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Foreword to the 1992 Edition
[an Mueller

ProcLus’ COMMENTARY on book I of Euclid’s Elements is almost cer-
tainly a written version of lectures which he presented to students and
associates in Athens in the mid-fifth century.! The work was presumably
circulated among philosophers in the Roman (Byzantine) empire and
used as the basis for other people’s lectures, just as Proclus made use of
various written sources in the composition of his own commentary.
Readers of the commentary should always bear in mind that, although it
is the work of Proclus, it is also a record of an educational and intellec-
tual tradition. Modern scholars refer to that tradition as Athenian Neo-
platonism, but for Proclus and all members of the tradition it was simply
Platonism, the philosophy of Plato.

Friedlein’s standard edition of the Greek text of our commentary de-
scribes it as the work of Proclus Diadochus, or Proclus the successor.
The exact meaning of “‘successor’” is elusive,? but in the case of philos-
ophy the basic idea of calling someone a successor is to identify that
person as a member of a sequence of **head’’ teachers of a philosophical
position; so Proclus was one of a sequence of head teachers of Plato-
nism. We can trace a relatively clear line of succession in that sequence,
starting with Proclus’ own first teacher in Athens:

Plutarch’® of Athens (ca. 350-ca. 432)

Syrianus (head from death of Plutarch until his own death)

Proclus (head from death of Syrianus until his own death in 485)

Marinus (head from death of Proclus until his own death)

Isidore (head from death of Marinus until his own death sometime before 526)
Damascius (head from death of Isidore until 7)*

' This introduction is intended to supplement Glenn Morrow's original introduction and
notes, which it presupposes. There is, however, some unavoidable overlap. 1 cite Proclus®
commentary according to the pagination of Friedlein, which is printed in the margin of
Morrow's translation.

* On this topic see John Glucker, Antiochus and the Late Academy (Hypomnemara 56)
(Gittingen, 1978), esp. pp. 146-58. This work is fundamental for understanding the his-
tory of late Platonism.

* Not to be confused with the more famous Plutarch of Chaironeia, who lived approxi-
malely three centuries earlier.

¥ Three other people are somelimes inserted in this chain: Domninus (an approximate
contemporary of Proclus), Hegias, and Zenodotus (approximate contemporaries of Isi-
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FOREWORD

In 529 the Emperor Justinian issued laws barring pagans and other her-
etics from military service, public office, and teaching, with the penalty
for offense being confiscation of property and exile. We do not know
anything about the enforcement of this law.® However, according to the
historian Agathias, Damascius and six other philosophers, the best
known of whom is Simplicius, went to Persia, but soon were permitted
by an agreement between Persia and Constantinople—reliably dated to
late 532—to return home and live in peace. Scholars have disagreed
about where home might be, and it has been suggested that at least Sim-
plicius returned to Athens, where he composed his major commentaries
on works of Aristotle. However, we have no evidence that pagan phi-
losophy was taught in Athens after 529.

In his Life of Proclus (Par. 29)° Marinus says that his master inhabited
the house in which Plutarch and Syrianus had lived before him. Marinus
also tells us that the house was located near the temple of Asclepius and
the theater of Dionysos, and visible from the Acropolis. Archaeologists
have now identified what they call the *‘*house of Proclus.”’” Whether or
not this identification is correct, it is likely that Proclus lived in a house
which was handed down through the succession and also served as the
school where Proclus and his associates talked and held classes for an
audience including both *‘mere listeners’’ and others eager to become
bona fide Platonists.® This school had no physical connection with the

dore). For an attempt to fit them into the succession as “‘seconds-in-command™ see
Glucker, Antiochus, p. 155 n. 122,

* It is, then, somewhat misleading to speak simply of Justinian closing the schools and
confiscating their properties, as is frequently done. On the subject of Justinian's laws and
their effect on Athens see Alan Cameron, *“The Last Days of the Academy at Athens,”
Proceedings of the Cambridge Philological Sociery 195 (n.s. 15) (1969): 7-29,

® The Greek text is now available in Marino di Neapoli, Vita di Proclo, critical 1exi,
introduction, translation, and commentary by Rita Masullo (Naples, 1985). Although
Marinus’ Life does provide some biographical and historical information, it is an example
of pagan hagiography, and should be read as such. For discussion of it see H. J. Blumen-
thal, “*‘Marinus’ Life of Proclus: Neoplatonist Biography,”” Byvzamiion 54 (1985): 469-94,
For general background see Garth Fowden, *'The Pagan Holy Man in Late Antique Soci-
ety,”” Journal of Hellenic Studies 102 (1982): 33-59.

T See pp. 4244 of Alison Frantz, Late Antiguiry: A.D, 267-700 (The Athenian Agora
24) (Princeton, 1988), an excellent source for the history of Athens as a **provincial uni-
versity town"" from the so-called Herulian invasion to its dark ages.

® Marinus, Par. 38. In Par. 22 Marinus gives a brief description of Proclus® working
day, on which see Otmar Schissel, **Der Stundenplan des Neuplatoniker Proklos,”” By-
zantinische Zeitschrift 26 (1926): 265-72. 1t is clear that Proclus had access to a consid-
erable number of written works, but private libraries attached to private schools are not
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FOREWORD

so-called Academy founded by Plato in the fourth century B.C.E., an
institution which almost certainly ceased to exist about three centuries
after its founding.” The Neoplatonic **school’’ of Athens was a privately
funded, self-perpetuating group of pagans who strove to keep alive the
truth of the Hellenes by recruiting and teaching students. The teachers
and pupils were in many cases wealthy aristocrats. Marinus (Par. 4) says
that Proclus’ parents were very rich, and that Proclus’ inheritance made
him indifferent to money. Proclus gave many gifts to his friends and to
Athens, which, along with his native Xanthus (Kinik, Turkey) inherited
his fortune (Par. 14). Of greater significance is the fact that the school
had a very substantial endowment with which to support its members. "
The income from the endowment would have been supplemented by
student payments.'' Proclus, who was active in civic affairs (Par. 15),
asked the rulers to provide support for students (Par. 16); we are not told
whether his request was granted.

Proclus, then, was a teacher, the head of an endowed *‘private
school,”” which supported other teachers as well, and received income
from student payments.'? The sources of information about **higher ed-
ucation’’ in antiquity are scattered, but they enable us to put together a
fairly clear picture of its broad outlines.'* The core of the system was

unknown; Philostratus, Lives of the Sophists, 11.21 (604) provides an example from ca.
200 C.E.

¥ See especially Glucker, Anriochus.

% The annual income from the endowment is given as at least one thousand gold no-
mismata or solidi (over fourteen Roman pounds of gold). On the value of the solidus see
A H.M. Jones, The Larer Roman Empire (Oxford, 1964), pp. 445-48. Jones describes as
liberal an allocation of six solidi a year for the monks of a monastery in the Jordan valley.
The Justinian Code gives seventy solidi a year as the salary of a teacher of grammar or
rhetoric in Carthage.

"' On student payments see Alan Cameron, “‘Roman School Fees,'” Classical Review
n.s. 15 (1965); 257-58.

2 Because of the great difficulty of dating Proclus® works, which he revised over time,
we cannol be sure that he did not write the Euclid commentary before he became head of
the school, The evidence mentioned by Morrow on this question (p. Ivi) is inconclusive,
since Proclus can refer to Syrianus as “‘our head’” while speaking of Syrianus’ pasi
achievements; see, for example, Proclus' commentary on the Republic, 1.133.5-7. On the
difficulties of dating Proclus' works see RE, 45th half-volume (1957), cols. 190-91.

¥ The best work on this subject remains H. 1. Marrou, A History of Education in Antig-
wity (London, 1956), a translation of the third edition of Marrou's Histoire de I education
dans I' antiguiré, of which there is a sixth edition (Paris, 1965). Fritz Schimmel provides
an organized collection of relevant passages on Athens in late antiguity in **Die Hoch-
schule von Athen im iv. und v. Jahrhundert p. Ch. n.,”” Neue Jahrbiicher fiir das klass-
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FOREWORD

the individual teacher who made a living by teaching pupils who were
young and mainly, but not exclusively, male. A successful teacher
would have an inner circle of cohorts who also taught, and his students
would come from all over the Roman world. Teaching could be done in
private, but it was also done in public buildings. Some teachers held
imperial or municipal appointments, but they did not normally have a
monopoly on instruction in a locality. Sometimes these teachers supple-
mented their salaries with student payments, but the only income of oth-
ers seems to have been their salaries, which could be quite substantial.

Given the individualistic nature of higher education in antiquity, it is
not surprising that the line between a teacher and, say, a hierophant
might be hard to draw. The main officially recognized subjects of higher
education were letters (grammatiké), rhetoric, philosophy, medicine,
and law. For the purposes of this introduction it is simplest to treat the
last two of these as technical disciplines taught by practitioners. The
other three formed the more general part of higher education—what we
might call liberal education. Of these, letters, the study of literary clas-
sics, was the most fundamental and the least esteemed. The struggle
between rhetoric and philosophy for the hearts and minds of young men
goes back at least to the rivalry between Plato and Isocrates in the fourth
century B.C.E. In general the rhetorician insisted on his ability to act
effectively in the public arena, whereas the philosopher insisted on his
deeper knowledge and greater purity. The competition between the rhet-
oricians and philosophers for students and for esteem led inevitably to a
blurring of the distinction between their two fields. Aristotle had written
a treatise on rhetoric, and the Stoics divided their logic into dialectic and
rhetoric (Diogenes Laertius, VI1.41). According to Cicero (Tusculan
Disputations 11.9), Philo, the last known head of Plato’s Academy, di-
vided his teaching equally between rhetoric and philosophy. There sur-
vive two commentaries by Proclus’ master Syrianus on rhetorical trea-
tises by Hermogenes;'* Damascius studied rhetoric for three years, and
taught it for nine (Photius, Library 181 [127a]).

ische Alternum 22 (1908): 494-513. See also Alan Cameron, **The End of the Ancient
Universities,' " Cahiers d’hisroire mondiale 10 (1966-1967); 653-73. and Garth Fowden,
**The Platonist Philosopher and His Circle in Late Antiquity,’’ Philosophia 7 (1977). 359-
K3,

" Rherores graeci, vol, 16 (Leipzig, 1892). Al the beginning of his commentary on
Hermogenes' On ldeas Syrianus remarks that many sophists and Platonic philosophers
had commented on it. Proclus remarks on the way mathematics provides a model for
rhetoric at 24.21-25.5 and 247.6-248.13.
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FOREWORD

Athens appears to have been the preeminent philosophical center of
the Greek world from at least the fifth until the first century B.C.E.
Although there certainly were philosophical teachers and schools else-
where, the major schools—Platonic, Epicurean, Stoic, and, for at least
the beginning of the period, Aristotelian—were taught most authorita-
tively in Athens. Wars, and particularly the sacking of Athens by Sulla
in 86 B.C.E., appear to have changed this situation. For the first four
centuries of the common era we know more about the philosophers liv-
ing in other cities than we do about ones living in Athens, and more
about rhetors and sophists at Athens than about philosophers there.'s
However, it appears that at least by the end of the second century, when
Roman interest in reviving Athens produced a very ambitious building
program, the city reemerged as an educational center. In 176 Marcus
Aurelius established four high-paying chairs of philosophy in Athens,
one for each of the four major sects, Platonists, Peripatetics, Stoics, and
Epicureans, as well as at least one chair in rhetoric. These chairs were
official appointments, sustained by public funding; they were not part of
a self-perpetuating school like Plato’s Academy or the succession of
Athenian Neoplatonists. There were also imperial appointments in let-
ters and rhetoric in other cities, and localities made their own official
appointments as well. The evidence suggests that, while public support
for teachers of rhetoric and grammar continued into late antiquity, sup-
port for the teaching of philosophy dwindled.'® The factors involved in
this decline are undoubtedly complex, but two of them would seem to
be the “‘impracticality’” of philosophy and the sense that philosophy was
less easily assimilated to Christianity than rhetoric. It is well-known that
ancient education remained essentially pagan under the Christians for a
long time, but it is one thing to take Thucydides or Demosthenes as a
model of literary style, another to take Plato or Aristotle as a model of
cosmic or theological understanding.

In his life of Plotinus (Par. 15) Porphyry refers to a correspondence
between Plotinus and a **Platonic successor in Athens'’ named Eubulus,

1% See especially the Lives of the Sophists by Philostratus (for the second century) and
by Evnapius (for the fourth). For discussion of the second century see James H. Oliver,
“The diadoché at Athens under the Humanist Emperors,'” American Jowrnal of Philology
98 (1977): 160-78, and John Patrick Lynch, Aristorle’s School (Berkeley and Los Ange-
les, 1972), pp. 168-207.

' The major exception is Alexandria. See H. D. Saffrey. **Le chrétien Jean Philopon
el la survivance de 1'école d*Alexandrie au VI* sigcle,”” Revue des études grecques 66
(1952): 396-410.
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FOREWORD

who would have been alive around the year 267, when Athens suffered
a devastating attack from a people known as Herulians.'” Unfortunately,
we do not know exactly what the term *‘successor’’ means in this con-
text. For us the Platonic succession begins again with Plutarch at a time
when, after a long period in which most of the Agora lay in ruins, Ath-
ens had begun to rebuild. At the beginning of The Platonic Theology
Proclus gives—in somewhat high-flown language—his own account of
a “‘spiritual’’ Platonic succession. According to this account, the philos-
ophy of Plato—that is, the truth—was understood in an imperfect way
by unnamed early philosophers,'® and expressed in a perfect way by
Plato; it then became for the most part invisible to persons who called
themselves philosophers, until there emerged a new set of true Platonic
“‘exegetes’’: Plotinus, his pupils Amelius and Porphyry, their pupils
[amblichus and Theodorus of Asine, and finally Proclus’ own teacher
Plutarch, whom Proclus eulogizes without naming.

Plotinus, who died in Rome in 270, is generally taken to be the
founder of Neoplatonism. But the history of Neoplatonism and its rela-
tion to earlier forms of Platonism and the philosophy of Plato himself
are matters of considerable controversy. Amelius and Theodorus are rel-
atively obscure figures who need not concern us.'” Porphyry was Ploti-
nus’ successor and editor. He is mentioned several times by Proclus in
the Euclid commentary.?® Although Proclus is much more scrupulous
than most or all of his contemporaries in the matter of naming sources,
it is overwhelmingly likely that there is more Porphyry in the commen-
tary—particularly in the commentary on the propositions—than the six
occurrences of his name would suggest. Porphyry died in Rome at the
very beginning of the fourth century. His most famous pupil was lam-
blichus, who returned from Rome to his native Syria, where he estab-
lished a very successful school and died around 330. Although details

" Later (Par. 200 Porphyry quotes Longinus, who refers to Eubulus and Theodotus as
successors, We know nothing more about Theodotus, According to Longinus, Eubulus
wrote on Plato’s Philebus and Gorgias and on Aristotle’s objections 1o the Republic; ac-
cording to Porphyry (On Abstinence 4.16.8-9; cp. On the Cave of the Nymphs 6.10), he
wrote on ihe god Mithras.

'® The most important of these would probably be Pythagoras, Parmenides, and Emped-
ocles,

¥ For discussion see: Luc Brisson, “*Amélius, sa vie, son ocuvre, sa doctrine, son
style,”" in Aufsrieg und Niedergang der rdmischen Welt, vol. 2, part 36,2, pp. 793-86();
and Wemer Deuse, Theodoros von Asine: Sammiung der Testimonien und Kommentar
(Palingenesia 6) (Wiesbaden, 1973). Theodorus was also a student of lamblichus.

* To the references in the index to the present volume add **and to XXVI, 272-75.""
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FOREWORD

of transmission are unclear,?' it is universally accepted that lamblichus
is the major intellectual progenitor of the flourishing of Neoplatonism in
fifth-century Athens. His Neoplatonism is marked by a multiplication of
speculative ontological postulates, Pythagorean number mysticism, and
the glorification of Greek and oriental polytheism and various magical
practices known as theurgy. Proclus never mentions lamblichus in his
Euclid commentary, but the many parallels between the first part of the
prologue of the commentary and lamblichus’ work On mathematics in
general (De communi mathematica scientia) make it impossible to deny
that lamblichus was also one of Proclus’ sources.?

Porphyry’s philosophical views strike the modern reader as generally
more rationalistic and less wildly speculative than those of lamblichus.
But the two men were united with each other and with Proclus in their
vigorous espousal of paganism and opposition to Christianity, which
became the religion of the emperors in the early fourth century and even-
tually the official religion of the empire. Porphyry’s work Against the
Christians was, as far as the Christians were concerned, the major po-
lemic to be refuted. The writings of the **divine lamblichus’’ were un-
doubtedly an important source of inspiration for Julian the Apostate,*
 who studied philosophy with a student of a student of lamblichus, Max-
imus of Ephesus, and attempted to reverse the religious direction of the
empire in the mid-fourth century. Although paganism survived through-
out the empire long after Julian’s death, by the mid-fourth century ob-
servance of pagan rites was undoubtedly a risky business.?* It is not
surprising that we do not find many references to Christians in Proclus.
In those we do find, the Christians are named obliquely as, e.g.,
**strangers to our world,” *‘the ignorant,”” *‘the godless.”'>® Any at-

2 For an attempt to explain the transmission see Alan D. Cameron, “‘lamblichus at
Athens,"” Athenaeum n.s. 45 (1967): 143-53.

** On this topic see lan Mueller, **lamblichus and Proclus’ Euclid commentary,"" Her-
mes 115 (1987); 334-48,

I See especially Julian's letter 12 {Bidez).

M See Walter E. Kaegi, '“The Fifth-Century Twilight of Byzantine Paganism,"" Clas-
sica et Mediaevalia 27 (1966). 243-75. Jean Gaudemet, L'église dans I'empire romain
(iv: and v siécles), 2d ed. (Paris, 1989), pp. 646-52 surveys the antipagan legislation of
the fourth and fifth centuries.

# See Henri-Dominique Saffrey, ** Allusions antichrétiennes chez Proclus: le diadogque
platonicien.'" Revue des sciences philosophigues et théologigues 59 (1975): 553-63. Pro-
clus did attack the doctrine of the temporal creation of the world in a work which Philo-
ponus refers to as “‘eighteen arguments for the eternity of the world against the Chris-
tians.""
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FOREWORD

tempt to understand the commentary as an intellectual production should
take into account Proclus’ view of himself as the defender and preserver
of a great cultural tradition under attack by a godless and ignorant group
of people who were taking over the world.

We have seen that for Proclus the tradition which we call Neoplaton-
ism was simply a reemergence of the true understanding of Plato. Phi-
losophy for Proclus is Platonic exegesis because Plato knew all the phi-
losophy there is to know. Scholars disagree about the accuracy of
Neoplatonic conceptions of Platonic philosophy, but there is fairly gen-
eral agreement that Neoplatonic exegesis depends heavily on texts and
traditions which postdate or are independent of Plato. These texts and
traditions include: the works of Aristotle, which the Neoplatonists used
to fill perceived gaps in Plato’s discussions of particular topics; the sci-
entific tradition and its exegesis and development in all philosophical
schools including the Stoic school;*® a curious body of **Neopythago-
rean’’ literature in which Platonic ideas are blended with number mys-
ticism;*" and syncretic spiritual/magical ideas, which for Proclus are
most fully embodied in the Chaldean Oracles.*® Broadly speaking one
may say that in expounding Platonism Neoplatonists were willing to use
anything in the Mediterranean and Middle Eastern tradition which they
took to be true. Neoplatonists were guided not only by the principle that
what Plato said was—in one way or another—true, but also by the prin-
ciple that if something was true, Plato—in one¢ way or another—ex-
pressed it, referred to it, or took it for granted.

It is not the purposc of this foreword to discuss the ways in which
Proclus’ Platonism coincided with or diverged from Plato’s. But since
Proclus’ Platonism differs in significant ways from the views ascribed
to Plato in standard scholarly works, an outline of some of its basic
features which bear on the Euclid commentary may be useful.*” Partic-

* As an example of the use of Stoic logic 1 mention Proclus® reference to ““the second
type of hypothetical argument’” al 256.1-8.

T On Neopythagoreanism see especially Walter Burkert, Lore and Science in Ancient
Pyvthagoreanism, trans. Edwin L. Minar, Jr. (Cambndge, Mass., 1972), a work which
provides the foundations for a proper perspective on Proclus’ many references to Pythag-
oras and Pythagorcans. For more detailed discussion of Pythagoreanism in Athenian Neo-
platonism see Dominic J. O'Meara, Pythagoras Revived (Oxford, 1989).

# The versified record of divine revelations, probably written in the 2d century C.E. by
“‘Julian the Chaldean."' See The Chaldean Oracles, Ruth Majercik, ed. and trans. (Leiden
and New York, 1989).

2 In what follows it is important to see that [ am only occasionally concerned to distin-
guish between what Plato (or Aristotle) actually says and how Neoplatonists like Proclus

— XVI —
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ularly important in this regard is the metaphysical and educational pic-
ture presented in parts of books V, VI, and VII of Plato’s Republic. The
metaphysical picture starts from a dichotomy between the intelligible
world of being, the Forms, apprehended by intellect or mind (nous) in-
dependently of the senses, and the world of becoming, apprehended
through the senses.

In his description of the so-called Divided Line at the end of book VI
of the Republic Plato complicates the bifurcation between sensible and
intelligible by subdividing the two realms and correlating certain *‘con-
ditions of soul’” with them (figure 1).

FIGURE |
Realm Level Object “Epistemic correlate’’
Being Knowledge (epistémé)
Upper Forms nous, noésis (*'intellection™)
Lower ? dignoia (**understanding™")
Becoming Opinion
Upper sensibles belief, sensation, perception
Lower images of eikasia (*'conjecture’’)
sensibles

I have left the nature of the objects of dianoia unspecified because Plato
is not entirely explicit about their nature. In his summary of this schema
at 10.15-11.9 Proclus refers to these objects with the uninformative
term dianoéta, but he subsequently calls them logoi (translated *‘ideas’’
by Morrow), the term | shall use. The lowest level in this division will
not concern us further, but it is important to bear in mind that the rela-
tionship between the lower and upper levels in becoming is in a general
sense the model for the relationship of lower to higher levels of reality:
just as a sensible object is the cause of its reflected image, for Proclus a
higher level produces the next lower level and the lower level is a copy
of the higher **in another medium."” This relationship does not just apply
to becoming and being and to the lower and upper levels in the realm of

understand him. It is also important to realize that the metaphysical schemata applied by
Proclus in different works are not easily reconcilable in all their details and that they arc a
good deal richer than my outlines of them. A similar comment applies to the views of
various Neoplatonists whom | cite as evidence for one or another feature of a general
doctrine; a great deal of work still needs 1o be done in sorting out the relationships among
their positions. Two useful works for petting into these subjects are A. H. Armstrong, ed. ,
The Cambridge History of Later Greek and Early Medieval Philosophy (Cambridge,
1967), and R. T. Wallis, Neoplatonism (London, 1972).
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FOREWORD

being. It also applies to being and a realm above it, a realm which Pro-
clus and other Neoplatonists identify with the Good beyond being of
Republic 509b, with the featureless One of the first hypothesis of Plato’s
Parmenides, and with the ultimate God.* Adding this realm and making
some terminological adjustments to bring vocabulary somewhat closer
to Proclus’, we obtain the schema of figure 2.

FIGURE 2
Domain Object “Epistemic correlate'’
the One the One union, assimilation, identification
Being Forms HOuS, NOESES
Mathematics logoi dianoia
Becoming sensibles opinion, sensation

~ At this point | want to introduce another, standard Neoplatonist hier-
archy, which does not involve mathematics in an explicit way. In it the
nonsensible world is divided into three realms, the One, Being or Nous,
and Soul, where Soul serves in a quite complex and not easily fathomed
way as the intermediary between the nonsensible and sensible realms. A
version of this hierarchy—which Proclus invokes briefly at 115.12-
| 6—is represented in figure 3.

FIGURE 3
One
Nous/Being
Soul
World Soul individual souls
nature, the world or cosmos individual living things

Scholars often call the upper three levels of this schema, hypostases,
nonsensible realms of reality. The fourth level is derived from Plato’s
Timaeus (34cff., 41dff.), where the soul is said to be fashioned out of a
third kind of being intermediate between the intelligible and the sensi-

1 The One does not play a prominent role in the Euclid commentary because of the
place of mathematics in Neoplatonist ontological and epistemological hierarchies. Proclus
refers to the *'indescribable and utierly incomprehensible’’ causal efficacy of the One at
5.19-20.
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ble.*' The fifth level is just the sensible world and its most important
component, living things, conceived Platonistically as unions of soul
and body. Neoplatonist discussions do not distinguish clearly and uni-
formly among the embodied soul existing at the lowest level, the soul
conceived as separate or separable, and the hypostasis Soul, which
sometimes even seems to be a form of Nous. For Proclus and other Neo-
platonists the crucial point is that the human being has a soul which is
derived from the hypostasis Soul and ultimately from the One. The goal
of a human being is to rise above the conditions of ordinary existence
and to rise as far as possible in the hierarchy just described. Although
magic and superstition are an important part of the Neoplatonic tradi-
tion, Proclus clearly believes that education—and, in particular, educa-
tion in mathematics of the kind represented by the commentary—is a
component of this ascent.

We must suppose that schemas 2 and 3 somehow fit together in Pro-
clus’ mind, but it would, I think, be a mistake to try to combine them
into a single schema. Proclus’ general conceptions tend to be rather fluid
compositions of a variety of components. Rather than trying to freeze
those compositions, I want to add two other sets of components derived
from Aristotle. The first is a hierarchy derived from Aristotle’s De an-
ima. Aristotle's divisions of the soul are themselves fluid, but the Neo-
platonists focused on Aristotle’s basic division of the soul’s faculties
into nutritive, sensitive or perceptive, and intellective. Aristotle's ob-
scure description of nous at the end of II1.5 is a major source for the
Neoplatonic understanding of Nous:

Nous in this sense of it is separable, impassible, unmixed, since it is in its
essential nature activity. . . . Actual knowledge is identical with its object.
. . . It does not sometimes think and sometimes not think. When separated
it is alone just what it is, and this alone is immortal and eternal (we do not
remember because, while this is impassible, passive nous is perishable);
and without this nothing thinks. (Revised Oxford translation)

* Plato also uses mathematical ratios to describe the construction of the soul. Aristotle
already knows of Platonists who call the soul a self-moving number. And there are indi-
cations of a tradition stretching down to Proclus (see 16.16-18.4) in which there is, in
some sense, an identification of the domain of Soul and the domain of mathematics. See
Philip Merlan, From Platonism to Neoplatonism, 3d ed. (The Hague, 1968), pp. 11-33,
222-26. The evidence, which is very obscure, seems to me to justify only the claim that
some Neoplatonists analogized Soul and mathematical objects, not that they identified
them.
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For the Neoplatonists Nous is not, as we have seen, a part of Soul, but
something above Soul. Sensation can be associated with the embodied
soul, but not with the hypostasis Soui. If the embodied soul is going to
be led away from the material world to the Forms, there is presumably
going to have to be some transitional psychic activity corresponding to
Soul in figure 3 and mathematics in figure 2. Plato provides one label
for this activity with his term dianoia, which Proclus (10.15-11.25) de-
clares to be the ‘‘criterion’’ of mathematics, related to the objects of
mathematics as sensation and opinion are to sense objects.*? The pri-
mary Neoplatonic contrast between dianoia and nous is the contrast be-
tween discursiveness, which can be thought of as the feature of ordinary
reflection and thought, and the nondiscursive all-at-once grasping of a
totality which is definitory of noetic apprehension.??

Aristotle provided the Neoplatonists with another psychic activity or
faculty to associate with the transition from sensation io nous, imagina-
tion.™ Aristotle’s discussion of imagination in De anima 111.3 is very
cryptic. Perhaps its most crucial aspect for the Neoplatonists was the
positioning of this discussion between the treatments of sensation and
intellect. In Neoplatonist philosophy imagination itself occupies the
analogous intermediate position. It serves as a kind of depository for
sensations and thus provides the basis for an account of empirical knowl-
edge. But more importantly, particularly in Proclus’ Euclid commen-
tary, it serves as a Kind of movie screen on which dianeia projects im-
ages for mathematical reflection.?® These images are ultimately derived
from Forms, but since Forms are the objects of Nous, Proclus uses the
term logoi to refer to what might be called dianoetic expressions of
Forms. In Proclus’ view dianoia studies these logoi by projecting im-

Y For a briel discussion of this sense of criterion with references see Gisela Striker,
Kourfjpwov tig dinBeiag, Nachrichren der Akademie der Wissenschafien in Gértingen
Philelogisch-Historische Klasse (1974), vol. 2, pp. 55-57.

W See, for example, 4.11-14 and 44.19-23 of the commentary.

M The topic of imagination in Neoplatonism is much more complicated than my discus-
sion suggests. See the following papers by Henry 1. Blumenthal: **Plutarch’s Exposition
of the De anima and the Psychology of Proclus,”” in Olivier Reverdin, ed. , De Jambligue
& Proclus (Entretiens sur Uantigquité classigue 21) (Geneva, 1974), pp. 123-47,; "*Neopla-
tonic Interpretations of Aristotle on Phamrasia,”” Review of Metaphysics 31 (1977-197R):
242-57; and **Nowus Pathérikes in Later Greek Philosophy,” in Henry Blumenthal and
Howard Robinson, eds. ., Aristorle and the Later Tradition (Oxford Studies in Ancient Phi-
lesophy. Supp. Vol.) (Oxford, 1991). pp. 191-206.

¥ Proclus uses the image of a mirror at 121.1-7.
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ages of them onto the imagination (which he also calls passive nous).*¢
In this sense we can say Proclus associates dianoia and imagination
more or less inseparably—at least when he is thinking about mathemat-
iCs.

Aristotle (Metaphysics E.1.1026a18-19; cp. K.7.1064b1-3) gave the
Neoplatonists one other important classification, a division of theoretical
philosophy into physics, mathematics, and theology."’ Since Aristotle
identified theology with first philosophy or the study of being qua being,
the Neoplatonists had no difficulty in assimilating theology to the appre-
hension of Forms by Nous.* Mathematics clearly fits into schema 2, and
so does physics, once we take it to be the study of sensibles. When
physics is fitted into this scheme, the idea that it is mere opinion or
sensation 1s no longer appropriate. In his commentary on the Timaeus
(1.223.16-30) Proclus explains what Timaeus means when he charac-
terizes the sensible world he is going to discuss as an object of opinion
(27d1f.). After dividing the rational soul into nows, dianoia, and opin-
ion, Proclus explains that nous has converse with divinities, dianoia
puts forward sciences, but opinion ‘‘brings forward things into other
things.”” He goes on to explain that *‘opinion receives a scientific
method of making distinctions from dianoia and applies it to other
things. Opinion [in this sense] is not uncertain, it is not divided up by
the variety of sensibles, and its knowledge (eidésis) is not limited to
merc suppositions; rather it receives its content from nous and dianoia,

% For the term “"passive nons”™ see 52.3-12, 55.23-56.22, and 185.25-186.7. Proclus’
account of mathematical reasoning in chapter VI of the first part of the prologue and par-
ticularly in chapter 1 of the second are philosophical classics which have often been dis-
cussed. | refer the reader to my own discussion in *"Mathematics and Philosophy in Pro-
clus’ BEuclid Commentary,”” in Jean Pépin and H. D. Saffrey, eds., Proclus, lecteur et
interpréte des anciens (Paris, 1987), pp. 305-18. This book contains the proceedings of a
general conference on Proclus held to commemorate the filteen-hundredth anniversary of
his death; another such work is G. Boss and G. Seel, eds., Proclus et son influence (Zii-
rich, 1987).

1 On the Neoplatonic use of this trichotomy see Dominic J. O'Meara, “*Le probléme
de la metaphysique dans I"antiquité tardive,”” Freiburger Zeitschrift fur Philosophie und
Theologie 33 (1986): 3-22. Among important Neoplatonic passages on this topic | signal
Ammonius, Coemmentary on Porphyry’s Eisagogé 11.22-12.11, and Simplicius, Com-
mentary on Aristotle’ s Physics 1.14-2.7. My discussion leaves out of account the Aristo-
telian distinction among theoretical, practical, and productive sciences. | briefly discuss
the role of the theoretical/practical distinction in Neoplatonic pedagogy in n. 42 below.

