ranks :: [Rank]
ranks = plains ++ faces

10.	 Define the suit cards as follows:
suits :: [Suit]
suits = [Club, Spade, Heart, Diamond]

11.	 Create a deck of cards out of ranks and suits as follows:
deck :: [Card]
deck = [(r,s) | r <- ranks, s <- suits]

12.	 Create a helper function as follows to select an item from a list for
probability measurements:
selectOne :: (Fractional prob, Eq a) =>
 StateT ([a]) (Dist.T prob) a
selectOne =
 StateT $ Dist.uniform . removeEach

13.	 Create a function as follows to select some cards from the deck:
select :: (Fractional prob, Eq a) => Int -> [a] -> Dist.T
 prob [a]
select n = evalStateT (replicateM n selectOne)

14.	 Create a helper function as follows to remove each of the items from a list:
removeEach xs = zip xs (map (flip delete xs) xs)

15.	 Test out the deck of cards as follows with the probability functions created:
main = print $
Dist.just [(Plain 3, Heart), (Plain 3, Diamond)] ?? select
 2 deck

16.	 The probability of selecting those two cards from the deck is as follows:
3.770739064856712e-4

Statistics and Analysis

178

Using a Markov chain to generate text
A Markov chain is a system that predicts future outcomes of a system given current
conditions. We can train a Markov chain on a corpus of data to generate new text by
following the states.

A graphical representation of a chain is shown in the following figure:

0.3

0.7

0.4

0.6

E

A

Node E has a 70% probability to end up on node A, and a 30% probability to remain in place

Getting ready
Install the markov-chain library using cabal as follows:

$ cabal install markov-chain

Download a big corpus of text, and name it big.txt. In this recipe, we will be using the text
downloaded from http://norvig.com/big.txt.

How to do it…
1.	 Import the following packages:

import Data.MarkovChain
import System.Random (mkStdGen)

2.	 Train a Markov chain on a big input of text and then run it as follows:
main = do
rawText <- readFile "big.txt"
let g = mkStdGen 100
putStrLn $ "Character by character: \n"
putStrLn $ take 100 $ run 3 rawText 0 g
putStrLn $ "\nWord by word: \n"
putStrLn $ unwords $ take 100 $ run 2 (words rawText)0 g

http://norvig.com/big.txt

Chapter 7

179

3.	 We can run the Markov chain and see the output as follows:
$ runhaskell Main.hs

Generated character by character:

The evaturn bring everice Ana Paciously skuling from to was

fing, of rant of and sway.

5. Whendent

Generated word by word:

The Project gratefully accepts contributions of money, though
there was a brief word, showing that he would do so. He could
hear all that she had to reply; the room scanned Princess Mary's
heartbeat so violently at this age, so dangerous to life, by the
friends of the Russians, was trying to free his serfs--and that
till the eggs mature, when by their Creator with certain small
vessels but no me...." And the cavalry, Colonel, but I don't wish
to know which it has a fit, and there was a very large measure,
attributed to eating this root. But

How it works…
The code prints our text trained by the corpus, which is fed into the Markov chain.

In the first character-by-character Markov chain, it tries to generate the next letter based on
the previous three letters. Notice how most phrases don't make sense and some tokens aren't
even English words.

The second Markov chain is generated word by word and only infers based on the previous
two words. As we see, it emulates English phrases a bit more naturally.

These texts are purely generated by evaluating probabilities.

Creating n-grams from a list
An n-gram is a sequence of n items that occur adjacently. For example, in the following
sequence of number [1, 2, 5, 3, 2], a possible 3-gram is [5, 3, 2].

n-grams are useful in computing probability tables to predict the next item. In this recipe, we
will be creating all possible n-grams from a list of items. A Markov chain can easily be trained
by using n-gram computation from this recipe.

Statistics and Analysis

180

How to do it…
1.	 Define the n-gram function as follows to produce all possible n-grams from a list:

ngram :: Int -> [a] -> [[a]]
ngram n xs
 | n <= length xs = take n xs : ngram n (drop 1 xs)
 | otherwise = []

2.	 Test it out on a sample list as follows:
main = print $ ngram 3 "hello world"

3.	 The printed 3-gram is as follows:
["hel","ell","llo","lo ","o w"," wo","wor","orl","rld"]

Creating a neural network perceptron
A perceptron is a linear classifier that uses labelled data to converge to its answer. Given a set
of inputs and their corresponding expected output, a perceptron tries to linearly separate the
input values. If the input is not linearly separable, then the algorithm may not converge.

In this recipe, we will deal with the following list of data:

[(0,0), (0,1), (1,0), (1,1)].

Each item is labelled with an expected output as follows:

ff (0,0) is expected to output a 0

ff (0,1) is expected to output a 0

ff (1,0) is expected to output a 0

ff (1,1) is expected to output a 1

Graphically, we are trying to find a line that separates these points:

1

0 1

Chapter 7

181

Getting ready
Review the concept of a perceptron by:

ff Reading the Wikipedia article on the perceptron available at
http://en.wikipedia.org/wiki/Perceptron

ff Skimming the Haskell implementation by Moresmau available at http://
jpmoresmau.blogspot.com/2007/05/perceptron-in-haskell.html

How to do it…
1.	 Import replicateM, randomR, and getStdRandom for handling random number

generation in our neural network as follows:
import Control.Monad (replicateM)
import System.Random (randomR, getStdRandom)

2.	 Define types to help describe the variables fed into each helper method as follows:
type Inputs = [Float]
type Weights = [Float]
type Threshold = Float
type Output = Float
type Expected = Float
type Actual = Float
type Delta = Float
type Interval = Int
type Step = (Weights, Interval)

3.	 Create a function to generate an output value of a neuron that takes in a series
of inputs, corresponding weights, and a threshold value. The neuron fires a 1 if the
dot product of the weight vector with the input vector is above the threshold, and 0
otherwise, as presented in the following code snippet:
output :: Inputs -> Weights -> Threshold -> Output
output xs ws t
 | (dot xs ws) > t = 1
 | otherwise = 0
 where dot as bs = sum $ zipWith (*) as bs

http://en.wikipedia.org/wiki/Perceptron
http://jpmoresmau.blogspot.com/2007/05/perceptron-in-haskell.html
http://jpmoresmau.blogspot.com/2007/05/perceptron-in-haskell.html

Statistics and Analysis

182

4.	 Create a function to adjust weights of a neuron given expected and actual results. The
weights are updated using a learning rule, as presented in the following code snippet:
adjustWeights :: Inputs -> Weights -> Expected -> Actual ->
Weights
adjustWeights xs ws ex ac = add ws delta
 where delta = map (err * learningRate *) xs
 add = zipWith (+)
 err = ex - ac
 learningRate = 0.1

5.	 Step through one iteration of the perceptron cycle to update weights as follows.
For this recipe, assume each neuron has a threshold of 0.2:
step :: Inputs -> Weights -> Expected -> Weights
step xs ws ex = adjustWeights xs ws ex (output xs ws t)
 where t = 0.2

6.	 Create a helper function as follows to compute weight changes per step:
epoch :: [(Inputs, Expected)] -> Weights -> (Weights, Delta)
epoch inputs ws = (newWeights, delta)
 where newWeights = foldl
 (\acc (xs, ex) -> step xs acc ex) ws inputs
 delta = (sum (absSub newWeights ws)) / length' ws
 absSub as bs = map abs $ zipWith (-) as bs
 length' = fromIntegral . length

7.	 Run through the steps using epoch until the weights converge. Weight convergence
is detected simply by noticing the first instance when weights no longer significantly
change values. This is presented in the following code snippet:
run :: [(Inputs, Expected)] -> Weights -> Interval -> Step
run inputs ws n
 | delta == 0.0 = (newWeights, n)
 | otherwise = run inputs newWeights (n+1)
 where (newWeights, delta) = epoch inputs ws

8.	 Initialize a weight vector as follows:
initialWeights :: Int -> IO [Float]
initialWeights nb = do
 let interval = randomR (-0.5,0.5)
 (replicateM nb (getStdRandom interval))

9.	 Test the perceptron network to separate an AND Boolean structure as follows:
main :: IO ()
main = do
 w <- initialWeights 2

Chapter 7

183

 let (ws,i) = run [([0,0],0)
 , ([0,1],0)
 , ([1,0],0)
 , ([1,1],1)] w 1
 print (ws,i)

10.	 A valid output may be:
([0.17867908,3.5879448e-1],8)

We can verify that this output is correct since the weights sum to a value greater than the
threshold value of 0.2, while each weight value individually is less than the threshold of 0.2.
Therefore, the output will trigger only when the input is (1, 1) as desired.

8
Clustering and
Classification

This chapter demonstrates algorithms that intelligently cluster and categorize data:

ff Implementing the k-means clustering algorithm

ff Implementing hierarchical clustering

ff Using a hierarchical clustering library

ff Finding the number of clusters

ff Clustering words by their lexemes

ff Classifying the parts of speech of words

ff Identifying key words in a corpus of text

ff Training a parts-of-speech tagger

ff Implementing a decision tree classifier

ff Implementing a k-Nearest Neighbors classifier

ff Visualizing points using Graphics.EasyPlot

Clustering and Classification

186

Introduction

Computer algorithms are becoming better and better at analyzing large datasets. As their
performance enhances, their ability to detect interesting patterns in data also improves.

The first few algorithms in this chapter demonstrate how to look at thousands of points and
identify clusters. A cluster is simply a congregation of points defined by how closely they lie
together. This measure of "closeness" is entirely up to us. One of the most popular closeness
metrics is the Euclidian distance.

We can understand clusters by looking up at the night sky and pointing at stars that appear
together. Our ancestors found it convenient to name "clusters" of stars, of which we refer
to as constellations. We will be finding our own constellations in the "sky" of data points.

This chapter also focuses on classifying words. We will label words by their parts of speech as
well as topic.

We will implement our own decision tree to classify practical data. Lastly, we will visualize
clusters and points using plotting libraries.

Implementing the k-means clustering
algorithm

The k-means clustering algorithm partitions data into k different groups. These k groupings
are called clusters, and the location of these clusters are adjusted iteratively. We compute the
arithmetic mean of all the points in a group to obtain a centroid point that we use, replacing
the previous cluster location.

Chapter 8

187

Hopefully, after this succinct explanation, the name k-means clustering no longer sounds
completely foreign. One of the best places to learn more about this algorithm is on
Coursera: https://class.coursera.org/ml-003/lecture/78.

How to do it…
Create a new file, which we call Main.hs, and perform the following steps:

1.	 Import the following built-in libraries:
import Data.Map (Map)
import qualified Data.Map as Map
import Data.List (minimumBy, sort, transpose)
import Data.Ord (comparing)

2.	 Define a type synonym for points shown as follows:
type Point = [Double]

3.	 Define the Euclidian distance function between two points:
dist :: Point -> Point -> Double

dist a b = sqrt $ sum $ map (^2) $ zipWith (-) a b

4.	 Define the assignment step in the k-means algorithm. Each point will be assigned to
its closest centroid:
assign :: [Point] -> [Point] -> Map Point [Point]

assign centroids points =
 Map.fromListWith (++) [(assignPoint p, [p]) | p<- points]

 where assignPoint p =
 minimumBy (comparing (dist p)) centroids

5.	 Define the relocation step in the k-means algorithm. Each centroid is relocated to the
arithmetic mean of its corresponding points:
relocate :: Map Point [Point] -> Map Point [Point]

relocate centroidsMap =
 Map.foldWithKey insertCenter Map.empty centroidsMap
 where insertCenter _ ps m = Map.insert (center ps) ps m
 center [] = [0,0]
 center ps = map average (transpose ps)
 average xs = sum xs / fromIntegral (length xs)

https://class.coursera.org/ml-003/lecture/78

Clustering and Classification

188

6.	 Run the k-means algorithm repeatedly until the centroids no longer move around:
kmeans :: [Point] -> [Point] -> [Point]

kmeans centroids points =
if converged
then centroids
else kmeans (Map.keys newCentroidsMap) points

where converged =
 all (< 0.00001) $ zipWith dist
 (sort centroids) (Map.keys newCentroidsMap)

 newCentroidsMap =
 relocate (assign centroids points)

 equal a b = dist a b < 0.00001

7.	 Test out the clustering with a couple of hardcoded points. The usual way to implement
k-means chooses the starting centroids randomly. However, in this recipe, we will
simply take the first k points:
main = do
let points = [[0,0], [1,0], [0,1], [1,1]
 , [7,5], [9,6], [8,7]]
let centroids = kmeans (take 2 points) points
print centroids

8.	 After the algorithm converges, the resulting centroids will be as follows:
$ runhaskell Main.hs

[[0.5,0.5],[8.0,6.0]]

How it works…
The algorithm repeatedly follows two procedures until the clusters are found. The first
procedure is to partition the points by assigning each point to its closest centroid. The
following diagram shows the data assignment step. Initially, there are three centroids
represented by a star, square, and circle around three different points. The first part
of the algorithm assigns each point a corresponding centroid.

Chapter 8

189

The next step is to relocate the centroids to the center, or arithmetic mean, of their
corresponding points. In the following diagram, the arithmetic mean of each cluster is
computed, and the centroid is shifted to the new center:

This algorithm continues until the centroids no longer move around. The final categorization of
each point is the cluster to which each point belongs.

Clustering and Classification

190

There's more…
Although easy to implement and understand, this algorithm has a couple of limitations. The
output of the k-means clustering algorithm is sensitive to the initial centroids chosen. Also,
using the Euclidian distance metric forces the clusters to be described only by circular regions.
Another limitation of k-means clustering is that the initial number of clusters k must be
specified by the user. The user should visualize the data and use their judgment to determine
the number of clusters before beginning the algorithm. Moreover, the convergence condition
for the algorithm is an issue for special edge-cases.

See also
For another type of clustering algorithm, see the next recipe on Implementing
hierarchical clustering.

Implementing hierarchical clustering
Another way to cluster data is by first assuming each data item as its own cluster. We can
then take a step back and merge together two of the nearest clusters. This process forms
a hierarchy of clusters.

Take, for example, an analogy relating to islands and water level. An island is nothing more
than a mountain tip surrounded by water. Imagine we have islands scattered across a sea. If
we were to slowly drop the water level of the sea, two nearby small islands would merge into
a larger island because they are connected to the same mountain formation. We can stop the
water level from dropping any time we have the desired number of larger islands.

How to do it…
In a new file, which we name Main.hs, insert this code:

1.	 Import the built-in functions:
import Data.Map (Map, (!), delete)
import qualified Data.Map as Map
import Data.Ord (comparing)
import Data.List (sort, tails, transpose, minimumBy)

2.	 Define a type synonym for points:
type Point = [Double]

Chapter 8

191

3.	 Define a convenience function to compute the arithmetic mean of list of points:
center :: [Point] -> Point

center points = map average (transpose points)
 where average xs = sum xs / fromIntegral (length xs)

4.	 Combine the two clusters that are nearest to each other:
merge :: Map Point [Point] -> Map Point [Point]

merge m =
 Map.insert (center [a,b]) ((m ! a) ++ (m ! b)) newM

where (a,b) = nearest (Map.keys m)

 newM = Map.delete b (Map.delete a m)

 equal a b = dist a b < 0.00001

 dist a b = sqrt $ sum $ map (^2) $ zipWith (-)
 a b

 nearest points =
 minimumBy (comparing (uncurry dist))
 [(a, b) | (a : rest) <- tails points, b
 <- rest]

5.	 Run the hierarchical algorithm until there are k clusters:
run :: Int -> Map Point [Point] -> Map Point [Point]

run k m = if length (Map.keys m) == k
 then m
 else run k (merge m)

6.	 Initialize so that every point is its own cluster:
initialize :: [Point] -> Map Point [Point]

initialize points =
 foldl (\m p -> Map.insert p [p] m) Map.empty points

Clustering and Classification

192

7.	 Test the clustering algorithm on some input:
main = do
 let points = [[0,0], [1,0], [0,1], [1,1]
 , [7,5], [9,6], [8,7]]
 let centroids = Map.keys $ run 2 (initialize points)
 print centroids

8.	 The algorithm will output the following centroids:
$ runhaskell Main.hs

[[0.5,0.5],[7.75,5.75]]

How it works…
There are two main ways to implement hierarchical clustering. The algorithm described in
this recipe implements the agglomerative bottom-up approach. Each point is pre-emptively
considered to be a cluster, and at each step the two closest clusters merge together. However,
another approach to implement is top-down in a divisive approach where every point starts in
one massive cluster that iteratively splits the clusters.

In this recipe, we begin by first assuming that every point is its own cluster. Then we take
a step back and merge two of the nearest clusters. This step repeats until a desired
convergence state is reached. In our example, we stop once we have exactly two clusters.
The following diagram shows the three iterations of a hierarchical clustering algorithm:

Chapter 8

193

There's more…
Like most clustering algorithms, the choice of distance metric greatly affects the results.
In this recipe, we assumed the Euclidean metric, but depending on the data, perhaps the
distance metric should be the Manhattan distance or cosine similarity.

See also
For a non-hierarchical clustering algorithm, see the previous recipe on Implementing the
k-means clustering algorithm.

Using a hierarchical clustering library
We will group together a list of points using a hierarchical clustering approach. We will start by
assuming that each point is its own cluster. The two closest clusters merge together and the
algorithm repeats until the stopping criteria is met. In this algorithm, we will use a library to
run hierarchical clustering until there are a specific number of clusters remaining.

Getting ready
Install the hierarchical clustering package using cabal as follows (documentation is available
at http://hackage.haskell.org/package/hierarchical-clustering):

$ cabal install hierarchical-clustering

How to do it…
Insert the following code in a new file, which we call Main.hs:

1.	 Import the required library:
import Data.Clustering.Hierarchical

2.	 Define a Point data type:
data Point = Point [Double] deriving Show

3.	 Define the Euclidian distance metric:
dist :: Point -> Point -> Distance
dist (Point a) (Point b) = sqrt $ sum $ map (^2) $
 zipWith (-) a b

http://hackage.haskell.org/package/hierarchical-clustering

Clustering and Classification

194

4.	 Print out the clusters:
printCluster :: Dendrogram Point -> Double -> IO ()

printCluster clusters cut = do
 let es = map elements $ clusters `cutAt` cut
 mapM_ print es

5.	 Test the clustering algorithm on some points:
main = do
 let points =
map Point [[0,0], [1,0], [0,1], [1,1]
 , [7,5], [9,6], [8,7]]
 let clusters = dendrogram SingleLinkage points dist
 printCluster clusters 2.0

6.	 Each of the three clusters are printed out as lists of points:
[Point [0.0,1.0], Point [1.0,0.0], Point [0.0,0.0], Point
[1.0,1.0]]
[Point [7.0,5.0]]
[Point [9.0,6.0], Point [8.0,7.0]]

How it works…
The dendogram function has the type Linkage -> [a] -> (a -> a -> Distance)
-> Dendogram a. The linkage describes how distance is calculated. In this recipe, we use
SingleLinkage as the first argument, which means that the distance between two clusters
is the minimum distance between all their elements.

The second argument is the list of points, followed by a distance metric. The result of this
function is a dendogram, otherwise referred to as a hierarchical tree diagram. We use the
defined printCluster function to display the clusters.

There's more…
The other types of linkage in this library include the following mentioned along with their
description present on Hackage:

ff SingleLinkage: This is the minimum distance between two clusters.

Chapter 8

195

"O(n^2) time and O(n) space, using the SLINK algorithm. This
algorithm is optimal in both space and time and gives the same
answer as the naive algorithm using a distance matrix."

ff CompleteLinkage: This is the maximum distance between two clusters.

"O(n^3) time and O(n^2) space, using the naive algorithm with a
distance matrix. Use CLINK if you need more performance."

ff Complete linkage with CLINK is the same as the previous linkage type, except that it
uses a faster but not always optimal algorithm.

"O(n^2) time and O(n) space, using the CLINK algorithm. Note that
this algorithm doesn't always give the same answer as the naive
algorithm using a distance matrix, but it's much faster."

Clustering and Classification

196

ff UPGMA is the average distance between the two clusters.

"O(n^3) time and O(n^2) space, using the naive algorithm with a
distance matrix."

ff And lastly, FakeAverageLinkage is similar to the previous UPGMA linkage but weighs
both clusters equally in its calculations.

"O(n^3) time and O(n^2) space, using the naive algorithm with a
distance matrix."

