Microsofte

Visual Studio’

/ * |earntouse C#, VB.NET, ASPNET,
and Silverlight

* Build applications from the
/ ground up

* Customize the Integrated
Development Environment

Joe Mayo

Microsoft:

Visual Studio® 2010
A Beginner's Guide

About the Author

Joe Mayo started his software development career in 1986, working on an RCA
Spectrum 70 mainframe computer, programming in assembly language where input was
via Hollerith card, output was a line printer, and the debugging experience was a light
panel where you had to push buttons to load registers and step through commands. Since
then, Joe has worked with various mini-computers, workstations, and PCs. The operating
systems he’s worked on include proprietary, UNIX-based, MS-DOS, and Windows.
Besides assembly and dozens of scripting languages, Joe has worked professionally with
C, C++, VBA, Visual C++, Forte Tool, Java, VB.NET, and C#. In addition to software
engineering, he has worked in many positions, including team lead, supervisor, manager
(even running a 24x7 computer operations center with over 50 people). Today, Joe runs
his own company, Mayo Software, providing custom software development services

and specializing in Microsoft .NET technology. He is the author of LINQ Programming
(McGraw-Hill Professional, 2008) and other books. Joe is also the recipient of multiple
Microsoft MVP awards. You can follow Joe on Twitter: @JoeMayo.

About the Technical Editor

Roy Ogborn has worn almost every hat one time or another during his interesting and
continuing career in the Information Technology field. He was systems manager and
developer for Texaco Europe Research, Inc., in Moscow, USSR, during the attempted coup.
Back in the United States, he has designed and implemented a GIS system for managing

oil and gas wells and leases, and has architected and implemented an enterprise workflow
system that managed the business process of taking wells from conception to completion.

He architected a system for Forest Oil in Denver that linked disparate accounting, lease
management, and production tracking systems for business intelligence for senior executives’
daily and strategic decisions. Recently he architected and designed a SharePoint-, Silverlight-,
and CSLA-based greenhouse gas emissions evaluation, prediction, and decision tool for a
multinational environmental engineering firm using the new Visual Studio 2010 Architecture
Edition tools. Roy is an independent software architect consultant in the Denver Metro Area
specializing in custom solutions that leverage SharePoint. In January 2010 he presented
SharePoint 2010 for Developers at the Denver Visual Studio .NET User Group.

Microsoft:

Visual Studio® 2010
A Beginner's Guide

Joe Mayo

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-166896-5
MHID: 0-07-166896-9
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166895-8, MHID: 0-07-166895-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark.
Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”’) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant
or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

To my son, Kamo.

This page intentionally left blank

Contents at a Glance

PART | Understanding Visual Studio 2010 Essentials

1 Introducing Visual Studio 2010cciiiiiiiiiiiiiiiiiiiiiiiiiieienenns 3
2 Learning Just Enough C# or VB.NET: Basic Syntaxc.ccooeue. 35
3 Learning Just Enough C# and VB.NET: Types and Members 67
4 Learning Just Enough C# and VB.NET: Intermediate Syntax 89

PART Il Learning the VS 2010 Environment

5 Creating and Building Projectscccoiiiiiiiiiiiiiiiiiineernseecnseens 113
6 Debugging with Visual Studioc.coeeiiiiiiiiiiiiieeiincenrseccnsenss 143
7 Working with Datacociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiierecnnenns 181

PART lll Building Programs with VS 2010
8 Building Desktop Applications with WPFciiiiiiiiiiiiiiinnnne, 217

9 Creating Web Applications with ASPNET MVC coiviiiiiinna.. 249

vii

Vil Microsoft Visual Studio 2010: A Beginner's Guide

10 Designing Silverlight Applicationsccoiiiiiiiiiiiiiiiiiiiiiiiienns 285
11 Deploying Web Services with WCFiiiiiiiiiiiiiiiiiiiiceniicesrnnnns 299

PART IV Enhancing the VS 2010 Experience

12 Customizing the Development Environmentcccevveieiinennincnns 341

13 Extending Visual Studio 2010cciiiiiiiiiiiiiiiiiiiiiiiieiineenrnnnns 371

PARTV Appendixes
A Introduction to XIVL ..ieiietietiteneeneeeeeeseeacessessossensosscsacnnes 403

B Introduction to XA ML ...ciiiiiiiiiiieieeeeeeeeeeeeesecesascasascanssannns 409

Contents

ACKNOWLEDGMENTS ..o e e Xvii
INTRODUCTION e Xix

PART | Understanding Visual Studio 2010 Essentials

1 Introducing Visual Studio 2010ccoiiiiiiiiiiiiiiiiiiiiiiinneecnenns 3
What Is Visual Studio 2010 AbOUL? ... 4
Automatically Generated Code o.iiiiiiiii e 4
Rapid Coding EXPEriencec.iuiuiiininiiii i eieaeenns 5
Everything at Your FINGertips —oniuinii e 5
Customizability and Extensibility — i 5
Installing Visual Studio 2010 ... 6
Navigating the Visual Studio 2010 Environment —ooiiiiiiiiiiineen... 13
The Menu ..o 14

00 AT o 15
WOTK ATa oo 15
TO0IDOX e 16
Solution EXplOrer ... 16
Status Bar ... 16
Managing VS WIndows ...t 16
Expanding and Collapsing Windowsot 17
Docking WIndowWs ... e 18

X

Microsoft Visual Studio 2010: A Beginner's Guide

Floating Windows e
Tabbed WINdOWS ...
Closing and Opening WindoWsS —ouiiniinii i
Modifying Environment Settings after Setup ... i
Exporting Selected Environment Settings —coiiiiiiiiiiiiiiiiian..
Importing Selected Environment Settings —coviiiiiiiiiiiiaan..
Resetting ALl SEttNgS .. .oenit ittt e
Familiarization with Visual Studio Project Types —ooiiiiiiiiiiiiiiin ..,
WiIndows Projects ...
WED Projects .ot
Office Projectst e
SharePoint Projects —c.oiiiii e
Database Projects ouniii
SUMMATY .ottt e e e

2 Learning Just Enough C# or VB.NET: Basic Syntaxc.ccooeue

Starting a Bare-Bones Project — i
Examining the Code SKeleton ..ot
The Main Method ..o i
The Program Class ...
The FirstProgram Namespace o.oineineiieneiiii i eaaanns
An Overview of the VS Code Editor —oooiiiiiiiii i
Class and Member Locators — i
Bookmarks ...
Setting Editor OPtionSiint ittt e
Saving Time with SnIppets oiiiii e
Coding Expressions and StatemMents c..eeuneeuneennetunemnnemnneennennnenn..
Making Intellisense Work for You —o
Running Programs e
Primitive Types and EXpressions —ooiiiiinininiiiiieiaaannns
BnUmMS
Branching Statements oouiiiiiiii e
00D oo
SUMMATY ettt e e

3 Learning Just Enough C# and VB.NET: Types and Members

Creating ClasS@S .+ .ttt ettt et e et e e e e e e
ClasS SYMEAX oottt ettt e e e e
Class INheritance ooiuiiuitni e
The Class SIPPEL vttt et e

Writing MethOdS ..o e e
Declaring and Using a Methodo
Declaring Parameters and Passing Arguments —oooiiiiiiininenn..

Contents

Returning Data and Using Method Results ...t 78
Method SHIPPELS .ottt e e e 80
Coding Fields and Properties —...........c.oouiiuiiiii e 81
Declaring and Using Fields 81
Declaring and Using Properties —o.oiuiiiininiiniiiiiiiiii e 83

The Property Snppet ..ot 86
SUMMATY e e e 87
4 Learning Just Enough C# and VB.NET: Intermediate Syntax 89
Understanding Delegates and Events o i 90
BV entS o 91
Delegates 94
Event, Delegate, and Handler Code Completion 95
Implementing Interfaces —ooiiiiiiii 96
Creating an Interfaceooiiiiiiiii e 97
Making Classes Implement the Interface ..., 98
Writing Code That Uses an Interface ..., 101

The interface SNIPPEt ...ttt 106
Applying Arrays and GENETICS euuiunttt ettt 107
COdING AITAYS ettt ettt e e e e e et et 107
Coding GENETICS .+ttt ittt e ettt e 109
SUMMATY ettt e e e e 110

PART Il Learning the VS 2010 Environment

5 Creating and Building Projectsccoiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnns 113
Constructing Solutions and Projects —ooiiiin i 114
Creating a New Project ... i e 115
Navigating the Solution Explorerot 116
Examining Property SEttings o.iuiuiiin it 118
Assembly Name ... o e 119
Default Namespaceoniniiii e 119
Target Framework ... e 119
OUIPUL Ty PE ot 119
Startup ObJeCt oottt e 120

Icon and Manifest ... 120
Assembly Information e 121
Referencing ASSemblieso 122
Adding a NET Assembly Reference ..., 123
Managing Assembly References ... 124
Referencing Your Own Class Libraries —ooiiiiiiiiiiiiiiiiiinnenann 125

Using Code in Class LibrarieS —o.iiiininiiii i 126

xi

Microsoft Visual Studio 2010: A Beginner's Guide

Compiling Applicationsoutint e 129
Building Solutions/Projects c.iiuiii i 129
Rebuilding Solutions/Projects o.iiniiniiin i 130
Cleaning Solutions/Projects c.oouieniiniiin e 130
Managing Dependencies and Build Order ...t 131
Managing Compilation Settings oouiiniiinin i 133

Navigating a Project with Class View ... i 136

Using the Class DeSIZNer —ouiiniiii e 137
Class Designer Visualization —ot 137
Class Designer Code Generation eeueuneunernennennenaeneenennenn. 138

SUMMATY ettt 141

Debugging with Visual Studiocovviiiiiiiiiiiiiiiiiiiiiiiiiiiienn. 143

Example Code for This Chapter —...........couiiiiiiiiii i 144

Development-Time Code TOOIS oouiiiii e 148

Configuring Debug Modet 150

Setting Breakpoints ..ottt 155
Creating a Breakpoint —ooiiiii e 156
Customizing a Breakpoint — i 157
Managing Breakpoints —oouiiutiiii e 158

Stepping Through Code i 158

Inspecting Application State iiuiiuii e 160
Locals and Autos Windows —iuiiuii e 160
Watch WIndows ..o 161
The Immediate WIndow ... 162
The Call Stack Window ... e 163
The Quick Watch Window e 163
Watching Variables with Pin To Source ..., 164
Working with IntelliTrace ... 165

Solving Problems with VS Debugger — 166
A Program with Bugs i 167
Finding the Bug ... oo 171
Fixing the First Bug ... o 174
Debugging and Resolving NullReferenceException Problems — 175

SUMMATY ettt e e e 180

Working with Datacoiuiiiiiiiiiiiiiiiiiiiiiiiriiisniecnsrecancenas 181

Working with Databases ...t 182
Introduction to Server EXplorer —ot 182
Creating a Database ..ottt 183
Adding Tables ..o e 185
Relating Tables with Foreign Keyso 187
Adding Stored Procedures —o e 192

Configuring Database Options —ooniuiniin e 193

Contents xiii

Learning Language Integrated Query (LINQ), 194
Querying Object Collections with LINQ ..., 194
Creating a LINQ Projection with Anonymous Types —c..cooiiiiiin.... 198
Using LINQ to Sort Collection Results ...t 199

Handling Data with LINQ to SQL ... e 200
Setting Up LINQ to SQL ..o i 200
Working with the LINQ to SQL Designer —ooiiiiiiiiiiiiiiiiinn.. 201
Introduction to Querying LINQ to SQL i 203
Performing Queries on Multiple Tables —co it 205
Inserting Data with LINQ to SQL 210
Updating Data with LINQ to SQLo 211
Deleting Data with LINQ to SQL ... 212

SUMMATY .ot e 214

PART Ill Building Programs with VS 2010

8 Building Desktop Applications with WPFcoociiiiiiiiiiiiie.. 217
Starting @a WPF Project ... i 218
Understanding Layout e 220

Grid Layout ... 220
StackPanel Layout 222
DockPanel Layout ... o 223
WrapPanel Layout ... e 224
Canvas Layout 225
Using WPFE Controls ... e e 226
Managing Windows for Controls —c..ooiiiiiiiiiiiiiiii i, 226
Setting Properties o.uiiuntiu i e 228
Handling EVents —ooio 228
Coding Event Handlers —o oo 233
Working with Data in WPF ... 234
Setting Up a Data SOUIrCe oouniiuiiii e 235
Configuring a ComboBOX ..ot 241
Reading and Saving Data i 243
Using the DataGrid —oiuii e 244
SUMMATY ettt e e e e 247

9 Creating Web Applications with ASPNET MVCciiiiiiiiinnnnnnnnss 249
Understanding ASPNET MVC .. e 250
Starting an ASPNET MVC Project ..ot e 251
Creating the Models ... i e 254
Building Controllers oo 254
Displaying VieWS oottt 256

Looking Inside @ VIEW ...t 256

Organizing View Files 258

Xiv Microsoft Visual Studio 2010: A Beginner's Guide

Assigning MasterPage Fileso 258
Partial Views (a.k.a. User ControlS) ciiiiiiiiii i 260
Managing ROUtING ..o 262
Building a Customer Management Application —cooiiiiiiiiiiiienenn... 264
Creating a Repository o..iuiiiit e 265
Creating a Customer Controller —t 268
Displaying a Customer LiSt 269
Adding a New CUSIOMET ..ottt et et e 274
Updating Existing CUStOMEIS eunttitt ittt 279
Deleting a CUSIOMETttt ettt e et 281
SUMMATY .ot 284
10 Designing Silverlight Applicationscocoiiiiiiiiiiiiiiiiiiiiennnnn. 285
Starting a Silverlight Project i 286
Navigating the Silverlight Designer — oo 290
Using Silverlight Controls ...t e 290
Running Silverlight Out-of-Browser (OOB)t 294
Deploying Silverlight Applications —co.iiuiiiiiii i 297
SUMMATY ettt e e e 298
11 Deploying Web Services with WCF cciiiiiiiiiiiiiiiiiiiiiiiiinnnee. 299
Starting @ WCF Project ... e e 301
Specifying a Contract with WCF Interfaces —c.coiiiiiiiiiiiin... 302
Implementing Logic with WCF Classes coooiuiiiiiiiiiiininianennn. 308
Hosting @ WCEF Service oniiii e e e 314
Following General Hosting Proceduresooiiiiiiiiiiiiiiiinninann 315
Installing IIS 7 on Windows 7 ..ot e 315
Creating a Web Site on [IS 7 on Windows 7 ... oot 317
Deploying the WCF Service to IIS ... e 321
Communicating with a WCF Serviceooiiiiiiii i 326
Creating a Service Reference 326
Coding Web Service Calls ...t e 329
Deploying a Client That Consumes a Web Service —c.coiviiiiin.. 336
Creating a Web Service ina Web Site ... 337
SUMIMATY oottt et e et e e e e e e e 338

PART IV Enhancing the VS 2010 Experience

12 Customizing the Development Environmentccccviiiiiniinnn.n. 341
Implementing Custom Templates ...ttt 342
Creating New Project Templates —ooiiiiininiiiiiiii e, 343

Creating New Item Templates —..........oooiiiiiiiiiii e 347

Creating CuStom SNIPPELS ..ttt ettt e et e 353
Creating a New SHIPPEL ..o untittt ettt e 353

Managing the Snippet Library 358

Contents XV

WIING MACTOS oottt e et e e e e e 360
Recording a Macro ... 360
Saving @ MACIO ..ottt 364
Editing Macros ..ottt e e e e 365

SUMMATY .ot 370

13 Extending Visual Studio 2010ccoiiniiiiieeiineeirecesrecassncassocnns 371

Creating a Visual Studio Add-In ... 372
Running the Add-In Project Wizard —o i, 372
Examining an Add-In Wizard Solution oo 377
Drilling into the Connect Class —ouiiiiiii it 378

Adding Functionality to an Add-In 383
Reviewing the OnConnection Method — i, 384
Implementing the Exec Method i 391
Setting Status With QueryStatis —oooiii i 395

Deploying an Add-In ... o 397

Where to0 GO NEXt ..o 399

SUMMATY ottt et e e 400

PARTV Appendixes

A Introduction to XMLiuiiiiiiiiiiieiiiieiieretrecesresassessssosassesas 403
VS 2010 XML Editor ..ot 404
XML PrefiXes .o e 404
XML EIEBMENS ottt 405
ATIIDULES ottt 405
NAMESPACES .ottt ettt ettt et e et e e e e e e e 406
The XML MENU ..ot e e e 407
Configuring XML OptionsSouiutit ittt eas 407
SUMIMATY oottt et et et e e e e e e e 407

B Introduction to XAMLiuiiiiiiiiiiiiiiiiiiiiieieieienieicneencnnennns 409
Starting @a WPE Project ..o 410
Elements as Classes cuititt ittt e e 411
Attributes as Properties o.iouiini it e 411
Executing the XAML Document —oiuiiuiiniiniiiii i 411
Property EICMENtS ... 412
Markup EXIENSIONS ..ottt 414
SUMMATY e e 416

1 1 1<) 417

This page intentionally left blank

Acknowledgments

Awork of this magnitude is never the ramblings of a single author, but a successful
combination of dedication from a team of highly skilled professionals. I would like
to personally thank several people who helped make this book possible.

Jane Brownlow, Executive Editor, helped kick off the book and got it started on the
right path. Megg Morin, Acquisitions Editor, took the reins from Jane and led the rest
of the way. Joya Anthony, Acquisitions Coordinator, helped keep the flow of chapters
moving. Madhu Bhardwaj, Project Manager, and Patty Mon, Editorial Supervisor, helped
coordinate copy edits and final layout. I would really like to thank you all for your
patience and assistance. There are many more people at McGraw-Hill who helped put this
book together, and I am appreciative of their contributions and professionalism.

Roy Ogborn was the technical editor for this book. I’ve known Roy for several years
and was delighted when he agreed to tech edit the book. Besides catching many of my
errors, Roy provided valuable insight that made a difference in several areas, continuously
asking the question of whether a beginner would understand a concept, what is the proper
application of the language to accomplish a goal, and perspective on what parts of a
technology needed emphasis. Thanks to Roy for outstanding technical editing and advice.

xvii

This page intentionally left blank

Introduction

isual Studio has been the primary integrated development environment (IDE) for

Microsoft software development for several years. Visual Studio 2010 (VS), the
subject of this book, is therefore a mature evolution, building upon the success of its
predecessors. This book will show you how to leverage Visual Studio 2010 to your
advantage, increasing your skill set, and helping you become more productive in building
software. The software you will learn to write will be for .NET (pronounced “Dot Net”),
which is a Microsoft platform for writing different types of applications.

As the title suggests, this is a book for beginners. However, there are many opinions
about who a beginner is, so let’s discuss what beginner means in the context of this book.
You should probably have some understanding of what programming is from a general
perspective. It would help to have at least written a batch file, macro, or script that
instructed the computer to perform some task. A beginner could also be someone who
has written software with technology, such as Cobol, Dreamweaver, or Java, but who is
unfamiliar with Visual Studio. Whatever your background, this book provides a gradual
on-ramp to developing applications with Visual Studio 2010.

Xix

XX Microsoft Visual Studio 2010: A Beginner's Guide

This book has 13 chapters and is divided into four parts and a couple of appendixes as
reference material. The following provides an overview of each section:

Part I: Understanding Visual Studio 2010 Essentials Chapter 1 begins with an
explanation of what VS is, its benefits to you, and what type of applications VS will
help you build. Hands-on guidance starts at the point of installation, giving you tips
as to what is being installed and where it goes on your computer. Chapters 2 through
4 are an introduction to C# and VB, two of the most widely used programming
languages supported in VS. Notice that the titles of these chapters include “Just
Enough,” indicating that you will learn the language features you need throughout
this book. As you progress through the book, you’ll be exposed to all of the language
features discussed and see how they are used. Even if you already know how to
program, you might want to peruse the programming language chapters anyway
because I've sprinkled in dozens of valuable tips that will make your coding
experience in VS much more pleasurable.

Part II: Learning the VS 2010 Environment There are a few universal tasks most
developers perform every day, which include working with projects, debugging code,
and manipulating data. While Chapter 5 is titled “Creating and Building Projects,”
there is much involved when working with projects. Pay particular attention to the
guidance on assemblies and class libraries, as they tend to become more prominent
as your development activities progress beyond simple programs. Regardless of your
development philosophy, the need to fix bugs has always existed and will continue

to be important in the future. Chapter 6 is designed to help you use the many tools of
VS to find and fix bugs. Another common task you’ll have is working with data. VS
allows you to create databases, add tables, and much more. When the database is ready
to use, you’ll learn how to write code that works with the database. I chose to cover
LINQ to SQL because it’s one of the simpler database technologies, yet powerful
enough for professional application development.

Part III: Building Programs with VS 2010 With the foundations of programming
languages and a feel for the VS environment, you’ll be ready to use VS to build
applications. The .NET platform supports various technologies, and this book takes
a forward-looking approach, choosing technologies that were the most recently
introduced. The focus in these chapters is not to teach you everything about these
technologies, which can fill entire books themselves, but rather to show you how to
leverage VS in building applications. You’ll get the foundations that will give you a
head start in building your own applications. Both Chapters 8 and 10 use a form of

Intfroduction

Extensible Markup Language (XML) called XML Application Markup Language
(XAML). Considering that this is a beginner’s book, I added a couple of appendixes
that cover XML and XAML. I recommend that you read the appendixes before
reading Chapters 8 and 10. Additionally, you should read Chapter 8 before reading
Chapter 10, because many of the same concepts used to work with Windows
Presentation Foundation (WPF), a technology for building desktop applications,
are applicable to Silverlight, a technology to build Web applications. The other two
chapters in this part will show you how to build Web applications with ASPNET
MVC and how to create Web services with Windows Communications Foundation.

Part IV: Enhancing the VS 2010 Experience In addition to all of the wizards,
tools, and editing help that VS offers, you can extend VS to make it work even better.
Chapter 12 shows you how to create your own project and project item wizards, how
to create code snippets that automatically generate code, and how to create macros
that automate the VS environment. If the macro capability you learn about in VS
isn’t powerful enough, read Chapter 13, which shows you how to build an Add-In,

a program that you can install to add new features to VS.

From installation to customization of the IDE, VS is a helpful and powerful tool.

I hope you enjoy this book and that it helps you learn how to make VS work for you.

This page intentionally left blank

Part I “

Understanding Visual
Studio 2010 Essentials

This page intentionally left blank

Chapter 1

Introducing Visual
Studio 2010

4 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Learn What Visual Studio 2010 Can Do for You
Install and Choose Among Installation Options

Understand What Types of Applications You Can Build

Your first experience with Visual Studio (VS) 2010 is often installation. As with most

software, VS is rather easy to install; this chapter describes the installation process
and gives you tips to help understand available options. Once installation is complete,
you’ll open VS for the first time and need to know how to navigate the VS environment;
this chapter gives you a high-level view of how VS is organized, how to find the features
you need, and how to work with windows. Finally, you’ll learn how to find the different
application types that VS helps you build. At this point, you know that VS will help you
build .NET applications, but let’s start off with a more detailed explanation of what VS
will do for you.

What Is Visual Studio 2010 About?

Visual Studio 2010 (VS) is an integrated development environment (IDE); a set of tools
in a single application that helps you write programs. Without VS, you would need to
open a text editor, write all of the code, and then run a command-line compiler to create
an executable application. The issue with the text editor and command-line compiler is
that you would lose a lot of productivity through manual processes. Fortunately, you have
VS to automate many of the mundane tasks that are required to develop applications. The
following sections explain what VS will do for you and why VS is all about developer
productivity.

Automatically Generated Code

VS includes a suite of project types that you can choose from. Whenever you start a new
project, VS will automatically generate skeleton code that can compile and run immediately.
Each project type has project items that you can add, and project items include skeleton
code. In the next chapter, you’ll learn how to create projects, add project items, and view

Chapter 1: Infroducing Visual Studio 2010

automatically generated code. VS offers many premade controls, which include skeleton
code, saving you from having to write your own code for repetitive tasks. Many of the more
complex controls contain wizards that help you customize the control’s behavior, generating
code based on wizard options you choose.

Rapid Coding Experience

The VS editor optimizes your coding experience. Much of your code is colorized; you
have Intellisense, tips that pop up as you type; and keyboard shortcuts for performing a
multitude of tasks. There are a few refactorings, features that help you quickly improve
the organization of your code while you’re coding. For example, the Rename refactoring
allows you to change an identifier name where it is defined, which also changes every
place in the program that references that identifier. VS introduces even more features,
such as a call hierarchy, which lets you see the call paths in your code; snippets, which
allow you to type an abbreviation that expands to a code template; and action lists for
automatically generating new code.

Everything at Your Fingertips

You’ll really want to learn how to navigate the VS environment because a plethora of
tools are available to aid you in your quest to rapidly create quality software. You have
the Toolbox jam-packed with controls, a Server Explorer for working with operating
system services and databases, a Solution Explorer for working with your projects, testing
utilities, and visual designers. By the way, there are compilers too.

Customizability and Extensibility

You can customize many parts of the VS environment, including colors, editor options,
and layout. The options are so extensive that you’ll need to know where to look to find
them all. If the out-of-the-box VS development environment doesn’t offer a feature you
need, you can write your own macros to automate a series of tasks you find yourself
repeating. For more sophisticated customization, VS exposes an application programming
interface (API) for creating add-ins and extensions. Several third-party companies
have chosen to integrate their own applications with VS. For example, Embarcadero’s
Delphi language and development environment is hosted in Visual Studio. The rich and
customizable development environment in VS helps you work the way you want to.

As you move through this book, keep these important concepts in mind and look for
all of the tips that will help you use VS to your advantage. Your first step in using VS will
be installation, which is discussed in the next section.

5

6 Microsoft Visual Studio 2010: A Beginner's Guide

Installing Visual Studio 2010

Hopefully the preceding discussion whets your appetite on what VS can do for you. If
you haven’t already installed VS, this section walks you through the setup process. The
guidance along the way will explain how to choose among available options to customize
the installation to your needs. The following steps explain how to install VS:

System Requirements

As of this writing Microsoft recommends you have a 32-bit x86 or 64-bit (x64) CPU,

at least 1IGB RAM, a 5400 RPM hard disk drive, 3GB hard disk space, DVD-ROM,
DirectX video at 1280 x 1024 resolution, and a 1.6 GHz processor. Recommended
operating systems include Windows Vista (all versions except for Starter), Windows XP
SP2 or later (all versions except for Starter), Windows 7 (only Ultimate at the time this
chapter was written), Windows 2003 (SP1 or R2 or later), and Windows 2008 (SP1 or
R2 or later). Be sure to check Microsoft Developer Network (MSDN) online, as system
requirements can change over time.

1. When you first place the VS DVD into the drive, you’ll see the Microsoft Visual Studio
2010 window, shown in Figure 1-1. Available options are to Install Microsoft Visual
Studio 2010 and Check For Service Releases. Click Install Microsoft Visual Studio 2010.

e g e =] =)

Q®) Visual Studio 2010

Install Microsoft Visual Studio 201¢
w Install Microsoft Visual Studio 2010 features and required
components.
AL Check for Service Releases

E(”-! Check for the |atest Service Releases to ensure optimal
B functionality of Microsoft Visual Studio 2010,

[ViewReadMe | [Eat

Figure 1-1 Microsoft Visual Studio 2010 Setup window

Chapter 1: Infroducing Visual Studio 2010

L7 Microsoft Visual Studio 2010 Ultimate RC =] @ | 5= |

Wicrgofe "
OB Visual Studio 2010 Uttimate Setup

Welcome to the Microsoft Visual Studio 2010
Ultimate RC installation wizard.

Thiz wizard guides you through installing this program
and all required components.

Help Improve Setup

You can submit information about your Visual Studio
setup experiences to Microsoft. To participate, check the
box below.

“fes, gend information about my setup experiences to Microsoft
Corporation.

ngor mare infarmatien, read the

Setup is loading installation components.

< Previous Next = Cancel

Figure 1-2 Setup Welcome window

2. The next window you’ll see, Figure 1-2, is the welcome window, titled Microsoft Visual
Studio 2010. Figure 1-2 shows that I'm installing the Ultimate version. Installation for
other versions is similar, but the number of features available to install varies.

If you check the box on this page in the Help Improve Setup section, the installer

will gather logs produced during the setup process and send them across the Internet
to Microsoft after the setup is complete. To help you make an informed choice as to
whether to check this box, there is a Privacy Statement link under the check box to
click and read if you would like more information about what Microsoft does with
setup information. When you’re ready, click Next. After setup components are loaded,
you’ll see the licensing screen in Figure 1-3.

7

8

Microsoft Visual Studio 2010: A Beginner's Guide

[Microsoft Visual Studio 2010 Ultimate RC Setup - Start Page == 5

Mot .
O® Visual Studio 2010 Utimate Setup

'E Please exit all applications before Be sure to carefully read and understand all the rights and restrictions described
¢ ' continuing with the installation. in the license terms. You must accept the license terms before you can install the
software,

MICROSOFT PRE-RELEASE SOFTWARE LICENSE TERMS ~
@® Setup will '”E‘ta_” th_e following Lo pONSMS: MICROSOFT VISUAL STIUDIO 2010 PRODUCT FAMILY PRE-RELEASE 4
+ Microsoft Application Error Reporting

+ VC 9.0 Runtime (x86) These license terms are an agree_ment b_etween Microsoft Corporation {or
. based on where you live, one of its affiliates) and you. Please read them.
+ VC 10.0 Runtime (x86) They apply to the pre-release software named above, which indudes the
+ Micrasoft .NET Framework 4 media on which you received it, if any. The terms also apply to any Microsoft

+ Microsoft Visual Studio 2010 Ultimate RC

Press the Page Down key to see more text.

@ 1 have read and accept the license terms.;

() 1 do not accept the license terms.

To install, vou must accept the license terms and
enter a valid 25-character product key, where
prompted.

< Previous Next =] [Cancel

Figure 1-3 Setup Licensing window

3. In Figure 1-3, you’ll see what components will be installed. You’ll need to read the VS
license to ensure you understand what the terms are. The licensing terms can differ,
depending on what type of package you acquired and your particular country or region.
Once you’ve read the license, you’ll need to check “I have read and accept the license
terms” to proceed. Next, enter the license key that comes with your software and enter
your name. The installer will automatically fill in the product key if you downloaded
VS via Microsoft Developer Network (MSDN). Click Next and you’ll see options for
customizing product installation.

4. Figure 1-4 lets you choose between full and custom installation. If you click the
Custom option, you’ll be able to choose precisely which components should be
installed. This is a good opportunity to uncheck the items you won’t ever use. If this is

Chapter 1: Infroducing Visual Studio 2010

Select features to instalk:

Complete Visual Studio installation. Install all
programming languages and tools.
(0 Custom

Select which programming languages and tools
to install on the next page.

D;- Microsoft Visual Studie 2010 Ultimate RC Setup - Options Page

Mot .
O® Visual Studio 2010 Utimate Setup

Feature description:

Installs the Visual Studio 2010 Ultimate integrated Tl

environment together with modeling, development, testing,
and deployment components that can simplify the entire
development process and help ensure high-quality solutions.
Provides tools for building solutions on Windows, the Web,
Azure, the Office system, ShareFoint, SQL Server, and other
platforms by using Visual Basic, Visual C#, Visual C++, or
Visual F#.

m

Includes these advanced features: Test Impact &Analysis, -

Product install path:

=] =)

C:\Program Files\Microsoft Wisual Studio 10.0%
Disk space requirements:
Volume Disk Size Awvailable Required Remaining
[0 M1GE 26.8GE 7.3GH 19.5GE
< Previous] [Install] [Cancel

Figure 1-4 Setup Customization window

your first installation and you have plenty of storage, you might want to go through the

list and check everything to take a look at what is available. You can always return to
this installation later and make adjustments.

The configuration screen in Figure 1-4 shows that you can also change the location of

where to install VS. Take note of the installation location because this is where you will
go to find sample code, common assemblies, and more items affecting the development
environment. Evaluate the disk space requirements to ensure you have enough available
storage. You’ve now completed the configuration options for installation. Click Install to
start the installation. You’ll see a screen similar to Figure 1-5 during the installation process

where the small check marks indicate which VS components have successfully installed.

9

10 Microsoft Visual Studio 2010: A Beginner's Guide

M -
QO Visual Studio 2010 Utimate Setup

Installing Components:

3

=]

v Microsoft Application Error Reporting

v VC 5.0 Runtime (x86)

v WC 10.0 Runtime (x86)
-9

n

]

]

n

n

n

Microsoft .NET Framework 4

Microsoft Visual F# 2.0 Runtime

Microsoft Visual Studio Macro Tools

TFS Object Model (x36)

.NET Framework 4 Multi-Targeting Pack

Microsoft Visual Studio 2010 Ultimate RC

Microsoft Web Deployment Tool (x86)
nm Microsoft ASP.NET MVC 2 - Visual Studio 2010 Tools
nm Microsoft ASP.NET MVC 2
nm Microsoft Silverlight
I Microsoft Silverlight 3 SDK
I Microsoft Visual Studio 2010 Tools for Office Runtime (x886)
I Microsoft Office Developer Tools (x86)

Installing Microsoft MET Framework 4.

[<Erevious][et >][Cancel]

Figure 1-5 Setup Progress window

5. During the installation, the VS installer will need to reboot your computer, showing the
restart message in Figure 1-6. Make sure you close any applications you currently have
open so that you don’t lose your work, and then click Restart Now.

You must restart your computer to complete the installation. Setup will
automatically continue after your computer has restarted.

Restart Later

Figure 1-6 Setup Restart window

Chapter 1: Infroducing Visual Studio 2010

Ef Microsoft Visual Studio 2010 Ultimate RC Setup - Finish Page | B (S

iergsot: .
OO Visual Studio 2010 Uttimate Setup

success (i) Security Notice: Highly Recommended
Visual Studio 2010 has been installed and setup It is also recommended that you choose to optin
is complete. to the Microsoft Update service to make sure you

receive all the available updates for this and
other Microsoft products.

® Read the security notes

® \iew the readme notes

® Examine the installation log

Fill up your tool box.

Install extensions from the visual Studio Gallery
that integrate with Visual Studio to further
enhance your development productivity.

Help is just a click away!

Clicking the button below will launch the Help
Library Manager which will guide you through
configuring local help for Visual Studio. More

info...
nstall Documentation

| <Previous | [Fnish | | Cancel |

Figure 1-7 Setup Success window

6. When installation completes without error, you’ll see the Success window, shown in
Figure 1-7. If you have errors during installation, this window will give you guidance
on what to do to solve the problem.

Your installation is now almost complete. You can install product documentation by
clicking the Install Documentation button, shown in Figure 1-7. The initial installation
screen that appeared when beginning the installation will reappear, as shown in Figure 1-8.
You should also check for service releases; not only for the updated functionality to VS,
but also because service releases often include important security updates.

You are now ready to run VS for the first time. At that point, you’ll need to perform
one more easy configuration step, where you will choose your default environment
settings, as shown in Figure 1-9.

11

12

Microsoft Visual Studio 2010: A Beginner's Guide

i Microsoft Visual Studio 2010 Setup

O Vistal Studio 2010

Install Microsoft Visual Studio 2010
w Install Microsoft Visual Studio 2010 features and required
components.
Check for Service Releases
N

Check for the latest Service Releases to ensure optimal
functionality of Microsoft Visual Studio 2010.

View ReadMe | |

g

Figure 1-8 Checking for service releases

m
Wicrosoét -
O Visual Studio 2010 Utimate

Before you begin using the application for the first time, you need to specify the type of development
activity you engage in the most, such as Visual Basic or Visual CZ. This information is used to apply a
predefined collection of settings to the development environment that is designed for your
development activity.

You can choose to use a different collection of settings at any time. From the Tools menu, choose
Import and Export Settings and then choose Reset all settings.

Choose your default environment settings:

General Development Settings Description:
Project Management Settings Customizes the environment to maximize code editor
Visual Basic Development Settings screen space and improve the visibility of commands
specific to C#, Increases productivity with keyboard

Visual C++ Development Settings shortcuts that are designed to be easy to learn and
Visual F# Development Settings use.
Web Development
Web Development (Code Only)

[Start Visual Studio] [Bl

Figure 1-9 Default Environment Settings window

Chapter 1: Infroducing Visual Studio 2010

The choice you make for default environment settings depends a lot on what
language or environment you’ll use to write software in. The environment settings
choice isn’t locked in stone and can be reset if you decide you don’t like the settings.
A later section of this chapter, “Modifying Environment Settings after Setup,” explains
how to change environment settings. This book covers both VB and C#, so you would
most likely want to choose the setting specific to the language you will use. The
examples in this book will use either VB or C# settings, depending on the topic. The
choice of settings determines how VS will lay out the windows and the default options
that are set throughout the VS IDE.

NOTE

C# or VB, which Should | Choose? Both C# and VB are first-class languages on the
NET platform. The languages themselves are stripped down to bare syntax, with all
additional services moved into the .NET Framework Class Library, which is common
to all languages. There are a few small differences between the languages, but in
reality, the choice really comes down to personal preference. In practice, knowing
both languages is an advantage because much has been written in articles and books
showing how to use .NET techniques that doesn’t depend on which language was
used. You'll not want to miss out on excellent content regardless of the language it is
written in.

You should now have a good installation with the configuration and environment
settings of your choosing. With VS open for the first time, the next section describes the
high-level parts of the Start page.

Navigating the Visual Studio 2010 Environment

This section is a high-level view of VS, describing what is available when you first
start Visual Studio 2010, also known as the Visual Studio integrated development
environment, commonly known as the IDE, which is pronounced by saying the letters
I-D-E. Seeing what is available will help you find features more quickly. Additionally,
knowing what is available by default will help you differentiate between default
functionality and the context-sensitive features of the software items you’re working on.
Figure 1-10 shows how VS appears when first started. It refers to portions of the screen,
helping you see how the IDE is organized. The following description will associate each
feature with a name so that you can understand where to look when discussing these features
in more depth throughout the rest of this book.
The following sections describe portions of the Start screen shown in Figure 1-10.

14 Microsoft Visual Studio 2010: A Beginner's Guide

&9 Start Page - Microsoft Visual Studio | |
File [dit View Debug Teom Data Tools Architecture Test Analyze Window Help _
v b ase fo- R ' HIFRER V. I R e RS | el Fee A 3 - R RO

Q® Visual Studio 2010 Utimate

g Giet Started | Guidance and Resources Latest News
hl Connect To Team Foundation Server

. Woelcome Windows Web Cloud Office SharePoint
[0 1 NewProject..

"] Open Project...

| What's New in Visual Studio
2010

Leam about the new festures
included in this release.

Recent Projects

Vizual Studio 2010 Uveniew
Whalt's New in the NET
Framework version 4
What's New in C#
Lustomze the Visual Rudie
Start Page

1 Creating Applications with Visual Studio

[#] Close page after project load
[¥] Show page on startup

5 solution Explorer LR R

Figure 1-10 Visual Studio 2010 Start screen

The Menu

At the very top left of Figure 1-10, you’ll see the menu bar, which includes the words
“File,” “Edit,” “View,” “Tools,” and so on. The menu bar is a standard part of most
windows applications. Besides standard file management functionality, the File menu is
where you visit to create new projects. The File menu also gives you access to recently
opened files and projects.

The Edit menu has your standard cut, copy, and paste operations. It also gives you
access to a bookmark feature for providing easy navigation through source code.

It would be worth your effort to explore the View menu to see what is available, but if
you are just learning Visual Studio and how to write software, it’s best to not click these
different views just yet; we’ll explore most of those views and what they’re used for later.
The View menu gives you access to all of the tool windows in VS. The View menu also
has a menu item named Other Windows that includes more application windows that will
come in handy as you create new software.

Chapter 1: Infroducing Visual Studio 2010

The Tools menu contains a grab-bag of functionality; for instance, you can attach a
debugger to see your other programs run, line by line; connect to a database for data; set
add-ins, macros, and more. One very important menu item on the Tools menu is Options,
which exposes hundreds of settings for customizing your VS environment.

You can use the Test menu to find all of the functionality for performing unit tests to
test your new software one part at a time. This is also where other editions of VS include
access to other types of testing tools.

The Analyze, Architecture, and Team menus have advanced functionality for improving
the performance of an application, working with application architecture, and integrating
with Microsoft’s Team Foundation Server.

The Windows and Help menus are similar to most other application types, where the
Windows menu allows you to manipulate the VS windows and the Help menu is where
you visit to find the technical documentation on VS.

TIP

Many menu items contain shortcut keys that perform the same action as selecting the
menu item. If you are curious about what shortcut keys are associated with a particular
action, you can often find them by opening the menu to see if there are shortcuts
associated with that action. For example, to open the Solution Explorer window and
visit the View menu, the shortcut keys are CTRL-W, S.

Toolbar
Beneath the menu in Figure 1-10, you’ll find a toolbar. The toolbar contains frequently
accessed functionality that is a subset of what is available via menus. The toolbars are
context-sensitive, showing and hiding depending on what you are doing in VS. You can
display any toolbar by selecting View | Toolbars.

You can also customize toolbars by right-clicking the toolbar of your choice, scrolling
to the bottom of the list, and selecting Customize. The toolbar customization window
allows you to add any feature you would like to the current toolbar.

Work Area

In the center of Figure 1-10, you can see the Start page. This is the same area that you’ll
use to write code and work with visual designers. The Start page is divided into two
sections: project management and information. The project management side of the page,
on the left, offers a quick way to start new projects or work with a list of recently opened
projects. The information side of the page, on the right, contains resources to help you get
started with VS, such as links to the Microsoft Web site, walkthroughs to help you learn
new features, and a tab that updates with the latest developer news from Microsoft.

15

16 Microsoft Visual Studio 2010: A Beginner's Guide

Toolbox

On the far left side of Figure 1-10 is a vertical tab, titled Toolbox, which contains a context-
sensitive list of controls that can be dragged and dropped onto the current designer surface.
The term “‘context-sensitive” means that certain items are visible or hidden, depending on
where you’ve clicked last or what context you are working in, such as creating or editing
anew Web page. If you’re following along, you don’t have a designer surface open right
now, so the Toolbox is empty.

Solution Explorer

The Solution Explorer window, to the right of the Start page in Figure 1-10, is where your
solutions, projects, and project items will appear. This is where you can find and organize
all of the files and settings that belong to a project. In Figure 1-10, the Solution Explorer
is blank because there isn’t an open solution. If you close this window and need to find it
again, just remember the View menu discussed earlier.

Status Bar

At the very bottom of Figure 1-10 is the Status bar, which communicates what is happening
with VS at the current time. In Figure 1-10, the Status bar displays the word “Ready” to
indicate you can begin using VS at any time. As you work with VS, the Status bar changes
in a context-sensitive way to give you information specific to the task you are working on.
For example, the editor displays line, column, and other information pertaining to the status
of the editor.

Managing VS Windows

Looking at the VS screen in Figure 1-10, you can see how the windows in the work area—
Toolbox, Start, and Solution Explorer—are decorated with various title bars. Window
title bars include a set of three icons: Window Position (down arrow), Maximize/Restore
Down (window), and Close (cross). Figure 1-11 shows the Solution Explorer with these
three icons on its title bar at the top-right corner.

The Window Position allows you to treat the window as Dock, Float, Dock As Tabbed
Document, Auto Hide, and Hide. You can expand a window to fill the entire work area or
allow the window to be resized and float freely around the work area with the Maximize/
Restore Down icon. In the docked position, the Maximize/Restore Down icon becomes
a pin that can be used to pin the window open or allow it to slide shut. The Close icon
allows you to close a window. The following sections describe how use these title icons to
manipulate these windows through expanding and collapsing, docking, floating, tabbing,
and closing and opening.

Chapter 1: Infroducing Visual Studio 2010 17

Selution Explorer] Bl

f-a Solution Explorer

Figure 1-11 Window title bar icons

Expanding and Collapsing Windows

Hovering over the Toolbox tab will expand the Toolbox and display a set of three icons in
the title bar of the Toolbox window: Window Position (down arrow), Hide (pin), and Close
(cross). You can see what the Toolbox window looks like when expanded in Figure 1-12;
the pin in the Hide icon is sideways and the vertical tab still appears in the left margin.

59 Start Page - Microsoft Visual Studio | e |
e [dit Yiew Debug Teom Data Tools Architecture Test Agalyze Window Llelp
e b e ™ < IR T, S IR e R G 2 | Rt fe L 2 - e A

el Toolho: -8 X = Soluticn Frplorer

4 General

There are no usable cantrols in this group. Drag an
stem onto this tod to add it to the toolbox, nate

et Started | Guidance and Resources Latest News

cicome Windows Web Cloud Office SharePoint

= What's New in Visual Studio
2010
Leam about the new features
included in this release.
Visual Studic 2010 Overview
What's New in the .NET
Framework version 4
Whal's New in C#
Customize the Visual Studic Start
Page

1 Creating Applications with Visual Studio

3 Solution Explorer L URE e

Figure 1-12 Expanded Toolbox

18 Microsoft Visual Studio 2010: A Beginner's Guide

If you move the carat away from the Toolbox, the Toolbox will collapse and turn back
into a tab on the left side of the screen.

For any collapsed window, such as the Toolbox, you can expand that collapsed
window and click the Hide (pin) icon to pin the window, which will make the window
layout similar to the Solution Explorer. Figure 1-13 shows the pinned window; the pin in
the Hide icon (above the Auto Hide tooltip) is vertical and you no longer see the Toolbox
tab in the left margin.

Clicking the Hide icon on any expanded window will cause the window to collapse
and display as a tab, similar to the Toolbox. Another way to collapse a window is by
selecting the Auto Hide option on the Window Position (down arrow) menu.

Docking Windows

The Dock option displays the window in an open docked position, similar to the Solution
Explorer in Figure 1-10. You can move a docked window to any position in the work
area. To move a docked window, select its title bar and drag the window out of its current
position. Figure 1-14 shows VS when you’re dragging a window.

= e

Lle Edt View Debug Teom Data Tools Arhitecture Test Anabyze Window Lielp

bR A S R e = e e | Bl e o - e R
Toulbex - B x| stare Page x = Solution Frploer - B X
4 General hy

= . < Mcrenir <
There are no usable controls in this group. m T
Urag an tem onto this test to add it to the Vlsual StUdIG 2010 Uh]mate

toolbox,

o Guidance and
L Connect To Team Foundation Server fecoarias

ET‘ MNew Project...

f‘ﬁ Open Project...

Latest News

Get Started
Recent Projects
Welcome Windows
Web Cloud (ffice
SharcPeint Data

¥ Close page after project load
[¥] Show page on ctartup

@ RULLERSRITETY I [eam Explorer

Ready

Figure 1-13 Pinned Toolbox

Chapter 1: Infroducing Visual Studio 2010

'©0 Start Page - Microsoft Visual Studio =
b R A e A e S e = = | B Erlein fe P 2 o

Q& Visual Studio 2010 Utimate

s Get Started Guidance and Resources Latest MNews
| Connect To Team Foundation Server

Welcome Windows Web Cloud Office Solution Explorer

New Praject... \A
- 5

Open Project.., ‘What's New in Visi

1l Learn about the new

:jrentpro,-'ects | wa ‘T:‘U:Oh:

hat’s hlew in C#
Lustemize the Visual

] Creating Applications with Visual St

.3 Selution Explorer

= Extending Visual Studio

[¥] Close page after project load =
[¥ Show page on startup i‘

- 5 BPM
P o o0t0

Figure 1-14 Dragging a window for docking

As shown in Figure 1-14, you’ll see a visual set of icons appear over the workspace,
indicating the docking zones where you can move the window to. The shadow of the
window will show what the new location will be whenever you drag a window into a
docking zone. Dropping the window into the docking zone will move the window from its
old docking zone into the new docking zone.

Floating Windows

The Float option allows windows to appear anywhere in the VS IDE, where you can move
them at will. You move a floating window by selecting the floating window’s title bar and
moving the carat to the new location where you want the window to be. Alternatively,

you can double-click on the title bar. Figure 1-15 shows the Toolbox floating over other
windows.

19

20 Microsoft Visual Studio 2010: A Beginner's Guide

&0 St Page - Microsoft Visual Studio = |
Dle Edit View Debug Teom Data Tools Amhitecture Test Apslyze Window Llelp
e b Ao ™ |- HF R T I R e R G 2 -] Rt Bea B8 R R

Sulutican Fapluser

fizy

O Visual Studio 2010 Uttimate

Get Started | Guidance and Resourcel

4 Genesal

+ .
b Conncet Te Team Foundation Server There are n usable controbs in this geap.

) Welcome Windows Web Cloud O Drag anitem onlo this Leat Lo add it Lo the
31 Mew Project..

Diala toolbox.
f: Upen Project..,
= What's Ne
2010

Learn about|
ncluded in

Recent Projects

Vicual Studi
What's New
version 4
Whal's New
Customize t
Page

1 Creating Applications with

1 Clase e aftes praject lased
[#] show page on startup

Ready

Figure 1-15 Floating a window

Tabbed Windows

An example of using the Dock As Tabbed Document option is the Start page. Any window
set as Dock As Tabbed Document will appear as a new tab in the work area, along with all
the other windows set as Dock As Tabbed Document. For example, if the Toolbox is set

as Dock As Tabbed Document, it will become a tabbed document in the same group as the
Start window, as shown in Figure 1-16.

TIP

Position windows in a way that makes you most productive. In practice, you probably
don’t want your Toolbox to be a tabbed window. You'll see examples in later chapters
of this book that drag-and-drop items from the Toolbox to a designer page, which is
also laid out as a tabbed document window. So, trying to drag-and-drop between two
tabbed document windows can be cumbersome. There are several options for working
with Windows in VS, and after working with VS for a while, you'll want to pick the
layout that works best for you.

To change a window from a tabbed document, select the tab and drag the window
away from the other documents, making it a floating window.

Chapter 1: Infroducing Visual Studio 2010 21

[le [dit View Debug Tesm Data Tools Architecture Test Apalyze Window Lielp _
e b e ™ [« IR T I IR e RS G 2 -1 Rt Bea B8 - am R
L O Toolbox x - Soiotan Bl - 3%

4 General lizz)

There are no usable controls in this group. Drag an item onto this ted to add it to the toolbox,

3 Solution Explorer LR o
Ready

Figure 1-16 Tabbed document windows

Closing and Opening Windows
Clicking the Close icon on a window title bar will close the window. Another way to close
the window is by selecting the Hide option from the Window Position icon menu.

Reopening a window depends on what type of window it is: VS or Project Item. If the
window is from VS, you can re-visit the View menu and select the window you need to
open. Alternatively, you can use a keyboard shortcut key to open a window. These shortcut
keys for the windows are displayed on the right side of the menu item in the View menu.

Other windows are for project items in the Solution Explorer. In most cases, you
would re-open a project item by locating it in the appropriate project of Solution Explorer
and double-clicking it. There are edge cases where you open project items by right-
clicking the project item in Solution Explorer and selecting a menu item, but I’ll explain
those cases when I discuss them specifically in the rest of this book.

You can now manipulate windows, customizing the layout of your VS environment as
you need. Sometimes, though, you’ll want to reset your layout to the original default, as
you’ll learn about in the next section.

22 Microsoft Visual Studio 2010: A Beginner's Guide

Modifying Environment Settings after Setup

Reasons for modifying environment settings include wanting to reset everything back to a
default, importing shared settings from another developer, or switching between settings
for different projects. This section will explain how to modify your settings and achieve
each of these goals.

With VS open, select Tools | Import And Export Settings, which will start the Import
and Export Settings Wizard shown in Figure 1-17.

From Figure 1-17, you can see the options to Export, Import, and Reset settings. The
following sections explain each of these options.

Import and Export Settings Wizard
[

M Welcome to the Import and Export Settings Wizard

You can use this wizard to import or export specific categories of settings, or to reset the environment to
one of the default collections of settings.

What do you want to do?

©) Export selected environment settings

Settings will be saved out to a file so they can later be imported at any time on any machine.

(©) Import selected environment settings

Import settings from a file to apply them to the environment.

@ Reset all settings

Reset all environment settings to one of the default collections of settings.

< Previous Mext = Finish Cancel

Figure 1-17 Import and Export Settings Wizard

Chapter 1: Infroducing Visual Studio 2010 23

Exporting Selected Environment Settings

We’ll start off with export, which you might use to share your settings with another
developer. This could also be useful if you planned to make significant changes to your
settings and wanted a backup in case you wanted to revert to previous settings. To perform
the export, choose the “Export selected environment settings” option from Figure 1-17
and click Next to display the Choose Settings To Export window in Figure 1-18.

There is a tree of options you can choose from to determine what settings to export.
The warning sign indicates settings that you might not want to export for personal or
security reasons. The warning settings typically have something to do with system file
paths or something outside of VS that you wouldn’t normally share with other people.
After you’ve selected options, click Next to display the Name Your Settings File window
in Figure 1-19.

Import and Export Settings Wizard E
w_.E

¥, Settings with warning icons might expose intellectual property or other sensitive information. By
default, these settings are not selected. For more information, press F1.

Choose Settings to Export

Which settings do you want to export?

4 [H] Al Settings| Description:
Code Analysis Settings All settings that are available for import
b Database Tools and export.. Expand this category to see
I General Settings mais i
i [H].¥, Optiens
Visual Studio Team Foundation Server

l < Previous l [Mext > Finish

Figure 1-18 Choose Settings To Export window

24 Microsoft Visual Studio 2010: A Beginner's Guide

Import and Export Settings Wizard E
25
[

What do you want to name your settings file?

Exported-2010-02-11 vssettings

Store my settings file in this directory:

Name Your Settings File

ci\users\joe\documents\visual studio 2010\Settings ' -

Browse..,

Nt T H ——

Figure 1-19 Name Your Settings File window

The two text boxes in Figure 1-19 are for a filename and path where the settings file
will be saved. Notice that the default filename includes the date, which could be helpful
if you ever need to restore settings. Click Finish, which will perform the export and show
you the Complete window in Figure 1-20 after the export operation is done.

Click Close to close the window. With an exported settings file, you or another person
can perform an import with that file, as described in the next section.

Importing Selected Environment Settings
You would perform a settings import to restore previous settings, import settings from another
person, or change to specific settings for a project you’re working on. To perform an import,

Chapter 1: Infroducing Visual Studio 2010 25

Import and Export Settings Wizard =

-

Export Complete

Details:

[¥our settings were successfully exported to c\users\joe\documentsivisual studie 2010\Settings\Exported-
2010-02-11 vssettings.

To finish the wizard, click Close.

< Previous Mext > Finish

Figure 1-20 Export Complete window

open VS and select Tools | Import and Export Settings, which opens the Import and Export
Settings Wizard shown in Figure 1-17. Choose the “Import selected environment settings”
option and click Next to view the Save Current Settings window shown in Figure 1-21.

TIP

You can search for various color schemes for Visual Studio on the Internet to
download. One site, at the time of this writing, is http://winterdom.com/2007/11/
vs2008colorschemes; it offers schemes made for Visual Studio 2008 but that also
import into Visual Studio 2010.

http://winterdom.com/2007/11/vs2008colorschemes
http://winterdom.com/2007/11/vs2008colorschemes

26 Microsoft Visual Studio 2010: A Beginner's Guide

Import and Export Settings Wizard

Save Current Settings

4

Would you like to save your current settings before importing new settings?

@ Yes, save my current settings
Settings filename:

CurrentSettings-2010-02-11-1.vssettings

Store my settings file in this directony:
chusers\joehdecuments\visual studio 20100 Settings

) Ng, just import new settings, overwriting my current settings

l < Previous l [Mext = Finish

Figure 1-21 Save Current Settings window

The Save Current Settings window allows you to back up your current environment
settings before changing them. If you do a backup, you will be able to restore later in case
something doesn’t work out the way you intended with the import. You can choose not to
back up also. Click Next to view the Choose A Collection Of Settings To Import window

in Figure 1-22.

-

Browse...

Cancel

As shown in Figure 1-22, you can import some of the predefined settings that are
part of VS under the Default Settings branch or import custom settings under the My

Settings branch. Custom settings include the current settings and any other settings that
you’ve saved to the default path, shown in Figures 1-19 and 1-21. Optionally, you can

Chapter 1: Infroducing Visual Studio 2010 27

Import and Export Settings Wizard E

Choose a Collection of Settings to Import

Which collection of settings do you want to import?

4 /5 Default Settings | Description:
I;'_q General Development Settings
|:=T|_q Project Management Settings
|:=T'_q Visual Basic Development Settings
If& Visual C# Development Settings

If& Visual C++ Development Settings
If& Visual F# Development Settings
[55 Web Development
[5% Web Development (Code Only)

4 [My Settings
[Z CurrentSettings.vssettings
[Z Exported-2010-02-11.vssettings
If& Visual C# Development Settings

Browse...

Figure 1-22 Choose A Collection Of Settings To Import window

click Browse and navigate to the location where a settings file is located. After selecting
a settings file, click Next, which brings you to the Choose Settings To Import window
shown in Figure 1-23.

The Choose Settings To Import window allows you to specify only those settings that
you want in your environment. It will only update the settings checked in Figure 1-23.
All of your other current settings, those that are unchecked in Figure 1-23, will not be
changed. Click Finish to begin the import operation. When import is done, you’ll see the
Import Complete window, shown in Figure 1-24.

28 Microsoft Visual Studio 2010: A Beginner's Guide

Import and Export Settings Wizard @

]

¥, Settings with warning icons might contain values that could compromise your computer, By default,
these settings are not selected. For more information, press F1.

Choose Settings to Import

Which settings do you want to import?

4 [H] Al Settings | Description:
Code Analysis Settings All settings that are available for import
b Database Took and a(po¢. Expand this category to see
[D! General Settings TR d A
[» Options
Visual Studio Team Foundation Server

Mext > Finish | [Cancel

Figure 1-23 Choose Settings To Import window

Your import is now complete, and you can click the Close window. Another settings
option is to reset your current settings to one of the VS default options, explained next.

Resetting All Settings
You could reset settings if you wanted to restore the default settings in VS or if you
wanted to switch between default VS settings. For this book, I switched between default
settings for VB and C# to ensure the environment settings were appropriate for whichever
language I was discussing. To perform a reset, open VS and select Tools | Import And
Export Settings, which will open the Import and Export Settings Wizard shown earlier
in Figure 1-17.

Choose the Reset All Settings option and click Next. You’ll see the Save Current
Settings window, which is exactly the same as Figure 1-21. Choose your save option and
click Next to view the Default Collection Of Settings window shown in Figure 1-25.

Chapter 1: Infroducing Visual Studio 2010 29

Import and Export Settings Wizard @

L

4

Details:

Import Complete

Your settings were successfully imported from Exported-2010-02-11 vssettings.

To finish the wizard, click Close.

< Previous Mext > Finish Close

Figure 1-24 Import Complete window

Figure 1-25 shows that you can select among a set of default settings for VS. Each
of these default settings are the same as what you selected during installation, previously
shown in Figure 1-9 and the Default Settings branch of Figure 1-22. Choose a setting and
click Finish, which starts the reset operation. When the reset is done, you’ll see the Reset
Complete window, shown in Figure 1-26. The reset is now complete, and you can click
Close to close the window when you’re finished.

Earlier in the chapter, we discussed projects very lightly, but we will gradually dig
deeper as this book progresses. The next section takes you a little bit further by describing
what project types are available in VS.

30 Microsoft Visual Studio 2010: A Beginner's Guide

Import and Export Settings Wizard @
=

&—;1\:) Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

[Z General Development Settings Description:
|§—& Project Management Settings Optimizes the environment so you can

||§ Visual Basic Development Settings | foc_us on bL!I|dII"Ig world-class appllcatlons.
= This collection of settings contains

=T -
l_;l-’d stual C# Development SEttII"I-gS customizations to the window layout,

[3a Visual C++ Development Settings command menus and keyboard shortcuts
|==;d Visual F# Development Settings to make common Visual Basic commands

E& Web Development more accessible,

I;'_ﬂ Web Development (Code Only)

Next > SR H Gancel

Figure 1-25 Default Collection Of Settings window

Familiarization with Visual Studio Project Types

Visual Studio includes a plethora of project types, making it easy to build applications
with premade templates. The following discussion will show how to find what project
types are available and describe what those project types are.

To see what projects are available, select File | New | Project, as shown in Figure 1-27.

NOTE

If you've set your environment up for VB, you'll notice right away that the option to
select is File | New Project, which is only two menu choices, rather than 3 for C#.
While the exact wording and placement of options won't always match, you can rely on
the functionality being the same, except for when | explain otherwise.

Chapter 1: Infroducing Visual Studio 2010 31

Import and Export Settings Wizard

»
w Reset Complete

Details:

Your settings were successfully reset to Visual Basic Development Settings.

To finish the wizard, click Close.

< Previous Mext > Finish

Figure 1-26 Reset Complete window

In addition to a new project, Figure 1-27 shows that you can create a new Web site,
just open a file for editing, or open a wizard that creates a new project from existing files.
We’ll look at many of these options later in the book, but let’s take a look at the New
Project window, Figure 1-28, which opened as a result of selecting File | New | Project.

The New Project window in Figure 1-28 shows that there are many projects to select
from, including Windows, Web, Office, SharePoint, Cloud, Reporting, Silverlight, Test,
WCEF, and Workflow. Some of these project types don’t appear in Figure 1-28, but if you
scroll down the Templates list in the New Project window, you’ll see them. Figure 1-28
also shows the appearance for C# projects, but there are also similar projects for other
programming languages that ship with VS; including VB, C++ (pronounced see-plus-plus),
and F# (pronounced f-sharp). If you had selected VB settings during the setup process,

32

Microsoft Visual Studio 2010: A Beginner's Guide

New » @1 Project. Ctrl+Shift+N
Open D WebSite. Shilt+All+N
Close % Team Project..
5 Close Solution N Rl Ctrl+N
Save eiected Ree Cifss Project o Bl Cote
Save Selected fems As..
| & Save Al Ctrl+Shift+5
Espixt Templates. Get Started | Guidance and Hesources Latest News
Source Control » Welcome Windows Web Cloud Office SharePoint
4 Page Sctup... Data
| S Piint... Cul+P
Alt+T4 What's New in Visual Studio

Dat =
I 2010

Leam about the new festures
included in this release.

Recent Projects

Visual Studio 2010 Uveriew
What's New in the NFT
Framework version 4
What's New in C
Lustomaze the Visual Hudie
Start Page

1 Creating Applications with Visual Studio

[9] Close page after project load
[¥ Show page on startup

Figure 1-27 Selecting a New Project via the File menu

(e =

L SSa=ees:.)

« Salution Faplares

‘—g Selution Explorer | o RESTRESVEILTEN

10:04 PM
2/11/2010

% A

earlier in this chapter, the default set of project types would have been VB and C# projects

would be listed in the Other Languages branch. The following sections describe the types

of projects available, some of which you’ll learn how to create later in this book.

Windows Projects

Selecting Windows Projects will show you a list of project types that can be created for

desktop applications, including Windows Presentation Foundation (WPF), Windows

Forms, and Console. Console applications are for building

applications that don’t need a

graphical user interface (also known as GUI and pronounced “goo-ee”) and are generally

for creating utilities that administrators can write scripts with or for writing a quick test for

your program. You’ll be using Console applications when learning VB and C# languages

later in this book because it is a simple way to concentrate

on the language without any

distractions. Windows Forms is an older desktop GUI technology. The new desktop GUI
technology for .NET is called WPF, which is covered in a later chapter in this book.

Chapter 1: Infroducing Visual Studio 2010

New Project I)
Recent Templates [.NET Framework 4 ']Sorlby: [Default V] | Search Installed Templat 2 |
Installed Templates & —
; A E‘cﬁ] Windows Forms Application Visual C&# YRR
4 Visual C= il = A project for creating a command-line
Windows # application
Web @) | WPF Application Visual C#
Office
Cloud ?{:ﬁ Console Application Visual C#
Reporting - e
SharePoint ‘Eg ASP.NET Web Application Visual C#
Silverlight B
Test bec| Class Library Visual C#
WCF ot
Workflow B ‘E‘ﬁ ASP.NET MVC 2 Web Application Visual C#
Other Languages =C
OtherProject Types - Cﬁ] Silverlight Application Visual C#
¥
Online Templat -
m
Name: ConsoleApplicationl
Location: chusers\joe\documentsivisual studio 20104Projects -
Solution name: ConsoleApplicationl Create directory for solution
["] Add to source control
——

Figure 1-28 New Project window

Other windows projects include Windows Services, which are applications that are
always on and run as a service in the background without a GUI, Class Libraries for
holding reusable code often referred to as middleware, and Control Libraries for holding
graphical controls that can be dragged-and-dropped from the Toolbox onto a visual
designer within VS.

Web Projects

Web projects include ASP.NET, Server Controls, Web Services, and Dynamic Data. An
ASP.NET project allows you to write an application that is hosted by a Web server, such
as Internet Information Server (IIS), and runs in a Web browser. A Server Control project
enables you to build a library of GUI controls that can be dragged-and-dropped onto the
design surface of a Web page in VS. Web Services are reusable components that you

can call from across the Internet. An important feature of Web Services is that they use
ubiquitous protocols to enable code from any platform to call them, facilitating integration
among heterogeneous computing systems. Dynamic Data projects offer a quick way to
build a working Web site, based on an existing database schema.

33

34 Microsoft Visual Studio 2010: A Beginner's Guide

Office Projects

For years, developers have been writing Visual Basic for Applications (VBA) programs
to automate Microsoft Office applications. An Office project allows you to automate
Office applications through .NET using languages such as VB and C#. Supported Office
applications include Excel, Word, Project, PowerPoint, Outlook, Visio, and InfoPath.

SharePoint Projects

SharePoint is a technology for building portal-style Web applications. It is closely
associated with Office applications and managing workgroup collaboration. In order

to create and run SharePoint projects, the computer you use to run VS will need to be
running one of Microsoft’s server platforms, such as Server 2008. SharePoint does not run
on Windows 7, Vista, or Windows XP.

Database Projects

Database projects include a SQL Server project type, offering close integration with SQL
Server for building .NET code that runs inside of SQL Server. For example, you can write
stored procedures and functions in either C# or VB and have the benefit of the NET
Framework in your code. VS makes it easy to deploy your code to SQL Server with a
single mouse click.

Summary

By knowing the benefits of VS, you have an appreciation for what VS can do for you,
increasing your productivity through automatically generated code, rapid coding and
visual design, and extensibility. You should be able to install VS, choosing the options that
prepare the environment specifically for the work you want to do. Another set of skills
you gained was the ability to manipulate the layout of your environment and manage
environment settings, including how to get your environment back to the default settings
if you’ve made too many changes. Having grown acquainted with each of the major
features of the IDE, you can open VS and find the features that you need. With your
knowledge of the advantages of VS, proper installation, and awareness of VS capabilities,
you are now ready to start your first software development project, which you’ll learn
about in the next chapter.

Chapter 2

Learning Just Enough
C# or VB.NET:
Basic Syntax

35

36 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Learn Basics of Starting a Project
Use the VS Editor

Code Expressions and Statements

The .NET platform supports several different programming languages. Since all of the

languages run on the same platform and share the same class libraries, language choice
becomes a personal choice of preference. In other words, you can accomplish the same
tasks, regardless of what programming language you use. With .NET, you have a choice of
language but retain the same benefits of having all of the features of .NET available to you.

Visual Studio (VS) 2010 ships with four programming languages: C#, C++, F#, and
Visual Basic.NET (VB). The pronunciation of each of these languages, respectively, is See
Sharp, See Plus Plus, Eff Sharp, and Vee Bee. C# and VB are the two most popular .NET
programming languages and have the greatest support in VS. Therefore, this book uses both
C# and VB in all examples. While you may choose one of these languages as your favorite,
there is great benefit in knowing both. Most of what is written online, in magazines, and
in books contains examples for either C# or VB, and sometimes, but not always, both. You
might not want to miss great content because of a limited language choice.

Chapter 1 danced around projects and what is available. It was important to have that
overview, but I'm sure you’re eager to see some code. This chapter will be satisfying in
that you’ll learn how to create a project, see what code is generated, and learn how to add
code yourself. This is the first chapter of three that covers language syntax, combining
each language feature with tips on how VS helps you code. You’ll start off by creating a
simple project and then learn about language types and statements.

Starting a Bare-Bones Project

Chapter 1 described the project types that you can create. This chapter takes you a step
further; actually creating a project. Because the primary focus of this chapter is on
learning C# and VB, the project type will be a Console application. A Console application
is very simple, allowing you to read and write text from and to the Command Prompt
window. Later chapters introduce you to the project types used most, such as WPF

and ASP.NET.

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox

d O [-NET Framewark 4.0 vl Sort by: [Default v] [Search Installed Templa &
Recent Templates & e application Visual C# tomsole Applcasion
Type: Visual C#
Installed Templates WEF Browser Application Visual C# A project for creating a command-line
al — e application A
4 \isual C# [=
Windows E| 5 Console Application Visual C# |
Web T a— EE—
e |=|9°, Outlook 2007 Add-in Visual C#
I* SharePoint 4
Database e [’TO;__E ‘Word 2007 Document Visual C#
=
Online Templates
C& 'WCF Service Application Visual C# - -
Narme: FirstProgram
Location: CAVS52010MChapter02y - Browse...
Solution Name: FirstProgram Create directory for solution

[ok][cancel

Figure 2-1 The New Project window

To get started, open VS and select File | New | Project. You’ll see the New Project
window, shown in Figure 2-1. Your first task is to select Console Application as the
program type. Then set the program name to FirstProgram and specify a location of your
choice for where the project will be created. Other features of the New Project window
include the ability to specify the .NET Framework version, sorting options, icon size
options, and a search capability.

NOTE

It's often useful to choose a project location other than the default. The default is your
personal “My Documents” folder, which is long to type, cumbersome to navigate to, and
error prone. Choosing a shorter path helps alleviate these problems. If you're working
on a team with other developers, it's also helpful to use a common location for projects
where everyone has their files in the same location.

NOTE

In the example code that accompanies this book, the projects are named
FirstProgramCS (containing C# examples) and FirstProgramVB (containing VB
examples). You'll see this convention, specifying the language in the project name suffix,
in all of the code examples accompanying this book.

38 Microsoft Visual Studio 2010: A Beginner's Guide

Along the very top center of the dialog shown in Figure 2-1, the NET Framework
is the set of class libraries, runtime, and languages that is the development platform
supported by VS. VS allows you to target multiple versions of the .NET Framework,
including versions 2.0, 3.0, 3.5, and 4.0. VS will compile your code against the version
you choose. Generally, you’ll want to begin all new projects with the latest version, 4.0,
because you’ll want to be able to use the newest and most productive .NET features. The
primary reason for using an earlier version is if you must perform work on code that is
already written for an earlier version of .NET. The sorting and searching features to the
right of this selection enable you to find project types in different ways, whichever is most
comfortable for you.

Clicking OK will produce a Console application project in the programming language
you chose, which you can see in the Solution Explorer, shown in Figure 2-2. The Solution
Explorer in Figure 2-2 contains a solution, which is a container for multiple projects.
Later, you’ll gain a stronger appreciation for the role of the solution when organizing
projects to support a software application. Under the solution is the FirstProgram project.
Within the FirstProgram project are project items, such as files and settings. Many
different types of project items can go into a project, and the specific project items that go

T — =]
File Edt View Progect Build Debug Team Data fools Architecture [est Analyze Window Help

e Rl - B TREE R R R S A L [P - | MG fein S P - Em

O aerlEEs 2008 W3l

Program.cs X S 5olution Explorer -1 x

% FirstProgram.Program -| &% Mainstring[] args) LA E] A
~lusing System; ; Solution ‘FirstProgram' (1 project]
using System.lollections.beneric; « I & A FirstProgram
using System.Lling; v Sl Pmpani‘e;
using System.Text; . = References
4] Program.cs

*0q|0a] -

-Inamespace FirstProgram
5 class Progrean

El static vold Main(string[] args)

'14'3. Solution Explorer § CREETHEsVHETETS

B Error List
Ready

Figure 2-2 A Console application in the Solution Explorer

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 39

into a project depend on the project type. For example, there are project items that are part
of a WPF application but wouldn’t be part of a Console application. Of particular interest
in the FirstProgram project is the file named Program.cs (or Modulel.vb if programming
in VB), which is a code file, as we’ll discuss in the next section.

Examining the Code Skeleton

Having run the New Project Wizard for a Console application, you’ll see a file named
Program.cs (or Module.vb) that contains skeleton code in the editor. VS will create
skeleton code using built-in templates for most project types that you create. You're free
to add, remove, or modify this code as you see fit. Listing 2-1 contains the skeleton code,
which I’ll explain next.

Listing 2-1 Console application skeleton code

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Program

{

static void Main(string[] args)

{
}

VB:

Module Modulel
Sub Main ()
End Sub

End Module

40 Microsoft Visual Studio 2010: A Beginner's Guide

The skeleton code in Listing 2-1 is what VS created when the new Console application
was created. It is there to give you a head start on writing your program. What you now
have is a whole computer program. This program doesn’t do much of anything at this
point, but it will actually run and then end itself. Looking at the whole program, you can
see that there are sets of nested curly braces in the C# code. The VB code has Module and
Sub with corresponding End identifiers to indicate the boundaries of a block. The braces
in C# code always come in pairs and define a block. The following explanation works
from the inside out to help you understand what this code means.

The Main Method

The innermost block of the C# code is the static void Main(string[] args) definition,
which is called a method. The method in VB is called Sub Main and is identical in
purpose. You’ll learn later that methods are one way you can group code into logical
chunks of functionality. You can think of methods as actions where you, as the method
author, tell the computer what to do. The name of this particular method is Main, which is
referred to as the entry point of the program, the place where a Console application first
starts running. Another way of thinking about Main is that this is the place your computer
first transfers control to your program. Therefore, you would want to put code inside of
Main to make your program do what you want it to.

In C#, Main must be capitalized. It’s also important to remember that C# is case-
sensitive, meaning that Main (capitalized) is not the same as main (lowercase). Although
VS capitalizes your code for you if you forget to, VB is not case-sensitive. Capitalization
is a common gotcha, especially for VB programmers learning C#.

In C#, methods can return values, such as numbers, text, or other types of values, and
the type of thing they can return is specified by you right before the method name. In VB,
a Sub (a shortened keyword derived from the term subroutine) does not return a value,
but a Function does, and you’ll see examples soon. Since Main, in the C# example, does
not return a value, the return type is replaced with the keyword void. Methods can specify
parameters for holding arguments that callers pass to the method. In the case of Main, the
parameter is an array of strings, with a variable name of args. The args parameter will
hold all of the parameters passed to this program from the command line.

One more part of the C# Main method is the static keyword, which is a modifier that
says there will only ever be a single instance of this method for the life of the program. To
understand instances, consider that methods are members of object types where an object
can be anything in the domain of the application you’re writing, such as a Customer,
Account, or Vehicle. Think about a company that has multiple customers. Each customer
is a separate instance, which also means that each Customer instance contains methods

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox

that belong to each instance. If an object such as Customer has methods that belong to
each instance, those methods are not static. However, if the Customer object type has a
method that is static, then there would only be a single copy of that method that is shared
among all Customer objects. For example, what if you wanted to get a discount price

for all customers, regardless of who the customer is; you would declare a static method
named GetCustomerDiscount. However, if you wanted information that belonged to

a specific customer, such as an address, you would create an instance method named
GetAddress that would not be modified as static.

VB uses the term shared, which has the same meaning as static. Modules are
inherently shared, and all module methods must be shared. Therefore, the VB Main
method is shared.

In C#, the curly braces define the begin and end of the Main method. In VB, Main
begins with Sub and is scoped to End Sub. Next, notice that the C# Main method is
enclosed inside of a set of braces that belong to something called a class that has been
given the name Program. The VB Main method is enclosed in something called a module.
You’ll learn about the enclosing class and module next.

The Program Class

Methods always reside inside of a type declaration. A type could be a class or struct for
C# or a class, module, or struct in VB. The term fype might be a little foreign to you, but it
might be easier if you thought of it as something that contains things. Methods are one of
the things that types contain. The following snippet, from Listing 2-1, shows the type that
contains the Main method, which is a class in C# and a module (in this example) in VB:

class Program

{
}

// Main Method omitted for brevity

VB:

Module Modulel
' Main omitted for brevity
End Module

Most object types you create will be a class, as shown in the previous C# example.
In VB, you would replace Module with Class. Although VS uses Module as the default
object type for a new project, it’s a holdover from earlier versions of VB. In practice, you
shouldn’t use the VB Module but should prefer Class. The Program class contains the
Main method. You could add other methods to the Program class or Modulel module,

4]

42 Microsoft Visual Studio 2010: A Beginner’s Guide

which you’ll see many times throughout this book. The Console application defined the
skeleton code class to have the name Program. In reality you can name the class anything
you want. Whatever names you choose should make sense for the purpose of the class.
For example, it makes sense for a class that works with customers to be named Customer
and only contain methods that help you work with customers. You wouldn’t add methods
for working directly with invoices, products, or anything other than customers because
that would make the code in your Customer class confusing. Classes are organized with
namespaces, which are discussed next.

