


Microsoft ®  
Visual Studio® 2010
A Beginner’s Guide



About the Author
Joe Mayo started his software development career in 1986, working on an RCA 
Spectrum 70 mainframe computer, programming in assembly language where input was 
via Hollerith card, output was a line printer, and the debugging experience was a light 
panel where you had to push buttons to load registers and step through commands. Since 
then, Joe has worked with various mini-computers, workstations, and PCs. The operating 
systems he’s worked on include proprietary, UNIX-based, MS-DOS, and Windows. 
Besides assembly and dozens of scripting languages, Joe has worked professionally with 
C, C++, VBA, Visual C++, Forte Tool, Java, VB.NET, and C#. In addition to software 
engineering, he has worked in many positions, including team lead, supervisor, manager 
(even running a 24×7 computer operations center with over 50 people). Today, Joe runs 
his own company, Mayo Software, providing custom software development services 
and specializing in Microsoft .NET technology. He is the author of LINQ Programming 
(McGraw-Hill Professional, 2008) and other books. Joe is also the recipient of multiple 
Microsoft MVP awards. You can follow Joe on Twitter: @JoeMayo.

About the Technical Editor
Roy Ogborn has worn almost every hat one time or another during his interesting and 
continuing career in the Information Technology field. He was systems manager and 
developer for Texaco Europe Research, Inc., in Moscow, USSR, during the attempted coup. 
Back in the United States, he has designed and implemented a GIS system for managing 
oil and gas wells and leases, and has architected and implemented an enterprise workflow 
system that managed the business process of taking wells from conception to completion. 
He architected a system for Forest Oil in Denver that linked disparate accounting, lease 
management, and production tracking systems for business intelligence for senior executives’ 
daily and strategic decisions. Recently he architected and designed a SharePoint-, Silverlight-,  
and CSLA-based greenhouse gas emissions evaluation, prediction, and decision tool for a 
multinational environmental engineering firm using the new Visual Studio 2010 Architecture 
Edition tools. Roy is an independent software architect consultant in the Denver Metro Area 
specializing in custom solutions that leverage SharePoint. In January 2010 he presented 
SharePoint 2010 for Developers at the Denver Visual Studio .NET User Group.



Microsoft ®  
Visual Studio® 2010
A Beginner’s Guide

 
Joe Mayo

New York   Chicago   San  Francisco    
Lisbon   London   Madrid   Mexico City    
Milan   New Delhi   San Juan    
Seoul   Singapore   Sydney   Toronto



Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, 
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without 
the prior written permission of the publisher.

ISBN: 978-0-07-166896-5

MHID: 0-07-166896-9

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166895-8, MHID: 0-07-166895-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, 
we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. 
Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training 
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or 
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any 
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use 
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the 
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, 
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own 
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to 
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS 
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, 
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, 
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant 
or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. 
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the 
work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the 
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential 
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such 
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or 
otherwise.



To my son, Kamo.



This page intentionally left blank 



vii

Contents at a Glance

PART I Understanding Visual Studio 2010 Essentials

 1 Introducing Visual Studio 2010  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

 2 Learning Just Enough C# or VB.NET: Basic Syntax  . . . . . . . . . . . . . . . . . . . . .  35

 3 Learning Just Enough C# and VB.NET: Types and Members  . . . . . . . . . . . .  67

 4 Learning Just Enough C# and VB.NET: Intermediate Syntax  . . . . . . . . . . .  89

PART II Learning the VS 2010 Environment

 5 Creating and Building Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

 6 Debugging with Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

 7 Working with Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181

PART III Building Programs with VS 2010

 8 Building Desktop Applications with WPF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

 9 Creating Web Applications with ASP.NET MVC  . . . . . . . . . . . . . . . . . . . . . . . . .  249



 viii Microsoft Visual Studio 2010: A Beginner’s Guide

 10 Designing Silverlight Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285

 11 Deploying Web Services with WCF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299

PART IV Enhancing the VS 2010 Experience

 12 Customizing the Development Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341

 13 Extending Visual Studio 2010  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371

PART V Appendixes

 A Introduction to XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403

 B Introduction to XAML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409 

  Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  417



ix

Contents

ACKNOWLEDGMENTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii
INTRODUCTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix

PART I Understanding Visual Studio 2010 Essentials

 1 Introducing Visual Studio 2010  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
What Is Visual Studio 2010 About?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Automatically Generated Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
Rapid Coding Experience  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Everything at Your Fingertips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Customizability and Extensibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Installing Visual Studio 2010  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Navigating the Visual Studio 2010 Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

The Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Work Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Toolbox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Solution Explorer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Status Bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Managing VS Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Expanding and Collapsing Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Docking Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18



 x Microsoft Visual Studio 2010: A Beginner’s Guide

Floating Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Tabbed Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Closing and Opening Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Modifying Environment Settings after Setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Exporting Selected Environment Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Importing Selected Environment Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Resetting All Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Familiarization with Visual Studio Project Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Windows Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Web Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Office Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
SharePoint Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Database Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

 2 Learning Just Enough C# or VB.NET: Basic Syntax  . . . . . . . . . . . . . . . . . . . . .  35
Starting a Bare-Bones Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
Examining the Code Skeleton  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

The Main Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
The Program Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
The FirstProgram Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

An Overview of the VS Code Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Class and Member Locators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Bookmarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Setting Editor Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Saving Time with Snippets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Coding Expressions and Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Making Intellisense Work for You  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Running Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Primitive Types and Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
Enums  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Branching Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

 3 Learning Just Enough C# and VB.NET: Types and Members  . . . . . . . . . . . .  67
Creating Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

Class Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
Class Inheritance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
The class Snippet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

Writing Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Declaring and Using a Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Declaring Parameters and Passing Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75



Returning Data and Using Method Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Method Snippets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

Coding Fields and Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Declaring and Using Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Declaring and Using Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
The Property Snippet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

 4 Learning Just Enough C# and VB.NET: Intermediate Syntax  . . . . . . . . . . .  89
Understanding Delegates and Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Delegates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Event, Delegate, and Handler Code Completion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Implementing Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Creating an Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Making Classes Implement the Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
Writing Code That Uses an Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
The interface Snippet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Applying Arrays and Generics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Coding Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Coding Generics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

PART II Learning the VS 2010 Environment

 5 Creating and Building Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Constructing Solutions and Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Creating a New Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
Navigating the Solution Explorer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

Examining Property Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Assembly Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Default Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Target Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Output Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Startup Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Icon and Manifest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Assembly Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Referencing Assemblies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Adding a .NET Assembly Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Managing Assembly References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Referencing Your Own Class Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Using Code in Class Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

 Contents xi



 xii Microsoft Visual Studio 2010: A Beginner’s Guide

Compiling Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Building Solutions/Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Rebuilding Solutions/Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Cleaning Solutions/Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Managing Dependencies and Build Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
Managing Compilation Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Navigating a Project with Class View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136
Using the Class Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137

Class Designer Visualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Class Designer Code Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

 6 Debugging with Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Example Code for This Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
Development-Time Code Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Configuring Debug Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Setting Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

Creating a Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156
Customizing a Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Managing Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Stepping Through Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
Inspecting Application State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160

Locals and Autos Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Watch Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
The Immediate Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
The Call Stack Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
The Quick Watch Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Watching Variables with Pin To Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Working with IntelliTrace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

Solving Problems with VS Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
A Program with Bugs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Finding the Bug  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171
Fixing the First Bug  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Debugging and Resolving NullReferenceException Problems  . . . . . . . . . . . . . . . . .  175

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

 7 Working with Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Working with Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

Introduction to Server Explorer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Creating a Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Adding Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Relating Tables with Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Adding Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
Configuring Database Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193



Learning Language Integrated Query (LINQ)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Querying Object Collections with LINQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Creating a LINQ Projection with Anonymous Types  . . . . . . . . . . . . . . . . . . . . . . . . . .  198
Using LINQ to Sort Collection Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

Handling Data with LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Setting Up LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Working with the LINQ to SQL Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Introduction to Querying LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
Performing Queries on Multiple Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205
Inserting Data with LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
Updating Data with LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211
Deleting Data with LINQ to SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

PART III Building Programs with VS 2010

 8 Building Desktop Applications with WPF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Starting a WPF Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Understanding Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

Grid Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
StackPanel Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
DockPanel Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
WrapPanel Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
Canvas Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

Using WPF Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
Managing Windows for Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
Setting Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
Handling Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
Coding Event Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

Working with Data in WPF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
Setting Up a Data Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Configuring a ComboBox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
Reading and Saving Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
Using the DataGrid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

 9 Creating Web Applications with ASP.NET MVC  . . . . . . . . . . . . . . . . . . . . . . . . .  249
Understanding ASP.NET MVC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
Starting an ASP.NET MVC Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
Creating the Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Building Controllers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Displaying Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256

Looking Inside a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256
Organizing View Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258

 Contents xiii



 xiv Microsoft Visual Studio 2010: A Beginner’s Guide

Assigning MasterPage Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258
Partial Views (a.k.a. User Controls)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260

Managing Routing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  262
Building a Customer Management Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264

Creating a Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
Creating a Customer Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
Displaying a Customer List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
Adding a New Customer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274
Updating Existing Customers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
Deleting a Customer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284

 10 Designing Silverlight Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
Starting a Silverlight Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
Navigating the Silverlight Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290
Using Silverlight Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290
Running Silverlight Out-of-Browser (OOB)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
Deploying Silverlight Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298

 11 Deploying Web Services with WCF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
Starting a WCF Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301

Specifying a Contract with WCF Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
Implementing Logic with WCF Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308

Hosting a WCF Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314
Following General Hosting Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Installing IIS 7 on Windows 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Creating a Web Site on IIS 7 on Windows 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Deploying the WCF Service to IIS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  321

Communicating with a WCF Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
Creating a Service Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
Coding Web Service Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
Deploying a Client That Consumes a Web Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336
Creating a Web Service in a Web Site  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338

PART IV Enhancing the VS 2010 Experience

 12 Customizing the Development Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
Implementing Custom Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342

Creating New Project Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343
Creating New Item Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

Creating Custom Snippets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
Creating a New Snippet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
Managing the Snippet Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358



 Contents xv

Writing Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360
Recording a Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360
Saving a Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364
Editing Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370

 13 Extending Visual Studio 2010  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371
Creating a Visual Studio Add-In  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372

Running the Add-In Project Wizard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372
Examining an Add-In Wizard Solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377
Drilling into the Connect Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  378

Adding Functionality to an Add-In  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383
Reviewing the OnConnection Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384
Implementing the Exec Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  391
Setting Status with QueryStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  395

Deploying an Add-In  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397
Where to Go Next  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  399
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 0 0

PART V Appendixes

 A Introduction to XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403
VS 2010 XML Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404
XML Prefixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404
XML Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405
Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405
Namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406
The XML Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407
Configuring XML Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

 B Introduction to XAML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409
Starting a WPF Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  410
Elements as Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411
Attributes as Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411
Executing the XAML Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411
Property Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  412
Markup Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  416

  Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  417



This page intentionally left blank 



xvii

Acknowledgments

A work of this magnitude is never the ramblings of a single author, but a successful  
 combination of dedication from a team of highly skilled professionals. I would like 

to personally thank several people who helped make this book possible.
Jane Brownlow, Executive Editor, helped kick off the book and got it started on the 

right path. Megg Morin, Acquisitions Editor, took the reins from Jane and led the rest 
of the way. Joya Anthony, Acquisitions Coordinator, helped keep the flow of chapters 
moving. Madhu Bhardwaj, Project Manager, and Patty Mon, Editorial Supervisor, helped 
coordinate copy edits and final layout. I would really like to thank you all for your 
patience and assistance. There are many more people at McGraw-Hill who helped put this 
book together, and I am appreciative of their contributions and professionalism.

Roy Ogborn was the technical editor for this book. I’ve known Roy for several years 
and was delighted when he agreed to tech edit the book. Besides catching many of my 
errors, Roy provided valuable insight that made a difference in several areas, continuously 
asking the question of whether a beginner would understand a concept, what is the proper 
application of the language to accomplish a goal, and perspective on what parts of a 
technology needed emphasis. Thanks to Roy for outstanding technical editing and advice.



This page intentionally left blank 



xix

Introduction

Visual Studio has been the primary integrated development environment (IDE) for 
Microsoft software development for several years. Visual Studio 2010 (VS), the 

subject of this book, is therefore a mature evolution, building upon the success of its 
predecessors. This book will show you how to leverage Visual Studio 2010 to your 
advantage, increasing your skill set, and helping you become more productive in building 
software. The software you will learn to write will be for .NET (pronounced “Dot Net”), 
which is a Microsoft platform for writing different types of applications.

As the title suggests, this is a book for beginners. However, there are many opinions 
about who a beginner is, so let’s discuss what beginner means in the context of this book. 
You should probably have some understanding of what programming is from a general 
perspective. It would help to have at least written a batch file, macro, or script that 
instructed the computer to perform some task. A beginner could also be someone who 
has written software with technology, such as Cobol, Dreamweaver, or Java, but who is 
unfamiliar with Visual Studio. Whatever your background, this book provides a gradual 
on-ramp to developing applications with Visual Studio 2010.



 xx Microsoft Visual Studio 2010: A Beginner’s Guide

This book has 13 chapters and is divided into four parts and a couple of appendixes as 
reference material. The following provides an overview of each section:

● Part I: Understanding Visual Studio 2010 Essentials Chapter 1 begins with an 
explanation of what VS is, its benefits to you, and what type of applications VS will 
help you build. Hands-on guidance starts at the point of installation, giving you tips 
as to what is being installed and where it goes on your computer. Chapters 2 through 
4 are an introduction to C# and VB, two of the most widely used programming 
languages supported in VS. Notice that the titles of these chapters include “Just 
Enough,” indicating that you will learn the language features you need throughout 
this book. As you progress through the book, you’ll be exposed to all of the language 
features discussed and see how they are used. Even if you already know how to 
program, you might want to peruse the programming language chapters anyway 
because I’ve sprinkled in dozens of valuable tips that will make your coding 
experience in VS much more pleasurable.

● Part II: Learning the VS 2010 Environment There are a few universal tasks most 
developers perform every day, which include working with projects, debugging code, 
and manipulating data. While Chapter 5 is titled “Creating and Building Projects,” 
there is much involved when working with projects. Pay particular attention to the 
guidance on assemblies and class libraries, as they tend to become more prominent 
as your development activities progress beyond simple programs. Regardless of your 
development philosophy, the need to fix bugs has always existed and will continue 
to be important in the future. Chapter 6 is designed to help you use the many tools of 
VS to find and fix bugs. Another common task you’ll have is working with data. VS 
allows you to create databases, add tables, and much more. When the database is ready 
to use, you’ll learn how to write code that works with the database. I chose to cover 
LINQ to SQL because it’s one of the simpler database technologies, yet powerful 
enough for professional application development.

● Part III: Building Programs with VS 2010 With the foundations of programming 
languages and a feel for the VS environment, you’ll be ready to use VS to build 
applications. The .NET platform supports various technologies, and this book takes 
a forward-looking approach, choosing technologies that were the most recently 
introduced. The focus in these chapters is not to teach you everything about these 
technologies, which can fill entire books themselves, but rather to show you how to 
leverage VS in building applications. You’ll get the foundations that will give you a 
head start in building your own applications. Both Chapters 8 and 10 use a form of 



 Introduction xxi

Extensible Markup Language (XML) called XML Application Markup Language 
(XAML). Considering that this is a beginner’s book, I added a couple of appendixes 
that cover XML and XAML. I recommend that you read the appendixes before 
reading Chapters 8 and 10. Additionally, you should read Chapter 8 before reading 
Chapter 10, because many of the same concepts used to work with Windows 
Presentation Foundation (WPF), a technology for building desktop applications, 
are applicable to Silverlight, a technology to build Web applications. The other two 
chapters in this part will show you how to build Web applications with ASP.NET 
MVC and how to create Web services with Windows Communications Foundation.

● Part IV: Enhancing the VS 2010 Experience In addition to all of the wizards, 
tools, and editing help that VS offers, you can extend VS to make it work even better. 
Chapter 12 shows you how to create your own project and project item wizards, how 
to create code snippets that automatically generate code, and how to create macros  
that automate the VS environment. If the macro capability you learn about in VS  
isn’t powerful enough, read Chapter 13, which shows you how to build an Add-In,  
a program that you can install to add new features to VS.

From installation to customization of the IDE, VS is a helpful and powerful tool.  
I hope you enjoy this book and that it helps you learn how to make VS work for you.



This page intentionally left blank 



Part I
Understanding Visual 
Studio 2010 Essentials



This page intentionally left blank 



3

Chapter 1
Introducing Visual 
Studio 2010



 4 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Learn What Visual Studio 2010 Can Do for You

● Install and Choose Among Installation Options

● Understand What Types of Applications You Can Build

Your first experience with Visual Studio (VS) 2010 is often installation. As with most 
software, VS is rather easy to install; this chapter describes the installation process 

and gives you tips to help understand available options. Once installation is complete, 
you’ll open VS for the first time and need to know how to navigate the VS environment; 
this chapter gives you a high-level view of how VS is organized, how to find the features 
you need, and how to work with windows. Finally, you’ll learn how to find the different 
application types that VS helps you build. At this point, you know that VS will help you 
build .NET applications, but let’s start off with a more detailed explanation of what VS 
will do for you.

What Is Visual Studio 2010 About?
Visual Studio 2010 (VS) is an integrated development environment (IDE); a set of tools 
in a single application that helps you write programs. Without VS, you would need to 
open a text editor, write all of the code, and then run a command-line compiler to create 
an executable application. The issue with the text editor and command-line compiler is 
that you would lose a lot of productivity through manual processes. Fortunately, you have 
VS to automate many of the mundane tasks that are required to develop applications. The 
following sections explain what VS will do for you and why VS is all about developer 
productivity.

Automatically Generated Code
VS includes a suite of project types that you can choose from. Whenever you start a new 
project, VS will automatically generate skeleton code that can compile and run immediately. 
Each project type has project items that you can add, and project items include skeleton 
code. In the next chapter, you’ll learn how to create projects, add project items, and view 



 Chapter 1: Introducing Visual Studio 2010 5

automatically generated code. VS offers many premade controls, which include skeleton 
code, saving you from having to write your own code for repetitive tasks. Many of the more 
complex controls contain wizards that help you customize the control’s behavior, generating 
code based on wizard options you choose.

Rapid Coding Experience
The VS editor optimizes your coding experience. Much of your code is colorized; you 
have Intellisense, tips that pop up as you type; and keyboard shortcuts for performing a 
multitude of tasks. There are a few refactorings, features that help you quickly improve 
the organization of your code while you’re coding. For example, the Rename refactoring 
allows you to change an identifier name where it is defined, which also changes every 
place in the program that references that identifier. VS introduces even more features, 
such as a call hierarchy, which lets you see the call paths in your code; snippets, which 
allow you to type an abbreviation that expands to a code template; and action lists for 
automatically generating new code.

Everything at Your Fingertips
You’ll really want to learn how to navigate the VS environment because a plethora of 
tools are available to aid you in your quest to rapidly create quality software. You have 
the Toolbox jam-packed with controls, a Server Explorer for working with operating 
system services and databases, a Solution Explorer for working with your projects, testing 
utilities, and visual designers. By the way, there are compilers too.

Customizability and Extensibility
You can customize many parts of the VS environment, including colors, editor options, 
and layout. The options are so extensive that you’ll need to know where to look to find 
them all. If the out-of-the-box VS development environment doesn’t offer a feature you 
need, you can write your own macros to automate a series of tasks you find yourself 
repeating. For more sophisticated customization, VS exposes an application programming 
interface (API) for creating add-ins and extensions. Several third-party companies 
have chosen to integrate their own applications with VS. For example, Embarcadero’s 
Delphi language and development environment is hosted in Visual Studio. The rich and 
customizable development environment in VS helps you work the way you want to.

As you move through this book, keep these important concepts in mind and look for 
all of the tips that will help you use VS to your advantage. Your first step in using VS will 
be installation, which is discussed in the next section.



 6 Microsoft Visual Studio 2010: A Beginner’s Guide

Installing Visual Studio 2010
Hopefully the preceding discussion whets your appetite on what VS can do for you. If 
you haven’t already installed VS, this section walks you through the setup process. The 
guidance along the way will explain how to choose among available options to customize 
the installation to your needs. The following steps explain how to install VS:

System Requirements
As of this writing Microsoft recommends you have a 32-bit x86 or 64-bit (x64) CPU, 
at least 1GB RAM, a 5400 RPM hard disk drive, 3GB hard disk space, DVD-ROM, 
DirectX video at 1280 × 1024 resolution, and a 1.6 GHz processor. Recommended 
operating systems include Windows Vista (all versions except for Starter), Windows XP 
SP2 or later (all versions except for Starter), Windows 7 (only Ultimate at the time this 
chapter was written), Windows 2003 (SP1 or R2 or later), and Windows 2008 (SP1 or 
R2 or later). Be sure to check Microsoft Developer Network (MSDN) online, as system 
requirements can change over time.

 1. When you first place the VS DVD into the drive, you’ll see the Microsoft Visual Studio 
2010 window, shown in Figure 1-1. Available options are to Install Microsoft Visual 
Studio 2010 and Check For Service Releases. Click Install Microsoft Visual Studio 2010.

Figure 1-1  Microsoft Visual Studio 2010 Setup window



 Chapter 1: Introducing Visual Studio 2010 7

 2. The next window you’ll see, Figure 1-2, is the welcome window, titled Microsoft Visual 
Studio 2010. Figure 1-2 shows that I’m installing the Ultimate version. Installation for 
other versions is similar, but the number of features available to install varies.

  If you check the box on this page in the Help Improve Setup section, the installer 
will gather logs produced during the setup process and send them across the Internet 
to Microsoft after the setup is complete. To help you make an informed choice as to 
whether to check this box, there is a Privacy Statement link under the check box to 
click and read if you would like more information about what Microsoft does with 
setup information. When you’re ready, click Next. After setup components are loaded, 
you’ll see the licensing screen in Figure 1-3.

Figure 1-2  Setup Welcome window



 8 Microsoft Visual Studio 2010: A Beginner’s Guide

 3. In Figure 1-3, you’ll see what components will be installed. You’ll need to read the VS 
license to ensure you understand what the terms are. The licensing terms can differ, 
depending on what type of package you acquired and your particular country or region. 
Once you’ve read the license, you’ll need to check “I have read and accept the license 
terms” to proceed. Next, enter the license key that comes with your software and enter 
your name. The installer will automatically fill in the product key if you downloaded 
VS via Microsoft Developer Network (MSDN). Click Next and you’ll see options for 
customizing product installation.

 4. Figure 1-4 lets you choose between full and custom installation. If you click the 
Custom option, you’ll be able to choose precisely which components should be 
installed. This is a good opportunity to uncheck the items you won’t ever use. If this is 

Figure 1-3  Setup Licensing window



 Chapter 1: Introducing Visual Studio 2010 9

your first installation and you have plenty of storage, you might want to go through the 
list and check everything to take a look at what is available. You can always return to 
this installation later and make adjustments.

  The configuration screen in Figure 1-4 shows that you can also change the location of 
where to install VS. Take note of the installation location because this is where you will 
go to find sample code, common assemblies, and more items affecting the development 
environment. Evaluate the disk space requirements to ensure you have enough available 
storage. You’ve now completed the configuration options for installation. Click Install to 
start the installation. You’ll see a screen similar to Figure 1-5 during the installation process 
where the small check marks indicate which VS components have successfully installed.

Figure 1-4  Setup Customization window



 10 Microsoft Visual Studio 2010: A Beginner’s Guide

 5. During the installation, the VS installer will need to reboot your computer, showing the 
restart message in Figure 1-6. Make sure you close any applications you currently have 
open so that you don’t lose your work, and then click Restart Now.

Figure 1-5  Setup Progress window

Figure 1-6  Setup Restart window



 Chapter 1: Introducing Visual Studio 2010 11

 6. When installation completes without error, you’ll see the Success window, shown in 
Figure 1-7. If you have errors during installation, this window will give you guidance 
on what to do to solve the problem.

Your installation is now almost complete. You can install product documentation by 
clicking the Install Documentation button, shown in Figure 1-7. The initial installation 
screen that appeared when beginning the installation will reappear, as shown in Figure 1-8. 
You should also check for service releases; not only for the updated functionality to VS, 
but also because service releases often include important security updates.

You are now ready to run VS for the first time. At that point, you’ll need to perform 
one more easy configuration step, where you will choose your default environment 
settings, as shown in Figure 1-9.

Figure 1-7 Setup Success window



 12 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 1-8 Checking for service releases

Figure 1-9 Default Environment Settings window



 Chapter 1: Introducing Visual Studio 2010 13

The choice you make for default environment settings depends a lot on what 
language or environment you’ll use to write software in. The environment settings 
choice isn’t locked in stone and can be reset if you decide you don’t like the settings. 
A later section of this chapter, “Modifying Environment Settings after Setup,” explains 
how to change environment settings. This book covers both VB and C#, so you would 
most likely want to choose the setting specific to the language you will use. The 
examples in this book will use either VB or C# settings, depending on the topic. The 
choice of settings determines how VS will lay out the windows and the default options 
that are set throughout the VS IDE.

NOTE
C# or VB, which Should I Choose? Both C# and VB are first-class languages on the 
.NET platform. The languages themselves are stripped down to bare syntax, with all 
additional services moved into the .NET Framework Class Library, which is common 
to all languages. There are a few small differences between the languages, but in 
reality, the choice really comes down to personal preference. In practice, knowing 
both languages is an advantage because much has been written in articles and books 
showing how to use .NET techniques that doesn’t depend on which language was 
used. You’ll not want to miss out on excellent content regardless of the language it is 
written in.

You should now have a good installation with the configuration and environment 
settings of your choosing. With VS open for the first time, the next section describes the 
high-level parts of the Start page.

Navigating the Visual Studio 2010 Environment
This section is a high-level view of VS, describing what is available when you first 
start Visual Studio 2010, also known as the Visual Studio integrated development 
environment, commonly known as the IDE, which is pronounced by saying the letters 
I-D-E. Seeing what is available will help you find features more quickly. Additionally, 
knowing what is available by default will help you differentiate between default 
functionality and the context-sensitive features of the software items you’re working on.

Figure 1-10 shows how VS appears when first started. It refers to portions of the screen, 
helping you see how the IDE is organized. The following description will associate each 
feature with a name so that you can understand where to look when discussing these features 
in more depth throughout the rest of this book.

The following sections describe portions of the Start screen shown in Figure 1-10.



 14 Microsoft Visual Studio 2010: A Beginner’s Guide

The Menu
At the very top left of Figure 1-10, you’ll see the menu bar, which includes the words 
“File,” “Edit,” “View,” “Tools,” and so on. The menu bar is a standard part of most 
windows applications. Besides standard file management functionality, the File menu is 
where you visit to create new projects. The File menu also gives you access to recently 
opened files and projects.

The Edit menu has your standard cut, copy, and paste operations. It also gives you 
access to a bookmark feature for providing easy navigation through source code.

It would be worth your effort to explore the View menu to see what is available, but if 
you are just learning Visual Studio and how to write software, it’s best to not click these 
different views just yet; we’ll explore most of those views and what they’re used for later. 
The View menu gives you access to all of the tool windows in VS. The View menu also 
has a menu item named Other Windows that includes more application windows that will 
come in handy as you create new software.

Figure 1-10 Visual Studio 2010 Start screen



 Chapter 1: Introducing Visual Studio 2010 15

The Tools menu contains a grab-bag of functionality; for instance, you can attach a 
debugger to see your other programs run, line by line; connect to a database for data; set 
add-ins, macros, and more. One very important menu item on the Tools menu is Options, 
which exposes hundreds of settings for customizing your VS environment.

You can use the Test menu to find all of the functionality for performing unit tests to 
test your new software one part at a time. This is also where other editions of VS include 
access to other types of testing tools.

The Analyze, Architecture, and Team menus have advanced functionality for improving 
the performance of an application, working with application architecture, and integrating 
with Microsoft’s Team Foundation Server.

The Windows and Help menus are similar to most other application types, where the 
Windows menu allows you to manipulate the VS windows and the Help menu is where 
you visit to find the technical documentation on VS.

TIP
Many menu items contain shortcut keys that perform the same action as selecting the 
menu item. If you are curious about what shortcut keys are associated with a particular 
action, you can often find them by opening the menu to see if there are shortcuts 
associated with that action. For example, to open the Solution Explorer window and 
visit the View menu, the shortcut keys are CTRL-W, S.

Toolbar
Beneath the menu in Figure 1-10, you’ll find a toolbar. The toolbar contains frequently 
accessed functionality that is a subset of what is available via menus. The toolbars are 
context-sensitive, showing and hiding depending on what you are doing in VS. You can 
display any toolbar by selecting View | Toolbars.

You can also customize toolbars by right-clicking the toolbar of your choice, scrolling 
to the bottom of the list, and selecting Customize. The toolbar customization window 
allows you to add any feature you would like to the current toolbar.

Work Area
In the center of Figure 1-10, you can see the Start page. This is the same area that you’ll 
use to write code and work with visual designers. The Start page is divided into two 
sections: project management and information. The project management side of the page, 
on the left, offers a quick way to start new projects or work with a list of recently opened 
projects. The information side of the page, on the right, contains resources to help you get 
started with VS, such as links to the Microsoft Web site, walkthroughs to help you learn 
new features, and a tab that updates with the latest developer news from Microsoft.



 16 Microsoft Visual Studio 2010: A Beginner’s Guide

Toolbox
On the far left side of Figure 1-10 is a vertical tab, titled Toolbox, which contains a context-
sensitive list of controls that can be dragged and dropped onto the current designer surface. 
The term “context-sensitive” means that certain items are visible or hidden, depending on 
where you’ve clicked last or what context you are working in, such as creating or editing 
a new Web page. If you’re following along, you don’t have a designer surface open right 
now, so the Toolbox is empty.

Solution Explorer
The Solution Explorer window, to the right of the Start page in Figure 1-10, is where your 
solutions, projects, and project items will appear. This is where you can find and organize 
all of the files and settings that belong to a project. In Figure 1-10, the Solution Explorer 
is blank because there isn’t an open solution. If you close this window and need to find it 
again, just remember the View menu discussed earlier.

Status Bar
At the very bottom of Figure 1-10 is the Status bar, which communicates what is happening 
with VS at the current time. In Figure 1-10, the Status bar displays the word “Ready” to 
indicate you can begin using VS at any time. As you work with VS, the Status bar changes 
in a context-sensitive way to give you information specific to the task you are working on. 
For example, the editor displays line, column, and other information pertaining to the status 
of the editor.

Managing VS Windows
Looking at the VS screen in Figure 1-10, you can see how the windows in the work area—
Toolbox, Start, and Solution Explorer—are decorated with various title bars. Window 
title bars include a set of three icons: Window Position (down arrow), Maximize/Restore 
Down (window), and Close (cross). Figure 1-11 shows the Solution Explorer with these 
three icons on its title bar at the top-right corner.

The Window Position allows you to treat the window as Dock, Float, Dock As Tabbed 
Document, Auto Hide, and Hide. You can expand a window to fill the entire work area or 
allow the window to be resized and float freely around the work area with the Maximize/
Restore Down icon. In the docked position, the Maximize/Restore Down icon becomes 
a pin that can be used to pin the window open or allow it to slide shut. The Close icon 
allows you to close a window. The following sections describe how use these title icons to 
manipulate these windows through expanding and collapsing, docking, floating, tabbing, 
and closing and opening. 



 Chapter 1: Introducing Visual Studio 2010 17

Expanding and Collapsing Windows
Hovering over the Toolbox tab will expand the Toolbox and display a set of three icons in 
the title bar of the Toolbox window: Window Position (down arrow), Hide (pin), and Close 
(cross). You can see what the Toolbox window looks like when expanded in Figure 1-12; 
the pin in the Hide icon is sideways and the vertical tab still appears in the left margin.

Figure 1-11 Window title bar icons

Figure 1-12 Expanded Toolbox



 18 Microsoft Visual Studio 2010: A Beginner’s Guide

If you move the carat away from the Toolbox, the Toolbox will collapse and turn back 
into a tab on the left side of the screen.

For any collapsed window, such as the Toolbox, you can expand that collapsed 
window and click the Hide (pin) icon to pin the window, which will make the window 
layout similar to the Solution Explorer. Figure 1-13 shows the pinned window; the pin in 
the Hide icon (above the Auto Hide tooltip) is vertical and you no longer see the Toolbox 
tab in the left margin.

Clicking the Hide icon on any expanded window will cause the window to collapse 
and display as a tab, similar to the Toolbox. Another way to collapse a window is by 
selecting the Auto Hide option on the Window Position (down arrow) menu.

Docking Windows
The Dock option displays the window in an open docked position, similar to the Solution 
Explorer in Figure 1-10. You can move a docked window to any position in the work 
area. To move a docked window, select its title bar and drag the window out of its current 
position. Figure 1-14 shows VS when you’re dragging a window.

Figure 1-13 Pinned Toolbox



 Chapter 1: Introducing Visual Studio 2010 19

As shown in Figure 1-14, you’ll see a visual set of icons appear over the workspace, 
indicating the docking zones where you can move the window to. The shadow of the 
window will show what the new location will be whenever you drag a window into a 
docking zone. Dropping the window into the docking zone will move the window from its 
old docking zone into the new docking zone.

Floating Windows
The Float option allows windows to appear anywhere in the VS IDE, where you can move 
them at will. You move a floating window by selecting the floating window’s title bar and 
moving the carat to the new location where you want the window to be. Alternatively, 
you can double-click on the title bar. Figure 1-15 shows the Toolbox floating over other 
windows.

Figure 1-14 Dragging a window for docking



 20 Microsoft Visual Studio 2010: A Beginner’s Guide

Tabbed Windows
An example of using the Dock As Tabbed Document option is the Start page. Any window 
set as Dock As Tabbed Document will appear as a new tab in the work area, along with all 
the other windows set as Dock As Tabbed Document. For example, if the Toolbox is set 
as Dock As Tabbed Document, it will become a tabbed document in the same group as the 
Start window, as shown in Figure 1-16.

TIP
Position windows in a way that makes you most productive. In practice, you probably 
don’t want your Toolbox to be a tabbed window. You’ll see examples in later chapters 
of this book that drag-and-drop items from the Toolbox to a designer page, which is 
also laid out as a tabbed document window. So, trying to drag-and-drop between two 
tabbed document windows can be cumbersome. There are several options for working 
with Windows in VS, and after working with VS for a while, you’ll want to pick the 
layout that works best for you.

To change a window from a tabbed document, select the tab and drag the window 
away from the other documents, making it a floating window.

Figure 1-15 Floating a window



 Chapter 1: Introducing Visual Studio 2010 21

Closing and Opening Windows
Clicking the Close icon on a window title bar will close the window. Another way to close 
the window is by selecting the Hide option from the Window Position icon menu.

Reopening a window depends on what type of window it is: VS or Project Item. If the 
window is from VS, you can re-visit the View menu and select the window you need to 
open. Alternatively, you can use a keyboard shortcut key to open a window. These shortcut 
keys for the windows are displayed on the right side of the menu item in the View menu.

Other windows are for project items in the Solution Explorer. In most cases, you 
would re-open a project item by locating it in the appropriate project of Solution Explorer 
and double-clicking it. There are edge cases where you open project items by right-
clicking the project item in Solution Explorer and selecting a menu item, but I’ll explain 
those cases when I discuss them specifically in the rest of this book.

You can now manipulate windows, customizing the layout of your VS environment as 
you need. Sometimes, though, you’ll want to reset your layout to the original default, as 
you’ll learn about in the next section.

Figure 1-16 Tabbed document windows



 22 Microsoft Visual Studio 2010: A Beginner’s Guide

Modifying Environment Settings after Setup
Reasons for modifying environment settings include wanting to reset everything back to a 
default, importing shared settings from another developer, or switching between settings 
for different projects. This section will explain how to modify your settings and achieve 
each of these goals.

With VS open, select Tools | Import And Export Settings, which will start the Import 
and Export Settings Wizard shown in Figure 1-17.

From Figure 1-17, you can see the options to Export, Import, and Reset settings. The 
following sections explain each of these options.

Figure 1-17 Import and Export Settings Wizard



 Chapter 1: Introducing Visual Studio 2010 23

Exporting Selected Environment Settings
We’ll start off with export, which you might use to share your settings with another 
developer. This could also be useful if you planned to make significant changes to your 
settings and wanted a backup in case you wanted to revert to previous settings. To perform 
the export, choose the “Export selected environment settings” option from Figure 1-17 
and click Next to display the Choose Settings To Export window in Figure 1-18.

There is a tree of options you can choose from to determine what settings to export. 
The warning sign indicates settings that you might not want to export for personal or 
security reasons. The warning settings typically have something to do with system file 
paths or something outside of VS that you wouldn’t normally share with other people. 
After you’ve selected options, click Next to display the Name Your Settings File window 
in Figure 1-19.

Figure 1-18 Choose Settings To Export window



 24 Microsoft Visual Studio 2010: A Beginner’s Guide

The two text boxes in Figure 1-19 are for a filename and path where the settings file 
will be saved. Notice that the default filename includes the date, which could be helpful 
if you ever need to restore settings. Click Finish, which will perform the export and show 
you the Complete window in Figure 1-20 after the export operation is done.

Click Close to close the window. With an exported settings file, you or another person 
can perform an import with that file, as described in the next section.

Importing Selected Environment Settings
You would perform a settings import to restore previous settings, import settings from another 
person, or change to specific settings for a project you’re working on. To perform an import, 

Figure 1-19 Name Your Settings File window



 Chapter 1: Introducing Visual Studio 2010 25

open VS and select Tools | Import and Export Settings, which opens the Import and Export 
Settings Wizard shown in Figure 1-17. Choose the “Import selected environment settings” 
option and click Next to view the Save Current Settings window shown in Figure 1-21.

TIP
You can search for various color schemes for Visual Studio on the Internet to 
download. One site, at the time of this writing, is http://winterdom.com/2007/11/
vs2008colorschemes; it offers schemes made for Visual Studio 2008 but that also 
import into Visual Studio 2010.

Figure 1-20 Export Complete window

http://winterdom.com/2007/11/vs2008colorschemes
http://winterdom.com/2007/11/vs2008colorschemes


 26 Microsoft Visual Studio 2010: A Beginner’s Guide

The Save Current Settings window allows you to back up your current environment 
settings before changing them. If you do a backup, you will be able to restore later in case 
something doesn’t work out the way you intended with the import. You can choose not to 
back up also. Click Next to view the Choose A Collection Of Settings To Import window 
in Figure 1-22.

As shown in Figure 1-22, you can import some of the predefined settings that are 
part of VS under the Default Settings branch or import custom settings under the My 
Settings branch. Custom settings include the current settings and any other settings that 
you’ve saved to the default path, shown in Figures 1-19 and 1-21. Optionally, you can 

Figure 1-21 Save Current Settings window



 Chapter 1: Introducing Visual Studio 2010 27

click Browse and navigate to the location where a settings file is located. After selecting 
a settings file, click Next, which brings you to the Choose Settings To Import window 
shown in Figure 1-23.

The Choose Settings To Import window allows you to specify only those settings that 
you want in your environment. It will only update the settings checked in Figure 1-23. 
All of your other current settings, those that are unchecked in Figure 1-23, will not be 
changed. Click Finish to begin the import operation. When import is done, you’ll see the 
Import Complete window, shown in Figure 1-24.

Figure 1-22 Choose A Collection Of Settings To Import window



 28 Microsoft Visual Studio 2010: A Beginner’s Guide

Your import is now complete, and you can click the Close window. Another settings 
option is to reset your current settings to one of the VS default options, explained next.

Resetting All Settings
You could reset settings if you wanted to restore the default settings in VS or if you 
wanted to switch between default VS settings. For this book, I switched between default 
settings for VB and C# to ensure the environment settings were appropriate for whichever 
language I was discussing. To perform a reset, open VS and select Tools | Import And 
Export Settings, which will open the Import and Export Settings Wizard shown earlier  
in Figure 1-17.

Choose the Reset All Settings option and click Next. You’ll see the Save Current 
Settings window, which is exactly the same as Figure 1-21. Choose your save option and 
click Next to view the Default Collection Of Settings window shown in Figure 1-25.

Figure 1-23 Choose Settings To Import window



 Chapter 1: Introducing Visual Studio 2010 29

Figure 1-25 shows that you can select among a set of default settings for VS. Each 
of these default settings are the same as what you selected during installation, previously 
shown in Figure 1-9 and the Default Settings branch of Figure 1-22. Choose a setting and 
click Finish, which starts the reset operation. When the reset is done, you’ll see the Reset 
Complete window, shown in Figure 1-26. The reset is now complete, and you can click 
Close to close the window when you’re finished.

 Earlier in the chapter, we discussed projects very lightly, but we will gradually dig 
deeper as this book progresses. The next section takes you a little bit further by describing 
what project types are available in VS.

Figure 1-24 Import Complete window



 30 Microsoft Visual Studio 2010: A Beginner’s Guide

Familiarization with Visual Studio Project Types
Visual Studio includes a plethora of project types, making it easy to build applications 
with premade templates. The following discussion will show how to find what project 
types are available and describe what those project types are.

To see what projects are available, select File | New | Project, as shown in Figure 1-27. 

NOTE
If you’ve set your environment up for VB, you’ll notice right away that the option to 
select is File | New Project, which is only two menu choices, rather than 3 for C#. 
While the exact wording and placement of options won’t always match, you can rely on 
the functionality being the same, except for when I explain otherwise.

Figure 1-25 Default Collection Of Settings window



 Chapter 1: Introducing Visual Studio 2010 31

In addition to a new project, Figure 1-27 shows that you can create a new Web site, 
just open a file for editing, or open a wizard that creates a new project from existing files. 
We’ll look at many of these options later in the book, but let’s take a look at the New 
Project window, Figure 1-28, which opened as a result of selecting File | New | Project.

The New Project window in Figure 1-28 shows that there are many projects to select 
from, including Windows, Web, Office, SharePoint, Cloud, Reporting, Silverlight, Test, 
WCF, and Workflow. Some of these project types don’t appear in Figure 1-28, but if you 
scroll down the Templates list in the New Project window, you’ll see them. Figure 1-28 
also shows the appearance for C# projects, but there are also similar projects for other 
programming languages that ship with VS; including VB, C++ (pronounced see-plus-plus), 
and F# (pronounced f-sharp). If you had selected VB settings during the setup process, 

Figure 1-26 Reset Complete window



 32 Microsoft Visual Studio 2010: A Beginner’s Guide

earlier in this chapter, the default set of project types would have been VB and C# projects 
would be listed in the Other Languages branch. The following sections describe the types 
of projects available, some of which you’ll learn how to create later in this book.

Windows Projects
Selecting Windows Projects will show you a list of project types that can be created for 
desktop applications, including Windows Presentation Foundation (WPF), Windows 
Forms, and Console. Console applications are for building applications that don’t need a 
graphical user interface (also known as GUI and pronounced “goo-ee”) and are generally 
for creating utilities that administrators can write scripts with or for writing a quick test for 
your program. You’ll be using Console applications when learning VB and C# languages 
later in this book because it is a simple way to concentrate on the language without any 
distractions. Windows Forms is an older desktop GUI technology. The new desktop GUI 
technology for .NET is called WPF, which is covered in a later chapter in this book.

Figure 1-27 Selecting a New Project via the File menu



 Chapter 1: Introducing Visual Studio 2010 33

Other windows projects include Windows Services, which are applications that are 
always on and run as a service in the background without a GUI, Class Libraries for 
holding reusable code often referred to as middleware, and Control Libraries for holding 
graphical controls that can be dragged-and-dropped from the Toolbox onto a visual 
designer within VS.

Web Projects
Web projects include ASP.NET, Server Controls, Web Services, and Dynamic Data. An 
ASP.NET project allows you to write an application that is hosted by a Web server, such 
as Internet Information Server (IIS), and runs in a Web browser. A Server Control project 
enables you to build a library of GUI controls that can be dragged-and-dropped onto the 
design surface of a Web page in VS. Web Services are reusable components that you 
can call from across the Internet. An important feature of Web Services is that they use 
ubiquitous protocols to enable code from any platform to call them, facilitating integration 
among heterogeneous computing systems. Dynamic Data projects offer a quick way to 
build a working Web site, based on an existing database schema.

Figure 1-28 New Project window



 34 Microsoft Visual Studio 2010: A Beginner’s Guide

Office Projects
For years, developers have been writing Visual Basic for Applications (VBA) programs 
to automate Microsoft Office applications. An Office project allows you to automate 
Office applications through .NET using languages such as VB and C#. Supported Office 
applications include Excel, Word, Project, PowerPoint, Outlook, Visio, and InfoPath.

SharePoint Projects
SharePoint is a technology for building portal-style Web applications. It is closely 
associated with Office applications and managing workgroup collaboration. In order 
to create and run SharePoint projects, the computer you use to run VS will need to be 
running one of Microsoft’s server platforms, such as Server 2008. SharePoint does not run 
on Windows 7, Vista, or Windows XP.

Database Projects
Database projects include a SQL Server project type, offering close integration with SQL 
Server for building .NET code that runs inside of SQL Server. For example, you can write 
stored procedures and functions in either C# or VB and have the benefit of the .NET 
Framework in your code. VS makes it easy to deploy your code to SQL Server with a 
single mouse click.

Summary
By knowing the benefits of VS, you have an appreciation for what VS can do for you, 
increasing your productivity through automatically generated code, rapid coding and 
visual design, and extensibility. You should be able to install VS, choosing the options that 
prepare the environment specifically for the work you want to do. Another set of skills 
you gained was the ability to manipulate the layout of your environment and manage 
environment settings, including how to get your environment back to the default settings 
if you’ve made too many changes. Having grown acquainted with each of the major 
features of the IDE, you can open VS and find the features that you need. With your 
knowledge of the advantages of VS, proper installation, and awareness of VS capabilities, 
you are now ready to start your first software development project, which you’ll learn 
about in the next chapter.



35

Chapter 2
Learning Just Enough 
C# or VB.NET:  
Basic Syntax



 36 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Learn Basics of Starting a Project

● Use the VS Editor

● Code Expressions and Statements

The .NET platform supports several different programming languages. Since all of the 
languages run on the same platform and share the same class libraries, language choice 

becomes a personal choice of preference. In other words, you can accomplish the same 
tasks, regardless of what programming language you use. With .NET, you have a choice of 
language but retain the same benefits of having all of the features of .NET available to you.

Visual Studio (VS) 2010 ships with four programming languages: C#, C++, F#, and 
Visual Basic.NET (VB). The pronunciation of each of these languages, respectively, is See 
Sharp, See Plus Plus, Eff Sharp, and Vee Bee. C# and VB are the two most popular .NET 
programming languages and have the greatest support in VS. Therefore, this book uses both 
C# and VB in all examples. While you may choose one of these languages as your favorite, 
there is great benefit in knowing both. Most of what is written online, in magazines, and 
in books contains examples for either C# or VB, and sometimes, but not always, both. You 
might not want to miss great content because of a limited language choice.

Chapter 1 danced around projects and what is available. It was important to have that 
overview, but I’m sure you’re eager to see some code. This chapter will be satisfying in 
that you’ll learn how to create a project, see what code is generated, and learn how to add 
code yourself. This is the first chapter of three that covers language syntax, combining 
each language feature with tips on how VS helps you code. You’ll start off by creating a 
simple project and then learn about language types and statements.

Starting a Bare-Bones Project
Chapter 1 described the project types that you can create. This chapter takes you a step 
further; actually creating a project. Because the primary focus of this chapter is on 
learning C# and VB, the project type will be a Console application. A Console application 
is very simple, allowing you to read and write text from and to the Command Prompt 
window. Later chapters introduce you to the project types used most, such as WPF  
and ASP.NET.



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 37

To get started, open VS and select File | New | Project. You’ll see the New Project 
window, shown in Figure 2-1. Your first task is to select Console Application as the 
program type. Then set the program name to FirstProgram and specify a location of your 
choice for where the project will be created. Other features of the New Project window 
include the ability to specify the .NET Framework version, sorting options, icon size 
options, and a search capability.

NOTE
It’s often useful to choose a project location other than the default. The default is your 
personal “My Documents” folder, which is long to type, cumbersome to navigate to, and 
error prone. Choosing a shorter path helps alleviate these problems. If you’re working 
on a team with other developers, it’s also helpful to use a common location for projects 
where everyone has their files in the same location.

NOTE
In the example code that accompanies this book, the projects are named 
FirstProgramCS (containing C# examples) and FirstProgramVB (containing VB 
examples). You’ll see this convention, specifying the language in the project name suffix, 
in all of the code examples accompanying this book.

Figure 2-1  The New Project window



 38 Microsoft Visual Studio 2010: A Beginner’s Guide

Along the very top center of the dialog shown in Figure 2-1, the .NET Framework 
is the set of class libraries, runtime, and languages that is the development platform 
supported by VS. VS allows you to target multiple versions of the .NET Framework, 
including versions 2.0, 3.0, 3.5, and 4.0. VS will compile your code against the version 
you choose. Generally, you’ll want to begin all new projects with the latest version, 4.0, 
because you’ll want to be able to use the newest and most productive .NET features. The 
primary reason for using an earlier version is if you must perform work on code that is 
already written for an earlier version of .NET. The sorting and searching features to the 
right of this selection enable you to find project types in different ways, whichever is most 
comfortable for you.

Clicking OK will produce a Console application project in the programming language 
you chose, which you can see in the Solution Explorer, shown in Figure 2-2. The Solution 
Explorer in Figure 2-2 contains a solution, which is a container for multiple projects. 
Later, you’ll gain a stronger appreciation for the role of the solution when organizing 
projects to support a software application. Under the solution is the FirstProgram project. 
Within the FirstProgram project are project items, such as files and settings. Many 
different types of project items can go into a project, and the specific project items that go 

Figure 2-2  A Console application in the Solution Explorer



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 39

into a project depend on the project type. For example, there are project items that are part 
of a WPF application but wouldn’t be part of a Console application. Of particular interest 
in the FirstProgram project is the file named Program.cs (or Module1.vb if programming 
in VB), which is a code file, as we’ll discuss in the next section.

Examining the Code Skeleton
Having run the New Project Wizard for a Console application, you’ll see a file named 
Program.cs (or Module.vb) that contains skeleton code in the editor. VS will create 
skeleton code using built-in templates for most project types that you create. You’re free 
to add, remove, or modify this code as you see fit. Listing 2-1 contains the skeleton code, 
which I’ll explain next.

Listing 2-1  Console application skeleton code

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
        } 
    } 
}

VB:

Module Module1 
 
    Sub Main() 
 
    End Sub 
 
End Module



 40 Microsoft Visual Studio 2010: A Beginner’s Guide

The skeleton code in Listing 2-1 is what VS created when the new Console application 
was created. It is there to give you a head start on writing your program. What you now 
have is a whole computer program. This program doesn’t do much of anything at this 
point, but it will actually run and then end itself. Looking at the whole program, you can 
see that there are sets of nested curly braces in the C# code. The VB code has Module and 
Sub with corresponding End identifiers to indicate the boundaries of a block. The braces 
in C# code always come in pairs and define a block. The following explanation works 
from the inside out to help you understand what this code means.

The Main Method
The innermost block of the C# code is the static void Main(string[] args) definition, 
which is called a method. The method in VB is called Sub Main and is identical in 
purpose. You’ll learn later that methods are one way you can group code into logical 
chunks of functionality. You can think of methods as actions where you, as the method 
author, tell the computer what to do. The name of this particular method is Main, which is 
referred to as the entry point of the program, the place where a Console application first 
starts running. Another way of thinking about Main is that this is the place your computer 
first transfers control to your program. Therefore, you would want to put code inside of 
Main to make your program do what you want it to.

In C#, Main must be capitalized. It’s also important to remember that C# is case-
sensitive, meaning that Main (capitalized) is not the same as main (lowercase). Although 
VS capitalizes your code for you if you forget to, VB is not case-sensitive. Capitalization 
is a common gotcha, especially for VB programmers learning C#.

In C#, methods can return values, such as numbers, text, or other types of values, and 
the type of thing they can return is specified by you right before the method name. In VB, 
a Sub (a shortened keyword derived from the term subroutine) does not return a value, 
but a Function does, and you’ll see examples soon. Since Main, in the C# example, does 
not return a value, the return type is replaced with the keyword void. Methods can specify 
parameters for holding arguments that callers pass to the method. In the case of Main, the 
parameter is an array of strings, with a variable name of args. The args parameter will 
hold all of the parameters passed to this program from the command line.

One more part of the C# Main method is the static keyword, which is a modifier that 
says there will only ever be a single instance of this method for the life of the program. To 
understand instances, consider that methods are members of object types where an object 
can be anything in the domain of the application you’re writing, such as a Customer, 
Account, or Vehicle. Think about a company that has multiple customers. Each customer 
is a separate instance, which also means that each Customer instance contains methods 



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 41

that belong to each instance. If an object such as Customer has methods that belong to 
each instance, those methods are not static. However, if the Customer object type has a 
method that is static, then there would only be a single copy of that method that is shared 
among all Customer objects. For example, what if you wanted to get a discount price 
for all customers, regardless of who the customer is; you would declare a static method 
named GetCustomerDiscount. However, if you wanted information that belonged to 
a specific customer, such as an address, you would create an instance method named 
GetAddress that would not be modified as static.

VB uses the term shared, which has the same meaning as static. Modules are 
inherently shared, and all module methods must be shared. Therefore, the VB Main 
method is shared.

In C#, the curly braces define the begin and end of the Main method. In VB, Main 
begins with Sub and is scoped to End Sub. Next, notice that the C# Main method is 
enclosed inside of a set of braces that belong to something called a class that has been 
given the name Program. The VB Main method is enclosed in something called a module. 
You’ll learn about the enclosing class and module next.

The Program Class
Methods always reside inside of a type declaration. A type could be a class or struct for 
C# or a class, module, or struct in VB. The term type might be a little foreign to you, but it 
might be easier if you thought of it as something that contains things. Methods are one of 
the things that types contain. The following snippet, from Listing 2-1, shows the type that 
contains the Main method, which is a class in C# and a module (in this example) in VB:

class Program 
{ 
    // Main Method omitted for brevity 
}

VB:

Module Module1 
    ' Main omitted for brevity 
End Module

Most object types you create will be a class, as shown in the previous C# example. 
In VB, you would replace Module with Class. Although VS uses Module as the default 
object type for a new project, it’s a holdover from earlier versions of VB. In practice, you 
shouldn’t use the VB Module but should prefer Class. The Program class contains the 
Main method. You could add other methods to the Program class or Module1 module, 



 42 Microsoft Visual Studio 2010: A Beginner’s Guide

which you’ll see many times throughout this book. The Console application defined the 
skeleton code class to have the name Program. In reality you can name the class anything 
you want. Whatever names you choose should make sense for the purpose of the class. 
For example, it makes sense for a class that works with customers to be named Customer 
and only contain methods that help you work with customers. You wouldn’t add methods 
for working directly with invoices, products, or anything other than customers because 
that would make the code in your Customer class confusing. Classes are organized with 
namespaces, which are discussed next.

The FirstProgram Namespace
A namespace helps make your class names unique and therefore unambiguous. They 
are like adding a middle name and surname to your first name, which makes your whole 
name more unique. A namespace name, however, precedes the class name, whereas your 
middle name and surname follow your first or given name. A namespace also helps you 
organize code and helps you find things in other programmers’ code. This organization 
helps to build libraries of code where programmers have a better chance to find what 
they need. The .NET platform has a huge class library that is organized into namespaces 
and assemblies; this will become clearer the more you program. The main .NET 
namespace is System, which has multiple sub-namespaces. For example, guess where 
you can find .NET classes for working with data? Look in System.Data. Another quick 
test: Where are .NET classes for working with networking protocols like TCP/IP, FTP, or 
HTTP? Try System.Net.

Another benefit of namespaces is to differentiate between classes that have the same 
name in different libraries. For example, what if you bought a third-party library that has a 
Customer class? Think about what you would do to tell the difference between Customer 
classes. The solution is namespaces, because if each Customer has its own namespace, 
you can write code that specifies each Customer by its namespace. Always using 
namespaces is widely considered to be a best practice.

The Program class in Listing 2-1 belongs to the FirstProgram namespace, repeated 
here for your convenience (in C#):

namespace FirstProgram 
{ 
    // Program class omitted for brevity 
}

You can put many classes inside of a namespace, where inside means within the 
beginning and ending braces for a namespace.



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 43

The using directives at the top of the C# part of Listing 2-1 are really a shortcut that 
makes it easier for you to write code. For example, the System namespace contains the 
Console class. If the using System directive were not present, you would be required 
to write System.Console.WriteLine instead of just Console.WriteLine. This was a short 
example, but using directives can help clean up your code and make it more readable.

A VB module must be declared at the global level, meaning that it can’t be added to 
a namespace that you create. The following example demonstrates what a VB namespace 
looks like:

Namespace FirstProgram 
    Public Class Customer 
 
    End Class 
End Namespace

In this example, you can see that the FirstProgram namespace contains a Customer 
class. The next task you’ll want to take on is writing code, but before doing so, let’s look 
at some of the features of the VS Code editor.

An Overview of the VS Code Editor
The VS Code editor is where you’ll be performing much of your coding work. This section 
will point out a few features you will be interested in and show you how to perform 
customizations. Figure 2-3 shows the editor with the Console application skeleton code 
from the C# part of Listing 2-1.

Figure 2-3  The VS Code editor



 44 Microsoft Visual Studio 2010: A Beginner’s Guide

The following sections examine various elements of the Code editor, starting with 
class and member locators.

Class and Member Locators
The two drop-down lists, class locator and member locator, at the top of the editor are for 
navigating the code. If you have multiple classes in your file, you can use the class locator 
drop-down list on the left to select the class you want to find, and the editor will move 
you to the first line of that class declaration. In practice, I only put a single class within 
a single file, so the class locator doesn’t get much attention. However, you will have VS 
wizards that automatically generate code and put many classes in the same file, and the 
class locator is very useful if you want to find a particular class and learn about what the 
automatically generated code is doing. The member locator drop-down list on the top right 
contains a list of methods and other members for the class selected in the class locator. 
The only class member we’ve discussed so far is the method, but there are more, as you’ll 
learn in upcoming chapters. Selecting a member causes the editor to move you to the 
first line of that class member. Whenever you find yourself scrolling through a large file, 
remember that the member locator will help you find what you’re looking for quickly.

The vertical bar on the left side of the editor is called the indicator margin, where 
you’ll see icons for features such as bookmarks and debug breakpoints. The next section 
discusses bookmarks.

Bookmarks
Figure 2-3 shows a bookmark on the line for the program class. Bookmarks allow you to 
navigate code quickly without manual navigation when working with multiple documents 
or multiple locations within the same document. Table 2-1 shows a list of keyboard 
commands for bookmarks.

Table 2-1  Bookmark Shortcut Keys

Key Code Meaning
CTRL-B, T Toggle a bookmark on or off

CTRL-B, N Move to next bookmark

CTRL-B, P Move to previous bookmark

CTRL-B, C Clear all bookmarks

CTRL-W, B Open the Bookmarks window



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 45

One of the entries in Table 2-1, CTRL-W, B opens the Bookmarks window shown in 
Figure 2-4, allowing you to manage bookmarks throughout your application.

The bookmark has a toolbar, which is the same toolbar that appears in VS when the 
editor window is active. The actions on the toolbar include the items from Table 2-1, plus 
the ability to move between folders.

Within the Bookmark list, you can check to make a bookmark active or inactive. When 
the bookmark is inactive, previous and next navigation will not stop at the bookmark. You 
can change the name of the bookmark by clicking the name twice. The File Location and 
Line Number tell you where the bookmark is located.

Setting Editor Options
The editor is very configurable, and there are more options available than many people 
realize. You can view available options by selecting Tools | Options to show the Options 
window in Figure 2-5. As you can see from the figure, selecting Environment | Fonts And 
Colors allows you to change the appearance of VS. Regarding our current discussion of 
the editor, this is where you can customize the coloration of code elements that appear  
in the editor.

TIP
If you want to share your custom editor settings, you can use the Import and Export 
Settings Wizard that you learned about in Chapter 1. There is also an Import And 
Export Settings branch right below Fonts And Colors in the Options window.

Most editor customizations are in a language-specific branch of the Options window. 
Figure 2-6 shows the options available for C# programmers.

Figure 2-4  The Bookmarks window



 46 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 2-5 The Options window

Figure 2-6 C# code editor options



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 47

The Options window in Figure 2-6 is opened to Text Editor, C#, Formatting New 
Lines. As you can see, there are very detailed settings for even how the editor automatically 
formats new lines and where braces appear. If the code doesn’t format the way you want it 
to, visit this page to set the options to what you please.

Saving Time with Snippets
Snippets are important to learn because they will save you time. A snippet is a set of 
keystrokes that form a template for a piece of code. The code for a snippet is typically 
something that is common in normal programming. You’ll see many common statements 
and blocks of code in this chapter, many of which have associated snippets. This section 
shows you the mechanics of using snippets, and you’ll see more examples throughout the 
rest of this chapter.

To use a snippet, begin typing the snippet prefix until the snippet acronym appears in 
the Intellisense completion list, press the TAB key twice, and fill in the snippet form while 
tabbing through each field. Press ENTER when you’re done.

Since you’ve already learned about namespaces, I’ll show you the namespace snippet. 
To start, open any code file and click to start typing in a part of the file outside of all code 
blocks, such as directly below any using statements but above any existing namespace 
statements. Type the letter n and watch the completion list go straight to the namespace 
element. Type an a and you’ll see the namespace alone in the completion list, as shown  
in Figure 2-7.

NOTE
The CTRL-ALT-SPACE keystroke in Figure 2-7 switches between the Intellisense modes 
Consume First and Standard mode. In Standard mode, which shows CTRL-ALT-SPACE, 
typing characters automatically selects keywords. However, there are situations where 
you are trying to type a word that doesn’t exist yet and Intellisense is too aggressive by 
adding the selected completion list item, instead of what you typed. In those cases, you 
can press the CTRL-ALT-SPACE keys to go to Consume First mode and what you’ve typed will 
be selected. You can still use the DOWN ARROW key on your keyboard in Consume First 
mode to select the highlighted term in the completion list.

Figure 2-7 Using snippets



 48 Microsoft Visual Studio 2010: A Beginner’s Guide

You can identify snippets in the completion list by the torn paper icon. At this point, 
you can press the TAB key to complete the namespace keyword. Then press TAB again to 
produce a template where you can fill out the highlighted fields. Figure 2-8 shows the 
results of creating a namespace snippet by typing n and pressing TAB, TAB.

As shown in Figure 2-8, you would type in the Namespace name in the highlighted 
form field to replace MyNamespace, which is placeholder text. For templates with more 
fields, you would press the TAB key to move between fields. In the case of the namespace 
shown in Figure 2-8, there is only one field in the template to complete.

VB offers a couple of ways to add snippets: by typing prefixes or via a pick list. To see 
how VB snippets work, place your carat inside of the Module1 module, underneath End 
Main (not inside of the Main block). Type Su and press TAB, and notice that VS creates a 
Sub (method) along with a template containing a field for filling out the Sub snippet.

Another way to add VB snippets is to type a ? and press TAB. You’ll receive a pick list, 
as shown in Figure 2-9. You can navigate this pick list to find the snippet you need, as 
classified in one of the folders. VB ships with many more built-in snippets than for C#.

Now that you know how to use snippets, let’s move on to the different types of 
statements you can have in C# and VB and how snippets work with those statements.

Figure 2-9 VB snippet pick list

Figure 2-8 Filling in the Snippet template



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 49

Coding Expressions and Statements
There are various types of statements you can write with both C# and VB, including 
assignment, method invocations, branching, and loops. We’ll start off by looking at 
primitive types, such as integers and strings, and then I’ll show how to build expressions 
and set values by performing assignments. Then you’ll learn about branching statements, 
such as if and switch in C# or the case statement in VB. Finally, you’ll learn about various 
loops, such as for and while. I describe these language features in general terms because 
they differ between C# and VB, but you’ll learn that the concepts are essentially the same. 

Before writing any code, you should know how Intellisense works; it is an important 
productivity tool that reduces keystrokes for common coding scenarios.

Making Intellisense Work for You
Previously, you saw how snippets work. Snippets use Intellisense to show a completion 
list. Intellisense is integrated into the VS editor, allowing you to complete statements with 
a minimum number of keystrokes. The following walkthrough shows you how to use 
Intellisense, as we add the following line to the Main method. Don’t type anything yet; 
just follow along to see how Intellisense works:

C#:

Console.WriteLine("Hello from Visual Studio 2010!");

VB:

Console.WriteLine("Hello from Visual Studio 2010!")

The following steps show you how VS helps you save keystrokes:

 1. Inside the braces of the Main method, type c and notice how the Intellisense window 
appears, with a list of all available identifiers that start with c. This list is called a 
completion list.

 2. Type o and notice that the completion list filters all but those identifiers that begin  
with co.

 3. Type n and you’ll see that the only identifier available is Console. This is what we 
want, and you only needed to type three characters to get there.

 4. At this point most people press the ENTER or TAB key to let VS finish typing Console, 
but that is effectively a waste of a keystroke.



 50 Microsoft Visual Studio 2010: A Beginner’s Guide

  You know that there is a dot operator between Console and WriteLine, so go ahead 
and type the period character, which causes VS to display “Console.” in the editor and 
show you a new completion list that contains members of the Console class that you 
can now choose from.

NOTE
So, I’ll admit that I spent a couple paragraphs trying to explain to you how to save a 
single keystroke, but that’s not the only thing you should get out of the explanation. 
The real value is in knowing that there are a lot of these detailed options available to 
increase your productivity. Every time you take advantage of a new VS option, you 
raise the notch of productivity just a little higher.

 5. Now type write and notice that both Write and WriteLine appear in the completion list. 
Now type the letter l and notice that WriteLine is the only option left in the completion list.

NOTE
If you’ve typed WriteLine a few times, you’ll notice that the completion list goes straight 
to WriteLine after a few characters, rather than just Write. This is because Intellisense 
remembers your most frequently used identifiers and will select them from the list first. If 
you continue to type, Intellisense will then highlight those identifiers with exact matches. 
Notice the checked option in Figure 2-10; Intellisense preselects most recently used 
members, showing that this behavior is turned on by default.

 6. Save another keystroke and press the ( key to let VS finish the WriteLine method name.

 7. At this point, you can finish typing the statement, resulting in a Main method that looks 
like this:

C#:

static void Main(string[] args) 
{ 
    Console.WriteLine("Hello from Visual Studio 2010!"); 
}

VB:

Sub Main() 
    Console.WriteLine("Hello from Visual Studio 2010!") 
End Sub

If you’re a C# developer and want to change Intellisense options, open Tools | Options 
and select Text Editor | C# | Intellisense, and you’ll see the Intellisense options in Figure 2-10. 
This option isn’t available for VB.



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 51

Notice that there is a text box titled “Committed by typing the following characters,” 
which contains a set of characters that will cause VS to type the rest of the selected 
identifier in the completion list plus the character you typed. Referring back to Step 4, this 
is how you know that a period commits the current selection.

You now have a program that does something; it can print a message to the console. 
The next section will explain how you can run this program.

Running Programs
In VS, you can run a program either with or without debugging. Debugging is the 
process of finding errors in your code. If you run with debugging, you’ll be able to set 
break points and step through code, as will be described in Chapter 6. Running without 
debugging allows you to run the application, avoiding any breakpoints that might have 
been set.

To run without debugging, either select Debug | Start Without Debugging or press 
CTRL-F5. This will run the Command Prompt window, where you’ll see the words “Hello 
from Visual Studio 2010!” or whatever you asked the computer to write, on the screen. 
The Command Prompt window will stay open until you press ENTER or close the window.

Figure 2-10 Intellisense options



 52 Microsoft Visual Studio 2010: A Beginner’s Guide

To run with debugging, either select Debug | Start Debugging or press F5. Because 
of the way the application is coded so far, the Command Prompt window will quickly 
run and close; you might miss it if you blink your eyes. To prevent this, you can add a 
Console.ReadKey statement below Console.WriteLine, which will keep the window open 
until you press any key. Here’s the updated Main method:

C#:

static void Main(string[] args) 
{ 
    Console.WriteLine("Hello from Visual Studio 2010!"); 
    Console.ReadKey(); 
}

VB:

Sub Main() 
    Console.WriteLine("Hello from Visual Studio 2010!") 
    Console.ReadKey() 
End Sub

Pressing F5 will show “Hello from Visual Studio 2010!” on the Command Prompt 
window, just as when running without debugging.

To understand why there are two options, think about the difference between just 
running a program and debugging. If you run a program, you want it to stay open until 
you close it. However, if you are debugging a program, you have most likely set a 
breakpoint and will step through the code as you debug. When your debugging session is 
over, you want the program to close so that you can start coding again right away.

Now that you know how to add code to the Main method and run it, you can begin 
looking at the building blocks of algorithms, starting in the next section.

Primitive Types and Expressions
The basic elements of any code you write will include primitive types and expressions, as 
explained in the following sections.

Primitive Types
You can define variables in your programs whose type is one of the primitive types. 
Variables can hold values that you can read, manipulate, and write. There are different 
types of variables, and the type specifies what kind of data the variable can have. In .NET 
there are primitive types (aka built-in) and custom types. The custom types are types that 
you create yourself and are specific to the program you are writing. For example, if you 
are writing a program to manage the customers for your business, then you would create 
a type that could be used as the type of a variable for holding customer types. You’ll 



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 53

learn how to create custom types later. First, you need to learn about primitive types. The 
primitive types are part of the programming languages and built into .NET. A primitive 
type is the most basic type of data that you can work with in .NET, which can’t be broken 
into smaller pieces. In contrast, a custom type can be made up of one or more primitive 
types, such as a Customer type that would have a name, an address, and possibly more bits 
of data that are primitive types. Table 2-2 lists the primitive types and descriptions.