See also
To use our own hierarchical clustering algorithm, see the previous recipe on Implementing
hierarchical clustering.

Finding the number of clusters
Sometimes, we do not know the number of clusters in a dataset, yet most clustering
algorithms require this information a priori. One way to find the number of clusters is to
run the clustering algorithm on all possible number of clusters and compute the average
variance of the clusters. We can then graph the average variance for the number of clusters,
and identify the number of clusters by finding the first fluctuation of the curve.

Getting ready
Review the k-means recipe titled Implementing the k-means clustering algorithm. We will be
using the kmeans and assign functions defined in that recipe.

Install the Statistics package from cabal:

$ cabal install statistics

Chapter 8

197

How to do it…
Create a new file and insert the following code. We name this file Main.hs.

1.	 Import the variance function and the helper fromList function:
import Statistics.Sample (variance)
import Data.Vector.Unboxed (fromList)

2.	 Compute the average of the variance of each cluster:
avgVar points centroids = avg [variance . fromList $
 map (dist c) ps | (c, ps) <- Map.assocs m]
 where m = assign centroids points
 avg xs = (sum xs) / (fromIntegral (length xs))

3.	 In main, define a list of points. Notice how there appears to be three clusters:
main = do
 let points = [[0,0], [1,0], [0,1]
 , [20,0], [21,0], [20,1]
 , [40,5], [40,6], [40,8]]

4.	 Get the average of the variance of each set of clusters:
 let centroids = [kmeans (take k points) points |
 k <- [1..length points]]
 let avgVars = map (avgVar points) centroids
 print avgVars

5.	 The output will be a list of numbers. Once plotted, we can see that the number of
clusters is three, which occurs at the knee, or just before local maxima, of the curve
as shown in the following image:

Clustering and Classification

198

Clustering words by their lexemes
Words that look alike can easily be clustered together. The clustering algorithm in the
lexeme-clustering package is based on Janicki's research paper titled, "A Lexeme-Clustering
Algorithm for Unsupervised Learning of Morphology". A direct link to this paper can be found
through the following URL: http://skil.informatik.uni-leipzig.de/blog/wp-
content/uploads/proceedings/2012/Janicki2012.37.pdf.

Getting ready
An Internet connection is necessary for this recipe to download the package from GitHub.

How to do it…
Follow these steps to install and use the library:

1.	 Obtain the lexeme-clustering library from GitHub. If Git is installed, enter the following
command, otherwise download it from https://github.com/BinRoot/lexeme-
clustering/archive/master.zip:
$ git clone https://github.com/BinRoot/lexeme-clustering

2.	 Change into the library's directory:
$ cd lexeme-clustering/

3.	 Install the package:
$ cabal install

4.	 Create an input file with a different word on each line:
$ cat input.txt

mama

papa

sissy

bro

mother

father

grandfather

grandmother

uncle

mommy

daddy

http://skil.informatik.uni-leipzig.de/blog/wp-content/uploads/proceedings/2012/Janicki2012.37.pdf
http://skil.informatik.uni-leipzig.de/blog/wp-content/uploads/proceedings/2012/Janicki2012.37.pdf
https://github.com/BinRoot/lexeme-clustering/archive/master.zip
https://github.com/BinRoot/lexeme-clustering/archive/master.zip

Chapter 8

199

ma

pa

mom

dad

sister

brother

5.	 Run the lexeme-clustering algorithm on the input file:
$ dist/build/lexeme-clustering/lexeme-clustering input.txt

6.	 The resulting output clusters are then displayed:
Clustering

bro, brother

dad, daddy

grandfather, grandmother

father, ma, mama, mom, mommy, mother, pa, papa

sissy, sister

uncle

How it works…
The related words are clustered together by carefully looking at each word's morpheme,
or smallest meaningful component.

Here's a short excerpt from the abstract of the research paper of which this algorithm is based:

"Initially, a trie of words is built and each node in the trie is considered a candidate
for stem. The suffixes, with which it occurs, are clustered according to mutual
information in order to identify inflectional paradigms."

See also
For clustering points of data, see the previous algorithms on Implementing the k-means
clustering algorithm, Implementing hierarchical clustering, and Using a hierarchical
clustering library.

Clustering and Classification

200

Classifying the parts of speech of words
This recipe will demonstrate how to identify the parts of speech of each word in a sentence.
We will be using a handy library called chatter, which contains very useful Natural Language
Processing (NLP) tools. It can be obtained from Hackage at http://hackage.haskell.
org/package/chatter.

NLP is the study of human language embedded in a machine. Our naturally spoken or written
language may seem obvious to us in our day-to-day lives, but producing meaning out of words
is still a difficult task for computers.

Getting ready
Install the NLP library using cabal:

cabal install chatter

How to do it…
In a new file, which we name Main.hs, enter the following source code:

1.	 Import the parts of speech library and the pack function:
import NLP.POS
import Data.Text (pack)

2.	 Obtain the default tagger provided by the library:
main = do
tagger <- defaultTagger

3.	 Feed the tag function a tagger and a text to see the corresponding parts of speech
per each word:
let text = pack "The best jokes have no punchline."
print $ tag tagger text

4.	 The output will be an association list of the word to its part of speech:
[[("The", Tag "at"),

 ("best", Tag "jjt"),

 ("jokes", Tag "nns"),

 ("have", Tag "hv"),

 ("no", Tag "at"),

 ("punchline",Tag "nn"),

 (".",Tag ".")]]

http://hackage.haskell.org/package/chatter
http://hackage.haskell.org/package/chatter

Chapter 8

201

How it works…
A parts of speech tagger is trained from a corpus of text. In this example, we use the default
tagger provided by the library, which trains on the corpus in the following directory of the
package, data/models/brown-train.model.gz. This corpus is called the Brown
University Standard Corpus of Present-Day American English, created in the 1960s.

Definitions of each of the abbreviations such as at, jjt, or nns can be found on
http://en.wikipedia.org/wiki/Brown_Corpus#Part-of-speech_tags_used.

There's more…
We can also train our own parts of speech taggers by loading a tagger from a file path,
loadTagger :: FilePath -> IO POSTagger.

See also
To categorize words as something other than parts of speech, see the next recipe on
Identifying key words in a corpus of text.

Identifying key words in a corpus of text
One way to predict the topic of a paragraph or sentence is by identifying what the words
mean. While the parts of speech give some insight about each word, they still don't reveal
the connotation of that word. In this recipe, we will use a Haskell library to tag words by
topics such as PERSON, CITY, DATE, and so on.

Getting ready
An Internet connection is necessary for this recipe to download the sequor package.

Install it from cabal:

$ cabal install sequor --prefix=`pwd`

Otherwise, follow these directions to install it manually:

1.	 Obtain the latest version of the sequor library by opening up a browser and visiting
the following URL: http://hackage.haskell.org/package/sequor.

2.	 Under the Downloads section, download the cabal source package.

http://en.wikipedia.org/wiki/Brown_Corpus#Part-of-speech_tags_used
http://hackage.haskell.org/package/sequor

Clustering and Classification

202

3.	 Extract the contents:

�� On Windows, it is easiest to using 7-Zip, an easy-to-use file archiver. Install
it on your machine by going to http://www.7-zip.org. Then using 7-Zip,
extract the contents of the tarball.

�� On other operating systems, run the following command to extract the
tarball. Replace the numbers in the following command to the correct version
numbers of your download because a new version (that is, 0.7.3) may be out:
$ tar –zxvf sequor-0.7.2.tar.gz

4.	 Go into the directory:
$ cd sequor-0.7.2

5.	 Make sure to read the README file:
$ cat README.*

6.	 Install the library using the following Cabal command:
$ cabal install –-prefix=`pwd`

How to do it…
We will set up an input file to feed into the program.

1.	 Create an input.txt file using the CoNLL format, which requires one token per line,
and sentences separated by a blank line:
$ cat input.txt

On

Tuesday

Richard

Stallman

will

visit

Charlottesville

,

Virginia

in

the

United

States

http://www.7-zip.org

Chapter 8

203

2.	 Now run the word tagging on the input:
$ bin/seminer en < input.txt > output.txt

3.	 The result is saved in the output.txt file. Open up the file and review the
corresponding tags found:
$ cat output.txt

O

B-DATE

B-PERSON

I-PERSON

O

O

B-GPE:CITY

O

B-GPE:STATE_PROVINCE

O

O

B-GPE:COUNTRY

I-GPE:COUNTRY

How it works…
The library uses Collins' sequence perceptron, based off a paper published in 2002 titled
"Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms". His website (http://www.cs.columbia.edu/~mcollins/)
contains comprehensive notes on designing the algorithm used in this recipe.

See also
To use an existing parts of speech tagger, see the previous recipe on Classifying the parts of
speech of words. To train our own parts-of-speech tagger, see the next recipe on Training a
parts-of-speech tagger.

http://www.cs.columbia.edu/~mcollins/

Clustering and Classification

204

Training a parts-of-speech tagger
We will use a Haskell library, sequor, to train our own parts of speech tagger. Then we can use
this newly trained model on our own input.

Getting ready
Please refer to the Getting ready section of the previous recipe.

How to do it…
In a new file, which we name Main.hs, enter the following source code:

1.	 Use the sequor executable to train the parts of speech tagger:

�� The first argument to sequor will be train, to indicate that we are about to
train a tagger

�� The next argument is the template-file, data/all.features

�� Then we provide the train-file, data/train.conll

�� The last file path we need to provide is the location of where to save the
trained model

�� We can specify a learning rate using the -rate flag

�� The beam size can be modified using the -beam flag

�� Change the number of iterations using the -iter flag

�� Use hashing instead of a feature dictionary using the -hash flag

�� Provide a path to the held out data using the -heldout flag

�� An example of the sequor command in use is as follows:
$./bin/sequor train data/all.features data/train.conll \

model --rate 0.1 --beam 10 --iter 5 --hash \

--heldout data/devel.conll

2.	 Test out the trained model on a sample input:
$./bin/sequor predict model < data/test.conll > \

data/test.labels

Chapter 8

205

3.	 The first few lines of the output test.labels file will be:
B-NP

I-NP

B-PP

B-NP

I-NP

O

B-VP

B-NP

B-VP

B-NP

How it works…
The library uses Collins' sequence perceptron, based off a paper published in 2002 titled
"Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms". The Hackage documentation can be found on http://hackage.
haskell.org/package/sequor.

See also
To use an existing parts of speech tagger, see the previous recipe on Classifying the parts of
speech of words.

Implementing a decision tree classifier
A decision tree is a model for classifying data effectively. Each child of a node in the tree
represents a feature about the item we are classifying. Traversing down the tree to leaf nodes
represent an item's classification. It's often desirable to create the smallest possible tree to
represent a large sample of data.

In this recipe, we implement the ID3 decision tree algorithm in Haskell. It is one of the easiest
to implement and produces useful results. However, ID3 does not guarantee an optimal
solution, may be computationally inefficient compared to other algorithms, and only supports
discrete data. While these issues can be addressed by a more complicated algorithm such as
C4.5, the code in this recipe is enough to get up and running with a working decision tree.

http://hackage.haskell.org/package/sequor
http://hackage.haskell.org/package/sequor

Clustering and Classification

206

Getting ready
Create a CSV file representing samples of data. The last column should be the classification.
Name this file input.csv.

The weather data is represented with four attributes, namely outlook, temperature, humidity,
and wind. The last column represents whether it is a good idea to play outside.

Import the CSV helper library:

$ cabal install csv

How to do it…
Insert this code into a new file, which we call Main.hs:

1.	 Import the built-in libraries:
import Data.List (nub, elemIndices)
import qualified Data.Map as M
import Data.Map (Map, (!))
import Data.List (transpose)
import Text.CSV

2.	 Define some type synonyms to better understand what data is being passed around:
type Class = String
type Feature = String
type Entropy = Double
type DataSet = [([String], Class)]

Chapter 8

207

3.	 Define the main function to read in the CSV file and handle any errors:
main = do
 rawCSV <- parseCSVFromFile "input.csv"
 either handleError doWork rawCSV

handleError = error "invalid file"

4.	 If the file was read successfully, remove any invalid CSV records and construct a
decision tree out of it:
doWork csv = do
 let removeInvalids = filter (\x -> length x > 1)
 let myData = map (\x -> (init x, last x)) $
 removeInvalids csv
 print $ dtree "root" myData

5.	 Define helper functions to break up the DataSet tuple into a list of samples or a list
of classes:
samples :: DataSet -> [[String]]
samples d = map fst d

classes :: DataSet -> [Class]
classes d = map snd d

6.	 Calculate the entropy of a list of values:
entropy :: (Eq a) => [a] -> Entropy

entropy xs = sum $ map (\x -> prob x * info x) $ nub xs
 where prob x = (length' (elemIndices x xs)) /
 (length' xs)
 info x = negate $ logBase 2 (prob x)
 length' xs = fromIntegral $ length xs

7.	 Split an attribute by its features:
splitAttr :: [(Feature, Class)] -> Map Feature [Class]

splitAttr fc = foldl (\m (f,c) ->
 M.insertWith (++) f [c] m)
 M.empty fc

8.	 Obtain each of the entropies from splitting up an attribute by its features:
splitEntropy :: Map Feature [Class] ->
 M.Map Feature Entropy

splitEntropy m = M.map entropy m

Clustering and Classification

208

9.	 Compute the information gain from splitting up an attribute by its features:
informationGain :: [Class] -> [(Feature, Class)] -> Double

informationGain s a = entropy s - newInformation
 where eMap = splitEntropy $ splitAttr a
 m = splitAttr a
 toDouble x = read x :: Double
 ratio x y = (fromIntegral x) / (fromIntegral y)
 sumE = M.map (\x -> (fromIntegral.length) x /
 (fromIntegral.length) s) m
 newInformation = M.foldWithKey (\k a b -> b + a*(eMap!k))
 0 sumE

10.	 Determine which attribute contributes the highest information gain:
highestInformationGain :: DataSet -> Int
highestInformationGain d = snd $ maximum $
 zip (map ((informationGain . classes) d) attrs) [0..]
 where attrs = map (attr d) [0..s-1]
 attr d n = map (\(xs,x) -> (xs!!n,x)) d
 s = (length . fst . head) d

11.	 Define the data structure for a decision tree that we will soon construct:
data DTree = DTree { feature :: String
 , children :: [DTree] }
 | Node String String
 deriving Show

12.	 Split up the dataset by the attribute that contributes the highest information gain:
datatrees :: DataSet -> Map String DataSet
datatrees d =
 foldl (\m (x,n) -> M.insertWith (++) (x!!i)
 [((x `dropAt` i), fst (cs!!n))] m)
 M.empty (zip (samples d) [0..])
 where i = highestInformationGain d
 dropAt xs i = let (a,b) = splitAt i xs in a ++ drop 1 b
 cs = zip (classes d) [0..]

13.	 Define a helper function to determine if all elements of a list are equal. We use
this to check if further splitting of the dataset is necessary by checking if its
classes are identical:
allEqual :: Eq a => [a] -> Bool
allEqual [] = True
allEqual [x] = True
allEqual (x:xs) = x == (head xs) && allEqual xs

Chapter 8

209

14.	 Construct the decision tree from a labeling and a dataset of samples:
dtree :: String -> DataSet -> DTree

dtree f d
 | allEqual (classes d) = Node f $ head (classes d)
 | otherwise = DTree f $
 M.foldWithKey (\k a b -> b ++ [dtree k a]) []
 (datatrees d)

15.	 Run the following code to see the tree printed out:
DTree { feature = "root"

 , children = [DTree { feature = "Sunny"

 , children = [Node "Normal" "Yes"

 , Node "High" "No"

]

 , DTree { feature = "Rain"

 , children = [Node "Weak" "Yes"

 , Node "Strong" "No"

]

 }

 , Node "Overcast" "Yes"

]

 }

It can be visualized using the following diagram:

root

sunny

Normal High
Week

rain

Strong

overcast

Clustering and Classification

210

How it works…
The ID3 algorithm uses the concept of Shannon's entropy to divide up a set of samples by the
attribute that maximize the information gain. This process is recursively repeated until we're
dealing with samples of the same classification or when we run out of attributes.

In the field of Information Theory, Entropy is the measure of unpredictability. A fair coin
has higher entropy than a biased coin. Entropy can be calculated by taking the expected
value of the information content, where information content of a random variable X has the
form — ln(P(X)). When the logarithm in the equation is to the base of 2, the units of entropy
are called bits.

Information Gain is the change in entropy from the prior state to the new state. It has the
equation IG = H1 – H2, where H1 is the original entropy of the sample. And H2 is the new
entropy given an attribute to split.

Implementing a k-Nearest Neighbors
classifier

One simple way to classify an item is to look at only its neighboring data. The k-Nearest
Neighbors algorithm looks at k items located closest to the item in question. The item is then
classified as the most common classification of its k neighbors. This heuristic has been very
promising for a wide variety of classification tasks.

In this recipe, we will implement the k-Nearest Neighbors algorithm using a k-d tree data
structure, which is a binary tree with special properties that allow efficient representation of
points in a k-dimensional space.

Imagine we have a web server for our hip new website. Every time someone requests a web
page, our web server will fetch the file and present the page. However, bots can easily hammer
a web server with thousands of requests, potentially causing a denial of service attack. In this
recipe, we will classify whether a web request is being made by a human or a bot.

Getting ready
Install the KdTree, CSV, and iproute packages using cabal:

$ cabal install KdTree

$ cabal install CSV

$ cabal install iproute

Chapter 8

211

Create a CSV file containing the IP addresses and number of seconds since last access.
The last field of each CSV record should be the classification Human or Bot. We call our
file input.csv.

How to do it…
After creating a new file called Main.hs, we perform the following steps:

1.	 Import the following packages:
import Data.Trees.KdTree
import Data.IP (IPv4, fromIPv4)
import Text.CSV
import qualified Data.Map as M
import Data.Maybe (fromJust)

2.	 Convert an IPv4 address string into its 32-bit representation:
ipToNum :: String -> Double

ipToNum str = fromIntegral $ sum $
 zipWith (\a b -> a * 256^b) ns [0..]
 where ns = reverse $ fromIPv4 (read str :: IPv4)

3.	 Parse data from a CSV file to obtain a list of points and their associated classifications:
parse :: [Record] -> [(Point3d, String)]

parse [] = []
parse xs = map pair (cleanList xs)
 where pair [ip, t, c] =
 (Point3d (ipToNum ip) (read t) 0.0, c)
 cleanList = filter (\x -> length x == 3)

4.	 Find the item in a list that occurs most often:
maxFreq :: [String] -> String

maxFreq xs = fst $ foldl myCompare ("", 0) freqs
 where freqs = M.toList $ M.fromListWith (+)

Clustering and Classification

212

 [(c, 1) | c <- xs]
 myCompare (oldS, oldV) (s,v) = if v > oldV
 then (s, v)
 else (oldS, oldV)

5.	 Classify a test point given the KdTree, the number of nearest neighbors to use, and
the training set of points:
test :: KdTree Point3d -> Int -> [(Point3d, String)]
 -> Point3d -> String

test kdtree k pairList p = maxFreq $ map classify neighbors
 where neighbors = kNearestNeighbors kdtree k p
 classify x = fromJust (lookup x pairList)

6.	 Define main to read a CSV file and process the data:
main = do
 rawCSV <- parseCSVFromFile "input.csv"
 either handleError doWork rawCSV

7.	 Handle an error if the CSV cannot be read properly:
handleError = error "Invalid CSV file"

8.	 Otherwise create a KdTree from the CSV data and test out a couple of examples:
doWork rawCSV = do
 let ps = parse rawCSV
 let kdtree = fromList (map fst ps)
 let examples = [["71.190.100.100", "2000", "?"]
 , ["216.239.33.1", "1", "?"]]
 let examplePts = map fst $ parse examples
 print $ map (test kdtree 2 ps) examplePts

9.	 Run the code to see the resulting classifications of the example points:
$ runhaskell Main.hs

["Human", "Bot"]

How it works…
The k-Nearest Neighbor algorithm looks at the k closest points from the training set and
returns the most frequent classification between these k points. Since we are dealing with
points, each of the coordinates should be orderable. Fortunately, an IP address has a faint
sense of hierarchy that we can leverage. We convert an IP to its 32-bit number to obtain a
useful ordering that we can treat as a coordinate of a point in space.

Chapter 8

213

Visualizing points using Graphics.EasyPlot
Sometimes, it's convenient to simply visualize data points before clustering or classifying
to inspect the data. This recipe will feed a list of points to a plotting library to easily see a
diagram of the data.