The FirstProgram Namespace

A namespace helps make your class names unique and therefore unambiguous. They

are like adding a middle name and surname to your first name, which makes your whole
name more unique. A namespace name, however, precedes the class name, whereas your
middle name and surname follow your first or given name. A namespace also helps you
organize code and helps you find things in other programmers’ code. This organization
helps to build libraries of code where programmers have a better chance to find what
they need. The .NET platform has a huge class library that is organized into namespaces
and assemblies; this will become clearer the more you program. The main .NET
namespace is System, which has multiple sub-namespaces. For example, guess where
you can find .NET classes for working with data? Look in System.Data. Another quick
test: Where are .NET classes for working with networking protocols like TCP/IP, FTP, or
HTTP? Try System.Net.

Another benefit of namespaces is to differentiate between classes that have the same
name in different libraries. For example, what if you bought a third-party library that has a
Customer class? Think about what you would do to tell the difference between Customer
classes. The solution is namespaces, because if each Customer has its own namespace,
you can write code that specifies each Customer by its namespace. Always using
namespaces is widely considered to be a best practice.

The Program class in Listing 2-1 belongs to the FirstProgram namespace, repeated
here for your convenience (in C#):

namespace FirstProgram

{
}

// Program class omitted for brevity

You can put many classes inside of a namespace, where inside means within the
beginning and ending braces for a namespace.

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 43

The using directives at the top of the C# part of Listing 2-1 are really a shortcut that
makes it easier for you to write code. For example, the System namespace contains the
Console class. If the using System directive were not present, you would be required
to write System.Console. WriteLine instead of just Console. WriteLine. This was a short
example, but using directives can help clean up your code and make it more readable.

A VB module must be declared at the global level, meaning that it can’t be added to
a namespace that you create. The following example demonstrates what a VB namespace
looks like:

Namespace FirstProgram
Public Class Customer

End Class
End Namespace
In this example, you can see that the FirstProgram namespace contains a Customer
class. The next task you’ll want to take on is writing code, but before doing so, let’s look
at some of the features of the VS Code editor.

An Overview of the VS Code Editor

The VS Code editor is where you’ll be performing much of your coding work. This section
will point out a few features you will be interested in and show you how to perform
customizations. Figure 2-3 shows the editor with the Console application skeleton code
from the C# part of Listing 2-1.

] Program.cs > AX
ﬁgFirslProg ram.Program » gﬁM ain(string[] args) !
E‘using System; *

using System.Collections.Generic;
using System.Ling;
using System.Text;

E‘namespace FirstProgram

Fi
(] E‘| class Program
|
5| static void Main(string[] args)
{
¥
H
X
P b

Figure 2-3 The VS Code editor

44 Microsoft Visual Studio 2010: A Beginner’s Guide

The following sections examine various elements of the Code editor, starting with
class and member locators.

Class and Member Locators
The two drop-down lists, class locator and member locator, at the top of the editor are for
navigating the code. If you have multiple classes in your file, you can use the class locator
drop-down list on the left to select the class you want to find, and the editor will move
you to the first line of that class declaration. In practice, I only put a single class within
a single file, so the class locator doesn’t get much attention. However, you will have VS
wizards that automatically generate code and put many classes in the same file, and the
class locator is very useful if you want to find a particular class and learn about what the
automatically generated code is doing. The member locator drop-down list on the top right
contains a list of methods and other members for the class selected in the class locator.
The only class member we’ve discussed so far is the method, but there are more, as you’ll
learn in upcoming chapters. Selecting a member causes the editor to move you to the
first line of that class member. Whenever you find yourself scrolling through a large file,
remember that the member locator will help you find what you’re looking for quickly.
The vertical bar on the left side of the editor is called the indicator margin, where
you’ll see icons for features such as bookmarks and debug breakpoints. The next section
discusses bookmarks.

Bookmarks

Figure 2-3 shows a bookmark on the line for the program class. Bookmarks allow you to
navigate code quickly without manual navigation when working with multiple documents
or multiple locations within the same document. Table 2-1 shows a list of keyboard
commands for bookmarks.

Key Code Meaning

CTRL-B, T Toggle a bookmark on or off
CTRL-B, N Move to next bookmark
CTRL-B, P Move to previous bookmark
CTRLB, C Clear all bookmarks

CTRL-W, B Open the Bookmarks window

Table 2-1 Bookmark Shortcut Keys

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox

Bookmarks * OX
Oul@l ez (B X
Bookmark File Location Line Number

E"] Bookmark? | C:AVS2010\Chapter)2\FirstProgram\FirstProgram\Program.cs 8

Figure 2-4 The Bookmarks window

One of the entries in Table 2-1, cTrRL-W, B opens the Bookmarks window shown in
Figure 2-4, allowing you to manage bookmarks throughout your application.

The bookmark has a toolbar, which is the same toolbar that appears in VS when the
editor window is active. The actions on the toolbar include the items from Table 2-1, plus
the ability to move between folders.

Within the Bookmark list, you can check to make a bookmark active or inactive. When
the bookmark is inactive, previous and next navigation will not stop at the bookmark. You
can change the name of the bookmark by clicking the name twice. The File Location and
Line Number tell you where the bookmark is located.

Setting Editor Options

The editor is very configurable, and there are more options available than many people
realize. You can view available options by selecting Tools | Options to show the Options
window in Figure 2-5. As you can see from the figure, selecting Environment | Fonts And
Colors allows you to change the appearance of VS. Regarding our current discussion of
the editor, this is where you can customize the coloration of code elements that appear

in the editor.

TIP

If you want to share your custom editor settings, you can use the Import and Export
Seftings Wizard that you learned about in Chapter 1. There is also an Import And
Export Settings branch right below Fonts And Colors in the Options window.

Most editor customizations are in a language-specific branch of the Options window.
Figure 2-6 shows the options available for C# programmers.

45

46 Microsoft Visual Studio 2010: A Beginner's Guide

4 Environment - Show settings for:
General Text Editor vl I Use Defaults l
Add-in/Macros Security
AutoRecover Eont (bold type indicates fixed-width fonts): Size:
Documents Coireilas - 10 -
Extension Manager
Find and Replace =|| Display items: Itern foreground:
[Fonts and Colors| -] Moot~ [Gustom.
Import and Export Settings Selected Text D
International Settings Inactive Selected Text Ttemn background:
Keyboard Indicator Margin —
Start Line Murmbers [] Default - Custorn...
e Visible White Space
Task List P Bookmark Bold
Web Browser Brace Matching (Highlight) i
I Projects and Solutions Brace Matching (Rectangle) Sample:
[» Source Control Sreatpo!rﬂ; E[Em;a;]lle;)
- reakpoint (Enable
b Text Editor Breakpaint (Errar) 2 ij = I::o00(exBE1l);
[» Database Tools O m | b
i _Debuaainag i
[ok || cancel

Figure 2-5 The Options window

4 Text Editor - 4 [Mew line options for braces
General Place open brace on new line for types
File Extension Place open brace on new line for methods
[+ All Languages Place open brace on new line for anonymous methods

[+ Basic |EG] Place open brace on new line for control blocks

a C# Place open brace on new line for anonymous types
General Place open brace on new line for object initializers
Tabs Place open brace on new line for lambda expressions
Advanced

4 [Mew line options for keywords

4 Formatting int Method() =
General |
Indentation if (a > b}
Mew Lines
Spacing ! return 8;
Wrapping return 3;
IntelliSense ¥
[CfCH+
p CS5 1
» F#)

[o || cancel

Figure 2-6 C# code editor options

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 47

The Options window in Figure 2-6 is opened to Text Editor, C#, Formatting New
Lines. As you can see, there are very detailed settings for even how the editor automatically
formats new lines and where braces appear. If the code doesn’t format the way you want it
to, visit this page to set the options to what you please.

Saving Time with Snippets

Snippets are important to learn because they will save you time. A snippet is a set of
keystrokes that form a template for a piece of code. The code for a snippet is typically
something that is common in normal programming. You’ll see many common statements
and blocks of code in this chapter, many of which have associated snippets. This section
shows you the mechanics of using snippets, and you’ll see more examples throughout the
rest of this chapter.

To use a snippet, begin typing the snippet prefix until the snippet acronym appears in
the Intellisense completion list, press the TaB key twice, and fill in the snippet form while
tabbing through each field. Press ENTER when you’re done.

Since you’ve already learned about namespaces, I’ll show you the namespace snippet.
To start, open any code file and click to start typing in a part of the file outside of all code
blocks, such as directly below any using statements but above any existing namespace
statements. Type the letter n and watch the completion list go straight to the namespace
element. Type an a and you’ll see the namespace alone in the completion list, as shown
in Figure 2-7.

NOTE

The cTri-ALT-sPACE keystroke in Figure 2-7 switches between the Intellisense modes
Consume First and Standard mode. In Standard mode, which shows cTri-aiT-seack,
typing characters automatically selects keywords. However, there are situations where
you are trying to type a word that doesn’t exist yet and Intellisense is too aggressive by
adding the selected completion list item, instead of what you typed. In those cases, you
can press the CTRL-ALT-SPACE keys to go to Consume First mode and what you've typed will
be selected. You can still use the bown Arrow key on your keyboard in Consume First
mode to select the highlighted term in the completion list.

na

<Ctrl+Alt+Space> {m

namespace namespace
Code snippet for namespace

=
%‘

Figure 2-7 Using snippets

48 Microsoft Visual Studio 2010: A Beginner's Guide

= namespace Hyﬂmespacﬂ
1

}

Figure 2-8 Filling in the Snippet template

You can identify snippets in the completion list by the torn paper icon. At this point,
you can press the TAB key to complete the namespace keyword. Then press TAB again to
produce a template where you can fill out the highlighted fields. Figure 2-8 shows the
results of creating a namespace snippet by typing n and pressing TAB, TAB.

As shown in Figure 2-8, you would type in the Namespace name in the highlighted
form field to replace MyNamespace, which is placeholder text. For templates with more
fields, you would press the TaB key to move between fields. In the case of the namespace
shown in Figure 2-8, there is only one field in the template to complete.

VB offers a couple of ways to add snippets: by typing prefixes or via a pick list. To see
how VB snippets work, place your carat inside of the Modulel module, underneath End
Main (not inside of the Main block). Type Su and press TAB, and notice that VS creates a
Sub (method) along with a template containing a field for filling out the Sub snippet.

Another way to add VB snippets is to type a ? and press TaB. You'll receive a pick list,
as shown in Figure 2-9. You can navigate this pick list to find the snippet you need, as
classified in one of the folders. VB ships with many more built-in snippets than for C#.

Now that you know how to use snippets, let’s move on to the different types of
statements you can have in C# and VB and how snippets work with those statements.

Insert Snippet: |

[| éAppIicatl’on - Campiling, Resources, and Settings
Module [Code Patterns - If, For Each, Try Catch, Property, etc

[[J Data - LINQ, XML, Designer, ADO.MET

[Fundamentals - Collections, Data Types, File System, Math
[[J Office Development

[d Other - Connectivity, Crystal Reports, Security, Workflow
[Windows Forms Applications

[Windows System - Logging, Processes, Registry, Services
[WPF

Figure 2-9 VB snippet pick list

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 49

Coding Expressions and Statements

There are various types of statements you can write with both C# and VB, including
assignment, method invocations, branching, and loops. We’ll start off by looking at
primitive types, such as integers and strings, and then I’ll show how to build expressions
and set values by performing assignments. Then you’ll learn about branching statements,
such as if and switch in C# or the case statement in VB. Finally, you’ll learn about various
loops, such as for and while. I describe these language features in general terms because
they differ between C# and VB, but you’ll learn that the concepts are essentially the same.

Before writing any code, you should know how Intellisense works; it is an important
productivity tool that reduces keystrokes for common coding scenarios.

Making Intellisense Work for You
Previously, you saw how snippets work. Snippets use Intellisense to show a completion
list. Intellisense is integrated into the VS editor, allowing you to complete statements with
a minimum number of keystrokes. The following walkthrough shows you how to use
Intellisense, as we add the following line to the Main method. Don’t type anything yet;
just follow along to see how Intellisense works:

C#:

Console.WriteLine ("Hello from Visual Studio 2010!");

VB:

Console.WriteLine ("Hello from Visual Studio 2010!™")

The following steps show you how VS helps you save keystrokes:

1. Inside the braces of the Main method, type ¢ and notice how the Intellisense window
appears, with a list of all available identifiers that start with c. This list is called a
completion list.

2. Type o and notice that the completion list filters all but those identifiers that begin
with co.

3. Type n and you’ll see that the only identifier available is Console. This is what we
want, and you only needed to type three characters to get there.

4. At this point most people press the ENTER or TAB key to let VS finish typing Console,
but that is effectively a waste of a keystroke.

50 Microsoft Visual Studio 2010: A Beginner's Guide

You know that there is a dot operator between Console and WriteLine, so go ahead
and type the period character, which causes VS to display “Console.” in the editor and
show you a new completion list that contains members of the Console class that you
can now choose from.

NOTE

So, I'll admit that | spent a couple paragraphs trying to explain to you how to save a
single keystroke, but that's not the only thing you should get out of the explanation.
The real value is in knowing that there are a lot of these detailed options available to
increase your productivity. Every time you take advantage of a new VS option, you
raise the notch of productivity just a little higher.

5. Now type write and notice that both Write and WriteLine appear in the completion list.
Now type the letter 1 and notice that WriteLine is the only option left in the completion list.

NOTE

If you've typed Writeline a few times, you'll notice that the completion list goes straight
to WriteLine after a few characters, rather than just Write. This is because Intellisense
remembers your most frequently used identifiers and will select them from the list first. If
you continue to type, Intellisense will then highlight those identifiers with exact matches.
Notice the checked option in Figure 2-10; Intellisense preselects most recently used
members, showing that this behavior is turned on by default.

6. Save another keystroke and press the (key to let VS finish the WriteLine method name.

7. At this point, you can finish typing the statement, resulting in a Main method that looks

like this:

C#:

static void Main(string[] args)

{ Console.WriteLine ("Hello from Visual Studio 2010!");
}

VB:

Sub Main ()
Console.WriteLine ("Hello from Visual Studio 2010!")
End Sub

If you’re a C# developer and want to change Intellisense options, open Tools | Options
and select Text Editor | C# | Intellisense, and you’ll see the Intellisense options in Figure 2-10.
This option isn’t available for VB.

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 51

Optns =
a Text Editor - Completion Lists
General Show completion list after a character is typed
File Extension

Place keywords in completion lists

-

All Languages
Place code snippets in completion lists

[» Basic

a 2 = Selection In Completion List
General Committed by typing the following characters:
Tabs D0+ %8 = = F@E™,
Advanced

Committed by pressing the space bar
4 Formatting

General
Indentation IntelliSense Member Selection

[T] Add new line on commit with enter at end of fully typed word

Mew Lines IntelliSense pre-selects most recently used members
Spacing
Wrapping
| IntelliSense|
C/C++
[CSS
F2 i

-

=

Figure 2-10 Intellisense options

s

Notice that there is a text box titled “Committed by typing the following characters,’
which contains a set of characters that will cause VS to type the rest of the selected
identifier in the completion list plus the character you typed. Referring back to Step 4, this
is how you know that a period commits the current selection.

You now have a program that does something; it can print a message to the console.
The next section will explain how you can run this program.

Running Programs

In VS, you can run a program either with or without debugging. Debugging is the
process of finding errors in your code. If you run with debugging, you’ll be able to set
break points and step through code, as will be described in Chapter 6. Running without
debugging allows you to run the application, avoiding any breakpoints that might have
been set.

To run without debugging, either select Debug | Start Without Debugging or press
cTrL-F5. This will run the Command Prompt window, where you’ll see the words “Hello
from Visual Studio 2010!” or whatever you asked the computer to write, on the screen.
The Command Prompt window will stay open until you press ENTER or close the window.

52 Microsoft Visual Studio 2010: A Beginner's Guide

To run with debugging, either select Debug | Start Debugging or press Fs. Because
of the way the application is coded so far, the Command Prompt window will quickly
run and close; you might miss it if you blink your eyes. To prevent this, you can add a
Console.ReadKey statement below Console. WriteLine, which will keep the window open
until you press any key. Here’s the updated Main method:

C#:

static void Main(string[] args)

{

Console.WriteLine ("Hello from Visual Studio 2010!");
Console.ReadKey () ;

VB:

Sub Main ()
Console.WriteLine ("Hello from Visual Studio 2010!")
Console.ReadKey ()

End Sub

Pressing r5 will show “Hello from Visual Studio 2010!” on the Command Prompt
window, just as when running without debugging.

To understand why there are two options, think about the difference between just
running a program and debugging. If you run a program, you want it to stay open until
you close it. However, if you are debugging a program, you have most likely set a
breakpoint and will step through the code as you debug. When your debugging session is
over, you want the program to close so that you can start coding again right away.

Now that you know how to add code to the Main method and run it, you can begin
looking at the building blocks of algorithms, starting in the next section.

Primitive Types and Expressions
The basic elements of any code you write will include primitive types and expressions, as
explained in the following sections.

Primitive Types

You can define variables in your programs whose type is one of the primitive types.
Variables can hold values that you can read, manipulate, and write. There are different
types of variables, and the type specifies what kind of data the variable can have. In .NET
there are primitive types (aka built-in) and custom types. The custom types are types that
you create yourself and are specific to the program you are writing. For example, if you
are writing a program to manage the customers for your business, then you would create
a type that could be used as the type of a variable for holding customer types. You’ll

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox
VB C# .NET Description
Byte byte Byte 8-bit unsigned integer
SByte sbyte SByte 8-bit signed integer
Short short Int16 16-bit signed integer
Ulnt1é ushort Ulnt16 16-bit unsigned integer
Integer int Int32 32-bit signed integer
Ulnt32 vint Ulnt32 32-bit unsigned integer
Long long Int64 64-bit signed integer
Ulnté4 ulong Ulnté4 64-bit unsigned integer
Single float Single 32-bit floating point
Double double Double 64-bit floating point
Boolean bool Boolean true or false
Char Char Char 16-bit Unicode character
Decimal decimal Decimal 96-bit decimal (used for money)
String string String String of Unicode characters

Table 2-2 Primitive Types

learn how to create custom types later. First, you need to learn about primitive types. The
primitive types are part of the programming languages and built into .NET. A primitive
type is the most basic type of data that you can work with in .NET, which can’t be broken
into smaller pieces. In contrast, a custom type can be made up of one or more primitive
types, such as a Customer type that would have a name, an address, and possibly more bits

of data that are primitive types. Table 2-2 lists the primitive types and descriptions.

are lowercase. You can also see a third column for .NET types. Occasionally, you’ll see
code that uses the .NET type, which aliases the C# and VB language-specific types. The
following example shows how to declare a 32-bit signed integer in both C# and VB, along

Looking at Table 2-2, remember that C# is case-sensitive and all of the primitive types

with the .NET type:

C#:

int agel;

Int32 age2;

VB:

Dim agel as Integer
Dim age2 as Int32

53

54 Microsoft Visual Studio 2010: A Beginner's Guide

Consistent with Table 2-2, C# uses int and VB uses Integer as their native type
definitions for a 32-bit signed integer. Additionally, you see age defined in both C# and
VB using the .NET type, Int32. Notice that the .NET type is the same in both languages.
In fact, the .NET type will always be the same for every language that runs in .NET. Each
language has its own syntax for the .NET types, and each of the language-specific types is
said to alias the .NET type.

Expressions

When performing computations in your code, you’ll do so through expressions, which are
a combination of variables, operators (such as addition or multiplication), or referencing
other class members. Here’s an expression that performs a mathematical calculation and
assigns the result to an integer variable:

C#:

int result = 3 + 5 * 7;
VB:
Dim result As Int32 = 3 + 5 * 7

A variable that was named result in this example is a C# type int or a VB type Int32,
as specified in Table 2-2. The variable could be named pretty much anything you want;
I chose the word result for this example. The type of our new variable result in the VB
example is /nt32, which is a primitive .NET type. You could have used the VB keyword
Integer, which is an alias for Int32 instead. The expression is 3 + 5 * 7, which contains
the operators + (addition) and * (multiplication) and is calculated and assigned to result
when the program runs. The value of result will be 38 because expressions use standard
algebraic precedence. In the preceding example, 5 * 7 is calculated first, multiplication
has precedence, and that result is added to 3.

You can modify the order of operations with parentheses. Here’s an example that adds
3 to 5 and then multiplies by 7:

C#:
int differentResult = (3 + 5) * 7;
VB:
Dim differentResult As Int32 = (3 + 5) * 7

Because of the grouping with parentheses, differentResult will have the value 56 after
this statement executes.

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 55

The Ternary and Immediate If Operators

The C# ternary and VB immediate if operators allow you to test a condition and return
a different value depending on whether that condition is true or false. Listing 2-2 shows
how the ternary and immediate if operators work.

Listing 2-2 A ternary operator example

C#:

int bankAccount = 0;

string accountString = bankAccount == 0 ? "checking" : "savings";
VB:

Dim accountString As String =
IIf (bankAccount = 0, "checking", "saving")

The conditional part of this operator evaluates if bankAccount is equal to O or not
when the program runs (commonly known as “at runtime”). Whenever the condition is
true, the first expression, the one following the question mark for C# or following the
comma for VB, “checking” in this case, will be returned. Otherwise, if the condition
evaluates to false, the second expression, following the colon for C# or after the second
comma for VB, will be returned. That returned value, either the string “checking” or
“savings” in this case, is assigned to the accountString variable that was declared.

NOTE

In earlier versions of the VB programming language, you were required to place an
underline at the end of a statement that continued to the next line. In the latest version
of VB, line continuations are optional. If you've programmed in VB before, the missing
statement continuation underline might have caught your attention, but it is now
perfectly legal.

Enums

An enum allows you to specify a set of values that are easy to read in code. The example
I’ll use is to create an enum that lists types of bank accounts, such as checking, savings,
and loan. To create an enum, open a new file by right-clicking the project, select Add |
New Item | Code File, call the file BankAccounts.cs (or BankAccounts.vb), and you’ll
have a blank file. Type the enum in Listing 2-3.

56 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 2-3 An example of an enum

C#:

public enum BankAccount
Checking,
Saving,
Loan

VB:

Enum BankAccount
Checking
Saving
Loan

End Enum

Listing 2-4 shows how you can use the BankAccount enum:

Listing 2-4 Using an enum

C#:

BankAccount accountType = BankAccount.Checking;

string message =
accountType == BankAccount.Checking ?
"Bank Account is Checking"
"Bank Account is Saving";

VB:

Dim accountType As BankAccount = BankAccount.Checking

Dim message =
IIf (accountType = BankAccount.Checking,
"Bank Account is Checking",
"Bank Account is Saving")

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 57

The accountType enum variable is a BankAccount and is initialized to have the value
of the Checking member of BankAccount. The next statement uses a ternary operator
to check the value of accountType, evaluating whether it is Checking. If so, message is
assigned with the first string. Otherwise, message is assigned with the second string. Of
course, we know it’s the first string because the example is so simple that you can see it is
coded that way.

Branching Statements

A branching statement allows you to take one path of many, depending on a condition.
For example, consider the case for giving a customer a discount based on whether that
customer is a preferred customer. The condition is whether the customer is preferred or
not, and the paths are to give a discount or charge the entire price. Two primary types of
branching statements are if and switch (Select Case in VB). The following sections show
you how to branch your logic using if and swifch statements.

Expressions

If statements allow you to perform an action only if the specified condition evaluates to
true at runtime. Here’s an example that prints a statement to the console if the contents of
variable result is greater than 48 using the > (greater than) operator:

C#:

if (result > 48)

{
}

Console.WriteLine ("result is > 48");

VB:

If result > 48 Then
Console.WriteLine ("Result is > 48")
End If

C# curly braces are optional if you only have one statement to run after the if when
the condition evaluates to true, but the curly braces are required when you want two or
more statements to run (also known as “to execute’) should the condition be true. The
condition must evaluate to either a Boolean true or false. Additionally, you can have an
else clause that executes when the if condition is false. A clause is just another way to
say that an item is a part of another statement. The else keyword isn’t used as a statement

58 Microsoft Visual Studio 2010: A Beginner's Guide

if (krue)
{

¥

Figure 2-11 The C# if statement snippet template

itself, so we call it a clause because it can be part of an if statement. An example of an
else clause is shown here:
Cit:

if (result > 48)

{
}
else

{
}

Console.WritelLine ("result is > 48");

Console.WriteLine ("result is <= 48");

VB:

If result > 48 Then

Console.WriteLine ("Result is > 48")
Else

Console.WriteLine ("Result is <= 48")
End If

As the preceding example shows, if result is not greater than 48, then it must be less
than or equal to 48.

if and else Snippets
The if snippet creates a template for you to build an if statement. To use the if snippet, type
if and press TAB, TAB; you’ll see the template in Figure 2-11 for C# or Figure 2-12 for VB.

If Tr‘uel Then

End If

Figure 2-12 The VB if statement snippet template

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 59

As shown in Figure 2-11, the template brings you to a highlighted field for specifying
the condition of the if statement. For C#, type the condition you want evaluated and press
ENTER; the snippet completes by placing your carat within the if statement block. For VB,
just place your cursor where you want to begin typing next.

In C#, the else statement snippet is similar to if. Type else and press TaB, TAB—the
else template appears with the carat between the blocks of the else. There isn’t a VB else
snippet; just type Else between the last statement of the If and the End If.

Switch/Select Statements

A switch statement (Select Case statement for VB) tells the computer to evaluate one or
many conditions and branch appropriately. Here’s an example that will perform different
actions depending on the value of a name variable:

C#:

var name = "Megan";

switch (name)
{
case "Joe":
Console.WriteLine ("Name is Joe") ;
break;
case "Megan":
Console.WriteLine ("Name is Megan") ;

break;
default:
Console.WriteLine ("Unknown Name") ;
break;
}
VB:
Dim name As String = "Megan"

Select Case name
Case "Joe"
Console.WriteLine ("Name is Joe")
Case "Megan"
Console.WriteLine ("Name is Megan")
Case Else
Console.WriteLine ("Unknown name")
End Select

In the C# example, you can see the keyword switch with the value being evaluated
in parentheses. The code to execute will be based on which case statement matches the
switch value. The default case executes when there isn’t a match. The break keyword

60 Microsoft Visual Studio 2010: A Beginner's Guide

switch (switch on)

{
default:

¥

Figure 2-13 A switch snippet template

is required. When the program executes a break statement, it stops executing the switch
statement and begins executing the next statement after the last curly brace of the switch
statement.

For the VB example, the Select Case statement uses name as the condition and
executes code based on which case matches name. The Case Else code block will run if
no other cases match.

Switch Statement Snippets
There are two scenarios for switch statement snippets: a minimal switch statement and an
expanded switch with enum cases. First, try the minimal swifch statement by typing sw
and pressing TAB, TAB, resulting in the switch statement in Figure 2-13.

You would replace the switch_on in Figure 2-13 with a value you want to use in the
switch statement. After pressing ENTER, you’ll see the snippet expand to a swirch statement
with a default case, as follows:

switch (name)

{

default:
break;

VB Select statements work similar to the C# swirch; type Se and press TAB, TAB; you’ll
see the VB template shown in Figure 2-14.

select Case Variableﬂg@

Case 1
Case 2

Case Else

Figure 2-14 The Select Case snippet template

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 61

In C#, you normally just add the case statements you need. However, there is a special
feature of the switch snippet that makes it even more efficient to use enums, creating a
case for each enum value automatically. In the following example, we use the accountType
variable of the enum type BankAccount from Listing 2-3. To see how the switch statement
works with enums, type sw and press TAB, TAB ; you’ll see the switch template with the
condition field highlighted. Type accountType in the field and press ENTER. The switch
snippet will automatically generate cases for each of the BankAccount enum members
as follows:

switch (accountType)

{

case BankAccount.Checking:
break;

case BankAccount.Saving:
break;

case BankAccount.Loan:
break;

default:
break;

The enum comes through as a convenience that is easy to read and minimizes potential
spelling mistakes when using strings. Now that you know how branching statements work,
let’s move on to loops.

Loops
You can perform four different types of loops: for, for each, while, and do. The following
sections explain how loops work.

For Loops
For loops allow you to specify the number of times to execute a block of statements.
Here’s an example:

C#:
for (int 1 = 0; 1 < 3; i++)
{
Console.WriteLine("i = " + 1i);
}
VB:

For i As Integer = 0 To 2
Console.WriteLine("i = " & 1)
Next

62

Microsoft Visual Studio 2010: A Beginner's Guide

for (int i = @; i < 3; i)

1

Console.WriteLine("i = " + i);

¥

Figure 2-15 The C# for loop snippet template

In the preceding C# loop, i is a variable of type int, the loop will continue to execute
as long as i is less than 3, and i will be incremented by one every time after the loop
executes. The condition, i < 3, is evaluated before the loop executes, and the loop will not
execute if the condition evaluates to false.

The VB For loop initializes i as an integer, iterating (repeating) three times from
0 to 2, inclusive.

The for Loop Snippet
To use the C# for loop snippet, type fo and press TaB, TAB; you’ll see the snippet template
in Figure 2-15.

NOTE

The + and & operators from the preceding code example perform string concatenation.
Although i is an integer, it will be converted to a string prior to concatenation.

The same key sequence (fo, TaB, TaB) works for VB For loop snippets too, except that
you’ll see the snippet template in Figure 2-16.

The C# for loop snippet template is different from previous templates in that you
have two fields to fill out. First, name your indexer, which defaults to i, and then press
TAB, which moves the focus to the loop size field, containing Length as the placeholder.
If you like the variable name i, which is an understood convention, just press the TAB
key and set the length of the loop. You’ll end up with a for loop and the carat inside
of the block.

For Each Loops
For each loops let you execute a block of code on every value of an array or collection.
Arrays store objects in memory as a list. Collections are more sophisticated than arrays

For index As Integer = 1 To 18

Next

Figure 2-16 The VB For loop snippet template

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox

and hold objects in memory in different forms, which could be Stack, List, Queue, and
more. Here’s an example that loops on an array of strings:

C#:

string[] people = { "Megan", "Joe", "Silvia" };

foreach (var person in people)

{
}

Console.WriteLine (person) ;

VB:

Dim people = {"Megan", "Joe", "Silvia"}

For Each person As String In people
Console.WriteLine (person)
Next

In this example, people is an array of strings that contains three specific strings of
text. The block of the loop will execute three times, once for each item in the array. Each
iteration through the loop assigns the current name to person.

The For Each Loop Snippet
To add code using a for each snippet in C#, type fore and press TAB, TAB, which results in
the snippet template shown in Figure 2-17.

The for each loop snippet gives you three fields to complete. The var is an implicit
type specifier that allows you to avoid specifying the type of item; the compiler figures
that out for you, saving you from some keystrokes. The item field will be a collection
element type. You may leave var as is or provide an explicit type, which would be string
in this case. You can tab through the fields to add meaningful identifiers for the item and
collection you need to iterate through.

To execute the VB For Each snippet, type ?, TaB, C, ENTER, C, ENTER, f, ENTER and
you’ll see the For Each loop template shown in Figure 2-18.

foreach (war item in collection)

1
b

Figure 2-17 The C# for each loop snippet template

64 Microsoft Visual Studio 2010: A Beginner's Guide

For Each Tfem As String In Collectionﬂhi&ﬁg
Next

Figure 2-18 The VB For Each loop snippet template

While Loops

A while loop will allow a block of code to execute as long as a specified condition is true.
Here’s an example that does a countdown of numbers:

C#:

int count = 3;

while (count > 0)

Console.WriteLine ("count: " + count) ;
count--;

VB:

Dim count As Integer = 3

While count > 0

Console.WritelLine ("count: " & count)
count -= 1
End While

The while loop executes as long as count is greater than 0. Since count is 3 and will
decrement by one each time through the loop, the value will change from 3 to 2 to 1 and
then the loop won’t execute anymore. Be careful not to create endless loops.

The while Loop Snippet
To create a while loop snippet, type wh and press TaB, TaB; and you’ll see the snippet
template in Figure 2-19 (C#) or Figure 2-20 (VB).

For C#, filling in the condition and pressing ENTER places the carat inside the while
loop block.

while ([EFue)

{

¥
Figure 2-19 The C# while loop snippet template

Chapter 2: learning Just Enough C# or VB.NET: Basic Synfox 65

While Trud
End While

Figure 2-20 The VB while loop snippet template

Do Loops
You can use a do loop if you want the code in the loop to execute at least one time. Here’s
an example that demonstrates a simple menu that obtains user input:

C#:

string response = "'";

do

{

Console.Write ("Press 'Q' and Enter to break: ");
response = Console.ReadLine() ;
} while (response != "Q");

VB:
Do
Console.Write ("Press Q and Enter to break: ")
response = Console.ReadLine ()
Loop While response <> "Q"

In this example, you’ll always get the prompt for Press ‘Q’ and Enter to break:. The
Console.ReadLine reads the user input, which is of type string. If the input is a string that
contains only a capital Q, the loop will end.

VB has another variation of loops that use the Until keyword, as follows:

Do
Console.Write ("Press Q and Enter to break: ")
response = Console.ReadLine ()
Loop Until response = "Q"
In this code, you can see that the Until condition will continue looping while the

condition is not true, which is opposite of the Do Loop While.

The Do Loop Snippet
To use the do loop snippet, type do and press TaB, TAB; you'll see the do loop template
shown in Figure 2-21.

do
{

} while (Erug);

Figure 2-21 The C# do loop snippet template

66 Microsoft Visual Studio 2010: A Beginner's Guide

Do
Loop While Tr'ue|

Figure 2-22 The VB do loop while snippet template

Fill in the condition on the do loop and press ENTER, placing the carat in the
do loop block.

For a VB Do snippet type ?, TaB, C, ENTER, C, ENTER, and use an arrow key to select
the variant of Do loop that you want. Figure 2-22 shows an example of the Do Loop
While template.

Summary

Working with languages is a core skill when building .NET applications. Two of the most
used languages in .NET are C# and VB, which is why this chapter is dedicated to those
two languages. You learned about types, expressions, statements, code blocks, conditions,
and branching. Additionally, you learned some of the essential features of VS for writing
code, such as the code editor, bookmarks, Intellisense, and snippets.

Chapter 3 takes you to the next step in your language journey, teaching you about
classes and the various members you can code as part of classes.

Chapter3

Learning Just Enough
C# and VB.NET:
Types and Members

67

68 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Create Classes
Write Methods

Code Fields and Properties

Atype is a general term for classes, modules, enums, and more. This chapter will
specifically discuss the class type, which allows you to create your own custom types.
You’ll also see the value of a class when you learn about class members. You’ll see how
the field, method, and property class members can be used. We’ll start with learning how

to create and use classes.

Creating Classes

Previously, you learned about the primitive types, which are built into languages and alias
the underlying .NET types. You can also create your own types, via classes, which you
can instantiate and create objects with. The following section explains how to create

a class and then instantiate an object from it.

Class Syntax

To create a new custom class definition, right-click the project, select Add | Class, name
the class Employee for this example, and type the file extension .cs for C# or .vb for VB;
then click Add (VS will add this file extension for you if you don’t). You’ll see a file with
the same code as Listing 3-1.

Listing 3-1 A new Employee class

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members 69

public class Employee

{
}

public string FirstName;

VB:

Public Class Employee
Public Dim FirstName As String
End Class

The C# Employee class is nearly the same as the Program class that you created in the
preceding chapter, except that the class name here is Employee. In VB, you’ve only created
a module before, and the Employee class is your first class for this book. You can add
members to a class, which could be events, fields, methods, and properties. Listing 3-1 shows
an example of a field, FirstName, and you’ll learn about events, methods, and properties in
later sections of this chapter. A field is a variable in a class that holds information specific to
that class.

Listing 3-2 shows how to instantiate an object of type Employee, which is your new
custom type, and use it. You would put this code inside of Main or another method. You’ll
learn more about methods in the later section “Writing Methods.”

Listing 3-2 Code that uses a class

C#:
Employee emp = new Employee() ;
emp.FirstName = "Joe";

VB:

Dim emp As New Employee
emp.FirstName = "Joe"

In Listing 3-2, you can see that emp is a variable declared as type Employee. The C#
new Employee() or VB New Employee clause creates a new instance of Employee, and you
can see that this new instance is being assigned to emp. With that new instance, via the emp
variable, you can access the Employee object, including its instance members. In Listing 3-2,
the FirstName field of that particular instance of Employee is assigned a string value of "Joe".
Here you see that an object can contain data.

70 Microsoft Visual Studio 2010: A Beginner's Guide

Now that you can define a new class, create an instance from that class, and use it, the
next section shows you another feature of classes called inheritance.

Class Inheritance

One class can reuse the members of another through a feature known as inheritance. In
programming terms, we say a child class can derive from a parent class and that child
class will inherit members (such as fields and methods) of the parent class that the parent
class allows to be inherited. The following example will create a Cashier class that
derives from the Employee class. To create this class, right-click the project, select Add |
Class, and name the class Cashier. Listing 3-3 shows the new class and modifications for
implementing inheritance.

Listing 3-3 Class inheritance

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

public class Cashier : Employee

{
}

VB:

Public Class Cashier
Inherits Employee

End Class

The C# inheritance relationship is indicated by the colon after the Cashier identifier,
followed by the class being derived from, Employee. In VB, you write the keyword
Inherits, on a new line, followed by the class being derived from. Essentially, this means
that Cashier has all of the same members as Employee. Listing 3-4 demonstrates the
benefits of inheritance.

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Listing 3-4 Code using inheritance

C#:
Cashier cashr = new Cashier();
cashr.FirstName = "May";

VB:

Dim cashr As New Cashier
cashr.FirstName = "May"

According to Listing 3-4, Cashier does not have a field named FirstName. However,
Employee does have a FirstName field and Cashier derives from Employee. Because
of inheritance, Cashier automatically inherits FirstName, and the code in Listing 3-4 is
perfectly legal. Inheritance can be thought of as specialization in the sense that, in this
example, Cashier is a specialized kind of Employee. To take advantage of this specialization,
you could add a new field to your new Cashier class called “assignedCashRegister” where
now, not only does the Cashier class have the fields and methods of Employee, it is able to
hold the value for a specific cash register name or number. An instance of the Employee
class would not be able to contain this information. The .NET Framework uses inheritance
extensively to offer you reusable class libraries.

TIP

You can often use the phrase “is a” to describe the relationship between inherited
classes when starting from the child class. For example, you can say “Cashier is an
Employee.” If you apply this phrase technique to your software design and the sentence
sounds logically correct, then you've probably used inheritance correctly.

The class Snippet

C# has a class snippet, but VB doesn’t. Before using the class snippet, create a new class
file by right-clicking the project, select Add | New Item | Code File, and name the file
Manager. You’ll now have a blank file to work with. To use the class snippet, type ¢l and
press TAB, TAB; and you’ll see the snippet template in Figure 3-1.

Blclass MyClass
1

h

Figure 3-1 The C# class snippet template

72 Microsoft Visual Studio 2010: A Beginner's Guide

Just type in the class name in the field and press ENTER. The carat will locate to the
inside of the class block. Now that you know how to create classes, you’ll need to know
how to add members, starting with methods.

Writing Methods

You can divide your algorithms into blocks of code called methods. In different programming
languages, methods are called functions, procedures, or subroutines. I’ll use the term method
as a generic term, except when I need to be more specific. You’ve already used methods
when coding Console. WriteLine, where WriteLine is a method of the Console class. A
method contains one or more statements. Reasons for creating methods include the ability to
modularize your code, isolate complex operations in one place, or group a common operation
that can be reused in multiple places. The following sections show you how to declare and
use methods.

Declaring and Using a Method

To start off, I’ll show you a very simple method so that you can see the syntax and
understand the program flow. Listing 3-5 will move the Console. Writeline statement from
the Main method discussed in Chapter 2 into a new containing method and then add a
statement to the Main method that calls the new method.

Listing 3-5 Declaring and calling a method

C# (Program.cs)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Program

{

static void Main(string[] args)

{

MessagePrinter msgPrint = new MessagePrinter () ;
msgPrint.PrintMessageInstance() ;

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

C#: (MessagePrinter.cs)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class MessagePrinter

{

public static void PrintMessageStatic ()

{
}

Console.WriteLine ("Hello from a static method.") ;

public void PrintMessageInstance ()

{
}

Console.WriteLine ("Hello from an instance method.") ;

VB (Modulel.vb):

Module Modulel
Sub Main ()
MessagePrinter.PrintMessageShared ()

Dim msgPrint As New MessagePrinter ()
msgPrinter.PrintMessageInstance ()
End Sub
End Module

VB (MessagePrinter.vb)

Public Class MessagePrinter
Public Shared Sub PrintMessageShared()
Console.WriteLine ("Hello from a shared method.")
End Sub

Public Sub PrintMessageInstance ()
Console.WriteLine ("Hello from an instance method.")
End Sub
End Class

73

74 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 3-5 has two types of methods, static and instance. In VB, shared methods are
the same as static. You can tell which type of method each is because static methods have
the static modifier (shared in VB), but instance methods don’t have a static (or shared in
VB) modifier. First, let’s look at the static (shared) method declaration, and then you’ll see
how it’s called.

The static (shared in VB) method, PrintMessageStatic (PrintMessageShared in VB)
has a public access modifier, which means that any other code using the containing class,
MessagePrinter, will be able to see the method. If you didn’t include the public access
modifier, the method would automatically default to being private and only other code
residing within the MessagePrinter class would be able to use that method.

PrintMessageStatic has a void keyword, meaning that this method does not return a
value. In VB, you indicate that a method does not return a value by making it a Sub, as
was done in Listing 3-5. Later, you’ll learn how to create a method that does return values
to its calling code that invokes this method. The empty parameter list appended to the
PrintMessageStatic (PrintMessageShared in VB) means that there are not any parameters
for this method. Parameters allow callers to pass information to the method; a subject
we’ll discuss soon.

Within the method block, you can see that there is a Console. WriteLine statement.
You can add as many statements as you need for the purpose of the method. Next, we’ll
examine how PrintMessageStatic (PrintMessageShared in VB) is called, which the
following code repeats from Listing 3-5:

C#:

Program.PrintMessageStatic() ;

VB:

MessagePrinter.PrintMessageShared ()

Viewing the preceding example, which shows a statement inside of the Main method,
you can see the call to Program.PrintMessageStatic (PrintMessageShared in VB).
Notice that the class (aka type) that contains all the methods is named MessagePrinter.
In C#, a static method is called through its containing type, which is why you call
PrintMessageStatic with the Program prefix. In VB, you can invoke shared methods
through either the method’s type or an instance of that type. We discuss instance
methods next.

The next method, PrintMessagelnstance, is an instance method; it has no static
modifier. The rest of the method definition mirrors that of the PrintMessageStatic method.

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Since PrintMethodlInstance is an instance method, you call it differently; through an
instance of its containing type, which the following code repeats from Listing 3-5:

C#:

MessagePrinter mggPrint = new MessagePrinter () ;
msgPrint.PrintMessageInstance() ;

VB:

Dim msgPrint As New MessagePrinter ()
msgPrinter.PrintMessageInstance ()

As this example shows, the type of msgPrint is MessagePrinter. Using the statement new
MessagePrinter creates a new instance of MessagePrinter at runtime, which is assigned to the
msgPrint variable. Now that you’ve created an instance of a MessagePrinter and msgPrint
has a reference to that instance, you can call the instance method, PrintMessagelnstance, via
the msgPrint variable. Next, let’s look at how to add parameters to a method and discuss why
that’s important.

Declaring Parameters and Passing Arguments

Passing parameters to a method is a great way to make code more reusable. For example,
what if you had a method that printed a report containing the names of all customers? It
wouldn’t make sense to create one method for each customer, especially when the list
changes all the time. Listing 3-6 shows a method that takes a list of customers and prints
a report with customer names.

Listing 3-6 Declaring a method that takes parameters

C# (Program.cs):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Program

{

static void Main(string[] args)

75

76 Microsoft Visual Studio 2010: A Beginner's Guide

MessagePrinter mggPrint = new MessagePrinter () ;

string[] customerNames = { "Jones", "Smith", "Mayo" };
string reportTitle = "Important Customer Report';

msgPrint.PrintCustomerReport (customerNames, reportTitle) ;

C# (MessagePrinter.cs):

using System;
using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

public void PrintCustomerReport (

string[] customers, string title = "Customer Report")

Console.WriteLine (title) ;
Console.WriteLine () ;

foreach (var name in customers)

{

Console.WriteLine (name) ;

VB (Modulel.vb):

Module Modulel
Sub Main ()
Dim msgPrint As New MessagePrinter ()

Dim customerNames = {"Jones", "Smith", "Mayo"}
Dim reportTitle As String = "Important Customer Report"

msgPrint.PrintCustomerReport (customerNames, reportTitle)

End Sub

End Module

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members 77

VB (MessagePrinter.vb):

Public Class MessagePrinter
Sub PrintCustomerReport (ByVal customers As String(), ByVal title
As String)
Console.WriteLine (title)
Console.WriteLine ()

For Each name In customers
Console.WritelLine (name)
Next
End Sub
End Class

Parameters are a comma-separated list of identifiers, along with the type of each
identifier, which clearly indicates what type of parameter the method is expecting. In
Listing 3-6, the PrintCustomerReport method has two parameters: title of type string and
customers of type string array. The method displays the title in the console window when
you run the program, displays a blank line, and then iterates through the list, displaying
each customer name to the console.

You can see how the Main method creates a new instance of MessagePrinter,
which msgPrint points to, and then calls PrintCustomerReport using msgPrint. The
arguments being passed, reportTitle and customerNames, match the position and types
of the parameters for PrintCustomerReport, which are of the correct types that the
PrintCustomerReport method is expecting.

In the preceding example, the calling code must provide arguments, actual data,
for all parameters. However, you can specify parameters as being optional, allowing
you to omit arguments for the optional parameters if you like. Here’s a modification to
PrintCustomerReport where the title becomes an optional parameter:

C#:
public void PrintCustomerReport (
string[] customers, string title = "Customer Report")

{

Console.WriteLine(title) ;
Console.WriteLine () ;

foreach (var name in customers)

{
}

Console.WriteLine (name) ;

78 Microsoft Visual Studio 2010: A Beginner's Guide

VB:

Sub PrintCustomerReport (
ByVal customers As String(),
Optional ByVal title As String = "Customer Report")

Console.WriteLine (title)
Console.WriteLine ()

For Each name In customers
Console.WriteLine (name)

Next

End Sub

The preceding code requires callers to pass an array of customers, but it does not

require a title. When writing methods, optional parameters must be listed last. Here’s
a method call without the optional parameter:

C#:

custProg.PrintCustomerReport (customerNames) ;
VB:
msgPrint.PrintCustomerReport (customerNames)

Because the caller didn’t pass an argument for title, the value of title inside of
PrintCustomerReport becomes the default value assigned to the title parameter.

In addition to passing arguments to methods, you can receive values returned from
methods.

Returning Data and Using Method Results

It is common to call methods that return values. To demonstrate the proper syntax,
Listing 3-7 contains a method that accepts an int and returns the squared value of
that int. Calling code then assigns the return value from the method to a variable and
displays the value on the console window. Create a new class named Calc.cs or Calc.
vb to hold the new method.

Listing 3-7 Returning values from methods

C# (Program.cs):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members 79

namespace FirstProgram

{

class Program

{

static void Main(string[] args)

{

Calc mathProg = new Calc();

int squaredInt = mathProg.Squarelnt (3);
Console.WriteLine ("3 squared is " + squaredInt) ;

Console.ReadKey () ;

C# (Calc.cs):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

public class Calc

{

public int SquarelInt (int number)

{
}

return number * number;

VB (Modulel.vb):

Module Modulel

Sub Main ()
Dim mathProg As New Calc()
Dim squaredInt As Integer = mathProg.Squarelnt (3)
Console.WriteLine ("3 squared is " & squaredInt)
End Sub
End Module

80 Microsoft Visual Studio 2010: A Beginner's Guide

Sub MySub()

End Sub

Figure 3-2 The VB sub snippet template

VB (Calc.vb):

Public Class Calc
Public Function SquarelInt (ByVal number As Integer) As Integer
Return number * number
End Function
End Class

For the C# example, notice how the return type of the Squarelnt method is type int,
rather than the keyword void that was used in our methods before. Whenever you specify
a return type, the method must return something whose type is the same as the return
type declared. In the preceding example, the return type is declared as int; therefore, the
method guarantees that the result of the calculation is type int. The Main method has
a couple of statements that invoke this method and display the results to the console.

In the VB example, the method is now a Function. Sub methods don’t return values.
Notice how the function signature appends As Integer after the parameter list, which
indicates that the return type of the function is Integer.

Method Snippets

C# doesn’t have snippets for writing methods (although you could create your own
snippets), but VB does. In VB, type Sub, 1aB, TaB; producing the template shown in
Figure 3-2; or Fun, TaB, TAB; producing the template shown in Figure 3-3.

Function MyFume() As Integer

Return 2
End Function

Figure 3-3 The VB function snippet template

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Coding Fields and Properties

A field is a variable that is a member of a class (type), as opposed to variables that are
declared inside of methods, which are called local variables or locally scoped variables.
Properties are type members that give you functionality that is a cross between fields and
methods. You can read and write to a property just as you can to a field. Additionally,
you can define code that runs whenever you read to or write from a property, similar to
methods. The following sections define fields and properties.

Declaring and Using Fields

As stated, a field is a variable that is a member of a class (or some other container, such
as a struct, which is very similar to a class). This provides the benefit of having the

field and the data it contains available to all of the other members of the class (as well

as to any deriving classes, via inheritance, depending on the field’s access modifier). To
demonstrate how a field is declared and used, the example in Listing 3-8 simulates a bank
account that has a field of type decimal named currentBalance, which holds an account
balance. The class has two methods: Credit and Debit. Credit increases the value of
currentBalance, and Debit decreases the value of currentBalance.

Listing 3-8 Using fields and properties

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Program

{

private decimal accountBalance = 100m;

static void Main(string[] args)
Program account = new Program() ;
account .Credit (100m) ;
account .Debit (50m) ;
Console.WriteLine ("Balance: " + account.CurrentBalance) ;

Console.ReadKey () ;

81

82 Microsoft Visual Studio 2010: A Beginner's Guide

public void Credit (decimal amount)

{
}

accountBalance += amount;

public void Debit (decimal amount)

{
}

accountBalance -= amount;

public decimal CurrentBalance

{

get

{

return accountBalance;

if (value < 0)

// charge fee

}

accountBalance = value;
VB:
Module Modulel
Private Dim accountBalance As Decimal = 100
Sub Main () Credit (100)
Debit (50)
Console.WriteLine ("Balance: " & CurrentBalance)

Console.ReadKey ()
End Sub

Sub Credit (ByVal amount As Decimal)
accountBalance += amount
End Sub

Sub Debit (ByVal amount As Decimal)
accountBalance -= amount
End Sub

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Public Property CurrentBalance() As Decimal
Get
Return accountBalance
End Get
Set (ByVal value As Decimal)

If value < 0 Then
' charge fee
End If

accountBalance = value
End Set
End Property
End Module

Look at where accountBalance is declared: at the beginning of the Program (Modulel
in VB) class block. It is at the same scope as Main and other methods, meaning that it is a
member of Program (Modulel in VB), just like Main, Credit, and Debit. When variables
like accountBalance are declared as class members, as opposed to local variables that
are declared inside of method blocks, they are called fields. The accountBalance is type
decimal, which is a good choice for holding financial values.

The accountBalance field has a private modifier, which means that it can only be used by
members of the same class. The implementations of Credit and Debit, respectively, increase
and decrease the value of accountBalance. Since Credit and Debit are members of the same
class as accountBalance, they’re allowed to read from and write to accountBalance.

Main invokes Credit and Debit to change the value of the accountBalance field.
Additionally, Main displays the value of accountBalance in the console window through
a property named CurrentBalance. The next section explains how the CurrentBalance
property works.

Declaring and Using Properties

Properties are class members that you use just like a field, but the difference is that you
can add specialized logic when reading from or writing to a property. Listing 3-8 contains
an example of a property, CurrentBalance, repeated as follows for your convenience:

C#:

public decimal CurrentBalance

{

get

{
}

return accountBalance;

83

84 Microsoft Visual Studio 2010: A Beginner's Guide

set

if (value < 0)

{
}

accountBalance = value;

// charge fee

1
VB:

Public Property CurrentBalance() As Decimal
Get
Return accountBalance
End Get
Set (ByVal value As Decimal)

If value < 0 Then
' charge fee
End If

accountBalance = value
End Set
End Property

Properties have accessors, named get and set, that allow you to add special logic
when the property is used. When you read from a property, only the get accessor code
executes, and the sef accessor code only executes when you assign a value to a property.
In the preceding example, the get accessor returns the value of currentBalance with no
modifications. If there were some logic to apply, like calculating interest in addition to the
current balance, the get accessor might have contained the logic for that calculation prior
to returning the value. The sef accessor does have logic that checks the value to see if it is
less than zero, which could happen if a customer overdrew his or her account. If the value
is less than zero, then you could implement logic to charge the customer a fee for the
overdraft. The value keyword contains the value being assigned to the property, and the
previous set accessor assigns value to the accountBalance field. The following statement
from the Main method in Listing 3-8 reads from CurrentBalance, effectively executing the
get accessor, which returns the value of currentBalance:

C#:

Console.WriteLine ("Balance: " + account.CurrentBalance) ;

VB:

Console.WriteLine ("Balance: " & CurrentBalance)

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Since the CurrentBalance property returns the value of the accountBalance field,
the Console.WriteLine statement will print the value read from CurrentBalance to the
command line.

Many of the properties you’ll write will simply be wrappers around current object
state with no other logic, as in Listing 3-9.

Listing 3-9 Property that wraps object state with no logic

C#:

private string m firstName;

public string FirstName
get

{

return m_ firstName;

m_firstName = value;

VB:

Private m_firstName As String
Public Property FirstName () As String
Get
Return m_ firstName
End Get
Set (ByVal value As String)
m_firstName = value
End Set
End Property

In Listing 3-9, you can see that m_firstName, commonly referred to as a backing
field, is a private variable and that the FirstName property only returns m_firstName
from the get accessor and assigns the value to m_firstName in the set accessor. Since
this is so common, you can save syntax by using an automatic property, as shown in
Listing 3-10.

85

86 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 3-10 Auto-implemented properties
C#:

public string FirstName { get; set; }
VB:

Public Property FirstName As String

public int MyProperty { get; set; }

Figure 3-4 The C# property snippet template

The automatic property, FirstName, is logically equivalent to the expanded FirstName
with accessors and backing field. Behind the scenes, the compiler produces the expanded
version where the backing field is guaranteed to have a unique name to avoid conflicts.
Do not overlook that when you use automatic properties, you cannot add your own code
that runs inside the get or set accessors.

The Property Snippet
To create a property snippet, type pro and press TAB, TAB; and you’ll see the property
snippet template shown in Figure 3-4 for C# or Figure 3-5 for VB.

A C# property snippet template creates an automatic property by default, but the VB
snippet template is a normal property with full ger and set accessors.

Private newPropertyValue A= String
Public Property MewProperty() As String
Get
Return newPropertyValue
End Get
Set(ByVal value As String)
newPropertyValue = value
End Set
End Property

Figure 3-5 The VB property snippet template

Chapter 3: Lleamning Just Enough C# and VB.NET: Types and Members

Summary

You are now able to create classes to define your own custom types. After learning how
to create classes and use class instances, also known as objects, you learned how to add
fields, methods, and properties to your class definition. The methods discussion was more
in-depth, showing you how to define parameters and return values. You also learned how
to define both auto-implemented and normal properties, and you learned a little about
class inheritance.

The next chapter moves you up a level in language skills by showing you how to
create another type, called an interface. You’ll also learn how to add another type of class
member, events.

87

This page intentionally left blank

Chapter4

Learning Just Enough
C# and VB.NET:
Intermediate Syntax

89

90 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Use Delegates and Events
Implement Interfaces

Code with Arrays and Generics

n previous chapters, you learned basic syntax and how to create your own types. This
chapter rounds out the bare essentials of what you need to know with delegates and
events, interfaces, and a quick introduction to arrays and generics. This material doesn’t
attempt to be too advanced, but gives you enough information to understand the language
concepts involved. You’ll see all of these language features being used throughout the
book, and it’s good to have some background on what they mean. Let’s start off with
delegates and events.

Understanding Delegates and Events

Sometimes you need to write flexible code that performs general operations. For example,
when the designers of the NET Framework created user interfaces, they added reusable
controls, such as buttons, list boxes, and grids. When writing these controls, the framework
designers didn’t know how we would use them. For example, how would anyone know
what we wanted our code to do when a user clicks a button on the user interface? So, these
controls have interaction points built in so that they can communicate with your program;
these interaction points are called events. These events fire whenever a user performs an
action such as a button click or a list box selection. We write code to hook up these events
to some other code in our program that we want to run when that event happens, such as
when the user clicks a button, and this is what delegates are used for.

An event defines the type of notifications that a object can provide, and a delegate
allows us to connect the event to the code we want to run.

This section will show you the mechanics of how delegates and events work, but you
should understand that the mechanics may seem somewhat abstract at first. Delegates and
events are most often used when you’re working with .NET Framework technologies that
use them, such as Windows Presentation Foundation (WPF), Silverlight, and ASP.NET.
What you’ll want to do is get a feel for the mechanics right now and then refer back to this
discussion when you encounter delegates and events in later chapters.

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 91

The next section will add more logic to the set accessor in CurrentBalance in the next
listing and raise an event for the calling code.

Events

An event is a type of class member that allows your class or class instance to notify any other
code about things that happen within that class. To help you understand the use of events,
this section will associate an event with the accountBalance of an account. Listing 4-1 is a
modified version of Listing 3-8 from Chapter 3. It additionally has an event and logic that
raises the event.

To see how an event can be useful, consider a program that uses a class that manages
accounts. There could be different types of accounts, such as checking or savings. If a
customer performs an overdraft, the consequences probably vary by what type of account
is being used. However, all you want is a generalized account class that can be used by
any bank account type and doesn’t know what the overdraft rules are, which makes the
class more reusable in different scenarios. Therefore, you can give the account class an
event that will fire off a notification whenever an overdraft occurs. Then, within your
specialized checking account class instance, for example, you can register something
called an event handler so that the instance of the class knows each time the overdraft
event occurs via the handler.

In Listing 4-1, the CurrentBalance property is modified to raise (or fire off) an
OverDraft event whenever the assigned value is less than 0. The Main method hooks up
another method that will run whenever that event occurs. I’ll explain the event first and
then follow up with a discussion of how to hook up a method that listens for when the
event is raised and receives the message sent by the event.

Listing 4-1 Event demo

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Program

{

private decimal accountBalance = 100m;

static void Main(string[] args)

92 Microsoft Visual Studio 2010: A Beginner's Guide

Program account = new Program() ;
account.OverDraft += new EventHandler (account OverDraft) ;
account.CurrentBalance = -1;

Console.ReadKey () ;

public decimal CurrentBalance

{

get

{

return accountBalance;

if (value < 0)
if (OverDraft != null)

OverDraft (this, EventArgs.Empty) ;

}

accountBalance = value;

static void account OverDraft (object sender, EventArgs e)

{

Console.WriteLine ("Overdraft Occurred") ;

public event EventHandler OverDraft;

VB:

Module Modulel
Private Dim accountBalance As Decimal = 100

Sub Main ()
AddHandler OverDraft, AddressOf AccountOverdraft
CurrentBalance = -1

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 93

Console.ReadKey ()
End Sub

Public Event OverDraft As EventHandler

Public Sub AccountOverdraft (ByVal sender As Object, ByVal e As
EventArgs)
Console.WriteLine ("Overdraft Occurred")
End Sub
End Module

Listing 4-1 has an event named OverDraft. The OverDraft event is public and is
declared with the event keyword. The EventHandler is a delegate, which we’ll discuss
soon, but it basically allows you to define the type of method that can be called by the
event. It defines the communication contract that must be adhered to by any code that
wishes to listen for the event to fire.

Look at the set accessor of the CurrentBalance property, inside of the if statement
where it determines if value is less than 0. The C# example has another if statement to see
if the OverDraft event is equal to null.

In C# when an event is equal to null, it means that nothing has subscribed to be
notified by the event—in essence, no other code is listening. However, when the C#
event is not null, then this indicates that some code somewhere has hooked up a method
to be called when the event fires. That method is said to be listening for the event. So,
assuming that the caller has hooked up a method, the OverDraft event is fired. This check
for null is important. If nothing is listening for the event (and our code knows this to be
the case when the event is null), and we raise or fire the event by calling OverDraft(this,
EventArgs.Empty), an error (null reference exception) would occur at runtime whenever
a value is set into the CurrentBalance property. The arguments to the C# event mean that
the current object (which is the Program class instance), this, and an empty EventArgs will
be passed as the event message to any other methods that were hooked up to this event. It
is interesting to note that many methods can be hooked up to your event (or none at all),
and each will be notified in turn when your event fires. You should start to see that events
really are a form of almost spontaneous communication within your program.

In VB, you don’t need to check for Nothing (equivalent to C# null).

The preceding discussion talked about a method that is hooked up to the event and
executes (receives a message) whenever the event fires. The next section explains how to
use a delegate to specify what this method is.

94 Microsoft Visual Studio 2010: A Beginner's Guide

Delegates

Delegates let you hook up methods as the receiver to specific events. The delegate specifies
the allowable signature, the number of arguments, and their types, of a method that is
allowed to be hooked up to the event as a listener or handler. The EventHandler delegate
type for the OverDraft event specifies what the signature of a method should be, as follows:

C#:

public event EventHandler OverDraft;

VB:

Public Event OverDraft As EventHandler

This EventHandler is a class that belongs to the .NET Framework class library, and it,
by definition, specifies that any methods hooked up to the OverDraft event must define
two parameters: an object of any type and an EventArgs class. EventHandler also specifies
that the method does not return a value explicitly. The following method, account._
OverDraft (AccountOverdraft in VB), matches the predefined EventHandler signature:

C#:

static void account OverDraft (object sender, EventArgs e)

{

Console.WriteLine ("Overdraft Occurred") ;

}
VB :
Public Sub AccountOverdraft (ByVal sender As Object, ByVal e As
EventArgs)
Console.WriteLine ("Overdraft Occurred")
End Sub

Notice that the C# account_OverDraft (AccountOverdraft in VB) doesn’t return
a value and has two parameters that are type object and EventArgs, respectively. The
account_OverDraft (AccountOverdraft in VB) method is hooked up to the OverDraft
event in the Main method in Listing 4-1, repeated as follows for your convenience:

C#:
account.OverDraft += new EventHandler (account OverDraft) ;
account.CurrentBalance = -1;

VB:

AddHandler OverDraft, AddressOf AccountOverdraft
CurrentBalance = -1

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax

In the C# example, the += syntax is for assigning a delegate to an event (using a bit of
programmer slang, this syntax is commonly said to “wire up an event”). The VB example
uses AddHandler and AddressOf to assign the AccountOverDraft method to the OverDraft
event. In the C# example, the delegate is a new instance of EventHandler and the event
is OverDraft. If you remember, the delegate type of OverDraft is Eventhandler, which
defines the precise message contract.

The next piece of the puzzle is the method to be notified when the event happens.

This method is the parameter given to the new EventHandler delegate instance. You

saw earlier where the account_OverDraft (AccountOverDraft in VB) method had the
signature specified by the EventHandler class, making it possible for our method to be
specified as the new EventHandler parameter. With that one line of code (the one with
the += statement), account_OverDraft (AccountOverdraft in VB) is now hooked up to the
OverDraft event. This means that when the value of CurrentBalance is set to less than
zero via the set accessor of CurrentBalance, the OverDraft event gets fired because the
OverDraft(this, EventArgs.Empty) is called, which then invokes the account_OverDraft
(AccountOverdraft in VB) method (the method we wired up to the event), which in turn
executes its code.

One more note about events: you’ll see them used extensively in graphical user
interface (GUI) code. Think about the GUI code that has reusable components, like
buttons and list boxes. Every time the user clicks a button or selects an item in the list box,
you want code to execute and do something, like perhaps save the user’s data somewhere.
You do this through events: a Click event for the button and a SelectedltemChanged for
the list box. This is the standard way that you program GUIs; you have an event and you
define a method to hook up to that event so that your running program can do some work
in reaction to the user.

Event, Delegate, and Handler Code Completion

While there isn’t a snippet, per se, to create an event or delegate, in C# there is Intellisense
Code Completion support for hooking a delegate up to an event, which also generates the
handler method. The process takes two steps: delegate and handler creation. To get started,
type the reference to the event’s containing instance, the event name, and +=. As soon as
you type the = sign, you’ll see a tooltip like the one in Figure 4-1.

account.OverDraft +=|

| new EventHandlerjaccount_OwerDraft); (Press TAB to insert)

Figure 4-1 Code completion for delegate assignment

96 Microsoft Visual Studio 2010: A Beginner's Guide

account.OverDraft 4= new EventHandler(account OverDraft); I

| <handler ‘account_OwerDraft’ already exists in this C|EES>L

Figure 4-2 Code completion for handler method creation

As you can see, the Editor pops up a tooltip instructing you to type TAB to create a new
delegate instance. Type TaB and Code Completion will pop up another tooltip for creating
the handler method, as shown in Figure 4-2.

In Figure 4-2, you can see that Code Completion is suggesting a method name for you.
You have a choice of pressing TaB or changing the method name and then pressing TAB.
Either way, you have a fast way to hook up a handler method to an event via the event’s
delegate type.

Just as a delegate provides an interface to a method that is a contract basically to
describe how to communicate, you can also define interfaces to classes to communicate
with them in a specified way, and these are intuitively named . . . interfaces.

Implementing Interfaces

Another language feature that gives you flexibility is interfaces. An interface can be useful
if you want to have a group of classes that can be interchanged at any time, yet you need
to write the same operations for each of these classes. Essentially, you want to write the
code that uses the class only one time, but still switch what the actual class is. That’s where
interfaces come in. The interface creates a contract that each of the interchangeable classes
must adhere to. So, if the interface says that all classes that implement the interface have
method A and property B, then every class that implements the interface must have method
A and property B; the compiler enforces this like a contract that cannot be broken. The
following sections show you how to write an interface and then build a couple of classes
that implement that interface. Finally, you’ll see how to write code against the interface.

One important fact to remember about interfaces is that they don’t have any code other
than definitions of members. This definition of members is the contract of the interface.
You are the one who must to write a class that contains the members of the interface, and
you must write the code that provides an implementation of the interface members. A
common point of confusion is that an interface does not have any executable code, but the
classes that implement the interfaces do.

The following sections show you how to create an interface, how to create a class that
has code (that you’ve written) to implement the interface contract, and how to write code
that operates on the classes that implement (guarantee the contract of) the interface.

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 97

Creating an Interface

To create an interface, right-click the project in Solution Explorer, select Add | New Item,
select Code under the language branch in Installed Templates, and select the Interface item.
Name the Interface IAccount and click Add. By standard convention, you will always
name any interface class you create with a name that starts with an uppercase letter /. You’ll
see the interface in Listing 4-2 added to your project:

Listing 4-2 An interface

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

public interface IAccount
void Credit (decimal amount) ;
void Debit (decimal amount) ;
decimal CurrentBalance { get; set; }

VB:

Public Interface IAccount
Sub Credit (ByVal amount As Decimal)
Sub Debit (ByVal amount As Decimal)
Property CurrentBalance As Decimal
End Interface

After you’ve added the interface, you’ll need to make modifications to make the code
match Listing 4-2. Notice that the IAccount members don’t have an implementation and
so appear incomplete because they have no lines of code. Also, each member doesn’t have
a public modifier, because interface members are implicitly public. The following sections
show you how to build the classes that implement the IAccount interface; there, you
should begin to see the benefit that an interface can bring.

98 Microsoft Visual Studio 2010: A Beginner's Guide

Making Classes Implement the Interface

To create a class, right-click the project in Solution Explorer, select Add | New Item, select
Code under the language branch in Installed Templates, and select the Class item. Name
the class Checking and click Add. Using the same procedure as Checking, add another
class, but name it Saving. Listings 4-3 and 4-4 show the two new classes.

Listing 4-3 Checking class that implements |Account inferface

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Checking : IAccount

{

public void Credit (decimal amount)
{
// implement checking logic
CurrentBalance += amount;
Console.Writeline ("Added " + amount.ToString() +
" to Checking Account") ;

public void Debit (decimal amount)

{
// implement checking logic
CurrentBalance -= amount;
Console.Writeline ("Debited " + amount.ToString() +
" from Checking Account") ;

}

public decimal CurrentBalance { get; set; }

VB:

Public Class Checking
Implements IAccount

Public Sub Credit (ByVal amount As Decimal) Implements IAccount.
Credit

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 99

' Implement Checking logic
CurrentBalance += amount
Console.Writeline ("Added " & amount.ToString() &
" to Checking Account")
End Sub

Public Sub Debit (ByVal amount As Decimal) Implements IAccount.Debit
' Implement Checking logic
CurrentBalance -= amount
Console.Writeline ("Debited " + amount.ToString() +
" from Checking Account")
End Sub

Public Property CurrentBalance As Decimal Implements IAccount.
CurrentBalance
End Class

Listing 4-4 Saving class that implements |Account interface

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FirstProgram

{

class Saving : IAccount

{

public void Credit (decimal amount)
{
// implement savings logic
CurrentBalance += amount;
Console.Writeline ("Added " + amount.ToString() +
" to Saving Account") ;

public void Debit (decimal amount)
{
// implement savings logic
CurrentBalance -= amount;
Console.Writeline ("Debited " + amount.ToString() +
" from Saving Account") ;

100 Microsoft Visual Studio 2010: A Beginner's Guide

public decimal CurrentBalance { get; set; }

VB:

Public Class Saving
Implements IAccount

Public Sub Credit (ByVal amount As Decimal) Implements IAccount.

Credit
' Implement Saving logic
CurrentBalance += amount
Console.Writeline ("Added " & amount.ToString() &
" to Saving Account")
End Sub

Public Sub Debit (ByVal amount As Decimal) Implements IAccount.Debit
' Implement Saving logic
CurrentBalance -= amount
Console.Writeline ("Debited " + amount.ToString() +
" from Saving Account")
End Sub

Public Property CurrentBalance As Decimal
Implements IAccount.CurrentBalance
End Class

In both Listings 4-3 and 4-4, notice that the Checking and Saving, respectively,
implement the IAccount interface, repeated as follows:

C#:
class Checking : IAccount
and
class Saving : IAccount

VB:

Public Class Checking
Implements IAccount

and

Public Class Saving
Implements IAccount

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax

In the C# listing, following the class name by a colon and then the interface name
specifies that the class will implement the interface. The VB listing uses the Implements
keyword to indicate that Checking and Saving classes implement the IAccount interface.
Looking at both Checking and Saving, you can see that they have the Credit, Debit, and
CurrentBalance members that are specified in IAccount. The primary difference is that
IAccount doesn’t have an implementation, but you wrote an implementation for Checking
and Saving. Listings 4-3 and 4-4 simplify the implementation of the interface so that you
don’t have to read a lot of code that doesn’t add to the purpose of the listing to show you
how a class implements an interface. In reality, the code in the methods would be different
for Checking and Saving because they are different account types with different business
rules.

You’ve created an interface and written classes to implement the contract of that
interface. The next section gives you a couple of examples to help clarify the practical use
of interfaces.

Writing Code That Uses an Interface

One of the best ways to understand the value of interfaces is to see a problem that
interfaces solve. In this section, I'll show you some code that accesses the Checking and
Saving classes individually, essentially duplicating code. Then I’ll show you how to write
the code a single time with interfaces. The particular example runs a payroll by obtaining
instances of Checking and Saving classes and crediting each class, which is synonymous
with employees being paid. Starting with the bad example, Listing 4-5 shows how this
code works.

Listing 4-5 Processing payroll with explicit checking and saving class instances

C#:

public void ProcessPayrollForCheckingAndSavingAccounts ()

{

Checking[] checkAccounts = GetCheckingAccounts () ;

foreach (var checkAcct in checkAccounts)

{
}

checkAcct.Credit (500) ;

101

102 Microsoft Visual Studio 2010: A Beginner's Guide

Saving[] savingAccounts = GetSavingAccounts() ;

foreach (var savingAcct in savingAccounts)

{
}

savingAcct.Credit (500) ;

public Checking[] GetCheckingAccounts ()

{

Checking[] chkAccts = new Checkingl[2];

chkAccts [0]
chkAccts [1]

new Checking() ;
new Checking() ;

return chkAccts;

public Saving[] GetSavingAccounts ()

{

int numberOfAccounts = 5;
Saving[] savAccts = new Saving[numberOfAccounts] ;

for (int 1 = 0; 1 < numberOfAccounts; i++)

{
}

savAccts[i] = new Saving() ;

return savAccts;

VB:

Sub ProcessPayrollForCheckingAndSavingAccounts ()
Dim checkAccounts As Checking() = GetCheckingAccounts ()

For Each checkAcct In checkAccounts
checkAcct.Credit (500)
Next

Dim savingAccounts As Saving() = GetSavingsAccounts ()

For Each savingAcct In savingAccounts
savingAcct.Credit (500)
Next
End Sub

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 103

Function GetCheckingAccounts () As Checking/()
Dim chkAccts(1l) As Checking

chkAccts (0)
chkAccts (1)

New Checking/()
New Checking()

Return chkAccts
End Function

Function GetSavingsAccounts () As Saving()
Dim numberOfAccounts As Integer = 5
Dim savAccts (numberOfAccounts) As Saving

For i As Integer = 0 To numberOfAccounts
savAccts (i) = New Saving()
Next

Return savAccts
End Function

To save space, I haven’t included the entire application in Listing 4-5, which is
available with the source code for this book via the McGraw-Hill Web site. To understand
how it works, imagine that you’ve written the following code in the Main method:

C#:

Program bank = new Program() ;
bank.ProcessPayrollForCheckingAndSavingAccounts () ;

VB:
ProcessPayrollForCheckingAndSavingAccounts ()

Walking through the code, let’s start at the ProcessPayrollForCheckingAndSaving
Accounts method. You can see how the algorithm calls GetCheckingAccounts to retrieve
an array of Checking objects. If you recall, an array is a list of elements of a specified
type, that type being Checking in this case. The algorithm goes on to iterate through the
Checking objects, invoking Credit on each to add 500 to the account. Some employees
want their paychecks in Checking, but others might want their paychecks to go into
Saving (or some other account). Therefore, the algorithm calls GetSavingsAccounts to
get a list of those accounts for employees who want their paychecks to go into their
savings. You’ll notice that the algorithm inside of GetSavingsAccounts is different from

104 Microsoft Visual Studio 2010: A Beginner's Guide

GetCheckingAccounts, which I did on purpose so that you’ll see different ways to use
loops; but this doesn’t affect the calling code because it’s encapsulated in individual
methods. The point to make here is that GetCheckingAccounts will only return Checking
class instances and GetSavingsAccounts will only return Saving class instances. The rest
of the algorithm in the ProcessPayrollForCheckingAndSavingAccounts method mirrors the
processing for Checking.

What should catch your attention is the duplication of code in the ProcessPayroll
ForCheckingAndSavingAccounts method. Although the Credit methods of Checking and
Saving should have different implementations, the code calling Credit can be the same,
eliminating duplication. Listing 4-6 shows how to take advantage of the fact that both
Checking and Saving implement the same interface, [Account. You’ll see how to call
Credit on any IAccount-derived type with one algorithm, eliminating the duplication you
saw in Listing 4-5.

Listing 4-6 Processing payroll through the IAccount interface

C#:

public void ProcessPayrollForAllAccounts ()

{

IAccount [] accounts = GetAllAccounts() ;

foreach (var account in accounts)

{
}

account.Credit (1000) ;

}

public IAccount[] GetAllAccounts ()

{

IAccount [] allAccounts = new IAccount[4];
allAccounts[0] = new Checking() ;
allAccounts([1l] = new Saving() ;
allAccounts([2] = new Checking() ;
allAccounts[3] = new Saving() ;

return allAccounts;

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 105

VB:

Sub ProcessPayrollForAllAccounts ()
Dim accounts As IAccount () = GetAllAccounts ()

For Each account In accounts
account.Credit (1000)
Next
End Sub

Function GetAllAccounts () As IAccount ()
Dim allAccounts(3) As IAccount

allAccounts(0) = New Checking()
allAccounts(l) = New Saving()
allAccounts(2) = New Checking()
allAccounts(3) = New Saving()

Return allAccounts
End Function

You can call the code in Listing 4-6 from the Main method like this:

C#:

Program bank = new Program() ;
bank.ProcessPayrollForAllAccounts () ;

VB:

ProcessPayrollForAllAccounts ()

Examining Listing 4-6, you can see that accounts is an array of IAccount. While
you can’t instantiate an interface by itself, you can assign an instance of the class that
implements that interface using a variable simply declared as the interface type. In this
case, GetAllAccounts returns a list of objects that implement IAccount.

