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Abstract: The S1 subunit of SARS-CoV-2 Spike is crucial for ACE2 recognition and viral entry into
human cells. It has been found in the blood of COVID-19 patients and vaccinated individuals. Using
BioGRID, I identified 146 significant human proteins that interact with S1. I then created an interac-
tome model that made it easier to study functional activities. Through a reverse engineering approach,
27 specific one-to-one interactions of S1 with the human proteome were selected. S1 interacts in this
manner independently from the biological context in which it operates, be it infection or vaccination.
Instead, when it works together with viral proteins, they carry out multiple attacks on single human
proteins, showing a different functional engagement. The functional implications and tropism of the
virus for human organs/tissues were studied using Cytoscape. The nervous system, liver, blood, and
lungs are among the most affected. As a single protein, S1 operates in a complex metabolic landscape
which includes 2557 Biological Processes (GO), much more than the 1430 terms controlled when
operating in a group. A Data Merging approach shows that the total proteins involved by S1 in the
cell are over 60,000 with an average involvement per single biological process of 26.19. However,
many human proteins become entangled in over 100 different biological activities each. Clustering
analysis showed significant activations of many molecular mechanisms, like those related to hepatitis
B infections. This suggests a potential involvement in carcinogenesis, based on a viral strategy that
uses the ubiquitin system to impair the tumor suppressor and antiviral functions of TP53, as well as
the role of RPS27A in protein turnover and cellular stress responses.

Keywords: SARS-CoV-2; S1 subunit of the SARS-CoV-2 Spike protein; SARS-CoV-2 and cancer;
one-to-one interactions in COVID-19 infection; TP53 and RSP27A; long COVID-19; COVID-19 and cancer

1. Introduction

Understanding COVID-19 is an ongoing challenge because of its complex pathology
and limited molecular insights [1,2]. Many clinicians rely on treating symptoms similarly
to other viral diseases [3], which complicates a comprehensive understanding of the clinical
picture, especially regarding “long COVID” (PCS) [4], where patients experience persistent
symptoms for months [5]. Despite four years of research, defining the characteristics of
long COVID-19 remains difficult. PCS exhibits diverse symptoms like “brain fog”, immune
dysregulation, and fatigue, which affect quality of life [5]. The lack of understanding of the
molecular mechanisms behind PCS limits treatments to symptom management rather than
targeted therapies [6]. Controlled clinical trials often lack in-depth metabolic research [6].

One of the key biological characteristics of SARS-CoV-2, as well as several other
viruses, is spike proteins that allow these viruses to penetrate host cells and cause infection.
The SARS-CoV-2 Spike is a glycoprotein, which forms a trimer anchored to the membrane
by its transmembrane segment. Upon ACE2 binding, the pre-fusion Spike undergoes
conformational rearrangements that promote the S1:ACE2 complex dissociation from
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S2 to drive membrane fusion, assuming a stable post-fusion conformation. Therefore, the
S1 subunit plays a critical role in binding to ACE2 and has various other functions [7].
It is often referred to as a “spikeopathy” [8]. Its immunogenic characteristics remain the
same even when modified during vaccine production [9]. However, its interactions with
human proteins during infection are less understood. While with the vaccine it acts alone
by interacting with human proteins, in the infection it attacks human proteins also together
with other viral proteins [10,11]. However, there are also cases where it attacks specific
human proteins with a one-to-one interaction [10]. In this study, we use the term ‘one-
to-one interaction’ to describe the specific binding of the S1 subunit to target proteins
(more details in Supplementary Material). However, protein–protein interaction (PPI)
studies like those in BioGRID provide insights into S1 interactions, but it is essential to
validate these in complex metabolic contexts since factors like the cellular environment and
post-translational modifications influence these interactions.

The widespread presence of various S1 proteoforms complicates distinguishing re-
sponses from vaccination and infection. S1 has many sites for post-translational modifica-
tions (PTMs), such as K, T, S, and Y, scattered throughout the structure [12] that complicate
understanding. Although mRNA vaccines have been lifesaving, they can cause adverse
effects linked to the S protein’s interaction with human tissues. Studies have detected
significant levels of circulating S1 protein after both vaccination and infection [13–17].
However, linking these S1 levels to observed symptoms is difficult because of non-linear
biological responses.

Understanding the metabolic organization of COVID-19 requires recognizing the
constraints and rules governing biological networks, where proteins play a crucial role
through the metabolic interactions. Graph theory aids in representing these networks and
their biological functions, clarifying the complexities of disease progression. I believe that
understanding these aspects is possible by using relevant protein biosignatures as seeds
for constructing PPINs (Protein–Protein Interaction Networks). The interactions are the
crucial step in this analysis. They cannot be estimated indirectly but must be detected using
the experimental methods of biophysics and/or biochemistry. Otherwise, the probability
that we have reliable functional information on which molecular mechanisms are based
decreases, reducing the predictive power of the interactomic models. PPIs are important
for deciphering profound molecular mechanisms under normal or pathological conditions.
Therefore, it is necessary to rely on curated databases with a high percentage of well-
established binary relationships. I have used BioGRID and STRING, two very reliable
public databases. They have undergone extensive integration, including the curation of
thousands of journal articles, creating controlled vocabularies (ontologies) to describe PPI
experiments, and defining standard formats for PPI data. They have introduced quality
control measures by curation, methods for evaluating interactions, and approaches for
linking interactions to context. The database BioGRID boasts one of the best average
coverages (≈70%) of binary relationships, whereas about 79% of those in STRING have
also experimental verifications.

The aim of this study is to differentiate the molecular effects of the S1 subunit in
the human host when it acts together with other viral proteins and when it acts alone.
I emphasize again that experimental methods are necessary to gain certainty about the
interactions. To achieve this result, I applied a biological reverse engineering protocol.
Reverse engineering is based on the direct validation of the biological message exchanged
between two nodes of the net by validating it with external data. This involves deriving
from an external reference model of the real biological relationships that exist between the
nodes of the network without a priori knowledge of the computational protocols [18,19]. So,
we can analyze the accurate mapping and prediction of protein interactions that contribute
to disease pathology by exploiting PPINs. This approach can provide valuable insights into
the molecular mechanisms underlying S1 action by mitigating low-resolution processes
targeting this protein through a more systematic understanding of the complex regulatory
networks in which it takes part [20,21]. However, this approach requires experimental
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validation of the interactions, which we achieved through BioGRID, in order to explain
the molecular mechanisms underlying S1 actions. The results show the extreme functional
complexity of the metabolic landscape in which S1 operates and how influential knowledge
gaps and information biases become when we must evaluate where, when, and to what
extent certain functional events should occur.

2. Materials and Methods
2.1. BioGRID

BioGRID (https://thebiogrid.org/) (accessed on 2 June 2024) is an important biomedi-
cal database that collects curated protein and genetic interactions, only from experimental
studies and living cells [22]. Therefore, it represents a fundamental and unique resource for
obtaining data on certified functional interactions in biological contexts. Through a specific
Project (BioGRID COVID-19 Coronavirus Curation Project), BioGRID maintains complete
and continuous coverage of protein interaction data between human proteins and all SARS-
CoV-2 proteins. The Project is still active (https://thebiogrid.org/project/3) (accessed on
2 June 2024) and provides comprehensive datasets of curated direct interactions for the
viral proteins encoded by SARS-CoV-2.

The dataset encompasses all experimental interactions between viral proteins and
host cell proteins, as well as PTMs. I accessed the area SARS-CoV-2 Protein Interactions
on 2 June 2024. In that area, we found all curated interactions between the virus and
human proteome in 32 subgroups (the subgroup for ORF1a protein is void) for about
41,683 interactions with 25,620 unique interactors and information for 156 PTM sites on
viral proteins. In particular, the protein S1 (GU280_gp02) shows 3031 curated physical
interactions with 1371 interactors and 41 PTM sites (https://thebiogrid.org/4383848/table/
severe-acute-respiratory-syndrome-coronavirus-2/s.html) (accessed on 2 June 2024) as
supported by 903 publications.

BioGRID manages and integrates interaction data from low- and high-workflow
experiments through a data curation and standardization process. This involves the
analysis and validation of data from both types of experiments to ensure the quality and
reliability of the information in the database. BioGRID considers molecular interactions
detected through low-throughput experiments more significant than those found using
high-throughput experiments. This is because low-throughput experiments are more
targeted and accurate in identifying specific, biologically relevant interactions. In contrast,
high-throughput experiments may produce a higher number of interactions but may also
include interactions that are not biologically significant. I evaluate and integrate data from
low-workflow experiments, which are considered more targeted and accurate in identifying
specific and relevant interactions, into the database. BioGRID uses well-defined curation
standards and data integration protocols to document and contextualize information from
both types of experiments. This approach allows users to access a wide range of interaction
data, from different experimental sources, in a consistent and reliable way. BioGRID
contains over 2.7 million protein and genetic interactions, as well as over 1.5 million
chemical interactions. The database is growing, adding new curated data.

2.2. STRING

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins database)
(https://string-db.org/) (accessed on 2 June 2024) Version 12.0 is a database of predicted
interactions for different organisms [23,24]. The interactions include direct (physical) and
indirect (functional) associations; they stem from computational prediction, from knowl-
edge transfer between organisms, and from interactions aggregated from other (primary)
databases. STRING is a database of known and predicted protein–protein interactions.
The interactions include direct (physical) and indirect (functional) associations; they stem
from computational prediction, from knowledge transfer between organisms, and from
interactions aggregated from other (primary) databases. It considers conserved genomic
neighborhood, gene fusion events, and co-occurrence of genes across genomes, as well as

https://thebiogrid.org/
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information about orthologs. STRING quantifies the strength of the evidence supporting
each interaction by assigning it a confidence score. This score combines several sub-scores
(based on seven channels of evidence), each of which is calculated in a personalized and
source-specific way.

2.3. Protein Enrichment

Protein enrichment relies to some extent on prior knowledge, and statistical enrich-
ment of annotated features may not be an intrinsic property of the input. To obtain a valid
enrichment test from STRING, I input the entire set of enriched proteins into STRING,
ensuring that “first shell” and “second shell” were both set to “none”. To confirm the
procedure was correct, I also checked the STRING annotation, which disappears when the
analysis is performed correctly. Next, I introduced new interaction partners to the network
to expand the interaction neighborhood according to the desired confidence score. I used
0.9 as the confidence score. I always added 1st order proteins (direct interactions) first and
then 2nd order proteins (indirect interactions), when necessary.

2.4. Cytoscape and Network Topology Analysis

Cytoscape [25,26] through Network Analyzer was used to analyze the topological
parameters of networks. Using Cytoscape software (Version 3.10.1), I visualized and
analyzed PPI networks, which offer diverse plugins for multiple analyses. Cytoscape
represents PPI networks as graphs with nodes illustrating proteins and edges depicting
associated interactions. I examined network architecture for topological parameters such
as clustering coefficient, centralization, density, network diameter, and so on. My analysis
included undirected edges for every network. I termed the number of connected neighbors
of a node in a network as the degree of a node. P(k) was used to describe distributing
node degrees, which counted the number of nodes with degree k where k = 0, 1, 2, . . . I
calculated the power law of distribution of node degrees, which is one of the most crucial
network topological characteristics. The coefficient R-squared value (R2), also known as
the coefficient of determination, gives the proportion of variability in the dataset. I also
examined other network parameters, including the distribution of various topological
features. I calculated hub and bottleneck nodes based on relevant topological parameters.
By examining the PPI network, I found the top 7 hub nodes. These nodes had higher degree
values than the others and were in two central modules that were connected and compact.

2.5. CentiScaPe

Regarding centralities for undirected, directed, and weighted networks, CentiScaPe [27]
calculates specific centrality parameters describing the network topology. These parame-
ters facilitate users in locating the most important nodes within a complex network. The
computation of the plugin produces both numerical and graphical results, facilitating the
identification of key nodes even in extensive networks. Integrating network topological
quantification with other numerical node attributes can provide relevant node identification
and functional classification.

2.6. GO and KEGG Pathway Analyses

To better research and show the biological function of interacting proteins, I performed
GO analysis, which included biological process (BP), cellular component (CC), molecular
function (MF), and many other evaluations using the specific tools present in STRING. All
functions shown by STRING are significant, having a p-value of <0.05.

2.7. SARS2-Human Proteome Interaction Database (SHPID)

I have collected in a single database all the files made available online by BioGRID,
containing all the curated physical interactions of the 31 SARS-CoV-2 proteins gained
through experiments in human cellular systems with viral baits, followed by purification
and characterization with mass spectrometry [10]. These data are available as a zip file con-



Biomolecules 2024, 14, 1549 5 of 51

taining multiple zip files (32 zip files) each comprising interactions and post-translational
modifications for each single SARS-CoV-2 protein for 33,823 interactions (as of June 2024).
The database, therefore, contains the set of all real interactions existing between the SARS-
CoV-2 proteome and all the proteins of the human proteome. However, some interactions
could derive from artifacts of the method, such as non-biological interactions, because of the
random encounter between proteins in the system used. All the interactions derived from
BioGRID, even those with the lowest score, have a significant statistic with an FDR ≤ 0.01.
This allows us to identify as many significant comparisons as possible while maintaining a
low false positive rate of less than 1%. So only 338 interactions among all might be null.
This database is the comprehensive repository of all interactions acknowledged as possible
between the virus and its human host. The database also contains interactions between
individual viral proteins, where known. As part of database search actions, one can ask
who interacts with whom, with queries that use single human or viral proteins. The search
can include multiple sets of proteins.

2.8. Highlighting the Nodes of a STRING Network Involved in the Same Biological Process (GO)

STRING makes visible the nodes involved in the same biological process, evidenced
through its databases mapped onto the proteins (GO, KEGG, REACTOME, and so on),
by activating the process line with a click of the cursor. Activation means that all nodes
involved in the same metabolic process have the same color. Nodes involved in multiple
processes receive multiple colors. This tool is very useful when one wants to analyze the
involvement of multiple nodes in many metabolic processes, identifying which nodes
represent the crossing points. Nodes that do not show any coloration identify components
not involved (or influenced) in the activated process. The relationships that determine
the coloring of nodes depend on the data and information extracted from the scientific
literature in PubMed and from the databases connected to STRING. It also analyzes the
quantitative impact of each data source, which contributes to forming the confidence score
of each individual interaction.

2.9. Evaluation of the Hub-and-Spoke Model

Many properties of a scale-free network depend on the value of the exponent γ of
the power law [28]. Therefore, it is interesting to establish how network properties vary
with γ. Estimating the expected maximum degree (also known as the natural cut-off) for a
scale-free network, which represents the expected size of the largest hub, is based on the
following formula [29]:

Kmax~Kmin N 1/γ−1 (1)

where Kmax and Kmin are the expected maximum and minimum degrees for those nodes.
N is the system size in terms of the number of nodes.