Getting ready
Install easyplot from cabal:

$ cabal install easyplot

Create a CSV file containing two-dimensional points:

$ cat input.csv

1,2

2,3

3,1

4,5

5,3

6,1

How to do it…
In a new file, Main.hs, follow these steps:

1.	 Import the required library to read in CSV data as well the library to plot points:
import Text.CSV
import Graphics.EasyPlot

2.	 Create a helper function to convert a list of string records into a list of doubles. For
example, we want to convert ["1.0,2.0", "3.5,4.5"] into [(1.0, 2.0),
(3.5, 4.5)]:
tupes :: [[String]] -> [(Double, Double)]

tupes records = [(read x, read y) | [x, y] <- records]

3.	 In main, parse the CSV file to be used later on:
main = do
 result <- parseCSVFromFile "input.csv"

Clustering and Classification

214

4.	 If the CSV file is valid, plot the points using the plot :: TerminalType -> a ->
IO Bool function:
 case result of
 Left err -> putStrLn "Error reading CSV file"
 Right csv -> do
 plot X11 $ Data2D [Title "Plot"] [] (tupes csv)
 return ()

How it works…
The first argument to plot tells gnuplot where its output should be displayed. For example,
we use X11 to output to the X Window System on Linux. Depending on the computer, we
can choose between different terminal types. The constructors for TerminalType are
the following:

ff Aqua: Output on Mac OS X (Aqua Terminal)

ff Windows: Output for MS Windows

ff X11: Output to the X Window System

ff PS FilePath: Output into a PostScript file

ff EPS FilePath: Output into an EPS file path

ff PNG FilePath: Output as Portable Network Graphic into a file

ff PDF FilePath: Output as Portable Document Format into a file

ff SVG FilePath: Output as Scalable Vector Graphic into a file

ff GIF FilePath: Output as Graphics Interchange Format into a file

ff JPEG FilePath: Output into a JPEG file

ff Latex FilePath: Output as LaTeX

The second argument to plot is the graph, which may be a Graph2D, or Graph3D, or a list
of these.

9
Parallel and

Concurrent Design

In this chapter, we will cover the following recipes:

ff Using the Haskell Runtime System (RTS) options
ff Evaluating a procedure in parallel
ff Controlling parallel algorithms in sequence
ff Forking I/O actions for concurrency
ff Communicating with a forked I/O action
ff Killing forked threads
ff Parallelizing pure functions using the Par monad
ff Mapping over a list in parallel
ff Accessing tuple elements in parallel
ff Implementing MapReduce to count word frequencies
ff Manipulating images in parallel using Repa
ff Benchmarking runtime performance in Haskell
ff Using the criterion package to measure performance
ff Benchmarking runtime performance in the terminal

Parallel and Concurrent Design

216

Introduction

One of the greatest accomplishments in the study of data analysis is the intelligent approach
to parallel and concurrent design. As we collect more and more data, we are able to discover
more and more patterns. However, this comes at a price of time and space. More data may
take more time to compute or more space in terms of memory. It is a very real problem that
this chapter will try to solve.

The first few recipes will cover how to evoke pure procedures in parallel and in sequence.
The following recipes on forking will deal with concurrency using I/O actions. We will then
delve deeper by learning how to access a list and tuple elements in parallel. Then, we will
implement MapReduce in Haskell to solve a time-consuming problem efficiently.

We will end the review of parallel and concurrent design by learning how to benchmark
runtime performance. Sometimes, the easiest way to discover if code is successfully running
in parallel is by timing it against a nonparallel version of the code. If the computation time
between the two appears to be the same, then it is very likely that something is wrong. Either
the code is not running in parallel or the cost of evoking parallelism outweighs the benefits.

Using the Haskell Runtime System options
The Runtime System (RTS) in Haskell configures special options such as scheduling, profiling,
and managing storage for a compiled Haskell program. In order to write multithreaded code,
we must specify our own RTS options as outlined in this recipe.

For further reading, the GHC Commentary on the official Haskell Wiki web page has a very
detailed explanation of the runtime system available at https://ghc.haskell.org/
trac/ghc/wiki/Commentary/Rts.

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts

Chapter 9

217

How to do it…
Open a terminal, compile a code, and run it using the RTS option. Imagine that our file is
named Main.hs, and issue the following commands:

$ ghc -O2 --make Main.hs -threaded -rtsopts

$./Main +RTS -N2

How it works…
In order to make use of multiple threads, we must compile our code with the threaded and
rtsopts flags enabled.

Now that it is compiled with rtsopts, we can run our program with special instructions
placed between the +RTS and -RTS flags. If there is a +RTS flag without a –RTS flag, then
we assume that the RTS options continue until the end of the line.

We set the number of threads to use by placing -Nx within the RTS argument, which stands
for "use x threads". So, to use two threads, we should type -N2. To use all possible threads,
we simply type -N.

There's more…
Another way to specify the RTS options is during compile time, using the --with-rtsopts
flag. More advanced methods include modifying environment variables or overriding runtime
system hooks. More information on these can be found on the official Haskell user guide
available at https://www.haskell.org/ghc/docs/7.4.1/html/users_guide/
runtime-control.html.

Evaluating a procedure in parallel
In this recipe, we will conduct two time-consuming tasks in parallel. We will use the
rpar function provided by the parallel package from hackage. The rpar function
annotates its argument to be evaluated in parallel. Then, we call runEval to actually
perform the computation.

Getting ready
Install the parallel package using cabal as follows:

$ cabal install parallel

https://www.haskell.org/ghc/docs/7.4.1/html/users_guide/runtime-control.html
https://www.haskell.org/ghc/docs/7.4.1/html/users_guide/runtime-control.html

Parallel and Concurrent Design

218

How to do it…
1.	 Import the parallel package as follows:

import Control.Parallel.Strategies (runEval, rpar)

2.	 Evaluate two tasks in parallel, and wait for both tasks to finish before returning as
seen in the following code snippet:
main = do
 print $ runEval $ do
 a <- rpar task1
 b <- rpar task2
 return (a, b)

3.	 A time-consuming task can be created as follows:
task1 = 8^8^9 :: Integer

4.	 Another time-consuming task can be created as follows:
task2 = 8^8^8 :: Integer

5.	 Compile the code with the threaded and rtsopts flags enabled, as follows:
$ ghc -O2 --make Main.hs -threaded –rtsopts

6.	 Run it by specifying the number of cores:
$./Main +RTS -N2

The time-consuming calculations (task1 and task2) in this recipe require
a huge amount of memory and may exceed the limitations of the machine
in use. Adjust the tasks to be more manageable, such as 4^8^9 or 4^8^8.
In this recipe, specifically, the overhead cost of parallelizing these simple
mathematical calculations may be greater than the benefits.

How it works…
Time-consuming functions are annotated with rpar, which suggests that the computation
should occur in parallel. Once runEval is applied, the sparked code runs in parallel. Future
parts of the code can continue with the execution until the output of these parallel-running
threads are needed.

In our recipe, we run task1 and task2 in parallel. We immediately return the result to be
used in future parts of the code, and the code only waits for the tasks to complete once
necessary. The computation is being processed in the background until it is needed later.

Chapter 9

219

See also
To explore examples of using a sequence in a parallel design, refer to the Controlling parallel
algorithms in sequence recipe.

Controlling parallel algorithms in sequence
In this recipe, we will conduct two time-consuming tasks in parallel. We will use the rpar
function and the rseq function provided by the parallel package from hackage. The rpar
function annotates its argument to be evaluated in parallel. The other function, rseq, forces
sequential evaluations in what is called the weak head normal form.

Getting ready
Install the parallel package using cabal as follows:

$ cabal install parallel

How to do it…
1.	 Import the parallel package as follows:

import Control.Parallel
import Control.Parallel.Strategies
Evaluate two tasks in parallel, and wait for both tasks to finish
before returning.
main = do
 print $ runEval $ do
 a <- rpar task1
 b <- rpar task2
 rseq a
 rseq b
 return (a, b)

2.	 Perform a time-consuming task as follows:
task1 = 8^8^9 :: Integer

3.	 Perform another time-consuming task as follows:
task2 = 8^8^8 :: Integer

4.	 Compile the code with the threaded and rtsopts flags enabled as follows:
$ ghc -O2 --make Main.hs -threaded –rtsopts

5.	 Run it by specifying the number of cores as follows:
$./Main +RTS -N2

Parallel and Concurrent Design

220

How it works…
Time-consuming functions are annotated with rpar or rseq, which describe whether a
computation should happen in parallel or in a sequence. If a function is sparked to be run in
parallel, then future parts of the code can be made to run until that value is needed. In that
case, the code blocks until the parallel operation is complete. If a function is required to be
in sequence, the code will wait until the function has computed a result, and only then will it
move on.

In our recipe, we run task1 and task2 in parallel. We then run rseq on the values to
demonstrate the concept of sequencing. The first time we call rseq, we are forcing the code
to wait until task1, which is represented by the variable a, is complete. Depending on the
parallel design of the algorithm, it may not be necessary to sequence it at all. We also force
task2, which is represented by the variable b, to wait until the value is calculated just to
demonstrate how sequencing works.

See also
To see an example of only parallel design without sequencing, refer to the Evaluating a
procedure in parallel recipe.

Forking I/O actions for concurrency
A quick and easy way to launch an I/O type function in the background is by calling the
forkIO function provided by the Control.Concurrent package. In this recipe, we will
demonstrate simple input/output concurrently in Haskell. We will get the number of seconds
to wait from the user input, and in the background, it will sleep and print a message once the
thread wakes up.

How to do it…
1.	 Import the built-in concurrency package as follows:

import Control.Concurrent (forkIO, threadDelay)

2.	 Ask the user the number of seconds the program has to sleep for. Then, sleep
for that many seconds by calling our sleep function defined in the following
code snippet. Finally, recursively call main again to demonstrate that the user
can continue to input while a thread is running in the background:
main = do
 putStr "Enter number of seconds to sleep: "
 time <- fmap (read :: String -> Int) getLine
 forkIO $ sleep time
 main

Chapter 9

221

3.	 Define a function that takes in the number of seconds to sleep, and apply
threadDelay :: Int -> IO () to that value as follows:
sleep :: Int -> IO ()
sleep t = do
 let micro = t * 1000000
 threadDelay micro
 putStrLn $ "[Just woke up after "
 ++ show t ++ " seconds]"

4.	 When we run the program, we can quickly input multiple numbers before receiving an
output as follows:
$ ghci Main.hs

Prelude> main

Prelude> Enter number of seconds to sleep: 3

Prelude> Enter number of seconds to sleep: 2

Prelude> Enter number of seconds to sleep: [Just woke up after 2
seconds]

[Just woke up after 3 seconds]

The print and putrStrLn functions are not atomic, so you may also
get interleaved output.

See also
To send data to a forked action, refer to the Communicating with a forked I/O action recipe.

Communicating with a forked I/O action
A quick and easy way to launch an I/O type function in the background is by calling the
forkIO function provided by the Control.Concurrent package. In this recipe, we will be
communicating with forked I/O actions by sending messages using a variable type called MVar.

Parallel and Concurrent Design

222

Getting ready
Install the HTTP package from cabal as follows:

$ cabal install HTTP

How to do it…
1.	 Import the relevant packages as follows:

import Network.HTTP
import Control.Concurrent

2.	 Create a new variable that will be used by the fork process. The newEmptyMVar
function is of the IO (MVar a) type, so we will extract the expression out and
label it m as follows:
main = do
 m <- newEmptyMVar
 forkIO $ process m

3.	 After running the fork, send it some data by calling putMVar :: MVar a -> a ->
IO (), as shown in the following lines of code. The variable will hold the given value,
and the forked process waiting on that data will resume:
 putStrLn "sending first website..."
 putMVar m "http://www.haskell.com"

4.	 We can reuse the expression and send it more data as follows:
 putStrLn "sending second website..."
 putMVar m "http://www.gnu.org"

5.	 To make sure main does not terminate before the forked process is finished, we
just force main to wait for 10 seconds by calling the threadDelay function. This
is for demonstration purposes only, and a complete solution should terminate main
immediately once the fork is complete, as presented in the following code snippet:
 threadDelay $ 10 * 1000000

6.	 Define the code that will be forked to run in parallel as follows:
process m = do
 putStrLn "waiting..."
 v <- takeMVar m
 resp <- get v
 putStrLn $ "response from " ++ show v ++ " is " ++ resp
 process m

7.	 Create a function to perform an HTTP GET request on a URL as follows:
get :: String -> IO String
get url = do

Chapter 9

223

 resp <- simpleHTTP (getRequest url)
 body <- getResponseBody resp
 return $ take 10 body

8.	 The output of the program will then be as follows:
$ runhaskell Main.hs

sending first website...

sending second website...

waiting...

waiting...

response from "http://www.haskell.com" is

<!doctype html>

<html class="no-js" lang="en">

<head id="ctl00_Head1"><meta http-equiv="X-UA-C

response from "http://www.gnu.org" is

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1

waiting...

See also
To see a simpler example of using forkIO, refer to the Forking I/O actions for
concurrency recipe.

Killing forked threads
When we create a new thread, we can keep track of its corresponding thread ID to kill it
later manually.

In this recipe, we will be creating a command-line interface for forking new processes
to download a huge file. A download will be initiated with the d command followed by
a number. So, running d 1 will launch a thread to download item #1.

We will learn how to kill threads while they are still running. Our command to kill threads will
look like k 1 in order to kill the downloaded item #1.

Parallel and Concurrent Design

224

How to do it…
In a new file, which we call Main.hs, insert the following code:

1.	 Import the required packages as follows:
import Control.Concurrent
import qualified Data.Map as M

2.	 Let main call the helper download function:
main = download (M.empty :: M.Map Int [ThreadId])

3.	 Define a function to take the user queries and appropriately respond as follows:
download m = do
 input <- (getLine >>= return . words)
 respond m input >>= download

4.	 Respond to a download request:
respond m ["d", nstr] = do
 putStrLn "Starting download..."
 let n = read nstr :: Int
 threadId <- forkIO $ massiveDownload n
 return $ M.insertWith (++) n [threadId] m

5.	 Respond to a kill request:
respond m ["k", nstr] = do
 let n = read nstr :: Int
 case (M.lookup n m) of
 Just threads -> do
 putStrLn "Killing download(s)..."
 mapM_ killThread threads
 download $ M.delete n m
 Nothing -> do
 putStrLn "No such download"
 download m

6.	 Respond to an invalid request:
respond m _ = do
 putStrLn
 "Type `d #` to start a download or `k #` to kill it."
 return m

7.	 Pretend to download a huge file as follows:
massiveDownload n = do
 threadDelay $ 10 * 1000000
 putStrLn $ "[Download " ++ (show n) ++" complete!]"

Chapter 9

225

8.	 Run the code and evoke a couple of downloads and kill commands as follows:
$ runhaskell Main.hs

d 1

Starting download...

d 2

Starting download...

d 3

Starting download...

k 1

Killing download(s)...

[Download 2 complete!]

[Download 3 complete!]

How it works...
The program keeps track of a mapping from the download number to thread IDs. Whenever a
new download is initiated, we insert the corresponding thread ID to the map. To kill a thread,
we call killThread on the respective thread ID.

Parallelizing pure functions using the Par
monad

The Par monad from the Control.Monad.Par package is used to speed up pure functions
using parallel threads. Information flow is guided by variables called IVar. We can put values
to IVar in parallel or get values from it.

Getting ready
Install the Par monad on cabal as follows:

$ cabal install monad-par

How to do it…
1.	 Import the Par monad as follows:

import Control.Monad.Par

2.	 Run a computation in parallel, and perform some interesting function such as
counting the number of digits and printing it out.
main = print $ length $ show $ runPar mypar

Parallel and Concurrent Design

226

3.	 Define an I/O type action as follows:
mypar = do
 v1 <- new :: Par (IVar Integer)
 v2 <- new :: Par (IVar Integer)
 fork $ put v1 task1
 fork $ put v2 task2
 v1' <- get v1
 v2' <- get v2
 return (v1' + v2')

4.	 Perform a time-consuming task as follows:
task1 = 8^8^8

5.	 Perform another time-consuming task as follows:
task2 = 8^8^7

6.	 Compile the code with the threaded and rtsopts flags enabled, using the
following command:
$ ghc -O2 --make Main.hs -threaded –rtsopts

7.	 Run it by specifying the number of cores as follows:
$./Main +RTS -N2

15151337

There's more…
The natural nonparallelized version of the code certainly looks cleaner. In the following
example, we see the same principle at work mathematically as the previous example but
without the use of monads. However, we no longer have the power of concurrency:

import Control.Monad.Par

main = print $ length $ show $ task1 + task2

task1 = 8^8^8
task2 = 8^8^8

See also
For dealing with computations that use I/O, refer to the Forking I/O actions for
concurrency recipe.

Chapter 9

227

Mapping over a list in parallel
In this recipe, we will be applying the map function in parallel. Given a list of values, we will be
using multiple threads to apply a function over each value.

How to do it…
1.	 Import the parallel strategies as follows:

import Control.Parallel.Strategies

2.	 Map over a list using the rdeepseq strategy using the following code snippet:
main = do
 let results =
 (parMap rdeepseq (^10) [10^10..10^10+10000]) :: [Int]
 print results

3.	 The first few characters of the printed output are shown here after compiling and
running the code as follows:

4.	 Compile the code with the threaded and rtsopts flags enabled as follows:
$ ghc -O2 --make Main.hs -threaded -rtsopts

5.	 Run the code by specifying the number of cores as follows:
$./Main +RTS -N2

[0,3644720378636855297,1420199564594381824,-9091195533231350103,-
3969065814844243968,5699158338132413177,5185631055696798720,-
1664423011715345679,-5301432476323807232,-
6822228826283293807,-3978116359327587328,-
2988467747382449959,669511447655481344,2530383018990005705,-
7998143102955305984, ...

How it works…
The parMap function has the type Strategy b -> (a -> b) -> [a] -> [b]. It looks
exactly like the type signature of the map function, except that it takes in something called
Strategy. A Strategy decouples the method of parallelism from the implementation of code.
An example of a Strategy is rdeepseq, which fully evaluates its argument. For example,
Haskell is lazy evaluated, so the code length [5^5^5, 6^6^6] will not evaluate the value
of 5^5^5 or 6^6^6. We can use the rdeepseq example to better control what computations
should be evaluated when run in parallel.

Parallel and Concurrent Design

228

In contrast, a slow and simple version of the code is shown as follows:

main = do
 print $ map (^10) [10^10..10^10+10000]

Try timing the runtime to see the significant differences in using multiple threads.

There's more…
There are many Strategies depending on how the parallelism should be evoked, which are
as follows:

ff r0 is the simplest Strategy that simply does not evaluate the expression

ff dot is used to compose two Strategies together for finer control in more
complicated expressions

ff rseq will immediately evaluate the expression

ff rpar will annotate the expression to be evaluated in parallel

See also
ff If dealing with tuples, refer to the Accessing tuple elements in parallel recipe

ff For more details on timing code, refer to the Benchmarking runtime performance in
Haskell recipe or the Benchmarking runtime performance in the terminal recipe

Accessing tuple elements in parallel
In this recipe, we will cover how to access elements of a tuple in parallel.

How to do it…
1.	 Import the built-in package as follows:

import Control.Parallel.Strategies

2.	 Evaluate the expression in a tuple in parallel. We perform this task twice with
different strategies to demonstrate how strategies are easily swapped to change
the parallel nature of the code as follows:
main = do
 let (a, b) = withStrategy (parTuple2 rseq rseq) (task1, task2)
 print $ seq (a+b) "done 1"
 let (a, bs) = withStrategy (parTuple2 rseq rdeepseq) (task1,
tasks)
 print $ seq (a + sum bs) "done 2"

Chapter 9

229

3.	 Define time-consuming tasks as follows:
task1 = 8^8^8 :: Integer
task2 = 8^8^8 :: Integer
tasks = [10^10..10^10+10000] :: [Integer]

4.	 Compile the code with the threaded and rtsopts flags enabled, as follows:
$ ghc -O2 --make Main.hs -threaded -rtsopts

5.	 Run it by specifying the number of cores as follows:
$./Main +RTS -N2

There's more…
When dealing with tuples of more than two elements, other helper methods exist such
as parTuple3, parTuple4, parTuple5, parTuple6, parTuple7, parTuple8,
and parTuple9.