Looking inside of the GetAllAccounts method, you can see how an array is being built
with both Checking and Saving objects. Since Checking and Saving implement [Account,
which you saw in Listings 4-3 and 4-4, instances of Checking and Saving can be directly
assigned into elements of an IAccount array.

Back in the ProcessPayrollForAllAccounts method, you can see a loop iterate through
each IAccount instance, calling Credit. The reason you can call Credit like this is that
IAccount defines a contract for the Credit method. Calling Credit on each instance really

106 Microsoft Visual Studio 2010: A Beginner's Guide

Hinterface IINtertace

1
}

Figure 4-3 The C# interface snippet template

invokes the Credit method on the runtime Checking or Saving instance. Your code that
you wrote for Checking.Credit and Saving.Credit will execute as if your code called them
directly as in Listing 4-5. Also observe that we’ve eliminated the duplication because one
algorithm, namely IAccount.Credit() in our example, works on both Checking and Saving
objects.

Now you can see that interfaces help you treat different types of objects as if they were
the same type and helps you simplify the code you need to write when interacting with
those objects, eliminating duplication. Imagine what would happen if you were tasked
with adding more bank account types to this algorithm without interfaces; you would need
to go into the algorithm to write duplicate code for each account type. However, now you
can create the new account types and derive them from /Account; the new account types
automatically work in the same algorithm.

The interface Snippet
Before using the interface snippet, open a new file by right-clicking your project in VS
Solution Explorer, select Add | New Item | Code File, and name the file IInvestment.cs
(or IInvestment.vb in VB). You’ll have a blank file to work with. To use the interface
snippet, type int and press TAB, TAB; you’ll see a snippet template similar to Figure 4-3
(C#) or Figure 4-4 (VB).

Because prefixing interfaces with I is an expected convention, the template highlights
the identifier after 1.

ElInterface IMyInterface

\jnd Interface

Figure 4-4 The VB interface snippet template

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 107

Applying Arrays and Generics

Whatever code you write will typically need to group objects into a single collection of
that object type. For this, you can use an array, which is a container that can have zero or
many elements, each holding an instance of a particular type. You’ll soon see how to use
an array to locate the elements (items) you want. There are also generic collection classes
in the .NET Framework that are even more powerful than arrays. You’ll learn how to use
both arrays and generic collections in this section.

Coding Arrays

You’ve already seen several examples of arrays being used previously in this chapter. You
declare a variable of the array type, instantiate the array to a specified size, and then use
the array by indexing into its elements. Listing 4-7 shows an example that demonstrates
the mechanics of creating and using an array.

Listing 4-7 Creating and using an array

C#:

private void ArrayDemo ()

{

double[] stats = new double[3];

stats[0] = 1.1;
stats[1l] = 2.2;
stats[2] = 3.3;

double sum = 0;

for (int i = 0; 1 < stats.Length; i++)

{
}

sum += stats[i];

Console.WriteLine
stats[0] + "
stats[1] + "
stats[2] + "
sum) ;

m + + —~

108

Microsoft Visual Studio 2010: A Beginner's Guide

VB:

Sub ArrayDemo ()
Dim stats(2) As Double

stats(0) = 1.1
stats(l) = 2.2
stats(2) = 3.3

Dim sum As Double = 0

For i As Integer = 0 To 2
sum += stats(i)
Next

Console.WriteLine

o+~
&

stats(0) & "
stats (1) & " "&
stats(2) & " = " &

sum)
End Sub

In the C# example of Listing 4-7, you can see that the stats variable is declared as
double[], an array of type double. You must instantiate arrays, as is done by assigning new
double[3] to stats, where 3 is the number of elements in the array. C# arrays are accessed
via a 0-based index, meaning that stats has three elements with indexes 0, 1, and 2.

The VB example declares szats as an array of type double. Notice that the rank of the
array is 2, meaning that 2 is the highest index in the array. Since the array is O-based, stats
contains indexes 0, 1, and 2; three elements total.

Assigning values to an array means that you use the name of the array and specify the
index of the element you want to assign a value to. For example, stats[0] (stats(0) in VB)
is the first element of the stats array, and you can see from the listing how each element
of the stats array is assigned the values 1.1, 2.2, and 3.3. The for loop adds each element
of the array to the sum variable. Finally, you can see how to read values from an array by
examining the argument to the Console. WriteLine statement. Using the element access
syntax, you can see how to read a specific element from the stats array.

An array is a fixed-size collection, and therefore somewhat limited in functionality.

In practice, you’ll want to use more sophisticated collections, like the List class, which is
referred to as a generic collection. Not all collection classes in the INET Framework are
generic collections; however, generic collections are now the preferred kind of collection
to use in most cases.

Chapter 4: learning Just Enough C# and VB.NET: Intermediate Synfax 109

Coding Generics

Generics are language features that allow you to write a piece of code that will work with
multiple types efficiently. A generic class definition has a placeholder for the type you
want it to represent, and you use this placeholder to declare the type you want to work
with. There is an entire library of generic collections in .NET as well as generic types
across the entire NET Framework Class library. Because of the volume of information
required for comprehensive coverage of generics, this section will only serve as a brief
introduction, giving you an example of generic use that you’re most likely to see in the
future. Listing 4-8 demonstrates how to declare a generic List. The code specifies the
type of the list as a Checking account and then proceeds to populate the generic list and
perform operations on the Checking elements of the generic list. Remember to include a
using directive (imports for VB) for the System.Collections.Generic namespace near the
top within your file.

Listing 4-8 Coding a generic list collection

C#:

private void ListDemo ()

{

List<Checking> checkAccts = new List<Checking>() ;

checkAccts.Add (new Checking()) ;
checkAccts.Add (new Checking()) ;

for (int 1 = 0; 1 < checkAccts.Count; i++)

{
}

Console.WriteLine (checkAccts[i] .CurrentBalance) ;

VB:

Sub ListDemo ()
Dim checkAccts As New List (Of Checking)

checkAccts.Add (New Checking())
checkAccts.Add (New Checking())

For i As Integer = 0 To checkAccts.Count - 1
Console.WriteLine (checkAccts (1) .CurrentBalance)
Next
End Sub

110 Microsoft Visual Studio 2010: A Beginner's Guide

In .NET, the generic List type is declared as List<T>, or List(Of T) in VB. The T'is a
type placeholder, where you can specify any type you want. For example, you could create
a List<int> for integers or a List<string> for strings, which would be List(Of Integer)
and List(Of String) in VB, respectively. In Listing 4-8, you can see that checkAccts is
declared as List<Checking> (List(Of Checking) in VB). Since a list grows dynamically
to accommodate any number of elements, you use the Add method to add elements to the
List. Once elements are in the List, you can use element access syntax, as shown in the for
loop, to access the elements one at a time. Collections such as List are convenient because
they have multiple convenience methods, such as Clear, Contains, Remove, and more.

In addition to List, the System.Collections.Generic namespace has several other
generic collections, such as Dictionary, Queue, and Stack. Each generic is initialized by
replacing the type parameters with the types you want to work on and then by using the
specialized methods of that collection. Whenever you see the type parameter syntax, you
should recognize that a generic is being used and you will have an idea of what the code
means and how to read it in the documentation.

Summary

What you learned in this chapter were essential skills for upcoming chapters in the
rest of the book. Knowing how delegates and events work helps you with event-driven
development that is common to GUI application development. Understanding interfaces
directly relates to being able to build Web services, among other uses. You’ll also make
regular usage of arrays and generics, and this chapter gave you the essentials to know
what collections are.

Remember that this was only an introduction to C# and VB and that there is much
more to learn about these languages. Of course, this book is about VS and not languages,
so the next chapter is where you’ll learn to build VS projects.

Part I I “

Learning the VS 2010
Environment

This page intentionally left blank

Chapter 5

Creating and
Building Projects

113

114 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Work with Projects and Solutions

Set Properties in the Properties Window
Reference and Use Class Libraries
Compile and Run Projects

Use the Class Designer

Projects and solutions are VS’s way of helping you organize your code for both
development and deployment. For development, you have a hierarchical structure that is
flexible and allows you to organize your code in a way that makes sense for you and your
team. For deployment, you can build different project types that will result in executable or
library files (often referred to as assemblies) that run your program when executed.

While reading this chapter, you’ll learn how to use solutions and projects. You’ll learn
how to find settings and options for customizing projects, how to reference assemblies,
and different options for compiling code. As an extra bonus, you’ll learn how the Class
Designer allows you to obtain a high-level visualization of your code and perform some
design work. We’ll begin with learning about solutions and projects.

Constructing Solutions and Projects

With VS, you can build applications that range in size and sophistication. At the most basic
level, you can start a console project that contains one or more files with code, which is very
simple. At higher levels of complexity, you can build enterprise-scale applications consisting
of many projects of various types, organized to support large teams of developers working
in unison.

VS uses a hierarchical model to help you organize your code and gives you flexibility
in how a project is set up. Some features, such as solutions and projects, are well defined,
but you have the freedom to add folders that help customize the arrangement of files to
meet your needs.

Two organizing principles of solution and project organization will always be true:
you will work with only one solution at a time and that solution will always have one or
more projects. For simplicity, I’ll use the term “project,” but that still means that we have

a project inside of a solution. Different project types have unique settings and options, but

Chapter 5: Creating and Building Projects

we’ll start by creating a Console application, which will reduce unnecessary detail and
help focus on the common features of all project types.

Creating a New Project

As a shortcut, press CTRL-SHIFT-N to open the New Project window, shown in Figure 5-1.

cTrRL-N will only open a single file, which you can’t compile, so don’t forget the sHIFT key.

Of course, you can always use the menu to created a new project.

Chapter 2 describes the features of the New Project window. The process is the same
any time you create a new project. VS remembers your last project type, which could
be helpful if you are creating multiple projects of the same type. Make sure you select
Console Application as your project type.

The way you create and name VB and C# projects are different in that all of the decisions

for C# projects are made at one time, but VB divides creation into initial project creation

and then saves additional information when you save the project for the first time.

C# projects allow you to configure Name, Location, Solution, and Solution Name as

shown in Figure 5-1. In C#, the Name field is the name of the project you are creating,

and the Solution Name field is the name of the solution. While typing the project name,

MNew Project

Visual Studio 2010

o)

MET Framework 4 - | Sort by: [Default

Console Application

[Search Installed Templates.. i n

"

Figure 5-1 The New Project window

g Console Application Visual C#
Recent Templates | =ch Types Wisual G
Installed Templates Lctil outlook 2007 Add-in Visual C# A project for creating a command-line
R application
4 Visual C#
Windows E| . ch| Word 14 Document Visual C#
Web i H
I+ Office I-L;wcﬁ Outlook 14 Add-in Visual C#
I SharePoint %
NIRRT i2Cf] Excel 14 Workbook Visual C#
Online Templates -
f‘ﬂ L ARRFS S B § WA a2 i i
Name: ProjectDemo
Location: "c:\users\joe\documents\visual studio 2010\Projects -
Solution: Create new solution -]
Solution Name: SolutionDemo| Create directory for solution
[] Add to Source Control
[ok][cancel

115

116 Microsoft Visual Studio 2010: A Beginner's Guide

VS will update the Solution Name with the same name. In a multiproject solution, this
might not make sense. So, first type the project name and then you can provide a name for
the solution that is more appropriate. In Figure 5-1, you can see that the project is named
ProjectDemo and the solution is named SolutionDemo. VS allows you to put spaces in

the names. A consequence of this is that the default namespace for a project will use the
project name with spaces translated to underlines; something to be aware of if your coding
conventions don’t allow underlines in identifier names.

If you have a very simple project and want all project files in the same folder, uncheck
Create Directory For Solution. However, most applications you build will have multiple
projects and leaving this box checked makes more sense because it maintains consistency
between folder and solution organization. In any case, when an additional project is added
to your solution, VS will always put the new project into a separate subfolder.

If you check Add To Source Control, VS will open a window for you to configure source
control. Source control is a repository for you to check code into. This is especially useful
for teams where each developer can check in his or her code for a common repository of
source code for this solution when you create the solution. Click OK to create the solution.

TIP

If you accidentally start a project type that you didn’t intend, select File | Close Solution
and then delete the solution folders from the file system. VS will often put OS locks on files,
so it's important to close the solution so that you will be able to delete files. The VS Recent
Projects list will have an entry with the name of the solution you just deleted, but you can
click that entry and VS will recognize that the solution no longer exists, prompting you

to remove the entry from the list. After that, you can start over again and use the same
solution/project name you intended, but with the right project type.

Starting a new Console project in VB, you only need to provide a Name parameter,
which is the name of the project to create. Once the project is created, the first time you
create the project, you’ll receive a window that asks you for Name, Solution Name,
Location, Create Directory, and Add To Source Control options that work the same as
described for the previous C# example. You’ve accomplished the same task, regardless of
language, but in different ways.

Navigating the Solution Explorer
VS creates a new project in the Solution Explorer window, shown in Figure 5-2. While
other VS windows provide specialized views into specialized parts of an application, the
Solution Explorer window is where you can find all of the artifacts of an application.

One of the first features of the project shown in Figure 5-2 is the hierarchical relationships.
You will have only one solution. VB doesn’t show the solution file by default, but you can

Chapter 5: Creating and Building Projects 117

Solution Explorer *OXx
21218

m Solution "SolutionDemo’ (1 project)
4 |£§ ProjectDemo|
[» [=d] Properties
[» [-3] References
5 App.config
] Program.cs

Figure 5-2 The Solution Explorer window

change this by selecting Tools | Options | Projects And Solutions and checking the box for
Always Show Solution.

You can add multiple projects to a solution, as well as folders for organizing the
projects. Right-click the solution name in the Solution Explorer and select Add | New
Project, and you can add more projects. Add | Existing Project allows you to add a project
that already exists to your opened solution. The reason this option exists is that while VS
solutions associate one or more projects together as a solution unit, any single project
could optionally be associated with other solutions. In other words, a single project could
be shared with other solutions.

Select Add | New Solution Folder to add a folder to a solution. You can add a hierarchy
of folders to a solution for organizing projects. One thing to remember about solution folders
is that unlike creating folders inside a project that become physical file system folders,
solution folders are logical and don’t create a physical folder in your file system. If you want
your file system layout to match the Solution Explorer layout with solution folders, you
must create the file system folders yourself. To avoid confusion, remember that it is possible
for the physical location of projects to differ from the Solution Explorer layout.

Besides organizing projects, solution folders are also useful for associating specific
artifacts with your project. While solution folders are not tied to physical file system
folders, they are included with source control providers, such as Visual Source Safe and
Team System. One potential use of a solution folder is to include a copy of an external class
library that you’ve built your project with. This way, whenever other members of the team
check the solution out of source control, they all are working with the same files and versions.
Solution folders can also be used for any type of file, including project documentation or
anything else that you want to keep organized in a single place.

Depending on project type, VS hides various files associated with a project. The Solution
Explorer toolbar has a Show All Files button that will show these hidden files. If you have the

118 Microsoft Visual Studio 2010: A Beginner's Guide

solution selected, all you’ll see is the Add A New Solution Folder button, so you’ll need to
select a project before the Show All Files button will display. An example of a hidden file is
the bin folder hierarchy that contains the output of your project when you compile.

Examining Property Settings

Each project has associated settings that you can configure. When you first create a
project, these settings are configured for common values for that project type. However,
you can modify these settings to meet your needs. Each project has a logical folder named
Properties, shown previously in Figure 5-2, which will open a property setting window
when you double-click the Properties (My Project in VB) folder in a project, shown in
Figure 5-3.

There are multiple tabs, each with related properties grouped to the subject of each tab.
Depending on project type, you might see additional tabs, but some of the tabs are common

ProjectDemo O Xx

Application

Con IN/A Platform: | N/A
Build
Build Event Assembly name: Default namespace:

ProjectDeme
Debug

Target Framework: Qutput type:
Resources [.NEI' Framework 4 A] [Console Application v]
Services Startup object:

i [(NOt set) *] Assembly Information...]
Settings
Reference Paths Resources
Specify how application resources will be managed:
Signing
) @ Icon and manifest
S A manifest determines specific settings for an application. To embed a custorm manifest, first add it to
i your project and then select it from the list below.
Publish e,
Code Analysis (Default Icon) & E] [. I»|
Manifest:
Embed manifest with default settings -
) Resource File:

Figure 5-3 The Project Properties window

Chapter 5: Creating and Building Projects

to all projects. The following sections describe each of the features of the Application
settings tab.

Assembly Name

VS projects create either *.dll or *.exe assemblies. The assembly name provides the
filename for this project and defaults to the name of your project. From Figure 5-3, you
can see that Assembly Name is set to ProjectDemo. Since this is a Console application,
the output would be a *.exe. It follows that the filename would be ProjectDemo.exe. Had
the project type been a Class Library, the filename would have been ProjectDemo.dIl.

Default Namespace

The Default namespace (Root namespace in VB) setting determines what the namespace
will be defined automatically as whenever you add a new code file to your project. It’s
initially set to the name of your project. If you want the namespace of new files to be
different, set the namespace here.

Target Framework
VS has .NET Framework multitargeting support, where you can work with any version of
.NET between v2.0 and v4.0. Select the .NET version you need in the Target Framework
combo box. VB includes this option on the Compile tab when clicking the Advanced
Compile Options button. Remember to set the VB project from .NET Framework 4.0
Client Profile to .NET Framework 4.0 because later we’ll be referencing a class library
that is set to .NET Framework 4.0 and the target frameworks must be compatible for one
assembly to reference another.

Since you can have multiple versions of .NET on the same machine as VS 2010,
you can switch freely between different projects that use different .NET versions. This
is particularly useful if you’re a consultant working on different projects with different
versions or if you’re providing maintenance support on older versions of a product while
doing active development work in a different project using .NET 4.0.

Output Type

An Output type (Application type in VB) is the type of assembly created when you build
your project. The three types of output are Windows Application, Console Application,
and Class Library. You already know how to create a Console application, which produces
a *.exe assembly. Later in this chapter, you’ll learn how to create a Class Library project,
which produces a *.dll assembly. In Chapter 8, you’ll learn how to create a Windows
Application project, which is a *.exe.

119

120 Microsoft Visual Studio 2010: A Beginner's Guide

TIP

If you have a WPF project, its Output Type is set to Windows Application. If you
switched the Output Type of a WPF application to Console Application, you would see
the Console window appear also. This might be useful for some intermediate debugging
where you could emit Console.WriteLine messages. Of course, VS provides excellent
debugging tools, which you'll learn about in Chapter 6, including an Output window,
but this is just another option if you ever wanted it.

Startup Object

You could add multiple Main methods to a Console application or a WPF application,
but only one Main method can be active at a time. The Startup object allows you to
specify which class contains the Main method you want to use as the entry point to your
application. One of the reasons you might want to do this is to start your application in
different configurations, which might facilitate testing by allowing you to go straight to a
part of the program without too much navigation.

lcon and Manifest
By clicking the ellipses button on the right of the icon drop-down list, you can browse to
an icon file, *.ico, that will appear as your application icon.

TIP

VS ships with system icons that you can use in your own applications. Navigate to C:\
Program Files\Microsoft Visual Studio 10.0\Common7\VS2010Imagelibrary\1033
and you'll see a Zip file named VS2010Imagelibrary. Your path might be different

if you chose to install VS2010 somewhere other than the default. Unzip this
VS2010Imagelibrary and you'll see a plethora of resources with images, audio,
animations, and icons that are common to Microsoft operating systems and applications.

The manifest allows you to specify Microsoft Windows User Access Control (UAC)
settings or to support a form of deployment called Click-Once, where a WPF application
can be deployed from a Web page and run locally on your desktop machine. The manifest
describes the application and deployment features of your Click-Once application. Since
these manifests are automatically generated when you publish a Click-Once application,
you normally won’t ever manually build manifest files yourself; this is considered
an advanced practice and includes knowledge beyond what a beginner’s guide would
include.

In VB, there is a UAC Settings button that allows you to directly modify the app
.manifest file. This is an advanced technique that requires knowledge of the operating
system UAC settings.

Chapter 5: Creating and Building Projects 121

If you select the Resources option, you can include a Win32 resources file, which
you can then access through code in your application. This is another advanced scenario
beyond the scope of this book.

Assembly Information

Clicking Assembly Information shows the window in Figure 5-4. This information is
included in the assembly metadata when you build your project. Most of the information
in this window is self-explanatory. Since assemblies can comprise multiple files, you are
allowed to vary the assembly (all files) and this file’s assembly version numbers.

With .NET, you can have two-way communications with Component Object Model
(COM) applications. You can enable this by allowing your assembly to have a Globally
Unique Identifier (GUID) so that COM can find it, and check the COM visible box.

Leave the Neutral Language as None, unless you want the default locality to be
something other than en-US, which is the locale for US English.

To see what these settings look like, press Fs to build the application, and then navigate to
the location in the file system where you created the project. The location on my machine for
this demo is C:\VS2010\ChapterO5\SolutionDemo\ProjectDemo\bin\Debug, but yours could
be different if you created your project in a different location. Regardless, you’ll find the
ProjectDemo.exe file in the bin\Debug folder. Right-click ProjectDemo.exe, select Properties,
and click the Details tab of the ProjectDemo Properties window, shown in Figure 5-5.

Assembly Information [~ 7 (]
Title: .ProjectDemo .
Description: .Demonstrates Praject Setup Info
LCompany: McGraw-Hill
Product: .ProjectDemo
Copyright: tolpyri"glf'ltléﬁll 2009
Trademark:

Assembly Version: 1 0 U R 0
File Version: 1 I 0o 0
GUID: 5027 df-beBL-4557-879¢-2560368b93e4
Neutral Language: l(lNone] v
[Make assembly COM-Visible
ok || Cancel

Figure 5-4 Assembly Information

122 Microsoft Visual Studio 2010: A Beginner's Guide

E Plojedbem P.roperﬁs E '

| General | Compatibility | Sect..lrrty| Details | Previous ‘u"ersions|

Property Value

Description

File description ProjectDemo
Type Application
File version 1.0.00
Product name ProjectDemo
Product version 1.0.0.0

Copyright Copyright © 2009
Size 5.50 KB

Date modfied 5/13/2009 4:25 PM
Language Language Meutral

Original filename Project Demo exe

Remove Properties and Personal Information

oK [GCamcel || ropy

Figure 5-5 File Properties window

As you can see in Figure 5-5, the Assembly Information from the project properties
is included with the file. This is convenient for you (or an end user) to be able to open
the file and read pertinent information, especially version information, to know you’re
working with the correct assembly, for debugging, or just to know what is on your system.

Referencing Assemblies

All projects normally reference external assemblies. For example, System.dll is a .NET
Framework assembly that contains all of the primitive .NET types and is normally included in
every project. Each project type has a specific set of assemblies that appear in the References
list. The assemblies that appear in this list are either required because of the type of project
you are building or are optional and contain libraries that are commonly used for that type of
project. You are free to remove assembly references if you like, but be aware that removing

a reference to an assembly required for that project type is likely to result in your code not
being able to compile.

Chapter 5: Creating and Building Projects 123

Assembly references are added to a project to tell the compiler where to find the types
it is using in an application. When your compiler runs, it will know what types you have
in your code and looks through the set of referenced assemblies to find that type. Adding
an assembly reference doesn’t add all of the code from the referenced assembly to your
code; it just tells the compiler where to look.

NOTE

There is often confusion around the relationship between assembly references and
namespaces. A namespace using statement (Imports in VB) allows your code to be
written without fully qualifying type references for types in an assembly. However, the
assembly reference is just a way to tell the compiler in which specific external assembly
to look fo find those types: two different purposes. This confusion is exacerbated by the
fact that you get the same error message from the compiler when you either are missing
an assembly reference or don't have a using (Imports for VB) directive in your code for
a namespace that a type resides in. Just remember fo ensure that you have an assembly
reference first and then add a using (Imports) directive at the top of your file.

Adding a .NET Assembly Reference

You can add references to your project by right-clicking the project and clicking Add
Reference. You’ll see the Add Reference window, shown in Figure 5-6. On the .NET
tab of this window, you’ll see a list of assemblies from the Global Assembly Cache

Add Reference E
NET |COM I Projects | Browse | Recent|

Component Name Version Runtime Path r
System.Printing 40,00 vd0.20826 C\Program
System.Runtime 4.0.0.0 vd.0.20826 C:\Program
System.Runtime.Remoting 4.0.0.0 vd0.20826 C\Program

 System,Runtime Serializati... 4.0.0.0 vd.0.20826 C\Program
System.Runtime.Serializati... 4.0.0.0 vd.0.20826 C:\Program
System.Security 40,00 v4.0.20826 C\Program
System.ServiceModel 4000 w0, 20826 C\Program
System.ServiceModel.Acti... 4.0.0.0 wd.0.20826 Ch\Program _
System.ServiceModel.Cha.. 4.0.0.0 vd0.20826 Ch\Program
System.ServiceModel.Disc... 4.0.00 wd.0.20826 C\Program
System.ServiceMeodel.Reout... 4.0.00 wd.0.20826 Ch\Program =
< I | 3

ok || Ccancel

Figure 5-6 The Add Reference window

124 Microsoft Visual Studio 2010: A Beginner's Guide

(GAC), which is a shared repository of assemblies. Microsoft and third parties will place
assemblies in the GAC to make it easier to share them by any programs.

The COM tab shows all of the COM applications currently registered on your
computer. For example, if you wanted to communicate with Excel, you would click
the COM tab and add a reference to the version of Microsoft Office Excel that you are
working with. Adding a reference to a COM object causes VS to automatically generate
a new assembly, called an Interop assembly, that has stub methods that make it easy
for you to perform operations on that COM object. You would need to reference the
documentation for the COM object/application to determine what operations are possible,
but this is a very powerful way to work with legacy applications and Microsoft Office
applications that expose a COM interface.

CAUTION

If you're adding an assembly reference for a VB project, remember to open My
Projects on ProjectDemo, go to the Compile tab, click the Advanced Compile Options
button, and ensure that the Target Framework is set to .NET Framework 4.0 (not
NET Framework 4.0 Client Profile). The reason is that the class library project is
automatically set to .NET Framework 4.0 and the target framework for both the
referencing and referenced assemblies must be the same.

The Recent tab has a list of references that you’ve recently added to a project, which
is a convenience based on the probability that if you added a reference to one project
in a solution, you might want to quickly add that same reference to others. The Browse
tab of the Add Reference window allows you to search the file system for a *.dll file to
add as a reference. Just remember that if you are referencing a *.dll for a project in the
same solution, it would be better to use the Project tab, which manages dependencies and
ensures that your project is updated if the referenced project changes. File references can’t
know if the external *.dll changed because the external *.dll is outside of your solution.
In most cases, if you’re referencing an external *.dll, you don’t have the code, so a project
reference won’t be possible. The next section explains more about project references.

NOTE

The New Projects window, ctri-N, contains Office project types that can help you get
started building Microsoft Office applications.

Managing Assembly References

Occasionally, you might want to remove an assembly reference because it isn’t necessary
or because you accidentally added the wrong reference. In C#, you would open the
References folder, select the reference to remove, and press DELETE. In VB, you would

Chapter 5: Creating and Building Projects

B G0 You Pt o4 Dabug Tokm D Look Achiaces Tas Aotan Yindow be e
- Fd @ el -0 -R-0r Aok -] B
S a s 0E0OT 5] 8 e,

Sl ' rojeciDemavi [[EENEY

Application
M/A . Pl MN/A - Sl My Project

Comgule] Modulel vb
Debwg References:
T | Reference Hame Type Vers.. Copylocal Path |
Systeen NET 4000 Fabse Cr\Program d X vl 1 Prafile Client]
Resources System.Care WNET 4000 False Ci\Program . \Profde\Clent']
= System Data NET 4000 False CAProgram Assernblies\M W NETF i D Profibel Clientts

Settings System Deploymment NET 4000 Faise CAProgram T Profie Client
SystemnXml MET 4000 False Ci\Program 3 J DProfdeChenti
Sigring System imlLing NET 4000 Fake CAProgram b, oty NETF e B Profibe\ Clientt
My Etensions
. . vl
Publish — =
[[Addes o] [Remove] [vpan System.Data DataSetbxtensions
Code Analysis ' SR
Impaned namespaces =
Microwoft Visusilasic 2
8 Name) System Dita. Dt 2
|0 Microsofe VisualBasic . Copylocal Faise
] System I ;
[System Collections s DstaDet
T System Collectsnn Geners: ki
|#1 System Data
|[&] System.Disgrastics L

B Eiror Lot B Output
Ready

Figure 5-7 The VB My Project References tab

open the Properties window by double-clicking My Project, click the References tab,
select the reference to delete, and click Remove. Figure 5-7 shows the VB References tab.
VB includes additional functionality on the References tab. For example, you can
click Add to add a reference. You also click Unused References to remove references for
assemblies that are not being used in your code. Clicking Reference Paths allows you to
specify a folder that VS will look in to find assemblies you want to reference.
C# has a separate tab on the Properties window for managing Reference Paths. When
VS looks for referenced assemblies, it will search the current project directory, then in
the folders identified in Reference Paths, and then in folders for the list of assemblies
specified by the Add References window.

Referencing Your Own Class Libraries

There are various reasons for creating your own code libraries. For example, you might
have reusable code or want to keep your code organized into separate assemblies. To
do this, you would create Class Library projects, and then reference those class library
projects from other code. First, let’s create a Class Library project and then create a
reference to the Class Library project from a Console application.

125

126 Microsoft Visual Studio 2010: A Beginner's Guide

Within the SolutionDemo solution, we’ll create a new project for a class library.
Right-click SolutionDemo and select Add | New Project. This time, select Class Library
instead of Console Application and name it ClassLibraryDemo. Clicking OK will add
a new Class Library Project to your SolutionDemo Solution. You will now have two
projects in your solution.

To use the code in the ClassLibrary project, right-click the ProjectDemo project
and select Add Reference. This time, select the Project tab, which will contain all of the
projects that belong to the same solution. Select the ClassLibraryDemo project and click
OK. You’ll see the reference to ClassLibraryDemo appear in the References folder in the
ProjectDemo project.

TIP

Resetting References for Renamed Projects. You can rename any project by right-
clicking the project and selecting Rename. However, that doesn’t change the physical
folder name. If you want to change the physical folder name, close the solution (select
File | Close Solution) and then change the project folder name. When you re-open the
solution, Solution Explorer won't be able to load the project. This is because the folder
name for the project in the solution file hasn’t changed. To fix this, select the project in
Solution Explorer and open the properties window. In the properties window, select the
file path property and either type the newly changed path or click the ellipses button to
navigate to the *.csproj file. Navigate back to Solution Explorer, right-click the project
that didn’t load, and select Reload Project.

Now that you have a reference to a class library, you’ll want to write code that uses the
objects in the class library, which you’ll learn about next.

Using Code in Class Libraries

To use class library code, you need to ensure you have a reference to the class library.
If using C#, you can add a using directive, and in VB you can add an Imports directive,
which allows you to use the types in the class library without fully qualifying them.

After referencing the class library assembly and ensuring namespaces are managed
properly, you can use class library classes and instantiate these externally referenced objects
and access or invoke the members as if they were part of the code in your own assembly.
The NET CLR will take care of making sure that your calls to the class library object work
transparently behind the scenes. The preceding section showed you how to create the reference
from one project to another, allowing the compiler to find the other assembly. This section will
explain how to write the code that specifies which objects in the class library to use.

Assuming that you were building an educational application, you might have a class
library that helped you keep track of students. To facilitate this scenario, you can rename
the Class].cs or Classl1.vb file in the ClassLibraryDemo project to Student.cs or Student.vb.

Chapter 5: Creating and Building Projects

If you’re using C# when you do this, VS will ask if you want to change the class filename
from Class|1 to Student. VB will make the class name change automatically, without
asking. This is a convenient way to keep your classes and filenames in sync. It is common
to create only one class per file. Listing 5-1 shows the new student file after renaming and
adding code to make it functional.

Listing 5-1 Class library code

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ClassLibraryDemo

{

public class Student

{

public List<int> GetStudentGrades (string studentName)

{
}

return new List<int> { 80, 100, 95 };

VB:

Public Class Student
Public Function GetStudentGrades (ByVal studenName As String) As
List (Of Integer)
Dim intList As New List (Of Integer)
intList.Add (80)
intList.Add (100)
intList.Add (95)
Return intList
End Function
End Class

The important parts of Listing 5-1, for the current discussion, is that Student is a class
inside of the ClassLibraryDemo namespace. You’ll need to remember the namespace so
that you can obtain a reference to a Student instance from the calling code. Listing 5-2
shows how. Remember that the VB namespace is implicitly set to whatever is defined as
the namespace setting on the My Project page, which defaults to the project name.

127

128 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 5-2 Application code calling class library code

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using ClassLibraryDemo;

namespace ProjectDemo

{

class Program

{

static void Main(string[] args)

{

VB:

string studentName = "Joe";
Student myStudent = new Student () ;
List<int> grades = myStudent.GetStudentGrades (studentName) ;

Console.WriteLine ("Grades for {0}:", studentName) ;
foreach (int grade in grades)

{
}

Console.WriteLine (" - " + grade);

Console.ReadKey () ;

Imports ClassLibraryDemoVB

Module Modulel

Sub Main ()
Dim grades As List (Of Integer)
Dim studentName As String = "Joe"
Dim myStudent As New Student

grades = myStudent.GetStudentGrades (studentName)

Console.WriteLine ("Grades for {0}:", studentName)

Chapter 5: Creating and Building Projects 129

For Each grade In grades
Console.WriteLine (" - " & grade)
Next

Console.ReadKey ()
End Sub

End Module

One item to draw your attention to in Listing 5-2 is the using directive (Imports in VB),
specifying that you can use the types in the ClassLibraryDemo namespace without fully
qualifying them. After that, you can see how Listing 5-2 creates instances of Student and
myStudent and calls GetStudentGrades.

TIP

The call to Console.ReadKey in Listing 5-2 causes program execution to stop until the
user presses a key on their keyboard. If Console.ReadKey was not present, the program
would finish the Main method, which would close the application before you had the
chance to see the output.

Next, you’ll want to compile the code to see if the syntax is good and then run the
program to see if it operates properly. The next section explains how compiling and
running works with VS.

Compiling Applications
You’ll find several compilation options on the Build menu. Because there are so many
options, it isn’t always intuitive which option you should use. The options are scoped to
either the current project or the entire solution. The top portion of the menu applies to
the entire solution, and the second section is context-sensitive, applying to the currently
selected project. The following sections describe each set of options, including build,
rebuild, and clean for both projects and solutions.

Building Solutions/Projects
Building typically means that you run the compiler to compile source code files. Sometimes
the build includes more than compilation. For example, if you are writing ASPNET
applications, VS will generate code based on the Web controls on the page and then that
generated code will be compiled with normal code. Therefore, the term build is more
accurate than compile.

During a normal build, VS will only build the items in a project or solution that are out
of date. More specifically, only projects that have changes and edits will be rebuilt,

130 Microsoft Visual Studio 2010: A Beginner's Guide

but projects that are untouched will be reused as is. A build is typically the fastest option
during normal development because building only items that are out of date means that
there are likely items that don’t need to be built. Be aware, though, that you’ll occasionally
need to build everything to make sure you aren’t accidentally working with old code.

Rebuilding Solutions/Projects

A rebuild performs the same actions as a build, except that it forces the build of all items
belonging to a project or solution. Reasons for a rebuild include ensuring new code you’ve
written works with existing code, creating a fresh build for deployment, and ensuring
important items are built when a normal build doesn’t work.

Many developers, including myself, like to pull the latest changes from source control
into my solution every morning before starting work. This ensures that the current code in
the solution will build with whatever was in source control. This keeps the code in your
local solution from differing too much from what is in source control.

Before you deploy an application, you’ll want to perform a rebuild to ensure all of
the code builds. Depending on your process, you will want to test the code that was just
rebuilt, prior to deployment. The rebuild ensures that the application you are preparing for
deployment is the most current.

Sometimes your normal build doesn’t work correctly or you’re seeing bugs that
seem to be associated with code that you’ve already written. While VS is a great tool
and manages dependencies between projects, there are still complex situations where
everything doesn’t build correctly. At these times, you can try a rebuild, which forces the
build on all items of a project or solution.

A rebuild takes more time to perform because all items in a project must be rebuilt.

If you have a small project, you might not notice the differences. However, if you have

a fairly large solution, with dozens of projects, a steady pattern of rebuilds throughout

the day could cut into your productivity. A rebuild on a project is often not much more
work than a build on the project, but there are probably edge cases where the difference
in time would be noticeable. It is the rebuild on the solution that will most likely get your
attention. That said, each version of VS has progressively improved the performance of
the build process, so you should interpret the performance as a relation between build and
rebuild, rather than as a statement about VS compared to any other tool.

Cleaning Solutions/Projects

A clean operation will delete project outputs, which include *.dll, *.exe, or other items
produced by the build process. You would often perform a clean operation to guarantee
that all outputs are fresh or to obtain a smaller copy of the project.

Chapter 5: Creating and Building Projects

Normally, a full rebuild ensures that you have the most up-to-date outputs available. You
could also perform a clean operation to ensure all outputs were removed and then perform a
build to see which outputs were created. This might give you insight into whether the build on
a solution was including all of the projects. In normal circumstances, VS manages all of your
dependencies for you, as described in the next section. However, in advanced scenarios, some
developers might occasionally change these dependencies. Cleaning is a tool to help you
know whether a project is really being built. From a practical perspective, this is rare and you
could inspect file dates to tell the same thing, but cleaning is another path you can take.

A more common use of clean is to remove outputs from the project to make it smaller.
You might want to compress a project or solution and e-mail it to another person, requiring
that you minimize the size of the attachment. While code files normally compress very
well, *.dll and *.exe files can take up some file space, even when added to a compressed
file. If you perform a clean before compressing the files, you will use much less file space.

Managing Dependencies and Build Order

A dependency describes to VS which other projects a given project depends on to

operate properly. For the example in this chapter, the ProjectDemo project references
ClassLibraryDemo and uses the code in ClassLibraryDemo. Therefore, ProjectDemo has a
dependency on ClassLibraryDemo. VS adds this dependency automatically, which is good
because when VS builds your solution, it will keep all projects up-to-date. VS manages a tree
of dependencies. Whenever you perform a rebuild, VS looks at the dependency tree and builds
all projects that don’t have dependencies. Then, VS builds all projects that depend on the last
set of projects that were rebuilt. This process continues until the entire solution is rebuilt and all
projects at the top of the tree reference updated versions of all referenced projects.

You can manually manage dependencies by right-clicking a project or the solution
in Solution Explorer and selecting Project Dependencies. Figure 5-8 shows the Project
Dependencies window.

In the Project Dependencies window, you can select (from the drop-down list) the
project to set dependencies upon. There is a list of projects that you can set dependencies on.
As shown in Figure 5-8, the ProjectDemo project has a dependency on ClassLibraryDemo.
VS created this dependency automatically.

Project dependencies directly affect the build order of a project. If you recall from the
previous discussion, projects that have dependencies upon them will be built before the
depending projects. From the Project Dependencies window, shown in Figure 5-8, you can
click the Build Order tab to manage the order of the build. You could also get to the Build
Order tab by right-clicking a project or the solution in Solution Explorer and selecting
Project Build Order. You can see the Build Order tab in Figure 5-9.

131

132 Microsoft Visual Studio 2010: A Beginner's Guide

 {| Build Order

Projects:

ProjectDemo =

Depends on:

bl ClassLibraryDemo

[ok || cancel

Figure 5-8 Project Dependencies window

| Dependencies | Build Order

Projects build in this order:

ClassLibraryDemo
ProjectDemo

Use the Dependencies tab to change the build order.

[ok || cancel

Figure 5-9 The Project Build Order tab

Chapter 5: Creating and Building Projects

CAUTION

Don't alter project dependencies unless you really know what you are doing. The results
could be severe in that it can take a long time fo fix dependencies in a large project.
The automatic dependency management provided by VS is very dependable, and you
should rely upon it whenever possible.

Managing Compilation Settings

The project property pages include a tab for compiler settings. You set compiler settings
for each individual project. Figure 5-10 shows the C# tab, which you can open by double-
clicking the Properties folder on a project. Some of these settings are advanced topics that
are out of the scope of this book. For example, this book doesn’t discuss COM Interop,
unsafe code generation, or serialization assemblies. I’ll simply mention the setting with a

quick explanation so that you’ll know it’s there if you ever run into one of these scenarios
in the future.

The DEBUG and TRACE compilation constants enable you to use the Debug and
Trace classes, respectively, that are members of the .NET Framework System.Diagnostics

+ Solution Explorer

= in|

Application - - oA Schution SelutionDemeVT (2 pe
Configuration: | Active (Debug) - Plasform: | Active (46) | 4 3 ProjeciDemals

4 Properties

General - 3 References

| 4] Program.cs

Conditions] compalstion symiboh: | « (3 ProjectDemavl

¥ Defone DERLG comtant 2 My Project
Resaurces | %) Modulel.vb

| Define TRACE constant

Services —— o
Platicam targes: 85 = |
o] Allow unsafe cade
Reference Patics Optimuze code 4
Sagrang Errors and warnings | . = 0
-l o i : |
Publish g g |
e Treat winings & erfor | S
@ None | o
Al
Speciln warmings:

Output

Dutput path

Eroe List B Output
P
dy

Frad

Figure 5-10 C# Compiler Options

133

134 Microsoft Visual Studio 2010: A Beginner's Guide

namespace. You can also build code that depends on your own custom constants by
adding your own constants to the Conditional Compilation Symbols box as a comma-
separated list of strings.

C# allows you to write code that is classified as unsafe, meaning that you can use
pointers and other features in an unsafe context. Unsafe code is still managed code
(managed by the CLR). However, the CLR can’t verify that the code is safe because
unsafe code can contain pointers. This is an advanced feature and the box is unchecked,
ensuring that you must check it to opt in to enable this type of coding.

All warning messages are associated with a level, and the Warning level is set to 4 by
default, which includes all compiler warnings. Setting this to a lower level would suppress
the display of all warnings at that level or higher. You can also suppress specific warnings
by adding them to a comma-separated list in the Suppress Warnings box. You really
shouldn’t suppress warnings, as this setting could cover up an error that would be hard to
detect otherwise.

When you build an application, your program will run even if warnings are present but
will not run if the compiler encounters errors. Sometimes warnings are so important that
you might want to treat them as errors, and the Treat Warnings As Errors section gives you
flexibility in handling warning-as-error scenarios.

The output path of an application defaults to bin\Debug under the project folder for
Debug builds and bin\Release for release builds. You can change this location if you like.

Checking the XML Documentation file will cause XML Documentation comments
to be extracted from your code into an XML file that you specify. Checking this box
increases the time of the build process, so you won’t necessarily want to leave it on during
Debug builds, when you are doing most of your coding. The XML documentation file can
be input into third-party tools that automatically build technical documentation for you.

You would only check the Register For COM Interop box if you were building a .NET
Assembly that was being called from a COM application.

If you’re doing XML serialization of types in an assembly, you can turn on the Generate
Serialization Assembly to speed the serialization process.

C# has another group of settings on the Build Events tab. You can run code before or
after the build for each project. You can set the conditions upon when the build occurs,
which could be always, on a successful build, or only when an update occurs. The build
events have a set of macros you can access that give you information on the current build
process.

VB has options that are specific to the VB compiler on its Compile page, shown in
Figure 5-11.

Chapter 5: Creating and Building Projects

Tet Aushoe Vindow Help
-1

Bl ' rcjeciDemaVi %

Application ; - Sehution ‘SolutionDemeNT (2 pr
Configuration: | Active (Debug) »| Plaform: |Active (6) x| + (3 ProjectBemats
Compila 4 Properties
Debog oo i R o
References TS | Browse.. | & (3 ProjectDemoNl
Compile Optians: 2 My Project
s Opticn explicit Optinn strick: D
Services On =| |o# -
Settings Opticn compare: Cption infer
Sgning Binary =|[on -
Warning conlrgiatatran:
My Exensions Condition MNotifscation - o L}] 3
= - 1 e
Publish Late bunding: call coutd fail st run time [one o
Implicit types ehject assumed Mane - -
Codt Amie Use of vanable price Lo assgnment Wy - B0 =
Function returning reference type without retum value Warming -
Function returning intrinsse value bope without retumn value Watrung =l.
7| Dsabile all warnings
Treat afl warnings as errars
] Generate XML documentation file

B Grorint B Output

Ready

Figure 5-11 The VB Compile Options page

Most of the VB and C# compiler options are similar, except for Option Explicit,
Option Strict, Option Compare, and Option Infer. In VB, variable declaration before use
can be turned off. When Option Explicit is on, you must declare any variables before use.
You can also assign any type to another by default, but Option Strict, if turned on, will
force you to use code that performs a conversion from a larger type to a smaller type,
often referred to as a narrowing conversion.

Option Compare causes comparison of strings to be done in a binary fashion. However,
when working with different languages, you’ll want to consider changing Option Compare to
text so that the comparison will consider culture-specific issues affecting string comparisons.
Option Infer will allow a variable to assume its type based on what is being assigned to the
variable, rather than explicitly declaring the variable type. Here’s an example of interred type
on a variable:

Dim studentName = "Joe"

In this example, the type of "Joe" is clearly a String. Since Option Infer is turned on, this
syntax is valid and studentName becomes a String because that is the type of the value
being assigned.

135

136 Microsoft Visual Studio 2010: A Beginner's Guide

Navigating a Project with Class View

An alternate way to work with projects is via Class view, which allows you to view
solutions and project artifacts through the logical layout of the code. In C#, you can open
Class view by pressing cTRL-W, c or select Class View from the View menu. In VB you
can open Class view by pressing CTRL-SHIFT, ¢ or select View | Other Windows | Class
View. Figure 5-12 shows the Class View window.

In Class view, you have a hierarchy of nodes that start at the project, include references
and namespaces, and contain classes under those namespaces. Under each class you have
Base Types, which contains a list of base classes derived from and implemented interfaces
for that specific class. Notice how I selected the Student class in Figure 5-12, which shows
the members of the class in the bottom pane.

As shown in the Class View toolbar, you can create new folders, use the arrows to
navigate up or down the hierarchy, or choose options of what to display in the hierarchy.
There is also a button with a glyph of objects that indicate how to create a class diagram,
which is discussed in the next section.

Class View v A X
= =&
|<Search> ~| d =

4 (7] ClassLibraryDemo
[» Cd Project References
4 {} ClassLibraryDemo
PR e
[CJ Base Types
4 (7] ProjectDemo
[> 4 Project References
= {} ProjectDemo

‘@ GetStudentGrades(string)

Figure 5-12 The Class View window

Chapter 5: Creating and Building Projects

Using the Class Designer

When working with a project, it can sometimes be helpful to have a high-level view of
the project contents, especially if someone else has created the project and you haven’t
worked with that project before. This is where the Class Designer can help. In addition to
code visualization, another capability of the Class Designer is to give you a basic tool to
perform some design yourself. We’ll look at visualizing existing classes first.

Class Designer Visualization
Whenever you select a project in Solution Explorer, you’ll see the Class Designer button
appear in the Solution Explorer toolbar. The Class Designer button also appears on the
Class View window. Clicking View Class Diagram will produce a diagram of classes in
your solution, shown in Figure 5-13.

As you can see in Figure 5-13, VS produces a new file, named ClassDiagram1.cd,
with a visual representation of your code. You can see that the properties window is open,
allowing you to view information about the selected Program class. Additionally, the

o0 SCIBORDETONE - MECrosolt Visual Studio e]
Eia G, Yiew,, Relactor, Pygject Juskd _ Dsbvag ooy Closs Dlngun Ot Tioche, Architochun, Tt Amabydn Winciow tale
R Rt e B N NI R S e A T {8 B

R e e e e S R T RS e
PR CLsliageamlcd® % + Solution Explorer
| S EE

o Schution SelutionDemeVlr (2 pr
— 4 | ProjeciDemals.
Program 3 “ i Properies

| Cla
i 3 Refeiences
2B ClsDiagram.cd

¢
Methods = 4] Program.cs
a¥ Man 4 (B ProjectDemave
W My Project
%) Moduled vb

Program Class
51} =
e

Customn Astril
File Name Pr

Inheritance M None

B Froe List B Output Class Details
dy

Frad

Figure 5-13 Visualizing code with the Class Designer

137

138 Microsoft Visual Studio 2010: A Beginner's Guide

Class Details window provides additional details on the members of the Program.cs class.
Figure 5-13 is a minimal diagram of one class with a single method, Main, and you would
have seen all of the classes in the current project if there were more. This could be a good
way to help you learn about an existing base of code.

In addition to code visualization, you have the ability to perform some light design with
the Class Designer, as discussed in the next section.

Class Designer Code Generation
The Class Designer allows you to generate code graphically. On the left-hand side of
Figure 5-13, you’ll see a tab for the Toolbox. Hovering over that tab, you’ll see a group of
images for code items, such as Class, Enum, Inheritance, and more. Figure 5-14 shows the
results of using Toolbox items to enhance the existing Figure 5-14 diagram.

In Figure 5-14, you can see the Toolbox with options for what type of items you can
add to a class diagram. Each of the Toolbox items matches some type of code that you

would normally write. The class diagram itself has additional items, including an abstract

= Cless Dsigner B =T
X Pointer =3 Sohtion ‘SolutioaDemoVB' {2 pe
[I & P T « | ProjeciDemats
Bl Ewm ﬂ":?" e 4 Properties
= Interface o F st s o) i Hefeences
= Aberact Clors =N = ' Abstract{las | @ ClassDiagraml.cd
M St : - 2] Program.cs
- | &% Main] Safer
) Delegate) Tescher.cs
+ Inheritance + (3 ProjectDemav
. Awmociation i My Project
L Comment A "] Modulel b
General Teacher X
Cinis |
* Sl
There are na usable d S
controls in this group. Drag -
a0 item onto this tet to Methods ; = .
ackd 1 b the toolban, % GradePapen -
. — , [Gradetapers Methed -
Bl 10 =
Class Detaiks - Teacher - g i =
.
W | Name Type Medifier Summary Hide A pubiic .
SR ¢ Methods = Mame GradePapers
3 » o [EEEET eid paiblic [Grade studert papers & | Type woid
7 % <add method =il .
o Customn Attril
File Mare__ Traches.cs
Hame

Name of the method.

Figure 5-14 Generating code with the Class Designer

Chapter 5: Creating and Building Projects 139

class named Staff, a normal class named Teacher, an inheritance relationship where Teacher
derives from Staff; and an association from Program to Staff.

To create a new object, drag-and-drop the object from the Toolbox to the Class
Designer surface; you’ll see an input window similar to Figure 5-15.

The New Abstract Class window in Figure 5-15 is typical of most of the Class Designer
objects you can add to a diagram where you fill in the initial data for naming the class and
specifying the file the code will be added to. Not all Toolbox options work this way, though;
associations and inheritance work by selecting the item in the Toolbox, selecting the object
where the line begins in the Class Designer, and dragging the line to the object in the Class
Designer being referenced.

The other two places you can modify data are in the Class Details and Properties
windows. You can see how I added the GradePapers method in Class Details. You can add
members to an object yourself by clicking the object in Class Designer, and then adding
the member in Class Details. The GradePapers method also has a Summary comment for
documentation and a parameter named papers with a type of List<string>.

The Properties window is context-sensitive, showing you what options are available
for whatever you have selected in the Class Designer. In Figure 5-14, the Teacher class is
selected in Class Designer and the Summary property in the Properties window was filled
in with a comment. Listing 5-3 shows the code from the Teacher.cs (Teacher.vb in VB)
file that was generated after all of these actions in the graphical designer.

New Abstract Class =R

Abstract Class name:
Classl

Access:

[public -

File name:
@ Create new file

Classl.cs

() Add to existing file

Figure 5-15 Adding a new object to the Class Designer

140 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 5-3 Code generated from the Class Designer

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ProjectDemo
/// <summarys
/// Teaches Classes

/// </summarys>
public class Teacher : Staff
{
/// <summarys>
/// Grade student papers
/// </summarys>
/// <param name="papers">Papers to grade</param>
public void GradePapers (List<string> papers)

{
}

throw new System.NotImplementedException() ;

VB:

'Y <summary>

''' Teaches Classes

'Y </summary>

Public Class Teacher
Inherits Staff

' <summary>

""" Grade student papers

'Y </summary>

Public Sub GradePapers (ByVal papers As List (Of String))
End Sub

End Class

As shown in Listing 5-3, code generated from the Class Designer includes default using
directives and the namespace as specified in project properties. The class name, Teacher,

Chapter 5: Creating and Building Projects 141

is the same as the visual object in the class diagram, and the GradePapers method is the
same as specified in the Class Details window. You can also see the comment on Teacher
as specified in the Property window. All that’s left for you to do is replace the call to throw
new System.NotlmplementedException with your own code in C# or just add your code to
GradePapers in VB.

Summary

You should now know how to create a solution and a project. You can set project
properties and add new members to projects. Additionally, you are able to add class
libraries to a project and reference those class libraries from other projects that use those
libraries. If you prefer a more formal design process, VS offers the Class Designer, which
you learned to use for both visualization and code generation. The next chapter builds
upon the coding process with VS by showing you how to debug code.

This page intentionally left blank

Chapter 6

Debugging with
Visual Studio

143

144 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Exploring Available Debugging Tools
Setting Breakpoints
Inspecting Program State

Solving Problems with VS Debugging Tools

More often than we would like, our code has bugs. Fortunately, when bugs do happen,

you have a lot of help with VS. This chapter shows you how to use the VS debugger
to fix problems by setting breakpoints, stepping through code, and inspecting program
state. There’s also a section on development-time tools to inspect the structure of your
code. Beyond setting breakpoints, you’ll learn how to customize breakpoints and how
to manage a list of breakpoints. Then you’ll see the options VS has for stepping through
code. This chapter also shows you many ways to see what the values of variables are in
your code and the various tools available for inspecting your code. First, we’ll start with
some example code you can use to practice the concepts learned in this chapter.

Example Code for This Chapter

It would take many pages of code to show a complete program with all of the complexity
of a real-world scenario, which might be hard to follow for the purposes of this chapter. So,
the example you’ll see simulates the environment of a full application. When performing
debugging, you’ll need to traverse hierarchies in code, where one method calls another,
which could go multiple levels deep, depending on the program. The example code will
have multiple levels of method calls so that you can see how to use VS to debug code.

Listing 6-1 shows the example code for this chapter. It’s a console application, just
like all of the applications created in previous chapters. You create a console project by
selecting File | New | Project, select the Console Application project, give the project a
name, and generate the project by clicking OK. The application in Listing 6-1 calculates
a discount for a customer, based on a special discount percentage for that customer and
what that customer ordered.

Chapter 6: Debugging with Visual Studio

Listing 6-1 Example code for chapter

C#: Program.cs

using System;

namespace DebugAndTestDemo

{

class Program

{

static void Main ()

{

Customer cust = new Customer() ;
cust.Discount = .1m;

Order ord = new Order() ;
ord.AddItem(5.00m) ;
ord.AddItem(2.50m) ;

cust.Order = ord;
decimal discount = cust.GetOrderDiscount () ;

Console.WriteLine ("Customer Discount: {0}", discount) ;
Console.ReadKey () ;

C#: Customer.cs

namespace DebugAndTestDemo

{

class Customer

{
public decimal Discount { get; set; }
public Order Order { get; set; }
public decimal GetOrderDiscount ()
{

return Order.Total * Discount;

1

1

1
C#: Order.cs

using System.Collections.Generic;

145

146 Microsoft Visual Studio 2010: A Beginner's Guide

namespace DebugAndTestDemo

{

class Order

{

private List<decimal> orderItems = new List<decimals () ;

public decimal Total

{

get

{

decimal amount = 0;

foreach (var item in orderItems)

{
}

amount = amount + item;

return amount;

public void AddItem(decimal amount)

{
}

orderItems.Add (amount) ;

VB: Modulel.vb

Module Modulel

Sub Main ()
Dim cust Asgs Customer = New Customer ()
cust.Discount = 0.1D

Dim ord As Order = New Order ()
ord.AddItem(5D)
ord.AddItem(2.5D)

cust.Order = ord

Dim discount As Decimal = cust.GetOrderDiscount ()
Console.WriteLine ("Customer Discount: {0}", discount)
Console.ReadKey ()

End Sub

End Module

Chapter 6: Debugging with Visual Studio

VB: Customer.vb

Class Customer
Property Discount As Decimal
Property Order As Order
Function GetOrderDiscount () As Decimal
Return Order.Total * Discount
End Function
End Class
VB: Order.vb
Class Order
Private orderItems As New List (Of Decimal)

Public ReadOnly Property Total () As Decimal
Get
Dim amount As Decimal = 0

For Each item In orderItems
amount = amount + item
Next

Return amount
End Get
End Property

Sub AddItem(ByVal item As Decimal)
orderItems.Add (item)
End Sub
End Class

A quick look at the code in Listing 6-1 tells you that this program is more sophisticated
than the examples you’ve encountered in previous chapters. To understand what is happening,
start at the Main method, the entry point of the application. There are two objects instantiated
in Main, namely Customer and Order.

After instantiating Customer, you can see that the Discount property on cust is being
set to ./ (10%). This means that each instance of Customer can have a unique discount
amount, which could be useful if you wanted to reward good shopping habits.

Next, you can see the instantiation of Order and subsequent calls to AddItem on the
object reference ord. This code only adds the order amount, but in a real scenario it
would likely be a class with more fields to carry the specific details of the order item. The
Customer class has an Order property, which the code then passes our Order instance,
ord, to. Now, you have a Customer with a discount amount and it has a reference to our
specific Order, which in turn has items (represented here by the items’ monetary amount
only for brevity).

147

148 Microsoft Visual Studio 2010: A Beginner's Guide

This program calculates the total monetary discount that a customer would receive for that
order by calling the GetOrderDiscount method on the Customer instance, which then returns
the calculated discount amount to be subsequently displayed on the console. Essentially, we
created a couple of object instances, cust and ord, gave the object instances the data they
needed, and told the object instances to do some work for us. The result is a special discount
monetary amount for a given customer, based on the customer’s items ordered.

All of the code in the Main method is at the first level of the call hierarchy. The
methods and properties in Customer and Order are at the second level of the hierarchy.
Looking at Order; you can see that there is a Total property and an Addltem method.
Addltem adds the item parameter to its orderltems collection. Total iterates through the
orderltems collection, first calculating then returning the sum of all items. Notice that the
Customer class has a Discount property that holds a decimal value that will be used as a
percentage. The GetOrderDiscount method in Customer multiplies the Discount by the
Total in Order to return the discount of the order.

It’s important for you to study this example and understand the relationships and
communication between various objects. Observe that each class has a distinct purpose,
relating to how it is named. The purpose of the class helps decide what data and methods
that class will have; Order has Total and AddItem, and the class Customer has Discount
and GetOrderDiscount. Each object communicates with other objects, cooperating
to perform a task. For example, it is Customer’s responsibility to calculate a discount
because the Customer class knows what the discount should be (because we told it what
the discount was in Main). However, Customer must communicate with Order because
Order is the only object that knows about the order items and how to calculate the total.

Although I’ve shown you the code and explained how it works, it’s often useful to see
the flow of logic of the actual running program yourself. VS includes various visualization
and debugging tools that help you understand the flow of logic, which are discussed next.

Development-Time Code Tools

One of the new features of VS 2010 is Call Hierarchy, which allows you to see what
code calls a method and which methods are being called by your code. First, I’ll explain
why call hierarchy is important, and then I’ll show you how to use it. Figure 6-1 shows
what the Call Hierarchy window looks like, and the following discussion will explain the
motivation for and use of the Call Hierarchy feature.

The call hierarchy tells you several things about code, including the degree of reuse,
impact of a change, and potential importance of a routine. To help understand the discussion,
a call site is code that invokes another class member. For example, in Listing 6-1, the Main
method is the call site and the GetOrderDiscount method is the called code.

Chapter 6: Debugging with Visual Studio 149

Call Hierarchy i =1
4 % GetOrderDiscount() (DebugAndTestDemo.Customer) Call Sites Location

4[5 Calls To 'GetOrderDiscount'
e Main
4 = Calls From 'GetOrderDiscount’
[? Discount (DebugAndTestDemo.Customer)
[ﬁ Order (DebugAndTestDemo.Customer)
4 ﬁ Total (DebugAndTestDemo.Order)
I £} Calls To Total'
i Ei Calls From 'Total'

decimal discount = cust.GetOrderDiscount(); Program.cs - (17, 37)

Figure 6-1 The Call Hierarchy window

From the perspective of reuse, many call sites to a method could indicate that the
method is relatively generic and reusable. While a low number of call sites might not
indicate the reusability of a method, zero call sites certainly indicates that the method is
not being used and can potentially be eliminated.

A lot of call sites could also indicate that a change to a method can have a significant
impact. Looking at the number of call sites that a method has could be informative from
the perspective of passing different values or seeing how many changes will be required in
called methods.

The previous discussion is to help you understand how call hierarchy might be
useful. Now, let’s look at how call hierarchy works. First, remember that call hierarchy
is context-sensitive, meaning that whatever code in the editor has focus defines your
point of view. The point of view for this example will be the GetOrderDiscount method
in the Customer class, and we want to see the call sites of GetOrderDiscount and what
statements inside of GetOrderDiscount are call sites. To use call hierarchy, either right-
click the GetOrderDiscount method in the editor and select View Call Hierarchy, or select
GetOrderDiscount in the editor and press CTRL-K, T. VS shows the Call Hierarchy window
in Figure 6-1.

The Call Hierarchy window in Figure 6-1 shows Calls To and Calls From for the
GetOrderDiscount method. Calls To is a list of call sites to the GetOrderDiscount method.
Calls From is a list of statements within GerOrderDiscount that are call sites for other
class members.

The drop-down list at the top left of Figure 6-1, with My Solution selected, identifies
how far Call Hierarchy will look to find Calls To and Calls From call sites. The options
are My Solution, Current Project, and Current Document, which are self-explanatory.

150 Microsoft Visual Studio 2010: A Beginner's Guide

If you’ve been working on your code and want to update the Call Hierarchy window,
click Refresh. Every time you view Call Hierarchy, the selected item is added to the list. You
can use the Remove Root button to delete an item from the list. The Toggle Details Pane
button shows and hides the Details pane, which shows the code and location of the call site.
In Figure 6-1, the Main method is selected, which shows the call to GetOrderDiscounts off
the cust instance of Customer from Listing 6-1. The actual code line is shown also. You can
double-click the statement to navigate the editor to the location of that statement. In fact, you
can double-click any call site in the Call Hierarchy to navigate to the location of the call site
in the editor.

The Call Hierarchy shows all of the possible paths you can take through a specific
point in code. While quite useful, it’s limited to providing a static view of your code, and
it does not provide the detailed insight into your running program that debugging may
require. When debugging, you typically need to view the running state of an application at
a specific point in time. The following sections show you various features of the debugger
that help you inspect the runtime behavior of code.

Configuring Debug Mode

By default, VS creates projects with Debug mode enabled, which specifies project settings
that make it possible for you to debug your application. The VS toolbar shows you the
current configuration settings you’re using; clicking the drop-down list will show Debug
and Release configurations. The Release configuration defines settings for your program
that you want to use when you deploy it for production (actual) use. You can also create

a custom configuration that allows you to set project properties how you want. For the
purposes of this chapter, we will use the Debug configuration.

To understand what the Debug configuration gives you, ensure that the Debug configuration
is selected in the toolbar; you’ll need to have a project open to do this. Then double-click the
properties folder of your project and click the Build tab as shown in Figure 6-2.

Figure 6-2 shows that optimizations are turned off and both TRACE and DEBUG are
defined. Figure 6-2 shows the properties for a C# project, but in VB, the tab is called
Compile. When optimizations are turned on, the compiler will perform extra processing
on the code that makes it smaller and faster, altering the structure of the code. When
debugging, you don’t want optimizations because you need the code you’re stepping
through to match what the compiler produces. Compiler constants (also known as
compiler directives) such as TRACE and DEBUG are used by the compiler to enable or
disable blocks of code. For example, the System.Diagnostics namespace has a Debug
class that will only work if DEBUG is defined.

Chapter 6: Debugging with Visual Studio 151

DebugAndTestDemo(S*™ ~*OX
Application
| Configuration: | Active (Debug) - Platform: | Active (x86) -
Build
G |

Build Events ks e
Debug* Conditional compilation symbols:

Define DEBUG constant
Resources

Define TRACE constant
Services

Platform target: L
Setti 1

L [Allow unsafe code

Reference Paths [F] Optimize code
Signing Errors and warnings
sty waring e L
Publish Suppress warnings:
Code Analysis Treat warnings as errors

@ MNone

© All

) Specific warnings:
4 i b

Figure 6-2 The Build (C#) and Compile (VB) Properties tab

Do a build of your application, which will produce various files suitable for debugging.
To view these files, right-click the solution, project, or folder in Solution Explorer and
select Open Folder in Windows Explorer. Then navigate to the bin\Debug folder, which
should look similar to Figure 6-3.

There are four files in Figure 6-3, two for the application and two to support running
in the debugger. DebugAndTestDemoCS.exe is the executable console application, which
you might have already expected. A *.pdb file is a symbol file that helps synchronize the
identifiers in your code with the executable file, making it easier to step through code with
the VS debugger.

There are two files with vshost in their name, which are instrumental to the debugging
process. A *.vshost file makes your application load faster during debugging, gives you
the ability to test your application with different security configurations, and allows you to
evaluate expressions while debugging. The vshost files are for debugging only, so you

152 Microsoft Visual Studio 2010: A Beginner's Guide

(el
mv| . <« DebugAndTestDemoCS » bin » Debug v|¢,|| Search Debug }J|
Organize « Include in library « Share with « Burn Mew folder = - I @
e Mame . Date modified Type Size
Bl Desktop [==] DebughndTestDemoCS.exe 10/13/2009 8:37 PM Application 6 KB
& Downloads i3 DebugAndTestDemoCS.exe.config 10/4/2009 5:48 PM XML Configuratio... 1KB
5l Recent Places & DebughAndTestDemolS.pdb 10/13/2009 836 PM Program Debug D... 16 KB
[DebugAndTestDemoCS.vshost.exe 10/14/200910:21 ... Application 12 KB
7 Libraries |5 DebugAndTestDemaoCS.vshost.exe.config 10/4/2009 5:48 PM XML Configuratio.., 1 KB
@ Documents || DebugAndTestDernoCS.vshost.exe.manifest 3/17/2009 11:17 PM MANIFEST File 1 KB
J‘i Music
[E] Pictures
E Videos

#® Homegroup
1% Computer
&, Local Disk (C3)

&% DVD RW Drrive (D2} V

?! Network

’ 6 items State: 3B Shared

Figure 6-3 The Debug Output folder

should not deploy them with your application; they would just take up extra space and not
serve a purpose. You normally want vshost files in place when debugging in VS. There
are various debugger settings you can configure in VS that affect your session and modify
the vshost configuration files. Open the properties page and click the Debug tab, shown in
Figure 6-4.

In Figure 6-4, you can see that the Configuration is set to Debug and the Platform is
set to x86. The Platform target can be Any CPU, x86, x64, or Itanium, depending on the
CPU you are building the application on. The compiler will perform optimizations for
the CPU type you select. If you’re running VS on a 64-bit operating system, your Active
solution platform may show as Active (Any CPU).

The Start Action section of the Debug tab determines how the debugging session begins.
Start Project is the default, Start External Program allows you to attach your VS debugging
session to an already-running application, and Start Browser With URL lets you debug a

Chapter 6: Debugging with Visual Studio 153

DebugAndTestDemalS ~*OX
Application
Configuration: | Active (Debug) - Platform: | Active (x86) -

Build
Build Events Al fedion

@ Start project
Debug s Bl

(0) Start external program:
Resources

) () Start browser with URL:
Services
Start Opti

Settings kLl

Command line arguments: -
Reference Paths
Signing
Securi

By Working directory: E
Publish
it [[] Use remote machine

Code Analysis

Enable Debuggers

[] Enable unmanaged code debugging

[] Enable SQL Server debugging
Enable the Visual Studio hosting process

Figure 6-4 Debug properties

Web application. Generally, you’ll only use Start Project for a desktop application. The
property pages change for Web applications, which automatically run in a browser.

You can add a space-separated list of values for command-line arguments. If you're
building an application that needs to be run from a command window or from a command
script, this method is very useful to test and debug a specific command-line configuration.
You can then read the values you’ve entered into the Command Line Arguments text box
by reading them from the args array passed to the Main method.

A working directory is the root location of where your program reads and writes files.
By default, this location is bin\Debug for Debug configurations and bin\Release for Release
configurations. You can change the working directory location by putting a file path in the
Working Directory property box.

Use Remote Machine is an advanced scenario where you can debug an application
running on a remote machine. To do this, you would need to install remote debugging
software on the remote machine, ensure the Output path of the Build tab of the Properties

154 Microsoft Visual Studio 2010: A Beginner's Guide

window specifies the location of the executable file of the program to be debugged, that
the output folder is shared, and that your application has permissions on the shared folder.

The focus of this book is on managed code, which runs on the NET CLR. VS has the
ability to debug unmanaged code, such as that written in C++ that communicates directly
with the operating system. Generally, you want to leave the Enable Managed Code
Debugging box unchecked unless you are writing managed code that interoperates with
unmanaged code, such as a COM DLL library, and need the ability to debug both. VS will
allow you to open SQL Server stored procedures, set a breakpoint, and step through the
stored proc code for debugging. If you need to debug stored procedures, make sure you
check this box.

NOTE

Managed code refers to code that runs on the .NET Common Language Runtime

(CLR). The CLR is a virtual machine that provides several services such as memory
management, code execution, garbage collection, security, and more. In contrast to
managed code, there is also code that is called unmanaged code. Unmanaged code
does not use the .NET CLR; instead it runs directly on the computer and communicates
with the operating system. With unmanaged code, you must manage your own memory
and write low-level code to accommodate all of the services that the CLR would normally
give you. You can use VS to write unmanaged code in C++, but this book focuses on

C# and VB, which produce executable files that run managed code on the CLR.

The Enable The Visual Studio Hosting Process setting is what caused the vshost files
to be generated in the output folder. Normally, you want to leave this box checked because
of the benefits of vshosts, described previously. The only exception might be if you had
a unique situation where the services provided by the vshosts process conflicted with the
code you were running, which would be an advanced and rare scenario.

TIP

In earlier versions of VS, you would occasiondlly get a file permission error on the
vshosts file, which was caused by the fact that there were file locks on the file. This

can occur if you have attached to the running process from another instance of VS

or the process shut down improperly in a sequence that didn’t release the file lock on
vshosts. One of the work-arounds is to uncheck the Enable The Visual Studio Hosting
Process box, rebuild, recheck the Enable The Visual Studio Hosting Process box, and
build again. You also have the choice of restarting your OS, whichever you find easier.
This scenario doesn’t point to a deficiency in VS or the operating system, because

the file locks are necessary when an application is running. Rather, the scenario is @
consequence of having a bug in your code or improperly shutting down an application.

In addition to property settings, you have a plethora of options available via the Options
window, which you can open by selecting Tools | Options, as shown in Figure 6-5.

Chapter 6: Debugging with Visual Studio

Options

Task List
Web Browser
[» Performance Tools

[Projects and Solutions
[» Source Control

[» Text Editor

[» Database Tools

4

=

General

Ask before deleting all breakpoints o
Break all processes when one process breaks
[C] Break when exceptions cross AppDomain or managed/native boundaries (1}
Enable address-level debugging

[C] show disassembly if source is not available
Enable breakpoint filters

m

l%l Enable the exception assistant
Edit and Continue Unwind the call stack on unhandled exceptions
Just-In-Time Enable Just My Code (Managed only)
Mative = [] Show all members for nan-user objects in variables windows (Visual Ba
Cutput Window Warn if no user code on launch
Symbaols [Enable NET Framework source stepping
[F#Tools Step over properties and operators (Managed only)
| Historical Debugging E_ Enable property evaluation and other implicit function calls
> HTML Designer Call string conversion function on objects in variables windows -
[Office Tools 4 m | b
& Test Tools ™
[ok || Ccancel

Figure 6-5 Debugging options

As you can see in Figure 6-5, there are a variety of options that allow you to configure
debugging. The primary difference between project settings and Options settings is that
project settings are for that one project, but Options settings let you change the settings for
all projects and have those settings, when applicable, apply to any new projects you create.
Therefore, if there are default settings you want on all projects, visit the Options settings
to set them first. The options are much too numerous to list here, and many of them deal
with advanced scenarios that are out of scope of this book. If you ever have a question
about whether a capability is available or if you need to save settings, you should visit the
Options window to see if that capability is available. Now that your system is configured

for debugging, you can set breakpoints and start the debugging process.

Setting Breakpoints

Breakpoints are places in your code where you want the program to automatically pause
from running, similar to when you push the pause button while watching a movie with
your home DVD or Blu-ray player. Once your program hits (stops on) your breakpoint,

you will be able to perform debugging tasks, which could be viewing the values of

variables at this frozen point in time (program state), evaluating expressions, or editing
code and continuing execution. The following discussion shows you how to create and

manage breakpoints in your application.

155

156 Microsoft Visual Studio 2010: A Beginner's Guide

Creating a Breakpoint

To create a breakpoint, you need to open a project and have a code file open in the editor. A
good project choice would be the example application with code from Listing 6-1. In the VS
editor, there is a margin on the left side. If you click in this margin, VS will set a breakpoint
on the matching code statement. Clicking a statement in code to give it the focus and pressing
F9 sets a breakpoint too. You’ll see a red dot in the margin and the matching statement
highlighted in red, as shown in Figure 6-6. Note that you may only set a breakpoint on code
that actually gets executed at runtime. If you try to select a line of code that does not, such

as a namespace name definition, the red dot will not appear and you’ll see a message at the
bottom of VS saying, “A breakpoint could not be inserted at this location.”

To ensure VS stops on a breakpoint, the application must be running in debug mode.
You can start the program running in debug mode by selecting Debug | Start Debugging,
pressing Fs, or clicking the Start With Debugging toolbar button (the one with the green
arrow). The breakpoint in Figure 6-6 is on the call to GetOrderDiscount in the Main
method. When the program hits the breakpoint, the breakpoint line will turn yellow and
there will be a yellow arrow on the red dot in the margin. Clicking the Continue button
(which is the same green arrow button used to start debugging) or pressing F5 will cause
VS to resume execution. Any time you want to stop debugging, select Debug | Stop
Debugging, press Fs, or click the Stop Debugging toolbar button (small blue square).

Program.cs *OX
ﬁgDebugAndTestDemo.Program - | =LPl\u"lainU

using System;

|+ [l

namespace DebugAndTestDemo

=]

K

Tl class Program
=]

{

static void Main()

{

Customer cust = new Customer();
cust.Discount = .1m;

Order ord = new Order();
ord.AddItem(5.86m) ;
ord.AddItem(2.58m}; L

cust.Order = ord;

[~] decimal discount = cust.@etOrderDiscount();

Console.WritelLine("Customer Discount: {@}", discount);
Console.ReadKey();

Figure 6-6 A breakpoint

Chapter 6: Debugging with Visual Studio

TIP

If you write a program that is doing a lot of work, or very litle work but is stuck in
an endless loop that you inadvertently created, you can pause execution by selecting
the blue pair of vertical bars button found to the left of the square blue stop button.

When you do this, your program stops at whatever line of code it was executing at the
moment you selected the pause button. You can then resume from that point. This button
works much like the pause button on a remote control or a personal media player.

Customizing a Breakpoint

The preceding explanation described how to set a location breakpoint, where execution

stops on a designated line in code. However, you can make a program stop executing

based on various criteria, such as hit count, conditions, and more. To see what else is
available, set a location breakpoint and then right-click the dot in the margin to view
the context menu. Table 6-1 describes each of the breakpoint options available from the

breakpoint context menu.
You can also set a function breakpoint by clicking on the method to break on and
selecting Debug | New Breakpoint | Break At Function or pressing CTRL-D, N.

Option Meaning

Delete Breakpoint | Removes the breakpoint.

Disable/Enable | If you don’t want to delete the breakpoint because you'll use it again, you can

Breakpoint disable the breakpoint and then enable it later when you want to use it again.