" For the terminology see 9.14-25 and 20.3- 14, Cp. Syrianus, Commentary on Aris-
tertle’ s Metaphysics, 61.20-21.
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contemplates the plan of the Creator, and judges the nature (physis) of
things.™’

I am now in a position to give the more precise account of the Pro-
clean hierarchy toward which I have been working. At the highest level
there is the One, which is apprehended only by a merging of the self
which transcends knowledge. Below this are two kinds of knowledge.
The higher kind is called theology and apprehends the Platonic divini-
ties, the Forms, in a nondiscursive way by means of a **faculty”’ called
nous. The lower kind of knowledge is mathematics, which deals in a
discursive way with logoi, using imaginative representations of them.
Beneath these is physics, which apprehends the sensible world as a
whole and in its parts, using ideas derived from the two higher forms of .
knowledge; Proclus associates physics with a faculty he calls opinion.*

It remains to fit this cognitive hierarchy into the Neoplatonist educa-
tional program. For although the basic idea of this program is to lead the
student up to the One through physics, mathematics, and theology by
means of commentary on major texts, the progression does not appear
to have been conceived in a linear fashion. Nor, it seems, could it be,
since physics as conceived by Proclus presupposes some mathematics.
Moreover, complications are introduced because students also need
training in morals and logic. Our texts on the subject of education are
somewhat diverse and discrepant. [ shall base my account on Marinus’
life of Proclus, supplemented with other materials.

According to Marinus (Par. 8ff.), Proclus originally intended to fol-
low his father into the legal profession and so studied rhetoric in Con-
stantinople (Istanbul). He accompanied his rhetoric instructor to Alex-
andria, where his patron goddess Athena exhorted him to study
philosophy. In Alexandria Proclus studied mathematics and Aristoteli-
anism—Marinus mentions especially logic**—the former subject with
Heron, a very pious person who strengthened Proclus’ piety, the latter
with Olympiodorus.*' Dissatisfied with his instruction in Alexandria,

¥ It should be clear that Proclus has substituted Aristotelian theology for what Plato in
the Republic calls dialectic. | discuss Proclus® notion of dialectic in the Euclid commentary
below.

" For at least the later Neoplatonists, Aristotle’s logic included the Rhetoric and Poerics
as well as the works contained in what we call the Organon. For them the core of logic is
the Posterior Analvtics, the theory of scientific proof. See, for example, Olympiodorus,
Prolegomena 8.4-10.

41 Marinus, our only source of information on these two teachers of Proclus, says next
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Proclus left for Athens, where he read Aristotle's De anima and Plato’s
Phaedo with the aged Plutarch. After Plutarch’s death he spent two
years studying all of Aristotle—logic, ethics, politics, physics, and the-
ology (metaphysics)—with Syrianus.** These, Marinus says (Par, 13),
constituted a kind of preliminary initiation into the lesser mysteries, af-
ter which Syrianus led Proclus into the real mysteries: the doctrines of
Plato.

If we take Proclus’ educational journey to indicate a general educa-
tional plan, it seems that mathematics and logic were treated as prelim-
inaries to higher philosophical study. The reading of De anima and the
Phaedo was almost certainly intended to improve Proclus’ understand-
ing of the nature of the soul; in the case of the Phaedo 1 suspect that the
arguments for immortality were particularly important. Since Marinus
(Par. 9) says that in Alexandria Proclus **had absolutely no difficulty in
understanding Aristotle’s logical works in just one reading,”’ it seems
unlikely that much time was spent on them with Syrianus. Physics and
theology were presumably studied a second time in connection with
Plato. But the approach to the two authors would be quite different.
Simplicius indicates the probable difference of approach to the two:

There are two kinds of enlightenment which produce conviction; one pro-
ceeds from nows, one from perception. Aristotle prefers the latter since he
is speaking to those who live by the senses. In his case compulsion lies in
proofs (just as we force a person to be silent when he is not persuaded
because of certain unfortunate preconceptions). Aristotle never wants to
withdraw from nature; rather he investigates even what transcends nature
in terms of its relation to nature. Conversely, Plato, following the Pythag-

to nothing about them. The Heron mentioned here is probably not the Heron to whom
Proclus refers in the Euclid commentary, on whom see Mommow's note to 41. 10 and A. G.
Drachmann, Ktesbios, Philon, and Heron (Copenhagen, 1948), pp. 74-77. Similarly the
Olympiodorus who taught Proclus is not the Olympiodorus of the previous nole; he lived
in the sixth century.

“2 The educational position of ethics and politics was a matter of dispute among the
Neoplatonists. They seem to have resolved the dispute in a way which has its roots in
Aristotle: virtue is first inculcated in a student through maxims and examples: then, after
the student has learned logic, he is taught ethics in a theoretical way through Aristotle and
Plato. See, for example, Simplicius, Commentary on Arisiotle’ s Categories 6.1-5. Sim-
plicius’ commentary on the Enchiridion of Epictetus and Hierocles’ commentary on the
so-called Golden Verses of Pythagoras are extant examples of the way elementary ethics
was taught. Perhaps Proclus received his rudimentary ethical training when he learned
rhetoric, or perhaps we should associate this training with Heron's instilling piety in him.
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orean manner, investigates natural things insofar as they participate in what
transcends nature. Aristotle did not use myths or symbolic enigmas in the
way some of his predecessors did, but he preferred obscurity of formulation
to every other form of concealment. (Simplicius, Commentary on Aristo-
e’ s Categories 6.22-33; on Plato compare 22.9-16 of the Euclid commen-

tary.)

Thus the course of Proclus’ education was an initiation which started
from more mundane perceptual matters, but led to the higher mysteries
wrapped in Platonic enigmas.

There is an obvious tension between the division of theoretical phi-
losophy into physics, mathematics, and theology, and the curriculum,
which adds logic to these subjects. The Neoplatonists handled this dif-
ficulty by treating logic in a standard Peripatetic way as a tool (organon)
for doing philosophy, something whose use had to be learned before one
could reason at all.** However, there remains the problem that in Pro-
clus’ education training in mathematics coincided with training in logic,
so that it, too, would seem to be a preliminary to, rather than a part of,
philosophy. We know that some Neoplatonists felt this way. They cited
in their favor the alleged inscription over the door of Plato’s Academy:
“*Let no one who doesn’t know geometry enter.””* But the standard
Neoplatonic view seems to have been that mathematics was a bridge or
ladder between the sensible world of physics and the intelligible world
of theology.** It is clear that Proclus shares this view,*® so that the au-
dience for the commentary should be thought of as students who have at
least read all of Aristotle and, I would imagine, Plato’s Timaeus. Of
course, they well may have read more. The important point is that Pro-
clus sees the study of mathematics as preparing the soul for an ascent to
Platonic theology. One shouldn’t think of that theology as just a matter
of penetrating Platonic symbolic enigmas. It is certainly that, but Pro-
clus is perhaps best known as the person who axiomatized theology in
his Elements of Theology. Training in mathematics prepares the soul for
theology both by leading the soul from material to spiritual things and
by teaching it to reason about spiritual things.

1 See, for example, Philoponus, Commeniary on Aristoile’s Categories 4.23-35.
H See, for example, Olympiodorus, Prolegomena 8.39-9.1. On this inscription sec
H. D. Saffrey, “"AI'EQMETPHTOZ MHAEIZ ELIZITE2: une inscription légendaire,”’

Revie des éindes grecgues Bl (1968): 67-R7.
¥ Sec, for example, Ammonius, Commentary on Porphyry's Eisagdgé 11.23-13.7.
i See, for example, chapter V11l of pan one of the prologue.
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Having situated Proclus’ commentary in the context of Athenian Neo-
platonism, | want to say a few words about its content, focusing on some
of the important chapters of the prologue.*” Proclus begins the prologue
with one of his expositions of the Divided Line passage of Plato’s Re-
public discussed above. He emphasizes that mathematics deals with a
realm intermediate between being and sensibles. Proclus discusses the
intermediate character of geometry in chapter Il of the second part of
the prologue.*® He indicates that although the principal concern of math-
ematics is ‘‘dianoetic forms,’" it also impinges on physics at its lower
level and at its higher *‘it looks around upon the region of genuine being,
teaching us through images the special properties of the divine orders.™
This three-level conception of geometry is fully reflected in the com-
mentary on the propositions of book I, much of which focuses on Eu-
clid’s **dianoetic’’ reasoning. But Proclus thinks of the whole Elements
as directed toward the construction of the regular solids used by Plato in
the Timaeus, and he frequently refers to physical applications of geo-
metrical results.* Moreover, the commentary, particularly the part de-
voted to Euclid’s definitions, is full of indications of the metaphysical
and theological truths imaged in geometrical concepts and proposi-
tions.*

In chapter II of part one of the prologue Proclus describes the Limit
and the Unlimited as the common principles of mathematics because
they are fundamental principles of all beings, a doctrine adapted by the
Athenian Neoplatonists (and earlier Neopythagoreans) from Plato's Phi-
lebus. The material should be interpreted as an attempt to find mathe-
matical facts to which a given metaphysical scheme can be applied. For
example, that the sequence 2/1, 3/2, 4/3, . . . , n+ l/n, . . . exhibits
ever-changing ratios is for Proclus an indication of the role of the Unlim-

*" There are many parallels between the two parts of the prologue, since the first con-
cerns mathematics in general, the second geometry.

* There is a bricfer discussion of the intermediate character of mathematics in general
at 19.6-20.7.

* See, for example, the very obscure claim about the astronomical use of proposition
VI at 268.15-269.6, and the remarks that follow. Sometimes the applications of mathe-
matics to the sensible world are less scientific: see, for example, 149.8-150.12.

¥ See, for example, the discussion of the angle at 128.26-131.2, of the circle at
146.24-151.12 and 153.12-156.5, and of the square at 173.2-174._21, noting especially
its concluding remark. 187.4-18 offers a spiritual interpretation of the first three postu-
lates. Examples of such interpretations in the discussion of propositions are 290.]15-
291.19 and 293.15-294.14.
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ited in mathematics, but the constancy of 2/1, 4/2, 6/3, . . . , 2n/n, .
indicates the role of the Limit. These mathematical facts do not stnk:: us
as profound, but for Proclus they are a way of introducing the student to
deep metaphysical truths.*!

Having discussed the common principles of mathematics, Proclus
turns in chapters III and IV to what he calls the common theorems of
mathematics, truths such as that things equal to the same thing are equal
to each other or that if a:b :: ¢.d then a:c :: b:d. These truths apply not
just to a single scientific domain (e.g., just to numbers or just to geo-
metric magnitudes), but to all scientific domains in common. The basic
idea of common theorems in mathematics can be traced back to Aris-
totle. In Metaphysics M.1-3 Aristotle develops his own account of
mathematical ontology, which the Neoplatonists understood as ‘‘ab-
stractionism’’—the view that mathematical objects are mental concep-
tions derived from sensibles.” In M.3 he defends this view by saying
that we no more need to suppose that there are mind-independent num-
bers or geometric magnitudes than we need to assume that **the univer-
sal parts of mathematics’’ deal with special objects other than numbers,
magnitudes, etc. For Proclus, Aristotle is totally wrong on this point:
what is more universal is ontologically and apodeictically prior to what
is less universal, just as geometric and arithmetic objects are prior to the
sensibles from which, according to Aristotle, they are abstracted. Pro-
clus develops his **projectionist’” account of mathematical reasoning, to
which I have already referred, by opposition to Aristotelian abstraction-
ism.*

Chapters IX and X of part one of the prologue throw considerable
light on the generally unscientific—or even antiscientific—intellectual
climate in which Proclus taught. Proclus has to argue against people who

31 See also 131.9-132.17 for the Pythagorean **justification’” of the division of plane,
rectilinear angles into acute, obtuse, and right. Proclus’ reference to the *‘geometrical
number'” of Republic 545eff. (B.14=20; cp. 23.12-24.3) is a good index of the way pas-
sages of Plato which are now usually treated as either mumbo jumbo or heavy-handed
humor were taken to be deep *'symbolic enigmas’’ by the Neoplatonists,

i1 See my ‘' Aristotle’s Doctrine of Abstraction in the Commentators,”” in Richard So-
rabii, ed., Arisretle Transformed (London and Ithaca, 1990), 463-80.

At 56.24 Proclus indicates that his projectionism does not agree with the views of
Porphyry and **most of the Platonists,”” presumably indicating the prevalence of abstrac-
tionism among his contemporaries. lamblichus and Syrianus certainly held views like Pro-
clus’; see lamblichus, On Mathematics in General 34.9-12 or Syrianus, Commentary on
Aristotle’ s Metaphysics 91.11-92. 10.
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disparage mathematics because it doesn’t teach anything of moral sig-
nificance (to kallos) or of practical value in the *‘real” world. We might
well accept the first charge and reject the second. Proclus argues in the
reverse way: mathematics familiarizes us with order, symmetry, and def-
initeness, three preeminent characteristics of to kallos; and mathematics
ought to be studied for its own sake, or, if an external motivation is
needed, in order to purify the soul for higher apprehension. Chapter XII
shows that even some Neoplatonists doubted the value of studying math-
ematics, and cited Plato in their defense. Proclus’ own counterexegesis
of Plato is a model of good sense. However, the point I would like to
stress is that for the most part Proclus is probably dragging students
through mathematics in the way that some modern students are dragged
through the science requirements of a liberal arts curriculum. Proclus is
not teaching the philosophical implications of a science that his students
understand and appreciate. Rather he is trying to expose his students to
the rudiments of Greek science and to get them to see that the study of
mathematics contributes to reaching the Platonist goal of human perfec-
tion.* The first of Proclus’ purposes—along with the character of his
audience—explains the tedious detail with which he goes through the
propositions of Elements 1 in the last half of the commentary.** The sec-
ond explains his emphasis on the uplifting effect of mathematical study.

In chapters XII and XIlI Proclus turns to the division of mathematics
into different branches. Interest in classification is part of the scholasti-
cism which colors late Platonism. However, classification of the math-
ematical sciences is also supposed to have its ground in the nature of
reality: each science is identified by a relation to some feature or part of
reality which it apprehends. Proclus offers two classifications. He calls
the first Pythagorean, where we would call it Neopythagorean. The di-
vision is a rationalization of the five-part mathematical curriculum of the
Republic with geometry and stereometry combined to produce the so-
called quadrivium of arithmetic, geometry, harmonics, and astronomy
(for which Proclus uses the less empirical-sounding name of *‘spher-
ics’'). The basic idea of this classification is that things are either dis-

AL 113.3-8 Proclus encourages ‘ambitious’ and *‘able’ students to pursue some
less elementary topics which he cannot discuss further. Cp. 272.12-14.

¥ For a brief discussion of this material see pp. 290-93 (*'Sur 'usage *scholaire’ des
Eléments"") of volume 1 of the French translation of the Elements by Bemnard Vitrac
(Paris, 1990).
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crete or continuous, a multiplicity (pléthos) or a magnitude (mege-
thos).*® Both of these have an aspect of unlimitedness: there is no largest
multiplicity, and no smallest magnitude. Science studies only limited
multiplicity and magnitude, that is, the ‘*how many'" (poson) and the
“*how much’’ (pélikon). The former can be divided into the in-itself and
the relative, the latter into the stationary and moving, producing the qua-
drivium of arithmetic, music (i.e., mathematical music theory), geom-
etry, and astronomy (i.e., spherics, the study of rotating spheres). Pro-
clus goes on to associate this classification with the creation of the World
Soul in Plato’s Timaeus and with the role of the Limit and the Unlimited
as ultimate principles.

Given Proclus’ adulation of Pythagoras and Plato, one might have
expected him to be satisfied with the Pythagorean division alone. But he
gives another, which he ascribes to Geminus.”” Geminus’ classification
is, one might say, more realistic than the Pythagorean one. It makes a
distinction between pure and applied mathematics, it includes more sci-
ences, and it gives a more detailed account of them. For these reasons
Proclus’ inclusion of Geminus' classification is a reflection of his own
rcasonableness. And it is surely a part of Proclus’ motivation to preserve
the memory of the multiple achievements of Greek science mentioned
by Geminus. But [ think his most important motivation is the simple
existence of Geminus’ classification as part of the extant body of philo-
sophical exegeses of the mathematical sciences. As Proclus says at the
end of his presentation of the classification, **Such are the traditions we
have received from the writings of the ancients regarding the divisions
of mathematical science.”’ (42.7-8; cp. 64.3-7) We must be grateful to
Proclus for recording these and other traditions since he is, in many
cases, our only source of information about them. On the other hand,
because of Proclus’ eclecticism and interest in preserving the knowledge

* The carliest example of the classification is in Nicomachus (Introduction ro Arith-
metic 1.2 and 3), who sets it out more clearly than Proclus does. It has seemed (o me best
to diverge from Morrow's translation here because it misses some ol the nuances of whal
Proclus says.

7 On Geminus see, in addition to Morrow's note on 38.4, the intreduction 1o Géminos,
Introduction aux phénoménes, Germaine Aujac, ed. and trans. (Paris, 1975), and Otto
Neugebauer, A History of Ancient Mathematical Astronomy, 3 vols. (Berlin and New
York, 1975), pp. 579-80. Some scholars have claimed that Geminus was a major source
for Proclus” commentary, but the issue remains moot,
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of Greek achievements, one must not expect that everything in the com-
mentary will cohere as a philosophical whole.

Having described the division of mathematics into branches, Proclus
turns in chapter XIV to discuss what holds the branches together. He
does this in terms of the reference to dialectic as like the capstone of the
mathematical sciences in Plato’s Republic and the reference to the uni-
fying bond of the mathematical sciences in the pseudo-Platonic Epi-
nomis.*® Proclus denies Eratosthenes’ likely interpretation that propor-
tion is the unifying bond, and substitutes a hierarchy of unifying bonds:
universal mathematics; dialectic; and nous, *‘the completion of the up-
ward journey and of gnostic acfivity.”” Although in some places (see,
for example, the commentary on the Parmenides 648.1-656.14) Proclus
seems to accept the identity of dialectic and the apprehension of Forms,
in chapter XIV and elsewhere in the Euclid commentary he clearly sees
dialectic as preliminary to the noetic apprehension of Forms. For Proclus
in the commentary dialectic is basically the understanding and use of the
methods of mathematical reasoning, methods which he identifies with
analysis, demonstration or synthesis, division, and definition—by con-
trast, notably, with causal and symptomatic argument (69.9-19).5°

Probably the most frequently cited passage in the Euclid commentary
is chapter IV of the second part of the prologue, where Proclus gives an
outline of the history of geometry down to Euclid—a history focused on
the role of Plato and the Academy. It is often said that the ultimate
source of this passage is the work of Aristotle’s pupil Eudemus, perhaps
with Geminus as the major intermediary.* Recent work has placed more
emphasis on post-Eudemian and even Neoplatonic aspects of the pas-
sage.® Some scholars have questioned the historical reliability of even
Eudemus, but—speaking generally—one can say that the rule of thumb

*¥ Proclus denied (probably correctly) the authenticity of the Epinomis; see Anonymous
Prolegomena to Platonic Philosophy, L. G. Westerink, ed. and trans. {Amsterdam,
1962), X.25.4-10. His doing so 15 guite compatible with his assigning the dialogue a
certain authority and thus wanting to determine its doctrines accurately.

¥ For an attempt to give a unified account of Proclus® notion of dialectic see Alain
Lemould, *"La dialectiqgue comme science premiére chez Proclus,"” Revue des sciences
philosophigques et théologiques 71 (1987): 509-35.

® Neither Eudemus nor Geminus is mentioned in chapter IV. In the index to the trans-
lation one should add three further references to Eudemus (233, 260, 275) and one 1o
Geminus ( 190).

#! See Conrado Eggers Lan, **Eudemo y el ‘catdlogo de gedmetras’ de Proclo,’” Eme-
rita 53 (1985): 127-57.
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is that the more likely Eudemus is to be the source of a historical remark
by Proclus about early Greek mathematics, the more likely the remark
is to be true. Unfortunately, unless Proclus cites him explicitly, we are
on very shaky ground in invoking Eudemus as an authority. The moral
for the reader of the commentary is always to be wary of taking what
Proclus reports as history; every claim has to be weighed against other
available evidence—if there is any.® I do not, of course, mean to imply
that Proclus is worthless as a historical source or that he made up
**facts.”” It is clear that one of Proclus’ purposes in teaching geometry
was to convey what information he had about the history of elementary
geometry down to Euclid’s time. If he hadn’t done this, we would know
virtually nothing about the subject.

At the end of his history of geometry Proclus introduces Euclid, a
person about whom he clearly has no direct information other than the
names of books assigned to him, a (questionable) reference to him by
Archimedes, and an anecdote connecting him with Ptolemy the First.
Proclus says that Euclid was a professing Platonist and that he organized
the clements to culminate in the treatment of the regular solids because
of Plato’s use of these solids in the physics of the Timaeus. He may be
right, but there is no reason to think he had evidence for these claims
which we lack, and good reason to think he is accommodating Euclid to
his own philosophical program. There is no philosophy expressed in any
work assigned to Euclid; the Elements looks like a work of pure mathe-
matics of the kind we are all familiar with. Proclus wants the work to be
Platonist because he wants to use it for Platonist purposes. There is noth-
ing objectionable about his doing so, but it would be wrong to infer from
his doing so that the Elements or its author was Platonist in any interest-
ing sense.

To understand a philosophical or scientific text is to make sense of it,
and what makes sense is relative to an outlook. Proclus’ own outlook
and the understanding of Plato on which it is based are not ours. So
naturally his interpretation of Euclid is not always ours. But his attempt
to read Euclid in the light of his own philosophical outlook is not im-
portantly different from a modern philosopher/teacher reading an an-
cient text in terms of his or her own philosophical perspective. Nor are

% The most disputed of Proclus® historical references concern members of the pre-Eu-

clidean tradition, in particular Thales and Pythagoras or other Pythagoreans. In general
Proclus' accounts of post-Euclidean material are taken to be reliable.
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Proclus’ methods of teaching the text of Euclid fundamentally different
from the methods we use: he pursues a general line of interpretation, a
reading, while presenting a great deal of material about the history of
his subject and of interpretations of his text and related matters. As an
extension of this comparison between Proclus and the contemporary
teacher I would like to recall the position of the *Academy’’ in the fifth
century. Proclus taught as a preserver of a noble intellectual heritage in
a society increasingly indifferent and even hostile to that heritage. Many
members of today’s academy see themselves in a similar position. It is
unlikely that this similarity of structure has no reflection in content.
About eight hundred years separate Proclus from Socrates, Plato, and
Aristotle; only about two hundred years separate our ‘‘postmodern’’
world from the Enlightenment. Proclus is not a postmodemist, but re-
fiection on his ways of thinking and their relation to his time may shed
light on the intellectual turmoil of our own.%?

% | would like to thank the American Council of Leamed Societies and the John Simon
Guggenheim Memonal Foundation for the financial support which enabled me to write
this introduction. 1 would also like to thank Chris Bobonich, Richard Kraut, and Janel
Mueller for valuable comments on an earlier version of this foreword.
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Preface

THE JuUSTIFICATION for offering to modern students a translation
of a fifth-century commentary on a mathematical textbook already
more than seven hundred years old when the commentary was
composed is given in the chapters of the Introduction. Here it is
enough only to mention the twin themes of these chapters: the
greatress of the work on which the commentary was written, and
the talent, learning, and sympathetic understanding which the com-
mentator brought to the exposition of it. Among the many creations
of the Greek mind, Greek geometry is one of the most splendid,
and Euclid has been its honored exponent and spokesman for more
than two thousand years. Yet the respect universally accorded him
and the science he stands for is seldom accompanied by an under-
standing of the intellectual principles on which this science was built
and the procedures by which its details were developed. Such lack of
understanding does not prevent our being impressed by the final
product. But just as our appreciation of the work of Ictinus, for
example, in designing the Parthenon can be immensely enriched by
a knowledge of the difficulties the Greek architect had to overcome,
the materials with which he worked, the instruments that were
available for handling them, and the traditions of his craft that
served him both as restraints and as inspiration, so also a knowl-
edge of the empirical and conceptual materials at the disposal of the
Greek mathematician, the conventions and norms that implicitly
guided him from the days of Thales and Pythagoras and finally
came to clear consciousness in the work of Euclid, and the difficul-
ties with which the advance of geometrical science was confronted
and the ingenious devices by which these difficulties were in the

main surmounted can contribute enormously to our understanding
and enjoyment of this monument of the Greek mind.

Such an understanding Proclus is peculiarly fitted to give us.
Though not himself a creative mathematician, he was an acute and
competent critic, and immensely learned, his mind stored with the
achievements of the preceding thousand years of mathematical
inquiry. Living at the end of the Hellenistic Age, he could survey
the accomplishments and errors of his predecessors with something
like an Olympian eye. And since he possessed a due share of
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Hellenic intelligence and precision, together with a Platonic devo-
tion to mathematics as the liberating science, he is uniquely
qualified to transmit to us something of this Hellenic and Platonic
enthusiasm.

To this I must add my personal conviction that the student of
Plato’s later thought, if he hopes ever to comprehend the part that
mathematics played in the development of Plato’s thinking, and
particularly the puzzling statements of Aristotle regarding the latest
form of the theory of Ideas, must enter with sympathy and under-
standing into this climate of thought created by the mathematicians
of Plato’s and the following centuries. As a devout Platonist,
Proclus is naturally a resource of the first order for enabling us to
do this.

The purpose of this book, then, is to make available to English
readers a treatise of unique value for the history of mathematics
and of philosophy. Like the mathematics with which it deals, it has
universally been treated with respect, and it has often been cited
as evidence for this or that fact in the history of mathematics; but
it has seldom been looked at as a whole, chiefly because of the
obstacles presented by a Greek text of such length. These obstacles,
I venture to say, are appreciated even by those who can read
Proclus’ language with facility; and for those who cannot they are
insuperable barriers. I hope this translation will help to overcome
these hindrances to acquaintance with a treatise of outstanding
quality, almost the only one from antiquity that deals with what
we today would call the philosophy of mathematics.

My notes do not presume to be a full commentary on the text.
I have not essayed to deal with all the mathematical questions pre-
sented, still less with the issues involved in Proclus’ excursions into
Neoplatonic ontology and cosmology. What I have tried to do in
them is to provide the explanations essential to understanding my
translation (and the text of Friedlein on which it is based), to
identify the passages in previous writers to which Proclus refers, to
characterize briefly the personages that figure in his historical
comments, and to furnish some preliminary aids to the further
exploration of the philosophical and mathematical contents so
richly deployed before us. I have labored to make my translation
as clear a presentation of Proclus’ thought as my powers and
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insight permitted; yet those who make use of it will certainly
find that there is still much to explore.

In addition to my debt to previous translators and scholars,
which is evident in my footnotes, I acknowledge with grateful
appreciation my indebtedness to my colleague at the University of
Pennsylvania, Charles H. Kahn, for constant advice and encourage-
ment; to Robert S. Brumbaugh, of Yale University, who read my
manuscript for the Princeton University Press and made many
helpful suggestions, in particular calling attention to the significance
of Iamblichus’ De Communi Mathematica Scientia; and to Ian
Mueller, of the University of Chicago, who read the manuscript
in its entirety, saved me from many errors, and made numerous
pertinent comments on the text, some of which I have presented
in my notes, with his initials “I.M.” to identify them.

To Mr., Sanford G. Thatcher, Social Science Editor of the
Princeton University Press, I am greatly indebted for the assiduous
attention he has given to this manuscript, and for the advice and
assistance he has so generously rendered in editing it and in over-
seeing its progress through the Press. To him and to his associates
I hereby express my warm and sincere thanks. Mrs. Georgia
Minyard, of the University of Pennsylvania, has also given me much
competent help in editing and proofreading, for which I am most
grateful.

Glenn R. Morrow

Swarthmore, Pennsylvania
May 30, 1969
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THE FOLLOWING abbreviations have been used in the footnotes for
authors and works frequently cited.

Barocius = Procli Diadochi Lycii in Primum Euclidis Elementorum
Commentariorum Libri IV a Francisco Barocio Patritio Veneto
Editi, Padua, 1560.

CAG = Commentaria in Aristotelem Graeca, 23 vols., Berlin,
1882-1909,

Diels® = Hermann Diels and Walther Kranz, Fragmente der Vor-
sokratiker, 6th edn., Berlin, 1951-1952,

Dodds = E. R. Dodds, Proclus: The Elements of Theology, 2nd
edn., Oxford, 1963.

Friedlein = Procli Diadochi in Primum Euclidis Elementorum
Librum Commentarii ex Recognitione Godofredi Friedlein,
Leipzig, 1873.

Gow = James Gow, History of Greek Mathematics, Cambridge,
1884; reprinted, New York, 1923,

Grynaeus = Commentariorum Procli editio prima quae Simonis
Grynaei opera addita est Euclidis elementis graece editis, Basel,
1533.

Heath — Thomas Heath, Greek Mathematics, 2 vols., Oxford,
1921.

Heath, Euclid =— Thomas Heath, The Thirteen Books of Euclid's
Elements, Translated from the text of Heiberg with Introduction
and Commentary, 2nd edn., 3 vols., Cambridge, 1926.

Heiberg = Euclidis Elementa edidit et Latine interpretatus est I. L.
Heiberg, 5 vols., Leipzig, 1883-1888. Supp. Vol. vi (1896), ed.
H. Menge.

Kroll = Wilhelm Kroll, De Oraculis Chaldaicis, Breslau, 1894,

RE = Pauly-Wissowa-Kroll, Realencyclopiidie der Classischen
Altertumswissenschaft, Stuttgart, 1894-1952,

Rosdn — Lawrence J. Rosan, The Philosophy of Proclus, New
York, 1949,

Schinberger — Leander Schonberger, Proklus Diadochus: Kom-
mentar zum Ersten Buch von Euklids Elementen, a translation
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into German, with Introduction, Commentary, and Notes by
Max Steck, Halle, 1945.

Tannery — Paul Tannery, Mémoires Scientifiques, 17 vols., Paris,
1912-1950.

Taylor — Thomas Taylor, The Philosophical and Mathematical
Commentaries of Proclus on the First Book of Euclid's Elements,
2 vols., London, 1788, 1789,

Van der Waerden = B. L. Van der Waerden, Science Awakening,
New York, 1961,

Ver Eecke — Paul ver Eecke, Proclus de Lycie: Les Commentaires
sur le Premier Livre des Eléments d'Euclide, a translation into
French, with an Introduction and Notes, Bruges, 1949,

Von Arnim = lIoannes von Arnim, ed., Stoicorum Veterum Frag-
menta, 4 vols., Leipzig, 1903-1924.
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Introduction

PROCLUS: HIS LIFE
AND WRITINGS

ProcLUS was born at Byzantium in the early years of the fifth
century, just as the Hellenistic Age was drawing to a close. His
parents were natives of Lycia in sonthern Asia Minor, hence he is
known in the ancient catalogues as Proclus Lycius. His early
education was acquired at Xanthus, a little city on the southern
coast, From there he proceeded to Alexandria with the intention
of following the profession of his father, who had earned a
considerable reputation as a pleader in the courts of the imperial
city. But on a trip to Byzantium that he made during these student
days he experienced a divine call, so his biographer Marinus®* tells
us, to devote himself to philosophy; and on his return to Alexan-
dria he began to attend the lectures of Olympiodorus* on Aristotle
and of Heron® on mathematics, distinguishing himself among his
fellow students and teachers by his capacity for rapid assimilation
and by his extraordinary memory. But the teachers at Alexandria
failed to satisfy him, and while still under twenty years of age he
went to Athens, where the School of Plato had recently experienced
a notable revival under Plutarch.* And it is with Athens and the
School of Plato that he was associated during his entire later career.

The first philosopher he met at Athens was Syrianus,® who later
became head of the School after the death of Plutarch. Syrianus

1 Marinus was a pupil of Proclus and author of a commentary on the Data
of Euclid which is extant (see Heiberg v1). His Vita Procli is the chief, and
almost the only, source of information about his master’s life. For a transla-
tion of this Life see Roséin, 13-35; and for the Greek text see the supplement
in the Didot volume of Diogenes Laertius (Paris, Firmin-Didot, 1829, pp.
151-170). The “divine call” is mentioned in Pars. 6, 9, and 10.