See also
If dealing with lists, refer to the Mapping over a list in parallel recipe.

Implementing MapReduce to count word
frequencies

MapReduce is a framework for efficient parallel algorithms that take advantage of divide
and conquer. If a task can be split into smaller tasks, and the results of each individual task
can be combined to form the final answer, then MapReduce is likely the best framework for
this job.

In the following figure, we can see that a large list is split up, and the mapper functions work
in parallel on each split. After all the mapping is complete, the second phase of the framework
kicks in, reducing the various calculations into one final answer.

In this recipe, we will be counting word frequencies in a large corpus of text. Given many files
of words, we will apply the MapReduce framework to find the word frequencies in parallel.

map

reduce

Parallel and Concurrent Design

230

Getting ready
Install the parallel package using cabal as follows:

$ cabal install parallel

Create multiple files with words. In this recipe, we download a huge text file and split it up
using the UNIX split command as follows:

$ wget norvig.com/big.txt

$ split –d big.txt words

$ ls words*

words00

words01

words02

words03

…

How to do it…
1.	 Import the relevant packages as follows:

import Data.List (sort, group, sortBy, groupBy, isPrefixOf)
import Control.Parallel
import Control.Parallel.Strategies
import Data.Char (isAlpha, isSpace, toLower)
import Data.Map (Map, insertWith, empty, toList)
import System.Directory
import qualified Data.Map as M

2.	 Define the MapReduce logic. The mapping functions should all occur before the
reducing logic as follows:
mapReduce :: Strategy b -> (a -> b) ->
Strategy b -> ([b] -> b) -> [a] -> b
mapReduce mStrategy m rStrategy r input =
 mOutput `pseq` rOutput
 where mOutput = parMap mStrategy m input
 rOutput = r mOutput `using` rStrategy

Chapter 9

231

3.	 Define the mapper function to count the frequency of words as follows:
mapper :: String -> [(String,Int)]
mapper str = freqCount $ getWords str

4.	 Count the number of times a word occurs in a string as follows:
 freqCount :: [String] -> [(String, Int)]
 freqCount xs =
 map (\x -> (head x, length x)) . group . sort $ xs

5.	 Get the words out of an arbitrary corpus of characters as follows:
getWords :: String -> [String]
getWords str = words $ filter
 (\x -> isAlpha x || isSpace x) lower
 where lower = map toLower str

6.	 Reduce the list of word frequencies into one final answer as follows:
reducer :: [[(String,Int)]] -> [(String,Int)]
reducer ls = toList $
 foldl (\m (k, v) -> insertWith (+) k v m)
 (empty :: Map String Int)
 (concat ls)

7.	 Set up the MapReduce problem and run it:
main = do
 files <- getCurrentDirectory >>= getDirectoryContents
 let myFiles = filter ("words `isPrefixOf`) files
 rawFileData <- mapM readFile myFiles
 let freqMap = mapReduce (rpar `dot` rdeepseq)
 mapper rseq reducer fawFileData
 putStrLn $ "Found " ++ (show.length) freqMap ++ " words!"
 queryInput freqMap

8.	 Ask to use input, and then display the frequency of each word entered:
queryInput freqMap = do
 putStrLn "Enter a sentence: "
 sentence <- readLine
 let freqs = map (`lookup` freqMap) (words sentence)
 print $ zip (words sentence) freqs
 queryInput freqMap

Parallel and Concurrent Design

232

9.	 Compile the code with the threaded and rtsopts flags enabled, as follows:
$ ghc -O2 --make Main.hs -threaded -rtsopts

10.	 Run it by specifying the number of cores as follows:
$./Main +RTS -N2

Found 35537 words!

Enter a sentence:

no one who is young is ever going to be old

[("no",Just 2328)

, ("one",Just 3215)

, ("who",Just 2994)

, ("is",Just 9731)

, ("young",Just 624)

, ("is",Just 9731)

, ("ever",Just 254)

, ("going",Just 369)

, ("to",Just 28614)

, ("be",Just 6148)

, ("old",Just 1138)]

Manipulating images in parallel using Repa
Repa is a powerful library for manipulating high-dimensional arrays in parallel. We will use it to
read and edit the pixels of an image.

Getting ready
Install Developer's Image Library (DevIL), a cross-platform image manipulation toolkit. It can
be downloaded from http://openil.sourceforge.net/download.php or through
apt-get on Debian systems as follows:

$ sudo apt-get install libdevil-dev

Install the Repa package from cabal for the DevIL toolkit as follows:

$ cabal install repa-devil

http://openil.sourceforge.net/download.php

Chapter 9

233

Create two images named image1.png and image2.png that have the same dimensions,
which are shown as follows:

Here comes the second image:

Parallel and Concurrent Design

234

How to do it…
1.	 Import the following libraries as follows:

import System.Environment (getArgs)
import Data.Word (Word8)
import qualified Data.Array.Repa as R
import Data.Array.Repa hiding ((++))
import Data.Array.Repa.IO.DevIL (runIL, readImage,
 writeImage, IL, Image(RGB))
import Data.Array.Repa.Repr.ForeignPtr (F)

2.	 Read the images, process them, and produce an output image as follows:
main = do
 let image1 = "image1.png"
 let image2 = "image2.png"
 runIL $ do
 (RGB a) <- readImage image1
 (RGB b) <- readImage image2
 imageOut <- (computeP $ intersect a b)
 :: IL (Array F DIM3 Word8)
 writeImage ("output.png") (RGB imageOut)

3.	 Create the helper function to process the images as follows:
intersect :: Array F DIM3 Word8 ->
 Array F DIM3 Word8 ->
 Array D DIM3 Word8
intersect a b = R.zipWith (\w1 w2 -> merge w1 w2) a b
 where merge w1 w2 = if w1 == w2 then 0 else 255

4.	 Compile the code with the threaded and rtsopts flags enabled, as follows:
$ ghc -O2 --make Main.hs -threaded -rtsopts

5.	 Run it by specifying the number of cores, as follows:
$./Main +RTS -N2

Chapter 9

235

The output is as follows:

How it works…
The images are read as three-dimensional Repa arrays of pixels, where each pixel is
represented by a Word8. The first two dimensions index the images by width and height,
and the last dimension selects the color channel (red, green, blue, or alpha).

We run the zipWith function provided by Repa to combine two images into one with our
intersect/merge rule. In order to actually run this process efficiently in parallel, we must call
the computeP function.

Benchmarking runtime performance in
Haskell

Benchmarking runtime is the process of timing how long it takes for the code to run. We
can understand whether our parallel or concurrent code is in fact faster than the naive
implementation by proper benchmarking. This recipe will demonstrate how to time code
runtime in Haskell.

Parallel and Concurrent Design

236

How to do it…
1.	 Import the necessary libraries as follows:

import System.CPUTime (getCPUTime)
import Control.Monad (replicateM_)
import Control.Parallel.Strategies (NFData, rdeepseq)
import Control.Exception (evaluate)

2.	 Create a function to print out the duration of a pure task. Evaluate the pure
expression a very large number of times (10^6), and then calculate the average
CPU time it takes to run one pure task. The getCPUTime function returns the
number of picoseconds since the start of the program's execution, as shown
in the following code snippet:
time :: (Num t, NFData t) => t -> IO ()
time y = do
 let trials = 10^6
 start <- getCPUTime
 replicateM_ trials $ do
 x <- evaluate $ 1 + y
 rdeepseq x `seq` return ()
 end <- getCPUTime
 let diff = (fromIntegral (end - start)) / (10^12)
 putStrLn $ "avg seconds: " ++
 (show (diff / fromIntegral trials))
 return ()

3.	 Test out the timing function as follows:
main = do
 putStrLn "Starting pure..."
 time (3+7 :: Int)
 putStrLn "...Finished pure"

4.	 The measurements for conducting a pure task are printed out. Actual measurements
will differ depending on the state of the machine.
Starting pure…
Avg seconds: 3.2895e-7
…Finished pure

See also
The Benchmarking runtime performance in the terminal recipe for producing benchmark
results outside the Haskell environment.

Chapter 9

237

Using the criterion package to measure
performance

For more reliable performance measures, the criterion package comes in handy. The
package description points out a major flaw in using simple procedures to time pure code.

"Because GHC optimizes aggressively when compiling with -O, it is potentially
easy to write innocent-looking benchmark code that will only be evaluated once,
for which all but the first iteration of the timing loop will be timing the cost of
doing nothing."

Getting ready
Create a small.txt file with a few words. Create a file, big.txt, filled with text as follows:

$ wget norvig.com/big.txt

Install the criterion library as follows:

$ cabal install criterion

How to do it…
1.	 Import the package as follows:

import Criterion.Main

2.	 Define the I/O function we wish to time as follows:
splitUp filename = readFile filename >>= return . words

3.	 Benchmark the desired function as follows:
main = defaultMain
 [bgroup "splitUp"
 [bench "big" $ nfIO $ splitUp "big.txt"
 , bench "small" $ nfIO $ splitUp "small.txt"]]

4.	 Run the code as follows:
$ ghc -O --make Main.hs

$./Main

warming up

estimating clock resolution...

Parallel and Concurrent Design

238

mean is 1.082787 us (640001 iterations)

found 42320 outliers among 639999 samples (6.6%)

 1860 (0.3%) low severe

 40460 (6.3%) high severe

estimating cost of a clock call...

mean is 33.40185 ns (10 iterations)

found 2 outliers among 10 samples (20.0%)

 1 (10.0%) high mild

 1 (10.0%) high severe

benchmarking splitUp/big

collecting 100 samples, 1 iterations each, in estimated 65.46450 s

mean: 656.1964 ms, lb 655.5417 ms, ub 657.1513 ms, ci 0.950

std dev: 4.018375 ms, lb 3.073741 ms, ub 5.746751 ms, ci 0.950

benchmarking splitUp/small

mean: 15.33773 us, lb 15.16429 us, ub 15.56298 us, ci 0.950

std dev: 1.010893 us, lb 823.5281 ns, ub 1.277931 us, ci 0.950

found 8 outliers among 100 samples (8.0%)

 5 (5.0%) high mild

 3 (3.0%) high severe

variance introduced by outliers: 61.572%

variance is severely inflated by outliers

How it works…
By calling this library's defaultMain function in main, we can leverage some very powerful
benchmarking features. For instance, try running the following command to see a plethora of
features supported by criterion:

$./Main -h

Chapter 9

239

Benchmarking runtime performance in the
terminal

Benchmarking runtime is the process of timing how long it takes the code to run. This skill
is invaluable since it helps compare performance. By externally measuring the runtime as
opposed to instrumenting it within the code, we can easily proceed without understanding the
inner working of the code. If we're on a Unix-like system such as Linux or OS X, we can use the
time command, and on Windows systems, we can use Measure-Command with PowerShell.

Getting ready
Make sure our machine is either Unix-like (such as Linux or OS X) or Windows. Otherwise,
we must search online for a way to time execution.

How to do it…
1.	 On Unix-like systems, there is a built-in time command. When running any piece of

code from the terminal, we can prefix it with time as follows:
$ time runhaskell Main.hs

real 0m0.663s

user 0m0.612s

sys 0m0.057s

The argument to this command is run, and the system resource usage is immediately
summarized. The actual accuracy of the results depends on the machine.

2.	 On Windows, we can use the Measure-Command feature in PowerShell. Open
PowerShell, go to the correct directory, and execute the following command:
> Measure-Command { start-process runhaskell Main.hs –Wait }

3.	 You will see a result with the following format:
Days : 0

Hours : 0

Minutes : 0

Seconds : 1

Milliseconds : 10

Parallel and Concurrent Design

240

Ticks : 10106611

TotalDays : 1.16974664351852E-05

TotalHours : 0.000280739194444444

TotalMinutes : 0.0168443516666667

TotalSeconds : 1.0106611

TotalMilliseconds : 1010.6611

See also
To time execution within the Haskell code itself, refer to the Benchmarking runtime
performance in Haskell recipe.

10
Real-time Data

This chapter will cover the following recipes:

ff Streaming Twitter for real-time sentiment analysis

ff Reading IRC chat room messages

ff Responding to IRC messages

ff Polling a web server for the latest updates

ff Detecting real-time file directory changes

ff Communicating in real time through sockets

ff Detecting faces and eyes through a camera stream

ff Streaming camera frames for template matching

Real-time Data

242

Introduction

It's fairly easy to first collect data and then analyze it later. However, doing both steps together
may be necessary for some tasks. The gratifying nature of analyzing data the moment it is
received is the core subject of this chapter. We will cover how to manage real-time data input
from Twitter tweets, Internet Relay Chat (IRC), web servers, file-change notifications, sockets,
and webcams.

The first three recipes will focus on dealing with real-time data from Twitter. These topics will
include streaming posts by users as well as posts related to keywords.

Next, we will use two separate libraries to interact with IRC servers. The first recipe will
demonstrate how to join an IRC chat room and start listening for messages, and the next
recipe will show us how to listen for direct messages on an IRC server.

If real-time data is not supported, a common fallback is to query for that data often. This process
is calling polling, and we will learn a quick way to poll a web server in one of the recipes.

We will also detect changes in a file directory when a file is modified, deleted, or created.
Imagine implementing Dropbox, OneDrive, or Google Drive in Haskell.

Finally, we will create a simple server-client interaction with sockets and play around with
real-time webcam streams.

Streaming Twitter for real-time sentiment
analysis

Twitter is flooded with content that arrives every second. A great way to start investigating
real-time data is by examining tweets.

Chapter 10

243

This recipe will show how to write code that reacts to tweets relating to a specific search
query. We use an external web-endpoint to determine whether the sentiment is positive,
neutral, or negative.

Getting ready
Install the twitter-conduit package:

$ cabal install twitter-conduit

For parsing JSON, let's use yocto:

$ cabal install yocto

How to do it…
Follow these steps to set up the Twitter credentials and begin coding:

1.	 Create a new Twitter app by navigating to https://apps.twitter.com.

2.	 Find the OAuth Consumer Key and OAuth Consumer Secret from this Twitter
Application Management page. Set the environmental variables on our system
for OAUTH_CONSUMER_KEY and OAUTH_CONSUMER_SECRET respectively. Most
Unix-based systems with sh-compatible shells support the export command:
$ export OAUTH_CONSUMER_KEY="Your OAuth Consumer Key"

$ export OAUTH_CONSUMER_SECRET="Your OAuth Consumer Secret"

3.	 Moreover, find the OAuth Access Token and OAuth Access Secret through
the same Twitter Application Management page and set the environmental
variables accordingly:
$ export OAUTH_ACCESS_TOKEN="Your OAuth Access Token"

$ export OAUTH_ACCESS_SECRET="Your OAuth Access Secret"

We put our keys, tokens, and secret pins in the environmental
variables instead of simply hardcoding them into the program
because these variables are as important as passwords. Just like
passwords should never be publicly visible, we try our best to keep
these tokens and keys out of direct reach from the source code.

4.	 Download the Common.hs file from the sample directory of the twitter-conduit
package, which is located at https://github.com/himura/twitter-
conduit/tree/master/sample. Study the userstream.hs sample file.

https://apps.twitter.com
https://github.com/himura/twitter-conduit/tree/master/sample
https://github.com/himura/twitter-conduit/tree/master/sample

Real-time Data

244

5.	 First, we import all the relevant libraries:
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Conduit as C
import qualified Data.Conduit.List as CL
import qualified Data.Text.IO as T
import qualified Data.Text as T

import Control.Monad.IO.Class (liftIO)
import Network.HTTP (getResponseBody, getRequest, simpleHTTP,
urlEncode)
import Text.JSON.Yocto
import Web.Twitter.Conduit (stream, statusesFilterByTrack)
import Common
import Control.Lens ((^!), (^.), act)
import Data.Map ((!))
import Data.List (isInfixOf, or)
import Web.Twitter.Types

6.	 In main, run our real-time sentiment analyzer for a search query:
main :: IO ()

main = do
 let query = "haskell"
 T.putStrLn $ T.concat ["Streaming Tweets that match \""
 , query, "\"..."]
 analyze query

7.	 Tap into the Twitter real-time stream with our Twitter API credentials by using the
runTwitterFromEnv' function provided by the Common module. We will use
some crazy syntax such as $$+- or ^!. Please do not be intimidated by them.
They're mainly used for succinctness. Every time an event is triggered, such as
a new tweet or a new follow, we will call our process function on it:
analyze :: T.Text -> IO ()

analyze query = runTwitterFromEnv' $ do
 src <- stream $ statusesFilterByTrack query
 src C.$$+- CL.mapM_ (^! act (liftIO . process))

8.	 Once we have our event-triggered input, we will run process to obtain an output,
such as discovering the sentiment of a text. In this example, we append the
sentiment output to a comma-separated file:
process :: StreamingAPI -> IO ()

process (SStatus s) = do

Chapter 10

245

 let theUser = userScreenName $ statusUser s
 let theTweet = statusText s
 T.putStrLn $ T.concat [theUser, ": ", theTweet]
 val <- sentiment $ T.unpack theTweet
 let record = (T.unpack theUser) ++ "," ++
 (show.fromRational) val ++ "\n"
 appendFile "output.csv" record
 print val

9.	 If the event-triggered input is not a tweet but instead a friendship event or something
else, do nothing:
process s = return ()

10.	 Define a helper function to clean up the input by removing all @user mentions,
#hashtags, or http://websites:
clean :: String -> String

clean str = unwords $ filter
 (\w -> not (or
 [isInfixOf "@" w
 , isInfixOf "#" w
 , isInfixOf "http://" w]))
 (words str)

11.	 Use an external API to run the sentiment analysis on a body of text. In this
example, we use the Sentiment140 API because of its ease and simplicity.
Please see http://help.sentiment140.com/api for more information.
To prevent getting rate-limited, also supply the appid parameter with an e-mail
address or obtain a commercial license:
sentiment :: String -> IO Rational
sentiment str = do
 let baseURL = "http://www.sentiment140.com/api/classify?text="
 resp <- simpleHTTP $ getRequest $
 baseURL ++ (urlEncode.clean) str
 body <- getResponseBody resp
 let p = polarity (decode body) / 4.0
 return p

12.	 Extract the sentiment value from the JSON response from our API:
polarity :: Value -> Rational

polarity (Object m) = polarity' $ m ! "results"
 where polarity' (Object m) = fromNumber $ m ! "polarity"
 fromNumber (Number n) = n
polarity _ = -1

http://help.sentiment140.com/api

Real-time Data

246

13.	 Run the code to see tweets displayed right as they are posted publicly by anyone
worldwide. The sentiment value will be a rational number between 0 and 1, where 0
is a negative sentiment and 1 is a positive sentiment:
$ runhaskell Main.hs

Streaming Tweets that match "x-men"…

Have a look at the following output:

We can also analyze the data in bulk from the output.csv file. Here's a visual
representation of the sentiments:

Sentiment Distribution for X-Men
Tweets

Neutral, 83%

Positive, 11% Negative, 6%

Chapter 10

247

How it works…
The Twitter-conduit package uses the conduit design pattern from the original package
placed at https://hackage.haskell.org/package/conduit. The conduit
documentation states:

Conduit is a solution to the streaming data problem, allowing for production,
transformation, and consumption of streams of data in constant memory. It is an
alternative to lazy I/O which guarantees deterministic resource handling, and fits in
the same general solution space as enumerator/iteratee and pipes.

To interact with Twitter's Application Programming Interface (API), it is necessary to obtain the
access and application tokens and keys. We store these values in our environment variables
and let the Haskell code retrieve it from there.

The Common.hs file takes care of monotonous authentication code, which should be
left untouched.

The function that reacts to each Twitter event is process. We can modify process to
accompany our specific needs. More specifically, we can modify the sentiment function
to use a different sentiment analysis service.

There's more…
Our code listens to any tweets that match our query. This Twitter-conduit library also supports
two other real-time streams: statusesFilterByFollow and userstream. The former
retrieves all tweets from a list of prescribed users. The latter retrieves all tweets from the
users that the account follows.

For example, modify our code by replacing the statusesFilterByTrack query with the
UIDs of some Twitter users:

analyze:: IO ()
analyze = runTwitterFromEnv' $ do
 src <- statusesFilterByFollow [103285804, 450331119
 , 64895420]
 src C.$$+- CL.mapM_ (^! act (liftIO . process))

Moreover, to only retrieve tweets from the users that we are following, we can instead modify
our code by replacing the statusesFilterByTrack query with userstream:

analyze :: IO ()
analyze = runTwitterFromEnv' $ do
 src <- stream userstream
 src C.$$+- CL.mapM_ (^! act (liftIO . process))

https://hackage.haskell.org/package/conduit

Real-time Data

248

Many more examples can be found through https://github.com/himura/twitter-
conduit/tree/master/sample.