Looking at Table 2-2, remember that C# is case-sensitive and all of the primitive types 
are lowercase. You can also see a third column for .NET types. Occasionally, you’ll see 
code that uses the .NET type, which aliases the C# and VB language-specific types. The 
following example shows how to declare a 32-bit signed integer in both C# and VB, along 
with the .NET type:

C#:

int age1; 
Int32 age2;

VB:

Dim age1 as Integer 
Dim age2 as Int32

Table 2-2  Primitive Types

VB C# .NET Description
Byte byte Byte 8-bit unsigned integer

SByte sbyte SByte 8-bit signed integer

Short short Int16 16-bit signed integer

UInt16 ushort UInt16 16-bit unsigned integer

Integer int Int32 32-bit signed integer

UInt32 uint UInt32 32-bit unsigned integer

Long long Int64 64-bit signed integer

UInt64 ulong UInt64 64-bit unsigned integer

Single float Single 32-bit floating point

Double double Double 64-bit floating point

Boolean bool Boolean true or false

Char Char Char 16-bit Unicode character

Decimal decimal Decimal 96-bit decimal (used for money)

String string String String of Unicode characters



 54 Microsoft Visual Studio 2010: A Beginner’s Guide

Consistent with Table 2-2, C# uses int and VB uses Integer as their native type 
definitions for a 32-bit signed integer. Additionally, you see age defined in both C# and 
VB using the .NET type, Int32. Notice that the .NET type is the same in both languages. 
In fact, the .NET type will always be the same for every language that runs in .NET. Each 
language has its own syntax for the .NET types, and each of the language-specific types is 
said to alias the .NET type.

Expressions
When performing computations in your code, you’ll do so through expressions, which are 
a combination of variables, operators (such as addition or multiplication), or referencing 
other class members. Here’s an expression that performs a mathematical calculation and 
assigns the result to an integer variable:

C#:

int result = 3 + 5 * 7;

VB:

Dim result As Int32 = 3 + 5 * 7

A variable that was named result in this example is a C# type int or a VB type Int32, 
as specified in Table 2-2. The variable could be named pretty much anything you want; 
I chose the word result for this example. The type of our new variable result in the VB 
example is Int32, which is a primitive .NET type. You could have used the VB keyword 
Integer, which is an alias for Int32 instead. The expression is 3 + 5 * 7, which contains 
the operators + (addition) and * (multiplication) and is calculated and assigned to result 
when the program runs. The value of result will be 38 because expressions use standard 
algebraic precedence. In the preceding example, 5 * 7 is calculated first, multiplication 
has precedence, and that result is added to 3.

You can modify the order of operations with parentheses. Here’s an example that adds 
3 to 5 and then multiplies by 7:

C#:

int differentResult = (3 + 5) * 7;

VB:

Dim differentResult As Int32 = (3 + 5) * 7

Because of the grouping with parentheses, differentResult will have the value 56 after 
this statement executes.



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 55

The Ternary and Immediate If Operators
The C# ternary and VB immediate if operators allow you to test a condition and return 
a different value depending on whether that condition is true or false. Listing 2-2 shows 
how the ternary and immediate if operators work.

Listing 2-2  A ternary operator example

C#:

int bankAccount = 0; 
string accountString = bankAccount == 0 ? "checking" : "savings";

VB:

Dim accountString As String = 
    IIf(bankAccount = 0, "checking", "saving")

The conditional part of this operator evaluates if bankAccount is equal to 0 or not 
when the program runs (commonly known as “at runtime”). Whenever the condition is 
true, the first expression, the one following the question mark for C# or following the 
comma for VB, “checking” in this case, will be returned. Otherwise, if the condition 
evaluates to false, the second expression, following the colon for C# or after the second 
comma for VB, will be returned. That returned value, either the string “checking” or 
“savings” in this case, is assigned to the accountString variable that was declared.

NOTE
In earlier versions of the VB programming language, you were required to place an 
underline at the end of a statement that continued to the next line. In the latest version 
of VB, line continuations are optional. If you’ve programmed in VB before, the missing 
statement continuation underline might have caught your attention, but it is now 
perfectly legal.

Enums
An enum allows you to specify a set of values that are easy to read in code. The example 
I’ll use is to create an enum that lists types of bank accounts, such as checking, savings, 
and loan. To create an enum, open a new file by right-clicking the project, select Add | 
New Item | Code File, call the file BankAccounts.cs (or BankAccounts.vb), and you’ll 
have a blank file. Type the enum in Listing 2-3.



 56 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 2-3  An example of an enum

C#:

public enum BankAccount 
{ 
    Checking, 
    Saving, 
    Loan 
}

VB:

Enum BankAccount 
    Checking 
    Saving 
    Loan 
End Enum

Listing 2-4 shows how you can use the BankAccount enum:

Listing 2-4  Using an enum

C#:

BankAccount accountType = BankAccount.Checking; 
 
string message = 
    accountType == BankAccount.Checking ? 
        "Bank Account is Checking" : 
        "Bank Account is Saving";

VB:

Dim accountType As BankAccount = BankAccount.Checking 
 
Dim message = 
    IIf(accountType = BankAccount.Checking, 
        "Bank Account is Checking", 
        "Bank Account is Saving")



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 57

The accountType enum variable is a BankAccount and is initialized to have the value 
of the Checking member of BankAccount. The next statement uses a ternary operator 
to check the value of accountType, evaluating whether it is Checking. If so, message is 
assigned with the first string. Otherwise, message is assigned with the second string. Of 
course, we know it’s the first string because the example is so simple that you can see it is 
coded that way.

Branching Statements
A branching statement allows you to take one path of many, depending on a condition. 
For example, consider the case for giving a customer a discount based on whether that 
customer is a preferred customer. The condition is whether the customer is preferred or 
not, and the paths are to give a discount or charge the entire price. Two primary types of 
branching statements are if and switch (Select Case in VB). The following sections show 
you how to branch your logic using if and switch statements.

Expressions
If statements allow you to perform an action only if the specified condition evaluates to 
true at runtime. Here’s an example that prints a statement to the console if the contents of 
variable result is greater than 48 using the > (greater than) operator:

C#:

if (result > 48) 
{ 
    Console.WriteLine("result is > 48"); 
}

VB:

If result > 48 Then 
    Console.WriteLine("Result is > 48") 
End If

C# curly braces are optional if you only have one statement to run after the if when 
the condition evaluates to true, but the curly braces are required when you want two or 
more statements to run (also known as “to execute”) should the condition be true. The 
condition must evaluate to either a Boolean true or false. Additionally, you can have an 
else clause that executes when the if condition is false. A clause is just another way to 
say that an item is a part of another statement. The else keyword isn’t used as a statement 



 58 Microsoft Visual Studio 2010: A Beginner’s Guide

itself, so we call it a clause because it can be part of an if statement. An example of an 
else clause is shown here:

C#:

if (result > 48) 
{ 
    Console.WriteLine("result is > 48"); 
} 
else 
{ 
    Console.WriteLine("result is <= 48"); 
}

VB:

If result > 48 Then 
    Console.WriteLine("Result is > 48") 
Else 
    Console.WriteLine("Result is <= 48") 
End If

As the preceding example shows, if result is not greater than 48, then it must be less 
than or equal to 48.

if and else Snippets
The if snippet creates a template for you to build an if statement. To use the if snippet, type 
if and press TAB, TAB; you’ll see the template in Figure 2-11 for C# or Figure 2-12 for VB.

Figure 2-11 The C# if statement snippet template

Figure 2-12 The VB if statement snippet template



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 59

As shown in Figure 2-11, the template brings you to a highlighted field for specifying 
the condition of the if statement. For C#, type the condition you want evaluated and press 
ENTER; the snippet completes by placing your carat within the if statement block. For VB, 
just place your cursor where you want to begin typing next.

In C#, the else statement snippet is similar to if. Type else and press TAB, TAB—the 
else template appears with the carat between the blocks of the else. There isn’t a VB else 
snippet; just type Else between the last statement of the If and the End If.

Switch/Select Statements
A switch statement (Select Case statement for VB) tells the computer to evaluate one or 
many conditions and branch appropriately. Here’s an example that will perform different 
actions depending on the value of a name variable:

C#:

var name = "Megan"; 
 
switch (name) 
{ 
    case "Joe": 
        Console.WriteLine("Name is Joe"); 
        break; 
    case "Megan": 
        Console.WriteLine("Name is Megan"); 
        break; 
    default: 
        Console.WriteLine("Unknown Name"); 
        break; 
}

VB:

Dim name As String = "Megan" 
 
Select Case name 
    Case "Joe" 
        Console.WriteLine("Name is Joe") 
    Case "Megan" 
        Console.WriteLine("Name is Megan") 
    Case Else 
        Console.WriteLine("Unknown name") 
End Select

In the C# example, you can see the keyword switch with the value being evaluated 
in parentheses. The code to execute will be based on which case statement matches the 
switch value. The default case executes when there isn’t a match. The break keyword 



 60 Microsoft Visual Studio 2010: A Beginner’s Guide

is required. When the program executes a break statement, it stops executing the switch 
statement and begins executing the next statement after the last curly brace of the switch 
statement.

For the VB example, the Select Case statement uses name as the condition and 
executes code based on which case matches name. The Case Else code block will run if 
no other cases match.

Switch Statement Snippets
There are two scenarios for switch statement snippets: a minimal switch statement and an 
expanded switch with enum cases. First, try the minimal switch statement by typing sw 
and pressing TAB, TAB, resulting in the switch statement in Figure 2-13.

You would replace the switch_on in Figure 2-13 with a value you want to use in the 
switch statement. After pressing ENTER, you’ll see the snippet expand to a switch statement 
with a default case, as follows:

switch (name) 
{ 
    default: 
        break; 
}

VB Select statements work similar to the C# switch; type Se and press TAB, TAB; you’ll 
see the VB template shown in Figure 2-14.

Figure 2-13 A switch snippet template

Figure 2-14 The Select Case snippet template



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 61

In C#, you normally just add the case statements you need. However, there is a special 
feature of the switch snippet that makes it even more efficient to use enums, creating a 
case for each enum value automatically. In the following example, we use the accountType 
variable of the enum type BankAccount from Listing 2-3. To see how the switch statement 
works with enums, type sw and press TAB, TAB ; you’ll see the switch template with the 
condition field highlighted. Type accountType in the field and press ENTER. The switch 
snippet will automatically generate cases for each of the BankAccount enum members  
as follows:

switch (accountType) 
{ 
    case BankAccount.Checking: 
        break; 
    case BankAccount.Saving: 
        break; 
    case BankAccount.Loan: 
        break; 
    default: 
        break; 
}

The enum comes through as a convenience that is easy to read and minimizes potential 
spelling mistakes when using strings. Now that you know how branching statements work, 
let’s move on to loops.

Loops
You can perform four different types of loops: for, for each, while, and do. The following 
sections explain how loops work.

For Loops
For loops allow you to specify the number of times to execute a block of statements. 
Here’s an example:

C#:

for (int i = 0; i < 3; i++) 
{ 
    Console.WriteLine("i = " + i); 
}

VB:

For i As Integer = 0 To 2 
    Console.WriteLine("i = " & i) 
Next



 62 Microsoft Visual Studio 2010: A Beginner’s Guide

In the preceding C# loop, i is a variable of type int, the loop will continue to execute 
as long as i is less than 3, and i will be incremented by one every time after the loop 
executes. The condition, i < 3, is evaluated before the loop executes, and the loop will not 
execute if the condition evaluates to false. 

The VB For loop initializes i as an integer, iterating (repeating) three times from  
0 to 2, inclusive.

The for Loop Snippet
To use the C# for loop snippet, type fo and press TAB, TAB; you’ll see the snippet template 
in Figure 2-15.

NOTE
The + and & operators from the preceding code example perform string concatenation. 
Although i is an integer, it will be converted to a string prior to concatenation.

The same key sequence (fo, TAB, TAB) works for VB For loop snippets too, except that 
you’ll see the snippet template in Figure 2-16.

The C# for loop snippet template is different from previous templates in that you 
have two fields to fill out. First, name your indexer, which defaults to i, and then press 
TAB, which moves the focus to the loop size field, containing Length as the placeholder. 
If you like the variable name i, which is an understood convention, just press the TAB 
key and set the length of the loop. You’ll end up with a for loop and the carat inside  
of the block.

For Each Loops
For each loops let you execute a block of code on every value of an array or collection. 
Arrays store objects in memory as a list. Collections are more sophisticated than arrays 

Figure 2-15 The C# for loop snippet template

Figure 2-16 The VB For loop snippet template



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 63

and hold objects in memory in different forms, which could be Stack, List, Queue, and 
more. Here’s an example that loops on an array of strings:

C#:

string[] people = { "Megan", "Joe", "Silvia" }; 
 
foreach (var person in people) 
{ 
    Console.WriteLine(person); 
}

VB:

Dim people = {"Megan", "Joe", "Silvia"} 
 
For Each person As String In people 
    Console.WriteLine(person) 
Next

In this example, people is an array of strings that contains three specific strings of 
text. The block of the loop will execute three times, once for each item in the array. Each 
iteration through the loop assigns the current name to person.

The For Each Loop Snippet
To add code using a for each snippet in C#, type fore and press TAB, TAB, which results in 
the snippet template shown in Figure 2-17.

The for each loop snippet gives you three fields to complete. The var is an implicit 
type specifier that allows you to avoid specifying the type of item; the compiler figures 
that out for you, saving you from some keystrokes. The item field will be a collection 
element type. You may leave var as is or provide an explicit type, which would be string 
in this case. You can tab through the fields to add meaningful identifiers for the item and 
collection you need to iterate through.

To execute the VB For Each snippet, type ?, TAB, C, ENTER, C, ENTER, f, ENTER and 
you’ll see the For Each loop template shown in Figure 2-18.

Figure 2-17 The C# for each loop snippet template



 64 Microsoft Visual Studio 2010: A Beginner’s Guide

While Loops
A while loop will allow a block of code to execute as long as a specified condition is true. 
Here’s an example that does a countdown of numbers:

C#:

int count = 3; 
 
while (count > 0) 
{ 
    Console.WriteLine("count: " + count); 
    count--; 
}

VB:

Dim count As Integer = 3 
 
While count > 0 
    Console.WriteLine("count: " & count) 
    count -= 1 
End While

The while loop executes as long as count is greater than 0. Since count is 3 and will 
decrement by one each time through the loop, the value will change from 3 to 2 to 1 and 
then the loop won’t execute anymore. Be careful not to create endless loops.

The while Loop Snippet
To create a while loop snippet, type wh and press TAB, TAB; and you’ll see the snippet 
template in Figure 2-19 (C#) or Figure 2-20 (VB).

For C#, filling in the condition and pressing ENTER places the carat inside the while 
loop block.

Figure 2-18 The VB For Each loop snippet template

Figure 2-19 The C# while loop snippet template



 Chapter 2: Learning Just Enough C# or VB.NET: Basic Syntax 65

Do Loops
You can use a do loop if you want the code in the loop to execute at least one time. Here’s 
an example that demonstrates a simple menu that obtains user input:

C#:

string response = ""; 
 
do 
{ 
    Console.Write("Press 'Q' and Enter to break: "); 
    response = Console.ReadLine(); 
} while (response != "Q");

VB:

Do 
    Console.Write("Press Q and Enter to break: ") 
    response = Console.ReadLine() 
Loop While response <> "Q"

In this example, you’ll always get the prompt for Press ‘Q’ and Enter to break:. The 
Console.ReadLine reads the user input, which is of type string. If the input is a string that 
contains only a capital Q, the loop will end.

VB has another variation of loops that use the Until keyword, as follows:

Do 
    Console.Write("Press Q and Enter to break: ") 
    response = Console.ReadLine() 
Loop Until response = "Q"

In this code, you can see that the Until condition will continue looping while the 
condition is not true, which is opposite of the Do Loop While.

The Do Loop Snippet
To use the do loop snippet, type do and press TAB, TAB; you’ll see the do loop template 
shown in Figure 2-21.

Figure 2-20 The VB while loop snippet template

Figure 2-21 The C# do loop snippet template



 66 Microsoft Visual Studio 2010: A Beginner’s Guide

Fill in the condition on the do loop and press ENTER, placing the carat in the  
do loop block.

For a VB Do snippet type ?, TAB, C, ENTER, C, ENTER, and use an arrow key to select 
the variant of Do loop that you want. Figure 2-22 shows an example of the Do Loop 
While template.

Summary
Working with languages is a core skill when building .NET applications. Two of the most 
used languages in .NET are C# and VB, which is why this chapter is dedicated to those 
two languages. You learned about types, expressions, statements, code blocks, conditions, 
and branching. Additionally, you learned some of the essential features of VS for writing 
code, such as the code editor, bookmarks, Intellisense, and snippets.

Chapter 3 takes you to the next step in your language journey, teaching you about 
classes and the various members you can code as part of classes.

Figure 2-22 The VB do loop while snippet template



67

Chapter 3
Learning Just Enough 
C# and VB.NET:  
Types and Members



 68 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Create Classes

● Write Methods

● Code Fields and Properties

A type is a general term for classes, modules, enums, and more. This chapter will  
 specifically discuss the class type, which allows you to create your own custom types. 

You’ll also see the value of a class when you learn about class members. You’ll see how 
the field, method, and property class members can be used. We’ll start with learning how 
to create and use classes.

Creating Classes
Previously, you learned about the primitive types, which are built into languages and alias 
the underlying .NET types. You can also create your own types, via classes, which you 
can instantiate and create objects with. The following section explains how to create  
a class and then instantiate an object from it.

Class Syntax
To create a new custom class definition, right-click the project, select Add | Class, name 
the class Employee for this example, and type the file extension .cs for C# or .vb for VB; 
then click Add (VS will add this file extension for you if you don’t). You’ll see a file with 
the same code as Listing 3-1.

Listing 3-1  A new Employee class

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 69

{ 
    public class Employee 
    { 
        public string FirstName; 
    } 
}

VB:

Public Class Employee 
 Public Dim FirstName As String 
End Class

The C# Employee class is nearly the same as the Program class that you created in the 
preceding chapter, except that the class name here is Employee. In VB, you’ve only created 
a module before, and the Employee class is your first class for this book. You can add 
members to a class, which could be events, fields, methods, and properties. Listing 3-1 shows 
an example of a field, FirstName, and you’ll learn about events, methods, and properties in 
later sections of this chapter. A field is a variable in a class that holds information specific to 
that class.

Listing 3-2 shows how to instantiate an object of type Employee, which is your new 
custom type, and use it. You would put this code inside of Main or another method. You’ll 
learn more about methods in the later section “Writing Methods.”

Listing 3-2  Code that uses a class

C#:

Employee emp = new Employee(); 
emp.FirstName = "Joe";

VB:

Dim emp As New Employee 
emp.FirstName = "Joe"

In Listing 3-2, you can see that emp is a variable declared as type Employee. The C# 
new Employee() or VB New Employee clause creates a new instance of Employee, and you 
can see that this new instance is being assigned to emp. With that new instance, via the emp 
variable, you can access the Employee object, including its instance members. In Listing 3-2, 
the FirstName field of that particular instance of Employee is assigned a string value of "Joe". 
Here you see that an object can contain data.



 70 Microsoft Visual Studio 2010: A Beginner’s Guide

Now that you can define a new class, create an instance from that class, and use it, the 
next section shows you another feature of classes called inheritance.

Class Inheritance
One class can reuse the members of another through a feature known as inheritance. In 
programming terms, we say a child class can derive from a parent class and that child 
class will inherit members (such as fields and methods) of the parent class that the parent 
class allows to be inherited. The following example will create a Cashier class that 
derives from the Employee class. To create this class, right-click the project, select Add | 
Class, and name the class Cashier. Listing 3-3 shows the new class and modifications for 
implementing inheritance.

Listing 3-3  Class inheritance

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    public class Cashier : Employee 
    { 
    } 
}

VB:

Public Class Cashier 
    Inherits Employee 
 
End Class

The C# inheritance relationship is indicated by the colon after the Cashier identifier, 
followed by the class being derived from, Employee. In VB, you write the keyword 
Inherits, on a new line, followed by the class being derived from. Essentially, this means 
that Cashier has all of the same members as Employee. Listing 3-4 demonstrates the 
benefits of inheritance.



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 71

Listing 3-4  Code using inheritance

C#:

Cashier cashr = new Cashier(); 
cashr.FirstName = "May";

VB:

Dim cashr As New Cashier 
cashr.FirstName = "May"

According to Listing 3-4, Cashier does not have a field named FirstName. However, 
Employee does have a FirstName field and Cashier derives from Employee. Because 
of inheritance, Cashier automatically inherits FirstName, and the code in Listing 3-4 is 
perfectly legal. Inheritance can be thought of as specialization in the sense that, in this 
example, Cashier is a specialized kind of Employee. To take advantage of this specialization, 
you could add a new field to your new Cashier class called “assignedCashRegister” where 
now, not only does the Cashier class have the fields and methods of Employee, it is able to 
hold the value for a specific cash register name or number. An instance of the Employee 
class would not be able to contain this information. The .NET Framework uses inheritance 
extensively to offer you reusable class libraries.

TIP
You can often use the phrase “is a” to describe the relationship between inherited 
classes when starting from the child class. For example, you can say “Cashier is an 
Employee.” If you apply this phrase technique to your software design and the sentence 
sounds logically correct, then you’ve probably used inheritance correctly.

The class Snippet
C# has a class snippet, but VB doesn’t. Before using the class snippet, create a new class 
file by right-clicking the project, select Add | New Item | Code File, and name the file 
Manager. You’ll now have a blank file to work with. To use the class snippet, type cl and 
press TAB, TAB; and you’ll see the snippet template in Figure 3-1.

Figure 3-1 The C# class snippet template



 72 Microsoft Visual Studio 2010: A Beginner’s Guide

Just type in the class name in the field and press ENTER. The carat will locate to the 
inside of the class block. Now that you know how to create classes, you’ll need to know 
how to add members, starting with methods.

Writing Methods
You can divide your algorithms into blocks of code called methods. In different programming 
languages, methods are called functions, procedures, or subroutines. I’ll use the term method 
as a generic term, except when I need to be more specific. You’ve already used methods 
when coding Console.WriteLine, where WriteLine is a method of the Console class. A 
method contains one or more statements. Reasons for creating methods include the ability to 
modularize your code, isolate complex operations in one place, or group a common operation 
that can be reused in multiple places. The following sections show you how to declare and 
use methods.

Declaring and Using a Method
To start off, I’ll show you a very simple method so that you can see the syntax and 
understand the program flow. Listing 3-5 will move the Console.Writeline statement from 
the Main method discussed in Chapter 2 into a new containing method and then add a 
statement to the Main method that calls the new method.

Listing 3-5  Declaring and calling a method

C# (Program.cs)

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            MessagePrinter msgPrint = new MessagePrinter(); 
            msgPrint.PrintMessageInstance(); 
        } 
}



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 73

C#: (MessagePrinter.cs)

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class MessagePrinter 
    { 
        public static void PrintMessageStatic() 
        { 
            Console.WriteLine("Hello from a static method."); 
        } 
 
        public void PrintMessageInstance() 
        { 
            Console.WriteLine("Hello from an instance method."); 
        } 
    } 
}

VB (Module1.vb):

Module Module1 
    Sub Main() 
        MessagePrinter.PrintMessageShared() 
 
        Dim msgPrint As New MessagePrinter() 
        msgPrinter.PrintMessageInstance() 
    End Sub 
End Module

VB (MessagePrinter.vb)

Public Class MessagePrinter 
    Public Shared Sub PrintMessageShared() 
        Console.WriteLine("Hello from a shared method.") 
    End Sub 
 
    Public Sub PrintMessageInstance() 
        Console.WriteLine("Hello from an instance method.") 
    End Sub 
End Class



 74 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 3-5 has two types of methods, static and instance. In VB, shared methods are 
the same as static. You can tell which type of method each is because static methods have 
the static modifier (shared in VB), but instance methods don’t have a static (or shared in 
VB) modifier. First, let’s look at the static (shared) method declaration, and then you’ll see 
how it’s called.

The static (shared in VB) method, PrintMessageStatic (PrintMessageShared in VB) 
has a public access modifier, which means that any other code using the containing class, 
MessagePrinter, will be able to see the method. If you didn’t include the public access 
modifier, the method would automatically default to being private and only other code 
residing within the MessagePrinter class would be able to use that method.

PrintMessageStatic has a void keyword, meaning that this method does not return a 
value. In VB, you indicate that a method does not return a value by making it a Sub, as 
was done in Listing 3-5. Later, you’ll learn how to create a method that does return values 
to its calling code that invokes this method. The empty parameter list appended to the 
PrintMessageStatic (PrintMessageShared in VB) means that there are not any parameters 
for this method. Parameters allow callers to pass information to the method; a subject 
we’ll discuss soon.

Within the method block, you can see that there is a Console.WriteLine statement. 
You can add as many statements as you need for the purpose of the method. Next, we’ll 
examine how PrintMessageStatic (PrintMessageShared in VB) is called, which the 
following code repeats from Listing 3-5:

C#:

Program.PrintMessageStatic();

VB:

MessagePrinter.PrintMessageShared()

Viewing the preceding example, which shows a statement inside of the Main method, 
you can see the call to Program.PrintMessageStatic (PrintMessageShared in VB). 
Notice that the class (aka type) that contains all the methods is named MessagePrinter. 
In C#, a static method is called through its containing type, which is why you call 
PrintMessageStatic with the Program prefix. In VB, you can invoke shared methods 
through either the method’s type or an instance of that type. We discuss instance 
methods next.

The next method, PrintMessageInstance, is an instance method; it has no static 
modifier. The rest of the method definition mirrors that of the PrintMessageStatic method. 



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 75

Since PrintMethodInstance is an instance method, you call it differently; through an 
instance of its containing type, which the following code repeats from Listing 3-5:

C#:

MessagePrinter msgPrint = new MessagePrinter(); 
msgPrint.PrintMessageInstance();

VB:

Dim msgPrint As New MessagePrinter() 
msgPrinter.PrintMessageInstance()

As this example shows, the type of msgPrint is MessagePrinter. Using the statement new 
MessagePrinter creates a new instance of MessagePrinter at runtime, which is assigned to the 
msgPrint variable. Now that you’ve created an instance of a MessagePrinter and msgPrint 
has a reference to that instance, you can call the instance method, PrintMessageInstance, via 
the msgPrint variable. Next, let’s look at how to add parameters to a method and discuss why 
that’s important.

Declaring Parameters and Passing Arguments
Passing parameters to a method is a great way to make code more reusable. For example, 
what if you had a method that printed a report containing the names of all customers? It 
wouldn’t make sense to create one method for each customer, especially when the list 
changes all the time. Listing 3-6 shows a method that takes a list of customers and prints  
a report with customer names.

Listing 3-6  Declaring a method that takes parameters

C# (Program.cs):

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Program 
    { 
        static void Main(string[] args) 



 76 Microsoft Visual Studio 2010: A Beginner’s Guide

        { 
            MessagePrinter msgPrint = new MessagePrinter(); 
 
            string[] customerNames = { "Jones", "Smith", "Mayo" }; 
            string reportTitle = "Important Customer Report"; 
 
            msgPrint.PrintCustomerReport(customerNames, reportTitle); 
        } 
}

C# (MessagePrinter.cs):

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
        public void PrintCustomerReport( 
            string[] customers, string title = "Customer Report") 
        { 
            Console.WriteLine(title); 
            Console.WriteLine(); 
 
            foreach (var name in customers) 
            { 
                Console.WriteLine(name); 
            } 
        } 
    } 
}

VB (Module1.vb):

Module Module1 
    Sub Main() 
        Dim msgPrint As New MessagePrinter() 
 
        Dim customerNames = {"Jones", "Smith", "Mayo"} 
        Dim reportTitle As String = "Important Customer Report" 
 
        msgPrint.PrintCustomerReport(customerNames, reportTitle) 
    End Sub 
End Module



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 77

VB (MessagePrinter.vb):

Public Class MessagePrinter 
    Sub PrintCustomerReport(ByVal customers As String(), ByVal title 
As String) 
        Console.WriteLine(title) 
        Console.WriteLine() 
 
        For Each name In customers 
            Console.WriteLine(name) 
        Next 
    End Sub 
End Class

Parameters are a comma-separated list of identifiers, along with the type of each 
identifier, which clearly indicates what type of parameter the method is expecting. In 
Listing 3-6, the PrintCustomerReport method has two parameters: title of type string and 
customers of type string array. The method displays the title in the console window when 
you run the program, displays a blank line, and then iterates through the list, displaying 
each customer name to the console.

You can see how the Main method creates a new instance of MessagePrinter, 
which msgPrint points to, and then calls PrintCustomerReport using msgPrint. The 
arguments being passed, reportTitle and customerNames, match the position and types 
of the parameters for PrintCustomerReport, which are of the correct types that the 
PrintCustomerReport method is expecting.

In the preceding example, the calling code must provide arguments, actual data, 
for all parameters. However, you can specify parameters as being optional, allowing 
you to omit arguments for the optional parameters if you like. Here’s a modification to 
PrintCustomerReport where the title becomes an optional parameter:

C#:

public void PrintCustomerReport( 
    string[] customers, string title = "Customer Report") 
{ 
    Console.WriteLine(title); 
    Console.WriteLine(); 
 
    foreach (var name in customers) 
    { 
        Console.WriteLine(name); 
    } 
}



 78 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Sub PrintCustomerReport( 
    ByVal customers As String(), 
    Optional ByVal title As String = "Customer Report") 
 
    Console.WriteLine(title) 
    Console.WriteLine() 
 
    For Each name In customers 
        Console.WriteLine(name) 
    Next 
End Sub

The preceding code requires callers to pass an array of customers, but it does not 
require a title. When writing methods, optional parameters must be listed last. Here’s  
a method call without the optional parameter:

C#:

custProg.PrintCustomerReport(customerNames);

VB:

msgPrint.PrintCustomerReport(customerNames)

Because the caller didn’t pass an argument for title, the value of title inside of 
PrintCustomerReport becomes the default value assigned to the title parameter.

In addition to passing arguments to methods, you can receive values returned from 
methods.

Returning Data and Using Method Results
It is common to call methods that return values. To demonstrate the proper syntax, 
Listing 3-7 contains a method that accepts an int and returns the squared value of 
that int. Calling code then assigns the return value from the method to a variable and 
displays the value on the console window. Create a new class named Calc.cs or Calc.
vb to hold the new method.

Listing 3-7  Returning values from methods

C# (Program.cs):

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 79

namespace FirstProgram 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Calc mathProg = new Calc(); 
 
            int squaredInt = mathProg.SquareInt(3); 
            Console.WriteLine("3 squared is " + squaredInt); 
 
            Console.ReadKey(); 
        } 
    } 
}

C# (Calc.cs):

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    public class Calc 
    { 
        public int SquareInt(int number) 
        { 
            return number * number; 
        } 
    } 
}

VB (Module1.vb):

Module Module1 
 
    Sub Main() 
        Dim mathProg As New Calc() 
        Dim squaredInt As Integer = mathProg.SquareInt(3) 
        Console.WriteLine("3 squared is " & squaredInt) 
    End Sub 
End Module



 80 Microsoft Visual Studio 2010: A Beginner’s Guide

VB (Calc.vb):

Public Class Calc 
    Public Function SquareInt(ByVal number As Integer) As Integer 
        Return number * number 
    End Function 
End Class

For the C# example, notice how the return type of the SquareInt method is type int, 
rather than the keyword void that was used in our methods before. Whenever you specify 
a return type, the method must return something whose type is the same as the return 
type declared. In the preceding example, the return type is declared as int; therefore, the 
method guarantees that the result of the calculation is type int. The Main method has  
a couple of statements that invoke this method and display the results to the console.

In the VB example, the method is now a Function. Sub methods don’t return values. 
Notice how the function signature appends As Integer after the parameter list, which 
indicates that the return type of the function is Integer.

Method Snippets
C# doesn’t have snippets for writing methods (although you could create your own 
snippets), but VB does. In VB, type Sub, TAB, TAB; producing the template shown in 
Figure 3-2; or Fun, TAB, TAB; producing the template shown in Figure 3-3.

Figure 3-2 The VB sub snippet template

Figure 3-3 The VB function snippet template



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 81

Coding Fields and Properties
A field is a variable that is a member of a class (type), as opposed to variables that are 
declared inside of methods, which are called local variables or locally scoped variables. 
Properties are type members that give you functionality that is a cross between fields and 
methods. You can read and write to a property just as you can to a field. Additionally, 
you can define code that runs whenever you read to or write from a property, similar to 
methods. The following sections define fields and properties.

Declaring and Using Fields
As stated, a field is a variable that is a member of a class (or some other container, such 
as a struct, which is very similar to a class). This provides the benefit of having the 
field and the data it contains available to all of the other members of the class (as well 
as to any deriving classes, via inheritance, depending on the field’s access modifier). To 
demonstrate how a field is declared and used, the example in Listing 3-8 simulates a bank 
account that has a field of type decimal named currentBalance, which holds an account 
balance. The class has two methods: Credit and Debit. Credit increases the value of 
currentBalance, and Debit decreases the value of currentBalance.

Listing 3-8  Using fields and properties

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Program 
    { 
        private decimal accountBalance = 100m; 
 
        static void Main(string[] args) 
        { 
            Program account = new Program(); 
            account.Credit(100m); 
            account.Debit(50m); 
            Console.WriteLine("Balance: " + account.CurrentBalance); 
 
            Console.ReadKey(); 
        } 
 



 82 Microsoft Visual Studio 2010: A Beginner’s Guide

        public void Credit(decimal amount) 
        { 
            accountBalance += amount; 
        } 
 
        public void Debit(decimal amount) 
        { 
            accountBalance -= amount; 
        } 
 
        public decimal CurrentBalance 
        { 
            get 
            { 
                return accountBalance; 
            } 
            set 
            { 
                if (value < 0) 
                { 
                    // charge fee 
                } 
                accountBalance = value; 
            } 
        } 
    } 
}

VB:

Module Module1 
Private Dim accountBalance As Decimal = 100 
    Sub Main()        Credit(100) 
        Debit(50) 
        Console.WriteLine("Balance: " & CurrentBalance) 
 
        Console.ReadKey() 
    End Sub 
 
    Sub Credit(ByVal amount As Decimal) 
        accountBalance += amount 
    End Sub 
 
    Sub Debit(ByVal amount As Decimal) 
        accountBalance -= amount 
    End Sub 
 



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 83

    Public Property CurrentBalance() As Decimal 
        Get 
            Return accountBalance 
        End Get 
        Set(ByVal value As Decimal) 
 
            If value < 0 Then 
                ' charge fee 
            End If 
 
            accountBalance = value 
        End Set 
    End Property 
End Module

Look at where accountBalance is declared: at the beginning of the Program (Module1 
in VB) class block. It is at the same scope as Main and other methods, meaning that it is a 
member of Program (Module1 in VB), just like Main, Credit, and Debit. When variables 
like accountBalance are declared as class members, as opposed to local variables that 
are declared inside of method blocks, they are called fields. The accountBalance is type 
decimal, which is a good choice for holding financial values.

The accountBalance field has a private modifier, which means that it can only be used by 
members of the same class. The implementations of Credit and Debit, respectively, increase 
and decrease the value of accountBalance. Since Credit and Debit are members of the same 
class as accountBalance, they’re allowed to read from and write to accountBalance.

Main invokes Credit and Debit to change the value of the accountBalance field. 
Additionally, Main displays the value of accountBalance in the console window through 
a property named CurrentBalance. The next section explains how the CurrentBalance 
property works.

Declaring and Using Properties
Properties are class members that you use just like a field, but the difference is that you 
can add specialized logic when reading from or writing to a property. Listing 3-8 contains 
an example of a property, CurrentBalance, repeated as follows for your convenience:

C#:

public decimal CurrentBalance 
{ 
    get 
    { 
        return accountBalance; 
    } 



 84 Microsoft Visual Studio 2010: A Beginner’s Guide

    set 
    { 
        if (value < 0) 
        { 
            // charge fee 
        } 
        accountBalance = value; 
    }

VB:

Public Property CurrentBalance() As Decimal 
    Get 
        Return accountBalance 
    End Get 
    Set(ByVal value As Decimal) 
 
        If value < 0 Then 
            ' charge fee 
        End If 
 
        accountBalance = value 
    End Set 
End Property

Properties have accessors, named get and set, that allow you to add special logic 
when the property is used. When you read from a property, only the get accessor code 
executes, and the set accessor code only executes when you assign a value to a property. 
In the preceding example, the get accessor returns the value of currentBalance with no 
modifications. If there were some logic to apply, like calculating interest in addition to the 
current balance, the get accessor might have contained the logic for that calculation prior 
to returning the value. The set accessor does have logic that checks the value to see if it is 
less than zero, which could happen if a customer overdrew his or her account. If the value 
is less than zero, then you could implement logic to charge the customer a fee for the 
overdraft. The value keyword contains the value being assigned to the property, and the 
previous set accessor assigns value to the accountBalance field. The following statement 
from the Main method in Listing 3-8 reads from CurrentBalance, effectively executing the 
get accessor, which returns the value of currentBalance:

C#:

Console.WriteLine("Balance: " + account.CurrentBalance);

VB:

Console.WriteLine("Balance: " & CurrentBalance)



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 85

Since the CurrentBalance property returns the value of the accountBalance field, 
the Console.WriteLine statement will print the value read from CurrentBalance to the 
command line.

Many of the properties you’ll write will simply be wrappers around current object 
state with no other logic, as in Listing 3-9.

Listing 3-9  Property that wraps object state with no logic

C#:

private string m_firstName; 
 
public string FirstName 
{ 
    get 
    { 
        return m_firstName; 
    } 
    set 
    { 
        m_firstName = value; 
    } 
}

VB:

Private m_firstName As String 
Public Property FirstName() As String 
    Get 
        Return m_firstName 
    End Get 
    Set(ByVal value As String) 
        m_firstName = value 
    End Set 
End Property

In Listing 3-9, you can see that m_firstName, commonly referred to as a backing 
field, is a private variable and that the FirstName property only returns m_firstName 
from the get accessor and assigns the value to m_firstName in the set accessor. Since 
this is so common, you can save syntax by using an automatic property, as shown in 
Listing 3-10.



 86 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 3-10  Auto-implemented properties

C#:

public string FirstName { get; set; }

VB:

Public Property FirstName As String

The automatic property, FirstName, is logically equivalent to the expanded FirstName 
with accessors and backing field. Behind the scenes, the compiler produces the expanded 
version where the backing field is guaranteed to have a unique name to avoid conflicts. 
Do not overlook that when you use automatic properties, you cannot add your own code 
that runs inside the get or set accessors.

The Property Snippet
To create a property snippet, type pro and press TAB, TAB; and you’ll see the property 
snippet template shown in Figure 3-4 for C# or Figure 3-5 for VB.

A C# property snippet template creates an automatic property by default, but the VB 
snippet template is a normal property with full get and set accessors.

Figure 3-5 The VB property snippet template

Figure 3-4 The C# property snippet template



 Chapter 3: Learning Just Enough C# and VB.NET: Types and Members 87

Summary
You are now able to create classes to define your own custom types. After learning how 
to create classes and use class instances, also known as objects, you learned how to add 
fields, methods, and properties to your class definition. The methods discussion was more 
in-depth, showing you how to define parameters and return values. You also learned how 
to define both auto-implemented and normal properties, and you learned a little about 
class inheritance.

The next chapter moves you up a level in language skills by showing you how to 
create another type, called an interface. You’ll also learn how to add another type of class 
member, events.



This page intentionally left blank 



89

Chapter 4
Learning Just Enough 
C# and VB.NET: 
Intermediate Syntax



 90 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Use Delegates and Events

● Implement Interfaces

● Code with Arrays and Generics

In previous chapters, you learned basic syntax and how to create your own types. This 
chapter rounds out the bare essentials of what you need to know with delegates and 
events, interfaces, and a quick introduction to arrays and generics. This material doesn’t 
attempt to be too advanced, but gives you enough information to understand the language 
concepts involved. You’ll see all of these language features being used throughout the 
book, and it’s good to have some background on what they mean. Let’s start off with 
delegates and events.

Understanding Delegates and Events
Sometimes you need to write flexible code that performs general operations. For example, 
when the designers of the .NET Framework created user interfaces, they added reusable 
controls, such as buttons, list boxes, and grids. When writing these controls, the framework 
designers didn’t know how we would use them. For example, how would anyone know 
what we wanted our code to do when a user clicks a button on the user interface? So, these 
controls have interaction points built in so that they can communicate with your program; 
these interaction points are called events. These events fire whenever a user performs an 
action such as a button click or a list box selection. We write code to hook up these events 
to some other code in our program that we want to run when that event happens, such as 
when the user clicks a button, and this is what delegates are used for.

An event defines the type of notifications that a object can provide, and a delegate 
allows us to connect the event to the code we want to run.

This section will show you the mechanics of how delegates and events work, but you 
should understand that the mechanics may seem somewhat abstract at first. Delegates and 
events are most often used when you’re working with .NET Framework technologies that 
use them, such as Windows Presentation Foundation (WPF), Silverlight, and ASP.NET. 
What you’ll want to do is get a feel for the mechanics right now and then refer back to this 
discussion when you encounter delegates and events in later chapters.



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 91

The next section will add more logic to the set accessor in CurrentBalance in the next 
listing and raise an event for the calling code.

Events
An event is a type of class member that allows your class or class instance to notify any other 
code about things that happen within that class. To help you understand the use of events, 
this section will associate an event with the accountBalance of an account. Listing 4-1 is a 
modified version of Listing 3-8 from Chapter 3. It additionally has an event and logic that 
raises the event.

To see how an event can be useful, consider a program that uses a class that manages 
accounts. There could be different types of accounts, such as checking or savings. If a 
customer performs an overdraft, the consequences probably vary by what type of account 
is being used. However, all you want is a generalized account class that can be used by 
any bank account type and doesn’t know what the overdraft rules are, which makes the 
class more reusable in different scenarios. Therefore, you can give the account class an 
event that will fire off a notification whenever an overdraft occurs. Then, within your 
specialized checking account class instance, for example, you can register something 
called an event handler so that the instance of the class knows each time the overdraft 
event occurs via the handler.

In Listing 4-1, the CurrentBalance property is modified to raise (or fire off) an 
OverDraft event whenever the assigned value is less than 0. The Main method hooks up 
another method that will run whenever that event occurs. I’ll explain the event first and 
then follow up with a discussion of how to hook up a method that listens for when the 
event is raised and receives the message sent by the event.

Listing 4-1  Event demo

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Program 
    { 
        private decimal accountBalance = 100m; 
 
        static void Main(string[] args) 



 92 Microsoft Visual Studio 2010: A Beginner’s Guide

        { 
            Program account = new Program(); 
            account.OverDraft += new EventHandler(account_OverDraft); 
            account.CurrentBalance = -1; 
 
            Console.ReadKey(); 
        } 
 
        public decimal CurrentBalance 
        { 
            get 
            { 
                return accountBalance; 
            } 
            set 
            { 
                if (value < 0) 
                { 
                    if (OverDraft != null) 
                    { 
                        OverDraft(this, EventArgs.Empty); 
                    } 
                } 
                accountBalance = value; 
            } 
        } 
 
        static void account_OverDraft(object sender, EventArgs e) 
        { 
            Console.WriteLine("Overdraft Occurred"); 
        } 
 
        public event EventHandler OverDraft; 
    } 
}

VB:

Module Module1 
    Private Dim accountBalance As Decimal = 100 
 
    Sub Main() 
        AddHandler OverDraft, AddressOf AccountOverdraft 
        CurrentBalance = -1 
 



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 93

        Console.ReadKey() 
    End Sub 
 
    Public Event OverDraft As EventHandler 
 
    Public Sub AccountOverdraft (ByVal sender As Object, ByVal e As 
EventArgs) 
        Console.WriteLine("Overdraft Occurred") 
    End Sub 
End Module

Listing 4-1 has an event named OverDraft. The OverDraft event is public and is 
declared with the event keyword. The EventHandler is a delegate, which we’ll discuss 
soon, but it basically allows you to define the type of method that can be called by the 
event. It defines the communication contract that must be adhered to by any code that 
wishes to listen for the event to fire.

Look at the set accessor of the CurrentBalance property, inside of the if statement 
where it determines if value is less than 0. The C# example has another if statement to see 
if the OverDraft event is equal to null.

In C# when an event is equal to null, it means that nothing has subscribed to be 
notified by the event—in essence, no other code is listening. However, when the C# 
event is not null, then this indicates that some code somewhere has hooked up a method 
to be called when the event fires. That method is said to be listening for the event. So, 
assuming that the caller has hooked up a method, the OverDraft event is fired. This check 
for null is important. If nothing is listening for the event (and our code knows this to be 
the case when the event is null), and we raise or fire the event by calling OverDraft(this, 
EventArgs.Empty), an error (null reference exception) would occur at runtime whenever 
a value is set into the CurrentBalance property. The arguments to the C# event mean that 
the current object (which is the Program class instance), this, and an empty EventArgs will 
be passed as the event message to any other methods that were hooked up to this event. It 
is interesting to note that many methods can be hooked up to your event (or none at all), 
and each will be notified in turn when your event fires. You should start to see that events 
really are a form of almost spontaneous communication within your program.

In VB, you don’t need to check for Nothing (equivalent to C# null).
The preceding discussion talked about a method that is hooked up to the event and 

executes (receives a message) whenever the event fires. The next section explains how to 
use a delegate to specify what this method is.



 94 Microsoft Visual Studio 2010: A Beginner’s Guide

Delegates
Delegates let you hook up methods as the receiver to specific events. The delegate specifies 
the allowable signature, the number of arguments, and their types, of a method that is 
allowed to be hooked up to the event as a listener or handler. The EventHandler delegate 
type for the OverDraft event specifies what the signature of a method should be, as follows:

C#:

public event EventHandler OverDraft;

VB:

Public Event OverDraft As EventHandler

This EventHandler is a class that belongs to the .NET Framework class library, and it, 
by definition, specifies that any methods hooked up to the OverDraft event must define 
two parameters: an object of any type and an EventArgs class. EventHandler also specifies 
that the method does not return a value explicitly. The following method, account_
OverDraft (AccountOverdraft in VB), matches the predefined EventHandler signature:

C#:

static void account_OverDraft(object sender, EventArgs e) 
{ 
    Console.WriteLine("Overdraft Occurred"); 
}

VB :

Public Sub AccountOverdraft(ByVal sender As Object, ByVal e As 
EventArgs) 
    Console.WriteLine("Overdraft Occurred") 
End Sub

Notice that the C# account_OverDraft (AccountOverdraft in VB) doesn’t return 
a value and has two parameters that are type object and EventArgs, respectively. The 
account_OverDraft (AccountOverdraft in VB) method is hooked up to the OverDraft 
event in the Main method in Listing 4-1, repeated as follows for your convenience:

C#:

account.OverDraft += new EventHandler(account_OverDraft); 
account.CurrentBalance = -1;

VB:

AddHandler OverDraft, AddressOf AccountOverdraft 
CurrentBalance = -1



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 95

In the C# example, the += syntax is for assigning a delegate to an event (using a bit of 
programmer slang, this syntax is commonly said to “wire up an event”). The VB example 
uses AddHandler and AddressOf to assign the AccountOverDraft method to the OverDraft 
event. In the C# example, the delegate is a new instance of EventHandler and the event 
is OverDraft. If you remember, the delegate type of OverDraft is Eventhandler, which 
defines the precise message contract.

The next piece of the puzzle is the method to be notified when the event happens. 
This method is the parameter given to the new EventHandler delegate instance. You 
saw earlier where the account_OverDraft (AccountOverDraft in VB) method had the 
signature specified by the EventHandler class, making it possible for our method to be 
specified as the new EventHandler parameter. With that one line of code (the one with 
the += statement), account_OverDraft (AccountOverdraft in VB) is now hooked up to the 
OverDraft event. This means that when the value of CurrentBalance is set to less than 
zero via the set accessor of CurrentBalance, the OverDraft event gets fired because the 
OverDraft(this, EventArgs.Empty) is called, which then invokes the account_OverDraft 
(AccountOverdraft in VB) method (the method we wired up to the event), which in turn 
executes its code.

One more note about events: you’ll see them used extensively in graphical user 
interface (GUI) code. Think about the GUI code that has reusable components, like 
buttons and list boxes. Every time the user clicks a button or selects an item in the list box, 
you want code to execute and do something, like perhaps save the user’s data somewhere. 
You do this through events: a Click event for the button and a SelectedItemChanged for 
the list box. This is the standard way that you program GUIs; you have an event and you 
define a method to hook up to that event so that your running program can do some work 
in reaction to the user.

Event, Delegate, and Handler Code Completion
While there isn’t a snippet, per se, to create an event or delegate, in C# there is Intellisense 
Code Completion support for hooking a delegate up to an event, which also generates the 
handler method. The process takes two steps: delegate and handler creation. To get started, 
type the reference to the event’s containing instance, the event name, and +=. As soon as 
you type the = sign, you’ll see a tooltip like the one in Figure 4-1.

Figure 4-1 Code completion for delegate assignment



 96 Microsoft Visual Studio 2010: A Beginner’s Guide

As you can see, the Editor pops up a tooltip instructing you to type TAB to create a new 
delegate instance. Type TAB and Code Completion will pop up another tooltip for creating 
the handler method, as shown in Figure 4-2.

In Figure 4-2, you can see that Code Completion is suggesting a method name for you. 
You have a choice of pressing TAB or changing the method name and then pressing TAB. 
Either way, you have a fast way to hook up a handler method to an event via the event’s 
delegate type.

Just as a delegate provides an interface to a method that is a contract basically to 
describe how to communicate, you can also define interfaces to classes to communicate 
with them in a specified way, and these are intuitively named . . . interfaces.

Implementing Interfaces
Another language feature that gives you flexibility is interfaces. An interface can be useful 
if you want to have a group of classes that can be interchanged at any time, yet you need 
to write the same operations for each of these classes. Essentially, you want to write the 
code that uses the class only one time, but still switch what the actual class is. That’s where 
interfaces come in. The interface creates a contract that each of the interchangeable classes 
must adhere to. So, if the interface says that all classes that implement the interface have 
method A and property B, then every class that implements the interface must have method 
A and property B; the compiler enforces this like a contract that cannot be broken. The 
following sections show you how to write an interface and then build a couple of classes 
that implement that interface. Finally, you’ll see how to write code against the interface.

One important fact to remember about interfaces is that they don’t have any code other 
than definitions of members. This definition of members is the contract of the interface. 
You are the one who must to write a class that contains the members of the interface, and 
you must write the code that provides an implementation of the interface members. A 
common point of confusion is that an interface does not have any executable code, but the 
classes that implement the interfaces do.

The following sections show you how to create an interface, how to create a class that 
has code (that you’ve written) to implement the interface contract, and how to write code 
that operates on the classes that implement (guarantee the contract of) the interface.

Figure 4-2 Code completion for handler method creation



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 97

Creating an Interface
To create an interface, right-click the project in Solution Explorer, select Add | New Item, 
select Code under the language branch in Installed Templates, and select the Interface item. 
Name the Interface IAccount and click Add. By standard convention, you will always 
name any interface class you create with a name that starts with an uppercase letter I. You’ll 
see the interface in Listing 4-2 added to your project:

Listing 4-2  An interface

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    public interface IAccount 
    { 
        void Credit(decimal amount); 
        void Debit(decimal amount); 
        decimal CurrentBalance { get; set; } 
    } 
}

VB:

Public Interface IAccount 
    Sub Credit(ByVal amount As Decimal) 
    Sub Debit(ByVal amount As Decimal) 
    Property CurrentBalance As Decimal 
End Interface

After you’ve added the interface, you’ll need to make modifications to make the code 
match Listing 4-2. Notice that the IAccount members don’t have an implementation and 
so appear incomplete because they have no lines of code. Also, each member doesn’t have 
a public modifier, because interface members are implicitly public. The following sections 
show you how to build the classes that implement the IAccount interface; there, you 
should begin to see the benefit that an interface can bring.



 98 Microsoft Visual Studio 2010: A Beginner’s Guide

Making Classes Implement the Interface
To create a class, right-click the project in Solution Explorer, select Add | New Item, select 
Code under the language branch in Installed Templates, and select the Class item. Name 
the class Checking and click Add. Using the same procedure as Checking, add another 
class, but name it Saving. Listings 4-3 and 4-4 show the two new classes.

Listing 4-3  Checking class that implements IAccount interface

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Checking : IAccount 
    { 
        public void Credit(decimal amount) 
        { 
            // implement checking logic 
            CurrentBalance += amount; 
            Console.Writeline("Added " + amount.ToString() +  
                                     " to Checking Account"); 
        } 
 
        public void Debit(decimal amount) 
        { 
            // implement checking logic 
            CurrentBalance -= amount; 
            Console.Writeline("Debited " + amount.ToString() +  
                              " from Checking Account"); 
        } 
 
        public decimal CurrentBalance { get; set; } 
    } 
}

VB:

Public Class Checking 
    Implements IAccount 
 
    Public Sub Credit(ByVal amount As Decimal) Implements IAccount.
Credit 



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 99

        ' Implement Checking logic 
        CurrentBalance += amount 
            Console.Writeline("Added " & amount.ToString() &  
                              " to Checking Account") 
    End Sub 
 
    Public Sub Debit(ByVal amount As Decimal) Implements IAccount.Debit 
        ' Implement Checking logic 
        CurrentBalance -= amount 
            Console.Writeline("Debited " + amount.ToString() +  
                              " from Checking Account") 
    End Sub 
 
    Public Property CurrentBalance As Decimal Implements IAccount.
CurrentBalance 
End Class

Listing 4-4  Saving class that implements IAccount interface

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FirstProgram 
{ 
    class Saving : IAccount 
    { 
        public void Credit(decimal amount) 
        { 
            // implement savings logic 
            CurrentBalance += amount; 
            Console.Writeline("Added " + amount.ToString() +  
                              " to Saving Account"); 
        } 
 
        public void Debit(decimal amount) 
        { 
            // implement savings logic 
            CurrentBalance -= amount; 
            Console.Writeline("Debited " + amount.ToString() +  
                              " from Saving Account"); 
        } 
 



 100 Microsoft Visual Studio 2010: A Beginner’s Guide

        public decimal CurrentBalance { get; set; } 
    } 
}

VB:

Public Class Saving 
    Implements IAccount 
 
    Public Sub Credit(ByVal amount As Decimal) Implements IAccount.
Credit 
        ' Implement Saving logic 
        CurrentBalance += amount 
            Console.Writeline("Added " & amount.ToString() &  
                              " to Saving Account") 
    End Sub 
 
    Public Sub Debit(ByVal amount As Decimal) Implements IAccount.Debit 
        ' Implement Saving logic 
        CurrentBalance -= amount 
            Console.Writeline("Debited " + amount.ToString() +  
                              " from Saving Account") 
   End Sub 
 
    Public Property CurrentBalance As Decimal  
        Implements IAccount.CurrentBalance 
End Class

In both Listings 4-3 and 4-4, notice that the Checking and Saving, respectively, 
implement the IAccount interface, repeated as follows:

C#:

class Checking : IAccount

and

class Saving : IAccount

VB:

Public Class Checking 
    Implements IAccount

and

Public Class Saving 
    Implements IAccount



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 101

In the C# listing, following the class name by a colon and then the interface name 
specifies that the class will implement the interface. The VB listing uses the Implements 
keyword to indicate that Checking and Saving classes implement the IAccount interface. 
Looking at both Checking and Saving, you can see that they have the Credit, Debit, and 
CurrentBalance members that are specified in IAccount. The primary difference is that 
IAccount doesn’t have an implementation, but you wrote an implementation for Checking 
and Saving. Listings 4-3 and 4-4 simplify the implementation of the interface so that you 
don’t have to read a lot of code that doesn’t add to the purpose of the listing to show you 
how a class implements an interface. In reality, the code in the methods would be different 
for Checking and Saving because they are different account types with different business 
rules.

You’ve created an interface and written classes to implement the contract of that 
interface. The next section gives you a couple of examples to help clarify the practical use 
of interfaces.

Writing Code That Uses an Interface
One of the best ways to understand the value of interfaces is to see a problem that 
interfaces solve. In this section, I’ll show you some code that accesses the Checking and 
Saving classes individually, essentially duplicating code. Then I’ll show you how to write 
the code a single time with interfaces. The particular example runs a payroll by obtaining 
instances of Checking and Saving classes and crediting each class, which is synonymous 
with employees being paid. Starting with the bad example, Listing 4-5 shows how this 
code works.

Listing 4-5  Processing payroll with explicit checking and saving class instances

C#:

public void ProcessPayrollForCheckingAndSavingAccounts() 
{ 
    Checking[] checkAccounts = GetCheckingAccounts(); 
 
    foreach (var checkAcct in checkAccounts) 
    { 
        checkAcct.Credit(500); 
    } 
 



 102 Microsoft Visual Studio 2010: A Beginner’s Guide

    Saving[] savingAccounts = GetSavingAccounts(); 
 
    foreach (var savingAcct in savingAccounts) 
    { 
        savingAcct.Credit(500); 
    } 
} 
 
public Checking[] GetCheckingAccounts() 
{ 
    Checking[] chkAccts = new Checking[2]; 
 
    chkAccts[0] = new Checking(); 
    chkAccts[1] = new Checking(); 
 
    return chkAccts; 
} 
 
public Saving[] GetSavingAccounts() 
{ 
    int numberOfAccounts = 5; 
    Saving[] savAccts = new Saving[numberOfAccounts]; 
 
    for (int i = 0; i < numberOfAccounts; i++) 
    { 
        savAccts[i] = new Saving(); 
    } 
 
    return savAccts; 
}

VB:

Sub ProcessPayrollForCheckingAndSavingAccounts() 
    Dim checkAccounts As Checking() = GetCheckingAccounts() 
 
    For Each checkAcct In checkAccounts 
        checkAcct.Credit(500) 
    Next 
 
    Dim savingAccounts As Saving() = GetSavingsAccounts() 
 
    For Each savingAcct In savingAccounts 
        savingAcct.Credit(500) 
    Next 
End Sub 
 



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 103

Function GetCheckingAccounts() As Checking() 
    Dim chkAccts(1) As Checking 
 
    chkAccts(0) = New Checking() 
    chkAccts(1) = New Checking() 
 
    Return chkAccts 
End Function 
 
Function GetSavingsAccounts() As Saving() 
    Dim numberOfAccounts As Integer = 5 
    Dim savAccts(numberOfAccounts) As Saving 
 
    For i As Integer = 0 To numberOfAccounts 
        savAccts(i) = New Saving() 
    Next 
 
    Return savAccts 
End Function

To save space, I haven’t included the entire application in Listing 4-5, which is 
available with the source code for this book via the McGraw-Hill Web site. To understand 
how it works, imagine that you’ve written the following code in the Main method:

C#:

Program bank = new Program(); 
bank.ProcessPayrollForCheckingAndSavingAccounts();

VB:

ProcessPayrollForCheckingAndSavingAccounts()

Walking through the code, let’s start at the ProcessPayrollForCheckingAndSaving 
Accounts method. You can see how the algorithm calls GetCheckingAccounts to retrieve 
an array of Checking objects. If you recall, an array is a list of elements of a specified 
type, that type being Checking in this case. The algorithm goes on to iterate through the 
Checking objects, invoking Credit on each to add 500 to the account. Some employees 
want their paychecks in Checking, but others might want their paychecks to go into 
Saving (or some other account). Therefore, the algorithm calls GetSavingsAccounts to 
get a list of those accounts for employees who want their paychecks to go into their 
savings. You’ll notice that the algorithm inside of GetSavingsAccounts is different from 



 104 Microsoft Visual Studio 2010: A Beginner’s Guide

GetCheckingAccounts, which I did on purpose so that you’ll see different ways to use 
loops; but this doesn’t affect the calling code because it’s encapsulated in individual 
methods. The point to make here is that GetCheckingAccounts will only return Checking 
class instances and GetSavingsAccounts will only return Saving class instances. The rest 
of the algorithm in the ProcessPayrollForCheckingAndSavingAccounts method mirrors the 
processing for Checking.

What should catch your attention is the duplication of code in the ProcessPayroll 
ForCheckingAndSavingAccounts method. Although the Credit methods of Checking and 
Saving should have different implementations, the code calling Credit can be the same, 
eliminating duplication. Listing 4-6 shows how to take advantage of the fact that both 
Checking and Saving implement the same interface, IAccount. You’ll see how to call 
Credit on any IAccount-derived type with one algorithm, eliminating the duplication you 
saw in Listing 4-5.

Listing 4-6  Processing payroll through the IAccount interface

C#:

public void ProcessPayrollForAllAccounts() 
{ 
    IAccount[] accounts = GetAllAccounts(); 
 
    foreach (var account in accounts) 
    { 
        account.Credit(1000); 
    } 
} 
 
public IAccount[] GetAllAccounts() 
{ 
    IAccount[] allAccounts = new IAccount[4]; 
 
    allAccounts[0] = new Checking(); 
    allAccounts[1] = new Saving(); 
    allAccounts[2] = new Checking(); 
    allAccounts[3] = new Saving(); 
 
    return allAccounts; 
}



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 105

VB:

Sub ProcessPayrollForAllAccounts() 
    Dim accounts As IAccount() = GetAllAccounts() 
 
    For Each account In accounts 
        account.Credit(1000) 
    Next 
End Sub 
 
Function GetAllAccounts() As IAccount() 
    Dim allAccounts(3) As IAccount 
 
    allAccounts(0) = New Checking() 
    allAccounts(1) = New Saving() 
    allAccounts(2) = New Checking() 
    allAccounts(3) = New Saving() 
 
    Return allAccounts 
End Function

You can call the code in Listing 4-6 from the Main method like this:

C#:

Program bank = new Program(); 
bank.ProcessPayrollForAllAccounts();

VB:

ProcessPayrollForAllAccounts()

Examining Listing 4-6, you can see that accounts is an array of IAccount. While 
you can’t instantiate an interface by itself, you can assign an instance of the class that 
implements that interface using a variable simply declared as the interface type. In this 
case, GetAllAccounts returns a list of objects that implement IAccount.

Looking inside of the GetAllAccounts method, you can see how an array is being built 
with both Checking and Saving objects. Since Checking and Saving implement IAccount, 
which you saw in Listings 4-3 and 4-4, instances of Checking and Saving can be directly 
assigned into elements of an IAccount array.

Back in the ProcessPayrollForAllAccounts method, you can see a loop iterate through 
each IAccount instance, calling Credit. The reason you can call Credit like this is that 
IAccount defines a contract for the Credit method. Calling Credit on each instance really 



 106 Microsoft Visual Studio 2010: A Beginner’s Guide

invokes the Credit method on the runtime Checking or Saving instance. Your code that 
you wrote for Checking.Credit and Saving.Credit will execute as if your code called them 
directly as in Listing 4-5. Also observe that we’ve eliminated the duplication because one 
algorithm, namely IAccount.Credit() in our example, works on both Checking and Saving 
objects.

Now you can see that interfaces help you treat different types of objects as if they were 
the same type and helps you simplify the code you need to write when interacting with 
those objects, eliminating duplication. Imagine what would happen if you were tasked 
with adding more bank account types to this algorithm without interfaces; you would need 
to go into the algorithm to write duplicate code for each account type. However, now you 
can create the new account types and derive them from IAccount; the new account types 
automatically work in the same algorithm.

The interface Snippet
Before using the interface snippet, open a new file by right-clicking your project in VS 
Solution Explorer, select Add | New Item | Code File, and name the file IInvestment.cs  
(or IInvestment.vb in VB). You’ll have a blank file to work with. To use the interface 
snippet, type int and press TAB, TAB; you’ll see a snippet template similar to Figure 4-3 
(C#) or Figure 4-4 (VB).

Because prefixing interfaces with I is an expected convention, the template highlights 
the identifier after I.

Figure 4-3 The C# interface snippet template

Figure 4-4 The VB interface snippet template



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 107

Applying Arrays and Generics
Whatever code you write will typically need to group objects into a single collection of 
that object type. For this, you can use an array, which is a container that can have zero or 
many elements, each holding an instance of a particular type. You’ll soon see how to use 
an array to locate the elements (items) you want. There are also generic collection classes 
in the .NET Framework that are even more powerful than arrays. You’ll learn how to use 
both arrays and generic collections in this section.

Coding Arrays
You’ve already seen several examples of arrays being used previously in this chapter. You 
declare a variable of the array type, instantiate the array to a specified size, and then use 
the array by indexing into its elements. Listing 4-7 shows an example that demonstrates 
the mechanics of creating and using an array.

Listing 4-7  Creating and using an array

C#:

private void ArrayDemo() 
{ 
    double[] stats = new double[3]; 
 
    stats[0] = 1.1; 
    stats[1] = 2.2; 
    stats[2] = 3.3; 
 
    double sum = 0; 
 
    for (int i = 0; i < stats.Length; i++) 
    { 
        sum += stats[i]; 
    } 
 
    Console.WriteLine( 
        stats[0] + " + " + 
        stats[1] + " + " + 
        stats[2] + " = " + 
        sum); 
}



 108 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Sub ArrayDemo() 
    Dim stats(2) As Double 
 
    stats(0) = 1.1 
    stats(1) = 2.2 
    stats(2) = 3.3 
 
    Dim sum As Double = 0 
 
 
    For i As Integer = 0 To 2 
        sum += stats(i) 
    Next 
 
    Console.WriteLine( 
        stats(0) & " + " & 
        stats(1) & " + " & 
        stats(2) & " = " & 
        sum) 
End Sub

In the C# example of Listing 4-7, you can see that the stats variable is declared as 
double[], an array of type double. You must instantiate arrays, as is done by assigning new 
double[3] to stats, where 3 is the number of elements in the array. C# arrays are accessed 
via a 0-based index, meaning that stats has three elements with indexes 0, 1, and 2.

The VB example declares stats as an array of type double. Notice that the rank of the 
array is 2, meaning that 2 is the highest index in the array. Since the array is 0-based, stats 
contains indexes 0, 1, and 2; three elements total.

Assigning values to an array means that you use the name of the array and specify the 
index of the element you want to assign a value to. For example, stats[0] (stats(0) in VB) 
is the first element of the stats array, and you can see from the listing how each element 
of the stats array is assigned the values 1.1, 2.2, and 3.3. The for loop adds each element 
of the array to the sum variable. Finally, you can see how to read values from an array by 
examining the argument to the Console.WriteLine statement. Using the element access 
syntax, you can see how to read a specific element from the stats array.

An array is a fixed-size collection, and therefore somewhat limited in functionality. 
In practice, you’ll want to use more sophisticated collections, like the List class, which is 
referred to as a generic collection. Not all collection classes in the .NET Framework are 
generic collections; however, generic collections are now the preferred kind of collection 
to use in most cases.



 Chapter 4: Learning Just Enough C# and VB.NET: Intermediate Syntax 109

Coding Generics
Generics are language features that allow you to write a piece of code that will work with 
multiple types efficiently. A generic class definition has a placeholder for the type you 
want it to represent, and you use this placeholder to declare the type you want to work 
with. There is an entire library of generic collections in .NET as well as generic types 
across the entire .NET Framework Class library. Because of the volume of information 
required for comprehensive coverage of generics, this section will only serve as a brief 
introduction, giving you an example of generic use that you’re most likely to see in the 
future. Listing 4-8 demonstrates how to declare a generic List. The code specifies the 
type of the list as a Checking account and then proceeds to populate the generic list and 
perform operations on the Checking elements of the generic list. Remember to include a 
using directive (imports for VB) for the System.Collections.Generic namespace near the 
top within your file.

Listing 4-8  Coding a generic list collection

C#:

private void ListDemo() 
{ 
    List<Checking> checkAccts = new List<Checking>(); 
 
    checkAccts.Add(new Checking()); 
    checkAccts.Add(new Checking()); 
 
    for (int i = 0; i < checkAccts.Count; i++) 
    { 
        Console.WriteLine(checkAccts[i].CurrentBalance); 
    } 
}

VB:

Sub ListDemo() 
    Dim checkAccts As New List(Of Checking) 
 
    checkAccts.Add(New Checking()) 
    checkAccts.Add(New Checking()) 
 
 
    For i As Integer = 0 To checkAccts.Count - 1 
        Console.WriteLine(checkAccts(i).CurrentBalance) 
    Next 
End Sub



 110 Microsoft Visual Studio 2010: A Beginner’s Guide

In .NET, the generic List type is declared as List<T>, or List(Of T) in VB. The T is a 
type placeholder, where you can specify any type you want. For example, you could create 
a List<int> for integers or a List<string> for strings, which would be List(Of Integer) 
and List(Of String) in VB, respectively. In Listing 4-8, you can see that checkAccts is 
declared as List<Checking> (List(Of Checking) in VB). Since a list grows dynamically 
to accommodate any number of elements, you use the Add method to add elements to the 
List. Once elements are in the List, you can use element access syntax, as shown in the for 
loop, to access the elements one at a time. Collections such as List are convenient because 
they have multiple convenience methods, such as Clear, Contains, Remove, and more.

In addition to List, the System.Collections.Generic namespace has several other 
generic collections, such as Dictionary, Queue, and Stack. Each generic is initialized by 
replacing the type parameters with the types you want to work on and then by using the 
specialized methods of that collection. Whenever you see the type parameter syntax, you 
should recognize that a generic is being used and you will have an idea of what the code 
means and how to read it in the documentation.

Summary
What you learned in this chapter were essential skills for upcoming chapters in the 
rest of the book. Knowing how delegates and events work helps you with event-driven 
development that is common to GUI application development. Understanding interfaces 
directly relates to being able to build Web services, among other uses. You’ll also make 
regular usage of arrays and generics, and this chapter gave you the essentials to know 
what collections are.

Remember that this was only an introduction to C# and VB and that there is much 
more to learn about these languages. Of course, this book is about VS and not languages, 
so the next chapter is where you’ll learn to build VS projects.



Part II
Learning the VS 2010 
Environment



This page intentionally left blank 



113

Chapter 5
Creating and  
Building Projects



 114 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Work with Projects and Solutions

● Set Properties in the Properties Window

● Reference and Use Class Libraries

● Compile and Run Projects

● Use the Class Designer

P rojects and solutions are VS’s way of helping you organize your code for both 
development and deployment. For development, you have a hierarchical structure that is 

flexible and allows you to organize your code in a way that makes sense for you and your 
team. For deployment, you can build different project types that will result in executable or 
library files (often referred to as assemblies) that run your program when executed.

While reading this chapter, you’ll learn how to use solutions and projects. You’ll learn 
how to find settings and options for customizing projects, how to reference assemblies, 
and different options for compiling code. As an extra bonus, you’ll learn how the Class 
Designer allows you to obtain a high-level visualization of your code and perform some 
design work. We’ll begin with learning about solutions and projects.