2.10. Cluster Analysis

For the cluster analysis, I used the K-Means Clustering method [30]. K-Means Clus-
tering is an Unsupervised Learning algorithm (centroid-based clustering algorithm) used
by STRING to group the protein dataset into different functional clusters. Centroid-based
algorithms are efficient, effective, simple, and sensitive to initial conditions and outliers.
This makes it useful in handling networks. Here, for K, which defines the number of
predefined clusters, I used the value of 10, which gave the most reliable clusters in terms of
compactness, metabolic functionality, and p-value. There are several methods for determin-
ing K, the optimal number of clusters. I used the elbow method. It is a semi-empirical visual
technique used to determine the optimal number of clusters (K) in a K-means clustering
algorithm. It calculates the sum of the squared distances between points within each cluster
and the cluster centroid (i.e., the sum of squared errors) for a range of values of K (e.g.,
from 1 to 10–15 or more). The plot shows K on the x-axis, with each y value representing
the sum of squares for a specific K. At the optimal K value, the plot shows a curve concave
upwards where the sums decrease, creating an elbow where the error becomes marginal.
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The value at the elbow represents the optimal value of the clusters to analyze. Adding
further clusters does not lead to significant improvements. The K value of the elbow is a
balance between the accuracy and complexity of the model.

2.11. Protein Intrinsic Disorder and Secondary Structure Prediction

I used the STRING feature and two online servers, Jpred 4 and IUPred2A. Jpred
is a web server that takes protein sequences and, from these, predicts the location of
secondary structures using a neural network called Jnet. It shows the prediction as a graph.
IUPred2A [31,32] is a combined web interface that allows identifying disordered protein
regions using IUPred2 and disordered binding regions using ANCHOR2. IUPred2A can
identify disordered protein regions by analyzing their sequence, regardless of whether
they are stable. Upon inspecting the graphic outputs of all the predictive systems, I have
confirmed disordered segments in most of the examined proteins, whether viral or human.

2.12. Data Merging Methodology

Data Merging is a process in data management used to coalesce multiple related
datasets into one. The Data Merging approach pools all data together and then estimates
statistics on the resulting dataset of GO terms. The merging process enables the use of this
combined data for more effective analysis, for extensive sets [33]. Data Merging merges
disparate data sources, such as databases, or experiments data, into a unified dataset. I
have used Excel (2016) for calculations. It aids in improving the accuracy of statistical
data analysis, filling missing values in datasets, identifying correlations between variables,
and making the data cleaning process more efficient. This procedure also presents some
challenges. These include handling large datasets, ensuring the correct alignment of merged
data, and dealing with ambiguities when datasets have similar identifiers. These issues, if
not dealt with, can lead to data inconsistency or incorrect data interpretation. I have used
this approach to integrate diverse data from various interactome analyses and data sources.
The performance depends on the size of the datasets being merged and the computational
resources available. With adequate resources, it is efficient and quick, providing a unified
data view in little time. I have used a storage repository that holds a vast amount of raw
data in its native format (Data Lake).

2.13. CIDER

CIDER is a web server developed by the Pappu Lab [34] for calculating parameters
relating to disordered protein sequences, although it can generate values for any protein
sequence. It is a Python backend, which allows you to run calculations, creating custom
analytics pipelines. CIDER calculates a set of parameters which help translate primary
sequence information into better understanding how the protein might behave, as well as
produces a diagram of states [34–36].

The κ parameter is a parameter to describe charged amino acid mixing in a sequence.
For a sequence of fixed composition, as κ goes from 0 to 1, we can think of the sequences as
becoming less well mixed regarding the positive and negative residues. Useful parameters
to combine with κ are the fraction of charged residues (FCRs) and net charge per residue
(NCPR). As the fraction of charged residues increases, the relative impact of how those
charges are spread across a sequence becomes more significant. They also relate to the
conformational shape of the protein.

Disorder-promoting—we can categorize residues into disorder-promoting or order-
promoting, as defined by Dunker and Uversky [37]. A ‘disorder promoting’ result reflects
the weight of the fraction of residues, which forms the disorder-promoting set.

Regions on the diagram of states define the location on the diagram of states where
the sequence lies. S1 lies in weak polyampholytes and polyelectrolytes, where sequences
are globules and tadpoles (region 1).
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3. Results
3.1. A Brief Analysis of the Behavior That We Expect for S1 Free in Solution

Chemical-physical data of the S1 subunit of SARS-CoV-2 Spike (Gene ID: 43740568
(ncbi.nlm.nih) and UniProtKB: PODTC2) were calculated by the web server CIDER [35],
while their interpretation was exclusive to the author of this manuscript. The mature
S1 subunit contains 711 aa, as decoded by its mRNA. We know many structural details of
S1 in the Spike structure [38] and its mechanism of action in penetrating a living cell through
ACE2 [24]. Spike (1273 aa in humans) is a precursor protein (Figure 1) that is proteolytically
cleaved by furin into an N-terminal S1 subunit and the C-terminal hydrophobic S2 subunit.
The latter mediates cell attachment. S1 is visible in the extracellular environment.
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Figure 1. Model of the structural organization of the SARS-CoV-2 Spike protein complexed with
ACE2 in a closed state [38]. PDB, the Expression System Homo sapiens, offers information about
the trimeric complex, found at PDB-DOI: https://doi.org/10.2210/pdb7DF4/pdb. You can also
access the structure at https://www.rcsb.org/structure/7df4 (accessed on 2 June 2024). I used PDB
resources to process the images. Information in the article by Chao et al. [38] inspired the figure. The
structure of ACE2 is on Uniprot, as Q9BYF1. The three identical protomers are in red, cyan, and brown.
ACE2 is in green. The subunit that interacts with ACE2 is the one in cyan. Acronyms: S1-NTD, S1 N-
terminal domain; S1-CTD, S1 C-terminal domain; RBM, Receptor-Binding Motif, interacting with
ACE2; RBD, Receptor-Binding Domain. Some small cyan square formations surrounding the complex
are molecules of NAG (2-acetamido-2-deoxy-beta-D-glucopyranose), a carbohydrate conserved in
eukaryotic glycoproteins. The diagram at the top left sketches the structural organization of a Spike
protomer, highlighting some relevant information. The 437–508 segment (in red) is the region that
interacts with ACE2. S2-CD is the S2 C-terminal domain.

Its key role is to interact with ACE2 and, through its immunogenic epitopes, manage
interactions with external proteins. The fate of the S1 particles released by furin has
never received much attention [39]. However, S1 is detectable in the blood for a long
time, both after infection and vaccination. The free structure of S1 at 3.6 Å is on PDB
(7A91; entry DOI:10.2210/pdb7a91/pdb). Neutralizing antibodies target the epitopes on
the S1 surface [40]. Thus, researchers fragmented S1 into peptides to understand which

https://doi.org/10.2210/pdb7DF4/pdb
https://www.rcsb.org/structure/7df4
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epitopes have the greatest antigenic power. They found a high number of strong epitopes in
the 440–600 region, where the HLA epitope (448–456), called NF9 peptide, dominates [41].
What the researchers have overlooked is the conformational behavior in solution and the
chemical-physical characteristics of the subunit, since they have studied techniques to
develop detection assays [42]. These are important features for assessing the interaction
tendency of proteins.

I used the platform CIDER of Pappu’s lab for calculations (see methods for details).
We can predict with approximation its conformational preference as weak polyampholytes
(FCR < 0.3) for S1 (FCR < 0.160), by combining chemical-physical parameters calculated by
sequence [24,29]. The S1 subunit shows a fraction of charged residues (FCRs) of 0.160 and
a net charge per residue (NCPR) of 0.006. This translates to a net positive charge at pH
7.0 of +4.95. The strong positive net charge of S1 at neutral pH favors interactions with
negatively charged proteins or surfaces, but also suggests the excellent solubility of the
protein in aqueous media. The FCR and NCPR values, as calculated by the CIDER server,
suggest a dispersed positive charge distribution over the entire protein with a high number
of charged patches in the region 400–600 and in the N-terminal tail. Also, a K value (charge
patterning parameter) of 0.175 suggests segregation of charged residues within the protein
with conformational fluctuations caused by long-range electrostatic attractions. This value
is zero for sequences with well-mixed charges [34].

CIDER calculated a value of disorder-promoting capacity (DPC) of 0.549 [34]. The
terminal segment, from residue 440 to about 700, is the one with the greatest number of
disorder-promoting residues, according to Dunker [43]. This suggests that this region
comprises many disordered segments. Flexibility analyses and structural models support
this conclusion (see Figure S1 [44–46] in Supplements). The proline content of S1 (5.2%)
is high (37 P residues, and, on average, one P every 19 residues). P is a residue that
acts as a mobile hinge inducing structural orientation change, but it is also the protein
residue with the most disorder-promoting potency [37]. We also need to put glycine on
the same level as P because of its strong disorder-promoting ability [37]. Its content is also
high, 46 residues (6.5%), with one G residue every 15.4 residues. This residue induces
a strong structural flexibility in the structural environment that surrounds it, favoring
broad structural fluctuations [47]. The set of highlighted parameters suggests an extended
and mobile globule-like structure [34], very flexible with disordered segments but also
very soluble in solution (see Figure S1 in Supplementary Material) and susceptible to
electrostatic interactions. This contradicts the general idea of compactness that arises
from snapshot views of Spike by three-dimensional techniques. This extended flexible
conformation benefits the virus by enhancing its ability to bind to receptors. The flexibility
of the receptor-binding domain allows it to explore a wider space, increasing the likelihood
of encountering a receptor and boosting its virulence. A fast equilibrium between protein–
solvent and intra-protein interactions should control the conformational properties of IDR
segments in solution, which are crucial for interactions [36,48].

These chemical-physical and structural properties of S1, free in solution, explain well
the reason for the many interactions with human proteins found in BioGRID. But S1 also
displays 87 sites for PTMs on its sequence. They modulate the structure and functionality
of the protein in the different metabolic and temporal contexts in which it operates alone.
Many sites in the IDRs undergo phosphorylation by serine/threonine kinases, which,
by modifying the conformational properties of S1, allows it to coordinate many cellular
signaling events [49]. These results highlight the importance of considering the intrinsic
conformational behavior of this protein free in solution when developing vaccines because
the final step releases S1 into the cell, free to interact with human proteins [50].

3.2. Data Source

All features highlighted in this study are based on experimental data extracted from
BioGRID (see Methods, Section 2.1). I select 158 human proteins out of the 1371 unique
interactors of S1, which induces 3002 raw interactions. The selected proteins are all charac-



Biomolecules 2024, 14, 1549 9 of 51

terized by a high significance level (level score ≥ 2) as well as by binding S1 with at least
one Low Throughput (LT) interaction. BioGRID prioritizes molecular interactions detected
with LT experiments over those detected with high-throughput (HT) experiments. This
is because LT experiments are more targeted and accurate in identifying specific, biologi-
cally relevant interactions. HT experiments can produce a larger number of interactions,
including interactions that are not significant [22].

Table S1 (Supplementary Material) reports the proteins extracted from BioGRID that
interact with S1 at LT. The Figure S2 (Supplementary Material) shows the interactome
calculated by STRING for these proteins. The figure shows a compact network suggest-
ing common functional activities. Although the confidence score is low (0.400) and all
7 channels are open to collect as much information as possible, the proteins form a compact
network with an excellent p-value suggesting shared biological activities. The low score
value and the use of all channels were used to collect as much information as possible,
postponing the pruning of the less significant nodes to a later time. However, twelve nodes
remained disconnected. The lack of connection suggests either little research on these
proteins or that they are not involved in this specific functional context [51]. Therefore, I
eliminated them so as not to alter calculating the topological parameters [52–55]. I pruned
these nodes of low significance (CACNA1C, CLPTM1, CNTN1, CSNK1G3, IL1RAPL2,
LYSMD3, MPZL1, MSMP, PIM2, SLC6A15, SLC7A4, and WDR45B) to increase the accuracy
and robustness of my conclusions. In Figure S3, I show the new 146-node interactome.
This new interactome appears well organized, with a central compact body and many
peripheral subgraphs, locations of specific biological activities. For instance, the subgraph
on the left (ZDHHCXX-GOLGA7) is the palmitoyl–transferase complex involved in protein
transport from the Golgi to the cell surface [56]. The pentagonal subgraph (bottom com-
pared to the previous one) shows components of the Coatomer cytosolic protein complex
II (COPII), which promotes forming transport vesicles from the endoplasmic reticulum
(ER) and regulates the intracellular membrane trafficking, from the formation of transport
vesicles to their fusion with membranes [57]. Many of these 146 nodes have all the charac-
teristics of functional compactness and high rank to maximize the metabolic processes of
the network through enrichment as functional seeds [58]. Efficient seed selection should
select the most influential nodes to achieve the maximum level of functional influence.
This is because, in the enrichment phase, the robustness of seeds is essential to counteract
potential disturbances, such as topological alterations. An accurate selection of influential
seeds reduces perturbations in the network [59].

Functional enrichment is based on statistical parameters related to biological func-
tions associated with the gene set extracted from BioGRID. It identifies biological and
functional themes (pathways, Gene Ontology, diseases, etc.) that, although sometimes
over-represented, apply to the topic under study. Integrating multiple pathways (KEGG,
Reactome, etc.) offers advantages in terms of more probable, more extensive, and robust
functional annotations, necessary for a better understanding of the functions and metabolic
regulation existing in a complex biological system such as the virus–host one.