Reading IRC chat room messages
The Internet Relay Chat (IRC) is one of the oldest and most vibrant group chat room services
out there. The Haskell community has a substantially welcoming presence on the Freenode
IRC server (irc.freenode.org) in the #haskell channel.

In this recipe, we will build an IRC bot that joins a room and listens to text conversations. Our
program will emulate an IRC client and connect to one of the many existing IRC servers. This
recipe requires no external libraries at all.

Getting ready
Make sure an Internet connection is enabled.

To test out the IRC bot, it helps to install an IRC client. For instance, one of the top IRC
clients is Hexchat, which can be downloaded from http://hexchat.github.io.
For a terminal-based IRC client, Irssi is a favorite: http://www.irssi.org.

Review the Roll your own IRC bot article on the Haskell wiki: http://www.haskell.org/
haskellwiki/Roll_your_own_IRC_bot. This recipe is heavily based on the code presented
on the wiki.

How to do it…
In a new file called Main.hs, insert the following code:

1.	 Import the relevant packages:
import Network
import Control.Monad (forever)
import System.IO
import Text.Printf

2.	 Specify the IRC server specifics:
server = "irc.freenode.org"
port = 6667
chan = "#haskelldata"
nick = "awesome-bot"

3.	 Connect to the server and listen to all text being passed in a chat room:
main = do
 h <- connectTo server (PortNumber (fromIntegral port))

https://github.com/himura/twitter-conduit/tree/master/sample
https://github.com/himura/twitter-conduit/tree/master/sample
http://hexchat.github.io
http://www.irssi.org
http://www.haskell.org/haskellwiki/Roll_your_own_IRC_bot
http://www.haskell.org/haskellwiki/Roll_your_own_IRC_bot

Chapter 10

249

 hSetBuffering h NoBuffering
 write h "NICK" nick
 write h "USER" (nick++" 0 * :tutorial bot")
 write h "JOIN" chan
 listen h

write :: Handle -> String -> String -> IO ()
write h s t = do
 hPrintf h "%s %s\r\n" s t
 printf "> %s %s\n" s t

4.	 Define our listener. For this recipe, we will just echo all events to the console:
listen :: Handle -> IO ()
listen h = forever $ do
 s <- hGetLine h
 putStrLn s

See also
To see another way to interact with IRC, see the next recipe, Responding to IRC messages.

Responding to IRC messages
Another way to interact with IRC in Haskell is by using the Network.SimpleIRC package.
This package encapsulates much of the low-level networking and also provides useful
IRC interfaces.

In this recipe, we will respond to messages in a channel. If any user types in the trigger
phrase, in our case "host?", then we will reply to that user with their host address.

Getting ready
Install the Network.SimpleIRC package:

$ cabal install simpleirc

To test out the IRC bot, it is helpful to install an IRC client. A decent IRC client is Hexchat,
which can be downloaded from http://hexchat.github.io. For a terminal-based
IRC client, Irssi is one of the best: http://www.irssi.org.

http://hexchat.github.io
http://www.irssi.org

Real-time Data

250

How to do it…
Create a new file, which we call Main.hs, and do the following:

1.	 Import the relevant libraries:
{-# LANGUAGE OverloadedStrings #-}

import Network.SimpleIRC
import Data.Maybe
import qualified Data.ByteString.Char8 as B

2.	 Create an event handler when a message is received. If the message is "host?", then
reply to the user with information about their host:
onMessage :: EventFunc
onMessage s m = do
 case msg of
 "host?" -> sendMsg s chan $ botMsg
 otherwise -> return ()
 where chan = fromJust $ mChan m
 msg = mMsg m
 host = case mHost m of
 Just h -> h
 Nothing -> "unknown"
 nick = case mNick m of
 Just n -> n
 Nothing -> "unknown user"
 botMsg = B.concat ["Hi ", nick, "
 , your host is ", host]

3.	 Define on which events to listen:
events = [(Privmsg onMessage)]

4.	 Set up the IRC server configuration. Connect to any list of channels and bind
our event:
freenode =
 (mkDefaultConfig "irc.freenode.net" "awesome-bot")
 { cChannels = ["#haskelldata"]
 , cEvents = events
 }

5.	 Connect to the server. Don't run in a new thread, but print debug messages,
as specified by the corresponding Boolean parameters:
main = connect freenode False True

Chapter 10

251

6.	 Run the code, and open an IRC client to test it out:

See also
To connect to an IRC server without using an external library, see the previous recipe, Reading
IRC chat room messages.

Polling a web server for latest updates
Some websites change dramatically very often. For instance, Google News and Reddit are
usually loaded with recent postings the moment we refresh the page. To maintain the latest
data at all times, it might be best to run an HTTP request often.

In this recipe, we poll new Reddit posts every 10 seconds as summarized in the
following diagram:

HTTP Server

wait 10 s

Haskell Program

How to do it…
In a new file called Main.hs, perform the following steps:

1.	 Import the relevant libraries:
import Network.HTTP
import Control.Concurrent (threadDelay)
import qualified Data.Text as T

2.	 Define the URL to poll:
url = "http://www.reddit.com/r/pics/new.json"

3.	 Define the function to obtain the latest data from an HTTP GET request:
latest :: IO String

latest = simpleHTTP (getRequest url) >>= getResponseBody

Real-time Data

252

4.	 Polling is simply the act of recursively conducting a task after waiting for a specified
amount of time. In this case, we will wait 10 seconds before asking for the latest
web data:
poll :: IO a

poll = do
 body <- latest
 print $ doWork body
 threadDelay (10 * 10^6)
 poll

5.	 Run the polling:
main :: IO a
main = do
 putStrLn $ "Polling " ++ url ++ " …"
 poll

6.	 After each web request, analyze the data. In this recipe, count the number of times
Imgur shows up:
doWork str = length $ T.breakOnAll
 (T.pack "imgur.com/") (T.pack str)

Detecting real-time file directory changes
In this recipe, we will instantly detect when a new file is created, modified, or deleted. Similar
to the popular file synchronization software Dropbox, we will be able to do interesting actions
every time such an event occurs.

Getting ready
Install the fsnotify package:

$ cabal install fsnotify

How to do it…
In a new file called Main.hs, perform these steps:

1.	 Import the relevant libraries:
{-# LANGUAGE OverloadedStrings #-}
import Filesystem.Path.CurrentOS
import System.FSNotify
import Filesystem
import Filesystem.Path (filename)

Chapter 10

253

2.	 Run the file watcher on the current directory:
main :: IO ()

main = do
 wd <- getWorkingDirectory
 print wd

 man <- startManager
 watchTree man wd (const True) doWork
 putStrLn "press return to stop"

 getLine
 putStrLn "watching stopped, press return to exit"

 stopManager man
 getLine
 return ()

3.	 Handle each of the file change events. In this recipe, we just print out the action to
the console:
doWork :: Event -> IO ()

doWork (Added filepath time) =
 putStrLn $ (show $ filename filepath) ++ " added"
doWork (Modified filepath time) =
 putStrLn $ (show $ filename filepath) ++ " modified"
doWork (Removed filepath time) =
 putStrLn $ (show $ filename filepath) ++ " removed"

4.	 Run the code and start modifying some files in the same directory. For example,
create a new file, edit it, and then remove it:
$ runhaskell Main.hs

press return to stop

FilePath "hello.txt" added

FilePath "hello.txt" modified

FilePath "hello.txt" removed

How it works…
The fsnotify library binds to the event-notification services specific to a platform-specific
filesystem. On Unix-based systems, this is usually inotify (http://dell9.ma.utexas.
edu/cgi-bin/man-cgi?inotify).

http://dell9.ma.utexas.edu/cgi-bin/man-cgi?inotify
http://dell9.ma.utexas.edu/cgi-bin/man-cgi?inotify

Real-time Data

254

Communicating in real time through sockets
Sockets provide a convenient way of communicating between programs in real time. Think of
them as a chat client.

In this recipe, we will pass messages from one program to another and obtain responses.

How to do it…
Insert the following code in a new file called Main.hs:

1.	 Create the server code:
import Network (listenOn, withSocketsDo, accept
 , PortID(..), Socket)
import System.Environment (getArgs)
import System.IO (hSetBuffering, hGetLine, hPutStrLn
 , BufferMode(..), Handle)
import Control.Concurrent (forkIO)

2.	 Create a socket connection to listen on, and attach our handler, sockHandler, on it:
main :: IO ()

main = withSocketsDo $ do
 let port = PortNumber 9001
 sock <- listenOn port
 putStrLn $ "Listening…"
 sockHandler sock

3.	 Define the handler to process each message received:
sockHandler :: Socket -> IO ()

sockHandler sock = do
 (h, _, _) <- accept sock
 putStrLn "Connected!"
 hSetBuffering h LineBuffering
 forkIO $ process h
 forkIO $ respond h
 sockHandler sock

4.	 Define how to process messages sent by the client:
process :: Handle -> IO ()
process h = do
 line <- hGetLine h
 print line
 process h

Chapter 10

255

5.	 Send messages to the client through user input:
respond h = withSocketsDo $ do
 txt <- getLine
 hPutStrLn h txt
 respond h

6.	 Now, create the client code in a new file, client.hs. First, import the libraries:
import Network (connectTo, withSocketsDo, PortID(..))
import System.Environment (getArgs)
import System.IO (hSetBuffering, hPutStrLn
 , hGetLine, BufferMode(..))

7.	 Connect the client to the corresponding port and set up the responder and
listener threads:
main = withSocketsDo $ do
 let port = PortNumber 9001
 h <- connectTo "localhost" port
 putStrLn $ "Connected!"
 hSetBuffering h LineBuffering
 forkIO $ respond h
 forkIO $ process h
 loop

8.	 Get user input and send it as a message:
respond h = do
 txt <- getLine
 hPutStrLn h txt
 respond h

9.	 Listen to incoming messages from the server:
process h = do
 line <- hGetLine h
 print line
 process h

10.	 Test out the code by first running the server:
$ runhaskell Main.hs

11.	 Next, on a separate terminal, run the client:
$ runhaskell client.hs

12.	 We can now send messages between the two by typing and hitting Enter:
Hello?

"yup, I can hear you!"

Real-time Data

256

How it works…
The hGetLine function is blocking the code execution, which means that code execution
halts at that point until a message is received. This allows us to wait for messages to conduct
real-time reactions.

We first specify a port on the computer, which is simply a number that is not yet reserved by
other programs. The server sets up the socket, and the client connects to it without needing
to set it up. The messages passed between the two happen in real time.

A visualization of the server-client model is demonstrated in the following diagram:

Server Listen Accept

Respond Process

RespondProcess

ConnectClient

Detecting faces and eyes through a camera
stream

The camera is another source for real-time data. As frames come and go, we can perform
powerful analysis using the OpenCV library.

In this recipe, we conduct facial detection through a live camera stream.

Getting ready
Install the OpenCV, SDL, and FTGL libraries for image manipulation and computer vision:

sudo apt-get install libopencv-dev libsdl1.2-dev ftgl-dev

Install an OpenCV library using cabal:

cabal install cv-combinators

Chapter 10

257

How to do it…
Create a new source file, Main.hs, and follow these steps:

1.	 Import the relevant libraries:
import AI.CV.ImageProcessors
import qualified AI.CV.OpenCV.CV as CV
import qualified Control.Processor as Processor
import Control.Processor ((--<))
import AI.CV.OpenCV.Types (PImage)
import AI.CV.OpenCV.CxCore (CvRect(..), CvSize(..))
import Prelude hiding (id)
import Control.Arrow ((&&&), (***))
import Control.Category ((>>>), id)

2.	 Define the source of the camera stream. We will be using the built-in webcam. To instead
use a video, we can replace camera 0 with videoFile "./myVideo.mpeg":
captureDev :: ImageSource
captureDev = camera 0

3.	 Shrink the size of the stream for faster performance:
resizer :: ImageProcessor
resizer = resize 320 240 CV.CV_INTER_LINEAR

4.	 Detect the faces in an image using the training dataset provided by OpenCV:
faceDetect :: Processor.IOProcessor PImage [CvRect]

faceDetect = haarDetect
 "/usr/share/opencv/haarcascades/haarcascade_frontalface
 _alt.xml" 1.1 3 CV.cvHaarFlagNone (CvSize 20 20)

5.	 Detect the eyes in the image using the training data set provided by OpenCV:
eyeDetect :: Processor.IOProcessor PImage [CvRect]
eyeDetect = haarDetect "/usr/share/opencv/haarcascades/
 haarcascade_eye.xml" 1.1 3 CV.cvHaarFlagNone
 (CvSize 20 20)

6.	 Draw rectangles around faces and eyes:
faceRects = (id &&& faceDetect) >>> drawRects

eyeRects = (id &&& eyeDetect) >>> drawRects

Real-time Data

258

7.	 Capture the camera's stream, detect the faces and eyes, draw rectangles, and display
them in two different windows:
start = captureDev >>> resizer --< (faceRects *** eyeRects)
 >>> (window 0 *** window 1)

8.	 Perform the real-time camera streaming and stop once a key is pressed:
main :: IO ()
main = runTillKeyPressed start

9.	 Run the code and look at the webcam to detect faces and eyes as shown in the
screenshot that follows this command:
$ runhaskell Main.hs

How it works…
To detect faces, eyes, or other objects, we use the haarDetect function, which performs
a classifier trained from many positive and negative test cases. These test cases are
provided by OpenCV and are typically located in /usr/share/opencv/haarcascades/
on Unix-based systems.

The cv-combinator library provides a convenient abstraction to OpenCV's low-level manipulations.
To run any useful code, we must define a source, a process, and a final destination (also referred
to as a sink). In our case, the source was the machine's built-in camera. We first resize the image
to something more manageable (resizer), split the stream into two in parallel (--<), draw
boxes around faces in one while drawing boxes around eyes in the other, and finally output the
streams to two separate windows. For more documentation of the cv-combinators package, see
https://hackage.haskell.org/package/cv-combinators.

https://hackage.haskell.org/package/cv-combinators

Chapter 10

259

Streaming camera frames for template
matching

Template matching is a machine-learning technique to find areas of an image that match a
given template image. We will apply template matching to every frame of a real-time video
stream to locate an image.

Getting ready
Install the OpenCV and c2hs toolkits:

$ sudo apt-get install c2hs libopencv-dev

Install the CV library from cabal. Be sure to include the –fopencv24 or –fopencv23
parameter depending on which version of OpenCV is installed:

$ cabal install CV -fopencv24

Also, create a small template image. In this recipe, we use an image of Lena, which is usually
used in many image-processing experiments. We name this image file lena.png:

Real-time Data

260

How to do it…
In a new file, Main.hs, start with these steps:

1.	 Import the relevant libraries:
{-#LANGUAGE ScopedTypeVariables#-}
module Main where
import CV.Image (loadImage, rgbToGray, getSize)
import CV.Video (captureFromCam, streamFromVideo)
import Utils.Stream (runStream_, takeWhileS, sideEffect)
import CV.HighGUI (showImage, waitKey)
import CV.TemplateMatching (simpleTemplateMatch
 , MatchType(..))
import CV.ImageOp ((<#))
import CV.Drawing (circleOp, ShapeStyle(..))

2.	 Load the template image and start the template matching on a camera stream:
main = do
 Just t <- loadImage "lena.jpg"
 Just c <- captureFromCam 0
 runStream_ . sideEffect (process t) .
 takeWhileS (_ -> True) $ streamFromVideo c

3.	 Perform an action on each frame of the camera stream. Specifically, use template
matching to locate the template and draw a circle around it:
process t img = do
 let gray = rgbToGray img
 let ((mx, my), _) =
 simpleTemplateMatch CCOEFF_NORMED gray t
 let circleSize = (fst (getSize t)) `div` 2
 let circleCenter = (mx + circleSize, my + circleSize)
 showImage "test" (img <# circleOp (0,0,0)
 circleCenter circleSize (Stroked 3))
 waitKey 100
 return ()

Chapter 10

261

4.	 Run the code using the following command and show an image of the template.
A black circle will be drawn around the found image:
$ runhaskell Main.hs

There's more…
More OpenCV examples can be found at https://github.com/aleator/CV/tree/
master/examples.

https://github.com/aleator/CV/tree/master/examples
https://github.com/aleator/CV/tree/master/examples

11
Visualizing Data

In this chapter, we will cover the following visualization techniques:

ff Plotting a line chart using Google's Chart API

ff Plotting a pie chart using Google's Chart API

ff Plotting bar graphs using Google's Chart API

ff Displaying a line graph using gnuplot

ff Displaying a scatter plot of two-dimensional points

ff Interacting with points in three-dimensional space

ff Visualizing a graph network

ff Customizing the looks of a graph network diagram

ff Rendering a bar graph in JavaScript using D3.js

ff Rendering a scatter plot in JavaScript using D3.js

ff Diagramming a path from a list of vectors

Visualizing Data

264

Introduction

Visualization is important in all steps of data analysis. Whether we are just getting
acquainted with the data or have completed our analysis, it is always useful to have
an intuitive understanding through a graphical aid. Fortunately, Haskell comes with
a plethora of libraries to facilitate this endeavor.

In this chapter, we will cover recipes to produce line, pie, bar, and scatter plots using various
APIs. Going beyond typical data visualization, we will also learn to draw network diagrams.
Moreover, in the last recipe, we will describe navigation directions by drawing vectors on a
blank canvas.

Plotting a line chart using Google's Chart
API

We will use the convenient Google Chart API (https://developers.google.com/chart)
to render a line chart. This API produces a URL that points to a PNG image of the graph. This
lightweight URL can be easier to handle than the actual image itself.

Our data will come from a text file that contains a list of numbers separated by lines. The code
will generate a URL to present this data.

Getting ready
Install the GoogleChart package as follows:

$ cabal install hs-gchart

https://developers.google.com/chart

Chapter 11

265

Create a file called input.txt with numbers inserted line by line as follows:

$ cat input.txt

2

5

3

7

4

1

19

18

17

14

15

16

How to do it…
1.	 Import the Google Chart API library as follows:

import Graphics.Google.Chart

2.	 Gather the input from the text file and parse it as a list of integers:
main = do
 rawInput <- readFile "input.txt"
 let nums = map (read :: String -> Int) (lines rawInput)

3.	 Create a chart URL out of the image by setting the attributes appropriately, as shown
in the following code snippet:
 putStrLn $ chartURL $
 setSize 500 200 $
 setTitle "Example of Plotting a Chart in Haskell" $
 setData (encodeDataSimple [nums]) $
 setLegend ["Stock Price"] $
 newLineChart

4.	 Running the program will output a Google Chart URL as follows:
$ runhaskell Main.hs

http://chart.apis.google.com/chart?chs=500x200&chtt=Example+of+Plo
tting+a+Chart+in+Haskell&chd=s:CFDHEBTSROPQ&chdl=Stock+Price&cht=
lc

Visualizing Data

266

Ensure an Internet connection exists and navigate to that URL to view the chart, as shown in
the following screenshot:

How it works…
Google encodes all graph data within the URL. The more complicated our graph, the longer
the Google Chart URL. In this recipe, we use the encodeDataSimple function that creates
a relatively shorter URL, but only accepts integers between 0 and 61 inclusive.

There's more…
To visualize a more detailed graph that allows data to have decimal places, we can use the
encodeDataText :: RealFrac a => [[a]] -> ChartData function instead. This
function allows for decimal numbers between 0 and 100 inclusive.

To represent larger ranges of integers in a graph, we should use the encodeDataExtended
function, which supports integers between 0 and 4095 inclusive.

More information about the Google Charts Haskell package can be found at
https://hackage.haskell.org/package/hs-gchart.

See also
This recipe required a connection to the Internet to view a graph. If we wish to perform all
actions locally, refer to the Displaying a line graph using gnuplot recipe. Other Google API
recipes can include Plotting a pie chart using Google's Chart API and Plotting bar graphs
using Google's Chart API.

https://hackage.haskell.org/package/hs-gchart

Chapter 11

267

Plotting a pie chart using Google's Chart API
The Google Chart API provides a very elegant-looking pie chart interface. We can generate
images of well-designed pie charts by feeding our input and labels properly, as described in
this recipe.