Constructing Solutions and Projects
With VS, you can build applications that range in size and sophistication. At the most basic 
level, you can start a console project that contains one or more files with code, which is very 
simple. At higher levels of complexity, you can build enterprise-scale applications consisting 
of many projects of various types, organized to support large teams of developers working  
in unison.

VS uses a hierarchical model to help you organize your code and gives you flexibility 
in how a project is set up. Some features, such as solutions and projects, are well defined, 
but you have the freedom to add folders that help customize the arrangement of files to 
meet your needs.

Two organizing principles of solution and project organization will always be true: 
you will work with only one solution at a time and that solution will always have one or 
more projects. For simplicity, I’ll use the term “project,” but that still means that we have 



 Chapter 5: Creating and Building Projects 115

a project inside of a solution. Different project types have unique settings and options, but 
we’ll start by creating a Console application, which will reduce unnecessary detail and 
help focus on the common features of all project types.

Creating a New Project
As a shortcut, press CTRL-SHIFT-N to open the New Project window, shown in Figure 5-1. 
CTRL-N will only open a single file, which you can’t compile, so don’t forget the SHIFT key. 
Of course, you can always use the menu to created a new project.

Chapter 2 describes the features of the New Project window. The process is the same 
any time you create a new project. VS remembers your last project type, which could 
be helpful if you are creating multiple projects of the same type. Make sure you select 
Console Application as your project type.

The way you create and name VB and C# projects are different in that all of the decisions 
for C# projects are made at one time, but VB divides creation into initial project creation 
and then saves additional information when you save the project for the first time.

C# projects allow you to configure Name, Location, Solution, and Solution Name as 
shown in Figure 5-1. In C#, the Name field is the name of the project you are creating, 
and the Solution Name field is the name of the solution. While typing the project name, 

Figure 5-1 The New Project window



 116 Microsoft Visual Studio 2010: A Beginner’s Guide

VS will update the Solution Name with the same name. In a multiproject solution, this 
might not make sense. So, first type the project name and then you can provide a name for 
the solution that is more appropriate. In Figure 5-1, you can see that the project is named 
ProjectDemo and the solution is named SolutionDemo. VS allows you to put spaces in 
the names. A consequence of this is that the default namespace for a project will use the 
project name with spaces translated to underlines; something to be aware of if your coding 
conventions don’t allow underlines in identifier names.

If you have a very simple project and want all project files in the same folder, uncheck 
Create Directory For Solution. However, most applications you build will have multiple 
projects and leaving this box checked makes more sense because it maintains consistency 
between folder and solution organization. In any case, when an additional project is added 
to your solution, VS will always put the new project into a separate subfolder.

If you check Add To Source Control, VS will open a window for you to configure source 
control. Source control is a repository for you to check code into. This is especially useful 
for teams where each developer can check in his or her code for a common repository of 
source code for this solution when you create the solution. Click OK to create the solution.

TIP
If you accidentally start a project type that you didn’t intend, select File | Close Solution 
and then delete the solution folders from the file system. VS will often put OS locks on files, 
so it’s important to close the solution so that you will be able to delete files. The VS Recent 
Projects list will have an entry with the name of the solution you just deleted, but you can 
click that entry and VS will recognize that the solution no longer exists, prompting you 
to remove the entry from the list. After that, you can start over again and use the same 
solution/project name you intended, but with the right project type.

Starting a new Console project in VB, you only need to provide a Name parameter, 
which is the name of the project to create. Once the project is created, the first time you 
create the project, you’ll receive a window that asks you for Name, Solution Name, 
Location, Create Directory, and Add To Source Control options that work the same as 
described for the previous C# example. You’ve accomplished the same task, regardless of 
language, but in different ways.

Navigating the Solution Explorer
VS creates a new project in the Solution Explorer window, shown in Figure 5-2. While 
other VS windows provide specialized views into specialized parts of an application, the 
Solution Explorer window is where you can find all of the artifacts of an application.

One of the first features of the project shown in Figure 5-2 is the hierarchical relationships. 
You will have only one solution. VB doesn’t show the solution file by default, but you can 



 Chapter 5: Creating and Building Projects 117

change this by selecting Tools | Options | Projects And Solutions and checking the box for 
Always Show Solution.

You can add multiple projects to a solution, as well as folders for organizing the 
projects. Right-click the solution name in the Solution Explorer and select Add | New 
Project, and you can add more projects. Add | Existing Project allows you to add a project 
that already exists to your opened solution. The reason this option exists is that while VS 
solutions associate one or more projects together as a solution unit, any single project 
could optionally be associated with other solutions. In other words, a single project could 
be shared with other solutions.

Select Add | New Solution Folder to add a folder to a solution. You can add a hierarchy 
of folders to a solution for organizing projects. One thing to remember about solution folders 
is that unlike creating folders inside a project that become physical file system folders, 
solution folders are logical and don’t create a physical folder in your file system. If you want 
your file system layout to match the Solution Explorer layout with solution folders, you 
must create the file system folders yourself. To avoid confusion, remember that it is possible 
for the physical location of projects to differ from the Solution Explorer layout.

Besides organizing projects, solution folders are also useful for associating specific 
artifacts with your project. While solution folders are not tied to physical file system 
folders, they are included with source control providers, such as Visual Source Safe and 
Team System. One potential use of a solution folder is to include a copy of an external class 
library that you’ve built your project with. This way, whenever other members of the team 
check the solution out of source control, they all are working with the same files and versions. 
Solution folders can also be used for any type of file, including project documentation or 
anything else that you want to keep organized in a single place.

Depending on project type, VS hides various files associated with a project. The Solution 
Explorer toolbar has a Show All Files button that will show these hidden files. If you have the 

Figure 5-2 The Solution Explorer window



 118 Microsoft Visual Studio 2010: A Beginner’s Guide

solution selected, all you’ll see is the Add A New Solution Folder button, so you’ll need to 
select a project before the Show All Files button will display. An example of a hidden file is 
the bin folder hierarchy that contains the output of your project when you compile.

Examining Property Settings
Each project has associated settings that you can configure. When you first create a 
project, these settings are configured for common values for that project type. However, 
you can modify these settings to meet your needs. Each project has a logical folder named 
Properties, shown previously in Figure 5-2, which will open a property setting window 
when you double-click the Properties (My Project in VB) folder in a project, shown in 
Figure 5-3.

There are multiple tabs, each with related properties grouped to the subject of each tab. 
Depending on project type, you might see additional tabs, but some of the tabs are common 

Figure 5-3 The Project Properties window



 Chapter 5: Creating and Building Projects 119

to all projects. The following sections describe each of the features of the Application 
settings tab.

Assembly Name
VS projects create either *.dll or *.exe assemblies. The assembly name provides the 
filename for this project and defaults to the name of your project. From Figure 5-3, you 
can see that Assembly Name is set to ProjectDemo. Since this is a Console application, 
the output would be a *.exe. It follows that the filename would be ProjectDemo.exe. Had 
the project type been a Class Library, the filename would have been ProjectDemo.dll.

Default Namespace
The Default namespace (Root namespace in VB) setting determines what the namespace 
will be defined automatically as whenever you add a new code file to your project. It’s 
initially set to the name of your project. If you want the namespace of new files to be 
different, set the namespace here.

Target Framework
VS has .NET Framework multitargeting support, where you can work with any version of 
.NET between v2.0 and v4.0. Select the .NET version you need in the Target Framework 
combo box. VB includes this option on the Compile tab when clicking the Advanced 
Compile Options button. Remember to set the VB project from .NET Framework 4.0 
Client Profile to .NET Framework 4.0 because later we’ll be referencing a class library 
that is set to .NET Framework 4.0 and the target frameworks must be compatible for one 
assembly to reference another.

Since you can have multiple versions of .NET on the same machine as VS 2010, 
you can switch freely between different projects that use different .NET versions. This 
is particularly useful if you’re a consultant working on different projects with different 
versions or if you’re providing maintenance support on older versions of a product while 
doing active development work in a different project using .NET 4.0.

Output Type
An Output type (Application type in VB) is the type of assembly created when you build 
your project. The three types of output are Windows Application, Console Application, 
and Class Library. You already know how to create a Console application, which produces 
a *.exe assembly. Later in this chapter, you’ll learn how to create a Class Library project, 
which produces a *.dll assembly. In Chapter 8, you’ll learn how to create a Windows 
Application project, which is a *.exe.



 120 Microsoft Visual Studio 2010: A Beginner’s Guide

TIP
If you have a WPF project, its Output Type is set to Windows Application. If you 
switched the Output Type of a WPF application to Console Application, you would see 
the Console window appear also. This might be useful for some intermediate debugging 
where you could emit Console.WriteLine messages. Of course, VS provides excellent 
debugging tools, which you’ll learn about in Chapter 6, including an Output window, 
but this is just another option if you ever wanted it.

Startup Object
You could add multiple Main methods to a Console application or a WPF application, 
but only one Main method can be active at a time. The Startup object allows you to 
specify which class contains the Main method you want to use as the entry point to your 
application. One of the reasons you might want to do this is to start your application in 
different configurations, which might facilitate testing by allowing you to go straight to a 
part of the program without too much navigation.

Icon and Manifest
By clicking the ellipses button on the right of the icon drop-down list, you can browse to 
an icon file, *.ico, that will appear as your application icon.

TIP
VS ships with system icons that you can use in your own applications. Navigate to C:\
Program Files\Microsoft Visual Studio 10.0\Common7\VS2010ImageLibrary\1033 
and you’ll see a Zip file named VS2010ImageLibrary. Your path might be different 
if you chose to install VS2010 somewhere other than the default. Unzip this 
VS2010ImageLibrary and you’ll see a plethora of resources with images, audio, 
animations, and icons that are common to Microsoft operating systems and applications.

The manifest allows you to specify Microsoft Windows User Access Control (UAC) 
settings or to support a form of deployment called Click-Once, where a WPF application 
can be deployed from a Web page and run locally on your desktop machine. The manifest 
describes the application and deployment features of your Click-Once application. Since 
these manifests are automatically generated when you publish a Click-Once application, 
you normally won’t ever manually build manifest files yourself; this is considered 
an advanced practice and includes knowledge beyond what a beginner’s guide would 
include.

In VB, there is a UAC Settings button that allows you to directly modify the app 
.manifest file. This is an advanced technique that requires knowledge of the operating 
system UAC settings.



 Chapter 5: Creating and Building Projects 121

If you select the Resources option, you can include a Win32 resources file, which 
you can then access through code in your application. This is another advanced scenario 
beyond the scope of this book.

Assembly Information
Clicking Assembly Information shows the window in Figure 5-4. This information is 
included in the assembly metadata when you build your project. Most of the information 
in this window is self-explanatory. Since assemblies can comprise multiple files, you are 
allowed to vary the assembly (all files) and this file’s assembly version numbers.

With .NET, you can have two-way communications with Component Object Model 
(COM) applications. You can enable this by allowing your assembly to have a Globally 
Unique Identifier (GUID) so that COM can find it, and check the COM visible box.

Leave the Neutral Language as None, unless you want the default locality to be 
something other than en-US, which is the locale for US English.

To see what these settings look like, press F6 to build the application, and then navigate to 
the location in the file system where you created the project. The location on my machine for 
this demo is C:\VS2010\Chapter05\SolutionDemo\ProjectDemo\bin\Debug, but yours could 
be different if you created your project in a different location. Regardless, you’ll find the 
ProjectDemo.exe file in the bin\Debug folder. Right-click ProjectDemo.exe, select Properties, 
and click the Details tab of the ProjectDemo Properties window, shown in Figure 5-5.

Figure 5-4 Assembly Information



 122 Microsoft Visual Studio 2010: A Beginner’s Guide

As you can see in Figure 5-5, the Assembly Information from the project properties 
is included with the file. This is convenient for you (or an end user) to be able to open 
the file and read pertinent information, especially version information, to know you’re 
working with the correct assembly, for debugging, or just to know what is on your system.

Referencing Assemblies
All projects normally reference external assemblies. For example, System.dll is a .NET 
Framework assembly that contains all of the primitive .NET types and is normally included in 
every project. Each project type has a specific set of assemblies that appear in the References 
list. The assemblies that appear in this list are either required because of the type of project 
you are building or are optional and contain libraries that are commonly used for that type of 
project. You are free to remove assembly references if you like, but be aware that removing 
a reference to an assembly required for that project type is likely to result in your code not 
being able to compile.

Figure 5-5 File Properties window



 Chapter 5: Creating and Building Projects 123

Assembly references are added to a project to tell the compiler where to find the types 
it is using in an application. When your compiler runs, it will know what types you have 
in your code and looks through the set of referenced assemblies to find that type. Adding 
an assembly reference doesn’t add all of the code from the referenced assembly to your 
code; it just tells the compiler where to look.

NOTE
There is often confusion around the relationship between assembly references and 
namespaces. A namespace using statement (Imports in VB) allows your code to be 
written without fully qualifying type references for types in an assembly. However, the 
assembly reference is just a way to tell the compiler in which specific external assembly 
to look to find those types: two different purposes. This confusion is exacerbated by the 
fact that you get the same error message from the compiler when you either are missing 
an assembly reference or don’t have a using (Imports for VB) directive in your code for 
a namespace that a type resides in. Just remember to ensure that you have an assembly 
reference first and then add a using (Imports) directive at the top of your file.

Adding a .NET Assembly Reference
You can add references to your project by right-clicking the project and clicking Add 
Reference. You’ll see the Add Reference window, shown in Figure 5-6. On the .NET 
tab of this window, you’ll see a list of assemblies from the Global Assembly Cache 

Figure 5-6 The Add Reference window



 124 Microsoft Visual Studio 2010: A Beginner’s Guide

(GAC), which is a shared repository of assemblies. Microsoft and third parties will place 
assemblies in the GAC to make it easier to share them by any programs.

The COM tab shows all of the COM applications currently registered on your 
computer. For example, if you wanted to communicate with Excel, you would click 
the COM tab and add a reference to the version of Microsoft Office Excel that you are 
working with. Adding a reference to a COM object causes VS to automatically generate 
a new assembly, called an Interop assembly, that has stub methods that make it easy 
for you to perform operations on that COM object. You would need to reference the 
documentation for the COM object/application to determine what operations are possible, 
but this is a very powerful way to work with legacy applications and Microsoft Office 
applications that expose a COM interface.

CAUTION
If you’re adding an assembly reference for a VB project, remember to open My 
Projects on ProjectDemo, go to the Compile tab, click the Advanced Compile Options 
button, and ensure that the Target Framework is set to .NET Framework 4.0 (not 
.NET Framework 4.0 Client Profile). The reason is that the class library project is 
automatically set to .NET Framework 4.0 and the target framework for both the 
referencing and referenced assemblies must be the same.

The Recent tab has a list of references that you’ve recently added to a project, which 
is a convenience based on the probability that if you added a reference to one project 
in a solution, you might want to quickly add that same reference to others. The Browse 
tab of the Add Reference window allows you to search the file system for a *.dll file to 
add as a reference. Just remember that if you are referencing a *.dll for a project in the 
same solution, it would be better to use the Project tab, which manages dependencies and 
ensures that your project is updated if the referenced project changes. File references can’t 
know if the external *.dll changed because the external *.dll is outside of your solution. 
In most cases, if you’re referencing an external *.dll, you don’t have the code, so a project 
reference won’t be possible. The next section explains more about project references.

NOTE
The New Projects window, CTRL-N, contains Office project types that can help you get 
started building Microsoft Office applications.

Managing Assembly References
Occasionally, you might want to remove an assembly reference because it isn’t necessary 
or because you accidentally added the wrong reference. In C#, you would open the 
References folder, select the reference to remove, and press DELETE. In VB, you would 



 Chapter 5: Creating and Building Projects 125

open the Properties window by double-clicking My Project, click the References tab, 
select the reference to delete, and click Remove. Figure 5-7 shows the VB References tab.

VB includes additional functionality on the References tab. For example, you can 
click Add to add a reference. You also click Unused References to remove references for 
assemblies that are not being used in your code. Clicking Reference Paths allows you to 
specify a folder that VS will look in to find assemblies you want to reference.

C# has a separate tab on the Properties window for managing Reference Paths. When 
VS looks for referenced assemblies, it will search the current project directory, then in 
the folders identified in Reference Paths, and then in folders for the list of assemblies 
specified by the Add References window.

Referencing Your Own Class Libraries
There are various reasons for creating your own code libraries. For example, you might 
have reusable code or want to keep your code organized into separate assemblies. To 
do this, you would create Class Library projects, and then reference those class library 
projects from other code. First, let’s create a Class Library project and then create a 
reference to the Class Library project from a Console application.

Figure 5-7 The VB My Project References tab



 126 Microsoft Visual Studio 2010: A Beginner’s Guide

Within the SolutionDemo solution, we’ll create a new project for a class library. 
Right-click SolutionDemo and select Add | New Project. This time, select Class Library 
instead of Console Application and name it ClassLibraryDemo. Clicking OK will add 
a new Class Library Project to your SolutionDemo Solution. You will now have two 
projects in your solution.

To use the code in the ClassLibrary project, right-click the ProjectDemo project 
and select Add Reference. This time, select the Project tab, which will contain all of the 
projects that belong to the same solution. Select the ClassLibraryDemo project and click 
OK. You’ll see the reference to ClassLibraryDemo appear in the References folder in the 
ProjectDemo project.

TIP
Resetting References for Renamed Projects. You can rename any project by right-
clicking the project and selecting Rename. However, that doesn’t change the physical 
folder name. If you want to change the physical folder name, close the solution (select 
File | Close Solution) and then change the project folder name. When you re-open the 
solution, Solution Explorer won’t be able to load the project. This is because the folder 
name for the project in the solution file hasn’t changed. To fix this, select the project in 
Solution Explorer and open the properties window. In the properties window, select the 
file path property and either type the newly changed path or click the ellipses button to 
navigate to the *.csproj file. Navigate back to Solution Explorer, right-click the project 
that didn’t load, and select Reload Project.

Now that you have a reference to a class library, you’ll want to write code that uses the 
objects in the class library, which you’ll learn about next.

Using Code in Class Libraries
To use class library code, you need to ensure you have a reference to the class library. 
If using C#, you can add a using directive, and in VB you can add an Imports directive, 
which allows you to use the types in the class library without fully qualifying them.

After referencing the class library assembly and ensuring namespaces are managed 
properly, you can use class library classes and instantiate these externally referenced objects 
and access or invoke the members as if they were part of the code in your own assembly. 
The .NET CLR will take care of making sure that your calls to the class library object work 
transparently behind the scenes. The preceding section showed you how to create the reference 
from one project to another, allowing the compiler to find the other assembly. This section will 
explain how to write the code that specifies which objects in the class library to use.

Assuming that you were building an educational application, you might have a class 
library that helped you keep track of students. To facilitate this scenario, you can rename 
the Class1.cs or Class1.vb file in the ClassLibraryDemo project to Student.cs or Student.vb. 



 Chapter 5: Creating and Building Projects 127

If you’re using C# when you do this, VS will ask if you want to change the class filename 
from Class1 to Student. VB will make the class name change automatically, without 
asking. This is a convenient way to keep your classes and filenames in sync. It is common 
to create only one class per file. Listing 5-1 shows the new student file after renaming and 
adding code to make it functional.

Listing 5-1 Class library code

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ClassLibraryDemo 
{ 
    public class Student 
    { 
        public List<int> GetStudentGrades(string studentName) 
        { 
            return new List<int> { 80, 100, 95 }; 
        } 
    } 
}

VB:

Public Class Student 
    Public Function GetStudentGrades(ByVal studenName As String) As 
List(Of Integer) 
        Dim intList As New List(Of Integer) 
        intList.Add(80) 
        intList.Add(100) 
        intList.Add(95) 
        Return intList 
    End Function 
End Class

The important parts of Listing 5-1, for the current discussion, is that Student is a class 
inside of the ClassLibraryDemo namespace. You’ll need to remember the namespace so 
that you can obtain a reference to a Student instance from the calling code. Listing 5-2 
shows how. Remember that the VB namespace is implicitly set to whatever is defined as 
the namespace setting on the My Project page, which defaults to the project name.



 128 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 5-2  Application code calling class library code

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
using ClassLibraryDemo; 
 
namespace ProjectDemo 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            string studentName = "Joe"; 
            Student myStudent = new Student(); 
            List<int> grades = myStudent.GetStudentGrades(studentName); 
 
            Console.WriteLine("Grades for {0}:", studentName); 
            foreach (int grade in grades) 
            { 
                Console.WriteLine(" - " + grade); 
            } 
 
            Console.ReadKey(); 
        } 
    } 
}

VB:

Imports ClassLibraryDemoVB 
 
Module Module1 
 
    Sub Main() 
        Dim grades As List(Of Integer) 
        Dim studentName As String = "Joe" 
        Dim myStudent As New Student 
 
        grades = myStudent.GetStudentGrades(studentName) 
 
        Console.WriteLine("Grades for {0}:", studentName) 
 



 Chapter 5: Creating and Building Projects 129

        For Each grade In grades 
            Console.WriteLine(" - " & grade) 
        Next 
 
        Console.ReadKey() 
    End Sub 
 
End Module

One item to draw your attention to in Listing 5-2 is the using directive (Imports in VB), 
specifying that you can use the types in the ClassLibraryDemo namespace without fully 
qualifying them. After that, you can see how Listing 5-2 creates instances of Student and 
myStudent and calls GetStudentGrades.

TIP
The call to Console.ReadKey in Listing 5-2 causes program execution to stop until the 
user presses a key on their keyboard. If Console.ReadKey was not present, the program 
would finish the Main method, which would close the application before you had the 
chance to see the output.

Next, you’ll want to compile the code to see if the syntax is good and then run the 
program to see if it operates properly. The next section explains how compiling and 
running works with VS.

Compiling Applications
You’ll find several compilation options on the Build menu. Because there are so many 
options, it isn’t always intuitive which option you should use. The options are scoped to 
either the current project or the entire solution. The top portion of the menu applies to 
the entire solution, and the second section is context-sensitive, applying to the currently 
selected project. The following sections describe each set of options, including build, 
rebuild, and clean for both projects and solutions.

Building Solutions/Projects
Building typically means that you run the compiler to compile source code files. Sometimes 
the build includes more than compilation. For example, if you are writing ASP.NET 
applications, VS will generate code based on the Web controls on the page and then that 
generated code will be compiled with normal code. Therefore, the term build is more 
accurate than compile.

During a normal build, VS will only build the items in a project or solution that are out 
of date. More specifically, only projects that have changes and edits will be rebuilt,  



 130 Microsoft Visual Studio 2010: A Beginner’s Guide

but projects that are untouched will be reused as is. A build is typically the fastest option 
during normal development because building only items that are out of date means that 
there are likely items that don’t need to be built. Be aware, though, that you’ll occasionally 
need to build everything to make sure you aren’t accidentally working with old code.

Rebuilding Solutions/Projects
A rebuild performs the same actions as a build, except that it forces the build of all items 
belonging to a project or solution. Reasons for a rebuild include ensuring new code you’ve 
written works with existing code, creating a fresh build for deployment, and ensuring 
important items are built when a normal build doesn’t work.

Many developers, including myself, like to pull the latest changes from source control 
into my solution every morning before starting work. This ensures that the current code in 
the solution will build with whatever was in source control. This keeps the code in your 
local solution from differing too much from what is in source control.

Before you deploy an application, you’ll want to perform a rebuild to ensure all of 
the code builds. Depending on your process, you will want to test the code that was just 
rebuilt, prior to deployment. The rebuild ensures that the application you are preparing for 
deployment is the most current.

Sometimes your normal build doesn’t work correctly or you’re seeing bugs that 
seem to be associated with code that you’ve already written. While VS is a great tool 
and manages dependencies between projects, there are still complex situations where 
everything doesn’t build correctly. At these times, you can try a rebuild, which forces the 
build on all items of a project or solution.

A rebuild takes more time to perform because all items in a project must be rebuilt. 
If you have a small project, you might not notice the differences. However, if you have 
a fairly large solution, with dozens of projects, a steady pattern of rebuilds throughout 
the day could cut into your productivity. A rebuild on a project is often not much more 
work than a build on the project, but there are probably edge cases where the difference 
in time would be noticeable. It is the rebuild on the solution that will most likely get your 
attention. That said, each version of VS has progressively improved the performance of 
the build process, so you should interpret the performance as a relation between build and 
rebuild, rather than as a statement about VS compared to any other tool.

Cleaning Solutions/Projects
A clean operation will delete project outputs, which include *.dll, *.exe, or other items 
produced by the build process. You would often perform a clean operation to guarantee 
that all outputs are fresh or to obtain a smaller copy of the project.



 Chapter 5: Creating and Building Projects 131

Normally, a full rebuild ensures that you have the most up-to-date outputs available. You 
could also perform a clean operation to ensure all outputs were removed and then perform a 
build to see which outputs were created. This might give you insight into whether the build on 
a solution was including all of the projects. In normal circumstances, VS manages all of your 
dependencies for you, as described in the next section. However, in advanced scenarios, some 
developers might occasionally change these dependencies. Cleaning is a tool to help you 
know whether a project is really being built. From a practical perspective, this is rare and you 
could inspect file dates to tell the same thing, but cleaning is another path you can take.

A more common use of clean is to remove outputs from the project to make it smaller. 
You might want to compress a project or solution and e-mail it to another person, requiring 
that you minimize the size of the attachment. While code files normally compress very 
well, *.dll and *.exe files can take up some file space, even when added to a compressed 
file. If you perform a clean before compressing the files, you will use much less file space.

Managing Dependencies and Build Order
A dependency describes to VS which other projects a given project depends on to 
operate properly. For the example in this chapter, the ProjectDemo project references 
ClassLibraryDemo and uses the code in ClassLibraryDemo. Therefore, ProjectDemo has a 
dependency on ClassLibraryDemo. VS adds this dependency automatically, which is good 
because when VS builds your solution, it will keep all projects up-to-date. VS manages a tree 
of dependencies. Whenever you perform a rebuild, VS looks at the dependency tree and builds 
all projects that don’t have dependencies. Then, VS builds all projects that depend on the last 
set of projects that were rebuilt. This process continues until the entire solution is rebuilt and all 
projects at the top of the tree reference updated versions of all referenced projects.

You can manually manage dependencies by right-clicking a project or the solution 
in Solution Explorer and selecting Project Dependencies. Figure 5-8 shows the Project 
Dependencies window.

In the Project Dependencies window, you can select (from the drop-down list) the 
project to set dependencies upon. There is a list of projects that you can set dependencies on. 
As shown in Figure 5-8, the ProjectDemo project has a dependency on ClassLibraryDemo. 
VS created this dependency automatically.

Project dependencies directly affect the build order of a project. If you recall from the 
previous discussion, projects that have dependencies upon them will be built before the 
depending projects. From the Project Dependencies window, shown in Figure 5-8, you can 
click the Build Order tab to manage the order of the build. You could also get to the Build 
Order tab by right-clicking a project or the solution in Solution Explorer and selecting 
Project Build Order. You can see the Build Order tab in Figure 5-9.



 132 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 5-8 Project Dependencies window

Figure 5-9 The Project Build Order tab



 Chapter 5: Creating and Building Projects 133

CAUTION
Don’t alter project dependencies unless you really know what you are doing. The results 
could be severe in that it can take a long time to fix dependencies in a large project. 
The automatic dependency management provided by VS is very dependable, and you 
should rely upon it whenever possible.

Managing Compilation Settings
The project property pages include a tab for compiler settings. You set compiler settings 
for each individual project. Figure 5-10 shows the C# tab, which you can open by double-
clicking the Properties folder on a project. Some of these settings are advanced topics that 
are out of the scope of this book. For example, this book doesn’t discuss COM Interop, 
unsafe code generation, or serialization assemblies. I’ll simply mention the setting with a 
quick explanation so that you’ll know it’s there if you ever run into one of these scenarios 
in the future.

The DEBUG and TRACE compilation constants enable you to use the Debug and 
Trace classes, respectively, that are members of the .NET Framework System.Diagnostics 

Figure 5-10 C# Compiler Options



 134 Microsoft Visual Studio 2010: A Beginner’s Guide

namespace. You can also build code that depends on your own custom constants by 
adding your own constants to the Conditional Compilation Symbols box as a comma-
separated list of strings.

C# allows you to write code that is classified as unsafe, meaning that you can use 
pointers and other features in an unsafe context. Unsafe code is still managed code 
(managed by the CLR). However, the CLR can’t verify that the code is safe because 
unsafe code can contain pointers. This is an advanced feature and the box is unchecked, 
ensuring that you must check it to opt in to enable this type of coding.

All warning messages are associated with a level, and the Warning level is set to 4 by 
default, which includes all compiler warnings. Setting this to a lower level would suppress 
the display of all warnings at that level or higher. You can also suppress specific warnings 
by adding them to a comma-separated list in the Suppress Warnings box. You really 
shouldn’t suppress warnings, as this setting could cover up an error that would be hard to 
detect otherwise.

When you build an application, your program will run even if warnings are present but 
will not run if the compiler encounters errors. Sometimes warnings are so important that 
you might want to treat them as errors, and the Treat Warnings As Errors section gives you 
flexibility in handling warning-as-error scenarios.

The output path of an application defaults to bin\Debug under the project folder for 
Debug builds and bin\Release for release builds. You can change this location if you like.

Checking the XML Documentation file will cause XML Documentation comments 
to be extracted from your code into an XML file that you specify. Checking this box 
increases the time of the build process, so you won’t necessarily want to leave it on during 
Debug builds, when you are doing most of your coding. The XML documentation file can 
be input into third-party tools that automatically build technical documentation for you.

You would only check the Register For COM Interop box if you were building a .NET 
Assembly that was being called from a COM application.

If you’re doing XML serialization of types in an assembly, you can turn on the Generate 
Serialization Assembly to speed the serialization process.

C# has another group of settings on the Build Events tab. You can run code before or 
after the build for each project. You can set the conditions upon when the build occurs, 
which could be always, on a successful build, or only when an update occurs. The build 
events have a set of macros you can access that give you information on the current build 
process.

VB has options that are specific to the VB compiler on its Compile page, shown in 
Figure 5-11.



 Chapter 5: Creating and Building Projects 135

Most of the VB and C# compiler options are similar, except for Option Explicit, 
Option Strict, Option Compare, and Option Infer. In VB, variable declaration before use 
can be turned off. When Option Explicit is on, you must declare any variables before use. 
You can also assign any type to another by default, but Option Strict, if turned on, will 
force you to use code that performs a conversion from a larger type to a smaller type, 
often referred to as a narrowing conversion.

Option Compare causes comparison of strings to be done in a binary fashion. However, 
when working with different languages, you’ll want to consider changing Option Compare to 
text so that the comparison will consider culture-specific issues affecting string comparisons. 
Option Infer will allow a variable to assume its type based on what is being assigned to the 
variable, rather than explicitly declaring the variable type. Here’s an example of interred type 
on a variable:

Dim studentName = "Joe"

In this example, the type of "Joe" is clearly a String. Since Option Infer is turned on, this 
syntax is valid and studentName becomes a String because that is the type of the value 
being assigned.

Figure 5-11 The VB Compile Options page



 136 Microsoft Visual Studio 2010: A Beginner’s Guide

Navigating a Project with Class View
An alternate way to work with projects is via Class view, which allows you to view 
solutions and project artifacts through the logical layout of the code. In C#, you can open 
Class view by pressing CTRL-W, C or select Class View from the View menu. In VB you 
can open Class view by pressing CTRL-SHIFT, C or select View | Other Windows | Class 
View. Figure 5-12 shows the Class View window.

In Class view, you have a hierarchy of nodes that start at the project, include references 
and namespaces, and contain classes under those namespaces. Under each class you have 
Base Types, which contains a list of base classes derived from and implemented interfaces 
for that specific class. Notice how I selected the Student class in Figure 5-12, which shows 
the members of the class in the bottom pane.

As shown in the Class View toolbar, you can create new folders, use the arrows to 
navigate up or down the hierarchy, or choose options of what to display in the hierarchy. 
There is also a button with a glyph of objects that indicate how to create a class diagram, 
which is discussed in the next section.

Figure 5-12 The Class View window



 Chapter 5: Creating and Building Projects 137

Using the Class Designer
When working with a project, it can sometimes be helpful to have a high-level view of 
the project contents, especially if someone else has created the project and you haven’t 
worked with that project before. This is where the Class Designer can help. In addition to 
code visualization, another capability of the Class Designer is to give you a basic tool to 
perform some design yourself. We’ll look at visualizing existing classes first.

Class Designer Visualization
Whenever you select a project in Solution Explorer, you’ll see the Class Designer button 
appear in the Solution Explorer toolbar. The Class Designer button also appears on the 
Class View window. Clicking View Class Diagram will produce a diagram of classes in 
your solution, shown in Figure 5-13.

As you can see in Figure 5-13, VS produces a new file, named ClassDiagram1.cd, 
with a visual representation of your code. You can see that the properties window is open, 
allowing you to view information about the selected Program class. Additionally, the 

Figure 5-13 Visualizing code with the Class Designer



 138 Microsoft Visual Studio 2010: A Beginner’s Guide

Class Details window provides additional details on the members of the Program.cs class. 
Figure 5-13 is a minimal diagram of one class with a single method, Main, and you would 
have seen all of the classes in the current project if there were more. This could be a good 
way to help you learn about an existing base of code.

In addition to code visualization, you have the ability to perform some light design with 
the Class Designer, as discussed in the next section.

Class Designer Code Generation
The Class Designer allows you to generate code graphically. On the left-hand side of 
Figure 5-13, you’ll see a tab for the Toolbox. Hovering over that tab, you’ll see a group of 
images for code items, such as Class, Enum, Inheritance, and more. Figure 5-14 shows the 
results of using Toolbox items to enhance the existing Figure 5-14 diagram.

In Figure 5-14, you can see the Toolbox with options for what type of items you can 
add to a class diagram. Each of the Toolbox items matches some type of code that you 
would normally write. The class diagram itself has additional items, including an abstract 

Figure 5-14 Generating code with the Class Designer



 Chapter 5: Creating and Building Projects 139

class named Staff, a normal class named Teacher, an inheritance relationship where Teacher 
derives from Staff, and an association from Program to Staff.

To create a new object, drag-and-drop the object from the Toolbox to the Class 
Designer surface; you’ll see an input window similar to Figure 5-15.

The New Abstract Class window in Figure 5-15 is typical of most of the Class Designer 
objects you can add to a diagram where you fill in the initial data for naming the class and 
specifying the file the code will be added to. Not all Toolbox options work this way, though; 
associations and inheritance work by selecting the item in the Toolbox, selecting the object 
where the line begins in the Class Designer, and dragging the line to the object in the Class 
Designer being referenced.

The other two places you can modify data are in the Class Details and Properties 
windows. You can see how I added the GradePapers method in Class Details. You can add 
members to an object yourself by clicking the object in Class Designer, and then adding 
the member in Class Details. The GradePapers method also has a Summary comment for 
documentation and a parameter named papers with a type of List<string>.

The Properties window is context-sensitive, showing you what options are available 
for whatever you have selected in the Class Designer. In Figure 5-14, the Teacher class is 
selected in Class Designer and the Summary property in the Properties window was filled 
in with a comment. Listing 5-3 shows the code from the Teacher.cs (Teacher.vb in VB) 
file that was generated after all of these actions in the graphical designer.

Figure 5-15 Adding a new object to the Class Designer



 140 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 5-3  Code generated from the Class Designer

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ProjectDemo 
{ 
    /// <summary> 
    /// Teaches Classes 
    /// </summary> 
    public class Teacher : Staff 
    { 
        /// <summary> 
        /// Grade student papers 
        /// </summary> 
        /// <param name="papers">Papers to grade</param> 
        public void GradePapers(List<string> papers) 
        { 
            throw new System.NotImplementedException(); 
        } 
    } 
}

VB:

''' <summary> 
''' Teaches Classes 
''' </summary> 
Public Class Teacher 
    Inherits Staff 
 
    ''' <summary> 
    ''' Grade student papers 
    ''' </summary> 
    Public Sub GradePapers(ByVal papers As List(Of String)) 
 
    End Sub 
 
End Class

As shown in Listing 5-3, code generated from the Class Designer includes default using 
directives and the namespace as specified in project properties. The class name, Teacher, 



 Chapter 5: Creating and Building Projects 141

is the same as the visual object in the class diagram, and the GradePapers method is the 
same as specified in the Class Details window. You can also see the comment on Teacher 
as specified in the Property window. All that’s left for you to do is replace the call to throw 
new System.NotImplementedException with your own code in C# or just add your code to 
GradePapers in VB.

Summary
You should now know how to create a solution and a project. You can set project 
properties and add new members to projects. Additionally, you are able to add class 
libraries to a project and reference those class libraries from other projects that use those 
libraries. If you prefer a more formal design process, VS offers the Class Designer, which 
you learned to use for both visualization and code generation. The next chapter builds 
upon the coding process with VS by showing you how to debug code.



This page intentionally left blank 



143

Chapter 6
Debugging with  
Visual Studio



 144 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Exploring Available Debugging Tools

● Setting Breakpoints

● Inspecting Program State

● Solving Problems with VS Debugging Tools

More often than we would like, our code has bugs. Fortunately, when bugs do happen, 
you have a lot of help with VS. This chapter shows you how to use the VS debugger 

to fix problems by setting breakpoints, stepping through code, and inspecting program 
state. There’s also a section on development-time tools to inspect the structure of your 
code. Beyond setting breakpoints, you’ll learn how to customize breakpoints and how 
to manage a list of breakpoints. Then you’ll see the options VS has for stepping through 
code. This chapter also shows you many ways to see what the values of variables are in 
your code and the various tools available for inspecting your code. First, we’ll start with 
some example code you can use to practice the concepts learned in this chapter.

Example Code for This Chapter
It would take many pages of code to show a complete program with all of the complexity 
of a real-world scenario, which might be hard to follow for the purposes of this chapter. So, 
the example you’ll see simulates the environment of a full application. When performing 
debugging, you’ll need to traverse hierarchies in code, where one method calls another, 
which could go multiple levels deep, depending on the program. The example code will 
have multiple levels of method calls so that you can see how to use VS to debug code.

Listing 6-1 shows the example code for this chapter. It’s a console application, just 
like all of the applications created in previous chapters. You create a console project by 
selecting File | New | Project, select the Console Application project, give the project a 
name, and generate the project by clicking OK. The application in Listing 6-1 calculates 
a discount for a customer, based on a special discount percentage for that customer and 
what that customer ordered.



 Chapter 6: Debugging with Visual Studio 145

Listing 6-1  Example code for chapter

C#: Program.cs

using System; 
 
namespace DebugAndTestDemo 
{ 
    class Program 
    { 
        static void Main() 
        { 
            Customer cust = new Customer(); 
            cust.Discount = .1m; 
 
            Order ord = new Order(); 
            ord.AddItem(5.00m); 
            ord.AddItem(2.50m); 
 
            cust.Order = ord; 
            decimal discount = cust.GetOrderDiscount(); 
 
            Console.WriteLine("Customer Discount: {0}", discount); 
            Console.ReadKey(); 
        } 
    } 
}

C#: Customer.cs

namespace DebugAndTestDemo 
{ 
    class Customer 
    { 
        public decimal Discount { get; set; } 
        public Order Order { get; set; } 
 
        public decimal GetOrderDiscount() 
        { 
            return Order.Total * Discount; 
        } 
    } 
}

C#: Order.cs

using System.Collections.Generic; 
 



 146 Microsoft Visual Studio 2010: A Beginner’s Guide

namespace DebugAndTestDemo 
{ 
    class Order 
    { 
        private List<decimal> orderItems = new List<decimal>(); 
 
        public decimal Total 
        { 
            get 
            { 
                decimal amount = 0; 
 
                foreach (var item in orderItems) 
                { 
                    amount = amount + item; 
                } 
 
                return amount; 
            } 
        } 
 
        public void AddItem(decimal amount) 
        { 
            orderItems.Add(amount); 
        } 
    } 
}

VB: Module1.vb

Module Module1 
 
    Sub Main() 
        Dim cust As Customer = New Customer() 
        cust.Discount = 0.1D 
 
        Dim ord As Order = New Order() 
        ord.AddItem(5D) 
        ord.AddItem(2.5D) 
 
        cust.Order = ord 
 
        Dim discount As Decimal = cust.GetOrderDiscount() 
 
        Console.WriteLine("Customer Discount: {0}", discount) 
        Console.ReadKey() 
    End Sub 
 
End Module



 Chapter 6: Debugging with Visual Studio 147

VB: Customer.vb

Class Customer 
    Property Discount As Decimal 
    Property Order As Order 
    Function GetOrderDiscount() As Decimal 
        Return Order.Total * Discount 
    End Function 
End Class 
VB: Order.vb 
Class Order 
    Private orderItems As New List(Of Decimal) 
 
    Public ReadOnly Property Total() As Decimal 
        Get 
            Dim amount As Decimal = 0 
 
            For Each item In orderItems 
                amount = amount + item 
            Next 
 
            Return amount 
        End Get 
    End Property 
 
    Sub AddItem(ByVal item As Decimal) 
        orderItems.Add(item) 
    End Sub 
End Class

A quick look at the code in Listing 6-1 tells you that this program is more sophisticated 
than the examples you’ve encountered in previous chapters. To understand what is happening, 
start at the Main method, the entry point of the application. There are two objects instantiated 
in Main, namely Customer and Order.

After instantiating Customer, you can see that the Discount property on cust is being 
set to .1 (10%). This means that each instance of Customer can have a unique discount 
amount, which could be useful if you wanted to reward good shopping habits.

Next, you can see the instantiation of Order and subsequent calls to AddItem on the  
object reference ord. This code only adds the order amount, but in a real scenario it 
would likely be a class with more fields to carry the specific details of the order item. The 
Customer class has an Order property, which the code then passes our Order instance, 
ord, to. Now, you have a Customer with a discount amount and it has a reference to our 
specific Order, which in turn has items (represented here by the items’ monetary amount 
only for brevity).



 148 Microsoft Visual Studio 2010: A Beginner’s Guide

This program calculates the total monetary discount that a customer would receive for that 
order by calling the GetOrderDiscount method on the Customer instance, which then returns 
the calculated discount amount to be subsequently displayed on the console. Essentially, we 
created a couple of object instances, cust and ord, gave the object instances the data they 
needed, and told the object instances to do some work for us. The result is a special discount 
monetary amount for a given customer, based on the customer’s items ordered.

All of the code in the Main method is at the first level of the call hierarchy. The 
methods and properties in Customer and Order are at the second level of the hierarchy. 
Looking at Order, you can see that there is a Total property and an AddItem method. 
AddItem adds the item parameter to its orderItems collection. Total iterates through the 
orderItems collection, first calculating then returning the sum of all items. Notice that the 
Customer class has a Discount property that holds a decimal value that will be used as a 
percentage. The GetOrderDiscount method in Customer multiplies the Discount by the 
Total in Order to return the discount of the order.

It’s important for you to study this example and understand the relationships and 
communication between various objects. Observe that each class has a distinct purpose, 
relating to how it is named. The purpose of the class helps decide what data and methods 
that class will have; Order has Total and AddItem, and the class Customer has Discount 
and GetOrderDiscount. Each object communicates with other objects, cooperating 
to perform a task. For example, it is Customer’s responsibility to calculate a discount 
because the Customer class knows what the discount should be (because we told it what 
the discount was in Main). However, Customer must communicate with Order because 
Order is the only object that knows about the order items and how to calculate the total.

Although I’ve shown you the code and explained how it works, it’s often useful to see 
the flow of logic of the actual running program yourself. VS includes various visualization 
and debugging tools that help you understand the flow of logic, which are discussed next.

Development-Time Code Tools
One of the new features of VS 2010 is Call Hierarchy, which allows you to see what 
code calls a method and which methods are being called by your code. First, I’ll explain 
why call hierarchy is important, and then I’ll show you how to use it. Figure 6-1 shows 
what the Call Hierarchy window looks like, and the following discussion will explain the 
motivation for and use of the Call Hierarchy feature.

The call hierarchy tells you several things about code, including the degree of reuse, 
impact of a change, and potential importance of a routine. To help understand the discussion, 
a call site is code that invokes another class member. For example, in Listing 6-1, the Main 
method is the call site and the GetOrderDiscount method is the called code.



 Chapter 6: Debugging with Visual Studio 149

From the perspective of reuse, many call sites to a method could indicate that the 
method is relatively generic and reusable. While a low number of call sites might not 
indicate the reusability of a method, zero call sites certainly indicates that the method is 
not being used and can potentially be eliminated.

A lot of call sites could also indicate that a change to a method can have a significant 
impact. Looking at the number of call sites that a method has could be informative from 
the perspective of passing different values or seeing how many changes will be required in 
called methods.

The previous discussion is to help you understand how call hierarchy might be 
useful. Now, let’s look at how call hierarchy works. First, remember that call hierarchy 
is context-sensitive, meaning that whatever code in the editor has focus defines your 
point of view. The point of view for this example will be the GetOrderDiscount method 
in the Customer class, and we want to see the call sites of GetOrderDiscount and what 
statements inside of GetOrderDiscount are call sites. To use call hierarchy, either right-
click the GetOrderDiscount method in the editor and select View Call Hierarchy, or select 
GetOrderDiscount in the editor and press CTRL-K, T. VS shows the Call Hierarchy window 
in Figure 6-1.

The Call Hierarchy window in Figure 6-1 shows Calls To and Calls From for the 
GetOrderDiscount method. Calls To is a list of call sites to the GetOrderDiscount method. 
Calls From is a list of statements within GetOrderDiscount that are call sites for other 
class members.

The drop-down list at the top left of Figure 6-1, with My Solution selected, identifies 
how far Call Hierarchy will look to find Calls To and Calls From call sites. The options 
are My Solution, Current Project, and Current Document, which are self-explanatory.

Figure 6-1  The Call Hierarchy window



 150 Microsoft Visual Studio 2010: A Beginner’s Guide

If you’ve been working on your code and want to update the Call Hierarchy window, 
click Refresh. Every time you view Call Hierarchy, the selected item is added to the list. You 
can use the Remove Root button to delete an item from the list. The Toggle Details Pane 
button shows and hides the Details pane, which shows the code and location of the call site. 
In Figure 6-1, the Main method is selected, which shows the call to GetOrderDiscounts off 
the cust instance of Customer from Listing 6-1. The actual code line is shown also. You can 
double-click the statement to navigate the editor to the location of that statement. In fact, you 
can double-click any call site in the Call Hierarchy to navigate to the location of the call site 
in the editor.

The Call Hierarchy shows all of the possible paths you can take through a specific 
point in code. While quite useful, it’s limited to providing a static view of your code, and 
it does not provide the detailed insight into your running program that debugging may 
require. When debugging, you typically need to view the running state of an application at 
a specific point in time. The following sections show you various features of the debugger 
that help you inspect the runtime behavior of code.

Configuring Debug Mode
By default, VS creates projects with Debug mode enabled, which specifies project settings 
that make it possible for you to debug your application. The VS toolbar shows you the 
current configuration settings you’re using; clicking the drop-down list will show Debug 
and Release configurations. The Release configuration defines settings for your program 
that you want to use when you deploy it for production (actual) use. You can also create 
a custom configuration that allows you to set project properties how you want. For the 
purposes of this chapter, we will use the Debug configuration.

To understand what the Debug configuration gives you, ensure that the Debug configuration 
is selected in the toolbar; you’ll need to have a project open to do this. Then double-click the 
properties folder of your project and click the Build tab as shown in Figure 6-2.

Figure 6-2 shows that optimizations are turned off and both TRACE and DEBUG are 
defined. Figure 6-2 shows the properties for a C# project, but in VB, the tab is called 
Compile. When optimizations are turned on, the compiler will perform extra processing 
on the code that makes it smaller and faster, altering the structure of the code. When 
debugging, you don’t want optimizations because you need the code you’re stepping 
through to match what the compiler produces. Compiler constants (also known as 
compiler directives) such as TRACE and DEBUG are used by the compiler to enable or 
disable blocks of code. For example, the System.Diagnostics namespace has a Debug 
class that will only work if DEBUG is defined.



 Chapter 6: Debugging with Visual Studio 151

Do a build of your application, which will produce various files suitable for debugging. 
To view these files, right-click the solution, project, or folder in Solution Explorer and 
select Open Folder in Windows Explorer. Then navigate to the bin\Debug folder, which 
should look similar to Figure 6-3.

There are four files in Figure 6-3, two for the application and two to support running 
in the debugger. DebugAndTestDemoCS.exe is the executable console application, which 
you might have already expected. A *.pdb file is a symbol file that helps synchronize the 
identifiers in your code with the executable file, making it easier to step through code with 
the VS debugger.

There are two files with vshost in their name, which are instrumental to the debugging 
process. A *.vshost file makes your application load faster during debugging, gives you 
the ability to test your application with different security configurations, and allows you to  
evaluate expressions while debugging. The vshost files are for debugging only, so you 

Figure 6-2  The Build (C#) and Compile (VB) Properties tab



 152 Microsoft Visual Studio 2010: A Beginner’s Guide

should not deploy them with your application; they would just take up extra space and not 
serve a purpose. You normally want vshost files in place when debugging in VS. There 
are various debugger settings you can configure in VS that affect your session and modify 
the vshost configuration files. Open the properties page and click the Debug tab, shown in 
Figure 6-4.

In Figure 6-4, you can see that the Configuration is set to Debug and the Platform is 
set to x86. The Platform target can be Any CPU, x86, x64, or Itanium, depending on the 
CPU you are building the application on. The compiler will perform optimizations for 
the CPU type you select. If you’re running VS on a 64-bit operating system, your Active 
solution platform may show as Active (Any CPU).

The Start Action section of the Debug tab determines how the debugging session begins. 
Start Project is the default, Start External Program allows you to attach your VS debugging 
session to an already-running application, and Start Browser With URL lets you debug a 

Figure 6-3  The Debug Output folder



 Chapter 6: Debugging with Visual Studio 153

Web application. Generally, you’ll only use Start Project for a desktop application. The 
property pages change for Web applications, which automatically run in a browser. 

You can add a space-separated list of values for command-line arguments. If you’re 
building an application that needs to be run from a command window or from a command 
script, this method is very useful to test and debug a specific command-line configuration. 
You can then read the values you’ve entered into the Command Line Arguments text box 
by reading them from the args array passed to the Main method.

A working directory is the root location of where your program reads and writes files. 
By default, this location is bin\Debug for Debug configurations and bin\Release for Release 
configurations. You can change the working directory location by putting a file path in the 
Working Directory property box.

Use Remote Machine is an advanced scenario where you can debug an application 
running on a remote machine. To do this, you would need to install remote debugging 
software on the remote machine, ensure the Output path of the Build tab of the Properties 

Figure 6-4  Debug properties



 154 Microsoft Visual Studio 2010: A Beginner’s Guide

window specifies the location of the executable file of the program to be debugged, that 
the output folder is shared, and that your application has permissions on the shared folder.

The focus of this book is on managed code, which runs on the .NET CLR. VS has the 
ability to debug unmanaged code, such as that written in C++ that communicates directly 
with the operating system. Generally, you want to leave the Enable Managed Code 
Debugging box unchecked unless you are writing managed code that interoperates with 
unmanaged code, such as a COM DLL library, and need the ability to debug both. VS will 
allow you to open SQL Server stored procedures, set a breakpoint, and step through the 
stored proc code for debugging. If you need to debug stored procedures, make sure you 
check this box.

NOTE
Managed code refers to code that runs on the .NET Common Language Runtime 
(CLR). The CLR is a virtual machine that provides several services such as memory 
management, code execution, garbage collection, security, and more. In contrast to 
managed code, there is also code that is called unmanaged code. Unmanaged code 
does not use the .NET CLR; instead it runs directly on the computer and communicates 
with the operating system. With unmanaged code, you must manage your own memory 
and write low-level code to accommodate all of the services that the CLR would normally 
give you. You can use VS to write unmanaged code in C++, but this book focuses on  
C# and VB, which produce executable files that run managed code on the CLR.

The Enable The Visual Studio Hosting Process setting is what caused the vshost files 
to be generated in the output folder. Normally, you want to leave this box checked because 
of the benefits of vshosts, described previously. The only exception might be if you had 
a unique situation where the services provided by the vshosts process conflicted with the 
code you were running, which would be an advanced and rare scenario.

TIP
In earlier versions of VS, you would occasionally get a file permission error on the 
vshosts file, which was caused by the fact that there were file locks on the file. This 
can occur if you have attached to the running process from another instance of VS 
or the process shut down improperly in a sequence that didn’t release the file lock on 
vshosts. One of the work-arounds is to uncheck the Enable The Visual Studio Hosting 
Process box, rebuild, recheck the Enable The Visual Studio Hosting Process box, and 
build again. You also have the choice of restarting your OS, whichever you find easier. 
This scenario doesn’t point to a deficiency in VS or the operating system, because 
the file locks are necessary when an application is running. Rather, the scenario is a 
consequence of having a bug in your code or improperly shutting down an application.

In addition to property settings, you have a plethora of options available via the Options 
window, which you can open by selecting Tools | Options, as shown in Figure 6-5.



 Chapter 6: Debugging with Visual Studio 155

As you can see in Figure 6-5, there are a variety of options that allow you to configure 
debugging. The primary difference between project settings and Options settings is that 
project settings are for that one project, but Options settings let you change the settings for 
all projects and have those settings, when applicable, apply to any new projects you create. 
Therefore, if there are default settings you want on all projects, visit the Options settings 
to set them first. The options are much too numerous to list here, and many of them deal 
with advanced scenarios that are out of scope of this book. If you ever have a question 
about whether a capability is available or if you need to save settings, you should visit the 
Options window to see if that capability is available. Now that your system is configured 
for debugging, you can set breakpoints and start the debugging process.

Setting Breakpoints
Breakpoints are places in your code where you want the program to automatically pause 
from running, similar to when you push the pause button while watching a movie with 
your home DVD or Blu-ray player. Once your program hits (stops on) your breakpoint, 
you will be able to perform debugging tasks, which could be viewing the values of 
variables at this frozen point in time (program state), evaluating expressions, or editing 
code and continuing execution. The following discussion shows you how to create and 
manage breakpoints in your application.

Figure 6-5  Debugging options



 156 Microsoft Visual Studio 2010: A Beginner’s Guide

Creating a Breakpoint
To create a breakpoint, you need to open a project and have a code file open in the editor. A 
good project choice would be the example application with code from Listing 6-1. In the VS 
editor, there is a margin on the left side. If you click in this margin, VS will set a breakpoint 
on the matching code statement. Clicking a statement in code to give it the focus and pressing 
F9 sets a breakpoint too. You’ll see a red dot in the margin and the matching statement 
highlighted in red, as shown in Figure 6-6. Note that you may only set a breakpoint on code 
that actually gets executed at runtime. If you try to select a line of code that does not, such 
as a namespace name definition, the red dot will not appear and you’ll see a message at the 
bottom of VS saying, “A breakpoint could not be inserted at this location.”

To ensure VS stops on a breakpoint, the application must be running in debug mode. 
You can start the program running in debug mode by selecting Debug | Start Debugging, 
pressing F5, or clicking the Start With Debugging toolbar button (the one with the green 
arrow). The breakpoint in Figure 6-6 is on the call to GetOrderDiscount in the Main 
method. When the program hits the breakpoint, the breakpoint line will turn yellow and 
there will be a yellow arrow on the red dot in the margin. Clicking the Continue button 
(which is the same green arrow button used to start debugging) or pressing F5 will cause 
VS to resume execution. Any time you want to stop debugging, select Debug | Stop 
Debugging, press F5, or click the Stop Debugging toolbar button (small blue square).

Figure 6-6  A breakpoint



 Chapter 6: Debugging with Visual Studio 157

TIP
If you write a program that is doing a lot of work, or very little work but is stuck in 
an endless loop that you inadvertently created, you can pause execution by selecting 
the blue pair of vertical bars button found to the left of the square blue stop button. 
When you do this, your program stops at whatever line of code it was executing at the 
moment you selected the pause button. You can then resume from that point. This button 
works much like the pause button on a remote control or a personal media player.

Customizing a Breakpoint
The preceding explanation described how to set a location breakpoint, where execution 
stops on a designated line in code. However, you can make a program stop executing 
based on various criteria, such as hit count, conditions, and more. To see what else is 
available, set a location breakpoint and then right-click the dot in the margin to view 
the context menu. Table 6-1 describes each of the breakpoint options available from the 
breakpoint context menu.

You can also set a function breakpoint by clicking on the method to break on and 
selecting Debug | New Breakpoint | Break At Function or pressing CTRL-D, N.

Table 6-1  Options from the Breakpoint Context Menu

Option Meaning
Delete Breakpoint Removes the breakpoint.

Disable/Enable 
Breakpoint

If you don’t want to delete the breakpoint because you’ll use it again, you can 
disable the breakpoint and then enable it later when you want to use it again.

Location This is set when you click in the margin. You can change features of the location 
through a dialog window.

Condition Allows you to enter an expression that can cause the program to stop if either the 
expression evaluates to true or the value of a variable has changed. The expression 
is based on variables in your code.

Hit Count Makes the program break on that line every time, after a number of times the line 
has executed, when the count is a multiple of a number (i.e., every nth time), or 
when the number of hits is greater than or equal to a number.

Filter The breakpoint will only be hit (causing execution to pause) for any combination of 
machine, process, or thread choice that you set.

When Hit Sets a tracepoint that prints a message to the output window. The message is 
configurable to include output of various system values like function, thread, and 
more. You can view the message in the Output window by selecting View | Output 
Window or pressing CTRL-ALT-O. You also have the option of running a macro when 
the breakpoint is hit.

Edit Labels You can associate breakpoints with labels to help organize breakpoints into groups.

Export Lets you export breakpoints into an external XML file.



 158 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 6-7  The Breakpoints window

Managing Breakpoints
Over time, breakpoints can be set across many locations in your project. You can manage 
all of these breakpoints in a central location by selecting Debug | Windows | Breakpoints, 
which will show the window in Figure 6-7.

Much of the functionality of the Breakpoints window has been explained already, 
except that the toolbar options apply to all of the breakpoints that are currently checked. 
Clicking a column sorts the contents. The Search box helps you filter breakpoints, and the 
In Columns box helps focus on what the search applies to. There are export and import 
buttons on the toolbar that allow you to respectively save and retrieve breakpoints to 
and from an XML file. Double-clicking any breakpoint takes you to the location in the 
editor where the breakpoint is set. Right-clicking a breakpoint shows a context menu with 
options that have already been discussed in this section.

Once you set a breakpoint, you can step through code to see what the execution flow 
of the program is, as is discussed in the next section.

Stepping Through Code
Stepping through code is the process of executing one or more lines of code in a controlled 
manner. At the most granular level, you can step through code line-by-line. While moving 
line-by-line is often necessary, it could also be cumbersome, so there are ways to step over 
multiple lines of code, allowing them to silently and quickly execute.

To step through code, open a project, set a breakpoint, and run with debugging until 
the program hits the breakpoint. At that point in time, you can perform various operations 
such as step, step over, and step out. Table 6-2 explains the stepping operations that are 
available. The explanations in the table assume that a breakpoint has been hit with your 
executing program now paused before performing the step operation.



 Chapter 6: Debugging with Visual Studio 159

Operation Explanation
Step Over Executes the code in the current line and moves to the next line of code where 

it again pauses, waiting for your instruction. Perform a Step Over by selecting 
Debug | Step Over, pressing F10, or clicking the Step Over button in the toolbar. 
You can also right- click and select this option. Most Visual Studio developers will 
have the F10 shortcut memorized in short order.

Step Into Specific When the current line is on a method call, a Step Into will move control to the first 
line of the method being called and execution will pause there. Perform the Step 
Into by selecting Debug | Step Into, pressing F11, or clicking the Step Into button in 
the toolbar. F11 is the fastest way for you to do this operation.

Step Out If you’re in a method, you can move back to the caller by performing a Step Out 
operation. Perform a Step Out by selecting Debug | Step Out, pressing SHIFT-F11, or 
clicking the Step Out button on the toolbar. Note that no lines of code are skipped 
inside the function; they still run following your program’s logic. Your program will 
automatically pause at the line of code following this function’s return.

Run to Cursor Sometimes you want to execute a block of code and stop at a certain line. You 
could set another breakpoint and run until you hit the breakpoint. However, a 
quicker way when you don’t want to keep a new breakpoint around is to right-click 
the line you want to stop at and select Run To Cursor. Again, no lines of code are 
skipped; the program will merely pause when it gets to the line you placed your 
cursor on. Optionally, you can click the line to run to and press CTRL-F10. This is 
particularly useful if you don’t feel like stepping through every iteration of a loop.

Set Next Statement You can skip forward and backward over multiple lines of code without executing 
the skipped code. For example, it’s easy to step over a method, only to realize 
that you really wanted to step into that method. You don’t want to restart the 
application unless you need to. To get back to that line of code so that you can 
step into the method call, select the yellow arrow in the margin and drag it back 
up to the method call. Then you can do a Step Into. Alternatively, if you have one 
or more statements that you don’t want to execute, drag the yellow arrow in the 
margin to the statement following the code you don’t want to run and then use 
stepping operations to resume your debugging session. This technique is also 
quite handy when you are using the Edit and Continue feature, where you can 
change your program on the fly, experiment with different coding ideas you may 
have, and rerun those lines of code instantly. Note that VS does not reset variables 
back to initial states, so you may have to manually reset values in order to get the 
results you expect.

Table 6-2  Step Operations

A Step Over operation executes the code in the current line and moves to the next. You 
can perform a Step Over by selecting Debug | Step Over, pressing F10, or clicking the Step 
Over button in the toolbar.

You now know how to step through code, which is useful. However, the ability to see 
the values of variables and watch them change is an important skill, which you learn about 
in the next section.



 160 Microsoft Visual Studio 2010: A Beginner’s Guide

Inspecting Application State
Application state is the value of variables in your code, the current path of execution, or 
any other information that tells you what your program is doing. While debugging, it’s 
important to be able to view application state and compare what is really happening to 
what you expected to happen. VS gives you various windows for viewing application 
state, which you’ll learn about in this section.

NOTE
When inspecting the state of your application, you’ll need to keep the concept of scope 
in mind. When a variable is in scope, you will be able to see the variable’s value. Scope 
is defined within a block. In C#, the block is defined with curly braces, and VB defines 
a block with begin and end statements. A couple examples of scope involve class fields 
and local variables. A private class field would be in scope for all the methods of that 
class but not in another class. A local variable would be in scope for all statements 
of the method it is defined in, but would be out of scope for other methods. Another 
scenario is a for loop that defined a variable in its body—the variable would be in 
scope for the body of the loop but out of scope outside of the loop body.

Locals and Autos Windows
The Locals and Autos windows show you the variables in your system at the current 
breakpoint. Locals gives you a list of all variables that the current statement could access 
(also referred to as in scope). The Autos window shows variables from the current and 
previous lines. You can open the Locals and Autos windows from the Debug | Windows 
menu when your VS debug session is active and paused at a breakpoint. These windows 
may have already been placed for you at the bottom left of Visual Studio next to the 
Output window if you’ve not rearranged your VS layout.

As shown in Figure 6-8, the Locals window shows all of the variables in scope for 
the Main method from Listing 6-1. The Locals window is a coarse-grained view, and the 

Figure 6-8  The Locals window



 Chapter 6: Debugging with Visual Studio 161

list can be quite long, depending on how many variables are in scope. You would want to 
use the Locals window to find any variables being affected by the current algorithm. In 
comparison, Figure 6-9 shows the Autos window.

Notice that the Autos window provides a more fine-grained view of both variables and 
the properties of objects from the current and previous lines. You would want to use Autos 
for a more targeted view of what is currently happening in the code.

Watch Windows
A Watch window allows you to create a custom list of variables to watch. You can drag 
and drop variables from the editor or type a variable name in the Watch window. Selecting 
Debug | Windows | Watch will display a list of four Watch windows, where you can have 
four different sets of data to inspect at one time. Figure 6-10 shows a Watch window with 
a variable.

Figure 6-9  The Autos window

Figure 6-10 The Watch window



 162 Microsoft Visual Studio 2010: A Beginner’s Guide

The Locals and Autos windows can sometimes become crowded with too many 
variables and slow you down as your code gets more complex, especially when the 
variables you’re interested in are at the bottom of the list or so far apart that you must 
scroll between them. Another benefit of the Watch window is that you can drill down 
into an object to show a value without continuously expanding the tree view. An 
example of this is to type cust.Order.Total as shown in Figure 6-10, to see the results 
of the Totals property of the Order property of the cust instance. In addition, you 
can edit the values of your variables and properties in this window by either double-
clicking the current value shown in the Value column or right-clicking the variable 
name and choosing Edit. When the value changes, it changes color from black to red to 
let you know it has changed. This technique of editing your values on the fly comes in 
quite handy, especially when you find yourself sliding the yellow arrow up to previous 
lines of code in order to re-run them without restarting your program. These techniques 
should prove to be a huge time saver.

The Immediate Window
While debugging, it’s often useful to type an expression to see the results at the current 
time. The Immediate window allows you to type in variable names and many other types 
of statements. You can access the Immediate window by selecting Debug | Windows, or it 
may open for you automatically during debugging at the bottom-right side of VS. You can 
see the Immediate window being used in Figure 6-11.

The Immediate window in Figure 6-11 has three statements, showing that you can 
read a property, execute a method, or evaluate an expression. I typed these statements in 
myself, and you can do the same, writing nearly any code you want.

When evaluating an expression in VB, prefix the statement with a question mark, ?.

Figure 6-11 The Immediate window



 Chapter 6: Debugging with Visual Studio 163

The Call Stack Window
If you recall from the previous section on design-time tools, the Call Hierarchy window 
gives you a view of the code at design time. On a related note, you also have the ability to 
view the path of execution during runtime via the Call Stack window. During debugging, 
you may find the Call Stack window already open on the right-bottom of VS in a tab next 
to the Immediate window if you’ve not changed your layout and depending upon your 
initial VS environment setup. Otherwise, you can open this window by selecting Debug | 
Windows | Call Stack from the top menu bar. With the Call Stack window, you can view 
the current execution path of the application from Main to where your current line of 
execution is. Figure 6-12 shows the Call Stack window. To understand why it’s called a 
Call Stack, notice that each method call is stacked on the other with the current method at 
the top, the entry point at the bottom, and subsequent calls in between; it’s like a stack of 
plates where the last plate is at the top.

In the Call Stack window, shown in Figure 6-12, you can see that I’ve stepped into 
the GetOrderDiscount method. Double-clicking another method in the Call Stack window 
brings you to the call site where a given method was called. This is a very important and 
powerful tool because it allows you to visit calling code and inspect application state at 
the call site, giving you valuable information about how calculations were formulated 
before the current method was called.

The Quick Watch Window
The Quick Watch window allows you to quickly view an expression. It offers Intellisense 
when writing the expression, allowing you to reevaluate the expression and add the 
expression to a Watch window. You can open the Quick Watch window by selecting 
Debug | Quick Watch or pressing CTRL-D, Q. If you’ve selected an expression in the editor, 

Figure 6-12 The Call Stack window



 164 Microsoft Visual Studio 2010: A Beginner’s Guide

the Quick Watch window will show that expression. Figure 6-13 shows the Quick Watch 
window in use.

Clicking the Reevaluate button, shown in Figure 6-13, will show the results of 
evaluation in the Value area. The Value area will only hold the current expression. If you 
want to save an expression, click Add Watch, which will load the expression into a Watch 
window. Be aware that closing the Watch window will remove your expression, but the 
expression will be part of a history list that you can select from.

Watching Variables with Pin To Source
While debugging, you can hover over any variable to see its value, but when you move 
the mouse away, the tooltip with the value goes away. The Pin To Source feature goes 
a step further by displaying the value all the time. To use Pin To Source, right-click the 
variable and select Pin To Source. Alternatively, you can hover over the variable in the 
debugger and click the push-pin that shows with the tooltip. Figure 6-14 shows a pinned 
value.

Once you’ve pinned a value, you can continue debugging and scroll back up to 
the variable to read its current value. In addition to seeing the value, you can add a 
comment by clicking the chevron that appears when you hover over the pinned value. 
The pinned value is commented with “product of discount and sum of order items.”

Figure 6-13 The Quick Watch window



 Chapter 6: Debugging with Visual Studio 165

VS will locate the pinned value after the line, and you might not see the value if it 
occurs on a long line that exceeds the width of your screen. Fortunately, you can click the 
pinned value and drag it to where you want on the screen. To avoid confusion, remember 
to keep the pinned value located close to the variable whose value is displayed.

Right-click the pinned value to display a context-sensitive menu with options for Edit 
Value | Hexadecimal Display | Add/Remove Expression. Figure 6-14 shows how I added 
the expression (discount * 100) .ToString("p") to show the value as a percentage. Adding 
expressions can make the value more readable or allow you to add related expressions to 
see how the value produces other computed results on the fly.

You can close the pinned value by hovering over the pinned value and clicking the X 
(close icon).

Working with IntelliTrace
The IntelliTrace window gives you a view of all the changes that occurred in an application 
during a debugging session. As you step through code, the IntelliTrace window displays 
each step of your debugging session. Through the IntelliTrace toolbar, you can set the 
view for Diagnostic Events or Call View. Diagnostic events allow you to filter by Category 
or Thread. Clicking each of the items of the IntelliTrace window allows you to view 
application state at that point in time. Figure 6-15 shows you the IntelliTrace window.

Figure 6-14 A pinned value



 166 Microsoft Visual Studio 2010: A Beginner’s Guide

IntelliTrace could be useful if you stepped over a statement that changed the value of 
a variable and needed to go back to see what the variable value was before you stepped. 
Figure 6-15 shows this scenario, where the highlighted event, Breakpoint hit: Main, 
allows you to view Locals or Call Stack. The important distinction is that the values 
shown are for the point in time when that event occurred, not the current time, which can 
be very valuable information. Another important application of IntelliTrace is to inspect 
IntelliTrace log files that were produced by another developer or the new Microsoft Test 
and Lab tool that records a tester’s testing session.