I have two major goals: extracting useful information from the functional processes
of the proteome that are related to functional seeds, as a strategy; defining the topologi-
cal space in which to represent and visualize the structural organization of the extracted
metabolic processes as a method. STRING implemented the calculation for the functional
enrichment of these nodes by adding 500 first and 500 second order proteins (direct and
secondary interactions) until obtaining an interactome of 1146 nodes (see Figure S4). This
interactome, despite being very compact and with an excellent statistic, still has discon-
nected nodes, most likely because of heterogeneous data. Although access to scientific
documents in natural language by Text Mining is easier, the results of this automated search
are often not relevant to the needs of the user looking for experimental and quantitative
data [60,61]. In fact, extracting information through key phrases and relationships used by
these systems leads to heterogeneous results with differences among the scientific databases
from which the articles were retrieved, even if articles are similar [60]. It is important to note
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that bioinformatic platforms treat less studied genes/proteins as if they were background
noise and often eliminate them from the calculations [62,63]. This generates uncertain in
predictions or information, so I eliminated disconnected nodes. The Excel File S1 sheet
1 reports the pruning protocol with the degree-lists of the 1060 residual nodes and with the
87 nodes eliminated. Figure 2 shows this interactome (from now on “interactome-1060”) as
calculated by STRING.
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3.3. Interactome-1060

Figure 2 shows an interactome comprising proteins from the human proteome selected
through a sequential selective process that identified those with the highest experimental
probability of being involved in the metabolic processes induced by the S1 protein in the
human organism. The interactome comprises 1060 nodes and 17,494 edges, obtained by
selecting the highest significance interactions (confidence score 0.900) and excluding the
Text Mining channel. This is another important point because of the uncertainty arising
from detections of protein interactions, which is reflected in the network’s structure [51].
PIN (Protein Interaction Network) analysis should be reproducible, by similar results
across different scoring thresholds of calculation systems. This suggests that, for maximum
confidence, we need to have a robust metric across the network to have meaningful and
reproducible topological results [51]. The topology of interactome-1060 is complex because
of the many peripheral subgraphs enveloping an extended central core. Specific nodes at
the interface connect the various peripheral subgraphs through a few interactions with the
central body and with each other. We can observe subgraphs (also called communities or
molecular modules) densely connected within themselves but poorly connected with the
rest of the network. The intensity of the connections and the compactness of each subgraph
suggest they represent molecular complexes that carry out specific and common functional
activities [64–67]. This broad functional connectivity shows the possibility of an extensive
repertoire of responses to stimuli. After all, the cell is a complex multi-agent system
programmed to perform predefined functions at specific times. Therefore, interactome-
1060 represents a robust set of human proteins suitable for a reverse engineering approach.
With it, we can assess the significance of each single interaction by evaluating its real
biological meaning. I believe that this approach has a broader value than the rather
reductionist meaning of reverse engineering as a technology [67]. In short, I try to discover
the one-to-one interactions of S1 in the network by validating them through external
biological information.

3.3.1. Quantitative Aspects of Interactome-1060’s Functional Processes

Table 1 shows an overview of the functional processes activated by interactome-1060.

Table 1. Functional processes activated in the human genome by interactome-1060.

Biological Process Terms Significantly Enriched

Biological Process (Gene Ontology) 1430 terms

Molecular Function (Gene Ontology) 165 terms

Cellular Component (Gene Ontology) 283 terms

Reference publications (PubMed) >10,000 publications

Local network cluster (STRING) 251 clusters

KEGG Pathways 202 pathways

Reactome Pathways 693 pathways

WikiPathways 302 pathways

Disease-gene associations (DISEASES) 114 diseases

Tissue expression (TISSUES) 167 tissues

Subcellular localization (COMPARTMENTS) 287 compartments

Human Phenotype (Monarch) 787 phenotypes

Annotated Keywords (UniProt) 103 keywords

Protein Domains (Pfam) 17 domains

Protein Domains and Features (InterPro) 144 domains

Protein Domains (SMART) 44 domains

All enriched terms (without PubMed) 4989 enriched terms
Note: Terms in bold represent the scientific quality of the processes activated in the 1060 interactome (see also
Appendix A for further explanation). It is interesting to compare them with those in Table 6 that concern the
814 interactome.
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The control of so many Biological Processes by S1 is remarkable. This analysis is
based only on experimental data from BioGRID, functionally analyzed by STRING. The
calculated interactome is based on selecting only the most statistically significant interac-
tions (through the highest confidence score) deriving from data and information from over
10,000 scientific articles and from eliminating information from the Text Mining channel
which introduces biases in the data and in information compared to every other approach.
Such an approach favors the greatest possible certainty of the interactions in the interactome
(Figure 2). However, the more complex a network is with many multi-node interactions,
the more intrinsically robust it is with reduced false positive interactions. The Excel File S1,
sheet 1, reports the node degrees of interactome-1060 entirely. The node with the highest
connectivity is RPS27A (nodal degree: 230), a ribosomal protein. Hubs connect multiple
nodes to centralize network traffic through a single connection point. Barabasi suggests
that the range of degrees for including the HUB nodes should be half the value of this
node [29,67,68]. This range includes 65 HUB nodes out of 1060 nodes (6%) from 230 to
115 degrees. A closer inspection shows that these nodes are almost all ribosomal proteins,
even if in different roles.

Among these high-ranking nodes, four of them regulate and control many ribosomal
activities, showing more interactions than other proteins. They are RPS27A, its paralogue
UBA52, FAU, and RACK1. RPS27A and UBA52 play crucial roles in targeting cellular
proteins for degradation by the 26S proteasome, maintaining the chromatin structure, and
regulating gene expression and the stress response [69,70]. FAU is a protein contributing to
the assembly and functionality of 40S ribosomal subunits in the cytoplasm [71]. It plays a
role in ribosomal biogenesis and is associated with various protein complexes, contributing
to regulating the cell cycle. RACK1 is a protein that controls translation and acts as a scaffold
for signaling to and from the ribosome [72]. Upon viral infection, RACK1 remodels ribo-
somes so that they become optimal for translating viral mRNAs but not host mRNAs [73].
Thus, they interface with multiple cellular functions and processes. Here, I focused on their
pivotal roles in the synthesis of new proteins. To gain more insight into their activity, I used
the STRING action “recenter” that rewires the network around these proteins, showing all
the proteins in STRING that interact with them. This specific interactome (Figure S5) reveals
a strong connection between the four proteins and their control over the remaining 793 pro-
teins. The functional picture that emerges is that of four essential cytosolic small ribosomal
subunits involved in viral mRNA translation (GO:0002181 Cytoplasmic translation, p-value:
4.16 × 10−85; GO:0042274 Ribosomal small subunit biogenesis, p-value: 3.79 × 10−45;
GO:0006412 Translation, p-value: 2.67 × 10−194; GO:0006364 rRNA processing, p-value:
2.85 × 10−88; GO:0042254 Ribosome biogenesis, p-value:1.38 × 10−109; GO:0022613 Ribonu-
cleoprotein complex biogenesis, p-value: 9.71 × 10−126; GO:0034660 ncRNA metabolic
process, p-value:1.86 × 10−65; CL:143 Viral mRNA Translation, and Sec61 translocon com-
plex, p-value:1.26 × 10−91; HSA-192823 Viral mRNA Translation, p-value: 2.39 × 10−72).
All this shows a dynamic ribosome action in mediating crucial cellular mechanisms, even
in pathologic states. It is a view quite like that of some authors who contest the traditional
view of ribosomes as static and invariable entities [74,75]. To support this consideration,
studies have shown that certain ribosomal proteins impede viral action in cultured human
cells, leading to changes in human functionalities [76–78].

3.3.2. Significant Topological Parameters of Interactome-1060

Regardless of the deep molecular machinery underlying the functional characteristics,
the space that emerges from the analysis of these topological configurations provides a
logical substrate for understanding viral strategies. The main topological characteristics
of this interactome (see Table 2) reveal important principles of cellular organization and
functionality. The extensive eccentricity of the network, as shown by the high values of its
diameter and radius (10 and 5), suggests functional peripheral subgraphs (or communities).
The heterogeneity (1.187) supports a large tendency to have hub nodes [79], while a
centralization value close to zero (0.189) supports compact and dense connections within
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the network. Another interesting parameter is the value of the average clustering coefficient
(0 ≤ C ≤ 1), which reflects a modular organization [80] that, in light of the large diameter,
also suggests an asymmetric architecture, as we observe it.

Table 2. Topological parameters of interactome-1060 *.

Number of nodes 1060

Number of edges 17493 **

Average node degree 33

Avg. local clustering coefficient 0.679

Expected number of edges 8382

PPI enrichment p-value <1.0 × 10−16

Confidence score 0.900

Source channels 6

Network diameter 10

Network radius 5

Characteristic path length 3.717

Network heterogeneity 1.187

Network density 0.33

Network centralization 0.189

Connected components 1 ***
(*) Calculated by Cytoscape Network Analyzer, which computes a comprehensive set of topological parame-
ters [81,82]. (**) The numerical value shown is half of that reported in the Excel File S1, sheet 2, which refers to
the total interactions present in the interactome (34,986). STRING in some of its calculations doubles the value
because it considers the interaction of a pair (A-B) in the two directions (from A to B and from B to A). (***) The
value of “1” shows that all nodes in the network are connected to each other. Existing unconnected components (0
≤ C ≤ 1) alter the calculations of the topological parameters, making them unreliable [54]. This is the fundamental
reason for pruning. A single component accounts for strong network community.

3.3.3. The Power Law of Interactome-1060

However, before any topological consideration, it is necessary to find out what dis-
tribution the interactome degrees show. Biological networks show scale-free behavior
with a few hub nodes controlling multiple connections within the system. The lack of
an internal scale means that nodes with a large difference of degrees coexist in the same
network. Barabasi observed this feature in many biological networks [83,84], where the
fraction of nodes with degree k follows a power law distribution, revealing that the degree
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the degree exponent, and many properties of a scale-free network depend on the value of
the degree exponent [83,84]. Calculating the degree distribution is an important part of
analyzing the properties of a network [85]. Figure 3 shows that interactome-1060 follows
the characteristic distribution law of the nodes of a scale-free network.

To test the distribution, I fitted the function f(x) = axb, where the values of a, b (degree
exponent), and R2 are 181.8, −0.98, and −0.272. Even though interactome-1060 shows
a significant p-value of 1.0 × 10−16, the low correlation index of this fit underscores a
strong expectation of heterogeneous associations among nodes, such as high clustering.
The presence of clusters in the network topological architecture is useful for defining in a
non-random way specific pharmacological attack points [86]. We can note that nodes with
high connectivity form a long tail (long-tailed distribution) and between degrees 30 and
70, there is a peak that characterizes an excessive number of nodes with these degrees
compared to the fit. Some protein networks acknowledge the long tail distribution as an
intrinsic property rather than a byproduct of the specific algorithm used to compute the
network [87]. This is also a characteristic property of scale-free networks that result in
distributions with long tails where only the terminal nodes have high degree values [88].
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In most real-world networks, new nodes prefer to connect to more connected nodes,
according to a process called preferential attachment [89]. Therefore, the number of nodes
grows because of the addition of new nodes, so growth and preferential attachment coexist.
The power law should represent this tendency of the nodes. If we examine the degree
distribution in the log–log graph (inset of Figure 3), we find that the distribution deviates
from a pure power law, which in logarithmic representation should follow a linear trend.
The log–log distribution shows many overlapping linear plateaus in the high-k regime (the
long-tail nodes) and a clear distortion in the low-K data. This suggests various subgraphs
(molecular modules), each with its own specific hubs [90].

According to the Barabasi’s model [83,84], for b < 2, the exponent
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will be larger than
one. Hence, the number of connections to the largest hub will grow faster up to reaching
the global size of the network. This means that for a very large N (total number of nodes),
the highest degree hub could gain all nodes in the network. But this tendency slows down
the connection speed [90,91], allowing other nodes to increase their connectivity. Barabasi
unraveled the complexity of this phenomenon, showing how a large scale-free network
with b < 2 cannot exist without multi-link subgraphs [83,84]. Networks are not a static
entity, but grow by adding new nodes. The joint necessity of growth and preferential
attachment generates scale-free networks and changing either of these factors will cause
changes to the scale-free properties and network topology. Therefore, the growth rate
of a hub node depends not only on its age, because other nodes can transform random
transient interactions into a long-lived interaction. A common characteristic of these last
nodes is an intrinsic property that we will call fitness [92,93]. Fitness is a property that
favors the preferential attachment to other nodes by increasing the growth rate of their
connectivity [94,95]. It is based on the set of distinctive structural and/or functional
characteristics possessed by each node. On this basis, Barabasi has developed a specific
model, the “Bianconi-Barabasi Model” or “Fitness Model” [92,96]. This model shows how
nodes with different internal characteristics can gain links at different rates. It predicts
that the growth rate of a node is determined by its fitness. One can measure the fitness
by comparing the node with the temporal evolution of the fitness of other nodes in the
network. This model presents a behavior of the nodes that is like that of Bose gas, studied
by physicists [97].

This similarity explains very well the physical basis of forming the many independent
and dense functional subgraphs observed in protein networks, characterized by their hubs.
In fitness distributions, the network exhibits a “fit-get-rich” dynamic, meaning that the
degree of each node is determined by its fitness, where new links not only arrive with



Biomolecules 2024, 14, 1549 15 of 51

new nodes but also occur between pre-existing nodes. The fitness model also shows that
in many real systems, nodes, and links can change and disappear, explaining why nodes
disconnect after enrichment and therefore need to be deleted [98].

However, if the linear preferential attachment governs the growing network, then a
pure power law should emerge. However, it is rare to observe a pure power law in actual
systems [99]. The Barabasi–Albert model is an idealized model that represents only the
starting point for understanding the distribution degree in real networks [100] because
fitness plays an important role. The concept of fitness in protein networks refers to the
ability of a protein entity to survive and thrive within a protein network, because of its
interaction with other proteins and its functional relevance. This plays an important role
in forming those protein complexes that are crucial for a variety of Biological Processes.
Protein fitness is based on many essential protein properties, such as secondary structure,
solubility, binding affinity, flexibility, and functional specificity [101–104]. Therefore, in
Interactomics, we can motivate this model only if there are experimental observations that
explain the internal characteristics of the nodes. If we identify them correctly, then we can
understand how fitness contributes to forming subgraphs and the topological evolution of
the network [105]. In networks with many subgraphs, such as the ones in this study, hubs
connect to nodes of a small degree. As a result, we have a network that is unlikely to be
represented by a single giant component. Networks in which hubs avoid connecting to
each other but connect to many low-degree nodes are called disassortative and generate a
hub organization with a hub-and-spoke pattern [106]. The logarithmic representation of the
disassortative degree distribution is characteristic and very similar to the one calculated in
Figure 2. This means that the network (Figure 1) has intrinsic difficulty being represented
as a single giant component. We can appreciate this feature by measuring the slope of
the linearization of its distribution. As we will see later, it is a measure of the speed of
growth. The fit shows a negative slope (see Figure 2 caption), and a lower probability of
mutual interaction (y-axis) characterizes the nodes with the highest rank (x-axis) [107]. In
conclusion, many significant subgraphs give us the picture of the fundamental functions
that the biological system performs and its dynamics. This allows us to understand with
certainty the behavior of S1 in the system.