2 This is not the Aristotelian commentator of the same name, who lived in
the following century.

2 This is not the famous Heron of Alexandria, who lived two centuries
earlier.

+ Plutarch the Athenian, whose commentary on Aristotle's De Anima, no
longer extant, was highly esteemed in antiquity.

5 Sy-lanus’ commentary on Books BI'MN of Aristotle’s Metaphysics is still
extant. See CAG vi, Kroll,
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introduced him to the great Plutarch, who was so taken with the
zeal and aptitude of the young man that he took him under his
personal charge, although his advanced age prevented him from
taking many students. He read with Proclus the De Anima of
Aristotle and the Phaedo of Plato, encouraging the young Proclus
to keep a written record of what was said, with his own comments
upon it. Thus Proclus began early the practice of writing commen-
taries, a habit to which is due so much of his prodigious literary
production. Plutarch died not long afterwards, but under Syrianus
during the next two years, so we are told, Proclus read all the
writings of Aristotle in logic, ethics, politics, and physics; and then
after going through these “lesser mysteries,” as Syrianus called
them, he was initiated into the greater mysteries of Plato’s philos-
ophy. Syrianus also introduced him to the Orphic writings and the
Chaldaean Oracles. These were the beginnings of a career of study,
teaching, and writing that lasted almost without interruption until
the death of Proclus at the age of seventy-five.® In his later years
he was himself head of the School, whence comes the title Dia-
dochus (Successor) which has become attached to his name.
Marinus tells us little about the events of Proclus’ mature life
but makes obscure references to a “storm™ that gathered around
him at one time and forced him to retire from Athens for a while.”
It is natural to interpret this episode as connected in some way with
Proclus’ devotion to the ancient religion. Pagan beliefs were still
tolerated in the schools, although (since Christianity was now the
official religion of the Empire) the practice of the cults was for-
bidden. Proclus, like most of the philosophers at Athens, was still
attached to the ancient faiths. Such was his piety that he personally
observed all the sacred days of the Egyptians as well as the Greeks
and devoted himself assiduously to the study of mythology and
religious observances, He declared that it becomes the philosopher
not to observe the rites of one city or of a few cities only, but to be
the common hierophant of the whole world. Perhaps it was the
8 So Marinus tells us (Pars. 3 and 26). His death occurred, as we can see
from other facts recorded by Marinus (Pars. 36, 37), in the year 485. If he
was seventy-five years old when he died, he must have been born in 410,
But Marinus also describes a horoscope taken at his birth which by astro-

nomical calculation indicates February 18, 412, as the date of his birth.
T Marinus, Vita Procli, Par. 15.
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private practice of unauthorized rites that stirred up the storm
against him. Whatever the explanation, we are told that he spent
the year of his exile in Lydia investigating the ancient religious
customs of that region and interpreting to their worshippers the
deeper meaning of their practices. When the year was over, he
returned to Athens and resumed his study and teaching. The School
was financially independent, for although the munificent salaries
provided by Marcus Aurelius for professors at Athens had long
been discontinued, the Academy was supported—and amply, we
may assume—ifrom the endowments that had accumulated during
the eight centuries since Plato’s death.®

Proclus was handsome in appearance, even more so, says
Marinus, than his numerous portraits show him to have been
(evidently Proclus did not share Plotinus’ scruples against having
his portrait painted), of vigorous health, with abounding yet disci-
plined energy. He had a pleasing voice and a command of language
and thought that captivated his hearers, so that when he was speak-
ing a radiance seemed to flow from him. And according to his
eulogist he exhibited all the virtues—physical, moral, political, as-
cetic, intellectual, and “theurgic”’—in a preeminent degree. But of
all the traits mentioned in this eulogy the most important for the
student of the history of thought was Proclus’ “unbounded love of
work.”® Besides conducting five or six classes, holding other con-
ferences, delivering lectures, and discharging his religious obliga-
tions, he customarily wrote seven hundred or more lines a day,
Marinus tells us. This assertion, incredible as it may seem, is borne
out by the volume of the writings attributed to him. And their scope,
as well as their volume, is enormous, extending from philosophy and
theology through mathematics, astronomy, and physics to literary
criticism and poetry. They constitute a priceless resource for the
student of this latest period of ancient philosophy. We must be
content to mention only a part of the items in this treasury.™

8 Damascius records that the annual revenue from its property amounted
to a thousand (gold?) pieces at this time, as compared with three in Plato's
day. See the Vita Isidori, Par. 158, in the Didot volume cited in note 1 above.

# The term comes from Iamblichus, says Marinus (Vira Procli, Par. 26).

10 I hid., Par. 22: dperpos ¢pehomworia.

11 See Rosén for a full list, with a bibliography of the various editions and
translations of individual works during the modern period to 1940,
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Proclus’ most systematic philosophical works are his Elements
of Theology and a later treatise on Platonic Theology. The texts
of both have survived.'* The former, like the much later Ethics of
Spinoza, presents the “elements” in geometrical fashion, in a series
of propositions each supported by its proof. The Platonic Theology
likewise, despite its title, is an exposition of Proclus’ own system,
which of course he regarded as Platonic. Much better known to the
student of Plato is his impressive series of commentaries on the
dialogues: a commentary on the Parmenides, one on the Timaeus
(which, Marinus reports, was Proclus’ favorite among his com-
mentaries), another on the First Alcibiades, and another on the
Republic. The texts of all these have been preserved.’® His com-
mentary on the Cratylus survives only in excerpts, and the com-
mentaries that he wrote on the Philebus, the Theaetetus, the Sophist,
and the Phaedo have all been lost. We possess only a fragment of
his commentary on the Enneads of Plotinus, and we know of his
Eighteen Arguments for the Eternity of the World (a tract against
the Christians) because it is extensively quoted in Philoponus’ book
written to refute it.}* His treatises on Providence, on Fate, and on
the Subsistence of Evil were long known to us only through the
Latin translation of William of Moerbeke; but large portions of the
Greek text have recently been recovered and edited by Helmut
Boese.*®

His scientific works include the commentary on Euclid here trans-
lated, a short elementary treatise on astronomy entitled Sphaera,
his Hypotyposes (or Outlines) of the Hypotheses of the Astrono-
mers, a paraphrase of and perhaps also a commentary on Ptolemy’s
Tetrabiblus, and a book on Eclipses surviving only in a Latin trans-
lation. We also know of an essay on the parallel postulate in

12 The Elements of Theology has been elegantly edited and translated
into English by E. R. Dodds (2nd edn., Oxford, 1963).

18 The commentary on the First Alcibiades has recently been translated
into English by William O'Neill (The Hague, 1965). A French translation

by Festugi¢re of the commentary on the Timaeus (Paris, 1968) has just been

completed.
14 John Philoponus, De Aeternitate Mundi contra Proclum (Leipzig,

1899), written probably before the middle of the sixth century.
18 Procli Diadochi Tria Opuscula, Berlin, 1960.
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geometry'® which has not survived, but one can get an idea of its
contents from the relevant parts of the commentary on Euclid
(191.23-193.7; 365.7-373.2).2" We also possess his Elements of
Physics, mainly a summary of Books VI and VII of Aristotle’s
Physics and the first book of the De Caelo, presented in geometrical
form with propositions and proofs. We have only fragments of his
book on the Objections of Aristotle to Plato’s Timaeus, to which
he himself refers in his commentary on the Timaeus;'® these
fragments show that he was principally concerned in this work to
answer Aristotle’s objections to Plato’s physical theories.

Proclus also wrote numerous works on religion, but none of them
survives except in fragments. Like Aristotle,’® he believed that
ancient traditions often contain truth expressed in mythical form.
Orphic and Chaldaecan theology engaged his attention from his
earliest days in Athens. He studied Syrianus’ commentary on the
Orphic writings along with the works of Porphyry and Iamblichus
on the Chaldaean Oracles; and in his later life he undertook a
commentary on this collection which, Marinus tells us, cost him five
years of labor. Marinus’ account describes this labor as both critical
and constructive. Whatever in these traditions Proclus found to be
empty or contrary to well-established principles he would reject as
trivial or fraudulent, supporting his judgment by arguments and
proofs; on the other hand, whenever he came upon anything he
thought “fruitful,” he would interpret it and bring it into harmony
with other elements of doctrine, presenting the result, both in his
lectures and in his writings, with great clarity and “enthusiasm.”*°
We may well suppose that his criticism was as precise and exacting,
according to the conventions governing theology, as we find it to be
in his examination of Euclid and his critics in the commentary
before us. In this commentary, as the reader will see, mathematical
reasoning and exposition is often interrupted by digressions point-

18 Referred to by Philoponus in his commentary on the Posterior Analytics
(CAG xm.2, 129.16, Wallies).

17 These and later references to Proclus’ Commentary are to the pages and
lines of Friedlein's edition. See the Translator's Note,

18 Ed. Diehl, 1, 404.20; 1, 279.2-14,

19 Met. 1074b11,

20 Marinus, Vita Procli, Par. 22,
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ing out the moral or metaphysical significance of a figure or a
theorem under discussion, and its value in directing the mind up-
ward to the region beyond mathematical existence. So in his study
of mythology we must presume that one of his main concerns was
to determine the adequacy of a myth for imaging the higher grades
of being and for assisting the soul in worship to reunite itself with
the great source of all being. This religious motive is an inseparable
part of his, as of all Neoplatonic metaphysics.

Proclus composed innumerable hymns to the gods, of which
seven survive, written in Homeric language and exhibiting a con-
siderable measure of literary quality as well as deep religious
feeling. It is not surprising that his biographer should tell us that
he lived in constant communication with the gods, addressing his
adoration and aspirations in prayers and observances and receiving
messages from them in dreams. One incident of the many reported
by Marinus is particularly striking. The great gold and ivory statue
of Athena that had stood in the Parthenon since the days of Phidias
and Pericles was removed from the Acropolis during Proclus’ life-
time. Evidently deeply shocked by this action of the Christians,
Proclus dreamed that a beautiful woman appeared to him and
commanded him to get his house in order quickly, “because the
lady of Athens wishes to dwell with you.”#

Even if we count only those works that can indisputably be at-
tributed to Proclus, the range and volume of his production is still
enormous, constituting, in Cousin’s opinion, a veritable fifth-century
Encyclopédie.*® And in clarity, in precision of expression, and in the
logical articulation of the various parts of the individual works,
these writings manifest qualities exceedingly rare in this twilight
period of Hellenic culture. If his religious works, to judge from the
fragments that survive, often reveal a tendency to superstition and

21 Ibid., Par. 30. Proclus’ house, which had been the residence of Syrianus
and of Plutarch before him, stood on the south slope of the Acropolis (“easily
seen from it,” says Marinus), adjacent to the Theater of Dionysus and the
Temple of Asclepius. Recent excavations in this area have brought to light
the foundations of a house with an exedra, which has been labelled the
House of Proclus, although there are no inscriptions or artifacts to support
this identification. An unidentified bust has been found here also, and it may
be a bust of Proclus.

22 In the Introduction to his edition of Proclus (xviii), 1864, quoted by
Rosén, 57n.
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magic (or theurgy, as these later Platonists called it), we must re-
member that this characteristic was almost inseparable from the
thought of the Neoplatonists of this time. Dodds has aptly re-
marked: “Proclus’ qualities were all but unique in an age when his
defects were all but universal.”?®* We are told that, when Proclus
first arrived as a youth at Athens, he reached the Acropolis late in
the day, in fact just as the keeper was preparing to close the gates.
“Really if you had not come,” he said, “I would have locked up.”**
This story picturesquely illustrates, as we see the situation today,
Proclus’ part in delaying for a time the closing of the classical
age. He was indeed the last creative mind in Greek philosophy. It
was less than half a century after his death that the voice of pagan
philosophy was stilled at Athens with the edict of Justinian in 529
closing the schools and confiscating their properties.

Proclus left instructions that he should be buried beside his
master in a double tomb constructed by Syrianus on the slope of
Lycabettus. This was the epitaph that he composed for himself:*®

Proclus was I, of Lycian race, whom Syrianus

Beside me here nurtured as a successor in his doctrine.
This single tomb has accepted the bodies of us both;
May a single place receive our two souls.

EUCLID AND THE
ELEMENTS

THERE ARE few books that have played a larger part in the thought
and education of the Western world than Euclid’s Elements. For
more than twenty centuries it has been used as an introduction to
geometry, and only within the last hundred years has it begun to
be supplemented, or supplanted, by more modern textbooks. *“This
wonderful book,” writes Sir Thomas Heath, “with all its imperfec-
tions, which indeed are slight enough when account is taken of the
date at which it appeared, is and will doubtless remain the greatest
mathematical textbook of all times. Scarcely any other book except
the Bible can have been circulated more widely the world over, or

23 In the Preface, xxvi.
24 Marinus, Vita Procli, Par. 10,
25 Ihid., Par. 36.
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been more edited and studied.”*® Euclid’s was not the first attempt
by Greek mathematicians to formulate and organize the materials
of geometry into an elementary text. But so perfect was his mastery
of the tradition and so skillful his arrangement of his materials that
his work very soon replaced all its predecessors; indeed, Euclid’s
success has almost blotted out our view of the men who preceded
him, whose contributions we now know of mainly from the refer-
ences in Proclus and in other ancient mathematicians. The Ele-
ments was without a rival in the ancient world. The greatest mathe-
maticians of the following centuries occupied themselves with it.
Heron, Porphyry, Pappus, Proclus, and Simplicius wrote commen-
taries. Theon of Alexandria reedited it, though not altogether to its
advantage. Apollonius of Perga attempted a restatement of its
principles but did not succeed in replacing it. So great was the
prestige of the Elements in comparison not only with the work of
Euclid's predecessors but also with the other writings of Euclid that
in later times the author was seldom referred to by name but
instead usually by the title ¢ oroixawris, “the elementator.”*

Yet about the author of this remarkable work we have very little
exact information. Even Proclus appears to be unsure of his birth-
place and of the dates of his birth and death. He tells us (68.10)
only that he belonged to the philosophy, or school, of Plato and
that he lived after Plato’s immediate disciples but earlier than the
time of Eratosthenes and Archimedes. From other sources we learn
that he had a school at Alexandria;®*® and Proclus indicates that his
floruit must be placed under Ptolemy I, who reigned from 306 to
283 B.C. He composed numerous other mathematical treatises,
most of which are referred to by Proclus. The Greek text of his Data
is extant, together with a commentary on it by Proclus’ pupil Ma-
rinus. So also are the greater part of his Phaenomena and the Divi-
sions in an Arabic version. But the Pseudaria, on fallacies, has been
lost and so have the three books of Porisms and his treatises on
Surface Loci and on Conics. He also wrote an Elements of Music,
fragments of which are extant.

28 Heath 1, 3571F.

27| have avoided the awkward English term by uniformly translating
8 eroixewwrys as “the author of the Elements.” For the meaning of oroiyelwes

and erouyeior see Proclus' explanation below (71.24f.).
28 Pappus v, 678, 10-12, Hultsch. On Pappus see note at 189.12,
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The Elements of Geometry now exists in fifteen books, of which
the last two are clearly not by Euclid. No suspicion, however, at-
taches to the other thirteen, although they have been subject to
alteration, addition, and rearrangement by later editors and scribes.
It is now possible for us, on manuscript authority, to distinguish an
older and more authentically Euclidean text from a later one made
by Theon of Alexandria sometime during the fourth century, from
which most of the Latin and English translations until very recent
times have been derived. But it is likely that both versions circulated
in ancient times, since Proclus, though later than Theon, frequently
follows the older version. There is reason to believe that there was a
Latin translation of Euclid, in part at least, in late antiquity;*® but
if such a translation existed, it played no part in the transmission
of Euclid to modern Europe. The Elements was translated into
Arabic in the eighth century, one of the first Greek books to be
translated into that language; and this translation was followed
by at least two other Arabic versions from the Greek in the follow-
ing centuries.®® It was from the Arabic that the first medieval Latin
translations were made, those of Athelhard of Bath in the twelfth
century and of Johannes Campanus in the thirteenth. The first Latin
translation from the whole of the Greek text was that of Bartolomeo
Zamberti, which appeared in a printed book at Venice in 1505.
The editio princeps of the Greek text was edited by Simon Grynaeus
the elder and published at Basel in 1533; this edition, though
based on only two manuscripts, and those very inferior ones, itself
served as the basis for all later texts and translations until the
nineteenth century. With the discovery and utilization of better
Greek manuscripts than those used by Grynaeus, and particu-
larly with the identification of Vatican 190 (Heiberg’s P) as
representing the text of Euclid prior to its recension by Theon,
it was possible for Heiberg to replace the imperfect text of
Grynaeus with what appears now to be a definitive text. Since the
appearance of Heiberg's edition in 1888 it has been translated into
English with a voluminous introduction and rich commentaries by
Sir Thomas Heath. This edition, together with Heath's earlier Greek

20 Heath, Euclid 1, 91-93,

3¢ For more information about the Arabic versions see the full account in
Heath, Euclid 1, 75-90,
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INTRODUCTION

Mathematics, has been invaluable to me at almost all stages of the
present undertaking, as my footnotes will show,

PROCLUS AS A COMMENTATOR
ON EUCLID

MATHEMATICS was naturally one of the fundamental subjects of
instruction in the Platonic school at Athens in Proclus’ time. In the
Republic Plato had made himself the champion of mathematical
study as the main avenue of approach to the world of Forms, the
region of intelligible entities that can alone provide objects of
knowledge, as contrasted with fragile and uncertain opinions about
the objects in the sense world. Such sure and certain knowledge is
indispensable, Plato thought, both for the statesman who hopes
to give competent guidance to his city and for the philosopher who
aspires to apprehend genuine, that is, stable and eternal, being.
The new Platonism that arose and flourished in late antiquity had
in the main given up the hope of regenerating society, but it held
fast to this belief in a higher realm of supersensible realities and to
this insistence on mathematics as the primary way of access to that
higher world.

Proclus must therefore have taken part in the mathematical
instruction of the members of the school, and it is evident that this
commentary is, in part at least, the result of his lectures to them.
There are references to “my hearers” (210.19, 375.9) and to the
needs of beginners which require the lecturer to pass over “for the
present” certain matters that are too difficult, further explanation
being reserved for a later occasion (113.6, 272.12). Proclus some-
times explains quite elementary matters, such as the meaning of
“subtending” (238.13) or the distinction between adjacent and
vertical angles (298.14), as if to persons unfamiliar with geo-
metrical terminology. At the beginning of his comments on the
propositions, he sets forth systematically the six parts into which
every fully expressed theorem or problem can be analyzed (203.1-
15), applies these distinctions to the first proposition (208.1-
210.16), and advises the student for the sake of practice to do the
same thing for each of the remaining ones (210.17-28). Then
follows an explanation of various technical terms—lemma, case,
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porism, objection, and reduction. At the proper time the meaning
of geometrical conversion is made clear and the various kinds of
conversion distinguished (252-254, 409.1-6); and likewise the
procedure of reduction to impossibility (254.21-256.9). Locus-
theorems and their kinds come up for explanation later (394.11-
396.9). And when the student is introduced to the method of
application of areas, that “invention of the Pythagorean Muse,”
only its simplest use is expounded and illustrated, but the student is
apprised that from this procedure is derived the later use of “parab-
ola,” “hyperbola,” and “ellipse” to denote the curves produced by
conic section (419.15-420.6), which are only mentioned but not
elucidated here.

Yet it is also evident that much, perhaps the greater part, of the
Commentary as we have it is addressed to a more advanced audi-
ence. Besides frequent references to constructions and theorems,
surfaces and curves, that are beyond the scope of Euclid’s first book
but are presumed to be familiar to the reader, there are everywhere
refinements of analysis and comment that can hardly be intended
for beginning students. Such are the learned discussion of the mean-
ing of “element™ (71.25-73.14) and the appraisal of the superior
merits of Euclid’s Elements (73.14-75.26). Proclus emphasizes re-
peatedly the basic character of geometry as a hypothetical science,
which starts from first principles (dpyxai) which it does not demon-
strate—namely, axioms, definitions, and postulates. He expounds
Aristotle’s explanation of the difference between these three types
of dpyai (76.6-77.6) and later gives a résumé of the contro-
versy over the distinction between postulates and axioms (178.1-
184.10). Euclid’s famous parallel postulate comes in for especially
prolonged examination. Proclus believes with Ptolemy that it can
be demonstrated, but he finds Ptolemy’s proof fallacious (365-
368) and attempts one of his own (371.10-373.3). The distinction
between problem and theorem receives repeated attention (77-81,
201.3-15, 210.5-10, 220.6-222.19, 241.19-244.9), the discussion
culminating in the doctrine that problems are concerned with estab-
lishing existence, theorems with demonstrating properties. Similarly
we are shown the difference between strict demonstration, which
reveals the cause of a connection of attributes, and demonstration
by “signs,” which merely establishes the fact of the connection
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(206.14-207.3). Although all demonstrated conclusions appear to
be universal, we are warned that some are truly universal because
they reveal intrinsic connections between subject and predicate,
while others are partial only, in that they do not comprehend the
full range of the predicate character (245.24-246.5, 251.11-19,
253.20-254.3, 390.12-392.8). The role of the infinite and of in-
finite divisibility in mathematical discourse is taken up in two
lengthy passages (277.25-279.11, 284.4-286.11). And we are
constantly being introduced to differences of opinion among rec-
ognized authorities, to proofs alternative to those that Euclid
employs, and to criticisms of his selection or ordering of propo-
sitions,

Even more indicative of Proclus’ addressing a wider audience
than elementary students are his excursions into the region that is
of interest especially to the philosopher of mathematics. These
portions of Proclus’ doctrine will be discussed more fully in the
following section. Here we will only remark that for Proclus mathe-
matics is a part of a larger system of thought and for this reason
carries the student beyond its ostensible boundaries into the paths
of cosmological and metaphysical speculation. And Proclus is al-
ways eager to lead the way into these paths.

The selection of Euclid’s Elements as the text for exposition is
easily understood when we recall the prestige that this introductory
treatise enjoyed throughout antiquity. But for Proclus, the Platonist,
the choice of Euclid has another and deeper justification. He regards
Euclid as having been a member of the ancient Platonic school, as
in fact the mature product of that effort to organize and systematize
geometrical science which, according to his account, characterized
the mathematical research of the fourth century and which had its
chief center and inspiration in the Academy of Plato’s time (66.8-
68.10). He even takes the ultimate purpose of the Elements to be
the construction of the five “cosmic elements,” the five regular solids
that figure so prominently in Plato’s Timaeus and with which in
fact the Elements concludes (68.21-23, 70.19-71.5, 82.25-83.2).
This interpretation of the Elements is most certainly mistaken.
There are large parts of the treatise that have no direct connection
with the cosmic figures and some that have no relation at all.®

81 See Heath, Euclid 1, 2.
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Proclus’ judgment here is warped by his enthusiasm for Plato and
his particular admiration for the Timaeus among the Platonic dia-
logues. Whether Proclus was right in regarding Euclid as having
been a member of the Academy we cannot say; but it is fairly
certain that he got his first instruction from mathematicians who
had been trained in the tradition of the Academy. The evidence
Proclus gives of the role played by the Academy in the development
and refinement of mathematical procedure in the fourth century is
sufficient foundation for his association of Euclid with Plato. For
Proclus, therefore, Euclid is not merely the recognized master of
the discipline that he expounds, but also an authentic adherent of
the Platonic theory of knowledge.

But Proclus was a Pythagorean as well as a Platonist, if indeed
those two designations can be taken to mean different things at this
period of ancient thought. For the Pythagoreans, numbers and fig-
ures were images, or symbols, of nonmathematical kinds of being—
of the moral virtues, for example, or political relationships, or
theological and supercosmic realities. One of the striking features
of the Commentary is the way in which its discussion of Euclidean
theorems and constructions is interrupted by expositions of Pythag-
orean lore. These Pythagorean passages do not affect the quality
of what we would regard as the strictly mathematical material, and
they are usually designated as digressions by Proclus himself, some-
times with apologies for the length to which these speculations
have carried him (e.g. 91.11, 142.8, 151.13). Proclus was a com-
petent mathematician, but he could not regard mathematics as a
self-enclosed field, without implications for the cosmic philosophy
that he espoused (see especially 174.17, 214.14), As Heath puts
it, Proclus regarded mathematics as a handmaid to philosophy.

Many commentaries on Euclid had been composed prior to
Proclus’ time, He not only acknowledges their existence but declares
that he is going to draw upon them freely, albeit critically. “We
shall select the more elegant of the comments made on them by the
ancient writers, though we shall cut short their endless loquacity,
and present only what is most competent and relevant to scientific
procedures, giving greater attention to the working out of funda-
mentals than to the variety of cases and lemmas which, we observe,
usually attract the attention of the younger students of the subject”
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(200.11-18). To judge from the very last words in the Commentary
(432.15-19) and from occasional comments elsewhere (e.g. 84.10,
289.12, 328.16), he has a low opinion of some of the commentaries
in circulation. There were, however, some distinguished commen-
tators among his predecessors, such as Heron, Porphyry, and
Pappus, all of whom Proclus cites frequently and with respect. He
also draws heavily upon Aristotle, Archimedes, Apollonius, Posi-
donius, Geminus, and above all, for the early period, upon Eude-
mus, Aristotle’s pupil who wrote a history of geometry that has
since been lost. He refers to opinions of his two revered teachers,
Plutarch (125.16) and Syrianus (123.19). He cites at length a
controversial passage from Carpus of Antioch (241.19-243.11).
He gives us verbatim Ptolemy’s proof of the parallel postulate and
points out the fallacy it contains (365.7-368.1; cf. 362.14-363.18).
Eratosthenes, Speusippus, Zenodotus, Zenodorus, Menaechmus,
Menelaus of Alexandria, Philolaus, Philon, Theodorus of Asine,
Nicomedes, Oenopides of Chios, Perseus, and numerous others
from all periods, some of whom are now only names to us, come
in for mention as authors of mathematical discoveries or sponsors
of opinions that Proclus either commends or disapproves.®* The
sceptical contentions of Zeno of Sidon are subjected to prolonged
criticism and refutation (214.18-218.11). The Epicurean contempt
for geometry, as laboring to prove what is obvious even to an ass
(that is, that one side of a triangle is shorter than the other two),
is philosophically rebuked (322.4-323.3), and the Aristotelian con-
tention, later espoused by the Stoics, that points, lines, and mathe-
matical objects generally are merely abstractions from sense objects
refuted (12.2-18.4; cf. also 89.15-92.1). These numerous and
sometimes very extended references to opinions and accomplish-
ments of his predecessors, taken together with the material rescued
from Eudemus’ early history of geometry, make Proclus’ Cormmen-
tary a priceless source of information regarding the geometry of
the previous nine or ten centuries.

It is evident that Proclus’ students are expected to have the text
of Euclid before them, or readily available. But only for the first
proposition does Proclus follow Euclid’s proof step by step. He does

82 For page references to persons without supporting references in the text
consult the Index.

— 11l —



PROCLUS AS A COMMENTATOR ON EUCLID

so in this instance to provide an example of what the student should
do himself for each of the following propositions. Proclus’ later
procedure is first to expound the exact meaning of the theorem
or problem with which he is concerned, frequently calling attention
to the precision of its language, and then to justify the place in the
order of the exposition to which Euclid assigns it. Instead of a
detailed examination of Euclid’s proof there is usually a reminder,
sometimes quite extended, of the axioms, postulates, and previous
theorems by means of which the theorem in question is established
(for a good example, see 240-241). He turns then to objections
that have been brought against Euclid’s construction or his proof,
usually identifying the author of an objection. Again he normally
meets the objection not from his own resources, but by citing
previous mathematicians who have dealt with it. His modesty and
his fairness in giving credit to others are notable—and are even
noted by an unknown scribe in the margin of one of our manu-
scripts (at 352.14). When in the proof of a theorem Euclid uses
only one of two or more possible cases, as is his custom, Proclus
will often prove one or more of the omitted cases; sometimes he
simply calls attention to them and recommends that his readers,
“for the sake of practice,” prove them for themselves. Sometimes
he gives an alternative proof of a theorem devised by one of his
predecessors for the obvious purpose of showing the superior ele-
gance or appropriateness of Euclid's demonstration (e.g. 280.9,
282.20, 335.15).

Proclus does not often find occasion himself to criticize Euclid.
For him “our geometer,” or “the author of the Elements,” is usually
above reproach, when properly understood. He seems occasionally
to sense a lapse from rigor in an enunciation or a proof and en-
deavors to smooth over the defect, sometimes by specious reason-
ing, as in his answer to the objection raised at 223.16ff., and in one
instance, it seems, by the insertion of an extra and unneeded term
in Euclid’s text, namely é&js in the enunciation of XIV* (294.16).
In 361.17-362.11 he voices a criticism (misguided, it seems) of
Euclid’s division of his theorems about parallel lines; and in 393.5-
394.7 he questions whether Euclid’s restriction of “parallelogram”

88 Propositions in Euclid’s first book will normally be referred to hereafter
by Roman numerals only.
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to four-sided figures is justified. Despite his twice-announced inten-
tion (84.12, 200.16), he deals with a great variety of “cases” in
his comments, and some of them are evidently inserted as necessary
supplements to Euclid’s demonstrations. This is especially true of
his comment on XLIII, where he says (417.2f.) we must consider
the case in which the internal parallelograms do not meet at a point
(thus making the complements nonparallelogrammic areas) in
order “to see that the enunciated conclusion holds.” But the most
striking addition to Euclid is his alternative solution of the problem
of XXIII—"On a given straight line and at a point on it to con-
struct a rectilinear angle equal to a given rectilinear angle”—where
he sees that the use of XXII for the construction in XXIII requires
a certain modification that Euclid does not indicate; Proclus intro-
duces the modification and thus constructs the triangle in what he
says is a “more instructive fashion™ (334.7) .34

Coming to more substantive matters, we find him criticizing
Euclid’s definition of plane angle. To call it “the inclination to one
another of two lines” is to put angle under the category of relation,
an opinion which is open to numerous objections (122.21-123.13,
128.3-22). Again Euclid’s fourth postulate—*that all right angles
are equal to one another”—states an intrinsic property of right
angles, hence is either an axiom, according to Geminus, or a theo-
rem, according to Aristotle (182.21-183.13). Likewise the famous
fifth postulate—*“If a straight line falls upon two straight lines and
makes the interior angles in the same direction less than two right
angles, the straight lines, if produced indefinitely, will meet in the
direction in which are the angles less than two right angles”—ought,
he says, to be stricken altogether from the list of postulates
(191.21); for it is a theorem capable of proof, which Ptolemy even
claims to have demonstrated in one of his books. Moreover, it is a
proposition whose converse he maintains Euclid himself proves
later;** and surely a proposition whose converse is demonstrable
can itself be demonstrated. Later he examines Ptolemy’s demon-
stration, finds it defective, and attempts a different one of his own
(371.10-373.2), which unfortunately, like Ptolemy’s, succeeds only
in begging the question.

84 This irregularity in Euclid is also noted by Heath, Euclid 1, 295.

88 In XVII. See 364.21-25 and note.
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This attempt to prove Euclid’s fifth postulate is Proclus’ most
ambitious contribution to the elements of geometry. He apparently
thought highly enough of it to write a book on the topic, if this is
the correct interpretation of a reference in Philoponus.®® But there
are also other evidences of his mathematical independence. He
points out (405.6-406.9), contending that this has previously
escaped notice, that XXXV-XXXVIII are special cases of the
first proposition in Book VI, which proves not only these theorems
but also a much wider range of quantitative relationships between
triangles than the equality that these four propositions establish.?*’
With regard to the contested fourth postulate—that all right angles
are equal—he argues for its validity on the ground that the right
angle is the standard by which all other angles are measured and as
such is always exactly a right angle (188.11-20). This is an idea
that suggests a generally more satisfactory conception of postulate
than those over which his contemporaries disputed. Again in com-
menting on Euclid’s proof of IV—in which Euclid invokes the
principle that two straight lines cannot enclose an area, although
this is not listed among his axioms—Proclus asserts that Euclid was
not required to prove this, since it is implied by his definition of
straight line and by his first postulate (239.15ff.); and he ends by
bringing forward a consideration similar to that which he had used
to defend the fourth postulate, namely, that a straight line is the
measure of all other lines, as the right angle is the measure of all
other angles, and by this fact presumably is entitled to a place
among the undemonstrated principles (240.3-10). Finally, he
claims as his own “contribution to the construction given by the
author of the Elements” (335.15) his method of solving the prob-
lem of XXIIT which was described above. These examples show
that Proclus was not an uncritical expositor, nor merely a repository
for the comments and criticisms of his predecessors, but an inde-
pendent thinker and mathematician in his own right.