You can configure IntelliTrace options by selecting Tools | Options | IntelliTrace. 
IntelliTrace will create a log file that exists as long as VS is running. When VS stops, the 
log file is deleted, so it’s important that you copy this file before shutting down VS. The 
location of the log file is on the Advanced branch of IntelliTrace in Tools | Options.

If you receive a log file from another developer, you can load it by selecting File |  
Open | Open New. Then you can view debugging history to view the state of the 
application during each event of the session.

Solving Problems with VS Debugger
Previously, you’ve seen how the VS tools work and gathered a few tips on debugging.  
This section builds upon what you’ve learned and steps you through a couple of real-world  
scenarios that demonstrate how to use the VS debugger to solve problems: finding and 

Figure 6-15 The Debug History window



 Chapter 6: Debugging with Visual Studio 167

handling bad data and fixing null references. The program itself is not particularly 
sophisticated, but it contains just enough logic to lead you down a rat hole and show you 
how to work your way out. First, we’ll look at the program, and then we’ll follow up with 
two bug-fixing exercises.

A Program with Bugs
The code in this section contains bugs, and it’s important that you type it in as listed or 
use the downloadable code for this book from the McGraw-Hill Web site. I’ll describe 
each piece of code and try not to give away all of the secrets of the bugs just yet. Later, I’ll 
guide you through a process of discovery to find and fix the bugs. The program is a search 
application that takes the first name of a person and searches for that person through a 
list of customers. If the program finds the customer being searched for, it will print the 
customer’s first and last name. Otherwise, the program will print a message stating that it 
did not find the customer.

The program is divided into three major parts: a class to hold customer information, 
a class that will return a list of customers, and the class containing the Main method that 
runs the program. The following sections describe each of these classes.

The Customer Class
Any time you are working with data, you’ll have a class to hold that data. Since this 
application works with customers, the natural approach is to have a Customer class,  
as follows:

C#:

public class Customer 
{ 
    public string FirstName { get; set; } 
    public string LastName { get; set; } 
}

VB:

Public Class Customer 
    Property FirstName As String 
    Property LastName As String 
End Class

This is the minimal information required for this demo, and any class that you build 
will have more properties. Notice that both properties are type string.



 168 Microsoft Visual Studio 2010: A Beginner’s Guide

The CustomerRepository Class
In this program, we create a class that is solely responsible for working with data. This is a 
common pattern, which is called the Repository pattern. The following CustomerRepository 
class has a method that returns a list of Customer objects:

C#:

using System.Collections.Generic; 
 
public class CustomerRepository 
{ 
    public List<Customer> GetCustomers() 
    { 
        var customers = new List<Customer> 
        { 
            new Customer 
            { 
                FirstName = "Franz", 
                LastName = "Smith" 
            }, 
            new Customer 
            { 
                FirstName = "Jean " 
            }, 
            new Customer 
            { 
                FirstName = "Wim", 
                LastName = "Meister" 
            } 
        }; 
 
        return customers; 
    } 
}

VB:

Public Class CustomerRepository 
    Public Function GetCustomers() As List(Of Customer) 
        Dim customers As New List(Of Customer) From 
            { 
                New Customer With 
                { 
                    .FirstName = "Franz", 
                    .LastName = "Smith" 
                }, 
                New Customer With 



 Chapter 6: Debugging with Visual Studio 169

                { 
                    .FirstName = "Jean " 
                }, 
                New Customer With 
                { 
                    .FirstName = "Wim", 
                    .LastName = "Meister" 
                } 
            } 
 
        Return customers 
 
    End Function 
End Class

The GetCustomers method returns a List<Customer> (List(Of Customer) in VB). For 
the purposes of this discussion, how the GetCustomers method works won’t matter. Such 
a method could easily get customers from a database, Web service, or other object. For 
simplicity, GetCustomers initializes a List with Customer objects. The part of this method 
that is particularly important is the customer whose FirstName property is set to “Jean ”.  
Notice the blank space appended to the name, which is required to make this scenario 
behave as designed (i.e., to intentionally create a bug). It’s also conspicuous that the 
Customer object with a FirstName property set to “Jean ” also does not have a LastName.

The Program with Bugs
The following is a search program that uses CustomerRepository to get a list of Customer 
objects. The logic will iterate through the results, checking to see if the result is equal 
to the search term. When the result is equal, the program prints the full name of the 
customer. If no matching customers are found, the program indicates that the customer 
wasn’t found:

C#:

using System; 
 
class Program 
{ 
    static void Main() 
    { 
        var custRep = new CustomerRepository(); 
 
        var customers = custRep.GetCustomers(); 
 
        var searchName = "Jean"; 
        bool customerFound = false; 
 



 170 Microsoft Visual Studio 2010: A Beginner’s Guide

        foreach (var cust in customers) 
        { 
            // 1. First Bug 
            if (searchName == cust.FirstName) 
            { 
                Console.WriteLine( 
                    "Found: {0} {1}", 
                    cust.FirstName, 
                    cust.LastName); 
                customerFound = true; 
            } 
        } 
 
        if (!customerFound) 
        { 
            Console.WriteLine("Didn't find customer."); 
        } 
 
        Console.ReadKey(); 
    } 
}

VB:

Module Module1 
 
    Sub Main() 
        Dim custRep As New CustomerRepository 
 
        Dim customers As List(Of Customer) 
        customers = custRep.GetCustomers() 
 
        Dim searchName As String = "Jean" 
        Dim customerFound As Boolean = False 
 
        For Each cust As Customer In customers 
            ' 1. First Bug 
            If (searchName = cust.FirstName) Then 
 
                Console.WriteLine( 
                    "Found: {0} {1}", 
                    cust.FirstName, 
                    cust.LastName) 
                customerFound = True 
 
            End If 
        Next 
 
 



 Chapter 6: Debugging with Visual Studio 171

        If (customerFound = False) Then 
            Console.WriteLine("Didn't find customer.") 
        End If 
 
        Console.ReadKey() 
 
    End Sub 
 
End Module

Notice that the searchName variable is set to “Jean”. Within the loop, the searchName 
is compared with the FirstName property of each Customer instance for equality. Here’s 
the output from when the program runs:

Didn't find customer.

What is supposed to happen is that the program should find the matching record and 
print it out, but that’s not what happens. Here is the first bug, and the following discussion 
describes how to find the cause of the bug using the VS debugger.

Finding the Bug
At this point, we know there is a bug and it’s reproducible, meaning that we can use VS 
to debug and find the cause of the problem. In this situation, the program is saying that it 
didn’t find a Customer record or, in other words, there is no record with a FirstName of 
Jean. However, we know for a fact that the data does include a customer whose FirstName 
is Jean. We need to find out why the program cannot find it. The following steps show 
how the VS debugger can help isolate the problem.

 1. Start by setting a breakpoint on the foreach loop in the Main method. This wasn’t an 
arbitrary decision. Instead, considering the nature of the problem, I selected a part of 
the program that is likely to begin providing a cue to what the problem is. Looking at 
the program, one of the reasons that the program might not find the searchName is that 
we aren’t getting data, causing the program to not execute the body of the foreach loop.

 2. Press F5 to run the program in debug mode. This will execute the program and make it 
stop on the foreach loop, making it possible to look at program state.

 3. After VS hits the breakpoint, hover over customers to see if there are any values. 
You’ll observe that customers does have three values. The fact that there are customers 
indicates that the foreach loop is executing and we’ve eliminated that as a possibility.



 172 Microsoft Visual Studio 2010: A Beginner’s Guide

 4. Next, set a breakpoint on the if statement, right-click the breakpoint, and set the 
condition as follows:

  C#:

cust.FirstName == "Jean"

  VB:

cust.FirstName = "Jean"

  The goal here is to see what happens when the if statement finds the record matching 
the searchName. At this point, we’re assuming that Jean does exist in the data. Working 
with a small program, you can use windows such as Autos, Locals, or Watch to find 
this record. However, many real-world scenarios will give you a list with many more 
records. Therefore, rather than waste time drilling down through dozens of records, use 
the VS debugger to help find the record quickly. Keep in mind that all the best plans 
don’t always work out, as you’ll soon see, but the primary point is taking the most 
productive step first. Setting a conditional breakpoint demonstrates how you can set 
conditions that can avoid eating up time caused by stepping through loops.

 5. Press F5 to run the program. You expect to hit the breakpoint, but that won’t happen. 
Confusing? We know that there isn’t anything wrong with the logic, because the if 
statement condition is a simple equality operator. Perhaps we’ve looked in the database 
or whatever source the data came from, but it’s given in this scenario that Jean is 
definitely in the data. However, this illustrates a common problem where the quality of 
data you work with is less than desired.

 6. This time, change the breakpoint condition on the if statement as follows and re-run the 
program:

  C#:

cust.FirstName.Contains("Jean")

  VB:

cust.FirstName.Contains("Jean")

  Remember, we suspect bad data, so the call to Contains on the string assumes that there 
might be some extraneous white space or other characters around the name in the data. 
Hover over cust.FirstName or look at cust in one of the debug windows to verify it is 
the record you are looking for. This breakpoint will pause on any records that contain 
the sequence of characters “Jean”, such as Jean-Claude. So, you might have multiple 
matches that aren’t what you want. The benefit is that the number of records you must 



 Chapter 6: Debugging with Visual Studio 173

look at is much fewer and you can save time. If you have multiple records, you can 
press F5 and the breakpoint will pause on each record, allowing you to inspect the 
value. In this case, the record set is so small that we hit the right record immediately.

 7. Press F10 to step over the if condition. This will tell us whether the condition is being 
evaluated properly. In this case, VS does not step into the if statement but instead 
moves to the end of the if statement, meaning that searchName and cust.FirstName are 
not equal. This means you need to take a closer look at cust.FirstName to see what the 
problem is with the data.

 8. Next, we’ll use a couple of the VS debugger tools to inspect cust.FirstName and find 
out why the equality check is not working. Open the Immediate window (CTRL-D, I) and 
execute the following expression:

cust.FirstName

  which will return this:

"Jean "

  Here, you can see that the result has a trailing space—dirty data. Clearly, “Jean” does 
not equal “Jean ” because of the extra character in the data. There are various non-
printable characters that could show up, and VS can help here too.

 9. Open a Memory window (CTRL-D, Y), type cust.FirstName into the Address box, and 
press ENTER. This will show the hexadecimal representation of the data at the memory 
location of the variable, shown in Figure 6-16.

The layout of the Memory window starts with an address on the left, which is 
scrolled down to the line where the data in cust.FirstName variable first appears. 
In the middle is the hex representation of the data. The final column has a readable 

Figure 6-16 The Memory window



 174 Microsoft Visual Studio 2010: A Beginner’s Guide

representation of the data where any characters that don’t have a readable representation 
appear as dots. You can see “.J.e.a.n.” on the first line of the third column. .NET 
characters are 16-bit Unicode, and the data for the character only fills the first byte, 
resulting in the second byte being set to 00, causing the dots between characters you 
see in the first column. If the data used another character set, such as Japanese Kanji, 
you would see data in both bytes of the character. The hex representation of this data 
in the second column is “00 4a 00 65 00 61 00 6e 00 20”. Looking at the Unicode 
representation, which you can find at http://unicode.org/, you’ll see that the hex and 
visual representation of the characters match.

You can see that I’ve highlighted the 00 20 at the end of the first line of the second 
column in Figure 6-16, which proves that Jean is followed by a Unicode space character. 
Knowing this information might help you share information with someone who is 
responsible for the data, letting them know that there are extraneous spaces in the data. 
Some computer or software systems might even use other types of characters, perhaps 
a proprietary delimiter for separating data, and accidentally save the data with the 
delimiter.

Fixing the First Bug
While you might have bad data and it might not be your fault, the prospect of fixing the 
problem by fixing the data source is often illusive, meaning that you need to apply a fix 
in your code. In this section, we’ll apply a fix. However, we’ll put a convoluted twist in 
the solution where we discover a new bug when fixing the first. The purpose is twofold: 
to illustrate the real-world fact that there are often multiple problems with a given piece of 
code and to show a completely different type of bug that you will encounter when writing 
your own code. The following steps lead you through the fix and subsequent discovery of 
the new bug:

 1. Press SHIFT-F5 to stop the previous debugging session.

 2. Implement a fix by commenting out the contents of the foreach loop and replacing with 
code that protects against extraneous spaces in the data, as follows:

  C#:

var firstName = cust.FirstName.Trim(); 
var lastName = cust.LastName.Trim(); 
 
if (searchName == cust.FirstName) 

http://unicode.org/


 Chapter 6: Debugging with Visual Studio 175

{ 
    Console.WriteLine( 
        "Found: {0} {1}", 
        firstName, 
        lastName); 
    customerFound = true; 
}

  VB:

    Dim firstName As String = cust.FirstName.Trim() 
    Dim lastName As String = cust.LastName.Trim() 
 
    If (searchName = cust.FirstName) Then 
 
        Console.WriteLine( 
            "Found: {0} {1}", 
            cust.FirstName, 
            cust.LastName) 
        customerFound = True 
 
    End If 
Next

  Notice that the fix was to use the string.Trim method to remove the extraneous space 
from the data, assigning the clean results to local variables. Trim defaults to using the 
space character but has overloads that allow you to specify a different character, just in 
case the actual character you saw in Figure 6-16 was something other than a space. The 
rest of the logic uses variables with the clean data.

 3. Press F5 to run the program and see if the fix works. Unfortunately, you’re stopped in 
your tracks by the fact that a new error occurs: a NullReferenceException. Unlike runtime 
errors that give you wrong data, VS helps greatly by breaking on exceptions when they 
occur in the code. The next section describes this error, the NullReferenceException, in 
greater detail and provides information to help you deal with the problem when it occurs 
in your programs.

Debugging and Resolving  
NullReferenceException Problems
Encountering a NullReferenceException in your code is a common occurrence, deserving 
some discussion to help you deal with these problems effectively. As described in Step 3  
in the preceding section, VS will pause on a NullReferenceException when running 



 176 Microsoft Visual Studio 2010: A Beginner’s Guide

the program. In this particular example, VS pauses on the line that cleans LastName 
properties, repeated here for your convenience:

C#:

var firstName = cust.FirstName.Trim(); 
var lastName = cust.LastName.Trim();

VB:

Dim firstName As String = cust.FirstName.Trim() 
Dim lastName As String = cust.LastName.Trim()

If you recall, the reason for calling Trim on the FirstName and LastName properties 
was to clean the data prior to performing further operations on that data. While we were 
concerned about FirstName, we also called Trim on LastName as well to help protect 
against invalid data there too, just to be safe. The following steps show you how to use VS 
to analyze the current situation and make an effective decision on an appropriate fix.

 1. If VS isn’t running, restart the program and let it run until VS pauses with a 
NullReferenceException.

 2. Hover the cursor over cust.LastName to view the value. Alternatively, you can look in 
one of the debugging windows to see the value. Observe that LastName is null.

  This is the critical point in the analysis, finding the value that is null. It was clear that 
cust is not null because the previous statement, cleaning FirstName, executed without 
error as verified by inspecting the firstName variable. This example makes it very 
easy to find the null value because it occurred on the line where VS paused. In more 
challenging situations, you could be passing an object to a method in a third-party 
library where you don’t have the code and VS will pause on the line with the method 
call. In that case, you have to inspect the values being passed to the method to see if 
any are null.

  Once you’ve found the null value, you must understand why the code raised the 
NullReferenceException error. A null value is the absence of a value; nothing is 
assigned to the variable. If you try to reference a variable with null assigned to it, you 
will receive a NullReferenceException. This makes sense because you are trying to 
perform an operation on a variable that has no definition. In this particular example, 
LastName is null, but we’re still referencing LastName by calling the Trim method. 
This is illogical because there is not a string to trim; the string variable is set to null. 



 Chapter 6: Debugging with Visual Studio 177

You want the NullReferenceException to be raised because it protects you from 
performing an invalid operation in your code. After you’ve found the null value and 
ascertained the reason, it’s time to find out why the value is null in order to make an 
informed decision on a fix.

 3. In the Immediate window, type the following command:

  C#:

  customers.IndexOf(cust)

  VB:

  ?customers.IndexOf(cust)

  This will return 1, which is the index of the current Customer record, cust, in the 
collection customers. This will save a lot of time when trying to find this object in  
the data.

 4. The debugger is currently paused on the line that cleans LastName, where the 
NullReferenceException occurred and there is a yellow arrow on the breakpoint. 
With your mouse, drag the yellow error up to the line that calls GetCustomers. We’re 
currently attempting to answer the question of where this value became null. If lucky, 
we can stop this at the source and possibly find a bug where the value is inadvertently 
set to null.

 5. Press F11 to step into the GetCustomers method. VS will navigate to the first line of the 
GetCustomer method.

 6. Press F10 twice to see what values are being returned. This example is so simple that 
you can visually see the data. However, in real scenarios, you will probably be running 
code that makes the query to a database, or other data source, and might prepare that 
data in a form digestible by any potential callers. In Chapter 7, you’ll learn more about 
how to perform database queries, but we want to keep things simple for now so that 
you won’t be distracted by details unrelated to the point of this exercise, which is 
debugging. Therefore, we need to inspect the data to see if it is the source of the null 
data by typing the following command into the Immediate window:

  C#:

  customers[1].LastName

  VB:

  ?customers(1).LastName



 178 Microsoft Visual Studio 2010: A Beginner’s Guide

  Additionally, you can drill down into the customers collection in one of the debugging 
windows, such as Autos, Locals, or Watch, inspecting the Customer object at index 1. If 
you recall from Step 3 in the preceding sequence, the Customer object we’re interested 
in is at index 1. This result tells us that LastName for this Customer was set to null at 
the data source and there is nothing we can do to keep it from being set to null; another 
case of bad data. If you see a trend, you would be correct; never trust data whether 
it comes from a user on the front end or from the database on the back end. At this 
point, we have all the information we need to fix the problem and make sure we don’t 
accidentally call methods on null data.

  Press SHIFT-F5 to stop debugging.

 7. In this example, we’ll fix the problem by checking for null before using a variable and 
then replacing null with a default value. Comment out the contents of the foreach loop 
and replace it with the following code:

  C#:

string firstName = string.Empty; 
if (cust.FirstName != null) 
{ 
    firstName = cust.FirstName.Trim(); 
} 
 
string lastName = 
    cust.LastName == null ? 
    "" : cust.LastName.Trim(); 
 
if (searchName == firstName) 
{ 
    Console.WriteLine( 
        "Found: {0} {1}", 
        firstName, 
        lastName); 
    customerFound = true; 
}

  VB:

Dim firstName As String = String.Empty 
 
If (cust.FirstName IsNot Nothing) Then 
    firstName = cust.FirstName.Trim() 
End If 
 
Dim lastName As String 
 



 Chapter 6: Debugging with Visual Studio 179

If cust.LastName Is Nothing Then 
    lastName = "" 
Else 
    lastName = cust.LastName.Trim() 
End If 
 
If (searchName = firstName) Then 
 
    Console.WriteLine( 
        "Found: {0} {1}", 
        cust.FirstName, 
        cust.LastName) 
    customerFound = True 
 
End If

  This code fixes the problem two different ways, giving you more than one way to 
solve the problem, depending on the style you prefer. In essence, the solution checks 
the FirstName and LastName properties to see if they are null (Nothing in VB). If 
they are not null, we know the properties have valid strings and are safe to work with. 
Otherwise, we return an empty string.

  In VB, you use the Is and IsNot operators when working with Nothing, rather than 
the respective == and != for working with C# null. Also, the VB Iif, which is the 
equivalent of the C# ternary operator, evaluates both true and false expressions, 
resulting in a NullReferenceException even if the false condition doesn’t execute. 
Therefore, the preceding VB example uses the more verbose If Then Else syntax.

  The choice to default to an empty string is specific to this example only. In practice, 
you’ll have to look at your own situation to see if it makes sense to use a default value. 
For example, the presence of a null value might represent an erroneous condition and 
you might prefer to log the condition and not allow the user to continue with the current 
operation. Another strategy might be to skip this record, processing all the others, and 
then show the user a list of records that weren’t processed. You might want to fix the 
problem with any or none of the ideas I have here, but my point is that you should think 
about what working with a null value means to your particular situation and not think 
that the only way to fix a null reference bug is the way we did here.

 8. Press F5 to run the program. It will provide the following output:

Found: Jean

Victory!



 180 Microsoft Visual Studio 2010: A Beginner’s Guide

Summary
You are now able to debug code. The section “Development-Time Code Tools” explained how 
to view the structure of your code at development time. You learned how to set breakpoints 
along with the many conditions available for breakpoint customization. The section “Stepping 
Through Code” explained how to navigate through your application, stepping into and out of 
methods and changing the executable location of your application. You can also open several 
windows and inspect the state of your application. In particular, you learned how to use the 
Debug History window that lets you see the state of an application at various stages of a 
debugging session.

In the next chapter, we migrate from a pure focus of working with code to using the 
features of VS that allow you to work with .NET technologies. More specifically, the next 
chapter shows how VS makes it easy to work with data.



181

Chapter 7
Working with Data



 182 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Work on SQL Server Databases with Visual Studio 2010

● Query Data with Language Integrated Query (LINQ)

● Use LINQ to SQL to Query and Manipulate SQL Server Data

Most of the work we do each day involves data, and most of the data we work with 
comes from databases. Because of the importance of data in our applications, this 

chapter introduces how to work with data in VS. It’s very important to learn the concepts 
in this chapter because it will affect all of the work you do when programming. You’ll also 
see many examples of working with data throughout the rest of this book, underscoring 
the importance of data in software engineering.

While you’re free to work with any data source you want, Microsoft has several 
versions of SQL Server from free Express versions to Enterprise level. Since SQL Server 
Express ships with VS, we’ll use that for all of the examples in this chapter and the rest 
of the book. Don’t worry; the development experience for Express is similar to all other 
versions, so what you learn will be applicable to other versions of SQL Server.

Data operations are so important that you also have support in the programming 
languages for working with data called Language Integrated Query (LINQ). You can use 
LINQ to query many types of data sources, whether it is objects, XML, or relational data. 
This chapter will show you how to use LINQ for querying data from SQL Server.

Working with Databases
VS provides several tools for working directly with databases. The free Express versions 
of VS, such as Visual C# Express and Visual Basic Express, don’t have this built-in 
support. However, you can visit MSDN and download the free SQL Server Express for 
database work alongside the Express versions. What I’ll show you in this chapter will be 
available in VS Professional or later, which includes support for working with SQL Server 
directly in the VS IDE.

Introduction to Server Explorer
You don’t need to open a project to perform any database work. To start working with 
databases in VS, you need to start VS and then open Server Explorer by clicking  



 Chapter 7: Working with Data 183

View | Server Explorer or pressing CTRL-ALT-S. Server Explorer, shown in Figure 7-1, 
allows you to work with databases, servers, and SharePoint. Servers give you access 
to the various types of services for managing an operating system, such as Event Logs, 
Performance Counters, and Services. It is very convenient to be able to access these services 
in VS during development. For example, if you need to restart an operating system service, 
you can do it quickly. SharePoint is out of the scope of this book, but the relevant part of 
Server Explorer is the Data Connections section at the top, which you can see in Figure 7-1.

The Data Connections section will have a list of databases that you can select and 
work with. Initially, the list will be empty and you must add connections yourself, which 
you can do by right-clicking Data Connections and configuring the database settings. 
Since the process of connecting to an existing database is similar to the task for creating 
a database, I’ll show you how to create a brand new database instead, which is covered in 
the next section.

Creating a Database
All of the examples in this chapter will use a database that we will create in this section. 
Therefore, we need to create a database to work with. With VS Standard and higher, you 
don’t need external tools to create a simple database because there is built-in support for 
getting started. That said, there are advanced scenarios where a database administrator 
would want to use the SQL Server tools to create the database themselves, meaning that 
you would only want to connect to the database they created. For many cases, you can just 
create the database yourself to get started.

Figure 7-1  Server Explorer



 184 Microsoft Visual Studio 2010: A Beginner’s Guide

To create a database, right-click Data Connections in Server Explorer, and select 
Create New SQL Server Database. This will show the Create New SQL Server Database 
window, shown in Figure 7-2.

In Figure 7-2, the server name is .\sqlexpress. The dot before the backslash represents 
the current machine name, and the sqlexpress is the name for the SQL Server Express 
database. Server names will vary, depending on the location of the server and the name 
given to the database server instance. For example, if you were deploying an application to 
a shared Web hosting site, the server name would look something like sql02.somedomain.
com, which is established by the hosting provider you are using.

Your authentication options include Windows and SQL Server. Here, I’m choosing 
Windows authentication because it’s the simplest option. The database created here is 
local, but you might have a database already created on a server at another location. 
The database on another server might have a SQL login, which is another method of 
authentication.

After adding the database name, click OK to create the database. As shown in Figure 7-2, 
we’ve called this database MyShop, representing an application that supports customers who 
order products from a store. You’ll see the new database under Data Connections in Server 
Explorer, similar to what you see in Figure 7-1. Now you’re ready to add tables.

Figure 7-2  Create New SQL Server Database



 Chapter 7: Working with Data 185

Adding Tables
The database itself will hold data for customers, orders, and order details that we introduced 
in the preceding chapter. The data will be held in tables that we’ll create in this section. In 
later sections, I’ll show you how to perform Create, Read, Update, and Delete (CRUD) 
operations on this data. Right now, you’ll learn how to create the tables.

To create a table, right-click the Tables branch under the database in Server Explorer 
and select Add New Table; you’ll see a Table Designer similar to Figure 7-3. Yours won’t 
have the CustomerID or Name columns yet; that’s coming up next.

The Table Designer allows you to add columns and configure the data type (such as 
integer, date, float, or character) and other details of each column and the table. Figure 7-3  
shows a table with two columns, CustomerID of data type int and Name of data type 
nvarchar(50). Ensure that Null is unchecked for each column to avoid errors in code that 
doesn’t check for null later in this chapter.

NOTE
Databases, such as SQL Server, have their own type system, which doesn’t always 
match the .NET type system perfectly. That said, there are types that match very well;  
for instance, a SQL int is the same as a C# int or VB Integer. A SQL nvarchar(50)  
can be matched with a C# string or VB String. However, the nvarchar is limited to  
50 characters, or whatever length is specified in parentheses, but the C# string and VB 
String don’t have a specified size. A full discussion of SQL types is out of scope, but you 
should be aware that there are differences between SQL and .NET types.

Figure 7-3  The Customer table



 186 Microsoft Visual Studio 2010: A Beginner’s Guide

The CustomerID has a primary key symbol, which is created by right-clicking the 
column and selecting Set Primary Key. If you needed a composite key (multiple columns 
that define a key), which you don’t in this simple example, you would press CTRL and click 
each column that belongs to the key and then right-click and select Set Primary Key.

NOTE
When working with LINQ, which we discuss later in this chapter, it is absolutely 
essential that you give every table a primary key.

In addition to setting the primary key, it’s helpful to make the key number auto-
increment so that it will have a unique value for every record you insert. In Figure 7-3, 
you can see that CustomerID is selected and Column Properties has scrolled down to the 
Identity Specification property. By default, Identity Specification is collapsed and set to 
No. You’ll need to expand the Identity Specification property by selecting the arrow on 
the left, and change the value to Yes by selecting the drop-down arrow on the right of the 
“(Is Identity)” setting, which by default is No. This will also enable Identity Increment, 
which specifies the number to add for each new record, and the Identity Seed, which 
specifies what the first number will be. The effect of setting Identity Increment is that the 
first record added to the table will have a CustomerID with the value 1 (Identity Seed) and 
subsequent records will have a CustomerID with the values 2, 3, 4, and so on (Identity 
Increment). The value for CustomerID in each record creates a unique value that identifies 
the record and makes it easy to program data applications.

When you’re done creating the table, click the Save button on the toolbar and name 
the table Customer when prompted.

You can add data to the Customer table by opening the database in Server Explorer, 
navigate to the Tables folder in the MyShop database, right-click Customer, and select 
Show Table Data. You’ll see a grid similar to Figure 7-4 where you can enter some 

Figure 7-4  Adding data to a table



 Chapter 7: Working with Data 187

customer data. Notice that you need only type a name in the Name column (replacing the 
word NULL) and do not need to enter a value for the CustomerID, since we’ve made the 
CustomerID column auto-increment.

In a database of any sophistication, you have multiple tables. In the MyShop database, 
a Customer has an Order. So, create a new table named Order, shown in Figure 7-5, 
that has Primary Key OrderID, a datetime field called OrderDate, and an int field called 
CustomerID.

The Description in the Column Properties for the CustomerID field says FK to 
Customer. FK is an abbreviation for foreign key, which is used to create a relationship 
between a parent table and a child table. The next section explains more about what  
a foreign key is and how to create one.

Relating Tables with Foreign Keys
Foreign keys allow you to establish a relationship between two tables. You can think of 
this relationship as being parent/child, master/detail, or one-to-many; each analogy being 
equal, I’ll use parent/child. The preceding section shows how to create Customer and 
Order tables. The relationship between these two tables is that Customer is the parent and 
Order is the child. One record in Customer can have many records in Order; customers 

Figure 7-5  The Order table



 188 Microsoft Visual Studio 2010: A Beginner’s Guide

can have zero or more orders. A foreign key can help manage the relationship between 
Customer and Order.

The mechanics of creating a foreign key relationship is that you put the foreign key 
column in the child table, Order, and have the foreign key column refer to the primary 
key of the parent table, Customer. In this case, the reference is made simply by matching 
the integer value; if the ID number is the same in both tables, then the records are related. 
As shown in Figure 7-5, Order does have a CustomerID column, of type int, and we will 
make this the foreign key that will refer to CustomerID primary key in Customer, shown 
in Figure 7-3.

To create this foreign key relationship in VS, right-click the CustomerID column in 
the Order table and select Relationships. We’re going to create the foreign key relationship 
that you see in Figure 7-6.

Next, click Add, select the Tables And Columns Specific property, and click the 
ellipses button that appears on the far right of your selection (the ellipses does not appear 
until you first click “Tables And Columns Specific” below “(General)” in the Foreign Key 
Relationships dialog window. This will open the Tables And Columns window shown in 
Figure 7-7.

Figure 7-6 Managing a foreign key relationship



 Chapter 7: Working with Data 189

In the primary key table drop-down, shown in Figure 7-7, select Customer, which 
automatically selects the primary key, CustomerID. (Note: If you don’t see this behavior, 
check to see that you’ve set your primary key columns and saved those table changes 
as described earlier.) In the list, under Foreign Key Table in Figure 7-7, you’ll initially 
see OrderID, which is the primary key of the order table. Select OrderID and change it 
to CustomerID as the foreign key column. Click OK to exit and click Close to finalize 
creation of the foreign key relationship. When you click Save to save the new foreign 
key relationship, you’ll see a warning message similar to Figure 7-8, listing the tables 
participating in the change. Select Yes to make your changes to the SQL Server tables. 
You can uncheck the Warn About Tables Affected box if you don’t want to see this 
message anymore, but the message does serve as a safety net to make sure you don’t 
accidentally save unintended changes to SQL Server, which is an external product to  
VS 2010.

Once the foreign key is in place, you can add a few records to the Order table, much 
as you did with the Customer table, but remember that the CustomerID must match 
an existing CustomerID in the Customer table because of the foreign key relationship. 
Forcing the child to refer to its parent is good because it maintains the integrity of the 
database, demonstrating the value of a foreign key.

Figure 7-7 Configuring a foreign key relationship



 190 Microsoft Visual Studio 2010: A Beginner’s Guide

TIP
Figure 7-7 shows an editable Relationship Name field. In many cases, you won’t 
care what this name is because it follows a standard convention of FK_Child_Parent. 
However, sometimes you have multiple relationships between the same tables, which 
means that VS appends an incremental number to the end of the name. Thus, for 
instance, the next foreign key relationship between the same two tables would be 
FK_Child_Parent1. In those cases, it would be smart to plan ahead and change the 
name to something meaningful so that you can later understand or quickly recall what 
relationship rules the foreign keys are enforcing. To see what I mean by enforcing 
rules, go ahead and enter a new record in the Order table, but enter an integer in the 
CustomerID column that does not exist already in the Customer table, like 9999. Try to 
save that record and then read the error message presented to you.

Working with multiple tables, you might want to have a better feel for the database 
structure and relationships. Database diagrams could be helpful in this case. To create a 
database diagram, right-click the Database Diagrams folder under the database in Server 
Explorer and click Add New Diagram. Click Yes when you receive an information 
message requesting the creation of objects for database diagramming. In the Add Table 
window, press the CTRL key so that you can select multiple rows, click to select each 
table, and click Add. You’ll see a new database diagram similar to Figure 7-9 (you 
may see Order appear above Customer in your diagram, which is fine; the position of 

Figure 7-8 Foreign key relationship Save warning message



 Chapter 7: Working with Data 191

the symbols—the key and the infinity symbol at the end of the line connecting the two 
tables—is what is important).

As shown in Figure 7-9, the database diagram shows you tables, columns, and 
relationships. You can use this window to add new tables and relationships. When you 
want to create a new table, right-click the design surface, select Add Table, and use the 
Visual Designer to configure the table, as in previous examples. What is helpful with this 
designer is the ease in which foreign key relationships can be created as compared to the 
method we used earlier to accomplish the same thing. To create a foreign key relationship, 
click the foreign key column in the child table, drag the carat to the parent table, and drop 
the carat on the primary key of the parent table. When you’re finished with creating the 
database diagram, VS will prompt for the diagram name; you can reply with a name of 
your choice and click OK to save the diagram.

Other features of the database diagram include navigation, printing, and multiple 
diagrams. When you have a database diagram larger than the screen size, click the symbol 
with the four arrow heads at the lower right-hand corner of the database diagram, and 
move your mouse to quickly navigate through the document. If you want a permanent 

Figure 7-9 A database diagram



 192 Microsoft Visual Studio 2010: A Beginner’s Guide

copy of the diagram, right-click and copy to clipboard or select File | Print. You can also 
add multiple diagrams to the Database Diagrams folder, allowing you to have multiple 
different views for your convenience.

In addition to tables and diagrams, you can add database views, stored procedures, 
functions, synonyms, types, and assemblies. Most of these database items are for advanced 
scenarios, but it’s important that you know about stored procedures, which are covered next.

Adding Stored Procedures
A stored procedure is code that is written in SQL and saved as part of a database. It is a 
method stored in the database itself, and not in your program code; hence the term stored 
procedure. In this section, I’ll show you how to create and execute a stored procedure. 
Later sections of this chapter will show you how to execute this stored procedure, which 
runs a data query, through LINQ to SQL.

To create a stored procedure, right-click the Stored Procedure folder for the database 
in Server Explorer and select Add New Stored Procedure. You’ll see an editor appear with 
skeleton code for a stored procedure. Modify the code so that it retrieves all of the data 
from the Customer table, as shown in Listing 7-1. After modifying the template code, 
click Save and you’ll see the stored procedure appear in the Stored Procedures folder of 
the database in Server Explorer.

Listing 7-1  Stored procedure example

CREATE PROCEDURE GetCustomers 
AS 
declare @cust_count int 
select @cust_count = count(*) from Customer 
if @cust_count > 0 
begin 
      select [Name] from Customer 
end 
return

Listing 7-1 declares a variable named @cust_count and runs a select statement to 
assign the number of customers, count(*), to @cust_count. If @cust_count is larger than 0, 
there are customers and the stored procedure queries for customer names. Teaching TSQL 
(Microsoft’s dialect of SQL) syntax is outside the scope of this book, but you can download 
SQL Server Books Online for free and purchase McGraw-Hill’s Microsoft SQL Server 2008: 
A Beginner’s Guide, Fourth Edition by Dusan Petkovic (McGraw-Hill / Professional, 2008)  
to get started.



 Chapter 7: Working with Data 193

To execute this stored procedure, right-click the stored procedure in the database in 
Server Explorer and click Execute. You’ll see output similar to the following if there are 
records in the customer table:

Running [dbo].[GetCustomers]. 
 
Name 
-------------------------------------------------- 
Meg 
Joe 
May 
No rows affected. 
(3 row(s) returned) 
@RETURN_VALUE = 0 
Finished running [dbo].[GetCustomers].

In addition to execution, you can debug the stored procedure in VS. To debug, set a 
breakpoint on any line in the stored procedure, right-click the stored procedure in Server 
Explorer, and select Step Into Stored Procedure or click ALT-F5. If you need more help 
debugging, visit Chapter 6 for a refresher on VS debugging capabilities.

Configuring Database Options
VS has many database configuration settings that you can view via the Tools | Options 
menu and selecting Database Tools, as shown in Figure 7-10. For example, one of the 

Figure 7-10 Database Tools options



 194 Microsoft Visual Studio 2010: A Beginner’s Guide

options found after clicking the arrow button to expand Database Tools and then selecting 
Table And Database Designers is “Prevent saving changes that require table re-creation.” 
VS will not allow you to save a foreign key change to existing tables. However, by 
unchecking “Prevent saving changes that require table re-creation,” you’ll be able to save 
foreign key changes to an existing table.

As with so many other features of VS, there are literally dozens of database settings; most 
are intuitive if you already understand SQL Server. Other options differ, depending on the 
version of VS you have, and your Options screen might not look the same as Figure 7-10.

Now that you know how to create databases, tables, and stored procedures, you’ll need 
to know how to use your database from code. The rest of this chapter shows you how to 
use LINQ to work with data. First, we’ll look at the basic syntax of LINQ through LINQ 
to Objects and then follow with working with SQL Server through LINQ to SQL.

Learning Language Integrated Query (LINQ)
LINQ is a set of features built into programming languages, such as C# and VB, for 
working with data. It’s called Language Integrated Query because the LINQ syntax is 
part of the language, as opposed to being a separate library. This section will show you 
the essentials of LINQ with LINQ to Objects, a LINQ provider for querying in-memory 
collections of objects. The great news is that the syntax you learn here is not only 
applicable to LINQ to Objects, but to all other LINQ providers, such as LINQ to SQL and 
more, that you’ll encounter.

The examples in this chapter will use a Console project for simplicity. Later chapters 
will show you how to display data in desktop and Web applications. If you want to run the 
code in this chapter, you can create a Console application and type the examples into the 
Main method, as has been explained in each previous chapter of this book.

Querying Object Collections with LINQ
One way to use LINQ is via LINQ to Objects, which allows you to query collections 
of objects. You can use LINQ to query any collection that implements the IEnumerable 
interface. As you may recall, we discussed interfaces in Chapter 4; now you can see one 
more example of how important interfaces are to .NET development. Listing 7-2 shows 
a program that uses LINQ to query a collection. The object type is a custom class, named 
Customer. The Main method creates a generic list of Customer and uses a LINQ query to 
extract the Customer objects that have a first name that starts with the letter M.



 Chapter 7: Working with Data 195

Listing 7-2  A program demonstrating how to make a LINQ to objects query

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
class Customer 
{ 
    public string FirstName { get; set; } 
    public string LastName { get; set; } 
} 
 
class Program 
{ 
    static void Main(string[] args) 
    { 
        List<Customer> custList = new List<Customer> 
        { 
            new Customer 
            { 
                FirstName = "Joe", 
                LastName = "Zev" 
            }, 
            new Customer 
            { 
                FirstName = "May", 
                LastName = "Lee" 
            }, 
            new Customer 
            { 
                FirstName = "Meg", 
                LastName = "Han" 
            } 
        }; 
 
        var customers = 
            from cust in custList 
            where cust.FirstName.StartsWith("M") 
            select cust; 
 
        foreach (var cust in customers) 
        { 
            Console.WriteLine(cust.FirstName); 
        } 
 



 196 Microsoft Visual Studio 2010: A Beginner’s Guide

        Console.ReadKey(); 
    } 
}

VB:

Class Customer 
    Property FirstName As String 
    Property LastName As String 
End Class 
 
Module Module1 
 
    Sub Main() 
        Dim custList As New List(Of Customer) From 
        { 
            New Customer With 
            { 
                .FirstName = "Joe", 
                .LastName = "Zev" 
            }, 
            New Customer With 
            { 
                .FirstName = "May", 
                .LastName = "Lee" 
            }, 
            New Customer With 
            { 
                .FirstName = "Meg", 
                .LastName = "Han" 
            } 
        } 
 
        Dim customers = 
            From cust In custList 
            Where cust.FirstName.StartsWith("M") 
            Select cust 
 
        For Each cust In customers 
            Console.WriteLine(cust.FirstName) 
        Next 
 
        Console.ReadKey() 
    End Sub 
 
End Module



 Chapter 7: Working with Data 197

Both the C# and VB examples from Listing 7-2 contain similar LINQ queries. To 
clarify, the following examples show both the C# LINQ query:

var customers = 
    from cust in custList 
    where cust.FirstName.StartsWith("M") 
    select cust;

and the VB LINQ query:

Dim customers = 
    From cust In custList 
    Where cust.FirstName.StartsWith("M") 
    Select cust

The customers variable in the LINQ queries references a new collection that holds the 
result of running the LINQ query, which contains all of the customers where the first letter 
of the FirstName property is the letter M. The from clause specifies the range variable 
that you name, cust is the name I chose, and the collection object to query, custList, was 
created and populated in the previous line of code. The range variable is what you use to 
specify parameters of the LINQ query. In the preceding example, we use the where clause 
to filter the results of the query. This where clause calls the StartsWith method on each 
FirstName property of the cust range variable to specify the filter.

The select clause specifies that each individual customer object is returned into our 
new customers collection, which we declared as type var (Dim in VB), which means our 
customers variable winds up being whatever collection type is returned from our LINQ 
query. This also means that the resulting customers collection will contain zero or more 
Customer type instances, depending on the filter we specified and whether our custList 
contained any Customer objects in the first place as a result of the Select cust portion of 
the LINQ statement. The select clause for C# queries is required, but the select clause for 
VB queries is optional and will return the range variable instance if omitted.

What our LINQ statement is essentially saying in English is “Create a new collection 
object and assign it to our variable customers (we don’t really care what type of object 
customers turns out to be as long as we can use it later), then go through every object in 
our previously defined and loaded custList collection, selecting only the ones that have for 
their FirstName property a string that begins with the letter M, and ignore all the rest, then 
take the ones that match this filter and stuff them into whatever collection you created for 
me earlier that you assigned to my variable customers.”



 198 Microsoft Visual Studio 2010: A Beginner’s Guide

Creating a LINQ Projection with Anonymous Types
You can customize what is returned by the select clause by using what is called an 
anonymous type. This customization of return values is called a projection. Anonymous 
types facilitate custom projections, allowing you to return the results of a LINQ query 
in a form that you specify without needing to declare a new type ahead of time. Here’s 
an example of creating a query that declares a new anonymous type for combining the 
FirstName and LastName properties of Customer into a variable, FullName, that is created 
as a string-type property associated with the object returned into cust in the foreach 
statement:

C#:

var customers = 
    from cust in custList 
    where cust.FirstName.StartsWith("M") 
    select new 
    { 
        FullName = 
            cust.FirstName + " " + 
            cust.LastName 
    }; 
 
foreach (var cust in customers) 
{ 
    Console.WriteLine(cust.FullName); 
}

VB:

Dim customers = 
    From cust In custList 
    Where cust.FirstName.StartsWith("M") 
    Select New With 
    { 
        .FullName = 
            cust.FirstName & " " & 
            cust.LastName 
    } 
 
For Each cust In customers 
    Console.WriteLine(cust.FullName) 
Next

In both the C# and VB select clauses you see a new statement (New With in VB) that 
defines the anonymous type. The new anonymous type has a single property, FullName, 
that is the combination of FirstName and LastName in Customer, but the new type will 



 Chapter 7: Working with Data 199

only have a FullName property. Notice how the foreach loop uses the FullName property, 
instead of the FirstName property from Listing 7-2. The beauty of this anonymous type 
is that we don’t really care what type of object is generated for us by the LINQ query, as 
long as that object has the new property associated with it that we specified, FullName in 
this case, which it does.

The variable, cust, in the preceding listing is used in two different scopes: the LINQ 
query and the foreach statement. Although the identifier, cust, is the same, the two usages 
are separate instances. Although you might not use the same practice in your own code, 
I wanted to demonstrate this so that you can see that range variables, such as cust, are 
scoped to the query they are defined in.

Another nuance of the preceding code is that cust, in the foreach loop, is not type 
Customer. Rather, it is an instance of the anonymous type created by the projection (select 
clause) of the LINQ query. Therefore, FullName is the only property each anonymous 
type instance, cust, contains.

Using LINQ to Sort Collection Results
Another common task you’ll want to perform with data is sorting so that you can put 
objects in a certain order. The following example modifies the example from Listing 7-2 
to sort items from the customer List in descending order:

C#:

var customers = 
    from cust in custList 
    orderby cust.FirstName descending 
    select cust;

VB:

Dim customers = 
    From cust In custList 
    Order By cust.FirstName Descending 
    Select cust

The orderby (Order By in VB) clause specifies the properties to sort on. This example 
sorts the list by the FirstName property in descending order.

This was a quick taste of what you could do with LINQ, and there is much more. 
In fact, I wrote an entire book on the subject titled LINQ Programming (McGraw-Hill/
Professional, 2008). The remaining section of this book takes what you’ve learned here 
and expands, showing you more samples of LINQ queries. The difference will be that you 
will be working with SQL Server data instead of in-memory objects.



 200 Microsoft Visual Studio 2010: A Beginner’s Guide

Handling Data with LINQ to SQL
The LINQ to SQL provider allows you to communicate with SQL Server databases. There 
are many other types of providers, such as LINQ to Entities for generic databases (which 
includes SQL Server), LINQ to XML for XML data sources, and LINQ to Oracle for 
Oracle databases. The preceding section showed you how to use the in-memory provider, 
LINQ to Objects. However, LINQ to SQL is the easiest database provider to learn and 
ships with VS. Once you learn LINQ to SQL, the journey to other providers is easier. 
The following sections will show you how to set up LINQ to SQL, perform queries, and 
modify data.

Setting Up LINQ to SQL
Setting up LINQ to SQL involves running the LINQ to SQL Wizard and adding classes 
and methods. Behind the scenes, LINQ to SQL generates code, saving you a lot of work. 
The result of setting up LINQ to SQL is that you will have a data model, which is an 
environment with classes that you can use to query and modify database data and call 
methods for invoking stored procedures.

Before setting up LINQ to SQL, you’ll need to create a project (a Console project 
for the purposes of this chapter). See Chapter 5 if you need a refresher on how to set up 
a Console project. Select Add | New Item, select LINQ to SQL Classes, name the file 
MyShop.dbml, and click Add. This will show you the LINQ to SQL Designer, with two 
surfaces for classes and methods. Figure 7-11 shows the LINQ to SQL Designer with  
a couple of classes and a method.

Figure 7-11 The LINQ to SQL Designer



 Chapter 7: Working with Data 201

To add entities to the LINQ to SQL Designer, open Server Explorer, select a database, 
and open the Tables folder. Then drag and drop the Customer and Order tables from Server 
Explorer to the left surface of the LINQ to SQL Designer. You can see the Customer and 
Order classes in Figure 7-11, along with properties corresponding to the fields of each table 
in the database.

The line between Customer and Order is called an association. As you might guess from 
reading the previous discussion on class relationships, the association defines the relationship 
between two classes. Although a relationship between tables is constrained by a foreign key 
in a child that refers to the primary key of that child’s parent, an association is the reverse 
direction; it is a property of a parent class that refers to all of the children of that class. When 
coding, you can use this association to navigate between parent and child objects.

NOTE
Features, such as the difference between foreign key relationships in relational 
databases and associations in object-oriented code, are often referred to as an 
impedance mismatch, a term taken from electrical engineering, between data and 
objects. LINQ is designed to reduce the impedance mismatch by allowing you to work 
with data from an object-oriented point of view, rather than doing all of the low-level 
work yourself such as copying data records into data transfer objects, DTOs, that you 
design and create.

On the right pane of Figure 7-11, you can see a GetCustomers method, which allows 
you to call the GetCustomers stored procedure. You can put stored procedures, such as 
GetCustomers, onto the design surface by opening the Stored Procedures folder of the 
database in Server Explorer and dragging and dropping that stored procedure onto the 
right pane of the LINQ to SQL Designer.

If your database has views and functions, you can add them the same way as you did 
for classes and functions previously. Before showing you how to use these new classes 
and views, I’ll show a little more about what you can do with the LINQ to SQL Designer.

Working with the LINQ to SQL Designer
While the most important part of the LINQ to SQL Designer is being able to add classes 
and methods, you should also know about some if its features such as the Methods pane 
hiding, zooming, and auto-layout. You’ll see these options through the design surface 
context menu (right-click).

Most of the time working with the Designer is with classes, and you want as much 
screen real estate as possible. You can achieve this goal by hiding the Methods pane. 
Just right-click the design surface and select Hide Methods Pane. Similarly, select Show 
Methods Pane to make the Methods pane reappear.



 202 Microsoft Visual Studio 2010: A Beginner’s Guide

The default zoom level for the Designer is 100%, but you can change this by right-
clicking, select Zoom, and select a zoom level percent. This might be useful if you wanted 
a higher-level view where you could fit more objects onto the screen at one time.

If you right-click and select Layout Diagram, VS will automatically lay out your 
diagram so that classes with relationships can physically reside in the same area with 
minimal overlapping of association lines, a feature I call auto-layout. After you’ve 
performed auto-layout, you will be able to manually change the location of classes by 
selecting and dragging each class to a new location, a feature I call manual layout.

TIP
Be careful of executing auto-layout after you have your layout the way you want. I tend 
to perform an auto-layout after the first time working with the LINQ to SQL Designer 
on a database. Then I follow up with manual layout to make working with classes even 
easier. Using auto-layout after manual layout will result in a lot of lost work.

It’s common in development to add new tables to a database that you also want in 
the Designer. In that case, drag and drop the tables from Server Explorer as you did for 
Customer and Order earlier. If a table changes, you can select its corresponding class in 
the Designer and delete that class and then drag and drop the new table onto the design 
surface. Any foreign key references will result in associations on the Designer if classes 
for both tables reside in the Designer too.

An important part of working with the Designer is properties. Right-click the Designer, 
select Properties, and you’ll see the Properties window, similar to Figure 7-12.

Figure 7-12 The LINQ to SQL Class Designer Properties window



 Chapter 7: Working with Data 203

LINQ to SQL generates a lot of code for you, and the Properties window allows you to 
modify parts of that code through the Code Generation section. To see this section, be sure 
your Properties window has the “Categorized” button selected near the top left side, and 
not the Alphabetical “AZ” button. You can also see the database connection string, which 
is created when you dragged and dropped from Server Explorer to the Designer and saved.

In addition to properties for the Designer itself, you view properties on objects such 
as classes, associations, and methods. Select the object you want to work with, right-click 
that object, and select Properties to show the Properties window for that object.

You now have a data model to work with. The following sections show you how to 
work with this data model to query, insert, update, and delete data.

Introduction to Querying LINQ to SQL
Previously, you learned how to use LINQ through the LINQ to Objects provider. All of 
what you learned with LINQ to Objects is applicable to other LINQ providers, including 
LINQ to SQL. This section combines the nuances of LINQ to SQL with what you’ve 
already learned to query database data. Listing 7-3 shows a LINQ query with LINQ 
to SQL that retrieves values from the Customer table of the MyShop database, which 
contains the tables added previously in this chapter.

Listing 7-3  Querying data with LINQ to SQL

C#:

using System; 
using System.Linq; 
 
namespace LinqToSqlDemoCS 
{ 
    class Program 
    { 
        static void Main() 
        { 
            var myShop = new MyShopDataContext(); 
 
            var customers = 
                from cust in myShop.Customers 
                where cust.Name != "Joe" 
                select cust; 
 
            foreach (var cust in customers) 
            { 
                Console.WriteLine("Name: " + cust.Name); 
            } 
 



 204 Microsoft Visual Studio 2010: A Beginner’s Guide

            Console.ReadKey(); 
        } 
    } 
}

VB:

Module Module1 
 
    Sub Main() 
        Dim myShop As New MyShopDataContext 
 
        Dim customers = 
            From cust In myShop.Customers 
            Where cust.Name IsNot "Joe" 
            Select cust 
 
        For Each cust In customers 
            Console.WriteLine("Name: " & cust.Name) 
        Next 
 
        Console.ReadKey() 
    End Sub 
 
End Module

And here’s the output using my data:

Name: Meg 
Name: May

Other than the obvious fact that we’re now getting our data from a real database, the 
difference between Listing 7-3 and the LINQ to Objects examples you saw earlier are that 
you have to use the System.Linq namespace (C# only), declare the MyShopDataContext 
data context, and query Customers from the data context. In C#, the using directive for 
the System.Linq namespace is required. If you left it out, the compiler will give you the 
following error message:

“Could not find an implementation of the query pattern for source type ‘System. 
Data.Linq.Table<LinqToSqlDemoCS.Customer>’. ‘Where’ not found. Are you missing  
a reference to 'System.Core.dll’ or a using directive for ‘System.Linq’?”

Remember this message because any time you add a new file to a C# project where 
you are coding LINQ queries, this will be an indication you need to add a using directive 
for the System.Linq namespace.



 Chapter 7: Working with Data 205

A data context is the code that is generated by VS when you run the LINQ to SQL 
item wizard. The Main method instantiates MyShopDataContext, which is the data 
context. The name came from when the LINQ to SQL item wizard ran and your naming of 
the *.dbml file.

LINQ to SQL queries are made with the data context, which contains a property that 
holds a collection of the class type that the property is named after, myShop.Customers 
and myShop.Orders in this case. The LINQ query in the Main method uses the myShop 
data context instance to access the Customers collection in the from portion of the query.

NOTE
The LINQ to SQL provider uses pluralized data context properties. However, the 
results are not perfect; for example, Deer becomes Deers, which is incorrect in English. 
Additionally, pluralization is designed for English and will produce strange results in 
languages other than English. If the pluralization generated by the LINQ of a class is 
incorrect, you can either double-click the class name in the Designer or change the class 
name via the Properties window.

This section introduced you to what goes into creating a LINQ to SQL query, but your 
queries will likely need to work with multiple tables, as discussed in the next section.

Performing Queries on Multiple Tables
Until now, all queries have been from a single data source or table, like Customers in 
Listing 7-3. Often, you need to combine the results from multiple tables, which is where 
select many and join queries are useful. To demonstrate how joins work, we’ll define 
a scenario where you need to know the dates of all orders made and the name of the 
customer who made the order.

The select many lets you join tables based on associations in the LINQ to SQL 
Designer. From the parent object, you navigate to the child object and are able to access 
the properties of both parent and child. The following code shows how to perform a select 
many query that gets data from the Customer and Order tables and repackages it into a 
collection of data transfer objects:

C#:

var myShop = new MyShopDataContext(); 
 
var customers = 
    from cust in myShop.Customers 
    from ord in cust.Orders 
    select new 
    { 
        Name = cust.Name, 
        Date = ord.OrderDate 
    }; 
 



 206 Microsoft Visual Studio 2010: A Beginner’s Guide

foreach (var custOrd in customers) 
{ 
    Console.WriteLine( 
        " Name: " + custOrd.Name + 
        " Date: " + custOrd.Date); 
}

VB:

Dim myShop As New MyShopDataContext 
 
Dim customers = 
    From cust In myShop.Customers 
    From ord In cust.Orders 
    Select New With 
    { 
        .Name = cust.Name, 
        .Date = ord.OrderDate 
    } 
 
For Each custOrd In customers 
    Console.WriteLine( 
        " Name: " & custOrd.Name & 
        " Date: " & custOrd.Date) 
Next

And here’s the output:

Name: Joe Date: 1/5/2010 12:00:00 AM 
Name: May Date: 10/5/2010 12:00:00 AM 
Name: May Date: 10/23/2010 12:00:00 AM

Imagine that the preceding code is sitting in the Main method, like what you saw in 
Listing 7-3. The different part of this query that makes it a select many type of query is 
the second from clause. Consider the parent/child relationship between Customer and 
Order, which is represented by cust and ord in this query. The second from clause uses 
the cust instance to specify the orders to query, which will be all orders belonging to each 
customer. The ord instance will hold each order belonging to its associated cust. To make 
this data useful, the projection is on an anonymous type that pulls together the name of the 
customer and the date of that customer’s order.

In the database, I created two orders for May, one order for Joe, and zero orders for 
Meg. Since there wasn’t an order for Meg, you don’t see any items from Meg in the 
output. Later, I’ll show you how to add a parent record, even when that parent record has 
no child records.

The select many query is fine for simple queries but becomes harder to use in more 
complex queries. In this case, a join query emerges as an easier option. Like a select many 



 Chapter 7: Working with Data 207

query, a join query will combine two tables that have matching keys. Here’s an example of 
a join query that accomplishes the exact same task as the preceding select many query:

C#:

var myShop = new MyShopDataContext(); 
 
var customers = 
    from cust in myShop.Customers 
    join ord in myShop.Orders 
        on cust.CustomerID equals ord.CustomerID 
    select new 
    { 
        Name = cust.Name, 
        Date = ord.OrderDate 
    }; 
 
foreach (var custOrd in customers) 
{ 
    Console.WriteLine( 
        " Name: " + custOrd.Name + 
        " Date: " + custOrd.Date); 
}

VB:

Dim myShop As New MyShopDataContext 
 
Dim customers = 
    From cust In myShop.Customers 
    Join ord In myShop.Orders 
        On cust.CustomerID Equals ord.CustomerID 
    Select New With 
    { 
        .Name = cust.Name, 
        .Date = ord.OrderDate 
    } 
 
For Each custOrd In customers 
    Console.WriteLine( 
        " Name: " & custOrd.Name & 
        " Date: " & custOrd.Date) 
Next

The difference between this query and the select many is that there is a join clause 
instead of a second from. The join identifies a range variable, ord, and operates on the 
Orders property of the data context. You also must specify which keys of the table 
join, mentioning the parent first, cust.CustomerID, and then the child, ord.CustomerID. 
Remember to use the equals keyword because the equality operator will not work.



 208 Microsoft Visual Studio 2010: A Beginner’s Guide

The select many and join clauses are synonymous with SQL inner joins because there 
must be a foreign key in a child table that matches a parent in the parent table before any 
records for the parent will be returned. To address the issue of needing to get parents that 
don’t have children, you must perform a left outer join. To perform the equivalent of a 
SQL left outer join in LINQ, you must use a standard operator called DefaultIfEmpty. The 
following query gets a record for all customers, regardless of whether they have orders or not:

C#:

var myShop = new MyShopDataContext(); 
 
var customers = 
    from cust in myShop.Customers 
    join ord in myShop.Orders 
        on cust.CustomerID equals ord.CustomerID 
        into customerOrders 
    from custOrd in customerOrders.DefaultIfEmpty() 
    select new 
    { 
        Name = cust.Name, 
        Date = custOrd == null ? 
            new DateTime(1800, 1, 1) : 
            custOrd.OrderDate 
    }; 
 
foreach (var custOrd in customers) 
{ 
    Console.WriteLine( 
        " Name: " + custOrd.Name + 
        " Date: " + custOrd.Date); 
}

VB:

Dim myShop As New MyShopDataContext 
 
Dim customers = 
    From cust In myShop.Customers 
    Group Join ord In myShop.Orders 
        On cust.CustomerID Equals ord.CustomerID 
        Into customersOrders = Group 
    From custOrd In customersOrders.DefaultIfEmpty() 
    Select New With 
    { 
        .Name = cust.Name, 
        .Date = IIf(custOrd Is Nothing, 
                    New DateTime(1800, 1, 1), 
                    custOrd.OrderDate) 
    } 
 



 Chapter 7: Working with Data 209

For Each custOrd In customers 
    Console.WriteLine( 
        " Name: " & custOrd.Name & 
        " Date: " & custOrd.Date) 
Next

And the output is

Name: Meg Date: 1/1/1800 12:00:00 AM 
Name: Joe Date: 1/5/2010 12:00:00 AM 
Name: May Date: 10/5/2010 12:00:00 AM 
Name: May Date: 10/23/2010 12:00:00 AM

For C#, the left outer join is accomplished the same way as a join except for two 
additional lines: the into clause and the second from clause. For VB, the left outer 
join is the same as the join except for three lines: the Into clause, the second From 
clause, and the Group keyword. The into clause specifies an identifier that is used by 
the from clause. In the from clause, DefaultIfEmpty will return the default value for 
the continuation variable type. In the preceding example, the continuation variable is 
customerOrders whose type is Order. Since LINQ to SQL types are classes and Order 
is a class from the Orders entity collection, the default value is null (Nothing in VB). 
Notice how I enhanced the projection with a ternary (immediate if in VB) operator to 
control what value is returned when the parent doesn’t have a child. When performing 
a left outer join, make sure you compare the value against its default value to determine 
if the parent doesn’t have a child and ensure that valid values are set. Not only does the 
preceding example demonstrate how to check for a default value, but it also shows that 
you can use expressions in your projections.

In addition to LINQ queries, you can call stored procedures. As you may recall from 
the previous discussion on working with the LINQ to SQL Designer, I described how to 
drag and drop a stored procedure from Server Explorer to the design surface. Adding the 
stored procedure to the design surface also added a method to the data context. Here’s 
how to use that method:

C#:

var myShop = new MyShopDataContext(); 
 
var customers = myShop.GetCustomers(); 
 
foreach (var cust in customers) 
{ 
    Console.WriteLine("Name: " + cust.Name); 
}



 210 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Dim myShop As New MyShopDataContext 
 
Dim customers As IEnumerable = 
    myShop.GetCustomers() 
 
For Each custOrd In customers 
    Console.WriteLine("Name: " & custOrd.Name) 
Next

And here’s the output:

Name: Meg 
Name: Joe 
Name: May

Just call myShop.GetCustomers and you’ll receive a collection of Customer objects.
There are many more advanced scenarios that you can handle with LINQ, but this 

is just a beginner’s guide. However, you now have a solid base of query techniques that 
will get you started. In addition to querying a database, you’ll need to perform insert 
operations, which is next.

TIP
LINQ to SQL generates SQL (Structured Query Language) statements to send to the 
database for your queries. If you would like to see the generated SQL, set a breakpoint 
on the line after the query and run the program with debugging. When you hit the 
breakpoint, hover over the variable holding query results and you’ll see the SQL 
statement.

Inserting Data with LINQ to SQL
To insert a new record into a table, you’ll need to create an instance of the LINQ to SQL 
class for that table, call a method to insert, and then call another method to commit the 
changes. The following example shows how to add a new record to the Customer table:

C#:

private static int InsertCustomer() 
{ 
    var cust = new Customer { Name = "Jim" }; 
 
    var myShop = new MyShopDataContext(); 
 
    myShop.Customers.InsertOnSubmit(cust); 
 
    myShop.SubmitChanges(); 
 
    return cust.CustomerID; 
}



 Chapter 7: Working with Data 211

VB:

Function InsertCustomer() As Integer 
    Dim cust = New Customer With 
    { 
        .Name = "Jim" 
    } 
 
    Dim myShop As New MyShopDataContext 
 
    myShop.Customers.InsertOnSubmit(cust) 
 
    myShop.SubmitChanges() 
 
    Return cust.CustomerID 
End Function

As shown here, each collection property, such as Customers, has an InsertOnSubmit 
method that takes an object of the collection’s type, Customer in this case. Don’t forget 
to call SubmitChanges, or else you won’t see any changes to your data. The next section 
discusses updates. Once the insert executes, with SubmitChanges, the new object, cust, 
will be updated with the new CustomerID, which you read and return to calling code.

Updating Data with LINQ to SQL
To update data, you need to get an object for the record you want to update, change 
the object you received, and then save the changes back to the database. The following 
example shows how to update a record:

C#:

private static void UpdateCustomer(int custID) 
{ 
    var myShop = new MyShopDataContext(); 
 
    var customers = 
        from cust in myShop.Customers 
        where cust.CustomerID == custID 
        select cust; 
 
    Customer firstCust = customers.SingleOrDefault(); 
 
    if (firstCust != null) 
    { 
        firstCust.Name = "James"; 
    } 
 
    myShop.SubmitChanges(); 
}



 212 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Sub UpdateCustomer(ByVal custID As Integer) 
    Dim myShop As New MyShopDataContext 
 
    Dim customers = 
        From cust In myShop.Customers 
        Where cust.CustomerID = custID 
        Select cust 
 
    Dim firstCust As Customer = 
        customers.SingleOrDefault() 
 
    If (firstCust IsNot Nothing) Then 
        firstCust.Name = "James" 
    End If 
 
    myShop.SubmitChanges() 
End Sub

In the previous queries for the customer whose name was Jim, change the object to 
James and saves changes. The call to SingleOrDefault was necessary because the result  
of a LINQ to SQL query is a collection, but we only want the first or only record returned. 
There is also an operator method named Single, but using SingleOrDefault is favorable 
because it returns a default value if no records are returned, whereas Single will throw an 
exception. The code uses an if statement to protect against the possibility of an exception; 
otherwise, the code would throw a NullReferenceException when firstCust is null (Nothing 
in VB) and the code tries to access the Name property of a null object. Remember to call 
SubmitChanges; otherwise the updates won’t be made.

You can now query, insert, and update. Your final skill to learn is deleting data.

Deleting Data with LINQ to SQL
To delete a record from the database, you get a reference to the object for that record, call 
a method to delete that object, and save changes. Here’s an example that deletes a record:

C#:

private static void DeleteCustomer(int custID) 
{ 
    var myShop = new MyShopDataContext(); 
 
    var customers = 
        from cust in myShop.Customers 
        where cust.CustomerID == custID 
        select cust; 
 



 Chapter 7: Working with Data 213

    Customer firstCust = customers.SingleOrDefault(); 
 
    if (firstCust != null) 
    { 
        myShop.Customers.DeleteOnSubmit(firstCust); 
    } 
 
    myShop.SubmitChanges(); 
}

VB:

Sub DeleteCustomer(ByVal custID As Integer) 
    Dim myShop As New MyShopDataContext 
 
    Dim customers = 
        From cust In myShop.Customers 
        Where cust.CustomerID = custID 
        Select cust 
 
    Dim firstCust As Customer = 
        customers.SingleOrDefault() 
 
    If (firstCust IsNot Nothing) Then 
        myShop.Customers.DeleteOnSubmit(firstCust) 
    End If 
 
    myShop.SubmitChanges() 
End Sub

This example is similar to the update example that did a query and then a call to 
SingleOrDefault to get a reference to the requested object. You then use the collection 
property, Customers in this case, to call the DeleteOnSubmit method. You need the 
check for null (Nothing in VB), or you’ll receive an ArgumentNullException when 
DeleteOnSubmit executes and the firstCust argument is null (Nothing in VB). Remember 
to call SubmitChanges; otherwise, you won’t delete the record.

A final note on the preceding three sections. The code runs in an insert, update, and 
delete sequence. Notice how the insert methods return an int, which is the CustomerID. 
Whenever you perform a query from a database, you’ll often want to get the ID field for 
the record at the same time. The reason is that the ID is unique to that one record and 
you can perform subsequent actions with the ID. Both the update and delete methods in 
preceding examples accepted an int parameter that was used to perform a database lookup 
of the record. Again, using the ID guarantees that we’ll only return one record, which is 
also why I was confident in calling SingleOrDefault. Since this chapter is about data, I 
purposely don’t show you how the program handles that ID. However, you’ll see IDs being 



 214 Microsoft Visual Studio 2010: A Beginner’s Guide

used in multiple later chapters that show you how to build user interfaces. Pay attention to 
how the UI code holds on to IDs and then uses them when calling code that interacts with 
the database. You’ll see many different examples, but most of the examples that you see 
and then use in your own programs will be variations of what you’ve learned here.

Summary
This chapter showed you how to work with the VS database tools. You can create tables, 
relationships, and stored procedures. The section “Querying Object Collections with 
LINQ” helped you understand basic LINQ queries. You can now use LINQ to SQL, 
setting up a designer with classes and methods. Additionally, you can create, read, update, 
and delete data with LINQ to SQL.

This chapter used Console applications to show you how to work with data. This was 
to help you concentrate on data access exclusively, minimizing any other distractions. 
However, real applications require graphical user interfaces (GUIs). Remaining chapters 
of this book will show you how to create GUI applications that consume data, giving you 
many more examples of how LINQ to SQL works in an application. The next chapter gets 
you started in GUI development with WPF.



Part III
Building Programs  
with VS 2010



This page intentionally left blank 



217

Chapter 8
Building Desktop 
Applications with WPF



 218 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Perform Screen Layout

● Use Controls

● Work with Data in the UI

Windows Presentation Foundation (WPF) is a .NET technology for building desktop 
applications. The result of building a WPF application is an *.exe file that you can 

run directly on your computer or deploy and run on any other computer that has .NET 
installed. With WPF, you can add a graphical user interface (GUI), pronounced “Gooey,” 
that makes it easier for users to work with your program. This chapter will show you how 
to lay out a screen in WPF and explain the controls, such as Button and TextBox, that you 
can place on the screen. You’ll also learn how to capture events off controls, allowing you 
to add code that runs based on user input. Since most applications work with data, this 
chapter builds on what you learned in Chapter 7 and shows how to bind data to controls in 
the GUI.

This chapter will show you how to build a WPF GUI with the VS Designer, but 
sometimes you must work at a lower level and manipulate the XAML, pronounced 
“Zammel,” that defines the GUI. XAML is an XML format that WPF and Silverlight 
use to define a GUI. There are two appendixes in this book that will help you get up to 
speed in XAML: Appendix A, “Introduction to XML,” and Appendix B, “Introduction to 
XAML.” If you aren’t familiar with XML, start with Appendix A. However, if you have 
a good grasp of basic XML syntax, go straight to Appendix B. I’ll try to explain WPF in 
a way that any XAML you see can be understood in its context, but you might want to 
review the appendixes to avoid any confusion. Once you’re familiar with XAML, you can 
return here and start with the next section, which explains how to start a WPF project.