3.3.4. Origin of the Node Fitness in Interactome-1060

A question now arises: which structural property dominates the fitness of interactome-
1060? Certainly, each single protein-node has its own specific intrinsic properties, but
which of these is the predominant one? I have considered many characteristics of the nodes
(protein length, secondary structure, flexibility, intrinsic disorder), but one of them stands
out above all. Protein–protein interactions within a cell are dynamic events which do not
occur concurrently and in the same location. When molecules come together, they form
complexes, where the structural disorder of motifs at the interface often mediates transient
interactions. This creates transient multi-state complexes that are characterized by dynamic
assortments of subunits. These diverse transient combinations also facilitate the occurrence
of different entropically driven conformational states [108]. Thus, the intrinsic disorder is
the most critical feature associated with transient interactions. Weakly interacting proteins
show a fast dynamic bound-unbound equilibrium, which also includes interactions that
are triggered by an effector molecule and stabilized by a conformational change. The
66% of signaling proteins involved in cellular functions with strong temporal variation
of activity show a high probability of involving transient interactions [109]. Temporary
interactions wield a significant influence in determining the hub behaviors [110]. Many
hub proteins with variable co-expression partners show transient binding at different times.
With high co-expression partners, they develop stable complexes [111]. This highlights
the importance of the intrinsic structural disorder in protein–protein networks, but also
underlies connectivity and controls how hub proteins interact. Figure 4 shows the average
distribution of the intrinsic disorder existing in the interactome-1060 interactions.
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Figure 4. The plot shows the average distribution of the protein disorder of the associated proteins in
interactome-1060. Pearson’s r value: −0.1; Pearson’s p-value: 0.0015; BP-R2: 0.062 (medium). The
blue light line is the median. STRING computed disorder content from sequences. The measure of
BP-R2 is based on checking how much the values of the specified trend property deviate from the
mean. Its scale (from 0 to 1) follows a quadratic pattern and does not have a confidence measure
associated with the BP-R2. As a result, STRING has included some thresholds and the value of
0.15 is medium.

The plot shows that intrinsically disordered proteins, which have a disorder percentage
greater than 30% and play a crucial role in interactions, account for about half of the total
interactions. The disorder content is very large, but almost all proteins show disorder.
However, disordered segments can make interactions even shorten. All high-ranked nodes
have a disorder content between 20 and 40% [112]. STRING used the binned pseudo-
R-squared (BP-R2), a measure developed by Lun et al. to quantify complex signaling
relationships between two variables, to assess the goodness of the fit [113]. The idea is to
capture relationships that may not have a high Pearson or classification correlation, but
that show associations which are non-trivial. The range between 0 and 70 degrees shows a
concentration of proteins with a high intrinsic disorder content. This range contains many
of the proteins with high fitness potential. Disorder-enriched hub and non-hub nodes also
show a higher number of links, because of the higher number of targeting, catalytic, and
many types of PTM sites [114]. In conclusion, we can say that protein disorder is prevalent
among these proteins. This is the structural feature that dominates fitness, driving the
connectivity within interactome-1060.

3.3.5. Centralities-Based Analysis of Interactome-1060

Topological analyses applied to protein networks show that some parameters such as
connectivity degree (k), betweenness centrality (BC), closeness centrality (CC), eigenvector
centrality (EC), and eccentricity are crucial parameters of nodes [115]. They are indicators
of centrality because, when assigning rankings to nodes within the graph; they characterize
the most important vertices. Each centrality measure assigns a centrality value to each node
in a network and captures different aspects of what it means for a node to be important
in that graph. High-ranking target search, identifying suitable nodes for characterization,
is a critical step in annotating functional processes and understanding their molecular
basis. The priority is to narrow down the most important nodes. After defining the broad
interactome induced by S1 (interactome-1060) and calculating its properties, it is useful to
identify hubs and bottlenecks [116].
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We can define as hubs the top 10% of the nodes in the high-confidence protein interac-
tome based on their node degree (the number of interactions associated with a node). We
can consider another top 10% of the nodes, ranked by betweenness centrality and closeness
centrality (BCC), as bottlenecks. Betweenness centrality is an indicator of a node’s centrality
in a network. It is equal to the number of the shortest paths from all vertices to all others
that pass through that node. Closeness centrality calculates the average distance of all the
shortest paths between a node and every other node within a network. Thus, nodes with a
high closeness score have the shortest distances to all other nodes. Betweenness and close-
ness are a way of detecting bottleneck nodes that can spread information through a graph,
even if they do not always have very high degrees [117–119]. The eigenvector centrality of
a graph is a measure of the influence of a node in a connected network. Each node in the
network receives a relative score, acknowledging that connections to nodes with higher
scores contribute more significantly to a node’s own score than connections to nodes with
lower scores. A high eigenvector score shows a node has connections to many nodes that
have a high score themselves. The resulting information allows us to identify key nodes
in terms of connectivity relevance in the interactome, thus suggesting very similar and
super-imposable results to those of node degree [120,121]. We know that nodes with large
k are central because they might correspond to disease-causing genes/proteins, whereas
bottleneck nodes are vital since they serve as a crossroads in major signaling “highways”
or overpass across these “highways”. Therefore, I focused on the hubs and bottlenecks
that were central to the PPI network, identifying these key proteins and considering their
sub-networks as the backbone of S1-induced topology [122,123].

Figure 5 reveals the node distributions according to their centralities as calculated
by Cytoscape. I report the protein names for comparing them with the results in Table 3.
I extracted the 26 nodes with the highest centrality values from each distribution. They
represent the candidates for the analysis of the topological properties. Both closeness
and betweenness select the nodes with the best features as bottlenecks. The eigenvector
distribution shows the protein nodes with the highest connectivity comparable to high-
degree hubs. We can find the 26 values for each centrality in the Excel File S1, sheet 3. In
the comparisons between the various sets (betweenness vs. closeness and eigenvectors vs.
degree), I selected only nodes in common between both compared sets. This resulted in
fewer bottlenecks. But even though the total number of selected nodes was lower, I created
very significant sets of hubs and bottlenecks (Table 3).

Table 3. High-ranked hub and bottleneck nodes of interactome-1060.

Hub Nodes Degree Bottleneck Degree

RPS6 210 RPS27A 235

RPS11 209 UBA52 213

RPS3A 209 RACK1 149

RPS24 209 CD74 110

RPS9 209 MED1 107

RPS18 208 SRC 101

RPS28 209 EEF1A1 88

RPS8 208 EGFR 76

RPS19 207 ACTB 65

RPS7 208 CD44 48

RPS23 200 STAT3 49

RPS16 190 CBL 37

RPS3 174

RPS15 172

RPS5 189

FAU 172
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Table 3. Cont.

Hub Nodes Degree Bottleneck Degree

RPS13 184

RPS21 169

RPS17 169

RPS14 183

RPS27 181
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Figure 5. The centrality distribution plots of interactome-1060: closeness centrality (top), betweenness
centrality (middle), and eigenvector (bottom). Using the Network Analyzer (version 4.5.0) in
Cytoscape, the topological parameters were determined to find the node values [25,81,82]. The
calculated distributions originate from the interactome.
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I computed hub and bottleneck nodes based on relevant topological parameters, but
there is no consensus in the literature on a defined threshold to identify how many nodes
should be hubs or bottlenecks in a protein network, because the possible and used criteria
are too numerous and sometimes arbitrary [123]. However, these nodes should represent
the backbone of the basic connectivity that should favor a balanced architecture of the
entire network with specific functional aspects. Therefore, I have gathered the selected
hub and bottleneck nodes in a group of 33 nodes (3.1%). This group (Table 3), besides the
topological characteristics, should also show evidence of reliable interactions, forcing the
network into a hub-and-spoke organization. We should expect that, for the topological
functions they perform, they should connect to each other, because they all interact with
the same dominant hub. In this regime, hub-and-spoke configurations show characteristics
of disassortative networks [29,67].

A look at the two plots in Figure 6 reveals that many of these high-ranked nodes
(hubs and bottlenecks) concentrate in the nucleus and cytoplasmic system. This agrees
with all activities related to viral translation. Both categories of nodes have significant
biological importance, as they represent key connections and critical points of interaction.
Bottleneck nodes possess a high centrality of intermediation, as they connect many parts of
the network, influencing the information flow. The high scores between 4.5 and 5 justify
these attributions.
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Figure 6. The graph shows the hub-spoke pattern (left) generated by the selected nodes. The
red color shows proteins involved in cytoplasmic translations (GO:0002181; strength: 2.07 and p-
value: 6.81 × 10−41), while the blue one shows proteins involved in gene expression (GO:0010467;
strength: 0.89 and p-value: 4.00 × 10−18). STRING calculated the graph. Plots on the right show the
distributions of nodes in the cellular compartments. These two classes of nodes operate in the cytosol
and nucleus, some in both. Calculation performed by Cytoscape.

The hub-spoke architectural pattern (for an operational explanation, see https://
cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology) (accessed on
2 June 2024) expects the core system with high connectivity to comprise hub nodes, while
the well-connected bottleneck nodes are located outside. Here (graph on the left), some
bottleneck nodes (UBA52, MED1, RPS27A, RACK1, CD74, FAU, EF1A1) operate at the
interface linking the remaining nodes (SRC, ACTB, STAT3, CBL, CD44, EGFR). In the graph,
the colors identify the main overall functions they manage together. The red color shows

https://cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology
https://cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology
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cytoplasmic activities while the blue refers to overall nuclear ones. As we can note, all
hub nodes operate in both compartments. Obviously, the graph highlights only the direct
connectivity between these nodes because, in the complete network, each hub, or bottleneck
node manages many other “normal” nodes. White bottlenecks mediate many signaling
activities. ACTB is involved in cytoskeletal control (GO: 0005925, focal adhesion, p-value
4.07 × 10−21).

3.4. Justifications for a One-to-One Study

The principles governing immune responses operate at the organ scale. The propaga-
tion of immune signaling between organs shows inter-organ mechanisms of protective im-
munity mediated by soluble and cellular factors [124] that transcend organ boundaries [125].
Cellular factors such as memory T cells can patrol organs and infected tissue [126,127].
Changes in tissue gene expression following vaccination have also highlighted immune
processes that operate at the organ scale through a protective network [124]. Recent work
shows that vaccination, like repeated infections, provides protection even in very distant
tissues [128,129]. Researchers have used this logic to study shared and tissue-specific
expression patterns [130,131] and their correlation with disease [132,133]. All this suggests
isolating the biological activities one by one, specific to the S1 protein. Both during infection
and vaccination, both events have in common the encoded information (mRNA). Therefore,
in both cases, the mRNA must use the same biosynthesizing nano-machines, and the
decoded protein, when acting alone, should take part in the same cellular processes present
in the human host. In § S1 (Supplementary Material), I provide the structural meaning of
the one-to-one interaction used in this article.

3.5. Reverse Engineering

Reverse engineering in biology applies an engineering concept, that of dismantling
a process to understand it and discover the biological strategy. Thus, it is often used
to discover the design principles of a biological system when the relationships between
microscopic and higher-level processes are degenerate (many-to-many or one-to-many).
It addresses the understanding of a complex system when the non-linear relationships
between the system’s capabilities and its deep molecular mechanisms change. This suggests
its usefulness in analyzing a complex functional system, faced with limited a priori knowl-
edge of its “design principles” [134]. At first glance, “disassembling to reassemble” may
seem like a reductionist approach to systems biology. However, data-intensive biological
fields use reverse engineering approaches to recognize nonrandom connectivity patterns
and identify the functional capabilities of the overall network architecture [20]. This enables
a topological analysis that abstracts from the context of network connectivity to identify
functional capabilities. It is an approach to understanding how certain components are
wired to create a functional whole. The search for these design principles allows us to know
lower-level causal details and becomes robust when integrated with external experimental
data tested in vivo and which can therefore biologically validate an interaction as real [135].

My goal is to understand whether, in the same system but with changed organizational
features, S1 performs similar operations Although specific metabolic parameters influence
the activation of molecular mechanisms and functions, we might identify parameter spaces
that support the same functions. In a broader discussion, we should consider that groups
of viral proteins contribute to enhance the virulence of the virus by attacking single human
proteins with multiple interactions, but some also do so alone. This should not be surprising
because I have already observed it in the liver affected by COVID-19 [10]. SARS-CoV-
2 shows a broad tissue tropism, although of varying degrees, perhaps greater than what
clinicians can appreciate through observation. This tropism is, however, expressing the
steps necessary to progress the viral infection, even in phenotypically different individuals,
and represents a strategic adaptation to the host. Achieving success in replication requires
the virus to leverage Spike’s interactivity and adapt its proteome strategy to the host’s
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unique metabolic landscape. Among the main variables that the virus encounters are age,
sex, nutritional status, and previous individual pathologies.

In the Excel File S2, sheet 1, I show the overall results of the reverse engineering
analysis. I checked, one by one, all 1060 nodes of the interactome in Figure 1 against
the 25,521 interactions collected in the SHPID database [10]. These interactions derive
from individual proteins encoded by the SARS-CoV-2 proteome and those of the human
proteome, as reported in BioGRID.

This file shows that there are multiple interactions of S1 together with other viral
proteins (sheet 3). I also found many viral proteins that interact in a one-to-one manner
with specific human proteins (sheet 2). They could be pharmacological targets. Many
human proteins are not involved in any viral activities. This result confirms my previous
observations on COVID-19 [10]. Proteins not involved control metabolic processes that are
beneficial for both the virus and the human host. The most interesting observation (sheet
2) is a set of 27 unique one-to-one interactions of S1 with human proteins (ACE2, AGTR1,
AKT2, APOE, ASGR1, AVPR1B, C1QB, C1QC, CD46, CFH, CFP, CLEC4M, COP1, CR2,
DPP4, ESR1, F10, FLT1, L12RB1, ITGB6, LYPLA2, MBL2, NID1, SDC1, SDC2, SNCA, TLR4).
Through these proteins, we can try to understand in which functional processes they are
involved, with which human proteins, and whether these interactions could represent a
functional framework exclusive to S1, or to the infection.

The multiple interactions refer to the attacks conducted by groups of viral proteins,
including S1, against single human proteins. The file (sheet 3) lists 148 human proteins
attacked in this way. A careful observation shows that the number of viral proteins
attacking single human proteins is often considerable. An example of this, the gene EIF2S1,
Eukaryotic Translation Initiation Factor 2 Subunit Alpha, encodes the protein IF2A_Human.
This is a protein of 315 aa, with a mixed alpha/beta structure. It is a member of the
eIF2 complex that functions in the early stages of protein synthesis by forming a ternary
complex with GTP and initiator tRNA. Nineteen viral proteins (nsp1, nsp3, nsp4, nsp5,
nsp6, nsp13, nsp14, E, M, N, S, ORF10, ORF3a, ORF3b, ORF6, ORF7b, ORF7a, ORF8,
ORF9b) attack this protein. Given its small size, like that of the ternary complex itself,
it is impossible for there to be enough surface space for the interactions of 19 proteins
concurrently. This means that the interactions, although all brief and momentary, occur at
different times. However, without the time sequence, it is impossible to define the actual
functional mechanism affected by these interactions (even without wanting to consider
the “where”). On this basis, it once again seems useless to define an overall mechanism
through chronologically undefined single interactions.

3.6. Interactome-814

I used these twenty-seven proteins as functional seeds in the human proteome. Figure 7
shows the new interactome calculated by STRING.