There are hints in the text that Proclus thought of extending his
commentary to the books after the first (272.14, 279.12, 398.18,
423.6, 427.10, 432.9). But there is no mention of such a continua-
tion in the tradition, nor have any indisputably genuine fragments

¥ CAG xm2, 129,16, Wallies.
87 Heath discounts Proclus’ claim somewhat: see note at 406.9.
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of commentaries on later books been uncovered in the manuscripts
of Proclus.®® Indeed at the very end of this commentary he ex-
presses doubt whether he will be able to go through the remaining
books in the same fashion (432.9) and contents himself with
urging any who plan to write commentaries on later books to
follow the example he has set in the work he has just completed.
Still we need not assume that Proclus did not lecture on later books,
for references to them abound in the commentary that we have;
we can conclude only that he lacked the time to put his comments
into a form suitable for a larger circle of philosophical readers.

Concerning the period of Proclus’ life in which the present
commentary was written we have one slight indication in the text.
In the discussion of the definition of angle, after exploring the
difficulty in classifying it as relation or as quantity or as quality,
Proclus remarks, “But let us follow our ‘head’ (r§ Hperépw xabyye-
pow) and say that the angle as such is none of the things mentioned
but exists as a combination of all these categories” (123.19). The
reference is clearly to Syrianus and points to a time when he was
still head of the School. This does not help us much, since the date
of Syrianus’ death or retirement is unknown; yet it does confirm an
a priori presumption that this work is a product of the earlier, rather
than the later period of Proclus’ career.

PROCLUS’ PHILOSOPHY
OF MATHEMATICS

THE Prologue to this commentary is not only one of the most
finished of Proclus’ philosophical essays, but also one of the
most valuable documents in ancient philosophy. We have already
mentioned the priceless information it gives us regarding geometers
and the history of geometry prior to Proclus’ time. Yet the value of
the matter it contains regarding the foundations of mathematics and
of geometry in particular is even greater, though less widely recog-
nized. As one would expect in an introduction to Euclid’s Elements,

28 C, Wachsmuth, Rheinisches Museum xvin, 1863, 132-135, thought he
had discovered some fragments of a comprehensive commentary, but see
Heath, Euclid 1, 32n.
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it explains the meaning of “element” in geometry, states the theo-
retical and pedagogical purposes of an elementary treatise, and
offers a striking evaluation of the excellence of Euclid’s own work
(69.4-75.4). Moreover, it contains a defense of pure mathematics
and of geometry in particular against its critics, including a careful
and illuminating interpretation of the attitude of Plato, who was
sometimes invoked by the critics of mathematics in support of their
contentions (25.15-32.20). More fundamental for the understand-
ing both of Plato and of the science that Euclid expounds are the
questions Proclus raises concerning the nature of the objects of
mathematical inquiry and the character and validity of the pro-
cedures used by mathematicians in handling these objects. These
are basic problems in what we would now call the philosophy of
mathematics. Proclus’ essay is the only systematic treatise that has
come down to us from antiquity dealing with these questions; and
for those not already acquainted with Proclus’ commentary, it will
perhaps be useful to preface the text itself with a brief statement
of Proclus’ answers to them,

The objects of mathematical inquiry—numbers, points, lines,
planes, and all their derivatives—are neither empirical things nor
pure forms. “Mathematical being,” as Proclus puts it in his opening
sentence, occupies an intermediate position between the simple
immaterial realities of the highest realm and the extended and
confusedly complex objects of the sense world. The superiority of
mathematical objects to sensible things is evidenced by the exact-
ness and stability of their natures and by the irrefutable character
of the propositions establishing their attributes and relations to one
another. In contrast with sense objects, “mathematicals” are devoid
of matter and not subject to the changes that affect physical things;
thus they are intelligible entities, capable of providing a foundation
for the demonstrations that mathematics undertakes. On the other
hand, they do possess a kind of extendedness. The series of numbers
consists of discrete members, and geometrical figures are divisible
into parts. And no mathematical object is unambiguously unique,
since mathematical reasoning often involves a comparison of two
or more lines, or of two or more circles or other figures. Their
plurality and their extendedness thus show that they do have a kind

— Ivii —



INTRODUCTION

of matter, mathematical matter, underlying them; and therefore
they fall short of the immaterial and unextended beings that are
the objects of pure intelligence.

Whence come these mathematical objects? It is obvious that they
are not presented in sense-perception: our senses never show us
points without parts, lines without breadth or depth, right-angled
triangles all possessing a fixed ratio between their sides, nor any
other of the perfectly precise objects that figure in mathematical
discourse. Rather they issue from the mind itself, being “projected”
by it from the inner store of forms that constitute its essence. The
mind is “reminded” of these ideas by sense-perception, and its
thinking is an “unfolding” of their content under the guidance of a
higher and fully unified intelligence (12.1-13.26; cf. 49.4-56.22).
Following Plato, Proclus calls the level of intelligence that is opera-
tive in mathematics the 3iwdrowa, generally translated here as “under-
standing.” This is the level of discursive thought, proceeding step
by step from one factor to another and to their integration into a
whole. Like the objects that it examines, this level of thought occu-
pies a middle position between sense-perception and the highest
intelligence, which Proclus, again following Plato, calls vonows, or
Nous. Sense-perception has but a dim apprehension of being; its
knowledge is fragmentary, imprecise, and unstable, and amounts
only to opinion (8s¢a) about its objects. The understanding intro-
duces clarity and precision, but its cautious discursive procedure,
its treatment of its objects as extended, and its dependence upon
higher knowledge for its principles reveals its inferiority to the
immediate and total and sure comprehension of Nous (3.14-4.14).
Since the understanding occupies this middle station, its function
has a twofold reference. On the one hand, it develops the content
of the pure forms that it receives from Nous, imitating their unity
and simplicity as best it can by ordering and integrating the com-
plex and diverse factors that it distinguishes; on the other hand, it
furnishes the paradigms to which the changes and variety in the
sense world conform. It is thus a genuine intermediary between
the lowest and the highest levels of being, imitating the highest and
furnishing intelligible patterns for understanding the world of
physical processes below it (16.4-16).
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In this activity of unfolding the content of pure ideas and tracing
the details of their implications and mutual relations, the under-
standing relies upon a special capacity, the imagination or image-
making faculty, for exhibiting the variety and complexity present
in the mathematical forms that it explores (51.9-56.22). The ideas
with which the understanding is equipped are, like the partless
ideas in Nous, unextended, indivisible, uncompounded, containing
the variety of their content in an undivided unity. But the imagina-
tion expresses these ideas as formed, extended, and divisible, pro-
viding them with an intelligible matter—space—in which they can
be deployed. It thus presents not the pure idea itself, but a picture
of it, or rather a series of pictures, all possessing the common
character that constitutes the essence of the idea. The circle in the
understanding, before it is projected on the screen of the imagina-
tion, is one only, without extension, having neither center nor cir-
cumference; but as depicted in imagination it is extended and may
appear in any one of a variety of sizes and positions, Unless it were
so presented, it would be impossible for the understanding to ex-
plore by reasoning its constituent elements and their relations to
one another, It is these pictures in the imagination with which
mathematical reasoning deals, using them as aids for discerning the
universal character present in each and all of the imaginary circles
and for demonstrating its properties and relations to other univer-
sals found in other similarly presented objects.

As the Platonist will readily see, this is an adaptation and elab-
oration of the doctrine illustrated by the divided line in the Re-
public. The part played by the imagination is Proclus’ main addition
to the Platonic theory, an addition which anticipates, it need hardly
be pointed out, Kant's doctrine of the schematism of the under-
standing. Again the relation between the understanding and the

higher intelligence, as Proclus conceives it, goes far beyond the
tentative formulations in the Republic. Nevertheless in character-

istic fashion Proclus considers this derivative theory as remaining
faithful to the source from which it comes; and the use of the
metaphors of imitation and paradigm and of the concept of recol-
lection (dvduwmois), as well as the explicit references to the “leader-
ship” of Plato, show that he regards it as genuinely Platonic. For
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him, as for Plato, the understanding and Nous alike are engaged in
apprehending the intelligible world. And it is because mathematics
opens the way to that world and thus emancipates the mind from
the bondage to the senses and equips it to rise to superior levels of
understanding that Proclus proclaims its importance for education
and for all the higher life,

Besides having a world of objects that are the creations or pro-
jections of the mind’s essential nature, mathematics follows a
method of its own devising in examining these objects and arriving
at certain conclusions about their properties and relations, This is
the procedure of positing plausible starting-points (dpyxat) and
establishing conclusions by deduction from these initially adopted
first principles (75.6-26 and passim). The discovery and elabora-
tion of this method of scientific inquiry is the great and distinctive
contribution of the Greek mathematicians.?® It was worked out, as
we can see from the historical evidence that Proclus gives us, in
part at least under the influence of Plato and certainly in close col-
laboration with the fourth-century Academy (66.8-68.4); hence
it constitutes another, though less obvious because so all-pervading,
Platonic note in Proclus’ commentary.*® These starting-points upon
which all later reasoning depends appear in geometry as the fa-
miliar axioms, postulates, and definitions of the Euclidean method.
The axioms underlying mathematical reasoning are posited because
they are seen to be true in and of themselves—or at least “more
evident than their consequences,” Proclus adds in one passage
(75.17)—having no need of confirmation by demonstration or
construction, such as the axiom that things equal to the same thing

3 Though the Greeks borrowed much in mathematics from the Babylon-
ians and the Egyptians, this method of mathematical reasoning and demon-
stration is their own; nothing like it is found in the cultures from which they
borrowed. See Kurt von Fritz in Archiv fiir Begriflsgeschichte 1, 1955, 13f.

40 Plato's contribution to the development of this mathematical method
must have been considerable. It was formerly maintained that he was re-
sponsible for its chief features—the axiomatic structure of proof, the use
of the method of analysis, and the restriction of mathematical existence to
what can be constructed. More recent discoveries regarding the methods
used by mathematicians before Plato compel us to reduce somewhat this
estimate of his contributions. See ArpAd Szabé, “Anfinge des Euklidischen
Axiomensystems,” in O. Becker (ed.), Zur Geschichte der Griechischen
Mathematik, Darmstadt, 1965, 4504,
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are equal to each other. Postulates are demands that certain pro-
cedures be permitted, such as to draw a line from any point to any
other, or to describe a circle about any point with any radius.
These procedures are not as self-evident as the axioms, but it re-
quires little effort of thought to see that they are obviously valid.
Thus if one pictures a point “flowing” without deviation towards
another point, the drawing of a straight line in imagination inevit-
ably results; and if one thinks of a line revolving about a stationary
end, the other end-point will easily be seen to describe a figure with
a circumference everywhere equidistant from the stationary point.
In addition to axioms and postulates, the mathematician needs clear
definitions of the objects which he is considering. The circle just
mentioned, for example, the mathematician defines precisely as a
figure bounded by a line every point on which lies at an equal
distance from a point within it, its center. These starting-points—
definitions, axioms, and postulates—are collectively the hypotheses
of the reasoning that follows; and the theorems that result are
established by strict deduction, either immediately from the first
principles or from them in conjunction with other theorems previ-
ously established.

To the Greek mathematicians must be credited also a host of
supplementary devices and refinements of procedure for expound-
ing and elaborating their increasingly complex material. There are
important distinctions between the methods of analysis and synthe-
sis, between types of definitions, between kinds of proof, between
problems and theorems, between a theorem and its converse—
entire or partial—and a variety of technical terms whose use must
be mastered in the handling of these procedures. With each of these
Proclus is familiar, and they all appear at appropriate points in his
commentary. But the method mentioned in the preceding para-
graph is basic to them all; it represents the distinctive character of
mathematical inquiry, the positing of principles and the deduction
of their consequences. This distinction between hypotheses and .
conclusions at each stage of the reasoning, and the orderly progres-
sion from propositions established to further conclusions based on
them as premises, produce unity, coherence, and solidity in the
system of mathematical propositions, which despite their variety

Ix1



INTRODUCTION

and complexity are firmly rooted in and unified by the principles
from which they are derived.

This cosmos* of mathematical propositions exhibits a double
process: one is a movement of “progression” (wpdodes), Or going
forth from a source; the other is a process of “reversion” (dvo8os)
back to the origin of this going forth (18.17-28; 19.5-20). Thus
Proclus remarks that some mathematical procedures, such as divi-
sion, demonstration, and synthesis, are concerned with explicating
or “unfolding” the simple into its inherent complexities, whereas
others, like analysis and definition, aim at coordinating and unify-
ing these diverse factors into a new integration, by which they rejoin
their original starting-point, carrying with them added content
gained from their excursions into plurality and multiplicity (57.18-
26). For Proclus the cosmos of mathematics is thus a replica of
the complex structure of the whole of being, which is a progression
from a unitary, pure source into a manifold of differentiated parts
and levels, and at the same time a constant reversion of the multiple
derivatives back to their starting-points. Like the cosmos of being,
the cosmos of mathematics is both a fundamental One and an
indefinite Many, and it has the one character only because it has
the other.

The body of mathematical knowledge is, then, the product of the
activity of the mind, working on objects that it has drawn from
within itself and handling them in accordance with principles of its
own devising. But this picture of mathematics, unless we introduce
certain qualifications, could give a distorted idea of Proclus’ con-
ception, suggesting that the mathematical world is an arbitrary
creation, the product of imagination in the most fanciful sense of
the term.

First we must recall that the understanding, and the imagination
which aids it, occupy a middle station between sense-perception and
pure reason. As an intermediary, the understanding has contacts
and resemblances with the levels of experience on both sides of
itself. From the one side it is stimulated by sense objects to bring
forth ideas appropriate to understanding them, and it continues to
be guided by sensory experience in producing further refinements of

41 Proclus often uses the more pretentious term Sudrxocuos to denote such
an ordered system (e.g. 13.14, 17.1, 18,24, 61.27, and passim).
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its initial recollections. It is methodologically significant, as well as
historically true, that the first conceptions of numbers by the
Pythagoreans pictured them as identical with empirically given
points or constellations of points;** and likewise that the first con-
ceptions of lines and planes arose from observation of visible ob-
jects, such as the boundaries between plots of arable land in the
Nile valley. Mathematical reasoning in antiquity never completely
lost touch with the empirical material that had stimulated its be-
ginning, although the connection became more and more tenuous
and indirect with the progress of generalization and abstraction.
Nor was the complementary process of applying mathematical
results to sensible experience by any means absent in antiquity.
Proclus’ frequent references to the many achievements of the
mathematical sciences in serving the everyday needs of men (e.g.
19.21ff., 41.3-42.6)—in surveying the surface of the earth, in
applying force to move objects, in building fortifications and instru-
ments of war—show that he and the Greeks were well aware of
the utility of mathematics, and these applications to empirical
problems demonstrably influenced the direction of mathematical
imagination. From the other side mathematical understanding is
guided by the superior level of intelligence from which its ideas are
derived, so that it is constantly required by the logic of the larger
system of which it is a part to rise to ever higher levels of compre-
hension, that is, to more and more refined analyses and more and
more general principles.

Furthermore, these ideas themselves are not passive contents but
active agencies, as Proclus conceives them, developing of their own
volition, so to speak, into the complex structures of the mathe-
matical world, “unfolding”—to use once more Proclus’ expressive
term—as they are examined, and revealing ever new aspects of
their character and relationships. The understanding does not
manipulate them; rather they carry the understanding with them
as they unfold (17.1-18.1). An example from antiquity would be
the way in which the ideas of number, equality, ratio, and propor-
tion became increasingly complex as they were employed succes-
sively by Pythagoras, Eudoxus, and Euclid and his successors. At

42 On early Pythagorean conceptions of number see John Burnet, Early
Greek Philosophy, 3rd edn., London, 1920, 99ff,
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the same time these ideas maintain their unity and integrity, and
their unfolding is a process whereby the richness of their content
is explicitly displayed within their essential unity. Being thus under
the guidance of Nous, the understanding in its dialectical activity is
not arbitrarily creative but is dependent at every stage on the
higher intelligence that presides over it and on the living ideas that
it has derived from that higher intelligence (42.13-43.21).
Following Aristotle’s lead, Proclus at times conceives of the
mathematical sciences, arithmetic and geometry in particular, as
distinct, each positing a certain genus of subject-matter that it
proposes to examine and specific principles that it adopts for
handling this subject-matter. Arithmetic has the priority over
geometry, since it starts from the positionless unit, which is simpler
than the point, a unit having position; and below them is ranged a
series of other sciences dependent on them—astronomy, optics,
and mechanics, to mention only the most important—each taking
a more complex species of object and specific rules as principles for
studying it. Each of them is in this sense bound by the presupposi-
tions from which it starts. It is the mark of a tyro in geometry, for
example, to employ principles and modes of reasoning that do not
conform to the conventions of his science (58.3-61.24). “No
science demonstrates its own first principles,” says Proclus (75.14).
But Proclus is not content to leave the matter thus, as Aristotle
appears to have been. These starting-points are not free postulates;
just as astronomy and the other sciences start from principles estab-
lished in arithmetic and geometry, so the starting-points of these
two sciences come from a still higher science, from what Proclus
calls “general mathematics” (6Ay pabyparwsy; 7.17-10.14, 18.10-
20.7). The reality of this more general science is shown by certain
concepts and principles that arithmetic and geometry have in com-
mon, such as the axioms regarding equals and the rules of propor-
tion. The objects taken to be equal will differ for the arithmetician
and the geometer; the one will demonstrate the theorem of alternate
proportion in terms of numbers, the other in terms of continuous
magnitudes, and each will regard as inadmissible in his science the
mode of proof used by the other. But these particular uses indicate
that above them stands the principle of alternation applicable alike
to magnitudes and numbers; and it is inconceivable that we should
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have a knowledge of the particular applications yet no science at
all of the universal principle itself. “Knowledge of those objects is
by far the prior science, and from it the several sciences get their
common propositions” (9.14-16).

The mathematical sciences therefore are not independent and
self-contained within their starting-points. Just as arithmetic and
geometry are dependent on general mathematics, so the principles
of general mathematics in turn are dependent on a higher science
than that which explicitly posits them. Of more universal import
than the starting-points of mathematics are the principles of the
Limit (#épas) and the Unlimited (dwrepov; 5.15-7.12). The Limit
expresses the character of boundedness or determinateness that
belongs to every intelligible object; the Unlimited represents the
fecundity of being, ever going beyond its own limits and develop-
ing into a world of derivatives which are other than itself but are
everywhere constrained by the unitary source from which they
have proceeded. The Limit and the Unlimited pervade all being,
generating everything out of themselves (5.15-22). Closely con-
nected with them are other pairs of principles, Likeness and Un-
likeness, Equality and Inequality, Harmony and Disharmony. These
principles themselves are derivatives of a still more eminent prin-
ciple, “the indescribable and utterly incomprehensible causation of
the One” (5.19). We are here in the region of the very highest
science, the “science of being as being” (9.19), as Proclus calls it
in Aristotelian terms. This science is truly universal and self-
contained; it is the “unhypothetical science” (31.20), for hypothe-
ses and consequences are one in the all-comprehending insight of
Nous. But we cannot follow Proclus further into these metaphysical
and epistemological reaches of his thought. Enough has been said
to show that the mathematical sciences, with their specific presup-
positions, are a part of and continuous with the larger enterprise
of dialectic, not only intent on unfolding their ideas into a system
of implications, but also insistent on giving an account of their
presuppositions themselves, in the fashion of the dialectic portrayed
in the Platonic dialogues.

Hence Proclus speaks of dialectic as the “unifying principle” of
the mathematical sciences or—again borrowing a term from
Plato—as their “capstone” (42.9-44.24), It is not only the central
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activity at work in mathematics itself, creating all the increasingly
complex objects that mathematics examines and the variety of
auxiliary methods that it employs, but also the crowning science,
the realization of that immediate and complete understanding
toward which all discursive thought moves. Proclus would hardly
be surprised to hear of the astonishing expansion of mathematics
that has taken place in modern times, an expansion that has carried
it far beyond its ancient bounds. He was himself well aware of
the remarkable development that had occurred during the golden
age of Greek geometry, from the simple concepts and procedures of
Pythagoras to the complexities of Archimedes and Apollonius, and
had exerted an influence, through ever widening areas of mathe-
matical analysis and increasing refinements of procedure, on
Geminus, Ptolemy, Heron, Pappus, Diophantus, and many others
down to Proclus’ own time. He could only anticipate that this ex-
pansion would continue, assuming a continuance of the dialectical
urge that had operated in the past., For the objects that mathe-
matical understanding sets before itself are not given once for all,
but are the product of the mind's own “inexhaustible resources”
(18.3, 37.11), working under the stimulus of sense-perception and
the guidance of the higher Nous.

Obviously for Proclus the mind is not a blank tablet, owing its
content and capacities entirely to sense-experience; but neither is it,
as some later idealists would have it, a faculty with a fixed store of
a priori forms and concepts, and limited by this native equipment.
“The soul therefore was never a writing-tablet bare of inscriptions;
she is a tablet that has always been inscribed and is always writing
itself and being written on by Nous™ (16.8-10). This conception
of the understanding as infinitely resourceful, capable through
dialectic of transcending any given boundaries and exploring freely
whatever new implications are opened up for it, is an answer to
the criticism that Proclus’ mathematical philosophy is archaic or
provincial because of its reliance upon Plato, Aristotle, and Euclid.
And in taking the Platonic dialectic as the heart of mathematical
reasoning, Proclus has provided in advance the clue to understand-
ing the rich development of mathematics that has occurred since
Euclid's day, carrying it far beyond the explicit content of ancient
mathematics to new worlds undreamed of by the Greeks. This
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dialectical capacity of the soul, which enables it to reach upwards
as well as downwards, is the epistemological counterpart to the
ontological station that Proclus assigns to it midway in the scale of
being, participating in the highest and most absolute, yet descending
into the lower grades of physical occurrence to guide and control.
Because of its central status in the cosmos and the intellectual
resources with which it is endowed, the soul is adequate to the
explanation and understanding of all levels of being.

Since mathematics is the primary manifestation of these powers
of the soul, the study of this science is the gateway to knowledge
and blessedness. It is on this note that Proclus concludes the first
part of his Prologue. Mathematics, he says (46.20-47.6), “arouses
our innate knowledge, awakens our intellect, purges our under-
standing, brings to light the concepts that belong essentially to us,
takes away the forgetfulness and. ignorance that we have from
birth, sets us free from the bonds of unreason; and all this by the
favor of the god*® who is truly the patron of this science, who
brings our intellectual endowments to light, fills everything with
divine reason, moves our souls towards Nous, awakens us as it
were from our heavy slumber, through our searching turns us back
on ourselves, through our birthpangs perfects us, and through the
discovery of pure Nous leads us to the blessed life.”

43 For a suggestion regarding the identity of this god see note at 46.25.
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Translator’s Note

THE FIRsT printed Greek text of Proclus’ commentary was edited
by Simon Grynaeus the elder and published at Basel in 1533 as an
appendix to his edition of Euclid. Grynaeus used only a single
manuscript, and that an inferior and mutilated one. The Latin
translation of Francis Barocius (Barozzi), published at Padua in
1560, was based on a much better text established by the translator
himself from five other manuscripts in addition to the one used by
Grynaeus. Unfortunately Barocius did not publish his Greek text;
nevertheless, the faithfulness with which he evidently followed his
original makes it possible in most cases to infer the text from which
he worked. The present translation is based on the text of Gottfried
Friedlein (Leipzig, 1873), which replaced the inadequate text of
Grynaeus. Friedlein's text, though not free of faults, is reasonably
satisfactory, and is furnished with an excellent Index verborum
that greatly facilitates the task of a translator.

The only previous English translation is that of Thomas Taylor
(The Philosophical and Mathematical Commentaries of Proclus on
the First Book of Euclid's Elements, 2 vols., London, 1788, 1789),
which was based on Barocius and Grynaeus, The contributions of
this indefatigable Platonist are so numerous and important that it
is almost an act of impiety to presume to replace this early product
of his industry with a new translation. But Taylor’s work is long out
of print and is difficult to obtain. What is more, the imperfect text
from which he worked (he even failed to make full use of Barocius,
though professing to regard him as an indispensable supplement to
Grynaeus) and his numerous paraphrases and unaccountable omis-
sions make his translation not truly representative of the original
Proclus. It is good, however, to know that Taylor’s merits and
achievements have been recognized recently by the publication of
a volume of selections from his other writings, with biographical
and critical comments.*

Two other recent translations (the only ones of which I know)
have been of great help to me. One is a translation into German by

i Thomas Taylor the Platonist: Selected Writings, edited, with Introduc-
tions, by Kathleen Raine and George Mills Harper, Princeton, 1969,
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Leander Schionberger, published at Halle in 1945, to which I am
much indebted for aid in interpreting difficult passages. A still more
recent translation, into French, by Paul ver Eecke (Bruges, 1948)
has been helpful in its notes and references to mathematical
matters. But neither of these more modern translations, nor Taylor’s
earlier one, makes it easy to find one’s way from the Greek text to
the translation, or vice versa, a shortcoming which much reduces
their value to the student. Since Friedlein’s text is now readily
available in a recent reprint, I have included his pagination in the
margins of my translation; and for those who may wish to compare
a particular rendering with the Greek text, I have included line
numbers as well as page numbers in my footnotes. Our manu-
scripts also contain indications of the ancient division of the
Commentary into four books. These also I have put in the mar-
gins, together with Barocius’ helpful division of the Prologue into
chapters and the titles he assigned to them. Finally, since Proclus’
commentary presupposes that its readers will have ready access
to the text of Euclid on which it comments, I have presumed
to provide this help to the modern reader by giving in footnotes the
Euclidean proofs of the various propositions as they appear in the
commentary.,

Wherever I have found it necessary or desirable to depart from
the text of Friedlein, I have indicated in a footnote the reading
that I have adopted. The occasional words and phrases enclosed in
brackets are additions to Friedlein’s text, drawn either from
Barocius or from my own presumptions of what Proclus intended.
I should like to think that my corrections and emendations, together
with those in Schinberger’s and ver Eecke’s translations, will be of

use to some future scholar who may undertake the task of bringing
out an improved text,

— Ixix —



PROCLUS

A COMMENTARY ON THE
FIRST BOOK OF
EUCLID’S ELEMENTS



PROCLUS
A COMMENTARY ON THE
FIRST BOOK OF
EUCLID’S ELEMENTS

Translated

with Introduction and Notes by

GLENN R. MORROW

Adam Seybert Professor Emeritus
of Moral and Intellectual Philosophy
University of Pennsylvania

PRINCETON UNIVERSITY PRESS 1370
PRINCETON, NEW JERSEY



3

Book I
Chap. 1
The Inter-
mediate
Status of
Mathemat-
ical Being

PROLOGUE: PART ONE

ATHEMATICAL being necessarily belongs neither

among the first nor among the last and least simple
of the kinds of being, but occupies the middle ground between
the partless realities'—simple, incomposite, and indivisible—
and divisible things characterized by every variety of com-
position and differentiation. The unchangeable, stable, and
incontrovertible character of the propositions about it shows
that it is superior to the kinds of things that move about in
matter. But the discursiveness of [mathematical] procedure,
its dealing with its subjects as extended, and its setting up of
different prior principles for different objects—these give to
mathematical being a rank below that indivisible nature that
is completely grounded in itself.

It is for this reason, I think, that Plato assigned different
types of knowing to the highest, the intermediate, and the
lowest grades of reality.? To indivisible realities he assigned
intellect, which discerns what is intelligible with simplicity
and immediacy, and by its freedom from matter, its purity,
and its uniform mode of coming in contact with being is
superior to all other forms of knowledge. To divisible things
in the lowest level of nature, that is, to all objects of sense-
perception, he assigned opinion, which lays hold of truth
obscurely, whereas to intermediates, such as the forms studied
by mathematics, which fall short of indivisible but are supe-
rior to divisible nature, he assigned understanding. Though
second in rank to intellect and the highest knowledge, un-
derstanding is more perfect, more exact, and purer thar opin-
ion. For it traverses and unfolds the measureless content
of Nous by making articulate its concentrated intellectual
insight, and then gathers together again the things it has
distinguished and refers them back to Nous.

135 droeoraces.

23,16 Rep. 511b-e and 533e-534¢c. On the renderings of the Pla-
tonic terms in this passage see note at 10.27 below.
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Chap. 11
The Com-
mon Prin-
ciples of
Mathemati-
cal Being.
The Limit
and the Un-
limited.

THE COMMENTARY

As the forms of knowing differ from one another, so also
are their objects different in nature. The objects of intellect
surpass all others in the simplicity of their modes of ex-
istence, while the objects of sense-perception fatl short of
the primary realities in every respect. Mathematical objects,
and in general all the objects of the understanding, have an
intermediate position. They go beyond the objects of intellect
in being divisible, but they surpass sensible things in being
devoid of matter. They are inferior to the former in simplicity
yet superior to the latter in precision, reflecting intelligible
reality more clearly than do perceptible things. Nevertheless
they are omly images, imitating in their divided fashion the
indivisible and in their multiform fashion the uniform pat-
terns of being. In short, they stand in the vestibule of the
primary forms, announcing their unitary and undivided and
generative reality, but have not risen above the particu-
larity and compositeness of ideas and the reality that belongs
to likenesses; nor have they yet escaped from the soul’s varied
and discursive ways of thinking and attained conformity with
the absolute and simple modes of knowing which are free
from all traces of matter. Let this be our understanding, for
the present, of the intermediate status of mathematical genera
and species, as lying between absolutely indivisible realities
and the divisible things that come to be in the world of matter.

To find the principles of mathematical being as a whole,
we must ascend to those all-pervading principles that generate
everything from themselves: namely, the Limit and the
Unlimited,® For these, the two highest principles after the
indescribable and utterly incomprehensible causation of the
One, give rise to everything else, including mathematical
beings. From these principles proceed all other things collec-
tively and transcendentally, but as they come forth, they
appear in appropriate divisions and take their place in an

35.18 On the Limit (répas) and the Unlimited (&wepor, dmerpla)
as cosmogonic principles see Proclus' Elements of Theology, Prop. 89,
and Dadds’ note {246-248). These speculations have their source in
Plato’s Philebus 16¢ff. and 23cff., which in turn professes its depend-
ence on the inspired wisdom of the “ancients,”
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ordered procession,* some coming into being first, others in
the middle, and others at tht end. The objects of Nous, by
virtue of their inherent simplicity, are the first partakers of
the Limit and the Unlimited. Their unity, their identity, and
their stable and abiding existence they derive from the Limit;
but for their variety, their generative fertility, and their divine
otherness and progression they draw upon the Unlimited.
Mathematicals are the offspring of the Limit and the Unlim-
ited, but not of the primary principles alone, nor of the hidden
intelligible causes, but aiso of secondary principles that pro-
ceed from them and, in cooperation with one another, suffice
to generate the intermediate orders of things and the variety
that they display. This is why in these orders of being therc
are ratios proceeding to infinity, but controlled by the princi-
ple of the Limit. For number, beginning with unity, is capable
of indefinite increase, yet any number you choose is finite;
magnitudes likewise are divisible without end, yet the magmni-
tudes distinguished from one another are all bounded, and the
actual parts of a whole are limited. If there were no infinity, all
magnitudes would be commensurable and there would be
nothing inexpressible or irrational,® features that are thought
to distinguish geometry from arithmetic; nor could numbers
exhibit the generative power of the monad, nor would they
have in them all the ratios—such as multiple and superpar-
ticular—that are in things.® For every number that we exam-
ine has a different ratio to unity and to the number just before
it, And if the Limit were absent, there would be no com-

1524 We shall frequently encounter in the Commeniary this
doctrine of the procession (mpéodos) of beings from their primary
source. For the intricate details of the processional order, as Proclus
conceives it, see his Elements of Theology, passim.