Getting ready
Install the GoogleChart package as follows:

$ cabal install hs-gchart

Create a file called input.txt with numbers inserted line by line as follows:

$ cat input.txt

2

5

3

7

4

1

19

18

17

14

15

16

How to do it…
1.	 Import the Google Chart API library as follows:

import Graphics.Google.Chart

2.	 Gather the input from the text file and parse it as a list of integers, as shown in the
following code snippet:
main = do
 rawInput <- readFile "input.txt"
 let nums = map (read :: String -> Int) (lines rawInput)

Visualizing Data

268

3.	 Print out the Google Chart URL from the pie chart attributes shown in the
following code:
 putStrLn $ chartURL $
 setSize 500 400 $
 setTitle "Example of Plotting a Pie Chart in Haskell" $
 setData (encodeDataSimple [nums]) $
 setLabels (lines rawInput) $
 newPieChart Pie2D

4.	 Running the program will output a Google Chart URL as follows:
$ runhaskell Main.hs

http://chart.apis.google.com/chart?chs=500x400&chtt=Example+of+Plo
tting+a+Pie+Chart+in+Haskell&chd=s:CFDHEBTSROPQ&chl=2|5|3|7|4|1|19
|18|17|14|15|16&cht=p

Ensure an Internet connection exists and navigate to that URL to view the chart shown in the
following image:

Chapter 11

269

How it works…
Google encodes all graph data within the URL. The more complicated the graph, the longer
the Google Chart URL. In this recipe, we use the encodeDataSimple function, which
creates a relatively shorter URL, but only accepts integers between 0 and 61 inclusive.
The legends of the pie chart are specified by the setLabels :: [String] ->
PieChart -> PieChart function in the same order as the data.

There's more…
To visualize a more detailed graph that allows data to have decimal places, we can use the
encodeDataText :: RealFrac a => [[a]] -> ChartData function instead. This
function allows decimal numbers between 0 and 100 inclusive.

To represent larger ranges of integers in a graph, we should use the encodeDataExtended
function, which supports integers between 0 and 4095 inclusive.

More information about the Google Charts Haskell package can be found at
https://hackage.haskell.org/package/hs-gchart.

See also
ff Plotting a line chart using Google's Chart API

ff Plotting bar graphs using Google's Chart API

Plotting bar graphs using Google's Chart API
The Google Chart API also has great support for bar graphs. In this recipe, we will produce a
bar graph of two sets of inputs in the same diagram to show the usefulness of this API.

Getting ready
Install the GoogleChart package as follows:

$ cabal install hs-gchart

Create two files called input1.txt and input2.txt with numbers inserted line by line
as follows:

$ cat input1.txt

2

5

3

https://hackage.haskell.org/package/hs-gchart

Visualizing Data

270

7

4

1

19

18

17

14

15

16

$ cat input2.txt

4

2

6

7

8

2

18

17

16

17

15

14

How to do it…
1.	 Import the Google Chart API library as follows:

import Graphics.Google.Chart

2.	 Gather the two input values from both the text files and parse them as two separate
lists of integers, as shown in the following code snippet:
main = do
 rawInput1 <- readFile "input1.txt"
 rawInput2 <- readFile "input2.txt"
 let nums1 = map (read :: String -> Int) (lines rawInput1)
 let nums2 = map (read :: String -> Int) (lines rawInput2)

Chapter 11

271

3.	 Set up the bar chart too and print out the Google Chart URL as follows:
 putStrLn $ chartURL $
 setSize 500 400 $
 setTitle "Example of Plotting a Bar Chart in Haskell" $
 setDataColors ["00ff00", "ff0000"] $
 setLegend ["A", "B"] $
 setData (encodeDataSimple [nums1, nums2]) $
 newBarChart Horizontal Grouped

4.	 Running the program will output a Google Chart URL as follows:
$ runhaskell Main.hs

http://chart.apis.google.com/chart?chs=500x400&chtt=Example+of+Plo
tting+a+Bar+Chart+in+Haskell&chco=00ff00,ff0000&chdl=A|B&chd=s:CFD
HEBTSROPQ,ECGHICSRQRPO&cht=bhg

Ensure an Internet connection exists and navigate to that URL to view the following chart:

Visualizing Data

272

How it works…
Google encodes all graph data within the URL. The more complicated the graph, the longer
the Google Chart URL. In this recipe, we use the encodeDataSimple function, which
creates a relatively shorter URL, but only accepts integers between 0 and 61 inclusive.

There's more…
To visualize a more detailed graph that allows data to have decimal places, we can use the
encodeDataText :: RealFrac a => [[a]] -> ChartData function instead. This
function allows decimal numbers between 0 and 100 inclusive.

To represent larger ranges of integers in a graph, we should use the encodeDataExtended
function, which supports integers between 0 and 4095 inclusive.

More information about the Google Charts Haskell package can be found at
https://hackage.haskell.org/package/hs-gchart.

See also
To use other Google Chart tools, refer to the Plotting a pie chart using Google's Chart API and
Plotting a line chart using Google's Chart API recipes.

Displaying a line graph using gnuplot
An Internet connection is typically unnecessary for plotting a graph. So, in this recipe, we will
demonstrate how to make a line graph locally.

Getting ready
The library used in this recipe uses gnuplot to render the graph. We should first install gnuplot.

On Debian-based systems such as Ubuntu, we can install it using apt-get as follows:

$ sudo apt-get install gnuplot-x11

The official place to download gnuplot is on its main website available at
http://www.gnuplot.info.

After gnuplot is set up, install the EasyPlot Haskell library using cabal as follows:

$ cabal install easyplot

https://hackage.haskell.org/package/hs-gchart
http://www.gnuplot.info

Chapter 11

273

How to do it…
1.	 Import the EasyPlot library as follows:

import Graphics.EasyPlot

2.	 Define a list of numbers to plot as follows:
main = do
 let values = [4,5,16,15,14,13,13,17]

3.	 Plot the chart on the X11 window as shown in the following code snippet. The X11
X Window System terminal is used by many Linux-based machines. If running on
Windows, we should instead use the Windows terminal. On Mac OS X, we should
replace X11 with Aqua:
 plot X11 $
 Data2D [Title "Line Graph"
 , Style Linespoints
 , Color Blue]
 [] (zip [1..] values)

Running the code produces a plot1.dat datafile as well as a visual graph from the selected
terminal, as shown in the following screenshot:

How it works…
The EasyPlot library translates all user-specified code into a language understood by
gnuplot to graph the data.

Visualizing Data

274

See also
To use the Google Chart API instead of easy plot, refer to the Plotting a line chart using
Google's Chart API recipe.

Displaying a scatter plot of two-dimensional
points

This recipe covers a quick and easy way to visualize a list of 2D points as scattered dots within
an image.

Getting ready
The library used in this recipe uses gnuplot to render the graph. We should first install gnuplot.

On Debian-based systems such as Ubuntu, we can install it using apt-get as follows:

$ sudo apt-get install gnuplot-x11

The official place to download gnuplot is from its main website, http://www.gnuplot.info.

After gnuplot is set up, install the easyplot Haskell library using cabal as follows:

$ cabal install easyplot

Also, install a helper CSV package as follows:

$ cabal install csv

Also, create two comma-separated files, input1.csv and input2.csv, which represent two
separate sets of points as follows:

$ cat input1.csv

1,2

3,2

2,3

2,2

3,1

2,2

2,1

$ cat input2.csv

http://www.gnuplot.info

Chapter 11

275

7,4

8,4

6,4

7,5

7,3

6,4

7,6

How to do it…
1.	 Import the relevant packages as follows:

import Graphics.EasyPlot

import Text.CSV

2.	 Define a helper function to convert a CSV record into a tuple of numbers as follows:
convertRawCSV :: [[String]] -> [(Double, Double)]
convertRawCSV csv = [(read x, read y) | [x, y] <- csv]

3.	 Read the two CSV files as follows:
main = do
 csv1Raw <- parseCSVFromFile "input1.csv"
 csv2Raw <- parseCSVFromFile "input2.csv"

 let csv1 = case csv1Raw of
 Left err -> []
 Right csv -> convertRawCSV csv

 let csv2 = case csv2Raw of
 Left err -> []
 Right csv -> convertRawCSV csv

4.	 Plot both the datasets alongside each other on the same graph with different colors.
Use the X11 terminal for the X Window System used by many Linux-based machines,
as shown in the following lines of code. If running on Windows, the terminal to use is
Windows. On Mac OS X, we should replace X11 with Aqua:
 plot X11 $ [Data2D [Color Red] [] csv1
 , Data2D [Color Blue] [] csv2]

Visualizing Data

276

5.	 Run the program to display the graph shown in the following screenshot:

How it works…
The EasyPlot library translates all user-specified code into language understood by gnuplot
to graph the data. The last argument to plot can take in a list of many datasets to graph.

See also
To visualize 3D points, refer to the Interacting with points in a three-dimensional space recipe.

Interacting with points in a three-dimensional
space

When visualizing points in 3D space, it is often very useful to rotate, zoom, and pan the
representation interactively. This recipe demonstrates how to plot data in 3D and interact
with it in real time.

Getting ready
The library used in this recipe uses gnuplot to render the graph. We should first install gnuplot.

On Debian-based systems such as Ubuntu, we can install it using apt-get as follows:

$ sudo apt-get install gnuplot-x11

The official place to download gnuplot is from its main website available at
http://www.gnuplot.info.

http://www.gnuplot.info

Chapter 11

277

After gnuplot is set up, install the easyplot Haskell library using Cabal as follows:

$ cabal install easyplot

Also, install a helper CSV package as follows:

$ cabal install csv

Also, create two comma-separated files, input1.csv and input2.csv, which represent two
separate sets of points as follows:

$ cat input1.csv

1,1,1

1,2,1

0,1,1

1,1,0

2,1,0

2,1,1

1,0,1

$ cat input2.csv

4,3,2

3,3,2

3,2,3

4,4,3

5,4,2

4,2,3

3,4,3

How to do it…
1.	 Import the relevant packages as follows:

import Graphics.EasyPlot

import Text.CSV

2.	 Define a helper function to convert a CSV record into a tuple of numbers as follows:
convertRawCSV :: [[String]] -> [(Double, Double, Double)]

convertRawCSV csv = [(read x, read y, read z)
 | [x, y, z] <- csv]

Visualizing Data

278

3.	 Read the two CSV files as follows:
main = do
 csv1Raw <- parseCSVFromFile "input1.csv"
 csv2Raw <- parseCSVFromFile "input2.csv"

 let csv1 = case csv1Raw of
 Left err -> []
 Right csv -> convertRawCSV csv

 let csv2 = case csv2Raw of
 Left err -> []
 Right csv -> convertRawCSV csv

4.	 Plot the data using the plot' function, which leaves gnuplot running to allow for an
Interactive option. Use the X11 terminal for the X Window System used by many
Linux-based machines, as shown in the following lines of code. If running on Windows,
the terminal to use is Windows. On Mac OS X, we should replace X11 with Aqua:
 plot' [Interactive] X11 $
 [Data3D [Color Red] [] csv1
 , Data3D [Color Blue] [] csv2]

Chapter 11

279

How it works…
The EasyPlot library translates all user-specified code into a language understood by
gnuplot to graph the data. The last argument to plot can take in a list of many datasets to
graph. By using the plot' function, we leave gnuplot running so that we can interact with
the graph by rotating, zooming, and panning the three-dimensional visual.

See also
To visualize 2D points, refer to the Displaying a scatter plot of two-dimensional points recipe.

Visualizing a graph network
Graphical networks of edges and nodes can be difficult to debug or comprehend, and thus,
visualization helps tremendously. In this recipe, we will convert a graph data structure into an
image of nodes and edges.

Getting ready
To use Graphviz, the graph visualization library, we must first install it on the machine.
The official website of Graphviz contains the download and installation instructions
(http://www.graphviz.org). On Debian-based operating systems, Graphviz can
be installed using apt-get as follows:

$ sudo apt-get install graphviz-dev graphviz

Next, we need to install the Graphviz Haskell bindings from Cabal as follows:

$ cabal install graphviz

How to do it…
1.	 Import the relevant libraries as follows:

import Data.Text.Lazy (Text, empty, unpack)
import Data.Graph.Inductive (Gr, mkGraph)
import Data.GraphViz (GraphvizParams, nonClusteredParams,
graphToDot)
import Data.GraphViz.Printing (toDot, renderDot)

2.	 Create a graph defined by identifying the pairs of nodes that form edges using the
following lines of code:
myGraph :: Gr Text Text
myGraph = mkGraph [(1, empty)
 , (2, empty)

http://www.graphviz.org

Visualizing Data

280

 , (3, empty)]
 [(1, 2, empty)
 , (1, 3, empty)]

3.	 Set the graph to use the default parameters as follows:
myParams :: GraphvizParams n Text Text () Text
myParams = nonClusteredParams

4.	 Print out the dot representation of the graph to the terminal as follows:
main :: IO ()
main = putStr $ unpack $ renderDot $ toDot $
 graphToDot myParams myGraph

5.	 Run the code to obtain a dot representation of the graph, which can be saved in a
separate file as follows:
$ runhaskell Main.hs > graph.dot

6.	 Run the dot command provided by Graphviz on this file to render an image
as follows:
$ dot -Tpng graph.dot > graph.png

7.	 We can now view the resulting graph.png file shown in the following screenshot:

How it works…
The graphToDot function converts a graph into the DOT language for describing graphs.
This is a text serialization for a graph, which can be read by the Graphviz dot command
and converted into a viewable image.

Chapter 11

281

There's more…
In this recipe, we used the dot command. The Graphviz website also describes other
commands that convert DOT language text into viewable images:

dot - "hierarchical" or layered drawings of directed graphs. This is the default tool to
use if edges have directionality.

neato - "spring model'' layouts. This is the default tool to use if the graph is not
too large (about 100 nodes) and you don't know anything else about it. Neato
attempts to minimize a global energy function, which is equivalent to statistical
multidimensional scaling.

fdp - "spring model'' layouts similar to those of neato, but does this by reducing
forces rather than working with energy.

sfdp - multiscale version of fdp for the layout of large graphs.

twopi - radial layouts, after Graham Wills 97. Nodes are placed on concentric circles
depending their distance from a given root node.

circo - circular layout, after Six and Tollis 99, Kauffman and Wiese 02. This
is suitable for certain diagrams of multiple cyclic structures, such as certain
telecommunications networks.

See also
To further change the look and feel of a graph, refer to the Customizing the looks of a graph
network diagram recipe.

Customizing the looks of a graph network
diagram

To better present the data, we will cover how to customize the design of a graphical
network diagram.

Getting ready
To use Graphviz, the graph visualization library, we must first install it on the machine. The
official website of Graphviz contains the download and installation instructions available
at http://www.graphviz.org. On Debian-based operating systems, Graphviz can be
installed using apt-get as follows:

$ sudo apt-get install graphviz-dev graphviz

http://www.graphviz.org

Visualizing Data

282

Next, we need to install the Graphviz Haskell bindings from Cabal as follows:

$ cabal install graphviz

How to do it…
1.	 Import the relevant functions and libraries to customize a Graphviz graph as follows:

import Data.Text.Lazy (Text, pack, unpack)
import Data.Graph.Inductive (Gr, mkGraph)
import Data.GraphViz (
 GraphvizParams(..),
 GlobalAttributes(
 GraphAttrs,
 NodeAttrs,
 EdgeAttrs
),
 X11Color(Blue, Orange, White),
 nonClusteredParams,
 globalAttributes,
 fmtNode,
 fmtEdge,
 graphToDot
)
import Data.GraphViz.Printing (toDot, renderDot)
import Data.GraphViz.Attributes.Complete

2.	 Define our custom graph by first specifying all the nodes, and then specifying which
pairs of nodes form edges, as shown in the following code snippet:
myGraph :: Gr Text Text
myGraph = mkGraph [(1, pack "Haskell")
 , (2, pack "Data Analysis")
 , (3, pack "Haskell Data Analysis")
 , (4, pack "Profit!")]
 [(1, 3, pack "learn")
 , (2, 3, pack "learn")
 , (3, 4, pack "???")]

3.	 Define our own custom graph parameters as follows:
myParams :: GraphvizParams n Text Text () Text
myParams = nonClusteredParams {

4.	 Let the graphing engine know that we want the edges to be directed arrows
as follows:
 isDirected = True

Chapter 11

283

5.	 Set our own global attributes for a graph, node, and edge appearance as follows:
 , globalAttributes = [myGraphAttrs, myNodeAttrs,
 myEdgeAttrs]

6.	 Format nodes in our own way as follows:
 , fmtNode = myFN

7.	 Format edges in our own way as follows:
 , fmtEdge = myFE
 }

8.	 Define the customizations as shown in the following code snippet:
 where myGraphAttrs =
 GraphAttrs [RankDir FromLeft
 , BgColor [toWColor Blue]]
 myNodeAttrs =
 NodeAttrs [Shape BoxShape
 , FillColor [toWColor Orange]
 , Style [SItem Filled []]]
 myEdgeAttrs =
 EdgeAttrs [Weight (Int 10)
 , Color [toWColor White]
 , FontColor (toColor White)]
 myFN (n,l) = [(Label . StrLabel) l]
 myFE (f,t,l) = [(Label . StrLabel) l]

9.	 Print the DOT language representation of the graph to the terminal.
main :: IO ()
main = putStr $ unpack $ renderDot $ toDot $ graphToDot myParams
myGraph

10.	 Run the code to obtain a dot representation of the graph, which can be saved in a
separate file as follows:
$ runhaskell Main.hs > graph.dot

11.	 Run the dot command provided by Graphviz on this file to render an image as follows:
$ dot -Tpng graph.dot > graph.png

Visualizing Data

284

We can now view the resulting graph.png file, as shown in the following screenshot:

How it works…
The graphToDot function converts a graph into the DOT language to describe graphs. This is
a text serialization for a graph that can be read by the Graphviz dot command and converted
into a viewable image.

There's more…
Every possible customization option for the graph, nodes, and edges can be found on
the Data.GraphViz.Attributes.Complete package documentation available at
http://hackage.haskell.org/package/graphviz-2999.12.0.4/docs/Data-
GraphViz-Attributes-Complete.html.

Rendering a bar graph in JavaScript using
D3.js

We will use the portable JavaScript library called D3.js to draw a bar graph. This allows us to
easily create a web page that contains a graph from the Haskell code.

Getting ready
An Internet connection is necessary for the setup.

Install the d3js Haskell library as follows:

$ cabal install d3js

Create a website template to hold the generated JavaScript code as follows:

$ cat index.html

http://hackage.haskell.org/package/graphviz-2999.12.0.4/docs/Data-GraphViz-Attributes-Complete.html
http://hackage.haskell.org/package/graphviz-2999.12.0.4/docs/Data-GraphViz-Attributes-Complete.html

Chapter 11

285

The JavaScript code will be as follows:

<html>
 <head>
 <title>Chart</title>
 </head>
 <body>
 <div id='myChart'></div>
 <script charset='utf-8' src='http://d3js.org/d3.v3.min.js'></
script>
 <script charset='utf-8' src='generated.js'></script>
 </body>
</html>

How to do it…
1.	 Import the relevant packages as follows:

import qualified Data.Text as T
import qualified Data.Text.IO as TIO
import D3JS

2.	 Create a bar chart using the bars function. Feed the specified values and number of
bars to draw, as shown in the following code snippet:
myChart nums numBars = do
 let dim = (300, 300)
 elem <- box (T.pack "#myChart") dim
 bars numBars 300 (Data1D nums) elem
 addFrame (300, 300) (250, 250) elem

3.	 Define the values and number of bars to draw as follows:
main = do
 let nums = [10, 40, 100, 50, 55, 156, 80, 74, 40, 10]
 let numBars = 5

4.	 Use the reify function to generate the JavaScript D3.js text out of the data.
Write the JavaScript to a file named generated.js as follows:
 let js = reify $ myChart nums numBars
 TIO.writeFile "generated.js" js

Visualizing Data

286

5.	 With both the index.html file and the generated.js file existing alongside
each other, we can open the index.html web page using a browser that
supports JavaScript, and see the resulting graph shown as follows:

How it works…
The D3.js library is a JavaScript library used for creating elegant visuals and graphs. We use
our browser to run the JavaScript code, and it also acts as our graph-rendering engine.