This interactome (from now on “interactome-814”) comprises 814 nodes (Excel File S3,
sheet 1). The first observation is that despite that I added 1000 proteins for the enrichment,
the system only accommodates 787 of them (814 − 27 = 787). This seems to reflect a low
number of experimentally proven interactions. We can consider that STRING classifies
only 21.46% of them as High or Highest (Excel File S3, sheet 2), which brings us back
to the considerations made in Appendix A. Table 4 shows that this interactome too has
a periphery rich in subgraphs, but is on average less dense (0.22), with a value of the
average number of neighbours about 50% lower than interactome-1060. Heterogeneity
(1.042) suggests the tendency of this network to contain hub nodes, while the centralization
value (0.138) still supports compactness, even if the distance between two nodes (diameter)
is lower but still high, and supports the almost asymmetrical architecture we observe. In
conclusion, we have an interactome with a global organization quite like the previous one,
although smaller and less dense in terms of connectivity.
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Figure 7. Interactome of the 27 human proteins interacting one-to-one with S1. Number of nodes: 814;
number of edges: 7409; average node degree: 15.9; avg. local clustering coefficient: 0.547; expected
number of edges: 2285; PPI enrichment p-value: <1.0 × 10−16; 6 channels (without Text Mining);
confidence score of 0.900; enrichment: 500 1st order + 500 2nd order proteins.

Table 4. Topological parameters of interactome-814 *.

Number of nodes 814

Number of edges 7409

Average node degree 15.9

Avg. local clustering coefficient 0.547

Expected number of edges 2285

PPI enrichment p-value <1.0 × 10−16

Confidence score 0.900

Source channels 6

Network diameter 7

Network radius 4

Characteristic path length 3.189

Network heterogeneity 1.042

Network density 0.22

Network centralization 0.138

Connected components 1 **
(*) Calculated by Cytoscape Network Analyzer, which computes a comprehensive set of topological parameters
[81,82]. (**) This value is “1” to show that all nodes in the network are connected to each other. Existing
unconnected components (0 ≤ C ≤ 1) alter the calculations of the topological parameters, making them unreliable
[54]. This is the fundamental reason for pruning. A single component accounts for strong network community.
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Also, interactome-814 shows a power law characteristic of scale-free networks (Figure 8).
Differently from interactome-1060, the log–log distribution plot shows a fit with a good
R2 value of 0.7528, so this log–log fit is the signature of a system well described by the
power law equation. Hence, interactome-814 should show a very balanced and linear
overall growth, without distorting effects. Also, in this case, the exponent y is greater than
1, showing a central component that does not prevent peripheral modules. As for the two
slopes, comparing them, they are both negative and not very different in value. However,
the slope shows different growth rates, with the number of nodes increasing faster in
1060. The two interactomes, although similar, react differently to internal or external
factors, and this could be because of the greater heterogeneity found in 1060. All this
suggests that, despite the considerable underlying biological complexity, the relationships
between metabolic processes and population sizes of the interactomes seem to obey a
simple relationship, given by the power equation. This is a further fact that justifies the
comparisons I am making of the two interactomes and also the search for the specific
functional activities of the S1 protein.
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Figure 8. Power law distribution of interactome-814. The distribution follows a scale-free distribution
based on the power law. In the inset, the same nodes are shown on a log–log scale with the best fit to
the data (f(x) = 12.33 x−0.697 and R2 = 0.7528). The slope is −0.374 and is calculated on the best fit line
in the log–log inset.

In Figure 9, I show the centrality distributions of interactome-814. I reported the
numerical values of the first 26 terms for each distribution in the Excel File S3, sheet 3.
The same procedure adopted for interactome-1060 was used to assign the highest-ranking
values. We can see in the betweenness centrality distribution that the upper range of the
distribution is very wide, involving proteins with both a high degree and medium-low
degree. What is striking is that some of them are also present in the centrality distribution
of the eigenvectors. Since these are different topological properties, this, as we will see later,
suggests mixed proteins (hub/bottleneck), a situation not present in interactome-1060.

Table 5 reports the results showing the highest-ranking hub and bottleneck nodes.
A comparison with Table 3 shows that although the architecture of the two interactomes
may seem quite similar, the main proteins that underlie their structural and functional
organization are different and behave differently. The individual nodes in Table 3 perform
only one activity, either as a hub or as a bottleneck. There are no mixed-activity nodes. We
can consider those in Table 3 as pure hub and bottleneck nodes [136], while many of those
in Table 5 show mixed activity.
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Network Analyzer (version 4.5.0) on Cytoscape to identify the node values [82].

Table 5. High-ranked hub and bottleneck nodes of interactome-814.

HUB Nodes Degree Bottleneck Nodes Degree

PIK3R1 121 AKT1 65

PIK3CA 113 EGFR 103

PIK3R2 114 ESR1 107

PIK3R3 113 MAPK1 113

PIK3CD 108 MAPK3 130

PIK3CB 108 PIK3CA 129

SRC 103 PIK3R1 128

AKT1 107 PRKACA 112

MAPK1 112 PRKACB 121
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Table 5. Cont.

HUB Nodes Degree Bottleneck Nodes Degree

EGFR 65 PRKACG 109

MAPK3 109 PTK2 75

AKT3 73 RHOA 49

AKT2 73 SRC 65

ESR1 65 TP53 69

PLCG1 69

TP53 75

MAPK8 92

MAPK9 90
Note: the proteins in bold are both hub and bottleneck.

The functional coincidence between some hubs and bottlenecks in the interactome
shows that these proteins not only cover many interactions but play a critical role in
maintaining connectivity and stability in the network [137]. The coincidence also suggests
that these proteins are fundamental to the function of the biological system and may
represent key points for therapeutic interventions or functional analyses [136]. In fact, both
categories of strategic positions in the network help to understand the robustness and
vulnerability of the interactome, revealing potential regulatory mechanisms [138]. This
allows us to consider that the S1 subunit behaves differently when it interacts alone with
the human proteome. To obtain a more reliable picture, I verified whether a hub-spoke
scheme also exists in this case and the main allocations these proteins have in the cellular
compartments. Figure 10 shows a hub-spoke scheme where the central system is mixed
because both pure hubs and bottlenecks man it.
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Figure 10. The hub-spoke organization of interactome-814. The lower central part of the graph (left)
shows both pure hub proteins and many mixed ones. The table on the right shows some of the most
significant biological terms regulated by these high-ranking nodes. It is interesting to note that each
of the nodes can take part in multiple biological functions. The table was calculated by STRING.

The processes shown in the table are just some of the most relevant terms in which the
nodes of the hub-and-spoke organization are involved. The graph shown is the structural
backbone of the network. These activities, as well as many others not reported, support
the deep involvement of S1 in metabolic activities, even with worrying negative aspects
(hsa05200 or HAS-199418). All processes show high strength values, which suggest coor-
dinated and active processes, and are well supported even at the gene expression level.
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The graph includes 23 nodes among the highest-level ones, and 22 of them are involved in
well-supported and significant negative processes.

Figure 11 shows the four most significant distributions relative to the cellular com-
partments (cytosol and nucleus) and tissues (nervous system and blood) populated by the
proteins of interactome-814. The upper parts of the distributions exhibit dense populations
between the values 4 and 5. This shows the high functional activity of the proteins that
populate it. The extent of involvement of high-ranking proteins can be determined by
analyzing the distribution along the abscissa (degree). In this interactome, the cytosol,
and nucleus stand out as the most involved and populated cellular compartments. How-
ever, the extracellular area and membrane level also exhibit intense metabolic activity.
Among the tissues, the nervous system is involved by proteins that include many of the
high-ranking ones.
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Figure 11. Distribution of interactome-814 proteins in cellular compartments (nucleus and cytosol)
and tissues (blood and nervous system). Calculations performed by Cytoscape.

In summary, the two interactomes, despite their similar structure, perform distinct
functions that are only broadly defined. It becomes important to focus on the functional
activity to understand if, and how much, they differ from the point of view of metabolic
purposes and, above all, which genes oversee these processes. Are they the same genes
or are they different genes? What is surprising is that interactome-814, despite having a
lower total number of nodes than interactome-1060, controls 7120 terms and 40% more
functions based on Gene Ontology terms (see Table 6). Figure S6 (Supplementary Material)
summarizes the major functional roles of interactome-814. I highlight the major subgraphs,
showing one of their primary functions. The Data Merging approach will implement and
detail this still-rough functional summary later.
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Table 6. Functional processes activated in the human genome by interactome-814.

Biological Process Terms Significantly Enriched

Biological Process (Gene Ontology) 2557 terms

Molecular Function (Gene Ontology) 321 terms

Cellular Component (Gene Ontology) 231 terms

Reference publications (PubMed) >10,000 publications

Local network cluster (STRING) 246 clusters

KEGG Pathways 213 pathways

Reactome Pathways 828 pathways

WikiPathways 453 pathways

Disease-gene associations (DISEASES) 222 diseases

Tissue expression (TISSUES) 223 tissues

Subcellular localization (COMPARTMENTS) 218 compartments

Human Phenotype (Monarch) 1196 phenotypes

Annotated Keywords (UniProt) 124 keywords

Protein Domains (Pfam) 14 domains

Protein Domains and Features (InterPro) 222 domains

Protein Domains (SMART) 52 domains

All enriched terms (without PubMed) 7120 enriched terms
Note: It is interesting to compare the bold terms with those in Table 1. They show how the interactome-814,
although with a 23% lower number of nodes, shows a 30% higher number of functional activities.

In Barabasi–Albert network models, enrichment arises from a network growth process
governed by the preferential attachment of nodes. The same protein can exert different
functions by binding to different partners. A fundamental question is to understand how
the opportunistic choices of individual nodes shape the properties of the global network.
Identifying these influential nodes is a challenging and still understudied task. We also
have to consider that nodes are biological agents and links represent their functional
interactions, which can also be modeled as cooperative activities. Nodes, taking part in an
ever-increasing number of molecular processes, can change their local behavior or topology,
maximizing their cooperative activity [139,140].

How does a protein select among a multitude of potential binding partners within a
cell, expanding its functional repertoire? An adequate response should consider the location
and translation rate of messenger RNA (mRNA), as both factors can cause spatial regulation
of protein synthesis, affecting local protein concentrations and interactions [141,142]. The
rate of translation elongation can indeed influence protein folding and its interactions with
other proteins [143,144]. Slow translation can allow more time for co-translational folding
and interaction with certain partners, while rapid translation might favor interactions with
different proteins or lead to misfolding [145,146]. However, additional considerations can
also come from other types of comparisons of the two interactomes.

3.7. Data Merging

The two interactomes, 1060 and 814, although induced by the same viral protein,
appear to operate in different metabolic contexts. Characterizing the behavior of these
two networks is essential to understand the complexity of S1 action [147]. The differences
appear clear if we compare the set of GO processes controlling each interactome. The
enrichment of interactome-814 shows 7120 terms in 15 categories. Interactome-1060 shows
4989 terms in 15 categories. The difference in terms is 1.42-fold, but for ontological terms,
it is 40%, and the three Ontologies reflect the functions. The size and reliability of the
datasets under study, the scientific design, and the phenotype specificity affect identifying
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critical nodes and functional processes in any system. I standardized these variables by
making the methodological procedures as similar as possible and, most importantly, using
only experimental data and selecting only those with the highest reliability. I considered
the topological properties of nodes and evaluated their functional roles based on their
ability to transmit information within and between modules in the network. Using Gene
Ontology for genomic functional annotation is crucial, as it can reveal important biological
information. Gene Ontology (GO) comprises three categories: molecular function, cellular
component, and biological process [148]. But it has redundancy problems when analyzing
them together, especially because of gene overlaps. The redundancy in GO annotations can
complicate interpreting biological data [149]. Therefore, the analysis of a single ontology,
such as Biological Processes, which are also the most abundant and all-encompassing, can
be a useful strategy to limit the redundancy and improve the clarity and significance of the
results [150,151].

By comparing the Biological Processes (GO) of the two interactomes, I still highlighted
the large functional differences already noted. There are 2,557 processes for interactome-
814 versus 1430 processes for interactome-1060, which is 44.1% more. A closer look at the
two interactomes (see Excel File S1, sheet 4 and Excel File S3, sheet 4) shows that many
functions are similar, while others appear specific to each of them. The same happens for
many of the nodes involved. In fact, some of them appear many times in different Biological
Processes associated with the same interactome. All this suggests the important and central
role of these genes in regulating some cellular functions related to COVID-19 [152], but it
also raises questions we cannot yet answer today. For example, if the same gene appears
in dozens of different Biological Processes, does this occur in a narrow window or over
a long-time horizon? The analysis of cellular systems requires the coordination of large
numbers of events, but identifying the temporal cues underlying interactions is the critical
part of understanding cellular functions. With current knowledge, we could have a variety
of interpretations, but they may be distorted [153]. This has led us to investigate the overall
behavior of Biological Processes, rather than wanting to find the gold process at all costs.

Existing multiple interactions within the interactome show a complex network of gene
regulation, in which some genes can influence a myriad of Biological Processes. However,
when we say many genes and a “myriad of biological processes”, we need to know what
we are talking about in quantitative terms. To my knowledge, no study related to SARS-
CoV-2 has ever made such an assessment. To understand the similarity and dissimilarity of
functions and the genes that support them, I used an analysis borrowed from marketing
methods to compare the two data sets represented by the Biological Processes (GO). I
compared the two interactomes through Data Merging (details in Methods, Section 2),
combining the two large biological data sets into one (see Excel File S4, sheets 1 and 2).
Data Merging is used to evaluate interaction parameters, append observations, and find
repetitions. Therefore, the logic I used was that to distinguish the common processes
(coupled processes) from single processes (uncoupled processes) of each interactome.
Merging the data optimizes the collection of all information into a single set, maximizing
the completeness with which critical information can be extracted and analyzed. Excel
File S4, sheet 1 also reports in full all the genes involved in the single terms, both paired
and unpaired for 68,300 genes, which are also reported (sheet 2 of Excel File S4). These
genes are redundant, because the same gene can take part in dozens of different molecular
processes, as shown below in Table 7. This table illustrates the general picture that emerges
from the merging of the two data sets, both containing common processes, but also specific
to one or the other data set.
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Table 7. Data Merging between Biological Processes (GO) of interactomes 1060 and 814.

Number of
Biological

Processes (GO) (%)

Redundant Genes
(%) * Coding Genes Average Genes

Per Single Process Genes Found > 100 Times

Merging of 1060 + 814 (after
pruning) ** 2837 (total) 68,003 (total) --- 23.97 -----

Coupled processes in the
merging of 1060 + 814 554 (39) *** 24,301 (35.8) 944 21.9

ABL1, AGT, AKT1, APOE, BCL2, BTK, CD28, EGFR, FYN, HLA, HRAS,
IL12A, IL12B, IL12RB1, IL23A, JAK2, KDR, KIT, LYN, MAPK1, RHOA,

SRC, SYK, THBS1, TICAM1, TLR4, TNF, TYK2, ZAP70.