5621 &pppror, dhovor. This is a reflection of Euclid's distinction
between two orders of irrationals (Bk. X, Deff. TI1 and IV). “Aponror
denotes a line incommensurable in length with a given {rational) line,
dhoyor a line which is commensurable neither in length nor in square
with the given line.

86.25 On the elaborate classification in Greek arithmetic of nu-
merical ratios greater than unity see Nicemachus, fntroduction to
Arithmetic, Chaps. 17-23; and for a convenient English lsting Heath
1. 10111
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Chap. III

The
Common
Theorems
Governing
Mathemati-
cal Kinds

THE COMMENTARY

mensurability or identity of ratios in mathematics, no similar-
ity” and equality of figures, nor anything else that belongs in
the column of the better.® There would not even be any
sciences dealing with such matters, nor any fixed and precise
concepts. Thus mathematics needs both these principles
as do the other realms of being. As for the lowest realities,
those that appear in matter and are moulded by nature, it is
quite obvious at once that they partake of both principles, of
the Unlimited as the ground that underlies their forms and of
the Limit by virtue of their ratios, figures, and shapes. It is
clear, then, that the principles primary in mathematics are
those that preside over all things,

Just as we have noted these common principles and seen
that they pervade all classes of mathematical objects, so let us
enumerate the simple theorems that are common to them
all, that is, the thcorems generated by the single science that
embraces alike all forms of mathematical knowledge; and let
us see how they fit into all these sciences and can be observed
alike in numbers, magnitudes, and motions. Such are the
thecorems governing proportion, namely, the rules of com-
pounding, dividing, converting, and alternating; likewise the
theorems concerning ratios of all kinds, multiple, superpar-
ticular, superpartient, and their counterparts;® and the the-
orems about equality and inequality in their most general and
universal aspects, not equality or inequality of figures, num-
bers, or motions, but each of the two by itself as having a
nature common to all its forms and capable of more simple
apprehension. And certainly beauty and order are common

772 ravrérys, translated here as similarity, i.e. identity of form,
to differentiate it from feérns, equality.

27,3 On the Pythagarean doctrine of the two columns (cvoroexin)

see Arist. Met. 986222-26. The ten members in each column, as listed
by Aristotle, are

Limit - Unlimited Rest - Motion
0dd — Even Straight — Curved
One - Many Light - Dark
Right - Left Good - Evil
Male - Female Square - Oblong

The column on the right (i.e. the reader's left) is the “better.”
726 See note at 6.25.
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Chap. IV
In What
Way These
Common
Thearems
Subsist

9

PROLOGUE: PART ONE

to all branches of mathematics, as are the method of pro-
ceeding from things better known to things we seek to know'?
and the reverse path from the latter to the former, the methods
called analysis and synthesis,’* Likeness and unlikeness of
ratios are not absent from any branch of mathematics, for we
call some figures similar and others dissimilar, and in the
same way some numbers like and others unlike, And matters
pertaining to powers'? obviously belong to general mathe-
matics, whether they be roots or squares. All these Socrates
in the Republic puts in the mouth of his loftily-speaking
Muses, bringing together in determinate limits the elements
common to all mathematical ratios and setting them up in
specific numbers by which the periods of fruitful birth and of
its opposite, unfruitfulness, can be discerned.

Consequently we must not regard these common theorems
as subsisting primarily in these many separate forms of being,
nor as later born and deriving their origin from them, but as
prior o their instances and superior in simplicity and exact-
ness. For this reason, knowledge of them takes precedence
over the particular sciences and furnishes to them their
principles; that is, these several sciences are based upon this
prior science and refer back to it. Let the geometer state
that if four magnitudes are proportionat they will also be
proportional alternately’® and prove it by his own principles,
which the arithmetician would not use; and again let the
arithmetician lay it down that if four numbers are proportional

1086 Le. from premises to conclusions, the characteristic feature
of demonstration as formulated by Aristotle, Post. Anal. 71b9-72b4,
whose language this passage echoes.

1188 Proclus is fond of chiasmus and lists these two terms in the
reverse order of their preceding description. Analysis proceeds from
conclusions to the premises that will establish them, synthesis from
premises to the conclusions that follow from them. See 43.18-21 and
69.16-19.

128.12  Suvduas. In the context, this term obviously means mathe-
matical “powers,” and since the following words Surauévwr and Busa-
arevopdvav ate echoes of Rep. 546b, to which Proclus refers in the next
sentence, I have translated them in accordance with the meaning which
Proclus himself gives them in his Commentary on the Republic wu,
36.9-12, Krell, On the passage in the Republic see note at 2321,

1394 The theorem referred to is Euclid V., 16,
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they will also be proportional alternately and establish this
from the starting-points of his own science. Then whose
function is it to know the principle of alternation alike in
magnitudes and in numbers and the principles governing the
division of compound magnitudes or numbers and the com-
pounding of separate ones? It cannot be that we have sciences
of particular areas of being and knowledge of them but have
no single science of the immaterial objects that stand much
closer to intellectual inspection. Knowledge of those objects is
by far the prior science, and from it the several sciences get
their common propositions, our knowledge ascending from
the more partial to the more general until at last we reach
the science of being as being.** This science does not consider
it its province to study the properties that belong intrinsically
to numbers, nor those that are common to all quantities;
rather it contemplates that single form of being or existence
that belongs to all things, and for this reason it is the most in-
clusive of the sciences, all of which derive their principles
from it.

Always it is the higher sciences that provide the first
hypotheses for the demonstrations of the sciences below them,
and the most perfect of the sciences out of its own store lends
to all others their principles, more general principles to some
and to others less general ones. This is why Socrates in the
Theaetetus,'* mingling play with seriousness, likens the forms
of knowledge in us to doves. Some of them, he says, fiy
in groups and others separately from the rest. The more
comprehensive and general sciences contain many spectal
sciences in themselves, whereas those that handle generically
distinct objects remain apart and have little to do with one
another, because they start from different first principles. One
science, however, must stand above the many sciences and
branches of knowledge, that science which knows the com-
mon principles that pervade all kinds of being and furnishes

149.19 Aristotle’s definition of the highest science; see Met.
1026a31, H064a3, 28, and b7,
15102 Theaet. 197d.

— 8
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to all the mathematical sciences their starting-points. Here
let us end our remarks about this highest science.

Next we should see what faculty it is that pronounces
judgment in mathematics.?® On this doctrine let us again fol-
low the guidance of Plato. In the Republic ke sets on one
side the objects of knowledge and over against them the forms
of knowing, and pairs the forms of knowing with the types of
knowable things. Some things he posits as intelligibles (vogrd),
others as perceptibles (zicfyrd); and then he makes a further
distinction among intelligibles between intelligibles and under-
standables (Swavoyrd) and among perceptibles between per-
ceptibles and likenesses (eixaord). To the intelligibles, the
highest of the four classes, he assigns intellection (vénes) as its
meode of knowing, to understandables understanding (&udvoia),
to perceptibles belief (wieris), and to likenesses conjecture
{eixacia).'" He shows that conjecture has the relation to per-
ception that understanding has to intellection; for conjecture
apprehends the images of sense objects in water or other re-
flecting surfaces, which, as they are really only images of im-
ages, occupy almost the lowest rank in the scale of kinds,
while understanding studies the likenesses of intelligibles
that have descended from their primary simple and indivisible
forms into plurality and division. For this reason the knowl-
edge that understanding has is dependent on other and prior
hypotheses, whereas intellection attains to the unhypothetical
principle itself.

Since, therefore, mathematical objects have the status
neither of what is partless and exempt from all division and
diversity nor of what is apprehended by perception and is
highly changeable and in every way divisible, it is obvious
that they are essentially understandables and that understand-

16 10.17  xkperiipor, “court,” “tribunal”; frequently used by Hellen-
istic writers 10 denote the mental faculty that has competence to judge
a matter under consideration.

17 10.27 See note at 3.16. I have tried to preserve uniformity in all
translations of these terms; i.e. vois and végocs are rendered as “nous,”
“intellect,” or “intellection’™; ronrd as “intelligibles”; 3iévoia as “un-
derstanding” (for both the faculty and the activity); and Ziaronrd as
“understandables.”

— 9
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ing is the faculty that is set over them, as perception is over
sense objects and conjecture over likenesses. Hence Socrates
describes the knowledge of understandables as being more
obscure than the highest science but clearer than the judg-
ments of optmion.® For the mathematical sciences are more
explicative and discursive than intellectual insight but are su-
perior to opinion in the stability and irrefutability of their
ideas, And their proceeding from hypotheses makes them
inferior to the highest knowledge, while their occupation with
immaterial objects makes their knowledge more perfect than
sense-perception. Such, then, is the criterion of judgment in
all mathematics, as we have delineated it according to Plato’s
thought: the understanding, a faculty higher in rank than
opinion but inferior to intellect.

Next'® we must ascertain what being can fittingly be as-
cribed to mathematical genera and species, Should we
admit that they are derived from sense objects, either by
abstraction, as is commonly said, or by collection from
particulars to one commen definition? Or should we rather
assign to them an existence prior to sense objects, as Plato
demands and as the processional order® of things indicates?

In the first place, if we say that mathematical forms are
derived from sense objects—that the soul, from seeing ma-
terial circles and triangles, afterwards shapes in herself the
form of circle and the form of triangle—whence come the
exactness and certainty that belong to our ideas?™ Necessarily
either from sense objects or from the soul. But they cannot
come from sense objects, for then there would be far more

18 1119 Rep. 533d.

19122  Kepler estecmed this passage so highly (12.2-17.4) that he
translated it in its entirety and incorporated it in his Harmonice Mundi
{1619}, Bk, 1V, Chap. 1. See Johannes Kepler, Gesammelte Werke,
ed. Max Caspar, vi, Murich, 1940, 218-221,

2 12,9 wpéodes. See note at 524,

21 12.14 Méyoe. This term appears frequently in close proximity to
et8yn in the following pages, and usually it is hard to distinguish any
difference in signification. Wherever they obviously refer to concepts,
forms, or ideas, I have uniformly translated the former as “ideas,” the
latier as “forms,” in order to preserve for the English reader whatever
distinction Proclus intends between them,

— 10—
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precision in sense objects than there is. They come therefore
from the soul, which adds perfection to the imperfect sensibles
and accuracy to their impreciseness. For where among sen-
sible things do we find anything that is without parts, or
without breadth, or without depth? Where do we see the
equality of the lines from center to circumference? Where
the fixed ratios of the sides? Where the rightness of angles?
Do we not see that all sensible things are confused with one
another and that no quality in them is pure and free of its
opposite, but that all are divisible and extended and changing?
How, then, can we explain that very stability which un-
changeable ideas have, if they are derived from things that
are ever changing from one state to another? For it is ad-
mitted that anything which results from changing beings
receives from them a changeable character. And how can we
get the exactness of our precise and irrefutable concepts from
things that are not precise? For whatever yields knowledge
that is steadfast has that quality itself in greater degree. We
must therefore posit the soul as the generatrix of mathematical
forms and ideas. And if we say that the soul produces them
by having their patterns in her own essence and that these
offspring are the projections?? of forms previously existing in
her, we shall be in agreement with Plato and shall have found
the truth with regard to mathematical being. If, on the other
hand, she weaves this enormous immaterial fabric and gives
birth to such an imposing science without knowing or having
previously known these ideas, how can she judge whether the
offspring she bears are fertile or wind eggs, whether they are
not phantoms instead of truth? What canons could she use
for measuring the truth in them? And how could she even
produce such a varied mass of ideas without having their
essence in herself? For thus we should be making their being
come about by chance, without reference to any standard,
If, thercfore, mathematical forms are products of the soul
and the ideas of the things that the soul produces are not

2213.10  mpogoral. Proclus expounds at considerable length later
(51-56) this doctrine of mathematicals as projections by the under-
standing upon the screen of mathematical space.

11—
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derived from sense objects, mathematicals are their projec-
tions, and the soul’s travail and her offspring are manifesta-
tions of eternal forms abiding in her,

In the second place, if we collect our ideas in mathematics
from the lower world of sense objects, must we not say that
demonstrations using terms from the sense world are better
than those based on more general and simpler forms? For
we assert that the premises®® must always be of the same
family as the demonstrations we use in hunting a conclusion.
If, then, particulars are the premises of universal conclusions,
and sense objects the premises of conclusions about the ob-
jects of understanding, how can we take the universal as the
standard of demonstration rather than particulars and pro-
nounce the nature of understandables to be more akin to
demonstration than sensibles??* If, we say, a man demon-
strates that the isosceles triangle has the sum of its angles
equal to two right angles and that the same is true of the
equilateral and the scalene triangles, he does not propetly
understand these propositions; rather it is he who demon-
strates about any triangle without qualification that knows in
the strict sense of the term.?® Again we say that a universal
premise is better for demonstration thanm a particular, and
next that demonstrations from universals are more truly de-
monstrative, and that the premises from which demonstrations
proceed are prior and naturally superior to particulars as
causes of what is demonstrated. Therefore it is far from true to
say that the demonstrative sciences attend to the secondary
and obscurer objects of perception, rather than being con-
cerned with objects known by the understanding which are
more perfect than those that are familiar to perception and
opinion.

In the third place, we affirm that those who speak thus
make the soul less honorable than matter. For in saying that

28 144 alria; cf. Arist. Posf. Angl. 71b20-32. This statement and
the other reminiscences of Aristotelian doctrine in this paragraph show
clearly against whom the present argument is directed.

24 14,11 Ibid. B5b23fL,

e5 14,15 Ibid. 73b2811., 85b5H.

—12_-
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matter receives from nature the substantial things that are
more truly existent and clearer, while soul out of them fabri-
cates in herself secondary images and later-born likenesses—
likenesses inferior in being to their originals, since the soul
has abstracted from matter things that are by nature in-
separable from it-—do they not thereby declare the soul to be
less important than matter and inferior to it?** For matter is
the locus of embodied forms, soul the locus of ideas. Soul,
then, is the locus of primary, matter of secondary realities;
soul the locus of things preeminently real, matter of things
derivative from them; soul the locus of essential beings, matter
of things that come to be by afterthought. How, then, can we
say that the soul, which is the primary partaker of Nous and
intelligible being, imbibing her knowledge and the whole of
her life from that source, is the receptacle for the murkier
forms of what has the lowest seat in the scale of existence and
is more imperfect in its being than all else? But it is super-
fluous to refute this doctrine, which has often before been
brought to an accounting.

If, however, mathematical forms do not exist by abstrac-
tion from material things or by the assembling of the common
characters in particulars, nor are in any way later-born and
derivative from sense objects, of necessity the soul must
obtain them cither from herself or from Nous, or from both
herself and that higher intelligence. Now if she gets them
from herself alone, how can they be images of intefligible
forms? And how can they fail to receive some increment of
being from the higher realities, occupying as they do a middle
position between indivisible and divisible nature? And how
can the forms in Nous maintain their primacy as the first
patterns of all things?** Yet if they come from Nous alone,
how can the inherent activity and self-moving character of
soul be preserved when she receives her ideas from elsewhere,

2¢ 15.5 This third argument, like the two preceding ones, is aimed
at Aristotle; #rvhoc Névor and réwos Tdw €lbdr are Anistotelian phrases
(see De An. 403a28§, 429a27),

27T 15.26 Se. if mathematical concepts are not derivative from
them,

_13
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like a thing moved by outside forces? And how will she
differ from matter, which is only potentially all things and
generates none of the embodied forms? There is left only the
conclusion that soul draws her concepts both from herself and
from Nous, that she is herself the company®* of the forms,
which receive their constitution from the intelligible patterns
but enter spontaneously upon the stage of being. The soul
therefore was never a writing-tablet bare of inscriptions; she
is a tablet that has always beea inscribed and is always writing
itself and being written on by Nous. For soul is also Nous,
unfolding herself by virtue of the Nous that presides over her,
and having become its likeness and external replica. Conse-
quently if Nous is everything after the fashion of intellect, so
is soul everything after the fashion of soul; if Nous is exem-
plar, soul is copy; if Nous is everything in concentration, soul
is everything discursively.

Realizing this, Plato constructs the soul out of all the
mathematical forms, divides her according to numbers, binds
her together with proportions and harmonious ratios, deposits
in her the primal principles of figures, the straight line and the
circle, and sets the circles in her moving in intelligent fash-
ion.?®* All mathematicals are thus present in the soul from the
first. Before the numbers the self-moving numbers, before the
visible figures the living figures,”® before the harmonized parts
the ratios of harmony, before the bodies moving in a circle
the invisible circles are already constructed, and the soul is
the full company of them. This, then, is a second warld-order
which produces itself and is produced from its native prin-

26 16.6 whdpwun, i.e. “complement,” “crew,” “equipment.” That this
company of ideas constitutes the essence of the soul is reiterated fre-
quently in the sequel; e.g. 1627, 17.6, 36.15, 4522, 55.18, 62.23,

20 16,22  Tim, 352-36c. For Proclus’ full explanation we must go
to his Commentary on the Timaeus, esp. m, 237.11-246 11, Diehi,
where we learn that the “straight lines” are the two longitudinal
seclions intg which the Demiurge divided his “compound,” and the
ends of which he bent around to form the two circles of the Same
and the Other.

301624 The abroxwnral dpifuol and the {wduxd oxdusre ate the
paradigms in the soul and in Nous of the mathematicals in the under-
standing. On these “self-moving ideas” see below, 140.134.

— 14—
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ciple, which fills itself with life and is filled with life from
the Demiurge, in a fashion without body or extendedness; and
when it projects its ideas, it reveals all the sciences and the
virtues. In these forms consists the essence of the soul. We
must not suppose number in her to be a plurality of monads,
nor understand the idea of interval as bodily extension,™ but
must conceive of all the forms as living and intelligible para-
digms of visible numbers and figures and ratios and motions—
as does the Timaeus, which in the construction and generation
of the soul equips her with the mathematical forms and
establishes in her the causes of all things. For the “seven
terms”?? contain in themselves the principles of all numbers,
whether linear, plane, or solid; the “seven ratios”s® exist in
her as prior causes of all the ratios; the principles of the figures
are fundamental in her composition; and her primary motion
embraces all others and in its movement brings them into
being, for of all moving things the circle and circular move-
ment are the starting-point. The mathematical ideas that make
up the complement of souls are therefore substantial and
self-moving. By emitting and unfolding them the understand-
ing brings into being all the variety of the mathematical
sciences; and it will never cease generating, bringing more
and more of them to light as it explicates the partless ideas
within itself. For it contains in advance all mathematical con-
cepts, since it is their originating principle, and by virtue of
its boundiess power projects from these previously known
starting-points the varied body of mathematical theorems.

But from the being of mathematical concepts let us go back
to that unitary science which we showed to be prior to the
several mathematical sciences. Let us consider its function,
its powers, and the scope of its activities,

We must lay it down that the function of general mathe-
matics is, as we said earlier, dianoetic thinking.3: It is not the
kind of thought that characterizes intellect, steadfasily based

31 17.8 See 53-54. 2 17.15 Tim. 35bc.
33 17.17 Tim. }6ab.

3¢ [B.11 Le. imaginative and discursive thinking, such as character-
izes Sudvoia.

—15-—
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on itself, perfect and self-sufficing, ever converging® upon
itself. Nor is it such as goes with opinion and perception, for
these forms of knowing fix their attention on external things
and concern themselves with objects whose causes they do not
possess. By contrast mathematics, though beginning with re-
minders from the outside world, ends with the ideas that it has
within; it is awakened to activity by lower realities, but its
destination is the higher being of forms. Its activity is not
motionless, like that of the intellect, but because its motion is
not change of place or quality, as is that of the senses, but a
life-giving activity, it unfolds and traverses the immaterial
cosmos of ideas, now moving from first principles to con-
clusions, now proceeding in the opposite direction, now ad-
vancing from what it already knows to what it seeks to know,
and again referring its results back to the principles that are
prior in knowledge. Moreover, it is not, like Nous, above in-
quiry because filled from itself, nor is it satisfied, like percep-
tion, with matters other than itself; rather it advances through
inquiry to discovery and moves from imperfection to per-
fection,

And its powers are manifestly of two sorts. Some develop
its principles to plurality and open up the multiform paths of
speculation, while others assemble the results of these many
excursions and refer them back to their native hypotheses.
Because it is subordinate to the principles of the One and the
Many, the Limit and the Unlimited, the objects under its ap-
prehension occupy a middle station between the indivisible
forms and the things that are through and through divisible.
Consequently it is only natural, I think, that the cognitive
powers operating in the general science that deals with these
objects should appear as twofold, some aiming at the unifica-
tion and collection of the manifold for us, others at dividing
the simple into the diverse, the more general into the par-
ticular, and the primary ideas into secondary and remoter
consequences of the principles. The range of this thinking

35 18.14 For oveeior in Friedlein read auprebor. This misspelling
occurs quite frequently in Friedlein's text, but I shall ignore later
instances.
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extends from on high all the way down to conclusions in the
sense world, where it touches on nature and cooperates with
natural science in establishing many of its propositions,
just as it rises up from below and nearly joins inteliect
in apprehending primary principles. In its lowest applications,
therefore, it projects all of mechanics, as well as optics and
catoptrics®® and many other sciences bound up with sensible
things and operative in them, while as it moves upwards it
attains unitary and immaterial insights that enable it to perfect
its partial judgments and the knowledge gained through dis-
cursive thought, bringing its own genera and species into
conformity with those higher realities and exhibiting in its own
reasonings the truth about the gods and the science of being.
So much for these matters,

We can see at once that the applications of this science
range from the most commanding knowledge to the most
humble. The Timaeus calls mathematical knowledge the way
of education,® since it has the same relation to knowledge of
all things, or first philosophy, as education has to virtue. Ed-
ucation prepares the soul for a complete life through firmly
grounded habits, and mathematics makes ready our under-
standing and our mental vision for turning towards that upper
world. Thus Socrates in the Republic®® rightly says that, when
“the eye of the soul” is blinded and corrupted by other con-
cerns, mathematics alone can revive and awaken the soul
again to the vision of being, can turn her from images to
realities and from darkness to the light of intellect, can (in
short) release her from the cave, where she is held prisoner
by matter and by the concerns incident to generation, so that
she may aspire to bodiless and partless being. For the beauty
and order of mathematical discourse, and the abiding and
steadfast character of this science, bring us into contact with
the intelligible world itself and establish us firmly in the

26 1927 From wxdrorrper, “mirror.” On this science, see 40.16fF,

57 20.10 ‘This reference to the Timeews appears to be a slip; Proclus
probably intended to write Republic, to which he refers in the im-
mediately following lines.

3820.18 Rep. 527efl,
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company of things that are always fixed, always resplendent
with divine beauty, and ever in the same relationships to
one another. In the Phaedrus Socrates presents us with three
types of persons who are moving upwards, each of them in
fulfillment of a primary vital impulse:®® the philosopher, the
lover, and the musician. The lover begins his upward journey
from the appearance of beauty and uses the intermediate
forms of lovely things as stepping-stones; the musician, who
is third in rank, moves from harmonies that he hears to
unheard harmonies and to the ratios that exist among them,
Thus for one of these persons sight is the organ of recollec-
tion, and for the other hearing. But whence does the philo-
sophic nature get its impulse toward intellectual understand-
ing and its awakening to genuine being and truth? For it like-
wise needs help, since its native principle is imperfect; its
natural virtue has its vision and its character undeveloped.
Such a man does indeed excite himself and flutter about be-
ing, but he must be given mathematics, says Plotinus,*® if he
is to become familiar with immaterial nature; when he uses
this as a model, he can be led to the practice of dialectic and
to the contemnplation of being in general.

From what we have said it is clear that mathematical
science makes a contribution of the greatest importance to
philosophy and to its particular branches, which we must
also mention. For theology, first of all, mathematics prepares
our intellectual apprehension. Those truths about the gods
that are difficult for imperfect minds to discover and under-
stand, these the science of mathematics, with the help of
likenesses, shows to be trustworthy, evident, and irrefutable.

3217 Phaedr 2494 . (7).

1032121 Enneads 1. 3. 3. Plotinus, apparently Egyptian by birth,
taught philasophy in Rome from 242 until his death in 270. He was
the greatest of the Neoplatonists and perhaps the greatest philosophical
mind between Aristotle and Aquinas. He regarded his philosophy as
Platonism, but it was a Platonism considerably modified to teet the
needs of the Hellenistic age. His discourses, each of them based on
some theme or problem in Platonic philosophy, were edited after his
desth by his friend and disciple Porphyry, who grouped them into six
books, each containing nine discourses, whence the title Enneads. See
56.24.
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It proves that numbers reflect the properties of beings above
being and in the objects studied by the understanding reveals
the powers of the intellectual figures. Thus Plato teaches us
many wonderful doctrines about the gods by means of
mathematical forms,** and the philosophy of the Pythagoreans
clothes its secret theological teaching in such draperies. The
same trait is evident throughout the “sacred discourse,”
in the Bacchae of Philolaus, and in the whole of Pythagoras’®
treatise on the gods.

Mathematics also makes contributions of the very greatest
value to physical science. It reveals the orderliness of the
ratios accerding to which the universe is comstructed and
the proportion that binds things together in the cosmos,
making, as the Timaeus somewhere says, divergent and
warring factors into friends and sympathetic companions.+
It exhibits the simple and primal causal elements as every-
where clinging fast to one another in symmetry and equality,
the properties through which the whole heaven was per-

112211 We have, I believe, no writing of Plata’s in which such
teachings can be found, and it is significant that Proclus does not name
any. He may be referring to versions of Plato's “unwritten doctrines.”
Such accounts were easily subject t0 contamination in this era of re-
vived Pythagoreanism.

2222,14 This is certainly a reference to the lepds Mévyos that is cited
frequently by lamblichus in his Life of Pythagoras (146-148 and
passim), by Syranus in his Commentary on Aristatle’s Metaphysics
{10.5, 123.2, 140.16, 175.6, Kroll}, and by Hierocles, an Alexandsian
contemporary of Proclus, in his Commentary on the Carmen Aureum
(Mullach, Fragmenta Philosophorum Graecorum 1, 464). See Holgen
Thesleff, The Pythagorean Texts of the Hellenistic Period, Abo, 19635,
164-168. Iamblichus of Chalcis in Syria was a pupil of Porphyry and
later the founder of a school of Neoplatonism in Syda. His writings
had a great influeace on the Athenian School which arase during the
following century under Plutarch. Philolaus was a Pythagorean of
Croton or Metapontum during the second half of the fifth century 8.c.
The authenticity of the fragments attributed to him is one of the most
disputed questions in early Greek philosophy. For the fragments of the
Bacchai see Dielsd 1, 415-416. The next line in Proclus’ text T interpret
as a general reference to the “Pythagorean” writings, rather than to a
specific treatise distinct from the tepds Aé-vos, For a list of these writings,
see Thesleff, Introduction to the Pythagorean Writings of the Hellen-
istic Period, Abo, 1961, 18-21.

182222 Cf Tim. 32¢, 8Re.
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fected when it tock upon itself the figures appropriate to
its particular region; and it discovers, furthermore, the num-
bers applicable to all generated things and to their periods of
activity and of return to their starting-points, by which it is
possible to calculate the times of fruitfulness or the reverse
for each of them, All these I believe the Tirmaeus sets forth,
using mathematical language throughout in expounding its
theory of the nature of the universe. It regulates by num-
bers and figures the generation of the elements, showing
how their powers, characteristics, and activities are de-
rived therefrom and tracing the causes of all change back to
the acuteness or obtuseness of their angles, the uniformity
or diversity of their sides, and the number or fewness of the
elements involved.!t

How, then, can we deny that mathematics brings many
remarkable benefits to what is called political philosophy?
By measuring the periods of activity and the varied revolu-
tions of the All, it finds the numbers that are appropriate
for generation, that is, those that cause homogeneity or
diversity in progeny, those that are fruitful and perfecting
and their opposites, those that bring a harmonious life in
their train and those that bring discord, and in general
those that are responsible for prosperity and those that
occasion want. All this the speech of the Muses in the
Republic® sets forth when it makes “the whole geometrical
number” the factor that determines whether births will be
better or worse, and thus whether the manners of a state
will be preserved uncorrupted or a good polity degenerate
into unreason and passion. Everyone can see that it be-
longs to mathematics as a whole—not to a part of it, such

42311 Tim. 53

452321 Rep. 545e-347a. The description of the “geometrical
numbet” in this passage early became proverbial for obscurity. For
an account of its difficulties and a plausible resolution of them see
Fames Adam (ed.), The Republic of Plato, Cambridge, 1929, 1,
204-208, 286-312. Proclus himself deals with it at length in his Com-
mentary on the Republic 11, 36-46, Kroll, though this passage contains
so many lacunae at critical points that Proclus' interpretation is itself

obscure to us. See also “Le Nombre Géométrique de Platon” in J.
Dupuis’ edition of Theon of Smyrna, Paris, 1892, 365-400.
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as arithmetic or geometry—to furnish the knowledge of this
geometrical number that is spoken of here. For the ratios
that govern fruitful and unfruitful generation pervade all
mathematics.

Again it perfects us for moral philosophy by instilling
order and harmenious living into our characters; it furnishes
the gestures, songs, and dances appropriate to virtue by
which, as we know, the Athenian Stranger wishes those who
are to share in moral virtue to be perfected from their
youth onwards;'® it gives the proportions that characterize
the virtues—now in numbers, now in movements, now in
musical concords—-and shows up by contrast the excesses
and deficiencies of vice, thereby helping us to make our
characters measured and ordered. For this reason Socrates
in the Gorgias, when reproaching Callicles for his unordered
and dissolute life, says “you are neglecting geometry and
geometrical equality”; and in the Republic he finds the in-
terval separating the pleasure of the tyrant from that of the
king to be analogous to that between a plane and a solid
number.*?

Finally, how much benefit mathematics confers on the
other sciences and arts we can learn when we reflect that
to the theoretical arts, such as rhetoric and all those like it
that function through discourse, it contributes complete-
ness and orderliness, by providing for them a likeness of a
whole made perfect through first, intermediate, and con-
cluding parts; that to the poetical arts it stands as a para-
digm, furnishing in itself models for the speeches that the
authors compose and the meters that they employ; and that
for the practical arts it defines their motion and activity
through its own fixed and unchangeable forms. In general,
as Socrates says in the Philebus, all the arts require the aid
of counting, measuring, and weighing, of one or all of
them;** and these arts are all included in mathematical
reasonings and are made definite by them, for it s mathe-

40249 Laws 672-673.
112420 Gorg. 508a, Rep, 5874.
18257 Phil. 55e.
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matics that knows the divisions of numbers, the variety of
measures, and the differences of weights. These considera-
tions will make evident to the student the utility of general
mathematics both to philosophy itseli and to the other
sciences and arts.

There are nevertheless contentious persons who endeavor
to detract from the worth of this science, some denying its
beauty and excellence on the ground that its discourses say
nothing about such matters, others declaring that the em-
pirical sciences concerned with sense objects are more
useful than the general theorems of mathematics. Mensura-
tion, they say, is more useful than geometry, popular
arithmetic than the theory of numbers, and navigation than
general astronomy, For we do not become rich by knowing
what wealth is but by using if, nor happy by knowing what
happiness is but by living happily. Hence we shall agree,
they say, that the empirical sciences, not the theories of the
mathematicians, contribute most to human life and conduct.
Those who are ignorant of principles but practised in dealing
with particular problems are far and away superior in meeting
human needs to those who have spent their time in the
schools pursuing theory alone.

To those who say these things we can reply by exhibiting
the beauty of mathematics on the principles by which Aris-
totle attempts to persuade us.*® Three things, he says, are
especially conducive to beauty of body or soul: order, sym-
metry, and definiteness. Ugliness in the body arises from
the ascendancy of disorder and from a lack of shapeliness,
symmetry, and outline in the material part of our com-
posite nature; ugliness of mind comes from unreason, mov-
ing in an irregular and disorderly fashion,** out of harmony
with reason and unwilling to accept the principles it im-
poses; beauty, therefore, will reside in the opposites of
these, namely, order, symmetry, and definiteness. These
characters we find preeminently in mathematical science.