Location This is set when you click in the margin. You can change features of the location
through a dialog window.

Condition Allows you to enter an expression that can cause the program to stop if either the
exEression evaluates to true or the value of a variable has changed. The expression
is based on variables in your code.

Hit Count Makes the program break on that line every time, affer a number of times the line
has executed, when the count is a multiple of a number (i.e., every nth time), or
when the number of hits is greater than or equal to a number.

Filter The breakpoint will only be hit (causing execution to pause) for any combination of
machine, process, or thread choice that you set.

When Hit Sets a tracepoint that prints a message to the output window. The message is
configurable to include output of various system values like function, thread, and
more. You can view the message in the Output window by selecting View | Output
Window or pressing cri-ALT-0. You also have the option of running o macro when
the breakpoint is hit.

Edit Labels You can associate breakpoints with labels to help organize breakpoints into groups.

Export Lets you export breakpoints into an external XML file.

Table 6-1 Options from the Breakpoint Context Menu

157

158

Microsoft Visual Studio 2010: A Beginner's Guide

Breakpoints *Bx

New -| X | @43 | & % |23 %]| Columns - [search: - lIn Column: | All visible -

Mame Labels Condition Hit Count

@ (no condition) break always
; 8] Program.cs, line 12 character 13 Groupl (no condition) break always
0) Program.cs, line 14 character13 Group 2 (no condition) break always
o Program.cs, line 17 character13 Groupl (no condition) break always

Figure 6-7 The Breakpoints window

Managing Breakpoints

Over time, breakpoints can be set across many locations in your project. You can manage
all of these breakpoints in a central location by selecting Debug | Windows | Breakpoints,
which will show the window in Figure 6-7.

Much of the functionality of the Breakpoints window has been explained already,
except that the toolbar options apply to all of the breakpoints that are currently checked.
Clicking a column sorts the contents. The Search box helps you filter breakpoints, and the
In Columns box helps focus on what the search applies to. There are export and import
buttons on the toolbar that allow you to respectively save and retrieve breakpoints to
and from an XML file. Double-clicking any breakpoint takes you to the location in the
editor where the breakpoint is set. Right-clicking a breakpoint shows a context menu with
options that have already been discussed in this section.

Once you set a breakpoint, you can step through code to see what the execution flow
of the program is, as is discussed in the next section.

Stepping Through Code

Stepping through code is the process of executing one or more lines of code in a controlled
manner. At the most granular level, you can step through code line-by-line. While moving
line-by-line is often necessary, it could also be cumbersome, so there are ways to step over
multiple lines of code, allowing them to silently and quickly execute.

To step through code, open a project, set a breakpoint, and run with debugging until
the program hits the breakpoint. At that point in time, you can perform various operations
such as step, step over, and step out. Table 6-2 explains the stepping operations that are
available. The explanations in the table assume that a breakpoint has been hit with your
executing program now paused before performing the step operation.

Operation

Chapter 6: Debugging with Visual Studio

Explanation

Step Over

Executes the code in the current line and moves to the next line of code where

it again pauses, waiting for your instruction. Perform a Step Over by selecting
Debug | Step Over, pressing F10, or c|icking the Step Over button in the toolbar.
You can also right- cri)ck anj; select this option. Most Visual Studio developers will
have the F10 shortcut memorized in short order.

Step Into Specific

When the current line is on a method call, a Step Into will move control to the first
line of the method being called and execution will pause there. Perform the Step
Into by selecting Debug | Step Into, pressing F11, or clicking the Step Into button in
the toolbar. F11 is the fastest way for you to do this operation.

Step Out

If you're in a method, you can move back to the caller by performing a Step Out
operation. Perform a Step Out by selecting Debug | Step Out, pressing sHIFT-F11, or
cri)cking the Step Out button on the toolbar. Note that no lines of code are skipped
inside the function; they still run following your program’s logic. Your program will
automatically pause at the line of code following this function’s return.

Run to Cursor

Sometimes you want to execute a block of code and stop at a certain line. You
could set another breakpoint and run until you hit the breakpoint. However, a
quicker way when you don’t want to keep a new breakpoint around is to right-click
the line you want fo stop at and select Run To Cursor. Again, no lines of code are
skipped; the program will merely pause when it gets to the line you placed your
cursor on. Optionally, you can click the line to run to and press cri-F10. This is
particularly useful if you don't feel like stepping through every iteration of a loop.

Set Next Statement

You can skip forward and backward over multiple lines of code without executing
the skipped code. For example, it's easy to step over a method, only to realize
that you really wanted to step into that method. You don’t want fo restart the
application unless you need to. To get back to that line of code so that you can
step into the method call, select the yellow arrow in the margin and drag it back
up to the method call. Then you can do a Step Into. Alternatively, if you have one
or more statements that you don’t want o execute, drag the yellow arrow in the
margin fo the statement following the code you don’t want to run and then use
stepping operations to resume your debugging session. This technique is also
quite handy when you are using the Edit and Continue feature, where you can
change your program on the fly, experiment with different coding ideas you may
have, and rerun those lines of code instantly. Note that VS does not reset variables
back to initial states, so you may have to manually reset values in order to get the
results you expect.

Table 6-2 Step Operations

A Step Over operation executes the code in the current line and moves to the next. You
can perform a Step Over by selecting Debug | Step Over, pressing Fio, or clicking the Step

Over button in the toolbar.
You now know how to step through code, which is useful. However, the ability to see

the values of variables and watch them change is an important skill, which you learn about

in the next section.

159

160 Microsoft Visual Studio 2010: A Beginner's Guide

Inspecting Application State

Application state is the value of variables in your code, the current path of execution, or
any other information that tells you what your program is doing. While debugging, it’s
important to be able to view application state and compare what is really happening to
what you expected to happen. VS gives you various windows for viewing application
state, which you’ll learn about in this section.

NOTE

When inspecting the state of your application, you'll need to keep the concept of scope
in mind. When a variable is in scope, you will be able to see the variable’s value. Scope
is defined within a block. In C#, the block is defined with curly braces, and VB defines

a block with begin and end statements. A couple examples of scope involve class fields
and local variables. A private class field would be in scope for all the methods of that
class but not in another class. A local variable would be in scope for all statements

of the method it is defined in, but would be out of scope for other methods. Another
scenario is a for loop that defined a variable in its body—the variable would be in
scope for the body of the loop but out of scope outside of the loop body.

Locals and Autos Windows
The Locals and Autos windows show you the variables in your system at the current
breakpoint. Locals gives you a list of all variables that the current statement could access
(also referred to as in scope). The Autos window shows variables from the current and
previous lines. You can open the Locals and Autos windows from the Debug | Windows
menu when your VS debug session is active and paused at a breakpoint. These windows
may have already been placed for you at the bottom left of Visual Studio next to the
Output window if you’ve not rearranged your VS layout.

As shown in Figure 6-8, the Locals window shows all of the variables in scope for
the Main method from Listing 6-1. The Locals window is a coarse-grained view, and the

Locals ~ B

@ ord
@ discount |U |decin'|a|

a Locals JE RNeS ,‘_a Watch 1

Figure 6-8 The Locals window

Chapter 6: Debugging with Visual Studio 161

o # cust {DebugAndTestDemo. Customer} q

e cust.Order | {DebugAndTestDemo. Order} DebugAn
@ discount v] decimal

@ ord {DebugAndTestDemao. Order} DebugAn

B Locals |BEMEY B Watch 1

Figure 6-9 The Autos window

list can be quite long, depending on how many variables are in scope. You would want to
use the Locals window to find any variables being affected by the current algorithm. In
comparison, Figure 6-9 shows the Autos window.

Notice that the Autos window provides a more fine-grained view of both variables and
the properties of objects from the current and previous lines. You would want to use Autos
for a more targeted view of what is currently happening in the code.

Watch Windows

A Watch window allows you to create a custom list of variables to watch. You can drag
and drop variables from the editor or type a variable name in the Watch window. Selecting
Debug | Windows | Watch will display a list of four Watch windows, where you can have
four different sets of data to inspect at one time. Figure 6-10 shows a Watch window with
a variable.

Watch 1 ~8x
| MName Value Type =
@ cust {DebugAndTestDemo. Customer} DebugAndTestDer
2 cust.Order. Total | 7.5 dedmal

B Locals Bl Autos PRRILTa N1

Figure 6-10 The Watch window

162 Microsoft Visual Studio 2010: A Beginner's Guide

The Locals and Autos windows can sometimes become crowded with too many
variables and slow you down as your code gets more complex, especially when the
variables you’re interested in are at the bottom of the list or so far apart that you must
scroll between them. Another benefit of the Watch window is that you can drill down
into an object to show a value without continuously expanding the tree view. An
example of this is to type cust.Order.Total as shown in Figure 6-10, to see the results
of the Totals property of the Order property of the cust instance. In addition, you
can edit the values of your variables and properties in this window by either double-
clicking the current value shown in the Value column or right-clicking the variable
name and choosing Edit. When the value changes, it changes color from black to red to
let you know it has changed. This technique of editing your values on the fly comes in
quite handy, especially when you find yourself sliding the yellow arrow up to previous
lines of code in order to re-run them without restarting your program. These techniques
should prove to be a huge time saver.

The Immediate Window

While debugging, it’s often useful to type an expression to see the results at the current
time. The Immediate window allows you to type in variable names and many other types
of statements. You can access the Immediate window by selecting Debug | Windows, or it
may open for you automatically during debugging at the bottom-right side of VS. You can
see the Immediate window being used in Figure 6-11.

The Immediate window in Figure 6-11 has three statements, showing that you can
read a property, execute a method, or evaluate an expression. I typed these statements in
myself, and you can do the same, writing nearly any code you want.

When evaluating an expression in VB, prefix the statement with a question mark, 2.

Immediate Window *OX
ord.Total "
7.5

cust.Getordertiscount(}

2.75

ord.Total - cust.GetorderDiscount()
6.75

-

L] 2

] Immediate Window

Figure 6-11 The Immediate window

Chapter 6: Debugging with Visual Studio 163

The Call Stack Window

If you recall from the previous section on design-time tools, the Call Hierarchy window
gives you a view of the code at design time. On a related note, you also have the ability to
view the path of execution during runtime via the Call Stack window. During debugging,
you may find the Call Stack window already open on the right-bottom of VS in a tab next
to the Immediate window if you’ve not changed your layout and depending upon your
initial VS environment setup. Otherwise, you can open this window by selecting Debug |
Windows | Call Stack from the top menu bar. With the Call Stack window, you can view
the current execution path of the application from Main to where your current line of
execution is. Figure 6-12 shows the Call Stack window. To understand why it’s called a
Call Stack, notice that each method call is stacked on the other with the current method at
the top, the entry point at the bottom, and subsequent calls in between; it’s like a stack of
plates where the last plate is at the top.

In the Call Stack window, shown in Figure 6-12, you can see that I’ve stepped into
the GetOrderDiscount method. Double-clicking another method in the Call Stack window
brings you to the call site where a given method was called. This is a very important and
powerful tool because it allows you to visit calling code and inspect application state at
the call site, giving you valuable information about how calculations were formulated
before the current method was called.

The Quick Watch Window

The Quick Watch window allows you to quickly view an expression. It offers Intellisense
when writing the expression, allowing you to reevaluate the expression and add the
expression to a Watch window. You can open the Quick Watch window by selecting
Debug | Quick Watch or pressing cTRL-D, Q. If you’ve selected an expression in the editor,

Call Stack *rOx
J Mame Lang +

= DebugAndTestDemoCS.exe!DebugAndTestDemo. Customer. GetOrderDiscount() Line 11 C#
DebugAndTestDemoCS. exe! DebugAndTestDemo. Program.Main{) Line 17 + 0x10 bytes C#
| [External Code] |

Figure 6-12 The Call Stack window

164 Microsoft Visual Studio 2010: A Beginner's Guide

Quicktatch ==
-
Add Watch
Value:
| Name Value Type =
el cust.Order | {DebugAndTestDemo. Order} DebugAn

[GClose || Help

Figure 6-13 The Quick Watch window

the Quick Watch window will show that expression. Figure 6-13 shows the Quick Watch
window in use.

Clicking the Reevaluate button, shown in Figure 6-13, will show the results of
evaluation in the Value area. The Value area will only hold the current expression. If you
want to save an expression, click Add Watch, which will load the expression into a Watch
window. Be aware that closing the Watch window will remove your expression, but the
expression will be part of a history list that you can select from.

Watching Variables with Pin To Source
While debugging, you can hover over any variable to see its value, but when you move
the mouse away, the tooltip with the value goes away. The Pin To Source feature goes
a step further by displaying the value all the time. To use Pin To Source, right-click the
variable and select Pin To Source. Alternatively, you can hover over the variable in the
debugger and click the push-pin that shows with the tooltip. Figure 6-14 shows a pinned
value.

Once you’ve pinned a value, you can continue debugging and scroll back up to
the variable to read its current value. In addition to seeing the value, you can add a
comment by clicking the chevron that appears when you hover over the pinned value.
The pinned value is commented with “product of discount and sum of order items.”

Chapter 6: Debugging with Visual Studio 165

Modulel wb* *Ox
|44 Module1 ~ | =% Main -
FModule Modulel =

&= Sub Main()
Dim cust As Customer = New Customer()
cust.Discount = @.1D

Dim ord As Order = New Order() .
ord.AddItem(5D)
ord.AddItem(2.5D)

& cust.Order = ord

Dim discount As Decimal = cust.GetOrderDiscount()

-
Console.Writel: hd d|.sc0ur1t R oD 4%
Console.Readker @ (discount * 100} ToString("p") "0.00 %" | | ;,J
End Sub product of discount and sum of order items &
| End Module
00% - 4| m -

Figure 6-14 A pinned value

VS will locate the pinned value after the line, and you might not see the value if it
occurs on a long line that exceeds the width of your screen. Fortunately, you can click the
pinned value and drag it to where you want on the screen. To avoid confusion, remember
to keep the pinned value located close to the variable whose value is displayed.

Right-click the pinned value to display a context-sensitive menu with options for Edit
Value | Hexadecimal Display | Add/Remove Expression. Figure 6-14 shows how I added
the expression (discount * 100) .ToString("p") to show the value as a percentage. Adding
expressions can make the value more readable or allow you to add related expressions to
see how the value produces other computed results on the fly.

You can close the pinned value by hovering over the pinned value and clicking the X
(close icon).

Working with IntelliTrace

The IntelliTrace window gives you a view of all the changes that occurred in an application
during a debugging session. As you step through code, the IntelliTrace window displays
each step of your debugging session. Through the IntelliTrace toolbar, you can set the
view for Diagnostic Events or Call View. Diagnostic events allow you to filter by Category
or Thread. Clicking each of the items of the IntelliTrace window allows you to view
application state at that point in time. Figure 6-15 shows you the IntelliTrace window.

166 Microsoft Visual Studio 2010: A Beginner's Guide

IntelliTrace el bt
Eeld D
|AII Categories E]|AII Threads E]I

Search

(®) Debugger: Beginning of Application: Main, Program.cs line 8

G} Live Event: Breakpoint hit: Main, Program.cs line 9

(=) Debugger: Step recorded: Main, Program.cs line 10
Step recorded
Thread: Main Thread [3532]
Related views:, Locals, Call Stack

(8) Debugger: Step recorded: Main, Program.cs line 12

Figure 6-15 The Debug History window

IntelliTrace could be useful if you stepped over a statement that changed the value of
a variable and needed to go back to see what the variable value was before you stepped.
Figure 6-15 shows this scenario, where the highlighted event, Breakpoint hit: Main,
allows you to view Locals or Call Stack. The important distinction is that the values
shown are for the point in time when that event occurred, not the current time, which can
be very valuable information. Another important application of IntelliTrace is to inspect
IntelliTrace log files that were produced by another developer or the new Microsoft Test
and Lab tool that records a tester’s testing session.

You can configure IntelliTrace options by selecting Tools | Options | IntelliTrace.
IntelliTrace will create a log file that exists as long as VS is running. When VS stops, the
log file is deleted, so it’s important that you copy this file before shutting down VS. The
location of the log file is on the Advanced branch of IntelliTrace in Tools | Options.

If you receive a log file from another developer, you can load it by selecting File |
Open | Open New. Then you can view debugging history to view the state of the
application during each event of the session.

Solving Problems with VS Debugger
Previously, you’ve seen how the VS tools work and gathered a few tips on debugging.

This section builds upon what you’ve learned and steps you through a couple of real-world
scenarios that demonstrate how to use the VS debugger to solve problems: finding and

Chapter 6: Debugging with Visual Studio 167

handling bad data and fixing null references. The program itself is not particularly
sophisticated, but it contains just enough logic to lead you down a rat hole and show you
how to work your way out. First, we’ll look at the program, and then we’ll follow up with
two bug-fixing exercises.

A Program with Bugs
The code in this section contains bugs, and it’s important that you type it in as listed or
use the downloadable code for this book from the McGraw-Hill Web site. I’1l describe
each piece of code and try not to give away all of the secrets of the bugs just yet. Later, I'll
guide you through a process of discovery to find and fix the bugs. The program is a search
application that takes the first name of a person and searches for that person through a
list of customers. If the program finds the customer being searched for, it will print the
customer’s first and last name. Otherwise, the program will print a message stating that it
did not find the customer.

The program is divided into three major parts: a class to hold customer information,
a class that will return a list of customers, and the class containing the Main method that
runs the program. The following sections describe each of these classes.

The Customer Class

Any time you are working with data, you’ll have a class to hold that data. Since this
application works with customers, the natural approach is to have a Customer class,
as follows:

C#:

public class Customer

{

public string FirstName { get; set; }
public string LastName { get; set; }

VB:

Public Class Customer
Property FirstName As String
Property LastName As String
End Class

This is the minimal information required for this demo, and any class that you build
will have more properties. Notice that both properties are type string.

168 Microsoft Visual Studio 2010: A Beginner's Guide

The CustomerRepository Class

In this program, we create a class that is solely responsible for working with data. This is a
common pattern, which is called the Repository pattern. The following CustomerRepository
class has a method that returns a list of Customer objects:

C#:

using System.Collections.Generic;

public class CustomerRepository

{

public List<Customer> GetCustomers ()

{

var customers = new List<Customer>

{

new Customer

FirstName = "Franz",
LastName = "Smith"

new Customer
FirstName = "Jean "
new Customer

FirstName = "Wim",
LastName = "Meister"

i

return customers;

VB:

Public Class CustomerRepository
Public Function GetCustomers () As List (Of Customer)
Dim customers As New List (Of Customer) From

{

New Customer With

{

.FirstName = "Franz",
.LastName = "Smith"

b

New Customer With

Chapter 6: Debugging with Visual Studio 169

{
b

New Customer With

{

.FirstName = "Jean "

.FirstName = "Wim",
.LastName = "Meister"

}

Return customers

End Function
End Class

The GetCustomers method returns a List<Customer> (List(Of Customer) in VB). For
the purposes of this discussion, how the GerCustomers method works won’t matter. Such
a method could easily get customers from a database, Web service, or other object. For
simplicity, GetCustomers initializes a List with Customer objects. The part of this method
that is particularly important is the customer whose FirstName property is set to “Jean ”.
Notice the blank space appended to the name, which is required to make this scenario
behave as designed (i.e., to intentionally create a bug). It’s also conspicuous that the
Customer object with a FirstName property set to “Jean ” also does not have a LastName.

The Program with Bugs

The following is a search program that uses CustomerRepository to get a list of Customer
objects. The logic will iterate through the results, checking to see if the result is equal
to the search term. When the result is equal, the program prints the full name of the
customer. If no matching customers are found, the program indicates that the customer
wasn’t found:

C#:

using System;

class Program

{

static void Main ()

var custRep = new CustomerRepository() ;

var customers = custRep.GetCustomers () ;

var searchName = "Jean";
bool customerFound = false;

170 Microsoft Visual Studio 2010: A Beginner's Guide

foreach (var cust in customers)

{

// 1. First Bug
if (searchName == cust.FirsgstName)

{

Console.WriteLine (
"Found: {0} {1}",
cust.FirstName,
cust.LastName) ;

customerFound = true;

if (!customerFound)

{
}

Console.ReadKey () ;

Console.WriteLine ("Didn't find customer.") ;

VB:

Module Modulel

Sub Main ()
Dim custRep As New CustomerRepository

Dim customers As List (Of Customer)
customers = custRep.GetCustomers ()

Dim searchName As String = "Jean"
Dim customerFound As Boolean = False

For Each cust As Customer In customers
' 1. First Bug
If (searchName = cust.FirstName) Then

Console.WriteLine (
"Found: {0} {1}",
cust.FirstName,
cust.LastName)

customerFound = True

End If
Next

Chapter 6: Debugging with Visual Studio 171

If (customerFound = False) Then
Console.WriteLine ("Didn't find customer.")
End If

Console.ReadKey ()
End Sub

End Module

Notice that the searchName variable is set to “Jean”. Within the loop, the searchName
is compared with the FirstName property of each Customer instance for equality. Here’s
the output from when the program runs:

Didn't find customer.

What is supposed to happen is that the program should find the matching record and
print it out, but that’s not what happens. Here is the first bug, and the following discussion
describes how to find the cause of the bug using the VS debugger.

Finding the Bug

At this point, we know there is a bug and it’s reproducible, meaning that we can use VS

to debug and find the cause of the problem. In this situation, the program is saying that it
didn’t find a Customer record or, in other words, there is no record with a FirstName of
Jean. However, we know for a fact that the data does include a customer whose FirstName
is Jean. We need to find out why the program cannot find it. The following steps show
how the VS debugger can help isolate the problem.

1. Start by setting a breakpoint on the foreach loop in the Main method. This wasn’t an
arbitrary decision. Instead, considering the nature of the problem, I selected a part of
the program that is likely to begin providing a cue to what the problem is. Looking at
the program, one of the reasons that the program might not find the searchName is that
we aren’t getting data, causing the program to not execute the body of the foreach loop.

2. Press Fs to run the program in debug mode. This will execute the program and make it
stop on the foreach loop, making it possible to look at program state.

3. After VS hits the breakpoint, hover over customers to see if there are any values.
You’ll observe that customers does have three values. The fact that there are customers
indicates that the foreach loop is executing and we’ve eliminated that as a possibility.

172 Microsoft Visual Studio 2010: A Beginner's Guide

4. Next, set a breakpoint on the if statement, right-click the breakpoint, and set the
condition as follows:

C#:
cust.FirstName == "Jean"
VB:
cust.FirstName = "Jean"

The goal here is to see what happens when the if statement finds the record matching
the searchName. At this point, we’re assuming that Jean does exist in the data. Working
with a small program, you can use windows such as Autos, Locals, or Watch to find
this record. However, many real-world scenarios will give you a list with many more
records. Therefore, rather than waste time drilling down through dozens of records, use
the VS debugger to help find the record quickly. Keep in mind that all the best plans
don’t always work out, as you’ll soon see, but the primary point is taking the most
productive step first. Setting a conditional breakpoint demonstrates how you can set
conditions that can avoid eating up time caused by stepping through loops.

5. Press Fs to run the program. You expect to hit the breakpoint, but that won’t happen.
Confusing? We know that there isn’t anything wrong with the logic, because the if
statement condition is a simple equality operator. Perhaps we’ve looked in the database
or whatever source the data came from, but it’s given in this scenario that Jean is
definitely in the data. However, this illustrates a common problem where the quality of
data you work with is less than desired.

6. This time, change the breakpoint condition on the if statement as follows and re-run the
program:

C#:

cust.FirstName.Contains ("Jean")

VB:

cust.FirstName.Contains ("Jean")

Remember, we suspect bad data, so the call to Contains on the string assumes that there
might be some extraneous white space or other characters around the name in the data.
Hover over cust. FirstName or look at cust in one of the debug windows to verify it is
the record you are looking for. This breakpoint will pause on any records that contain
the sequence of characters “Jean”, such as Jean-Claude. So, you might have multiple
matches that aren’t what you want. The benefit is that the number of records you must

Chapter 6: Debugging with Visual Studio 173

look at is much fewer and you can save time. If you have multiple records, you can
press Fs and the breakpoint will pause on each record, allowing you to inspect the
value. In this case, the record set is so small that we hit the right record immediately.

7. Press F1o to step over the if condition. This will tell us whether the condition is being
evaluated properly. In this case, VS does not step into the if statement but instead
moves to the end of the if statement, meaning that searchName and cust. FirstName are
not equal. This means you need to take a closer look at cust. FirstName to see what the
problem is with the data.

8. Next, we’ll use a couple of the VS debugger tools to inspect cust. FirstName and find
out why the equality check is not working. Open the Immediate window (CTRL-D, 1) and
execute the following expression:

cust.FirstName
which will return this:
n Jean n

Here, you can see that the result has a trailing space—dirty data. Clearly, “Jean” does
not equal “Jean ” because of the extra character in the data. There are various non-
printable characters that could show up, and VS can help here too.

9. Open a Memory window (CTRL-D, Y), type cust.FirstName into the Address box, and
press ENTER. This will show the hexadecimal representation of the data at the memory
location of the variable, shown in Figure 6-16.

The layout of the Memory window starts with an address on the left, which is
scrolled down to the line where the data in cust. FirstName variable first appears.
In the middle is the hex representation of the data. The final column has a readable

Merory 1 = [
Address: | 0x0171e654 -l ey
@x@171E654 7c ¢@ da 65 85 22 82 82 43 82 65 82 61 20 G 88 Zq |,3.L'IE....:I.E.E.rI. -
@x8171E6ES 80 P2 80 08 92 @0 20 7c P da 65 83 AP 20 BB ST B0 €|,3.L'IE....|-.I.
ex@171EETE &9 20 &d 22 20 20 92 92 20 20 7C @ da 65 @7 @@ 82 i.m...... €|I\.L'le...
@x8171EGE7 88 4d 80 65 B8 69 88 73 82 74 98 65 08 72 @8 88 88 .M.e.l.s.t.e.r...
@x2171EG9E 80 22 20 88 bE 26 58 80 d4 e6 71 @1 22 22 88 88 83 &Xf}ﬁq D
@x8171E6AT &8 PP 80 83 99 09 B9 @0 B0 @8 @@ Fc ab d7 G5 @@ BB |tu:E.-
exe@171EGBA 82 82 14 25 SE 80 202 22 22 82 14 25 58 88 24 &6 71 %=2q
exe171EGCE @1 3c &6 71 81 22 82 82 88 7c ab d7 65 84 22 82 82 .<3q .|«xE....
@x@171EEDC 14 25 52 88 c4 e6 71 @1 f4 e6 71 81 84 7 71 81 82 .3X. .ﬁa!q..;q..
ex@171EGED ©8 82 22 68 88 86 88 14 25 58 88 54 6 71 Blﬁw %‘XT@ S

Figure 6-16 The Memory window

174 Microsoft Visual Studio 2010: A Beginner's Guide

representation of the data where any characters that don’t have a readable representation
appear as dots. You can see “.J.e.a.n.” on the first line of the third column. .NET
characters are 16-bit Unicode, and the data for the character only fills the first byte,
resulting in the second byte being set to 00, causing the dots between characters you

see in the first column. If the data used another character set, such as Japanese Kanji,
you would see data in both bytes of the character. The hex representation of this data

in the second column is “00 4a 00 65 00 61 00 6e 00 20”. Looking at the Unicode
representation, which you can find at http://unicode.org/, you’ll see that the hex and
visual representation of the characters match.

You can see that I’ve highlighted the 00 20 at the end of the first line of the second
column in Figure 6-16, which proves that Jean is followed by a Unicode space character.
Knowing this information might help you share information with someone who is
responsible for the data, letting them know that there are extraneous spaces in the data.
Some computer or software systems might even use other types of characters, perhaps
a proprietary delimiter for separating data, and accidentally save the data with the
delimiter.

Fixing the First Bug

While you might have bad data and it might not be your fault, the prospect of fixing the
problem by fixing the data source is often illusive, meaning that you need to apply a fix
in your code. In this section, we’ll apply a fix. However, we’ll put a convoluted twist in
the solution where we discover a new bug when fixing the first. The purpose is twofold:

to illustrate the real-world fact that there are often multiple problems with a given piece of
code and to show a completely different type of bug that you will encounter when writing
your own code. The following steps lead you through the fix and subsequent discovery of
the new bug:

1. Press SHIFT-F5 to stop the previous debugging session.

2. Implement a fix by commenting out the contents of the foreach loop and replacing with
code that protects against extraneous spaces in the data, as follows:

C#:

var firstName = cust.FirstName.Trim() ;
var lastName = cust.LastName.Trim() ;

if (searchName == cust.FirstName)

http://unicode.org/

Chapter 6: Debugging with Visual Studio 175

Console.WriteLine (
"Found: {0} {1}",
firstName,
lastName) ;

customerFound = true;

VB:
Dim firstName As String = cust.FirstName.Trim()
Dim lastName As String = cust.LastName.Trim()
If (searchName = cust.FirstName) Then
Console.WriteLine (
"Found: {0} {1}",
cust.FirstName,
cust.LastName)
customerFound = True
End If
Next

Notice that the fix was to use the string.7rim method to remove the extraneous space
from the data, assigning the clean results to local variables. Trim defaults to using the
space character but has overloads that allow you to specify a different character, just in
case the actual character you saw in Figure 6-16 was something other than a space. The
rest of the logic uses variables with the clean data.

3. Press F5 to run the program and see if the fix works. Unfortunately, you’re stopped in
your tracks by the fact that a new error occurs: a NullReferenceException. Unlike runtime
errors that give you wrong data, VS helps greatly by breaking on exceptions when they
occur in the code. The next section describes this error, the NullReferenceException, in
greater detail and provides information to help you deal with the problem when it occurs
in your programs.

Debugging and Resolving
NullReferenceException Problems

Encountering a NullReferenceException in your code is a common occurrence, deserving
some discussion to help you deal with these problems effectively. As described in Step 3
in the preceding section, VS will pause on a NullReferenceException when running

176 Microsoft Visual Studio 2010: A Beginner's Guide

the program. In this particular example, VS pauses on the line that cleans LastName
properties, repeated here for your convenience:

C#:
var firstName = cust.FirstName.Trim() ;
var lastName = cust.LastName.Trim() ;
VB:

Dim firstName As String = cust.FirstName.Trim()
Dim lastName As String = cust.LastName.Trim()

If you recall, the reason for calling Trim on the FirstName and LastName properties
was to clean the data prior to performing further operations on that data. While we were
concerned about FirstName, we also called Trim on LastName as well to help protect
against invalid data there too, just to be safe. The following steps show you how to use VS
to analyze the current situation and make an effective decision on an appropriate fix.

1. If VS isn’t running, restart the program and let it run until VS pauses with a
NullReferenceException.

2. Hover the cursor over cust.LastName to view the value. Alternatively, you can look in
one of the debugging windows to see the value. Observe that LastName is null.

This is the critical point in the analysis, finding the value that is null. It was clear that
cust is not null because the previous statement, cleaning FirstName, executed without
error as verified by inspecting the firstName variable. This example makes it very
easy to find the null value because it occurred on the line where VS paused. In more
challenging situations, you could be passing an object to a method in a third-party
library where you don’t have the code and VS will pause on the line with the method
call. In that case, you have to inspect the values being passed to the method to see if
any are null.

Once you’ve found the null value, you must understand why the code raised the
NullReferenceException error. A null value is the absence of a value; nothing is
assigned to the variable. If you try to reference a variable with null assigned to it, you
will receive a NullReferenceException. This makes sense because you are trying to
perform an operation on a variable that has no definition. In this particular example,
LastName is null, but we’re still referencing LastName by calling the Trim method.
This is illogical because there is not a string to trim; the string variable is set to null.

Chapter 6: Debugging with Visual Studio

You want the NullReferenceException to be raised because it protects you from
performing an invalid operation in your code. After you’ve found the null value and
ascertained the reason, it’s time to find out why the value is null in order to make an
informed decision on a fix.

. In the Immediate window, type the following command:
C#:

customers.IndexOf(cust)

VB:

?customers.IndexOf(cust)

This will return /, which is the index of the current Customer record, cust, in the
collection customers. This will save a lot of time when trying to find this object in
the data.

. The debugger is currently paused on the line that cleans LastName, where the
NullReferenceException occurred and there is a yellow arrow on the breakpoint.

With your mouse, drag the yellow error up to the line that calls GetCustomers. We’re
currently attempting to answer the question of where this value became null. If lucky,
we can stop this at the source and possibly find a bug where the value is inadvertently
set to null.

. Press Fi1 to step into the GerCustomers method. VS will navigate to the first line of the
GetCustomer method.

. Press Fi0 twice to see what values are being returned. This example is so simple that
you can visually see the data. However, in real scenarios, you will probably be running
code that makes the query to a database, or other data source, and might prepare that
data in a form digestible by any potential callers. In Chapter 7, you’ll learn more about
how to perform database queries, but we want to keep things simple for now so that
you won’t be distracted by details unrelated to the point of this exercise, which is
debugging. Therefore, we need to inspect the data to see if it is the source of the null
data by typing the following command into the Immediate window:

C#:
customers[1].LastName
VB:

?customers(1).LastName

177

178 Microsoft Visual Studio 2010: A Beginner's Guide

Additionally, you can drill down into the customers collection in one of the debugging
windows, such as Autos, Locals, or Watch, inspecting the Customer object at index 1. If
you recall from Step 3 in the preceding sequence, the Customer object we’re interested
in is at index 1. This result tells us that LastName for this Customer was set to null at
the data source and there is nothing we can do to keep it from being set to null; another
case of bad data. If you see a trend, you would be correct; never trust data whether

it comes from a user on the front end or from the database on the back end. At this
point, we have all the information we need to fix the problem and make sure we don’t
accidentally call methods on null data.

Press sHIFT-F5 to stop debugging.

7. In this example, we’ll fix the problem by checking for null before using a variable and
then replacing null with a default value. Comment out the contents of the foreach loop
and replace it with the following code:

C#:

string firstName = string.Empty;
if (cust.FirstName != null)

{
}

firstName = cust.FirstName.Trim() ;

string lastName =
cust.LastName == null ?
mno. cust.LastName.Trim() ;

if (searchName == firstName)

{

Console.WriteLine (
"Found: {0} {1}",
firstName,
lastName) ;

customerFound = true;

!
VB:

Dim firstName As String = String.Empty
If (cust.FirstName IsNot Nothing) Then
firstName = cust.FirstName.Trim()

End If

Dim lastName As String

Chapter 6: Debugging with Visual Studio 179

If cust.LastName Is Nothing Then
lastName = ""
Else
lastName = cust.LastName.Trim()
End If

If (searchName = firstName) Then

Console.WriteLine (
"Found: {0} {1}",
cust.FirstName,
cust.LastName)

customerFound = True

End If

This code fixes the problem two different ways, giving you more than one way to
solve the problem, depending on the style you prefer. In essence, the solution checks
the FirstName and LastName properties to see if they are null (Nothing in VB). If
they are not null, we know the properties have valid strings and are safe to work with.
Otherwise, we return an empty string.

In VB, you use the Is and IsNot operators when working with Nothing, rather than
the respective == and /= for working with C# null. Also, the VB [if, which is the
equivalent of the C# ternary operator, evaluates both true and false expressions,
resulting in a NullReferenceException even if the false condition doesn’t execute.
Therefore, the preceding VB example uses the more verbose [f Then Else syntax.

The choice to default to an empty string is specific to this example only. In practice,
you’ll have to look at your own situation to see if it makes sense to use a default value.
For example, the presence of a null value might represent an erroneous condition and
you might prefer to log the condition and not allow the user to continue with the current
operation. Another strategy might be to skip this record, processing all the others, and
then show the user a list of records that weren’t processed. You might want to fix the
problem with any or none of the ideas I have here, but my point is that you should think
about what working with a null value means to your particular situation and not think
that the only way to fix a null reference bug is the way we did here.

8. Press Fs to run the program. It will provide the following output:

Found: Jean

Victory!

180 Microsoft Visual Studio 2010: A Beginner's Guide

Summary

You are now able to debug code. The section ‘“Development-Time Code Tools” explained how
to view the structure of your code at development time. You learned how to set breakpoints
along with the many conditions available for breakpoint customization. The section “Stepping
Through Code” explained how to navigate through your application, stepping into and out of
methods and changing the executable location of your application. You can also open several
windows and inspect the state of your application. In particular, you learned how to use the
Debug History window that lets you see the state of an application at various stages of a
debugging session.

In the next chapter, we migrate from a pure focus of working with code to using the
features of VS that allow you to work with .NET technologies. More specifically, the next
chapter shows how VS makes it easy to work with data.

Chapter 7

Working with Data

181

182 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Work on SQL Server Databases with Visual Studio 2010
Query Data with Language Integrated Query (LINQ)
Use LINQ to SQL to Query and Manipulate SQL Server Data

Most of the work we do each day involves data, and most of the data we work with

comes from databases. Because of the importance of data in our applications, this
chapter introduces how to work with data in VS. It’s very important to learn the concepts
in this chapter because it will affect all of the work you do when programming. You’ll also
see many examples of working with data throughout the rest of this book, underscoring
the importance of data in software engineering.

While you’re free to work with any data source you want, Microsoft has several
versions of SQL Server from free Express versions to Enterprise level. Since SQL Server
Express ships with VS, we’ll use that for all of the examples in this chapter and the rest
of the book. Don’t worry; the development experience for Express is similar to all other
versions, so what you learn will be applicable to other versions of SQL Server.

Data operations are so important that you also have support in the programming
languages for working with data called Language Integrated Query (LINQ). You can use
LINQ to query many types of data sources, whether it is objects, XML, or relational data.
This chapter will show you how to use LINQ for querying data from SQL Server.

Working with Databases

VS provides several tools for working directly with databases. The free Express versions
of VS, such as Visual C# Express and Visual Basic Express, don’t have this built-in
support. However, you can visit MSDN and download the free SQL Server Express for
database work alongside the Express versions. What I'll show you in this chapter will be
available in VS Professional or later, which includes support for working with SQL Server
directly in the VS IDE.

Introduction to Server Explorer
You don’t need to open a project to perform any database work. To start working with
databases in VS, you need to start VS and then open Server Explorer by clicking

Chapter 7: Working with Data 183

Server Explorer =]

EREIRIE. &
4[] Data Connections
4 [k chicago'sglexpress.MyShop.dbeo
» [Database Diagrams
b |3 Tables|
o Cd Views
[Stored Procedures
» [Functions
p O3 Synonyms
b 3 Types
> Cd Assemblies
4 _!'5 Servers
[! Chicago
[ﬁSharePointConnections

Figure 7-1 Server Explorer

View | Server Explorer or pressing CTRL-ALT-S. Server Explorer, shown in Figure 7-1,
allows you to work with databases, servers, and SharePoint. Servers give you access
to the various types of services for managing an operating system, such as Event Logs,
Performance Counters, and Services. It is very convenient to be able to access these services
in VS during development. For example, if you need to restart an operating system service,
you can do it quickly. SharePoint is out of the scope of this book, but the relevant part of
Server Explorer is the Data Connections section at the top, which you can see in Figure 7-1.
The Data Connections section will have a list of databases that you can select and
work with. Initially, the list will be empty and you must add connections yourself, which
you can do by right-clicking Data Connections and configuring the database settings.
Since the process of connecting to an existing database is similar to the task for creating
a database, I'll show you how to create a brand new database instead, which is covered in
the next section.

Creating a Database

All of the examples in this chapter will use a database that we will create in this section.
Therefore, we need to create a database to work with. With VS Standard and higher, you
don’t need external tools to create a simple database because there is built-in support for
getting started. That said, there are advanced scenarios where a database administrator
would want to use the SQL Server tools to create the database themselves, meaning that
you would only want to connect to the database they created. For many cases, you can just
create the database yourself to get started.

184 Microsoft Visual Studio 2010: A Beginner's Guide

Create Mew SOL Server Database @

Enter information to connect to a SOL Server, then specify the
name of a database to create,

Server name:

Ssglexpress i '

Log on to the server

@ Use Windows Authentication
() Use SOL Server Authentication

User narme:

Password:

Save my passwaord

Mew database name:

M)'Shop|

Figure 7-2 Create New SQL Server Database

To create a database, right-click Data Connections in Server Explorer, and select
Create New SQL Server Database. This will show the Create New SQL Server Database
window, shown in Figure 7-2.

In Figure 7-2, the server name is .\sglexpress. The dot before the backslash represents
the current machine name, and the sqlexpress is the name for the SQL Server Express
database. Server names will vary, depending on the location of the server and the name
given to the database server instance. For example, if you were deploying an application to
a shared Web hosting site, the server name would look something like sql02.somedomain.
com, which is established by the hosting provider you are using.

Your authentication options include Windows and SQL Server. Here, I’'m choosing
Windows authentication because it’s the simplest option. The database created here is
local, but you might have a database already created on a server at another location.
The database on another server might have a SQL login, which is another method of
authentication.

After adding the database name, click OK to create the database. As shown in Figure 7-2,
we’ve called this database MyShop, representing an application that supports customers who
order products from a store. You’ll see the new database under Data Connections in Server
Explorer, similar to what you see in Figure 7-1. Now you’re ready to add tables.

Chapter 7: Working with Data

Adding Tables

The database itself will hold data for customers, orders, and order details that we introduced
in the preceding chapter. The data will be held in tables that we’ll create in this section. In
later sections, I’ll show you how to perform Create, Read, Update, and Delete (CRUD)
operations on this data. Right now, you’ll learn how to create the tables.

To create a table, right-click the Tables branch under the database in Server Explorer
and select Add New Table; you’ll see a Table Designer similar to Figure 7-3. Yours won’t
have the CustomerID or Name columns yet; that’s coming up next.

The Table Designer allows you to add columns and configure the data type (such as
integer, date, float, or character) and other details of each column and the table. Figure 7-3
shows a table with two columns, CustomerID of data type int and Name of data type
nvarchar(50). Ensure that Null is unchecked for each column to avoid errors in code that
doesn’t check for null later in this chapter.

NOTE

Databases, such as SQL Server, have their own type system, which doesn’t always
match the .NET type system perfectly. That said, there are types that match very well;
for instance, a SQL int is the same as a C# int or VB Integer. A SQL nvarchar(50)

can be matched with a C# string or VB String. However, the nvarchar is limited to

50 characters, or whatever length is specified in parentheses, but the C# string and VB
String don’t have a specified size. A full discussion of SQL types is out of scope, but you
should be aware that there are differences between SQL and .NET types.

dbo.Custorner: Table(chicago'sglexpress.MyShop) o]
Column Name Data Type Allow Nulls
CustomerID int [F]

Mame nvarchar(50) Il
]
Column Properties
|2} | El
Has Mon-50L Server Subse No -
4 Identity Specification Yes
(Is Identity) Yes =]
Identity Increment 1 |
Identity Seed 1
Indexable Yes ¥
{Is Identity)

Figure 7-3 The Customer table

185

186 Microsoft Visual Studio 2010: A Beginner's Guide

The CustomerID has a primary key symbol, which is created by right-clicking the
column and selecting Set Primary Key. If you needed a composite key (multiple columns
that define a key), which you don’t in this simple example, you would press cTrL and click
each column that belongs to the key and then right-click and select Set Primary Key.

NOTE

When working with LINQ, which we discuss later in this chapter, it is absolutely
essential that you give every table a primary key.

In addition to setting the primary key, it’s helpful to make the key number auto-
increment so that it will have a unique value for every record you insert. In Figure 7-3,
you can see that CustomerlID is selected and Column Properties has scrolled down to the
Identity Specification property. By default, Identity Specification is collapsed and set to
No. You’ll need to expand the Identity Specification property by selecting the arrow on
the left, and change the value to Yes by selecting the drop-down arrow on the right of the
“(Is Identity)” setting, which by default is No. This will also enable Identity Increment,
which specifies the number to add for each new record, and the Identity Seed, which
specifies what the first number will be. The effect of setting Identity Increment is that the
first record added to the table will have a CustomerID with the value 1 (Identity Seed) and
subsequent records will have a CustomerID with the values 2, 3, 4, and so on (Identity
Increment). The value for CustomerID in each record creates a unique value that identifies
the record and makes it easy to program data applications.

When you’re done creating the table, click the Save button on the toolbar and name
the table Customer when prompted.

You can add data to the Customer table by opening the database in Server Explorer,
navigate to the Tables folder in the MyShop database, right-click Customer, and select
Show Table Data. You’ll see a grid similar to Figure 7-4 where you can enter some

Customer: Query(chicagohsqlexpress.MyShop) b b
CustomerID Name
L Meg
i Joe
3 May
[NULL
4 4|4 of 4| b bl b= |(E) | Cellis Read Only.

Figure 7-4 Adding data to a table

Chapter 7: Working with Data 187

dbo.Order: Table(chicago'sqlexpress.MyShop) *rOXx
Calumn Mame Data Type Allow Mulls
7 OrcedD int]
OrderDate datetime 0
CustomerlD int M
|

Column Properties

AR

Collation <database default> -
> Computed Column Specit

Condensed Data Type int 9

Description FK to Customer

Deterministic Yes

DTS-published Mo ¥
Description

Figure 7-5 The Order table

customer data. Notice that you need only type a name in the Name column (replacing the
word NULL) and do not need to enter a value for the CustomerID, since we’ve made the
CustomerID column auto-increment.

In a database of any sophistication, you have multiple tables. In the MyShop database,
a Customer has an Order. So, create a new table named Order, shown in Figure 7-5,
that has Primary Key OrderID, a datetime field called OrderDate, and an int field called
CustomerlID.

The Description in the Column Properties for the CustomerID field says FK to
Customer. FK is an abbreviation for foreign key, which is used to create a relationship
between a parent table and a child table. The next section explains more about what
a foreign key is and how to create one.

Relating Tables with Foreign Keys

Foreign keys allow you to establish a relationship between two tables. You can think of
this relationship as being parent/child, master/detail, or one-to-many; each analogy being
equal, I’1l use parent/child. The preceding section shows how to create Customer and
Order tables. The relationship between these two tables is that Customer is the parent and
Order is the child. One record in Customer can have many records in Order; customers

188 Microsoft Visual Studio 2010: A Beginner's Guide

can have zero or more orders. A foreign key can help manage the relationship between
Customer and Order.

The mechanics of creating a foreign key relationship is that you put the foreign key
column in the child table, Order, and have the foreign key column refer to the primary
key of the parent table, Customer. In this case, the reference is made simply by matching
the integer value; if the ID number is the same in both tables, then the records are related.
As shown in Figure 7-5, Order does have a CustomerID column, of type int, and we will
make this the foreign key that will refer to CustomerID primary key in Customer, shown
in Figure 7-3.

To create this foreign key relationship in VS, right-click the CustomerID column in
the Order table and select Relationships. We’re going to create the foreign key relationship
that you see in Figure 7-6.

Next, click Add, select the Tables And Columns Specific property, and click the
ellipses button that appears on the far right of your selection (the ellipses does not appear
until you first click “Tables And Columns Specific” below “(General)” in the Foreign Key
Relationships dialog window. This will open the Tables And Columns window shown in

Figure 7-7.
Foreign Key Relationships =i M
Selected Relationship:
FK_Order_Customer* Editing properties for new relationship. The Tables And Columns
Specification’ property needs to be filled in before the new relationship will be
accepted.

4 [General)
Check Existing Data On Creati Yes

Pl Tables And Columns Specific E]

Foreign Key Base Table Order

»

Fareign Key Columns CustomerlD

m

Primary/Unique Key Base Customer
Primary/Unique Key Calu CustomerID
4 Identity
(Mame) FE_Order_Customer
Description

4 Table Designer

| Add || Delete |

Figure 7-6 Managing a foreign key relationship

Chapter 7: Working with Data 189

Tables and Columns E
Relationship name:
FK_Order_Customer
Brimary key table: Fareign key table:
Custormer -] Orcler
Customend (Coomen |1
[oK l [Cancel

Figure 7-7 Configuring a foreign key relationship

In the primary key table drop-down, shown in Figure 7-7, select Customer, which
automatically selects the primary key, CustomerID. (Note: If you don’t see this behavior,
check to see that you’ve set your primary key columns and saved those table changes
as described earlier.) In the list, under Foreign Key Table in Figure 7-7, you’ll initially
see OrderID, which is the primary key of the order table. Select OrderID and change it
to CustomerID as the foreign key column. Click OK to exit and click Close to finalize
creation of the foreign key relationship. When you click Save to save the new foreign
key relationship, you’ll see a warning message similar to Figure 7-8, listing the tables
participating in the change. Select Yes to make your changes to the SQL Server tables.
You can uncheck the Warn About Tables Affected box if you don’t want to see this
message anymore, but the message does serve as a safety net to make sure you don’t
accidentally save unintended changes to SQL Server, which is an external product to
VS 2010.

Once the foreign key is in place, you can add a few records to the Order table, much
as you did with the Customer table, but remember that the CustomerID must match
an existing CustomerID in the Customer table because of the foreign key relationship.
Forcing the child to refer to its parent is good because it maintains the integrity of the
database, demonstrating the value of a foreign key.

190 Microsoft Visual Studio 2010: A Beginner's Guide

Save 7]
2. Thefollowing tables will be saved to your database. Do you want to continue?
Customer -
Order

4 b

Warn about Tables Affected

| Yes | l No] l Save Text File

Figure 7-8 Foreign key relationship Save warning message

TIP

Figure 7-7 shows an editable Relationship Name field. In many cases, you won't

care what this name is because it follows a standard convention of FK_Child_Parent.
However, sometimes you have multiple relationships between the same tables, which
means that VS appends an incremental number to the end of the name. Thus, for
instance, the next foreign key relationship between the same two tables would be
FK_Child_Parent1. In those cases, it would be smart to plan ahead and change the
name fo something meaningful so that you can later understand or quickly recall what
relationship rules the foreign keys are enforcing. To see what | mean by enforcing
rules, go ahead and enter a new record in the Order table, but enter an integer in the
CustomerID column that does not exist already in the Customer table, like 9999. Try to
save that record and then read the error message presented to you.

Working with multiple tables, you might want to have a better feel for the database
structure and relationships. Database diagrams could be helpful in this case. To create a
database diagram, right-click the Database Diagrams folder under the database in Server
Explorer and click Add New Diagram. Click Yes when you receive an information
message requesting the creation of objects for database diagramming. In the Add Table
window, press the cTRrL key so that you can select multiple rows, click to select each
table, and click Add. You’ll see a new database diagram similar to Figure 7-9 (you
may see Order appear above Customer in your diagram, which is fine; the position of

Chapter 7: Working with Data 191

dbo.Diagrarnl: Diagram(chicago'sglexpress.MyShop)* *AX
Customer B
% CustomerID
Mame
Order
% OrderdD
OrderDate
CustomerlD
| I _'Fill

Figure 7-9 A database diagram

the symbols—the key and the infinity symbol at the end of the line connecting the two
tables—is what is important).

As shown in Figure 7-9, the database diagram shows you tables, columns, and
relationships. You can use this window to add new tables and relationships. When you
want to create a new table, right-click the design surface, select Add Table, and use the
Visual Designer to configure the table, as in previous examples. What is helpful with this
designer is the ease in which foreign key relationships can be created as compared to the
method we used earlier to accomplish the same thing. To create a foreign key relationship,
click the foreign key column in the child table, drag the carat to the parent table, and drop
the carat on the primary key of the parent table. When you’re finished with creating the
database diagram, VS will prompt for the diagram name; you can reply with a name of
your choice and click OK to save the diagram.

Other features of the database diagram include navigation, printing, and multiple
diagrams. When you have a database diagram larger than the screen size, click the symbol
with the four arrow heads at the lower right-hand corner of the database diagram, and
move your mouse to quickly navigate through the document. If you want a permanent

192 Microsoft Visual Studio 2010: A Beginner's Guide

copy of the diagram, right-click and copy to clipboard or select File | Print. You can also
add multiple diagrams to the Database Diagrams folder, allowing you to have multiple
different views for your convenience.

In addition to tables and diagrams, you can add database views, stored procedures,
functions, synonyms, types, and assemblies. Most of these database items are for advanced
scenarios, but it’s important that you know about stored procedures, which are covered next.

Adding Stored Procedures

A stored procedure is code that is written in SQL and saved as part of a database. It is a
method stored in the database itself, and not in your program code; hence the term stored
procedure. In this section, I'll show you how to create and execute a stored procedure.
Later sections of this chapter will show you how to execute this stored procedure, which
runs a data query, through LINQ to SQL.

To create a stored procedure, right-click the Stored Procedure folder for the database
in Server Explorer and select Add New Stored Procedure. You’ll see an editor appear with
skeleton code for a stored procedure. Modify the code so that it retrieves all of the data
from the Customer table, as shown in Listing 7-1. After modifying the template code,
click Save and you’ll see the stored procedure appear in the Stored Procedures folder of
the database in Server Explorer.

Listing 7-1 Stored procedure example

CREATE PROCEDURE GetCustomers

AS
declare @cust_count int
select @cust count = count (*) from Customer
if @cust count > 0
begin
select [Name] from Customer
end
return

Listing 7-1 declares a variable named @ cust_count and runs a select statement to
assign the number of customers, count(*), to @cust_count. If @cust_count is larger than 0,
there are customers and the stored procedure queries for customer names. Teaching TSQL
(Microsoft’s dialect of SQL) syntax is outside the scope of this book, but you can download
SQL Server Books Online for free and purchase McGraw-Hill’s Microsoft SQL Server 2008:
A Beginner’s Guide, Fourth Edition by Dusan Petkovic (McGraw-Hill/Professional, 2008)
to get started.

Chapter 7: Working with Data

To execute this stored procedure, right-click the stored procedure in the database in
Server Explorer and click Execute. You’ll see output similar to the following if there are
records in the customer table:

Running [dbo] . [GetCustomers] .

May

No rows affected.
(3 row(s) returned)
@RETURN_VALUE = 0
Finished running

[dbo] . [GetCustomers] .

In addition to execution, you can debug the stored procedure in VS. To debug, set a

breakpoint on any line in the stored procedure, right-click the stored procedure in Server

Explorer, and select Step Into Stored Procedure or click aLt-Fs. If you need more help
debugging, visit Chapter 6 for a refresher on VS debugging capabilities.

Configuring Database Options
VS has many database configuration settings that you can view via the Tools | Options
menu and selecting Database Tools, as shown in Figure 7-10. For example, one of the

Options (-5l
a4 Database Tools o Table Options
General [¥] Override connection string time-out value for table designer
Data Compare updates:
Data Connections P
Transaction time-out after:
[~ Data Generator i z
Database Errars and Warnings 30 seconds
O/R Designer
: Auto generate change scripts
Query and View Designers [laute g g L
> Schema Compare [C1Warn on null primary keys
4 Table and Database Designers F [#]Warn about difference detection
| Table and Diagram Cptions |
2 i B [¥]Warn about tables affected
Calumn Options
[» Transact-S0L Editar [T] Prevent saving changes that require table re-creation
b F#Toals 3 " "
HTML Desi Diagram Options
4 esigner Default table view: Column MNames -
[» Office Tools
» Test Tools [¥] Launch add table dialog on new diagram
[» Text Templating
1> _Windows Forms Desianer 3k
OK. l ’ Cancel

Figure 7-10 Database Tools options

193

194 Microsoft Visual Studio 2010: A Beginner's Guide

options found after clicking the arrow button to expand Database Tools and then selecting
Table And Database Designers is “Prevent saving changes that require table re-creation.”
VS will not allow you to save a foreign key change to existing tables. However, by
unchecking “Prevent saving changes that require table re-creation,” you’ll be able to save
foreign key changes to an existing table.

As with so many other features of VS, there are literally dozens of database settings; most
are intuitive if you already understand SQL Server. Other options differ, depending on the
version of VS you have, and your Options screen might not look the same as Figure 7-10.

Now that you know how to create databases, tables, and stored procedures, you’ll need
to know how to use your database from code. The rest of this chapter shows you how to
use LINQ to work with data. First, we’ll look at the basic syntax of LINQ through LINQ
to Objects and then follow with working with SQL Server through LINQ to SQL.

Learning Language Integrated Query (LINQ)

LINQ is a set of features built into programming languages, such as C# and VB, for
working with data. It’s called Language Integrated Query because the LINQ syntax is
part of the language, as opposed to being a separate library. This section will show you
the essentials of LINQ with LINQ to Objects, a LINQ provider for querying in-memory
collections of objects. The great news is that the syntax you learn here is not only
applicable to LINQ to Objects, but to all other LINQ providers, such as LINQ to SQL and
more, that you’ll encounter.

The examples in this chapter will use a Console project for simplicity. Later chapters
will show you how to display data in desktop and Web applications. If you want to run the
code in this chapter, you can create a Console application and type the examples into the
Main method, as has been explained in each previous chapter of this book.

Querying Obiject Collections with LINQ

One way to use LINQ is via LINQ to Objects, which allows you to query collections

of objects. You can use LINQ to query any collection that implements the /Enumerable
interface. As you may recall, we discussed interfaces in Chapter 4; now you can see one
more example of how important interfaces are to .INET development. Listing 7-2 shows
a program that uses LINQ to query a collection. The object type is a custom class, named
Customer. The Main method creates a generic list of Customer and uses a LINQ query to
extract the Customer objects that have a first name that starts with the letter M.

Chapter 7: Working with Data

Listing 7-2 A program demonstrating how to make a LINQ to objects query

C#:

using System;
using System.Collections.Generic;
using System.Ling;

class Customer

{

public string FirstName { get; set; }
public string LastName { get; set; }

class Program

{

static void Main(string[] args)

{

List<Customer> custList = new List<Customer>

{

new Customer

FirstName = "Joe",
LastName = "Zev"

new Customer

FirstName = "May",
LastName = "Lee"

new Customer

FirstName = "Meg",
LastName = "Han"

var customers =
from cust in custList
where cust.FirstName.StartsWith ("M")
select cust;

foreach (var cust in customers)

{

Console.WriteLine (cust.FirstName) ;

195

196 Microsoft Visual Studio 2010: A Beginner's Guide

Cons

VB:

Class Custom
Property
Property

End Class

Module Modul
Sub Main

Dim

{

Dim

For
Next

Cons
End Sub

End Module

ole.ReadKey () ;

er
FirstName As String
LastName As String

el

()
custList As New List (Of Customer)

New Customer With

{

.FirstName = "Joe",

.LastName = "Zev"
New Customer With

.FirstName = "May",

.LastName = "Lee"
New Customer With

.FirstName = "Meg",

.LastName = "Han"
customers =

From cust In custList

From

Where cust.FirstName.StartsWith("M")

Select cust

Each cust In customers
Console.WriteLine (cust.FirstName)

ole.ReadKey ()

Chapter 7: Working with Data

Both the C# and VB examples from Listing 7-2 contain similar LINQ queries. To
clarify, the following examples show both the C# LINQ query:

var customers =
from cust in custList
where cust.FirstName.StartsWith ("M")
select cust;

and the VB LINQ query:

Dim customers =
From cust In custList
Where cust.FirstName.StartsWith ("M")
Select cust

The customers variable in the LINQ queries references a new collection that holds the
result of running the LINQ query, which contains all of the customers where the first letter
of the FirstName property is the letter M. The from clause specifies the range variable
that you name, cust is the name I chose, and the collection object to query, custList, was
created and populated in the previous line of code. The range variable is what you use to
specify parameters of the LINQ query. In the preceding example, we use the where clause
to filter the results of the query. This where clause calls the StartsWith method on each
FirstName property of the cust range variable to specify the filter.

The select clause specifies that each individual customer object is returned into our
new customers collection, which we declared as type var (Dim in VB), which means our
customers variable winds up being whatever collection type is returned from our LINQ
query. This also means that the resulting customers collection will contain zero or more
Customer type instances, depending on the filter we specified and whether our custList
contained any Customer objects in the first place as a result of the Select cust portion of
the LINQ statement. The select clause for C# queries is required, but the select clause for
VB queries is optional and will return the range variable instance if omitted.

What our LINQ statement is essentially saying in English is “Create a new collection
object and assign it to our variable customers (we don’t really care what type of object
customers turns out to be as long as we can use it later), then go through every object in
our previously defined and loaded custList collection, selecting only the ones that have for
their FirstName property a string that begins with the letter M, and ignore all the rest, then
take the ones that match this filter and stuff them into whatever collection you created for
me earlier that you assigned to my variable customers.”

197

198 Microsoft Visual Studio 2010: A Beginner's Guide

Creating a LINQ Projection with Anonymous Types

You can customize what is returned by the select clause by using what is called an
anonymous type. This customization of return values is called a projection. Anonymous
types facilitate custom projections, allowing you to return the results of a LINQ query

in a form that you specify without needing to declare a new type ahead of time. Here’s

an example of creating a query that declares a new anonymous type for combining the
FirstName and LastName properties of Customer into a variable, FullName, that is created
as a string-type property associated with the object returned into cust in the foreach
statement:

C#:

var customers =

from cust in custList

where cust.FirstName.StartsWith ("M")

select new

{

FullName =

cust.FirstName + " " +
cust.LastName

i

foreach (var cust in customers)

{
}

Console.WriteLine (cust.FullName) ;

VB:

Dim customers =
From cust In custList
Where cust.FirstName.StartsWith ("M")
Select New With
{
.FullName =
cust.FirstName & " " &
cust .LastName

}

For Each cust In customers
Console.WriteLine (cust.FullName)
Next

In both the C# and VB select clauses you see a new statement (New With in VB) that
defines the anonymous type. The new anonymous type has a single property, FullName,
that is the combination of FirstName and LastName in Customer, but the new type will

Chapter 7: Working with Data

only have a FullName property. Notice how the foreach loop uses the FullName property,
instead of the FirstName property from Listing 7-2. The beauty of this anonymous type
is that we don’t really care what type of object is generated for us by the LINQ query, as
long as that object has the new property associated with it that we specified, FullName in
this case, which it does.

The variable, cust, in the preceding listing is used in two different scopes: the LINQ
query and the foreach statement. Although the identifier, cust, is the same, the two usages
are separate instances. Although you might not use the same practice in your own code,

I wanted to demonstrate this so that you can see that range variables, such as cust, are
scoped to the query they are defined in.

Another nuance of the preceding code is that cust, in the foreach loop, is not type
Customer. Rather, it is an instance of the anonymous type created by the projection (select
clause) of the LINQ query. Therefore, FullName is the only property each anonymous
type instance, cust, contains.

Using LINQ to Sort Collection Results

Another common task you’ll want to perform with data is sorting so that you can put
objects in a certain order. The following example modifies the example from Listing 7-2
to sort items from the customer List in descending order:

C#:

var customers =
from cust in custList
orderby cust.FirstName descending
select cust;

VB:

Dim customers =
From cust In custList
Order By cust.FirstName Descending
Select cust

The orderby (Order By in VB) clause specifies the properties to sort on. This example
sorts the list by the FirstName property in descending order.

This was a quick taste of what you could do with LINQ, and there is much more.
In fact, I wrote an entire book on the subject titled LINQ Programming (McGraw-Hill/
Professional, 2008). The remaining section of this book takes what you’ve learned here
and expands, showing you more samples of LINQ queries. The difference will be that you
will be working with SQL Server data instead of in-memory objects.

199

200 Microsoft Visual Studio 2010: A Beginner’s Guide

Handling Data with LINQ to SQL

The LINQ to SQL provider allows you to communicate with SQL Server databases. There
are many other types of providers, such as LINQ to Entities for generic databases (which
includes SQL Server), LINQ to XML for XML data sources, and LINQ to Oracle for
Oracle databases. The preceding section showed you how to use the in-memory provider,
LINQ to Objects. However, LINQ to SQL is the easiest database provider to learn and
ships with VS. Once you learn LINQ to SQL, the journey to other providers is easier.

The following sections will show you how to set up LINQ to SQL, perform queries, and
modify data.

Setting Up LINQ to SQL

Setting up LINQ to SQL involves running the LINQ to SQL Wizard and adding classes
and methods. Behind the scenes, LINQ to SQL generates code, saving you a lot of work.
The result of setting up LINQ to SQL is that you will have a data model, which is an
environment with classes that you can use to query and modify database data and call
methods for invoking stored procedures.

Before setting up LINQ to SQL, you’ll need to create a project (a Console project
for the purposes of this chapter). See Chapter 5 if you need a refresher on how to set up
a Console project. Select Add | New Item, select LINQ to SQL Classes, name the file
MyShop.dbml, and click Add. This will show you the LINQ to SQL Designer, with two
surfaces for classes and methods. Figure 7-11 shows the LINQ to SQL Designer with
a couple of classes and a method.

MyShop.dbml *OXx

»|

% Ouder
Customer s

= Properties
= Properties 75 OrderD
25 Order
72 CustomerD ™ OrderDate
= Name == CustomerlD

Figure 7-11 The LINQ to SQL Designer

Chapter 7: Working with Data 201

To add entities to the LINQ to SQL Designer, open Server Explorer, select a database,
and open the Tables folder. Then drag and drop the Customer and Order tables from Server
Explorer to the left surface of the LINQ to SQL Designer. You can see the Customer and
Order classes in Figure 7-11, along with properties corresponding to the fields of each table
in the database.

The line between Customer and Order is called an association. As you might guess from
reading the previous discussion on class relationships, the association defines the relationship
between two classes. Although a relationship between tables is constrained by a foreign key
in a child that refers to the primary key of that child’s parent, an association is the reverse
direction; it is a property of a parent class that refers to all of the children of that class. When
coding, you can use this association to navigate between parent and child objects.

NOTE

Features, such as the difference between foreign key relationships in relational
databases and associations in object-oriented code, are often referred to as an
impedance mismatch, a term taken from electrical engineering, between data and
objects. LINQ is designed to reduce the impedance mismatch by allowing you to work
with data from an object-oriented point of view, rather than doing all of the low-level
work yourself such as copying data records into data transfer objects, DTOs, that you
design and create.

On the right pane of Figure 7-11, you can see a GetCustomers method, which allows
you to call the GetCustomers stored procedure. You can put stored procedures, such as
GetCustomers, onto the design surface by opening the Stored Procedures folder of the
database in Server Explorer and dragging and dropping that stored procedure onto the
right pane of the LINQ to SQL Designer.

If your database has views and functions, you can add them the same way as you did
for classes and functions previously. Before showing you how to use these new classes
and views, I'll show a little more about what you can do with the LINQ to SQL Designer.

Working with the LINQ to SQL Designer

While the most important part of the LINQ to SQL Designer is being able to add classes
and methods, you should also know about some if its features such as the Methods pane
hiding, zooming, and auto-layout. You’ll see these options through the design surface
context menu (right-click).

Most of the time working with the Designer is with classes, and you want as much
screen real estate as possible. You can achieve this goal by hiding the Methods pane.
Just right-click the design surface and select Hide Methods Pane. Similarly, select Show
Methods Pane to make the Methods pane reappear.

202 Microsoft Visual Studio 2010: A Beginner’s Guide

The default zoom level for the Designer is 100%, but you can change this by right-
clicking, select Zoom, and select a zoom level percent. This might be useful if you wanted
a higher-level view where you could fit more objects onto the screen at one time.

If you right-click and select Layout Diagram, VS will automatically lay out your
diagram so that classes with relationships can physically reside in the same area with
minimal overlapping of association lines, a feature I call auto-layout. After you’ve
performed auto-layout, you will be able to manually change the location of classes by
selecting and dragging each class to a new location, a feature I call manual layout.

TIP

Be careful of executing outo-layour after you have your |ayout the way you want. | tend
to perform an auto-layout after the first time working with the LINQ to SQL Designer
on a database. Then | follow up with manual layout to make working with classes even
easier. Using auto-layout affer manual layout will result in a lot of lost work.

It’s common in development to add new tables to a database that you also want in
the Designer. In that case, drag and drop the tables from Server Explorer as you did for
Customer and Order earlier. If a table changes, you can select its corresponding class in
the Designer and delete that class and then drag and drop the new table onto the design
surface. Any foreign key references will result in associations on the Designer if classes
for both tables reside in the Designer too.

An important part of working with the Designer is properties. Right-click the Designer,
select Properties, and you’ll see the Properties window, similar to Figure 7-12.

Properties *yAX
MyShopDataContext DataContext -
o= =
4 nel

Access Public

Base Class System.Data.Ling.DataContext

Context Namespace

Entity Namespace

Inhentance Modifier {Mone)
Name MyShopDataContext
Senalization Made MNane
4 Data
4 M MyShapConnectionString {SettinE
Caonnection String Data Source=.\sqlexpress;Initial Ca
Application Settings True

Settings Property MName MyShopConnectionString

Connection
Database Connection.

Figure 7-12 The LINQ to SQL Class Designer Properties window

Chapter 7: Working with Data 203

LINQ to SQL generates a lot of code for you, and the Properties window allows you to
modify parts of that code through the Code Generation section. To see this section, be sure
your Properties window has the “Categorized” button selected near the top left side, and
not the Alphabetical “AZ” button. You can also see the database connection string, which
is created when you dragged and dropped from Server Explorer to the Designer and saved.

In addition to properties for the Designer itself, you view properties on objects such
as classes, associations, and methods. Select the object you want to work with, right-click
that object, and select Properties to show the Properties window for that object.

You now have a data model to work with. The following sections show you how to
work with this data model to query, insert, update, and delete data.

Introduction to Querying LINQ to SQIL

Previously, you learned how to use LINQ through the LINQ to Objects provider. All of
what you learned with LINQ to Objects is applicable to other LINQ providers, including
LINQ to SQL. This section combines the nuances of LINQ to SQL with what you’ve
already learned to query database data. Listing 7-3 shows a LINQ query with LINQ

to SQL that retrieves values from the Customer table of the MyShop database, which
contains the tables added previously in this chapter.

Listing 7-3 Querying data with LINQ to SQL

C#:

using System;
using System.Ling;

namespace LingToSglDemoCS

{

class Program

{

static void Main ()

{

var myShop = new MyShopDataContext () ;

var customers =
from cust in myShop.Customers
where cust.Name != "Joe"
select cust;

foreach (var cust in customers)

{
}

Console.WriteLine ("Name: " + cust.Name) ;

204 Microsoft Visual Studio 2010: A Beginner’s Guide

Console.ReadKey () ;

VB:
Module Modulel

Sub Main ()
Dim myShop As New MyShopDataContext

Dim customers =
From cust In myShop.Customers
Where cust.Name IsNot "Joe"
Select cust

For Each cust In customers
Console.WriteLine ("Name: " & cust.Name)
Next

Console.ReadKey ()
End Sub

End Module

And here’s the output using my data:

Name: Meg
Name: May

Other than the obvious fact that we’re now getting our data from a real database, the
difference between Listing 7-3 and the LINQ to Objects examples you saw earlier are that
you have to use the System.Ling namespace (C# only), declare the MyShopDataContext
data context, and query Customers from the data context. In C#, the using directive for
the System.Ling namespace is required. If you left it out, the compiler will give you the
following error message:

“Could not find an implementation of the query pattern for source type ‘System.
Data.Ling.Table<LingToSqlDemoCS.Customer>". ‘Where’ not found. Are you missing
a reference to 'System.Core.dll’ or a using directive for ‘System.Ling’?”

Remember this message because any time you add a new file to a C# project where
you are coding LINQ queries, this will be an indication you need to add a using directive
for the System.Ling namespace.

Chapter 7: Working with Data

A data context is the code that is generated by VS when you run the LINQ to SQL
item wizard. The Main method instantiates MyShopDataContext, which is the data
context. The name came from when the LINQ to SQL item wizard ran and your naming of
the *.dbml file.

LINQ to SQL queries are made with the data context, which contains a property that
holds a collection of the class type that the property is named after, myShop.Customers
and myShop.Orders in this case. The LINQ query in the Main method uses the myShop
data context instance to access the Customers collection in the from portion of the query.

NOTE

The LINQ to SQL provider uses pluralized data context properties. However, the

results are not perfect; for example, Deer becomes Deers, which is incorrect in English.
Additionally, pluralization is designed for English and will produce strange results in
languages other than English. If the pluralization generated by the LINQ of a class is
incorrect, you can either double-click the class name in the Designer or change the class
name via the Properties window.

This section introduced you to what goes into creating a LINQ to SQL query, but your
queries will likely need to work with multiple tables, as discussed in the next section.

Performing Queries on Multiple Tables

Until now, all queries have been from a single data source or table, like Customers in
Listing 7-3. Often, you need to combine the results from multiple tables, which is where
select many and join queries are useful. To demonstrate how joins work, we’ll define

a scenario where you need to know the dates of all orders made and the name of the
customer who made the order.

The select many lets you join tables based on associations in the LINQ to SQL
Designer. From the parent object, you navigate to the child object and are able to access
the properties of both parent and child. The following code shows how to perform a select
many query that gets data from the Customer and Order tables and repackages it into a
collection of data transfer objects:

C#:

var myShop = new MyShopDataContext () ;

var customers =
from cust in myShop.Customers
from ord in cust.Orders
select new
{
Name = cust.Name,
Date = ord.OrderDate

}i

205

206 Microsoft Visual Studio 2010: A Beginner's Guide

foreach (var custOrd in customers)
Console.WriteLine (

" Name: " + custOrd.Name +

" Date: " + custOrd.Date) ;

VB:

Dim myShop As New MyShopDataContext

Dim customers =
From cust In myShop.Customers
From ord In cust.Orders
Select New With
{
.Name
.Date

cust .Name,
ord.OrderDate

}

For Each custOrd In customers
Console.WriteLine (
" Name: " & custOrd.Name &
" Date: " & custOrd.Date)
Next

And here’s the output:

Name: Joe Date: 1/5/2010 12:00:00 AM
Name: May Date: 10/5/2010 12:00:00 AM
Name: May Date: 10/23/2010 12:00:00 AM

Imagine that the preceding code is sitting in the Main method, like what you saw in
Listing 7-3. The different part of this query that makes it a select many type of query is
the second from clause. Consider the parent/child relationship between Customer and
Order, which is represented by cust and ord in this query. The second from clause uses
the cust instance to specify the orders to query, which will be all orders belonging to each
customer. The ord instance will hold each order belonging to its associated cust. To make
this data useful, the projection is on an anonymous type that pulls together the name of the
customer and the date of that customer’s order.

In the database, I created two orders for May, one order for Joe, and zero orders for
Meg. Since there wasn’t an order for Meg, you don’t see any items from Meg in the
output. Later, I'll show you how to add a parent record, even when that parent record has
no child records.

The select many query is fine for simple queries but becomes harder to use in more
complex queries. In this case, a join query emerges as an easier option. Like a select many

Chapter 7: Working with Data 207

query, a join query will combine two tables that have matching keys. Here’s an example of
a join query that accomplishes the exact same task as the preceding select many query:

C#:

var myShop = new MyShopDataContext () ;

var customers =

from cust in myShop.Customers

join ord in myShop.Orders
on cust.CustomerID equals ord.CustomerID

select new

{
Name
Date

cust .Name,
ord.OrderDate

}i

foreach (var custOrd in customers)
Console.WriteLine (

" Name: " + custOrd.Name +

" Date: " + custOrd.Date) ;

VB:

Dim myShop As New MyShopDataContext

Dim customers =

From cust In myShop.Customers

Join ord In myShop.Orders
On cust.CustomerID Equals ord.CustomerID

Select New With

{
.Name
.Date

cust .Name,
ord.OrderDate

}

For Each custOrd In customers
Console.WriteLine (
" Name: " & custOrd.Name &
" Date: " & custOrd.Date)
Next

The difference between this query and the select many is that there is a join clause
instead of a second from. The join identifies a range variable, ord, and operates on the
Orders property of the data context. You also must specify which keys of the table
join, mentioning the parent first, cust. CustomerID, and then the child, ord. CustomerID.
Remember to use the equals keyword because the equality operator will not work.