Uncoupled processes in 814 1515 (53) 39,691 (58.3) 771 26.19

ADA, ADCY8, ADRA1A, ADRA2A, AGT, AGTR2, AKT1, AKT2, APOE,
APP, AR, ASPH, ATF2, ATF4, ATP2B4, AVP, AVPR, BAD, BAK1, BAX,
BCL2, CALM1, CTNNB1, CYBA, DLG1, EDNRA, EGFR, EP300, FOS,
FOXO1, FOXO3, FYN, GNAI2, GSK3A, GSK3B, HIF1A, HSP90AA1,

HSP90AB1, HSPA5, IGF1R, IL12B, IL2, INSR, IRAK1, ITGB1, JAK2, JUN,
KCNE1, KCNQ1, KDR, KIT, LYN, MALT1, MAP2K1, MAPK1, MAPK14,

MAPK3, MAPK8, MED1, MMP9, MTOR, MYD88, NFKB1, NKX3-1,
NOS1, PODGFRA, PIK3CA, PIK3CG, PLCG2, PPARA, PPARG,

PPP3CA, PRKCD, PTEN, PTK2B, PTPN2, RELA, RHOA, RIPK1, RIPK2,
RACK1, RPTOR, SLC8A1, SMAD3, SNCA, SRC, STAT3, SYK, TGFB1,

THBS1, TIRAP, TLR2, TLR4, TNF, TP53

Uncoupled processes in 1060 214 (8) 4011 (5.9) 701 18.74 Family EIF, Eukaryotic initiation factors gene family, (230), histones
(295), family NDUF (352), family RPL (516), family RPS (411). ****

(*) Multiple representations are possible for each gene. They are redundant because they belong to multiple processes. (**) I merged 1060 + 813 by considering only those Biological
Processes (GO) with a strength value >0.05 (see details in Methods, Section 2). (***) After merging, I found 554 similar coupled processes (compared one to one); thus, in absolute value,
they correspond to 1108 single processes. (****) in parentheses, the number of genes that make up the family.



Biomolecules 2024, 14, 1549 30 of 51

Table 7 shows how the Data Merging reveals thousands of genes with widespread
gene redundancy, but also many uncoupled processes. These results show the activities
exerted by the S1 subunit alone in its one-to-one relationships (in 814) have a relevant
functional incidence (53%). However, the large number of high-scored genes in the same
processes also means that multiple genes will have to appear multiple times in Biological
Processes associated with the same interactome. An average value of over twenty genes
per process shows how difficult it is to single out a single signaling pathway, or even a
metabolic process, and assign genes to it.

The observed differences in gene composition suggest that gene expression and its
involvement can vary depending on the specific context, such as different tissue types,
conditions, or stages of development. This can cause different genes to be highlighted, even
at different times, within the same larger biological process. We should not overlook the
different ways in which 68,003 genes can be organized into 2837 different processes. About
twenty genes are actually responsible for many processes. The overall number of processes
is 232837, while S1 comprises 261515. This is an astronomical number of combinations,
which makes it clear why adequate and correct experimental data, and their control, are
necessary to reduce the combinations to a few when studying specific functional processes
in any design context. As an illustration, when examining IL12A, involved in coupled
processes, or RACK1, involved in uncoupled processes of 814 (Table 7), they exert a wide
range of biological functions, so many that each of them is involved in over 100 processes.
Therefore, how can we ascribe the precise biological pathway in which each of these proteins
takes part, considering their abundance of over 100 occurrences within the interactomes
under investigation?

Studies on HeLa cells have revealed that protein expression levels exceeding 90% are
consistent with the average level of protein expression [154]. This shows that there is ample
evidence to support an excess of protein copies, even at the level of gene expression, encom-
passing a significant portion of transcripts that encode functional proteins. But this ensures
the efficient functioning of the processes in which these proteins are involved [154–156].
Protein abundance can be determined by many factors, such as transcription, translation,
or RNA/protein decay [157]. Therefore, these factors can combine to produce a certain
expression value. The load balance between transcription and translation regulates the
gene expression necessary to optimize cellular fitness [158]. Low expression of essential
proteins slows growth [159], but even generalized overexpression of proteins slows growth
because it increases metabolic load [160] and energetic costs. Today, we can only say that
the implications of over-representations of genes in an interactome can be multiple and
each hypothesis influences the understanding of disease and cellular interactions [161].
The correct regulation of genes in space is necessary for proper function.

These claims may raise many questions, but there is no clear evidence to support
any hypothesis or claims made about this matter. Despite technological advances in high-
throughput sequencing, our ability to draw functional conclusions from expression data is
lagging and qualitative [162–164]. The cell organizes its biochemistry in space by forming
distinct chemical compartments in which membranes are separating barriers. Achieving
the ability to differentiate the functions of cells within a multicellular tissue requires
standardizing spatial transcriptomics data and correlating it with cellular mappings using
bioinformatics systems. This will enable identifying various subpopulations with their
distinct transcriptional profiles [165,166]. In addition, when we evaluate protein–protein
interactions present in an interactome, we realize that, despite the integrations between
different sources, they are far from complete in experimental terms [167,168]. This can
lead to gaps in the real physical characterization and certainty of the interaction that
is reflected in distortions of functional knowledge in GO processes. Superimposition
between gene sets can cause low specificity in over-representation analysis, affecting the
results and conclusions. Thus, over-representation (also called enrichment analysis) in
genomic analysis plays a crucial role in several aspects. It works by identifying pathways or
gene/protein sets that have a higher overlap with a known gene/protein set of functional
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interest than expected by chance. For example, it helps identify significant biological
pathways associated with certain conditions or diseases by revealing how over-represented
genes/proteins interconnect. The interconnectivity of genes, i.e., their membership in
functional communities, enables us to unravel complex biological mechanisms that we
cannot resolve by analyzing some individual processes or signaling pathways. In summary,
over-representation is fundamental to interpreting genomic data, but when these are
overabundant and complex, with high protein redundancies, as we find them here, it may
be more appropriate to identify sets of genes that are interconnected and that exert specific
functional activities in common. This way, we should have a more precise vision of the
functional strategies in an interactome. Therefore, I eliminated redundancies from the three
gene sets by isolating the single copy of each coding gene. I obtained three sets of coding
genes: 944 genes for the coupled processes of interactomes 1060 + 814, 689 for the uncoupled
processes of interactome-1060, and 771 for the uncoupled processes of interactome-814. I
performed a clustering analysis of each of the three sets of their decoded products (Excel
File S5, sheets 1–3). The sets encompass proteins related to common and interconnected
functional processes (1060 + 814), proteins involved in the one-to-one activity of S1 (814),
and proteins derived from interactome-1060 that do not fall into the sets.

3.8. Clustering Analysis

I conducted this analysis on the three sets of coding genes to obtain an overall picture
of the activities exerted by each set. Excel File S5 also reports the three sets of genes
involved. Tables 8–10 show the overall results.

Table 8. Clustering analysis of coding genes from Data Merging: Clusters of Uncoupled Functions of
Interactome-1060.

Cluster No. Primary Description GO-Term p-Value Gene Count *

1 Cytoplasmic translation GO:0002181 4.83 × 10−83 266

2 Focal adhesion GO:0005925 7.61 × 10−48 189

3 Aerobic electron transport chain GO:0019646 1.49 × 10−47 75

4 DNA replication-dependent chromatin assembly GO:0006335 6.67 × 10−19 44

5 Antigen processing and presentation GO:0019882 6.67 × 10−16 33

6 Complement activation, classical pathway GO:0006958 1.67 × 10−11 23

7 COPII vesicle coat GO:0030127 2.46 × 10−12 20

8 Activation of phospholipase C activity GO:0007202 3.30 × 10−6 18

9 COPI vesicle coat GO:0030126 1.90 × 10−9 11

10 Cholesterol metabolism hsa04979 2.70 × 10−4 10

Cluster No. Secondary description GO-term p-value Gene count

1 Formation of a pool of free 40S subunits HAS-72689 7.09 × 10−91 -

3 Respiratory chain complex GO:0098803 7.29 × 10−52 -

4 CENP-A containing nucleosome GO:0043505 5.51 × 10−15 -

6 Complement and coagulation cascades hsa04610 4.06 × 10−9 -

8 G alpha (q) signaling events HAS-418597 1.11 × 10−3 -

10 Plasma lipoprotein particle clearance GO:0034381 5.60 × 10−3 -

Cluster No. Tertiary description GO-term p-value Gene count

1 Ribosome GO:0005848 2.08 × 10−79 -

(*) The gene counts are total for the three descriptions of each cluster, so I report them only next to the primary
description. The cluster numbers reported in the first column on the left for the secondary and/or tertiary
descriptions are associated with those of the primary description. For example, the association of (1) Cytoplasmic
translation + (2) Formation of a pool of free 40S subunits + (3) Ribosome, involving 266 genes, forms Cluster No.
1 of interactome-1060.
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Table 9. Clustering analysis of coding genes from Data Merging: Clusters of Coupled Functions of
Interactomes-1060 + 814.

Cluster No. Primary Description GO-Term p-Value Gene Count

1 Positive regulation of transferase activity GO:0051347 2.76 × 10−63 409

2 Focal adhesion GO:0005925 5.66 × 10−44 232

3 ECM–receptor interaction hsa04512 9.88 × 10−36 79

4 Long-term potentiation HAS-9620244 7.01 × 10−6 54

5 Rho protein signal transduction GO:00072666 9.12 × 10−8 43

6 Formation of Fibrin Clot (Clotting Cascade) CL:18784 1.09 × 10−6 37

7 Antigen processing and presentation GO:0019882 7.05 × 10−13 35

8 Complement activation GO:006956 1.33 × 10−18 33

9 Cholesterol metabolism hsa04979 1.80 × 10−3 13

10 Renin–angiotensin system hsa4614 2.09 × 10−3 9

Cluster No. Secondary description GO-term p-value Gene count

1 Cellular responses to stress 7.56 × 10−11 -

2
Mixed, incl. Constitutive Signaling by Aberrant

PI3K in Cancer, and FCERI mediated Ca +
2 mobilization

CL:17328 2.28 × 10−34 -

3 Protein complex involved in cell adhesion GOCC:0098636 1.09 × 10−27 -

4 Calmodulin binding KW.0112 5.05 × 10−15 -

5 G alpha (12/13) signaling events HAS-416482 1.69× 10−09 -

6 Blood coagulation GO:0007596 7.29 × 10−24 -

9 Regulation of plasma lipoprotein particle levels GO:0097006 2.16 × 10−5 -

Cluster No. Tertiary description GO-term p-value Gene count

1 Protein kinase binding GO:0019901 6.94 × 10−74 -

5 Mixed, incl. Sema4D in semaphorin signaling, and
ARHGEF1-like, PH domain. CL:17973 1.765× 10−06 -

9 Protein–lipid complex GO:0032994 6946 × 10−74 -

Table 10. Clustering analysis of coding genes from Data Merging: Clusters of Uncoupled Functions
of Interactome-814.

Cluster No. Primary Description GO-Term p-Value Gene Count

1 Hepatitis B hsa055161 4.98 × 10−73 259

2 mTOR signaling pathway hsa04150 2.05 × 10−36 139

3 Fc gamma R-mediated phagocytosis hsa04555 6.62 × 10−32 113

4 Long-term depression hsa04730 1.72 × 10−29 72

5 Blood vessels diameter maintenance GO:0097746 3.61 × 10−13 61

6 ECM–receptor interaction hsa04512 9.96 × 10−24 56

7 Complement activation GO:0006956 3.73 × 10−18 32

8 Renin–angiotensin system hsa04614 1.10 × 10−4 14

9 Glycerophospholipid metabolism Hsa00564 2.71 × 10−8 13

10 Plasma lipoprotein particle remodeling GO:0034369 9.94 × 10−5 12
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Table 10. Cont.

Cluster No. Secondary description GO-term p-value Gene count

3 Constitutive Signaling by Aberrant PI3K in Cancer 1.12 × 10−33 -

4 Calmodulin binding GO:0005516 1.11 × 10−21 -

5 Mixed, incl. Heterotrimeric G-protein complex, and
Signaling transduction inhibitor CL24307 6.90 × 10−13 -

6 Cell adhesion mediated by integrin GO:0033627 2.32 × 10−14 -

7 Initial triggering of complement HAS-166663 5.26 × 10−12 -

8 Dipeptidyl-peptidase activity, and Meprin A
complex CL31769 6.08 × 10−3 -

10 Cholesterol metabolism hsa04979 1.98 × 10−49

Cluster No. Tertiary description GO-term p-value Gene count

3 GPVI-mediated activation cascade, and
SH2 domain superfamily CL:17470 1.53 × 10−27 -

5 Vascular smooth muscle contraction hsa04270 8.57 × 10−39 -

6 Integrin KW-0401 1.88 × 10−16 -

10 Protein–lipid complex GO:0032994 5.40 × 10−3 -

Although I also reported data on uncoupled functions of interactome-1060 and those
coupled via the merging protocol, my analysis currently focuses only on one-to-one inter-
actions of S1, but I will discuss uncorrelated data later to provide a broader perspective.

The list of Biological Processes and pathways provided by the clustering analysis
(Table 8) reflects a complex interplay of metabolic activities influenced by the one-to-one
interaction of the S1 subunit of the SARS-CoV-2 Spike protein. Many of these activities are
central to the body’s response to infection, immune regulation, and cell signaling, and can
be disrupted during both viral infection and vaccination. No one can rule this out. The
clustering results cover broad macroscopic areas of activity: 1. Immune system activation
and regulation; 2. Vascular and cardiovascular implications; 3. Metabolic processes; 4. Cell
signaling and structural integrity; and 5. Neural and cognitive processes.

3.8.1. The Liver’s Characteristics

The emergence of the hepatitis B pathway (hsa055161) is unexpected in SARS-CoV-
2. The liver is one of the organs most affected by COVID-19, and an increase in liver
enzymes is the most common symptom [169]. There appears to be a correlation between
the severity of the disease and older patients with other morbidities. Chronic HBV infection
can lead to metabolic syndrome and liver dysfunction [170]. The pathways involved in liver
metabolism may intersect with systemic responses to SARS-CoV-2, especially in patients
with pre-existing liver conditions. Metabolic dysfunction (MASH) is common in Western
countries and proceeds through a slow progression of inflammation and fibrosis, which
is associated with an imbalance of lipid metabolism and insulin resistance, components
also common to COVID-19. This can exacerbate liver effects in chronic patients. The virus
infects cholangiocytes with elevated levels of IL1, TNFA, and MCP1, all potential factors
that can induce the development of MASH with progression to advanced chronic states,
but we cannot exclude possible cancerous states [171]. It appears the hepatitis B path may
come from shared immune mechanisms or pathways between SARS-CoV-2 and hepatitis B
virus (HBV), relating to immune evasion strategies or overlapping receptor usage.