42 26,13 See Met, 1078a33M, But meldewr suggests that Proclus is
referring to one of the persuasive discourses, such as the Protrepticus.
50 26,19  An echo of Tim. 30a.
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We see order in its procedure of explaining the derivative
and more complex theorems from the primary and simpler
ones; for in mathematics later propositions are always de-
pendent on their predecessors, and some are counted as
starting-points, others as deductions from the primary hy-
potheses. We see symmetry in the accord of the demon-
strations with one another and in their common reference
back to Nous; for the measure common to all parts of the
science is Nous, from which it gets its principles and to
which it directs the minds of its students. And we see def-
initeness in the fixity and certainty of its ideas; for the
objects of mathematical knowledge do not appear now in
one guise and now in another, like the objects of perception
or opinion, but always present themselves as the same,
made definite by intelligible forms. 1f, then, these are the
factors especially productive of beauty, and mathematics is
characterized by them, it is clear that there is beauty in it.
How could it be otherwise when Nous illumines this science
from above and its earnest endeavor is to spur us to move
from the sense world into that intelligible region?

We do not think it proper, moreover, to measure its
utility by looking to human needs and making necessity our
chief concern. For so we should be admitting that theo-
retical virtue itself is useless, because it separates itself from
the affairs of men and prefers not to know anything at all
about the objects of their striving, Thus Socrates in the
Theaetetus, in his truly inspired description of the “leaders
of the philosophic chorus,” withdraws them from con-
nection with human life and lifts their thought to the moun-
taintop of being, emancipated from necessity and utility. We
must therefore posit mathematicat knowledge and the vision
that results from it as being worthy of choice for their own
sakes, and not because they satisfy human needs. And if
we must relate their vsefulness to something outside them, it
is to intellectual insight that they must be said to be con-
tributory. For to that they lead the way and prepare us by

512723  Theaer. 173¢-177a.
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purifying the eye of the soul and removing the hindrances
that the senses present to our knowing the whole of things.
Just as we judge the usefulness or uselessness of the cathartic
virtues in general by looking not to the needs of living, but
rather to the life of contemplation, so we must refer the
purpose of mathematics to intellectual insight and the con-
summation of wisdom. For this reason the cultivation of it
is worthy of earnest endeavor both for its own sake and for
the sake of the intellectual life, Evidence that it is intrin-
sically desirable to those who are engaged in it is, as Aris-
totle somewhere says, the great progress that mathematical
science has made in a short time, although no reward is
offered to those who pursue it, and the fact that even those
who gain but slight benefit from it are fond of it and occupy
themselves with it to the neglect of other concerns.®? So
those who despise mathematical knowledge are they that
have no taste for the pleasures it affords.

Consequently instead of crying down mathematics for the
reason that it contributes nothing to human needs—for in its
lowest applications, where it works in company with material
things, it does aim at serving such needs—we should, on the
contrary, esteem it highly because it is above material needs
and has its good in itself alone. In general it was when men
had ceased to be anxious about the necessities of life that
they turned to the study of mathematics. This is as we should
expect; for men must first concern themselves seriousl'y with
the things that are kindred and of one blood with them in
the world of generation, and afterwards with the things
that release the soul from the world of generation and
remind it of being. In this sense, them, necessities come
before things intrinsically valuable; that is, we seek out the
objects akin to perception before we pursue the ends ap-
prehended by Nous. In fact the whole of generation and the
soul-life that is implicated in it are so constituted by

5228.20 1 have not been able 1o identify this passage in Aristotle.
It is possible that Proclus is thinking of Rep. 528bc,

532910 Reading (apparently with ver Becke) év adri for év adrf in
Friedlein.

24—



Chap. X
Answer to
the Charge
that Plato
Discredited
Mathematics

30

PROLOGUE: PART ONE

nature as to move from the imperfect towards the perfect.
Let this be our answer to those who decry mathematical
knowledge.

Some persons from our own household, citing Plato in sup-
port of their views, will perhaps try to induce disdain for
mathematics among the more superficial students. For, they
say, the philosopher himself in the Repubtic excludes mathe-
matical knowledge from the company of the sciences and
criticizes it for not knowing its starting-points, They cite
the remark about the study “whose starting-point is un-
known and whose middie premises and conclusions follow
from what is unknown” and all the other accusations that
Socrates throws out against mathematics in that book.*
Now since we are arguing with friends, we shall remind
them that Plato himself clearly affirms that mathematics
purifies and elevates the soul, like Homer’s Athena dis-
persing the mist from the intellectual light of the under-
standing, a light “more worthy of preservation than ten
thousand bodily eyes,” and thus dispenses Athena’s gifts as
wel as those of Hermes.®® We would remind them, further-
more, that Plato everywhere calls it science and declares it
to be the source of the greatest happiness to those who
pursue it.

But what does he mean by denying it the name of science
in the Republic passage? 1 shall explain briefly, since my
present discourse is addressed to scholars. Plato often gives
the name “science” to any knowledge of universals, so to
speak, whether the manner of this knowing be scientific or
empirical, distinguishing it thus from perception, which ap-
prehends particulars. It is in this sense, I think, that he
uses the word “science” in the Statesrnan and the Sophist,ss
including among the sciences that “high-born sophistic” that
Socrates in the Gorgias asserts to be only an empirical rou-

542924 Rep, 533b-d; cf. 510c.

5530.5 Odyssey XIII, 189-352, where Athena disperses the mist
from the eyes of Odysseus so that he recognizes his native island. The
words in quotation marks come from Rep. 527e.

56 30.16 Soph. 231b,
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tine,*" as well as the menial type of sophistry and many
other procedures which are routines and not true sciences.
This apprehension of universals itself he divides into a Kind
that knows and one that does not know causes; the former
he thinks deserves to be called a science, the latter a routine.
In this sense he sometimes gives the name “‘science” to the
arts, but never to routines, For *how could what is without
a logos be a science?” he asks in the Symposium.** Conse-
quently every form of knowledge which apprehends the
logos, or cause, of the things it knows is a science. Again
this science that knows its objects through their causes he
divides into two types, one proceeding by guesswork and
aiming at a particular end, the other concerned with know-
ing abstract and unchanging being; and by this token he
separates sctence from medicine and all studies of material
things, whereas mathematics and in general all investigation
of eternal realities he calls science. Once more he would
divide this science, which we distinguish from the arts, into
a part that does and a part that does not proceed from
hypotheses. The unhypothetical science of the whole of
things mounts upwards to the Good, to the cause high above
all else, making the Good the goal of its ascent;* but that
which shows what follows from previously determined start-
ing-points moves not towards a principle, but to a conclu-
sion. In this sense, then, he says, because mathematics uses
hypotheses, it falls below the unhypothetical and perfect
science. For genuine science is ong, the science by which
we are able to know all things, the science from which
come the principles of all other sciences, some immediately
and some at further remove.

Let us, then, not say that Plato excludes mathematics
from the sciences, but only that he ranks it second to the
one highest science; nor that he declares mathematics to be
ignorant of its own principles, but says rather that it takes
its principles from the highest science and, holding them

57 30,19 Gorg. 464cfi.
"8 31.1  Symp. 202a,
59 31,17 For the language and thought here see Rep. 511bc.
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without demonstration, demonstrates their consequences.
Similarly he sometimes allows that the soul, which is con-
stituted of mathematical ratios, is a source of motion and
sometimes that it receives its motion from intelligible things.
These statements are in full accord with each other; for the
soul is a cause of motion in things that receive their motion
from outside themselves, but not therefore the cause of all
motion. In the same way mathematics is second to the
highest science and imperfect as compared with it but
nevertheless is a science—not an unhypothetical science, but
one which, being capable of knowing the specific ideas that
are in the soul, exhibits the premises of its conclusions and
thus has reasons for the matters known to it. So much re-
garding Plato’s opinions about mathematics.

What may we require of the mathematician, and how
can we properly judge him? These questions must be dis-
cussed next. The man who has had a general education,
says Aristotle, can exercise critical judgment in any field,*
but he who has been trained in mathematics is a proper critic
of the correctness of mathematical reasonings. He must have
acquired certain standards of judgment. In the first place,
he should know when he can make his demonstrations gen-
eral and when he must lock to the properties of the species.
Often things that differ in species have identical properties;
for example, all triangles have the sum of their angles equal
to two right angles. But there are many things that have the
same name yet whose common character differs in different
species; for example, similarity in figures and in numbers.
We should not therefore demand of the mathematician a
single demonstration in such cases, for the principles of
figures and numbers are not the same but vary with the
underlying genera. When, however, the essential property is
one, the demonstration should also be one. The property of
having angles equal to two right angles is common to all
species of triangles, and that in which this property inheres
is the same in them all, namely, the triangle and its definition,

3224 Cf. Nic. Erh. 1094b28fl., and De Part. An. 639a1.5.
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Similarly the property of having external angles equal in
sum to four right angles belongs not only to triangles, but
to all rectilinear figures;®* hence the demonstration fits them
all as rectilinear. Each definition invariably brings with it
a specific property and character in which all things that fall
under the definition participate—as, for example, the defini-
tion of triangle, or of rectilinear figure, or of figure in general.

In the second place, we must ask whether the mathema-
tician’s demonstration corresponds to the nature of his sub-
ject-matter, that is, whether he has given necessary and ir-
refutable reasons, and not arguments that are merely per-
suasive and full of probabilities. It is equally mistaken, says
Aristotle, to demand demonstration from a rhetorician and to
accept persuasive reasoning from a mathematician.®? Every
man who knows his science or his art should make his
arguments appropriate to the things with which he is deal-
ing. So Plato in the Timaeus rightly demands probable rea-
soning from the student of nature, since he is working on a
subject-matter that is not precise, but incontrovertible and
unshakeable arguments from one who is discoursing about
intelligibles and about stable being.** Differences in subject-
matter at once produce differences in the sciences and the
arts that are concerned with them. Thus some things are
unchangeable, others changing; some simpler, others more
composite; some intelligible, others sensible. Even in mathe-
matics we cannot demand the same degree of accuracy in
all parts. If one part applies to sensibles and another is an
investigation of intelligible matters, they will not be equally
precise, but the latter more so than the former. This is why
arithmetic, we say, is more exact than harmonics. Nor should
we in general require that mathematics and the other sciences
use the same demonstrations, For the differences between
the subjects dealt with are not inconsiderable.

813316 This proposition does not occur in Euclid, but Aristotle
refers to it (Post. Anal. 85b38, 99a19); thus it probably appeared in a

textbook used in the Academy. Heath (1, 340) judges it to be Pythag-
orean. Proclus refers to it again at 73.2 and demonstrates it at

382.241t.
6234,1 Nic. Eth. 1094b25-27. 83347 Tim. 29c.
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In the third place, we assert that he who is to judge
properly of mathematical arguments must also have studied
the nature of sameness and otherness, of essential and
accidental predication, of proportion, and all such matters.
For it is with respect to these that almost every mistake is
made by those who suppose they are giving a mathematical
proof when they are not really doing so, as when they
demonstrate by assuming the same to be different for each
species of the subject or the. different to be the same, or
when they take an accidental attribute as essential or an
essential one as accidental, asserting, for example, that the
circle is more beautiful than the straight line or the equi-
lateral triangle than the isosceles; for such distinctions are
not the business of the mathematician.

In the fourth place, since mathematics occupies a middle
position between the intelligible and the sense worlds and
exhibits within itself many likenesses of divine things and
also many paradigms of physical relations, we must observe
the threefold character of its demonstrations, some being
more intuitive, some more discursive, and some approach-
ing the nature of opinion. Proofs must vary with the prob-
lems handled and be differentiated according to the kinds
of being concerned, since mathematics is a texture of all
these strands and adapts its discourse to the whole range of
things. But enough of these matters,

We must next distinguish the species of mathematical
science and determine what and how many they are; for
after its generic and all-inclusive form it is necessary to
consider the specific differences between the particular sci-
ences. The Pythagoreans considered all mathematical science
to be divided into four parts: one half they marked off as
concerned with quantity (moodv), the other half with mag-
nitude (amAixov); and each of these they posited as twofold.
A quantity can be considered in regard to its character by
itself or in its relation to another quantity, magnitudes as
either stationary or in motion. Arithmetic, then, studies
quantity as such, music the relations between quantities,
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geometry magnitude at rest, spherics® magnitude inherently
moving, The Pythagoreans consider quantity and magnitude
not in their generality, however, but only as finite in each
case. For they say that the sciences study the finite in ab-
straction from infinite quantities and magnitudes, since it is
impossible to comprehend infinity in either of them. Since this
assertion is made by men who have reached the summit of
wisdom, it is not for us to demand that we be taught about
quantity in sense objects or magnitude that appears in bodies.
To examine these matters is, I think, the province of the
science of nature, not that of mathematics itself.

Now since, as the Timaeus has taught us,* the Demiurge
took in hand the unity and diversity in the universe, and
the mixture of sameness and otherness, to fill up the nature
of soul, and constructed her out of these kinds together
with rest and motion, let us say that it is by virtue of her
otherness, that is, the plurality and diversity of the ratios in
her, that the understanding, when she has been constituted
and has noted that she is both one and many, projects
numbers and the knowledge of numbers which is arithmetic;
and by virtue of the unity of plurality in her and the com-
munity of bond that binds her together, she projects music.
Hence arithmetic is elder than music, since the soul was
first divided by the Demiurge and then bound together by
ratios in the fashion explained by Plato. Again, her activities
being firmly rooted in her constitution, she produces geom-
etry out of her own nature, that is, the one essential figure
and the creative principles of all the figures, while by virtue
of the motion in her she produces spherics. For she herself
revolves in circles but abides always the same by virtue of
the causes of the circle, namely, the straight line and the
circumference. Hence also geometry comes into being before
spherics, as rest precedes motion.

The soul produces these sciences by looking not to her

84 36,2 1.e. astronomy. See Heath 1, 11f.
66 16,17 Tim. 35a. At 36.22 read with Hultsch éavrir for daved
in Friedlein.
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infinite capacity for developing forms, but rather to the
species within the compass of the Limit. For this reason, they
say, these sciences exclude infinity from plurality and mag-
nitude and concern themselves straightway with the Limited.
For Nous set in the soul the principles of all things, including
those of plurality and magnitude. Since she is through and
through homogeneous with herself, one and undivided, and
on the other hand differentiated and expressive of the ordered
world of forms, she possesses from the intelligible world a
share of both the primal Limit and the Unlimited. But she
thinks the Unlimited in accordance with the Limit and gives
birth to forms of life and ideas of all sorts through the
Unlimited in her, Her thinking, however, constitutes these
sciences not after the fashion of the Unlimited that belongs to
life, but in accordance with the Limit inherent in these
sciences; for they bear the likeness of Nous, not of life. This,
then, is the doctrine of the Pythagoreans and their fourfold
division of the mathematical sciences,

But others, like Geminus,*® think that mathematics should
be divided differently; they think of one part as concerned
with intelligibles only and of another as working with percep-
tibles and in contact with them. By intelligibles, of course,
they mean those objects that the soul arouses by herself
and contemplates in separation from embodied forms, Of
the mathematics that deals with intelligibles they posit arith-
metic and geometry as the two primary and most zuthentic
paris, while the mathematics that attends to sensibles con-
tains six sciences: mechanics, astronomy, optics, geodesy,
canonics, and calculation. Tactics they do not think it proper
to call a part of mathematics, as others do, though they
admit that it sometimes uses calculation, as in the enumera-

% 38.4 Geminus was apparently a Stoic philosopher from the
island of Rhodes and a pupil of Posidonius. He wrote a comprehensive
mathematical work, probably between 73 and 67 8.c., to which Proclus
refers no less than twenty times in this commentary. This work has
unfortunately been lost, but another treatise, on astronomy, is still
extant (see Gow, 287). But on the uncertainties regarding his date
and birthplace, and even his name, see Heath 11, 222f.
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tion of military forces,®” and sometimes geodesy, as in the
division and measurement of encampments. Much less do
they think of history and medicine as parts of mathematics,
even though writers of history often bring in mathematical
theorems in describing the lie of certain regions or in calcu-
lating the size, breadth, or perimeters of cities,* and physi-
cians often clarify their own doctrines by such methods, for
the utility of astronomy to medicine is made clear by Hip-
pocrates and all who speak of seasons and places, So also
the master of tactics will use the theorems of mathematics,
even though he is not a mathematician, if he should ever want
to lay out a circular camp to make bis army appear as small
as possible, or a square or pentagonal or some other form of
camp to make it appear very large.

These, then, are the species of general mathematics. Geom-
etry in its turn is divided into plane geometry and stereometry.
There is no special branch of study devoted to points and
lines, inasmuch as no figure can be constructed from them
without planes or solids; and it is always the function of
geometry, whether plane or solid, either to construct figures
or to compound or divide figures already constructed. In the
same way arithmetic is divided into the study of linear num-
bers, plane numbers, and solid numbers; for it examines
number as such and its various kinds as they proceed from
the number one, investigating the generation of plane num-
bers, both similar and dissimilar, and progressions to the third
dimension. Geodesy®® and calculation are analogous to these
sciences,™ since they discourse not about intelligible but about
sensible numbers and figures. For it is not the function of
geodesy to measure cylinders or cones, but heaps of earth
considered as cones and wells considered as cylinders;
and it does not use intelligible straight lines, but sensible

57 38.16 Reading with Barocius Aéxwr instead of Aéywr in Friedlein.
See Tannery, 1x, 126.

683822  Omitting with Barocius the dittograph xat Siapérpovs #
rept@éhovs in Friedlein. See Tannery, loc. cit.

8 3920 Mensuration in general, not merely land-measuring.
Heath, 1, 16.

703921 Le. to geometry and arithmetic.
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ongs, sometimes more precise ones, such as rays of sunlight,
sometimes coarser ones, such as a rope or a carpenter’s rule.
Nor does the student of calculation consider the properties of
number as such, but of numbers as preseat in sensible objects;
and hence he gives them names from the things being num-
bered, calling them sheep numbers or cup numbers.” He does
not assert, as does the arithmetician, that something is least;
nevertheless with respect to any given class he assumes a least,
for when he is counting a group of men, one man is his unit.
Again optics and canonics’ are offshoots of geometry and
arithmetic. The former science uses visual lines and the
angles made by them; it is divided into a part specifically
called optics, which explains the illusory appearances pre-
sented by objects seen at a distance, such as the converging
of parallel lines or the rounded appearance of square towers,
and general catoptrics,”® which is concerned with the various
ways in which light is reflected. The latter is closely bound up
with the art of representation and studies what is called
“scene~-painting,”’* showing how objects can be represented
by images that will not seem disproportionate or shapeless
when seen at 2 distance or on an elevation, The science of
canonics deals with the perceptible ratios between notes of
the musical scales and discovers the divisions of the mono-
chord,™ everywhere relying on sense-perception and, as Plato
says, “putting the ear ahead of the mind,”?*

In addition to these there is the science called mechanics, a
part of the study of perceptible and embodied forms. Under it
comes the art of making useful engines of war, like the ma-
chines that Archimedes™ is credited with devising for defense

T 40,5 Cf. the scholium to Plato’s Charm. 165¢ and also Laws
819be,

72409 The mathematical theory of music.

7340.16 See note at 1927,

74 40.19 oxproypucind, i.e. applied perspective.

75 40.23  karawr, whence the name “canonics.”

T841.1 Rep. 531ab.

"741.6 Archimedes of Syracuse, who was killed during the capture
of Syracuse by the Romans in 212 B.c. His mathematical achieve-
ments are numerous and outstanding. He investigated the squaring
of the circle and of other curvilinear plane figures, and the computing
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against the besiegers of Syracuse, and also the art of wonder-
working, which invents figures moved sometimes by wind, like
those written about by Ctesibius and Heron,” sometimes by
weights, whose imbalance and balance respectively are re-
sponsible for movement and rest, as the Timaeus shows,™
and sometimes by cords and ropes in imitation of the tendons
and movements of living beings. Under mechanics also falls
the science of equilibrium in general and the study of the so-
called center of gravity, as well as the art of making spheres
imitating the revolutions of the heavens, such as was culti-
vated by Archimedes, and in general every art concerned with
the moving of material things. There remains astronomy,
which inquires into the cosmic motions, the sizes and shapes
of the heavenly bodies, their illuminations and distances from
the earth, and all such matters. This art draws heavily on
sense-perception and coincides in large measure with the
science of nature. The parts of astronomy are gnomonics,*
which occupies itself with marking the divisions of time by
the placing of sun-dials; meteorology, which determines the
different risings of the heavenly bodies and their distances
from one another and teaches many and varied details of

of the area of curved surfaces and of the volume of the sphere, cone,
and cylinder. In mechanics he developed the theory of the lever and
of the center of gravity and invented the whole science of hydrostatics.
The mechanical inventions that Proclus mentions here and at 63.19f,
were tegarded by Archimedes as merely incidental and relatively un-
important. His works On the Sphere and Cylinder, Measurement of a
Circle, On Plane Equilibriums, and several others are still extant, See
Heath m, 17-103, and Gow, 221-244. An English translation of his
works was published by Heath in 1897,

76 41,10 Heron of Alexandria should probably be placed in the
third century of our era, though the evidence is controversial; see
Heath m, 300-306. Besides the references in Proclus, there is other
evidence that he wrote a commentary on Euclid's Elements (see Heath,
Euclid 1, 21-24). Ctesibius seems to belong t0 an earlier period, pos-
sibly to the second century B.c. There is, however, another iradition
that he was the teacher of Heron (see Heath 51, 298}, which would put
him much later.

941,12 Tim. 57dfL.

80 41,25 From yrdpwr, “son-dial.”
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astronomical theory; and dioptrics,®* which fixes the positions
of the sun, moon, and stars by means of special instruments.
Such are the traditions we have received from the writings of
the ancients regarding the divisions of mathematical science,

Leaving these matters, let us look back and consider what
Plato meant in the Republic when he declared dialectic to be
the capstone of the mathematical sciences,® and what is the
unifying bond among them reported by the author of the
Epinomis.®® Our answer is that, as Nous is set over under-
standing and dispenses principles to it from above, perfecting
it out of its own riches, so in the same way dialectic, the
purest part of philosophy, hovers attentively over mathemat-
ics, encompasses its whole development, and of itself con-
tributes to the special sciences their various perfecting, critical,
and intellective powers—the procedures, I mean, of analysis,
division, definition, and demonstration. Being thus endowed
and led towards perfection, mathematics reaches some of its
results by analysis, others by synthesis, expounds some mat-
ters by division, others by definition, and some of its dis-
coveries binds fast by demonstration, adapting these methods
to its subjects and employing each of them for gaining insight
into mediating ideas. Thus its analyses are under the control
of dialectic, and its definitions, divisions, and demonstrations
are of the same family and unfold in conformity with the way
of mathematical understanding. It is reasonable, then, to say
that dialectic is the capstone of the mathematical sciences, It
brings to perfection all the intellectual insight they contain,
making what is exact in them more irrefutable, confirming the
stability of what they have established and referring what is

81424 From dibwrpa, an optical instrument for measuring angles
or altitudes, Reading rds éwoyds, with Tannery m, 126; the ¢ in Fried-
lein’s Mss apparently originated as a tnarginal correction for the « in
the erroneous dwoyds.

924211 Rep. 53de,

834212 Reading with Barocius 8 4 for & in Friedlein, This is a
reference to the deoués of the mathematical sciences in Epin. 991e. See
Novotny's note on this passage in his Commentary on the Epinomis,
Prague, 1960, 222-223,
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pure and incorporeal in them to the simplicity and immaterial-
ity of Nous, making precise their primary starting-points
through definitions and explicating the distinctions of genera
and species within their subject-matters, teaching the use of
synthesis to bring out the consequences that follow from
principles and of analysis to lead up to the first principles
and starting-points.

As for the unifying bond of the mathematical sciences,
we should not suppose it to be proportion, as Eratosthenes®?
says. For though proportion is said to be, and is, one of
the features common to all mathematics, there are many
other characteristics that are all-pervading, so to speak, and
intrinsic to the common nature of mathematics, We should
prefer to say that the immediate bond of union between them
is that single and entire science of mathematics which contains
in itself in simpler form the principles of all the particular
sciences, that science which teaches their common nature as
well as their differences and what traits are the same in them
all and what belong to more or fewer of them. Those who
study mathematics in the proper way advance to this science
from the particular ones. But even higher than it, dialectic
could be said to be the bond of union among the mathematical
sciences or—to repeat Plato’s designation in the Republic—
their capstone. For this perfects general mathematics and
sends it up towards Nous by means of its peculiar powers,
showing that it is truly a science and rendering it steadfast
and irrefutable. Yet highest in rank among the unifying bonds
is that very Nous which contains in itself all dialectical re-
sources in undifferentiated fashion, combining their variety in
simplicity, their partiality in completeness of insight, their
plurality in uvnity. Nous, then, wraps up the developments of
the dialectical methods, binds together from above all the
discursiveness of mathematical reasoning, and is the perfect

844323 Eratosthenes of Cyrene, librarian at Alexandria in the
second half of the third century B.C. He was a man of varied scientific
attainments, to whom Archimedes dedicated two of his works. He is
best remembered for having calculated the circumference and diameter

of the earth, with surprisingly accurate results. See Heath u, 104-109;
Van der Waerden, 228-234; Gow, 242-246,
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terminus of the upward journey and of the activity of know-
ing. So much for these questions.

As for the name itseif that is applied to mathematics and
mathematical studies, from what source could we say the
ancients got it for these sciences, and what relevant meaning
could it have? In my opinion, such a designation for the
science of dianoetic reasoning did not come about by acci-
dent, as most names do. According to the tradition, the
Pythagoreans recognized that everything we call learning is
remembering, not something placed in the mind from without,
like the images of sense pictured in the imagination, nor
transitory, like the judgments of opinion, Though awakened
by sense-perception, learning has its source within us, in our
understanding’s attending to itself. They realized too that,
although evidences of such memories can be cited from many
areas, it is especially from mathematics that they come, as
Plato also remarks. “If you take a person to a diagram,” he
says, “then you can show most clearly that learning is
recollection.””* This is why Socrates in the Meno uses this
kind of argument to prove that learning is nothing but the
mind’s remembering its own ideas.*® The explanation is that
what remembers is the understanding. This part of the soul
has its essence in these mathematical ideas,” and it has a
prior knowledge of them, even when it is not using them; it
possesses them all in an essential, though latent, fashion and
brings each of them to light when it is set free of the hin-
drances that arise from sensation. For our sense-perceptions
engage the mind with divisible things, the imagination fills it
with moving shapes, and desires divert it to the life of feeling.
Every divisible thing is an obstacle to our returning upon
ourselves, every formed thing disturbs our formless knowl-
edge, and every feeling is an impediment to passionless ac-
tivity, Consequently when we remove these hindrances we
are able to know by understanding itself the ideas that it
has, and then we become knowers in actuality, that is, pro-

55 45.17  Phaedo 73b. 86 4521 Meno 82bff,
874523 See below (5tf.) for an exposition of this doctrine in its
wider context.
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ducers of genuine knowledge. But so long as we remain
in bondage, with the eye of the mind closed, we shall never
attain the perfection to which we are adapted.

This, then, is what learning (udfqows) is, recollection of the
eternal ideas in the soul; and this is why the study that es-
pecially brings us the recollection of these ideas is called the
science concerned with learning (pafmuericg). Its name thus
makes clear what sort of function this science performs. It
arouses our innate knowledge, awakens our intellect, purges
our understanding, brings to light the concepts that belong
essentially to us, takes away the forgetfulness and ignorance
that we have from birth, sets us free from the bonds of un-
reason; and all this by the favor of the god®*® who is truly the
patron of this science, who brings our intellectual endowments
to light, fills everything with divine reason, moves our souls
towards Nous, awakens us as it were from our heavy slumber,
through our searching turns us back upon ourselves, through
our birthpangs perfects us, and through the discovery of pure
Nous leads us to the blessed life, And so, dedicating this
composition to him, we proceed to delineate the theory of the
science of mathematics.®®

88 46,25 This god is probably Hermes, identified by the Greeks
with the Egyptian Thoth or Theuth, the inventor of writing and of all
the sciences and arts dependent on it (cf. Plato, Phaedr. 274c-275b;
Phil. 18b). For the Hellenistic conception of the god Hermes-Thoth
and the origin of his appellation “thrice-great” see Festugidre, La
Révélation d'Hermés Trismépiste 1, 67-74, CI, the reference at 155,24
to the “triadic god” whose appellation has been conferred by *“the wise
men most familiar with theological mysteries.”

89 47,8 From these words one would infer that this first prologue
was intended to serve as an introduction to a general treatise on mathe-
matics. The beginning of the second prologue gives a different state-
ment of the author’s subject, not general mathematics but geometry in
particular and more particularly Euclid’s Efements. Is it possible that
this first prologue was intended to be what these concluding words
suggest and that it later became detached from the larger project and
prefixed to the more specific prologue to the commentary on Fuclid?
See Supplementary Note at the end of this volume,
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N THE preceding discourse we have examined the com-

mon characters pervading all mathematical science, fol-
lowing Plato’s lead and also using thoughts collected from
other sources that are relevant to the present study. It fol-
lows next to speak of geometry itself and of the treatise on
the Elements that lies before us and for whose sake the whole
of this work has been undertaken,

That geometry is a part of general mathematics and occu-
pies a place second to arithmetic, which completes and defines
it (for everything that is expressible’ and knowable in geome-
try is determined by arithmetical ratios), has been asserted by
the ancients and needs no lengthy argument here. It would
be reasonable to begin our exposition of geometry with an
examination of its subject-matter, to see what rank it holds in
the scale of things and the kind of being it has. For when we
have examined this carefully, the power and utility of the
science that knows it will be evident, as will the good that it
confers upon those who learn it.

It is obviously difficult to decide in what class of things to
put the subject-matter of geometry without missing the truth
about it. If we regard the figures that the geometer talks about
as belonging to the sense world and inseparable from matter,
how can we any longer say that geometry emancipates us from
sensible things, converts us to the realm of bodiless existence,
habituates us to the sight of intelligibles, and prepares us for
activity in accordance with Nous? And where among sensible
things have we seen the point without parts, the line without
breadth, the surface without thickness, the equality of the
lines from the center, or in general any of the polygonal and
polyhedral figures about which geometry teaches us? And

148.12  pnrév, ie. “commensurable” (see note at 6.21). This pas-
sage leaves out what Proclus elsewhere says is the characteristic feature
of geometry as distinct from arithmetic, that it deals with incom-
mensurable magnitudes and infinite divisibility (see 60.7H.).
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how can the propositions of this science remain irrefutable
when the figures and forms of sensible things are only more or
less what they are, moving and changing in every way and
full of all the indeterminateness of matter, when equality is
composed of its opposite inequality, and indivisibles parade
as divisible and separated?

But if the objects of geometry are outside matter, its ideas
pure and separate from sense objects, then none of them will
have any parts or bedy or magnitude, For ideas can have
magnitude, bulk, and extension in general only through the
matter which is their receptacle, a receptacle that accom-
modates indivisibles as divisible, unextended things as ex-
tended, and motionless things as moving. How, then, can we
still bisect the straight line or the triangle or the circle? Or
speak of the difference between angles, or of increase and
decrease of figures such as triangles or squares? How can we
talk of contact between circles and straight lines? All these
things indicate that the subject-matter of geometry is divisible
and not composed of partless ideas. Besides difficulties of this
sort, we must recall that Plato calls geometrical forms under-
standables® and asserts that they separate us from sensible
things and incite us to turn from sensation to Nous—the ideas®
of the understanding being, as I said, indivisible and unex-
tended, in keeping with the peculiar character of the soul.

If we must formulate a theory in agreement both with the
facts themselves and with this teaching of Plato’s, let us pro-
ceed by making the following distinctions. Every universal,
that is, every One that includes a Many, cither appears in the
particulars* and has its existence in them and is inseparable
from them, holding its place in their ranks, moving as they
move and remaining motionless when they are stationary; or

z50.11 &wavonrd. See note at 10.27.

350,14 Abyer. See note at 12.14,

4+ 5020 Omitting with Schonberger wéguxev % palvera:, which are
inclnded, though with a guestion mark, in Friedlein’s text. They do
not fit into the grammatical structure of the sentence, and I surmise
that they were once questions written in the margin regarding the
meaning of garrdfecda: and were later ineptly incorporated in the text,
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exists prior to the Many and produces plurality by offering its
appearances to the many instances, itself ranged indivisibly
above them but enabling these derivatives to share in its
nature in a variety of ways; or is formed from particulars by
reflection and has existence as an after-effect, a later-born
addition to the Many, According to these three modes of
being, I think we shall find that some universals are prior to
their instances, some are in their instances, and some are
constituted by virtue of being related to them as their predi-
cate.