Starting a WPF Project
In Chapter 5, you learned how to create and build projects. The example explained how 
to create a Console application. However, what you learned there is generally applicable 
to most other application types. This section builds upon what you already know about 
projects and explains what is unique to a WPF application. To get started, open the New 
Project window; select WPF Application; and fill in the project name, location, and 



 Chapter 8: Building Desktop Applications with WPF 219

solution name. I’m naming the examples in the chapter as MyShop to continue the idea 
of customers who buy products that started in Chapter 7 when discussing data. Figure 8-1 
shows the new WPF application in VS, including a Toolbox, a Designer, and a Solution 
Explorer. The Toolbox contains controls, which are user interface (UI) elements, such as 
Button and Textbox, that you can drag and drop onto the Designer.

NOTE
There is another .NET technology, Windows Forms, for creating desktop applications. 
This book doesn’t discuss Windows Forms because it’s an older technology. The way 
forward for desktop application development is WPF, and the intention of this book is to 
help guide you in a direction most beneficial to you.

The Designer allows you to lay out the UI of the application; it is divided into Design 
on the top and XAML on the bottom. The Design surface allows you to visually work 
with controls and layouts of those controls. The XAML editor allows you to work with 
the XML representation of the controls on the design surface. The Design and XAML are 
interrelated because a change in one causes a change in the other. For example, if you add 
a Button to the Design, you’ll see the XML representation of that Button in the XAML. 

Figure 8-1  A new WPF application project



 220 Microsoft Visual Studio 2010: A Beginner’s Guide

Similarly, if you add a TextBox element to the XAML, you’ll see the visual representation 
of that TextBox in Design.

You have various controls for manipulating the windows. Both Design and XAML 
have zoom controls. The zoom tool on Design is a slider in the upper-left corner, and 
zoom for XAML is a drop-down control in the lower-left corner. You can also zoom by 
clicking either Design or XAML and moving the mouse wheel. At the upper right of the 
XAML editor (bottom right of the Design surface), you can switch between horizontal and 
vertical splits of the window or click the chevron to collapse the XML. The splitter icon 
below the chevron allows you to split the XAML editor into two if you drag it down. The 
up-down arrow between the Design and XAML tabs allows you to switch sides so that 
each panel shows where the other was. Locating the carat in the middle of the separator 
between Design and XAML allows you to resize each window.

Understanding Layout
A layout defines how you can position and size controls on a screen. WPF windows and 
controls have a Content (can occasionally be called something else) property that accepts 
a single control. In some cases, such as a Button control, the content can be text. However, 
many situations call for the ability to lay out multiple controls. This section concentrates 
on performing layout in windows, and a Window has a Content property that accepts 
only one control; that one control should be a layout control, which is the subject of this 
section. 

WPF includes several layout controls, including Grid, StackPanel, DockPanel, 
WrapPanel, and Canvas. By default, VS will generate a window with a Grid as the layout 
control. However, you are free to replace the Grid with any other layout control that suits 
your needs. This section will show you how to use each of these controls.

Grid Layout
Whenever starting a new WPF project, VS adds a Grid. A Grid is a layout control that 
allows you to create a set of rows and columns that hold other controls. You can add rows 
and columns to a Grid through the Visual Designer by clicking in the middle of a window 
in design view. Figure 8-2 shows a column being added to a Grid.

The thin vertical line in the middle of the window is a new border between two columns. 
After clicking the window, you’ll see two thick borders on the left and top of the window. 
While you hover over the top border, VS draws a vertical line that moves left and right as 
you run your mouse along the top border. You can do the same with the left border, adding 
rows to the Grid. This is a very quick way to add rows and columns to a Grid.



 Chapter 8: Building Desktop Applications with WPF 221

The arrow in the Grid border allows you to reposition the column or row border. 
You can remove the column or row border by selecting the arrow in the Grid border and 
dragging the arrow off the window.

CAUTION
Don’t press the DELETE key when you have a border selected. You’ll accidentally delete 
your Grid, which you might have spent some time on. If you want to remove a column 
or row, grab the arrow for the border you want to remove and drag the border off the 
window.

Once you’ve created rows and columns, you can add further customizations that 
define how much space the column or row can take. There are three sizing customizations: 
fixed, weighted, and auto. To set each of these options, hover over the column or row 
border and VS will display a sizing panel, as shown over the left column design border in 
Figure 8-3.

The diamond icon on the left means fixed, where the size will stay the same. The asterisk 
icon in the middle is a weighted proportion, where the size stays the same in relation to 
the other columns. The rightmost icon is auto, meaning that the size will vary according to 

Figure 8-2  Adding columns and rows to a Grid



 222 Microsoft Visual Studio 2010: A Beginner’s Guide

whatever space remains after the other columns’ sizes are set. After you’ve added content to 
your Grid, you can use these sizing options to experiment with the layout that you want.

One thing to notice in Figure 8-3 is the number in the Grid border for each row and 
column. These numbers tell you the size in pixels for each row and column they appear 
upon.

Figure 8-3 also shows the Properties window on the right, where you can select and 
customize the Column and Row collections.

True to the purpose of the Grid, Figure 8-3 shows controls that have been added to 
the Grid, placed in each cell of the Grid. Another popular layout control is StackPanel, 
discussed next.

StackPanel Layout
The StackPanel is ideal for when you want to lay out controls each on top of the other, like 
a stack. You can use a StackPanel by dragging the StackPanel control from the Toolbox 
onto the design surface. If you want to use the StackPanel as your primary layout, you can 

Figure 8-3  Column and row sizing options



 Chapter 8: Building Desktop Applications with WPF 223

select the grid, which is added by default to a new project, and delete the Grid. Figure 8-4 
shows a StackPanel that contains multiple button controls.

In Figure 8-4, it doesn’t matter where you try to lay the buttons—the StackPanel will 
always lay them out one after the other. In addition to vertical layout, the StackPanel can 
lay out controls horizontally. Just change the Orientation property, shown in the Properties 
window in Figure 8-4, to Horizontal. Next, you’ll learn how to dock controls to the sides 
of a container.

DockPanel Layout
You’ve seen how VS allows you to dock windows within the borders of the application. 
This helps you organize your screen so that you can use many tools at one time. You can 
lay out your controls the same way with the DockPanel control.

Get started by dragging and dropping a DockPanel control from the Toolbox to the 
Window in the design surface. You might want to delete the default Grid first. Also, the 
DockPanel initializes with a Height and a Width, which you’ll probably want to remove 
by selecting the DockPanel, opening the Properties window, and clearing the Height and 

Figure 8-4  Using a StackPanel layout



 224 Microsoft Visual Studio 2010: A Beginner’s Guide

Width properties. Removing the Height and Width properties allows the DockPanel to 
expand and cover the entire window. Figure 8-5 shows a DockPanel with Label controls in 
each docking position.

Every time you drag and drop a control onto the design surface of a DockPanel, the 
control will take the center position by default. To specify where the control should dock, 
open the Properties window and set the DockLayout.Dock property. When you add a new 
control, the new control will become the center control and the other control will dock to 
the side of the DockPanel you specified in the Dock property. The next layout control is 
WrapPanel.

WrapPanel Layout
Whenever controls should naturally follow each other in sequence and continue wrapping 
on new lines, you can use a WrapPanel. Examples of when this is useful could be when 
adding controls that contain text and it’s useful to view the controls in sequence. Figure 8-6  
shows several CheckBox controls in a WrapPanel.

Figure 8-5  DockPanel layout



 Chapter 8: Building Desktop Applications with WPF 225

Figure 8-6 demonstrates how you can lay out a group of controls to fill an available 
space. In the case of the CheckBox controls, the Orientation of the WrapPanel is set to 
Vertical (the default is Horizontal). When the number of CheckBox controls fills the 
vertical column, remaining CheckBoxes wrap to the next column. Because the sizes of the 
CheckBox controls are the same, you have a uniform layout, which is easier than trying 
to do the same thing with a Grid or other layout control. The final layout control we’ll 
discuss is the Canvas, which is next.

Canvas Layout
There are times when you might want to perform explicit layout of controls. If you 
were building a diagramming application or a drawing program, or if you just wanted to 
explicitly specify the location of controls, the Canvas layout will work fine. Figure 8-7 
shows some controls on a Canvas layout.

The Rectangle and Ellipse controls were dragged and dropped from the Toolbox onto 
the Canvas control. Notice the Canvas.Left, Canvas.Top, Width, and Height properties in the 
Properties window, demonstrating the absolute positioning of the selected Ellipse control.

Figure 8-6  The WrapPanel Layout control



 226 Microsoft Visual Studio 2010: A Beginner’s Guide

Now that you know how to use the layout controls, the next section takes a closer look 
at WPF controls in general, giving you tips on how to use them in your application.

Using WPF Controls
WPF includes many controls for helping you build user interfaces. This section groups 
the controls into categories, including text, selection, containers, information, shapes, and 
decorators. Data controls are excluded on purpose because the section following controls 
is “Working with Data in WPF.” Before diving into each control, let’s do an overview of 
the VS environment associated with control work.

Managing Windows for Controls
When working with controls, you’ll be working with four different windows: Toolbox, 
Solution Explorer, Designer, and Properties. You learned how to access each of these 
windows in earlier chapters; but as a convenience, Table 8-1 gives you a quick summary 
on how to open these windows.

Figure 8-7  The Canvas Layout control



 Chapter 8: Building Desktop Applications with WPF 227

You’ll find all of the available controls on the Toolbox, divided into panels where the 
top panel is Common WPF controls, which makes it easy to find the controls you use the 
most. The All WPF Controls tab includes the complete list of WPF controls.

You’ve seen how the Designer can be used in the preceding section, which discussed 
layout controls. You can open the Designer by double-clicking a *.xaml file in Solution 
Explorer. To add a control to the Designer, select the control in the Toolbox and drag the 
control onto the Designer. Figure 8-8 shows a Button that has been dragged and dropped 
onto the Designer.

Table 8-1  Primary Windows for Working with Controls

Window Menu Keystroke
Toolbox View | Toolbox CTRL-W, X

Solution Explorer View | Solution Explorer CTRL-W, L

Designer Double-click *.xaml file in Solution Explorer SHIFT-F7

Properties Window View | Properties window CTRL-W, P

Figure 8-8  Adding a control to the VS Designer



 228 Microsoft Visual Studio 2010: A Beginner’s Guide

In Figure 8-8, you can see the Toolbox with the Button control selected. The Designer 
shows a Button control that has been dragged and dropped. In practice, you’ll be adding 
this control into some type of layout control so that you can position it appropriately on 
the screen.

Below the Designer, the Button control appears in the XAML for this window. If 
you are uncomfortable looking at XAML, you can review Appendix B as a refresher. 
The attributes of the Button control in the XAML match the properties in the Properties 
window.

TIP
It’s important to learn how to quickly build UIs using the Visual Designer because 
it enhances productivity. However, it’s also important to be able to read the XAML 
associated with a window because as you move beyond the beginner content of this 
book, you’ll find scenarios where the Designer alone might not allow you to control 
every nuance of your visual presentation. A good way to move forward is to experiment 
on your own by adding each of the controls from the Toolbox to the Designer and then 
examine the generated XAML.

Setting Properties
The Properties window shows all of the ways that you can configure a control. For button 
controls, you’ll want to change the Content property to make the text on the button make 
sense. In this example, we’ll imagine that the purpose of the button is to allow a user to 
create a new order for a customer. Therefore, set the Content property to New Order.

Handling Events
In addition to properties, you can handle control events via the Events tab at the top of the 
Properties window. Figure 8-9 shows the contents of the Events tab.

Controls have literally dozens of events that allow you to manage their behavior in the 
application. Some events, like Click, are commonly used, while other events, such as Drag 
Over, only support unique scenarios like drag and drop that you might not ever care about. 
To handle an event, you can double-click any of the events in the Properties window and 
VS will wire up that event to a handler method with a default name.

Since the Click event is so common, I’ll show how it works. You can implement a 
handler for the Click event by double-clicking the Click event in the Properties window 
Events tab. When you double-click, VS opens a file named MainWindow.xaml.cs, 
assuming the window you’re working with is named MainWindow.xaml. MainWindow 
.xaml.cs is called a code-behind file and is where you can add event handlers. VS also 
creates a skeleton method in MainWindow.xaml.cs that handles the Button Click event, 
shown in Listing 8-1.



 Chapter 8: Building Desktop Applications with WPF 229

TIP
Controls have default events. The significance of default events is that if you double-click 
the control in the Designer, VS will generate an event handler for the default event. To 
be more specific, consider the Button control whose default event is the Click event. If 
you double-click the Button control in the Designer, VS will generate an event handler 
for the Click event.

Listing 8-1  A WPF code-behind file

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Data; 
using System.Windows.Documents; 
using System.Windows.Input; 
using System.Windows.Media; 
using System.Windows.Media.Imaging; 

Figure 8-9 The Properties window Events tab



 230 Microsoft Visual Studio 2010: A Beginner’s Guide

using System.Windows.Navigation; 
using System.Windows.Shapes; 
 
namespace ControlsCS 
{ 
    /// <summary> 
    /// Interaction logic for MainWindow.xaml 
    /// </summary> 
    public partial class MainWindow : Window 
    { 
        public MainWindow() 
        { 
            InitializeComponent(); 
        } 
 
        private void button1_Click(object sender, RoutedEventArgs e) 
        { 
 
        } 
    } 
}

VB:

Class MainWindow  
 
    Private Sub Button1_Click( 
        ByVal sender As System.Object, 
        ByVal e As System.Windows.RoutedEventArgs)  
Handles Button1.Click 
 
    End Sub 
 
End Class

The Click event handler, just created, is the highlighted method, button1_Click 
(Button1_Click in VB), that you see in Listing 8-1. We covered delegates and events in 
Chapter 4, which you can review for a better understanding of how this method handles 
the Click event. Notice how the VB code shows another way to handle events in VB, by 
explicitly specifying Handles Button1.Click. Essentially, when a user clicks on the button 
named button1, this handler will be called. This illustrates the concept of event-driven 
programming, where you write handlers, such as button1_Click, that run code according 



 Chapter 8: Building Desktop Applications with WPF 231

to user actions. In addition to creating the event handler in the code-behind, VS adds the 
method name to the Click event on the Events tab in the Properties window, shown in 
Figure 8-9.

In addition to creating the handler method and assigning the method name in the 
Properties window, VS adds the method as an attribute to the Button control in the 
XAML, shown here. The XAML is independent of programming language and works the 
same regardless of whether you are coding in C# or VB:

<Button Content="Button" Height="23" 
        HorizontalAlignment="Left" Margin="76,43,0,0" 
        Name="button1" VerticalAlignment="Top" Width="75" 
        Click="button1_Click" />

Notice the convention being used on the method name, controlName_Event. The 
controlName part comes from the name of the control, which is button1, and the event is 
the event being handled. The problem with this is that button1 isn’t meaningful and when 
you return to this code later, you’ll be confused by having methods named button1_Click, 
button2_Click, and so on. To fix the naming problem, you should name your controls 
properly before doing anything else with them.

To back out of this, go back to the Events tab of the Properties window. Remember to 
select the Button in the Designer. The top left of the Properties window contains the ID of 
the control, which you should change from button1 to a meaningful name. For example 
if the purpose of the button was to create a new order for a customer, you could name the 
button NewOrderButton. Then delete the event handler assigned to the Click event of the 
Button. Figure 8-10 shows these changes in the Properties window. Now the ID and event 
handler are more readable.

After the event handler is deleted and the control has a new ID, double-click the Click 
event again. VS will create a new event handler for you, shown here:

C#:

private void button1_Click(object sender, RoutedEventArgs e) 
{ 
 
} 
 
private void NewOrderButton_Click(object sender, RoutedEventArgs e) 
{ 
 
}



 232 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Class MainWindow  
 
    Private Sub Button1_Click( 
        ByVal sender As System.Object, 
        ByVal e As System.Windows.RoutedEventArgs) 
 
    End Sub 
 
    Private Sub NewOrderButton_Click( 
        ByVal sender As System.Object, 
        ByVal e As System.Windows.RoutedEventArgs) Handles 
NewOrderButton.Click 
 
    End Sub 
 
End Class

Figure 8-10 Readable button ID and event handler name



 Chapter 8: Building Desktop Applications with WPF 233

The previous code shows both the old button1_Click (Button1_Click in VB) event 
handler and the new NewOrderButton_Click event handler. You might wonder why the 
button1_Click event handler wasn’t deleted when you deleted it from the Click event in 
the Properties window, but there’s a good reason for this. What if you had already written 
code in the event handler? VS leans toward the safe side and does not delete your code. 
Using the previous steps, you have both event handlers sitting side-by-side, which means 
that you can easily copy your code from button1_Click into NewOrderButton_Click and 
then delete the button1_Click event handler. So far, we haven’t written any code for the 
event handler, which you’ll learn about in the next section.

Coding Event Handlers
One of the tasks you might want to do when a user clicks a button is to open a new 
window. The first thing you’ll need to do is add a new window. To make this work, you 
would open Solution Explorer, right-click the project you’re working with, select Add | 
New Item, choose Window (WPF), name the window NewOrder.xaml, and click Add. 
This will create a new window open in the Designer.

TIP
The project’s Add | New Item context menu includes a Window entry, which can save a 
couple of clicks when creating a new window.

After the Designer loads, you can quickly open the code-behind by pressing F7. In the 
code-behind, you’ll see the following code:

C#:

public partial class NewOrder : Window 
{ 
    public NewOrder() 
    { 
        InitializeComponent(); 
    } 
}

VB:

Public Class NewOrder 
 
End Class



 234 Microsoft Visual Studio 2010: A Beginner’s Guide

Notice that the class in this code is named NewOrder, illustrating that a window is just 
another class. As you know, you can instantiate classes and call their methods, which is 
the technique you’ll use to open this window from the NewOrder_Click event handler in 
the code-behind of the MainWindow window.

In practice, you’ll populate the NewOrder window with whatever controls you need 
to implement a new order. You would populate the window by dragging and dropping 
controls, just like the Button in this example. However, we’ll skip that task for now 
because the current focus is on adding code to the NewOrderButton_Click event handler 
so that you can learn how to code an event handler and open another window. Go back to 
the NewOrderButton_Click event handler in MainWindow.xaml.cs and add the following 
code:

C#:

private void NewOrderButton_Click(object sender, RoutedEventArgs e) 
{ 
    NewOrder newOrd = new NewOrder(); 
    newOrd.Show(); 
}

VB:

    Private Sub NewOrderButton_Click( 
        ByVal sender As System.Object, 
        ByVal e As System.Windows.RoutedEventArgs)  
Handles NewOrderButton.Click 
 
        Dim newOrd As New NewOrder 
        newOrd.Show() 
 
    End Sub

Since NewOrder is a class, you can instantiate it as shown in the preceding code 
example. To open the window, call the Show method.

Now you have a WPF program that handles events and opens new windows. Press F5 
to run the program. Click New Order and observe that the New Order window appears. 
The New Order window isn’t very useful because it lacks controls and data management. 
The next section shows you how to populate window controls with data.

Working with Data in WPF
This section builds upon what you learned in Chapter 7 by showing how to bind data 
to WPF controls. Binding is the process of populating and retrieving data to and from 
controls. You’ll learn how to show data in your user interface. The examples in the 



 Chapter 8: Building Desktop Applications with WPF 235

following sections show you how to perform create, read, update, and delete (CRUD) 
operations via WPF. You’ll first see how to insert data, using VS tools to construct a data 
entry screen. Then you’ll learn how to read, modify, and delete data through a DataGrid.  
We’ll start with single value binding. To make the examples more interesting, I added 
extra fields to the tables. You can review Chapter 7 to learn how to add fields to a database 
and create a LINQ to SQL entity model.

Setting Up a Data Source
Before you can bind to data in the window, you’ll need a data source to work with data. To 
get started, update the Order table, created in Chapter 7, so that it has the following fields:

● OrderID, int, primary key, auto-increment

● CustomerID, int

● OrderDate, datetime

● Location, varchar(50)

● Amount, money

Then update the Customer table with the following fields:

● CustomerID, int, primary key, auto-increment

● Name, nvarchar(50)

● Age, int

● Birthday, datetime

● Income, money

With the database updated, you can add a LINQ to SQL entity model to the project, 
using the same techniques described in Chapter 7.

To add the data source for binding, open the NewOrder window in the Designer, and 
select the Data | Add New Data Source menu, which opens the Choose A Data Source 
Type window, shown in Figure 8-11.

There are different ways to connect to a data source, including directly to the database, 
via a Web service, via an object, or through SharePoint. This book shows you how to use 
LINQ to SQL, which is connected by selecting Object and clicking Next, which shows the 
Select The Data Objects window in Figure 8-12.



 236 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 8-11 Choosing a new data source

On the Select The Data Objects window, check the box next to each object you want 
to bind in your application. The example in this chapter uses Customer and Order objects, 
which you can see checked in Figure 8-12. Clicking Finish will configure the data source 
for use in the application. You can view data sources by selecting Data | Show Data 
Sources, shown in Figure 8-13.

The Data Sources window allows you to create controls on a form that are bound 
to each field of a data source. In the Data Sources window in Figure 8-13, you can see 
that both Customer and Object are listed with their fields. What is also evident is the 
icons associated with each field. The icons describe what type of control should be 
associated with each data field. For example, Name on Customer is a TextBox because it is 
nvarchar(50), but Birthday is a calendar because it is a datetime. If you don’t like a default 
control type for a field, you can change it by selecting the field and choosing another 
control type from the drop-down list, as shown in Figure 8-14.



 Chapter 8: Building Desktop Applications with WPF 237

Figure 8-12 Selecting data objects

Figure 8-13 The Data Sources window



 238 Microsoft Visual Studio 2010: A Beginner’s Guide

In Figure 8-14, the CustomerID is being changed to a ComboBox because it makes 
more sense to give the user the option of selecting a customer from a list for a new order, 
rather than typing in an ID number. Also, the object defaults to a Grid control, but in this 
first example, we only want to add a new order, meaning that the control type should be 
changed to Detail. To create a new order form with controls bound to order data, select the 
Order object in the Data Sources window and drag and drop the order onto the Designer 
of the NewOrder window. Figure 8-15 shows this new window.

Figure 8-15 shows how VS added a Grid layout with two columns and a row for each 
field in the Order table. As explained, the CustomerID is a ComboBox and the OrderDate 
is a calendar. VS was smart enough to put spaces between the words in the labels, too. 
VS didn’t put the Save button on the screen, which is something you would need to do 
to save the data. In addition to adding controls to the Designer, VS added the following 
CollectionViewSource control to the NewOrder window’s XAML:

<Window.Resources> 
    <CollectionViewSource x:Key="orderViewSource" 
    d:DesignSource="{d:DesignInstance my:Order, CreateList=True}" /> 
</Window.Resources>

Figure 8-14 Changing the control type for a field



 Chapter 8: Building Desktop Applications with WPF 239

This is another reason it’s important to be able to read the XAML for a window, so 
you can see how objects like this are added and configure them if you need to. In our 
case, we need to know the name of the CollectionViewSource, which is orderViewSource. 
We need to add an Order object to the CollectionViewSource so that the controls that are 
bound to it have a place to save data that the user enters. Press F7 to see the code that VS 
added to the Window Loaded event handler, as follows:

C#:

private void Window_Loaded(object sender, RoutedEventArgs e) 
{ 
    System.Windows.Data.CollectionViewSource 
    orderViewSource = 
    ((System.Windows.Data.CollectionViewSource) 
    (this.FindResource("orderViewSource"))); 
    // Load data by setting the 
//CollectionViewSource.Source property: 
    // orderViewSource.Source = [generic data source] 
}

Figure 8-15 Controls bound via a data source



 240 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

Private Sub Window_Loaded( 
    ByVal sender As System.Object,  
    ByVal e As System.Windows.RoutedEventArgs) Handles MyBase.Loaded 
 
    Dim OrderViewSource As System.Windows.Data.CollectionViewSource 
        = CType(Me.FindResource("OrderViewSource"),  
          System.Windows.Data.CollectionViewSource) 
    'Load data by setting the CollectionViewSource.Source property: 
    'OrderViewSource.Source = [generic data source] 
End Sub

The preceding skeleton code gets a reference to OrderViewSource, but that’s all. The 
commented portion of the code suggests how you might populate that control. However, 
we aren’t interested in populating OrderViewSource with data because the purpose of 
this screen is to insert a new record. Instead, the proper approach is to bind an empty 
object. Later, you’ll see how to pull the data from that object after the user fills in the 
form and clicks on the Save button. In addition to assigning a blank Order object to 
OrderViewSource, we need to populate the ComboBox that holds the list of customers 
and their IDs. The following code is a revision to the Window_Loaded event handler 
that assigns a blank Order object to the OrderViewSource and binds customers to the 
ComboBox holding customers:

C#:

private void Window_Loaded(object sender, RoutedEventArgs e) 
{ 
    var orderViewSource =  
        FindResource("orderViewSource") as CollectionViewSource; 
    orderViewSource.Source = 
        new List<Order> 
        { 
            new Order 
            { 
                OrderDate = DateTime.Now 
            } 
        }; 
 
    customerIDComboBox.ItemsSource = 
        from cust in new MyShopDataContext().Customers 
        select cust; 
}



 Chapter 8: Building Desktop Applications with WPF 241

VB:

Private Sub Window_Loaded( 
    ByVal sender As System.Object,  
    ByVal e As System.Windows.RoutedEventArgs) Handles MyBase.Loaded 
 
    Dim OrderViewSource As CollectionViewSource =    
        CType(FindResource("OrderViewSource"), CollectionViewSource) 
    OrderViewSource.Source = 
        New List(Of Order) From 
        { 
            New Order With 
            { 
                .OrderDate = DateTime.Now 
            } 
        } 
 
    CustomerIDComboBox.ItemsSource = 
        From cust In New MyShopDataContext().Customers 
 
End Sub

The previous re-write of Window_Loaded accomplishes two things: assigning an order 
to orderViewSource and populating customerIDComboBox with customers. The Order 
object assigned to the Source property of orderViewSource is empty, except assigning 
today’s date to OrderDate, demonstrating how you can set default values. When the user 
fills out the form on the page, WPF will populate this Order with data because it is data 
bound, through orderViewSource, to the controls on the screen. This section showed you 
how the data is assigned to the controls, but some controls require even more attention to 
ensure they display the data correctly. The next section expands upon what you must do to 
get the ComboBox to work.

Configuring a ComboBox
A couple of the particularly more complex controls to configure are ComboBox and 
ListBox. The reason is that they have a few different properties that must be set to ensure 
that whatever is selected can be read and correctly referenced back to the original data 
source. This section doesn’t try to teach you about WPF binding because there are entire 
books with multiple chapters related to the subject. Instead, you’ll learn an essential skill 
for helping you figure out how to set the right properties on a ComboBox control. In so 
doing, you’ll get a better feel for the features of VS that help you perform the task of 
setting up controls.



 242 Microsoft Visual Studio 2010: A Beginner’s Guide

The previous example assigns the results of a LINQ query for Customer objects to 
the customerIDComboBox, but this is only the first step to getting the combo box to work 
properly; you must specify which property of Customer must display, which property of 
Customer maps to Order, and which property of Order to bind the selected item to. To do 
this binding, open the NewOrder.xaml file in the Designer, select the combo box, and set 
the properties as specified in Table 8-2.

The following XAML shows the results of the settings you should make in the 
Properties window, based on Table 8-2:

<ComboBox DisplayMemberPath="Name" 
          SelectedValue="{Binding Path=CustomerID}" 
          SelectedValuePath="CustomerID" 
          Grid.Column="1" Grid.Row="1" 
          Height="23" HorizontalAlignment="Left" 
          Margin="3" Name="customerIDComboBox" 
          VerticalAlignment="Center" Width="120"> 
</ComboBox>

DisplayMemberPath and SelectedValuePath are names of the properties from the 
Customer objects bound to the ComboBox. However, the SelectedValue syntax uses a 
binding expression, where Path identifies the property of the Order that will be assigned 
to with SelectedValuePath. The binding for SelectedValue is based on the Order object 

Table 8-2 ComboBox Properties for Data Binding

Property Explanation
ItemsSource We set this through code in the Window_Loaded event. It holds the collection 

of objects that will appear in the combo box. You need two properties, one to 
display and one for the key of the object being displayed. The key will be used 
to map the object back to the database or associate the object in a relationship 
with another object. In the case of the Customer list, the properties of interest are 
Name for display and CustomerID for key. Since we are creating a new Order, 
the CustomerID for the Name selected in the combo box will be assigned to the 
CustomerID field of the Order. That way, when the Order is saved, its database 
record will have the CustomerID for the customer the user selected.

DisplayMemberPath This is the Name property from each Customer object bound to the combo box.

SelectedValuePath As explained for ItemsSource, you need to associate the selected Customer with 
the Order being created. SelectedValuePath is the name of the Customer object’s 
key, which is CustomerID in our example.

SelectedValue When saving the Order, you must have the key associated with the selected 
customer. The SelectedValue is a binding to the property of the Order that will 
be set with the key from the selected Customer.



 Chapter 8: Building Desktop Applications with WPF 243

that was assigned to the Source property of the orderViewSource in Window_Loaded. 
Coming full circle, the orderViewSource is what the default binding of the containing 
Grid layout is based on; it was set when dragging and dropping the Order data source 
onto the Design surface.

Now you have an input form that displays data, allowing the user to enter new 
order information. After the user fills in the form, you need to save the data, which is 
discussed next.

Reading and Saving Data
Next, you’ll want to save the order when a user clicks Save. To do this, add a Button 
control to the form, set its Content property to Save, and set its Name property to 
SaveButton, which you learned how to do earlier in this chapter. Then double-click Save 
to create a Click event handler like this:

C#:

private void SaveButton_Click(object sender, RoutedEventArgs e) 
{ 
    CollectionViewSource orderViewSource = 
        FindResource("orderViewSource") as CollectionViewSource; 
 
    List<Order> ordList =  
        orderViewSource.Source as List<Order>; 
    Order ord = ordList.FirstOrDefault(); 
 
    var ctx = new MyShopDataContext(); 
 
    ctx.Orders.InsertOnSubmit(ord); 
 
    ctx.SubmitChanges(); 
 
    MessageBox.Show("Order Saved!"); 
}

VB:

Private Sub SaveButton_Click( 
    ByVal sender As System.Object,  
    ByVal e As System.Windows.RoutedEventArgs)  
    Handles SaveButton.Click 
 
    Dim OrderViewSource As CollectionViewSource =  
        CType(FindResource("OrderViewSource"), CollectionViewSource) 
 



 244 Microsoft Visual Studio 2010: A Beginner’s Guide

    Dim ordList As List(Of Order) 
    ordList = CType(OrderViewSource.Source, List(Of Order)) 
    Dim ord As Order 
    ord = ordList.FirstOrDefault() 
 
    Dim ctx As New MyShopDataContext 
 
    ctx.Orders.InsertOnSubmit(ord) 
    ctx.SubmitChanges() 
 
    MessageBox.Show("Order Saved!") 
End Sub

Before the SaveButton_Click event handler ends, it shows a message box to the user 
with a status message, Order Saved. The MessageBox class has several overloads of the 
Show method that allows you to specify buttons, icons, and more.

So far, you’ve learned how to create an input form for adding a new record to the 
database. The next section will build upon this by showing you how to view, modify, and 
delete records with the DataGrid.

Using the DataGrid
The DataGrid is the best option for working with data that must be shown with multiple 
rows and columns. This section will show you how to show, update, and delete items with 
a Grid. First, we’ll display orders.

We’ll build off the data source created in the previous example to show data in a Grid. 
First, you’ll need to open the Data Source window by selecting Data | Open Data Sources. 
The preceding section specified the CustomerID as a ComboBox. If you’re following 
along, you’ll want to change CustomerID to a TextBox by clicking on CustomerID for  
the Order object in the Data Sources window and selecting TextBox. Change the control  
type of Order from a form to a Grid by selecting the combo box for the Order object in  
the Data Sources window and selecting the DataGrid option. Open the MainWindow 
.xaml file in the Designer and drag and drop Order from the Data Sources window to the 
Designer. Remember there is a New Order button that you’ll want to move to the bottom 
of the form. Also, add another button, set its Name property to UpdateButton, and set its 
Content property to Update. Position the New Order and Update buttons at the bottom of 
the form. Resize and move controls and form so they look like Figure 8-16.

Just as with the form view in the preceding section, VS added a CollectionViewSource 
to the window when adding the Order to the Designer. The following Window_Loaded 
event handler provides the Order data to display in the Grid:



 Chapter 8: Building Desktop Applications with WPF 245

C#:

private MyShopDataContext m_ctx = new MyShopDataContext(); 
 
private void Window_Loaded(object sender, RoutedEventArgs e) 
{ 
    CollectionViewSource orderViewSource = 
        FindResource("orderViewSource") as CollectionViewSource; 
 
    orderViewSource.Source = 
        from ord in m_ctx.Orders 
        select ord; 
}

VB:

Dim m_ctx As New MyShopDataContext 
 
Private Sub Window_Loaded( 
    ByVal sender As System.Object,  
    ByVal e As System.Windows.RoutedEventArgs)  
    Handles MyBase.Loaded 
 

Figure 8-16 Displaying information in a Grid



 246 Microsoft Visual Studio 2010: A Beginner’s Guide

    Dim OrderViewSource As CollectionViewSource = 
        CType(FindResource("OrderViewSource"), CollectionViewSource) 
 
    OrderViewSource.Source = 
        From ord In m_ctx.Orders 
        Select ord 
 
End Sub

This code loads orders into the Grid. Notice that the MyShopDataContext, m_ctx, is a 
field outside of the Window_Loaded method handler. It is raised to field level so that the 
same instance can be used in multiple methods. As you may notice from Figure 8-16, there 
is also an Update button on the form. Double-clicking the Update button produced the 
following Click event handler that saves changes, such as updates and deletes, to the Grid:

C#:

private void UpdateButton_Click(object sender, RoutedEventArgs e) 
{ 
    m_ctx.SubmitChanges(); 
 
    MessageBox.Show("Updates and Deletes Saved!"); 
}

VB:

Private Sub UpdateButton_Click( 
    ByVal sender As System.Object,  
    ByVal e As System.Windows.RoutedEventArgs)  
    Handles UpdateButton.Click 
 
    m_ctx.SubmitChanges() 
 
    MessageBox.Show("Updates and Deletes Saved!") 
 
End Sub

When you run the program, you can add new rows, modify the cells of existing rows, 
or delete a row by selecting the row and pressing DELETE on the keyboard. After making 
changes to the Grid, click Update, which will call the previous UpdateButton_Click event 
handler.

To understand how this works, remember that the Window_Loaded event handler 
assigned a collection of Order objects to the CollectionViewSource, orderViewSource, 
which is data bound to the Grid. Each row of the Grid is bound to an instance of an Order 
object. Each Order object is part of the LINQ to SQL MyShopDataContext. Since we are 



 Chapter 8: Building Desktop Applications with WPF 247

using m_ctx, which is a field, both the Window_Loaded method and the UpdateButton_
Click method are using the same object instance. When making changes in the Grid, 
those changes are saved in the Order objects for the changed rows. The Order objects 
notify MyShopDataContext that they have changed, which is a service of LINQ to SQL. 
The UpdateButton_Click method uses m_ctx, which is the MyShopDataContext that 
knows about the changes to the Order objects. Calling SubmitChanges on m_ctx saves all 
changes to the database.

You might need to read the preceding paragraph more than one time to understand 
how this is working. If it’s still fuzzy, it might be helpful to review the language chapters 
earlier in this book to understand how objects are instantiated and used, and review 
Chapter 7 to ensure you understand the data manipulation picture.

Summary
While there is much more to learn about WPF, this is a beginner’s guide and intended to 
give you the essentials so that you can begin moving in the right direction. You should 
now be able to create a new WPF project. You learned about layout controls and how they 
allow you to manage how controls appear on your form. A section explains the windows 
involved in working with controls. While there are many controls you can use that ship 
with both WPF and many third-party products, remember that the concepts are relatively 
the same for using the controls: drag and drop, and configure properties. Most applications 
work with data, so this chapter builds upon what you know about LINQ to SQL and 
shows you how to apply this data management knowledge to create user interfaces that 
users can work with to manage their data.

This chapter introduces you to working with desktop applications, which are still very 
necessary and popular. However, a lot of today’s applications are written for the Internet. 
The next chapter shows you how to build Web applications with ASP.NET.



This page intentionally left blank 



249

Chapter 9
Creating Web 
Applications with  
ASP.NET MVC



 250 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Learn What MVC Means

● Create Models

● Create Controllers

● Create Views

● Work with Data in ASP.NET MVC

ASP.NET is a .NET technology for building Web applications. VS provides support 
for building a Web application through windows such as the Toolbox, Designer, and 

Properties windows, as well as the Solution Explorer. This chapter shows you how to use 
ASP.NET MVC. MVC is an acronym for Model View Controller, which is a well-known 
design pattern for building applications. You’ll learn about how MVC works and how it is 
implemented in ASP.NET MVC. Let’s start by helping you understand what MVC is.

Understanding ASP.NET MVC
The essential piece of knowledge required to be successful with ASP.NET MVC is the 
Model View Controller pattern. In MVC, the Model, View, and Controller are three 
separate objects. Table 9-1 describes the purpose of each MVC object.

With MVC, you have a clear separation of concerns where Model, View, and Controller 
have distinct responsibilities. This makes it easier to write good programs that you can 
return to later for fixing bugs and adding new features. Besides knowing what each of these 
three objects is, you must understand their relationship. Figure 9-1 illustrates the Model, the 

Table 9-1  Purpose of MVC Objects

MVC Object Purpose
Model The Model is made up of business objects and data.

View Each MVC application typically has a user interface that displays information to a 
user and allows the user to input data. The data that the View displays is read from 
a Model, and the data that the user adds to the View is assigned to the Model.

Controller A Controller orchestrates the activities of an application. When a user makes a 
request for your application, ASP.NET MVC invokes a Controller. The Controller will 
communicate with the Model and View to ensure the program operates correctly.



 Chapter 9: Creating Web Applications with ASP.NET MVC 251

View, and the Controller, including relationships. There are variations of the relationship 
between Model, View, and Controller, so rather than a theoretically correct depiction of all 
scenarios, Figure 9-1 is a simplification that should help you get started.

In Figure 9-1, you can see that the Controller references both the View and the Model. 
This makes sense when you consider that the Controller is managing the operation of the 
application. The Controller executes in response to a user request. Since the Controller 
is also responsible for coordinating activity between the Model and the View, you can 
see the relationship in Figure 9-1 where the Controller references the Model. The View 
references the Model because the View must bind data to the user interface and needs to 
know what data is available. The Model does not reference the View or the Controller. The 
Model is an object that holds data and any other members that help manage that data, such 
as methods for performing validation.

A typical sequence of operations for an ASP.NET MVC operation starts with a request 
to a Controller. The Controller will perform the actions requested, working with the Model. 
The Controller will then give the Model to a View and run the View. The View will display 
Model data and interact with the user for any screen operations. Based on user interaction 
with the View, more requests will be made to a Controller to repeat this process. The rest 
of this chapter shows you how to write the code to make this process work, starting with 
creating a new ASP.NET MVC project.

Starting an ASP.NET MVC Project
Just as with any other project in VS, you open the New Project window by selecting 
File | New | Project. Then create an ASP.NET MVC 2 Web Application project named 
MyShopCS (MyShopVB for VB). VS will ask if you want to create a test project, and 

Figure 9-1 The Model View Controller pattern

ModelView

Controller

Request



 252 Microsoft Visual Studio 2010: A Beginner’s Guide

you have the option to choose Yes or No. Choosing Yes will add a unit testing project to 
the solution. You can choose either option, which won’t matter right now because we’ll not 
be covering this topic here, but it is definitely worth exploring on your own. Figure 9-2  
shows the new project in Solution Explorer.

VS created several folders with working code:

● The Model, View, and Controller folders hold code for the MVC Models, Views, and 
Controllers, respectively.

● Previous chapters already explained the purpose of the Properties and References folders.

● The App_Data folder is designed to allow you to ship a local database with your application 
and is ideal for small programs where you can use the free SQL Express database. See 
the accompanying note to learn how to add a database in the App_Data folder.

● The Content folder is where you add any Cascading Style Sheets (CSS) files. CSS is a 
standardized language for defining layout and appearance of a Web site.

Figure 9-2 A new ASP.NET MVC project



 Chapter 9: Creating Web Applications with ASP.NET MVC 253

● The Scripts folder holds JavaScript files, which include the jQuery and ASP.NET 
AJAX client libraries. JavaScript helps make Views more interactive and can be 
effective in providing a pleasing user experience.

● The Global.asax file holds code that runs at different periods during the application 
life cycle; we’ll investigate this file when looking at routing later in this chapter.

● The web.config file holds configuration information, such as database connection 
strings and more items that you don’t want to hard-code into the application.

NOTE
If you want to ship a local database with your application, you can right-click the App_
Data folder for your project, select Add | New Item, navigate to Data, and select SQL 
Server Database. This will add a blank database *.mdf file under the App_Data folder. 
You can work with this database through Server Explorer, using techniques learned in 
Chapter 7, to add tables and other objects. Remember that the server you deploy to 
must have SQL Server Express installed or your database operations won’t work.

The code generated by the New Project Wizard will run, and pressing F5 to execute the 
application will show you a screen similar to Figure 9-3. Click OK when you see a screen 
that asks if you want to program to run in debug mode. This will modify the web.config 
file to allow debugging, which is what you want while developing applications.

Figure 9-3 Running the default code produced by an ASP.NET MVC project



 254 Microsoft Visual Studio 2010: A Beginner’s Guide

The skeleton code produced by VS gives you some working examples that you can 
build on and move forward. One item that VS doesn’t produce is the Model, which is 
discussed next.

Creating the Models
As stated previously, the Model represents the data for the application. The example in 
this section uses LINQ to SQL to produce the Model for this application. To create the 
Model, add a LINQ to SQL entity Model by right-clicking the Models folder, selecting 
Add | New Item, and selecting LINQ to SQL. This creates a *.dbml file that you should 
add Customer and Order entities to, using the same techniques described in Chapter 7.

In more sophisticated scenarios, you would have additional objects that held business 
logic or other data that isn’t associated with LINQ to SQL. This book keeps tasks at a 
basic level so that you can understand how to use VS. You can put Model objects in the 
Models folder or a separate class library. This chapter uses the Models folder.

Building Controllers
Requests come directly to a Controller, which we discussed earlier. As shown in Figure 9-2, 
the MVC project has a Controllers folder. Controller classes normally reside in the Controllers 
folder. Figure 9-2 shows two files, AccountController.cs and HomeController.cs, in the 
Controllers folder. Listing 9-1 shows the contents of the HomeController.cs file.

Listing 9-1  The HomeController class

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Web; 
using System.Web.Mvc; 
 
namespace MyShopCS.Controllers 
{ 
    [HandleError] 
    public class HomeController : Controller 
    { 
        public ActionResult Index() 
        { 
            ViewData["Message"] = "Welcome to ASP.NET MVC!"; 
 



 Chapter 9: Creating Web Applications with ASP.NET MVC 255

            return View(); 
        } 
 
        public ActionResult About() 
        { 
            return View(); 
        } 
    } 
}

VB:

<HandleError()> _ 
Public Class HomeController 
    Inherits System.Web.Mvc.Controller 
 
    Function Index() As ActionResult 
        ViewData("Message") = "Welcome to ASP.NET MVC!" 
 
        Return View() 
    End Function 
 
    Function About() As ActionResult 
        Return View() 
    End Function 
End Class

Listing 9-1 demonstrates how closely ASP.NET MVC is tied to conventions. Notice 
that the class name is HomeController. Appending Controller to a class name is a 
convention that ASP.NET MVC uses to identify which classes are controllers. Also, the 
methods in the class are referred to as Actions in ASP.NET MVC. Using the Controllers 
folder for a Controller, appending the class name with Controller, and available actions 
are all conventions that you must follow. The following URL, a browser address, 
demonstrates how these conventions support routing to find a Controller and invoke the 
About action. You can see this URL if you run the application and click the About tab:

http://localhost:1042/Home/About

The http://localhost:1042 part of the URL is a Web server that is built into VS and runs the 
Web application without needing a Web server such as Internet Information Server (IIS). 
The number 1042 is a random port number generated by the Web server, and your port 
number is likely to be different.



 256 Microsoft Visual Studio 2010: A Beginner’s Guide

TIP
You can change your VS Web server’s port number. If you open your project’s property 
page by right-mouse clicking on the project in Solution Explorer and select Properties, 
then select the Web tab on the left, under Servers, you can specify a specific port or 
make other Web server choices.

For ASP.NET MVC, the important part of the URL is /Home/About. Home is the 
name of the Controller, and ASP.NET MVC appends Controller to the URL name, looking 
for the HomeController class, shown in Listing 9-1, physically located in the Controller 
folder, which is why it’s important to ensure you create files in the proper locations. About 
is an action, which corresponds to the About method shown in Listing 9-1. Similar to the 
About method, the Index action is run through the following URL:

http://localhost:1042/Home/Index

In a later section of this chapter, you’ll learn how ASP.NET MVC performs routing, which 
maps URLs to Controllers.

Both the Index and About actions in Listing 9-1 invoke a method named View. This is 
a convention for invoking a View with the same name as the action method. For example, 
calling View in the Index action will show a View named Index, and the call to View in the 
About method will show a View named About.

One more item to point out is how the Index action assigns a string to a collection 
called ViewData. The ViewData collection is one way for a Controller to pass Model data 
to a View. I’ll cover more on Controllers, including how to create your own, in a later part 
of this chapter, but now, let’s do a quick review of Views so that you can see what happens 
when they are invoked by the Controller.

Displaying Views
A View is what displays in the browser and allows interaction with the user. The View can 
display any information that a Controller passes to it. For example, notice that the Index 
action in Listing 9-1 assigns a string “Welcome to ASP.NET MVC!” with the “Message” 
key in the ViewData collection.

Looking Inside a View
Figure 9-3 shows the View in the browser, displaying the message. Listing 9-2 shows the 
Hypertext Markup Language (HTML) of the View displaying the message. The View 
actually has a combination of HTML and ASP.NET markup, sometimes referred to as 
ASPX, but I’ll refer to it as just HTML for the rest of the chapter.



 Chapter 9: Creating Web Applications with ASP.NET MVC 257

Listing 9-2  A View’s HTML

<%@ Page Language="C#" 
         MasterPageFile="~/Views/Shared/Site.Master" 
         Inherits="System.Web.Mvc.ViewPage" %> 
 
<asp:Content ID="indexTitle" 
             ContentPlaceHolderID="TitleContent" 
             runat="server"> 
    Home Page 
</asp:Content> 
 
<asp:Content ID="indexContent" 
             ContentPlaceHolderID="MainContent" 
             runat="server"> 
    <h2><%= Html.Encode(ViewData["Message"]) %></h2> 
    <p> 
        To learn more about ASP.NET MVC visit 
<a href="http://asp.net/mvc" 
   title="ASP.NET MVC Website"> 
   http://asp.net/mvc 
</a>. 
    </p> 
</asp:Content>

A quick overview of Listing 9-2 shows that there is a Page directive with a couple of 
Content containers. The Page directive specifies a MasterPage and Inherits attributes.  
A MasterPage is a separate file that holds common HTML that can be shown on all pages 
of a site. You’ll see how the MasterPage works soon, but let’s stay focused on the current 
file in Listing 9-2 until then. ASP.NET MVC will compile this HTML into code behind the 
scenes, and the generated code will derive from the class defined by the Inherits attribute.

The first Content container can hold metadata that goes into an HTML header. The 
second Content container has the information that will display on the screen. Notice 
the Html.Encode(ViewData["Message"]) inside of binding tags <%= and %>. Any time 
you add code or need to access ViewData that was passed by the Controller, you will 
use the binding tags. Encode is one of several helper methods of the Html class, more 
of which you’ll see soon. The purpose of Encode is to translate HTML tags into their 
encoded representations for security purposes, ensuring that you don’t show any harmful 
JavaScript, or other markup that could possibly execute, to the user. ViewData["Message"] 
should be familiar, as it was set in the Index action in Listing 9-2 but is now being read 
and displayed on the screen by this View.



 258 Microsoft Visual Studio 2010: A Beginner’s Guide

Organizing View Files
The file structure in Figure 9-2 shows that Views appear in the Views folder and have a 
*.aspx file extension. Each subfolder under the Views folder corresponds to a Controller, 
and the Views within the subfolder correspond generally to Controller actions. When 
a Controller passes control to a View, by calling View, ASP.NET MVC searches for the 
View in the Views folder with the subfolder named the same as the Controller and the file 
named the same as the action calling the View.

Notice that there is a Shared folder. Sometimes, you’ll want to have a View that is 
shared by two or more Controller actions, and you can put these shared Views in the 
Shared subfolder. Whenever ASP.NET MVC doesn’t find a View in the Controller-named 
subfolder, it will search for the View in the Shared folder. An important file in the Shared 
subfolder is the MasterPage, which is discussed next.

Assigning MasterPage Files
Most sites on the Web have multiple pages, each with common elements. They all have the 
same header, menu, sidebars, and footers. When you first build a site, you can duplicate 
this common content with no trouble, but this copy-and-paste type duplication will cause 
a lot of headaches in the future. The first time you have to change the common elements, 
you’ll need to visit every page. If the site has only a few pages, no problem, but the reality 
is that most sites of any success grow to dozens or hundreds of pages. It is beyond practical 
to try to update every page on a site every time the common content changes.

This is where MasterPages help, allowing you to specify the common content in one 
place where you can have content pages that use the MasterPage. Whenever something 
changes in the common content, you update the MasterPage, and every page of a site that 
uses the MasterPage is automatically updated. Listing 9-3 shows the MasterPage, created 
by ASP.NET MVC, that the content page in Listing 9-2 uses.

Listing 9-3  A MasterPage

<%@ Master Language="C#" 
           Inherits="System.Web.Mvc.ViewMasterPage" %> 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"  
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head runat="server"> 



 Chapter 9: Creating Web Applications with ASP.NET MVC 259

    <title> 
        <asp:ContentPlaceHolder ID="TitleContent" 
                                runat="server" /> 
    </title> 
    <link href="../../Content/Site.css" 
          rel="stylesheet" type="text/css" /> 
</head> 
 
<body> 
    <div class="page"> 
 
        <div id="header"> 
            <div id="title"> 
                <h1>My MVC Application</h1> 
            </div> 
 
            <div id="logindisplay"> 
<% Html.RenderPartial("LogOnUserControl"); %> 
            </div> 
 
            <div id="menucontainer"> 
 
                <ul id="menu"> 
                    <li> 
<%= Html.ActionLink("Home", "Index", "Home")%> 
                    </li> 
                    <li> 
<%= Html.ActionLink("About", "About", "Home")%> 
                    </li> 
                </ul> 
 
            </div> 
        </div> 
 
        <div id="main"> 
          <asp:ContentPlaceHolder ID="MainContent" runat="server" /> 
 
          <div id="footer"> 
          </div> 
        </div> 
    </div> 
</body> 
</html>



 260 Microsoft Visual Studio 2010: A Beginner’s Guide

Moving from the top of Listing 9-3 down, you can see the MasterPage directive at the top 
of the page, which states that this is a MasterPage and ASP.NET MVC will handle the page 
appropriately. The DTD is a tag that specifies what Web standards this page supports, which 
is read by browsers to help them determine the best way to display the page.

The rest of the page is framed inside of HTML tags and ASP.NET MVC markup. The 
html tag states that this is an HTML document. HTML documents have two parts, a head 
and a body, where the head is for metadata describing the page and the body contains 
display content.

In HTML, a div tag blocks off a chunk of HTML and is useful for layout and organization 
of the page. The Hx tags, where x is a number between 1 and 6, describe headers, where h1 is 
the largest and h6 is the smallest.

The ContentPlaceHolder controls are instrumental to the success of the MasterPage. If 
you look at the Content tags in Listing 9-2, you’ll see that they have a ContentPlaceHolderID 
that matches the ID attributes of the ContentPlaceHolder controls in Listing 9-3. What this 
means is that when the View renders, the MasterPage will display and ASP.NET MVC will 
inject the Content regions of the content pages into the matching ContentPlaceHolders of the 
MasterPage. ASP.NET MVC knows which MasterPage to use because the Page directive, as 
shown in Listing 9-2, specifies the MasterPage attribute.

If you recall from the last section, Listing 9-2 had a binding expression for the Html 
Encode helper method. The MasterPage in Listing 9-3 introduces a couple more Html 
helper methods, RenderPartial and ActionLink.

The ActionLink method has three parameters: id, controller, and action. When the 
ActionLink renders in the browser, it will transform into an anchor tag, a, with an id 
specified in the first parameter of ActionLink. When the user clicks the link in the browser, 
the application will navigate to the Controller in the third parameter of ActionLink and 
invoke the action in the second parameter of ActionLink. So, if the user clicked the link 
produced by ActionLink("About", "About", "Home"), ASP.NET MVC will invoke the About 
action of the Home Controller. The next section discusses RenderPartial in more detail.

Partial Views (a.k.a. User Controls)
It’s often the case that you’ve written View content on one page and need the same identical 
content on two or more pages. As explained with MasterPages, you want to avoid the 
maintenance work that comes with updating all of the content that is the same on multiple 
pages. While MasterPages are good for content that decorates pages across an entire site, a 
Partial View is ideal for limited reuse of View content on different pages of a site.



 Chapter 9: Creating Web Applications with ASP.NET MVC 261

A good example of where a Partial View is useful is illustrated in the code produced 
by the ASP.NET MVC Project Wizard, where it created the LogonUserControl.ascx. The 
terms Partial View and User Control are synonymous, where the term User Control is 
familiar to developers who have worked with previous versions of ASP.NET Web Forms. 
Partial View is consistent with the ASP.NET MVC perspective of Views, where a Partial 
View is not an entire View, but a chunk of View content that can be reused with multiple 
Views. It isn’t coincidence that this control is physically located in the Views Shared 
folder, considering that it can be used on multiple pages. Remember, if ASP.NET MVC 
can’t find a file in a View folder named after a Controller, it will look in the Shared folder. 
Listing 9-4 shows the contents of LogonUserControl.ascx.

Listing 9-4  Contents of a Partial View

<%@ Control Language="C#" 
            Inherits="System.Web.Mvc.ViewUserControl" %> 
<% 
    if (Request.IsAuthenticated) { 
%> 
Welcome <b><%= Html.Encode(Page.User.Identity.Name) %></b>! 
 [ <%= Html.ActionLink("Log Off", "LogOff", "Account") %> ] 
<% 
    } 
    else { 
%> 
[ <%= Html.ActionLink("Log On", "LogOn", "Account") %> ] 
<% 
    } 
%>

The Control directive at the top of Listing 9-4 indicates that this is a Partial View. 
Within the control, you can see an if statement, where the language syntax is surrounded 
by <% and %> binding symbols. The additional syntax to separate code from markup 
might take a little getting used to, but it is typical in an MVC application to control how 
markup is rendered. The IsAuthenticated property of the Request object tells whether 
the current user is logged in, and the logic ensures the appropriate message displays. 
The ActionLink Html helper methods generate action tags with a URL for actions on the 
Account Controller. We’ve barely touched on routing and how a URL matches controllers 
and actions, but the next section explains how routes work in greater depth.



 262 Microsoft Visual Studio 2010: A Beginner’s Guide

Managing Routing
ASP.NET MVC has a routing system that matches URLs to controllers with actions and 
the parameters passed to those actions. When you start a new ASP.NET MVC project, 
default routing will be established via a file called Global.asax, which is where many 
events affecting the application are placed. When you run an ASP.NET MVC application, 
it will use URLs of the form http://domain/controller/action/param1/param2/…/paramN? 
optionalArg=optionalVal. Here’s an example:

http://localhost:1042/Home/About

In this example, localhost:1042 is the domain, Home is the Controller, and About is the 
action. When ASP.NET MVC sees this URL, it will instantiate the HomeController class 
and call the About method.

The Global.asax file has an Application_Start event that is called the first time the 
application runs. This is where routing is set up so that it will be in place for all of the 
requests while the application is running. Listing 9-5 shows the default routing for an ASP 
.NET MVC project.

Listing 9-5  Setting up routing

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Web; 
using System.Web.Mvc; 
using System.Web.Routing; 
 
namespace MyShopCS 
{ 
    // Note: For instructions on enabling IIS6 or IIS7 classic mode, 
    // visit http://go.microsoft.com/?LinkId=9394801 
 
    public class MvcApplication : System.Web.HttpApplication 
    { 
        public static void RegisterRoutes(RouteCollection routes) 
        { 
            routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); 
 
            routes.MapRoute( 
                "Default",                    // Route name 
                "{controller}/{action}/{id}", // URL with parameters 
                new { 

http://domain/controller/action/param1/param2/%E2%80%A6/paramN?optionalArg=optionalVal
http://domain/controller/action/param1/param2/%E2%80%A6/paramN?optionalArg=optionalVal


 Chapter 9: Creating Web Applications with ASP.NET MVC 263

                    controller = "Home", 
                    action = "Index", 
                    id = "" }  // Parameter defaults 
            ); 
 
        } 
 
        protected void Application_Start() 
        { 
            RegisterRoutes(RouteTable.Routes); 
        } 
    } 
}

VB:

' Note: For instructions on enabling IIS6 or IIS7 classic mode,  
' visit http://go.microsoft.com/?LinkId=9394802 
 
Public Class MvcApplication 
    Inherits System.Web.HttpApplication 
 
    Shared Sub RegisterRoutes(ByVal routes As RouteCollection) 
        routes.IgnoreRoute("{resource}.axd/{*pathInfo}") 
 
        ' MapRoute takes the following parameters, in order: 
        ' (1) Route name 
        ' (2) URL with parameters 
        ' (3) Parameter defaults 
        routes.MapRoute( _ 
            "Default", _ 
            "{controller}/{action}/{id}", _ 
            New With  
            { 
                .controller = "Home", .action = "Index", .id = "" 
            } 
        ) 
 
    End Sub 
 
    Sub Application_Start() 
        AreaRegistration.RegisterAllAreas() 
 
        RegisterRoutes(RouteTable.Routes) 
    End Sub 
End Class



 264 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 9-5 shows that the Application_Start event invokes a method named 
RegisterRoutes, passing the Routes property of the RouteTable class. The Routes property is 
a static RouteCollection, meaning that there is only one copy for the entire application, and 
it will hold multiple routes. When the application starts, this collection will be empty and 
the RegisterRoutes method will populate the collection with routes for this application.

Routing works by pattern matching, which you can see through the two statements 
in the RegisterRoutes method: IgnoreRoute and MapRoute. IgnoreRoute is useful for 
situations where you want to let IIS request the exact URL. In this case, it is any file with 
the *.axd extension, regardless of parameters.

The MapRoute method shows a common pattern for matching URLs to controllers, 
actions, and parameters. The first parameter is the name of the route. The second 
parameter describes the pattern, where each pattern match is defined between curly braces. 
Based on the URL, http://localhost:1042/Home/About, the pattern, {controller}/{action}/
{id}, matches Home to {controller} and About to {action}; there is no match for {id}. 
Therefore, ASP.NET MVC will append “Controller” to the URL segment that matches 
{controller}, meaning that the Controller name to instantiate is HomeController. About 
is the method inside of HomeController to invoke. Since About doesn’t have parameters, 
supplying the {id} is unnecessary.

The third parameter for MapRoute specifies default values, where the key matches the 
pattern parameter and the value assigned to the key is what ASP.NET MVC uses when it 
doesn’t find a pattern match with the URL. Here are a couple of examples:

● http://localhost:1042 invokes the Index method of HomeController because no Controller 
or action matches and the defaults are Home for {controller} and Index for {action}.

● http://localhost:1042/Home invokes the Index method of HomeController because no 
action was specified and the default value for {action} is Index.

You can create your own custom route by using the MapRoute method and specifying 
other default values for the parameters.

Building a Customer Management Application
Now, we’ll pull together the ASP.NET MVC concepts you’ve learned and describe how 
to build a very simple application that displays, adds, modifies, and deletes customers. 
In so doing, you’ll see how to build up a Model that supports customers, how to create a 
custom Controller with actions for managing customers, and how to create multiple views 
to handle interaction with the users as they work with customers.



 Chapter 9: Creating Web Applications with ASP.NET MVC 265

Creating a Repository
A common pattern for working with data is to build a repository that is responsible for all 
data-related operations. This is another way to promote separation of concerns so that you 
isolate logic into specific parts of an application, resulting in easier code to work with.  
A repository is a class that performs create, read, update, and delete (CRUD) operations 
on a specific data type. Listing 9-6 shows a repository for working with customer objects. 
You can create this class by right-clicking the Models folder and selecting Add | Class, 
and name the class CustomerRepository. The code also assumes that you’ve created a 
LINQ to SQL *.dbml, named MyShop, with a Customer entity for the Customers table in 
MyShop, which is the database created in Chapter 7.

Listing 9-6  A repository for working with customer data

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Web; 
 
namespace MyShopCS.Models 
{ 
    public class CustomerRepository 
    { 
        private MyShopDataContext m_ctx 
            = new MyShopDataContext(); 
 
        public int InsertCustomer(Customer cust) 
        { 
            m_ctx.Customers.InsertOnSubmit(cust); 
            m_ctx.SubmitChanges(); 
            return cust.CustomerID; 
        } 
 
        public void UpdateCustomer(Customer cust) 
        { 
            var currentCust = 
                (from currCust in m_ctx.Customers 
                 where currCust.CustomerID == cust.CustomerID 
                 select currCust) 
                 .SingleOrDefault(); 
 
            if (currentCust != null) 



 266 Microsoft Visual Studio 2010: A Beginner’s Guide

            { 
                currentCust.Age = cust.Age; 
                currentCust.Birthday = cust.Birthday; 
                currentCust.Income = cust.Income; 
                currentCust.Name = cust.Name; 
            } 
 
            m_ctx.SubmitChanges(); 
        } 
 
        public Customer GetCustomer(int custID) 
        { 
            return 
                (from cust in m_ctx.Customers 
                 where cust.CustomerID == custID 
                 select cust) 
                 .SingleOrDefault(); 
        } 
 
        public List<Customer> GetCustomers() 
        { 
            return 
                (from cust in m_ctx.Customers 
                 select cust) 
                 .ToList(); 
        } 
 
        public void DeleteCustomer(int custID) 
        { 
            var customer = 
                (from cust in m_ctx.Customers 
                 where cust.CustomerID == custID 
                 select cust) 
                 .SingleOrDefault(); 
 
            m_ctx.Customers.DeleteOnSubmit(customer); 
            m_ctx.SubmitChanges(); 
        } 
    } 
}

VB:

Public Class CustomerRepository 
 
    Private m_ctx As New MyShopDataContext 
 



 Chapter 9: Creating Web Applications with ASP.NET MVC 267

    Public Function InsertCustomer( 
        ByVal cust As Customer) As Integer 
 
        m_ctx.Customers.InsertOnSubmit(cust) 
        m_ctx.SubmitChanges() 
        Return cust.CustomerID 
 
    End Function 
 
    Public Sub UpdateCustomer(ByVal cust As Customer) 
 
        Dim currentCust = 
            (From currCust In m_ctx.Customers 
             Where currCust.CustomerID = cust.CustomerID 
             Select currCust).SingleOrDefault() 
 
 
        If Not currentCust Is Nothing Then 
 
            With currentCust 
                .Age = cust.Age 
                .Birthday = cust.Birthday 
                .Income = cust.Income 
                .Name = cust.Name 
            End With 
 
            m_ctx.SubmitChanges() 
 
        End If 
 
    End Sub 
 
    Public Function GetCustomer(ByVal custID As Integer) As Customer 
 
        Dim customer = 
            (From cust In m_ctx.Customers 
             Where cust.CustomerID = custID 
             Select cust).SingleOrDefault() 
 
        Return customer 
 
    End Function 
 
    Public Function GetCustomers() As List(Of Customer) 
 
        Dim customers = 



 268 Microsoft Visual Studio 2010: A Beginner’s Guide

            (From cust In m_ctx.Customers 
             Select cust).ToList() 
 
        Return customers 
 
    End Function 
 
    Public Sub DeleteCustomer(ByVal custID As Integer) 
 
        Dim customer = 
            (From cust In m_ctx.Customers 
             Where cust.CustomerID = custID 
             Select cust).SingleOrDefault() 
 
        m_ctx.Customers.DeleteOnSubmit(customer) 
        m_ctx.SubmitChanges() 
 
    End Sub 
End Class

You can have more methods in a repository for doing whatever is required with data 
for the application, but the items in Listing 9-6 are typical. The LINQ to SQL operations 
are consistent with the material covered in Chapter 7, so there’s no need to repeat the same 
material here. The purpose of the repository is to give the Controller an object to work 
with for getting data without filling up Controller methods with data access logic. Let’s 
see how the Controller works with this repository next.

Creating a Customer Controller
Right-click the Controllers folder, select Add | Controller, or press CTRL-M, press CTRL-
C, and name the file CustomerController. Check the box for “Add action methods for 
Create, Update, and Details scenarios” as shown in Figure 9-4.

Figure 9-4 Creating a new Controller



 Chapter 9: Creating Web Applications with ASP.NET MVC 269

This will create a new Controller with several methods for working with Customer 
data. Listing 9-1 already showed what a Controller looks like, and this is no different, 
except that it contains more action methods. The following sections explain how to 
perform various operations on customer data.

Displaying a Customer List
The first thing to do with customers is to display a list that will serve as a starting point 
for other operations. Listing 9-7 shows the Index action method of the CustomerController 
and how it gets a list of customers to display. The code uses the CustomerRepository, 
created in the preceding section. For C#, you need to add a using directive at the top of the 
file for the MyShopCS.Models namespace.

Listing 9-7  A Controller for displaying a list

C#:

public ActionResult Index() 
{ 
    var customers = 
        new CustomerRepository() 
        .GetCustomers(); 
 
    return View(customers); 
}

VB:

Function Index() As ActionResult 
    Dim custRep As New CustomerRepository 
    Dim customers As List(Of Customer) 
 
    customers = custRep.GetCustomers() 
    Return View(customers) 
End Function

Listing 9-7 shows how the Index method uses the CustomerRepository to get the list 
of customers. You need to pass that list to the View for display.

To create the View, right-click anywhere in the Index method and select Add View, 
which will display the Add View window, shown in Figure 9-5.

The name of the View is Index, corresponding to the name of the action method 
invoking the View. Naming the View after the action method is the default behavior, but 



 270 Microsoft Visual Studio 2010: A Beginner’s Guide

you can name the View anything you want. If the View you need to display is named 
differently than the action method, you can use the following View method overload:

View("SomeOtherViewName", customers);

We want to use a strongly typed View, meaning that you will have IDE support for 
referencing the properties of your own object when working in the View. The selected 
object is Customer, which is already defined as a LINQ to SQL entity, which is the same 
type returned by the call to the GetCustomers method in CustomerRepository.

The purpose of this View is to display a list of customers, so we’ll select List as View 
content. This will prepopulate the View with a template for displaying customers. You’ll 
be able to modify the screen as you like. Additionally, if you prefer to write your own 
code to populate the screen, you can select the Empty option for View content and then 
code the View manually yourself. Selecting List is a quick way to get started.

You learned about MasterPages earlier in this chapter, and you have the option of 
selecting a MasterPage of your choice and specifying which ContentPlaceHolder your 
code will render in.

Click Add to generate the View shown in Listing 9-8.

Figure 9-5 The Add View window



 Chapter 9: Creating Web Applications with ASP.NET MVC 271

Listing 9-8  A Customer List View

<%@ Page Title="" Language="C#" 
         MasterPageFile="~/Views/Shared/Site.Master" 
         Inherits="System.Web.Mvc 
.ViewPage<IEnumerable<MyShopCS.Models.Customer>>" %> 
 
<asp:Content ID="Content1" 
             ContentPlaceHolderID="TitleContent" 
             runat="server"> 
 Index 
</asp:Content> 
 
<asp:Content ID="Content2" 
             ContentPlaceHolderID="MainContent" 
             runat="server"> 
 
    <h2>Index</h2> 
 
    <table> 
        <tr> 
            <th></th> 
            <th> 
                CustomerID 
            </th> 
            <th> 
                Name 
            </th> 
            <th> 
                Age 
            </th> 
            <th> 
                Birthday 
            </th> 
            <th> 
                Income 
            </th> 
        </tr> 
 
    <% foreach (var item in Model) { %> 
 
        <tr> 
            <td> 
                <%= Html.ActionLink("Edit", "Edit", 
                    new { id=item.CustomerID }) %> | 
                <%= Html.ActionLink("Details", "Details", 
                    new { id=item.CustomerID })%> 
            </td> 



 272 Microsoft Visual Studio 2010: A Beginner’s Guide

            <td> 
                <%= Html.Encode(item.CustomerID) %> 
            </td> 
            <td> 
                <%= Html.Encode(item.Name) %> 
            </td> 
            <td> 
                <%= Html.Encode(item.Age) %> 
            </td> 
            <td> 
                <%= Html.Encode(String.Format("{0:g}", 
                    item.Birthday)) %> 
            </td> 
            <td> 
                <%= Html.Encode(String.Format("{0:F}", 
                    item.Income)) %> 
            </td> 
        </tr> 
 
    <% } %> 
 
    </table> 
 
    <p> 
        <%= Html.ActionLink("Create New", "Create") %> 
    </p> 
 
</asp:Content>

Listing 9-8 organizes the list of Customers in a table. The tr tags are rows, th are 
header cells, and td are content cells. After specifying the header row, the foreach loop 
iterates on the Model to render each content row. If you recall from Listing 9-7, the 
Index action method called View with a List<Customer> (List(Of Customer) in VB). 
When creating the View, we specified the object type as Customer, which means that the 
reference to Model in the foreach statement is to List<Customer> and item contains a 
Customer object.

For each cell being rendered, item is the current Customer and the property for that 
cell is referenced by the property of Customer that should display. What is particularly 
important about displaying the data is that each cell uses the Html.Encode helper method 
instead of displaying the data directly. This is a best practice for best security to ensure 
that any data displayed is not treated as HTML markup or accidentally runs JavaScript 
that you didn’t intend. You see, a malicious hacker could add JavaScript during data entry 
and when you display that field, the browser would try to run the JavaScript code, which 



 Chapter 9: Creating Web Applications with ASP.NET MVC 273

would be bad. Using Html.Encode prevents this from happening. The other Html helper 
methods, such as ActionLink, already encode output, so you should use Html.Encode 
whenever one of the other helpers isn’t used. Notice that the code for the foreach loop is 
enclosed in <% and %> symbols so that it is treated as code and not markup.