I could consider potential explanations: (A) Cross-reactivity: the immune response
triggered by the S1 subunit may have shared components or epitopes with the hepatitis
B virus, resulting in a cross-reactive immune response that affects hepatitis B-related
pathways as well [172]. (B) It is conceivable that this could be a statistical anomaly or data
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noise, suggesting an indirect association not caused by the S1 subunit, but reflecting shared
cellular machinery or immune pathways. C) Certain signaling pathways that are activated
during viral infections, such as mTOR or immune-related pathways, play a role in the
response to different viral infections, including hepatitis B, resulting in concurrent pathway
activation [173,174]. Both viruses induce strong inflammatory responses, resulting in the
activation of similar pathways in host cells and starting shared Biological Processes. The
activation of signaling pathways, such as the mTOR pathway, in response to viral infection,
serves as an illustrative example of a common theme. D) The metabolic alterations induced
in host cells by both viruses facilitate the promotion of viral replication. As an example,
HBV modifies lipid metabolism, a potential pathway that SARS-CoV-2 also affects via its
protein. The overlapping Biological Processes highlight the intricate interplay between
viral infections, immune responses, and cell metabolism, even though the S1 subunit of
SARS-CoV-2 and hepatitis B might not link to direct metabolic activities. Understanding
these connections can help explain the broader implications of viral infections on host
health and developing vaccines. Further research would be essential to clarify the specifics
of these relationships. However, considering the results of the Data Merging analysis,
all this seems to be the effect of the huge number of genes involved, and the possibility
of innumerable interactions with the same groups of overlapping molecules, to which I
must add the scarcity of experimental data, all factors that can mislead even advanced
computing systems.

3.8.2. Vascular Aspects

The renin–angiotensin system is crucial for blood pressure regulation and fluid bal-
ance [175], and its involvement may explain some of the cardiovascular manifestations
seen in COVID-19. In chronic liver disease, alterations in this system can exacerbate portal
hypertension and fluid retention. Calmodulin binding connects and regulates MTOR,
the renin–angiotensin system, blood vessel diameter maintenance, and vascular smooth
muscle connection through the calcium signaling path. The latter also acts both on FC
gamma R-mediated phagocytosis and Cytoskeleton regulation, driven by Integrin- and
Integrin-mediated cell adhesion [176]. Immune cells, such as macrophages, use calcium
signaling [177] to engulf and eliminate infected cells, including those that would be af-
fected by hepatitis B. Integrins mediate cell–cell and cell–ECM interactions, influencing
cell migration and signaling [178]. In liver injuries, integrin signaling can affect hepatocyte
survival and regeneration [178,179]. During infection or immune response, disruptions
in lipid metabolism, such as glycerophospholipid metabolism (hsa00564) and cholesterol
metabolism, may occur, causing alterations in lipid profiles and contributing to the hyper-
coagulable states observed in COVID-19.

3.8.3. Cumulative Effects May Cause Cancer Involvement

Certainly, the cumulative effects of chronic inflammation, metabolic dysfunction,
and abnormal signaling pathways can increase the risk of hepatocellular carcinoma in
individuals with underlying liver disease. However, we should also consider that these
cumulative effects may promote oncogenesis. In this context, the mTOR pathway is
crucial in regulating cell growth, proliferation, and survival, but it is often associated with
cancer [180]. Molecular changes, such as mutations in oncogenes and tumor suppressor
genes, can further drive any cancer development. Even in the other two clustering analyses,
we can see connections with possible cancer progression, especially in terms of genomic
instability, increased proliferation, immune evasion, and metastasis. Dysregulated kinase,
such as PI3K and ECM–receptor, may support cancer progression [181,182].

Ribosome biogenesis and chromatin assembly might also lead to uncontrolled cell
growth [183,184]. Targeted projects are necessary in these areas to obtain concrete answers
and reveal significant signals of cancerous evolutions. Here, I only show that cancer
evolution could be possible because the specific processes are active and in common.
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3.8.4. Neural Effects

The neural and cognitive processes are another important point. LTD, “Long-term De-
pression”, and “Calmodulin Binding” are involved in neural signaling and plasticity [185],
suggesting potential effects on neurological and/or cognitive functions, which aligns with
reports of neurological complications observed in COVID-19 patients [186–188]. Acting on
both “FC gamma R-mediated phagocytosis” and “Cytoskeleton regulation” [189], driven by
“Integrin” and “Integrin mediated cell adhesion”, it can affect LTD [190]. I have found LTD
(hsa04730, p-value: 7.21 × 10−92) connected to “LTP, Long-term Potentiation” (hsa04720,
p-value: 2.16 × 10−32), with many genes in common (see Figure 12).
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Figure 12. Relationships between LTP and LTD processes. These two molecular processes show many
nodes in common. LTP (in red), Long-term potentiation (hsa04720), 18 nodes involved, strength
2,16 and p-value: 3.50 × 10−32. LTD (in blue), Long-term depression (hsa04730), 39 nodes involved,
strength 2.52, and p-value: 7.21 × 10−92. LTD is a process involving a decrease in the synaptic strength
with multiple signal transduction pathways involved. LTP is a long-lasting increase in synaptic
efficacy. The high strength values show that many proteins support the involvement of multiple
signal transduction pathways in both processes.

The brain’s actions involve the participation and connection of both molecular pro-
cesses. But there is also a potential link between these neurological processes and the
S1 protein that could provide some clues about the molecular basis of the neurological
impact of COVID-19. PRKCG, MAPK1, BRAF, KRAS, and ITPR1 are part of key signaling
pathways like the MAPK/ERK pathway, which is often linked to cellular stress responses,
inflammation, and apoptosis. Various COVID-19-related pathologies, particularly those
affecting the immune response and inflammation in different tissues, including the brain,
implicate them, especially in the MAPK/ERK pathway, which is often linked to cellular
stress responses, inflammation, and apoptosis [191,192]. NOS1 (nitric oxide synthase 1)
is involved in producing nitric oxide, a molecule with widespread roles in neurotrans-
mission and vasodilation. Researchers have implicated the dysregulation of nitric oxide



Biomolecules 2024, 14, 1549 36 of 51

in COVID-19 in relation to endothelial dysfunction, which can also affect the brain [193].
Genes of the phosphoprotein phosphatase family, like PPP2CA, PPP2CB, and PRKG1, are
involved in signaling cascades related to protein phosphorylation that tune platelet aggre-
gation [194], but their dysregulation could contribute to the virus’s ability to manipulate
cellular environments [195]. In addition, these genes have connections to inflammation,
oxidative stress, and synaptic plasticity, processes that are modified during viral infec-
tions and potentially contribute to the long-term neurological consequences of COVID-19.
PRKCG (Protein kinase C gamma) and MAPK1 have also been shown to modulate insulin
signaling and glucose uptake [196] in the brain [197]. Disruptions in insulin and glucose
metabolism pathways could contribute to neurological symptoms, including brain fog
and fatigue reported in long COVID-19, as these pathways are tied to cognitive function.
However, a very pertinent observation is the altered glucose metabolism in the brain re-
ported by two French research groups [198,199]. In terms of glucose metabolism, genes like
RAF1 and MAPK1 regulate metabolic homeostasis, including effects on glucose uptake
and insulin sensitivity.

Genes like GNAI2 and GNAI3 (G-protein subunits) are part of G-protein-coupled
receptor (GPCR) signaling pathways, which are involved in neurotransmitter systems, in-
cluding serotonin signaling [200]. Serotonin regulation in the brain is crucial for mood, cog-
nition, and overall neurological function. Dysregulation in this pathway could contribute
to both the mood disorders and cognitive symptoms seen in long COVID-19 patients.

To my knowledge, these results show the first molecular evidence that COVID-19 may
affect brain metabolism, because of these genes’ involvement in critical brain functions,
synaptic plasticity, and metabolic pathways. They potentially contribute to neuroinflamma-
tion states and energy dysregulation, affecting cognitive performance. However, further
experimental and computational work should merge these links to reveal new therapeu-
tic targets.

4. Discussion

A multitude of studies have clarified the fundamental processes related to the S1 sub-
unit of the Spike protein of SARS-CoV-2. The protein has garnered significant attention in
scientific research because of its pivotal role in viral entry into host cells and its potential
implications for immunogenicity and pathogenesis [201–205]. In a previous investigation
of the liver during the COVID-19 pandemic, I observed the interaction of S1 with spe-
cific human proteins, ACE2, AGER, ESR1, FKBP4, KIF18A, MED1, NEK7, PRC1, RRAGC,
S100A8, SFN, TLN1, TLR4, and TMPRSS2. I considered it an interesting anomaly [10],
without delving into the matter. Here, I found only three proteins that coincide with those
identified in that study (ACE2, ESR1, and TLR4). This seems to show a disparity in the
respective metabolic contexts.

The S1 protein, through its one-to-one interactions, has opened a window into the
metabolic strategies of SARS-CoV-2. Beyond the specific and solitary actions of S1 that
could also be real for the vaccine, the general picture I observed has revealed many sur-
prises. Gene redundancy within the interactome suggests the existence of a complex gene
regulatory network, in which some genes can influence metabolic processes through a
complex network of internal and external signals. The first consideration is concerning
because of the enormous number of genes and proteins that operate in the cell involved in
specific functions related to the disease. What perhaps we do not consider enough is that
when we focus on a single functional process and try to attribute its constituent compo-
nents to it, we do not consider that we must make choices among many combinations of
components. Western blotting is not enough to say that if there are proteins, we also have
the hypothesized process. The proteins are there, but these same proteins can be part of
many processes. Only a canonical experimental approach gives us the certainty of what we
are hypothesizing. The second consideration concerns the evolution that COVID-19 can
have. There are some signals that suggest thrombophilic pathologies both following the
disease and vaccination, but they are the unexpected signals that should make us reflect.



Biomolecules 2024, 14, 1549 37 of 51

Finding the statistical possibility of progression to hepatitis B among the results is puzzling.
Most likely, it is a statistical consequence of the overlap of many similar processes in the
two viruses. However, it prompted us to look at the results from a different angle.

4.1. Considerations on Cancer Development

The results of the interactomic analysis of the SARS-CoV-2 S1 Spike subunit reveal
a fascinating and complex network of Biological Processes, some of which appear to
be associated with cancer development. Let us analyze them and discuss the potential
implications. S1 carries out its peculiar solitary activity when inside the infected cell,
where it also operates together with other viral proteins, attacking individual human
proteins with multiple interactions. In this context, mTOR dysregulation is associated
with various cancers [206], making this a significant finding. The strong association also
suggests that SARS-CoV-2 could affect pathways involved in cell growth and metabolism,
potentially leading to oncogenic processes. PI3K is another critical pathway dysregulated
in cancer [207]. Its presence in the results shows a potential link between SARS-CoV-
2 infection and the activation of oncogenic signaling pathways. Nor can I neglect focal
adhesion. This process is involved in cell adhesion, motility, and cell survival. Aberrant
focal adhesion signaling plays a role in cancer metastases [208]. This GO term having a
significant p-value shows a role in altering cellular environments that could predispose it
to tumorigenesis.

4.2. Other Observations That Support Cancer Development

Other observations also support the same idea. Dysregulation of DNA replication and
chromatin assembly can lead to genomic instability, a hallmark of cancer. The significant
presence of these GO terms shows that SARS-CoV-2 could affect the fidelity of DNA
replication, leading to mutations and cancer development. We often implicate cholesterol
metabolism in cancer progression, particularly in lipid rafts. Lipid rafts are cholesterol-rich
micro-domains that facilitate cell signaling, including pathways involved in cancer [209].
Chronic inflammation is also a well-known risk factor for cancer. The powerful signals in
complement activation and coagulation pathways could suggest that SARS-CoV-2 could
contribute to a pro-inflammatory and pro-coagulant state, which over time could lead
to oncogenesis [210]. All this without considering the metabolic alterations induced by
S1 in common with liver cancer that I have already discussed. My interactomic analysis
suggests that S1, in SARS-CoV-2 infection, might contribute to cancer development through
multiple mechanisms. These include many dysregulated mechanisms and liver-related
complications as shown by the associating hepatitis B. While these findings do not establish
a causal link between COVID-19 and cancer, they highlight potential areas for further
research to understand how SARS-CoV-2 could contribute to cancer risk, especially in
long-term survivors of infection. The vital role and multifaceted nature of these pathways
cause continued exploration through thorough experimental studies. Therefore, I focused
on TP53 and RPS27A, two peculiar high-ranking proteins of which interactions are present
in the results. Their key features are that these proteins are involved in various ways
in the viral/tumor progression of cells. To isolate and characterize their “world” in the
interactome, I used the STRING action “recenter” that rewires the network on these proteins,
showing all the proteins in STRING that interact with them. In Figure S7, I show the
interactome. The results highlight an intricate network of protein interactions, centered
on TP53, a crucial tumor suppressor protein, and RPS27A, a component of the ubiquitin–
proteasome pathway. I analyzed the implications of these interactions in SARS-CoV-
2 infection.

4.3. TP53 Interactions

TP53 is involved in maintaining genomic stability, cell cycle arrest, and apoptosis, but
its role may vary depending on its binding partners [10]. In viral infections, manipulations
of TP53 can favor either cellular defense or viral replication [211]. Interaction with proteins
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such as ATR, CHEK1,2, BRCA1, and DDB2 signals the activation of DNA repair pathways
and can lead to cell cycle arrest [212]. These mechanisms would favor the cell by preserving
genomic integrity and preventing proliferating virus-infected cells. In addition, interactions
with BAX, BAK1, and CASP8 suggest the activation of apoptotic pathways. This is part of
the cell defense mechanisms to eliminate virus-infected cells, especially before the virus
can replicate. There is also transcriptional regulation through interactions with CREBBP,
EP300, and SP1, which could stimulate expressing genes that protect the cell from viral
attacks (pro-apoptotic genes or antiviral responses to interferon) [213]. The interaction
with TIGAR (TP53 Induced Glycolysis Regulatory Phosphatase) and SLC2A1/SLC2A2
(glucose transporters) supports all of this at the metabolic level, potentially inhibiting viral
replication. This occurs by limiting the glucose and directing the pathway into the pentose
phosphate shunt, as viruses depend on the host metabolism [214].

Faced with these mechanisms favorable to cellular defense, we can also highlight
mechanisms that are favorable to the virus. MDM2 and MDM4, which promote its degra-
dation, negatively regulate TP53 [215]. We know that SARS-CoV-2 proteins hijack the
MDM2-TP53 axis to suppress TP53-mediated apoptosis, favoring viral survival and repli-
cation [216]. Interactions with MAPK1, MAPK3, and MAPK9 suggest the modulation of
cellular signaling pathways. SARS-CoV-2 can activate MAPKs to promote viral replication
and evade immune responses [217]. We must also consider interactions with MAPK1,
MAPK3, and MAPK9. Antiapoptotic mechanisms facilitate initial viral multiplication, while
in the infection’s progression, apoptosis through cell lysis favors the release of virions.