208 Microsoft Visual Studio 2010: A Beginner’s Guide

The select many and join clauses are synonymous with SQL inner joins because there
must be a foreign key in a child table that matches a parent in the parent table before any
records for the parent will be returned. To address the issue of needing to get parents that
don’t have children, you must perform a left outer join. To perform the equivalent of a
SQL left outer join in LINQ, you must use a standard operator called DefaultlfEmpty. The
following query gets a record for all customers, regardless of whether they have orders or not:

C#:

var myShop = new MyShopDataContext () ;

var customers =
from cust in myShop.Customers
join ord in myShop.Orders
on cust.CustomerID equals ord.CustomerID
into customerOrders
from custOrd in customerOrders.DefaultIfEmpty ()
select new
{
Name = cust.Name,
Date = custOrd == null ?
new DateTime (1800, 1, 1)
custOrd.OrderDate

}i

foreach (var custOrd in customers)
Console.WriteLine (

" Name: " + custOrd.Name +

" Date: " + custOrd.Date);

VB:

Dim myShop As New MyShopDataContext

Dim customers =
From cust In myShop.Customers
Group Join ord In myShop.Orders
On cust.CustomerID Equals ord.CustomerID
Into customersOrders = Group
From custOrd In customersOrders.DefaultIfEmpty ()
Select New With

{

.Name = cust.Name,

.Date = IIf(custOrd Is Nothing,
New DateTime (1800, 1, 1),
custOrd.OrderDate)

Chapter 7: Working with Data

For Each custOrd In customers
Console.WriteLine (
" Name: " & custOrd.Name &
" Date: " & custOrd.Date)
Next

And the output is

Name: Meg Date: 1/1/1800 12:00:00 AM
Name: Joe Date: 1/5/2010 12:00:00 AM
Name: May Date: 10/5/2010 12:00:00 AM
Name: May Date: 10/23/2010 12:00:00 AM

For C#, the left outer join is accomplished the same way as a join except for two
additional lines: the into clause and the second from clause. For VB, the left outer
join is the same as the join except for three lines: the Info clause, the second From
clause, and the Group keyword. The into clause specifies an identifier that is used by
the from clause. In the from clause, DefaultlfEmpty will return the default value for
the continuation variable type. In the preceding example, the continuation variable is
customerOrders whose type is Order. Since LINQ to SQL types are classes and Order
is a class from the Orders entity collection, the default value is null (Nothing in VB).
Notice how I enhanced the projection with a ternary (immediate if in VB) operator to
control what value is returned when the parent doesn’t have a child. When performing
a left outer join, make sure you compare the value against its default value to determine
if the parent doesn’t have a child and ensure that valid values are set. Not only does the
preceding example demonstrate how to check for a default value, but it also shows that
you can use expressions in your projections.

In addition to LINQ queries, you can call stored procedures. As you may recall from
the previous discussion on working with the LINQ to SQL Designer, I described how to
drag and drop a stored procedure from Server Explorer to the design surface. Adding the
stored procedure to the design surface also added a method to the data context. Here’s
how to use that method:

C#:

var myShop = new MyShopDataContext () ;
var customers = myShop.GetCustomers() ;

foreach (var cust in customers)

{
}

Console.WriteLine ("Name: " + cust.Name) ;

209

210 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Dim myShop As New MyShopDataContext

Dim customers As IEnumerable =
myShop.GetCustomers ()

For Each custOrd In customers
Console.WriteLine ("Name: " & custOrd.Name)
Next

And here’s the output:

Name: Meg
Name: Joe
Name: May

Just call myShop.GetCustomers and you’ll receive a collection of Customer objects.

There are many more advanced scenarios that you can handle with LINQ, but this
is just a beginner’s guide. However, you now have a solid base of query techniques that
will get you started. In addition to querying a database, you’ll need to perform insert
operations, which is next.

TIP

LINQ to SQL generates SQL (Structured Query Language) statements to send to the
database for your queries. If you would like to see the generated SQL, set a breakpoint
on the line after the query and run the program with debugging. When you hit the
breakpoint, hover over the variable holding query results and you'll see the SQIL
statement.

Inserting Data with LINQ to SQLL

To insert a new record into a table, you’ll need to create an instance of the LINQ to SQL
class for that table, call a method to insert, and then call another method to commit the
changes. The following example shows how to add a new record to the Customer table:

C#:

private static int InsertCustomer ()

{
var cust = new Customer { Name = "Jim" };
var myShop = new MyShopDataContext () ;
myShop.Customers. InsertOnSubmit (cust) ;

myShop . SubmitChanges () ;

return cust.CustomerID;

Chapter 7: Working with Data 211

VB:

Function InsertCustomer () As Integer
Dim cust = New Customer With

{
}

Dim myShop As New MyShopDataContext

.Name = "Jim"

myShop.Customers.InsertOnSubmit (cust)
myShop . SubmitChanges ()

Return cust.CustomerID
End Function

As shown here, each collection property, such as Customers, has an InsertOnSubmit
method that takes an object of the collection’s type, Customer in this case. Don’t forget
to call SubmitChanges, or else you won’t see any changes to your data. The next section
discusses updates. Once the insert executes, with SubmitChanges, the new object, cust,
will be updated with the new CustomerID, which you read and return to calling code.

Updating Data with LINQ to SQL

To update data, you need to get an object for the record you want to update, change
the object you received, and then save the changes back to the database. The following
example shows how to update a record:

C#:

private static void UpdateCustomer (int custID)

{
var myShop = new MyShopDataContext () ;
var customers =
from cust in myShop.Customers

where cust.CustomerID == custID
select cust;

Customer firstCust = customers.SingleOrDefault () ;

if (firstCust != null)

{
}

myShop . SubmitChanges () ;

firstCust.Name = "James";

212 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Sub UpdateCustomer (ByVal custID As Integer)
Dim myShop As New MyShopDataContext

Dim customers =
From cust In myShop.Customers
Where cust.CustomerID = custID
Select cust

Dim firstCust As Customer =
customers.SingleOrDefault ()

If (firstCust IsNot Nothing) Then
firstCust.Name = "James"
End If

myShop . SubmitChanges ()
End Sub

In the previous queries for the customer whose name was Jim, change the object to
James and saves changes. The call to SingleOrDefault was necessary because the result
of a LINQ to SQL query is a collection, but we only want the first or only record returned.
There is also an operator method named Single, but using SingleOrDefault is favorable
because it returns a default value if no records are returned, whereas Single will throw an
exception. The code uses an if statement to protect against the possibility of an exception;
otherwise, the code would throw a NullReferenceException when firstCust is null (Nothing
in VB) and the code tries to access the Name property of a null object. Remember to call
SubmitChanges; otherwise the updates won’t be made.

You can now query, insert, and update. Your final skill to learn is deleting data.

Deleting Data with LINQ to SQIL

To delete a record from the database, you get a reference to the object for that record, call
a method to delete that object, and save changes. Here’s an example that deletes a record:

C#:

private static void DeleteCustomer (int custID)

{

var myShop = new MyShopDataContext () ;

var customers =
from cust in myShop.Customers
where cust.CustomerID == custID
select cust;

Chapter 7: Working with Data 213

Customer firstCust = customers.SingleOrDefault () ;

if (firstCust != null)

{
}

myShop . SubmitChanges () ;

myShop.Customers.DeleteOnSubmit (firstCust) ;

VB:

Sub DeleteCustomer (ByVal custID As Integer)
Dim myShop As New MyShopDataContext

Dim customers =
From cust In myShop.Customers
Where cust.CustomerID = custID
Select cust

Dim firstCust As Customer =
customers.SingleOrDefault ()

If (firstCust IsNot Nothing) Then
myShop.Customers.DeleteOnSubmit (firstCust)
End If

myShop . SubmitChanges ()
End Sub

This example is similar to the update example that did a query and then a call to
SingleOrDefault to get a reference to the requested object. You then use the collection
property, Customers in this case, to call the DeleteOnSubmit method. You need the
check for null (Nothing in VB), or you’ll receive an ArgumentNullException when
DeleteOnSubmit executes and the firstCust argument is null (Nothing in VB). Remember
to call SubmitChanges; otherwise, you won’t delete the record.

A final note on the preceding three sections. The code runs in an insert, update, and
delete sequence. Notice how the insert methods return an int, which is the CustomerID.
Whenever you perform a query from a database, you’ll often want to get the ID field for
the record at the same time. The reason is that the ID is unique to that one record and
you can perform subsequent actions with the ID. Both the update and delete methods in
preceding examples accepted an int parameter that was used to perform a database lookup
of the record. Again, using the ID guarantees that we’ll only return one record, which is
also why I was confident in calling SingleOrDefault. Since this chapter is about data, I
purposely don’t show you how the program handles that ID. However, you’ll see IDs being

214

Microsoft Visual Studio 2010: A Beginner's Guide

used in multiple later chapters that show you how to build user interfaces. Pay attention to
how the UI code holds on to IDs and then uses them when calling code that interacts with
the database. You’ll see many different examples, but most of the examples that you see
and then use in your own programs will be variations of what you’ve learned here.

Summary

This chapter showed you how to work with the VS database tools. You can create tables,
relationships, and stored procedures. The section “Querying Object Collections with
LINQ” helped you understand basic LINQ queries. You can now use LINQ to SQL,
setting up a designer with classes and methods. Additionally, you can create, read, update,
and delete data with LINQ to SQL.

This chapter used Console applications to show you how to work with data. This was
to help you concentrate on data access exclusively, minimizing any other distractions.
However, real applications require graphical user interfaces (GUIs). Remaining chapters
of this book will show you how to create GUI applications that consume data, giving you
many more examples of how LINQ to SQL works in an application. The next chapter gets
you started in GUI development with WPE.

Part I I I

Building Programs
with VS 2010

This page intentionally left blank

Chapter8

Building Desktop
Applications with WPF

217

218 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

Perform Screen Layout
Use Controls

Work with Data in the Ul

Windows Presentation Foundation (WPF) is a .NET technology for building desktop
applications. The result of building a WPF application is an *.exe file that you can
run directly on your computer or deploy and run on any other computer that has .NET
installed. With WPF, you can add a graphical user interface (GUI), pronounced “Gooey,”
that makes it easier for users to work with your program. This chapter will show you how
to lay out a screen in WPF and explain the controls, such as Button and TextBox, that you
can place on the screen. You’ll also learn how to capture events off controls, allowing you
to add code that runs based on user input. Since most applications work with data, this
chapter builds on what you learned in Chapter 7 and shows how to bind data to controls in
the GUL
This chapter will show you how to build a WPF GUI with the VS Designer, but
sometimes you must work at a lower level and manipulate the XAML, pronounced
“Zammel,” that defines the GUI. XAML is an XML format that WPF and Silverlight
use to define a GUI. There are two appendixes in this book that will help you get up to
speed in XAML: Appendix A, “Introduction to XML,” and Appendix B, “Introduction to
XAML.” If you aren’t familiar with XML, start with Appendix A. However, if you have
a good grasp of basic XML syntax, go straight to Appendix B. I'll try to explain WPF in
a way that any XAML you see can be understood in its context, but you might want to
review the appendixes to avoid any confusion. Once you’re familiar with XAML, you can
return here and start with the next section, which explains how to start a WPF project.

Starting a WPF Project

In Chapter 5, you learned how to create and build projects. The example explained how
to create a Console application. However, what you learned there is generally applicable
to most other application types. This section builds upon what you already know about
projects and explains what is unique to a WPF application. To get started, open the New
Project window; select WPF Application; and fill in the project name, location, and

Chapter 8:

Building Deskiop Applications with VWPF

solution name. I’'m naming the examples in the chapter as MyShop to continue the idea
of customers who buy products that started in Chapter 7 when discussing data. Figure 8-1
shows the new WPF application in VS, including a Toolbox, a Designer, and a Solution

Explorer. The Toolbox contains controls, which are user interface (UI) elements, such as
Button and Textbox, that you can drag and drop onto the Designer.

NOTE

There is another .NET technology, Windows Forms, for creating desktop applications.
This book doesn’t discuss Windows Forms because it's an older technology. The way
forward for desktop application development is WPF, and the intention of this book is to
help guide you in a direction most beneficial to you.

The Designer allows you to lay out the UI of the application; it is divided into Design

on the top and XAML on the bottom. The Design surface allows you to visually work

with controls and layouts of those controls. The XAML editor allows you to work with

the XML representation of the controls on the design surface. The Design and XAML are

interrelated because a change in one causes a change in the other. For example, if you add
a Button to the Design, you’ll see the XML representation of that Button in the XAML.

"5 WiyShop - Micraseft Virual Studia
File Edit View Project Bulld Debug Team Data Tools Architecture Test Anabyze Window Help

Pl S E 6 A9 - - E-E | b Debug

=T =)

~|[»86 -} 2%

Tnnolhox

4 Common WPF Controls

Pointer

Border

Bullun

CheckPax

ComboBox

DataGrid

Gl

Image

Label

ListBox

RadioButton

Rectangle

StackPanel

TabContral

TextBlock
[l TextBox

a AllWPF Conliuls
Rk Dainter

% loolbox ;,E Server bxplorer

Jmldel>EluEHE®D»

"
i

W Error List B Call Hierarchy

Ready

Figure 8-1

> g x

MainWindow.xam| 3 REELUNLE LR ER, RS

7. 0 D_esign St TR XAML
Elcwindow w:Class="MyshopCs.Mainwindow™ ff

smlns="http://schemas.microsoft.com/winfx/208 '__

xmlns ix—"http://schemas.microsoft.com/winfx/2[
Title="Mainwindow™ Height="35@" Width="525">

= <Grid> =

W% |

i l »

= | Window Window #

A new WPF application project

= &lal &=
[d Salution ‘MyShop® (1 project)
4 I MyShop(s
| =8 Propelies
i 3] References
- = Appaaml
a0 MamWindow.aml

51 Solution bxplorer g]

219

220 Microsoft Visual Studio 2010: A Beginner’s Guide

Similarly, if you add a TextBox element to the XAML, you’ll see the visual representation
of that TextBox in Design.

You have various controls for manipulating the windows. Both Design and XAML
have zoom controls. The zoom tool on Design is a slider in the upper-left corner, and
zoom for XAML is a drop-down control in the lower-left corner. You can also zoom by
clicking either Design or XAML and moving the mouse wheel. At the upper right of the
XAML editor (bottom right of the Design surface), you can switch between horizontal and
vertical splits of the window or click the chevron to collapse the XML. The splitter icon
below the chevron allows you to split the XAML editor into two if you drag it down. The
up-down arrow between the Design and XAML tabs allows you to switch sides so that
each panel shows where the other was. Locating the carat in the middle of the separator
between Design and XAML allows you to resize each window.

Understanding Layout

A layout defines how you can position and size controls on a screen. WPF windows and
controls have a Content (can occasionally be called something else) property that accepts
a single control. In some cases, such as a Button control, the content can be text. However,
many situations call for the ability to lay out multiple controls. This section concentrates
on performing layout in windows, and a Window has a Content property that accepts
only one control; that one control should be a layout control, which is the subject of this
section.

WPF includes several layout controls, including Grid, StackPanel, DockPanel,
WrapPanel, and Canvas. By default, VS will generate a window with a Grid as the layout
control. However, you are free to replace the Grid with any other layout control that suits
your needs. This section will show you how to use each of these controls.

Grid Layout

Whenever starting a new WPF project, VS adds a Grid. A Grid is a layout control that
allows you to create a set of rows and columns that hold other controls. You can add rows
and columns to a Grid through the Visual Designer by clicking in the middle of a window
in design view. Figure 8-2 shows a column being added to a Grid.

The thin vertical line in the middle of the window is a new border between two columns.
After clicking the window, you’ll see two thick borders on the left and top of the window.
While you hover over the top border, VS draws a vertical line that moves left and right as
you run your mouse along the top border. You can do the same with the left border, adding
rows to the Grid. This is a very quick way to add rows and columns to a Grid.

Chapter 8: Building Desktop Applications with VWPF

5 MyShop - Microsaft Visual Studio i)
File Edit View Project Build Debug Team Data Format Tools Architecture Test Analyze Window Help
Sl S e] 8 5389 - o - GG b [Debug -|[86 - 19 | -

MainWindow.xam| > BRI LIEER, e = Solution Fuplorer * QX
% = 2] = =

154 Solution "MyShop’ (1 project)

4 [F] MyShop(s

o i =8 Propelies

A [+ (3] References

- = Appaaml

e MamWindowaml

Riojdi 1anag B 0g|cal o

b (e : 51 Solution bxplorer g]

W Error List B Call Hierarchy

Ready

Figure 8-2 Adding columns and rows to a Grid

The arrow in the Grid border allows you to reposition the column or row border.
You can remove the column or row border by selecting the arrow in the Grid border and
dragging the arrow off the window.

CAUTION

Don't press the DELETE key when you have a border selected. You'll accidentally delete
your Grid, which you might have spent some time on. If you want to remove a column
or row, grab the arrow for the border you want to remove and drag the border off the
window.

Once you’ve created rows and columns, you can add further customizations that
define how much space the column or row can take. There are three sizing customizations:
fixed, weighted, and auto. To set each of these options, hover over the column or row
border and VS will display a sizing panel, as shown over the left column design border in
Figure 8-3.

The diamond icon on the left means fixed, where the size will stay the same. The asterisk
icon in the middle is a weighted proportion, where the size stays the same in relation to
the other columns. The rightmost icon is auto, meaning that the size will vary according to

221

222 Microsoft Visual Studio 2010: A Beginner's Guide

5 WiyShop - Microreft Virual Studia To e e
ielr -l & 2|9 - - -G P Debug |6 -] o E
Pa dow xa MainWindow.xaml® P
B Grid <no namc>
“F Propertics 4 Events
s [% wan r
il 1 5] o124 0| | search P|I
Label 4 Common
DataContext @ Binding... 3
& Style O PResource.. a
Labe! ColumnDefinitions - [{e[Zadilii] EJ
RowDefinitions # (Collection) [.. |
Layout
L=l Brushes
. Visibility
Iranstorm
. Other
| sumon Buttan
o
| O Design (@YAML " [E] Grid Window/Grid b — nf=in| olution bxplorer ol

Figure 8-3 Column and row sizing options

whatever space remains after the other columns’ sizes are set. After you’ve added content to
your Grid, you can use these sizing options to experiment with the layout that you want.

One thing to notice in Figure 8-3 is the number in the Grid border for each row and
column. These numbers tell you the size in pixels for each row and column they appear
upon.

Figure 8-3 also shows the Properties window on the right, where you can select and
customize the Column and Row collections.

True to the purpose of the Grid, Figure 8-3 shows controls that have been added to
the Grid, placed in each cell of the Grid. Another popular layout control is StackPanel,
discussed next.

StackPanel Layout

The StackPanel is ideal for when you want to lay out controls each on top of the other, like
a stack. You can use a StackPanel by dragging the StackPanel control from the Toolbox
onto the design surface. If you want to use the StackPanel as your primary layout, you can

Chapter 8: Building Desktop Applications with VWPF

5 MyShop - Micresoft Visual Stadho. (=8 =)
File Edit View Project Build Debug Team Data Format Tools Architecture Test Analyze Window Help
Pl - S 8 a9 - -GG b [Debug][5 -1 - <

StackPanelWindowsaml* 3¢ BRI LERET) =~ Properties
100% StackPancl stackPanell o
“F Propertics 4 Events Lo
%E il ﬂl ;bearch)J|I
4 Common
DataContext @ Binding... 3
Ll o Style O Recource.. 4
Button Layout
Button Brushes
L
[outon | izl
N Other
—I O Design _‘E' XAML 7 StackPancl {stackPancll] Window # _— (=] o o R properties

Figure 8-4 Using a StackPanel layout

select the grid, which is added by default to a new project, and delete the Grid. Figure 8-4
shows a StackPanel that contains multiple button controls.

In Figure 8-4, it doesn’t matter where you try to lay the buttons—the StackPanel will
always lay them out one after the other. In addition to vertical layout, the StackPanel can
lay out controls horizontally. Just change the Orientation property, shown in the Properties
window in Figure 8-4, to Horizontal. Next, you’ll learn how to dock controls to the sides
of a container.

DockPanel Layout

You’ve seen how VS allows you to dock windows within the borders of the application.
This helps you organize your screen so that you can use many tools at one time. You can
lay out your controls the same way with the DockPanel control.

Get started by dragging and dropping a DockPanel control from the Toolbox to the
Window in the design surface. You might want to delete the default Grid first. Also, the
DockPanel initializes with a Height and a Width, which you’ll probably want to remove
by selecting the DockPanel, opening the Properties window, and clearing the Height and

223

224 Microsoft Visual Studio 2010: A Beginner's Guide

"5 VyShop - Micrasoft Viual Stadio =l lea
File Edit View Project Build Debug Team Dats Tools Architecture Test Analyze Window Help
felr G e & 2|9 - - F- G b Debug |6 -1 =
Tonolho ARl [ER TR L StackPanelWindow xami* =~ Properfies
Bullon e
Calendar S e
3 Canvas : “F Propertics # Events
CheukBux : L O | search 2
2 ComhoPax 4 Top g e =
% ContentControl | MinWidth oo
[DataGrid MinHeight Qo
E NatePicker MaxWidth o Infinity
[0 UDockPanel I3 L MaxHeight r1 Infinity
.j DocumentVicwer Left Centem HorzontalConte., L Left
() Ellipse i VerlicalCuntenth.,, 3 Top
® ©Bpande FlowDirection [LeftToRight
ﬁ Frame ZIndex o0
M Grid Right -
fGrid Splitter Brushes =
™ GroupBox Kritiont Text
ES Image Visibiity
A Label Transform
EE ListBox - — - - Other i
5% 1oalbo [S | Q Design B XAML - Label (labeld) Window/.../Label =11 E alutio nlo 5 Properties

Figure 8-5 DockPanel layout

Width properties. Removing the Height and Width properties allows the DockPanel to
expand and cover the entire window. Figure 8-5 shows a DockPanel with Label controls in
each docking position.

Every time you drag and drop a control onto the design surface of a DockPanel, the
control will take the center position by default. To specify where the control should dock,
open the Properties window and set the DockLayout.Dock property. When you add a new
control, the new control will become the center control and the other control will dock to
the side of the DockPanel you specified in the Dock property. The next layout control is
WrapPanel.

WrapPanel Layout

Whenever controls should naturally follow each other in sequence and continue wrapping
on new lines, you can use a WrapPanel. Examples of when this is useful could be when
adding controls that contain text and it’s useful to view the controls in sequence. Figure 8-6
shows several CheckBox controls in a WrapPanel.

Chapter 8: Building Desktop Applications with VWPF 225

5 MyShop - Micrasaft Visual Studio = =
File Edit View Project Build Debug Team Data Format Tools Architecture Test Analyze Window Help :
e R = - e e R e e N T I |5 -1 -2

WrapPanelWindow.saml* > JildaE dow xa P

a4 Common WPF Controls = [
N bointer = WrapPancl wrapPanell -
[E Border - “F Propertics 4 Events
Bullun £ = = ibearch P
X
CheckPax P .
g C““""TBO”‘ Tii DataContext @ Binding... g
& DataGnd
1 Gnd & i - Style] F.EBCIIU!CE... 4
A e ot Elcresso EXSETTN et - |
A Label | CheckBox B CheckBox ItemHeight o Auto =
ES ListBox "] CheckBox FemWidth O Auto
@& RadioButton o t 4 Layout
[Rectangle Width ® 4
B StackPanel Height & 76
[TabControl HorizontalAlign... 4 Left
[A] TetBlock VerticalAignment % Top
|8l TextBox Margin & 128100
a AllWPF Contiuls MinWidth o
R Painter o MinHeight L o i
% loolbox er bxp —! O Design B Wl; L WrapPancl {wrapPancl1) mE T oE f Properha.

Figure 8-6 The WrapPanel Layout control

Figure 8-6 demonstrates how you can lay out a group of controls to fill an available
space. In the case of the CheckBox controls, the Orientation of the WrapPanel is set to
Vertical (the default is Horizontal). When the number of CheckBox controls fills the
vertical column, remaining CheckBoxes wrap to the next column. Because the sizes of the
CheckBox controls are the same, you have a uniform layout, which is easier than trying
to do the same thing with a Grid or other layout control. The final layout control we’ll
discuss is the Canvas, which is next.

Canvas Layout
There are times when you might want to perform explicit layout of controls. If you
were building a diagramming application or a drawing program, or if you just wanted to
explicitly specify the location of controls, the Canvas layout will work fine. Figure 8-7
shows some controls on a Canvas layout.

The Rectangle and Ellipse controls were dragged and dropped from the Toolbox onto
the Canvas control. Notice the Canvas.Left, Canvas.Top, Width, and Height properties in the
Properties window, demonstrating the absolute positioning of the selected Ellipse control.

226 Microsoft Visual Studio 2010: A Beginner’s Guide

" WyShop - Micrasoft Visual Stucho =S =R
File Edit View Project Buld Debug Team Data Tools Architecture Test Analyze Window Help
Pl G | 6 a9 - - E-E | b [Debug -|[6 -] -2

Toaolbow = [0 3 FerReRIIREECh e WrapPanalWindow xaml* Properties > B X
[A] TeutBlock e Bipo slpeel |
TextBux Ef Properties |/ Events

a Al WPFTnntml« o= MO0 | search)_,|I
Rk Pointer i) " 2
0 Border Width & 112 i
(@] Button Height & 110
[& Calendar 3 i ! Horizontalflign... [Stretch
A Canvas / \ VerticalAlignment [Stretch 0l
[¥] CheckBox Sy Margin 0
=8 ComboBox MinWidth Qo
% ContentCantral \ MinHeight 0
5 DataGrid '] MaxWidth r3 Infinity =
B DatePicke MaxHeight L4 Infinity
M DockPanel TNowDirection O LefiToRight
B DocumentViewer ZIndex 0
(O Lllipse + 40 | 5
@ Fupander Canvas.Top & 72
1 trame . Brush -
‘}Q;t_nolhm(4 p —!En_e‘ﬂ /_E‘ﬂl‘_, 4 Ellipsc {cllipsc1) — OEA olutio plo ﬁ" Properties

Figure 8-7 The Canvas Layout control

Now that you know how to use the layout controls, the next section takes a closer look
at WPF controls in general, giving you tips on how to use them in your application.

Using WPF Controls

WPF includes many controls for helping you build user interfaces. This section groups
the controls into categories, including text, selection, containers, information, shapes, and
decorators. Data controls are excluded on purpose because the section following controls
is “Working with Data in WPE.” Before diving into each control, let’s do an overview of
the VS environment associated with control work.

Managing Windows for Controls

When working with controls, you’ll be working with four different windows: Toolbox,
Solution Explorer, Designer, and Properties. You learned how to access each of these
windows in earlier chapters; but as a convenience, Table 8-1 gives you a quick summary
on how to open these windows.

Chapter 8: Building Desktop Applications with VWPF

Window Menu Keystroke

Toolbox View | Toolbox CTRL-W, X

Solution Explorer View | Solution Explorer CTRL-W, L

Designer Double-click *.xaml file in Solution Explorer SHIFT-F7

Properties Window View | Properties window CTRL-W, P
Table 8-1 Primary Windows for Working with Controls

You’ll find all of the available controls on the Toolbox, divided into panels where the
top panel is Common WPF controls, which makes it easy to find the controls you use the
most. The All WPF Controls tab includes the complete list of WPF controls.

You’ve seen how the Designer can be used in the preceding section, which discussed

layout controls. You can open the Designer by double-clicking a *.xaml file in Solution

Explorer. To add a control to the Designer, select the control in the Toolbox and drag the

control onto the Designer. Figure 8-8 shows a Button that has been dragged and dropped

onto the Designer.

5 MyShop - Microsoft Visual Studia

File Edit View Project Build Debug Team Data Took Architecture Test Analyze Window Help

=T =)

falr -G & 239 - - -G b [Debug |6 -1 - <
Tonlhox * 1 Xl MainWindowxaml* 3¢ P
4 Common WPF Controls N - bt .
R Pointer : | saten |
[0 Border “8 Prope.. 4 Events
= - =aa
CherkPaox il 1 - e
4 Commeon =
B2 ComboBox «— 4 Button 7
e . _ DataContext O EBinding.. ,
E DataGrid 4
: Style O Resource..,
1 Gnd
Content % Button
B Image
C d
A Labd ommand 1
: C - O
EJ ListBox omman =
& RadioButton . i IsCancel = =
b il | A IsDefault o |
[Rectangle ul - - =
Bl StackPard [QDesion ~ tL “EXAML | OEE irawe o
ackrane | Title="Mainwindow™ Height="350" width="525"> Bl ey
[T} TabControl -l <Grid> 5% yee
Brushes
[A] TestBlock <Button Content-"Button” Height-"23" .‘-sori:on‘tal)\'_iigr-mentlj Text
sl TextBox L </arid> LAl
| </Window:> - pEEty,
a Al WPF Conliuls T i
Painter -l ‘l b m | » "

N

35 10.. [| Button (buttonl) Window,/Grid/Button |

Figure 8-8 Adding a control to the VS Designer

on kxp =5 Properties

227

228 Microsoft Visual Studio 2010: A Beginner’s Guide

In Figure 8-8, you can see the Toolbox with the Button control selected. The Designer
shows a Button control that has been dragged and dropped. In practice, you’ll be adding
this control into some type of layout control so that you can position it appropriately on
the screen.

Below the Designer, the Button control appears in the XAML for this window. If
you are uncomfortable looking at XAML, you can review Appendix B as a refresher.

The attributes of the Button control in the XAML match the properties in the Properties
window.

TIP

It's important to learn how to quickly build Uls using the Visual Designer because

it enhances productivity. However, it's also important to be able to read the XAML
associated with a window because as you move beyond the beginner content of this
book, you'll find scenarios where the Designer alone might not allow you to control
every nuance of your visual presentation. A good way to move forward is to experiment
on your own by adding each of the controls from the Toolbox to the Designer and then
examine the generated XAML.

Setting Properties

The Properties window shows all of the ways that you can configure a control. For button
controls, you’ll want to change the Content property to make the text on the button make
sense. In this example, we’ll imagine that the purpose of the button is to allow a user to
create a new order for a customer. Therefore, set the Content property to New Order.

Handling Events
In addition to properties, you can handle control events via the Events tab at the top of the
Properties window. Figure 8-9 shows the contents of the Events tab.

Controls have literally dozens of events that allow you to manage their behavior in the
application. Some events, like Click, are commonly used, while other events, such as Drag
Over, only support unique scenarios like drag and drop that you might not ever care about.
To handle an event, you can double-click any of the events in the Properties window and
VS will wire up that event to a handler method with a default name.

Since the Click event is so common, I’ll show how it works. You can implement a
handler for the Click event by double-clicking the Click event in the Properties window
Events tab. When you double-click, VS opens a file named MainWindow.xaml.cs,
assuming the window you’re working with is named MainWindow.xaml. MainWindow
.xaml.cs is called a code-behind file and is where you can add event handlers. VS also
creates a skeleton method in MainWindow.xaml.cs that handles the Button Click event,
shown in Listing 8-1.

Chapter 8: Building Desktop Applications with VWPF

Properties o fmf s
Button buttonl _—
il Properties | f Events
8: %l) | Search p|

4 Behavior

4 Other
ContextMenuClosing
ContextMenuQpening
DataContextChanged
DragEnter
Dragleave
DragOwver
Drop
FocusableChanged
GiveFeedback

[w Ny~ Ry v R R |

GotFocus

3 - |

Figure 8-9 The Properties window Events tab

TIP

Controls have default events. The significance of default events is that if you double-click
the control in the Designer, VS will generate an event handler for the default event. To
be more specific, consider the Button control whose default event is the Click event. If
you double-click the Button control in the Designer, VS will generate an event handler
for the Click event.

Listing 8-1

C#:

using
using
using
using
using
using
using
using
using
using
using

System;
System.
System.
System.
System.
System.
System
System.
System.
System.
System.

A WPF code-behind file

Collections.Generic;
Ling;

Text;

Windows;
Windows.Controls;

.Windows .Data;

Windows.Documents;
Windows. Input;
Windows.Media;
Windows.Media.Imaging;

-

229

230 Microsoft Visual Studio 2010: A Beginner’s Guide

using System.Windows.Navigation;
using System.Windows.Shapes;

namespace ControlsCS

{
/// <summarys>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window

{

public MainWindow ()

{
}

private void buttonl Click(object sender, RoutedEventArgs e)

{
}

InitializeComponent () ;

VB:
Class MainWindow
Private Sub Buttonl Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
Handles Buttonl.Click
End Sub

End Class

The Click event handler, just created, is the highlighted method, buttonl_Click
(Buttonl_Click in VB), that you see in Listing 8-1. We covered delegates and events in
Chapter 4, which you can review for a better understanding of how this method handles
the Click event. Notice how the VB code shows another way to handle events in VB, by
explicitly specifying Handles Buttonl.Click. Essentially, when a user clicks on the button
named buttonl, this handler will be called. This illustrates the concept of event-driven
programming, where you write handlers, such as buttonl_Click, that run code according

Chapter 8: Building Desktop Applications with VWPF 231

to user actions. In addition to creating the event handler in the code-behind, VS adds the
method name to the Click event on the Events tab in the Properties window, shown in
Figure 8-9.

In addition to creating the handler method and assigning the method name in the
Properties window, VS adds the method as an attribute to the Button control in the
XAML, shown here. The XAML is independent of programming language and works the
same regardless of whether you are coding in C# or VB:

<Button Content="Button" Height="23"
HorizontalAlignment="Left" Margin="76,43,0,0"
Name="buttonl" VerticalAlignment="Top" Width="75"
Click="buttonl Click" />

Notice the convention being used on the method name, controlName_Event. The
controlName part comes from the name of the control, which is buttonl, and the event is
the event being handled. The problem with this is that buttonl isn’t meaningful and when
you return to this code later, you’ll be confused by having methods named buttoni_Click,
button2_Click, and so on. To fix the naming problem, you should name your controls
properly before doing anything else with them.

To back out of this, go back to the Events tab of the Properties window. Remember to
select the Button in the Designer. The top left of the Properties window contains the ID of
the control, which you should change from button! to a meaningful name. For example
if the purpose of the button was to create a new order for a customer, you could name the
button NewOrderButton. Then delete the event handler assigned to the Click event of the
Button. Figure 8-10 shows these changes in the Properties window. Now the ID and event
handler are more readable.

After the event handler is deleted and the control has a new ID, double-click the Click
event again. VS will create a new event handler for you, shown here:

C#:

private void buttonl Click(object sender, RoutedEventArgs e)

{
}

private void NewOrderButton Click (object sender, RoutedEventArgs e)

{
}

232 Microsoft Visual Studio 2010: A Beginner’s Guide

Properties > OXx

Butlnnl MewOrderButton| | | |

“of Properties -f Events

=BV | search |

4 Behavior R
MNewOrderButton_Click = E||

4 Other
ContextMenuClosing
ContextMenuOpening
DataContextChanged

DragEnter
Dragleave
DragQOwer

Drop
FocusableChanged
GiveFeedback

[[y Il R R A A ST N

GotFocus

Figure 8-10 Readable button ID and event handler name

VB:

Class MainWindow
Private Sub Buttonl Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
End Sub
Private Sub NewOrderButton Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs) Handles
NewOrderButton.Click
End Sub

End Class

Chapter 8: Building Desktop Applications with VWPF

The previous code shows both the old buttonl_Click (Buttonl_Click in VB) event
handler and the new NewOrderButton_Click event handler. You might wonder why the
buttonl_Click event handler wasn’t deleted when you deleted it from the Click event in
the Properties window, but there’s a good reason for this. What if you had already written
code in the event handler? VS leans toward the safe side and does not delete your code.
Using the previous steps, you have both event handlers sitting side-by-side, which means
that you can easily copy your code from buttonl_Click into NewOrderButton_Click and
then delete the buttonl_Click event handler. So far, we haven’t written any code for the
event handler, which you’ll learn about in the next section.

Coding Event Handlers

One of the tasks you might want to do when a user clicks a button is to open a new
window. The first thing you’ll need to do is add a new window. To make this work, you
would open Solution Explorer, right-click the project you’re working with, select Add |
New Item, choose Window (WPF), name the window NewOrder.xaml, and click Add.
This will create a new window open in the Designer.

TIP
The project’s Add | New Item context menu includes a Window entry, which can save a

couple of clicks when creating a new window.

After the Designer loads, you can quickly open the code-behind by pressing F7. In the
code-behind, you’ll see the following code:

C#:

public partial class NewOrder : Window

{

public NewOrder ()

{
}

InitializeComponent () ;

VB:

Public Class NewOrder

End Class

233

234 Microsoft Visual Studio 2010: A Beginner’s Guide

Notice that the class in this code is named NewOrder, illustrating that a window is just
another class. As you know, you can instantiate classes and call their methods, which is
the technique you’ll use to open this window from the NewOrder_Click event handler in
the code-behind of the MainWindow window.

In practice, you’ll populate the NewOrder window with whatever controls you need
to implement a new order. You would populate the window by dragging and dropping
controls, just like the Button in this example. However, we’ll skip that task for now
because the current focus is on adding code to the NewOrderButton_Click event handler
so that you can learn how to code an event handler and open another window. Go back to
the NewOrderButton_Click event handler in MainWindow.xaml.cs and add the following
code:

C#:

private void NewOrderButton Click (object sender, RoutedEventArgs e)

{

NewOrder newOrd = new NewOrder () ;
newOrd. Show () ;

VB:

Private Sub NewOrderButton Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
Handles NewOrderButton.Click

Dim newOrd As New NewOrder
newOrd. Show ()

End Sub

Since NewOrder is a class, you can instantiate it as shown in the preceding code
example. To open the window, call the Show method.

Now you have a WPF program that handles events and opens new windows. Press F5
to run the program. Click New Order and observe that the New Order window appears.
The New Order window isn’t very useful because it lacks controls and data management.
The next section shows you how to populate window controls with data.

Working with Data in WPF

This section builds upon what you learned in Chapter 7 by showing how to bind data
to WPF controls. Binding is the process of populating and retrieving data to and from
controls. You’ll learn how to show data in your user interface. The examples in the

Chapter 8: Building Desktop Applications with VWPF

following sections show you how to perform create, read, update, and delete (CRUD)
operations via WPF. You’ll first see how to insert data, using VS tools to construct a data
entry screen. Then you’ll learn how to read, modify, and delete data through a DataGrid.
We’ll start with single value binding. To make the examples more interesting, I added
extra fields to the tables. You can review Chapter 7 to learn how to add fields to a database
and create a LINQ to SQL entity model.

Setting Up a Data Source
Before you can bind to data in the window, you’ll need a data source to work with data. To
get started, update the Order table, created in Chapter 7, so that it has the following fields:

OrderID, int, primary key, auto-increment
CustomerID, int

OrderDate, datetime

Location, varchar(50)

Amount, money
Then update the Customer table with the following fields:

CustomerID, int, primary key, auto-increment
Name, nvarchar(50)

Age, int

Birthday, datetime

Income, money

With the database updated, you can add a LINQ to SQL entity model to the project,
using the same techniques described in Chapter 7.

To add the data source for binding, open the NewOrder window in the Designer, and
select the Data | Add New Data Source menu, which opens the Choose A Data Source
Type window, shown in Figure 8-11.

There are different ways to connect to a data source, including directly to the database,
via a Web service, via an object, or through SharePoint. This book shows you how to use
LINQ to SQL, which is connected by selecting Object and clicking Next, which shows the
Select The Data Objects window in Figure 8-12.

235

236 Microsoft Visual Studio 2010: A Beginner's Guide

Data Source Configuration Wizard E

| ! — Choose a Data Source Type

Where will the application get data from?

Jg & | &

Database Service Object

§3

SharePoint

Lets you choose objects that can later be used to generate data-bound controls.

Previous Mext = Finish

Figure 8-11 Choosing a new data source

On the Select The Data Objects window, check the box next to each object you want
to bind in your application. The example in this chapter uses Customer and Order objects,
which you can see checked in Figure 8-12. Clicking Finish will configure the data source
for use in the application. You can view data sources by selecting Data | Show Data
Sources, shown in Figure 8-13.

The Data Sources window allows you to create controls on a form that are bound
to each field of a data source. In the Data Sources window in Figure 8-13, you can see
that both Customer and Object are listed with their fields. What is also evident is the
icons associated with each field. The icons describe what type of control should be
associated with each data field. For example, Name on Customer is a TextBox because it is
nvarchar(50), but Birthday is a calendar because it is a datetime. If you don’t like a default
control type for a field, you can change it by selecting the field and choosing another
control type from the drop-down list, as shown in Figure 8-14.

Chapter 8: Building Deskiop Applications with VWPF 237

Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the object.

What objects do you want to bind to?

4 [EE] ControlsCs Add Reference...

« W] ControlsCS|
O App
<{g Customer
%% MainWindow
% MyShopDataContext
4{3 MewOrder
0[3 Order

[{} ControlsCS.Properties

Hide system assemblies

’ < Previous H Mext |[Finish]l Cancel

Figure 8-12 Selecting data objects

Data Sources *rOx
JBTG
4 (& Customner
Age
T Birthday
CustomerlD
Income
Mame
> (& Orders
= Order B
Amount
% Customer
CustomerlD
Location
T OrderDate
OrderlD

Figure 8-13 The Data Sources window

238

Microsoft Visual Studio 2010: A Beginner's Guide

Data Sources s

J 157 G
4 (& Custorner
Age

TF) Birthday
CustomerlD
Income
Mame
(& Orders

4 (& Order
Amount
i & Customer

I
TextBox
25—

|'@ ComboBox |
A Label

[A] TedBlock
& [MNoneg]

Customize...

Figure 8-14 Changing the control type for a field

In Figure 8-14, the CustomerID is being changed to a ComboBox because it makes
more sense to give the user the option of selecting a customer from a list for a new order,
rather than typing in an ID number. Also, the object defaults to a Grid control, but in this
first example, we only want to add a new order, meaning that the control type should be
changed to Detail. To create a new order form with controls bound to order data, select the
Order object in the Data Sources window and drag and drop the order onto the Designer
of the NewOrder window. Figure 8-15 shows this new window.

Figure 8-15 shows how VS added a Grid layout with two columns and a row for each
field in the Order table. As explained, the CustomerID is a ComboBox and the OrderDate
is a calendar. VS was smart enough to put spaces between the words in the labels, too.

VS didn’t put the Save button on the screen, which is something you would need to do
to save the data. In addition to adding controls to the Designer, VS added the following
CollectionViewSource control to the NewOrder window’s XAML:

<Window.Resources>
<CollectionViewSource x:Key="orderViewSource"
d:DesignSource="{d:DesignInstance my:0Order, CreateList=True}" />
</Window.Resources>

Chapter 8: Building Desktop Applications with VWPF 239

MNewOrder.xaml *xOAxX

L

il [[A O
= Amount

4—4=| Location:
<! Order Date: ||Select a date E

<! Order ID:

Save

O Design "B XAML Grid {grid1} Window/Grid/Grid F — [

Figure 8-15 Controls bound via a data source

This is another reason it’s important to be able to read the XAML for a window, so
you can see how objects like this are added and configure them if you need to. In our
case, we need to know the name of the CollectionViewSource, which is orderViewSource.
We need to add an Order object to the CollectionViewSource so that the controls that are
bound to it have a place to save data that the user enters. Press F7 to see the code that VS
added to the Window Loaded event handler, as follows:

C#:

private void Window Loaded (object sender, RoutedEventArgs e)
{
System.Windows.Data.CollectionViewSource
orderViewSource =
((System.Windows.Data.CollectionViewSource)
(this.FindResource ("orderViewSource"))) ;
// Load data by setting the
//CollectionViewSource.Source property:
// orderViewSource.Source = [generic data source]
}

240 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Private Sub Window_ Loaded (
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs) Handles MyBase.Loaded

Dim OrderViewSource As System.Windows.Data.CollectionViewSource
= CType (Me.FindResource ("OrderViewSource"),
System.Windows.Data.CollectionViewSource)
'Load data by setting the CollectionViewSource.Source property:
'OrderViewSource.Source = [generic data sourcel]
End Sub

The preceding skeleton code gets a reference to OrderViewSource, but that’s all. The
commented portion of the code suggests how you might populate that control. However,
we aren’t interested in populating OrderViewSource with data because the purpose of
this screen is to insert a new record. Instead, the proper approach is to bind an empty
object. Later, you’ll see how to pull the data from that object after the user fills in the
form and clicks on the Save button. In addition to assigning a blank Order object to
OrderViewSource, we need to populate the ComboBox that holds the list of customers
and their IDs. The following code is a revision to the Window_Loaded event handler
that assigns a blank Order object to the OrderViewSource and binds customers to the
ComboBox holding customers:

C#:

private void Window Loaded (object sender, RoutedEventArgs e)
var orderViewSource =
FindResource ("orderViewSource") as CollectionViewSource;
orderViewSource.Source =
new List<Order>

{

new Order

{
}

OrderDate = DateTime.Now

}i

customerIDComboBox.ItemsSource =
from cust in new MyShopDataContext () .Customers
select cust;

Chapter 8: Building Desktop Applications with VWPF 241

VB:

Private Sub Window_ Loaded (
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs) Handles MyBase.Loaded

Dim OrderViewSource As CollectionViewSource =

CType (FindResource ("OrderViewSource"), CollectionViewSource)
OrderViewSource.Source =

New List (Of Order) From

{

New Order With

{
}

.OrderDate = DateTime.Now

}

CustomerIDComboBox.ItemsSource =
From cust In New MyShopDataContext () .Customers

End Sub

The previous re-write of Window_Loaded accomplishes two things: assigning an order
to orderViewSource and populating customerIDComboBox with customers. The Order
object assigned to the Source property of orderViewSource is empty, except assigning
today’s date to OrderDate, demonstrating how you can set default values. When the user
fills out the form on the page, WPF will populate this Order with data because it is data
bound, through orderViewSource, to the controls on the screen. This section showed you
how the data is assigned to the controls, but some controls require even more attention to
ensure they display the data correctly. The next section expands upon what you must do to
get the ComboBox to work.

Configuring a ComboBox

A couple of the particularly more complex controls to configure are ComboBox and
ListBox. The reason is that they have a few different properties that must be set to ensure
that whatever is selected can be read and correctly referenced back to the original data
source. This section doesn’t try to teach you about WPF binding because there are entire
books with multiple chapters related to the subject. Instead, you’ll learn an essential skill
for helping you figure out how to set the right properties on a ComboBox control. In so
doing, you’ll get a better feel for the features of VS that help you perform the task of
setting up controls.

242 Microsoft Visual Studio 2010: A Beginner’s Guide

The previous example assigns the results of a LINQ query for Customer objects to
the customerIDComboBox, but this is only the first step to getting the combo box to work
properly; you must specify which property of Customer must display, which property of
Customer maps to Order, and which property of Order to bind the selected item to. To do
this binding, open the NewOrder.xaml file in the Designer, select the combo box, and set
the properties as specified in Table 8-2.

The following XAML shows the results of the settings you should make in the
Properties window, based on Table 8-2:

<ComboBox DisplayMemberPath="Name"
SelectedValue="{Binding Path=CustomerID}"
SelectedValuePath="CustomerID"
Grid.Column="1" Grid.Row="1"
Height="23" HorizontalAlignment="Left"
Margin="3" Name="customerIDComboBox"
VerticalAlignment="Center" Width="120">

</ComboBox>

DisplayMemberPath and SelectedValuePath are names of the properties from the
Customer objects bound to the ComboBox. However, the SelectedValue syntax uses a
binding expression, where Path identifies the property of the Order that will be assigned
to with SelectedValuePath. The binding for SelectedValue is based on the Order object

Property Explanation
ltemsSource We set this throu?h code in the Window_Loaded event. It holds the collection
of objects that will appear in the combo box. You need two properties, one to

display and one for the key of the object being displayed. The key will be used
to map the object back to the database or associate the object in a relationship
with another object. In the case of the Customer list, the properties of interest are
Name for display and CustomerlID for key. Since we are creating a new Order,
the CustomerlD for the Name selected in the combo box will be assigned to the
CustomerlD field of the Order. That way, when the Order is saved, its database
record will have the CustomerID for the customer the user selected.

DisplayMemberPath | This is the Name property from each Customer object bound to the combo box.

SelectedValuePath | As explained for ItemsSource, you need to associate the selected Customer with
the Order being created. SelectedValuePath is the name of the Customer object’s
key, which is CustomerID in our example.

SelectedValue When saving the Order, you must have the key associated with the selected
customer. The SelectedValue is a binding to the property of the Order that will
be set with the key from the selected Customer.

Table 8-2 ComboBox Properties for Data Binding

Chapter 8: Building Desktop Applications with VWPF 243

that was assigned to the Source property of the orderViewSource in Window_Loaded.
Coming full circle, the orderViewSource is what the default binding of the containing
Grid layout is based on; it was set when dragging and dropping the Order data source
onto the Design surface.

Now you have an input form that displays data, allowing the user to enter new
order information. After the user fills in the form, you need to save the data, which is
discussed next.

Reading and Saving Data

Next, you’ll want to save the order when a user clicks Save. To do this, add a Button
control to the form, set its Content property to Save, and set its Name property to
SaveButton, which you learned how to do earlier in this chapter. Then double-click Save
to create a Click event handler like this:

C#:

private void SaveButton Click (object sender, RoutedEventArgs e)

{

CollectionViewSource orderViewSource =
FindResource ("orderViewSource") as CollectionViewSource;

List<Order> ordList =
orderViewSource.Source as List<Orders;

Order ord = ordList.FirstOrDefault () ;

var ctx = new MyShopDataContext () ;

ctx.0Orders.InsertOnSubmit (ord) ;

ctx.SubmitChanges () ;

MessageBox.Show ("Order Saved!") ;

VB:

Private Sub SaveButton Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
Handles SaveButton.Click

Dim OrderViewSource As CollectionViewSource =
CType (FindResource ("OrderViewSource"), CollectionViewSource)

244 Microsoft Visual Studio 2010: A Beginner’s Guide

Dim ordList As List (Of Oxrder)

ordList = CType (OrderViewSource.Source, List (Of Order))
Dim ord As Order

ord = ordList.FirstOrDefault ()

Dim ctx As New MyShopDataContext

ctx.Orders.InsertOnSubmit (ord)
ctx.SubmitChanges ()

MessageBox.Show ("Order Saved!")
End Sub

Before the SaveButton_Click event handler ends, it shows a message box to the user
with a status message, Order Saved. The MessageBox class has several overloads of the
Show method that allows you to specify buttons, icons, and more.

So far, you’ve learned how to create an input form for adding a new record to the
database. The next section will build upon this by showing you how to view, modify, and
delete records with the DataGrid.

Using the DataGrid

The DataGrid is the best option for working with data that must be shown with multiple
rows and columns. This section will show you how to show, update, and delete items with
a Grid. First, we’ll display orders.

We’ll build off the data source created in the previous example to show data in a Grid.
First, you’ll need to open the Data Source window by selecting Data | Open Data Sources.
The preceding section specified the CustomerID as a ComboBox. If you’re following
along, you’ll want to change CustomerID to a TextBox by clicking on CustomerID for
the Order object in the Data Sources window and selecting TextBox. Change the control
type of Order from a form to a Grid by selecting the combo box for the Order object in
the Data Sources window and selecting the DataGrid option. Open the MainWindow
.xaml file in the Designer and drag and drop Order from the Data Sources window to the
Designer. Remember there is a New Order button that you’ll want to move to the bottom
of the form. Also, add another button, set its Name property to UpdateButton, and set its
Content property to Update. Position the New Order and Update buttons at the bottom of
the form. Resize and move controls and form so they look like Figure 8-16.

Just as with the form view in the preceding section, VS added a CollectionViewSource
to the window when adding the Order to the Designer. The following Window_Loaded
event handler provides the Order data to display in the Grid:

Chapter 8:

Building Deskiop Applications with VWPF

MainWindow.xaml > BX
1005 -
AR - ™
r a
|
g A]
= -
Amount CustomerID Location Order Date OrderID
| | Sduitjl |
—
u i)
MNew Order | Update
N
[l@Design 1 “@yant | — oom
</W1NdOW.KESOUrCES >
E . " : - " b
= <Grid DataContext="{StaticResource orderViewSource}"> =
<Button Content="New Order” Height="23" HorizontalAlignment="Left" Margin="144,266,!
<Button Lontent="Update”™ Height="23" HorizontalAlignment="Left" Margin="IYb,2b0,9,
=l <DataGrid AutoGenerateColumns—"Talse" CnableRowVirtualizetion-"True” lleight-"286" IL
—I| Pt oA Falicmnes bt
1W00% - 4[; m | =
[EI DataGrid (orderDataGrid) Window/Grid/DataGrid b

Figure 8-16 Displaying information in a Grid

C#:

private MyShopDataContext m ctx = new MyShopDataContext () ;

private void Window_ Loaded (object sender, RoutedEventArgs e)

{

CollectionViewSource orderViewSource

FindResource ("orderViewSource")
orderViewSource.Source =

from ord in m ctx.Orders
select ord;

VB:

Dim m_ctx As New MyShopDataContext

Private Sub Window Loaded (
ByVal sender As System.Object,

as CollectionViewSource;

ByVal e As System.Windows.RoutedEventArgs)

Handles MyBase.Loaded

245

246 Microsoft Visual Studio 2010: A Beginner's Guide

Dim OrderViewSource As CollectionViewSource =
CType (FindResource ("OrderViewSource"), CollectionViewSource)

OrderViewSource.Source =
From ord In m_ctx.Orders
Select ord

End Sub

This code loads orders into the Grid. Notice that the MyShopDataContext, m_ctx, is a
field outside of the Window_Loaded method handler. It is raised to field level so that the
same instance can be used in multiple methods. As you may notice from Figure 8-16, there
is also an Update button on the form. Double-clicking the Update button produced the
following Click event handler that saves changes, such as updates and deletes, to the Grid:

C#:

private void UpdateButton Click (object sender, RoutedEventArgs e)

{

m_ctx.SubmitChanges () ;

MessageBox.Show ("Updates and Deletes Saved!") ;

VB:

Private Sub UpdateButton Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
Handles UpdateButton.Click

m_ctx.SubmitChanges ()
MessageBox.Show ("Updates and Deletes Saved!")

End Sub

When you run the program, you can add new rows, modify the cells of existing rows,
or delete a row by selecting the row and pressing DELETE on the keyboard. After making
changes to the Grid, click Update, which will call the previous UpdateButton_Click event
handler.

To understand how this works, remember that the Window_Loaded event handler
assigned a collection of Order objects to the CollectionViewSource, orderViewSource,
which is data bound to the Grid. Each row of the Grid is bound to an instance of an Order
object. Each Order object is part of the LINQ to SQL MyShopDataContext. Since we are

Chapter 8: Building Desktop Applications with VWPF 247

using m_ctx, which is a field, both the Window_Loaded method and the UpdateButton_
Click method are using the same object instance. When making changes in the Grid,
those changes are saved in the Order objects for the changed rows. The Order objects
notify MyShopDataContext that they have changed, which is a service of LINQ to SQL.
The UpdateButton_Click method uses m_ctx, which is the MyShopDataContext that
knows about the changes to the Order objects. Calling SubmitChanges on m_ctx saves all
changes to the database.

You might need to read the preceding paragraph more than one time to understand
how this is working. If it’s still fuzzy, it might be helpful to review the language chapters
earlier in this book to understand how objects are instantiated and used, and review
Chapter 7 to ensure you understand the data manipulation picture.

Summary

While there is much more to learn about WPF, this is a beginner’s guide and intended to
give you the essentials so that you can begin moving in the right direction. You should
now be able to create a new WPF project. You learned about layout controls and how they
allow you to manage how controls appear on your form. A section explains the windows
involved in working with controls. While there are many controls you can use that ship
with both WPF and many third-party products, remember that the concepts are relatively
the same for using the controls: drag and drop, and configure properties. Most applications
work with data, so this chapter builds upon what you know about LINQ to SQL and
shows you how to apply this data management knowledge to create user interfaces that
users can work with to manage their data.

This chapter introduces you to working with desktop applications, which are still very
necessary and popular. However, a lot of today’s applications are written for the Internet.
The next chapter shows you how to build Web applications with ASP.NET.

This page intentionally left blank

Chapter 9

Creating Web
Applications with
ASP.NET MVC

249

250 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

Learn What MVC Means

Create Models

Create Controllers

Create Views

Work with Data in ASPNET MVC

AfP.NET is a .NET technology for building Web applications. VS provides support
or building a Web application through windows such as the Toolbox, Designer, and

Properties windows, as well as the Solution Explorer. This chapter shows you how to use
ASP.NET MVC. MVC is an acronym for Model View Controller, which is a well-known
design pattern for building applications. You’ll learn about how MVC works and how it is
implemented in ASP.NET MVC. Let’s start by helping you understand what MVC is.

Understanding ASPNET MVC

The essential piece of knowledge required to be successful with ASP.NET MVC is the
Model View Controller pattern. In MVC, the Model, View, and Controller are three
separate objects. Table 9-1 describes the purpose of each MVC object.

With MVC, you have a clear separation of concerns where Model, View, and Controller

have distinct responsibilities. This makes it easier to write good programs that you can

return to later for fixing bugs and adding new features. Besides knowing what each of these
three objects is, you must understand their relationship. Figure 9-1 illustrates the Model, the

MVC Object Purpose

Model The Model is made up of business objects and data.

View Each MVC application typically has a user interface that displays information to a
user and allows the user to input data. The data that the View displays is read from
a Model, and the data that the user adds to the View is assigned to the Model.

Controller A Controller orchestrates the activities of an application. When a user makes a

request for your application, ASPNET MVC invokes a Controller. The Controller will
communicate with the Model and View to ensure the program operates correctly.

Table 9-1 Purpose of MVC Objects

Chapter @: Creating Web Applications with ASPNET MVC 251

Request

l

Controller

View N Model

Figure 9-1 The Model View Controller pattern

View, and the Controller, including relationships. There are variations of the relationship
between Model, View, and Controller, so rather than a theoretically correct depiction of all
scenarios, Figure 9-1 is a simplification that should help you get started.

In Figure 9-1, you can see that the Controller references both the View and the Model.
This makes sense when you consider that the Controller is managing the operation of the
application. The Controller executes in response to a user request. Since the Controller
is also responsible for coordinating activity between the Model and the View, you can
see the relationship in Figure 9-1 where the Controller references the Model. The View
references the Model because the View must bind data to the user interface and needs to
know what data is available. The Model does not reference the View or the Controller. The
Model is an object that holds data and any other members that help manage that data, such
as methods for performing validation.

A typical sequence of operations for an ASPNET MVC operation starts with a request
to a Controller. The Controller will perform the actions requested, working with the Model.
The Controller will then give the Model to a View and run the View. The View will display
Model data and interact with the user for any screen operations. Based on user interaction
with the View, more requests will be made to a Controller to repeat this process. The rest
of this chapter shows you how to write the code to make this process work, starting with
creating a new ASPNET MVC project.

Starting an ASP.NET MVC Project

Just as with any other project in VS, you open the New Project window by selecting
File | New | Project. Then create an ASPNET MVC 2 Web Application project named
MyShopCS (MyShopVB for VB). VS will ask if you want to create a test project, and

252 Microsoft Visual Studio 2010: A Beginner’s Guide

you have the option to choose Yes or No. Choosing Yes will add a unit testing project to
the solution. You can choose either option, which won’t matter right now because we’ll not
be covering this topic here, but it is definitely worth exploring on your own. Figure 9-2
shows the new project in Solution Explorer.

VS created several folders with working code:

The Model, View, and Controller folders hold code for the MVC Models, Views, and
Controllers, respectively.

Previous chapters already explained the purpose of the Properties and References folders.

The App_Data folder is designed to allow you to ship a local database with your application
and is ideal for small programs where you can use the free SQL Express database. See
the accompanying note to learn how to add a database in the App_Data folder.

The Content folder is where you add any Cascading Style Sheets (CSS) files. CSS is a
standardized language for defining layout and appearance of a Web site.

Solution Explorer gl s

|2]
m Solution "MvcDemao' (2 projects)
4 [E3 MyShopcs
> [=d Properties
[[x3] References
3 App_Data
» [Content
4 | Controllers|
#] AccountController.cs
#] HomeController.cs
3 Madels
[Scripts
4 |7 Views
4 [Account
[E] ChangePassward.aspx
[E] ChangePasswordSuccess.aspx
[E] LogOn.aspx
=] Register.aspx
4 [Home
[E] About.aspx
[E] Indexaspx
4 [Shared
] Errar.aspx
[#] LogOnUserControl.ascx
] Site.Master
29 Web.config
[#J Global.asax
b [Web.config

Figure 9-2 A new ASP.NET MVC project

Chapter @: Creating Web Applications with ASPNET MVC

The Scripts folder holds JavaScript files, which include the jQuery and ASP.NET
AJAX client libraries. JavaScript helps make Views more interactive and can be
effective in providing a pleasing user experience.

The Global.asax file holds code that runs at different periods during the application
life cycle; we’ll investigate this file when looking at routing later in this chapter.

The web.config file holds configuration information, such as database connection
strings and more items that you don’t want to hard-code into the application.

NOTE

If you want to ship a local database with your application, you can right-click the App_
Data folder for your project, select Add | New ltem, navigate to Data, and select SQL
Server Database. This will add a blank database *.mdf file under the App_Data folder.
You can work with this database through Server Explorer, using techniques learned in
Chapter 7, to add tables and other objects. Remember that the server you deploy to
must have SQL Server Express installed or your database operations won't work.

The code generated by the New Project Wizard will run, and pressing Fs to execute the
application will show you a screen similar to Figure 9-3. Click OK when you see a screen
that asks if you want to program to run in debug mode. This will modify the web.config
file to allow debugging, which is what you want while developing applications.

% < |E http://localhost: 1042/ 5 | b | ‘fl x | |tE) Bing L v|

7. Favorites | 915 @ Suggested Sites ¥ E Get More Add-ons +
Jg Home Page M- v [dm v Pagev Safetyr Tools~ (@~

[Log On]

My MVC Application

Welcome to ASP.NET MVC!

To learn more about ASPMET MWC wisit bt ffasp . netfmye.

Done €& Local intranet | Protected Made: Off v e -

Figure 9-3 Running the default code produced by an ASPNET MVC project

253

254 Microsoft Visual Studio 2010: A Beginner’s Guide

The skeleton code produced by VS gives you some working examples that you can
build on and move forward. One item that VS doesn’t produce is the Model, which is
discussed next.

Creating the Models

As stated previously, the Model represents the data for the application. The example in
this section uses LINQ to SQL to produce the Model for this application. To create the
Model, add a LINQ to SQL entity Model by right-clicking the Models folder, selecting
Add | New Item, and selecting LINQ to SQL. This creates a *.dbml file that you should
add Customer and Order entities to, using the same techniques described in Chapter 7.

In more sophisticated scenarios, you would have additional objects that held business
logic or other data that isn’t associated with LINQ to SQL. This book keeps tasks at a
basic level so that you can understand how to use VS. You can put Model objects in the
Models folder or a separate class library. This chapter uses the Models folder.

Building Controllers

Requests come directly to a Controller, which we discussed earlier. As shown in Figure 9-2,
the MVC project has a Controllers folder. Controller classes normally reside in the Controllers
folder. Figure 9-2 shows two files, AccountController.cs and HomeController.cs, in the
Controllers folder. Listing 9-1 shows the contents of the HomeController.cs file.

Listing 9-1 The HomeController class

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MyShopCS.Controllers

{

[HandleError]
public class HomeController : Controller

{

public ActionResult Index()

{

ViewData ["Message"] = "Welcome to ASP.NET MVC!";

Chapter @: Creating Web Applications with ASPNET MVC 255

return View () ;

}

public ActionResult About ()

{
}

return View () ;

VB:

<HandleError()> _
Public Class HomeController
Inherits System.Web.Mvc.Controller

Function Index () As ActionResult
ViewData ("Message") = "Welcome to ASP.NET MVC!"

Return View ()
End Function

Function About () As ActionResult
Return View ()
End Function
End Class

Listing 9-1 demonstrates how closely ASP.NET MVC is tied to conventions. Notice
that the class name is HomeController. Appending Controller to a class name is a
convention that ASPNET MVC uses to identify which classes are controllers. Also, the
methods in the class are referred to as Actions in ASPNET MVC. Using the Controllers
folder for a Controller, appending the class name with Controller, and available actions
are all conventions that you must follow. The following URL, a browser address,
demonstrates how these conventions support routing to find a Controller and invoke the
About action. You can see this URL if you run the application and click the About tab:

http://localhost:1042/Home/About

The http://localhost:1042 part of the URL is a Web server that is built into VS and runs the
Web application without needing a Web server such as Internet Information Server (IIS).
The number 1042 is a random port number generated by the Web server, and your port
number is likely to be different.

256 Microsoft Visual Studio 2010: A Beginner's Guide

TIP

You can change your VS Web server’s port number. If you open your project's property
page by right-mouse clicking on the project in Solution Explorer and select Properties,
then select the Web tab on the left, under Servers, you can specify a specific port or
make other Web server choices.

For ASPNET MVC, the important part of the URL is /Home/About. Home is the
name of the Controller, and ASP.NET MVC appends Controller to the URL name, looking
for the HomeController class, shown in Listing 9-1, physically located in the Controller
folder, which is why it’s important to ensure you create files in the proper locations. About
is an action, which corresponds to the About method shown in Listing 9-1. Similar to the
About method, the Index action is run through the following URL:

http://localhost:1042/Home/Index

In a later section of this chapter, you’ll learn how ASP.NET MVC performs routing, which
maps URLSs to Controllers.

Both the Index and About actions in Listing 9-1 invoke a method named View. This is
a convention for invoking a View with the same name as the action method. For example,
calling View in the Index action will show a View named Index, and the call to View in the
About method will show a View named About.

One more item to point out is how the Index action assigns a string to a collection
called ViewData. The ViewData collection is one way for a Controller to pass Model data
to a View. I'll cover more on Controllers, including how to create your own, in a later part
of this chapter, but now, let’s do a quick review of Views so that you can see what happens
when they are invoked by the Controller.

Displaying Views
A View is what displays in the browser and allows interaction with the user. The View can
display any information that a Controller passes to it. For example, notice that the Index
action in Listing 9-1 assigns a string “Welcome to ASP.NET MVC!” with the “Message”
key in the ViewData collection.

Looking Inside a View

Figure 9-3 shows the View in the browser, displaying the message. Listing 9-2 shows the
Hypertext Markup Language (HTML) of the View displaying the message. The View
actually has a combination of HTML and ASP.NET markup, sometimes referred to as
ASPX, but I'll refer to it as just HTML for the rest of the chapter.

Chapter @: Creating Web Applications with ASPNET MVC 257

Listing 9-2 A View's HTML

<%@ Page Language="C#"
MasterPageFile="~/Views/Shared/Site.Master"

°

Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="indexTitle"
ContentPlaceHolderID="TitleContent"
runat="server">
Home Page
</asp:Content>

<asp:Content ID="indexContent"
ContentPlaceHolderID="MainContent"
runat="server">
<h2><%= Html.Encode (ViewData["Message"]) %></h2>
<p>
To learn more about ASP.NET MVC visit
<a href="http://asp.net/mvec"
title="ASP.NET MVC Website">
http://asp.net/mvc
.
</p>
</asp:Content>

A quick overview of Listing 9-2 shows that there is a Page directive with a couple of
Content containers. The Page directive specifies a MasterPage and Inherits attributes.
A MasterPage is a separate file that holds common HTML that can be shown on all pages
of a site. You’ll see how the MasterPage works soon, but let’s stay focused on the current
file in Listing 9-2 until then. ASPNET MVC will compile this HTML into code behind the
scenes, and the generated code will derive from the class defined by the Inherits attribute.
The first Content container can hold metadata that goes into an HTML header. The
second Content container has the information that will display on the screen. Notice
the Html.Encode(ViewData["Message"]) inside of binding tags <%= and %>. Any time
you add code or need to access ViewData that was passed by the Controller, you will
use the binding tags. Encode is one of several helper methods of the Html class, more
of which you’ll see soon. The purpose of Encode is to translate HTML tags into their
encoded representations for security purposes, ensuring that you don’t show any harmful
JavaScript, or other markup that could possibly execute, to the user. ViewData["Message"]
should be familiar, as it was set in the Index action in Listing 9-2 but is now being read
and displayed on the screen by this View.

258

Microsoft Visual Studio 2010: A Beginner's Guide

Organizing View Files

The file structure in Figure 9-2 shows that Views appear in the Views folder and have a

* aspx file extension. Each subfolder under the Views folder corresponds to a Controller,
and the Views within the subfolder correspond generally to Controller actions. When

a Controller passes control to a View, by calling View, ASP.NET MVC searches for the
View in the Views folder with the subfolder named the same as the Controller and the file
named the same as the action calling the View.

Notice that there is a Shared folder. Sometimes, you’ll want to have a View that is
shared by two or more Controller actions, and you can put these shared Views in the
Shared subfolder. Whenever ASPNET MVC doesn’t find a View in the Controller-named
subfolder, it will search for the View in the Shared folder. An important file in the Shared
subfolder is the MasterPage, which is discussed next.

Assigning MasterPage Files

Most sites on the Web have multiple pages, each with common elements. They all have the
same header, menu, sidebars, and footers. When you first build a site, you can duplicate
this common content with no trouble, but this copy-and-paste type duplication will cause

a lot of headaches in the future. The first time you have to change the common elements,
you’ll need to visit every page. If the site has only a few pages, no problem, but the reality
is that most sites of any success grow to dozens or hundreds of pages. It is beyond practical
to try to update every page on a site every time the common content changes.

This is where MasterPages help, allowing you to specify the common content in one
place where you can have content pages that use the MasterPage. Whenever something
changes in the common content, you update the MasterPage, and every page of a site that
uses the MasterPage is automatically updated. Listing 9-3 shows the MasterPage, created
by ASP.NET MVC, that the content page in Listing 9-2 uses.

Listing 9-3 A MasterPage

<%@ Master Language="C#"

°

Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head runat="server"s

Chapter @: Creating VWeb Applications with ASP.NET MVC

<title>
<asp:ContentPlaceHolder ID="TitleContent"
runat="server" />

</title>
<link href="../../Content/Site.css"
rel="stylesheet" type="text/css" />
</head>
<body>

<div class="page">

<div id="header"s>
<div id="title">
<hl>My MVC Application</hl>
</div>

<div id="logindisplay">
<% Html.RenderPartial ("LogOnUserControl"); %>
</divs>

<div id="menucontainer'"s>

<ul id="menu">

<%= Html.ActionLink ("Home", "Index", "Home")%>
</1li>

<%= Html.ActionLink ("About", "About", "Home") %>
</1li>

</divs>
</div>

<div id="main">

<asp:ContentPlaceHolder ID="MainContent" runat="server"

<div id="footer">
</div>
</divs>
</div>
</body>
</html>

/>

259

260 Microsoft Visual Studio 2010: A Beginner's Guide

Moving from the top of Listing 9-3 down, you can see the MasterPage directive at the top
of the page, which states that this is a MasterPage and ASP.NET MVC will handle the page
appropriately. The DTD is a tag that specifies what Web standards this page supports, which
is read by browsers to help them determine the best way to display the page.

The rest of the page is framed inside of HTML tags and ASP.NET MVC markup. The
html tag states that this is an HTML document. HTML documents have two parts, a head
and a body, where the head is for metadata describing the page and the body contains
display content.

In HTML, a div tag blocks off a chunk of HTML and is useful for layout and organization
of the page. The Hx tags, where x is a number between 1 and 6, describe headers, where hl is
the largest and ho6 is the smallest.

The ContentPlaceHolder controls are instrumental to the success of the MasterPage. If
you look at the Content tags in Listing 9-2, you’ll see that they have a ContentPlaceHolderID
that matches the ID attributes of the ContentPlaceHolder controls in Listing 9-3. What this
means is that when the View renders, the MasterPage will display and ASPNET MVC will
inject the Content regions of the content pages into the matching ContentPlaceHolders of the
MasterPage. ASPNET MVC knows which MasterPage to use because the Page directive, as
shown in Listing 9-2, specifies the MasterPage attribute.

If you recall from the last section, Listing 9-2 had a binding expression for the Html
Encode helper method. The MasterPage in Listing 9-3 introduces a couple more Html
helper methods, RenderPartial and ActionLink.

The ActionLink method has three parameters: id, controller, and action. When the
ActionLink renders in the browser, it will transform into an anchor tag, a, with an id
specified in the first parameter of ActionLink. When the user clicks the link in the browser,
the application will navigate to the Controller in the third parameter of ActionLink and
invoke the action in the second parameter of ActionLink. So, if the user clicked the link
produced by ActionLink("About", "About", "Home"), ASPNET MVC will invoke the About
action of the Home Controller. The next section discusses RenderPartial in more detail.

Partial Views (a.k.a. User Controls)

It’s often the case that you’ve written View content on one page and need the same identical
content on two or more pages. As explained with MasterPages, you want to avoid the
maintenance work that comes with updating all of the content that is the same on multiple
pages. While MasterPages are good for content that decorates pages across an entire site, a
Partial View is ideal for limited reuse of View content on different pages of a site.

Chapter @: Creating VWeb Applications with ASP.NET MVC

A good example of where a Partial View is useful is illustrated in the code produced
by the ASP.NET MVC Project Wizard, where it created the LogonUserControl.ascx. The
terms Partial View and User Control are synonymous, where the term User Control is
familiar to developers who have worked with previous versions of ASP.NET Web Forms.
Partial View is consistent with the ASP.NET MVC perspective of Views, where a Partial
View is not an entire View, but a chunk of View content that can be reused with multiple
Views. It isn’t coincidence that this control is physically located in the Views Shared
folder, considering that it can be used on multiple pages. Remember, if ASPNET MVC
can’t find a file in a View folder named after a Controller, it will look in the Shared folder.
Listing 9-4 shows the contents of LogonUserControl.ascx.

Listing 9-4 Contents of a Partial View

<%@ Control Language="CH#"
Inherits="System.Web.Mvc.ViewUserControl" %>

o\

<
if (Request.IsAuthenticated)
%>

Welcome <%= Html.Encode (Page.User.Identity.Name) %$>!

[<%= Html.ActionLink ("Log Off", "LogOff", "Account") %>]
<%
else {
%>
[<%= Html.ActionLink("Log On", "LogOn", "Account") %>]
<%

}

o\°
\

The Control directive at the top of Listing 9-4 indicates that this is a Partial View.
Within the control, you can see an if statement, where the language syntax is surrounded
by <% and %> binding symbols. The additional syntax to separate code from markup
might take a little getting used to, but it is typical in an MVC application to control how
markup is rendered. The IsAuthenticated property of the Request object tells whether
the current user is logged in, and the logic ensures the appropriate message displays.

The ActionLink Html helper methods generate action tags with a URL for actions on the
Account Controller. We’ve barely touched on routing and how a URL matches controllers
and actions, but the next section explains how routes work in greater depth.

261

262 Microsoft Visual Studio 2010: A Beginner's Guide

Managing Routing
ASP.NET MVC has a routing system that matches URLSs to controllers with actions and
the parameters passed to those actions. When you start a new ASPNET MVC project,
default routing will be established via a file called Global.asax, which is where many
events affecting the application are placed. When you run an ASP.NET MVC application,
it will use URLs of the form http://domain/controller/action/param1/param?2/.../paramN?
optional Arg=optional Val. Here’s an example:

http://localhost:1042/Home/About

In this example, localhost: 1042 is the domain, Home is the Controller, and About is the
action. When ASP.NET MVC sees this URL, it will instantiate the HomeController class
and call the About method.

The Global.asax file has an Application_Start event that is called the first time the
application runs. This is where routing is set up so that it will be in place for all of the
requests while the application is running. Listing 9-5 shows the default routing for an ASP
.NET MVC project.

Listing 9-5 Sefting up routing

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

using System.Web.Routing;

namespace MyShopCS

{

// Note: For instructions on enabling IIS6 or IIS7 classic mode,
// visit http://go.microsoft.com/?LinkId=9394801

public class MvcApplication : System.Web.HttpApplication

{

public static void RegisterRoutes (RouteCollection routes)

{

routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");

routes.MapRoute (
"Default", // Route name
"{controller}/{action}/{id}", // URL with parameters
new {

http://domain/controller/action/param1/param2/%E2%80%A6/paramN?optionalArg=optionalVal
http://domain/controller/action/param1/param2/%E2%80%A6/paramN?optionalArg=optionalVal

VB:

' Note:
' visit

Chapter @: Creating VWeb Applications with ASP.NET MVC

controller = "Home",
action = "Index",
id = """ } // Parameter defaults

protected void Application Start()

{
}

RegisterRoutes (RouteTable.Routes) ;

For instructions on enabling IIS6 or IIS7 classic mode,

http://go.microsoft.com/?LinkId=9394802

Public Class MvcApplication
Inherits System.Web.HttpApplication

Shared Sub RegisterRoutes (ByVal routes As RouteCollection)

End

Sub

routes.IgnoreRoute ("{resource}.axd/{*pathInfo}")

' MapRoute takes the following parameters, in order:

' (1) Route name

' (2) URL with parameters
' (3) Parameter defaults
routes.MapRoute (_

"Default", _
"{controller}/{action}/{id}", _
New With
{
.controller = "Home", .action = "Index",

}

Sub

Application Start()
AreaRegistration.RegisterAllAreas ()

RegisterRoutes (RouteTable.Routes)

End Sub
End Class

ld — nn

263

264 Microsoft Visual Studio 2010: A Beginner's Guide

Listing 9-5 shows that the Application_Start event invokes a method named
RegisterRoutes, passing the Routes property of the RouteTable class. The Routes property is
a static RouteCollection, meaning that there is only one copy for the entire application, and
it will hold multiple routes. When the application starts, this collection will be empty and
the RegisterRoutes method will populate the collection with routes for this application.

Routing works by pattern matching, which you can see through the two statements
in the RegisterRoutes method: IgnoreRoute and MapRoute. IgnoreRoute is useful for
situations where you want to let IIS request the exact URL. In this case, it is any file with
the *.axd extension, regardless of parameters.