Of these three kinds of universal forms—briefly stated, the
universal shared in by its particulars, the universal in its
particulars, and the universal that supplements the particulars
—let us note that there are differences in the underlying
matter, If we assume two classes of things that participate in
the universal, namely, sense objects and objects that have
existence in the imagination (for matter likewise is twofold,
as Aristotle somewhere says:® the matter of things tied to sen-
sation and the matter of imagined objects), we shall admit
that the corresponding universals are of two kinds: one per-
ceptible, since it is participated in by sense objects, and the
other imaginary, as existing in the plurality of pictures in the
imagination. For imagination, both by virtue of its formative
activity and because it has existence with and in the body,
always produces individual pictures that have divisible ex-
tension and shape, and everything that it knows has this kind
of existence. For this reason a certain person® has ventured
to call it “passive Nous.” Yet if it is Nous, how could it be
other than impassive (arafss) and immaterial? And if feeling
{wrdfos) accompanies its activity, has it any longer a right to
be called Nous? For impassivity belongs to Nous and intel-

551.17 Punctuating, with Barocius and Schinberger, to close the
parenthesis with ¢noi, not with xef#érov as Friedlein does. Aristotle
distinguishes (Mer. 1036a9-12) between iy alefinr# and tin ronr#; but
Proclus’ §in g¢arraoréy is justified, since Aristotle elsewhere (De An.
433al10) assumes that garracia is a form of rénes.

4523 The reference is to Aristotle; cf. De An. 430a24. For a
similar interpretation of Aristotle see Proclus’ Commentary on the
Timaeus 1, 244.20, and ti, 158.9, Diehl.
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lectual nature, whereas whatever can be affected (rafyruds)
is far removed from that highest being. But I think he intended
rather to express the middle position it occupies between the
highest and the lowest types of knowledge and so called it at
the same time “nous,” because it resembles the highest, and
“passive,” because of its kinship with the lowest. For the
knowing which is not of shapes and figures has its intelligible
objects in itself, and its activity is concerned with these, its
own contents; it is itself one with the things it knows, free of
any impression or affection coming from elsewhere. But the
lowest forms of knowledge work through the sense organs;
they are more like affections, receiving their opinions from
without and changing as their objects change. Such is what
sense-perception is, the result of “violent affections,” as Plato
says.” By contrast the imagination, occupying the central
position in the scale of knowing, is moved by itself to put
forth what it knows, but because it is not outside the body,
when it draws its objects out of the undivided center of its
life, it expresses them in the medium of division, extension,
and figure. For this reason everything that it thinks is a picture
or a shape of its thought. It thinks the circle as extended, and
although this circle is free of external matter, it possesses an
intelligible matter provided by the imagination itself. This is
why there is more than one circle in the imagination, as there
is more than one circle in the sense world; for with extension
there appear also differences in size and number among circles
and triangles.

If, then, in sensible circles there is a universal that makes
¢ach of them a circle and all of them similar to one another
because conformed to a single idea, yet differing in size and in
their underlying subjects, so likewise in imaginary circles
there is 2 common element in which they participate by virtue
of which they all have the same form. They differ only on one
point, their imagined sizes.® For if you imagine several con-
centric circles, they will all have their existence in a single

75220 Tim. 42a
853,12 Proclus is thinking of concentric circles, as the following
sentence shows.
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immaterial substratum and their life inseparable from a simple
body that surpasses indivisible being only by being extended;
but they will differ from one another in that some will be
larger, some smaller, some encircling, and some encircled.

Let us, then, think of the universal in its instances as of two
sorts, the universal in sense objects and the universal in objects
of imagination, and likewise the idea of the circle—or of the
triangle or of figure itself—as of two kinds, one presiding over
intelligible matter, the other over perceptible. Prior to both,
as we have seen, are the idea in the understanding and the
idea in nature, the former the support of imagined circles
and of the single form in them, the latter of perceived circles,
such as the circles in the heavens and all circles generated by
nature. As the idea in the understanding is undivided, so also
is the idea in nature. For extended things exist without ex-
tension in the realm of immaterial causes, and divided things
without division and magnitudes without magnitude, just as in
the opposite direction indivisible things are divided and ob-
jects without magnitude have magnitude in the region of
material causes. For this reason the circle in the understand-
ing is one and simple and unextended, and magnitude itself
is without magnitude there, and figure without shape;® for such
objects in the understanding are ideas devoid of matter. But
the circle in imagination is divisible, formed, extended—not
one only, but one and many, and not a form onty, but a form
in instances—whereas the circle in sensible things is inferior
in precision, infected with straightness, and falls short of the
purity of immaterial circles.

When, therefore, geometry says something about the circle
or its diameter, or about its accidental characteristics, such as
tangents to it or segments of it and the like, let us not say that
it is instructing us either about the circles in the sense world,
for it attempts to abstract from them, or about the form in the
understanding. For the circle [in the understanding] is one,
yet geometry speaks of many circles, setting thern forth indi-
vidually and studying the identical features in all of them; and

®54.8 Punctuating with Barocius and Schénberger to close the
parenthesis with rowafiva, not with deynudrwrrer as in Friedlein.
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that circle [in the understanding] is indivisible, yet the circle
in geometry is divisible. Nevertheless we must grant the
geometer that he is investigating the universal, only this uni-
versal is obviously the universal present in the imagined cir-
cles. Thus while he sees one circle [the circle in imagination],
he is studying another, the circle in the understanding, yet he
makes his demonstrations about the former. For the under-
standing contains the ideas but, being unable to see them
when they are wrapped up, unfolds and exposes them and
presents them to the imagination sitting in the vestibule; and
in imagination, or with its aid, it explicates its knowledge of
them, happy in their separation from sensible things and find-
ing in the matter of imagination a medium apt for receiving
its forms.1¢

Thus thinking in geometry occurs with the aid of the imagi-
nation, Its syntheses and divisions of the figures are imaginary;
and its knowing, though on the way to understandable being,
still does not reach it, since the understanding is looking at
things outside itself. At the same time the understanding sees
them by virtue of what it has within; and though employing
projections of its ideas, it is moved by itself to make them
external. But if it should ever be able to roll up its extensions
and figures and view their plurality as a unity without figure,
then in turning back to itself it would obtain a superior vision
of the partless, unextended, and essential geometrical ideas
that constitute its equipment. This achievement would itself

10 55.6 The brackets in this passage indicate words not in Proclus
which I have inseried for the purpose of clarifying the pronouns in his
text. L M. raises the pertinent question whether for Proclus mathe-
matical reasoning 5 about universals or about the pictures in the
imagination. I should reply that it is certainly about universals, but
about universals grasped by means of piciures in the imagination.
Obviously no picture in the imagination is a universal; but such pic-
tures enable us to understand the unpicturable universal in its variety
and complexity. This view of universals is not foreign to Plato, but it
may well be so to Aristotle; his polemic against the Platonic Ideas
sugpests that it was. But whether or not Aristotle understood Plato’s
conception of the universal, there is no doubt that Proclus interpreted
it in this way and that this is what he regarded as the eventual object
of mathematical reasoning. {On the identity of .M. see the Preface.)
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be the perfect culmination of geometrical inquiry, truly a gift
of Hermes, leading geometry out of Calypso’s arms,'* so to
speak, to more perfect intellectual insight and emancipating
it from the pictures projected in imagination,!:

Every true geometer should cultivate such efforts and make
it his goal to arouse himself to move from imagination to pure
and unalloyed understanding, thus rescuing himself from ex-
tenston and “passive nous” for the dianoetic activity that will
enable him to see all things without parts or intervals—the
circle, the diameter, the polygons in the circle, all in all and
each separately. This is why even in our imagination we show
circles as inscribed in polygons and polygons as inscribed in
circles, in imitation of the proof that the partless ideas exist in
and through one another. And this is why we use diagrams to
illustrate the structure and construction of figures, their divi-
sions, positions, and juxtapositions. We invoke the imagina-
tion and the intervals that it furnishes, since the form itself is
without motion or genesis, indivisible and free of all under-
lying matter, though the elements latent in the form are pro-
duced distinctly and individually on the screen of imagination.
What projects the images is the understanding; the source of
what is projected is the form in the understanding; and what
they are projected in is this “passive nous” that unfolds in
revolution about the partlessness of genuine Nous, setting a
distance between itself and that indivisible source of pure
thought, shaping itself after the unshaped forms, and be-
coming all the things that constitute the understanding and
the unitary ideas in us.

So much for what we have to say about the matter of
geometry. We are not unaware of what the philosopher
Porphyry*? in his Miscelluneous Inquiries and most of the

15521 Cf Odyssey V, 55-147, where Hermes conveys to the
nymph Calypso the gods' command that she release Odysseus and
send him on his way homeward.

125523 Nicolai Hartmann (Des Proclus Diadochus Philosoph-
ische Anfongsgriinde der Mathematik, Giessen, 1909, 35} sees Proclus
in this passage anticipating Descartes’ analytic geometry.

1356.24 Porphyry of Tyre was a devoted disciple of Plotinus (see
21.21). He wrote a Life of Plotinus and numerous commeniaries on
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Platonists have set forth, but we believe that what we have
said is more in agreement with the principles of geometry and
with Plato’s declaration that the objects of geometry are
understandables. These [principles and Plato’s declaration]
are tn harmony with each other because, although the causes
of the geometrical forms in accordance with which the under-
standing projects its demonstrations about them exist previ-
ously in the understanding, the several figures that are divided
and compounded are projections in the imagination.

Let us next speak of the science itself that investigates these
forms. Magnitudes, figures and their boundaries, and the
ratios that are found in them, as well as their properties, their
various positions and motions-—these are what geometry
studies, proceeding from the partless point down to solid
bodies, whose many species and differences it explores, then
following the reverse path from the more complex objects to
the simpler ones and their principles. It makes use of synthesis
and analysis, always starting from hypotheses and first prio-
ciples that it obtains from the science above it and employing
all the procedures of dialectic—definition and division for
establishing first principles and articulating species and gen-
era, and demonstrations and analyses in dealing with the con-
sequences that follow from first principles, in order to show
the more complex matters both as proceeding from the simpler
and also conversely as leading back to them. It treats in one
part the definitions of its objects, in another the axioms and
the postulates that are the starting-points of jts demonstrations,
and in another the demonstrations of the properties that be-
long essentially to its objects. Each science has its own class
of things that concern it and whose properties it proposes to
investigate, and also its own peculiar principles that it uses
in demonstration; and the essential properties likewise differ
in the various sciences. The axioms are common to all sci-

Plato, Aristotle, and other philosophers, most of which have disap-
peared. Ameng them was a commentary on Euclid, to which we have
references later in Proclus’ text. He is best known now for his Intro-
duction to the Categories of Aristoile, which became an important
medieval textbook in logic and which is extant.

— 46—



59

PROLOGUE: PART TWO

ences, although each uses them in the fashion appropriate
to its own subject-matter; but the genus studied and its es-
sential properties are peculiar to each science.

Among the objects of geometrical inquiry are triangles,
squares, circles, figures, and magnitudes in gencrai and their
boundaries; others are properties inherent in them, their parts,
ratios, and contacts, their equalities, excesses, and deficiencies
when laid alongside cne another, and all such matters; still
others are the postulates and axioms through which all these
are demonstrated—for example, that it be permitted to draw
a straight line from any point to any other, and that if equals
be taken from equals the results are equal, and their conse-
quences. Hence not every problem or question is a geometrical
one, but only those that arise out of the principles of geom-
etry; and anyone who is refuted on these principles would be
refuted as a geometer; arguments not based on them are not
geometrical, but ungeometrical. The latter are of two kinds:
either they proceed from premises altogether unlike those of
geometry, such as a question in music, which we say is
ungeometrical because it arises from hypotheses quite dif-
ferent from the principles of geometry; or they use geometrical
principles but in a perverse sense, as when it is asserted that
parallel lines meet. Hence geometry also furnishes criteria
whereby we can discriminate between statements that follow
from its principles and those that depart from them. The
vartous tropes for refuting fallacies when they occur have
this function.

Geometrical principles yield consequences different from
those that follow from arithmetical ones. And why speak of
the' . . . ? They are far inferior to these. For one science is
more accurate than another, as Aristotle says;'" that is, a
science that starts from simpler principles than one whose
starting-point is more complex, or one that states why a fact

14599 Between mepl 7év and méumorv a few words have been lost,
but the sequence of thought is clear. The same disturbing influence is
seen in lines 11-12, which express the exact oppaosite of what Proclus
must have written. I have followed Barocius in my translation here.

15 59.11 Post. Anal. 87a31-37,
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is so than one which says that it is so, or a science concerned
with intelligibles than one that applies to objects in the sense
world. According to these criteria of exactness, arithmetic is
more precise than geometry, for its principles are simpler. A
unit has no position, but a point has; and geomeiry includes
among its principles the point with position, while arithmetic
posits the unit. Likewise geometry is superior to spherics and
arithmetic to music, for in general they furnish the principles
of the theorems suberdinate to them. And geometry is su-
perior to mechanics and optics, for the latter discourse about
objects in the sense world.

The principles of arithmetic and geometry, then, differ from
those of the other sciences, yet their own hypotheses are dis-
tinct from each other, in the sense mentioned above; never-
theless they have a certain community with one another, 50
that some theorems demonstrated are common to the two
sciences, while others are peculiar to the one or the other.
The statement that every ratio is expressible belongs to arith-
metic only and not at all to geometry, for geometry contains
inexpressible ratios.** Likewise the principle that the gnomons
into which a square can be divided have a lower limit in
magnitude is peculiar to arithmetic;” in geometry a least
magnitude has no place at all. Peculiar to geometry are the
propositions regarding position (for numbers do not have
position), the propositions about contacts (for contacts occur
only when there are continuous magnitudes), and the propo-
sitions about irrationals (for the irrational has a place only
where infinite divisibility is possible). Commeon to both sci-
ences are the theorems regarding sections (such as Euclid
presents in his second book), with the exception of the divi-
stonn of a line in extreme and mean ratio. Of these common
theorems some'® have come to arithmetic from geomeiry,
others from arithmetic to geometry, while others are equally

18 60.9 On &ppyrar Aéyew see note at 48.12.

17 60.11  On the Pythagorean use of the gnomon in figured numbers
see Heath 1, 76-84, and Euclid 1, 370f.

18 60.200 Reading with Barocius 74 for 74 in Friedlein.
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at home in both because derived by them from general mathe-
matics. The principles governing alternation, conversion,
composition, and division of ratios are thus shared by both.
The theory of commensurable magnitudes is developed pri-
marily by arithmetic and then by geometry in imitation of it,
This is why both sciences'® define commensurable magnitudes
as those which have to one another the ratio of a number to a
number, and this implies that commensurability exists pri-
marily in numbers. For where there is number there also is
commensurability, and where commensurability there also
number, The properties of the triangle and the square are
studied primarily by geometry, but arithmetic borrows them
and uses them analogically, for figures are contained in num-
bers as in their causes. Thus in seeking the causes of certain
results we turn to numbers, both when we see precisely the
same properties, such as that every polygon can be divided
into triangles, and when we are content with approximations,
as when, in geometry we have found a square double a given
square but do not have it in numbers, we say that a square
number is the double of another square number when it is
short by one, like the square of seven, which is one less than
the double of the square of five

We have carried rather far this exposition of the community
between the principles of these two sciences and their differ-
ences. For the geometer must understand what common first
principles are required for their common theorems and what
are the principles from which their special theorems are de-
rived, so that he may distinguish between geometrical matters
and those that do not belong to geometry, assigning some to
one science, some to the other.

1961.1 Reading with Grynaeus and Schionberger rovrwy instead of
rotirw in Friedlein.

2061.17 In Rep. 546¢ Plato refers to “rational and irrational
(&ppnrar) diameters of five” (i.e. diagonals of a square having five for
its side} and says that the square on the rational diameter is less by
one than that on the irrational diameter. The rational diameter is

therefore 7, the irrational /30"
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Let us now turn back for another look at the science of
geometry as a whole, to see what its starting-point is and
how far it ranges from it, so as to get a view of the ordered
cosmos of its ideas. Let us note that it is coextensive with all
existing things, applies its reasonings to them all, and includes
all their kinds in itself. At the upper and most inteflectual
height it looks around upon the region of genuine being,
teaching us through images the special properties of the
divine orders and the powers of the intellectual forms, for it
contains even the ideas of these beings within its range of
vision. Here it shows us what figures are appropriate to the
gods, which ones belong to primary beings and which ones to
the substance of souls. In the middle regions of knowledge it
unfolds and develops the ideas that are in the understanding;
it investigates their variety, exhibiting their modes of exist-
ence and their properties, their similaritics and differences;
and the forms of figures shaped from them in imagination it
comprehends within fixed boundaries and refers back to the
essential being of the ideas, At the third level of mental ex-
ploration it examines nature, that is, the species of elementary
perceptible bodies and the powers associated with them, and
explains how their causes are contained in advance in its own
ideas. It contains likenesses of all intelligible kinds and para-
digms of sensible ones; but the forms of the understanding
constitute its essence, and through this middle region it ranges
upwards and downwards to everything that is or comes to
be. Always philosophizing about being in the manmer of
geometry, it has not only ideas but pictures of all the virtues—
intellectual, morat, and physical-—and presents in due order
all the forms of political constitution, showing from its own
nature the variety of the revolutions they undergo.”

In these areas its activity is immaterial and theoretical; but
when it touches on the material world it delivers cut of itself a
variety of sciences—such as geodesy, mechanics, and optics—
by which it benefits the life of mortals, Through these sciences

71 3.5 This is probably a reference to Plato's analogy between the
state and the individual soul, which provides the premise for his theory
of the successive stages of political degeneration in the Repuablic.
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it has devised instruments of war and defenses for our cities,
made familiar the succession of the seasons and the lie of
various regions, taught how to measure distances by land or
sea, constructed balances and scales for determining arith-
metical equality when a city needs it, invented models for
exhibiting the order of the whole heaven, and many things
incredible to men it has unveiled and made credible to all.
Recall what Hieron of Syracuse is said to have remarked
about Archimedes, who had built a three-masted vessel which
Hieron had ordered made for sending to King Ptolemy of
Egypt. When all the Syracusans together were unable to
launch it and Archimedes made it possible for Hieron alone
to move it down to the shore, he exclaimed, in his amazement:
“From this day forth we must believe everything that Archi-
medes says.” Tradition has it that Gelon made the same
remark when, without destroying the crown that had been
made, Archimedes discovered the weight of each of its com-
ponent materials. Many of our predecessors have recorded
such things in praise of mathematics, and for this reason we
have presented here only a few of the many facts we might
have cited to show the range and utility of geometrical
knowledge.

Next we must speak of the development of this science
during the present era. The inspired Aristotle*® has said that
the same belicfs have often recurred to men at certain regular
periods in the world’s history; the sciences did not arise for
the first time among us or among the men of whom we know,
but at countless other cycles in the past they have appearad
and vanished and will do so in the future. But limiting our
investigation to the origin of the arts and sciences in the
present age, we say, as have most writers of history,*® that

2264.9 & Satudros "Apsroréhns; so also at 76.8, 116.24, 284,23, See
De Caelo 270b19, Pol, 132%b25; also Plato, Tim. 22.23, Critias 109d,
Laws 677b.

28 64.19 Herodotus 1I, 109; Diod. Sic. I, Ixix, §; lxxxi, 1-2; Strabo
XVII, Chap. 3. Aristotle (Met. 981b23) credits Egypt with being the
birthplace of peometry but assigns a different cause, viz. the leisure
enjoyed by the priestly class. On Egyptian geometry see Heath 1, 121.
128; Van der Waerden, 15-36; Gow, 124-133.
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geometry was first discovered among the Egyptians and orig-
inated in the remeasuring of their lands. This was necessary
for them because the Nile overflows and obliterates the boun-
dary lines between their properties. It is not surprising that
the discovery of this and the other sciences had its origin in
necessity, since everything in the world of generation pro-
ceeds from imperfection to perfection. Thus they would na-
turally pass from sense-perception to calculation and from
calculation to reason. Just as among the Phoenicians the

necessities of trade and exchange gave the impetus to the
accurate study of number, so also among the Egyptians the
invention of geometry came about from the cause mentioned.

Thales,** who had travelled to Egypt, was the first to intro-

duce this science into Greece. He made many discoveries
himself and taught the princtples for many others to his suc-
cessors, attacking some problems in a general way and others
more empirically. Next after him Mamercus,?® brother of the
poet Stesichorus, is remembered as having applied himself to
the study of geometry; and Hippias of Elis* records that he
acguired a reputation in it. Following vpon these men, Pythag-

2¢ 65,7 The following account of the development of geometry
among the Greeks appears to be based on a history composed by
Eudemus of Rhodes, a pupil of Aristotle, which Proclus had at his
disposal but which has since been Jost. For the evidence see Heath 1,
118-120; and for Proc¢lus’ use of this source, Enclid 1, 35-38. Thales of
Miletus lived in the early sixth century B.c. and was universally
counted as one of the Seven Sages. Since he wrote nothing, our know!-
edge of his geometrical discoveries is dependent on the traditions about
him recorded by later writers. Some of this evidence comes from
Eudemus, through Proclus; see 157.11, 250.20, 299.4, 352.15. For
estimates of his achievements see Heath 1, 130-137; Gow, 138-145;
Van der Waerden, §5-90.

25 65,12 Of Mamercus nothing is known beyond this mention;
even his name is uncertain, for the Mss of Proclus contain variant
readings “Ameristus” and “Mamertius.” Stesichorus belongs to the
late seventh and early sixth centuries.

26 §5.14 Hippias of Elis, the famous Sophist of the fifth century
B.C., the inventor of a curve known as the quadratrix which, originally
intended for the solution of the problem of trisecting any angle, also
served (as the name implies) for squaring the circle (2727, 356.11).
See Heath 1, 23, 182; Gow, 162-164; Van der Waerden, 146.
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oras? transformed mathematical philosophy into a scheme
of liberal education, surveying its principles from the highest
downwards and investigating its theorems in an immaterial®®
and intellectual manner. He it was who discovered the doc-
trine of proportionals® and the structure of the cosmic fig-
ures.®® After him Anaxagoras of Clazomenae® applied him-
self to many questions in geometry, and so did Oenopides of
Chios,** who was a little younger than Anaxagoras. Both these
men are mentioned by Plato in the Erastae® as having got a

2T §5.16 Pythagoras of Samos, the founder of a school of philos-
ophy and mathematics in southern Italy in the fifth century n.c.
Pythagoras’ own contributions are difficult to identify, since he left no
writings, and all the discoveries of ihe school are credited to him
(see note at 22.14 above). But he influenced Plato profoundly and
through him all later Greek science and philosophy down to the time
of Proclus. For a survey of Pythagorean achievements in arithmetic
see Heath 1, 65-117; and for Pythagorean geometry, 141-169, See also
Van der Waerden, 92-105, and Gow, 147-158,

28 65.18 adhws, i.e. in abstraction from sensible things, but surely
not “without concrete representation,” as Van der Waerden (90)
translates it.

29 65,19 Reading drahéywr for dhéywr in Friedlein. See Heath 1,
84f.

30 6520 le. the five regular solids. For the controversies con-
cerning the contribution of Pythagoras or the early Pythagoreans to
the development of the theory of the regular solids see Heath y, 158-
162, and Kurt von Fritz, in RE, s.v. “Theaitetos.”

316521 Anaxagoras of Clazomenae lived at Athens during the
first half of the fifth century B.C., where his ideas made a great stir
and eventually brought about his indictment for impiety and his
withdrawa! to Larmpsacus. We know practically nothing of his achieve-
ments in geometry, though the fragments of his book On Nature show
that he was a theoretical scientist of extraordinary ability. He used
the idea of infinite divisibility in his cosmology and was the first to
give the true explanation of lunar and solar eclipses.

32 §6.2 Two propositions in Euclid’s first book are attributed by
Proclus to Oenopides of Chios, viz, XTI (283.7) and XXIII (333.5).
These are very simple problems, and it is likely that his importance
in the history of geometry is due rather to improvements in method
that he instituted, such as the rule limiting construction to the use of
the ruler and compass {see Heath 1, 175). Von Fritz (in RE, s.v.
“Oinopides”) attributes to him also the recognition of the problem
as a kind of theoretical inquiry distinct from the theorem (see note
on Zencdotus at 80.15).

32 66.3 Erastae 132a.
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reputation in mathematics. Following them Hippocrates of
Chios,”™ who invented the method of squaring lunules, and
Theodorus of Cyrene®* became eminent in geometry. For
Hippocrates wrote a book on elements, the first of whom we
have any record who did so.

Plato, who appeared after them, greatly advanced mathe-
matics in general and geometry in particular because of his
zeal for these studies. It is well known that his writings are
thickly sprinkled with mathematical terms and that he every-
where tries to arouse admiration for mathematics among stu-
dents of philosophy. At this time also lived Leodamas of
Thasos,® Archytas of Tarentum, and Theaetetus of Athens,?’
by whom the theorems were increased in number and brought
into a more scientific arrangement. Younger than Leodamas

2 664 Hippocrates of Chios, a contemporary and fellow-citizen of
Qenopides. Procius tells us later (213.3-11} that he reduced the
problem of duplicating the cube to that of finding two mean pro-
portionals. Besides this achievement he is credited with having effected
the quadrature of lunes and with having proved that the areas of
circtes are proportional to the squares on their diameters. See Heath 1,
182-209; Gow, 164-172; Van der Waerden, 131-136. Part of the actual
text of Hippocrates' quadrature of lunes is preserved in Simplicius’
Commentary on Aristorle’s Physics, CAG x, 60.22-68 32, Diels.

85 66.6 Theodorus of Cyrene is said to have been the teacher of
Plato (Diog. Laert. III, §). The Theaeterus of Plato has him present
in Athens during the last period of Socrates’ life. This dialogue in fact
contains all the ancient evidence about him that is available; but for
its significance see von Fritz, in RE, s.v. “Theodoros.”

3 66.15 Proclus tells us later (211.19-23) that Plato is sakd to have
taught Leodamas the method of analysis. Cf. Diog. Laert. III, 24,
Archytas was an older contemporary and friend of Plato (cf. Plata’s
Epistle VII 338c, 350a), eminent as statesman and philosopher and as
author of the first treatise on mechanics based on mathematical prin-
ciples. He solved the problem of finding two mean proportionals by a
remarkable construction in three dimensions (Heath 1, 213-214, 246-
249). "It is perhaps worth pointing out that Van der Waerden (153)
attributes Book VIII of the Elements to Archytas.” (I.M,)

37 66.16 Theaetetus was one of the two greatest mathematicians of
the fourth century B.Cc. He laid the foundations of the theory of ir-
rationals as we find it in Euclid's tenth book and distinguished their
main varieties; he also contributed substantially (o the theory of the
five regular solids developed in Euclid’s thirteenth bock, See Heath 1,
209-212, and von Fritz, in RE, s.v. “Theaitetos.”
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were Neoclides and his pupil Leon,* who added many dis-
coveries to those of their predecessors, so that Leon was able
to compile a book of elements more carefully designed to take
account of the number of propositions that had been proved
and of their utility. He also discovered diorismi, whose pur-
pose is to determine when a problem under investigation is
capable of solution and when it is not. Eundoxus of Cnidus,*
a little later than Lecn and a member of Plato’s group, was

the first to increase the number of the so-called general
theorems;*" to the three proportionals already known he
added three more and multiplied the number of propositions
concerning the “section™* which had their origin in Plato,
employing the method of analysis for their solution. Amyclas
of Heracleia,** one of Plate’s followers, Menaechmus,** a
student of Eudoxus who also was associated with Plato, and

38 66,19 Of these men we know nothing more than is here stated
(Heath 1, 319).

31 67.2 Eudoxus ranks with Theaetetus among the greatest mathe-
maticians of the fourth century. In astronomy he was the author of
the theory of concentric spheres for explaining the motions of the
heavenly bodies. His great contributions to gecmetry were the new
theory of proportion expounded in Euclid ¥V and VI, the method of
exhaustion for measwring and comparing the areas and volumes of
curvilinear plane and solid surfaces, and the solution of the problem
of doubling the cube. See Heath 1, 322-334; Gow, 183-185; Van der
Waerden, 179-180.

1 6§74 It is a disputed question what these xadéhov fewghuara are.
Theorems true of everything falling under the concept of magnitude?
Or axioms, such as those underlying the reasoning of Euclid V and
V1?7 “I am inclined to think that the words refer primarily to the
contents of Book V of the Elements, i.e. the Eudoxian theory of
proportion.” (I.M.) See Heath 1, 323f., and Van der Waerden, 183,

L 676 Does this refer to the sectioning of solids by planes or the
seclioning of a straight line in extreme and mean ratio? See Heath 1,
3241,

42678 Amyclas is otherwise unknown.

43679 Menacchmus, as a pupil of Eudoxus and of Plato, must
have lived in the fourth century. From the saying of Eratosthenes
quoted at 111.22f. it is generally inferred that Menaechmus discovered
the conic sections. Proclus’ other references (o him indicate that he
wrote also on the methodology of mathematics; of. 72.244., 78.9
254.4, See Heath 1, 251-255; Van der Waerden, 190f.; Gow, 185-187.
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his brother Dinostratus** made the whole of geometry still
more perfect. Theudius of Magnesia*® had a reputation for
excellence in mathematics as in the rest of philosophy, for he
produced an admirable arrangement of the elements and
made many partial theorems more general.*® There was also
Athenaeus of Cyzicus,*” who lived about this time and became
eminent in other branches of mathematics and most of all in
geometry, These men lived together in the Academy, making
their inquiries in common. Hermotimus of Colophon pursued
further the investigations already begun by Eudoxus and
Theaetetus, discovered many propositions in the Elements,
and wrote some things about locus-theorems, Philippus of
Mende,*® a pupil whom Plato had encouraged to study mathe-
matics, also carried on his investigations according to Plato’s
instructions and set himself to study all the problems that he
thought would contribute to Plate’s philosophy.

All those who have written histories bring to this point their
account of the development of this science. Not long after
these men came Euclid, who brought together the Elements,
systematizing many of the theorems of Eudoxus, perfecting
many of those of Theaetetus, and putting in irrefutable
demonstrable form propositions that had been rather loosely
established by his predecessors. He lived in the time of
Ptolemy the First, for Archimedes, who lived after the time of
the first Ptolemy, mentions Euclid. It is also reported that

4¢67.11 Dinostratus applied Hippias' quadratrix to the squaring
of the circle. Heath 1, 225-230; Van der Waerden, 1911.

4367,12 From the fact that Theudius was a tnember of the
Academy in Plato’s time it has been inferred that the propositions in
elememary geometry cited by Aristotle come from his Elements
(Heath 1, 321); but see von Fritz, in RE, s.v. “Thendius.”

15 §7.15 Reading with Baracius upepcnéiv instead of dpwcde. See von
Fritz, foc.cit.