Researchers liken the functional diversity of p53 to an incessant “tug of war” [218]
because opposing functional processes create metabolic uncertainty.

RPS27A Interactions

RPS27A (a precursor of ubiquitin and ribosomal protein S27A) plays a key role in
ubiquitination, which regulates protein degradation and signaling pathways. Its interaction
with TP53, MDM2, and ubiquitin-related proteins such as UBE2D1/D2/D3, UBB, UBC,
and USP7 suggests RPS27A is an integral part of controlling TP53 stability [219,220]. Here
too, we can evaluate cell-protective actions and mechanisms that favor the virus.

Proper regulation of ubiquitin-mediated proteolysis (Ubiquitination and Proteasomal
Degradation) is essential to remove damaged proteins and maintain cellular health. In-
teractions of RPS27A with proteasome-related components (e.g., CUL1, SKP1, RBX1) can
regulate the degradation of viral proteins, preventing viral assembly and replication [221].
But SARS-CoV-2 exploits the host ubiquitin–proteasome system to degrade antiviral pro-
teins and facilitate its own replication [222]. The interaction of RPS27A with MDM2, a key
regulator of TP53 degradation, suggests that viral infection could lead to TP53 inactivation
by promoting its degradation via ubiquitination.

In addition, interactions with deubiquitinating enzymes such as USP7 and UBE2I play
a critical role in regulating TP53 and RPS27A [199]. Both USP7 and UBE2I are involved in
the removal of ubiquitin moieties, which influences the stability and function of proteins,
especially key regulators such as TP53. The virus can exploit this regulatory mechanism to
weaken cellular defenses, influencing the stability and function of the two proteins. If viral
manipulation distorts these pathways, it could compromise the cell’s ability to mount an
effective defense. SARS-CoV-2, as with other viruses, hijacks the host ubiquitin–proteasome
system to evade immune responses [221]. By interacting with USP7, UBE2I, and other
ubiquitin-related enzymes, the virus could do the following: 1. Protect viral proteins from
degradation. 2. Suppress TP53 activity by promoting its degradation [213,215,220] or
reducing its pro-apoptotic function via SUMOylation [222]. 3. Modulate immune responses
by preventing the activation of key antiviral pathways [217].

Recent papers [223–226] are providing insights into how Spike proteins of many
variants behave in interactions, and are focusing on the latest advances in strategies for
developing inhibitors of these interactions. They study the regulations of genes/proteins,
highlighting their implications for the biology of the virus. Researchers have also studied
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some interactions using the sequences of the S1 subunit and bioinformatics algorithms to
identify potential sites for interaction with human proteins.

5. Conclusions

This study highlights the multifaceted roles of the S1 subunit in immune modulation,
metabolic reprogramming, and systemic effects. It underscores the importance of S1 in
understanding COVID-19 pathophysiology. It confirms many of the observations already
known on SARS-CoV-2 and COVID-19, to which it attributes a more organic role. In
addition, it uncovers novel functional associations and shows the extensive repertoire of
implicated genes, including a significant proportion involved in diverse processes.

The interactomic analysis reveals a complex network of interconnected Biological
Processes, some of which are associated with cancer development and cognitive effects.
S1 affects overall metabolism by altering energy production, influencing lipid metabolism,
modulating immune responses, and affecting systemic inflammatory processes. These
changes not only support viral replication but can also lead to various metabolic distur-
bances in the host, contributing to the overall pathology associated both with COVID-19 and
vaccination. Understanding these mechanisms is crucial for developing effective treatments
and vaccines.

The unexpected interplay between hepatitis B and COVID-19 involves pathophysiolog-
ical mechanisms that may exacerbate previous or under-observed clinical liver pathology,
complicating patient treatments. However, even if there might not be an explicit link
between the direct metabolic activities related to S1 and hepatitis B, these overlapping
Biological Processes highlight an intricate interplay between viral infections, immune re-
sponses, and cell metabolism. Understanding these connections is crucial to explain the
precise mechanisms regarding the inexplicable presence of hepatitis B-related processes or
the broader implications of viral infections on host health. Many overlapping processes are
also common to cancer progression. Thus, we cannot exclude anything.

My results reveal a network of Biological Processes, some of which are indeed associ-
ated with cancer development. The interactomic analysis suggests that SARS-CoV-2 infec-
tion might contribute to cancer development through the dysregulation of key oncogenic
pathways like mTOR and PI3K, disruption of DNA replication and chromatin assembly,
proteolytic cleavage, chronic inflammation, and liver-related complications, as shown by
the hepatitis B association. These activations, associated with proinflammatory mediator re-
lease, suggest an underlying activation of blood clotting-related gene expression by specific
S1 interactions, which might predispose some individuals to inflammation-related anaphy-
laxis and blood clotting. Recent observations have highlighted the role of hematopoietic
system aging in driving cancer progression through inflammation-induced impairment of
immunity [227].

These findings do not establish a causal link between COVID-19 and cancer because
of the complexity of these connections. However, they highlight potential areas for further
research to understand how SARS-CoV-2 might contribute to cancer risk, especially in
long-term survivors of the infection. For example, we could study the deubiquitinating
enzymes and the same S1 as potential drug targets.

However, my results have some limitations. The wide-ranging assortment of genes
derived from Data Merging required us to interpret the findings as collective properties
that emerge from the causal topological structure induced by S1 and its functional dynam-
ics. This justifies my resolution to present the results as sets of processes with the most
statistically reliable functional characteristics, rather than going to find single functional
processes. Another constraint is the vast number of overlapping processes occurring at
the cellular level, as discussed, which rely on the data quality and quantity provided by
interactomic mathematical models to researchers for their analyses.

Through applying my approach to the S1-induced interactome, I not only confirmed
existing associations, but also unveiled unknown connections. I provided insights into
the intricate modulation of gene expressions that underlie both normal and pathologi-
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cal functional processes. Cells with the same molecules can exhibit many and different
phenotypic properties at multiple levels, making them difficult to define, classify, and
understand. I integrated multiple approaches to have a coherent vision that, despite the
known spatio-temporal limitations, gave us useful information. The cultural landscape in
which research on deep cellular mechanisms falls is based on a static and timeless vision of
the metabolism, which produces static data. The basis for the calculations of bioinformatics
systems lies in these same data, leading to the formation of intricate and heterogeneous
networks. However, interactomics is a mandatory intermediate step if we want to decode
gene expression in its functional aspects. We should never forget that epigenetic changes,
such as DNA methylation or histone modifications, influence gene expression and lead to
many cellular responses, which manifest themselves in an innumerable number of different
human phenotypes. Therefore, the result of any strategy, viral or cancerous, must first
confront the phenotype of its host to progress.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/10.3390/biom14121549/s1. Excel File S1-1060 (sheet 1 Nodes, sheet 2 Interactions,
sheet 3 Centrality analysis, sheet 4 Functional enrichment); Excel File S2-814 (sheet 1 Nodes, sheet
2 Interactions, sheet 3 Centrality analysis, sheet 4 Functional enrichment); Excel File S3, Reverse
engineering (sheet 1 Reverse eng. overall, sheet 2 one-to-one overall, sheet 3 S1 multiple); Excel
File S4 Data Merging (sheet 1 Merging-global, sheet 2 Total genes); Excel File S5 Clustering (sheet
1 Cluster 1060 uncoupled, sheet 2 Cluster 814 uncoupled, sheet 3 1060+814_coupled). Figure S1—
(part A)–Disordered segments of S1 and (part B)–Structural models of S1; Table S1—158 LT proteins
extracted from BioGRID; Figure S2—Interactome calculated by STRING for the 158 interactors of S1,
selected by BioGRID; Figure S3—Pruned interactome of figure S1; Figure S4—Functional enrichment
of the interactome in the figure S2; Figure S5—The world of FAU, RACK1, UBA52, and RPS27A; §
S1—Meaning of the term one-to-one used in this study; Figure S6—The most important functional
subgraphs of the interactome-814; Figure S7—The world of TP53 and RPS27A. References 233, 234 and
235, included in the Supplements, are cited in the References. Further inquiries can be directed to
the author.
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Appendix A

Perimeter Limits of Interactomic Analysis

Interactomes offer a valuable snapshot of protein interactions within a cell. These
predictive models can reveal potential pathways and regulatory mechanisms involved in
metabolism. The set of information sources and experimental data in the scientific literature
gives rise to the actual perimeter of knowledge on which each interactomic analysis is
based. Data and information are distinct, and their technical definitions become nuanced.
Information results from processing, structuring, and contextualizing data. It provides
meaning and helps us understand something. Understanding this distinction is crucial in
interactomics where it is difficult to get reliable and certain interactions with low values
of Shannon entropy [228]. The predictive power of an interactomic model is an “entropic
trade-off” between the experimental “certainty” given by physical/functional interactions
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between proteins (for which we need a low Boltzman thermodynamic entropy [229,230])
and the level of reliability of the information (for which we need a low Shannon infor-
mation entropy [231]). In the first case, we have a classic thermodynamic quantity that
characterizes existing structural interactions between proteins with low microscopic de-
grees of freedom; in the second case, we have a symbolic method based on information
theory [232] to translate the physical hypothesis into a real macroscopic prediction, essen-
tial to derive correct biological predictions from network models. The interactome is an
indeterministic object of Systems Biology and its computation requires specific informa-
tion from the environment, relevant to complete that task. Therefore, in a network, the
probability of an interaction is specific to the context in which it occurs because it depends
on the physical and functional information contained. This also means that in a different
biological environment, the predictive algorithm will not work in the same way. Despite
their distinct disciplinary domains [233], amalgamating these two entropies converges
into a unified notion: to what extent does the information from the scientific literature
regarding the interaction between two proteins reflect its experimental confirmation? The
response is unparalleled, as it encompasses both entropy ontologies [234,235] for tasks
such as information retrieval, relation extraction, and question answering, making them
indispensable for interactomics. Entropy serves as a metric to evaluate the complexity of
the graph, constituting a fundamental criterion to understand and evaluate its organization
but also developing knowledge.

The sensitivity and competence of the researcher play a crucial role in entrusting this
balance because, by varying the balance ratios, the topology of the interactome can vary.
The more information channels we use, even if they are unreliable, the more compact the
interactome appears. When we limit channels for specific interactions, the interactome
becomes more “loose” and “asymmetric” because of a reduction in the number of inter-
actions and functions. This is a recurring issue which depends only on the reliability of
the “perimeter” data used by the researcher. An example of all of this, F2, a gene involved
in blood clotting, is a frequent symptom of COVID-19 patients. Gene F2 (Prothrombin,
UniProt P00754-THRB_Human) converts fibrinogen to fibrin and activates factors V, VII,
VIII, XIII and, in complex with Thrombomodulin, protein C in blood homeostasis and
inflammation. Furthermore, it triggers the production of pro-inflammatory cytokines.
Using interactome-1060 as a base, I set the confidence score to 0.900 with only six open-
source channels (without Text Mining, TM), then with five source channels (without TM
and DB), and Experiments as the sole source. F2 showed 25, 10, and 10 interactions with
the proteins surrounding it. If I use the score of 0.900 and all seven active channels, it
shows 29 interactions, and with the seven open channels and a confidence score of 0.400,
it shows 61 interactions (+83.7% compared to 10 interactions, or 6.1 times more). This
means that if we want to give certain and safe interpretations using experimental data and
significant scores, we face an arid information landscape with certain data, but which does
not allow us to range much in terms of metabolic connections or prediction. At the other
extreme, we will have about 80% of distorted or incorrect conclusions that will pollute
human knowledge. The choice depends only on those who manage the experimental
design of the research project and the controls implemented. Of course, the best framework
to operate within is one that requires all interactions to be reliable, which is not the case
today. However, the entropy remains a measure of the complexity and redundancy of
the graph.

Besides the previous one, I report another example aimed at interactome-1060 in its
entirety and to highlight how scarce the true experimental data are. In Excel File S1, sheet
2, I provide a composition of each of the 34,986 interactions of interactome-1060, based
on the various data sources. Using a “high confidence score” produced a final “combined
score” in which the “experimental” contribution is high and the most represented. To show
the details of what I said, I calculated and analyzed some data from interactome-1060,
and Table A1 reports it. STRING, among its complementary actions, calculates in terms
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of confidence score the contribution to the combined score of each individual interaction,
based on the global request made by the researcher through the settings.

Table A1. Experimental contribution to interactions in interactome-1060.

Interaction Type Abundance Confidence Score Incidence%

Total interactions 34,986 * - -

No experimental characterization 3016 - 8.62

Highest score experimentally
proven interactions 19,556 Score ≥ 0.9 55.89

High score experimentally proven
interactions 5233 0.7 ≤ score < 0.9 14.94

Medium score experimentally
proven interactions 2722 0.4 ≤ score < 0.7 7.78

Low score interactions 4462 Score ≤ 0.4 12.75

Combined experimental
interactions used in this study 24,789 high and highest 70.85

Notes: The Excel File S1 reports the original data. (*) STRING doubles the number of calculated interactions as it
considers both directions (from A to B and from B to A).

Table A1 reveals that, even when setting a high confidence score, other interfering
factors from the different data sources contribute to a wide distribution of the percentage
of incidences of the confidence score of the experimental data. Less certain interactions
can lead to incomplete or inaccurate interpretations of metabolic pathways. Using only
the “experimental” channel with the highest score would limit and reduce the topology
and calculated functions. Therefore, when we need as much “real” data as possible, it is
necessary to balance the channels that introduce more interfering data. By understanding
both the strengths and weaknesses of using interactomes, we can make informed decisions
about the reliability of the results we encounter. Here, 78.63% of our experimental data is
reliable (highest + high), which is a compromise to eliminate the Text Mining channel. What
is surprising is that 8.62% of interactions never had experimental characterization. But what
is even more surprising is that, in the total absence of experimental data, corresponding
channels (for example “annotated databases”) show confidence scores of 0.900 for these
interactions, which means 8.62% of our interactions have misleading information. Many
researchers will use this information to discuss their results or to design a new scientific
project. The question to ask is, how does this value influence scientific knowledge of
the sector and future scientific projects? Most likely, the strong career pressures that
many researchers face, the speed of the reviews that referees undergo, and the citations
in predatory journals that enter the scientific knowledge system all contribute to this bias.
In conclusion, source matters because the reliability of information hinges on its source.
Credible sources like established academic journals provide more reliable information.
Verification is also crucial: just because information exists does not guarantee its truth.
Cross-checking information with multiple sources, considering the researcher’s expertise,
and looking for potential biases are crucial for assessing reliability.
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