See also
For another use of D3.js, refer to the Rendering a scatter plot in JavaScript using D3.js recipe.

Rendering a scatter plot in JavaScript using
D3.js

We will use the portable JavaScript library called D3.js to draw a scatter plot. This allows us
to easily create a web page that contains a graph from the Haskell code.

Getting ready
An Internet connection is necessary to perform this setup.

Install the d3js Haskell library as follows:

$ cabal install d3js

Chapter 11

287

Create a website template to hold the generated JavaScript code as follows:

$ cat index.html

The JavaScript code will be as follows:

<html>
 <head>
 <title>Chart</title>
 </head>
 <body>
 <div id='myChart'></div>
 <script charset='utf-8' src='http://d3js.org/d3.v3.min.js'></
script>
 <script charset='utf-8' src='generated.js'></script>
 </body>
</html>

How to do it…
1.	 Import the relevant libraries as follows:

import D3JS
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

2.	 Define the scatter plot and feed in the list of points as follows:
myPlot points = do
 let dim = (300, 300)
 elem <- box (T.pack "#myChart") dim
 scatter (Data2D points) elem
 addFrame (300, 300) (250, 250) elem

3.	 Define a list of points to plot as follows:
main = do
 let points = [(1,2), (5,10), (139,138), (140,150)]

4.	 Use the reify function to generate the JavaScript D3.js text out of the data. Write
the JavaScript to a file named generated.js as follows:
 let js = reify $ myPlot points
 TIO.writeFile "generated.js" js

Visualizing Data

288

5.	 With both the index.html and generated.js files existing alongside each other,
we can open the index.html web page using a browser that supports JavaScript,
and see the resulting graph shown as follows:

How it works…
The graphToDot function converts a graph into the DOT language to describe graphs. This
is a text serialization for a graph, which can be read by the Graphviz dot command and be
converted into a viewable image.

See also
For another use of D3.js, refer to the Rendering a bar graph in JavaScript using D3.js recipe.

Diagramming a path from a list of vectors
In this recipe, we will use the diagrams package to draw a path from driving directions. We
simply categorize all possible travel headings into eight cardinal directions with an associated
distance. We use directions provided by Google Maps in the following screenshot and
reconstruct the directions from a text file:

Chapter 11

289

Getting ready
Install the diagrams library as follows:

$ cabal install diagrams

Create a text file called input.txt that contains one of the eight cardinal directions followed
by the distance, with each step separated by a new line:

$ cat input.txt

N 0.2

W 0.1

S 0.6

W 0.05

S 0.3

SW 0.1

SW 0.2

SW 0.3

S 0.3

Visualizing Data

290

How to do it…
1.	 Import the relevant libraries as follows:

{-# LANGUAGE NoMonomorphismRestriction #-}
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine (mainWith, B)

2.	 Draw a line-connected path from a list of vectors as follows:
drawPath :: [(Double, Double)] -> Diagram B R2
drawPath vectors = fromOffsets . map r2 $ vectors

3.	 Read a list of directions, represent it as a list of vectors, and draw the path as follows:
main = do
 rawInput <- readFile "input.txt"
 let vs = [makeVector dir (read dist)
 | [dir, dist] <- map words (lines rawInput)]
 print vs
 mainWith $ drawPath vs

4.	 Define a helper function to create a vector out of a direction and its corresponding
distance as follows:
makeVector :: String -> Double -> (Double, Double)
makeVector "N" dist = (0, dist)
makeVector "NE" dist = (dist / sqrt 2, dist / sqrt 2)
makeVector "E" dist = (dist, 0)
makeVector "SE" dist = (dist / sqrt 2, -dist / sqrt 2)
makeVector "S" dist = (0, -dist)
makeVector "SW" dist = (-dist / sqrt 2, -dist / sqrt 2)
makeVector "W" dist = (-dist, 0)
makeVector "NW" dist = (-dist / sqrt 2, dist / sqrt 2)
makeVector _ _ = (0, 0)

Chapter 11

291

5.	 Compile the code and run it as follows:
$ ghc --make Main.hs

$./Main –o output.svg –w 400

How it works…
The mainWith functions takes in a Diagram type and generates the corresponding image
file when invoked in the terminal. We obtain the Diagram from our drawPath function,
which glues together vectors by their offsets.

12
Exporting and

Presenting

In this chapter, will cover how to export results and nicely present them through the
following recipes:

ff Exporting data to a CSV file

ff Exporting data as JSON

ff Using SQLite to store data

ff Saving data to a MongoDB database

ff Presenting results in an HTML web page

ff Creating a LaTeX table to display results

ff Personalizing messages using a text template

ff Exporting matrix values to a file

Exporting and Presenting

294

Introduction

After gathering, cleaning, representing, and analyzing, the last important step in data analysis
is to export and present the data in a usable format. The recipes in this chapter will cover how
to save a data structure on disk for later use by other programs. Moreover, we will show how to
present the data elegantly with Haskell.

Exporting data to a CSV file
Sometimes, it's more convenient to view data using a spreadsheet program such as
LibreOffice, Microsoft Office Excel, or Apple Numbers. A standard way to export and
import simple spreadsheet tables is through Comma Separated Values (CSVs).

In this recipe, we will use the cassava package to easily encode a CSV file out of a
data structure.

Getting ready
Install the Cassava CSV package from cabal, using the following command line:

$ cabal install cassava

How to do it…
1.	 Import the relevant packages using the following code:

import Data.Csv
import qualified Data.ByteString.Lazy as BSL

Chapter 12

295

2.	 Define an association list of data that will be exported as CSV. For this recipe, we will
pair letters and numbers together, as shown in the following code:
myData :: [(Char, Int)]
myData = zip ['A'..'Z'] [1..]

3.	 Run the encode function to convert the data structure into a lazy ByteString CSV
representation, as shown in the following code:
main = BSL.writeFile "letters.csv" $ encode myData

How it works…
A CSV file is simply a list of records. The encode function in the Cassava library takes a list of
items that implement the ToRecord typeclass.

In this recipe, we can see that tuples of size 2 such as ('A', 1) are valid arguments to the
encode function. By default, tuples of size 2 to 7 are supported along with lists of arbitrary
sizes. Each element of the tuple or list must implement the ToField typeclass, which most
built-in primitive data types support by default. More details on the package can be found at
https://hackage.haskell.org/package/cassava.

There's more…
In order to easily convert a data type into CSV, we can implement the ToRecord typeclass.

For example, the Cassava documentation shows the following example of converting a
Person data type into a CSV record:

data Person = Person { name :: Text, age :: Int }

instance ToRecord Person where
 toRecord (Person name age) = record [
 toField name, toField age]

See also
For JSON instead, refer to the following Exporting data as JSON recipe.

Exporting data as JSON
A convenient way to store data that may not adhere to a strict schema is through JSON. To
accomplish this, we will use a painless JSON library called Yocto. It sacrifices performance
for readability and small size.

In this recipe, we will export a list of points as JSON.

https://hackage.haskell.org/package/cassava

Exporting and Presenting

296

Getting ready
Install the Yocto JSON encoder and decoder from cabal using the following command:

$ cabal install yocto

How to do it…
Start by creating a new file, which we call Main.hs and perform the following steps:

1.	 Import the relevant data structures, as shown in the following code:
import Text.JSON.Yocto
import qualified Data.Map as M

2.	 Define a data structure for 2D points:
data Point = Point Rational Rational

3.	 Convert a Point data type into a JSON object, as shown in the following code:
pointObject (Point x y) =
 Object $ M.fromList [("x", Number x)
 , ("y", Number y)]

4.	 Create the points and construct a JSON array out of them:
main = do
 let points = [Point 1 1
 , Point 3 5
 , Point (-3) 2]
 let pointsArray = Array $ map pointObject points

5.	 Write the JSON array to a file, as shown in the following code:
 writeFile "points.json" $ encode pointsArray

6.	 When running the code, we will find the points.json file created, as seen in the
following code:
$ runhaskell Main.hs

$ cat points.json

[{"x":1,"y":1}, {"x":3,"y":5}, {"x":-3,"y":2}]

There's more…
For a more efficient JSON encoder, see the Aeson package located at
http://hackage.haskell.org/package/aeson.

http://hackage.haskell.org/package/aeson

Chapter 12

297

See also
To export data to CSV, refer to the previous recipe titled Exporting data to a CSV file.

Using SQLite to store data
SQLite is one of the most popular databases for compactly storing structured data. We will
use the SQL binding for Haskell to store a list of strings.

Getting Ready
We must first install the SQLite3 database on our system. On Debian-based systems, we can
issue the following installation command:

$ sudo apt-get install sqlite3

Install the SQLite package from cabal, as shown in the following command:

$ cabal install sqlite-simple

Create an initial database called test.db that sets up the schema. In this recipe, we will only
be storing integers with strings as follows:

$ sqlite3 test.db "CREATE TABLE test (id INTEGER PRIMARY KEY, str text);"

How to do it…
1.	 Import the relevant libraries, as shown in the following code:

{-# LANGUAGE OverloadedStrings #-}
import Control.Applicative
import Database.SQLite.Simple
import Database.SQLite.Simple.FromRow

2.	 Create a FromRow typeclass implementation for TestField, the data type we will be
storing, as shown in the following code:
data TestField = TestField Int String deriving (Show)
instance FromRow TestField where
 fromRow = TestField <$> field <*> field

3.	 Create a helper function to retrieve everything form the database just for debugging
purposes, as shown in the following code:
getDB :: Connection -> IO [TestField]

getDB conn = query_ conn "SELECT * from test"

Exporting and Presenting

298

4.	 Create a helper function to insert a string into the database, as shown in the
following code:
insertToDB :: Connection -> String -> IO ()
insertToDB conn item =
 execute conn
 "INSERT INTO test (str) VALUES (?)"
 (Only item)

5.	 Connect to the database, as shown in the following code:
main :: IO ()

main = withConnection "test.db" dbActions

6.	 Set up the string data we want to insert, as shown in the following code:
dbActions :: Connection -> IO ()

dbActions conn = do
 let dataItems = ["A", "B", "C"]

7.	 Insert each of the elements to the database, as shown in the following code:
 mapM_ (insertToDB conn) dataItems

8.	 Print out the database, using the following code:
 r <- getDB conn
 mapM_ print r

9.	 We can verify that the database contains the newly inserted data by evoking the
following command:
$ sqlite3 test.db "SELECT * FROM test"

1|A

2|C

3|D

See also
For another type of database, refer to the following Saving data to a MongoDB database recipe.

Saving data to a MongoDB database
MongoDB can very naturally store unstructured data using the JSON syntax. In this recipe,
we will store a list of people to MongoDB.

Chapter 12

299

Getting ready
We must first install MongoDB on our machine. The installation files can be downloaded from
http://www.mongodb.org.

We need to make a directory for the database using the following command:

$ mkdir ~/db

Finally, start the MongoDB daemon on that directory using the following command:

$ mongod –dbpath ~/db

Install the MongoDB package from cabal using the following command:

$ cabal install mongoDB

How to do it…
Create a new file called Main.hs and perform the following steps:

1.	 Import the libraries as follows:
{-# LANGUAGE OverloadedStrings, ExtendedDefaultRules #-}
import Database.MongoDB
import Control.Monad.Trans (liftIO)

2.	 Define a data type for the names of people as follows:
data Person = Person { first :: String
 , last :: String }

3.	 Set up a couple of data items we wish to store as follows:
myData :: [Person]
myData = [Person "Mercury" "Merci"
 , Person "Sylvester" "Smith"]

4.	 Connect to the MongoDB instance and store all the data as follows:
main = do
 pipe <- runIOE $ connect (host "127.0.0.1")
 e <- access pipe master "test" (store myData)
 close pipe
 print e

http://www.mongodb.org

Exporting and Presenting

300

5.	 Convert the Person data type into the proper MongoDB type as follows:
store vals = insertMany "people" mongoList
 where mongoList = map
 (\(Person f l) ->
 ["first" =: f, "last" =: l])
 vals

6.	 We must ensure that a MongoDB daemon is running. If not, we can create a process
that listens to the directory of our choice using the following command:
$ mongod --dbpath ~/db

7.	 After running the code, we can double-check if the operation was successful by
navigating to MongoDB using the following commands:
$ runhaskell Main.hs

$ mongo

> db.people.find()

{ "_id" : ObjectId("536d2b13f8712126e6000000"), "first" :
 "Mercury", "last" : "Merci" }

{ "_id" : ObjectId("536d2b13f8712126e6000001"), "first" :
 "Sylvester", "last" : "Smith" }

See also
For SQL usage, refer to the previous Using SQLite to store data recipe.

Presenting results in an HTML web page
Sharing data online is one of the quickest ways to reach a broad audience. However, typing
data into HTML directly can be time consuming. This recipe will generate a web page using
the Blaze Haskell library to present data results. For more documentation and tutorials,
visit the project webpage at http://jaspervdj.be/blaze/.

Getting ready
Install the Blaze package from cabal using the following command:

$ cabal install blaze-html

http://jaspervdj.be/blaze/

Chapter 12

301

How to do it…
In a new file called Main.hs, perform the following steps:

1.	 Import all the necessary libraries as follows:
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad (forM_)
import Text.Blaze.Html5
import qualified Text.Blaze.Html5 as H
import Text.Blaze.Html.Renderer.Utf8 (renderHtml)
import qualified Data.ByteString.Lazy as BSL

2.	 Convert the list of string into an HTML unordered list as shown in the following
code snippet:
dataInList :: Html -> [String] -> Html
dataInList label items = docTypeHtml $ do
 H.head $ do
 H.title "Generating HTML from data"
 body $ do
 p label
 ul $ mapM_ (li . toHtml) items

3.	 Create a list of strings to render as an HTML web page as follows:
main = do
 let movies = ["2001: A Space Odyssey"
 , "Watchmen"
 , "GoldenEye"]
 let html = renderHtml $ dataInList "list of movies" movies
 BSL.writeFile "index.html" $ html

4.	 Run the code to generate the HTML file to open using a browser as follows:
$ runhaskell Main.hs

The output will be as follows:

Exporting and Presenting

302

See also
To present data as a LaTeX document and consequently as a PDF, refer to the following
Creating a LaTeX table to display results recipe.

Creating a LaTeX table to display results
This recipe will create a table in LaTeX programmatically to facilitate document creation.
We can create a PDF out of the LaTeX code and share it as we please.

Getting Ready
Install HaTeX, the Haskell LaTeX library, from cabal:

$ cabal install LaTeX

How to do it…
Create a file named Main.hs and follow these steps:

1.	 Import the libraries as follows:
{-# LANGUAGE OverloadedStrings #-}
import Text.LaTeX
import Text.LaTeX.Base.Class
import Text.LaTeX.Base.Syntax
import qualified Data.Map as M

2.	 Save a LaTeX file with our specifications as follows:
main :: IO ()
main = execLaTeXT myDoc >>= renderFile "output.tex"

3.	 Define the document, which is split up into a preamble and a body, as follows:
myDoc :: Monad m => LaTeXT_ m

myDoc = do
 thePreamble
 document theBody

Chapter 12

303

4.	 The preamble contains author data, title, and formatting options, among other things,
as presented in the following code:
thePreamble :: Monad m => LaTeXT_ m

thePreamble = do
 documentclass [] article
 author "Dr. Databender"
 title "Data Analyst"

5.	 Define the list of data we would like to convert into a LaTeX table as follows:
myData :: [(Int,Int)]

myData = [(1, 50)
 , (2, 100)
 , (3, 150)]

6.	 Define the body as follows:
theBody :: Monad m => LaTeXT_ m

theBody = do

7.	 Set up the title and section, and construct the table as shown in the following
code snippet:
 maketitle
 section "Fancy Data Table"
 bigskip
 center $ underline $ textbf "Table of Points"
 center $ tabular Nothing [RightColumn, VerticalLine,
 LeftColumn] $ do
 textbf "Time" & textbf "Cost"
 lnbk
 hline
 mapM_ (\(t, c) -> do texy t & texy c; lnbk) myData

8.	 After running the code using the following commands, we can obtain the PDF and
view it:
$ runhaskell Main.hs

$ pdflatex output.tex

Exporting and Presenting

304

The output will be as follows:

See also
To construct a web page instead, refer to the previous recipe titled Presenting results in an
HTML web page.

Personalizing messages using a text
template

Sometimes we have a large list of usernames and relating data and we wish to individually
send each person a message. This recipe will create a text template that will be filled out
from the data.

Getting ready
Install the template library using cabal:

$ cabal install template

How to do it…
Perform the following steps in a new file called Main.hs:

1.	 Import the libraries as follows:
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.ByteString.Lazy as S

Chapter 12

305

import qualified Data.Text as T
import qualified Data.Text.IO as TIO
import qualified Data.Text.Lazy.Encoding as E
import qualified Data.ByteString as BS
import Data.Text.Lazy (toStrict)
import Data.Text.Template

2.	 Define the data we are dealing with as follows:
myData = [[("name", "Databender"), ("title", "Dr.")],
 [("name", "Paragon"), ("title", "Master")],
 [("name", "Marisa"), ("title", "Madam")]]

3.	 Define the template for the data as follows:
myTemplate = template "Hello $title $name!"

4.	 Create a helper function to convert data items to a template as follows:
context :: [(T.Text, T.Text)] -> Context
context assocs x = maybe err id . lookup x $ assocs
 where err = error $ "Could not find key: " ++ T.unpack x

5.	 Match each data item to the template and print everything out to a text file, as shown
in the following code snippet:
main :: IO ()
main = do
 let res = map (\d -> toStrict (
 render myTemplate (context d))) myData
 TIO.writeFile "messages.txt" $ T.unlines res

6.	 Run the code to see the resulting file:
$ runhaskell Main.hs

$ cat messages.txt

Hello Dr. Databender!

Hello Master Paragon!

Hello Madam Marisa!

Exporting matrix values to a file
In data analysis and machine learning, matrices are a popular data structure that often need
to be exported and imported into the program. In this recipe, we will export a sample matrix
using the Repa I/O library.

Exporting and Presenting

306

Getting ready
Install the repa-io library using cabal as follows:

$ cabal install repa-io

How to do it…
Create a new file, which we name Main.hs, and insert the code explained in the following steps:

1.	 Import the relevant libraries as follows:
import Data.Array.Repa.IO.Matrix
import Data.Array.Repa

2.	 Define a 4 x 3 matrix as follows:
x :: Array U DIM2 Int
x = fromListUnboxed (Z :. (4::Int) :. (3::Int))
 [1, 2, 9, 10
 , 4, 3, 8, 11
 , 5, 6, 7, 12]

3.	 Write the matrix to a file as follows:
main = writeMatrixToTextFile "output.dat" x

How it works…
The matrix is represented simply as a list of its elements in row-major order. The first two lines
of the file define the type of data and the dimensions.