Next, you’ll want to be able to navigate to the Customer List page from the main 
menu, so open your MasterPage, Site.Master, and add the Customers ActionLink like this:

<ul id="menu"> 
    <li><%= Html.ActionLink("Customers", "Index", "Customer")%></li> 
    <li><%= Html.ActionLink("Home", "Index", "Home")%></li> 
    <li><%= Html.ActionLink("About", "About", "Home")%></li> 
</ul>

The parameters to the new ActionLink, from left to right, indicate that the text for  
the anchor will be Customers, and ASP.NET will invoke the Index action method  
on the CustomerController class when the user clicks the link. Figure 9-6 shows what  
the Customer list looks like when the program runs.

Figure 9-6 Showing a list of objects



 274 Microsoft Visual Studio 2010: A Beginner’s Guide

As shown in Figure 9-6, the Customer tab appears first on the list, and clicking it 
shows the list of Customers. In addition to the content you see in the list, there are links, 
such as Edit and Create. The next section covers the Create operation.

Adding a New Customer
Creating a new customer involves presenting a screen for data entry and saving the new 
data when submitted. When creating a new object, your Controller needs two methods, a 
get method to initialize an empty Customer and a post method to save the new customer 
data. Listing 9-9 shows the get and post methods in the CustomerController class.

Listing 9-9  Creating a new Customer object

C#:

// 
// GET: /Customer/Create 
 
public ActionResult Create() 
{ 
    Customer cust = new Customer 
    { 
        Birthday = new DateTime(1980, 1, 1) 
    }; 
 
    return View(cust); 
} 
 
// 
// POST: /Customer/Create 
 
[AcceptVerbs(HttpVerbs.Post)] 
public ActionResult Create(Customer cust) 
{ 
    try 
    { 
        if (string.IsNullOrEmpty(cust.Name)) 
        { 
            ModelState.AddModelError( 
                "Name", "Name is required."); 
                return View(); 
        } 
 



 Chapter 9: Creating Web Applications with ASP.NET MVC 275

        new CustomerRepository() 
            .InsertCustomer(cust); 
 
        return RedirectToAction("Index"); 
    } 
    catch 
    { 
        return View(); 
    } 
}

VB:

' 
' GET: /Customer/Create 
 
Function Create() As ActionResult 
    Dim cust As New Customer With 
    { 
        .Birthday = New DateTime(1980, 1, 1) 
    } 
    Return View(cust) 
End Function 
 
' 
' POST: /Customer/Create 
 
<HttpPost()> _ 
Function Create(ByVal cust As Customer) As ActionResult 
    Try 
        If String.IsNullOrEmpty(cust.Name) Then 
            ModelState.AddModelError( 
                "Name", "Name is required.") 
        End If 
 
        Dim custRep As New CustomerRepository 
        custRep.InsertCustomer(cust) 
 
        Return RedirectToAction("Index") 
    Catch 
        Return View() 
    End Try 
End Function



 276 Microsoft Visual Studio 2010: A Beginner’s Guide

In the HTTP protocol, there are different types of verbs for the operation being conducted. 
Listing 9-9 demonstrates two of these verbs, get and post. A get is typically associated with 
reading data, and a post is typically associated with writing data. Listing 9-9 shows both get 
and post methods in the Create method overloads. In ASP.NET MVC, action methods default 
to get requests and you must use an HttpVerbs attribute to specify a post.

The get Create action method instantiates a new Customer object and passes it to the 
View. When the user fills in the form and submits, the post Create action method will 
execute and insert the new record into the database.

Notice how I changed the Create method parameter from FormsCollection to Customer. 
ASP.NET MVC will automatically read the form values and match those values up with 
matching properties in the object passed to the method. The method also checks to ensure 
that the name is filled in and adds an error to the ModelState. Whenever an error occurs, 
you need to return to the same View to ensure the user sees the error and can correct and 
resubmit. ASP.NET MVC will use this error to display error messages in the View. To 
create the View, right-click either Create method, select Add View, and fill in the values as 
shown in Figure 9-7.

Figure 9-7 Adding a new Customer



 Chapter 9: Creating Web Applications with ASP.NET MVC 277

The Add View screen in Figure 9-7 specifies strong typing on the Customer class, but 
this time it selects Create as the View Content. Listing 9-10 shows the resulting View.

Listing 9-10  View for creating a new Customer

<%@ Page Title="" Language="C#"  
    MasterPageFile="~/Views/Shared/Site.Master"  
    Inherits="System.Web.Mvc.ViewPage<MyShopCS.Customer>" %> 
 
<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent"  
    runat="server"> 
 Create 
</asp:Content> 
 
<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"  
    runat="server"> 
 
    <h2>Create</h2> 
 
    <% using (Html.BeginForm()) {%> 
 
        <fieldset> 
            <legend>Fields</legend> 
             
            <div class="editor-label"> 
                <%= Html.LabelFor(model => model.CustomerID) %> 
            </div> 
            <div class="editor-field"> 
                <%= Html.TextBoxFor(model => model.CustomerID) %> 
                <%= Html.ValidationMessageFor( 
                    model => model.CustomerID) %> 
            </div> 
             
            <div class="editor-label"> 
                <%= Html.LabelFor(model => model.Name) %> 
            </div> 
            <div class="editor-field"> 
                <%= Html.TextBoxFor(model => model.Name) %> 
                <%= Html.ValidationMessageFor( 
                    model => model.Name) %> 
            </div> 
             
            <div class="editor-label"> 
                <%= Html.LabelFor(model => model.Age) %> 
            </div> 



 278 Microsoft Visual Studio 2010: A Beginner’s Guide

            <div class="editor-field"> 
                <%= Html.TextBoxFor(model => model.Age) %> 
                <%= Html.ValidationMessageFor( 
                    model => model.Age) %> 
            </div> 
             
            <div class="editor-label"> 
                <%= Html.LabelFor(model => model.Birthday) %> 
            </div> 
            <div class="editor-field"> 
                <%= Html.TextBoxFor(model => model.Birthday) %> 
                <%= Html.ValidationMessageFor( 
                    model => model.Birthday) %> 
            </div> 
             
            <div class="editor-label"> 
                <%= Html.LabelFor(model => model.Income) %> 
            </div> 
            <div class="editor-field"> 
                <%= Html.TextBoxFor(model => model.Income) %> 
                <%= Html.ValidationMessageFor( 
                    model => model.Income) %> 
            </div> 
             
            <p> 
                <input type="submit" value="Create" /> 
            </p> 
        </fieldset> 
 
    <% } %> 
 
    <div> 
        <%=Html.ActionLink("Back to List", "Index") %> 
    </div> 
 
</asp:Content>

The ValidationMessageFor Html helper displays any errors that occur on this page. 
The error messages are displayed whenever the Controller action method adds the error 
to the ModelState. When the user clicks the Submit button, this page will post back to the 
Create method with the AcceptVerbs attribute for post. Figure 9-8 shows the Create screen 
when running.

In addition to creating a new Customer, you can edit existing Customers, as is 
discussed next.



 Chapter 9: Creating Web Applications with ASP.NET MVC 279

Updating Existing Customers
Similar to how we created Customers, you also need two methods for editing a Customer. 
The get method populates an edit form with existing data, and the post method saves the 
changes. Listing 9-11 shows these two methods.

Listing 9-11  Methods for editing Customers

C#:

// 
// GET: /Customer/Edit/5 
 
public ActionResult Edit(int id) 
{ 
    Customer cust = 
        new CustomerRepository() 
            .GetCustomer(id); 
 

Figure 9-8 The Create screen



 280 Microsoft Visual Studio 2010: A Beginner’s Guide

    return View(cust); 
} 
 
// 
// POST: /Customer/Edit/5 
 
[AcceptVerbs(HttpVerbs.Post)] 
public ActionResult Edit(Customer cust) 
{ 
    try 
    { 
        new CustomerRepository() 
            .UpdateCustomer(cust); 
 
        return RedirectToAction("Index"); 
    } 
    catch 
    { 
        return View(); 
    } 
}

VB:

' 
' GET: /Customer/Edit/5 
 
Function Edit(ByVal id As Integer) As ActionResult 
    Dim custRep As New CustomerRepository 
    Dim cust As Customer 
 
    cust = custRep.GetCustomer(id) 
 
    Return View(cust) 
End Function 
 
' 
' POST: /Customer/Edit/5 
 
<HttpPost()> _ 
Function Edit(ByVal id As Integer, ByVal cust As Customer)  
    As ActionResult 
    Try 
        Dim custRep As New CustomerRepository 
        custRep.UpdateCustomer(cust) 
 



 Chapter 9: Creating Web Applications with ASP.NET MVC 281

        Return RedirectToAction("Index") 
    Catch 
        Return View() 
    End Try 
End Function

In the get Edit action method, you need to get a reference to the current record, 
indicated by the id being passed in, and pass that reference to the View for display. The 
post Edit action method accepts the modified customer and passes it to the repository for 
update in the database. You should also right-click in either of the Edit methods and select 
Add View. Make the View strongly typed, set the class to Customer, and the Content type 
to Edit.

The final operation to complete is discussed next, how to delete a Customer.

Deleting a Customer
The default template for creating a list added an ActionLink for Details, next to the Edit 
ActionLink. You can create a read-only details page if you want, or just ensure the list is 
in the format you want to show each customer record, but for our purposes the Details 
option is not necessary. So, this example replaces the Details link with one for deleting 
a record. Listing 9-12 shows the Delete Controller method, which replaces the Detail 
Controller method.

Listing 9-12  The Delete Controller method

C#:

// 
// GET: /Customer/Delete/5 
 
public ActionResult Delete(int id) 
{ 
    new CustomerRepository() 
        .DeleteCustomer(id); 
 
    TempData["Result"] = "Customer Deleted."; 
 
    return RedirectToAction("Index"); 
}



 282 Microsoft Visual Studio 2010: A Beginner’s Guide

VB:

' 
' GET: /Customer/Delete/5 
 
Function Delete(ByVal id As Integer) As ActionResult 
    Dim custRep As New CustomerRepository 
    custRep.DeleteCustomer(id) 
 
    TempData("Result") = "Customer Deleted." 
 
    Return RedirectToAction("Index") 
End Function

Besides showing how to use the repository for performing the delete operation, there 
are a couple of new items in Listing 9-12 that you’ll need to know about: TempData and 
specifying a View. TempData is a special object for holding data for a single display of 
a View. So, when the View displays, it can read the current value of TempData, but that 
same value will not be available on the next View unless the Controller explicitly loads it 
again.

In all of the other calls to View, it was assumed that a View named after the Controller 
method would be returned, so it wasn’t necessary to specify the name of the View. 
However, we don’t have a delete View, so we specify Index as the View explicitly.

To accommodate the delete operation, Listing 9-13 shows the modifications on the 
Index.aspx View for Customers (located under \Views\Customer).

Listing 9-13  Deleting a Customer

C#:

... content removed 
 
<h2>Index</h2> 
 
<p> 
    <% if (TempData["Result"] != null) 
       { %> 
            <label><%= Html.Encode(TempData["Result"].ToString() )%> 
</label> 
    <% } %> 
</p> 
<table> 
 



 Chapter 9: Creating Web Applications with ASP.NET MVC 283

... content removed 
 
<% foreach (var item in Model) { %> 
 
    <tr> 
        <td> 
            <%= Html.ActionLink("Edit", "Edit", 
                new { id=item.CustomerID }) %> | 
            <%= Html.ActionLink("Delete", "Delete", 
                new { id=item.CustomerID })%> 
        </td> 
... content removed

VB:

... content removed 
 
    <h2>Index</h2> 
 
    <p> 
        <% If Not TempData("Result") Is Nothing Then %> 
            <label> 
                <%= Html.Encode(TempData("Result").ToString())%> 
            </label> 
        <% End If%> 
    </p> 
    <p> 
        <%= Html.ActionLink("Create New", "Create")%> 
    </p> 
     
    <table> 
 
... content removed 
 
    <% For Each item In Model%> 
     
        <tr> 
            <td> 
                <%=Html.ActionLink("Edit", "Edit",  
                   New With {.id = item.CustomerID})%> | 
                <%=Html.ActionLink("Delete", "Delete",  
                   New With {.id = item.CustomerID})%> 
            </td> 
 
... content removed



 284 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 9-13 has content removed to avoid duplicating code you’ve already seen. Near 
the top of the listing, you can see the if statement that will check to see if there is a value in 
TempData["Result"] (TempData("Result") in VB) and will display that value in a label if 
present. Next to the Edit ActionLink, the Details ActionLink has been changed to a Delete 
ActionLink, passing the id of the current customer back to the Controller for deletion.

Summary
You now know the essential parts of MVC: Models, Views, and Controllers. You saw how 
to implement the repository pattern for managing a data access layer and simplify the 
code. This chapter showed how to create controllers and views. You also learned about 
routing and how it helps match URLs to controllers, actions, and parameters. Finally, there 
was a section that demonstrated how to perform CRUD operations with ASP.NET MVC.

Another popular Web technology is Silverlight, which gives you the ability to create 
rich user experiences. The next chapter helps you get started with Silverlight development.



285

Chapter 10
Designing Silverlight 
Applications



 286 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Start a New Silverlight Project

● Work with the Silverlight Designer

● Add Controls to an Application

● Play Silverlight Videos

● Deploy Silverlight Applications

Silverlight is a Web technology that allows you to add a rich user experience to Web 
applications. It uses XAML, just like WPF applications, but runs in a Web page 

supported by ASP.NET. 
Other parts of this book prepare you for working with Silverlight. Since Silverlight 

uses XAML, you can review Appendixes A and B to get up-to-speed on XAML essentials. 
Silverlight also has many features in common with WPF. Therefore, it would be useful to 
review Chapter 8 before reading this chapter. What you’ll learn in this chapter is how VS 
helps you create a Silverlight project, how to add controls to the Silverlight designer, and 
how to deploy Silverlight applications.

Starting a Silverlight Project
As when starting other projects, you can select File | New | Project or press CTRL-SHIFT-N;  
you then select a Silverlight application in the New Project window. After you set up 
the project with a name and folder, VS will display another window for configuring the 
Silverlight application, shown in Figure 10-1.

Silverlight gives you the option to create a Web site at the same time as you create the 
Silverlight application. You can opt not to create the Web site, but ultimately, you’ll need 
to host your Silverlight application on a Web page. There is an alternate Web technology 
based on ASP.NET Web forms, but this book concentrates on the ASP.NET MVC Web 
development model, discussed in Chapter 9, which is why you see the New Web project 
type set to ASP.NET MVC Web Project. Click OK to create the Silverlight application, 
shown in Figure 10-2. You’ll also see a screen asking if you want to create a unit test 
project, which is the same window discussed in Chapter 9. Click OK to continue.



 Chapter 10: Designing Silverlight Applications 287

Figure 10-1 Creating a new Silverlight application

Figure 10-2 A new Silverlight project



 288 Microsoft Visual Studio 2010: A Beginner’s Guide

Similar to WPF applications, Silverlight applications start with a MainPage.xaml file 
and an App.xaml file, where App.xaml runs to initialize the application and MainPage 
.xaml contains the display page. The Web site is a typical ASP.NET MVC application, 
except that it does have a test page that hosts the Silverlight application, SilverlightDemo 
CSTestPage.aspx (SilverlightDemoVBTestPage.aspx for VB). There’s also a Silverlight
DemoCSTestPage.html (SilverlightDemoVBTestPage.html for VB), which performs the 
same function as the SilverlightDemoCSTestPage.aspx (SilverlightDemoVBTestPage 
.aspx for VB) hosting Silverlight, except that the *.html version uses JavaScript and the 
HTML object tag to host Silverlight. Listing 10-1 shows the contents of the test page and 
how it hosts the Silverlight application. There is no C# or VB version of Listing 10-1 
because the code is XAML, which works exactly the same with either language.

Listing 10-1  Hosting a Silverlight application on a Web page

<%@ Page Language="C#" AutoEventWireup="true" %> 
 
<!DOCTYPE html PUBLIC 
"-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" > 
<head runat="server"> 
    <title>SilverlightDemoCS</title> 
    <style type="text/css"> 
    // css styles omitted 
    </style> 
    <script type="text/javascript" src="Silverlight.js"></script> 
    <script type="text/javascript"> 
        function onSilverlightError(sender, args) { 
            // error handling code omitted 
        } 
    </script> 
</head> 
<body> 
<form id="form1" runat="server" style="height:100%"> 
<div id="silverlightControlHost"> 
    <object data="data:application/x-silverlight-2," 
            type="application/x-silverlight-2" 
            width="100%" height="100%"> 
        <param name="source" 
               value="ClientBin/SilverlightDemoCS.xap"/> 
        <param name="onError" value="onSilverlightError" /> 
        <param name="background" value="white" /> 



 Chapter 10: Designing Silverlight Applications 289

        <param name="minRuntimeVersion" value="3.0.40818.0" /> 
        <param name="autoUpgrade" value="true" /> 
        <a 
href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0" 
style="text-decoration:none"> 
          <img src="http://go.microsoft.com/fwlink/?LinkId=161376" 
               alt="Get Microsoft Silverlight" 
               style="border-style:none"/> 
        </a> 
     </object> 
    <iframe id="_sl_historyFrame" 
            style="visibility:hidden;height:0px;width:0px;border:0px"> 
    </iframe> 
</div> 
</form> 
</body> 
</html>

Listing 10-1 contains an object tag that hosts the Silverlight application. This object 
tag has various parameters, which are described in Table 10-1. 

You can run the application and view the Web page, but there isn’t much to see yet. 
The next section starts you in the direction of making something useful happen with 
Silverlight by reviewing the Designer.

Table 10-1  Object Tag Parameters for Silverlight

Parameter Description
source In Figure 10-2, you can see a ClientBin folder in the ASP.NET MVC Web 

application project. When the Silverlight project builds, VS will take the output 
of that project and place it into the ClientBin folder. The output of a compiled 
Silverlight project is a *.xap file, which is the same as a compressed *.zip file, 
but with a different name. Silverlight loads the *.xap file into the browser at 
runtime and runs the application.

onerror Listing 10-1 omitted the contents of the onSilverlightError JavaScript function, 
which is called whenever an error occurs in Silverlight.

background Sets the control background.

minRuntimeVersion States that the user must have v3.0.40818.0 or later of the Silverlight plug-in for 
this application to run. The user receives an error message if she doesn’t have 
the minimum version.

autoUpgrade If the user doesn’t have the minimum version, as specified in minRuntimeVersion, 
setting this to true will prompt the user to begin the upgrade process.



 290 Microsoft Visual Studio 2010: A Beginner’s Guide

Navigating the Silverlight Designer
The underlying technology for displaying the UI is XML Application Markup Language 
(XAML), pronounced “Zamel.” Appendix A contains an introduction to XML, and 
Appendix B contains an introduction to XAML if you need to obtain a basic understanding 
of these two technologies. It would really be helpful for you to review Chapter 8 because 
you’ll find many of the same controls for layout and display in both Silverlight and WPF.

The Silverlight Designer is very similar to the WPF Designer in how you work with 
controls. Drag and drop from the Toolbox, configure Grids, interact with XAML, and set 
properties in exactly the same way with Silverlight as with WPF. Since there are so many 
similarities, I won’t repeat the material covered in Chapter 8 but will build upon previous 
material, showing you what is special about Silverlight.

Using Silverlight Controls
Silverlight has strong multimedia support through streaming audio and video. In fact, 
the Toolbox has controls that make it easy to host your own videos and control the user 
experience for playing videos. The following steps show how to design a screen that 
shows a video, as shown in Figure 10-3. 

 1. Your project starts out with a page named MainPage.xaml, which you should open so 
the designer is showing. If the XAML editor is showing, click on the Design tab at the 
bottom of the designer window. 

 2. You’ll have a default Grid, which you can work with in exactly the same way as 
the designer for WPF, discussed in Chapter 8. You need to ensure the Grid has two 
rows, with the top row being large enough to fit the MediaElement and the bottom 
large enough to fit a single button. Hover over the left margin of the window until 
you see a grid line appear on the window. Move the grid line vertically until you’ve 
created two rows, where the bottom row is large enough to hold a button, as shown 
in Figure 10-3. Click on the window margin when you have the grid line positioned 
where you want.

 3. Find the MediaElement in the Toolbox and drag it onto the top row of the Window in 
the designer. If you find that you haven’t made the top row large enough, grab the grid 
line arrow in the left margin and drag it down some more.

 4. Set the Name property of the MediaElement control to VideoPlayer.



 Chapter 10: Designing Silverlight Applications 291

 5. The MediaElement control has a Source property that you can set with the URL of  
a movie. Set the Source property of the MediaElement control to http://mschnlnine 
.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmv, which is a video 
that introduces VS 2010. 

 6. Drag a Button from the Toolbox to the bottom row of the Window in the designer.

 7. Set the Name property of the Button to StartStopButton and set the Content property 
of the Button to Start.

In Figure 10-3, you can see a Grid with two rows. The top row holds a MediaElement 
control and the bottom row holds a button. The name of the Video control is VideoPlayer 
and the name of the button is StartStopButton.

Figure 10-3 Playing Silverlight videos

http://mschnlnine.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmv
http://mschnlnine.vo.llnwd.net/d1/ch9/8/3/7/0/7/4/OfficeVS10SC1_2MB_ch9.wmv


 292 Microsoft Visual Studio 2010: A Beginner’s Guide

Double-clicking the StartStopButton control will generate this Click event handler in 
the code-behind at MainPage.xaml.cs, shown in Listing 10-2.

Listing 10-2  Playing and stopping a video

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Net; 
using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Documents; 
using System.Windows.Input; 
using System.Windows.Media; 
using System.Windows.Media.Animation; 
using System.Windows.Shapes; 
 
namespace SilverlightDemoCS 
{ 
    public partial class MainPage : UserControl 
    { 
        public MainPage() 
        { 
            InitializeComponent(); 
            VideoPlayer.AutoPlay = false; 
        } 
 
        private bool m_isPlaying = false; 
 
        private void StartStopButton_Click( 
            object sender, RoutedEventArgs e) 
        { 
            if (m_isPlaying) 
            { 
                VideoPlayer.Stop(); 
                StartStopButton.Content = "Start"; 
                m_isPlaying = false; 
            } 
            else 
            { 
                VideoPlayer.Play(); 
                StartStopButton.Content = "Stop"; 



 Chapter 10: Designing Silverlight Applications 293

                m_isPlaying = true; 
            } 
        } 
    } 
}

VB:

Partial Public Class MainPage 
    Inherits UserControl 
 
    Public Sub New() 
        InitializeComponent() 
        VideoPlayer.AutoPlay = False 
    End Sub 
 
    Dim m_isPlaying As Boolean = False 
 
    Private Sub StartStopButton_Click( 
        ByVal sender As System.Object, 
        ByVal e As System.Windows.RoutedEventArgs) 
        If (m_isPlaying) Then 
            VideoPlayer.Stop() 
            StartStopButton.Content = "Start" 
            m_isPlaying = False 
        Else 
            VideoPlayer.Play() 
            StartStopButton.Content = "Stop" 
            m_isPlaying = True 
        End If 
    End Sub 
End Class

By default, the MediaElement starts playing the Source video as soon as the application 
loads, so I set AutoPlay to false in the code-behind constructor. The m_isPlaying field 
keeps track of whether the MediaElement is playing or not. The Click event handler uses 
m_isPlaying to toggle between playing and stopped.

This is a quick demo of how to work with the MediaElement control, but there’s much 
more you can do, such as pausing, tracking buffering, checking video position, and more. 
All you need to do is either capture events of the MediaElement control or use controls like 
buttons and sliders to interact with MediaElement, as the example shows in Listing 10-2. It 
would be good practice for you to take what you’ve learned here and add more functionality 
to the MediaElement control.



 294 Microsoft Visual Studio 2010: A Beginner’s Guide

Running Silverlight Out-of-Browser (OOB)
A new capability of Silverlight 3 is running out-of-browser, meaning that users can load 
your application onto their desktop without needing to visit the hosting site. To implement 
OOB, open the Silverlight application properties by double-clicking the Properties folder 
in Solution Explorer. You’ll see a window similar to Figure 10-4.

Most of the properties in Figure 10-4 have been covered in previous chapters. What’s 
different is the section on Silverlight build options, which allows you to set the version 
and check the box to reduce the size of the *.xap file through caching. However, leave the 
option to reduce the *.xap file size unchecked if running OOB because it’s not compatible 

Figure 10-4 Silverlight properties



 Chapter 10: Designing Silverlight Applications 295

with OOB. The Manifest file describes the contents of the *.xap file. To enable OOB, 
check the box “Enable running application out of the browser.” Then click the Out-Of-
Browser Settings button to display the window shown in Figure 10-5.

The OOB settings in Figure 10-5 allow you to set information for the application, 
the size it will take when running, and variously sized icons that Windows will display. 
Setting GPU acceleration allows the application to take advantage of the local hardware to 
optimize graphics.

After you save OOB settings and run the application, the user can right-click the 
application running in the browser and select Install SilverlightDemoCSApplication Onto 
This Computer, as shown in Figure 10-6.

Figure 10-5 Out-of-browser settings



 296 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 10-6 Choosing OOB

Figure 10-7 Choosing OOB deployment options

The next window you’ll see gives options for adding the application to the Start menu 
and an icon on the desktop. Figure 10-7 shows that both options are checked.

When you click OK, Silverlight creates a Start menu item and adds the application 
to the desktop, as shown in Figure 10-8. When you start the application, it will run in a 
window rather than the browser.



 Chapter 10: Designing Silverlight Applications 297

Deploying Silverlight Applications
You can deploy a Silverlight application to a Web site, as you would an ASP.NET MVC 
application. However, you’ll need to ensure the MIME type and policy is in place to 
ensure the application will run outside of your development environment.

If you’re running IIS 7, Silverlight will already be set up. However, if you’re 
deploying to an IIS 6 server, you must set the MIME type for *.xap files to application/ 
x-silverlight-app as described in the following steps:

 1. Open Administrative Tools | Internet Information Services (IIS) Manager.

 2. Under Web Sites, in IIS, right-click on the Web site for your Silverlight application and 
select Properties.

 3. Click the HTTP Headers tab, click MIME Types, and click New.

 4. Type .xap as the Extension and application/x-silverlight-app as the MIME type.

Click OK three times to close all windows and close IIS.
Additionally, you must have a policy file in the root folder of your Web site. There 

are two types of policy files you can use: crossdomain.xml or clientaccesspolicy.xml.  

Figure 10-8 Executing an OOB application



 298 Microsoft Visual Studio 2010: A Beginner’s Guide

The crossdomain.xml policy was created for Adobe Flash applications and can be used 
with Silverlight applications too. Here’s an example:

<!DOCTYPE cross-domain-policy 
  SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd"> 
<cross-domain-policy> 
  <allow-access-from domain="*" /> 
  <allow-http-request-headers-from domain="*" headers="*" /> 
</cross-domain-policy>

When designing Silverlight, Microsoft recognized that the crossdomain.xml 
file wasn’t flexible enough and added support for another type of policy called 
clientaccesspolicy.xml. Here’s an example:

<?xml version="1.0" encoding="utf-8"?> 
<access-policy> 
  <cross-domain-access> 
    <policy> 
      <allow-from http-methods="*">" 
        <domain uri="*"/> 
      </allow-from> 
      <grant-to> 
        <resource path="/" include-subpaths="true"/> 
      </grant-to> 
    </policy> 
  </cross-domain-access> 
</access-policy>

This clientaccesspolicy.xml listing allows all domains to access all site content that 
isn’t already secured by other means. You can restrict access by replacing the * in the 
domain uri with an allowable domain. Further, you can replace the resource path with a 
path on the site to restrict access to specific folders. Add more policy elements to this file 
to add more domains and paths.

Summary
This chapter explains how to run a Silverlight application. You learned how to use the 
MediaElement control and how to build UIs using the same techniques as in WPF. The 
OOB functionality allows you to run Silverlight from your desktop. A section describes 
deploying the Silverlight application to a Web server.

We’ve discussed a couple Web technologies already: ASP.NET MVC in Chapter 9 and 
Silverlight in this chapter. The next chapter shows you another Web technology: WCF 
Web services.



299

Chapter 11
Deploying Web 
Services with WCF



 300 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Create a Web Service

● Deploy a Web Service

● Write a Client That Consumes the Web Service

W indows Communication Foundation (WCF) is a .NET technology for creating Web 
services. A Web service is software that provides functionality that can be used by 

any other software application, using any programming language, on any hardware and 
operating system that can communicate over a network.

The functionality of Web services can be either public or private. Examples of public 
Web services might be a weather service where you provide the location and you get back 
a forecast data that you can display on your screen or an address verification application 
that will validate if a postal address exists or suggest alternatives. Examples of private 
Web services might be the ability for multiple applications in a large corporation to call a 
customer Web service with a customer ID and receive that customer’s record, or perhaps 
an ordering system where you can submit a new customer order and the Web service 
would process the submission in the background for you.

What’s common about all of the examples in the preceding paragraph is that, regardless 
of public or private, the Web service is useful for more than one application or system. 
Everyone needs the same service from the Web service, so why should each application 
re-invent the wheel every time? Just set up one service and everyone can work with that 
one service.

You must be wondering how such a broad claim can be made that one technology is 
accessible by any system regardless of platform, language, or software. The Web service 
is separated from the calling system via open standards and a well-defined interface. There 
are ubiquitous communications protocols, such as HTTP, and data format standards, such 
as XML, that Web services can use. So, if both systems that communicate use Hypertext 
Transfer Protocol (HTTP) and XML in the same way, then the Web service can be useful. 
For example, if an application were built on a Sun workstation running Solaris, saving 
data in an Oracle database, and written in Java, it could still communicate with your WCF 
service, which is on an Intel-based server, running Windows 2008, saving data in SQL 
Server, and written in VB. It doesn’t matter because the Java system will translate its 



 Chapter 11: Deploying Web Services with WCF 301

call into XML and send the XML data via HTTP to the WCF service. The WCF service 
understands the XML because it was the WCF service that told the Java application what 
format to put the XML into. If you’re curious about the format, it’s called Web Service 
Description Language (WSDL), which is a contract (or interface) that tells callers how 
to package the XML and what operations (such as GetWeather) can be called on the Web 
service. There’s more that the WSDL does behind the scenes, but the primary point to 
make is that clients, such as the Java app, use the WSDL to package their XML and send 
it to the WCF service. The service translates the XML into a call to a method, runs the 
method, packages the results back into XML (as defined by the WSDL), and sends the 
results back to the Java application. Essentially, a WCF service uses open standards so that 
any other system can use those same open standards to communicate.

This chapter will show you how VS helps you create WCF services, how to create 
a client that communicates with a WCF service, and how to deploy WCF services. The 
deployment information in this chapter is also useful to know for other types of Web 
applications, such as ASP.NET MVC and Silverlight. Let’s start off with creating a WCF 
project.

Starting a WCF Project
To create a new WCF project, press CTRL-SHIFT-N to start a new project, and then select 
WCF Service Library, name the project WcfDemo, and set the location to anywhere 
you want the project to reside in the file system. This will produce a project similar to 
Figure 11-1.

Figure 11-1 A WCF Service Library project



 302 Microsoft Visual Studio 2010: A Beginner’s Guide

The WCF Service Library starts with two files with default names of IService1.cs 
(IService1.vb for VB) and Service1.cs (Service1.vb for VB), which contain an interface 
and a class that implements that interface. If you need to brush up on interfaces, review 
Chapter 4 because an interface is an integral part of WCF development.

Specifying a Contract with WCF Interfaces
The IService1.cs  (IService1.vb in VB) class in Figure 11-1 contains an interface. 
As you learned in Chapter 4, interfaces define a set of members that do not have 
implementations. The actual implementation will be provided by classes that implement 
the interface. You can consider the interface to be a contract that guarantees a set of 
operations for a service. In addition to the interface, the types associated with the service 
are part of the service contract. The contract is important because when you write code 
that uses the Web service, it is the contract that your code will see and everything that is 
not in the contract will not be visible. Any application wishing to use a Web service will 
make calls to the Web service based on what is specified in the contract. In this section, 
you’ll see how to define a WCF contract with an interface, built-in types, and custom 
types. Later sections will show how to implement and consume the contract, bringing 
the importance of the contract full circle so that you can see how the contract is defined, 
implemented, and consumed.

Examining the VS-Generated Contract
You really don’t want to work with an interface named IService1; it doesn’t mean anything. 
So, rename IService1.cs to ICustomerService.cs (IService1.vb to ICustomerService.vb for 
VB), because it will be configured to manage customer records. You’ll receive a message 
box for renaming the code, and you should respond affirmatively. When you open the 
ICustomerService.cs file, you’ll see the same code as Listing 11-1, containing an interface 
and attributes for defining the ICustomerService contract.

Listing 11-1  A WCF service interface

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Runtime.Serialization; 
using System.ServiceModel; 
using System.Text; 
 
namespace WcfDemoCS 



 Chapter 11: Deploying Web Services with WCF 303

{ 
    // NOTE: You can use the "Rename" command on the 
    // "Refactor" menu to change the interface name 
    // "IService1" in both code and config file together. 
    [ServiceContract] 
    public interface ICustomerService 
    { 
        [OperationContract] 
        string GetData(int value); 
 
        [OperationContract] 
        CompositeType GetDataUsingDataContract 
            (CompositeType composite); 
 
        // TODO: Add your service operations here 
    } 
 
    // Use a data contract as illustrated in the sample 
    // below to add composite types to service operations 
    [DataContract] 
    public class CompositeType 
    { 
        bool boolValue = true; 
        string stringValue = "Hello "; 
 
        [DataMember] 
        public bool BoolValue 
        { 
            get { return boolValue; } 
            set { boolValue = value; } 
        } 
 
        [DataMember] 
        public string StringValue 
        { 
            get { return stringValue; } 
            set { stringValue = value; } 
        } 
    } 
}

VB:

' NOTE: You can use the "Rename" command on the  
' context menu to change the interface name "IService1" 
' in both code and config file together. 
<ServiceContract()> 



 304 Microsoft Visual Studio 2010: A Beginner’s Guide

Public Interface ICustomerService 
 
    <OperationContract()> 
    Function GetData(ByVal value As Integer) As String 
 
    <OperationContract()> 
    Function GetDataUsingDataContract( 
        ByVal composite As CompositeType) As CompositeType 
 
    ' TODO: Add your service operations here 
 
End Interface 
 
' Use a data contract as illustrated in the sample below  
' to add composite types to service operations 
 
<DataContract()> 
Public Class CompositeType 
 
    <DataMember()> 
    Public Property BoolValue() As Boolean 
 
    <DataMember()> 
    Public Property StringValue() As String 
 
End Class

There are two types in Listing 11-1: ICustomerService and CompositeType. Both of 
these types were generated by VS to provide an example of how you can define a service 
contract. After explaining the default code, we’ll modify the code to make it usable for 
working with Customer objects.

Starting with the ICustomerService interface, the two most important parts of the code are 
the ServiceContract and OperationContract attributes. The ServiceContract attribute states 
that this interface defines a contract for a WCF Web service. Without the ServiceContract 
attribute, this interface won’t be recognized by WCF. The OperationContract attribute 
specifies methods that are exposed by the WCF service. Without the OperationContract 
attribute, a method will not be visible as part of the WCF service.

A WCF service method can work with any of the built-in types for parameters or 
return types, demonstrated by the GetData method that takes an int parameter and returns 
a string. When working with custom types, you need additional syntax to specify what 
parts of the type are part of the contract. The types are parameters and return types of the 
service methods, and are part of the contract in addition to the interface.



 Chapter 11: Deploying Web Services with WCF 305

The GetDataUsingDataContract method illustrates a method that uses a custom type, 
CompositeType, as a parameter and return type. Being a custom type, CompositeType has 
attributes that help define its contract: DataContract and DataMember. The DataContract 
attribute identifies CompositeType as a type that can be included in a WCF service contact. 
Without the DataContract attribute, a type can’t be included as part of the service contract. 
The DataMember attribute decorates type members that are part of the contract for this 
service. Without the DataMember attribute, a type member will not be visible as part of  
the contract.

Creating Your Own Contract
We won’t explicitly construct our data types for DataContracts, as shown in the 
CompositeType in Listing 11-1. Instead, we’ll use a built-in capability of LINQ to SQL that 
gives LINQ to SQL entities a DataContract. To use LINQ to SQL entities, create a new LINQ 
to SQL item in the same project the WCF service resides in and add the Customer table to 
the designer. Then click the design surface, not the Customer entity, and view properties. Set 
Serialization Mode to Unidirectional, as shown in Figure 11-2.

Now, instead of creating a custom type and copying LINQ to SQL entity data into the 
custom type and returning the custom type, it will be possible to perform a LINQ to SQL 
query and return the LINQ to SQL entity.

Figure 11-2 Setting the LINQ to SQL Serialization Mode property



 306 Microsoft Visual Studio 2010: A Beginner’s Guide

We started customizing the contract when changing the name of IService1 to 
ICustomerService, but we need to continue by defining the methods that will become 
part of the CustomerService contract: GetCustomers, GetCustomer, InsertCustomer, 
UpdateCustomer, and DeleteCustomer. In practice, there will be more methods you’ll 
want, just to customize the contract for the special needs of your application, but these 
methods depict typical scenarios you’ll frequently encounter and are representative of any 
work you’ll perform. Listing 11-2 shows the modifications to ICustomerService to support 
customer operations. After making the changes in Listing 2, your application won’t 
compile until you implement the ICustomerService interface in the next section. Please 
make the changes, if you’re following along, and keep reading until the next section.

Listing 11-2  WCF service contract implementation

C#:

[ServiceContract] 
public interface ICustomerService 
{ 
    [OperationContract] 
    Customer GetCustomer(int custID); 
 
    [OperationContract] 
    List<Customer> GetCustomers(); 
 
    [OperationContract] 
    int InsertCustomer(Customer cust); 
 
    [OperationContract] 
    void UpdateCustomer(Customer cust); 
 
    [OperationContract] 
    void DeleteCustomer(int custID); 
}

VB:

<ServiceContract()> 
Public Interface ICustomerService 
 
    <OperationContract()> 
    Function GetCustomer(ByVal custID As Integer) As Customer 
 
    <OperationContract()> 
    Function GetCustomers() As List(Of Customer) 
 



 Chapter 11: Deploying Web Services with WCF 307

    <OperationContract()> 
    Function InsertCustomer(ByVal cust As Customer) As Integer 
 
    <OperationContract()> 
    Sub UpdateCustomer(ByVal cust As Customer) 
 
End Interface

You already know how to specify an interface, and the preceding section explained the 
purpose of ServiceContract and OperationContract attributes. Listing 11-2 shows that all 
you need to do is specify the methods that you want to be included as part of the contract.

There are times when you’ll need to return a custom type from a WCF service. For 
example, if you need to fill in a drop-down list, all you need is a key for the value and a name 
for the text. So, you can create a custom CustomerLookup class, as shown in Listing 11-3, 
that specifies DataContract and DataMember attributes. Listing 11-3 demonstrates how a 
custom type could be coded if you ever needed to do this.

Listing 11-3  A custom type for a WCF service contract

C#:

[DataContract] 
public class CustomerLookup 
{ 
    [DataMember] 
    public int CustomerID { get; set; } 
 
    [DataMember] 
    public string CustomerName { get; set; } 
}

VB:

<DataContract()> 
Public Class CustomerLookup 
 
    <DataMember()> 
    Public Property CustomerID() As Integer 
 
    <DataMember()> 
    Public Property CustomerName() As String 
 
End Class



 308 Microsoft Visual Studio 2010: A Beginner’s Guide

Using a custom type for the purpose of lookup controls at the UI level, such as 
the CustomerLookup class in Listing 11-3, opens the potential to only communicate 
information that is necessary, rather than an entire object where all of the data isn’t being 
used. Considering the potential slowness of network communication, limiting the amount 
of information transmitted between the Web service and your application can increase the 
performance of your application.

Now that you have a contract in place, the next step is writing a class that implements 
that contract.

Implementing Logic with WCF Classes
The contract created in the preceding section was important because it specifies what must 
be implemented. As you know, interfaces only specify members, which are the contract, 
but you must write a class that contains code that implements the interface. This section 
will implement the ICustomerService interface with a class named CustomerService.

The first thing you should do is rename the Service1.cs (Service1.vb in VB) file to 
CustomerService.cs (CustomerService.vb in VB) and click Yes when VS asks if you 
want to change the code. Listing 11-4 shows what VS generates as a WCF service class, 
with the rename applied to the class.

Listing 11-4  Default WCF service implementation class

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Runtime.Serialization; 
using System.ServiceModel; 
using System.Text; 
 
namespace WcfDemoCS 
{ 
    // NOTE: You can use the "Rename" command on the 
    // "Refactor" menu to change the class name "Service1" 
    // in both code and config file together. 
    public class CustomerService : ICustomerService 
    { 
        public string GetData(int value) 
        { 
            return string.Format("You entered: {0}", value); 
        } 
 



 Chapter 11: Deploying Web Services with WCF 309

        public CompositeType GetDataUsingDataContract( 
            CompositeType composite) 
        { 
            if (composite == null) 
            { 
                throw new ArgumentNullException("composite"); 
            } 
            if (composite.BoolValue) 
            { 
                composite.StringValue += "Suffix"; 
            } 
            return composite; 
        } 
    } 
}

VB:

' NOTE: You can use the "Rename" command on the  
' context menu to change the class name "Service1"  
' in both code and config file together. 
Public Class Service1 
    Implements ICustomerService 
 
    Public Function GetData( 
        ByVal value As Integer) As String  
        Implements ICustomerService.GetData 
        Return String.Format("You entered: {0}", value) 
    End Function 
 
    Public Function GetDataUsingDataContract( 
        ByVal composite As CompositeType) As CompositeType  
        Implements ICustomerService.GetDataUsingDataContract 
        If composite Is Nothing Then 
            Throw New ArgumentNullException("composite") 
        End If 
        If composite.BoolValue Then 
            composite.StringValue &= "Suffix" 
        End If 
        Return composite 
    End Function 
 
End Class



 310 Microsoft Visual Studio 2010: A Beginner’s Guide

The methods of the CustomerService class in Listing 11-4 show skeleton implementations 
of the ICustomerService interface. As you know, Listing 11-2 provided new methods to 
the ICustomerService interface, so the code in Listing 11-4 will not compile because it 
doesn’t implement the ICustomerService methods. To fix this problem, delete the GetData 
and GetDataUsingDataContract methods from the CustomerService class. Then select the 
ICustomerService identifier in the CustomerService.cs file, which will display an underline 
on the left of the ICustomerService identifier. Hover over that underline to open a menu with 
an option to implement the ICustomerService interface, which will generate skeleton code 
for each member of the ICustomerService interface inside of the CustomerService class. The 
default method implementations throw a NotImplementedException exception, meaning 
that you need to write the code to implement those methods based on the ICustomerService 
interface. Listing 11-5 shows the implementation of the ICustomerService interface in 
the CustomerService class. If using C#, add the code to each method. If using VB, which 
doesn’t have the same interface refactoring support as C#, add all methods and code to the 
CustomerService class as specified in Listing 11-5.

Listing 11-5  A WCF service implementation

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Runtime.Serialization; 
using System.ServiceModel; 
using System.Text; 
 
namespace WcfDemoCS 
{ 
    public class CustomerService : ICustomerService 
    { 
        public Customer GetCustomer(int custID) 
        { 
            var ctx = new MyShopDataContext(); 
 
            var customer = 
                (from cust in ctx.Customers 
                 where cust.CustomerID == custID 
                 select cust) 
                 .SingleOrDefault(); 
 



 Chapter 11: Deploying Web Services with WCF 311

            return customer; 
        } 
 
        public List<Customer> GetCustomers() 
        { 
            var ctx = new MyShopDataContext(); 
 
            return 
                (from cust in ctx.Customers 
                 select cust) 
                 .ToList(); 
        } 
 
        public int InsertCustomer(Customer cust) 
        { 
            var ctx = new MyShopDataContext(); 
 
            ctx.Customers.InsertOnSubmit(cust); 
 
            ctx.SubmitChanges(); 
 
            return cust.CustomerID; 
        } 
 
        public void UpdateCustomer(Customer cust) 
        { 
            var ctx = new MyShopDataContext(); 
 
            var customer = 
                (from cst in ctx.Customers 
                 where cst.CustomerID == cust.CustomerID 
                 select cst) 
                 .SingleOrDefault(); 
 
            if (customer != null) 
            { 
                customer.Age = cust.Age; 
                customer.Birthday = cust.Birthday; 
                customer.Income = cust.Income; 
                customer.Name = cust.Name; 
 
                ctx.SubmitChanges(); 
            } 
        } 
 



 312 Microsoft Visual Studio 2010: A Beginner’s Guide

        public void DeleteCustomer(int custID) 
        { 
            var ctx = new MyShopDataContext(); 
 
            var customer = 
                (from cst in ctx.Customers 
                 where cst.CustomerID == custID 
                 select cst) 
                 .SingleOrDefault(); 
 
            if (customer != null) 
            { 
                ctx.Customers.DeleteOnSubmit(customer); 
 
                ctx.SubmitChanges(); 
            } 
        } 
    } 
}

VB:

' NOTE: You can use the "Rename" command on the context  
' menu to change the class name "Service1" in both code  
' and config file together. 
Public Class CustomerService 
    Implements ICustomerService 
 
    Public Function GetCustomer(ByVal custID As Integer) As Customer 
        Implements ICustomerService.GetCustomer 
 
        Dim ctx As New MyShopDataContext 
 
        Dim customer = 
            (From cust In ctx.Customers 
             Where cust.CustomerID = custID 
             Select cust).SingleOrDefault() 
 
        Return customer 
 
    End Function 
 
    Public Function GetCustomers() As List(Of Customer) Implements 
ICustomerService.GetCustomers 
 
        Dim ctx As New MyShopDataContext 
 



 Chapter 11: Deploying Web Services with WCF 313

        Return (From cust In ctx.Customers 
                Select cust).ToList() 
 
    End Function 
 
    Public Function InsertCustomer(ByVal cust As Customer) As Integer  
        Implements ICustomerService.InsertCustomer 
        Dim ctx = New MyShopDataContext 
 
        ctx.Customers.InsertOnSubmit(cust) 
 
        ctx.SubmitChanges() 
 
        Return cust.CustomerID 
 
    End Function 
 
    Public Sub UpdateCustomer(ByVal cust As Customer)  
        Implements ICustomerService.UpdateCustomer 
        Dim ctx As New MyShopDataContext 
 
        Dim customer = (From cst In ctx.Customers 
                        Where cst.CustomerID = cust.CustomerID 
                        Select cst).SingleOrDefault() 
 
 
        If Not (customer Is Nothing) Then 
 
            With customer 
                .Age = cust.Age 
                .Birthday = cust.Birthday 
                .Income = cust.Income 
                .Name = cust.Name 
            End With 
 
            ctx.SubmitChanges() 
 
        End If 
 
    End Sub 
 
    Public Sub DeleteCustomer(ByVal custID As Integer) 
 
        Dim ctx As New MyShopDataContext 
 
        Dim customer = (From cst In ctx.Customers 



 314 Microsoft Visual Studio 2010: A Beginner’s Guide

                        Where cst.CustomerID = custID 
                        Select cst).SingleOrDefault() 
 
        If Not (customer Is Nothing) Then 
 
            ctx.Customers.DeleteOnSubmit(customer) 
 
            ctx.SubmitChanges() 
 
        End If 
 
    End Sub 
 
End Class

The implementation of CustomerService is similar to what you’ve seen in previous 
chapters. The difference is that the implementation is in a Web service, which must be 
consumed differently. We’ll soon get to the section of this chapter that shows how to 
consume a Web service, but you must understand that a Web service is a component that 
you communicate with over a network. In previous chapters, you’ve seen code that works 
with data integrated with application code. However, Web services must be hosted by a 
server, such as Internet Information Services (IIS), and consuming code must connect and 
communicate through calls to IIS. The next section points you in the right direction about 
hosting a Web service in IIS.

Hosting a WCF Service
The VS development environment will automatically host your service, but eventually 
you’ll need to deploy your service to Internet Information Services (IIS), which is the Web 
server that hosts .NET applications. The instructions included in this section are general 
guidance on how the deployment process works. It is very likely that subsequent operating 
system patches and service packs could change the results for you. It is also possible 
that the particular operating system and IIS configuration on your computer is different. 
Additionally, the behavior of software on other operating systems, such as Windows 
Server 2003 and Windows Server 2008, can differ in subtle, but significant, ways. As 
such problems are unrelated to VS itself, you should consult your operating system 
documentation on how to properly configure IIS and operating system security. Although 
operating system behavior is not a function of VS, the guidance below is intended to point 
you in the right direction.



 Chapter 11: Deploying Web Services with WCF 315

Following General Hosting Procedures
For better security, IIS doesn’t install with the default installation of the Windows OS. 
There are different versions of Windows for desktop and server, so I’ll provide a general 
description of what you need to do for installing IIS. The first step is to find the Control 
Panel in the Windows Operating System (OS). Older Windows versions have a link for 
Add And Remove Programs, but newer versions call the link Programs And Features, 
which you need to open. Server OS versions have a control panel you can use to install 
IIS. Next, search for a link for adding and removing Windows Components (or Windows 
Features) and click that link. Find IIS and install it and remember to turn on File Transfer 
Protocol (FTP) support if you want to deploy using FTP. FTP is an Internet protocol 
that allows you to work with files; it is useful in deployment because it allows moving 
files from one server to another. You’ll need to enable ASP.NET on newer versions of 
Windows, which I’ll explain how to do in a later section.

Once IIS is installed, you can host your application. On desktop versions of Windows, 
IIS 6 only supports a single Web site, but you can add multiple Web sites to any server OS 
or IIS 7 and later. To create the Web site, you’ll need to either create a virtual directory 
(in the case of desktop versions of IIS 6) or a Web application. You can do this by 
opening IIS, which you can find via the Administrative Tools menu; you can often find 
the Administrative Tools menu from the Control Panel. Find Web Sites, right-click, and 
select Create New Web Application. If you’re using IIS 6 on a desktop, you’ll need to go 
down an additional level, right-click Default Web Site, and select Create Virtual Directory. 
Don’t change any of the default values while stepping through the wizard, but you will 
need to specify a name for the virtual directory or site name and the physical path. The 
virtual directory/site name is the location that a user would add to the address bar. The 
physical path is the location in your file system that you want the application to reside in. 
This location defaults to c:\inetpub, assuming that your OS is deployed to the c: drive.

Installing IIS 7 on Windows 7
The following is a walk-through for setting up IIS 7 on Windows 7.

 1. Select Start | Control Panel | Programs And Features, which will display the Uninstall 
Or Change A Program window, shown in Figure 11-3.

 2. Click the “Turn Windows features on or off” link, which will display the Windows 
Features window, shown in Figure 11-4.



 316 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 11-3 The Uninstall Or Change A Program window

Figure 11-4 The Windows Features window



 Chapter 11: Deploying Web Services with WCF 317

 3. This example enables FTP, which is one of the ways you can deploy a Web site. Ensure 
the option for “Ensure IIS Metabase and IIS 6 configuration compatibility,” under 
the IIS 6 Management Compatibility branch, is selected. When you click OK, the IIS 
server will be installed.

Creating a Web Site on IIS 7 on Windows 7
Next, you’ll need to create a Web site on IIS 7 on Windows 7 by following these steps:

 1. Select Start | Control Panel | Administrative Tools, which will display the Administrative 
Tools window, shown in Figure 11-5.

 2. Double-click Internet Information Services (IIS) Manager to display the Internet 
Information Services (IIS) Manager window, shown in Figure 11-6.

Order of Installations Matter
ASP.NET and WCF Web Services are hosted in IIS and require special configuration to 
allow hosting by IIS. Therefore, it’s helpful if IIS is installed before VS is installed. VS 
will install all of the ASP.NET and WCF Service settings if IIS is installed. If you install 
IIS after VS is installed, you can still set up ASP.NET and WCF Service settings with 
the following commands; first ASP.NET:

  "%windir%\Microsoft.NET\Framework\v4.0.21006\aspnet_regiis.exe" –i –enable

and then WCF Services (all on one line):

  "%WINDIR%\Microsoft.Net\Framework\v3.0\Windows Communication 
Foundation\ServiceModelReg.exe" –r

The actual directory name for the aspnet_regiis.exe file might be different because 
the v4.x.x.x will change in the future, so you might need to open Windows Explorer and 
search for the actual directory name yourself.



 318 Microsoft Visual Studio 2010: A Beginner’s Guide

 3. Right-click Sites and select Add Web Site, or click the Add Web Site link on the 
Actions panel to show the Add Web Site window, shown in Figure 11-7.

 4. Give the Web site a name and specify the physical location. As shown in Figure 11-7, 
the name of the site is WcfDemo and the site will be physically located at c:\WebSites\
WcfDemo. Notice that the Port in the Binding section is set to 8080. The default for a 
Web site port is 80, but you can have only a single site with that port. Alternatively, you 
could change the host name and keep port 80. In this case, we decided to set the port to 
8080 so that the addresses of the Web sites don’t overlap. Use a different port number if 
8080 is already used on your system. Clicking OK will create the Web site.

Figure 11-5 The Administrative Tools window



 Chapter 11: Deploying Web Services with WCF 319

 5. Ensure that the WcfDemo Web site is selected in IIS Manager and click the Add FTP 
Publishing link on the Actions pane, which is on the right side of IIS Manager. You’ll 
see the Binding And SSL Settings window, shown in Figure 11-8.

 6. Accept the defaults on the Binding And SSL Settings window and click Next to show 
the Authentication And Authorization window, shown in Figure 11-9.

 7. Set options on the Authentication And Authorization window according to who you 
want to be able to access this Web site. Anonymous allows anyone to access the site 
and is less secure. A more secure option would be to restrict access to specified users or 
groups that you trust. Basic authorization shows a login screen when someone connects 
to the FTP site. Clicking Finish will enable this site for FTP access.

Figure 11-6 The IIS Manager window



 320 Microsoft Visual Studio 2010: A Beginner’s Guide

 8. In IIS Manager, select Application Pools. An application pool is a process that you 
can assign Web sites to. This gives Web sites protection from each other because if 
one process crashes, it doesn’t bring down Web sites in other processes. IIS created 
an application pool for your Web site with the same name when creating it previously. 
Double-click the application pool named after your Web site and set its .NET 
Framework version to v4. The exact version number could vary in the future, so you 
want to ensure it’s the same .NET Framework version number that you build your 
application with in VS.

Once your Web site is set up, you can deploy, which is discussed next.

Figure 11-7 The Add Web Site window



 Chapter 11: Deploying Web Services with WCF 321

Deploying the WCF Service to IIS
If you want to run the WCF service in VS, you don’t have to do anything because VS 
already set the project up to run with a built-in server. The discussion in this section is 
intended to help you deploy to IIS on a Windows 2008 server. If you just want to run the 
Web service in VS, you can skip this section for now and move to the next section on how 
to build a client that communicates with the Web service. Then return to this section when 
you’re actually ready to deploy to IIS. 

To deploy a Web service project, you’ll need to obtain the address of the Web site, 
modify the project configuration file, and use the VS Publish tool.

Figure 11-8 The Binding And SSL Settings window



 322 Microsoft Visual Studio 2010: A Beginner’s Guide

TIP
You must run VS as Administrator to publish. To do this, close VS (if running), locate the 
VS Start menu item (don’t click yet), right-click, and select Run As Administrator.

The technique used in the preceding section to create a Web site distinguished the Web 
site by making it run on port 8080. Although the Web site is named WcfDemo, it’s located 
on the local machine, whose domain is localhost. If you deployed the Web service to a site 
that already had a domain, you would use that domain name. For example, the domain for 
the C# Station community site is csharp-station.com, which is addressed as http://www.
csharp-station.com. Each Web service at a location is addressed by a *.svc file name and 
the name that VS creates is called WcfDemoCS.CustomerService.svc. Putting the pieces 
of WcfDemo site together results in an address of http://localhost:8080/WcfDemoCS.
CustomerService.svc.

Figure 11-9 The Authentication And Authorization window

http://www.csharp-station.com
http://www.csharp-station.com


 Chapter 11: Deploying Web Services with WCF 323

When you create a new WCF Service project, VS adds a file named app.config to 
the project, which is a file that belongs only to VS. The app.config file is never deployed 
with your Web service, but it generates a file named web.config, which is deployed 
with the project. In WPF projects, VS uses the app.config file to generate a file named 
projectname.exe.config in the same folder as the projectname.exe file. WCF Service 
projects don’t generate a config file in the output folder, but they do generate a web.config 
file when you deploy. You’ll see web.config soon, after deployment.

During development, you work with the app.config file, which is easy to find and 
open in your project. The app.config file has a lot of information in it, so Listing 11-6 is a 
small excerpt that shows you the salient elements of the WCF configuration.

Listing 11-6  The WCF service address in app.config

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
... 
  <system.serviceModel> 
    <bindings> 
        ... 
    </bindings> 
    <client /> 
    <services> 
      <service name="WcfDemoCS.CustomerService"> 
        ... 
        <endpoint address="mex" binding="mexHttpBinding"  
contract="IMetadataExchange" /> 
        <host> 
          <baseAddresses> 
            <add baseAddress= 
"http://localhost:8732/Design_Time_Addresses 
/WcfDemoCS/CustomerService/" /> 
          </baseAddresses> 
        </host> 
      </service> 
    </services> 
... 
  </system.serviceModel> 
... 
</configuration>



 324 Microsoft Visual Studio 2010: A Beginner’s Guide

Following the path in Listing 11-6—configuration, system.serviceModel, services, 
service, host, and baseAddresses—you’ll find a baseAddress element in bold. The 
baseAddress in Listing 11-6 is split into two lines to fit the book, but remember to combine 
it into a single line. The baseAddress is declaring that applications can communicate 
with this service via this address. This is a VS development Web server address that 
was generated for this WCF service. Previously, you saw how we figured out what the 
deployment address of this application should be. Therefore, when you deploy, comment 
out the development address and replace it with the deployment address, like this:

<baseAddresses> 
  <!--<add baseAddress= 
"http://localhost:8732/Design_Time_Addresses/WcfDemoCS/Service1/" />--> 
  <add baseAddress=" http://localhost:8080/WcfDemoCS.CustomerService 
.svc " /> 
</baseAddresses>

The <!-- and --> are comment delimiters, and anything in between them won’t be 
interpreted as part of the configuration. Notice how the deployment address is used 
(uncommented) as the base address. After deployment, you can comment the deployment 
address and uncomment the development address so that you can continue working with 
the WCF service with the VS Web server.

In addition to the baseAddress, you need to ensure your database connection is 
updated for the deployment environment. In the development environment, the default 
DB connection string defaults to using Integrated Security = true as login credentials, 
which uses the identity of the currently logged-in user. The result in the deployment 
environment is that the application will run as the identity of the application pool the 
Web site is assigned to. The problem with this is that the application pool doesn’t have 
access to your database. The best approach is to create a user for your application only, 
give that user access to your database, and then set the connection string to use the 
credentials of that user.

Create a user in your Windows OS that will be used for SQL Server and then give 
that user access to the database. If you’re using an Express version of SQL Server, it can 
help if you download the free SQL Server Express Management Studio. Because of all the 
variables that can affect setting up security, refer to SQL Server documentation for more 
guidance. This chapter uses SQL authentication, so go ahead and create a Windows or 
SQL user for the MyShop database.



 Chapter 11: Deploying Web Services with WCF 325

With the user account set up for the database, update the app.config file of the service 
to use the credentials of that user account, like this. For best security, please remember to 
change the password:

<add name= 
"WcfDemoCS.Properties.Settings.MyShopConnectionString" 
  connectionString= 
"Data Source=.\sqlexpress;Initial Catalog=MyShop; 
User ID=MyUserAccount;Password=G7b@H8m2a%lM6y;Pooling=False" 
  providerName="System.Data.SqlClient" />

To deploy, right-click the Web Services project, WcfDemo, and click Publish, which 
will display the Publish WCF Service window shown in Figure 11-10.

In the Publish WCF Service window, set the Target Location to the address where the 
WCF Service is deployed. You saw how to figure out the address earlier in this section. 
You can choose to either replace only matching files or delete all files in the deployment 
location. You normally only want to copy files needed to run this application because the 
deployment will be quicker with fewer files and possibly more secure by only deploying 
what is necessary. The check box for Include Files From The App_Data Folder is disabled 
because there isn’t an App_Data folder in the WCF Service project. However, this same 
tool is used to deploy an ASP.NET Web site, which might have an App_Data folder. 

Figure 11-10 The Publish WCF Service window



 326 Microsoft Visual Studio 2010: A Beginner’s Guide

Normally, you don’t want to deploy the App_Data folder because it might hold a database 
file that is huge and would slow down your application considerably. Of course, if you 
have SQL Server Express installed at the deployment location and need the database in 
App_Data to be deployed, check this box to include the database in the deployment. Click 
Publish to deploy your service.

When deployment is complete, you’ll see a message on the VS status bar stating either 
Publish Succeeded or Publish Failed. If publishing fails, open the Output window, CTRL-W,  
O, to see the reason why. There are many reasons a deployment can fail, so look at the 
error message to see if it’s something that makes sense to you. Verify that your Web site 
is properly set up, as explained in the preceding section. Other sources of information 
include the Microsoft Developer Network (MSDN), at http://msdn.microsoft.com, where 
you can search for Knowledge Base support articles. Alternatively, you can copy the error 
message and paste it into your favorite search engine. Many problems with deployment 
surround IIS setup, so it is worthwhile to learn more about how IIS works. McGraw-Hill 
offers Windows Server 2008: A Beginner’s Guide, by Marty Matthews (2008), which 
does include IIS 7 information. There’s also a Windows Server 2003 edition if you are 
deploying to IIS 6.

Now that you know how to develop and deploy a WCF service, you’ll need to know 
how to write programs that use that service, which is covered next.

Communicating with a WCF Service
Any .NET application can communicate with a Web service. In fact, one of the benefits of 
having a Web service is to expose functionality that can be used by multiple applications. 
In theory, any application on any platform can communicate via Web services because the 
underlying technology relies on open standards, such as HTTP and XML. In practice, the 
goal of cross-platform communication is an advanced technique accomplished by architects 
and engineers with detailed knowledge of the inner workings of Web services. For just 
getting started, it’s sufficient to know that you can communicate with Web services with any 
.NET technology. The following sections show you how to make your applications, clients, 
communicate with Web services. Let’s look at the task of generally creating a reference to a 
Web service first.

Creating a Service Reference
Regardless of what type of application you’re building, you create a reference to a Web 
service, called a service reference, in the same way. You start off with a project, any 
project type—Console, WPF, ASP.NET, or Silverlight will do. Right-click the project 

http://msdn.microsoft.com


 Chapter 11: Deploying Web Services with WCF 327

and select Add Service Reference. You’ll see the Add Service Reference window, 
shown in Figure 11-11.

As you may recall from previous discussion in this chapter, we spent some time on 
setting up a Web service and configuring the Web service address. Now the address comes 
into focus because it is where the Web service is deployed—you type it into the Address 
box in the Add Service Reference window, shown in Figure 11-11. If you are using the 
Web server built into VS to use a Web service project in the same solution, it is convenient 
to click the Discover button, which will give you a list of Web services in the same 
solution as the project you are adding the service reference to. The address in Figure 11-11 
is different from what you’ll see on your computer because the project name, port number, 
and service name will be different.  

If you need to use a deployed Web service, you would put the address of the deployed Web 
service in the Address box. For example, earlier in this chapter you saw how we deployed  
a Web service to the local IIS server and that to use that deployed Web service you would 

Figure 11-11 The Add Service Reference window



 328 Microsoft Visual Studio 2010: A Beginner’s Guide

put http://localhost:8080/WcfDemo.CustomerService.svc into the Address box. In the 
deployed service, the service name might not be WcfDemo.CustomerService.svc as shown 
in this demo. To find out what the real service name file should be, navigate to the physical 
directory where the service was deployed to and use the file name of the *.svc file. Sometimes, 
you’ll need to use Web services by third parties or another organization in your company. In 
those cases, you’ll get the address to use from a person in the other organization or read their 
documentation to learn what address to use. If you add your own address, click Go to get more 
information on the Web service.

After either clicking Discover or adding an address and clicking Go, you’ll have 
one or more services in the Services list. At this point, if you receive an error, it will be 
because the address is incorrect, the service is experiencing an outage, or (in the case 
of referencing a service in your own project) the service won’t compile. First check the 
address if you entered it yourself. If you are referencing a project in your solution, go back 
and recompile the Web Service project to make sure it builds, fix any problems, and try 
to create the service reference again. Once you’ve ensured that you’ve corrected all the 
problems on your side of the wire, contact whoever owns the Web service to troubleshoot 
the problem.

When a Web service can be communicated with successfully, you’ll see the list 
of services. You can drill down on each service until you find the interface for the 
service you’re interested in. In Figure 11-11, the ICustomerService is selected, which 
displays all available operations. Looking back at the previous discussion of creating 
the CustomerService, you can see the interface that was created and the methods. If you 
don’t see an interface or a method, check the attributes in the code to ensure the interface 
has a ServiceContract attribute and that any methods that should be exposed have an 
OperationContract attribute.

The Web service will create a proxy, which is a class that communicates with the Web 
service, in your project, using the default namespace declared in the Properties for your 
project. The namespace in the Add Service Reference defaults to Service1, and you’ll want 
to change that to something meaningful, such as CustomerService, as shown in Figure 11-11. 
This will result in a proxy class created in MyProjectNamespace.CustomerService. This is 
important to know because you will need to create an instance of the proxy and must know 
the namespace that the proxy resides in. Click OK to create the service reference such as the 
one shown in Figure 11-12.

As you can see in Figure 11-12, the project has a new folder, named Service References. 
The CustomerService reference under ServiceReferences is named after the namespace you 
specified in the Add Service Reference window.



 Chapter 11: Deploying Web Services with WCF 329

Now that you have a service reference, you can use it in any .NET application. The 
following section shows you how to write code to communicate with the Web service.

Coding Web Service Calls
This section will explain how to write code that communicates with a Web service. You’ll 
see explanations of the individual statements required to call the Web service and then 
you’ll see the entire listing of all of those statements together. The program that calls 
the Web service is a Console application. You should create a new Console application 
and add the code in this section inside of the Main method. If you felt like skipping 
ahead before reading the explanation, you can see the entire code listing of the Console 
application that calls the Web service in Listing 11-7. However, we’ll begin at the first 
statement and follow until you see all of the code that’s required to call and interact with 
the CustomerService Web service created in the preceding sections.

When creating a service reference, as explained in the preceding section, VS will 
generate a new class, called a proxy. The proxy looks just like your Web service class 
but doesn’t contain any of the same code. Instead, the proxy will translate calls from 
the client and communicate with the Web service. The proxy, created after adding the 
service reference in the preceding section, is named CustomerServiceClient. Remember 
to add a using statement (Imports in VB) for the Web service proxy. Since the default 

Figure 11-12 A new service reference in a project



 330 Microsoft Visual Studio 2010: A Beginner’s Guide

namespace of the example code for this chapter is CustomerConsole, the namespace 
of the Web service proxy is CustomerConsole.CustomerService. Here’s code that 
instantiates the proxy:

C#:

var svc = new CustomerServiceClient();

VB:

Dim svc = New CustomerServiceClient

The proxy is named after the service reference, with Client appended to the name. As 
with any other class, you instantiate the proxy, resulting in a reference to the proxy, named 
svc. Using the proxy makes your code feel like everything is in the same project, but 
really the proxy makes a call over HTTP, sending an XML package to the Web service. 
The Web service translates the XML into a method call, executes the code for the method 
call, and translates the results back into XML. Meanwhile, the proxy is waiting on the 
Web service and will receive the XML response, translate that response into a .NET 
object, and pass the object back to your calling code. If the method returns void instead of 
a type, then there isn’t any value to return.

With the service reference, you can begin communicating with the Web service. The 
following example creates a new customer record, calling the InsertCustomer method on 
the Web service proxy:

C#:

var newCust = new Customer 
{ 
    Age = 36, 
    Birthday = new DateTime(1974, 8, 22), 
    Income = 56000m, 
    Name = "Venus" 
}; 
 
var newCustID = svc.InsertCustomer(newCust);

VB:

Dim newCust = New Customer 
 
With newCust 
    .Age = 36 
    .Birthday = New DateTime(1974, 8, 22) 
    .Income = 56000 



 Chapter 11: Deploying Web Services with WCF 331

    .Name = "Venus" 
End With 
 
Dim newCustID As Integer 
 
newCustID = svc.InsertCustomer(newCust)

At this point, you might be wondering where the Customer type came from. As you 
may recall from the previous section of the chapter that discussed custom objects, the 
Customer type is a proxy type for the Customer that was defined in LINQ to SQL. Since 
we set the Serialization Mode of the LINQ to SQL entity model to Unidirectional, the Web 
service was able to pass the definition of the Customer with the Web service interface, 
resulting in a Customer proxy.