The MapRoute method shows a common pattern for matching URLs to controllers,
actions, and parameters. The first parameter is the name of the route. The second
parameter describes the pattern, where each pattern match is defined between curly braces.
Based on the URL, http://localhost:1042/Home/About, the pattern, {controller}/{action}/
{id}, matches Home to {controller} and About to {action}; there is no match for {id}.
Therefore, ASP.NET MVC will append “Controller” to the URL segment that matches
{controller}, meaning that the Controller name to instantiate is HomeController. About
is the method inside of HomeController to invoke. Since About doesn’t have parameters,
supplying the {id} is unnecessary.

The third parameter for MapRoute specifies default values, where the key matches the
pattern parameter and the value assigned to the key is what ASP.NET MVC uses when it
doesn’t find a pattern match with the URL. Here are a couple of examples:

http://localhost:1042 invokes the Index method of HomeController because no Controller
or action matches and the defaults are Home for {controller} and Index for {action}.

http://localhost:1042/Home invokes the Index method of HomeController because no
action was specified and the default value for {action} is Index.

You can create your own custom route by using the MapRoute method and specifying
other default values for the parameters.

Building a Customer Management Application

Now, we’ll pull together the ASP.NET MVC concepts you’ve learned and describe how
to build a very simple application that displays, adds, modifies, and deletes customers.

In so doing, you’ll see how to build up a Model that supports customers, how to create a
custom Controller with actions for managing customers, and how to create multiple views
to handle interaction with the users as they work with customers.

Chapter @: Creating Web Applications with ASPNET MVC 265

Creating a Repository

A common pattern for working with data is to build a repository that is responsible for all
data-related operations. This is another way to promote separation of concerns so that you
isolate logic into specific parts of an application, resulting in easier code to work with.

A repository is a class that performs create, read, update, and delete (CRUD) operations
on a specific data type. Listing 9-6 shows a repository for working with customer objects.
You can create this class by right-clicking the Models folder and selecting Add | Class,
and name the class CustomerRepository. The code also assumes that you’ve created a
LINQ to SQL *.dbml, named MyShop, with a Customer entity for the Customers table in
MyShop, which is the database created in Chapter 7.

Listing 9-6 A repository for working with customer data

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

namespace MyShopCS.Models

{

public class CustomerRepository
{
private MyShopDataContext m ctx
= new MyShopDataContext () ;

public int InsertCustomer (Customer cust)
m_ctx.Customers.InsertOnSubmit (cust) ;
m_ctx.SubmitChanges () ;
return cust.CustomerID;

}

public void UpdateCustomer (Customer cust)
{
var currentCust =
(from currCust in m ctx.Customers
where currCust.CustomerID == cust.CustomerID
select currCust)
.SingleOrDefault () ;

if (currentCust != null)

266 Microsoft Visual Studio 2010: A Beginner's Guide

currentCust.Age = cust.Age;
currentCust.Birthday = cust.Birthday;
currentCust.Income = cust.Income;
currentCust .Name = cust.Name;

m_ctx.SubmitChanges () ;

public Customer GetCustomer (int custID)

{

return
(from cust in m ctx.Customers
where cust.CustomerID == custID
select cust)
.SingleOrDefault () ;

public List<Customer> GetCustomers ()
return
(from cust in m ctx.Customers
select cust)
.ToList () ;

public void DeleteCustomer (int custID)

{

var customer =
(from cust in m ctx.Customers
where cust.CustomerID == custID
select cust)
.SingleOrDefault () ;

m_ctx.Customers.DeleteOnSubmit (customer) ;
m_ctx.SubmitChanges () ;

VB:

Public Class CustomerRepository

Private m_ctx As New MyShopDataContext

Chapter @: Creating VWeb Applications with ASP.NET MVC

Public Function InsertCustomer (
ByVal cust As Customer) As Integer

m_ctx.Customers.InsertOnSubmit (cust)
m_ctx.SubmitChanges ()
Return cust.CustomerID

End Function

Public Sub UpdateCustomer (ByVal cust As Customer)

Dim currentCust =
(From currCust In m ctx.Customers
Where currCust.CustomerID = cust.CustomerID
Select currCust) .SingleOrDefault ()

If Not currentCust Is Nothing Then
With currentCust

.Age = cust.Age
.Birthday = cust.Birthday

.Income = cust.Income
.Name = cust.Name
End With

m_ctx.SubmitChanges ()
End If

End Sub

Public Function GetCustomer (ByVal custID Ags Integer) As Customer

Dim customer =
(From cust In m ctx.Customers
Where cust.CustomerID = custID
Select cust) .SingleOrDefault ()

Return customer

End Function

Public Function GetCustomers () As List (Of Customer)

Dim customers =

267

268 Microsoft Visual Studio 2010: A Beginner's Guide

(From cust In m ctx.Customers
Select cust) .ToList ()

Return customers
End Function
Public Sub DeleteCustomer (ByVal custID As Integer)
Dim customer =
(From cust In m ctx.Customers
Where cust.CustomerID = custID

Select cust) .SingleOrDefault ()

m_ctx.Customers.DeleteOnSubmit (customer)
m_ctx.SubmitChanges ()

End Sub
End Class

You can have more methods in a repository for doing whatever is required with data
for the application, but the items in Listing 9-6 are typical. The LINQ to SQL operations
are consistent with the material covered in Chapter 7, so there’s no need to repeat the same
material here. The purpose of the repository is to give the Controller an object to work
with for getting data without filling up Controller methods with data access logic. Let’s
see how the Controller works with this repository next.

Creating a Customer Controller

Right-click the Controllers folder, select Add | Controller, or press CTRL-M, press CTRL-
¢, and name the file CustomerController. Check the box for “Add action methods for
Create, Update, and Details scenarios” as shown in Figure 9-4.

Add Controller ==

Controller Name:

CustomerController

Add action methods for Create, Update, and Details scenarios

Add l l Cancel

Figure 9-4 Creating a new Controller

Chapter @: Creating Web Applications with ASPNET MVC 269

This will create a new Controller with several methods for working with Customer
data. Listing 9-1 already showed what a Controller looks like, and this is no different,
except that it contains more action methods. The following sections explain how to
perform various operations on customer data.

Displaying a Customer List

The first thing to do with customers is to display a list that will serve as a starting point
for other operations. Listing 9-7 shows the Index action method of the CustomerController
and how it gets a list of customers to display. The code uses the CustomerRepository,
created in the preceding section. For C#, you need to add a using directive at the top of the
file for the MyShopCS.Models namespace.

Listing 9-7 A Controller for displaying a list

C#:

public ActionResult Index()
{
var customers =
new CustomerRepository ()
.GetCustomers () ;

return View (customers) ;

VB:

Function Index () As ActionResult
Dim custRep As New CustomerRepository
Dim customers As List (Of Customer)

customers = custRep.GetCustomers ()
Return View (customers)
End Function

Listing 9-7 shows how the Index method uses the CustomerRepository to get the list
of customers. You need to pass that list to the View for display.

To create the View, right-click anywhere in the /ndex method and select Add View,
which will display the Add View window, shown in Figure 9-5.

The name of the View is Index, corresponding to the name of the action method
invoking the View. Naming the View after the action method is the default behavior, but

270 Microsoft Visual Studio 2010: A Beginner's Guide

Add View (]

View name:

Index

[F] Create a partial view (.ascx)

Create a strongly-typed view
qly-typ

View data class:

My.Shd.p'.C.S..Mo-(I.eIs.Customer -

View content:

[List -

Select master page

-~ MNViews/Shared/ Site. Master - E]

ContentPlaceHolder ID:

MainContent

Add l l Cancel

Figure 9-5 The Add View window

you can name the View anything you want. If the View you need to display is named
differently than the action method, you can use the following View method overload:

View ("SomeOtherViewName", customers) ;

We want to use a strongly typed View, meaning that you will have IDE support for
referencing the properties of your own object when working in the View. The selected
object is Customer, which is already defined as a LINQ to SQL entity, which is the same
type returned by the call to the GetCustomers method in CustomerRepository.

The purpose of this View is to display a list of customers, so we’ll select List as View
content. This will prepopulate the View with a template for displaying customers. You’ll
be able to modify the screen as you like. Additionally, if you prefer to write your own
code to populate the screen, you can select the Empty option for View content and then
code the View manually yourself. Selecting List is a quick way to get started.

You learned about MasterPages earlier in this chapter, and you have the option of
selecting a MasterPage of your choice and specifying which ContentPlaceHolder your
code will render in.

Click Add to generate the View shown in Listing 9-8.

Chapter @: Creating VWeb Applications with ASP.NET MVC

Listing 9-8 A Customer List View

<%@ Page Title="" Language="C#"
MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc

.ViewPage<IEnumerable<MyShopCS.Models.Customer>>" %>

<asp:Content ID="Contentl"
ContentPlaceHolderID="TitleContent"
runat="server">
Index
</asp:Content>

<asp:Content ID="Content2"
ContentPlaceHolderID="MainContent"
runat="server">

<h2>Index</h2>

<table>
<tr>
<th></th>
<th>
CustomerID
</th>
<th>
Name
</th>
<th>
Age
</th>
<th>
Birthday
</th>
<th>
Income
</th>
</tr>

<% foreach (var item in Model) { %>

<tr>
<td>
<%= Html.ActionLink ("Edit", "Edit",
new { id=item.CustomerID }) %> |
<%= Html.ActionLink ("Details", "Details",

new { id=item.CustomerID })%>
</td>

271

272

Microsoft Visual Studio 2010: A Beginner's Guide

<%= Html.Encode (item.CustomerID) %>

<%= Html.Encode (item.Name) %>

<%= Html.Encode (item.Age) %>

<%= Html.Encode (String.Format ("{0:g}",
item.Birthday)) %>

</td>
<td>
<%= Html.Encode (String.Format ("{0:F}",
item.Income)) %>
</td>
</tr>
<%} %>
</table>
<p>
<%= Html.ActionLink ("Create New", "Create") %>
</p>

</asp:Content>

Listing 9-8 organizes the list of Customers in a table. The #r tags are rows, th are
header cells, and 7d are content cells. After specifying the header row, the foreach loop
iterates on the Model to render each content row. If you recall from Listing 9-7, the
Index action method called View with a List<Customer> (List(Of Customer) in VB).
When creating the View, we specified the object type as Customer, which means that the
reference to Model in the foreach statement is to List<Customer> and item contains a
Customer object.

For each cell being rendered, item is the current Customer and the property for that
cell is referenced by the property of Customer that should display. What is particularly
important about displaying the data is that each cell uses the Html. Encode helper method
instead of displaying the data directly. This is a best practice for best security to ensure
that any data displayed is not treated as HTML markup or accidentally runs JavaScript
that you didn’t intend. You see, a malicious hacker could add JavaScript during data entry
and when you display that field, the browser would try to run the JavaScript code, which

Chapter @: Creating Web Applications with ASPNET MVC 273

would be bad. Using Html.Encode prevents this from happening. The other Html helper
methods, such as ActionLink, already encode output, so you should use Html.Encode
whenever one of the other helpers isn’t used. Notice that the code for the foreach loop is
enclosed in <% and %> symbols so that it is treated as code and not markup.

Next, you’ll want to be able to navigate to the Customer List page from the main
menu, so open your MasterPage, Site.Master, and add the Customers ActionLink like this:

<ul id="menu">

<%= Html.ActionLink ("Customers", "Index", "Customer")%>
<%= Html.ActionLink ("Home", "Index", "Home")$%>
<%= Html.ActionLink ("About", "About", "Home")$%>

</uls>

The parameters to the new ActionLink, from left to right, indicate that the text for
the anchor will be Customers, and ASP.NET will invoke the Index action method
on the CustomerController class when the user clicks the link. Figure 9-6 shows what
the Customer list looks like when the program runs.

@ - |a http://localhost: 1042/ Custormer v| b | 3 | X | |b Bing L v|

5.7 Favarites | 5l @ Suggested Sites ¥ | Get More Add-ons ~
J@Index - v [fsh v Pagev Safetyv Toolsv @+

My MVC Application

Customers

CustomerID MName Age Birthday Income

Edit | Details 1 Meg 25 4/15/1958 12:00 &M 35000.00
Edit | Details =2 39 /441975 12:00 AM 21000000
Edit | Details 3 May 29 5/1/1985 1Z2:00 AM B2000.00

Create Mew

eﬂ Local intranet | Protected Mode: Off fg v BB v _:;

Figure 9-6 Showing a list of objects

274 Microsoft Visual Studio 2010: A Beginner’s Guide

As shown in Figure 9-6, the Customer tab appears first on the list, and clicking it
shows the list of Customers. In addition to the content you see in the list, there are links,
such as Edit and Create. The next section covers the Create operation.

Adding a New Customer

Creating a new customer involves presenting a screen for data entry and saving the new
data when submitted. When creating a new object, your Controller needs two methods, a
get method to initialize an empty Customer and a post method to save the new customer
data. Listing 9-9 shows the get and post methods in the CustomerController class.

Listing 9-9 Creating a new Customer object

C#:

//
// GET: /Customer/Create

public ActionResult Create()

{

Customer cust = new Customer

{
}i

Birthday = new DateTime (1980, 1, 1)

return View (cust) ;

}

//
// POST: /Customer/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create (Customer cust)
{
try
{
if (string.IsNullOrEmpty (cust.Name))
{
ModelState.AddModelError (
"Name", "Name is required.");
return View () ;

Chapter @: Creating VWeb Applications with ASP.NET MVC

new CustomerRepository ()
.InsertCustomer (cust) ;

return RedirectToAction ("Index") ;

}

catch

{

return View () ;

VB:

' GET: /Customer/Create

Function Create() As ActionResult
Dim cust As New Customer With

{
}

Return View (cust)
End Function

.Birthday = New DateTime (1980,

' POST: /Customer/Create

<HttpPost () >

Function Create(ByVal cust As Customer)

Try

1, 1)

As ActionResult

If String.IsNullOrEmpty (cust.Name) Then

ModelState.AddModelError (
"Name" s
End If

"Name is required.")

Dim custRep As New CustomerRepository

custRep.InsertCustomer (cust)

Return RedirectToAction ("Index")

Catch
Return View ()
End Try
End Function

275

276 Microsoft Visual Studio 2010: A Beginner’s Guide

In the HTTP protocol, there are different types of verbs for the operation being conducted.
Listing 9-9 demonstrates two of these verbs, get and post. A get is typically associated with
reading data, and a post is typically associated with writing data. Listing 9-9 shows both get
and post methods in the Create method overloads. In ASPNET MVC, action methods default
to get requests and you must use an HttpVerbs attribute to specify a post.

The get Create action method instantiates a new Customer object and passes it to the
View. When the user fills in the form and submits, the post Create action method will
execute and insert the new record into the database.

Notice how I changed the Create method parameter from FormsCollection to Customer.
ASP.NET MVC will automatically read the form values and match those values up with
matching properties in the object passed to the method. The method also checks to ensure
that the name is filled in and adds an error to the ModelState. Whenever an error occurs,
you need to return to the same View to ensure the user sees the error and can correct and
resubmit. ASPNET MVC will use this error to display error messages in the View. To
create the View, right-click either Create method, select Add View, and fill in the values as
shown in Figure 9-7.

Add View (mESm]

View name:

Create
[] Create a partial view (.asc
Create a strongly-typed view
View data class:
IR-’I)I'“Shlolp;lCSl.Modlels.Customer -

View content:

[Create A4]

Select master page

- Views/Shared/Site. Master) D

ContentPlaceHolder ID:

MainCaontent

Add l l Cancel

Figure 9-7 Adding a new Customer

Chapter @: Creating Web Applications with ASPNET MVC 277

The Add View screen in Figure 9-7 specifies strong typing on the Customer class, but
this time it selects Create as the View Content. Listing 9-10 shows the resulting View.

Listing 9-10 View for creating a new Customer

<%@ Page Title="" Language="C#"
MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<MyShopCS.Customer>" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent"
runat="server">
Create

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"
runat="server">

<h2>Create</h2>
<% using (Html.BeginForm()) {%>

<fieldset>
<legend>Fields</legend>

<div class="editor-label">

<%= Html.LabelFor (model => model.CustomerID) %>
</divs>
<div class="editor-field">

<%= Html.TextBoxFor (model => model.CustomerID) %>
<%= Html.ValidationMessageFor (
model => model.CustomerID) %>
</div>

<div class="editor-label">

<%= Html.LabelFor (model => model.Name) %>
</div>
<div class="editor-field">

<%= Html.TextBoxFor (model => model.Name) %>
<%= Html.ValidationMessageFor (
model => model.Name) %>
</div>

<div class="editor-label">
<%= Html.LabelFor (model => model.Age) %>
</divs>

278 Microsoft Visual Studio 2010: A Beginner’s Guide

<div class="editor-field">

<%= Html.TextBoxFor (model => model.Age) %>
<%= Html.ValidationMessageFor (
model => model.Age) %>
</divs>

<div class="editor-label">

<%= Html.LabelFor (model => model.Birthday) %>
</div>
<div class="editor-field">

<%= Html.TextBoxFor (model => model.Birthday) %>
<%= Html.ValidationMessageFor (
model => model.Birthday) %>
</divs>

<div class="editor-label">

<%= Html.LabelFor (model => model.Income) %>
</div>
<div class="editor-field">

<%= Html.TextBoxFor (model => model.Income) %>
<%= Html.ValidationMessageFor (
model => model.Income) %>
</div>
<p>
<input type="submit" value="Create" />
</p>
</fieldset>
<%} %>
<div>
<%$=Html .ActionLink ("Back to List", "Index") %>
</div>

</asp:Content>

The ValidationMessageFor Html helper displays any errors that occur on this page.
The error messages are displayed whenever the Controller action method adds the error
to the ModelState. When the user clicks the Submit button, this page will post back to the
Create method with the AcceptVerbs attribute for post. Figure 9-8 shows the Create screen
when running.

In addition to creating a new Customer, you can edit existing Customers, as is
discussed next.

Chapter @: Creating Web Applications with ASPNET MVC 279

7@ Create temet Explorer =E =
@@w |t‘, Tittp:/ Tocallwost: 1042/ Customen Creale - | B | ‘r| P |]la Biny P -|
< Favarites | 55 @ Suggested Sites v 2] Get Mare Add-ons +

| @ create | - ~ [o - Page~ Safety~ Took~ @~

Create

Fields

Customerll:
]

Maine:
Harry

Age
)

Birthday:
IPRGERS

Income:
35000

Dack to List

Q Local intranet | Protected Mode: Off

Figure 9-8 The Create screen

Updating Existing Customers

Similar to how we created Customers, you also need two methods for editing a Customer.
The get method populates an edit form with existing data, and the post method saves the
changes. Listing 9-11 shows these two methods.

Listing 9-11 Methods for editing Customers

C#:

//
// GET: /Customer/Edit/5

public ActionResult Edit (int id)
{
Customer cust =
new CustomerRepository ()
.GetCustomer (id) ;

280 Microsoft Visual Studio 2010: A Beginner’s Guide

return View (cust) ;

//
// POST: /Customer/Edit/5

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit (Customer cust)

{

try

{

new CustomerRepository ()
.UpdateCustomer (cust) ;

return RedirectToAction ("Index") ;

}

catch

{
}

return View () ;

VB:

' GET: /Customer/Edit/5

Function Edit (ByVal id As Integer) As ActionResult
Dim custRep As New CustomerRepository
Dim cust As Customer

cust = custRep.GetCustomer (id)

Return View (cust)
End Function

' POST: /Customer/Edit/5

<HttpPost () >
Function Edit (ByVal id As Integer, ByVal cust As Customer)
As ActionResult
Try
Dim custRep As New CustomerRepository
custRep.UpdateCustomer (cust)

Chapter @: Creating Web Applications with ASPNET MVC 281

Return RedirectToAction ("Index")
Catch
Return View ()
End Try
End Function

In the get Edit action method, you need to get a reference to the current record,
indicated by the id being passed in, and pass that reference to the View for display. The
post Edit action method accepts the modified customer and passes it to the repository for
update in the database. You should also right-click in either of the Edit methods and select
Add View. Make the View strongly typed, set the class to Customer, and the Content type
to Edit.

The final operation to complete is discussed next, how to delete a Customer.

Deleting a Customer

The default template for creating a list added an ActionLink for Details, next to the Edit
ActionLink. You can create a read-only details page if you want, or just ensure the list is
in the format you want to show each customer record, but for our purposes the Details
option is not necessary. So, this example replaces the Details link with one for deleting
arecord. Listing 9-12 shows the Delete Controller method, which replaces the Detail
Controller method.

Listing 9-12 The Delete Controller method

C#:

//
// GET: /Customer/Delete/5

public ActionResult Delete(int id)

{

new CustomerRepository ()
.DeleteCustomer (id) ;

TempData ["Result"] = "Customer Deleted.";

return RedirectToAction ("Index") ;

282 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

' GET: /Customer/Delete/5

Function Delete (ByVal id As Integer) As ActionResult
Dim custRep As New CustomerRepository
custRep.DeleteCustomer (id)

TempData ("Result") = "Customer Deleted."

Return RedirectToAction ("Index")
End Function

Besides showing how to use the repository for performing the delete operation, there
are a couple of new items in Listing 9-12 that you’ll need to know about: TempData and
specifying a View. TempData is a special object for holding data for a single display of
a View. So, when the View displays, it can read the current value of TempData, but that
same value will not be available on the next View unless the Controller explicitly loads it
again.

In all of the other calls to View, it was assumed that a View named after the Controller
method would be returned, so it wasn’t necessary to specify the name of the View.
However, we don’t have a delete View, so we specify Index as the View explicitly.

To accommodate the delete operation, Listing 9-13 shows the modifications on the
Index.aspx View for Customers (located under \Views\Customer).

Listing 9-13 Deleting a Customer

C#:

content removed

<h2>Index</h2>
<p>

<% if (TempData["Result"] != null)

{ %>
<label><%= Html.Encode (TempData["Result"].ToString())%>

</label>

<% } %>
</p>

<table>

Chapter @: Creating Web Applications with ASPNET MVC 283

content removed

<% foreach (var item in Model) { %>

<tr>
<td>
<%= Html.ActionLink ("Edit", "Edit",
new { id=item.CustomerID }) %> |
<%= Html.ActionLink ("Delete", "Delete",
new { id=item.CustomerID })%>
</td>

content removed

VB:

content removed

<h2>Index</h2>
<p>
<% If Not TempData("Result") Is Nothing Then %>
<label>
<%= Html.Encode (TempData ("Result") .ToString())%>
</label>
<% End If%>
</p>
<p>
<%= Html.ActionLink ("Create New", "Create")$%>
</p>
<table>

content removed
<% For Each item In Model%>

<tr>
<td>
<%=Html.ActionLink ("Edit", "Edit",
New With {.id = item.CustomerID})%> |
<%=Html.ActionLink ("Delete", "Delete",
New With {.id = item.CustomerID})%>
</td>

content removed

284 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 9-13 has content removed to avoid duplicating code you’ve already seen. Near
the top of the listing, you can see the if statement that will check to see if there is a value in
TempData["Result"] (TempData("Result") in VB) and will display that value in a label if
present. Next to the Edit ActionLink, the Details ActionLink has been changed to a Delete
ActionLink, passing the id of the current customer back to the Controller for deletion.

Summary

You now know the essential parts of MVC: Models, Views, and Controllers. You saw how
to implement the repository pattern for managing a data access layer and simplify the
code. This chapter showed how to create controllers and views. You also learned about
routing and how it helps match URLs to controllers, actions, and parameters. Finally, there
was a section that demonstrated how to perform CRUD operations with ASP.NET MVC.
Another popular Web technology is Silverlight, which gives you the ability to create
rich user experiences. The next chapter helps you get started with Silverlight development.

Chapter 10

Designing Silverlight
Applications

285

286 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Start a New Silverlight Project
Work with the Silverlight Designer
Add Controls to an Application
Play Silverlight Videos

Deploy Silverlight Applications

Silverlight is a Web technology that allows you to add a rich user experience to Web
applications. It uses XAML, just like WPF applications, but runs in a Web page
supported by ASP.NET.

Other parts of this book prepare you for working with Silverlight. Since Silverlight
uses XAML, you can review Appendixes A and B to get up-to-speed on XAML essentials.
Silverlight also has many features in common with WPF. Therefore, it would be useful to
review Chapter 8 before reading this chapter. What you’ll learn in this chapter is how VS
helps you create a Silverlight project, how to add controls to the Silverlight designer, and
how to deploy Silverlight applications.

Starting a Silverlight Project

As when starting other projects, you can select File | New | Project or press CTRL-SHIFT-N;
you then select a Silverlight application in the New Project window. After you set up
the project with a name and folder, VS will display another window for configuring the
Silverlight application, shown in Figure 10-1.

Silverlight gives you the option to create a Web site at the same time as you create the
Silverlight application. You can opt not to create the Web site, but ultimately, you’ll need
to host your Silverlight application on a Web page. There is an alternate Web technology
based on ASP.NET Web forms, but this book concentrates on the ASPNET MVC Web
development model, discussed in Chapter 9, which is why you see the New Web project
type set to ASPNET MVC Web Project. Click OK to create the Silverlight application,
shown in Figure 10-2. You’ll also see a screen asking if you want to create a unit test
project, which is the same window discussed in Chapter 9. Click OK to continue.

Figure 10-1

Chapter 10: Designing Silverlight Applications

Mew Silverlight Application

test page will be generated during build.

Host the Silverlight application in a new Web site

MNew Web project name:

SilverlightDemoC5.Web

(2wl

Click the checkbox below to host this Silverlight application in a Web site. Otherwise, a

MNew Web project type:
ASP.MET MVC Web Project A
Options
Sitverlight Version:
Silverlight 3.0 v
[OK l [Cancel

Creating a new Silverlight application

Solution Explorer

2| & EE

4 {3 SilverlightDemoCSs
[[=d Properties
[|23 References
b = Appaaml
b | MainPagexaml |
4 [silverlightDemo(S.Web
[[=d Properties
[[:3] References
5 App_Data
3 ClientBin
» [Content
> [Controllers
3 Models
> E3 Scripts
b [Views
b 4] Global.asax
5] Silverlight.js

[; Solution ‘SilverlightDema’ (3 projects)

E=] SitverlightDemoCSTestPage.aspx
[#] SilverlightDemoCSTestPage. html
b [Web.config
b I SilverlightDemoCS.Web, Tests

I-E_g Solution Explorer [l

Figure 10-2 A new Silverlight project

287

288 Microsoft Visual Studio 2010: A Beginner’s Guide

Similar to WPF applications, Silverlight applications start with a MainPage.xaml file
and an App.xaml file, where App.xaml runs to initialize the application and MainPage
.xaml contains the display page. The Web site is a typical ASPNET MVC application,
except that it does have a test page that hosts the Silverlight application, SilverlightDemo
CSTestPage.aspx (SilverlightDemoVBTestPage.aspx for VB). There’s also a Silverlight
DemoCSTestPage.html (SilverlightDemoVBTestPage.html for VB), which performs the
same function as the SilverlightDemoCSTestPage.aspx (SilverlightDemoVBTestPage
.aspx for VB) hosting Silverlight, except that the *.html version uses JavaScript and the
HTML object tag to host Silverlight. Listing 10-1 shows the contents of the test page and
how it hosts the Silverlight application. There is no C# or VB version of Listing 10-1
because the code is XAML, which works exactly the same with either language.

Listing 10-1 Hosting a Silverlight application on a Web page
<%@ Page Language="C#" AutoEventWireup="true" %>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server"s>
<title>SilverlightDemoCS</title>
<style type="text/css">
// css styles omitted
</style>
<script type="text/javascript" src="Silverlight.js"></script>
<script type="text/javascript"s>
function onSilverlightError (sender, args) {
// error handling code omitted
}

</scripts>
</heads>
<body>
<form id="forml" runat="server" style="height:100%">
<div id="silverlightControlHost">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2"
width="100%" height="100%">
<param name="source"
value="ClientBin/SilverlightDemoCS.xap"/>
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />

Chapter 10: Designing Silverlight Applications

<param name="minRuntimeVersion" value="3.0.40818.0" />
<param name="autoUpgrade" value="true" />
<a
href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0"
style="text-decoration:none">
<img src="http://go.microsoft.com/fwlink/?LinkId=161376"
alt="Get Microsoft Silverlight™"
style="border-style:none"/>

</object>
<iframe id="_ sl historyFrame"
style="visibility:hidden;height:0px;width:0px;border: 0px">
</iframe>
</divs>
</form>
</body>
</html>

Listing 10-1 contains an object tag that hosts the Silverlight application. This object
tag has various parameters, which are described in Table 10-1.

You can run the application and view the Web page, but there isn’t much to see yet.
The next section starts you in the direction of making something useful happen with
Silverlight by reviewing the Designer.

Parameter Description

source In Figure 10-2, you can see a ClientBin folder in the ASPNET MVC Web

application project. When the Silverlight project builds, VS will take the output
of that project and place it into the ClientBin folder. The output of a compiled
Silverlight project is a * xap file, which is the same as a compressed * .zip file,
but with a different name. Silverlight loads the *.xap file into the browser at
runtime and runs the application.

onerror Listing 10-1 omitted the contents of the onSilverlightError JavaScript function,

which is called whenever an error occurs in Silverlight.

background Sets the control background.

minRuntimeVersion | States that the user must have v3.0.40818.0 or later of the Silverlight plug-in for

this application fo run. The user receives an error message if she doesn’t have
the minimum version.

autoUpgrade If the user doesn’t have the minimum version, as specified in minRuntimeVersion,

setting this to true will prompt the user to begin the upgrade process.

Table 10-1 Object Tag Parameters for Silverlight

289

290 Microsoft Visual Studio 2010: A Beginner’s Guide

Navigating the Silverlight Designer
The underlying technology for displaying the UI is XML Application Markup Language
(XAML), pronounced “Zamel.” Appendix A contains an introduction to XML, and
Appendix B contains an introduction to XAML if you need to obtain a basic understanding
of these two technologies. It would really be helpful for you to review Chapter 8 because
you’ll find many of the same controls for layout and display in both Silverlight and WPF.

The Silverlight Designer is very similar to the WPF Designer in how you work with

controls. Drag and drop from the Toolbox, configure Grids, interact with XAML, and set
properties in exactly the same way with Silverlight as with WPFE. Since there are so many
similarities, I won’t repeat the material covered in Chapter 8 but will build upon previous
material, showing you what is special about Silverlight.

Using Silverlight Controls

Silverlight has strong multimedia support through streaming audio and video. In fact,
the Toolbox has controls that make it easy to host your own videos and control the user
experience for playing videos. The following steps show how to design a screen that
shows a video, as shown in Figure 10-3.

1. Your project starts out with a page named MainPage.xaml, which you should open so
the designer is showing. If the XAML editor is showing, click on the Design tab at the
bottom of the designer window.

2. You’ll have a default Grid, which you can work with in exactly the same way as
the designer for WPF, discussed in Chapter 8. You need to ensure the Grid has two
rows, with the top row being large enough to fit the MediaElement and the bottom
large enough to fit a single button. Hover over the left margin of the window until
you see a grid line appear on the window. Move the grid line vertically until you’ve
created two rows, where the bottom row is large enough to hold a button, as shown
in Figure 10-3. Click on the window margin when you have the grid line positioned
where you want.

3. Find the MediaElement in the Toolbox and drag it onto the top row of the Window in
the designer. If you find that you haven’t made the top row large enough, grab the grid
line arrow in the left margin and drag it down some more.

4, Set the Name property of the MediaElement control to VideoPlayer.

Chapter 10: Designing Silverlight Applications 291

5. The MediaElement control has a Source property that you can set with the URL of
a movie. Set the Source property of the MediaElement control to http://mschnlnine
.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmyv, which is a video
that introduces VS 2010.

6. Drag a Button from the Toolbox to the bottom row of the Window in the designer.

7. Set the Name property of the Button to StartStopButton and set the Content property
of the Button to Start.

In Figure 10-3, you can see a Grid with two rows. The top row holds a MediaElement
control and the bottom row holds a button. The name of the Video control is VideoPlayer
and the name of the button is StartStopButton.

MainPagexaml *AX
100% .
0 - u]
]
e 4
=
o a
Start
|_l 3 Design 1+ = XaAML —_— II|
El <Grid.RowDefinitions> |i
<RowDefinition Height="228*" /> -
<RowDefinition Height="72*" />
</Grid.RowDefinitions>
<MediaElement Height="165" HorizontalAlignment="Left" Margin="85,41,8,8" Name="VidenE|
<Button Comtent="Start"” Height="23" Name="StartStopButton" Width="75" HorizontalAli;
</farid>
</UserControl> i
W% ~ 4 m] "
| MediaElement (VideoPlayer) UserControl/Grid/MediaElement F

Figure 10-3 Playing Silverlight videos

http://mschnlnine.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmv
http://mschnlnine.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmv

292 Microsoft Visual Studio 2010: A Beginner’s Guide

Double-clicking the StartStopButton control will generate this Click event handler in
the code-behind at MainPage.xaml.cs, shown in Listing 10-2.

Listing 10-2 Playing and stopping a video

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightDemoCS

{

public partial class MainPage : UserControl

{

public MainPage ()

{

InitializeComponent () ;
VideoPlayer.AutoPlay = false;
private bool m isPlaying = false;

private void StartStopButton Click(
object sender, RoutedEventArgs e)

if (m _isPlaying)

{
VideoPlayer.Stop() ;
StartStopButton.Content = "Start";
m_isPlaying = false;

}

else

VideoPlayer.Play () ;
StartStopButton.Content

Ilstop n ;

Chapter 10: Designing Silverlight Applications 293

m_isPlaying = true;

VB:

Partial Public Class MainPage
Inherits UserControl

Public Sub New ()
InitializeComponent ()
VideoPlayer.AutoPlay = False

End Sub

Dim m isPlaying As Boolean = False

Private Sub StartStopButton Click(
ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs)
If (m isPlaying) Then
VideoPlayer.Stop ()
StartStopButton.Content = "Start"
m isPlaying = False
Else
VideoPlayer.Play ()
StartStopButton.Content = "Stop"
m_isPlaying = True
End If
End Sub
End Class

By default, the MediaElement starts playing the Source video as soon as the application
loads, so I set AutoPlay to false in the code-behind constructor. The m_isPlaying field
keeps track of whether the MediaElement is playing or not. The Click event handler uses
m_isPlaying to toggle between playing and stopped.

This is a quick demo of how to work with the MediaElement control, but there’s much
more you can do, such as pausing, tracking buffering, checking video position, and more.
All you need to do is either capture events of the MediaElement control or use controls like
buttons and sliders to interact with MediaElement, as the example shows in Listing 10-2. It
would be good practice for you to take what you’ve learned here and add more functionality
to the MediaElement control.

294 Microsoft Visual Studio 2010: A Beginner’s Guide

Running Silverlight Out-of-Browser (OOB)

A new capability of Silverlight 3 is running out-of-browser, meaning that users can load
your application onto their desktop without needing to visit the hosting site. To implement
OOB, open the Silverlight application properties by double-clicking the Properties folder
in Solution Explorer. You’ll see a window similar to Figure 10-4.

Most of the properties in Figure 10-4 have been covered in previous chapters. What’s
different is the section on Silverlight build options, which allows you to set the version
and check the box to reduce the size of the *.xap file through caching. However, leave the
option to reduce the *.xap file size unchecked if running OOB because it’s not compatible

SilverlightDemeoCS i =l
Sibverlight
Configuration: | N/A - Platform: |N/A -
Debug
Build Application =
Aszembly name:! Default namespace:
Build Events

SikverlightDemoCS
Reference Paths

Startup object:
SiIning SilverlightDemoCS.App - @
CIER A Silverlight build options
l\h“"“—u, Target Silverlight Version: =
EH Silverlight 4 =
Xap file name:

SilverlightDemoCSxap
Beduce XAP size by using application library caching

Enable running application out of the browser

Qut-of-Browser Settings ...

Generate Silverlight manifest file

Manifest file template:

| Properties\AooManifest.sml 24
4 m 3

Figure 10-4 Silverlight properties

Chapter 10: Designing Silverlight Applications 295

Out-of-Browser Settings @

Window Title

width Height:
Shartcut name

;SilverlightDemUCS Application

Application description

.SilverlightDemDCS Application on vour desktop; at home, at work or on the go.

16 % 16 Icon
32 % 32 Icon
45 x 48 Icon

128 x 125 Icon

AN

[] Use GPU Acceleration

Show install menu

oK] [Cancel

Figure 10-5 Out-of-browser settings

with OOB. The Manifest file describes the contents of the *.xap file. To enable OOB,
check the box “Enable running application out of the browser.” Then click the Out-Of-
Browser Settings button to display the window shown in Figure 10-5.

The OOB settings in Figure 10-5 allow you to set information for the application,
the size it will take when running, and variously sized icons that Windows will display.
Setting GPU acceleration allows the application to take advantage of the local hardware to
optimize graphics.

After you save OOB settings and run the application, the user can right-click the
application running in the browser and select Install SilverlightDemoCSApplication Onto
This Computer, as shown in Figure 10-6.

296 Microsoft Visual Studio 2010: A Beginner's Guide

% - |E http://localh... v| k& | "‘fl X | |E) Bing

-{4"' Favarites | 5:'3 g Suggested Sites * E Get More Add-ons ~

Jgﬁwerligmnen—.ocs h-R-o@- 7

B e B, S B, B
[EErT ey /| i ra]
(ST £l

Silverlight
Install SilverlightDemaCS Application onto this computer...

?& Local intranet | Protected Made: Off 3 v H10% - =

Figure 10-6 Choosing OOB

The next window you’ll see gives options for adding the application to the Start menu
and an icon on the desktop. Figure 10-7 shows that both options are checked.

When you click OK, Silverlight creates a Start menu item and adds the application
to the desktop, as shown in Figure 10-8. When you start the application, it will run in a
window rather than the browser.

‘fou are instaling SilverlightDemoCS Application from
http:/ /localhost

Please confirm the locations For the shorteuts,

Start menu

More Information Ok] [Cancel]

Figure 10-7 Choosing OOB deployment options

Chapter 10: Designing Silverlight Applications 297

L= SilverlightDemoCS Application - localhost @

Figure 10-8 Executing an OOB application

Deploying Silverlight Applications
You can deploy a Silverlight application to a Web site, as you would an ASPNET MVC
application. However, you’ll need to ensure the MIME type and policy is in place to
ensure the application will run outside of your development environment.
If you’re running IIS 7, Silverlight will already be set up. However, if you’re
deploying to an IIS 6 server, you must set the MIME type for *.xap files to application/
x-silverlight-app as described in the following steps:

1. Open Administrative Tools | Internet Information Services (IIS) Manager.

2. Under Web Sites, in IIS, right-click on the Web site for your Silverlight application and
select Properties.

3. Click the HTTP Headers tab, click MIME Types, and click New.
4. Type .xap as the Extension and application/x-silverlight-app as the MIME type.

Click OK three times to close all windows and close IIS.
Additionally, you must have a policy file in the root folder of your Web site. There
are two types of policy files you can use: crossdomain.xml or clientaccesspolicy.xml.

298

Microsoft Visual Studio 2010: A Beginner's Guide

The crossdomain.xml policy was created for Adobe Flash applications and can be used
with Silverlight applications too. Here’s an example:

<!DOCTYPE cross-domain-policy

SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policys>

<allow-access-from domain="*" />

<allow-http-request-headers-from domain="*" headers="*" />
</cross-domain-policy>

When designing Silverlight, Microsoft recognized that the crossdomain.xml
file wasn’t flexible enough and added support for another type of policy called
clientaccesspolicy.xml. Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<access-policys
<cross-domain-access>
<policys>
<allow-from http-methods="*">"
<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

This clientaccesspolicy.xml listing allows all domains to access all site content that
isn’t already secured by other means. You can restrict access by replacing the * in the
domain uri with an allowable domain. Further, you can replace the resource path with a
path on the site to restrict access to specific folders. Add more policy elements to this file
to add more domains and paths.

Summary

This chapter explains how to run a Silverlight application. You learned how to use the
MediaElement control and how to build Uls using the same techniques as in WPF. The
OOB functionality allows you to run Silverlight from your desktop. A section describes
deploying the Silverlight application to a Web server.

We’ve discussed a couple Web technologies already: ASPNET MVC in Chapter 9 and
Silverlight in this chapter. The next chapter shows you another Web technology: WCF
Web services.

Chapter 11

Deploying Web
Services with WCF

299

300 Microsoft Visual Studio 2010: A Beginner's Guide

Key Skills & Concepts

Create a Web Service
Deploy a Web Service

Write a Client That Consumes the Web Service

Wndows Communication Foundation (WCF) is a .NET technology for creating Web
services. A Web service is software that provides functionality that can be used by
any other software application, using any programming language, on any hardware and
operating system that can communicate over a network.

The functionality of Web services can be either public or private. Examples of public
Web services might be a weather service where you provide the location and you get back
a forecast data that you can display on your screen or an address verification application
that will validate if a postal address exists or suggest alternatives. Examples of private
Web services might be the ability for multiple applications in a large corporation to call a
customer Web service with a customer ID and receive that customer’s record, or perhaps
an ordering system where you can submit a new customer order and the Web service
would process the submission in the background for you.

What’s common about all of the examples in the preceding paragraph is that, regardless
of public or private, the Web service is useful for more than one application or system.
Everyone needs the same service from the Web service, so why should each application
re-invent the wheel every time? Just set up one service and everyone can work with that
one service.

You must be wondering how such a broad claim can be made that one technology is
accessible by any system regardless of platform, language, or software. The Web service
is separated from the calling system via open standards and a well-defined interface. There
are ubiquitous communications protocols, such as HTTP, and data format standards, such
as XML, that Web services can use. So, if both systems that communicate use Hypertext
Transfer Protocol (HTTP) and XML in the same way, then the Web service can be useful.
For example, if an application were built on a Sun workstation running Solaris, saving
data in an Oracle database, and written in Java, it could still communicate with your WCF
service, which is on an Intel-based server, running Windows 2008, saving data in SQL
Server, and written in VB. It doesn’t matter because the Java system will translate its

Chapter 11: Deploying Web Services with VWCF 301

call into XML and send the XML data via HTTP to the WCF service. The WCF service
understands the XML because it was the WCF service that told the Java application what
format to put the XML into. If you’re curious about the format, it’s called Web Service
Description Language (WSDL), which is a contract (or interface) that tells callers how
to package the XML and what operations (such as GetWeather) can be called on the Web
service. There’s more that the WSDL does behind the scenes, but the primary point to
make is that clients, such as the Java app, use the WSDL to package their XML and send
it to the WCEF service. The service translates the XML into a call to a method, runs the
method, packages the results back into XML (as defined by the WSDL), and sends the
results back to the Java application. Essentially, a WCF service uses open standards so that
any other system can use those same open standards to communicate.

This chapter will show you how VS helps you create WCF services, how to create
a client that communicates with a WCF service, and how to deploy WCF services. The
deployment information in this chapter is also useful to know for other types of Web
applications, such as ASPNET MVC and Silverlight. Let’s start off with creating a WCF
project.

Starting a WCF Project

To create a new WCF project, press CTRL-SHIFT-N to start a new project, and then select
WCEF Service Library, name the project WefDemo, and set the location to anywhere
you want the project to reside in the file system. This will produce a project similar to
Figure 11-1.

Solution Explorer |
2l
G Solution "WefDemao' (L project)
4 [WcfDemoCS |
[> [=d Properties
> [« References
= App.config
& IServicel.cs
] Servicel.cs

@ Solution Explorer [eglleler s

Figure 11-1 A WCF Service Library project

302 Microsoft Visual Studio 2010: A Beginner’s Guide

The WCEF Service Library starts with two files with default names of IServicel.cs
(IServicel.vb for VB) and Servicel.cs (Servicel.vb for VB), which contain an interface
and a class that implements that interface. If you need to brush up on interfaces, review
Chapter 4 because an interface is an integral part of WCF development.

Specifying a Contract with WCF Interfaces

The IServicel.cs (IServicel.vb in VB) class in Figure 11-1 contains an interface.

As you learned in Chapter 4, interfaces define a set of members that do not have
implementations. The actual implementation will be provided by classes that implement
the interface. You can consider the interface to be a contract that guarantees a set of
operations for a service. In addition to the interface, the types associated with the service
are part of the service contract. The contract is important because when you write code
that uses the Web service, it is the contract that your code will see and everything that is
not in the contract will not be visible. Any application wishing to use a Web service will
make calls to the Web service based on what is specified in the contract. In this section,
you’ll see how to define a WCF contract with an interface, built-in types, and custom
types. Later sections will show how to implement and consume the contract, bringing
the importance of the contract full circle so that you can see how the contract is defined,
implemented, and consumed.

Examining the VS-Generated Contract

You really don’t want to work with an interface named IServicel; it doesn’t mean anything.
So, rename IServicel.cs to ICustomerService.cs (IServicel.vb to ICustomerService.vb for
VB), because it will be configured to manage customer records. You’ll receive a message
box for renaming the code, and you should respond affirmatively. When you open the
ICustomerService.cs file, you’ll see the same code as Listing 11-1, containing an interface
and attributes for defining the ICustomerService contract.

Listing 11-1 A WCEF service interface

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.Text;

namespace WcfDemoCS

Chapter 11: Deploying Web Services with WCF

// NOTE: You can use the "Rename" command on the
// "Refactor" menu to change the interface name
// "IServicel" in both code and config file together.
[ServiceContract]
public interface ICustomerService
{
[OperationContract]
string GetData (int wvalue) ;

[OperationContract]
CompositeType GetDataUsingDataContract
(CompositeType composite) ;

// TODO: Add your service operations here

// Use a data contract as illustrated in the sample
// below to add composite types to service operations
[DataContract]

public class CompositeType

{

bool boolValue = true;
string stringValue = "Hello ";
[DataMember]

public bool BoolValue

{

get { return boolvalue; }
set { boolvalue = value; }

[DataMember]
public string StringValue

{

get { return stringvalue; }
set { stringValue = value; }

VB:

NOTE: You can use the "Rename" command on the
context menu to change the interface name "IServicel"
in both code and config file together.

<ServiceContract () >

303

304 Microsoft Visual Studio 2010: A Beginner's Guide

Public Interface ICustomerService

<OperationContract () >
Function GetData (ByVal value As Integer) As String

<OperationContract () >
Function GetDataUsingDataContract (

ByVal composite As CompositeType) As CompositeType
' TODO: Add your service operations here

End Interface

' Use a data contract as illustrated in the sample below
' to add composite types to service operations

<DataContract () >
Public Class CompositeType

<DataMember () >
Public Property BoolValue () As Boolean

<DataMember () >
Public Property StringValue() As String

End Class

There are two types in Listing 11-1: ICustomerService and CompositeType. Both of
these types were generated by VS to provide an example of how you can define a service
contract. After explaining the default code, we’ll modify the code to make it usable for
working with Customer objects.

Starting with the /CustomerService interface, the two most important parts of the code are
the ServiceContract and OperationContract attributes. The ServiceContract attribute states
that this interface defines a contract for a WCF Web service. Without the ServiceContract
attribute, this interface won’t be recognized by WCFE. The OperationContract attribute
specifies methods that are exposed by the WCF service. Without the OperationContract
attribute, a method will not be visible as part of the WCF service.

A WCF service method can work with any of the built-in types for parameters or
return types, demonstrated by the GetData method that takes an int parameter and returns
a string. When working with custom types, you need additional syntax to specify what
parts of the type are part of the contract. The types are parameters and return types of the
service methods, and are part of the contract in addition to the interface.

Chapter 11: Deploying Web Services with VWCF 305

The GetDataUsingDataContract method illustrates a method that uses a custom type,
CompositeType, as a parameter and return type. Being a custom type, CompositeType has
attributes that help define its contract: DataContract and DataMember. The DataContract
attribute identifies CompositeType as a type that can be included in a WCF service contact.
Without the DataContract attribute, a type can’t be included as part of the service contract.
The DataMember attribute decorates type members that are part of the contract for this
service. Without the DataMember attribute, a type member will not be visible as part of
the contract.

Creating Your Own Contract
We won’t explicitly construct our data types for DataContracts, as shown in the
CompositeType in Listing 11-1. Instead, we’ll use a built-in capability of LINQ to SQL that
gives LINQ to SQL entities a DataContract. To use LINQ to SQL entities, create a new LINQ
to SQL item in the same project the WCF service resides in and add the Customer table to
the designer. Then click the design surface, not the Customer entity, and view properties. Set
Serialization Mode to Unidirectional, as shown in Figure 11-2.

Now, instead of creating a custom type and copying LINQ to SQL entity data into the
custom type and returning the custom type, it will be possible to perform a LINQ to SQL
query and return the LINQ to SQL entity.

Properties g |
MyShopDataContext DataContext -
Bz G el
4
Access Public
Base Class System.Data.Ling.DataConte:
Caontext Mamespace
Entity Mamespace
Inheritance Modifier (Mone)
Mame MyShopDataContext
Senalization Mode Unidirectional |Z|
4
> Connection MyShopConnectionString (S

Serialization Mode

Cantrols the generation of DataCaontract/DatalMember
attributes used for serialization of entities,

"'_i‘ Solution Explorer

Figure 11-2 Setting the LINQ to SQL Serialization Mode property

306 Microsoft Visual Studio 2010: A Beginner's Guide

We started customizing the contract when changing the name of IServicel to
ICustomerService, but we need to continue by defining the methods that will become
part of the CustomerService contract: GetCustomers, GetCustomer, InsertCustomer,
UpdateCustomer, and DeleteCustomer. In practice, there will be more methods you’ll
want, just to customize the contract for the special needs of your application, but these
methods depict typical scenarios you’ll frequently encounter and are representative of any
work you’ll perform. Listing 11-2 shows the modifications to ICustomerService to support
customer operations. After making the changes in Listing 2, your application won’t
compile until you implement the /CustomerService interface in the next section. Please
make the changes, if you’re following along, and keep reading until the next section.

Listing 11-2 WCF service contract implementation

C#:

[ServiceContract]
public interface ICustomerService

{

[OperationContract]
Customer GetCustomer (int custID) ;

[OperationContract]
List<Customer> GetCustomers () ;

[OperationContract]
int InsertCustomer (Customer cust) ;

[OperationContract]
void UpdateCustomer (Customer cust) ;

[OperationContract]
void DeleteCustomer (int custID) ;

VB:

<ServiceContract () >
Public Interface ICustomerService

<OperationContract () >
Function GetCustomer (ByVal custID As Integer) As Customer

<OperationContract () >
Function GetCustomers () As List (Of Customer)

Chapter 11: Deploying Web Services with WCF

<OperationContract () >

Function InsertCustomer (ByVal cust As Customer)

<OperationContract () >

Sub UpdateCustomer (ByVal cust As Customer)

End Interface

As Integer

You already know how to specify an interface, and the preceding section explained the
purpose of ServiceContract and OperationContract attributes. Listing 11-2 shows that all
you need to do is specify the methods that you want to be included as part of the contract.

There are times when you’ll need to return a custom type from a WCF service. For
example, if you need to fill in a drop-down list, all you need is a key for the value and a name
for the text. So, you can create a custom CustomerLookup class, as shown in Listing 11-3,
that specifies DataContract and DataMember attributes. Listing 11-3 demonstrates how a

custom type could be coded if you ever needed to do this.

Listing 11-3 A custom type for a WCF service contract

C#:

[DataContract]
public class CustomerLookup

{

[DataMember]
public int CustomerID { get; set; }

[DataMember]
public string CustomerName { get; set; }

VB:

<DataContract () >
Public Class CustomerLookup

<DataMember () >
Public Property CustomerID() As Integer

<DataMember () >
Public Property CustomerName () As String

End Class

307

308 Microsoft Visual Studio 2010: A Beginner's Guide

Using a custom type for the purpose of lookup controls at the UI level, such as
the CustomerLookup class in Listing 11-3, opens the potential to only communicate
information that is necessary, rather than an entire object where all of the data isn’t being
used. Considering the potential slowness of network communication, limiting the amount
of information transmitted between the Web service and your application can increase the
performance of your application.

Now that you have a contract in place, the next step is writing a class that implements
that contract.

Implementing Logic with WCF Classes

The contract created in the preceding section was important because it specifies what must
be implemented. As you know, interfaces only specify members, which are the contract,
but you must write a class that contains code that implements the interface. This section
will implement the /CustomerService interface with a class named CustomerService.

The first thing you should do is rename the Servicel.cs (Servicel.vb in VB) file to
CustomerService.cs (CustomerService.vb in VB) and click Yes when VS asks if you
want to change the code. Listing 11-4 shows what VS generates as a WCF service class,
with the rename applied to the class.

Listing 11-4 Default WCF service implementation class

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.Text;

namespace WcfDemoCS
// NOTE: You can use the "Rename" command on the
// "Refactor" menu to change the class name "Servicel"
// in both code and config file together.
public class CustomerService : ICustomerService

{

public string GetData (int value)

{
}

return string.Format ("You entered: {0}", value);

Chapter 11: Deploying Web Services with WCF

public CompositeType GetDataUsingDataContract (
CompositeType composite)

if (composite == null)

{

throw new ArgumentNullException ("composite") ;
if (composite.BoolValue)

composite.StringValue += "Suffix";

}

return composite;

VB:

' NOTE: You can use the "Rename" command on the
' context menu to change the class name "Servicel"
' in both code and config file together.
Public Class Servicel
Implements ICustomerService

Public Function GetData (

ByVal value As Integer) As String

Implements ICustomerService.GetData

Return String.Format ("You entered: {0}", value)
End Function

Public Function GetDataUsingDataContract (
ByVal composite As CompositeType) As CompositeType
Implements ICustomerService.GetDataUsingDataContract
If composite Is Nothing Then
Throw New ArgumentNullException ("composite")
End If
If composite.BoolValue Then
composite.StringValue &= "Suffix"
End If
Return composite
End Function

End Class

309

310 Microsoft Visual Studio 2010: A Beginner’s Guide

The methods of the CustomerService class in Listing 11-4 show skeleton implementations
of the ICustomerService interface. As you know, Listing 11-2 provided new methods to
the ICustomerService interface, so the code in Listing 11-4 will not compile because it
doesn’t implement the /CustomerService methods. To fix this problem, delete the GetData
and GetDataUsingDataContract methods from the CustomerService class. Then select the
ICustomerService identifier in the CustomerService.cs file, which will display an underline
on the left of the ICustomerService identifier. Hover over that underline to open a menu with
an option to implement the /CustomerService interface, which will generate skeleton code
for each member of the ICustomerService interface inside of the CustomerService class. The
default method implementations throw a NotlmplementedException exception, meaning
that you need to write the code to implement those methods based on the ICustomerService
interface. Listing 11-5 shows the implementation of the /CustomerService interface in
the CustomerService class. If using C#, add the code to each method. If using VB, which
doesn’t have the same interface refactoring support as C#, add all methods and code to the
CustomerService class as specified in Listing 11-5.

Listing 11-5 A WCEF service implementation

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.Text;

namespace WcfDemoCS

{

public class CustomerService : ICustomerService

{

public Customer GetCustomer (int custID)

{

var ctx = new MyShopDataContext () ;

var customer =
(from cust in ctx.Customers
where cust.CustomerID == custID
select cust)
.SingleOrDefault () ;

Chapter 11: Deploying Web Services with WCF

return customer;

public List<Customer> GetCustomers ()

{

var ctx = new MyShopDataContext () ;

return
(from cust in ctx.Customers
select cust)
.ToList () ;

public int InsertCustomer (Customer cust)

{

var ctx = new MyShopDataContext () ;
ctx.Customers.InsertOnSubmit (cust) ;
ctx.SubmitChanges () ;

return cust.CustomerlID;

public void UpdateCustomer (Customer cust)

{

var ctx = new MyShopDataContext () ;

var customer =
(from cst in ctx.Customers
where cst.CustomerID == cust.CustomerID
select cst)
.SingleOrDefault () ;

if (customer != null)
customer.Age = cust.Age;
customer.Birthday = cust.Birthday;
customer.Income = cust.Income;
customer.Name = cust.Name;

ctx.SubmitChanges () ;

311

312 Microsoft Visual Studio 2010: A Beginner’s Guide

public void DeleteCustomer (int custID)

var ctx = new MyShopDataContext () ;

var customer =
(from cst in ctx.Customers
where cst.CustomerID == custID
select cst)
.SingleOrDefault () ;

if (customer != null)

{

ctx.Customers.DeleteOnSubmit (customer) ;

ctx.SubmitChanges () ;

VB:

' NOTE: You can use the "Rename" command on the context
' menu to change the class name "Servicel" in both code
' and config file together.
Public Class CustomerService

Implements ICustomerService

Public Function GetCustomer (ByVal custID As Integer) As Customer
Implements ICustomerService.GetCustomer

Dim ctx As New MyShopDataContext
Dim customer =
(From cust In ctx.Customers
Where cust.CustomerID = custID
Select cust) .SingleOrDefault ()

Return customer

End Function

Public Function GetCustomers () As List (Of Customer) Implements
ICustomerService.GetCustomers

Dim ctx As New MyShopDataContext

Chapter 11: Deploying Web Services with VWCF 313

Return (From cust In ctx.Customers
Select cust) .TolList ()

End Function

Public Function InsertCustomer (ByVal cust As Customer) As Integer
Implements ICustomerService.InsertCustomer
Dim ctx = New MyShopDataContext

ctx.Customers.InsertOnSubmit (cust)
ctx.SubmitChanges ()
Return cust.CustomerID

End Function

Public Sub UpdateCustomer (ByVal cust As Customer)
Implements ICustomerService.UpdateCustomer
Dim ctx As New MyShopDataContext
Dim customer = (From cst In ctx.Customers

Where cst.CustomerID = cust.CustomerID
Select cst) .SingleOrDefault ()

If Not (customer Is Nothing) Then
With customer
.Age = cust.Age
.Birthday = cust.Birthday
.Income = cust.Income
.Name = cust.Name
End With
ctx.SubmitChanges ()
End If
End Sub
Public Sub DeleteCustomer (ByVal custID As Integer)

Dim ctx As New MyShopDataContext

Dim customer = (From cst In ctx.Customers

314

Microsoft Visual Studio 2010: A Beginner's Guide

Where cst.CustomerID = custID
Select cst) .SingleOrDefault ()

If Not (customer Is Nothing) Then
ctx.Customers.DeleteOnSubmit (customer)
ctx.SubmitChanges ()

End If

End Sub

End Class

The implementation of CustomerService is similar to what you’ve seen in previous
chapters. The difference is that the implementation is in a Web service, which must be
consumed differently. We’ll soon get to the section of this chapter that shows how to
consume a Web service, but you must understand that a Web service is a component that
you communicate with over a network. In previous chapters, you’ve seen code that works
with data integrated with application code. However, Web services must be hosted by a
server, such as Internet Information Services (IIS), and consuming code must connect and
communicate through calls to IIS. The next section points you in the right direction about
hosting a Web service in IIS.

Hosting a WCF Service

The VS development environment will automatically host your service, but eventually
you’ll need to deploy your service to Internet Information Services (IIS), which is the Web
server that hosts .NET applications. The instructions included in this section are general
guidance on how the deployment process works. It is very likely that subsequent operating
system patches and service packs could change the results for you. It is also possible

that the particular operating system and IIS configuration on your computer is different.
Additionally, the behavior of software on other operating systems, such as Windows
Server 2003 and Windows Server 2008, can differ in subtle, but significant, ways. As

such problems are unrelated to VS itself, you should consult your operating system
documentation on how to properly configure IIS and operating system security. Although
operating system behavior is not a function of VS, the guidance below is intended to point
you in the right direction.

Chapter 11: Deploying Web Services with WCF

Following General Hosting Procedures
For better security, IIS doesn’t install with the default installation of the Windows OS.
There are different versions of Windows for desktop and server, so I’ll provide a general
description of what you need to do for installing IIS. The first step is to find the Control
Panel in the Windows Operating System (OS). Older Windows versions have a link for
Add And Remove Programs, but newer versions call the link Programs And Features,
which you need to open. Server OS versions have a control panel you can use to install
IIS. Next, search for a link for adding and removing Windows Components (or Windows
Features) and click that link. Find IIS and install it and remember to turn on File Transfer
Protocol (FTP) support if you want to deploy using FTP. FTP is an Internet protocol
that allows you to work with files; it is useful in deployment because it allows moving
files from one server to another. You’ll need to enable ASP.NET on newer versions of
Windows, which I'll explain how to do in a later section.

Once IIS is installed, you can host your application. On desktop versions of Windows,
IIS 6 only supports a single Web site, but you can add multiple Web sites to any server OS
or IIS 7 and later. To create the Web site, you’ll need to either create a virtual directory
(in the case of desktop versions of IIS 6) or a Web application. You can do this by
opening IIS, which you can find via the Administrative Tools menu; you can often find
the Administrative Tools menu from the Control Panel. Find Web Sites, right-click, and
select Create New Web Application. If you’re using IIS 6 on a desktop, you’ll need to go
down an additional level, right-click Default Web Site, and select Create Virtual Directory.
Don’t change any of the default values while stepping through the wizard, but you will
need to specify a name for the virtual directory or site name and the physical path. The
virtual directory/site name is the location that a user would add to the address bar. The
physical path is the location in your file system that you want the application to reside in.
This location defaults to c:\inetpub, assuming that your OS is deployed to the c: drive.

Installing 1IS 7 on Windows 7

The following is a walk-through for setting up IIS 7 on Windows 7.

1. Select Start | Control Panel | Programs And Features, which will display the Uninstall
Or Change A Program window, shown in Figure 11-3.

2. Click the “Turn Windows features on or oft” link, which will display the Windows
Features window, shown in Figure 11-4.

315

316 Microsoft Visual Studio 2010: A Beginner's Guide

S,k

Control Panel Home

< All Control Panelltems » Programs and Features - | +y | | Search Programs and Features pe |

Uninstall or change a program

View installed updates To uninstall a program, select it from the list and then click Uninstall, Change, or Repair.

@ Turn Windows features on or

off

Organize v = - @
Mame ° Publisher Installed | =
@ Dotfuscator Software Services - Community Edition PreEmptive Solutions 10/21/200
@ Microsoft MET Framewark 4 Client Profile Beta 2 Microsoft Corporation 10/20/204
@ Microsoft .MET Framewaork 4 Extended Beta 2 Microsoft Corporation 10/20/20(
[Microsoft .NET Framework 4 Multi-Targeting Pack Micrasoft Corporation 10/20/20(
ﬁ Micrasoft ASP.MNET MVC 2 Micrasoft Corporation 10/21/20(
ﬂ Microsoft ASP.NET MVC 2 - Visual Studio 2010 Tools Microsoft Corparation 10/20/200
ﬂ Microsoft Help 3.0 Beta 2 Microsoft Corporation 10/21/201
w Microsoft Silverlight Microsoft Corporation 107217200
& Micrasoft Silverlight 3 SDK Micrasoft Corporation 10/21/200
E Micrasoft SQL Server 2008 Micrasoft Corporation L0/20/20(
E Microsoft SQL Server 2008 Browser Micrasoft Corporation 10/21/201
E Microsoft SOL Server 2008 Mative Client Microsoft Corporation 10/21/201
B Microsoft SOL Server 2008 R2 Data-Tier Application F... Microsoft Corporation 107217200
B Microsoft SOL Server 2008 R2 Data-Tier Application P... Microsoft Corporation 107217200 B

= e fo e Annn me T e

4 m

36 programs installed

Currently installed programs Total size: 477 MB

b

Figure 11-3 The Uninstall Or Change A Program window

Turn Windows features on or off @

To turn a feature on, select its check box. To turn a feature off, clear its
check box A filled box means that only part of the feature is turned on.

1! Indexing Service -
j_, Internet Explarer &
amd
| FTP Server
[|| Web Management Toals
= [0} World Wide Web Services
] . Application Development Features
[H |, Common HTTP Features
[H] || Health and Diagnestics
] . Performance Features
' Security
L Ante = a

Figure 11-4 The Windows Features window

Chapter 11: Deploying Web Services with WCF 317

Order of Installations Matter

ASP.NET and WCF Web Services are hosted in IIS and require special configuration to
allow hosting by IIS. Therefore, it’s helpful if IIS is installed before VS is installed. VS
will install all of the ASP.NET and WCF Service settings if IIS is installed. If you install
IIS after VS is installed, you can still set up ASPNET and WCF Service settings with
the following commands; first ASP.NET:

"%windir%\Microsoft. NET\Framework\v4.0.21006\aspnet_regiis.exe" —i —enable
and then WCEF Services (all on one line):
"%WINDIR %\Microsoft.Net\Framework\v3.0\Windows Communication

Foundation\ServiceModelReg.exe" —r

The actual directory name for the aspnet_regiis.exe file might be different because
the v4.x.x.x will change in the future, so you might need to open Windows Explorer and
search for the actual directory name yourself.

3. This example enables FTP, which is one of the ways you can deploy a Web site. Ensure
the option for “Ensure IIS Metabase and IIS 6 configuration compatibility,” under
the IIS 6 Management Compatibility branch, is selected. When you click OK, the IIS
server will be installed.

Creating a Web Site on lIS 7 on Windows 7

Next, you’ll need to create a Web site on IIS 7 on Windows 7 by following these steps:

1. Select Start | Control Panel | Administrative Tools, which will display the Administrative
Tools window, shown in Figure 11-5.

2. Double-click Internet Information Services (IIS) Manager to display the Internet
Information Services (IIS) Manager window, shown in Figure 11-6.

Microsoft Visual Studio 2010: A Beginner's Guide

G‘j Metwork

-

™

15 items

4

v|- < All Control Panelltems » Administrative Tools - | +y | | Search Admini pe |
Organize * =~ 0 @
S Eavorites [Mame . Date modified Type Size

B Desktop (2] Companent Services 1/13/2009 10:46 PM Shorteut
& Downloads 2 Computer Management 7/13/2009 10:4LPM Shorteut
‘&l Recent Places Data Sources (ODBC) 7/13/2009 10:4LPM Shartcut
(@] Event Viewer 7/13/2009 10:42 PM - Shortcut
5 Libraries ﬁ Internet Information Services (IS) Manager L11/22/2000 234 P Shorteut
(£ Documents {2, iSCSI Initiator 7/13/2000 10:4LPM Shortcut
& Music [#h Local Security Policy 9/15/2000 9:21 PM Shortcut
[E] Pictures @ Performance Monitor 7/13/2000 10:ALPM Shorteut
B videos & Print Management 9/15/2009 9:21PM Shartcut
Eb Services 7/13/2009 10:4LPM - Shortcut
) Homegroup [System Configuration 7/13/2000 10:4L PN Shorkcut
@ Task Scheduler 7/13/2009 10:42 PN Shortcut
. Computer @ Windows Firewall with Advanced Security T/13/2009 1:4LPM Shortcut
&, Local Disk (C) Windows Memary Diagnestic 7/13/2000 10:4LPM Shorteut
@l DVD Drive (D) GRMCULFRER_El (& Windows PowerShell Modules 7/13/2009 1052 PM Shorteut

{LLI

Figure 11-5 The Administrative Tools window

3. Right-click Sites and select Add Web Site, or click the Add Web Site link on the
Actions panel to show the Add Web Site window, shown in Figure 11-7.

4. Give the Web site a name and specify the physical location. As shown in Figure 11-7,
the name of the site is WcfDemo and the site will be physically located at c:\WebSites\
WcfDemo. Notice that the Port in the Binding section is set to 8080. The default for a
Web site port is 80, but you can have only a single site with that port. Alternatively, you

could change the host name and keep port 80. In this case, we decided to set the port to

8080 so that the addresses of the Web sites don’t overlap. Use a different port number if

8080 is already used on your system. Clicking OK will create the Web site.

Chapter 11: Deploying Web Services with WCF

w [» CHICAGO » Sites » |6 = @ -
Eile View Help
_ Sites _w
Lall % @ AddWeb Site...
4 'aﬂ CHICAGO {Chicago'Joe) Filter: Set Web Site Defaults...
o @ A_pphl:atlol‘i Pools — H # Add TP Site...
1 18] Sites| Mame j (1} St N N
I Set FTP Site Defaults...
& Default Web Site 1 si
e Help
Online Help
] [T r
[Fetures view 2, Content view
Ready Q.

Figure 11-6 The IIS Manager window

5. Ensure that the WcfDemo Web site is selected in IIS Manager and click the Add FTP
Publishing link on the Actions pane, which is on the right side of IIS Manager. You’ll
see the Binding And SSL Settings window, shown in Figure 11-8.

6. Accept the defaults on the Binding And SSL Settings window and click Next to show
the Authentication And Authorization window, shown in Figure 11-9.

7. Set options on the Authentication And Authorization window according to who you
want to be able to access this Web site. Anonymous allows anyone to access the site
and is less secure. A more secure option would be to restrict access to specified users or
groups that you trust. Basic authorization shows a login screen when someone connects
to the FTP site. Clicking Finish will enable this site for FTP access.

319

320 Microsoft Visual Studio 2010: A Beginner's Guide

Add Web Site [~ 2|3
Site name: Application poal

Wcﬂjemo WecfDemo

Content Directory
Physical path:

C\WebSites' WcfDemo E

Pass-through authentication

’ Connect as... l ’ Test Settings...

Binding
Type: IP address: Part:
http [All Unassigned - 8[]80|
Host name:

Example: www.contoso.com or marketing.contoso.com

Start Web site immediately

0K l l Cancel

Figure 11-7 The Add Web Site window

8. In IIS Manager, select Application Pools. An application pool is a process that you
can assign Web sites to. This gives Web sites protection from each other because if
one process crashes, it doesn’t bring down Web sites in other processes. IIS created
an application pool for your Web site with the same name when creating it previously.
Double-click the application pool named after your Web site and set its .NET
Framework version to v4. The exact version number could vary in the future, so you
want to ensure it’s the same .NET Framework version number that you build your
application with in VS.

Once your Web site is set up, you can deploy, which is discussed next.

Chapter 11: Deploying Web Services with WCF 321

Add FTP Site Publishing o ==
@ Binding and SSL Settings

Binding

IP Address: Port:

AllUnassigned 7] [

[T Enable Virtual Host Mames:

Yirtual Host {example: ftp.contoso.com]

Start FTP site automatically
SsL
) Mo SSL
) Allow SSL
@ Require S5L
S5L Certificate:
Mot Selected v] View

Figure 11-8 The Binding And SSL Settings window

Deploying the WCF Service to IIS

If you want to run the WCF service in VS, you don’t have to do anything because VS
already set the project up to run with a built-in server. The discussion in this section is
intended to help you deploy to IIS on a Windows 2008 server. If you just want to run the
Web service in VS, you can skip this section for now and move to the next section on how
to build a client that communicates with the Web service. Then return to this section when
you’re actually ready to deploy to IIS.

To deploy a Web service project, you’ll need to obtain the address of the Web site,
modify the project configuration file, and use the VS Publish tool.

322

Microsoft Visual Studio 2010: A Beginner's Guide

Add FTP Site Publishing [~ 8| (3]

@ Authentication and Authorization Information

Authentication

[] Ananymous
Basic

Authorization

Allow access to:

Specified users n

jmaya

Permissions

Read
Write

Mext [Finish l ’ Cancel

Figure 11-9 The Authentication And Authorization window

TIP

You must run VS as Administrator to publish. To do this, close VS (if running), locate the
VS Start menu item (don’t click yet), right-click, and select Run As Administrator.

The technique used in the preceding section to create a Web site distinguished the Web
site by making it run on port 8080. Although the Web site is named WcfDemo, it’s located
on the local machine, whose domain is localhost. If you deployed the Web service to a site
that already had a domain, you would use that domain name. For example, the domain for
the C# Station community site is csharp-station.com, which is addressed as http://www.
csharp-station.com. Each Web service at a location is addressed by a *.svc file name and
the name that VS creates is called WcfDemoCS.CustomerService.svc. Putting the pieces
of WcfDemo site together results in an address of http://localhost:8080/WcfDemoCS.
CustomerService.svc.

http://www.csharp-station.com
http://www.csharp-station.com

Chapter 11: Deploying Web Services with VWCF 323

When you create a new WCEF Service project, VS adds a file named app.config to
the project, which is a file that belongs only to VS. The app.config file is never deployed
with your Web service, but it generates a file named web.config, which is deployed
with the project. In WPF projects, VS uses the app.config file to generate a file named
projectname.exe.config in the same folder as the projectname.exe file. WCF Service
projects don’t generate a config file in the output folder, but they do generate a web.config
file when you deploy. You’ll see web.config soon, after deployment.

During development, you work with the app.config file, which is easy to find and
open in your project. The app.config file has a lot of information in it, so Listing 11-6 is a
small excerpt that shows you the salient elements of the WCF configuration.

Listing 11-6 The WCF service address in app.config

<?xml version="1.0" encoding="utf-8" ?>
<configurations>

<system.serviceModel>
<bindings>

</bindings>
<client />
<services>
<gservice name="WcfDemoCS.CustomerService">

<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
<host>
<baseAddresses>
<add baseAddress=
"http://localhost:8732/Design Time Addresses
/WcfDemoCS/CustomerService/" />
</baseAddresses>
</host>
</services
</servicess>

</system.serviceModel >

</configurations>

324 Microsoft Visual Studio 2010: A Beginner’s Guide

Following the path in Listing 11-6—configuration, system.serviceModel, services,
service, host, and baseAddresses—you’ll find a baseAddress element in bold. The
baseAddress in Listing 11-6 is split into two lines to fit the book, but remember to combine
it into a single line. The baseAddress is declaring that applications can communicate
with this service via this address. This is a VS development Web server address that
was generated for this WCF service. Previously, you saw how we figured out what the
deployment address of this application should be. Therefore, when you deploy, comment
out the development address and replace it with the deployment address, like this:

<baseAddresses>
<!--<add baseAddress=
"http://localhost:8732/Design Time Addresses/WcfDemoCS/Servicel/" />-->
<add baseAddress=" http://localhost:8080/WcfDemoCS.CustomerService
.sve " />
</baseAddresses>

The <!-- and --> are comment delimiters, and anything in between them won’t be
interpreted as part of the configuration. Notice how the deployment address is used
(uncommented) as the base address. After deployment, you can comment the deployment
address and uncomment the development address so that you can continue working with
the WCF service with the VS Web server.

In addition to the baseAddress, you need to ensure your database connection is
updated for the deployment environment. In the development environment, the default
DB connection string defaults to using Integrated Security = true as login credentials,
which uses the identity of the currently logged-in user. The result in the deployment
environment is that the application will run as the identity of the application pool the
Web site is assigned to. The problem with this is that the application pool doesn’t have
access to your database. The best approach is to create a user for your application only,
give that user access to your database, and then set the connection string to use the
credentials of that user.

Create a user in your Windows OS that will be used for SQL Server and then give
that user access to the database. If you’re using an Express version of SQL Server, it can
help if you download the free SQL Server Express Management Studio. Because of all the
variables that can affect setting up security, refer to SQL Server documentation for more
guidance. This chapter uses SQL authentication, so go ahead and create a Windows or
SQL user for the MyShop database.

Chapter 11: Deploying Web Services with VWCF 325

With the user account set up for the database, update the app.config file of the service

to use the credentials of that user account, like this. For best security, please remember to
change the password:

<add name=

"WcfDemoCS. Properties.Settings.MyShopConnectionString"
connectionString=

"Data Source=.\sqglexpress;Initial Catalog=MyShop;
User ID=MyUserAccount;Password=G7b@H8m2a%$1M6éy;Pooling=False"
providerName="System.Data.SglClient" />

To deploy, right-click the Web Services project, WcfDemo, and click Publish, which
will display the Publish WCF Service window shown in Figure 11-10.

In the Publish WCF Service window, set the Target Location to the address where the
WCEF Service is deployed. You saw how to figure out the address earlier in this section.
You can choose to either replace only matching files or delete all files in the deployment
location. You normally only want to copy files needed to run this application because the
deployment will be quicker with fewer files and possibly more secure by only deploying
what is necessary. The check box for Include Files From The App_Data Folder is disabled
because there isn’t an App_Data folder in the WCF Service project. However, this same
tool is used to deploy an ASP.NET Web site, which might have an App_Data folder.

Publish WCF Service 7 =)

Where do you want to publish WcfDemoC5?

Target location (http:, ftp:, or disk path)

Ml

@ Replace matching files with local copies

() Delete all existing files prior to publish

Capy

@ Only files needed to run this application
() All project files
() All files in the source project folder

Include files from the App_Data folder

[Publish I Cancel

Figure 11-10 The Publish WCF Service window

326 Microsoft Visual Studio 2010: A Beginner's Guide

Normally, you don’t want to deploy the App_Data folder because it might hold a database
file that is huge and would slow down your application considerably. Of course, if you
have SQL Server Express installed at the deployment location and need the database in
App_Data to be deployed, check this box to include the database in the deployment. Click
Publish to deploy your service.