There's more…
To read a matrix back from this file, we can use the readMatrixFromTextFile function to
retrieve the two-dimensional matrix. More documentation about this package is available at
https://hackage.haskell.org/package/repa-io.

https://hackage.haskell.org/package/repa-io

Index
Symbols
2D points

scatter plot, displaying 274, 275
3D space

points, interacting with 276-279
7-Zip

URL 202
=~ function 48

A
adjacency list

graph, representing from 145, 146
aeson package

used, for examining JSON file 18-20
agglomerative bottom-up approach,

hierarchical clustering 192
Application Programming Interface (API) 9
appropriate library

installing 165
Arch Linux

downloading 101
Arrow 23
assign function 196
attoparsec library

importing 48
Automorphism library

installing 158
AVL tree 133
AvlTree package

using 133

B
bar graph

plotting, Google Chart API used 269-272

rendering in JavaScript, D3.js used 284, 286
Bayesian network

about 173
evaluating 173-175

BBC
URL 9

benchmarking
runtime performance, in Haskell 235
runtime performance, in terminal 239

binary search tree
data structure, implementing 129-131
order property, verifying 131, 132

binary tree data type
defining 118, 119

binary trees
creating 117

Blaze Haskell package
installing 300

bloom filter
about 108
used, for removing unique items 108, 109
working 110

bloom filter package
installing 109

Boyer-Moore algorithm
about 72
used, for searching string 71, 72
working 72

breadth-first, graph
traversing 150

breadth-first search approach. See tree
breadth-first

breakSubstring function 70
Bron-Kerbosch pivoting algorithm 157
BSTree module

creating 129

308

buildG function
used, for constructing graph from list of

edges 144, 145
ByteString documentation 69

C
c2hs toolkit

installing 259
camera frames

streaming, for template matching 259, 260
chatter 200
CityHash hash functions

using, for strings 106
cityhash package

installing 106
CLINK 195
clique 156
cluster 186
collision 92
Comma Separated Value (CSV) 15
CompleteLinkage 195
conduit documentation 247
conflicting data items

deduplication 52-55
constant time comparisons, data types

performing 102, 103
cosine similarity

used, for comparing sparse data 63, 64
Coursera

URL 187
covariance matrix

about 168
obtaining, from samples 168-170

criterion package
used, for measuring performance 237, 238

cryptographic checksum
running, on file 100, 101

cryptographic hash functions
about 97
executing 97-100

Crypto.Hash package
installing 97, 101

CSV file
data, exporting to 294, 295
data, keeping from 15-18
data, representing from 15-18

custom data type
hashing 95, 96

D
D3.js 284, 286
data

exploring, from SQLite database 36
exporting, as JSON 295
exporting, to CSV file 294
harnessing, from various sources 8
keeping, from CSV file 15-18
obtaining, from remote MongoDB

server 34, 35
online directories, traversing 29, 31
representing, from CSV file 15-18
saving, to MongoDB 298, 300
storing, SQLite used 297, 298
text data, accumulating from file path 11, 12

Data.ByteString
used, for searching substring 69, 70

Data.ByteString.Search library
installing 74

data gathering 8
Data.Hashable package

installing 93, 95
Data.HashMap package

about 103
installing 104

Data.List
used, for implementing frequency table 55

Data.Map 103
data-memocombinators package

installing 77, 80
Data.MultiSet

used, for implementing frequency
table 56, 57

data points
visualizing points, Graphics.EasyPlot

used 213
data sets 110
data sources

academic 10
international sources 10
News 9
social networking sites 9
United States government 11

309

data structure
creating, for playing cards 175-177

data types, implementing hashable 94
DAWG

installing 153
using 152, 153

decision tree 205
decision tree classifier

implementing 205-209
deduplication

conflicting data items 52
nonconflicting data items 49

defaultMain function
calling 238

dendogram function 194
depth-first approach. See tree depth-first
depth-first traversal, graph 149
Developer's Image Library (DevIL toolkit)

installing 232
digest 92
Directed Acyclic Word Graphs. See DAWG
divisive approach, hierarchical clustering 192
Document Object Model (DOM) 120
dot Strategy 228
dsp package

installing 167

E
EasyPlot library

about 273, 276, 279
installing 272

edit distance
about 80
computing 80, 81

edits1 86
element pairs list

creating, from list 170
e-mail address

lexing 48, 49
parsing 48, 49

encodeDataExtended function 266
encodeDataSimple function 266
entropy 210
Euclidean distance

computing 60, 61

excess whitespace
trimming 40, 41

Extensible Markup Language. See XML

F
facial detection

conducting, through live camera
stream 256-258

FakeAverageLinkage 196
find function 131
Foldable instance

implementing, for tree 125-127
forked I/O actions

communicating with 221, 222
forked threads

killing 223, 225
frequency map 55
frequency table

implementing, Data.List used 55
implementing, Data.MultiSet used 56

fromList function 197
fsnotify package

about 253
installing 252

G
Geohash

about 107
computing, for location coordinates 107

Geohashing library
installing 107

getCPUTime function 236
getElemName function 23
GET requests. See HTTP GET requests
GHC Commentary

Haskell Wiki web page 216
GHC compiler 40
Glasgow Haskell Compiler (GHC) 20
gnuplot

used, for displaying line graph 272, 273
Google

CityHash hash functions 106
Google Chart API

URL 264

310

used, for plotting bar graphs 269-272
used, for plotting line chart 264-266
used, for plotting pie chart 267-269

Google Public Data search
URL 10

graph
about 144
breadth-first, traversing 150
DAWG, using 152, 153
depth-first, traversing 149
hexagonal and square grid networks, working

with 154, 155
maximal cliques, searching 156, 157
representing, from adjacency list 145, 146
representing, from list of edges 144, 145
topological sort, conducting 147, 148
visualizing, Graphviz used 151, 152

graphFromEdges' function
used, for obtaining tuple 146

Graphics.EasyPlot
used, for visualizing data points 213

graph network
diagram design, customizing 281-283
visualizing 279, 280

graphToDot function 280, 284, 288
Graphviz

about 279
installing 279
URL 279
used, for visualizing graph 151, 152

graphviz library
installing 151

H
haarDetect function

using 258
hard code 161
hasAttr function 23
hash 92
hashing

about 93
custom data type 95
primitive data type 92

Haskell
ID3 decision tree algorithm,

implementing 205
MongoDB queries, using 32, 33
Runtime System (RTS) 216

Haskell algorithm 87
Haskell implementation

skimming 181
Haskell LaTeX library

installing 302
haystack 71
heap 135
height function 129
height of tree

calculating 127, 129
hexagonal and square grid networks

working with 154, 155
Hexchat

URL 248
hGetLine function 256
hierarchical clustering

agglomerative bottom-up approach 192
divisive approach 192
implementing 190-193

hierarchical clustering library
using 193

high-performance hash table
using 103, 104

Horspool string search algorithm 71
hstats library

installing 169, 172
HTML web page

results, presenting in 300, 301
table rows, capturing from 24-26

HTTP GET requests
about 26
performing 26, 27

HTTP POST requests
performing 28, 29

Huffman code
decoding 141

Huffman tree
about 138, 140
used, for encoding string 138, 140

311

HXT package
used, for reading XML file 21-23

Hypertext Markup Language (HTML) 24

I
ID3 decision tree algorithm

implementing 205-209
working 210

images
manipulating, in parallel using Repa 232-234

image similarity
measuring, with perceptual hash 112-114

Information Gain 210
in-order traversal 121
insert function 131
Int 160
Internet Relay Chat. See IRC
I/O actions

forking, for concurrency 220
I/O code faults

identifying 13-15
IRC

about 248
chat room messages, reading 248
messages, responding to 249, 250

Irssi
URL 248

isAttr function 23
isInfixOf function

using 154
isIsomorphic function

using 157
isomorphic graphs

determining 157, 158
isSpace function 41
isText function 23
IVar 225

J
Jaro-Winkler distance

about 81
computing 82, 83

JSON
data, exporting as 295, 296

JSON file
examining, with aeson package 18-20

K
k-d tree data structure 210
key words

identifying, in corpus of text 201, 203
killThread 225
k-means clustering algorithm

about 186, 190
implementing 187, 188
working 188

kmeans function 196
k-Nearest Neighbors classifier

about 210
implementing 210-212
working 212

L
LaTeX table

creating 302, 303
leaf nodes 118
Levenshtein distance. See edit distance
lexeme-clustering package

clustering algorithm 198
obtaining, from GitHub 198

lexing 40
Lightweight Directory Access Protocol (LDAP)

server 28
linear regression

approximating 165, 166
line chart

plotting, Google Chart API used 264-266
line graph

displaying, gnuplot used 272, 273
list of edges

about 145
graph, representing from 144, 145

longest common subsequence
about 77
searching 77, 78

M
Manhattan distance

computing 58, 59
map function

applying, in parallel 227

312

MapReduce
about 229
implementing, for counting word

frequencies 229-231
Markov chain

about 178
used, for generating text 178, 179

markov-chain library
installing 178

Mashape
about 9
URL 9

matrix values
exporting, to file 305

maxheap 162
maximal cliques

searching, in graph 156, 157
Maybe data type

about 43
used, for dealing with unexpected or missing

input 44
working 45

Measure-Command feature, Powershell 239
messages

personalizing, text template used 304, 305
Metaphone

about 79
URL 79

minheap 162
min-heap data structure

implementing 135-137
MissingH

installing 43
MongoDB

about 32, 298
data, obtaining from remote server 34, 35
data, saving to 299, 300
installing 299
URL 32, 299

MongoDB queries
using, in Haskell 32, 33

MongoLab
URL 34

morpheme 199
moving average

calculating 160-162

moving median
calculating 162-164

multiway tree. See rose tree data type
MurmurHash algorithm

installing 111
running 110, 111

MVar 221

N
Natural Language Processing. See NLP
needle 71
Network.SimpleIRC package

installing 249
neural network perceptron

creating 180-182
newEmptyMVar function 222
n-gram

about 179
creating, from list 179

NLP
about 200
installing 200

nonconflicting data items
deduplication 49-52

number
converting, to string 66
displaying, in another base 66, 67
reading, from another base 68, 69

number of clusters
finding 196, 197

Numeric.Probability.Distribution library 160

O
OAuth Consumer Key 243
OAuth Consumer Secret 243
online directories

traversing, for data 29-32
OpenCV

installing 259
OpenCV examples

URL 261
order property, binary search tree

verifying 131, 132

313

P
parallel algorithms

controlling, in sequence 219, 220
parallel package

installing 217
parMap function 227
Par monad

about 225
used, for parallelizing pure functions 225

parts of speech of words
classifying 200, 201

parts of speech tagger
about 201
training 204, 205

path
diagramming, from list of vectors 288, 290

Pearson correlation coefficient
about 62, 63, 171
used, for comparing scaled data 62
using 171-173

perceptron
about 180
Wikipedia link 181

perceptual hash
about 112
used, for measuring image similarity 112-114

performance
measuring, with criterion package 237, 238

Peter Norvig's heuristic spellchecker 86
Peter Norvig's spell corrector algorithm 84
pHash library

installing 112
phonetic code

computing 78, 79
phonetic code library

installing 79
pie chart

plotting, Google Chart API used 267-269
polling 242
post-order traversal 121
POST request. See HTTP POST request
precision 48
pre-order traversal 121
primitive data type

hashing 92, 93
printCluster function 194

probability library
installing 173, 176

process function
about 247
running 244

punctuation
ignoring 42

pure functions
parallelizing, Par monad used 225

Q
quadratic regression

approximating 167, 168

R
r0 Strategy 228
Rabin-Karp algorithm

about 73
used, for searching string 73
working 75

readInt function 69
readMatrixFromTextFile function 306
real time

communicating, through sockets 254, 255
real-time file directory changes

detecting 252, 253
real-time sentiment analysis

Twitter, streaming for 243-246
recall 48
records

validating, by matching regular
expressions 46-48

regular expression
about 46
matching, for validating records 46

remote server, MongoDB
data, obtaining from 34, 35

Repa
used, for manipulating images in

parallel 232-234
repa-io library

installing 306
results

presenting, in HTML web page 300, 301
rose tree data type

defining 120, 121

314

rpar function 217
rpar Strategy 228
rseq function 219
rseq Strategy 228
runEval function 217
runtime performance, Haskell

benchmarking 235
runtime performance, terminal

benchmarking 239
Runtime System (RTS)

about 216
options using 217

runTwitterFromEnv' function 244

S
scaled data

comparing, Pearson correlation coefficient
used 62, 63

scatter plot
rendering in JavaScript, D3.js used 286, 288

scatter plot, of 2D points
displaying 274, 275

self-balancing tree
using 133

sequor package
downloading 201
installing 201

showIntAtBase function 67
SingleLinkage 194
smoothening constant 162
sockets

real time, communicating through 254, 255
sparse data

comparing, cosine similarity used 63, 64
specific characters

ignoring 42
spell-correction Python algorithm

URL 86
working 86

spelling mistakes
fixing 86-89

SQL 36
SQLite

about 36, 297
used, for storing data 297

SQLite3 database
installing 297

SQLite database
data, exploring 36

StableName package 102
stop words 42
Strategy 227
string

about 66
encoding, Huffman tree used 138, 140
searching, Boyer-Moore- algorithm used 71
searching, Boyer-Moore-Horspool algorithm

used 71
searching, Rabin-Karp algorithm used 73
searching, within one-edit distance 84, 85
splitting, on arbitrary tokens 75, 76
splitting, on lines 75, 76
splitting, on words 75, 76

Structured Query Language. See SQL
substring

searching, Data.ByteString used 69, 70

T
table rows

capturing, from HTML web page 24-26
template matching

about 259
camera frames, streaming 259, 260

TerminalType function
constructors 214

text data
accumulating, from file path 11, 12

Text.PhoneticCode package
using 78

text template
used, for personalizing messages 304, 305

The Guardian
URL 9

threadDelay function 222
time command, Unix-like systems 239
time-consuming functions

evaluating, in parallel 217, 218
topological sort

conducting, on graph 147, 148
topsort algorithm 148

315

topsort function
used, for conducting topological sort 147

tree
about 118
Foldable instance, implementing 125-127
height, calculating 127, 129

tree breadth-first
traversing 123-125

tree depth-first
advantage 121
traversing 121-123

trim function 41
tuple elements

accessing, in parallel 228
Twitter

streaming, for real-time sentiment
analysis 242-247

twitter-conduit package
installing 243

Twitter credentials
setting up 243

U
unexpected or missing input

dealing with 43, 45, 46
UNICEF 10
Unicode space character 41
uniformity 92
United Nations

URL 10
United States Census Bureau 11
UPGMA 196
USA TODAY

URL 9

V
valid function 133
variance function 197

W
weak head normal form 219
web server

polling, for latest updates 251, 252
word frequencies

counting, MapReduce used 229-231
words

clustering, by lexemes 198
World Bank

URL 10
World Health Organization

URL 10

X
XML 21
XML file

reading, HXT package used 21-24

Y
Yocto 295
Yocto JSON encoder and decoder

installing 296

Thank you for buying

Haskell Data Analysis Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Haskell Financial Data
Modeling and Predictive
Analytics
ISBN: 978-1-78216-943-7 Paperback: 112 pages

Get an in-depth analysis of financial time series from the
perspective of a functional programmer

1.	 Understand the foundations of financial
stochastic processes.

2.	 Build robust models quickly and efficiently.

3.	 Tackle the complexity of parallel programming.

Clojure Data Analysis
Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1.	 Get a handle on the torrent of data the modern
Internet has created.

2.	 Recipes for every stage from collection to analysis.

3.	 A practical approach to analyzing data to help you
make informed decisions.

Please check www.PacktPub.com for information on our titles

Practical Data Analysis
ISBN: 978-1-78328-099-5 Paperback: 360 pages

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

1.	 Explore how to analyze your data in various
innovative ways and turn them into insight.

2.	 Learn to use the D3.js visualization tool for
exploratory data analysis.

3.	 Understand how to work with graphs and social
data analysis.

4.	 Discover how to perform advanced query
techniques and run MapReduce on MongoDB.

Game Data Analysis – Tools
and Methods
ISBN: 978-1-84969-790-3 Paperback: 86 pages

A data-driven approach to video game production

1.	 Familiarize yourself with the main key
performance indicators for game data analysis.

2.	 Understand the data mining environment used for
game data analysis.

3.	 Choose reporting tools available on the market
according to your needs.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Hunt for Data
	Introduction
	Harnessing data from various sources
	Accumulating text data from a file path
	Catching I/O code faults
	Keeping and representing data from a
CSV file
	Examining a JSON file with the aeson package
	Reading an XML file using the HXT package
	Capturing table rows from an HTML page
	Understanding how to perform HTTP GET requests
	Learning how to perform HTTP POST requests
	Traversing online directories for data
	Using MongoDB queries in Haskell
	Reading from a remote MongoDB server
	Exploring data from a SQLite database

	Chapter 2: Integrity and Inspection
	Introduction
	Trimming excess whitespace
	Ignoring punctuation and specific characters
	Coping with unexpected or missing input
	Validating records by matching regular expressions
	Lexing and parsing an e-mail address
	Deduplication of nonconflicting data items
	Deduplication of conflicting data items
	Implementing a frequency table using
Data.List
	Implementing a frequency table using
Data.MultiSet
	Computing the Manhattan distance
	Computing the Euclidean distance
	Comparing scaled data using the Pearson correlation coefficient
	Comparing sparse data using cosine similarity

	Chapter 3: The Science of Words
	Introduction
	Displaying a number in another base
	Reading a number from another base
	Searching for a substring using
Data.ByteString
	Searching a string using the
Boyer-Moore-Horspool algorithm
	Searching a string using the Rabin-Karp algorithm
	Splitting a string on lines, words, or arbitrary tokens
	Finding the longest common subsequence
	Computing a phonetic code
	Computing the edit distance
	Computing the Jaro-Winkler distance between two strings
	Finding strings within one-edit distance
	Fixing spelling mistakes

	Chapter 4: Data Hashing
	Introduction
	Hashing a primitive data type
	Hashing a custom data type
	Running popular cryptographic hash functions
	Running a cryptographic checksum on a file
	Performing fast comparisons between data types
	Using a high-performance hash table
	Using Google's CityHash hash functions for strings
	Computing a Geohash for location coordinates
	Using a bloom filter to remove unique items
	Running MurmurHash, a simple but speedy hashing algorithm
	Measuring image similarity with perceptual hashes

	Chapter 5: The Dance with Trees
	Introduction
	Defining a binary tree data type
	Defining a rose tree (multiway tree)
data type
	Traversing a tree depth-first
	Traversing a tree breadth-first
	Implementing a Foldable instance for a tree
	Calculating the height of a tree
	Implementing a binary search tree data structure
	Verifying the order property of a binary search tree
	Using a self-balancing tree
	Implementing a min-heap data structure
	Encoding a string using a Huffman tree
	Decoding a Huffman code

	Chapter 6: Graph Fundamentals
	Introduction
	Representing a graph from a list of edges
	Representing a graph from an adjacency list
	Conducting a topological sort on a graph
	Traversing a graph depth-first
	Traversing a graph breadth-first
	Visualizing a graph using Graphviz
	Using Directed Acyclic Word Graphs
	Working with hexagonal and square grid networks
	Finding maximal cliques in a graph
	Determining whether any two graphs are isomorphic

	Chapter 7: Statistics and Analysis
	Introduction
	Calculating a moving average
	Calculating a moving median
	Approximating a linear regression
	Approximating a quadratic regression
	Obtaining the covariance matrix from samples
	Finding all unique pairings in a list
	Using the Pearson correlation coefficient
	Evaluating a Bayesian network
	Creating a data structure for playing cards
	Using a Markov chain to generate text
	Creating n-grams from a list
	Creating a neural network perceptron

	Chapter 8: Clustering and Classification
	Introduction
	Implementing the k-means clustering algorithm
	Implementing hierarchical clustering
	Using a hierarchical clustering library
	Finding the number of clusters
	Clustering words by their lexemes
	Classifying the parts of speech of words
	Identifying key words in a corpus of text
	Training a parts of speech tagger
	Implementing a decision tree classifier
	Implementing a k-Nearest Neighbors classifier
	Visualizing points using Graphics.EasyPlot

	Chapter 9: Parallel and
Concurrent Design
	Introduction
	Using the Haskell Runtime System options
	Evaluating a procedure in parallel
	Controlling parallel algorithms in sequence
	Forking I/O actions for concurrency
	Communicating with a forked I/O action
	Killing forked threads
	Parallelizing pure functions using the Par monad
	Mapping over a list in parallel
	Accessing tuple elements in parallel
	Implementing MapReduce to count word frequencies
	Manipulating images in parallel using Repa
	Benchmarking runtime performance in Haskell
	Using the criterion package to measure performance
	Benchmarking runtime performance in the terminal

	Chapter 10: Real-time Data
	Introduction
	Streaming Twitter for real-time sentiment analysis
	Reading IRC chat room messages
	Responding to IRC messages
	Polling a web server for latest updates
	Detecting real-time file directory changes
	Communicating in real time through sockets
	Detecting faces and eyes through a camera stream
	Streaming camera frames for template matching

	Chapter 11: Visualizing Data
	Introduction
	Plotting a line chart using Google's Chart API
	Plotting a pie chart using Google's Chart API
	Plotting bar graphs using Google's Chart API
	Displaying a line graph using gnuplot
	Displaying a scatter plot of two-dimensional points
	Interacting with points in a three-dimensional space
	Visualizing a graph network
	Customizing the looks of a graph network diagram
	Rendering a bar graph in JavaScript using D3.js
	Rendering a scatter plot in JavaScript using D3.js
	Diagramming a path from a list of vectors

	Chapter 12: Exporting and Presenting
	Introduction
	Exporting data to a CSV file
	Exporting data as JSON
	Using SQLite to store data
	Saving data to a MongoDB database
	Presenting results in an HTML web page
	Creating a LaTeX table to display results
	Personalizing messages using a text template
	Exporting matrix values to a file

	Index