To perform the insert operation, use the service proxy reference, svc, to pass the 
instance of the Customer proxy. The following example shows how to get a specified 
customer from the Web service:

C#:

Customer cust = svc.GetCustomer(newCustID);

VB:

Dim cust As New Customer 
cust = svc.GetCustomer(newCustID)

Here, the service proxy reference is used to call GetCustomer with an ID of the requested 
customer, returning an instance of the Customer proxy. The next example shows how to 
update a Customer instance:

C#:

cust.Income = 49000m; 
 
svc.UpdateCustomer(cust);

VB:

cust.Income = 49000 
 
svc.UpdateCustomer(cust)

The cust reference in this example is the same reference that was created previously. 
In this example, we are only changing the Income property. Next, we use the service 
proxy to call the UpdateCustomer method, passing the Customer proxy reference. If you 



 332 Microsoft Visual Studio 2010: A Beginner’s Guide

wanted to see the changes that were made, you could call the GetCustomer method again, 
like this:

C#:

Customer updatedCust = svc.GetCustomer(cust.CustomerID);

VB:

Dim updatedCust As Customer 
 
updatedCust = svc.GetCustomer(cust.CustomerID)

Similarly, you can delete a Customer, as follows:

C#:

svc.DeleteCustomer(updatedCust.CustomerID);

VB:

svc.DeleteCustomer(updatedCust.CustomerID)

As in the previous example, we use the service proxy reference to call the DeleteCustomer 
method, passing in an ID from the updated customer. The updatedCust reference was from 
the previous call to GetCustomer. If you wanted to get all of the Customer records from the 
Web service, you could call GetCustomers, like this:

C#:

Customer[] customers = svc.GetCustomers();

VB:

Dim customers As Customer() 
 
customers = svc.GetCustomers()

While this is similar to other method calls in previous examples, you might notice that 
the return value from GetCustomers here is an array of Customer, Customer[] (Customer() 
in VB). However, the Web service defined GetCustomers as returning a List of Customer, 
List<Customer> (List(Of Customer) in VB), as specified in the ICustomerService 
interface in Listing 11-2 and implemented in the CustomerService class in Listing 11-5. 
As you may recall, the proxy is responsible for translating the XML return value from 
the Web service into an object, or collection of objects in this case. By default, the proxy 
translates all collections into an array. However, you can change the return collection type 
by right-clicking the Service Reference in your project and selecting Configure Service 
Reference, showing the Service Reference Settings window in Figure 11-13.



 Chapter 11: Deploying Web Services with WCF 333

Most of the items in the Service Reference Settings are advanced options, but focus 
on the Collection Type setting in the Data Type section. Switch the Collection Type from 
System.Array to System.Collections.Generic.List and click OK to close. Then change the 
previous call to GetCustomers to the following:

C#:

List<Customer> customers = svc.GetCustomers();

VB:

        Dim cust As New Customer 
 
        cust = svc.GetCustomer(newCustID)

Figure 11-13 The Service Reference Settings window



 334 Microsoft Visual Studio 2010: A Beginner’s Guide

This example shows that the proxy will translate the results into a List<Customer> 
(List(Of Customer) in VB). While I showed you how to make this setting after creating 
the Web service, I chose this sequence because it shows the value of changing the 
collection return type. However, you can make this setting when first creating the Web 
reference. Looking at Figure 11-11, you can see an Advanced button at the bottom of the 
Add Service Reference window. Clicking the Advanced button will show you the Service 
Reference Settings window, shown in Figure 11-13, allowing you to set the collection 
return type when first creating the service reference.

Now, you’ve seen all five operations of the Web service. Remember that exactly 
the same techniques are used here as in any other type of .NET application. For your 
convenience, Listing 11-7 shows you the entire example for using a Web service.

Listing 11-7  An application using a Web service

C#:

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using CustomerConsole.CustomerService; 
 
namespace CustomerConsole 
{ 
    class Program 
    { 
        static void Main() 
        { 
            var svc = new CustomerServiceClient(); 
 
            var newCust = new Customer 
            { 
                Age = 36, 
                Birthday = new DateTime(1974, 8, 22), 
                Income = 56000m, 
                Name = "Venus" 
            }; 
 
            var newCustID = svc.InsertCustomer(newCust); 
 
            Console.WriteLine("New Customer ID: " + newCustID); 
 
            Customer cust = svc.GetCustomer(newCustID); 
 



 Chapter 11: Deploying Web Services with WCF 335

            Console.WriteLine("New Customer: " + cust.Name); 
 
            cust.Income = 49000m; 
 
            svc.UpdateCustomer(cust); 
 
            Customer updatedCust = svc.GetCustomer(cust.CustomerID); 
 
            Console.WriteLine("Economic Adjustment: " + cust.Income); 
 
            svc.DeleteCustomer(updatedCust.CustomerID); 
 
            //Customer[] customers = svc.GetCustomers(); 
            List<Customer> customers = svc.GetCustomers(); 
 
            Console.WriteLine("\nAll Customers:\n"); 
            foreach (var custItem in customers) 
            { 
                Console.WriteLine(custItem.Name); 
            } 
 
 
            Console.ReadKey(); 
        } 
    } 
}

VB:

Imports CustomerConsoleVB.CustomerService 
 
Module Module1 
 
    Sub Main() 
 
        Dim svc = New CustomerServiceClient 
 
        Dim newCust = New Customer 
 
        With newCust 
            .Age = 36 
            .Birthday = New DateTime(1974, 8, 22) 
            .Income = 56000 
            .Name = "Venus" 
        End With 
 
        Dim newCustID As Integer 
 



 336 Microsoft Visual Studio 2010: A Beginner’s Guide

        newCustID = svc.InsertCustomer(newCust) 
 
        Console.WriteLine("New Customer ID: " & newCustID) 
 
        Dim cust As New Customer 
 
        cust = svc.GetCustomer(newCustID) 
 
        cust.Income = 49000 
 
        svc.UpdateCustomer(cust) 
 
        Dim updatedCust As Customer 
 
        updatedCust = svc.GetCustomer(cust.CustomerID) 
 
        Console.WriteLine("Economic Adjustment: " & cust.Income) 
 
        svc.DeleteCustomer(updatedCust.CustomerID) 
 
        Dim customers As List(Of Customer) 
        'Dim customers As Customer() 
 
        customers = svc.GetCustomers() 
 
    End Sub 
 
End Module

Deploying a Client That Consumes a Web Service
When deploying a client that uses a Web service, you need to update the address of the 
service in the configuration file. The configuration file can vary, based on the type of 
application you’ve built. Table 11-1 describes the configuration files for the application 
types covered in this book.

Table 11-1  Configuration Files for Each Application Type

Application Type Configuration File
Console App.config

WPF App.config

ASP.NET MVC Web.config

Silverlight ServiceReferences.ClientConfig



 Chapter 11: Deploying Web Services with WCF 337

Regardless of the name, each configuration file will have a system.serviceModel 
element with configuration settings for the Web service. Listing 11-8 shows parts of 
the configuration file that you should find to change the address of the Web service to 
communicate with.

Listing 11-8  Web service client configuration

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
    <system.serviceModel> 
... 
        <client> 
            <endpoint address="http://localhost:8732 
/Design_Time_Addresses/WcfDemoCS/CustomerService /" 
                binding="wsHttpBinding"  
bindingConfiguration="WSHttpBinding_ICustomerService" 
                contract="CustomerService.ICustomerService" 
name="WSHttpBinding_ICustomerService"> 
... 
    </system.serviceModel> 
</configuration>

Following the path system.serviceModel, client, endpoint, you’ll find an address 
attribute. In the preceding example, the address is set to the address of the WcfDemo project 
inside the same solution. When you deploy your client, you’ll want it to communicate with 
the deployed Web service. The following modification allows this client to communicate 
with the Web service deployed to IIS as discussed previously in this chapter:

<endpoint 
address="http://localhost:8080/WcfDemoCS.CustomerService.svc" 
binding="wsHttpBinding" 
bindingConfiguration="WSHttpBinding_ICustomerService" 
contract="CustomerService.ICustomerService" 
name="WSHttpBinding_ICustomerService">

The address includes a filename, WcfDemoCS.CustomerService.svc, which was 
automatically generated when deploying the WcfDemo service. You can see the name of 
this file by looking at the physical folder where the Web service is deployed.

Creating a Web Service in a Web Site
The previous discussion of creating a Web service created a separate project for the Web 
service. This approach assumes that you have the ability to configure an IIS Web site 
for the Web service and can have another IIS Web site for your application if you have 



 338 Microsoft Visual Studio 2010: A Beginner’s Guide

a Web application as the Web service client. However, this might not be possible if you 
are deploying to a hosted server by a third-party Internet service provider where you 
only have a single Web site. In that case, you have the additional option of adding a Web 
service directly to an existing Web site.

To see how this works, create a new ASP.NET MVC Web site. Right-click the project, 
select Add | New Item, and create a new WCF Service. What you’ll see is an interface 
file, IService1.cs; an addressable service file; an implementation class, Service1.svc; and 
Service1.svc.cs, which you can find under the Service1.svc branch. All of the information 
you’ve learned previously in this chapter applies to coding a Web service that is part of the 
Web application. You should know that this is an option if it fits your needs.

Summary
You’ve learned how to build a Web service, how to deploy the Web service, and how to 
write a client that consumes the Web service. The discussion on creating the Web service 
showed you how to define the Web service contract with an interface and applicable 
attributes. You saw how to implement the service also. The deployment discussion 
explained how to host a Web service with IIS and how to use the VS Publish Wizard for 
deployment. You also saw how to write a client that creates a reference to a Web service 
and writes code to communicate with the Web service.



Part IV
Enhancing the VS  
2010 Experience



This page intentionally left blank 



341

Chapter 12
Customizing  
the Development 
Environment



 342 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Implement Custom Templates

● Create Custom Snippets

● Write Macros

In addition to all the great features you’ve seen in preceding chapters, VS gives you the 
capabilities to customize your own environment. The customizations I’ll discuss are 
custom templates, custom snippets, and macros.

Throughout the book, you’ve started new projects and added items to those projects, 
using what is available with VS. On some occasions, you might desire to have a special 
type of project or customize an existing project for your own needs. The same need might 
apply to project items (such as a special type of class file), where you might change the 
contents of an item or create a new item.

Chapter 2 showed you how to use snippets, and Chapters 3 and 4 showed how to use 
several more snippets to quickly code common statements. In addition to using existing 
snippets, you can create your own. VS also has a management window that allows you to 
organize snippets, adding, deleting, and rearranging as you see fit.

Whenever you run into repetitive scenarios, it would be nice to capture the actions 
you perform so that you can quickly complete a task. For example, if you found yourself 
using the same set of keystrokes, it would be nice to collapse that action down into one 
command. Macros allow you to collapse repetitive tasks into a single task, saving you time.

Let’s start the journey of customizing VS by looking at customizing templates.

Implementing Custom Templates
As you’ve seen in previous chapters, VS helps you get started with new projects and 
project items by providing default project items and skeleton code. In most cases, this is 
a very quick way to get started with a project. As you become more proficient in VS, you 
might prefer to have projects with different items than those that ship with VS or item 
templates with different code. This section will show you how to create your own project 
and item templates.



 Chapter 12: Customizing the Development Environment 343

Creating New Project Templates
If you’re working on a single project that lasts a long time, you might be satisfied with 
using a default template and doing a one-time modification. However, if you are starting 
new projects on a regular basis, customizing a project template can be very useful. There 
are various reasons you might want to create a custom project template, such as adding 
new items that aren’t included in the default project template, removing items from 
the default template that you don’t ever use, or changing an existing item for version 
upgrades. In addition to customizing existing templates, you might want to create a brand 
new template for a new project type that doesn’t yet exist.

The example in this section will show you how to customize the ASP.NET MVC 
project template. The specific changes made to the template will be to remove much of 
the default code provided by the template. The assumption is that once you’ve written a 
few ASP.NET MVC applications, you won’t need the default files as examples and would 
prefer to start with a more bare-bones template and build the application from the ground 
up yourself.

Modifying a Project
The easiest way to get started with creating a new project template is to start a new project 
that is most similar to the project type you want to create. If you wanted a blank project, 
you might start with a Console project because there aren’t many items and it’s quicker to 
delete them all. In the scenario for this section, we want to create a specialized ASP.NET 
MVC project, so it makes sense to create a new ASP.NET MVC project. The following 
steps show you how:

 1. Press CTRL-SHIFT-N to create a new project and select ASP.NET MVC 2 Web Application. 
Name the project and solution Custom ASP.NET MVC Web Application and set the 
location for anywhere you like. Click OK to create the project. Next, the Create Unit 
Test Project window will appear and you should click “No, do not create a unit test 
project” and click OK. VS will create a new solution with a project. Chapter 9 explains 
what each of the projects and items are.

 2. Open the Controllers folder and delete its contents.

 3. Open the Models folder and delete its contents.

 4. Open the Views folder but only delete the Account and Home folders.

 5. Open the Shared folder, under the Views folder, and delete its contents.

 6. Double-click Global.asax and comment out the call to routes.MapRoute in the editor.



 344 Microsoft Visual Studio 2010: A Beginner’s Guide

 7. To make sure your changes are okay, build and run the project. Select Build | Rebuild 
Solution and ensure you don’t receive compiler errors. Then press F5 to run and allow 
VS to modify the Web.config file. Since you’ve commented out the route in Global 
.asax and there aren’t any files to locate, you’ll receive the message “The resource can’t 
be found” in the browser. This is okay because it’s assumed that you want to build your 
own controllers, models, and views and apply custom routing too.

You now have customized ASP.NET MVC project that allows you to build your 
application without any preinstalled items. VS is likely to ship with an empty template, 
but for additional customization, you might replace the CSS file in the Content folder 
or add your own JavaScript libraries to the Scripts folder. Make any changes you feel 
are most helpful for starting a new ASP.NET MVC project. Next, you’ll learn how to 
transform this project into a reusable project template.

Exporting the Project Template
After you have a project configured the way you want, you can save it as a project 
template. The first step is to select File | Export Template, which will display the Choose 
Template Type window, shown in Figure 12-1. Choose Project Template and click Next.

Figure 12-1  The Choose Template Type window



 Chapter 12: Customizing the Development Environment 345

The next window is Select Template Options, shown in Figure 12-2. The Template 
Name defaults to the name of the project, which you can change. You can see how the 
filled-in Template description tells what the template is used for. Additionally, if you want 
to associate an icon or preview, you can click the respective Browse button and select 
the image you want to be associated with the project. As you may recall, the New Project 
window has an icon for the project and will display a preview whenever you select the 
project. The “Automatically import the template into Visual Studio” option will make the 
project template available via the New Project window. “Display an explorer window on 
the output files folder” will allow you to access the new file, shown in the Output location. 
Click Finish to create the template.

After you click Finish, VS does two things: it saves to the output location and makes the 
template available in VS. The output location is just a place to store the project template, 
Custom ASP.NET Web Application.zip, which contains all of the information VS needs  
to display the template and create the project if you select it in the New Projects window.  

Figure 12-2  The Select Template Options window



 346 Microsoft Visual Studio 2010: A Beginner’s Guide

You can share the project template with other developers too. The next section shows what 
to do to get the project template to appear in VS.

Using the New Project Template
The instructions for exporting the project template in the preceding section chose 
“Automatically import the template into Visual Studio.” The use of the word “import” 
might make you think there is some magic process going on in the background, which 
there is to some extent. However, all the Export Template Wizard did was copy  
the Custom ASP.NET MVC Web Application.zip file from the Output location to  
<My Documents>\Visual Studio 2010\Templates\ProjectTemplates, which I’ll call local 
project templates. The <My Documents> folder location can differ, depending on the 
version of Windows you’re running. Once the file appears in the local project templates 
folder, you can verify that it’s been imported into VS by pressing CTRL-SHIFT-N and 
observing that Custom ASP.NET MVC Web Application appears in the list.

If you had not checked “Automatically import the template into Visual Studio” 
(Figure 12-2), then you could have copied the Custom ASP.NET MVC Web Application 
.zip file to the local project templates folder yourself and the project template would 
appear in VS. If you share the Custom ASP.NET MVC Web Application.zip file with 
another developer, she can copy to the local project templates folder also.

If you delete the file from the local project templates folder, it will no longer appear in 
the VS New Projects window.

Another option for adding project templates is to copy the project templates file to a 
folder under \Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates, 
which I’ll call global project templates. There are various folders under global project 
templates, including CSharp VisualBasic, Web, and more; each folder corresponding to 
folders in the VS New Project window. Under each folder is a locale code—for instance, 
English is 1033—and you would copy the file into the locale folder for the category you 
wanted the project template to appear in. For example, if you wanted the project template to 
appear in Visual C# | Web in the New Projects window, copy the project template *.zip file to 
\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates\CSharp\Web.

Unlike templates in the local project templates folder, where all you need to do is 
copy the file, project templates in the global project templates folder don’t automatically 
show up. To test the global project templates scenario, you should remove the project 
template from your local project templates folder. You must close down VS and execute the 
following in a command window, which you should open by selecting Start | All Programs | 
Microsoft Visual Studio 2010 | Visual Studio Tools | right-click on Visual Studio Command 



 Chapter 12: Customizing the Development Environment 347

Prompt (2010) and select Run As Administrator. This will take a few minutes to run, but 
afterward you’ll see the project appear in the VS New Project window. This command 
imports all of the project templates from the global project templates folder into VS:

devenv /installvstemplates

If later you decide you don’t want a given template to appear in the VS New Project 
window, remove the project template from the global project templates folder(s) and run 
the preceding command again.

Now you’re able to create and use custom project templates. While you might create 
projects occasionally, it’s a common task to create project items, covered next.

Creating New Item Templates
Sometimes, you use certain item templates frequently but often modify the contents of 
the item for your own purposes. In these cases, it’s useful to be able to create a custom 
item template instead. The example in this section will be to create something that isn’t 
currently an item in VS: a new item template for enums. To create a new item template, 
we’ll create the file for holding the item, save the new item, and then use the new item in 
a project.

Creating an Item Template
The easiest way to get started with creating a new item template is to start a new project 
that has an existing item template that is most similar to the one you want to create. For 
a new enum template, all we need is a class file, so any project that allows you to add a 
class file template will work. The example in this section will use a Console project, but 
the project type doesn’t matter because we’ll only be interested in extracting one file for 
the item template. The following steps show you how:

 1. Press CTRL-SHIFT-N to create a new project and select Console Application. Name 
the project anything you want and set the location for anywhere you like; name and 
location don’t matter because we are only interested in the item template file and not 
the project. Click OK to create the project. VS will create a new solution with a project. 
By now, you’ve seen plenty of new Console applications in previous chapters, and this 
will be the same.

 2. Right-click the project in Solution Explorer, select Add | New Item, select Code File, 
name the file Enum.cs (Enum.vb for VB), and click Add. This will add a new blank 
file to your project.



 348 Microsoft Visual Studio 2010: A Beginner’s Guide

 3. Add the following code to the file:

  C#:

/// <summary> 
/// Enum description 
/// </summary> 
public enum MyEnum 
{ 
    /// <summary> 
    /// Item 1 description 
    /// </summary> 
    Item1, 
 
    /// <summary> 
    /// Item 2 description 
    /// </summary> 
    Item2 
}

  VB:

''' <summary> 
''' Enum description 
''' </summary> 
Public Enum MyEnum 
    ''' <summary> 
    ''' Item 1 description 
    ''' </summary> 
    Item1 
 
    ''' <summary> 
    ''' Item 2 description 
    ''' </summary> 
    Item2 
 
End Enum

 4. Save the file.

You now have a file that can be used as a skeleton for new enums. The next section 
shows you how to export this file so that it can be used as an item template.

Exporting the Item Template
After you have a file written the way you want, you can save it as an item template. The 
first step is to select File | Export Template, which will display the Choose Template Type 
window, shown in Figure 12-3. Choose Item Template and click Next.



 Chapter 12: Customizing the Development Environment 349

The next window is Select Item To Export, shown in Figure 12-4. The list shows all 
of the files eligible for creating an item. Check Enum.cs, which is the only file we’re 
interested in for this example. Click Next to continue.

Next, you’ll see the Select Item References window, shown in Figure 12-5. These are 
the assemblies that are part of the project that you’re extracting the item template from. 
Check the assemblies that this item will require. In this case, I want to ensure the System 
assembly is included. Ignore the warning message, as it is assumed that you will always 
have the .NET Framework installed and the System.dll assembly will always be available. 
Click Next to continue.

Figure 12-3 The Choose Template Type window



 350 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 12-6 shows Select Template Options, where you specify how the item 
template will appear in the New Items window that appears when selecting Add | 
New Item on a project. The Template name defaults to the name of the project, which 
you should change to the item name, by changing the template name to Enum. The 
description lets the user know the purpose of the item template. If you want to associate 
an icon or preview, you can click the respective Browse button and select the image 
you want to be associated with the item. As you may recall, the New Item window 
has an icon for the item and will display a preview whenever you select the project. 
The “Automatically import the template into Visual Studio” option will make the item 
template available via the New Item window. “Display an explorer window on the output 
files folder” will allow you to access the new file, shown in the Output location. Click 
Finish to create the item template.

Figure 12-4 The Select Item To Export window



 Chapter 12: Customizing the Development Environment 351

After you click Finish, VS does two things: it saves to the output location and makes 
the template available in VS. The output location is just a place to store the item template, 
Enum.zip, which contains all of the information VS needs to display the template and 
create the item if you select it in the New Item window. You can share the item template 
with other developers, too. The next section shows what to do to get the item template to 
appear in VS.

Using an Item Template
The instructions for exporting the item template in the preceding section chose 
“Automatically import the template into Visual Studio,” copying the Enum.zip file from 
the Output location to <My Documents>\Visual Studio 2010\Templates\ItemTemplates, 
which I’ll call local item templates. The <My Documents> folder location can differ, 
depending on the version of Windows you’re running. Once the file appears in the local 

Figure 12-5 The Select Item References window



 352 Microsoft Visual Studio 2010: A Beginner’s Guide

item templates folder, you can verify that it’s been imported into VS by selecting an open 
project in Solution Explorer (open a new or existing project if one is not opened), pressing 
CTRL-SHIFT-A, and observing that Enum appears in the list in the New Item window.

If you had not checked “Automatically import the template into Visual Studio” 
(Figure 12-6), then you could have copied the Enum.zip file to the local project templates 
folder yourself and the project template would appear in VS. If you share Enum.zip file 
with another developer, he can copy to the local item templates folder also.

If you delete the file from the local item templates folder, it will no longer appear in 
the VS New Item window.

Another option for adding item templates is to copy the project templates file to a 
folder under \Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates, 
which I’ll call global item templates. There are various folders under global item templates, 

Figure 12-6 The Select Template Options window



 Chapter 12: Customizing the Development Environment 353

including CSharp VisualBasic, Web, and more, each folder corresponding to folders in the 
VS New Item window. Under each folder is a locale code—for instance, English is 1033—
and you would copy the file into the locale folder for the category you wanted the project 
template to appear in.

Unlike templates in the local item templates folder, where all you need to do is copy 
the file, item templates in the global item templates folder don’t automatically show up. 
To test the global item templates scenario, you should remove the item template from 
your local item templates folder. You must close down VS and execute the following in a 
command window, which you should open by selecting Start | All Programs | Microsoft 
Visual Studio 2010 | Visual Studio Tools | right-click Visual Studio Command Prompt 
(2010) and select Run As Administrator. This will take a few minutes to run, but afterward 
you’ll see the project appear in the VS New Item window. This command imports all of 
the item templates from the global item templates folder into VS:

devenv /installvstemplates

If later you decide you don’t want a given template to appear in the VS New Item 
window, remove the item template from the global item templates folder(s) and run the 
preceding command again.

This section showed you how to add new project and item templates to VS, but 
sometimes you just want to add a common bit of code while you’re programming. The 
next section shows you how to add your own custom code snippets to VS.

Creating Custom Snippets
If you’ve been using VS snippets, as described in Chapter 2, you’ll know how much time 
they can save when writing common blocks of code. In time, you’ll wonder why certain 
items aren’t already covered by snippets, especially if you’re a C# developer who has 
noticed that VB has many more snippets. Even if you’re a VB developer with the plethora 
of available snippets, you might find blocks of code that will make you more productive 
when written in the form of a snippet. This chapter takes you to the next level in working 
with snippets by showing you how to create and manage your own snippets.

Creating a New Snippet
VB already has a snippet for Sub and Function, but C# doesn’t. Since C# doesn’t have as 
many snippets as VB, I’ll show you how to create a snippet in C#, but the process is similar 
for a VB snippet. To create a new snippet, you can either work from an existing snippet file 
or start from scratch. I’ll show you how to find and open existing snippets first.



 354 Microsoft Visual Studio 2010: A Beginner’s Guide

Examining Existing Snippets
Snippets that ship with VS are located at \Program Files\Microsoft Visual Studio 10.0 
under a folder for the language (VC#, VB, XML, and more) you need to find a snippet 
for. There, you’ll either find one or more folders named with language codes (English is 
1033) or a folder named Snippets. For some languages, the language code is at a higher 
level and the Snippets folder is under that or vice versa; regardless, you’ll be looking for 
the Snippets folder that contains items with a .snippet file extension. The file path for C# 
is \Program Files\Microsoft Visual Studio 10.0\VC#\Snippets\1033. Beneath the Snippets 
folder, you’ll see additional folders that serve to categorize other snippets.

We’re going to open the for snippet because it contains several features that give 
you a good idea of how snippets work. It might help if you open a blank file by pressing 
CTRL-N, selecting Visual C# Class, and naming the file anything you want, and try the for 
snippet before going further; it will give you a good idea of what the snippet is supposed to 
be doing. Alternatively, you can review the description of the for snippet in Chapter 2.

The .snippet extension is registered with VS, so you can double-click the for.snippet file 
in the Snippets folder and it will open in VS. Listing 12-1 shows what this file looks like.

Listing 12-1  Inside the for snippet

<?xml version="1.0" encoding="utf-8" ?> 
<CodeSnippets  xmlns= 
"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet"> 
      <CodeSnippet Format="1.0.0"> 
            <Header> 
                  <Title>for</Title> 
                  <Shortcut>for</Shortcut> 
                  <Description>Code snippet for 'for' loop</Description> 
                  <Author>Microsoft Corporation</Author> 
                  <SnippetTypes> 
                        <SnippetType>Expansion</SnippetType> 
                        <SnippetType>SurroundsWith</SnippetType> 
                  </SnippetTypes> 
            </Header> 
            <Snippet> 
                  <Declarations> 
                        <Literal> 
                              <ID>index</ID> 
                              <Default>i</Default> 
                              <ToolTip>Index</ToolTip> 
                        </Literal> 



 Chapter 12: Customizing the Development Environment 355

                        <Literal> 
                              <ID>max</ID> 
                              <Default>length</Default> 
                              <ToolTip>Max length</ToolTip> 
                        </Literal> 
                  </Declarations> 
                  <Code Language="csharp"><![CDATA[for (int $index$ = 0; 
$index$ < $max$; $index$++) 
                  { 
                  $selected$ $end$ 
                  }]]> 
                  </Code> 
            </Snippet> 
      </CodeSnippet> 
</CodeSnippets>

As shown in Listing 12-1, a snippet is an XML file where all data is defined by begin 
and end tags arranged in a hierarchy. Inside of the CodeSnippet tags are Header and 
Snippet elements.

Inside of the Header element is a Shortcut element that defines the prefix you must 
type in the VS editor to use the snippet. The Title and Description tags define what displays 
for Intellisense in VS when the shortcut is being typed. Author tells who wrote the snippet.

The SnippetTypes element defines the two ways to use a snippet: Expansion and 
SurroundsWith. Chapter 2 describes many snippets that work via Expansion. However, 
SurroundsWith snippets are also very useful. To use a SurroundsWith snippet, highlight the 
code that you want to surround, press CTRL-SPACE, and select the snippet. After selecting 
the snippet, the snippet template will appear in VS, with its blocks surrounding the 
highlighted text. Since the for loop has a block that can contain statements, it makes sense 
that the for snippet is both a SurroundsWith and Expansion snippet.

The Snippet element in Listing 12-1 contains a Declarations and Code element, where the 
declarations are used in the code. Thinking about how snippet templates work, remember that 
your cursor is positioned on blocks of code that you change and tab through to complete the 
snippet. The blocks of code to be filled in correspond to Literal elements in the declaration.

Each Literal element has an ID that is used in the Code to define where the Literal is 
located. Default describes the data shown in the template before you start typing. Whenever 
you’re filling in a snippet template, you can hover over the data field and a tooltip will 
describe what information should go into the data field. This tooltip is defined in the Tooltip 
element of the snippet definition. The ID of each literal is defined in the Code element.

Inside the Code element is the code for the snippet. The variables in the code with 
$ prefix and suffix help define how the snippet template works. Notice that $index$ 
and $max$ match Literal elements in the Declarations element; this is where you must 



 356 Microsoft Visual Studio 2010: A Beginner’s Guide

fill in data items when filling in the snippet template in VS. The $end$ variable defines 
where the cursor ends up after the snippet is complete (after pressing ENTER in the snippet 
template). You’ll want to locate $end$ where a developer would normally continue typing. 
The $selected$ variable is used with SurroundsWith snippets, defining the relationship of 
selected text with where snippet code should be.

Now that you have a basic familiarity with snippets, the next section brings you to the 
next level as you actually create a new snippet.

Creating New Snippets
To create a new snippet, you can either work from an existing snippet file or start from 
scratch. If you work from an existing snippet, find and open the snippet closest to what 
you want to do, using the techniques described in the preceding section. Starting from 
scratch, there is a quick way to get started using a snippet snippet; that’s right, there is a 
snippet that helps you create new snippets.

As you learned in the preceding section, snippets are defined as XML files. Fortunately, 
VS has a nice XML editor that supports XML snippets. So, when I say that we’re going to 
create a snippet from scratch, that’s not quite true, because we’re going to leverage VS to 
get a quick start. In the following steps, I’ll show you how to create a snippet you can use 
to add a C# method to a class quickly:

 1. With VS open, press CTRL-N and create a new XML file. If you were opening the file 
from an existing project, you would need to provide a name, which would be meth 
.snippet. The new XML file has a single line, which is called an XML prefix.

 2. Move to the line below the XML prefix, press CTRL-K-X, type sn to select Snippet in the 
Intellisense list, and press ENTER. You’ll see an XML snippet template with the values 
for Title, Author, Shortcut, Description, ID, and Default.

 3. Fill in data and tab through the snippet template as follows: Title as Method Snippet, 
Author as <your name>, Shortcut as meth, Description as Create a New Method, ID 
as access, and Default as public. Press ENTER when complete.

 4. The resulting snippet still needs code and template item definitions, which is accomplished 
by filling in the Code element and adding needed Literal elements. First, modify the code 
element as follows:

<Code Language="csharp"> 
  <![CDATA[$access$ $return$ $methodName$($paramList$) 
  { 
      $end$ 
  } 
  ]]> 
</Code>



 Chapter 12: Customizing the Development Environment 357

 5. In addition to access, the code example in the preceding step includes variables for 
return, methodName, and paramList. Add Literal elements for each of these variables, 
where the ID is the variable name and the Default is set to return as void, methodName 
as MethodName, and paramList as int p1.

 6. Save the file and name it meth.snippet. The next section will explain where to put the 
file, but for now put it in a location that you can remember so you can copy it later. 
BTW, the Save File dialog box has Snippet Files (*.snippet) for a Save A Type option, 
which you can use to ensure the snippet has the correct file extension.

You now have a workable snippet. Listing 12-2 shows the snippet in its entirety. 
Additionally, notice how each Literal has a Tooltip to help the user of the snippet fill in 
each data item. Also, notice that the Language attribute of the Code element is spelled 
csharp, rather than C#. These small nuances, such as the spelling for a language, could 
make the snippet file invalid. A good troubleshooting technique is to open a similar 
snippet predefined for VS, as described in the preceding section, and compare formats to 
see if you might have mistyped something. The next section will explain what to do with 
this snippet file so that you can begin using it.

Listing 12-2  A custom method snippet

<?xml version="1.0" encoding="utf-8"?> 
<CodeSnippet Format="1.0.0" 
xmlns="http://schemas.microsoft.com 
/VisualStudio/2005/CodeSnippet"> 
  <Header> 
    <Title>Method Snippet</Title> 
    <Author>Joe Mayo</Author> 
    <Shortcut>meth</Shortcut> 
    <Description>Create a New Method</Description> 
    <SnippetTypes> 
      <SnippetType>SurroundsWith</SnippetType> 
      <SnippetType>Expansion</SnippetType> 
    </SnippetTypes> 
  </Header> 
  <Snippet> 
    <Declarations> 
      <Literal> 
        <ID>access</ID> 
        <Default>public</Default> 
        <ToolTip>Access modifier</ToolTip> 
      </Literal> 



 358 Microsoft Visual Studio 2010: A Beginner’s Guide

      <Literal> 
        <ID>return</ID> 
        <Default>void</Default> 
        <ToolTip>Return value</ToolTip> 
      </Literal> 
      <Literal> 
        <ID>methodName</ID> 
        <Default>MethodName</Default> 
        <ToolTip>Name of Method</ToolTip> 
      </Literal> 
      <Literal> 
        <ID>paramList</ID> 
        <Default>int p1</Default> 
        <ToolTip> 
Comma-separated list of parameters 
        </ToolTip> 
      </Literal> 
    </Declarations> 
    <Code Language="csharp"> 
      <![CDATA[ 
$access$ $return$ $methodName$($paramList$) 
{ 
    $end$ 
}]]> 
    </Code> 
  </Snippet> 
</CodeSnippet>

Managing the Snippet Library
To use a snippet, you can either copy the snippet into a VS folder or use a VS tool called 
the Snippet Manager. This section will explain how to make the method snippet, created  
in the preceding section, available to your code.

File Folders Holding Snippets
The local snippets folder is located at \Users\<your name>\Documents\Visual Studio 
2010\Code Snippets. You’ll see a set of folders for each language/technology, which 
each have subfolders for organizing snippets. Copy and paste the snippet file into one of 
these folders, such as Visual C#\My Code Snippets, and the snippet will be immediately 
available to your code.

The local snippets folder makes a snippet available to your machine login. You can 
also make the snippet available to everyone who logs on to the machine by copying the 
snippet to a global snippet folder, located at \Program Files\Microsoft Visual Studio 



 Chapter 12: Customizing the Development Environment 359

10.0\. You’ll see language technology folders, such as VC# for C# or VB for VB. Within 
those folders, you’ll either see folders for language codes (English is 1033) or a Snippets 
folder. Drilling down two levels, through the language code folders and Snippet folders 
(whichever shows first), you’ll see more snippets and subfolders that organize the snippets 
for that language/technology. Copy the snippet into the folder where you feel it belongs. 
The snippet will be immediately available to your code.

Working with system file folders can be cumbersome, so VS offers a tool to help 
organize snippets, the Snippets Manager.

Using the Snippets Manager
The Snippets Manager allows you to import new snippets and organize existing snippets. 
Either select Tools | Code Snippets Manager or press CTRL-K, CTRL-B. You’ll see the 
Snippets Manager window, shown in Figure 12-7.

The Language drop-down shows what type of snippets you can work with. The folders 
show how snippets are organized. Use the Add and Remove buttons to manage folders. 
Click the Import button to find and make new snippets available to the application.

As you’ve seen, snippets give you a well-specified way to quickly write code. However, 
there is a capability that is even more powerful, which is macros, discussed next.

Figure 12-7 The Snippets Manager window



 360 Microsoft Visual Studio 2010: A Beginner’s Guide

Writing Macros
When the productivity features that ship with VS and custom snippets don’t give you 
enough power, the next step is to consider creating a macro, which is a repeatable set of 
actions that you can record and re-run multiple times. An example of when a macro is 
useful is whenever you find yourself continuously repeating the same set of actions in VS. 
This section will show you how to create and run a macro that uses VS features to create a 
customized block of code for validating strings.

Recording a Macro
When creating business objects, it’s common to validate input parameters to ensure they 
are valid. One such validation is enforcing that calling code pass a required parameter. 
The example in this section shows you how to write a macro for validating that a string-
type parameter is not null, empty, or white space (such as a space or tab). To get started, 
create a new Console project and add a Class file with the following method to the project, 
which simulates adding a new customer:

C#:

using System; 
 
class Customer 
{ 
    public int AddNewCustomer(string firstName, string lastName) 
    { 
        int newCustID = 0; 
 
        // Logic to add customer 
 
        return newCustID; 
    } 
}

VB:

Public Class Customer 
 
    Function AddNewCustomer( 
        ByVal firstName As String,  
        ByVal lastName As String) As Integer 
 
        Dim newCustID As Integer = 0 
 
        ' Logic to add customer 
 



 Chapter 12: Customizing the Development Environment 361

        Return newCustID 
 
    End Function 
 
End Class

The point of interest in the AddNewCustomer method is the firstName and lastName 
parameters. Whenever working with data, you’ll usually want to ensure that input data is 
legal. When user input is being processed, it’s common to get bad information, even if you 
have good input validation in your user interface code. For example, the following code 
calls the preceding AddNewCustomer method, passing in bad data as arguments:

C#:

class Program 
{ 
    static void Main() 
    { 
        string firstName = "Joe"; 
        string lastName = null; 
 
        Customer cust = new Customer(); 
        cust.AddNewCustomer(firstName, lastName); 
    } 
}

VB:

Module Module1 
 
    Sub Main() 
 
        Dim firstName As String = "Joe" 
        Dim lastName As String = Nothing 
 
        Dim cust As New Customer 
        cust.AddNewCustomer(firstName, lastName) 
 
    End Sub 
 
End Module

In the preceding example, firstName is okay because it has a good name in it. 
However, notice that lastName is set to null (Nothing in VB). This would cause 
a NullReferenceException if AddNewCustomer tried to call a string operation on 
the parameter, the code that AddNewCustomer calls could potentially throw a 
NullReferenceException, or (assuming that null is considered invalid in this case) you 



 362 Microsoft Visual Studio 2010: A Beginner’s Guide

could end up saving bad data. Since AddNewCustomer doesn’t have an implementation, 
this is all speculation, but this outlines a few of the many problems that can occur if you 
allow your business objects to accept data that is bad for your program.

The macro demonstrated in this section will show how to check a string parameter 
for null, empty, or white space and throw an ArgumentNullException. This will prevent 
callers from passing bad data and give them a meaningful message. To create a macro, 
you will need to locate the position in the code where the macro starts (if applicable), 
start recording, perform VS actions, and stop recording. It’s somewhat like using a video 
recorder where you have to find a TV show, start the recording, allow the show to play, and 
then stop recording. Perform the following steps to create the parameter validation macro:

 1. Click the firstName parameter of the AddNewCustomer method so that the cursor is 
inside of the firstName parameter identifier. This is important because we need the 
parameter name in the code.

 2. Start the macro recorder by selecting Tools | Macros | Record TemporaryMacro or press 
CTRL-SHIFT-R.

 3. For C#, press CTRL-LEFT ARROW, CTRL-SHIFT-RIGHT ARROW, and CTRL-C. For VB, press 
CTRL-LEFT ARROW, CTRL-SHIFT-RIGHT ARROW, SHIFT-LEFT ARROW, and CTRL-C. This copies 
the parameter name.

 4. For C#, press CTRL-F to bring up the Find And Replace window, type { into Find What, 
click Find Next, Close the Find And Replace window, press END, and press ENTER. For 
VB, press END and press ENTER. This positions the cursor to begin entering code.

 5. Type if and press TAB twice (the if snippet), type string.IsNullOrWhiteSpace( into the 
condition, press CTRL-V to paste the parameter name as the argument, and type ). For 
C#, press ENTER. For VB, press DOWN ARROW. The cursor moves to the body of the if 
statement (as you would expect with the if snippet). This sets up the validation check 
for the parameter, seeing if it is null (Nothing in VB), an empty string, or some white 
space character such as space or tab.

 6. Type throw new ArgumentNullException(", press CTRL-V to paste the parameter 
name, type ", ", press CTRL-V to paste the parameter name, type a space, and type value 
is not valid."). For C#, add a semicolon, ;, to the end of the line. This is the action to 
perform when the value is not valid, throwing an exception to let the caller know that 
the value is not good.

 7. Press DOWN ARROW and press ENTER. This positions the cursor after the code, which 
might be convenient if you want to continue typing from this point.

 8. Select Tools | Macros | Stop Recording TemporaryMacro or press CTRL-SHIFT-R to stop 
recording.



 Chapter 12: Customizing the Development Environment 363

You’ve now recorded a macro. To check the preceding steps against what you’ve 
produced, here’s a revised AddNewCustomer method, showing what the results should 
look like:

C#:

using System; 
 
class Customer 
{ 
    public int AddNewCustomer(string firstName, string lastName) 
    { 
        if (string.IsNullOrWhiteSpace(firstName)) 
        { 
            throw new ArgumentNullException( 
                "firstName", 
                "firstName value is not valid."); 
        } 
 
        int newCustID = 0; 
 
        // Logic to add customer 
 
        return newCustID; 
    } 
}

VB:

Public Class Customer 
 
    Function AddNewCustomer( 
        ByVal firstName As String,  
        ByVal lastName As String) As Integer 
 
        If String.IsNullOrWhiteSpace(firstName) Then 
            Throw New ArgumentNullException( 
                "firstName",  
                "firstName value is not valid.") 
        End If 
 
        Dim newCustID As Integer = 0 
 
        ' Logic to add customer 
 
        Return newCustID 
 
    End Function 
 
End Class



 364 Microsoft Visual Studio 2010: A Beginner’s Guide

In the preceding code, I’ve moved the ArgumentNullException arguments to separate 
lines to fit the book’s line length, but this is what you should see. Next, you can test 
the macro by running it. Click the lastName parameter and select Tools | Macros | Run 
TemporaryMacro or press CTRL-SHIFT-P. That will produce the following code:

public int AddNewCustomer(string firstName, string lastName) 
{ 
    if (string.IsNullOrWhiteSpace(lastName)) 
    { 
        throw new ArgumentException("lastName", "lastName value is not 
valid."); 
    } 
 
    if (string.IsNullOrWhiteSpace(firstName)) 
    { 
        throw new ArgumentException("firstName", "firstName value is 
not valid."); 
    } 
 
    int newCustID = 0; 
 
    // Logic to add customer 
 
    return newCustID; 
}

Now, you can run this macro on any of the string parameters of methods in your 
class and quickly add validation support. The only problem at the present time is that 
the macro is overwritten as soon as you begin recording a new macro and the macro is 
gone if you close VS. The next section addresses this problem by showing you how to 
save the macro.

Saving a Macro
You can save macros to be reused in later sessions. To save the macro, select Tools | 
Macros | Save TemporaryMacro. VS will save TemporaryMacro and open the Macro 
Explorer window, shown in Figure 12-8.

VS uses TemporaryMacro as the name of whatever macro it will record. Therefore, 
you must rename the macro if you want to keep it because the next recording will 
overwrite this macro. Rename the file macro to ValidateStringParameter by right-
clicking TemporaryMacro in Macro Explorer, showing the context menu, and selecting 
Rename.



 Chapter 12: Customizing the Development Environment 365

In the Macro Explorer, you can add new Macro Projects, which are containers for 
holding macro modules, by right-clicking Macros and selecting New Macro Project. If 
someone shares their Macro Project with you, right-click Macros and select Load Macro 
Project to find the project in the file system and load it. Macro modules hold macros, and 
you can right-click any macro project; such as MyMacros or Samples in Figure 12-8, and 
select New Module to add new macro modules. You can find all of these commands on 
the Tools | Macros menu too.

To run an existing macro, double-click the macro in Macro Explorer.
To change a macro, you can either re-record or edit an existing macro. The next 

section explains how to edit a macro.

Editing Macros
Macros are editable, allowing you to modify previously recorded macros or create a 
brand new macro. To edit a macro, right-click the macro in Macro Explorer and select 
Edit. You’ll see the Macro editor, shown in Figure 12-9, which contains the code for the 
ValidateStringParameter macro created in the preceding section.

In Figure 12-9, you can see that the editor opens the macro in a code editing window. 
The language is VB, so if the language you normally program with is C#, you might want to 
review the VB portions of Chapters 2 through 4 as a refresher. The features of Macro editor 
are very similar to the normal VS IDE, except that now you must work with Macro Projects 
and Modules. Listing 12-3 shows the macro code from Figure 12-9. In Listing 12-3, both the 
C# and VB macros are written in VB. However, the C# code is for a macro that works on C# 
code and the VB code is for a macro that works on VB code.

Figure 12-8 The Macro Explorer window



 366 Microsoft Visual Studio 2010: A Beginner’s Guide

Listing 12-3  Code for the ValidateStringParameter macro

C#:

Option Strict Off 
Option Explicit Off 
Imports System 
Imports EnvDTE 
Imports EnvDTE80 
Imports EnvDTE90 
Imports EnvDTE90a 
Imports EnvDTE100 
Imports System.Diagnostics 
 
Public Module RecordingModule 
 
 
    Sub ValidateStringParameter() 
        DTE.ActiveDocument.Selection.WordLeft() 
        DTE.ActiveDocument.Selection.WordRight(True) 
        DTE.ActiveDocument.Selection.Copy() 
        DTE.ExecuteCommand("Edit.Find") 

Figure 12-9 The Macro editor



 Chapter 12: Customizing the Development Environment 367

        DTE.Windows.Item("Customer.cs").Activate() 
        DTE.Windows.Item("{CF2DDC32-8CAD-11D2-9302-005345000000}") 
.Activate() 'Find and Replace 
        DTE.Windows.Item("Customer.cs").Activate() 
        DTE.Find.FindWhat = "{" 
        DTE.Find.Target = 
vsFindTarget.vsFindTargetCurrentDocument 
        DTE.Find.MatchCase = False 
        DTE.Find.MatchWholeWord = False 
        DTE.Find.Backwards = False 
        DTE.Find.MatchInHiddenText = False 
        DTE.Find.PatternSyntax = vsFindPatternSyntax 
.vsFindPatternSyntaxLiteral 
        DTE.Find.Action = vsFindAction.vsFindActionFind 
        If (DTE.Find.Execute() = 
vsFindResult.vsFindResultNotFound) Then 
Throw New System.Exception("vsFindResultNotFound") 
        End If 
        DTE.Windows.Item( 
"{CF2DDC32-8CAD-11D2-9302-005345000000}").Close() 
        DTE.Windows.Item("Customer.cs").Activate() 
        DTE.ActiveDocument.Selection.EndOfLine() 
        DTE.ActiveDocument.Selection.NewLine() 
        DTE.ActiveDocument.Selection.Text = "if" 
        DTE.ExecuteCommand("Edit.InsertTab") 
        DTE.ExecuteCommand("Edit.InsertTab") 
        DTE.ActiveDocument.Selection.Text = 
"string.IsNullOrWhiteSpace(" 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text = ")" 
        DTE.ExecuteCommand("Edit.BreakLine") 
        DTE.ActiveDocument.Selection.Text = 
"throw new ArgumentNullException(""" 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text = """, """ 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text = 
" value is not valid."");" 
        DTE.ActiveDocument.Selection.LineDown() 
        DTE.ActiveDocument.Selection.NewLine() 
    End Sub 
End Module

VB:

Option Strict Off 
Option Explicit Off 
Imports System 
Imports EnvDTE 



 368 Microsoft Visual Studio 2010: A Beginner’s Guide

Imports EnvDTE80 
Imports EnvDTE90 
Imports EnvDTE90a 
Imports EnvDTE100 
Imports System.Diagnostics 
 
Public Module RecordingModule 
 
 
    Sub ValidateStringParameter() 
        DTE.ActiveDocument.Selection.WordLeft() 
        DTE.ActiveDocument.Selection.WordRight(True) 
        DTE.ActiveDocument.Selection.CharLeft(True) 
        DTE.ActiveDocument.Selection.Copy() 
        DTE.ActiveDocument.Selection.EndOfLine() 
        DTE.ActiveDocument.Selection.NewLine() 
        DTE.ActiveDocument.Selection.Text = "if" 
        DTE.ExecuteCommand("Edit.InsertTab") 
        DTE.ExecuteCommand("Edit.InsertTab") 
        DTE.ActiveDocument.Selection.Text = "string.IsNullOrEmpty(" 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text = ")" 
        DTE.ActiveDocument.Selection.LineDown() 
        DTE.ActiveDocument.Selection.Text =  
"throw new ArgumentNullException(""" 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text = """, """ 
        DTE.ActiveDocument.Selection.Paste() 
        DTE.ActiveDocument.Selection.Text =  
" value is not valid."")" 
        DTE.ActiveDocument.Selection.LineDown() 
        DTE.ActiveDocument.Selection.NewLine() 
    End Sub 
End Module

In Listing 12-3, all of the namespaces that begin with EnvDTE have code that allows 
you to manipulate the VS environment. The macro itself is a Sub within a Module.

Each of the statements corresponds to the steps used to create the macro in the preceding 
section. For example, the Find And Replace window has several options, which this macro 
populates, regardless of whether they contribute toward the purpose of the macro.

Opening a macro in the editor can be very useful if you want to make a quick change, 
without needing to re-record the entire macro. For example, what if you missed a keystroke 
or misspelled something? You can just edit the code, save the file, close the Macro editor, 
and then re-run the macro. In fact, there is a problem with the macro for C#; it will only 



 Chapter 12: Customizing the Development Environment 369

work on the file you ran it in. This problem doesn’t occur in the macro for VB. I’ll show 
you how to fix this problem, but let’s open the macro editor first.

You can open the Macro editor through VS by selecting Tools | Macros | Macros IDE, 
start a new project, add a module to the project, and add a Sub to the Module as a new 
macro. Then code the macro by typing DTE. and using Intellisense to find various parts 
of the IDE. The cryptic parameter to Windows.Item, {CF2DDC32-8CAD-11D2-9302-
005345000000}, for the Find And Replace window is called a Globally Unique Identifier 
(GUID). A GUID is often used as a special identifier for software components and is the 
method used in VS to uniquely identify tools. So, DTE.Windows.Item("{CF2DDC32-
8CAD-11D2-9302-005345000000}").Activate() is a way to reference and open the Find 
And Replace window.

There is a problem with the macro for C# in Listing 12-3, because it will only work in 
the Customer.cs file in VS. The VB code below is provided for your convenience, but this 
problem only occurs with the macro written for C# code; the VB macro works fine on the 
VB code below. If you created a new class named Product in a file named Product.cs and 
added an AddNewProduct method like the following, the macro will try to open and write 
into the Customer.cs file, which is not the result you want:

C#:

using System; 
 
namespace ConsoleApplication1 
{ 
    class Product 
    { 
        public int AddNewProduct(string productName) 
        { 
            int newProdID = 0; 
 
            // Logic to add product 
 
            return newProdID; 
        } 
    } 
}

VB (doesn’t have problem that occurs in C# code):

Public Class Product 
 
    Function AddNewProduct(ByVal productName As String) As Integer 
 
        Dim newProdID As Integer = 0 
 



 370 Microsoft Visual Studio 2010: A Beginner’s Guide

        ' Logic to add product 
 
        Return newProdID 
 
    End Function 
 
End Class

To fix the problem with the macro (for the C# code) opening the Customer.cs file, 
notice that the macro has three statements that activate the Customer.cs file. Comment out 
each of these statements as shown in the following excerpt:

… 
        'DTE.Windows.Item("Customer.cs").Activate() 
… 
        'DTE.Windows.Item("Customer.cs").Activate() 
        DTE.Find.FindWhat = "{" 
… 
        'DTE.Windows.Item("Customer.cs").Activate() 
…

If you were to write your own macro via code, a quick way to figure out what code 
you have to write is to start the macro recorder in VS (CTRL-SHIFT-R), use the VS feature 
you want to code, stop recording (CTRL-SHIFT-R), and save the macro. Then inspect the code 
in the Macro editor and copy the parts you need. This technique is especially valuable to 
figure out how to open windows, such as the Find And Replace window discussed in the 
preceding paragraph. For even more help, there are several example macros under the 
Samples folder, shown in Figure 12-9, showing you different ways to write VS macros.

Summary
Now you know about various techniques for customizing VS. You learned how to customize 
projects and save your work as a custom project template. In a related task, you saw how 
you can create a new file and then save that file as a custom item template. This gives you 
the ability to use projects and project items in a way that you want. In addition to using 
snippets that ship with VS, you learned how to find the definition of existing snippets and 
either modify a snippet or create a brand new snippet from scratch. You also saw how to 
organize snippets with the Snippets Manager. Finally, you learned how to record and save 
repeatable actions with VS macros. You can also use the Macro editor to customize existing 
macros or create new ones on your own.

Macros are very powerful, but VS has even more capabilities for allowing you to 
extend the IDE. You’ll learn how to extend VS by writing Add-Ins in the next chapter.



371

Chapter 13
Extending Visual  
Studio 2010



 372 Microsoft Visual Studio 2010: A Beginner’s Guide

Key Skills & Concepts

● Create an Add-In with VS

● Learn What Types of Add-Ins to Create

● Deploy an Add-In

Previous chapters discussed many ways to use VS, and the preceding chapter showed 
you a few ways to create your own customizations. In particular, macros offer the 

ability to perform repeatable actions and give you access to much of what VS has to offer. 
Taking customization one step beyond macros, this chapter shows you how to extend VS 
functionality with a software component called an Add-In.

Essentially, an Add-In is a software component that allows you to add new capabilities 
to VS that haven’t existed before. The Add-In plugs into VS, and you can run it as if it 
were part of VS. This chapter shows you how the process of creating an Add-In works. 
You’ll see how to add functionality to make an Add-In perform any task you want. Besides 
creating an Add-In, this chapter points you in the right direction so that you can figure out 
how to access the different parts of VS. The specific example in this chapter is an Add-
In that finds all of the shortcut keys in VS and prints them to the Output window. With 
knowledge of how to create an Add-In, you’ll learn how to deploy the Add-In so that it can 
be loaded into VS. We’ll begin with a walk-through of how VS helps you create an Add-In.

Creating a Visual Studio Add-In
As when creating other project types in VS, you can run a project wizard to create an Add-
In for VS. The following discussion will show you how to start and run the Add-In Project 
Wizard and examine the results.

Running the Add-In Project Wizard
You would start the Add-In project the same way you would any other project. The difference 
is that an Add-In Project Wizard asks more questions than normal. The following steps take 
you through the process of the Add-In Project Wizard and explain the various screens and 
questions you’ll need to answer.



 Chapter 13: Extending Visual Studio 2010 373

 1. Open VS and press CTRL-SHIFT-N to open the New Project window. Select Other Project 
Types | Extensibility and observe that there are two types of Add-In project types: 
Visual Studio Add-In and Shared Add-In. The Shared Add-In is what you would use 
to create a Microsoft Office Add-In. The Visual Studio Add-In is appropriately named 
because it describes what we want to do. Figure 13-1 shows what the screen should 
look like.

 2. Select Visual Studio Add-In. Name the project KeystrokeFinder, specify the location 
where you want the project to be, and click OK. Click Next to pass the Welcome screen 
and you’ll see the Select A Programming Language screen, shown in Figure 13-2.

 3. Pick the language you would like to use. This book doesn’t discuss C++, but it would 
be safe to pick either C# or VB, which you can learn more about in Chapters 2 through 4.  
Click Next to reveal the Select An Application Host window, shown in Figure 13-3.

 4. Your choices include Microsoft Visual Studio 2010 and Microsoft Visual Studio 2010 
Macros. Checking Microsoft Visual Studio 2010 will allow the Add-In to work in the 
VS environment, which you’ve used for most of this book. Checking Microsoft Visual 

Figure 13-1  Selecting a Visual Studio Add-In in the New Project window



 374 Microsoft Visual Studio 2010: A Beginner’s Guide

Figure 13-2  The Select A Programming Language window

Figure 13-3  The Select An Application Host window

Studio 2010 Macros will allow this Add-In to work with the Macro Editor, explained 
in the preceding chapter. We’re only interested in VS for the current Add-In, so check 
only Microsoft Visual Studio 2010 (not the Macros option). Click Next to display the 
Enter A Name And Description window, shown in Figure 13-4.



 Chapter 13: Extending Visual Studio 2010 375

 5. The Enter A Name And Description window starts by appending “ – No Name provided.” 
and “ – No Description provided.” to the name of the project in the name and description 
fields, respectively. Just delete the defaults and add the name and description you want 
the Add-In to have. The Add-In will be named after what you put here, and users will 
be able to read the description in the VS Add-In Manager, which I’ll discuss later in this 
chapter. Click Next to display the Choose Add-In Options window, shown in Figure 13-5.

Figure 13-4 The Enter A Name And Description window

Figure 13-5 The Choose Add-In Options window



 376 Microsoft Visual Studio 2010: A Beginner’s Guide

 6. The first choice in Figure 13-5, “Would you like to create command bar UI for your 
Add-In?” will add a menu item to the Tools menu with the name of your Add-In. 
Check the second box too, allowing the Add-In to load when VS loads; the alternative 
being that you can manually load the Add-In via the Add-In Manager, discussed later 
in this chapter. The third option comes into play when you want to allow the Add-In 
to work when someone runs VS via the command line. The preceding chapter shows 
an example of running VS on the command line when installing the global project 
templates by running devenv /installvstemplates. Popping up a modal window (one 
that requires you to click an OK button to make it go away) will stop a command-line 
operation from running because it is expecting acknowledgment of the modal window. 
If that command-line operation were running as a scheduled Windows background job, 
there would be no way to acknowledge the window and the job would not work. So, 
check the third box only if it’s safe to run via the command line. Check the first two 
boxes and leave the third box unchecked. Click Next to move to the Choosing ‘Help 
About’ Information window, shown in Figure 13-6.

 7. You can optionally show an About window for your Add-In. Check the box and modify 
the text that you would like to show in the About box. Click Next and click Finish on 
the Summary window.

After a minute VS will create a new solution and project that contains items that help 
you create an Add-In. The next section discusses what those project items are.

Figure 13-6 The Choosing ‘Help About’ window



 Chapter 13: Extending Visual Studio 2010 377

Examining an Add-In Wizard Solution
After running the New Project Add-In Project Wizard, you’ll have a solution with a project 
that has skeleton code forming the basis of the application. Not only will you need to know 
what files are available, but you’ll also need to understand a couple of interfaces and how 
to implement the interface methods properly. If you’re a little rusty on interfaces, now 
might be a good time to visit Chapter 4 for a review. What you mostly need to know about 
this project is that there are new references, a Connect class, and a couple of *.AddIn files. 
Refer to Figure 13-7 as we discuss each of these Add-In project items.

Looking at assembly references (under the References folder), you might wonder 
what all the assemblies are with EnvDTE names. Pulling the name apart, Env is short 
for environment and DTE means Development Tools Extensibility. So, EnvDTE is an 
assembly containing code that allows you to extend the VS development environment. 
Each assembly represents functionality for a particular version of VS: EnvDTE is for 
VS.NET (the first version of VS that supported .NET development) and VS 2003, 
EnvDTE80 is for VS 2005, EnvDTE90 is for VS 2008, and EnvDTE100 is for VS 2010 
(the subject of this book). The reason you need references to all of the EnvDTE versions 
is that each new version builds upon the previous with new functionality, rather than 
replacing the older version. Therefore, you’ll sometimes encounter classes, interfaces, or 

Figure 13-7 An Add-In project in Solution Explorer



 378 Microsoft Visual Studio 2010: A Beginner’s Guide

methods that are numbered, such as the IDTExtensibility and IDTExtensibility2, where 
IDTExtensibility2 is a more recent version with additional members. I’ll explain what the 
IDTExtensibility2 interface does later, but what you should get out of this example is how 
each version of the EnvDTE assemblies manages newer versions of code. This scheme 
promotes the addition of new functionality for each version of VS without sacrificing 
backward compatibility.

The Connect class contains the code that interacts with VS to make an Add-In work. 
Remember, this is a VS project, just like all of the other projects you can create. You’re 
free to add classes containing your functionality and have code in Connect call your 
classes, organize code into folders, or add a class library to the solution and call code in 
the class library. The next section discusses internals of Connect in detail.

The other items of note in this project are the files with the *.AddIn extensions. 
These are the deployment files. There was a time when you were required to go into the 
Windows registry to configure an Add-In, but not anymore. The Add-In configuration is 
done in the *.AddIn files, which contains XML. In a later section of this chapter, you’ll 
see the internals of the *.AddIn file and learn how to manipulate this file for deployment.

Additionally, one of the *.AddIn files has a shortcut arrow, which is a special shortcut 
to a file used for debugging. If you look at the properties for this shortcut file, you’ll 
notice that it points at your Documents\Visual Studio 2010\Addins\folder, which is a 
deployment location. Whenever you debug this application, VS uses the debugging 
*.AddIn file to load the Add-In in a new copy of VS. You would manipulate the Add-In in 
the new copy of VS, and your current copy of VS, in debugging mode, can hit breakpoints 
and debug the Add-In.

Now that you know the key elements of an Add-In project, the next section drills down 
into the Connect class and describes the members that interact with VS to run an Add-In.

Drilling into the Connect Class
The Connect class implements two interfaces, IDTExtensibility2 and IDTCommandTarget, 
and contains several members. Before examining the code, you’ll learn about the interfaces, 
their members, and purpose.

The purpose of the interfaces (IDTExtensibility2 and IDTCommandTarget) is to help 
manage the lifetime of the Add-In. VS understands these interfaces, but it doesn’t know 
anything about the code you write. Therefore, you have to bridge the gap between your 
code and what VS needs to make an Add-In work. To do this, you use a class (Connect) that 
implements the interfaces (IDTExtensibility2 and IDTCommandTarget). Then you place 
your code into methods, members of Connect, that implement (match) the interfaces. When 
VS communicates with the interfaces, your code (implementing the interface) executes. 



 Chapter 13: Extending Visual Studio 2010 379

It’s like people from different countries trying to communicate, where they have a subject 
to discuss but need a common language to be able to understand each other; the common 
language would be the interface between the people.

The first interface to discuss is IDTExtensibility2, whose purpose is to let VS manage 
loading and unloading of the Add-In. Loading and unloading are important because VS 
loads Add-Ins when it starts and unloads Add-Ins when it shuts down. There are certain 
actions that you might want to take, depending on when the Add-In is loaded and what 
type of information you might need access to. For example, the very first time an Add-In 
is ever loaded, you might want to perform a special operation like configuration or asking 
the user if she would like to register your Add-In. Table 13-1 shows the members of 
IDTExtensibility2 and describes their purpose.

The second interface that Connect implements is IDTCommandTarget. When building an 
Add-In, you need a way for the VS IDE to execute the Add-In. For example, you will create 
a named command that exposes the Add-In as a menu item in the Tools menu. Whenever 
a user selects the menu item, the named command will execute and run your Add-In code. 
IDTCommandTarget is the interface VS uses to execute your Add-In. Table 13-2 shows the 
members of IDTCommandTarget and describes their purpose.

Each of the methods of both the IDTExtensibility2 and IDCommandTarget interfaces are 
implemented by the provided Connect class. Listing 13-1 shows each of these members with 
full documentation comments and skeleton code. The code in Listing 13-1 is in C#, but it is 
very informative to take the overview of the interfaces from the previous table and then  

Table 13-1  The IDTExtensibility2 Interface

Member Purpose
OnAddInsUpdate Add-In is either loaded or unloaded.

OnBeginShutdown Add-In is running and VS shuts down.

OnConnection Add-In is loaded.

OnDisconnection Add-In is unloaded.

OnStartupComplete VS has started up and then Add-In is loaded.

Table 13-2  The IDTCommandTarget Interface

Member Purpose
Exec Called by VS to execute your Add-In.

QueryStatus Called by VS to determine if the command should be enabled, 
invisible, or supported.



 380 Microsoft Visual Studio 2010: A Beginner’s Guide

take an even closer look at the comments in the code for a better understanding of what 
that code does. The code comments are exactly the same in VB. Some of the comments 
refer to the host application, where the host is either the VS IDE or the VS Macro Editor, as 
was selected while running the Add-In Project Wizard in the preceding section and shown 
in Figure 13-3. I’ve removed the contents of each method because subsequent sections of 
this chapter will explain important method implementations and how to make the Add-In 
perform useful operations.

Listing 13-1  Skeleton code for the Connect class

using System; 
using Extensibility; 
using EnvDTE; 
using EnvDTE80; 
using Microsoft.VisualStudio.CommandBars; 
using System.Resources; 
using System.Reflection; 
using System.Globalization; 
 
namespace KeystrokeFinder 
{ 
    /// <summary>The object for implementing an Add-in.</summary> 
    /// <seealso class='IDTExtensibility2' /> 
    public class Connect : IDTExtensibility2, IDTCommandTarget 
    { 
        /// <summary> 
        /// Implements the constructor for the Add-in object. 
        /// Place your initialization code within this method. 
        /// </summary> 
        public Connect() 
        { 
        } 
 
        /// <summary> 
        /// Implements the OnConnection method of the 
        /// IDTExtensibility2 interface. Receives notification 
        /// that the Add-in is being loaded. 
        /// </summary> 
        /// <param term='application'> 
        /// Root object of the host application. 
        /// </param> 
        /// <param term='connectMode'> 
        /// Describes how the Add-in is being loaded. 
        /// </param> 



 Chapter 13: Extending Visual Studio 2010 381

        /// <param term='addInInst'> 
        /// Object representing this Add-in. 
        /// </param> 
        /// <seealso class='IDTExtensibility2' /> 
        public void OnConnection( 
            object application, ext_ConnectMode connectMode, 
            object addInInst, ref Array custom) 
        { 
        } 
 
        /// <summary> 
        /// Implements the OnDisconnection method of the 
        /// IDTExtensibility2 interface. Receives notification 
        /// that the Add-in is being unloaded. 
        /// </summary> 
        /// <param term='disconnectMode'> 
        /// Describes how the Add-in is being unloaded. 
        /// </param> 
        /// <param term='custom'> 
        /// Array of parameters that are host application specific. 
        /// </param> 
        /// <seealso class='IDTExtensibility2' /> 
        public void OnDisconnection( 
            ext_DisconnectMode disconnectMode, ref Array custom) 
        { 
        } 
 
        /// <summary> 
        /// Implements the OnAddInsUpdate method of the 
        /// IDTExtensibility2 interface. Receives notification 
        /// when the collection of Add-ins has changed. 
        /// </summary> 
        /// <param term='custom'> 
        /// Array of parameters that are host application specific. 
        /// </param> 
        /// <seealso class='IDTExtensibility2' />   
        public void OnAddInsUpdate(ref Array custom) 
        { 
        } 
 
        /// <summary> 
        /// Implements the OnStartupComplete method of the 
        /// IDTExtensibility2 interface. Receives notification 
        /// that the host application has completed loading. 
        /// </summary> 
        /// <param term='custom'> 



 382 Microsoft Visual Studio 2010: A Beginner’s Guide

        /// Array of parameters that are host application specific. 
        /// </param> 
        /// <seealso class='IDTExtensibility2' /> 
        public void OnStartupComplete(ref Array custom) 
        { 
        } 
 
        /// <summary> 
        /// Implements the OnBeginShutdown method of the 
        /// IDTExtensibility2 interface. Receives notification 
        /// that the host application is being unloaded. 
        /// </summary> 
        /// <param term='custom'> 
        /// Array of parameters that are host application specific. 
        /// </param> 
        /// <seealso class='IDTExtensibility2' /> 
        public void OnBeginShutdown(ref Array custom) 
        { 
        } 
 
        /// <summary> 
        /// Implements the QueryStatus method of the 
        /// IDTCommandTarget interface. This is called 
        /// when the command's availability is updated 
        /// </summary> 
        /// <param term='commandName'> 
        /// The name of the command to determine state for. 
        /// </param> 
        /// <param term='neededText'> 
        /// Text that is needed for the command. 
        /// </param> 
        /// <param term='status'> 
        /// The state of the command in the user interface. 
        /// </param> 
        /// <param term='commandText'> 
        /// Text requested by the neededText parameter. 
        /// </param> 
        /// <seealso class='Exec' /> 
        public void QueryStatus( 
            string commandName, 
            vsCommandStatusTextWanted neededText, 
            ref vsCommandStatus status, 
            ref object commandText) 
        { 
        } 
 



 Chapter 13: Extending Visual Studio 2010 383

        /// <summary> 
        /// Implements the Exec method of the IDTCommandTarget 
        /// interface. This is called when the command is invoked. 
        /// </summary> 
        /// <param term='commandName'> 
        /// The name of the command to execute. 
        /// </param> 
        /// <param term='executeOption'> 
        /// Describes how the command should be run. 
        /// </param> 
        /// <param term='varIn'> 
        /// Parameters passed from the caller to the command handler. 
        /// </param> 
        /// <param term='varOut'> 
        /// Parameters passed from the command handler to the caller. 
        /// </param> 
        /// <param term='handled'> 
        /// Informs the caller if the command was handled or not. 
        /// </param> 
        /// <seealso class='Exec' /> 
        public void Exec( 
            string commandName, vsCommandExecOption executeOption, 
            ref object varIn, ref object varOut, ref bool handled) 
        { 
        } 
        private DTE2 _applicationObject; 
        private AddIn _addInInstance; 
    } 
}

You’ve had an overview of what the IDTExtensibility2 and IDTCommandTarget 
interfaces do and reviewed the comments in Listing 13-1. In the next section, you’ll see 
how to add your own code to the interface methods to make the KeystrokeFinder Add-In 
perform some useful work.

Adding Functionality to an Add-In
When implementing the functionality of an Add-In, you’ll be most concerned with 
capturing the call to Exec, which VS calls whenever the user selects the Tools menu item 
for your Add-In. This section will also cover a couple of other methods: OnConnection, 
which contains a lot of initialization code, and QueryStatus, which is handy for managing 
the state of the Add-In menu item. We’ll look at OnConnection first so that you can see 
how the Add-In is initialized.



 384 Microsoft Visual Studio 2010: A Beginner’s Guide

Reviewing the OnConnection Method
As you learned earlier, the Connect class implements various interface methods so 
that VS can call into those methods to run your Add-In. One of the primary methods 
is OnConnection, which is a member of the IDTExtensibility2 interface. VS calls 
OnConnection when the Add-In loads. When calling OnConnection, VS passes four 
parameters that you can use to initialize the Add-In. The Add-In Project Wizard, covered 
in a previous section of this chapter, generates much skeleton code that uses parameter 
values in OnConnection to initialize the Add-In. While the example in this chapter doesn’t 
modify the OnConnection method, understanding the code is helpful in learning how the 
Add-In initializes and how it does affect the code you will write later. We’ll first take 
another look at OnConnection parameters and then examine the generated code.

Understanding OnConnection Parameters
The OnConnection method has four parameters. Each of the parameters are passed to the 
OnConnection method by VS; these parameters provide all of the information necessary 
for initializing the Add-In. Table 13-3 lists each parameter and its purpose.

Table 13-3  OnConnection Method Parameters

Member Type Purpose
application Compile-time type is Object, but 

the runtime type is defined by the 
version you’re at. For example, 
on older versions of VS, the 
runtime type of Application was 
DTE, but the runtime type of 
Application in VS 2010 is DTE2.