When deployment is complete, you’ll see a message on the VS status bar stating either
Publish Succeeded or Publish Failed. If publishing fails, open the Output window, CTRL-W,
0, to see the reason why. There are many reasons a deployment can fail, so look at the
error message to see if it’s something that makes sense to you. Verify that your Web site
is properly set up, as explained in the preceding section. Other sources of information
include the Microsoft Developer Network (MSDN), at http://msdn.microsoft.com, where
you can search for Knowledge Base support articles. Alternatively, you can copy the error
message and paste it into your favorite search engine. Many problems with deployment
surround IIS setup, so it is worthwhile to learn more about how IIS works. McGraw-Hill
offers Windows Server 2008: A Beginner’s Guide, by Marty Matthews (2008), which
does include IIS 7 information. There’s also a Windows Server 2003 edition if you are
deploying to IIS 6.

Now that you know how to develop and deploy a WCEF service, you’ll need to know
how to write programs that use that service, which is covered next.

Communicating with a WCF Service

Any .NET application can communicate with a Web service. In fact, one of the benefits of
having a Web service is to expose functionality that can be used by multiple applications.

In theory, any application on any platform can communicate via Web services because the
underlying technology relies on open standards, such as HTTP and XML. In practice, the
goal of cross-platform communication is an advanced technique accomplished by architects
and engineers with detailed knowledge of the inner workings of Web services. For just
getting started, it’s sufficient to know that you can communicate with Web services with any
.NET technology. The following sections show you how to make your applications, clients,
communicate with Web services. Let’s look at the task of generally creating a reference to a
Web service first.

Creating a Service Reference

Regardless of what type of application you’re building, you create a reference to a Web
service, called a service reference, in the same way. You start off with a project, any
project type—Console, WPF, ASP.NET, or Silverlight will do. Right-click the project

http://msdn.microsoft.com

Chapter 11: Deploying Web Services with WCF 327

-:A.'l:l'ru:icé'emnce

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:
http://localhost:8732/Desig

n_Time_Addresses/WcfDemoCS/Service 1/mexy] - | Go | Discover |v

Services: Operations:
4 (@4 Design_Time_Addresses/WefDemoC5/ServiceL/mex || =& DeleteCustomer
4 | CustomerService =@ GetCustomer
|¢: O ICustomerService | = GetCustomers

“@InsertCustomer
=@ UpdateCustorner

1 service(s) found at address "http://localhost:3732/Design_Time_Addresses/WcfDemaoCS/Service l/mex’,

Namespace:

CustomerService

[QK] l Cancel

Figure 11-11 The Add Service Reference window

and select Add Service Reference. You’ll see the Add Service Reference window,
shown in Figure 11-11.

As you may recall from previous discussion in this chapter, we spent some time on
setting up a Web service and configuring the Web service address. Now the address comes
into focus because it is where the Web service is deployed—you type it into the Address
box in the Add Service Reference window, shown in Figure 11-11. If you are using the
Web server built into VS to use a Web service project in the same solution, it is convenient
to click the Discover button, which will give you a list of Web services in the same
solution as the project you are adding the service reference to. The address in Figure 11-11
is different from what you’ll see on your computer because the project name, port number,
and service name will be different.

If you need to use a deployed Web service, you would put the address of the deployed Web
service in the Address box. For example, earlier in this chapter you saw how we deployed
a Web service to the local IIS server and that to use that deployed Web service you would

328 Microsoft Visual Studio 2010: A Beginner’s Guide

put http://localhost:8080/WcfDemo.CustomerService.svc into the Address box. In the
deployed service, the service name might not be WcfDemo.CustomerService.sve as shown

in this demo. To find out what the real service name file should be, navigate to the physical
directory where the service was deployed to and use the file name of the *.svc file. Sometimes,
you’ll need to use Web services by third parties or another organization in your company. In
those cases, you’ll get the address to use from a person in the other organization or read their
documentation to learn what address to use. If you add your own address, click Go to get more
information on the Web service.

After either clicking Discover or adding an address and clicking Go, you’ll have
one or more services in the Services list. At this point, if you receive an error, it will be
because the address is incorrect, the service is experiencing an outage, or (in the case
of referencing a service in your own project) the service won’t compile. First check the
address if you entered it yourself. If you are referencing a project in your solution, go back
and recompile the Web Service project to make sure it builds, fix any problems, and try
to create the service reference again. Once you’ve ensured that you’ve corrected all the
problems on your side of the wire, contact whoever owns the Web service to troubleshoot
the problem.

When a Web service can be communicated with successfully, you’ll see the list
of services. You can drill down on each service until you find the interface for the
service you’re interested in. In Figure 11-11, the ICustomerService is selected, which
displays all available operations. Looking back at the previous discussion of creating
the CustomerService, you can see the interface that was created and the methods. If you
don’t see an interface or a method, check the attributes in the code to ensure the interface
has a ServiceContract attribute and that any methods that should be exposed have an
OperationContract attribute.

The Web service will create a proxy, which is a class that communicates with the Web
service, in your project, using the default namespace declared in the Properties for your
project. The namespace in the Add Service Reference defaults to Servicel, and you’ll want
to change that to something meaningful, such as CustomerService, as shown in Figure 11-11.
This will result in a proxy class created in MyProjectNamespace.CustomerService. This is
important to know because you will need to create an instance of the proxy and must know
the namespace that the proxy resides in. Click OK to create the service reference such as the
one shown in Figure 11-12.

As you can see in Figure 11-12, the project has a new folder, named Service References.
The CustomerService reference under ServiceReferences is named after the namespace you
specified in the Add Service Reference window.

Chapter 11: Deploying Web Services with VWCF 329

Solution Explorer *Ox
[
m Solution "WefDema' (2 projects)
4 @Customer(onsole
> [=d Properties
> [+3] References
4 [Service References
| CustomerService |
=% app.config
] Program.cs
4 [F] WciDemo(S
> [=d Properties
> [=3] References
= App.config
] CustomerService.cs
] ICustomerService.cs
b [MyShop.dbml

Figure 11-12 A new service reference in a project

Now that you have a service reference, you can use it in any .NET application. The
following section shows you how to write code to communicate with the Web service.

Coding Web Service Calls

This section will explain how to write code that communicates with a Web service. You’ll
see explanations of the individual statements required to call the Web service and then
you’ll see the entire listing of all of those statements together. The program that calls

the Web service is a Console application. You should create a new Console application
and add the code in this section inside of the Main method. If you felt like skipping

ahead before reading the explanation, you can see the entire code listing of the Console
application that calls the Web service in Listing 11-7. However, we’ll begin at the first
statement and follow until you see all of the code that’s required to call and interact with
the CustomerService Web service created in the preceding sections.

When creating a service reference, as explained in the preceding section, VS will
generate a new class, called a proxy. The proxy looks just like your Web service class
but doesn’t contain any of the same code. Instead, the proxy will translate calls from
the client and communicate with the Web service. The proxy, created after adding the
service reference in the preceding section, is named CustomerServiceClient. Remember
to add a using statement (Imports in VB) for the Web service proxy. Since the default

330 Microsoft Visual Studio 2010: A Beginner's Guide

namespace of the example code for this chapter is CustomerConsole, the namespace
of the Web service proxy is CustomerConsole. CustomerService. Here’s code that
instantiates the proxy:

C#:

var svc = new CustomerServiceClient () ;

VB:

Dim svc = New CustomerServiceClient

The proxy is named after the service reference, with Client appended to the name. As
with any other class, you instantiate the proxy, resulting in a reference to the proxy, named
svc. Using the proxy makes your code feel like everything is in the same project, but
really the proxy makes a call over HTTP, sending an XML package to the Web service.
The Web service translates the XML into a method call, executes the code for the method
call, and translates the results back into XML. Meanwhile, the proxy is waiting on the
Web service and will receive the XML response, translate that response into a .NET
object, and pass the object back to your calling code. If the method returns void instead of
a type, then there isn’t any value to return.

With the service reference, you can begin communicating with the Web service. The
following example creates a new customer record, calling the InsertCustomer method on
the Web service proxy:

C#:
var newCust = new Customer
Age = 36,
Birthday = new DateTime (1974, 8, 22),
Income = 56000m,
Name = "Venus"
var newCustID = gvc.InsertCustomer (newCust) ;
VB:

Dim newCust = New Customer

With newCust
.Age = 36
.Birthday = New DateTime (1974, 8, 22)
.Income = 56000

Chapter 11: Deploying Web Services with VWCF 331

.Name = "Venus"
End With

Dim newCustID As Integer

newCustID = gvc.InsertCustomer (newCust)

At this point, you might be wondering where the Customer type came from. As you
may recall from the previous section of the chapter that discussed custom objects, the
Customer type is a proxy type for the Customer that was defined in LINQ to SQL. Since
we set the Serialization Mode of the LINQ to SQL entity model to Unidirectional, the Web
service was able to pass the definition of the Customer with the Web service interface,
resulting in a Customer proxy.

To perform the insert operation, use the service proxy reference, svc, to pass the
instance of the Customer proxy. The following example shows how to get a specified
customer from the Web service:

C#:
Customer cust = svc.GetCustomer (newCustID) ;
VB:

Dim cust As New Customer
cust = svc.GetCustomer (newCustID)

Here, the service proxy reference is used to call GetCustomer with an ID of the requested
customer, returning an instance of the Customer proxy. The next example shows how to
update a Customer instance:

C#:

cust.Income = 49000m;

svc.UpdateCustomer (cust) ;

VB:
cust.Income = 49000
svc.UpdateCustomer (cust)

The cust reference in this example is the same reference that was created previously.
In this example, we are only changing the Income property. Next, we use the service
proxy to call the UpdateCustomer method, passing the Customer proxy reference. If you

332 Microsoft Visual Studio 2010: A Beginner’s Guide

wanted to see the changes that were made, you could call the GetCustomer method again,
like this:
C#:

Customer updatedCust = svc.GetCustomer (cust.CustomerID) ;

VB:

Dim updatedCust As Customer

updatedCust = svc.GetCustomer (cust.CustomerID)
Similarly, you can delete a Customer, as follows:

C#:

svc.DeleteCustomer (updatedCust.CustomerID) ;

VB:

svc.DeleteCustomer (updatedCust .CustomerID)

As in the previous example, we use the service proxy reference to call the DeleteCustomer
method, passing in an ID from the updated customer. The updatedCust reference was from
the previous call to GerCustomer. If you wanted to get all of the Customer records from the
Web service, you could call GetCustomers, like this:

C#:

Customer[] customers = svc.GetCustomers() ;

VB:

Dim customers As Customer ()

customers = svc.GetCustomers ()

While this is similar to other method calls in previous examples, you might notice that
the return value from GerCustomers here is an array of Customer, Customer[] (Customer()
in VB). However, the Web service defined GetCustomers as returning a List of Customer,
List<Customer> (List(Of Customer) in VB), as specified in the ICustomerService
interface in Listing 11-2 and implemented in the CustomerService class in Listing 11-5.
As you may recall, the proxy is responsible for translating the XML return value from
the Web service into an object, or collection of objects in this case. By default, the proxy
translates all collections into an array. However, you can change the return collection type
by right-clicking the Service Reference in your project and selecting Configure Service
Reference, showing the Service Reference Settings window in Figure 11-13.

Chapter 11: Deploying Web Services with VWCF 333

ustomerConsole.CustomerService - Service

Client
Address: alhost:3732/Design_Time_Addresses/WcfDemoCS/ Service L/ mex
Access level for generated classes: Public

-

Generate asynchronous operations

Data Type

Always generate message contracts

Collection type: ’ Systemn. Collections.Generic.List hd]

Dictionary collection type: ’ Systemn. Collections.Generic.Dictionary hd]
Beuse types in referenced assemblies

@ Reuse types in all referenced assemblies

) Reuse types in specified referenced assemblies:

“J Microsoft.CSharp

“Jmscorlib

~J System

“d System. Core

~d Systemn.Data

+3 System.Data.DataSetExtensions
3 System.Runtime. Serialization
<3 System. ServiceModel

[ok || concel

Figure 11-13 The Service Reference Settings window

Most of the items in the Service Reference Settings are advanced options, but focus
on the Collection Type setting in the Data Type section. Switch the Collection Type from
System.Array to System.Collections.Generic.List and click OK to close. Then change the
previous call to GetCustomers to the following:

C#:
List<Customer> customers = svc.GetCustomers() ;
VB:

Dim cust As New Customer

cust = svc.GetCustomer (newCustID)

334 Microsoft Visual Studio 2010: A Beginner's Guide

This example shows that the proxy will translate the results into a List<Customer>
(List(Of Customer) in VB). While I showed you how to make this setting after creating
the Web service, I chose this sequence because it shows the value of changing the
collection return type. However, you can make this setting when first creating the Web
reference. Looking at Figure 11-11, you can see an Advanced button at the bottom of the
Add Service Reference window. Clicking the Advanced button will show you the Service
Reference Settings window, shown in Figure 11-13, allowing you to set the collection
return type when first creating the service reference.

Now, you’ve seen all five operations of the Web service. Remember that exactly
the same techniques are used here as in any other type of .NET application. For your
convenience, Listing 11-7 shows you the entire example for using a Web service.

Listing 11-7 An application using a Web service

C#:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using CustomerConsole.CustomerService;

namespace CustomerConsole

{

class Program

{

static void Main ()

{

var svc = new CustomerServiceClient () ;

var newCust = new Customer
Age = 36,
Birthday = new DateTime (1974, 8, 22),
Income = 56000m,

Name = "Venus"
var newCustID = svc.InsertCustomer (newCust) ;
Console.WriteLine ("New Customer ID: " + newCustID) ;

Customer cust = svc.GetCustomer (newCustID) ;

Chapter 11: Deploying Web Services with WCF

Console.WriteLine ("New Customer: " + cust.Name) ;
cust.Income = 49000m;

svc.UpdateCustomer (cust) ;

Customer updatedCust = svc.GetCustomer (cust.CustomerID) ;
Console.WritelLine ("Economic Adjustment: " + cust.Income) ;
svc.DeleteCustomer (updatedCust.CustomerID) ;

//Customer [] customers = svc.GetCustomers() ;
List<Customer> customers = svc.GetCustomers() ;

Console.WriteLine ("\nAll Customers:\n") ;
foreach (var custItem in customers)

{
}

Console.WriteLine (custItem.Name) ;

Console.ReadKey () ;

VB:
Imports CustomerConsoleVB.CustomerService
Module Modulel
Sub Main ()
Dim svc = New CustomerServiceClient
Dim newCust = New Customer
With newCust
.Age = 36
.Birthday = New DateTime (1974, 8, 22)
.Income = 56000
.Name = "Venus"

End With

Dim newCustID As Integer

335

336 Microsoft Visual Studio 2010: A Beginner's Guide

newCustID = svc.InsertCustomer (newCust)
Console.WriteLine ("New Customer ID: " & newCustID)

Dim cust As New Customer

cust = svc.GetCustomer (newCustID)

cust.Income = 49000

svc.UpdateCustomer (cust)

Dim updatedCust As Customer

updatedCust = svc.GetCustomer (cust.CustomerID)
Console.WritelLine ("Economic Adjustment: " & cust.Income)
svc.DeleteCustomer (updatedCust.CustomerID)

Dim customers As List (Of Customer)
'Dim customers As Customer ()

customers = svc.GetCustomers ()
End Sub

End Module

Deploying a Client That Consumes a Web Service
When deploying a client that uses a Web service, you need to update the address of the
service in the configuration file. The configuration file can vary, based on the type of
application you’ve built. Table 11-1 describes the configuration files for the application
types covered in this book.

Application Type Configuration File

Console App.config

WPF App.config

ASP.NET MVC Web.config

Silverlight ServiceReferences.ClientConfig

Table 11-1 Configuration Files for Each Application Type

Chapter 11: Deploying Web Services with WCF

Regardless of the name, each configuration file will have a system.serviceModel
element with configuration settings for the Web service. Listing 11-8 shows parts of
the configuration file that you should find to change the address of the Web service to
communicate with.

Listing 11-8 Web service client configuration

<?xml version="1.0" encoding="utf-8" ?>
<configurations>
<system.serviceModel>

<clients>
<endpoint address="http://localhost:8732
/Design Time Addresses/WcfDemoCS/CustomerService /"
binding="wsHttpBinding"
bindingConfiguration="WSHttpBinding ICustomerService"
contract="CustomerService.ICustomerService"
name="WSHttpBinding ICustomerService">

</system.serviceModel >
</configurations>

Following the path system.serviceModel, client, endpoint, you’ll find an address
attribute. In the preceding example, the address is set to the address of the WcfDemo project
inside the same solution. When you deploy your client, you’ll want it to communicate with
the deployed Web service. The following modification allows this client to communicate
with the Web service deployed to IIS as discussed previously in this chapter:

<endpoint
address="http://localhost:8080/WcfDemoCS.CustomerService.svc"
binding="wsHttpBinding"

bindingConfiguration="WSHttpBinding ICustomerService"
contract="CustomerService.ICustomerService"
name="WSHttpBinding ICustomerService">

The address includes a filename, WcfDemoCS.CustomerService.sve, which was
automatically generated when deploying the WcfDemo service. You can see the name of
this file by looking at the physical folder where the Web service is deployed.

Creating a Web Service in a Web Site

The previous discussion of creating a Web service created a separate project for the Web
service. This approach assumes that you have the ability to configure an IIS Web site
for the Web service and can have another IIS Web site for your application if you have

337

338 Microsoft Visual Studio 2010: A Beginner's Guide

a Web application as the Web service client. However, this might not be possible if you
are deploying to a hosted server by a third-party Internet service provider where you
only have a single Web site. In that case, you have the additional option of adding a Web
service directly to an existing Web site.

To see how this works, create a new ASPNET MVC Web site. Right-click the project,
select Add | New Item, and create a new WCF Service. What you’ll see is an interface
file, IServicel.cs; an addressable service file; an implementation class, Servicel.svc; and
Servicel.svc.cs, which you can find under the Servicel.svc branch. All of the information
you’ve learned previously in this chapter applies to coding a Web service that is part of the
Web application. You should know that this is an option if it fits your needs.

Summary

You’ve learned how to build a Web service, how to deploy the Web service, and how to
write a client that consumes the Web service. The discussion on creating the Web service
showed you how to define the Web service contract with an interface and applicable
attributes. You saw how to implement the service also. The deployment discussion
explained how to host a Web service with IIS and how to use the VS Publish Wizard for
deployment. You also saw how to write a client that creates a reference to a Web service
and writes code to communicate with the Web service.

Part IV

Enhancing the VS
2010 Experience

This page intentionally left blank

Chapter 12

Customizing
the Development
Environment

341

342 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

Implement Custom Templates
Create Custom Snippets

Write Macros

n addition to all the great features you’ve seen in preceding chapters, VS gives you the
capabilities to customize your own environment. The customizations I'll discuss are
custom templates, custom snippets, and macros.

Throughout the book, you’ve started new projects and added items to those projects,
using what is available with VS. On some occasions, you might desire to have a special
type of project or customize an existing project for your own needs. The same need might
apply to project items (such as a special type of class file), where you might change the
contents of an item or create a new item.

Chapter 2 showed you how to use snippets, and Chapters 3 and 4 showed how to use
several more snippets to quickly code common statements. In addition to using existing
snippets, you can create your own. VS also has a management window that allows you to
organize snippets, adding, deleting, and rearranging as you see fit.

Whenever you run into repetitive scenarios, it would be nice to capture the actions
you perform so that you can quickly complete a task. For example, if you found yourself
using the same set of keystrokes, it would be nice to collapse that action down into one
command. Macros allow you to collapse repetitive tasks into a single task, saving you time.

Let’s start the journey of customizing VS by looking at customizing templates.

Implementing Custom Templates

As you’ve seen in previous chapters, VS helps you get started with new projects and
project items by providing default project items and skeleton code. In most cases, this is
a very quick way to get started with a project. As you become more proficient in VS, you
might prefer to have projects with different items than those that ship with VS or item
templates with different code. This section will show you how to create your own project
and item templates.

Chapter 12: Customizing the Development Environment 343

Creating New Project Templates

If you’re working on a single project that lasts a long time, you might be satisfied with
using a default template and doing a one-time modification. However, if you are starting
new projects on a regular basis, customizing a project template can be very useful. There
are various reasons you might want to create a custom project template, such as adding
new items that aren’t included in the default project template, removing items from

the default template that you don’t ever use, or changing an existing item for version
upgrades. In addition to customizing existing templates, you might want to create a brand
new template for a new project type that doesn’t yet exist.

The example in this section will show you how to customize the ASPNET MVC
project template. The specific changes made to the template will be to remove much of
the default code provided by the template. The assumption is that once you’ve written a
few ASPNET MVC applications, you won’t need the default files as examples and would
prefer to start with a more bare-bones template and build the application from the ground
up yourself.

Modifying a Project

The easiest way to get started with creating a new project template is to start a new project
that is most similar to the project type you want to create. If you wanted a blank project,
you might start with a Console project because there aren’t many items and it’s quicker to
delete them all. In the scenario for this section, we want to create a specialized ASPNET
MVC project, so it makes sense to create a new ASPNET MVC project. The following
steps show you how:

1. Press CTRL-SHIFT-N to create a new project and select ASPNET MVC 2 Web Application.
Name the project and solution Custom ASP.NET MVC Web Application and set the
location for anywhere you like. Click OK to create the project. Next, the Create Unit
Test Project window will appear and you should click “No, do not create a unit test
project” and click OK. VS will create a new solution with a project. Chapter 9 explains
what each of the projects and items are.

. Open the Controllers folder and delete its contents.
. Open the Models folder and delete its contents.
. Open the Views folder but only delete the Account and Home folders.

. Open the Shared folder, under the Views folder, and delete its contents.

o O A WD

. Double-click Global.asax and comment out the call to routes.MapRoute in the editor.

344 Microsoft Visual Studio 2010: A Beginner’s Guide

7. To make sure your changes are okay, build and run the project. Select Build | Rebuild
Solution and ensure you don’t receive compiler errors. Then press F5 to run and allow
VS to modify the Web.config file. Since you’ve commented out the route in Global
.asax and there aren’t any files to locate, you’ll receive the message “The resource can’t
be found” in the browser. This is okay because it’s assumed that you want to build your
own controllers, models, and views and apply custom routing too.

You now have customized ASP.NET MVC project that allows you to build your
application without any preinstalled items. VS is likely to ship with an empty template,
but for additional customization, you might replace the CSS file in the Content folder
or add your own JavaScript libraries to the Scripts folder. Make any changes you feel
are most helpful for starting a new ASP.NET MVC project. Next, you’ll learn how to
transform this project into a reusable project template.

Exporting the Project Template

After you have a project configured the way you want, you can save it as a project
template. The first step is to select File | Export Template, which will display the Choose
Template Type window, shown in Figure 12-1. Choose Project Template and click Next.

Export Template Wizard
2

e —

Choose Template Type

This wizard will allow you to export a project or project item from the current soluticn to a template which future
projects can then be based upon.

Which type of template would you like to create?
@ Project template

A project template will allow a user to create a new project based on your exported project. A user will be able to
utilize your template from the Mew Project dialog box for client projects and from the New Website dialog box for
websites.

@ Item template

An item template will allow a user to add your item to one of their existing project. Your template will be available
to the user from the Add Mew Item dialog box.

From which project would you like to create a template?

Custom ASP.NET Web Application o

Figure 12-1 The Choose Template Type window

Chapter 12: Customizing the Development Environment 345

The next window is Select Template Options, shown in Figure 12-2. The Template
Name defaults to the name of the project, which you can change. You can see how the
filled-in Template description tells what the template is used for. Additionally, if you want
to associate an icon or preview, you can click the respective Browse button and select
the image you want to be associated with the project. As you may recall, the New Project
window has an icon for the project and will display a preview whenever you select the
project. The “Automatically import the template into Visual Studio” option will make the
project template available via the New Project window. “Display an explorer window on
the output files folder” will allow you to access the new file, shown in the Output location.
Click Finish to create the template.

After you click Finish, VS does two things: it saves to the output location and makes the
template available in VS. The output location is just a place to store the project template,
Custom ASP.NET Web Application.zip, which contains all of the information VS needs
to display the template and create the project if you select it in the New Projects window.

Export Template Wizard 3|
4

E

Select Template Options

Template name:

Custom ASP.NET Web Application|

Template description:

A bare bones ASP.INET MVC project

Icon Image:

Browse...

Preview Image:

Dutput location:
ChUsers\Jee\Documents\Visual Studie 2010\My Exported Templates\Custem ASP.MET Web Application.zip

Automatically import the template into Visual Studio

Display an explorer windeow on the cutput files folder

Mext = Finizh l I Cancel

Figure 12-2 The Select Template Options window

346 Microsoft Visual Studio 2010: A Beginner's Guide

You can share the project template with other developers too. The next section shows what
to do to get the project template to appear in VS.

Using the New Project Template

The instructions for exporting the project template in the preceding section chose
“Automatically import the template into Visual Studio.” The use of the word “import”
might make you think there is some magic process going on in the background, which
there is to some extent. However, all the Export Template Wizard did was copy

the Custom ASP.NET MVC Web Application.zip file from the Output location to
<My Documents>\Visual Studio 2010\Templates\ProjectTemplates, which I’1l call local
project templates. The <My Documents> folder location can differ, depending on the
version of Windows you’re running. Once the file appears in the local project templates
folder, you can verify that it’s been imported into VS by pressing CTRL-SHIFT-N and
observing that Custom ASP.NET MVC Web Application appears in the list.

If you had not checked “Automatically import the template into Visual Studio”
(Figure 12-2), then you could have copied the Custom ASP.NET MVC Web Application
.zip file to the local project templates folder yourself and the project template would
appear in VS. If you share the Custom ASPNET MVC Web Application.zip file with
another developer, she can copy to the local project templates folder also.

If you delete the file from the local project templates folder, it will no longer appear in
the VS New Projects window.

Another option for adding project templates is to copy the project templates file to a
folder under \Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates,
which I'll call global project templates. There are various folders under global project
templates, including CSharp VisualBasic, Web, and more; each folder corresponding to
folders in the VS New Project window. Under each folder is a locale code—for instance,
English is 1033—and you would copy the file into the locale folder for the category you
wanted the project template to appear in. For example, if you wanted the project template to
appear in Visual C# | Web in the New Projects window, copy the project template *.zip file to
\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates\CSharp\Web.

Unlike templates in the local project templates folder, where all you need to do is
copy the file, project templates in the global project templates folder don’t automatically
show up. To test the global project templates scenario, you should remove the project
template from your local project templates folder. You must close down VS and execute the
following in a command window, which you should open by selecting Start | All Programs |
Microsoft Visual Studio 2010 | Visual Studio Tools | right-click on Visual Studio Command

Chapter 12: Customizing the Development Environment

Prompt (2010) and select Run As Administrator. This will take a few minutes to run, but
afterward you’ll see the project appear in the VS New Project window. This command
imports all of the project templates from the global project templates folder into VS:

devenv /installvstemplates

If later you decide you don’t want a given template to appear in the VS New Project
window, remove the project template from the global project templates folder(s) and run
the preceding command again.

Now you’re able to create and use custom project templates. While you might create
projects occasionally, it’s a common task to create project items, covered next.

Creating New ltem Templates

Sometimes, you use certain item templates frequently but often modify the contents of
the item for your own purposes. In these cases, it’s useful to be able to create a custom
item template instead. The example in this section will be to create something that isn’t
currently an item in VS: a new item template for enums. To create a new item template,
we’ll create the file for holding the item, save the new item, and then use the new item in
a project.

Creating an ltem Template

The easiest way to get started with creating a new item template is to start a new project
that has an existing item template that is most similar to the one you want to create. For
a new enum template, all we need is a class file, so any project that allows you to add a

class file template will work. The example in this section will use a Console project, but
the project type doesn’t matter because we’ll only be interested in extracting one file for
the item template. The following steps show you how:

1. Press CTRL-SHIFT-N to create a new project and select Console Application. Name
the project anything you want and set the location for anywhere you like; name and
location don’t matter because we are only interested in the item template file and not

the project. Click OK to create the project. VS will create a new solution with a project.

By now, you’ve seen plenty of new Console applications in previous chapters, and this
will be the same.

2. Right-click the project in Solution Explorer, select Add | New Item, select Code File,
name the file Enum.cs (Enum.vb for VB), and click Add. This will add a new blank
file to your project.

347

348 Microsoft Visual Studio 2010: A Beginner's Guide

3. Add the following code to the file:
C#:

/// <summary>
/// Enum description
/// </summary>
public enum MyEnum
{
/// <summarys>
/// Item 1 description
/// </summarys>
Iteml,

/// <summarys>

/// Item 2 description
/// </summarys>

Item2

"' <summary>
"' Enum description
'Y </summary>
Public Enum MyEnum
'Y <summary>
""" Ttem 1 description
'Y </summary >
Iteml

'Y <summary>

""" Ttem 2 description
' < /summary >

Item2

End Enum

4. Save the file.

You now have a file that can be used as a skeleton for new enums. The next section
shows you how to export this file so that it can be used as an item template.

Exporting the ltem Template

After you have a file written the way you want, you can save it as an item template. The
first step is to select File | Export Template, which will display the Choose Template Type
window, shown in Figure 12-3. Choose Item Template and click Next.

Chapter 12: Customizing the Development Environment 349

Export Template Wizard
=

Choose Template Type

This wizard will allow you to export a project or project item from the current solution to a termplate which future
projects can then be based upon.
Which type of template would you like to create?
() Project template
A project template will allow a user to create a new project based on your exported project. A user will be able to
utilize your template from the Mew Project dialog box for client projects and from the New Website dialog box for
websites.
@ Item template
An item template will allow a user to add your item te one of their existing project. Your template will be available
to the user from the Add New Item dialog box.
From which project would you like to create a template?

ConsoleApplicationl

=
m
o
=
g
v

il Finizh Cancel

Figure 12-3 The Choose Template Type window

The next window is Select Item To Export, shown in Figure 12-4. The list shows all
of the files eligible for creating an item. Check Enum.cs, which is the only file we’re
interested in for this example. Click Next to continue.

Next, you’ll see the Select Item References window, shown in Figure 12-5. These are
the assemblies that are part of the project that you’re extracting the item template from.
Check the assemblies that this item will require. In this case, I want to ensure the System
assembly is included. Ignore the warning message, as it is assumed that you will always
have the .NET Framework installed and the System.dll assembly will always be available.
Click Next to continue.

350 Microsoft Visual Studio 2010: A Beginner's Guide

Export Template Wizard @
5

E

Select Item To Export

Select the itern that you would like to export as an itemn template. All dependent files (including designer and resource
files) will automatically be included with the selected item in the exported termplate.
Item to export:

----- [¥]Enum.cs

----- [F1Program.cs

BD Properties

’ < Previous] [Mext > Finich

Figure 12-4 The Select ltem To Export window

Figure 12-6 shows Select Template Options, where you specify how the item
template will appear in the New Items window that appears when selecting Add |
New Item on a project. The Template name defaults to the name of the project, which
you should change to the item name, by changing the template name to Enum. The
description lets the user know the purpose of the item template. If you want to associate
an icon or preview, you can click the respective Browse button and select the image
you want to be associated with the item. As you may recall, the New Item window
has an icon for the item and will display a preview whenever you select the project.
The “Automatically import the template into Visual Studio” option will make the item
template available via the New Item window. “Display an explorer window on the output
files folder” will allow you to access the new file, shown in the Output location. Click
Finish to create the item template.

Chapter 12: Customizing the Development Environment 351

Export Template Wizard @
2

E

Select Item References

Select the references you would like to include with this item:

System

[T System.Core

[System.Xml.Ling

[T System.Data.DataSetExtensions
[F] Micresoft.CSharp

[F] System.Data

[System.Xml

[mscorlib

ﬁ You have selected one or more assembly references that are not pre-installed with Visual Studio. Having these
references may prevent the use of this template if the user does not have the referenced assemblies installed.

[< Previous l I Mext > Finizh

Figure 12-5 The Select ltem References window

After you click Finish, VS does two things: it saves to the output location and makes
the template available in VS. The output location is just a place to store the item template,
Enum.zip, which contains all of the information VS needs to display the template and
create the item if you select it in the New Item window. You can share the item template
with other developers, too. The next section shows what to do to get the item template to
appear in VS.

Using an ltem Template

The instructions for exporting the item template in the preceding section chose
“Automatically import the template into Visual Studio,” copying the Enum.zip file from
the Output location to <My Documents>\Visual Studio 2010\Templates\ItemTemplates,
which I’ll call local item templates. The <My Documents> folder location can differ,
depending on the version of Windows you’re running. Once the file appears in the local

352 Microsoft Visual Studio 2010: A Beginner's Guide

Export Template Wizard 2]
5

E -

Select Template Options

Template name:

Enum

Template description:

Create a Mew Enum

Icon Image:

Preview Image:

Browse...

Browse...

Output location:
ChUsers\jmayo\Documents\Visual Studio 2010AMy Exported Templates\Enum.zip

Automatically import the template inte Visual Studio

Display an explorer window on the output files folder

Mext > finish | | Cancel

Figure 12-6 The Select Template Options window

item templates folder, you can verify that it’s been imported into VS by selecting an open
project in Solution Explorer (open a new or existing project if one is not opened), pressing
CTRL-SHIFT-A, and observing that Enum appears in the list in the New Item window.

If you had not checked “Automatically import the template into Visual Studio”
(Figure 12-6), then you could have copied the Enum.zip file to the local project templates
folder yourself and the project template would appear in VS. If you share Enum.zip file
with another developer, he can copy to the local item templates folder also.

If you delete the file from the local item templates folder, it will no longer appear in
the VS New Item window.

Another option for adding item templates is to copy the project templates file to a
folder under \Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ltemTemplates,
which I'll call global item templates. There are various folders under global item templates,

Chapter 12: Customizing the Development Environment 353

including CSharp VisualBasic, Web, and more, each folder corresponding to folders in the
VS New Item window. Under each folder is a locale code—for instance, English is 1033—
and you would copy the file into the locale folder for the category you wanted the project
template to appear in.

Unlike templates in the local item templates folder, where all you need to do is copy
the file, item templates in the global item templates folder don’t automatically show up.
To test the global item templates scenario, you should remove the item template from
your local item templates folder. You must close down VS and execute the following in a
command window, which you should open by selecting Start | All Programs | Microsoft
Visual Studio 2010 | Visual Studio Tools | right-click Visual Studio Command Prompt
(2010) and select Run As Administrator. This will take a few minutes to run, but afterward
you’ll see the project appear in the VS New Item window. This command imports all of
the item templates from the global item templates folder into VS:

devenv /installvstemplates

If later you decide you don’t want a given template to appear in the VS New Item
window, remove the item template from the global item templates folder(s) and run the
preceding command again.

This section showed you how to add new project and item templates to VS, but
sometimes you just want to add a common bit of code while you’re programming. The
next section shows you how to add your own custom code snippets to VS.

Creating Custom Snippets

If you’ve been using VS snippets, as described in Chapter 2, you’ll know how much time
they can save when writing common blocks of code. In time, you’ll wonder why certain
items aren’t already covered by snippets, especially if you’re a C# developer who has
noticed that VB has many more snippets. Even if you’re a VB developer with the plethora
of available snippets, you might find blocks of code that will make you more productive
when written in the form of a snippet. This chapter takes you to the next level in working
with snippets by showing you how to create and manage your own snippets.

Creating a New Snippet

VB already has a snippet for Sub and Function, but C# doesn’t. Since C# doesn’t have as
many snippets as VB, I’'ll show you how to create a snippet in C#, but the process is similar
for a VB snippet. To create a new snippet, you can either work from an existing snippet file
or start from scratch. I’ll show you how to find and open existing snippets first.

354 Microsoft Visual Studio 2010: A Beginner's Guide

Examining Existing Snippets

Snippets that ship with VS are located at \Program Files\Microsoft Visual Studio 10.0
under a folder for the language (VC#, VB, XML, and more) you need to find a snippet
for. There, you’ll either find one or more folders named with language codes (English is
1033) or a folder named Snippets. For some languages, the language code is at a higher
level and the Snippets folder is under that or vice versa; regardless, you’ll be looking for
the Snippets folder that contains items with a .snippet file extension. The file path for C#
is \Program Files\Microsoft Visual Studio 10.0\VC#\Snippets\1033. Beneath the Snippets
folder, you’ll see additional folders that serve to categorize other snippets.

We’re going to open the for snippet because it contains several features that give
you a good idea of how snippets work. It might help if you open a blank file by pressing
CTRL-N, selecting Visual C# Class, and naming the file anything you want, and try the for
snippet before going further; it will give you a good idea of what the snippet is supposed to
be doing. Alternatively, you can review the description of the for snippet in Chapter 2.

The .snippet extension is registered with VS, so you can double-click the for.snippet file
in the Snippets folder and it will open in VS. Listing 12-1 shows what this file looks like.

Listing 12-1 Inside the for snippet

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets xmlns=
"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Titles>for</Title>
<Shortcut>for</Shortcut>
<Description>Code snippet for 'for' loop</Descriptions
<Author>Microsoft Corporation</Authors>
<SnippetTypes>
<SnippetType>Expansion</SnippetType>
<SnippetType>SurroundsWith</SnippetType>
</SnippetTypes>
</Header>
<Snippet>
<Declarations>
<Literals>
<ID>index</ID>
<Default>i</Defaults>
<ToolTip>Index</ToolTip>
</Literal>

Chapter 12: Customizing the Development Environment 355

<Literals>
<ID>max</ID>
<Default>length</Defaults>
<ToolTip>Max length</ToolTip>
</Literals>
</Declarations>
<Code Language="csharp"><! [CDATA[for (int $index$ = 0;
Sindex$ < Smax; SindexS++)
{
$selected$ S$ends
111>
</Code>
</Snippet>
</CodeSnippet >
</CodeSnippetss>

As shown in Listing 12-1, a snippet is an XML file where all data is defined by begin
and end tags arranged in a hierarchy. Inside of the CodeSnippet tags are Header and
Snippet elements.

Inside of the Header element is a Shortcut element that defines the prefix you must
type in the VS editor to use the snippet. The Title and Description tags define what displays
for Intellisense in VS when the shortcut is being typed. Author tells who wrote the snippet.

The SnippetTypes element defines the two ways to use a snippet: Expansion and
SurroundsWith. Chapter 2 describes many snippets that work via Expansion. However,
SurroundsWith snippets are also very useful. To use a SurroundsWith snippet, highlight the
code that you want to surround, press CTRL-SPACE, and select the snippet. After selecting
the snippet, the snippet template will appear in VS, with its blocks surrounding the
highlighted text. Since the for loop has a block that can contain statements, it makes sense
that the for snippet is both a SurroundsWith and Expansion snippet.

The Snippet element in Listing 12-1 contains a Declarations and Code element, where the
declarations are used in the code. Thinking about how snippet templates work, remember that
your cursor is positioned on blocks of code that you change and tab through to complete the
snippet. The blocks of code to be filled in correspond to Literal elements in the declaration.

Each Literal element has an ID that is used in the Code to define where the Literal is
located. Default describes the data shown in the template before you start typing. Whenever
you’re filling in a snippet template, you can hover over the data field and a tooltip will
describe what information should go into the data field. This tooltip is defined in the Tooltip
element of the snippet definition. The /D of each literal is defined in the Code element.

Inside the Code element is the code for the snippet. The variables in the code with
$ prefix and suffix help define how the snippet template works. Notice that $index$
and max match Literal elements in the Declarations element; this is where you must

356 Microsoft Visual Studio 2010: A Beginner's Guide

fill in data items when filling in the snippet template in VS. The end variable defines
where the cursor ends up after the snippet is complete (after pressing ENTER in the snippet
template). You’ll want to locate end where a developer would normally continue typing.
The $selected$ variable is used with SurroundsWith snippets, defining the relationship of
selected text with where snippet code should be.

Now that you have a basic familiarity with snippets, the next section brings you to the
next level as you actually create a new snippet.

Creating New Snippets
To create a new snippet, you can either work from an existing snippet file or start from
scratch. If you work from an existing snippet, find and open the snippet closest to what
you want to do, using the techniques described in the preceding section. Starting from
scratch, there is a quick way to get started using a snippet snippet; that’s right, there is a
snippet that helps you create new snippets.

As you learned in the preceding section, snippets are defined as XML files. Fortunately,
VS has a nice XML editor that supports XML snippets. So, when I say that we’re going to
create a snippet from scratch, that’s not quite true, because we’re going to leverage VS to
get a quick start. In the following steps, I’ll show you how to create a snippet you can use
to add a C# method to a class quickly:

1. With VS open, press cTRL-N and create a new XML file. If you were opening the file
from an existing project, you would need to provide a name, which would be meth
.snippet. The new XML file has a single line, which is called an XML prefix.

2. Move to the line below the XML prefix, press CTRL-K-X, type sn to select Snippet in the
Intellisense list, and press ENTER. You’ll see an XML snippet template with the values
for Title, Author, Shortcut, Description, ID, and Default.

3. Fill in data and tab through the snippet template as follows: Title as Method Snippet,
Author as <your name>, Shortcut as meth, Description as Create a New Method, /D
as access, and Default as public. Press ENTER when complete.

4. The resulting snippet still needs code and template item definitions, which is accomplished
by filling in the Code element and adding needed Literal elements. First, modify the code
element as follows:

<Code Language="csharp">

<! [CDATA[Saccess$ Sreturn$ SmethodNames$ ($paramList$)

{

1
11>
</Code>

Sends

Chopfer 12: Customizing the Deve|opment Environment

5. In addition to access, the code example in the preceding step includes variables for
return, methodName, and paramList. Add Literal elements for each of these variables,
where the /D is the variable name and the Default is set to return as void, methodName
as MethodName, and paramlList as int p1.

6. Save the file and name it meth.snippet. The next section will explain where to put the
file, but for now put it in a location that you can remember so you can copy it later.
BTW, the Save File dialog box has Snippet Files (*.snippet) for a Save A Type option,
which you can use to ensure the snippet has the correct file extension.

You now have a workable snippet. Listing 12-2 shows the snippet in its entirety.
Additionally, notice how each Literal has a Tooltip to help the user of the snippet fill in
each data item. Also, notice that the Language attribute of the Code element is spelled
csharp, rather than C#. These small nuances, such as the spelling for a language, could
make the snippet file invalid. A good troubleshooting technique is to open a similar
snippet predefined for VS, as described in the preceding section, and compare formats to
see if you might have mistyped something. The next section will explain what to do with
this snippet file so that you can begin using it.

Listing 12-2 A custom method snippet

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippet Format="1.0.0"
xmlns="http://schemas.microsoft.com
/VisualStudio/2005/CodeSnippet">
<Header>
<Title>Method Snippet</Title>
<Author>Joe Mayo</Authors>
<Shortcuts>meth</Shortcuts>
<Description>Create a New Method</Descriptions>
<SnippetTypes>
<SnippetType>SurroundsWith</SnippetType>
<SnippetType>Expansion</SnippetType>
</SnippetTypes>
</Header>
<Snippet>
<Declarationss>
<Literals>
<ID>access</ID>
<Default>public</Default>
<ToolTip>Access modifier</ToolTip>
</Literals>

357

358 Microsoft Visual Studio 2010: A Beginner's Guide

<Literals>
<ID>return</ID>
<Defaults>void</Defaults>
<ToolTip>Return value</ToolTip>

</Literals

<Literals>
<ID>methodName</ID>
<Default>MethodName</Default>
<ToolTip>Name of Method</ToolTip>

</Literals>

<Literals>
<ID>paramList</ID>
<Default>int pl</Defaults>
<ToolTip>

Comma-separated list of parameters

</ToolTip>

</Literals>

</Declarations>
<Code Language="csharp"s>
<! [CDATA[
Saccesss$ Sreturn$ SmethodName$ (SparamList$)

{
sends$
111>
</Code>
</Snippet>
</CodeSnippet>

Managing the Snippet Library

To use a snippet, you can either copy the snippet into a VS folder or use a VS tool called
the Snippet Manager. This section will explain how to make the method snippet, created
in the preceding section, available to your code.

File Folders Holding Snippets
The local snippets folder is located at \Users\<your name>\Documents\Visual Studio
2010\Code Snippets. You'll see a set of folders for each language/technology, which
each have subfolders for organizing snippets. Copy and paste the snippet file into one of
these folders, such as Visual C#My Code Snippets, and the snippet will be immediately
available to your code.

The local snippets folder makes a snippet available to your machine login. You can
also make the snippet available to everyone who logs on to the machine by copying the
snippet to a global snippet folder, located at \Program Files\Microsoft Visual Studio

Chapter 12: Customizing the Development Environment 359

10.0\. You’ll see language technology folders, such as VC# for C# or VB for VB. Within
those folders, you’ll either see folders for language codes (English is 1033) or a Snippets
folder. Drilling down two levels, through the language code folders and Snippet folders
(whichever shows first), you’ll see more snippets and subfolders that organize the snippets
for that language/technology. Copy the snippet into the folder where you feel it belongs.
The snippet will be immediately available to your code.

Working with system file folders can be cumbersome, so VS offers a tool to help
organize snippets, the Snippets Manager.

Using the Snippets Manager

The Snippets Manager allows you to import new snippets and organize existing snippets.
Either select Tools | Code Snippets Manager or press CTRL-K, CTRL-B. You'll see the
Snippets Manager window, shown in Figure 12-7.

The Language drop-down shows what type of snippets you can work with. The folders
show how snippets are organized. Use the Add and Remove buttons to manage folders.
Click the Import button to find and make new snippets available to the application.

As you’ve seen, snippets give you a well-specified way to quickly write code. However,
there is a capability that is even more powerful, which is macros, discussed next.

Code Snippets Manager E
Language:
[HTML ~

Location:
C\Program Files\Microsoft Visual Studie 10.0YWeb\Snippets\HTML\10334ASP.NET
> 3 ASP.NET
1> C3 ASP.NET MVC2
> 3 HTML
CJ My HTML Snippets

[Add...] [Remove

=

Figure 12-7 The Snippets Manager window

360 Microsoft Visual Studio 2010: A Beginner's Guide

Writing Macros

When the productivity features that ship with VS and custom snippets don’t give you
enough power, the next step is to consider creating a macro, which is a repeatable set of
actions that you can record and re-run multiple times. An example of when a macro is
useful is whenever you find yourself continuously repeating the same set of actions in VS.
This section will show you how to create and run a macro that uses VS features to create a
customized block of code for validating strings.

Recording a Macro

When creating business objects, it’s common to validate input parameters to ensure they
are valid. One such validation is enforcing that calling code pass a required parameter.
The example in this section shows you how to write a macro for validating that a string-
type parameter is not null, empty, or white space (such as a space or tab). To get started,
create a new Console project and add a Class file with the following method to the project,
which simulates adding a new customer:

C#:

using System;

class Customer

{

public int AddNewCustomer (string firstName, string lastName)
int newCustID = 0;

// Logic to add customer

return newCustlID;

VB:
Public Class Customer
Function AddNewCustomer (
ByVal firstName As String,
ByVal lastName As String) As Integer

Dim newCustID As Integer = 0

' Logic to add customer

Chapter 12: Customizing the Development Environment 361

Return newCustID
End Function

End Class

The point of interest in the AddNewCustomer method is the firstName and lastName
parameters. Whenever working with data, you’ll usually want to ensure that input data is
legal. When user input is being processed, it’s common to get bad information, even if you
have good input validation in your user interface code. For example, the following code
calls the preceding AddNewCustomer method, passing in bad data as arguments:

C#:

class Program

{

static void Main ()

{

string firstName = "Joe";
string lastName = null;

Customer cust = new Customer();
cust .AddNewCustomer (firstName, lastName) ;

VB:

Module Modulel
Sub Main ()

Dim firstName As String = "Joe"
Dim lastName As String = Nothing

Dim cust As New Customer
cust .AddNewCustomer (firstName, lastName)

End Sub

End Module

In the preceding example, firstName is okay because it has a good name in it.
However, notice that lastName is set to null (Nothing in VB). This would cause
a NullReferenceException if AddNewCustomer tried to call a string operation on
the parameter, the code that AddNewCustomer calls could potentially throw a
NullReferenceException, or (assuming that null is considered invalid in this case) you

362 Microsoft Visual Studio 2010: A Beginner's Guide

could end up saving bad data. Since AddNewCustomer doesn’t have an implementation,
this is all speculation, but this outlines a few of the many problems that can occur if you
allow your business objects to accept data that is bad for your program.

The macro demonstrated in this section will show how to check a string parameter
for null, empty, or white space and throw an ArgumentNullException. This will prevent
callers from passing bad data and give them a meaningful message. To create a macro,
you will need to locate the position in the code where the macro starts (if applicable),
start recording, perform VS actions, and stop recording. It’s somewhat like using a video
recorder where you have to find a TV show, start the recording, allow the show to play, and
then stop recording. Perform the following steps to create the parameter validation macro:

1. Click the firstName parameter of the AddNewCustomer method so that the cursor is
inside of the firstName parameter identifier. This is important because we need the
parameter name in the code.

2. Start the macro recorder by selecting Tools | Macros | Record TemporaryMacro or press
CTRL-SHIFT-R.

3. For C#, press CTRL-LEFT ARROW, CTRL-SHIFT-RIGHT ARROW, and cTRL-C. For VB, press
CTRL-LEFT ARROW, CTRL-SHIFT-RIGHT ARROW, SHIFT-LEFT ARROW, and cTRL-C. This copies
the parameter name.

4. For C#, press CTRL-F to bring up the Find And Replace window, type { into Find What,
click Find Next, Close the Find And Replace window, press END, and press ENTER. For
VB, press END and press ENTER. This positions the cursor to begin entering code.

5. Type if and press TaB twice (the if snippet), type string.IsNullOrWhiteSpace(into the
condition, press CTRL-V to paste the parameter name as the argument, and type). For
C#, press ENTER. For VB, press bowN aRrROwW. The cursor moves to the body of the if
statement (as you would expect with the if snippet). This sets up the validation check
for the parameter, seeing if it is null (Nothing in VB), an empty string, or some white
space character such as space or tab.

6. Type throw new ArgumentNullException(', press cTRL-v to paste the parameter
name, type "', "'
is not valid.""). For C#, add a semicolon, 3, to the end of the line. This is the action to
perform when the value is not valid, throwing an exception to let the caller know that
the value is not good.

, press CTRL-V to paste the parameter name, type a space, and type value

7. Press powN ARROW and press ENTER. This positions the cursor after the code, which
might be convenient if you want to continue typing from this point.

8. Select Tools | Macros | Stop Recording TemporaryMacro or press CTRL-SHIFT-R tO stop
recording.

You’ve now recorded a macro. To check the preceding steps against what you’ve
produced, here’s a revised AddNewCustomer method, showing what the results should
look like:

C#:

Chopfer 12: Customizing the Deve|opment Environment

using System;

class Customer

{

public int AddNewCustomer (string firstName,

{

VB:

if (string.IsNullOrWhiteSpace (firstName))

{

throw new ArgumentNullException (
"firstName",
"firstName value is not valid.");

}

int newCustID = 0;
// Logic to add customer

return newCustlID;

Public Class Customer

Function AddNewCustomer (

ByVal firstName As String,
ByVal lastName As String) As Integer

If String.IsNullOrWhiteSpace (firstName) Then
Throw New ArgumentNullException (
"firstName",
"firstName value is not valid.")
End If
Dim newCustID As Integer = 0

' Logic to add customer

Return newCustID

End Function

End Class

string lastName)

363

364 Microsoft Visual Studio 2010: A Beginner's Guide

In the preceding code, I’ve moved the ArgumentNullException arguments to separate
lines to fit the book’s line length, but this is what you should see. Next, you can test
the macro by running it. Click the lastName parameter and select Tools | Macros | Run
TemporaryMacro or press cTRL-SHIFT-P. That will produce the following code:

public int AddNewCustomer (string firstName, string lastName)

{

if (string.IsNullOrWhiteSpace (lastName))

throw new ArgumentException("lastName", "lastName value is not
valid.");

}

if (string.IsNullOrWhiteSpace (firstName))

throw new ArgumentException("firstName", "firstName value is
not valid.");

}

int newCustID = 0;
// Logic to add customer

return newCustID;

Now, you can run this macro on any of the string parameters of methods in your
class and quickly add validation support. The only problem at the present time is that
the macro is overwritten as soon as you begin recording a new macro and the macro is
gone if you close VS. The next section addresses this problem by showing you how to
save the macro.

Saving a Macro

You can save macros to be reused in later sessions. To save the macro, select Tools |
Macros | Save TemporaryMacro. VS will save TemporaryMacro and open the Macro
Explorer window, shown in Figure 12-8.

VS uses TemporaryMacro as the name of whatever macro it will record. Therefore,
you must rename the macro if you want to keep it because the next recording will
overwrite this macro. Rename the file macro to ValidateStringParameter by right-
clicking TemporaryMacro in Macro Explorer, showing the context menu, and selecting
Rename.

Chapter 12: Customizing the Development Environment 365

Macro Explorer Tl
Macros
4 @ MyMacros
3] Modulel
a 5] RecordingModule
|41 TemporaryMacro |
4 @ Samples
3] Accessibility
3] AddDirAsSInFolder
3] DevStudio6Editor
3] MakeAddin
37 Utilities
] VSDebugger
3] VSEditor

VW VYV V V¥V

Figure 12-8 The Macro Explorer window

In the Macro Explorer, you can add new Macro Projects, which are containers for
holding macro modules, by right-clicking Macros and selecting New Macro Project. If
someone shares their Macro Project with you, right-click Macros and select Load Macro
Project to find the project in the file system and load it. Macro modules hold macros, and
you can right-click any macro project; such as MyMacros or Samples in Figure 12-8, and
select New Module to add new macro modules. You can find all of these commands on
the Tools | Macros menu too.

To run an existing macro, double-click the macro in Macro Explorer.

To change a macro, you can either re-record or edit an existing macro. The next
section explains how to edit a macro.

Editing Macros

Macros are editable, allowing you to modify previously recorded macros or create a
brand new macro. To edit a macro, right-click the macro in Macro Explorer and select
Edit. You’ll see the Macro editor, shown in Figure 12-9, which contains the code for the
ValidateStringParameter macro created in the preceding section.

In Figure 12-9, you can see that the editor opens the macro in a code editing window.
The language is VB, so if the language you normally program with is C#, you might want to
review the VB portions of Chapters 2 through 4 as a refresher. The features of Macro editor
are very similar to the normal VS IDE, except that now you must work with Macro Projects
and Modules. Listing 12-3 shows the macro code from Figure 12-9. In Listing 12-3, both the
C# and VB macros are written in VB. However, the C# code is for a macro that works on C#
code and the VB code is for a macro that works on VB code.

366 Microsoft Visual Studio 2010: A Beginner's Guide

« Eit Vew Pujet Debug Tock Wndow Lep
Jo k| b B9

SR PR] R e P B

&

Opsesanal

TecordingWodule | Visdulel] - x|

1) RecordingModule Inparts EnvDTEED

ﬂProjeﬂ Explores EW]—

v % ValidateStringParameter -
Option Scrict OLL
Option Explicit OEf
Importa Syatem

Importa EnvDTE

Importa EnvDTESO
Imports EnvDTESOa
Imports EnvDTE100
Importa Syacem.Di

B Public Moduls RecordingModule

B Sub ValidateStringParameter ()
DTE.A Selection.WordLeft()

| DTE.ActiveDocument . Selection, RardRight (True)

DTE . A Selection,Copy()

| DTE.ExecuceCommand ("Edit. Find®)

DTE.Windows.Tvem("Cuscomer.ca™) .Activate ()

DTE .Windows ., Item (" {CF2DDC32-8CAD-1102-9302-0053450000001 %) ,Activate () *Find and Replace

DTE.Windows.Item("Customer.cs"} .Activate ()

DTE.Find.FindWhat = "{"

DIE.Find.Tazges = vaFi -vsFindTazrgetC

DTE.Find.HMatchCase = False

DTE.Find.MatchWholeWord = False

DTE.Find.Backwards = Falae

DIE.Find.MatchInHiddenTexc = Falae

Ready

Figure 12-9 The Macro editor

Listing 12-3 Code for the ValidateStringParameter macro

C#:

Option Strict Off
Option Explicit Off

Imports
Imports
Imports
Imports
Imports
Imports
Imports

System

EnvDTE

EnvDTE80

EnvDTE90

EnvDTE90a
EnvDTE100
System.Diagnostics

Public Module RecordingModule

Sub

ValidateStringParameter ()

DTE.ActiveDocument .Selection.WordLeft ()
DTE.ActiveDocument .Selection.WordRight (True)
DTE.ActiveDocument.Selection. Copy ()
DTE.ExecuteCommand ("Edit.Find")

Chopfer 12: Customizing the Deve|opment Environment

DTE.Windows.Item("Customer.cs") .Activate ()
DTE.Windows.Item("{CFZDDC32—8CAD—11D2—9302—005345000000}")
.Activate() 'Find and Replace
DTE.Windows.Item("Customer.cs") .Activate ()
DTE.Find.FindWhat = "{"
DTE.Find.Target =
vsFindTarget.vsFindTargetCurrentDocument
DTE.Find.MatchCase = False
DTE.Find.MatchWholeWord = False
DTE.Find.Backwards = False
DTE.Find.MatchInHiddenText = False
DTE.Find.PatternSyntax = vsFindPatternSyntax
.vsFindPatternSyntaxLiteral
DTE.Find.Action = vsFindAction.vsFindActionFind
If (DTE.Find.Execute() =
vsFindResult.vsFindResultNotFound) Then
Throw New System.Exception ("vsFindResultNotFound")
End If
DTE.Windows.Item(
"{CF2DDC32-80AD—11D2-9302—005345000000}").Close()
DTE.Windows.Item("Customer.cs") .Activate ()
DTE.ActiveDocument.Selection.EndOfLine ()
DTE.ActiveDocument.Selection.NewLine ()
DTE.ActiveDocument.Selection.Text = "if"
DTE.ExecuteCommand ("Edit.InsertTab")
DTE.ExecuteCommand ("Edit.InsertTab")
DTE.ActiveDocument .Selection.Text =
"string.IsNullOrWhiteSpace ("
DTE.ActiveDocument.Selection.Paste ()
DTE.ActiveDocument.Selection.Text = ")"
DTE.ExecuteCommand ("Edit .BreakLine")
DTE.ActiveDocument.Selection.Text =
"throw new ArgumentNullException ("""
DTE.ActiveDocument .Selection.Paste ()
DTE.ActiveDocument.Selection.Text = "mn, non
DTE.ActiveDocument.Selection.Paste ()
DTE.ActiveDocument.Selection.Text
" value is not wvalid."") ;"
DTE.ActiveDocument.Selection.LineDown ()
DTE.ActiveDocument.Selection.NewLine ()
End Sub
End Module

VB:

Option Strict Off
Option Explicit Off
Imports System
Imports EnvDTE

367

368 Microsoft Visual Studio 2010: A Beginner's Guide

EnvDTES80

EnvDTE90

EnvDTE90a
EnvDTE100
System.Diagnostics

Imports
Imports
Imports
Imports
Imports

Public Module RecordingModule

Sub ValidateStringParameter ()

DTE
DTE
DTE
DTE
DTE
DTE

.ActiveDocument .
.ActiveDocument .
.ActiveDocument .
.ActiveDocument.
.ActiveDocument.
.ActiveDocument.

Selection

Selection.
Selection.

Selection

.WordLeft ()

WordRight (True)
CharLeft (True)

.Copy ()
Selection.
Selection.

EndOfLine ()
NewLine ()

DTE
DTE
DTE
DTE
DTE
DTE
DTE.ActiveDocument.Selection.
DTE.ActiveDocument.Selection.
"throw new ArgumentNullException ("""
DTE.ActiveDocument .Selection.
DTE.ActiveDocument.Selection.

.ActiveDocument.Selection.Text = "if"
.ExecuteCommand ("Edit.InsertTab")
.ExecuteCommand ("Edit.InsertTab")
.ActiveDocument.Selection.Text =
Paste ()
Text = ")"
LineDown ()
Text =

"string.IsNullOrEmpty ("
.ActiveDocument.Selection.

.ActiveDocument.Selection.

Paste ()
Text =
Paste ()
Text

nun nun
’

DTE.ActiveDocument.Selection.

DTE.ActiveDocument.Selection.

" value is not wvalid."")"
LineDown ()

NewLine ()

Selection.
Selection.

DTE.ActiveDocument.
DTE.ActiveDocument.

End Sub

End Module

In Listing 12-3, all of the namespaces that begin with EnvDTE have code that allows
you to manipulate the VS environment. The macro itself is a Sub within a Module.

Each of the statements corresponds to the steps used to create the macro in the preceding
section. For example, the Find And Replace window has several options, which this macro
populates, regardless of whether they contribute toward the purpose of the macro.

Opening a macro in the editor can be very useful if you want to make a quick change,
without needing to re-record the entire macro. For example, what if you missed a keystroke
or misspelled something? You can just edit the code, save the file, close the Macro editor,
and then re-run the macro. In fact, there is a problem with the macro for C#; it will only

Chapter 12: Customizing the Development Environment 369

work on the file you ran it in. This problem doesn’t occur in the macro for VB. I'll show
you how to fix this problem, but let’s open the macro editor first.

You can open the Macro editor through VS by selecting Tools | Macros | Macros IDE,
start a new project, add a module to the project, and add a Sub to the Module as a new
macro. Then code the macro by typing DTE. and using Intellisense to find various parts
of the IDE. The cryptic parameter to Windows.Item, { CF2DDC32-8CAD-11D2-9302-
005345000000/, for the Find And Replace window is called a Globally Unique Identifier
(GUID). A GUID is often used as a special identifier for software components and is the
method used in VS to uniquely identify tools. So, DTE.Windows.Item("{ CF2DDC32-
8CAD-11D2-9302-005345000000}").Activate() is a way to reference and open the Find
And Replace window.

There is a problem with the macro for C# in Listing 12-3, because it will only work in
the Customer.cs file in VS. The VB code below is provided for your convenience, but this
problem only occurs with the macro written for C# code; the VB macro works fine on the
VB code below. If you created a new class named Product in a file named Product.cs and
added an AddNewProduct method like the following, the macro will try to open and write
into the Customer.cs file, which is not the result you want:

C#:
using System;
namespace ConsoleApplicationl

{

class Product

{

public int AddNewProduct (string productName)
{
int newProdID = 0;

// Logic to add product

return newProdID;

VB (doesn’t have problem that occurs in C# code):
Public Class Product
Function AddNewProduct (ByVal productName As String) As Integer

Dim newProdID As Integer = 0

370 Microsoft Visual Studio 2010: A Beginner's Guide

' Logic to add product
Return newProdID
End Function

End Class

To fix the problem with the macro (for the C# code) opening the Customer.cs file,
notice that the macro has three statements that activate the Customer.cs file. Comment out
each of these statements as shown in the following excerpt:

'DTE.Windows.Item(''Customer.cs'').Activate()

'DTE.Windows.Item('' Customer.cs'").Activate()
DTE.Find.FindWhat = "{"

'DTE.Windows.Item(' Customer.cs'').Activate()

If you were to write your own macro via code, a quick way to figure out what code
you have to write is to start the macro recorder in VS (CTRL-SHIFT-R), use the VS feature
you want to code, stop recording (CTRL-SHIFT-R), and save the macro. Then inspect the code
in the Macro editor and copy the parts you need. This technique is especially valuable to
figure out how to open windows, such as the Find And Replace window discussed in the
preceding paragraph. For even more help, there are several example macros under the
Samples folder, shown in Figure 12-9, showing you different ways to write VS macros.

Summary

Now you know about various techniques for customizing VS. You learned how to customize
projects and save your work as a custom project template. In a related task, you saw how
you can create a new file and then save that file as a custom item template. This gives you
the ability to use projects and project items in a way that you want. In addition to using
snippets that ship with VS, you learned how to find the definition of existing snippets and
either modify a snippet or create a brand new snippet from scratch. You also saw how to
organize snippets with the Snippets Manager. Finally, you learned how to record and save
repeatable actions with VS macros. You can also use the Macro editor to customize existing
macros or create new ones on your own.

Macros are very powerful, but VS has even more capabilities for allowing you to
extend the IDE. You’ll learn how to extend VS by writing Add-Ins in the next chapter.

Chapter 13

Extending Visual
Studio 2010

371

372 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

Create an Add-In with VS
Learn What Types of Add-Ins to Create
Deploy an Add-In

Previous chapters discussed many ways to use VS, and the preceding chapter showed
you a few ways to create your own customizations. In particular, macros offer the
ability to perform repeatable actions and give you access to much of what VS has to offer.
Taking customization one step beyond macros, this chapter shows you how to extend VS
functionality with a software component called an Add-In.

Essentially, an Add-In is a software component that allows you to add new capabilities
to VS that haven’t existed before. The Add-In plugs into VS, and you can run it as if it
were part of VS. This chapter shows you how the process of creating an Add-In works.
You’ll see how to add functionality to make an Add-In perform any task you want. Besides
creating an Add-In, this chapter points you in the right direction so that you can figure out
how to access the different parts of VS. The specific example in this chapter is an Add-

In that finds all of the shortcut keys in VS and prints them to the Output window. With
knowledge of how to create an Add-In, you’ll learn how to deploy the Add-In so that it can
be loaded into VS. We’ll begin with a walk-through of how VS helps you create an Add-In.

Creating a Visual Studio Add-In

As when creating other project types in VS, you can run a project wizard to create an Add-
In for VS. The following discussion will show you how to start and run the Add-In Project
Wizard and examine the results.

Running the Add-In Project Wizard

You would start the Add-In project the same way you would any other project. The difference
is that an Add-In Project Wizard asks more questions than normal. The following steps take
you through the process of the Add-In Project Wizard and explain the various screens and
questions you’ll need to answer.

Chapter 13: Extending Visual Studio 2010 373
New Project — —_— — =
[.NET Framewerk 4 '] Sorklm[Defath '] i Search Installed Templates £
Installed Templates "
- O3] Visual Studio Add-in Extensibility Type: Eatensibility
Visual C# * Create an Add-in loadable in 2 Visual
Other Languages f_E;Z S AR Eaersibilty Studio based host
Cid

4 Other Project Types
Setup and Deployment
Extensibility
Visual Studio Solutions
Database
Modeling Projects

Test Projects
Name: KeystrokeFinder
Location: Ci\Projectsh
Solution name: KeystrokeFinder

v | Browse.
| Create directory for solution
| Add to source contral
=

Figure 13-1 Selecting a Visual Studio Add-In in the New Project window

1. Open VS and press CTRL-SHIFT-N to open the New Project window. Select Other Project
Types | Extensibility and observe that there are two types of Add-In project types:
Visual Studio Add-In and Shared Add-In. The Shared Add-In is what you would use
to create a Microsoft Office Add-In. The Visual Studio Add-In is appropriately named
because it describes what we want to do. Figure 13-1 shows what the screen should

look like.

2. Select Visual Studio Add-In. Name the project KeystrokeFinder, specify the location
where you want the project to be, and click OK. Click Next to pass the Welcome screen

and you’ll see the Select A Programming Language screen, shown in Figure 13-2.

3. Pick the language you would like to use. This book doesn’t discuss C++, but it would
be safe to pick either C# or VB, which you can learn more about in Chapters 2 through 4.
Click Next to reveal the Select An Application Host window, shown in Figure 13-3.

4. Your choices include Microsoft Visual Studio 2010 and Microsoft Visual Studio 2010
Macros. Checking Microsoft Visual Studio 2010 will allow the Add-In to work in the
VS environment, which you’ve used for most of this book. Checking Microsoft Visual

374 Microsoft Visual Studio 2010: A Beginner's Guide

Visual Studio Add-in Wizard (Pagel of 6) @
Select a Programming Language

_‘.' J
‘fou can create your Add-in using different programming languages. Which language -
would you like to use? r

(@) Create an Add-in using Visual C#
(7) Create an AddHin using Visual Basic
(T) Create an Add-in using Visual C++ / CLR.

() Create an Add-in using Visual C++ [ATL

[< Back][Next =] [Cancel

Figure 13-2 The Select A Programming Language window

Studio 2010 Macros will allow this Add-In to work with the Macro Editor, explained
in the preceding chapter. We’re only interested in VS for the current Add-In, so check

only Microsoft Visual Studio 2010 (not the Macros option). Click Next to display the
Enter A Name And Description window, shown in Figure 13-4.

Visual Studio Add-in Wizard (Page 2 of 6)

=X
Select An Application Host 29
‘fou can customize your Add-in so that the user can load it within multiple applicaton -
hosts, Which applications would you like to support? —

Microsoft Visual Studio 2010
] Microsoft Visual Studio 2010 Macros

[< Back][Next =] [Cancel

Figure 13-3 The Select An Application Host window

Chapter 13: Extending Visual Studio 2010

Visual Studio Add-in Wizard (Page 3 of 6)
Enter a Name and Description

1'I 1'I
An Add-in needs a name and description to better describe itself to the user, Enter >
these values below. —

What is the name of your Add-in?
Keystroke Finder

What is the description for your Add-in?

Displays a List of V5 Shortcut Keystrokes.,

[< Back][Mext >] [Cancel

Figure 13-4 The Enter A Name And Description window

5. The Enter A Name And Description window starts by appending *“ — No Name provided.”
and “ — No Description provided.” to the name of the project in the name and description
fields, respectively. Just delete the defaults and add the name and description you want
the Add-In to have. The Add-In will be named after what you put here, and users will
be able to read the description in the VS Add-In Manager, which I’ll discuss later in this
chapter. Click Next to display the Choose Add-In Options window, shown in Figure 13-5.

Visual Studio Add-in Wizard (Page 4 of 6) [~ B (3]
Choose Add-in Options. 1]
The following options are available for your Add-in. - ‘;

Would you like to create command bar UI for your Add-in?

Yes, create a Tools' menu item. By default this will cause the Add-in to load when the button
is dicked unless the Add-in i set to load on startup of the host application

You can fine tune when your Add-in loads:

[My Add-in will never put up modal UI, and can be used with command line builds

[< Back][Next =] [Cancel

Figure 13-5 The Choose Add-In Options window

375

376 Microsoft Visual Studio 2010: A Beginner's Guide

6. The first choice in Figure 13-5, “Would you like to create command bar UI for your
Add-In?” will add a menu item to the Tools menu with the name of your Add-In.
Check the second box too, allowing the Add-In to load when VS loads; the alternative
being that you can manually load the Add-In via the Add-In Manager, discussed later
in this chapter. The third option comes into play when you want to allow the Add-In
to work when someone runs VS via the command line. The preceding chapter shows
an example of running VS on the command line when installing the global project
templates by running devenv /installvstemplates. Popping up a modal window (one
that requires you to click an OK button to make it go away) will stop a command-line
operation from running because it is expecting acknowledgment of the modal window.
If that command-line operation were running as a scheduled Windows background job,
there would be no way to acknowledge the window and the job would not work. So,
check the third box only if it’s safe to run via the command line. Check the first two
boxes and leave the third box unchecked. Click Next to move to the Choosing ‘Help
About’ Information window, shown in Figure 13-6.

7. You can optionally show an About window for your Add-In. Check the box and modify
the text that you would like to show in the About box. Click Next and click Finish on
the Summary window.

After a minute VS will create a new solution and project that contains items that help
you create an Add-In. The next section discusses what those project items are.

Visual Studio Add-in Wizard (Page 5 of 6) ==
Choosing 'Help About' Information. 1]
Visual Studio supports adding information to the 'About’ dialog box. If you wish to >
create this information, enter your information below. — L

Would you like to generate settings for the About dialog box?
[¥] ¥es, T would like my Add-in to offer "About’ box information

ey

Where can your user r

t for your Add-in?

Creating an Add-In for Microsoft Visual Studio 2010: A Beginner's Guide -
This Add-In Displays VS Shortout Keystrokes

McGraw-Hill Professional
http:/fwww.mhprofessional.comf
Copyright () 2010, McGraw-Hill, All Rights Reserved

created and added to your project as an .ico file or embedded within the . AddIn XML

An icon is needed for the Visual Studio About box. This icon will automatically be J@]
file. A sample of the default icon can be seen to the right.

[< Back][Next =] [Cancel]

Figure 13-6 The Choosing ‘Help About’ window

Chapter 13: Extending Visual Studio 2010 377

Examining an Add-In Wizard Solution
After running the New Project Add-In Project Wizard, you’ll have a solution with a project
that has skeleton code forming the basis of the application. Not only will you need to know
what files are available, but you’ll also need to understand a couple of interfaces and how
to implement the interface methods properly. If you’re a little rusty on interfaces, now
might be a good time to visit Chapter 4 for a review. What you mostly need to know about
this project is that there are new references, a Connect class, and a couple of *.AddIn files.
Refer to Figure 13-7 as we discuss each of these Add-In project items.

Looking at assembly references (under the References folder), you might wonder
what all the assemblies are with EnvDTE names. Pulling the name apart, Env is short
for environment and DTE means Development Tools Extensibility. So, EnvDTE is an
assembly containing code that allows you to extend the VS development environment.
Each assembly represents functionality for a particular version of VS: EnvDTE is for
VS.NET (the first version of VS that supported .NET development) and VS 2003,
EnvDTESO is for VS 2005, EnvDTE90 is for VS 2008, and EnvDTE100 is for VS 2010
(the subject of this book). The reason you need references to all of the EnvDTE versions
is that each new version builds upon the previous with new functionality, rather than
replacing the older version. Therefore, you’ll sometimes encounter classes, interfaces, or

Solution Explorer *B X
BiE s
G Selution 'KeystrokeFinder' (1 project)
4 |5 KeystrokeFinder |
4 | References

<3 EnvDTE
<3 EnvDTEL00
<3 EnvDTESD
<2 EnvDTES0
<3 Extensibility
<3 Microsoft.CSharp
<3 Microsoft.VisualStudio.CommandBars
<3 stdole
<3 System
<3 Systemn.Core
<2 System.Data
<3 Systemn. Xml

] Assemblylnfo.cs

] Connect.cs

ﬁj KeystrokeFinder - For Testing.AddIn

%] KeystrokeFinder.AddIn

Figure 13-7 An Add-In project in Solution Explorer

378 Microsoft Visual Studio 2010: A Beginner's Guide

methods that are numbered, such as the IDTExtensibility and IDTExtensibility2, where
IDTExtensibility2 is a more recent version with additional members. I’1l explain what the
IDTExtensibility?2 interface does later, but what you should get out of this example is how
each version of the EnvDTE assemblies manages newer versions of code. This scheme
promotes the addition of new functionality for each version of VS without sacrificing
backward compatibility.

The Connect class contains the code that interacts with VS to make an Add-In work.
Remember, this is a VS project, just like all of the other projects you can create. You're
free to add classes containing your functionality and have code in Connect call your
classes, organize code into folders, or add a class library to the solution and call code in
the class library. The next section discusses internals of Connect in detail.

The other items of note in this project are the files with the *.AddIn extensions.

These are the deployment files. There was a time when you were required to go into the
Windows registry to configure an Add-In, but not anymore. The Add-In configuration is
done in the *.AddIn files, which contains XML. In a later section of this chapter, you’ll
see the internals of the *.AddIn file and learn how to manipulate this file for deployment.

Additionally, one of the *.AddlIn files has a shortcut arrow, which is a special shortcut
to a file used for debugging. If you look at the properties for this shortcut file, you’ll
notice that it points at your Documents\Visual Studio 2010\Addins\folder, which is a
deployment location. Whenever you debug this application, VS uses the debugging
* AddIn file to load the Add-In in a new copy of VS. You would manipulate the Add-In in
the new copy of VS, and your current copy of VS, in debugging mode, can hit breakpoints
and debug the Add-In.

Now that you know the key elements of an Add-In project, the next section drills down
into the Connect class and describes the members that interact with VS to run an Add-In.

Drilling into the Connect Class

The Connect class implements two interfaces, IDTExtensibility2 and IDTCommandTarget,
and contains several members. Before examining the code, you’ll learn about the interfaces,
their members, and purpose.

The purpose of the interfaces (IDTExtensibility2 and IDTCommandTarget) is to help
manage the lifetime of the Add-In. VS understands these interfaces, but it doesn’t know
anything about the code you write. Therefore, you have to bridge the gap between your
code and what VS needs to make an Add-In work. To do this, you use a class (Connect) that
implements the interfaces (IDTExtensibility2 and IDTCommandTarget). Then you place
your code into methods, members of Connect, that implement (match) the interfaces. When
VS communicates with the interfaces, your code (implementing the interface) executes.

Chapter 13: Extending Visual Studio 2010 379

Member Purpose

OnAddinsUpdate Add-In is either loaded or unloaded.
OnBeginShutdown Add-In is running and VS shuts down.
OnConnection Add-In is loaded.