Application is the parent object for the entire VS 
automation model. You use this to access all of the 
windows, commands, and other parts of the IDE.

connectMode Enum of type ext_ConnectMode Read this parameter to figure out when and how 
the Add-In was loaded. In a following section, 
you’ll see how the OnConnection method reads this 
value to figure out when the Add-In loads for the 
first time.

addInInst The compile-time type is Object, 
but runtime type is AddIn.

This refers to the Add-In itself, allowing you to 
inspect various properties of the Add-In.

custom Array These aren’t used in the current example, but 
consider the fact that we’re implementing an 
interface. Besides VS 2010, you could have 
another application (host) that supported Add-Ins 
that implement the IDTExtensibility2 interface. Those 
hosts could use the custom array parameter to pass 
information specific to that application. Therefore, 
custom is another extensibility point to make the 
IDTExtensibility2 interface more flexible.



 Chapter 13: Extending Visual Studio 2010 385

Reviewing OnConnection Generated Code
You know that the purpose of the OnConnection method is to help initialize the Add-In, and 
you’ve seen the parameters populated by VS and what each parameter means. Listing 13-2 
shows the code generated by VS after the Add-In Project Wizard completes. It reflects the 
result of choosing to have a command bar UI, shown in Figure 13-5. Code comments were 
omitted to place more focus on the code itself.

Listing 13-2  The OnConnection method

C#:

public void OnConnection( 
    object application, ext_ConnectMode connectMode, 
    object addInInst, ref Array custom) 
{ 
    _applicationObject = (DTE2)application; 
    _addInInstance = (AddIn)addInInst; 
    if(connectMode == ext_ConnectMode.ext_cm_UISetup) 
    { 
        object []contextGUIDS = new object[] { }; 
        Commands2 commands = 
         (Commands2)_applicationObject.Commands; 
        string toolsMenuName = "Tools"; 
 
        Microsoft.VisualStudio.CommandBars.CommandBar 
            menuBarCommandBar = (( 
                Microsoft.VisualStudio.CommandBars.CommandBars) 
                _applicationObject.CommandBars)["MenuBar"]; 
        CommandBarControl toolsControl = 
            menuBarCommandBar.Controls[toolsMenuName]; 
        CommandBarPopup toolsPopup = 
         (CommandBarPopup)toolsControl; 
 
        try 
        { 
            Command command = commands.AddNamedCommand2( 
                _addInInstance, "KeystrokeFinder", 
                "KeystrokeFinder", 
                "Executes the command for KeystrokeFinder", 
                true, 59, ref contextGUIDS, 
                (int)vsCommandStatus 
                    .vsCommandStatusSupported+ 
                (int)vsCommandStatus.vsCommandStatusEnabled, 



 386 Microsoft Visual Studio 2010: A Beginner’s Guide

                (int)vsCommandStyle 
                    .vsCommandStylePictAndText, 
                vsCommandControlType 
                    .vsCommandControlTypeButton); 
 
            if((command != null) && 
                (toolsPopup != null)) 
            { 
                command.AddControl( 
                    toolsPopup.CommandBar, 1); 
            } 
        } 
        catch(System.ArgumentException) 
        { 
        } 
    } 
}

VB:

Public Sub OnConnection( 
    ByVal application As Object, 
    ByVal connectMode As ext_ConnectMode, 
    ByVal addInInst As Object, 
    ByRef custom As Array) Implements IDTExtensibility2.OnConnection 
    _applicationObject = CType(application, DTE2) 
    _addInInstance = CType(addInInst, AddIn) 
 
    If connectMode = ext_ConnectMode.ext_cm_UISetup Then 
 
        Dim commands As Commands2 = 
            CType(_applicationObject.Commands, Commands2) 
        Dim toolsMenuName As String = "Tools" 
 
        Dim commandBars As CommandBars = 
            CType(_applicationObject.CommandBars, CommandBars) 
        Dim menuBarCommandBar As CommandBar = 
            commandBars.Item("MenuBar") 
 
        Dim toolsControl As CommandBarControl = 
            menuBarCommandBar.Controls.Item(toolsMenuName) 
        Dim toolsPopup As CommandBarPopup = 
            CType(toolsControl, CommandBarPopup) 
 
        Try 
 



 Chapter 13: Extending Visual Studio 2010 387

            Dim command As Command = 
                commands.AddNamedCommand2( 
                    _addInInstance, "KeystrokeFinderVB", 
                    "KeystrokeFinderVB", 
                    "Executes the command for KeystrokeFinderVB", 
                    True, 59, Nothing, 
                    CType(vsCommandStatus.vsCommandStatusSupported, 
                        Integer) + 
                    CType(vsCommandStatus.vsCommandStatusEnabled, 
                        Integer), 
                    vsCommandStyle.vsCommandStylePictAndText, 
                    vsCommandControlType.vsCommandControlTypeButton) 
 
            command.AddControl(toolsPopup.CommandBar, 1) 
        Catch argumentException As System.ArgumentException 
        End Try 
 
    End If 
End Sub

Dissecting Listing 13-2 into its constituent parts demonstrates the role OnConnection 
has and how it affects subsequent code. The first part of the method obtains references to a 
couple of important objects: application and addInInst. The following excerpt shows how 
to obtain a reference to these objects and convert them to DTE2 and AddIn, respectively. 
The references to _applicationObject and _addInInstance are fields of the Connect class, 
which is important because now other methods of the class will be able to access these 
objects.

C#:

_applicationObject = (DTE2)application; 
_addInInstance = (AddIn)addInInst;

VB:

_applicationObject = CType(application, DTE2) 
_addInInstance = CType(addInInst, AddIn)

The remaining code in OnConnection sets up the menu item under the Tools menu, 
as directed by choosing to build a command UI, shown in Figure 13-5. However, this 
only occurs one time—the first time the application runs. To make sure the menu item 
sets up one time, the code checks the connectMode parameter to see if it’s set to  



 388 Microsoft Visual Studio 2010: A Beginner’s Guide

ext_ConnectMode.ext_cm_UISetup, as shown in the following code. The remaining 
code in the OnConnection method will only execute if the following condition is true:

C#:

if(connectMode == ext_ConnectMode.ext_cm_UISetup)

VB:

If connectMode = ext_ConnectMode.ext_cm_UISetup Then

The first time the code runs, the code within the preceding if statement will execute, 
creating a menu item for the KeystrokeFinder Add-In in the Tools menu. Code examples 
that follow in this section are all contained within the preceding if statement; this is good 
information to know because it shows you how to navigate the VS object model to find 
something.

The following code uses _applicationObject to get a list of commands, which is a list 
of all the actions you can take with VS. As discussed earlier, _applicationObject is type 
DTE2 and serves as the parent object for accessing all functionality in VS.

C#:

Commands2 commands = 
   (Commands2)_applicationObject.Commands;

VB:

Dim commands As Commands2 = 
    CType(_applicationObject.Commands, Commands2)

In the VS automation object model, a menu item is called a CommandBar. So, you get 
a reference to a CommandBars collection, again through _applicationObject, to reference 
the MenuBar, which is the main VS menu, assigned to menuBarCommandBar:

C#:

Microsoft.VisualStudio.CommandBars.CommandBar 
    menuBarCommandBar = (( 
        Microsoft.VisualStudio.CommandBars.CommandBars) 
        _applicationObject.CommandBars)["MenuBar"];

VB:

Dim commandBars As CommandBars = 
    CType(_applicationObject.CommandBars, CommandBars) 
Dim menuBarCommandBar As CommandBar = 
    commandBars.Item("MenuBar")



 Chapter 13: Extending Visual Studio 2010 389

Within the CommandBars collection, menuBarCommandBar, you then look into the 
Controls collection, which is a list of menus on the main menu to find the Tools menu, 
assigned to toolsControl as follows:

C#:

string toolsMenuName = "Tools"; 
CommandBarControl toolsControl = 
    menuBarCommandBar.Controls[toolsMenuName];

VB:

Dim toolsMenuName As String = "Tools" 
Dim toolsControl As CommandBarControl = 
    menuBarCommandBar.Controls.Item(toolsMenuName)

In the VS automation object model, an individual menu is a CommandBarPopup, 
assigned to toolsPopup as follows:

C#:

CommandBarPopup toolsPopup = 
 (CommandBarPopup)toolsControl;

VB:

Dim toolsPopup As CommandBarPopup = 
    CType(toolsControl, CommandBarPopup)

Now you have a reference to the menu where the menu item for the Add-In must 
be added. You are ready to add the command, using the AddNamedCommand2 method 
of the commands collection. Remember that earlier code assigned these commands 
from the application object to the commands variable. A quick review of the arguments 
to AddNamedCommand2 gives you the gist of what’s happening: The code passes a 
reference to the Add-In; provides a menu item name and description; and indicates that 
the status of the command is supported and enabled, the menu item will have pictures and 
text, and the type of menu item is button (can be clicked). If you want all the details of 
this method call, now is a good time to refer to the documentation. While it’s important to 
understand the major interfaces, such as OnConnection for IDTExtensibility2, memorizing 
every API call might not be the most productive use of your time when you’re just starting 
out. The following code shows the call to AddNamedCommand2:

C#:

Command command = commands.AddNamedCommand2( 
    _addInInstance, "KeystrokeFinder", 
    "KeystrokeFinder", 
    "Executes the command for KeystrokeFinder", 



 390 Microsoft Visual Studio 2010: A Beginner’s Guide

    true, 59, ref contextGUIDS, 
    (int)vsCommandStatus 
        .vsCommandStatusSupported+ 
    (int)vsCommandStatus.vsCommandStatusEnabled, 
    (int)vsCommandStyle 
        .vsCommandStylePictAndText, 
    vsCommandControlType 
        .vsCommandControlTypeButton);

VB:

Dim command As Command = 
    commands.AddNamedCommand2( 
        _addInInstance, "KeystrokeFinderVB", 
        "KeystrokeFinderVB", 
        "Executes the command for KeystrokeFinderVB", 
        True, 59, Nothing, 
        CType(vsCommandStatus.vsCommandStatusSupported, 
            Integer) + 
        CType(vsCommandStatus.vsCommandStatusEnabled, 
            Integer), 
        vsCommandStyle.vsCommandStylePictAndText, 
        vsCommandControlType.vsCommandControlTypeButton)

AddNamedCommand2 returned a Command object, command, which must be placed 
into VS somewhere so that a user can click it to invoke the Add-In. The next statement 
accomplishes this task by adding command to the Tools menu. As you may recall from 
previous examples, the code searched for and obtained a reference to the Tools menu. After 
ensuring that both the command and toolsPopup refer to valid objects (a best practice), the 
following code places command into the first position (at the top) of the Tools menu:

C#:

if((command != null) && 
    (toolsPopup != null)) 
{ 
    command.AddControl( 
        toolsPopup.CommandBar, 1); 
}

VB:

command.AddControl(toolsPopup.CommandBar, 1)

This completes the responsibilities of the OnConnection method. If you had your own 
code for initializing the Add-In, the OnConnection method would be a good place to put 
it. The preceding example was useful because now you know how to access VS menus 
and commands. The example also demonstrated the importance of the main application 
object and how it’s used as the starting point for getting to other part of VS.



 Chapter 13: Extending Visual Studio 2010 391

As you may recall, the OnConnection method assigned the main application object to 
_applicationObject, a field of the Connect class. This is important because now you have 
access to the main application object, and you’ll see how it’s used in the next section, 
which shows you how to execute your Add-In via the Exec method.

Implementing the Exec Method
Whenever a user starts your Add-In, VS calls the Exec method of the IDTCommandTarget 
interface. The Exec method is important because that’s where you add your code to 
implement the behavior of your Add-In. The previous sections discussed code that is 
generated by VS, but Listing 13-3 contains code for the Exec method that you should 
enter yourself to make the KeystrokeFinder Add-In work. The purpose of the Add-In 
for this section is to list all VS commands and their associated shortcut keys. The list of 
commands and shortcuts will be displayed in the VS Output window. Listing 13-3 shows 
the Exec method for the KeystrokeFinder Add-In.

Listing 13-3  Implementing the Exec method

C#:

public void Exec( 
    string commandName, vsCommandExecOption executeOption, 
    ref object varIn, ref object varOut, ref bool handled) 
{ 
    handled = false; 
    if(executeOption == 
        vsCommandExecOption.vsCommandExecOptionDoDefault) 
    { 
        if (commandName == 
            "KeystrokeFinder.Connect.KeystrokeFinder") 
        { 
            OutputWindow outWin = 
                _applicationObject.ToolWindows.OutputWindow; 
            OutputWindowPane outPane = 
                outWin.OutputWindowPanes.Add( 
                    "Keyboard Shortcuts"); 
            outPane.Activate(); 
 
            foreach (Command cmd in 
                _applicationObject.Commands) 
            { 
                object[] cmdBindings = 
                    cmd.Bindings as object[]; 
 



 392 Microsoft Visual Studio 2010: A Beginner’s Guide

                if (cmdBindings.Length > 0) 
                { 
                    string bindingStr = 
                        string.Join(", ", cmdBindings); 
                    outPane.OutputString( 
                        "Command: " + cmd.Name + 
                        ", Shortcut: " + bindingStr + 
                        "\n"); 
                } 
            } 
 
            handled = true; 
            return; 
        } 
    } 
}

VB:

Public Sub Exec( 
    ByVal commandName As String, 
    ByVal executeOption As vsCommandExecOption, 
    ByRef varIn As Object, ByRef varOut As Object, 
    ByRef handled As Boolean) Implements IDTCommandTarget.Exec 
    handled = False 
    If executeOption = 
        vsCommandExecOption.vsCommandExecOptionDoDefault Then 
        If commandName = 
            "KeystrokeFinderVB.Connect.KeystrokeFinderVB" Then 
 
            Dim outWin As OutputWindow = 
                _applicationObject.ToolWindows.OutputWindow 
 
            Dim outPane As OutputWindowPane = 
                outWin.OutputWindowPanes.Add( 
                    "Keyboard Shortcuts") 
 
            outPane.Activate() 
 
            For Each cmd As Command In _applicationObject.Commands 
 
                Dim cmdBindings As Object() = 
                    CType(cmd.Bindings, Object()) 
 
                If cmdBindings.Length > 0 Then 
 
                    Dim bindingStr As String = 
                        String.Join(", ", cmdBindings) 
 



 Chapter 13: Extending Visual Studio 2010 393

                    outPane.OutputString( 
                        "Command: " & cmd.Name & 
                        ", Shortcut: " & bindingStr & 
                        Environment.NewLine) 
 
                End If 
 
            Next 
 
            handled = True 
            Exit Sub 
        End If 
    End If 
End Sub

The executeOption parameter of Exec allows you to determine whether you want 
to prompt the user for input, perform the action, or show help, which are options of the 
vsCommandExecOption. All you need to do is check the option and perform the operation for 
the current value of executeOption. In the current Add-In, we only check for vsCommandExec
OptionDoDefault, which means to just perform the operation:

C#:

if(executeOption == 
    vsCommandExecOption.vsCommandExecOptionDoDefault)

VB:

If executeOption = 
    vsCommandExecOption.vsCommandExecOptionDoDefault Then

The example in this chapter only has one command, but you could potentially have 
multiple commands if you decided to add more commands in the OnConnection method. 
Add an if statement to ensure you’re executing code for the proper command, such as the 
following code:

C#:

if (commandName == 
    "KeystrokeFinder.Connect.KeystrokeFinder")

VB:

If commandName = 
    "KeystrokeFinderVB.Connect.KeystrokeFinderVB" Then



 394 Microsoft Visual Studio 2010: A Beginner’s Guide

As you learned earlier, the application object is the starting point for accessing all VS 
objects. Since we need to write to the Output window, the code accesses the ToolWindows 
property of the application object, which provides access to multiple VS windows. The 
following code obtains a reference to the OutputWindow, adds a new pane, and activates 
the pane:

C#:

OutputWindow outWin = 
    _applicationObject.ToolWindows.OutputWindow; 
OutputWindowPane outPane = 
    outWin.OutputWindowPanes.Add( 
        "Keyboard Shortcuts"); 
outPane.Activate();

VB:

Dim outWin As OutputWindow = 
    _applicationObject.ToolWindows.OutputWindow 
 
Dim outPane As OutputWindowPane = 
    outWin.OutputWindowPanes.Add( 
        "Keyboard Shortcuts") 
 
outPane.Activate()

Going back to the application object, we need to access the Commands collection, using a 
foreach loop to access each Command object. Each command name is in the Name property. 
The Bindings property is a collection of shortcut keys for the command. Some commands have 
no shortcut keys, as indicated by an empty Bindings collection (its Length property will be set 
to 0), so we skip them. The following code shows how to iterate through all VS commands and 
print each command name and associated shortcut keys to the Output window:

C#:

foreach (Command cmd in 
    _applicationObject.Commands) 
{ 
    object[] cmdBindings = 
        cmd.Bindings as object[]; 
 
    if (cmdBindings.Length > 0) 
    { 
        string bindingStr = 
            string.Join(", ", cmdBindings); 
        outPane.OutputString( 
            "Command: " + cmd.Name + 



 Chapter 13: Extending Visual Studio 2010 395

            ", Shortcut: " + bindingStr + 
            "\n"); 
    } 
} 
 
handled = true;

VB:

For Each cmd As Command In _applicationObject.Commands 
 
    Dim cmdBindings As Object() = 
        CType(cmd.Bindings, Object()) 
 
    If cmdBindings.Length > 0 Then 
 
        Dim bindingStr As String = 
            String.Join(", ", cmdBindings) 
 
        outPane.OutputString( 
            "Command: " & cmd.Name & 
            ", Shortcut: " & bindingStr & 
            Environment.NewLine) 
 
    End If 
 
Next 
 
handled = True

Notice how we set handled to true, letting VS know that the code recognized and 
acted on the command. Besides letting users execute the Add-In, you want to ensure their 
experience with the Add-In is logical and the command displays its status properly, as 
you’ll learn about in the next section.

Setting Status with QueryStatus
While VS is working with your Add-In, it will call the QueryStatus method of 
IDTCommandTarget to ensure it displays the command properly. Listing 13-4 shows 
the default implementation of QueryStatus.

Listing 13-4  The QueryStatus method

C#:

public void QueryStatus( 
    string commandName, 



 396 Microsoft Visual Studio 2010: A Beginner’s Guide

    vsCommandStatusTextWanted neededText, 
    ref vsCommandStatus status, 
    ref object commandText) 
{ 
    if(neededText == 
        vsCommandStatusTextWanted 
            .vsCommandStatusTextWantedNone) 
    { 
        if(commandName == 
            "KeystrokeFinder.Connect.KeystrokeFinder") 
        { 
            status = 
               (vsCommandStatus) 
                vsCommandStatus.vsCommandStatusSupported| 
                vsCommandStatus.vsCommandStatusEnabled; 
            return; 
        } 
    } 
}

VB:

Public Sub QueryStatus( 
    ByVal commandName As String, 
    ByVal neededText As vsCommandStatusTextWanted, 
    ByRef status As vsCommandStatus, 
    ByRef commandText As Object) Implements IDTCommandTarget.
QueryStatus 
 
    If neededText = 
        vsCommandStatusTextWanted.vsCommandStatusTextWantedNone Then 
 
        If commandName = 
            "KeystrokeFinderVB.Connect.KeystrokeFinderVB" Then 
 
            status = 
                CType(vsCommandStatus.vsCommandStatusEnabled + 
                      vsCommandStatus.vsCommandStatusSupported, 
                      vsCommandStatus) 
 
        Else 
 
            status = vsCommandStatus.vsCommandStatusUnsupported 
 
        End If 
    End If 
End Sub



 Chapter 13: Extending Visual Studio 2010 397

The QueryStatus method in Listing 13-4 checks the commandName to ensure it’s 
working with the right Add-In. If so, it sets the status parameter to a combination of values 
from the vsCommandStatus enum. In Listing 13-4, the status is supported and enabled.

This demonstrated how to create an Add-In. Next, you’ll learn how to deploy the Add-In.

Deploying an Add-In
There are two files involved in deploying your Add-In: a *.AddIn file and *.dll. The 
*.AddIn file contains registration information for your Add-In, and *.dll is the class 
library output assembly that contains your Add-In.

You can deploy the *.AddIn file by copying it into a folder that VS recognizes. There 
is a specified set of folders that VS recognizes, but you can add your own folder location. 
To see what the VS settings are, select Tools | Options | Environment | Add-in/Macros 
Security. You’ll see a window similar to Figure 13-8. The Add-in/Macros Security 
window also has options that allow you to determine if macros can run, if any Add-Ins can 
load, or if Add-Ins are allowed to load over the Internet.

Figure 13-8 The Add-in/Macros Security window



 398 Microsoft Visual Studio 2010: A Beginner’s Guide

In addition to the *.AddIn file, you’ll need to determine where the Add-In class library 
file (*.dll) will reside. By default, the Add-In Project Wizard assumes that the *.dll file is 
deployed in the same location as the *.AddIn file. Listing 13-5 shows the contents of the 
*.AddIn file. The location of the *.dll file is specified in the Assembly element, which can 
be either a file system path or a URL.

Listing 13-5  Contents of the *.AddIn file

<?xml version="1.0" encoding="UTF-16" standalone="no"?> 
<Extensibility xmlns= 
"http://schemas.microsoft.com/AutomationExtensibility"> 
    <HostApplication> 
        <Name>Microsoft Visual Studio</Name> 
        <Version>10.0</Version> 
    </HostApplication> 
    <Addin> 
        <FriendlyName>Keystroke Finder</FriendlyName> 
        <Description> 
Displays a List of VS Shortcut Keystrokes. 
        </Description> 
        <AboutBoxDetails> 
Creating an Add-... 
        </AboutBoxDetails> 
        <AboutIconData>...</AboutIconData> 
        <Assembly>KeystrokeFinder.dll</Assembly> 
        <FullClassName> 
KeystrokeFinder.Connect 
        </FullClassName> 
        <LoadBehavior>1</LoadBehavior> 
        <CommandPreload>1</CommandPreload> 
        <CommandLineSafe>0</CommandLineSafe> 
    </Addin> 
</Extensibility>

Another way to work with Add-Ins is via the Add-In Manager, which you can open 
by selecting Tools | Add-in Manager. Figure 13-9 shows the Add-In Manager with the 
KeystrokeFinder Add-In in the list. Checking Available Add-Ins immediately loads or 
unloads the Add-In, checking Startup indicates whether the Add-In will load when VS 
starts, and checking Command Line makes the Add-In load if a user runs VS (devenv.exe) 
via the command line.



 Chapter 13: Extending Visual Studio 2010 399

Once the Add-In is deployed and loaded, a user can run the Add-In by selecting Tools |  
KeystrokeFinder. When the Add-In runs, the Output window will contain a listing of 
commands and shortcut keys. To see the results, you should open the Output window, 
CTRL-W-O, before running the Add-In.

Now you know how to create and deploy an Add-In, but you’ll also need some 
guidance in moving forward to help you create your own Add-Ins. The next section 
provides that guidance.

Where to Go Next
As you’ve seen in previous sections, the application object is central to getting started 
with Add-In development. Whenever you need to find something, use the application 
object reference, press the DOT on your keyboard, and Intellisense will show you 
properties such as commands and windows.

As you view the application object properties, have the VS documentation open, 
telling you what each property means and providing example code of how it works.

Sometimes there aren’t examples and the documentation isn’t as clear as it could 
be. In those cases, you might have to perform some investigation. The tools to perform 

Figure 13-9 The Add-In Manager



 400 Microsoft Visual Studio 2010: A Beginner’s Guide

this investigation include the debugger’s breakpoints and the Immediate window. Set a 
breakpoint in one of the Add-In methods and inspect the value of an object. To find out 
what is inside that object, open the Immediate window, type the object name, and press 
DOT to let Intellisense help you find properties you’re interested in.

On occasion, you’ll have properties that are collections. In that case, you can write 
code in the Add-In method you want the access the collection through, add a foreach (For 
Each in VB) loop, and print values of the collection to the Output window.

Summary
Each section of this chapter walked you through the steps necessary to write an Add-In. 
You learned how Add-In projects are started, similar to other projects, except that the 
wizard for creating Add-Ins is more extensive. Once you understood what project items 
were created, you learned about the contents of the Add-In itself, the interfaces that 
are implemented, and the skeleton code generated by the Add-In Project Wizard. This 
chapter showed you how to add code to the Add-In to make it perform a search of all 
VS commands and their related shortcut keys. This process demonstrated how you could 
access anything throughout VS via code. You learned how to deploy and manage an Add-In  
and then finished off with tips on moving forward to create your own Add-Ins.

This is the last chapter of this book, but only the beginning for your software development 
experience using Microsoft Visual Studio 2010. I sincerely appreciate your reading my book 
and hope that it propels you to greater skill and success.

—Joe Mayo



Part V
Appendixes



This page intentionally left blank 



403403

Appendix A
Introduction to XML



 404 Microsoft Visual Studio 2010: A Beginner’s Guide

Extensible Markup Language (XML) is an open-standards cross-platform way of 
specifying documents. At its origins, XML was used to represent data, but it has grown 

in use to include user interface technologies and even executable logic. While there are 
many practical uses of XML, this book is mostly concerned with explaining how XML is 
used for ASP.NET, Silverlight, and Windows Presentation Foundation (WPF), all of which 
are discussed in chapters of this book. In each of these scenarios, some specialization of 
XML is being used to construct user interfaces. In ASP.NET, you use XML for HTML 
(XHTML). Both Silverlight and WPF use XML Application Markup Language (XAML), 
pronounced “Zamel.” Before learning about XHTML or XAML, you might want an 
introduction or refresher on XML, which is the purpose of this appendix. While this 
introduction won’t teach you everything about XML, it will give you the essentials that 
can help when seeing how XML is being used.

VS 2010 XML Editor
You can create your own XML documents in VS 2010 with the XML editor. There are a 
couple of ways to open a new XML document, within or without a project. Without a project, 
select File | New | File and select XML File, and click OK. You can rename the file (for 
instance, Customer.xml) when saving. Within a project, right-click the project, select Add |  
New Item, select the Data list, select XML File, give the document a name (for instance, 
Customer.xml), and click OK. What this gives you is an editor with Intellisense support that is 
better than Notepad. Listing A-1 shows an XML document that holds customer data.

Listing A-1  An XML document example

<?xml version="1.0" encoding="utf-8" ?> 
<customer id="7"> 
  <name>Joe</name> 
  <address>123 4th St</address> 
</customer>

As you can see in Listing A-1, an XML document is readable text. It contains data, and 
the meaning of that data is specific to the applications that need to use it. The following 
sections will decipher Listing A-1 and explain what each part of the document means.

XML Prefixes
The top of the document in Listing A-1 contains an XML prefix, repeated here for convenience:

<?xml version="1.0" encoding="utf-8" ?>



 Appendix A: Introduction to XML 405

The prefix is common for letting applications reading the document know that it is 
indeed an XML document. The version is self-describing. Encoding is important because 
it specifies the binary format of the text. If you have one application passing data to 
another application, it’s important that both applications can read the document and are 
using the same encoding. The utf-8 encoding is the default and for the purpose of this 
book is the only encoding you will care about.

The angle brackets, < and >, define the markup in XML. For the file prefix, content is 
placed between <? and ?> character sequences, but as the following sections show, most 
other markup is different.

XML Elements
The XML elements in Listing A-1 are customer, name, and address. Each element is 
defined by matching pairs of markup, following this pattern:

<elementName>value</elementName>

In the previous example, elementName is the name of the element and value is the data 
associated with that element. Elements always have a begin tag and an end tag. You can 
identify the end tag because it always follows the begin tag eventually (there may be other 
element tags nested in between the pair) and contains a forward slash character before the 
element name.

The value in the previous example can sometimes be blank, meaning there is no value 
for that element. A value can also be one or more elements, such as customer, in Listing A-1, 
which contains name and address elements. In Listing A-1, the value of name is Joe and the 
value of address is 123 4th St. In addition to elements, you can have attributes, discussed next.

Attributes
An attribute decorates an element with a single value, such as in the following example:

<elementName attributeName="attributeValue"> 
    elementValue 
</elementName>

Notice that the attribute, attributeName, is inside of the start tag of the element. It 
contains an equal sign and a quoted value. You can have multiple attributes on a single 
element and they’ll be separated by spaces. Remember that attributes can have only one 
value, but if you need to define more than one value, you must use elements.

Examples of attributes in Listing A-1 are version and encoding in the prefix and id 
on customer.



 406 Microsoft Visual Studio 2010: A Beginner’s Guide

Namespaces
Another important part of XML that you’ll need to understand is namespaces. In Chapter 2,  
you learned how namespaces in C# and VB help give a unique identity to code within a 
given namespace. The purpose of namespaces in XML is similar. In the case of Listing 
A-1, there is a customer element, but think about how many different programs work with 
customer data. A customer in one program will not be defined the same as a customer in 
another program, and you need a way to tell them apart, which is where namespaces come 
in. You would define your customer data in a namespace of your choosing, and some other 
developer would define a unique namespace for their customer. That way, your programs 
won’t ever be confused if they try to read the wrong data. Listing A-2 shows how to use a 
namespace to make a customer unique.

TIP
You might have noticed that the namespaces in Listing A-2 look like Web addresses. 
However, this is just coincidence and is a common practice used to increase the chance 
that the namespace is unique. In reality, the namespace is just a string, which catches 
people new to namespaces off guard. For example, http://mcgraw-hill.com/vs2010bg 
is a different namespace than http://mcgraw-hill.com/vs2010bg/ because the extra 
forward slash on the end is a different string. So, if you made this mistake, then it’s 
possible that a program won’t recognize the data as being a valid format because the 
data is in a different namespace than what the program expects. Remember that a 
namespace is a unique string, not a Web address.

Listing A-2  XML namespace example

<?xml version="1.0" encoding="utf-8" ?> 
<customer id="7" 
  xmlns="http://mcgraw-hill.com/vs2010bg" 
  xmlns:a="http://somedomain.com/addresses"> 
  <name>Joe</name> 
  <a:address>123 4th St</a:address> 
</customer>

Namespaces are specified by placing an xmlns attribute on an element, either with 
or without a prefix. The xmlns without a prefix specifies the default namespace for all of 
the elements where the namespace resides and child elements of the element where the 
namespace resides. This means that customer and name are in the http://mcgraw-hill.com/
vs2010bg namespace.

Namespaces can also have prefixes to help you target where they are applied. In 
Listing A-2, there is an xmlns:a, where a is the prefix for the http://somedomain.com/

http://mcgraw-hill.com/vs2010bg
http://mcgraw-hill.com/vs2010bg/
http://mcgraw-hill.com/vs2010bg
http://mcgraw-hill.com/vs2010bg


 Appendix A: Introduction to XML 407

addresses namespace. The convenience of prefixes is that they help the XML be more 
readable. In Listing A-2, the address namespace is decorated with the a: prefix, as in 
<a:address> to indicate that address belongs to the http://somedomain.com/addresses 
namespace. Without the prefix, you would be forced to write the address element as 
follows, which is more difficult to read:

< http://somedomain.com/addresses:address> 
    123 4th St 
</ http://somedomain.com/addresses:address>

I added line breaks for readability, but in practice the only part of the data read is the 
value and not the white space, such as newlines, surrounding it.

The XML Menu
When you open an XML document in VS, you’ll see an XML menu appear with options 
for running, debugging, and profiling XML Transformation (XSLT) documents and 
working with schemas. XSLT is used by a running program or utility to change an 
XML document from one form to another. An XML schema is an XML document that 
describes the allowable format of another XML document. An XML schema is to an XML 
document what a SQL table definition is to the data that the table holds. Both XSLT and 
schemas are outside the scope of this book, but now you know where the tools are in case 
you need to work with them.

Configuring XML Options
Selecting Tools | Options will open the VS Options window. From the Options window, 
you can select Text Editor XML and configure many options associated with writing XML 
documents, such as turning on line numbering or specifying tag formatting.

Summary
You should now understand the basics of working with XML in VS. You learned how to 
create an XML document and what prefixes, elements, attributes, and namespaces are. 
You also learned how to find the XML options to customize your XML document-editing 
experience. XML is the foundation upon which XAML and XHTML are based, which 
is covered in later appendices. This should give you familiarity with the XML that is 
presented in the chapters of this book.



This page intentionally left blank 



409

Appendix B
Introduction to XAML



 410 Microsoft Visual Studio 2010: A Beginner’s Guide

XML Application Markup Language (XAML), pronounced “Zamel,” is an XML-
based language for building user interfaces. You’ll find XAML being used in both 

Windows Presentation Foundation (WPF) and Silverlight applications. WPF is for desktop 
application development, and Silverlight is for Web-based development. Both WPF and 
Silverlight have much in common through programming with XAML. Therefore, this 
Appendix provides an introduction to XAML and shows you how to perform layouts, 
which are common to both WPF and Silverlight. This Appendix can be useful before 
reading the WPF and Silverlight chapters so that you can get the most out of what is 
specific to each technology. For simplicity, I’ll demonstrate concepts by using a WPF 
application, but what you learn will be applicable to both WPF and Silverlight. Before 
reading this Appendix, you might want to read or review Appendix A for an introduction 
to XML, which will provide you with familiarity of basic XML syntax.

Starting a WPF Project
As you are reading a book about VS, it’s only natural that you would want to experience 
XAML from within the VS IDE. As stated earlier, we’ll use a WPF Application project for 
describing XAML because it has fewer files and is simpler than a Silverlight application. 
To create the WPF Application project, select File | New | Project and select WPF 
Application in the New Project window. Name the application anything you like and 
click OK. What you’ll see is a new project that has Window1.xaml file open in VS with 
contents similar to Listing B-1.

Listing B-1  A new XAML file

<Window x:Class="WpfApplication1.MainWindow" 
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="MainWindow" Height="350" Width="525"> 
    <Grid> 
 
    </Grid> 
</Window>

In VS, the default layout for Window1.xaml is to have a visual designer on the top half 
of the work window and XAML in the lower half. You can view the full XAML document 
by grabbing the top edge of the XAML half and dragging it to the top of the screen so that 
you are only looking at the XAML editor. The first thing you should notice about Listing B-1  



 Appendix B: Introduction to XAML 411

is that it is an XML document with elements, attributes, and namespaces. Each of the 
items you see has special meaning, as will be discussed in the following sections.

Elements as Classes
For XAML to be meaningful as code, elements must be associated with classes. The 
Window element in Listing B-1 is associated with a class named WpfApplication1 
.MainWindow, specified by the x:Class attribute. The x prefix aliases the http://schemas 
.microsoft.com/winfx/2006/xaml namespace, where the Class attribute is defined. By 
mapping the element to a class, you allow VS to compile the XAML into code that runs. 
Notice that the default namespace is http://schemas.microsoft.com/winfx/2006/xaml/
presentation, which defines how each of the elements without prefixes will be compiled  
to code. The important fact to realize here is that when writing XAML, you are creating  
a document that will be translated into executable code for you at compile time.

Attributes as Properties
Title, Height, and Width are attributes of the Window element in Listing B-1. When VS 
compiles the XAML, each of the attributes of elements will be translated to properties  
of the class that the element is translated to. More specifically, the WpfApplication1.
MainWindow class will have Title, Height, and Width properties. Each of the properties 
will be set with the value assigned to their corresponding attributes.

Executing the XAML Document
Remember that this is not a tutorial on WPF and that the focus needs to be on understanding 
how XAML works. Nevertheless, it’s informative to see what happens when XAML is 
compiled and executed. Press F5 or click the Start Debugging button on the toolbar to run 
this program. What you’ll see is a window similar to Figure B-1.

Figure B-1 shows how the Window element executed, creating an application window 
with normal title bar, minimize and close buttons, and borders. You can also see the results 
of applying the attributes of the Window element where MainWindow appears on the title 
bar and the dimensions are set by Height and Width.

This illustrates the power of XAML, where you can produce sophisticated results 
without writing a line of C# or VB code yourself. Of course, all of the XAML translates to 
code, but the declarative nature of XAML lets you say what you want without having to 
specify how it’s done. XAML saves you from writing a lot of code to produce equivalent 
results. The code that actually runs is generated for you.

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation


 412 Microsoft Visual Studio 2010: A Beginner’s Guide

Property Elements
You’ve seen how attributes translate to properties. In addition to attributes, XAML has 
property elements, which are child elements where one or more other elements become 
assigned to a property. An example of a property element would be the Content property 
of a Button. A Button is a class in both WPF and Silverlight that a user can click to 
produce some action in your program. The Content property of the Button determines 
what the user sees. To describe the difference between a property attribute and a property 
element, I’ll show you an example of both with the Content property of the Button class. 
Listing B-2 shows a Button with its Content set as an attribute.

Listing B-2  A Button with Content set as an attribute

<Window x:Class="WpfApplication1.MainWindow" 
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="MainWindow" Height="350" Width="525"> 
    <Button Content="Click Me" /> 
</Window>

Figure B-1  Executing XAML



 Appendix B: Introduction to XAML 413

In Listing B-2, you can see that the Window has a contained Button element whose 
Content attribute contains text. Figure B-2 shows what this looks like when running.

A powerful feature of XAML is property elements that allow you to add sophisticated 
markup that will be assigned to a class property. In the case of the Button, we’ll enhance 
the Content property as a property element in XAML to show how to add content other 
than text. The following markup is the Button from Listing B-2, enhanced to hold an 
image instead of text. For readability, I added a line break for the value of the Source 
attribute:

<Button> 
    <Button.Content> 
        <Image Source= 
"C:\Users\Public\Pictures\Sample Pictures\Penguins.jpg" /> 
    </Button.Content> 
</Button>

Instead of setting the Content attribute, the preceding example uses property element 
syntax, where the child element is named <parentElementName.attributeName>. The 
benefit of property element syntax shown in the preceding code is that the Content 
property will now be set to an image. With attribute syntax, you were limited to text, but 
with property element syntax, you can put anything in a button. Of course, instead of what 
I did with the image, you would want to use common sense and only add content that is 
meaningful for the application. Figure B-3 shows the new button with the image.

Figure B-2  A Button with its Content attribute set as Text



 414 Microsoft Visual Studio 2010: A Beginner’s Guide

TIP
VS provides XAML editor support by allowing you to place your cursor between begin 
and end tags, pressing ENTER, and indenting the start position of the cursor on the new 
line between the start and end tags. From that point, you can type < and begin working 
with Intellisense to select the element and attribute you need to implement with property 
element syntax.

Markup Extensions
Another extensibility point in XAML is markup extensions, which allow you to set an 
attribute to reference another value. Common uses of markup extensions include data 
binding and resource usage. Data binding is the practice of associating data with a user 
interface control. For example, if you needed to show a customer record on the screen, 
you would bind each property of the customer object to parts of the screen, such as 
binding a customer name to a TextBox on the screen. You’ll see examples of data binding 
in the WPF and Silverlight chapters of this book, Chapters 8 and 10. Right now, it’s 
important to concentrate on what a markup extension is, and you’ll see an example that 
applies a resource to an element.

A resource is some type of object or value that can be used by multiple controls. For 
example, you can define a special color for buttons on your screen in one place and then 
use a markup extension to point all of these buttons to the same resource. That way, you 
can change the color resource in one place and all buttons referring to that color resource 

Figure B-3  Button with Content property element set to Image



 Appendix B: Introduction to XAML 415

will change automatically. Listing B-3 defines a brush resource of a specific color and 
shows how to reference that brush from multiple buttons using a markup extension.

Listing B-3  Markup extension for using resources

<Window x:Class="WpfApplication1.MainWindow" 
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="MainWindow" Height="350" Width="525"> 
    <Window.Resources> 
        <SolidColorBrush x:Key="ButtonBrush" Color="Yellow" /> 
    </Window.Resources> 
    <StackPanel> 
        <Button Background="{StaticResource ResourceKey=ButtonBrush}" 
                Content="Button One" /> 
        <Button Background="{StaticResource ResourceKey=ButtonBrush}" 
                Content="Button Two" /> 
    </StackPanel> 
</Window>

The Window.Resources element in Listing B-3 is a property element of Window. It 
contains a SolidColorBrush with Color set to Yellow. Everything in WPF and Silverlight 
is drawn with brushes, which define colors, gradients, images, media, or patterns. In this 
case, we’ll keep it simple with a single color, which is what SolidColorBrush is good for. 
The point here is not what a brush is, but the fact that the brush is a resource that will 
help demonstrate how to use a markup extension to access that resource. It’s important to 
assign a key to every resource because that key is what resource markup extensions use to 
identify the resource.

You can see the markup extension assigned to the Background attributes of the Button 
elements in Listing B-3. Markup extensions are surrounded by curly braces. Within the 
curly braces are the extension type and attributes associated with the extension. In Listing 
B-3, the extension type is StaticResource, which allows you to refer to a resource. The 
ResourceKey attribute of the StaticResource extension specifies the particular resource 
to use. The value, ButtonBrush, matches the key of the SolidColorBrush resource. So, 
the value of the BackGround attribute of the Button elements is a StaticResource for a 
SolidColorBrush that has its color set to Yellow. This effectively means that the Buttons 
will have Yellow backgrounds.

To see the value of using resources, consider the situation you would be in if you 
set the BackGround attribute of each button directly to Yellow instead of using the 



 416 Microsoft Visual Studio 2010: A Beginner’s Guide

StaticResource markup extension. Further, think about the amount of work you would 
need to do if you wanted to change the background color of all buttons, resulting in 
recoding each individual button. However, with the StaticResource markup extension, you 
can change the color in the SolidColorBrush resource, and the BackGround of all buttons 
will change without any additional work. Figure B-4 shows each of the buttons. Though 
you can’t tell the background color in the gray scale of this book, I promise that they are 
yellow.

Summary
This appendix introduced you to XAML, which is the XML document type used to build 
user interfaces for WPF and Silverlight. You learned that elements map to classes and 
attributes map to class properties. You also learned how to specify property elements 
to gain more control than what you can get with attributes alone. Finally, you learned 
about the syntax of a markup extension and how the StaticResource markup extension 
allows you to reference resources. You’re now ready to approach the WPF and Silverlight 
chapters in this book, which use XAML heavily to build their user interfaces.

Figure B-4 Two Buttons using the same resource via a markup extension



417

Index

Symbols
< > (angle brackets), 405
{ } (braces), 40, 57, 160
? (question mark), 162
_ (underline), 55
/ integer, 62
& operator, 62
+ operator, 62

A
accessors, 84, 86
Add Reference window, 122–123
Add-In Project Wizard, 372–383, 398
add-ins, 371–400

adding functionality to, 383–397
creating, 372–383
deploying, 397–399
general information, 372, 399–400

Analyze menu, 15
angle brackets < >, 405
anonymous types, 198–199, 206
API (application programming interface), 5
application icons, 120
application programming interface (API), 5
applications

artifacts, 116, 117, 136

building with ASP.NET MVC, 262–264
Click-Once, 120
COM, 121, 124, 134
compiling, 129–135
Console. See Console applications
including databases with, 253
Java, 300–301
Microsoft Office, 124
OOB, 294–297
output path, 134
Silverlight, 285–298
state of, 160–166
Web, 152–153
Windows Services, 33
WPF. See WPF

Architecture menu, 15
arguments, 75–78, 153
arrays, 62–63, 107–108
artifacts, 116, 117, 136
ASP.NET

deploying Web services, 315, 317,  
325–326, 336

described, 250
ASP.NET MVC, 249–284

building applications, 264–284
creating Controllers, 254–256, 268–269
creating Models, 254
displaying Views, 256–261
managing routing, 262–264



 418 Microsoft Visual Studio 2010: A Beginner’s Guide

ASP.NET MVC (continued)
MVC objects, 250–254, 270–276
overview, 250–251
starting ASP.NET MVC project, 251–254

ASP.NET MVC Project Wizard, 261
ASP.NET projects, 33
assemblies, 114, 119, 122–129
Assembly Information option, 118, 121–122
assembly name, 118, 119
assembly references, 122–129
associations, 201
authentication, 184, 319, 322
automatic properties, 85–86
Autos window, 160–161, 162

B
backing field, 85, 86
binding, 234–247
bookmarks, 44–45
braces { }, 40, 57, 160
branching statements, 57–61
breakpoints, 155–158

conditional, 172
creating, 156–157
customizing, 157–158
managing, 158
overview, 155
using, 171–173

bugs, 167–179. See also debugging
build event macros, 134
build order, 131–132

C
C# compiler, 133, 135
C# language

case sensitivity, 40, 53
code editor options, 46–47
considerations, 13
included with Visual Studio, 36
inheritance, 70
Intellisense, 50–51
popularity of, 36
primitive types, 53
vs. VB language, 13, 36, 115–116

C++ language, 31, 36, 154, 373
C# projects, 31, 33, 115–116, 150, 151. See also 

projects
Call Hierarchy feature, 148–150
call sites, 148–150, 163
Call Stack window, 163
Canvas layout, 225–226

capitalization issues, 40, 53
Cascading Style Sheets (CSS), 252, 344
case sensitivity, 40, 53
character sets, 174
child classes, 70, 71
child/parent relationship, 187–192, 206
Class Designer, 137–141

code generation, 138–141
using, 137–141
visualizing code with, 137–138

class libraries, 33, 36–38, 125–129
Class Library projects, 119, 124, 125–129
class locators, 44
class snippet, 71–72
class type, 68
Class view, 136
classes

child, 70, 71
creating, 68–72
creating for interfaces, 98–101
custom definitions, 68–70
debugging and, 148
finding, 44
inheritance, 70–72
instantiating objects from, 69
parent, 70
Program, 41–42
snippets, 71–72
syntax, 68–70
WCF, 308–314

cleaning solutions/projects, 130–131
click events, 228–234, 246
Click-Once applications, 120
CLR (Common Language Runtime), 154
code. See also programming languages; programs

automatically generated, 4–5
breakpoints in. See breakpoints
Call Hierarchy feature, 148–150
call sites, 148–150, 163
in class libraries, 126–129
debugging. See debugging
generating with Class Designer, 138–141
hierarchical model, 114–115
IntelliTrace, 165–166
for interfaces, 101–106
managed, 154
on McGraw-Hill Web site, 103
Pin To Source feature, 164–165
reusing, 149
skeleton, 4–5, 39–43
snippets. See snippets
stepping through, 158–159
unmanaged, 154
unsafe, 133, 134
using in class libraries, 126–129
visualizing with Class Designer, 137–138



 Index 419

code editor. See VS Code editor
code libraries. See class libraries
code-behind file, 228–234
coding, 49–66. See also specific languages

branching statements, 57–61
classes. See classes
debugging. See debugging
enums, 55–57
expressions. See expressions
Intellisense. See Intellisense
methods. See methods
primitive types, 52–54
running programs, 51–52
snippets. See snippets
tools for, 148–150
VS features, 4–5
Web service calls, 329–336

collections
advantages of, 110
generic, 107–110
object, 194–197
vs. arrays, 62–63

color schemes, 25
COM (Component Object Model) applications, 121, 

124, 134
COM Interop, 133, 134
COM objects, 124
ComboBox control, 241–243
command-line arguments, 153
Common Language Runtime (CLR), 154
compiler constants, 150
compilers

assembly references, 123
C#, 133, 135
considerations, 4, 86, 96
errors/warnings, 123, 134, 204, 344
optimizations, 150, 152
settings, 133–135
VB, 134–135

compiling applications, 129–135
Component Object Model. See COM
compression, 131
computation expressions, 54
conditional breakpoints, 172
Connect class, 378–383
Console applications

creating, 37–39, 115–116
debugging, 144–179
described, 32, 36
skeleton code, 39–43

context sensitivity, 16
Control Libraries, 33
controls. See also specific controls

Silverlight, 290–293
WPF, 226–234

.cs extension, 68
CSS (Cascading Style Sheets), 252, 344
custom types, 52
Customer class, 167
CustomerRepository class, 168–171

D
data, 181–214. See also databases

adding to tables, 186–187
binding, 234–247
dirty, 173
displaying in grid, 244–247
handling with LINQ to SQL, 200–214
querying with LINQ, 194–214
reading/saving, 243–244
working with in WPF, 234–247

data model, 200
data sources, 234–241, 244
database diagram, 190–192
database projects, 34
databases, 182–194. See also data

authentication, 184
connections to, 183–184
creating, 183–184
including with applications, 253
Server Explorer, 182–193
settings, 193–194
stored procedures, 192–193
tables. See tables

DataGrid option, 244–247
Debug class, 133–134
DEBUG compilation constant, 133–134, 150
Debug configurations, 150, 153
Debug mode

configuring, 150–155
running programs in, 156, 171
starting programs in, 156, 171

Debug Output folder, 151, 152
debug properties, 152–155
debugging, 143–180

application state, 160–166
Call Hierarchy feature, 148–150
Call Stack, 163
configuring Debug mode, 150–155
described, 51
evaluating expressions, 151–152, 162
finding bugs, 171–174
fixing bugs, 174–175
history, 166
null reference exceptions, 175–179
properties, 150–155
on remote machines, 153–154
running applications, 152–153



 420 Microsoft Visual Studio 2010: A Beginner’s Guide

debugging (continued)
running programs with debugging, 52
running programs without debugging, 51
sample program with bugs, 167–179
starting programs in Debug mode, 156, 171
stored procedures, 154
VS Debugger, 166–179
.vshost files, 151–152
Web applications, 152–153

delegates, 90, 94–96. See also events
Delphi language, 5
dependencies, 131–133
development-time code tools, 148–150
diagnostic events, 165–166
directories

Create Directory, 116
name, 317
physical, 328
virtual, 315

dirty data, 173
.dll extension, 119, 124
do loops, 65–66
docking windows, 18–19
DockPanel layout, 223–224
documentation, 11
Dynamic Data projects, 33

E
Edit menu, 14
elements

accessing, 110
in arrays, 107–108
as classes, 411
in generic lists, 109–110
property, 412–414

else snippets, 58–59
else statements, 58–59
Enable Managed Code option, 154
endless loops, 157
enums, 55–57
environment

IDE, 4, 13
macros, 134, 342, 360–370
snippets. See snippets
templates. See templates

environment settings
considerations, 13
default, 11, 12–13, 28–30, 31
exporting, 23–24
importing, 24–28
modifying, 13, 22–30
resetting, 28–30

errors. See also warnings
compiler, 123, 134, 204, 344
considerations, 134

controllers, 278
null reference exceptions, 93, 175–179
vs. warnings, 134

event handlers, 91, 95–96, 228–234
event keyword, 93
EventHandler class, 94–95
events, 91–93. See also delegates

click, 228–234, 246
code completion for, 95–96
described, 90, 91
diagnostic, 165–166
example, 91–93
handling, 228–234
null, 93
use of, 91–93, 95

.exe extension, 119
Exec method, 391–395
Export Template Wizard, 346
expressions

branching, 57–59
considerations, 49
described, 54
evaluating during debugging,  

151–152, 162
performing computations, 54
primitive types, 54
viewing, 163–164

Extensible Markup Language. See XML

F
F# language, 31, 36
false/true conditions, 55, 57, 62
fields

backing, 85, 86
considerations, 81, 83
declaring, 81–83
described, 69, 81
example of, 68, 69
using, 81–83
vs. properties, 83

file locks, 154
File menu, 14
File Properties window, 122
File Transfer Protocol (FTP), 315, 317, 319
files

code-behind, 228–234
compressing, 131
.dll, 124
hidden, 117–118
log, 7, 166
.pdb, 151
project, 116–121
.vshost, 151–152
XML, 134

floating windows, 19–20



 Index 421

folders
hierarchy of, 116–118
projects, 116–118
snippets, 358–359
solutions, 116–118

for loops, 61–64
foreign keys, 187–192
FTP (File Transfer Protocol), 315, 317, 319

G
GAC (Global Assembly Cache), 122–123
generic collections, 107–110
generic lists, 109–110
get accessors, 84, 86
Global Assembly Cache (GAC), 122–123
Global.asax file, 253
Globally Unique Identifier (GUID), 121
graphical user interface (GUI), 95
Grid layout, 220–222
GUI (graphical user interface), 95
GUID (Globally Unique Identifier), 121

H
Help menu, 15
hidden files, 117–118
HTML (Hypertext Markup Language)

considerations, 260
helper methods, 272–273, 278
viewing code, 256–261
XHTML, 404

I
.ico extension, 120
Icon setting, 118, 120
icons, 16–17, 120, 236, 295
IDE (integrated development environment), 4, 13
if snippets, 58–59
if statements, 57–59
IIS (Internet Information Server), 314–326
immediate if operator, 55
Immediate window, 162
impedance mismatch, 201
Implements keyword, 101
Import and Export Settings Wizard, 22–32, 45
Imports directive, 129
indicator margin, 44
inheritance, 70–72
instance methods, 74–75
instances, 40–41, 129, 148
int type, 78, 80
Integer keyword, 54

integrated development environment (IDE), 4, 13
Intellisense

C# options, 50–51
Consume First mode, 47
described, 5
saving keystrokes with, 49–51
snippet completion lists, 47, 49, 50
Standard mode, 47
switching between modes, 47
using, 49–51
writing expressions, 163

IntelliTrace window, 165–166
interface snippets, 106
interfaces, 96–106

creating, 97
creating classes for, 98–101
modifying, 97
overview, 96
WCF, 302–308, 377–383, 389
writing code for, 101–106

Internet Information Server (IIS), 314–326
item templates, 347–353
items. See project items

J
Java applications, 300–301
JavaScript, 253, 257, 272, 288
joins, 205–209

K
keyboard shortcuts, 15, 44, 47
keywords, 47

L
Language Integrated Query. See LINQ
languages

C#. See C# language
C++, 31, 36, 154, 373
Delphi, 5
F#, 31, 36
HTML. See HTML
included with VS 2010, 36
Visual Basic. See VB
WSDL, 301
XAML. See XAML
XML. See XML

libraries. See class libraries
library files. See assemblies
license key, 8
licensing terms, 7–8
LINQ (Language Integrated Query), 186, 194–214



 422 Microsoft Visual Studio 2010: A Beginner’s Guide

LINQ projections, 198–199
LINQ to SQL, 200–214

creating items, 305
deleting data, 212–214
inserting data, 210–211
multiple tables, 205–210
overview, 200
querying, 203–210
setting up, 200–201
updating data, 211–212
WPF applications, 246–247

LINQ to SQL Designer, 200–203
LINQ to SQL Wizard, 200, 205
ListBox control, 241–243
lists, generic, 109–110
local variables, 81
Locals window, 160–161, 162
log files, 7, 166
loops, 61–66

endless, 157
for, 61–64
while, 64–65

M
Macro Editor, 365–370, 374, 380
Macro Explorer, 364–365
macros, 134, 342, 360–370
Main method, 40–41, 49, 120
manifest, 120–121
Manifest setting, 118, 120–121
markup extensions, 414–416
MasterPages, 257–260, 270, 273
mathematical operators, 54
McGraw-Hill Web site, 103
member locators, 44
Memory window, 173
menu bar, 14–15
method results, 78–80
methods, 72–80. See also specific methods

adding parameters to, 75–78
calling, 72–75
declaring, 72–75
delegates. See delegates
events. See events
instance, 74–75
naming, 40–41, 231
overview, 72
private, 74
public, 74
returning values from, 78–80
shared, 74
snippets, 80
static, 41, 74
using, 72–75

Microsoft Developer Network (MSDN), 6, 326

Microsoft Office applications, 124
Microsoft Office projects, 34
Model View Controller. See ASP.NET MVC
MSDN (Microsoft Developer Network), 6, 326
MVC objects, 250–254, 270–276. See also ASP.NET MVC

N
namespace snippet, 47–48
namespaces

assembly references and, 122
default, 116, 119, 328, 406
overview, 42–43
Root, 119
setting, 119
VB, 43
XML, 406–407

naming conventions, 40–43, 116, 231
.NET assembly references, 123–124
.NET CLR. See CLR
.NET Framework, 38, 90, 119, 124, 320
.NET Framework Class Library, 13
.NET types, 53–54
New Project window, 37, 115–116
New Project Wizard, 39, 253
null events, 93
null reference exceptions, 93, 175–179
null values, 176–179

O
object collections, 194–197
objects

COM, 124
creating, 139
debugging and, 148
instantiating from classes, 69
MVC, 250–254, 270–276

Office applications, 124
Office project types, 124
Office projects, 34
OnConnection method, 384–391
OOB (Out-of-Browser) functionality, 294–297
operating systems. See specific Windows systems
operators

immediate if, 55
mathematical, 54
ternary, 55, 57

optimization, 131
Options menu item, 15
Options window, 45, 46, 154–155
Other Windows menu item, 14
Out-of-Browser (OOB) functionality, 294–297
Output type, 119–120
Output Type setting, 118, 119–120



 Index 423

P
parameters, 75–78
parent classes, 70
parent/child relationship, 187–192, 206
.pdb files, 151
Pin To Source feature, 164–165
primary keys, 186–189, 191, 201
primitive types, 52–54
private modifier, 83
private variables, 85
product key, 8
Program class, 41–42, 44, 137
programming languages. See also languages

C#. See C# language
C++, 31, 36, 154, 373
Delphi, 5
F#, 31, 36
included with VS 2010, 36
Visual Basic. See VB

programs. See also code
debugging, 52, 156, 171
pausing execution of, 157
running, 51–52

project items, 21, 86, 116
Project Properties window, 118–122
projections, 198–199
projects. See also solutions

adding to solutions, 117–118
artifacts, 116, 117, 136
ASP.NET MVC. See ASP.NET MVC
“bare bones,” 36–39
build order, 131–132
building/rebuilding, 129–130
C#, 31, 33, 115–116, 150, 151
C# vs. VB, 115–116
Class Designer visualization, 137–138
Class Library, 119, 124, 125–129
cleaning, 130–131
compiler settings, 133–135
Console. See Console applications
creating, 36–39, 115–116
database, 34
deleting, 116
dependencies, 131–133
folders, 116–118
hidden files, 117–118
hierarchical relationships, 116–118
location, 37
Microsoft Office, 34
modifying, 343–344
naming/renaming, 37, 115–116, 119, 126
navigating with Class view, 136
new, 31–32
optimizing, 131
organizing principles, 114–115
overview, 31–32

property settings, 118–122
recent, 116
referencing assemblies, 122–129
resetting references, 126
saving as templates, 344–346
searching for, 38
SharePoint, 34
Silverlight, 285–298
sorting, 38
templates for. See templates
types of, 30–34
viewing available, 30–32
viewing with Class Designer,  

137–141
WCF. See WCF
web, 33, 286
Windows Projects, 32–33
WPF. See WPF

properties
accessors, 84
automatic, 85–86
debug, 150–155
declaring, 81–86
described, 81
example of, 83–84
projects, 118–122
setting, 228
using, 81–86
vs. fields, 83

Properties folder, 117, 118
Properties window, 118–122, 139, 227–233
property elements, 412–414
property snippet, 86
public access modifier, 74

Q
queries. See also LINQ to SQL

on multiple tables, 205–210
object collections, 194–197
stored procedures, 192

QueryStatus method, 395–397
question mark (?), 162
Quick Watch window, 163–164

R
refactorings, 5
Reference Paths, 125
references

adding to COM objects, 124
assembly, 122–129
class libraries, 125–126
external .dll files and, 124
resetting, 126



 424 Microsoft Visual Studio 2010: A Beginner’s Guide

Release configurations, 150, 153
releases, 6, 11, 12
remote debugging, 153–154
repository, 265–268, 282
resources, referencing, 414–416
Resources option, 121
Root namespace, 119
routing, 262–264

S
scope, 160–161
search features, 38, 158
select statement, 59–60
serialization assemblies, 133
Server Control projects, 33
Server Explorer, 182–193
service reference, 326–334
service releases, 6, 11, 12
set accessors, 84, 86
shared methods, 74
shared modules, 41
SharePoint projects, 34
shortcut keys, 15, 44, 47
Silverlight, 285–298, 326, 336. See also XAML
Silverlight applications, 285–298
skeleton code

automatically generated, 4–5
Console application, 39–43

.snippet extension, 354
snippets

class, 71–72
creating, 353–358
do loops, 65–66
else, 58–59
examining, 354–356
for each loops, 63–64
for loops, 62
if statements, 58–59
interface, 106
library of, 358–359
method, 80
namespace, 47–48
overview, 47–48
pick list, 47
property, 86
switch statement, 60–61
using, 47–48
while loops, 64–65

snippets folders, 358–359
Snippets Manager, 359
Solution Explorer, 116–118

Console application creation, 38
managing build order, 131–132
managing dependencies, 131–133

opening/closing items, 21
overview, 16
working with controls, 227

solution folders, 116–118
solutions. See also projects

adding projects to, 117–118
artifacts, 116, 117, 136
building/rebuilding, 129–130
cleaning, 130–131
contents, 38–39
described, 38
folders, 116–118
hierarchical relationships,  

116–118
naming, 115–116
organizing principles, 114–115
showing, 116–117

sorting/searching features, 38, 158
source code. See code
source control, 116
SQL. See LINQ to SQL
StackPanel layout, 222–223
Start page, 15
Startup object, 118, 120
statements

branching, 57–61
considerations, 49
else, 58–59
if, 57–59
using Intellisense with, 49–51

static keyword, 40
static methods, 41, 74
Status bar, 16
Step Over operation, 159
stored procedures

databases, 192–193
debugging, 154
in LINQ to SQL, 209–210

Sub Main method, 40
switch statement, 59–61
switch statement snippets, 60–61
system icons, 120
System namespace, 42, 43
system requirements, 6

T
tabbed windows, 20–21
tables

adding data to, 186–187
adding to databases, 185–187
considerations, 201, 202
foreign keys, 187–192
multiple, 187–192, 205–210
performing queries on, 205–210



 Index 425

target framework, 119
Target Framework setting, 118, 119
Team Foundation Server (TFS), 15
Team menu, 15
templates

creating, 343–347
exporting, 344–346
implementing, 342–353
item, 347–353
options, 345–346, 352–353
overview, 342–343
saving projects as, 344–346

ternary operator, 55, 57
Test menu, 15
TFS (Team Foundation Server), 15
title bar icons, 16, 17
toolbar, 15
Toolbox

Class Designer, 138–139
general information, 16–20
working with controls, 227–228

Tools menu, 15
Trace class, 133–134
TRACE compilation constant, 133–134, 150
true/false conditions, 55, 57, 62
types. See also specific types

anonymous, 198–199, 206
class, 68
considerations, 41
custom, 52
described, 68
.NET, 53–54
Office projects, 124
primitive, 52–54

U
UAC (User Account Control), 120
underline (_), 55
Until condition, 65
Until keyword, 65
User Account Control (UAC), 120
user interface, 226, 234, 251, 404
using directives, 43, 129

V
value keyword, 84
values

null, 176–179
returning from methods, 78–80

variables
application state, 160–166
described, 52

local, 81
primitive types, 52–54
private, 85
in scope, 160–161
watching in Watch window, 161–162
watching with Pin To Source, 164–165

VB (Visual Basic.NET)
considerations, 13
inheritance, 70
popularity of, 36
primitive types, 53
vs. C# language, 13, 36, 115–116

VB compiler, 134–135
.vb extension, 68
VB namespaces, 43
VB projects. See also projects

assembly references, 124
naming, 116
target framework, 119
vs. C# projects, 115–116

VBA (Visual Basic for Applications), 34
View menu, 14
Views, 256–261
virtual directories, 315
Visual Basic for Applications. See VBA
Visual Basic.NET. See VB
Visual Designer, 191, 220, 227, 228
Visual Studio 2010. See VS 2010
Visual Studio Hosting Process, 154
Visual Studio projects, 30–34. See also projects
void keyword, 40, 74
VS (Visual Studio) 2010

add-ins. See add-ins
described, 4
documentation, 11
installing, 6–13
interface, 13–16
languages included with, 36
license key, 8
licensing terms, 7–8
managing windows, 16–21
modifying environment settings, 22–30
navigating, 13–16
privacy statement, 7
product key, 8
releases, 6, 11, 12
restoring default settings, 28–30, 31
starting, 13–14
system requirements, 6
versions, 6, 7

VS Code editor, 45–48
VS Debugger, 166–179
VS editor, 5
VS Recent Projects list, 116
VS2010ImageLibrary file, 120
.vshost files, 151–152



 426 Microsoft Visual Studio 2010: A Beginner’s Guide

W
warnings, 23, 134, 189, 190. See also errors
Watch windows, 161–162
WCF (Windows Communication Foundation), 299–338. 

See also Web Services
communicating with WCF services, 326–338
hosting WCF services, 314–326
overview, 300–301
starting WCF projects, 301–314

WCF classes, 308–314
WCF contract, 302–308
WCF projects, 301–314
WCF services. See Web services
Web applications

building controllers, 254–256
creating, 251–254
creating models, 254
customer management, 264–284
debugging, 152–153
displaying views, 256–261
managing routing, 262–264
portal-style, 34

web projects, 33, 286
Web Service Description Language (WSDL), 301
Web services, 299–338. See also WCF

adding to Web sites, 337–338
communicating with, 326–338
hosting on IIS, 314–326
overview, 300–301
proxies, 328–333
used by clients, 336–337

Web Services projects, 33
Web sites

adding Web services to, 337–338
creating on IIS, 315, 317–321
deploying Silverlight applications to, 297–298
deploying Web services, 315, 317, 325–326, 336

web.config file, 253
while loop snippets, 64–65
while loops, 64–65
Win32 resources file, 121
windows, managing, 16–21
Windows 7 systems, 6, 34, 315–317
Windows 2003 systems, 6
Windows 2008 systems, 6, 34, 300, 321
Windows Application projects, 119, 120
Windows Communication Foundation. See WCF
Windows Forms, 32, 219
Windows menu, 15
Windows Presentation Framework. See WPF
Windows Projects, 32–33
Windows Services, 33
Windows versions, 6

Windows Vista systems, 6, 34
Windows XP systems, 6, 34
wizards

Add-In Project Wizard, 372–383, 398
ASP.NET MVC Project Wizard, 261
Export Template Wizard, 346
Import and Export Settings Wizard, 22–32, 45
LINQ to SQL Wizard, 200, 205
New Project Wizard, 39, 253
options for, 5

work area, 15
working directory, 153
WPF (Windows Presentation Framework),  

217–247
binding data, 234–247
Click-Once applications, 120
controls, 226–234
layouts, 220–226
output types, 120
starting projects, 218–220, 410–411
working with data in, 234–247
XAML. See XAML

WrapPanel layout, 224–225
WSDL (Web Service Description Language), 301

X
XAML (XML Application Markup Language), 409–416

attributes, 411
considerations, 218
controls, 227
elements, 411
markup extensions, 414–416
overview, 410
property elements, 412–414
Silverlight projects, 286–290
starting WPF projects, 218–220, 410–411
WPF controls, 228

XAML documents, executing, 411–412
.xaml extension, 227
XHTML (XML for HTML), 404
XML (Extensible Markup Language)

introduction to, 403–407
WCF services, 300–301, 330

XML Application Markup Language. See XAML
XML documentation file, 134
XML Editor, 356, 404
XML files, 134
XML for HTML (XHTML), 404
XML menu, 407
XML serialization, 134
XML Transformation (XSLT), 407
XSLT (XML Transformation), 407


	Contents
	Acknowledgments
	Introduction
	Part I: Understanding Visual Studio 2010 Essentials
	1 Introducing Visual Studio 2010
	What Is Visual Studio 2010 About?
	Installing Visual Studio 2010
	Navigating the Visual Studio 2010 Environment
	Managing VS Windows
	Modifying Environment Settings after Setup
	Familiarization with Visual Studio Project Types
	Summary

	2 Learning Just Enough C# or VB.NET: Basic Syntax
	Starting a Bare-Bones Project
	Examining the Code Skeleton
	An Overview of the VS Code Editor
	Coding Expressions and Statements
	Summary

	3 Learning Just Enough C# and VB.NET: Types and Members
	Creating Classes
	Writing Methods
	Coding Fields and Properties
	Summary

	4 Learning Just Enough C# and VB.NET: Intermediate Syntax
	Understanding Delegates and Events
	Implementing Interfaces
	Applying Arrays and Generics
	Summary


	Part II: Learning the VS 2010 Environment
	5 Creating and Building Projects
	Constructing Solutions and Projects
	Examining Property Settings
	Referencing Assemblies
	Compiling Applications
	Navigating a Project with Class View
	Using the Class Designer
	Summary

	6 Debugging with Visual Studio
	Example Code for This Chapter
	Development-Time Code Tools
	Configuring Debug Mode
	Setting Breakpoints
	Stepping Through Code
	Inspecting Application State
	Solving Problems with VS Debugger
	Summary

	7 Working with Data
	Working with Databases
	Learning Language Integrated Query (LINQ)
	Handling Data with LINQ to SQL
	Summary


	Part III: Building Programs with VS 2010
	8 Building Desktop Applications with WPF
	Starting a WPF Project
	Understanding Layout
	Using WPF Controls
	Working with Data in WPF
	Summary

	9 Creating Web Applications with ASP.NET MVC
	Understanding ASP.NET MVC
	Starting an ASP.NET MVC Project
	Creating the Models
	Building Controllers
	Displaying Views
	Managing Routing
	Building a Customer Management Application
	Summary

	10 Designing Silverlight Applications
	Starting a Silverlight Project
	Navigating the Silverlight Designer
	Using Silverlight Controls
	Running Silverlight Out-of-Browser (OOB)
	Deploying Silverlight Applications
	Summary

	11 Deploying Web Services with WCF
	Starting a WCF Project
	Hosting a WCF Service
	Communicating with a WCF Service
	Summary


	Part IV: Enhancing the VS 2010 Experience
	12 Customizing the Development Environment
	Implementing Custom Templates
	Creating Custom Snippets
	Writing Macros
	Summary

	13 Extending Visual Studio 2010
	Creating a Visual Studio Add-In
	Adding Functionality to an Add-In
	Deploying an Add-In
	Where to Go Next
	Summary


	Part V: Appendixes
	A: Introduction to XML
	VS 2010 XML Editor
	XML Prefixes
	XML Elements
	Attributes
	Namespaces
	The XML Menu
	Configuring XML Options
	Summary

	B: Introduction to XAML
	Starting a WPF Project
	Elements as Classes
	Attributes as Properties
	Executing the XAML Document
	Property Elements
	Markup Extensions
	Summary


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