OnDisconnection Add-In is unloaded.

OnStartupComplete VS has started up and then Add-In is loaded.

Table 13-1 The IDTExtensibility2 Interface

It’s like people from different countries trying to communicate, where they have a subject
to discuss but need a common language to be able to understand each other; the common
language would be the interface between the people.

The first interface to discuss is IDTEXxtensibility2, whose purpose is to let VS manage
loading and unloading of the Add-In. Loading and unloading are important because VS
loads Add-Ins when it starts and unloads Add-Ins when it shuts down. There are certain
actions that you might want to take, depending on when the Add-In is loaded and what
type of information you might need access to. For example, the very first time an Add-In
is ever loaded, you might want to perform a special operation like configuration or asking
the user if she would like to register your Add-In. Table 13-1 shows the members of
IDTEXxtensibility2 and describes their purpose.

The second interface that Connect implements is IDTCommandTarget. When building an
Add-In, you need a way for the VS IDE to execute the Add-In. For example, you will create
a named command that exposes the Add-In as a menu item in the Tools menu. Whenever
a user selects the menu item, the named command will execute and run your Add-In code.
IDTCommandTarget is the interface VS uses to execute your Add-In. Table 13-2 shows the
members of IDTCommandTarget and describes their purpose.

Each of the methods of both the IDTEXxtensibility2 and IDCommandTarget interfaces are
implemented by the provided Connect class. Listing 13-1 shows each of these members with
full documentation comments and skeleton code. The code in Listing 13-1 is in C#, but it is
very informative to take the overview of the interfaces from the previous table and then

Member Purpose

Exec Called by VS to execute your Add-In.

QueryStatus Called by VS to determine if the command should be enabled,
invisible, or supported.

Table 13-2 The IDTCommandTarget Interface

380 Microsoft Visual Studio 2010: A Beginner's Guide

take an even closer look at the comments in the code for a better understanding of what
that code does. The code comments are exactly the same in VB. Some of the comments
refer to the host application, where the host is either the VS IDE or the VS Macro Editor, as
was selected while running the Add-In Project Wizard in the preceding section and shown
in Figure 13-3. I’ve removed the contents of each method because subsequent sections of
this chapter will explain important method implementations and how to make the Add-In
perform useful operations.

Listing 13-1 Skeleton code for the Connect class

using System;

using Extensibility;

using EnvDTE;

using EnvDTES8O;

using Microsoft.VisualStudio.CommandBars;
using System.Resources;

using System.Reflection;

using System.Globalization;

namespace KeystrokeFinder
{
/// <summary>The object for implementing an Add-in.</summarys>
/// <seealso class='IDTExtensibility2' />
public class Connect : IDTExtensibility2, IDTCommandTarget
{
/// <summarys>
/// Implements the constructor for the Add-in object.
/// Place your initialization code within this method.
/// </summary>
public Connect ()
{
}

/// <summarys>

/// Implements the OnConnection method of the
/// IDTExtensibility2 interface. Receives notification
/// that the Add-in is being loaded.

/// </summary>

/// <param term='application's>

/// Root object of the host application.

/// </param>

/// <param term='connectMode'>

/// Describes how the Add-in is being loaded.
/// </param>

Chapter 13: Extending Visual Studio 2010

/// <param term='addInInst'>

/// Object representing this Add-in.

/// </param>

/// <seealso class='IDTExtensibility2' />

public void OnConnection (
object application, ext ConnectMode connectMode,
object addInInst, ref Array custom)

{
}

/// <summary>
/// Implements the OnDisconnection method of the
/// IDTExtensibility2 interface. Receives notification
/// that the Add-in is being unloaded.
/// </summary>
/// <param term='disconnectMode' >
/// Describes how the Add-in is being unloaded.
/// </param>
/// <param term='custom'>
/// Array of parameters that are host application specific.
/// </param>
/// <seealso class='IDTExtensibility2' />
public void OnDisconnection (
ext_DisconnectMode disconnectMode, ref Array custom)

{
}

/// <summarys>

/// Implements the OnAddInsUpdate method of the

/// IDTExtensibility2 interface. Receives notification

/// when the collection of Add-ins has changed.

/// </summary>

/// <param term='custom'>

/// Array of parameters that are host application specific.
/// </param>

/// <seealso class='IDTExtensibility2' />

public void OnAddInsUpdate (ref Array custom)

{
}

/// <summary>

/// Implements the OnStartupComplete method of the

/// IDTExtensibility2 interface. Receives notification
/// that the host application has completed loading.
/// </summary>

/// <param term='custom'>

381

382 Microsoft Visual Studio 2010: A Beginner’s Guide

/// Array of parameters that are host application specific.
/// </param>

/// <seealso class='IDTExtensibility2' />

public void OnStartupComplete (ref Array custom)

{
}

/// <summarys>

/// Implements the OnBeginShutdown method of the

/// IDTExtensibility2 interface. Receives notification

/// that the host application is being unloaded.

/// </summary>

/// <param term='custom'>

/// Array of parameters that are host application specific.
/// </param>

/// <seealso class='IDTExtensibility2' />

public void OnBeginShutdown (ref Array custom)

{
}

/// <summarys>
/// Implements the QueryStatus method of the
/// IDTCommandTarget interface. This is called
/// when the command's availability is updated
/// </summarys>
/// <param term='commandName' >
/// The name of the command to determine state for.
/// </param>
/// <param term='neededText'>
/// Text that is needed for the command.
/// </param>
/// <param term='status's>
/// The state of the command in the user interface.
/// </param>
/// <param term='commandText'>
/// Text requested by the neededText parameter.
/// </param>
/// <seealso class='Exec' />
public void QueryStatus (
string commandName,
vsCommandStatusTextWanted neededText,
ref vsCommandStatus status,
ref object commandText)

Chapter 13: Extending Visual Studio 2010 383

/// <summary>
/// Implements the Exec method of the IDTCommandTarget
/// interface. This is called when the command is invoked.
/// </summary>
/// <param term='commandName'>
/// The name of the command to execute.
/// </param>
/// <param term='executeOption's>
/// Describes how the command should be run.
/// </param>
/// <param term='varIn's>
/// Parameters passed from the caller to the command handler.
/// </param>
/// <param term='varoOut's>
/// Parameters passed from the command handler to the caller.
/// </param>
/// <param term='handled's>
/// Informs the caller if the command was handled or not.
/// </param>
/// <seealso class='Exec' />
public void Exec(
string commandName, vsCommandExecOption executeOption,
ref object varIn, ref object varOut, ref bool handled)

{
}

private DTE2 applicationObject;
private AddIn _addInInstance;

You’ve had an overview of what the IDTExtensibility2 and IDTCommandTarget
interfaces do and reviewed the comments in Listing 13-1. In the next section, you’ll see
how to add your own code to the interface methods to make the KeystrokeFinder Add-In
perform some useful work.

Adding Functionality to an Add-In

When implementing the functionality of an Add-In, you’ll be most concerned with
capturing the call to Exec, which VS calls whenever the user selects the Tools menu item
for your Add-In. This section will also cover a couple of other methods: OnConnection,
which contains a lot of initialization code, and QueryStatus, which is handy for managing
the state of the Add-In menu item. We’ll look at OnConnection first so that you can see
how the Add-In is initialized.

384 Microsoft Visual Studio 2010: A Beginner's Guide

Reviewing the OnConnection Method

As you learned earlier, the Connect class implements various interface methods so

that VS can call into those methods to run your Add-In. One of the primary methods

is OnConnection, which is a member of the IDTExtensibility2 interface. VS calls
OnConnection when the Add-In loads. When calling OnConnection, VS passes four
parameters that you can use to initialize the Add-In. The Add-In Project Wizard, covered
in a previous section of this chapter, generates much skeleton code that uses parameter
values in OnConnection to initialize the Add-In. While the example in this chapter doesn’t
modify the OnConnection method, understanding the code is helpful in learning how the
Add-In initializes and how it does affect the code you will write later. We’ll first take
another look at OnConnection parameters and then examine the generated code.

Understanding OnConnection Parameters

The OnConnection method has four parameters. Each of the parameters are passed to the
OnConnection method by VS; these parameters provide all of the information necessary
for initializing the Add-In. Table 13-3 lists each parameter and its purpose.

Member Type Purpose

application | Compile-time type is Object, but | Application is the parent object for the entire VS
the runtime type is defined by the | automation model. You use this to access all of the
version you're at. For example, | windows, commands, and other parts of the IDE.
on older versions of VS, the
runtime type of Application was
DTE, but the runtime type of
Application in VS 2010 is DTE2.

connectMode | Enum of type ext_ConnectMode | Read this parameter to figure out when and how
the Add-In was loaded. In a following section,
you'll see how the OnConnection method reads this
value to figure out when the Add-In loads for the

first time.
addininst The compile-time type is Object, | This refers to the Add-In itself, allowing you to
but runtime type is AddIn. inspect various properties of the Add-In.
custom Array These aren’t used in the current example, but

consider the fact that we’re implementing an
interface. Besides VS 2010, you could have
another application (host) that supported Add-Ins
that implement the IDTExtensibility2 interface. Those
hosts could use the custom array parameter to pass
information specific to that application. Therefore,
custom is another extensibility point to make the
IDTExtensibility2 interface more flexible.

Table 13-3 OnConnection Method Parameters

Chapter 13: Extending Visual Studio 2010 385

Reviewing OnConnection Generated Code

You know that the purpose of the OnConnection method is to help initialize the Add-In, and
you’ve seen the parameters populated by VS and what each parameter means. Listing 13-2
shows the code generated by VS after the Add-In Project Wizard completes. It reflects the
result of choosing to have a command bar UI, shown in Figure 13-5. Code comments were
omitted to place more focus on the code itself.

Listing 13-2 The OnConnection method

C#:

public void OnConnection (
object application, ext ConnectMode connectMode,
object addInInst, ref Array custom)

_applicationObject = (DTE2)application;
_addInInstance = (AddIn)addInInst;
if (connectMode == ext ConnectMode.ext cm UISetup)

{

object []contextGUIDS = new object[] { };
Commands2 commands =

(Commands2) applicationObject.Commands;
string toolsMenuName = "Tools";

Microsoft.VisualStudio.CommandBars.CommandBar
menuBarCommandBar = ((
Microsoft.VisualStudio.CommandBars.CommandBars)
_applicationObject.CommandBars) ["MenuBar"] ;
CommandBarControl toolsControl =
menuBarCommandBar.Controls [toolsMenuName] ;
CommandBarPopup toolsPopup =
(CommandBarPopup) toolsControl;

try
{

Command command = commands.AddNamedCommand? (
_addInInstance, "KeystrokeFinder",
"KeystrokeFinder",

"Executes the command for KeystrokeFinder",

true, 59, ref contextGUIDS,

(int) vsCommandStatus
.vsCommandStatusSupported+

(int)vsCommandStatus.vsCommandStatusEnabled,

386 Microsoft Visual Studio 2010: A Beginner's Guide

(int) veCommandStyle
.vsCommandStylePictAndText,

vsCommandControlType
.vsCommandControlTypeButton) ;

if ((command != null) &&
(toolsPopup != null))

command .AddControl (
toolsPopup.CommandBar, 1);

}
catch (System.ArgumentException)
{
}

VB:

Public Sub OnConnection (
ByVal application As Object,
ByVal connectMode As ext ConnectMode,
ByVal addInInst As Object,
ByRef custom As Array) Implements IDTExtensibility2.OnConnection
_applicationObject = CType (application, DTE2)
_addInInstance = CType(addInInst, AddIn)

If connectMode = ext ConnectMode.ext cm UISetup Then

Dim commands As Commands2 =
CType (_applicationObject.Commands, Commands2)
Dim toolsMenuName As String = "Tools"

Dim commandBars As CommandBars =
CType (_applicationObject.CommandBars, CommandBars)
Dim menuBarCommandBar As CommandBar =
commandBars.Item("MenuBar")

Dim toolsControl As CommandBarControl =
menuBarCommandBar.Controls.Item (toolsMenuName)
Dim toolsPopup As CommandBarPopup =
CType (toolsControl, CommandBarPopup)

Try

Chapter 13: Extending Visual Studio 2010

Dim command As Command =
commands . AddNamedCommand? (

_addInInstance, "KeystrokeFinderVB",

"KeystrokeFinderVB",

"Executes the command for KeystrokeFinderVB",

True, 59, Nothing,

CType (vsCommandStatus.vsCommandStatusSupported,
Integer) +

CType (vsCommandStatus.vsCommandStatusEnabled,
Integer),

vsCommandStyle.vsCommandStylePictAndText,

vsCommandControlType.vsCommandControlTypeButton)

command .AddControl (toolsPopup.CommandBar, 1)
Catch argumentException As System.ArgumentException
End Try

End If
End Sub

Dissecting Listing 13-2 into its constituent parts demonstrates the role OnConnection

has and how it affects subsequent code. The first part of the method obtains references to a

couple of important objects: application and addIninst. The following excerpt shows how
to obtain a reference to these objects and convert them to DTE?2 and AddIn, respectively.
The references to _applicationObject and _addIninstance are fields of the Connect class,
which is important because now other methods of the class will be able to access these

objects.

C#:
_applicationObject = (DTE2)application;
_addInInstance = (AddIn)addInInst;

VB:

_applicationObject = CType (application, DTE2)
_addInInstance = CType(addInInst, AddIn)

The remaining code in OnConnection sets up the menu item under the Tools menu,
as directed by choosing to build a command UI, shown in Figure 13-5. However, this
only occurs one time—the first time the application runs. To make sure the menu item
sets up one time, the code checks the connectMode parameter to see if it’s set to

387

388 Microsoft Visual Studio 2010: A Beginner's Guide

ext_ConnectMode.ext_cm_UlSetup, as shown in the following code. The remaining
code in the OnConnection method will only execute if the following condition is true:

C#:

if (connectMode == ext ConnectMode.ext cm UISetup)

VB:

If connectMode = ext ConnectMode.ext cm UISetup Then

The first time the code runs, the code within the preceding if statement will execute,
creating a menu item for the KeystrokeFinder Add-In in the Tools menu. Code examples
that follow in this section are all contained within the preceding if statement; this is good
information to know because it shows you how to navigate the VS object model to find
something.

The following code uses _applicationObject to get a list of commands, which is a list
of all the actions you can take with VS. As discussed earlier, _applicationObject is type
DTE? and serves as the parent object for accessing all functionality in VS.

C#:

Commands2 commands =
(Commands2) applicationObject.Commands;

VB:

Dim commands As Commands2 =
CType (_applicationObject.Commands, Commands2)

In the VS automation object model, a menu item is called a CommandBar. So, you get
a reference to a CommandBars collection, again through _applicationObject, to reference
the MenuBar, which is the main VS menu, assigned to menuBarCommandBar:

C#:

Microsoft.VisualStudio.CommandBars.CommandBar
menuBarCommandBar = ((
Microsoft.VisualStudio.CommandBars.CommandBars)
_applicationObject.CommandBars) ["MenuBar"] ;

VB:

Dim commandBars As CommandBars =
CType (_applicationObject.CommandBars, CommandBars)
Dim menuBarCommandBar As CommandBar =
commandBars.Item("MenuBar")

Chapter 13: Extending Visual Studio 2010

Within the CommandBars collection, menuBarCommandBar, you then look into the
Controls collection, which is a list of menus on the main menu to find the Tools menu,
assigned to roolsControl as follows:

C#:

string toolsMenuName = "Tools";
CommandBarControl toolsControl =
menuBarCommandBar.Controls [toolsMenuName] ;

VB:

Dim toolsMenuName As String = "Tools"
Dim toolsControl As CommandBarControl =
menuBarCommandBar.Controls.Item(toolsMenuName)

In the VS automation object model, an individual menu is a CommandBarPopup,
assigned to toolsPopup as follows:

C#:

CommandBarPopup toolsPopup =
(CommandBarPopup) toolsControl;

VB:

Dim toolsPopup As CommandBarPopup =
CType (toolsControl, CommandBarPopup)

Now you have a reference to the menu where the menu item for the Add-In must
be added. You are ready to add the command, using the AddNamedCommand?2 method
of the commands collection. Remember that earlier code assigned these commands
from the application object to the commands variable. A quick review of the arguments
to AddNamedCommand?2 gives you the gist of what’s happening: The code passes a
reference to the Add-In; provides a menu item name and description; and indicates that
the status of the command is supported and enabled, the menu item will have pictures and
text, and the type of menu item is button (can be clicked). If you want all the details of
this method call, now is a good time to refer to the documentation. While it’s important to
understand the major interfaces, such as OnConnection for IDTExtensibility2, memorizing
every API call might not be the most productive use of your time when you’re just starting
out. The following code shows the call to AddNamedCommand?2:

C#:

Command command = commands.AddNamedCommand?2 (
_addInInstance, "KeystrokeFinder",
"KeystrokeFinder",

"Executes the command for KeystrokeFinder",

389

390 Microsoft Visual Studio 2010: A Beginner's Guide

true, 59, ref contextGUIDS,

(int) veCommandStatus
.vsCommandStatusSupported+

(int) veCommandStatus.vsCommandStatusEnabled,

(int) veCommandStyle
.vsCommandStylePictAndText,

vsCommandControlType
.vsCommandControlTypeButton) ;

VB:

Dim command As Command =
commands . AddNamedCommand2 (

_addInInstance, "KeystrokeFinderVB",

"KeystrokeFinderVB",

"Executes the command for KeystrokeFinderVB",

True, 59, Nothing,

CType (vsCommandStatus .vsCommandStatusSupported,
Integer) +

CType (vsCommandStatus.vsCommandStatusEnabled,
Integer),

vsCommandStyle.vsCommandStylePictAndText,

vsCommandControlType.vsCommandControlTypeButton)

AddNamedCommand?2 returned a Command object, command, which must be placed
into VS somewhere so that a user can click it to invoke the Add-In. The next statement
accomplishes this task by adding command to the Tools menu. As you may recall from
previous examples, the code searched for and obtained a reference to the Tools menu. After
ensuring that both the command and toolsPopup refer to valid objects (a best practice), the
following code places command into the first position (at the top) of the Tools menu:

C#:
if ((command != null) &&
(toolsPopup != null))

{

command .AddControl (
toolsPopup.CommandBar, 1) ;

VB:

command .AddControl (toolsPopup.CommandBar, 1)

This completes the responsibilities of the OnConnection method. If you had your own
code for initializing the Add-In, the OnConnection method would be a good place to put
it. The preceding example was useful because now you know how to access VS menus
and commands. The example also demonstrated the importance of the main application
object and how it’s used as the starting point for getting to other part of VS.

Chapter 13: Extending Visual Studio 2010 391

As you may recall, the OnConnection method assigned the main application object to
_applicationObject, a field of the Connect class. This is important because now you have
access to the main application object, and you’ll see how it’s used in the next section,
which shows you how to execute your Add-In via the Exec method.

Implementing the Exec Method

Whenever a user starts your Add-In, VS calls the Exec method of the IDTCommandTarget
interface. The Exec method is important because that’s where you add your code to
implement the behavior of your Add-In. The previous sections discussed code that is
generated by VS, but Listing 13-3 contains code for the Exec method that you should
enter yourself to make the KeystrokeFinder Add-In work. The purpose of the Add-In

for this section is to list all VS commands and their associated shortcut keys. The list of
commands and shortcuts will be displayed in the VS Output window. Listing 13-3 shows
the Exec method for the KeystrokeFinder Add-In.

Listing 13-3 Implementing the Exec method

C#:

public void Exec(
string commandName, vsCommandExecOption executeOption,
ref object varIn, ref object varOut, ref bool handled)

handled = false;
if (executeOption ==
vsCommandExecOption.vsCommandExecOptionDoDefault)

if (commandName ==
"KeystrokeFinder.Connect .KeystrokeFinder")

OutputWindow outWin =
_applicationObject.ToolWindows.OutputWindow;
OutputWindowPane outPane =
outWin.OutputWindowPanes.Add (
"Keyboard Shortcuts") ;
outPane.Activate () ;

foreach (Command cmd in
_applicationObject.Commands)
{

object[] cmdBindings =
cmd.Bindings as object[];

392 Microsoft Visual Studio 2010: A Beginner’s Guide

if (cmdBindings.Length > 0)

{

string bindingStr =

string.Join(", ", cmdBindings) ;
outPane.OutputString (

"Command: " + cmd.Name +

", Shortcut: " + bindingStr +

"\n") ;

handled = true;
return;

VB:

Public Sub Exec (

ByVal commandName As String,

ByVal executeOption As vsCommandExecOption,

ByRef varIn As Object, ByRef varOut As Object,

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If executeOption =
vsCommandExecOption.vsCommandExecOptionDoDefault Then
If commandName =

"KeystrokeFinderVB. Connect .KeystrokeFinderVB" Then

Dim outWin As OutputWindow =
_applicationObject.ToolWindows.OutputWindow

Dim outPane As OutputWindowPane =
outWin.OutputWindowPanes.Add (
"Keyboard Shortcuts")
outPane.Activate ()

For Each cmd As Command In _applicationObject.Commands

Dim cmdBindings As Object () =
CType (cmd.Bindings, Object ())

If cmdBindings.Length > 0 Then

Dim bindingStr As String =
String.Join(", ", cmdBindings)

Chapter 13: Extending Visual Studio 2010 393

outPane.OutputString (
"Command: " & cmd.Name &
", Shortcut: " & bindingStr &
Environment .NewLine)

End If
Next

handled = True
Exit Sub
End If
End If
End Sub

The executeOption parameter of Exec allows you to determine whether you want
to prompt the user for input, perform the action, or show help, which are options of the
vsCommandExecOption. All you need to do is check the option and perform the operation for
the current value of executeOption. In the current Add-In, we only check for vsCommandExec
OptionDoDefault, which means to just perform the operation:

C#:

if (executeOption ==
vsCommandExecOption.vsCommandExecOptionDoDefault)

VB:

If executeOption =
vsCommandExecOption.vsCommandExecOptionDoDefault Then

The example in this chapter only has one command, but you could potentially have
multiple commands if you decided to add more commands in the OnConnection method.
Add an if statement to ensure you’re executing code for the proper command, such as the
following code:

C#:

if (commandName ==
"KeystrokeFinder.Connect .KeystrokeFinder")

VB:

If commandName =
"KeystrokeFinderVB.Connect .KeystrokeFinderVB" Then

394 Microsoft Visual Studio 2010: A Beginner's Guide

As you learned earlier, the application object is the starting point for accessing all VS
objects. Since we need to write to the Output window, the code accesses the ToolWindows
property of the application object, which provides access to multiple VS windows. The

following code obtains a reference to the OutputWindow, adds a new pane, and activates
the pane:

C#:

OutputWindow outWin =

_applicationObject.ToolWindows.OutputWindow;
OutputWindowPane outPane =
outWin.OutputWindowPanes.Add (
"Keyboard Shortcuts") ;
outPane.Activate () ;

VB:

Dim outWin As OutputWindow =
_applicationObject.ToolWindows.OutputWindow

Dim outPane As OutputWindowPane =
outWin.OutputWindowPanes.Add (
"Keyboard Shortcuts")

outPane.Activate ()

Going back to the application object, we need to access the Commands collection, using a
Joreach loop to access each Command object. Each command name is in the Name property.
The Bindings property is a collection of shortcut keys for the command. Some commands have
no shortcut keys, as indicated by an empty Bindings collection (its Length property will be set
to 0), so we skip them. The following code shows how to iterate through all VS commands and
print each command name and associated shortcut keys to the Output window:

C#:

foreach (Command cmd in
_applicationObject.Commands)
{

object[] cmdBindings =
cmd.Bindings as object[];

if (cmdBindings.Length > 0)
{
string bindingStr =
string.Join (", ", cmdBindings) ;
outPane.OutputString (
"Command: " + cmd.Name +

Chapter 13: Extending Visual Studio 2010

", Shortcut: " + bindingStr +
n\nn) ;

}

handled = true;

VB:

For Each cmd As Command In _applicationObject.Commands

Dim cmdBindings As Object () =
CType (cmd.Bindings, Object())

If cmdBindings.Length > 0 Then

Dim bindingStr As String =
String.Join(", ", cmdBindings)

outPane.OutputString (
"Command: " & cmd.Name &
", Shortcut: " & bindingStr &
Environment .NewLine)
End If
Next

handled = True

Notice how we set handled to true, letting VS know that the code recognized and

acted on the command. Besides letting users execute the Add-In, you want to ensure their

experience with the Add-In is logical and the command displays its status properly, as
you’ll learn about in the next section.

Setting Status with QueryStatus

While VS is working with your Add-In, it will call the QueryStatus method of
IDTCommandTarget to ensure it displays the command properly. Listing 13-4 shows
the default implementation of QueryStatus.

Listing 13-4 The QueryStatus method

C#:

public void QueryStatus (
string commandName,

395

396 Microsoft Visual Studio 2010: A Beginner's Guide

vsCommandStatusTextWanted neededText,
ref vsCommandStatus status,
ref object commandText)

if (neededText ==
vsCommandStatusTextWanted
.vsCommandStatusTextWantedNone)

if (commandName ==
"KeystrokeFinder.Connect .KeystrokeFinder")

status =
(vsCommandStatus)
vsCommandStatus.vsCommandStatusSupported |
vsCommandStatus.vsCommandStatusEnabled;
return;

VB:

Public Sub QueryStatus (
ByVal commandName As String,
ByVal neededText As vsCommandStatusTextWanted,
ByRef status As vsCommandStatus,

ByRef commandText As Object) Implements IDTCommandTarget.
QueryStatus

If neededText =
vsCommandStatusTextWanted.vsCommandStatusTextWantedNone Then

If commandName =
"KeystrokeFinderVB.Connect .KeystrokeFinderVB" Then

status =
CType (vsCommandStatus.vsCommandStatusEnabled +
vsCommandStatus.vsCommandStatusSupported,
vsCommandStatus)

Else

status = vsCommandStatus.vsCommandStatusUnsupported

End If
End If
End Sub

Chapter 13: Extending Visual Studio 2010 397

The QueryStatus method in Listing 13-4 checks the commandName to ensure it’s
working with the right Add-In. If so, it sets the status parameter to a combination of values
from the vsCommandStatus enum. In Listing 13-4, the status is supported and enabled.
This demonstrated how to create an Add-In. Next, you’ll learn how to deploy the Add-In.

Deploying an Add-In
There are two files involved in deploying your Add-In: a *.AddIn file and *.dll. The
*.AddlIn file contains registration information for your Add-In, and *.dll is the class
library output assembly that contains your Add-In.
You can deploy the *.AddIn file by copying it into a folder that VS recognizes. There
is a specified set of folders that VS recognizes, but you can add your own folder location.
To see what the VS settings are, select Tools | Options | Environment | Add-in/Macros
Security. You’ll see a window similar to Figure 13-8. The Add-in/Macros Security
window also has options that allow you to determine if macros can run, if any Add-Ins can
load, or if Add-Ins are allowed to load over the Internet.

Options [sl
4 Environment - [¥] Allow macros to run
General [¥] Allow Add-in components to load
|Add-in/Macros Security | [] Allow Add-in components to load from a URL
AutoRecover
Documents Add-in File Paths
B eesion Managee -l | ®ALLUSERSDOCUMENTS®%\Microsoft\MSEnvShared\Addins
Sinlond PP "l | %ALLUSERSPROFILE%\Application Data\Microsoft\MSEnvSharedyAddins
Fonts and Colors i 3 i 2
Ingoetiari Expodt Setfinge l?&-;.QLLUSERSPROl—f[LE‘?E»\I’\-‘hcn:lscn‘t‘l«‘lsual Stud.lo\Addlns
International Settings FAPPDATAS \Microsoft\MSEnvShared\Addins
Keyboard %VSAPPDATAMNAddins
Startup || | %vSCOMMONAPPDATA%\Addins
Task List SVSMYDOCUMENTS %\ Addins
Web Browser
[» Projects and Solutions
i Source Control
[» Text Editor
> Debugging Remove
& IntelliTrace i
ok || Cancel

Figure 13-8 The Add-in/Macros Security window

398 Microsoft Visual Studio 2010: A Beginner's Guide

In addition to the *.AddIn file, you’ll need to determine where the Add-In class library
file (*.dll) will reside. By default, the Add-In Project Wizard assumes that the *.dll file is
deployed in the same location as the *.AddIn file. Listing 13-5 shows the contents of the
* AddIn file. The location of the *.dll file is specified in the Assembly element, which can
be either a file system path or a URL.

Listing 13-5 Contents of the *.AddIn file

<?xml version="1.0" encoding="UTF-16" standalone="no"?>
<Extensibility xmlns=
"http://schemas.microsoft.com/AutomationExtensibility">
<HostApplications>
<Name>Microsoft Visual Studio</Name>
<Version>10.0</Versions>
</HostApplication>
<Addin>
<FriendlyName>Keystroke Finder</FriendlyName>
<Description>
Displays a List of VS Shortcut Keystrokes.
</Description>
<AboutBoxDetails>
Creating an Add-...
</AboutBoxDetails>
<AboutIconDatas...</AboutIconDatas>
<Assembly>KeystrokeFinder.dll</Assembly>
<FullClassName>
KeystrokeFinder.Connect
</FullClassName>
<LoadBehavior>1l</LoadBehaviors>
<CommandPreload>1</CommandPreload>
<CommandLineSafe>0</CommandLineSafe>
</Addin>
</Extensibilitys>

Another way to work with Add-Ins is via the Add-In Manager, which you can open
by selecting Tools | Add-in Manager. Figure 13-9 shows the Add-In Manager with the
KeystrokeFinder Add-In in the list. Checking Available Add-Ins immediately loads or
unloads the Add-In, checking Startup indicates whether the Add-In will load when VS
starts, and checking Command Line makes the Add-In load if a user runs VS (devenv.exe)
via the command line.

Chapter 13: Extending Visual Studio 2010 399

Add-in Manager [
Available Add-ins Startup Command Line
E L] Keystroke Finder L] Ll]
Description:
Displays a List of VS Shortcut Keystrokes, -
ok | [Cancel

Figure 13-9 The Add-In Manager

Once the Add-In is deployed and loaded, a user can run the Add-In by selecting Tools |
KeystrokeFinder. When the Add-In runs, the Output window will contain a listing of
commands and shortcut keys. To see the results, you should open the Output window,
CTRL-W-0, before running the Add-In.

Now you know how to create and deploy an Add-In, but you’ll also need some
guidance in moving forward to help you create your own Add-Ins. The next section
provides that guidance.

Where to Go Next

As you’ve seen in previous sections, the application object is central to getting started
with Add-In development. Whenever you need to find something, use the application
object reference, press the pot on your keyboard, and Intellisense will show you
properties such as commands and windows.

As you view the application object properties, have the VS documentation open,
telling you what each property means and providing example code of how it works.

Sometimes there aren’t examples and the documentation isn’t as clear as it could
be. In those cases, you might have to perform some investigation. The tools to perform

400 Microsoft Visual Studio 2010: A Beginner's Guide

this investigation include the debugger’s breakpoints and the Immediate window. Set a
breakpoint in one of the Add-In methods and inspect the value of an object. To find out
what is inside that object, open the Immediate window, type the object name, and press
port to let Intellisense help you find properties you’re interested in.

On occasion, you’ll have properties that are collections. In that case, you can write
code in the Add-In method you want the access the collection through, add a foreach (For
Each in VB) loop, and print values of the collection to the Output window.

Summary

Each section of this chapter walked you through the steps necessary to write an Add-In.
You learned how Add-In projects are started, similar to other projects, except that the
wizard for creating Add-Ins is more extensive. Once you understood what project items
were created, you learned about the contents of the Add-In itself, the interfaces that

are implemented, and the skeleton code generated by the Add-In Project Wizard. This
chapter showed you how to add code to the Add-In to make it perform a search of all

VS commands and their related shortcut keys. This process demonstrated how you could
access anything throughout VS via code. You learned how to deploy and manage an Add-In
and then finished off with tips on moving forward to create your own Add-Ins.

This is the last chapter of this book, but only the beginning for your software development
experience using Microsoft Visual Studio 2010. I sincerely appreciate your reading my book
and hope that it propels you to greater skill and success.

—Joe Mayo

Part V |

Appendixes

This page intentionally left blank

Appendix A

Introduction to XML

403

404 Microsoft Visual Studio 2010: A Beginner's Guide

Extensible Markup Language (XML) is an open-standards cross-platform way of
specifying documents. At its origins, XML was used to represent data, but it has grown
in use to include user interface technologies and even executable logic. While there are
many practical uses of XML, this book is mostly concerned with explaining how XML is
used for ASP.NET, Silverlight, and Windows Presentation Foundation (WPF), all of which
are discussed in chapters of this book. In each of these scenarios, some specialization of
XML is being used to construct user interfaces. In ASP.NET, you use XML for HTML
(XHTML). Both Silverlight and WPF use XML Application Markup Language (XAML),
pronounced “Zamel.” Before learning about XHTML or XAML, you might want an
introduction or refresher on XML, which is the purpose of this appendix. While this
introduction won’t teach you everything about XML, it will give you the essentials that
can help when seeing how XML is being used.

VS 2010 XML Editor

You can create your own XML documents in VS 2010 with the XML editor. There are a
couple of ways to open a new XML document, within or without a project. Without a project,
select File | New | File and select XML File, and click OK. You can rename the file (for
instance, Customer.xml) when saving. Within a project, right-click the project, select Add |
New Item, select the Data list, select XML File, give the document a name (for instance,
Customer.xml), and click OK. What this gives you is an editor with Intellisense support that is
better than Notepad. Listing A-1 shows an XML document that holds customer data.

Listing A-1 An XML document example

<?xml version="1.0" encoding="utf-8" ?>
<customer id="7">

<name>Joe</name>

<address>123 4th St</address>
</customer>

As you can see in Listing A-1, an XML document is readable text. It contains data, and
the meaning of that data is specific to the applications that need to use it. The following
sections will decipher Listing A-1 and explain what each part of the document means.

XML Prefixes

The top of the document in Listing A-1 contains an XML prefix, repeated here for convenience:

<?xml version="1.0" encoding="utf-8" ?>

Appendix A: Introduction to XML 405

The prefix is common for letting applications reading the document know that it is
indeed an XML document. The version is self-describing. Encoding is important because
it specifies the binary format of the text. If you have one application passing data to
another application, it’s important that both applications can read the document and are
using the same encoding. The utf-8 encoding is the default and for the purpose of this
book is the only encoding you will care about.

The angle brackets, < and >, define the markup in XML. For the file prefix, content is
placed between <? and ?> character sequences, but as the following sections show, most
other markup is different.

XML Elements

The XML elements in Listing A-1 are customer, name, and address. Each element is
defined by matching pairs of markup, following this pattern:

<elementName>value</elementName>

In the previous example, elementName is the name of the element and value is the data
associated with that element. Elements always have a begin tag and an end tag. You can
identify the end tag because it always follows the begin tag eventually (there may be other
element tags nested in between the pair) and contains a forward slash character before the
element name.

The value in the previous example can sometimes be blank, meaning there is no value
for that element. A value can also be one or more elements, such as customer, in Listing A-1,
which contains name and address elements. In Listing A-1, the value of name is Joe and the
value of address is /23 4th St. In addition to elements, you can have attributes, discussed next.

Attributes

An attribute decorates an element with a single value, such as in the following example:

<elementName attributeName="attributeValue">
elementValue
</elementName>

Notice that the attribute, attributeName, is inside of the start tag of the element. It
contains an equal sign and a quoted value. You can have multiple attributes on a single
element and they’ll be separated by spaces. Remember that attributes can have only one
value, but if you need to define more than one value, you must use elements.

Examples of attributes in Listing A-1 are version and encoding in the prefix and id
on customer.

406 Microsoft Visual Studio 2010: A Beginner's Guide

Namespaces

Another important part of XML that you’ll need to understand is namespaces. In Chapter 2,
you learned how namespaces in C# and VB help give a unique identity to code within a
given namespace. The purpose of namespaces in XML is similar. In the case of Listing
A-1, there is a customer element, but think about how many different programs work with
customer data. A customer in one program will not be defined the same as a customer in
another program, and you need a way to tell them apart, which is where namespaces come
in. You would define your customer data in a namespace of your choosing, and some other
developer would define a unique namespace for their customer. That way, your programs
won’t ever be confused if they try to read the wrong data. Listing A-2 shows how to use a
namespace to make a customer unique.

TIP

You might have noticed that the namespaces in Listing A-2 look like Web addresses.
However, this is just coincidence and is a common practice used to increase the chance
that the namespace is unique. In reality, the namespace is just a string, which catches
people new to namespaces off guard. For example, http://mcgraw-hill.com/vs2010bg
is a different namespace than http://mcgraw-hill.com/vs2010bg/ because the extra
forward slash on the end is a different string. So, if you made this mistake, then it's
possible that a program won’t recognize the data as being a valid format because the
data is in a different namespace than what the program expects. Remember that a
namespace is a unique string, not a Web address.

Listing A-2 XML namespace example

<?xml version="1.0" encoding="utf-8" ?>
<customer id="7"
xmlns="http://mcgraw-hill.com/vs2010bg"
xmlns:a="http://somedomain.com/addresses" >
<name>Joe</name>
<a:address>123 4th St</a:address>
</customer>

Namespaces are specified by placing an xmins attribute on an element, either with
or without a prefix. The xmins without a prefix specifies the default namespace for all of
the elements where the namespace resides and child elements of the element where the
namespace resides. This means that customer and name are in the http.//mcgraw-hill.com/
vs2010bg namespace.

Namespaces can also have prefixes to help you target where they are applied. In
Listing A-2, there is an xmins:a, where a is the prefix for the http://somedomain.com/

http://mcgraw-hill.com/vs2010bg
http://mcgraw-hill.com/vs2010bg/
http://mcgraw-hill.com/vs2010bg
http://mcgraw-hill.com/vs2010bg

Appendix A: Introduction to XML 407

addresses namespace. The convenience of prefixes is that they help the XML be more
readable. In Listing A-2, the address namespace is decorated with the a: prefix, as in
<a:address> to indicate that address belongs to the http://somedomain.com/addresses
namespace. Without the prefix, you would be forced to write the address element as
follows, which is more difficult to read:

< http://somedomain.com/addresses:address>
123 4th St
</ http://somedomain.com/addresses:address>

I added line breaks for readability, but in practice the only part of the data read is the
value and not the white space, such as newlines, surrounding it.

The XML Menu

When you open an XML document in VS, you’ll see an XML menu appear with options
for running, debugging, and profiling XML Transformation (XSLT) documents and
working with schemas. XSLT is used by a running program or utility to change an

XML document from one form to another. An XML schema is an XML document that
describes the allowable format of another XML document. An XML schema is to an XML
document what a SQL table definition is to the data that the table holds. Both XSLT and
schemas are outside the scope of this book, but now you know where the tools are in case
you need to work with them.

Configuring XML Options
Selecting Tools | Options will open the VS Options window. From the Options window,

you can select Text Editor XML and configure many options associated with writing XML
documents, such as turning on line numbering or specifying tag formatting.

Summary

You should now understand the basics of working with XML in VS. You learned how to
create an XML document and what prefixes, elements, attributes, and namespaces are.
You also learned how to find the XML options to customize your XML document-editing
experience. XML is the foundation upon which XAML and XHTML are based, which

is covered in later appendices. This should give you familiarity with the XML that is
presented in the chapters of this book.

This page intentionally left blank

Appendix B

Introduction to XAML

409

410 Microsoft Visual Studio 2010: A Beginner's Guide

ML Application Markup Language (XAML), pronounced “Zamel,” is an XML-

based language for building user interfaces. You’ll find XAML being used in both
Windows Presentation Foundation (WPF) and Silverlight applications. WPF is for desktop
application development, and Silverlight is for Web-based development. Both WPF and
Silverlight have much in common through programming with XAML. Therefore, this
Appendix provides an introduction to XAML and shows you how to perform layouts,
which are common to both WPF and Silverlight. This Appendix can be useful before
reading the WPF and Silverlight chapters so that you can get the most out of what is
specific to each technology. For simplicity, I'll demonstrate concepts by using a WPF
application, but what you learn will be applicable to both WPF and Silverlight. Before
reading this Appendix, you might want to read or review Appendix A for an introduction
to XML, which will provide you with familiarity of basic XML syntax.

Starting a WPF Project

As you are reading a book about VS, it’s only natural that you would want to experience
XAML from within the VS IDE. As stated earlier, we’ll use a WPF Application project for
describing XAML because it has fewer files and is simpler than a Silverlight application.
To create the WPF Application project, select File | New | Project and select WPF
Application in the New Project window. Name the application anything you like and

click OK. What you’ll see is a new project that has Window 1.xaml file open in VS with
contents similar to Listing B-1.

Listing B-1 A new XAML file

<Window x:Class="WpfApplicationl.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">
<Grids>

</Grids>
</Window>

In VS, the default layout for Window1.xaml is to have a visual designer on the top half
of the work window and XAML in the lower half. You can view the full XAML document
by grabbing the top edge of the XAML half and dragging it to the top of the screen so that
you are only looking at the XAML editor. The first thing you should notice about Listing B-1

Appendix B: Infroduction to XAML

is that it is an XML document with elements, attributes, and namespaces. Each of the
items you see has special meaning, as will be discussed in the following sections.

Elements as Classes

For XAML to be meaningful as code, elements must be associated with classes. The
Window element in Listing B-1 is associated with a class named WpfApplicationl
.MainWindow, specified by the x:Class attribute. The x prefix aliases the http.://schemas
.microsoft.com/winfx/2006/xaml namespace, where the Class attribute is defined. By

mapping the element to a class, you allow VS to compile the XAML into code that runs.

Notice that the default namespace is http://schemas.microsoft.com/winfx/2006/xaml/
presentation, which defines how each of the elements without prefixes will be compiled
to code. The important fact to realize here is that when writing XAML, you are creating
a document that will be translated into executable code for you at compile time.

Attributes as Properties

Title, Height, and Width are attributes of the Window element in Listing B-1. When VS
compiles the XAML, each of the attributes of elements will be translated to properties
of the class that the element is translated to. More specifically, the WpfApplicationl.
MainWindow class will have Title, Height, and Width properties. Each of the properties
will be set with the value assigned to their corresponding attributes.

Executing the XAML Document

Remember that this is not a tutorial on WPF and that the focus needs to be on understanding

how XAML works. Nevertheless, it’s informative to see what happens when XAML is

compiled and executed. Press 5 or click the Start Debugging button on the toolbar to run

this program. What you’ll see is a window similar to Figure B-1.

Figure B-1 shows how the Window element executed, creating an application window
with normal title bar, minimize and close buttons, and borders. You can also see the results
of applying the attributes of the Window element where MainWindow appears on the title

bar and the dimensions are set by Height and Width.
This illustrates the power of XAML, where you can produce sophisticated results

without writing a line of C# or VB code yourself. Of course, all of the XAML translates to

code, but the declarative nature of XAML lets you say what you want without having to

specify how it’s done. XAML saves you from writing a lot of code to produce equivalent

results. The code that actually runs is generated for you.

111

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

412 Microsoft Visual Studio 2010: A Beginner's Guide

7] MainWindow == \

Figure B-1 Executing XAML

Property Elements

You’ve seen how attributes translate to properties. In addition to attributes, XAML has
property elements, which are child elements where one or more other elements become
assigned to a property. An example of a property element would be the Content property
of a Button. A Button is a class in both WPF and Silverlight that a user can click to
produce some action in your program. The Content property of the Button determines
what the user sees. To describe the difference between a property attribute and a property
element, I’ll show you an example of both with the Content property of the Button class.
Listing B-2 shows a Button with its Content set as an attribute.

Listing B-2 A Button with Content set as an attribute

<Window x:Class="WpfApplicationl.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">
<Button Content="Click Me" />
</Window>

Appendix B: Introduction to XAML 413

] MainWindow = x|

Click Me

Figure B-2 A Button with its Content attribute set as Text

In Listing B-2, you can see that the Window has a contained Button element whose
Content attribute contains text. Figure B-2 shows what this looks like when running.

A powerful feature of XAML is property elements that allow you to add sophisticated
markup that will be assigned to a class property. In the case of the Button, we’ll enhance
the Content property as a property element in XAML to show how to add content other
than text. The following markup is the Button from Listing B-2, enhanced to hold an
image instead of text. For readability, I added a line break for the value of the Source
attribute:

<Button>
<Button.Content>
<Image Source=
"C:\Users\Public\Pictures\Sample Pictures\Penguins.jpg" />
</Button.Content>
</Buttons>

Instead of setting the Content attribute, the preceding example uses property element
syntax, where the child element is named <parentElementName.attributeName>. The
benefit of property element syntax shown in the preceding code is that the Content
property will now be set to an image. With attribute syntax, you were limited to text, but
with property element syntax, you can put anything in a button. Of course, instead of what
I did with the image, you would want to use common sense and only add content that is
meaningful for the application. Figure B-3 shows the new button with the image.

414 Microsoft Visual Studio 2010: A Beginner's Guide

] MainWindow

Figure B-3 Button with Content property element set to Image

TIP

VS provides XAML editor support by allowing you to place your cursor between begin
and end tags, pressing eNTer, and indenting the start position of the cursor on the new
line between the start and end tags. From that point, you can type < and begin working
with Intellisense to select the element and attribute you need to implement with property
element syntax.

Markup Extensions

Another extensibility point in XAML is markup extensions, which allow you to set an
attribute to reference another value. Common uses of markup extensions include data
binding and resource usage. Data binding is the practice of associating data with a user
interface control. For example, if you needed to show a customer record on the screen,
you would bind each property of the customer object to parts of the screen, such as
binding a customer name to a TextBox on the screen. You’ll see examples of data binding
in the WPF and Silverlight chapters of this book, Chapters 8 and 10. Right now, it’s
important to concentrate on what a markup extension is, and you’ll see an example that
applies a resource to an element.

A resource is some type of object or value that can be used by multiple controls. For
example, you can define a special color for buttons on your screen in one place and then
use a markup extension to point all of these buttons to the same resource. That way, you
can change the color resource in one place and all buttons referring to that color resource

Appendix B: Infroduction to XAML 415

will change automatically. Listing B-3 defines a brush resource of a specific color and
shows how to reference that brush from multiple buttons using a markup extension.

Listing B-3 Markup extension for using resources

<Window x:Class="WpfApplicationl.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">
<Window.Resources>
<SolidColorBrush x:Key="ButtonBrush" Color="Yellow" />
</Window.Resources>
<StackPanel>
<Button Background="{StaticResource ResourceKey=ButtonBrush}"
Content="Button One" />
<Button Background="{StaticResource ResourceKey=ButtonBrush}"
Content="Button Two" />
</StackPanel>
</Window>

The Window.Resources element in Listing B-3 is a property element of Window. It
contains a SolidColorBrush with Color set to Yellow. Everything in WPF and Silverlight
is drawn with brushes, which define colors, gradients, images, media, or patterns. In this
case, we’ll keep it simple with a single color, which is what SolidColorBrush is good for.
The point here is not what a brush is, but the fact that the brush is a resource that will
help demonstrate how to use a markup extension to access that resource. It’s important to
assign a key to every resource because that key is what resource markup extensions use to
identify the resource.

You can see the markup extension assigned to the Background attributes of the Button
elements in Listing B-3. Markup extensions are surrounded by curly braces. Within the
curly braces are the extension type and attributes associated with the extension. In Listing
B-3, the extension type is StaticResource, which allows you to refer to a resource. The
ResourceKey attribute of the StaticResource extension specifies the particular resource
to use. The value, ButtonBrush, matches the key of the SolidColorBrush resource. So,
the value of the BackGround attribute of the Button elements is a StaticResource for a
SolidColorBrush that has its color set to Yellow. This effectively means that the Buttons
will have Yellow backgrounds.

To see the value of using resources, consider the situation you would be in if you
set the BackGround attribute of each button directly to Yellow instead of using the

416 Microsoft Visual Studio 2010: A Beginner's Guide

5 MainWindow [o][@ =
[Button One]
[Button Two]

Figure B-4 Two Buttons using the same resource via a markup extension

StaticResource markup extension. Further, think about the amount of work you would
need to do if you wanted to change the background color of all buttons, resulting in
recoding each individual button. However, with the StaticResource markup extension, you
can change the color in the SolidColorBrush resource, and the BackGround of all buttons
will change without any additional work. Figure B-4 shows each of the buttons. Though
you can’t tell the background color in the gray scale of this book, I promise that they are
yellow.

Summary

This appendix introduced you to XAML, which is the XML document type used to build
user interfaces for WPF and Silverlight. You learned that elements map to classes and
attributes map to class properties. You also learned how to specify property elements

to gain more control than what you can get with attributes alone. Finally, you learned
about the syntax of a markup extension and how the StaticResource markup extension
allows you to reference resources. You’re now ready to approach the WPF and Silverlight
chapters in this book, which use XAML heavily to build their user interfaces.

Symbols

< > (angle brackets), 405
{ } (braces), 40, 57, 160
? (question mark), 162

_ (underline), 55

/ integer, 62

& operator, 62

+ operator, 62

A

accessors, 84, 86
Add Reference window, 122-123
Add-In Project Wizard, 372-383, 398
add-ins, 371-400
adding functionality to, 383-397
creating, 372-383
deploying, 397-399
general information, 372, 399-400
Analyze menu, 15
angle brackets < >, 405
anonymous types, 198-199, 206
API (application programming interface), 5
application icons, 120
application programming interface (API), 5
applications
artifacts, 116, 117, 136

Index

building with ASPNET MVC, 262-264
Click-Once, 120

COM, 121, 124, 134

compiling, 129-135

Console. See Console applications
including databases with, 253
Java, 300-301

Microsoft Office, 124

OOB, 294-297

output path, 134

Silverlight, 285-298

state of, 160—-166

Web, 152-153

‘Windows Services, 33

WPE. See WPF

Architecture menu, 15

arguments, 75-78, 153
arrays, 62-63, 107-108
artifacts, 116, 117, 136
ASP.NET

deploying Web services, 315, 317,
325-326, 336
described, 250

ASPNET MVC, 249-284

417

building applications, 264-284

creating Controllers, 254-256, 268-269
creating Models, 254

displaying Views, 256-261

managing routing, 262-264

Microsoft Visual Studio 2010: A Beginner's Guide

ASP.NET MVC (continued)
MVC objects, 250-254, 270-276
overview, 250-251
starting ASPNET MVC project, 251-254
ASP.NET MVC Project Wizard, 261
ASP.NET projects, 33
assemblies, 114, 119, 122—-129
Assembly Information option, 118, 121-122
assembly name, 118, 119
assembly references, 122-129
associations, 201
authentication, 184, 319, 322
automatic properties, 85-86
Autos window, 160-161, 162

backing field, 85, 86

binding, 234-247

bookmarks, 44—45

braces { }, 40, 57, 160

branching statements, 57-61

breakpoints, 155-158
conditional, 172
creating, 156-157
customizing, 157-158
managing, 158
overview, 155
using, 171-173

bugs, 167-179. See also debugging

build event macros, 134

build order, 131-132

C

C# compiler, 133, 135
C# language
case sensitivity, 40, 53
code editor options, 4647
considerations, 13
included with Visual Studio, 36
inheritance, 70
Intellisense, 50-51
popularity of, 36
primitive types, 53
vs. VB language, 13, 36, 115-116
C++ language, 31, 36, 154, 373
C# projects, 31, 33, 115-116, 150, 151. See also
projects
Call Hierarchy feature, 148—150
call sites, 148-150, 163
Call Stack window, 163
Canvas layout, 225-226

capitalization issues, 40, 53
Cascading Style Sheets (CSS), 252, 344
case sensitivity, 40, 53
character sets, 174
child classes, 70, 71
child/parent relationship, 187-192, 206
Class Designer, 137-141
code generation, 138—141
using, 137-141
visualizing code with, 137-138
class libraries, 33, 36-38, 125-129
Class Library projects, 119, 124, 125-129
class locators, 44
class snippet, 71-72
class type, 68
Class view, 136
classes
child, 70, 71
creating, 68-72
creating for interfaces, 98-101
custom definitions, 68—70
debugging and, 148
finding, 44
inheritance, 70-72
instantiating objects from, 69
parent, 70
Program, 41-42
snippets, 71-72
syntax, 68-70
WCEF, 308-314
cleaning solutions/projects, 130-131
click events, 228-234, 246
Click-Once applications, 120
CLR (Common Language Runtime), 154
code. See also programming languages; programs
automatically generated, 4-5
breakpoints in. See breakpoints
Call Hierarchy feature, 148—150
call sites, 148-150, 163
in class libraries, 126—129
debugging. See debugging
generating with Class Designer, 138—-141
hierarchical model, 114-115
IntelliTrace, 165-166
for interfaces, 101-106
managed, 154
on McGraw-Hill Web site, 103
Pin To Source feature, 164—-165
reusing, 149
skeleton, 4-5, 39-43
snippets. See snippets
stepping through, 158-159
unmanaged, 154
unsafe, 133, 134
using in class libraries, 126—129
visualizing with Class Designer, 137-138

code editor. See VS Code editor
code libraries. See class libraries
code-behind file, 228-234
coding, 49-66. See also specific languages
branching statements, 57-61
classes. See classes
debugging. See debugging
enums, 55-57
expressions. See expressions
Intellisense. See Intellisense
methods. See methods
primitive types, 52-54
running programs, 51-52
snippets. See snippets
tools for, 148—-150
VS features, 4-5
Web service calls, 329-336
collections
advantages of, 110
generic, 107-110
object, 194-197
vs. arrays, 62—63
color schemes, 25
COM (Component Object Model) applications, 121,
124, 134
COM Interop, 133, 134
COM objects, 124
ComboBox control, 241-243
command-line arguments, 153
Common Language Runtime (CLR), 154
compiler constants, 150

compilers
assembly references, 123
C#, 133, 135

considerations, 4, 86, 96
errors/warnings, 123, 134, 204, 344
optimizations, 150, 152
settings, 133-135
VB, 134-135
compiling applications, 129-135
Component Object Model. See COM
compression, 131
computation expressions, 54
conditional breakpoints, 172
Connect class, 378-383
Console applications
creating, 37-39, 115-116
debugging, 144-179
described, 32, 36
skeleton code, 3943
context sensitivity, 16
Control Libraries, 33
controls. See also specific controls
Silverlight, 290-293
WPF, 226-234

Index

.cs extension, 68

CSS (Cascading Style Sheets), 252, 344
custom types, 52

Customer class, 167
CustomerRepository class, 168—171

D

data, 181-214. See also databases
adding to tables, 186—187
binding, 234-247
dirty, 173
displaying in grid, 244-247
handling with LINQ to SQL, 200-214
querying with LINQ, 194-214
reading/saving, 243-244
working with in WPF, 234-247
data model, 200
data sources, 234-241, 244
database diagram, 190-192
database projects, 34
databases, 182-194. See also data
authentication, 184
connections to, 183—-184
creating, 183-184
including with applications, 253
Server Explorer, 182-193
settings, 193—-194
stored procedures, 192—-193
tables. See tables
DataGrid option, 244-247
Debug class, 133—-134
DEBUG compilation constant, 133—134, 150
Debug configurations, 150, 153
Debug mode
configuring, 150-155
running programs in, 156, 171
starting programs in, 156, 171
Debug Output folder, 151, 152
debug properties, 152—155
debugging, 143-180
application state, 160-166
Call Hierarchy feature, 148—150
Call Stack, 163
configuring Debug mode, 150-155
described, 51
evaluating expressions, 151-152, 162
finding bugs, 171-174
fixing bugs, 174-175
history, 166
null reference exceptions, 175-179
properties, 150-155
on remote machines, 153-154
running applications, 152—153

419

420 Microsoft Visual Studio 2010: A Beginner's Guide

debugging (continued) controllers, 278
running programs with debugging, 52 null reference exceptions, 93, 175-179
running programs without debugging, 51 vs. warnings, 134
sample program with bugs, 167-179 event handlers, 91, 95-96, 228-234
starting programs in Debug mode, 156, 171 event keyword, 93
stored procedures, 154 EventHandler class, 94-95
VS Debugger, 166-179 events, 91-93. See also delegates
.vshost files, 151-152 click, 228-234, 246
Web applications, 152-153 code completion for, 95-96
delegates, 90, 94-96. See also events described, 90, 91
Delphi language, 5 diagnostic, 165-166
dependencies, 131-133 example, 91-93
development-time code tools, 148—150 handling, 228-234
diagnostic events, 165-166 null, 93
directories use of, 91-93, 95
Create Directory, 116 .exe extension, 119
name, 317 Exec method, 391-395
physical, 328 Export Template Wizard, 346
virtual, 315 expressions
dirty data, 173 branching, 57-59
.dll extension, 119, 124 considerations, 49
do loops, 65-66 described, 54
docking windows, 18-19 evaluating during debugging,
DockPanel layout, 223-224 151-152, 162
documentation, 11 performing computations, 54
Dynamic Data projects, 33 primitive types, 54

viewing, 163-164
Extensible Markup Language. See XML

Edit menu, 14 F
elements
accessing, 110 F# language, 31, 36
in arrays, 107-108 false/true conditions, 55, 57, 62
as classes, 411 fields
in generic lists, 109-110 backing, 85, 86
property, 412414 considerations, 81, 83
else snippets, 58-59 declaring, 81-83
else statements, 58-59 described, 69, 81
Enable Managed Code option, 154 example of, 68, 69
endless loops, 157 using, 81-83
enums, 55-57 vs. properties, 83
environment file locks, 154
IDE, 4, 13 File menu, 14
macros, 134, 342, 360-370 File Properties window, 122
snippets. See snippets File Transfer Protocol (FTP), 315, 317, 319
templates. See templates files
environment settings code-behind, 228-234
considerations, 13 compressing, 131
default, 11, 12-13, 28-30, 31 dll, 124
exporting, 23-24 hidden, 117-118
importing, 24-28 log, 7, 166
modifying, 13, 22-30 .pdb, 151
resetting, 28-30 project, 116-121
errors. See also warnings .vshost, 151-152
compiler, 123, 134, 204, 344 XML, 134

considerations, 134 floating windows, 19-20

folders
hierarchy of, 116-118
projects, 116-118
snippets, 358-359
solutions, 116-118
for loops, 61-64
foreign keys, 187-192
FTP (File Transfer Protocol), 315, 317, 319

G

GAC (Global Assembly Cache), 122-123
generic collections, 107-110

generic lists, 109-110

get accessors, 84, 86

Global Assembly Cache (GAC), 122-123
Global.asax file, 253

Globally Unique Identifier (GUID), 121
graphical user interface (GUI), 95

Grid layout, 220-222

GUI (graphical user interface), 95

GUID (Globally Unique Identifier), 121

H

Help menu, 15

hidden files, 117-118

HTML (Hypertext Markup Language)
considerations, 260
helper methods, 272-273, 278
viewing code, 256-261
XHTML, 404

.ico extension, 120

Icon setting, 118, 120

icons, 16-17, 120, 236, 295

IDE (integrated development environment), 4, 13
if snippets, 58-59

if statements, 57-59

IIS (Internet Information Server), 314-326
immediate if operator, 55

Immediate window, 162

impedance mismatch, 201

Implements keyword, 101

Import and Export Settings Wizard, 22-32, 45
Imports directive, 129

indicator margin, 44

inheritance, 70-72

instance methods, 74-75

instances, 4041, 129, 148

int type, 78, 80

Integer keyword, 54

Index

integrated development environment (IDE), 4, 13
Intellisense
C# options, 50-51
Consume First mode, 47
described, 5
saving keystrokes with, 49-51
snippet completion lists, 47, 49, 50
Standard mode, 47
switching between modes, 47
using, 49-51
writing expressions, 163
IntelliTrace window, 165-166
interface snippets, 106
interfaces, 96-106
creating, 97
creating classes for, 98—101
modifying, 97
overview, 96
WCE, 302-308, 377-383, 389
writing code for, 101-106
Internet Information Server (IIS), 314-326
item templates, 347-353
items. See project items

J

Java applications, 300-301
JavaScript, 253, 257, 272, 288
joins, 205-209

K

keyboard shortcuts, 15, 44, 47
keywords, 47

L

Language Integrated Query. See LINQ
languages
C#. See C# language
C++, 31, 36, 154, 373
Delphi, 5
F#, 31, 36
HTML. See HTML
included with VS 2010, 36
Visual Basic. See VB
WSDL, 301
XAML. See XAML
XML. See XML
libraries. See class libraries
library files. See assemblies
license key, 8
licensing terms, 7-8
LINQ (Language Integrated Query), 186, 194-214

421

422 Microsoft Visual Studio 2010: A Beginner's Guide

LINQ projections, 198-199
LINQ to SQL, 200-214
creating items, 305
deleting data, 212-214
inserting data, 210-211
multiple tables, 205-210
overview, 200
querying, 203-210
setting up, 200-201
updating data, 211-212
WPF applications, 246-247
LINQ to SQL Designer, 200-203
LINQ to SQL Wizard, 200, 205
ListBox control, 241-243
lists, generic, 109-110
local variables, 81
Locals window, 160-161, 162
log files, 7, 166
loops, 61-66
endless, 157
for, 61-64
while, 64—65

M

Macro Editor, 365-370, 374, 380
Macro Explorer, 364-365
macros, 134, 342, 360-370
Main method, 40-41, 49, 120
manifest, 120-121
Manifest setting, 118, 120-121
markup extensions, 414-416
MasterPages, 257-260, 270, 273
mathematical operators, 54
McGraw-Hill Web site, 103
member locators, 44
Memory window, 173
menu bar, 14—-15
method results, 78—80
methods, 72-80. See also specific methods
adding parameters to, 75-78
calling, 72-75
declaring, 72-75
delegates. See delegates
events. See events
instance, 74-75
naming, 4041, 231
overview, 72
private, 74
public, 74
returning values from, 78-80
shared, 74
snippets, 80
static, 41, 74
using, 72-75
Microsoft Developer Network (MSDN), 6, 326

Microsoft Office applications, 124

Microsoft Office projects, 34

Model View Controller. See ASPNET MVC

MSDN (Microsoft Developer Network), 6, 326

MVC objects, 250-254, 270-276. See also ASPNET MVC

N

namespace snippet, 4748
namespaces
assembly references and, 122
default, 116, 119, 328, 406
overview, 42-43
Root, 119
setting, 119
VB, 43
XML, 406407
naming conventions, 4043, 116, 231
NET assembly references, 123-124
NET CLR. See CLR
NET Framework, 38, 90, 119, 124, 320
.NET Framework Class Library, 13
NET types, 53-54
New Project window, 37, 115-116
New Project Wizard, 39, 253
null events, 93
null reference exceptions, 93, 175-179
null values, 176-179

O

object collections, 194-197
objects
COM, 124
creating, 139
debugging and, 148
instantiating from classes, 69
MVC, 250-254, 270-276
Office applications, 124
Office project types, 124
Office projects, 34
OnConnection method, 384-391
OOB (Out-of-Browser) functionality, 294-297
operating systems. See specific Windows systems
operators
immediate if, 55
mathematical, 54
ternary, 55, 57
optimization, 131
Options menu item, 15
Options window, 45, 46, 154-155
Other Windows menu item, 14
Out-of-Browser (OOB) functionality, 294-297
Output type, 119-120
Output Type setting, 118, 119-120

parameters, 75-78
parent classes, 70
parent/child relationship, 187-192, 206
.pdb files, 151
Pin To Source feature, 164—165
primary keys, 186-189, 191, 201
primitive types, 52-54
private modifier, 83
private variables, 85
product key, 8
Program class, 41-42, 44, 137
programming languages. See also languages
C#. See C# language
C++, 31, 36, 154, 373
Delphi, 5
F#, 31, 36
included with VS 2010, 36
Visual Basic. See VB
programs. See also code
debugging, 52, 156, 171
pausing execution of, 157
running, 51-52
project items, 21, 86, 116
Project Properties window, 118-122
projections, 198-199
projects. See also solutions
adding to solutions, 117-118
artifacts, 116, 117, 136
ASPNET MVC. See ASPNET MVC
“bare bones,” 36-39
build order, 131-132
building/rebuilding, 129-130
C#, 31, 33, 115-116, 150, 151
C# vs. VB, 115-116
Class Designer visualization, 137-138
Class Library, 119, 124, 125-129
cleaning, 130-131
compiler settings, 133-135
Console. See Console applications
creating, 36-39, 115-116
database, 34
deleting, 116
dependencies, 131-133
folders, 116-118
hidden files, 117-118
hierarchical relationships, 116-118
location, 37
Microsoft Office, 34
modifying, 343-344
naming/renaming, 37, 115-116, 119, 126
navigating with Class view, 136
new, 31-32
optimizing, 131
organizing principles, 114115
overview, 31-32

Index

property settings, 118-122
recent, 116
referencing assemblies, 122—-129
resetting references, 126
saving as templates, 344-346
searching for, 38
SharePoint, 34
Silverlight, 285-298
sorting, 38
templates for. See templates
types of, 30-34
viewing available, 30-32
viewing with Class Designer,
137-141
WCE. See WCF
web, 33, 286
Windows Projects, 32-33
WPE. See WPF
properties
accessors, 84
automatic, 85-86
debug, 150-155
declaring, 81-86
described, 81
example of, 83-84
projects, 118-122
setting, 228
using, 81-86
vs. fields, 83
Properties folder, 117, 118
Properties window, 118-122, 139, 227-233
property elements, 412-414
property snippet, 86
public access modifier, 74

Q

queries. See also LINQ to SQL
on multiple tables, 205-210
object collections, 194-197
stored procedures, 192
QueryStatus method, 395-397
question mark (?), 162
Quick Watch window, 163-164

R

refactorings, 5

Reference Paths, 125

references
adding to COM objects, 124
assembly, 122-129
class libraries, 125-126
external .dll files and, 124
resetting, 126

423

Release configurations, 150, 153
releases, 6, 11, 12

remote debugging, 153-154
repository, 265-268, 282
resources, referencing, 414-416
Resources option, 121

Root namespace, 119

routing, 262-264

scope, 160-161

search features, 38, 158
select statement, 59-60
serialization assemblies, 133
Server Control projects, 33
Server Explorer, 182-193
service reference, 326-334
service releases, 6, 11, 12
set accessors, 84, 86
shared methods, 74

shared modules, 41
SharePoint projects, 34
shortcut keys, 15, 44, 47

Silverlight, 285-298, 326, 336. See also XAML

Silverlight applications, 285-298
skeleton code
automatically generated, 4-5
Console application, 39-43
.snippet extension, 354
snippets
class, 71-72
creating, 353-358
do loops, 65-66
else, 58-59
examining, 354-356
for each loops, 63-64
for loops, 62
if statements, 58—59
interface, 106
library of, 358-359
method, 80
namespace, 47-48
overview, 47-48
pick list, 47
property, 86
switch statement, 60-61
using, 47-48
while loops, 64-65
snippets folders, 358-359
Snippets Manager, 359
Solution Explorer, 116-118
Console application creation, 38
managing build order, 131-132

managing dependencies, 131-133

424 Microsoft Visual Studio 2010: A Beginner's Guide

opening/closing items, 21
overview, 16
working with controls, 227
solution folders, 116-118
solutions. See also projects
adding projects to, 117-118
artifacts, 116, 117, 136
building/rebuilding, 129-130
cleaning, 130-131
contents, 38-39
described, 38
folders, 116-118
hierarchical relationships,
116-118
naming, 115-116
organizing principles, 114-115
showing, 116-117
sorting/searching features, 38, 158
source code. See code
source control, 116
SQL. See LINQ to SQL
StackPanel layout, 222-223
Start page, 15
Startup object, 118, 120
statements
branching, 57-61
considerations, 49
else, 58-59
if, 57-59
using Intellisense with, 49-51
static keyword, 40
static methods, 41, 74
Status bar, 16
Step Over operation, 159
stored procedures
databases, 192-193
debugging, 154
in LINQ to SQL, 209-210
Sub Main method, 40
switch statement, 59-61
switch statement snippets, 60-61
system icons, 120
System namespace, 42, 43
system requirements, 6

tabbed windows, 20-21

tables
adding data to, 186—187
adding to databases, 185-187
considerations, 201, 202
foreign keys, 187-192
multiple, 187-192, 205-210
performing queries on, 205-210

target framework, 119
Target Framework setting, 118, 119
Team Foundation Server (TES), 15
Team menu, 15
templates
creating, 343-347
exporting, 344-346
implementing, 342-353
item, 347-353
options, 345-346, 352-353
overview, 342-343
saving projects as, 344-346
ternary operator, 55, 57
Test menu, 15
TFS (Team Foundation Server), 15
title bar icons, 16, 17
toolbar, 15
Toolbox
Class Designer, 138-139
general information, 16-20
working with controls, 227-228
Tools menu, 15
Trace class, 133-134
TRACE compilation constant, 133-134, 150
true/false conditions, 55, 57, 62
types. See also specific types
anonymous, 198-199, 206
class, 68
considerations, 41
custom, 52
described, 68
NET, 53-54
Office projects, 124
primitive, 52-54

U

UAC (User Account Control), 120
underline (_), 55

Until condition, 65

Until keyword, 65

User Account Control (UAC), 120
user interface, 226, 234, 251, 404
using directives, 43, 129

\

value keyword, 84
values
null, 176-179
returning from methods, 78-80
variables
application state, 160—-166
described, 52

Index

local, 81
primitive types, 52-54
private, 85
in scope, 160-161
watching in Watch window, 161-162
watching with Pin To Source, 164—-165
VB (Visual Basic.NET)
considerations, 13
inheritance, 70
popularity of, 36
primitive types, 53
vs. C# language, 13, 36, 115-116
VB compiler, 134135
.vb extension, 68
VB namespaces, 43
VB projects. See also projects
assembly references, 124
naming, 116
target framework, 119
vs. C# projects, 115-116
VBA (Visual Basic for Applications), 34
View menu, 14
Views, 256-261
virtual directories, 315
Visual Basic for Applications. See VBA
Visual Basic.NET. See VB
Visual Designer, 191, 220, 227, 228
Visual Studio 2010. See VS 2010
Visual Studio Hosting Process, 154
Visual Studio projects, 30-34. See also projects
void keyword, 40, 74
VS (Visual Studio) 2010
add-ins. See add-ins
described, 4
documentation, 11
installing, 6-13
interface, 13-16
languages included with, 36
license key, 8
licensing terms, 7—8
managing windows, 16-21
modifying environment settings, 22-30
navigating, 13-16
privacy statement, 7
product key, 8
releases, 6, 11, 12
restoring default settings, 28-30, 31
starting, 13-14
system requirements, 6
versions, 6, 7
VS Code editor, 45-48
VS Debugger, 166-179
VS editor, 5
VS Recent Projects list, 116
VS2010ImageLibrary file, 120
.vshost files, 151-152

425

w

warnings, 23, 134, 189, 190. See also errors
Watch windows, 161-162

WCF (Windows Communication Foundation), 299-338.

See also Web Services
communicating with WCF services, 326-338
hosting WCF services, 314-326
overview, 300-301
starting WCF projects, 301-314
WCEF classes, 308-314
WCEF contract, 302-308
WCEF projects, 301-314
WCEF services. See Web services
Web applications
building controllers, 254-256
creating, 251-254
creating models, 254
customer management, 264-284
debugging, 152-153
displaying views, 256-261
managing routing, 262-264
portal-style, 34
web projects, 33, 286
Web Service Description Language (WSDL), 301
Web services, 299-338. See also WCF
adding to Web sites, 337-338
communicating with, 326-338
hosting on IIS, 314-326
overview, 300-301
proxies, 328-333
used by clients, 336-337
Web Services projects, 33
Web sites
adding Web services to, 337-338
creating on IIS, 315, 317-321
deploying Silverlight applications to, 297-298
deploying Web services, 315, 317, 325-326, 336
web.config file, 253
while loop snippets, 64—65
while loops, 64—65
Win32 resources file, 121
windows, managing, 16-21
Windows 7 systems, 6, 34, 315-317
Windows 2003 systems, 6
Windows 2008 systems, 6, 34, 300, 321
Windows Application projects, 119, 120
Windows Communication Foundation. See WCF
Windows Forms, 32, 219
Windows menu, 15
Windows Presentation Framework. See WPF
Windows Projects, 32-33
Windows Services, 33
Windows versions, 6

426 Microsoft Visual Studio 2010: A Beginner's Guide

Windows Vista systems, 6, 34

Windows XP systems, 6, 34

wizards
Add-In Project Wizard, 372-383, 398
ASPNET MVC Project Wizard, 261
Export Template Wizard, 346
Import and Export Settings Wizard, 22-32, 45
LINQ to SQL Wizard, 200, 205
New Project Wizard, 39, 253
options for, 5

work area, 15

working directory, 153

WPF (Windows Presentation Framework),

217-247

binding data, 234-247
Click-Once applications, 120
controls, 226234
layouts, 220-226
output types, 120
starting projects, 218-220, 410411
working with data in, 234-247
XAML. See XAML

WrapPanel layout, 224-225

WSDL (Web Service Description Language), 301

X

XAML (XML Application Markup Language), 409-416
attributes, 411
considerations, 218
controls, 227
elements, 411
markup extensions, 414416
overview, 410
property elements, 412-414
Silverlight projects, 286-290
starting WPF projects, 218-220, 410411
WPF controls, 228
XAML documents, executing, 411-412
.xaml extension, 227
XHTML (XML for HTML), 404
XML (Extensible Markup Language)
introduction to, 403—407
WCEF services, 300-301, 330
XML Application Markup Language. See XAML
XML documentation file, 134
XML Editor, 356, 404
XML files, 134
XML for HTML (XHTML), 404
XML menu, 407
XML serialization, 134
XML Transformation (XSLT), 407
XSLT (XML Transformation), 407

	Contents
	Acknowledgments
	Introduction
	Part I: Understanding Visual Studio 2010 Essentials
	1 Introducing Visual Studio 2010
	What Is Visual Studio 2010 About?
	Installing Visual Studio 2010
	Navigating the Visual Studio 2010 Environment
	Managing VS Windows
	Modifying Environment Settings after Setup
	Familiarization with Visual Studio Project Types
	Summary

	2 Learning Just Enough C# or VB.NET: Basic Syntax
	Starting a Bare-Bones Project
	Examining the Code Skeleton
	An Overview of the VS Code Editor
	Coding Expressions and Statements
	Summary

	3 Learning Just Enough C# and VB.NET: Types and Members
	Creating Classes
	Writing Methods
	Coding Fields and Properties
	Summary

	4 Learning Just Enough C# and VB.NET: Intermediate Syntax
	Understanding Delegates and Events
	Implementing Interfaces
	Applying Arrays and Generics
	Summary

	Part II: Learning the VS 2010 Environment
	5 Creating and Building Projects
	Constructing Solutions and Projects
	Examining Property Settings
	Referencing Assemblies
	Compiling Applications
	Navigating a Project with Class View
	Using the Class Designer
	Summary

	6 Debugging with Visual Studio
	Example Code for This Chapter
	Development-Time Code Tools
	Configuring Debug Mode
	Setting Breakpoints
	Stepping Through Code
	Inspecting Application State
	Solving Problems with VS Debugger
	Summary

	7 Working with Data
	Working with Databases
	Learning Language Integrated Query (LINQ)
	Handling Data with LINQ to SQL
	Summary

	Part III: Building Programs with VS 2010
	8 Building Desktop Applications with WPF
	Starting a WPF Project
	Understanding Layout
	Using WPF Controls
	Working with Data in WPF
	Summary

	9 Creating Web Applications with ASP.NET MVC
	Understanding ASP.NET MVC
	Starting an ASP.NET MVC Project
	Creating the Models
	Building Controllers
	Displaying Views
	Managing Routing
	Building a Customer Management Application
	Summary

	10 Designing Silverlight Applications
	Starting a Silverlight Project
	Navigating the Silverlight Designer
	Using Silverlight Controls
	Running Silverlight Out-of-Browser (OOB)
	Deploying Silverlight Applications
	Summary

	11 Deploying Web Services with WCF
	Starting a WCF Project
	Hosting a WCF Service
	Communicating with a WCF Service
	Summary

	Part IV: Enhancing the VS 2010 Experience
	12 Customizing the Development Environment
	Implementing Custom Templates
	Creating Custom Snippets
	Writing Macros
	Summary

	13 Extending Visual Studio 2010
	Creating a Visual Studio Add-In
	Adding Functionality to an Add-In
	Deploying an Add-In
	Where to Go Next
	Summary

	Part V: Appendixes
	A: Introduction to XML
	VS 2010 XML Editor
	XML Prefixes
	XML Elements
	Attributes
	Namespaces
	The XML Menu
	Configuring XML Options
	Summary

	B: Introduction to XAML
	Starting a WPF Project
	Elements as Classes
	Attributes as Properties
	Executing the XAML Document
	Property Elements
	Markup Extensions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