47 67.16 Athenaeus of Cyzicus is otherwise unknown; and so alse
is Hermotimus of Colophon, mentioned in line 20 below,

456723 Philippus of Mendc is undoubtedly the same as the
Philippus of Opus who edited and published Plato’s Laws and who is
said to have been the author of the Epinomis (cf. 42.12). He wrote
numerous works, chiefly on astronomy, but also some rnathematical
treatises whose titles are preserved. See von Fritz, in RE, s.v. “Philip-

"

pos.
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Ptolemy once asked Euclid i there was not a shorter road to
geometry than through the Flements, and Euclid replied that
there was no royal road to geometry. He was therefore later
than Plato’s group but earlier than Eratosthenes’® and Archi-
medes, for these two men were contemporaries, as Eratos-
thenes somewhere says. Euclid belonged to the persuasion of
Plato and was at home in this philosophy; and this is why he
thought the goal of the Elements as a whole to be the con-
struction of the so-called Platonic figures,

There are many other mathematical writings of Euclid, full
of remarkable precision and scientific insight. Such are his
Optics, his Catoptrics, his Elements of Music, and his little
book on Divisions. But we should especially admire him for
the work on the elements of geometry because of its arrange-
ment and the choice of theorems and problems that are worked
out for the instruction of beginners. He did not bring in every-
thing that he could have collected, but only what could serve as
an introduction. He also included reasonings of all sorts, both
proofs founded on causes and proofs based on signs,*® but all
of them impeccable, exact, and appropriate to science. Besides
these the book contains all the dialectical methods: the
method of division for finding kinds, definitions for making
statements of essential properties, demonstrations for pro-
ceeding from premises to conclusions, and analysis for passing
in the reverse direction from conclusions to principles. The
various forms of conversion, both the simple and the more
complex, can be accurately learned in this treatise.’! One
sees when conclusion and hypothesis can be interchanged as
wholes, when the whole with a part and a part with the whole
are interchangeable, and when only a part with a part. We
mark also the coherence of its results, the economy and or-
derliness in its arrangement of primary and corollary propo-
sitions, and the cogency with which all the several parts are
presented. Indeed, if you add or take away any detail what-
ever, are you not inadvertently leaving the way of science and

<t §8.18 On Eratosthenes and Archimedes see 41.6 and 43,23,
50 69.12 On this distinction see 206.15,
51 69,22 On geometrical conversion see 252-254, 409.1-6,
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being led down the opposite path of error and ignorance?
Since there are many matters that seem to be dependent on
truth and to follow from scientific principles but really lead
away from them and deceive the more superficial students,
he has given us methods for clear-sighted detection of such
errors; and if we are in possession of these methods, we can
train beginners in this science for the discovery of paralogisms
and also protect oursclves from being led astray. The work in
which he teaches us this apparatus he entitled Fallacies. Tt
enumerates in order the various methods of refutation®® and
for each of them provides exercise for our understandings by
a variety of theorems, setting the true beside the false and
adapting his refutations of error to the seductions we may
encounter. This book is cathartic and gymnastic, while the
Elements contains an impeccable and complete exposition of
the science itself of geometrical matters,

If now anyone should ask what the aim of this treatise is, 1
should reply by distinguishing between its purpose as judged
by the matters investigated and its purpose with reference to
the learner. Looking at its subject-matter, we assert that the
whole of the geometer’s discourse is obviously concerned with
the cosmic figures. It starts from the simple figures and ends
with the complexities involved in the structure of the cosmic
bodies, establishing each of the figures separately but showing
for all of them how they are inscribed in the sphere and the
ratios that they have with respect to one another. Hence
some® have thought it proper to interpret with reference to the
cosmos the purposes of individual books and have inscribed
above each of them the utility it has for a knowledge of the
universe. Of the purpose of the work with reference to the
student we shall say that it is to lay before him an elementary
exposition (arocxeiwos, as it is called) and a method of per-
fecting {rerefwois) his understanding for the whole of geom-
etry. If we start from the elements, we shall be able to under-
stand the other parts of this science; without the elements we
cannot grasp its complexity, and the learning of the rest will

527011  rpémwor. See 59.5.
53713 Proclus is presumably referring to editors of the Elements.
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be beyond us. The theorems that are simplest and most funda-
mental and nearest to first principles are assembled here in a
svitable order, and the demonstrations of other prapositions
take them as the most clearly known and proceed from them.
In this way also Archimedes in his book on Sphere and Cylin-
der and likewise Apollonius™ and all other geometers appear
to use the theorems demonstrated in this very work as gen-
erally accepted starting-points. This, then, is its aim: both to
furnish the learner with an introduction to the science as a
whole and to present the construction of the severa! cosmic
figures.

But—1to inquire briefly about its title—what is the meaning
of this very word aroixeiwois and of the word oroigeior from
which it is derived? Some theorems we are accustomed to call
“elements” (oroxeia), others “elementary” (orocyeddn), and
others do not qualify for either designation, We call “ele-
ments” those theorems whose understanding leads to the
knowledge of the rest and by which the difficulties in them are
resolved. As in written language there are certain primal
elements, simple and indivisible, to which we give the name
croixeia™ and out of which every word is constructed, and
every sentence, so also in geometry as a whole there are
certain primary theorems that have the rank of starting-points
for the theorems that follow, being implicated in them all and
providing demonstrations for many conjunctions of qualities;
and these we call “elements.” “Elementary™ propositions are
those that arc simple and elegant and have a variety of appli-
cations but do not rank as elements because the knowledge of
them is not pertinent to the whole of the science: for example,

%4 71.19  Apollonius of Perga, in Pamphylia, belongs to the latter
half of the third century p.c. His monumental treatise on Conics is
ong of the most imposing productions of ancient mathematics and
earned for him in antiquity the title of the “great geometer.” It con-
sisted of eight books, of which the first four survive in Greek (ed.
Heiberg, 1891-1893), and the next three in an Arabic version, the
eighth having completely disappeared. See Heath 1, 126-196; Van
der Waerden, 237-263; Gow, 246-264. Almost nothing is known of
his life.

52 72,8 One of the many uses of the word oroixeia was to desig-
nate the letters of the alphabet,
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the theorem that the perpendiculars from the vertices of a
triangle to the sides meet in a common point. Propositions
whose understanding is not relevant to a multitude of others or
which do not exhibit any grace or elegance—these do not
have the force of elementary propositions, The term “ele-
ment,” however, can be used in two senses, as Menaechmus
tells us. For what proves is called an element of what is proved
by it; thus in Euclid the first theorem is an element of the
second, and the fourth of the fifth. In this sense many propo-
sitions can be called elements of one another, when they can
be established reciprocally. From the proposition that the
exterior angles of a rectilinear figure are equal to four right
angles we can prove the number of right angles to which the
interior angles of the figure are equal, and vice versa. An
element so regarded is a kind of lemma.* But in another
sense “element” means a simpler part into which a compound
can be analyzed. In this sense not everything can be called an
element of anything [that follows from it], but only the more
primary members of an argument leading to a conclusion, as
postulates are elements of theorems. This is the sense of “ele-
ment” that determines the arrangement of the elements in
Euclid’s work, some of them being elements of plane geome-
try, and some elements of stereometry. This also is the
meaning the word has in numerous compositions in arithmetic
and astronomy entitled “elementary treatises” (oroiewoes).

It is a difficult task in any science to select and arrange
properly the elements out of which all other matters are pro-
duced and into which they can be resolved. Of those who have
attempted it°" some have brought together more theorems,
some less: some have used rather short demonstrations, others
have extended their treatment to great lengths; some have
avoided the reduction to impossibility, others proportion;
some have devised defenses in advance against attacks upon
the starting-points; and in general many ways of constructing
elementary expositions have been individually invented. Such

5673.4 For Proclus' explanation of lemma see 211,11,
577318 Sc. for geometry.
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a treatise ought to be free of everything superfluous, for that
is a hindrance to learning; the selections chosen must all be
coherent and conducive to the end proposed, in order to be of
the greatest usefulness for knowledge; it must devote great at-
tention both to clarity and to conciseness, for what lacks these
qualities confuses our understanding; it ought to aim at the
comprehension of its theorems in a general form, for dividing
one’s subject too minutely and teaching it by bits make knowl-
edge of it difficult to attain. Judged by all these criteria, you
will find Euclid’s intreduction superior to others. Its useful-
ness contributes to the study of the primary figures;™ its
method of proceeding from simpler to more complex matters
and its laying the foundations of the science on the “common
notions”™ produce clarity and articulateness; and by moving
towards the questions under investigation by way of primary
and basic theorems, it makes the demonstration general.
The matters that appear to be omitted either can be
learned through the same methods as those it employs, like
the construction of the scalene and the isosceles triangles; or
they are unsuitable for a selection of elements because they
lead to great and unlimited complexity, such as the material
that Apollonius has elaborated at considerable length about
unordered irrationals;®® or they can be constructed from tra-
ditional premises, such as the many species of angles and
lines. These matters are passed over in this work, and though
they may receive rather fuller treatment in others, they can
be learned from simple premises. So much we thought it de-
sirable to record about the general nature of this elementary
introduction.

5874.13 I surmise that Proclus’ text has lost something here and
that what he wrote is that the usefulness of the book for the under-
standing of the dpx:x& oxuara contributes to the understanding of the
koouixd FynuaTa, as he says at 83.1f.

59 74.15  Kowal drorai oceurs frequently in Proclus but is nowhere
defined as a technical term. Cf. also xowal éwivorae (188.12).

807423 The Greek text of this book has been lost, but ver Eecke
(ad loc.) notes an attempied restoration of it from an Arabic manu-
script by Woepke, in Mémoires présentés d I'Académie des Sciences
x1v, 658-720.
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The general arrangement of its propositions we should
explain somewhat, as follows. Since this science of geometry
is based, we say, on hypothesis and proves its later proposi-
tions from determinate first principles—for there is only
one unhypothetical science, the other sciences receiving their
first principles from it—he who prepares an introduction to
geometry should present separately the principles of the sci-
ence and the conclusions that follow from the principles,
giving no argument for the principles but only for the theo-
rems that are derived from them. For no science demonstrates
its own first principles or presents a reason for them; rather
each holds them as self-evident, that is, as more evident than
their consequences. The science knows them through them-
selves, and the later propositions through them. This is the
way the natural scientist proceeds, positing the existence of
motion and producing his ideas from a definite first principle.
The same is true of the physician and of the expert in any
other science or art. Whoever throws into the same pot his
principles and their consequences disarranges his understand-
ing completely by mixing up things that do not belong
together.® For a principle and what follows from it are by
nature different from each other.

First of all then, to repeat what I said, it was incumbent on
him to sct apart the principles from their consequences; and
this is just what Euclid does in practically every book, besides
setting forth at the outset of his whole treatise the common
principles of the science. Next he divides them into hypothe-
ses, postulates, and axioms,® for these are all different from
each other. Axiom, postulate, and hypothesis are not the same
thing, as the inspired Aristotle somewhere says.®® When a prop-
osition that is to be accepted into the rank of first principles
is something both known to the learner and credible in itself,
such a proposition is an axiom: for example, that things

417522  An echo of Plato, Phaedo 101e.

52 76.6 Note that Proclus describes Euclid as dividing the xowal
dpxal of geometry into imoféces, airduara, and dfwinara instead of the
#po:, alrhpare, and xewal Evera: Of our Euclid text.

51 76.8 Post. Anal. 76a31-77a4.
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equal to the same thing are equal to each other. When the
student does not have a self-evident notion of the assertion
proposed but nevertheless posits it and thus concedes the
point 1o his teacher, such an assertion is a hypothesis. That
a circle is a figure of such-and-such a sort we do not know
by a common notion in advance of being taught, but upon
hearing it we accept it without a demonstration. Whenever,
on the other hand, the statement is unknown and nevertheless
is taken as true without the student’s conceding it, then, he
says, we call it a postulate: for example, that all right angles
are equal. This characteristic of postulates is evidenced by the
strenuous efforts that have been made to establish one of
them,®* as though nobody could concede it without more ado.
In this way axiom, postulate, and hypothesis are distinguished
according to Aristotle’s teaching. Often, however, they are
all called hypotheses, just as the Stoics call every simple state-
ment an axiom,*® so that according to them even hypotheses
are axioms, whereas according to others axioms are hy-
potheses.

Again the propositions that follow from the first principles
he divides into problems and theorems, the former including
the construction of figures, the division of them into sections,
subtractions from and additions to them, and in general the
characters that result from such procedures, and the latter
concerned with demonstrating inherent properties belonging
to each figure. Just as the productive sciences have some
theory in them, so the theoretical ones take on problems in a
way analogous to production. Some of the ancients, however,
such as the followers of Speusippus and Amphinomus,®
insisted on calling all propositions *“theorems,” consider-

8476.21 This appears to be a reference to Post, V and to the
attempts made in antiquily to demonstrate it. See 191.23f. and note.

63 77.3  See Diog. Laert. VII, 65; von Arnim 11, §2-72; and Benson
Mates, $toic Logic, Berkeley, 1961, 18.

t877.16 Speusippus was Plato’s nephew and his successor as head
of the Academy. Nothing otherwise is known of Amphinomus, who
is referred to later at 202.11, 220.9, and 254.4. These references con-
firm the implication of this passage that he was a contemporary of
Speusippus.
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ing “theorems” to be a more appropriate designation
than *problems” for the objects of the theoretical sciences,
especially since these sciences deal with eternal things. There
is no coming to be among eternals, and hence a problem has
no place here, proposing as it does to bring inte being or to
make something not previously existing—such as to construct
an equilateral triangle, or to describe a square when a straight
line is given, or to place a straight line through a given point.
Thus it is better, according to them, to say that all these objects
exist’ and that we lock onr our construction of them not as
making, but as understanding them, taking cternal things as
if they were in the process of coming to be. Hence we can say
that all propositions have a theoretical and not a practical
import. Others, on the contrary, such as the mathematicians
of the school of Menaechmus, thought it correct to say that all
inquiries are problems but that problems are twofold in
character: sometimes their aim is to provide something sought
for, and at other times to see, with respect to a determinate
object, what or of what sort it is, or what quality jt has, or
what relations it bears to something else. Both parties are
right. The school of Speusippus are right because the prob-
lems of geometry are of a different sort from those of mechan-
ics, for example, since the latter are concerned with per-
ceptible objects that come to be and undergo all sorts of
change, Likewise the followers of Menaechmus are right be-
canse the discovery of theorems does not occur without
recourse to matter, that s, intelligible matter. In going forth
into this matter and shaping it, our ideas are plausibly said to
resemble acts of production; for the movement of our thought
in projecting its own ideas is a production, we have said, of
the figures in our imagination and of their properties. But it is
in imagination that the constructions, sectionings, superposi-
tions, comparisons, additions, and subtractions take place,
whereas the contents of our understanding all stand fixed,
without any generation or change.

There are, then, both geometrical problems and geometrical
theorems. But because theory is the predominant element in

e7 78.4 For radrd in Friedlein read raira, with Tannery 1x, 126.
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geometry, as making is in mechanics, every problem has also
some theory in it; but the reverse is not true, for demonstra-
tions in general are the product of theory. All the propositions
in geometry after the first principles are obtained by demon-
stration, so that “theorem” is the more general term. And not
all theorems require the assistance of problems: there are
some which contain in themselves the demonstration of what
is sought. Those who distinguish theorem from problem say
that every problem admits the possibility of antithetical
predicates in its matter—the attribute sought as well as its
opposite—whereas a theorem admits only a given attribute,
not its antithesis also. (By “matter” here I mean the genus of
the thing being studied, such as triangle, square, or circle; by
“attribute” I mean something that is by itself accidental, such
as “equal,” “divided into segments,” “in such-and-such a po-
sition,” or something similar.} When, therefore, we propose
to inscribe an equilateral triangle in a circle, we call it a
problem, for it is possible to inscribe a triangle that is not
equilateral; or again to construct an equilateral triangle on a
given finite linc is a problem, for it is possible to construct
one that is not equilateral. But when a man sets out to prove
that the angles at the base of an isosceles triangle are equal,
we should say he is proposing a theorem, for it is not possible
that the angles at the base of an isosceles triangle should not
be equal. Thus if anyone were to set it up as a problem to
inscribe a right angfe in a semicircle, he would be regarded as
being ignorant of geometry, for any angle inscribed in a
semicircle is a right angle. In general, then, all cases in which
the property is universal, that is, coextensive with the whole
of the matter, must be called theorems; but whenever the
character is not universal, that is, does not belong to the whole
genus of the subject, then it must be called a problem. The
proposal to bisect a given finite line is a problem, for it can
also be divided into unequal segments; or to bisect a recti-
linear angle, for it can be divided unequally; likewise to de-
scribe a square from a given line, for we could construct a
figure that is not a square. All such questions belong to the
class of problems.
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“QOn the other hand, the followers of Zenodotus,”® who
belonged to the succession of Oenopides, although he was a
pupil of Andron, used to distinguish theorem from problem in
the sense that a theorem seeks to know what character is
attributed to the matter it is investigating, whereas a problem
asks under what conditions something exists. Hence the
followers of Posidonius® likewise distinguished between a
proposition that inguires whether or not something exists and
one’ that seeks to know what or of what sort it is, maintaining
that the theoretical proposition ought to be stated in declara-
tive form (for example, “In every triangle the sum of two of
its sides is greater than the third,” or “The angles at the base
of an isosceles are equal”), whereas the problematic proposi-
tion should be stated as a question (for example, “Is it
possible to construct a triangle on this straight line?”). For
there is a difference, they said, between simply inquiring
in general whether it is possible to erect a perpendicular to
this line at this point and investigating the nature of the
perpendicular,

It is clear from these considerations that there is a distine-
tion between a problem and a theorem. That Euclid’s Ele-
ments contains both problems and theorems will be evident
from the individual propositions and from his practice of
placing at the end of his demonstrations sometimes “This is
what was to be done™ and at other times “This is what was to
be proved.” The latter is the mark of a theorem, although, as
we said, demonstration also occurs in problems; nevertheless

68 80,15 Zenodotus and Andron are otherwise unknown; but this
passage is an important part of the evidence that von Fritz presents
for the significant contributions to methodology made by Oenopides;
see note at 66.2 above.

89 80,21 Posidonius of Apamea was head of a school of Stoicism
at Rhodes in the late second century B.c. For his contributions to
mathematical geography and astronomy see Heath 1, 219-222. Proc¢lus
appeals to him frequently; cf. 143.8, 170.13, 176.6, 200.2, 216.20,
217.24.

70 80,22 Omitting wpéprnua in Friedlein, since to take it with the
immediately following wpérace would violate the distinction that
Proclus is expounding. It appears to be another marginal note that
has got intc the text and at a most inappropriate place. See Tannery
X, 126.
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sometimes the demonstration is used for the sake of the con-
struction—that is, we bring it in to prove that what was
proposed has been done—whereas on other occasions it
deserves attention on its own account because it is able to set
forth the nature of the object investigated. You will find that
Euclid sometimes interweaves theorems with problems, using
them alternately, as in the first book; but sometimes one or
the other predominates. The fourth book consists entirely of
problems, the fifth book of theorems. So much for these
matters,

Next we must define the aim of the first book and set
forth its several divisions, and then we shall be able to begin
the examination of the Definitions. What this book proposes
to do is to present the principles of the study of rectilinear
figures. Although the circle is naturally superior to the straight
line and the study of it a higher form of being and knowledge,
yet instruction in the nature of straight lines is more suitable
for us who are less than perfect intelligences and are striving
to convert our understanding from sensible to intelligible
objects, Rectilinear figures are akin to sensibles, but the
circle to intelligibles; for what is simple, uniform, and deter-
minate accords with the nature of being, whereas to be di-
versified and to possess indefinitely more containing sides is a
characteristic of sense objects. In this book, therefore, are
presented the first and most fundamental rectilinear figures,
the triangie and the parallelogram. For these are the genera
that inctude the causal principles of the elements, the isosce-
les and scalene triangles and their compounds, the equilateral
triangle and the square, from which the figures of the four
elements are constructed.”™ We shall therefore discover how to
construct the equilateral triangle and the square, the one on a
given straight line, the other from a given line,’> The equi-

718220 Zroiyeta here means the four primary bodies, the elements
of the physical world. How these are related to the equilateral triangle
and the square is expounded in Plato’s Tim. 53c-55¢.

728222 This distinction between the constructing of an equilateral
triangle on a finite line and the describing of a square from a given
line seems to have been traditional among Greek geometers, though
the reason for it is hard to see. Proclus observes it consistently (cf.
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lateral triangle™ is the proximate cause of three of the ele-
ments—fire, air, water—and the square the cause of ecarth.
Consequently the aim of the first book is dependent on the
entire treatise and contributes to the full understanding of
the cosmic elements. Furthermore, it introduces the learner to
the science of rectilinear figures by revealing their first prin-
ciples and establishing them with precision.

The book is divided into three major parts. The first reveals
the construction of triangles and the special properties of their
angles and their sides, comparing triangles with one another
as well as studying each by itself. Thus it takes a single triangle
and examines now the angles from the standpoint of the sides
and now the sides from the standpoint of the angles, with re-
spect to their equality or inequality; and then, assuming two
triangles, it investigates the same properties™ in various ways.
The second part™ develops the theory of parallelograms, be-
ginning with the special characteristics of parallel lines and
the method of constructing the parallelogram and then dem-
onstrating the properties of parallelograms. The third part™
reveals the kinship between triangles and parallelograms both
in their properties and in their relations to one anothet. Thus
it proves that triangles or parallelograms on the same or equal
bases have identical properties;’” it shows [what is the relation

78.2 above) and apparently sces some profound significance in it (see
note at 423.20),

738223 After isémhevpor reiyavor the text of Grynaeus skips with-
out a break ta ira vép 76 Tpexf Sracrdr at 86.16. This same gap occurs
in several other Mss. Evidently the codex from which they are all
derived had lost some of its pages. See C. Wachsmuth in Rheinisches
Museum xxix, 1874, 317; and the note at 416.14,

?1 83,14 le. equality and inequality,

15 83.15 XXVII to XXXIV.

16 83,19 XXXV to the end.

17 83.24 Le. are shown to be equal; the qualifying phrase “with
respect to their equality or inequality™ (83.13f.} appears to govern the
whole passage. Proclus’ statement is vnusually loose, since triangles
on the same or equal bases are equal only when they lic between the
same parallels, a condition that must be taken as understood here.
See XXXV-XL.
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between} a triangle and a parallelogram on the same base,™
how to construct a parallelogram equal to a triangle,” and
finally, with respect to the squares on the sides of a right-
angled triangle, what is the relation of the square on the side
that subtends the right angle to the squares on the two sides
that contain it.*¢ Something like this may be said to be the
purpose of the first book of the Elements and the division
of its contents.

As we begin our examination of details, we warn those who
may encounter this book not to expect of us a discussion of
matters that have been dealt with over and over by our
predecessors, such as lemmas, cases, and the like. We are
surfeited with those topics and shall touch on them but
sparingly. But whatever matters contain mote substantial
science and contribute to philosophy as a whole, these we
shall make it our chief concern to mention, emulating the
Pythagoreans whose byword and proverb was “a figure and a
stepping-stone, not a figure and three obols.”* By this they
meant that we must cultivate that science of geometry which
with each theorem lays the basis for a step upward and
draws the soul to the higher world, instead of letting it de-
scend among sensibles to satisfy the common needs of mortals
and, in aiming at these, neglect to turn away hence.

76 841 This must refer to XLI, but some words have been lost or
else Proclus expressed himself most elliptically. T have filled out his
text with a clause identical to one which occurs four lines later.

%841 XLIV.

¢ 846 XLVII,

51 84.17 Zydua wai Bdua, dAN o oxdsa xal rpudferor. Taylor (1,
113) notes: “I do not find this aenigma among the Pythagoric sym-
bols that are extant; so that it is probably no where mentioned but in
the present work.”
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1. A point is what has no parts.

N ADVANCING from the more composite to the simpler

figures, the geometer proceeds from the three-dimensional
solid to the plane that bounds it, from the plane to the line
that is its boundary, and from the line to the point devoid of
afl extension. This has often been said and is evident to
everyone, But since these limits, because of their simplicity,
are often thought to be more august than the complex
natures they delimit, and yet often resemble accidents in
having their existence in the objects bounded by them, we
must decide under which of these two classes of beings they
are to be considered.

I begin, then, by remarking that in immaterial things, which
subsist as ideas separate from matter and as forms grounded
in themselves alone, the substance of the simpler is always
more primary than that of the more composite, For this
reason both in Nous and in the intermediate orders of souls'—
that is, those natures that directly breathe life into bodies—
the limiting factors have an essential priority over the things
that are limited, as being less divisible, more uniform, and
more sovereign; for among immaterial forms unity is more
perfect than plurality, the partless more perfect than what
proceeds in any way from it, and what bounds more perfect
than what gets its limit from something other than itself. On

1 86.1 On the intermediate position of souls and their life-giving
function sec Proclus’ Elements of Theology, Props. 188-190. For the
basic principlcs governing the hierarchy of the intelligible world see
especially the first six propositions in the Elements. To give references
for all the details of Proclus’ cosmolopgy, here and at later points in
this commentary, would extend these notes beyond all convenient
bounds. The reader who wishes to sludy them further is advised to
consult Dodds’ commentary on the Efements, the detailed exposition in
Rosdn, or the more summary accounts in Thomas Whittaker, The
Neo-Platonists, 2nd edn., Cambridge, 1918, 157-180; and in Friedrich
Ueberweg, Die Philosophic des Altertums, ed. Karl Praechter, Basel,
1953, 625-631.
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the othcr hand, the forms which, requiring matter, have their
foundation in what is outside themselves, and have departed
from their own nature to be dispersed among their several
subjects and possess only an imported unity, have been
allotted more complex ideas rather than simpler ones. Thus
in the objects that appear in imagination and in the matter of
imagined shapes, as well as in perceptible things that are
generated by nature, the ideas of the bounded objects have
priority, the ideas of their boundaries being subsequent and,
as it were, adventitious. In order that an object in three
dimensions may not stretch to an infinite size in our thought
or perception, it is limited on all sides by planes; and so that
the plane may not slip away into boundlessness, the line
comes to be in it to contain and define it; and the point does
the same thing for the line, these simples existing for the
compounds.

This also is clear, moreover, that in the forms separable
from matter the ideas of the boundaries exist in themselves
and not in the things bounded, and it is because they remain
precisely what they are that they become agents for bringing
to existence the entities dependent upon them. But in the
forms inseparable from matter the limits surrender themselves
to the things they limit; they establish themselves in them,
becoming, as it were, parts of them and being filled with their
inferior characters. This is why in this region the partless
partakes of divisible existence and the breadthless of breadth;
and the limiting elements are no longer able to preserve their
simplicity and purity, for they are altered by having come to
be in a substratum that is other than themselves. Matter
muddies their precision; the idea of the plane gives the plane
depth, that of the line blurs its one-dimensional nature and
becomes generally divisible, and the idea of the point ends by
becoming bodily in character and extensible together with the
things that it bounds. For all ideas when they flow into matter
—the ideas of the understanding into intelligible and those of
nature into perceptible matter—are filled with their sub-
strates: they forsake their native simplicity for alien com-
binations and extensions.

— 71—



B3

THE COMMENTARY

But if all things in Nous and in the soul are without parts
or intervals, how does it happen that in the realm of matter
some of them are subject to division preeminently and others
because of the nature of matter? Is it not that among im-
material forms there is a gradation of rank between primary,
intermediate, and later forms? Some forms are more uni-
form, others more inclined to plurality; some hold their
powers together in concentration, others endeavor to scatter
theirs; some sit close to the Limit, others incline towards the
Unlimited. For although they all partake of these two prin-
ciples, yet some are more the offspring of one and have a
larger share of its nature, while others are similarly related
to the other. This is why in that higher region the point is
completely without parts and yet, although its being is deter-
mined by the Limit, it secretly contains the potentiality of
the Unlimited, by virtue of which it generates all intervals;?
and the procession of all the intervals does not exhaust its
infinite capacity. Body on the other hand—that is, the idea of
body—has a greater share of the nature of the Unlimited,
wherefore it belongs among the things bounded from without
and divisible to infinity in all directions, The forms inter-
mediate between these two, according to their distance from
one or the other extreme, belong respectively to the class of
things inclined more towards the Limit and to those that
enjoy boundlessness. Consequently these forms both bound
and are bounded: they bound insofar as, owing their existence
to the Limit, they are able to impose limits on other things;
and they are bounded insofar as, by their participation in the
Unlimited, they need to be limited by other things.

The point, then, being a limit, preserves its character when
things participate in it. But since it also secretly possesses
the nature of the Unlimited and strives to be everywhere in the
things that it bounds, it is present in them an infinite number
of times; and since in the intelligible world the Unlimited is a
power generative of extended bodies, so it is potentially such

288.5 Removing Friedlein's period after &worduara and ending
the senlence with Sévewer in line 7; the following -8 8¢ is obviously the
correlate to 78 wér in line 2.
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in the things that share in it. For among the higher realities—
the intelligibles—the Unlimited is the first creative cause and
generative power of all things, but in enmattered forms it is
imperfect and only potentially everything. In sum, those forms
that by their simplicity and absence of parts occupy the highest
station among first principles preserve their specific natures
when things share in them, but they do so in a lesser degree
than the more composite ideas. For matter is able to share in
the compoesite ideas more clearly; it is to them that it is
adapted, rather than to the simplest principles of being. For
this reason, although traces of the most exalted principles
descend into matter, yet the characters that it receives from
principles of the second and third ranks are much more clearly
evident, Hence it partakes more of the principle of body than
of the principle of the plane, of the plane more than of the
form of the line, and of the line more than of the point that
bounds and holds them together. For the idea of the point is
the first member of this entire series; it unifies all things that
are divided, it contains and bounds their processions, it brings
them all on the stage and encompasses them about. This is
why even in sensible likenesses, although different things have
different boundaries, the point is the limit of them all.

We should not suppose, as the members of the Stoic school
did, that these limits—I mean the limits found in body—exist
merely as the product of reflection. To be reminded that
natures of this sort with their creative presiding ideas exist in
things we need only look at the whole of the cosmos—at its
circular revolutions and the centers of these circuits, that is,
the axes that penetrate them all. For the centers actually
exist as holding together the spheres, unifying their extensions
and constraining and compressing their forces about the
centers. The axes wrap the spheres about them and, while
themselves remaining fixed, carry them around in revolutions
about themselves. And the poles of the spheres, which limit
the axes and from their positions control all the circuits—are
they not clear evidence that points have creative and con-
trolling powers capable of making a whole of the disparate
parts, providing them with their unity and their never-ceasing
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motion? This is why Plato declares that the substance of these
axes is as hard as adamant, thus indicating their irreversible,
everlasting, steadfast, unchangeable being. The whole “spin-
dle,” he says, moves about these axes, celebrating their unity
in a dance,* Other doctrines of a more secret kind assert that
the Demiurge who presides over the cosmos rides* upon the
poles and through his divine love turns the whole towards
himself. The Pythagoreans claimed that the pole should be
called “the seal of Rhea,” as the place through which the
life-giving goddess dispenses her mystericus and effective
power to the All; and the center they said is “the guard-
house of Zas,” since Zeus set his creative watch in the
bosom of the cosmos and established it securely there about
the middle. For if the center remains fixed, the All likewise
maintains its orderly arrangement unperturbed and its revolu-
tion unending, and all things preserve their stations un-
changed. The gods that guard the poles have been assigned
the function of assembling the separate and unifying the mani-
fold members of the whole, while those appointed to the axes
keep the circuits in everlasting revolution around and around.
And if I may add my own conceit, the centers and the poles
of all the spheres symbolize the wry-necked gods® by imitating
the mysterious union and synthesis which they effect; the
axes represent the mainstays of all the cosmic orders, since
they hold together the unities and revolutions in the visible
cosmos, as the intelligible centers hold together the cosmos

290.11 This passage contains reminiscences both of Rep. 616¢cfT,
and of Tim. 40c.

490,13 éroxofuevor. This is a clear reference to the #xnyua, or
vehicle, in which every soul, divine or human, is, so to speak, em-
bodied according to Neoplatonic thought. For this doctrine see Proclus®
Elements of Theology, Props. 196, 204-2(1, and Dodds’ Appendix II,
313-321. Cf. 138.8.

5913 rdv {vypsde fedw, Chaldaic divinities (see Kroll, 39-42,
73f.), apparently represented in the form of the bird called fvyé (see
Aristotle's description in Hist. An. 504a12-19). They are alluded to
elsewhere by Proclus {e.g. Commentary on the Republic 1, 213.1,
Kroll; Cammentary on the Cratylus, 33.15, Pasquali), but these pas-
sages throw ne more light on their nature and function than does the
present one, Barocius translates conciligntium deorum, and ver Eecke
des dienx conciliateurs.
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of the intelligibles; and the very spheres are likenesses of the
perfecting divinities, joining end to beginning and surpassing
all other figures in simplicity, uniformity, and perfection.

We have expanded somewhat largely on these matters in
arder to show that points, and limits in general, have power in
the cosmos and that they have the premier rank in the Ali
by virtue of carrying the likenesses of the first and most sov-
ereign causes. For the centers and poles of the cosmos are not
limits such as exist in limited things; rather they have an
actual foundation and a self-sufficient being and power that
extend throughout the whole of the divisible world. Most
people, observing that limits exist imperfectly in limited things,
have a confused conception of their being. Some say that they
are only abstracted by reflection from sensible things, others
that they have no existence apart from our thoughts. But the
forms of all of them do exist in the intelligible world, they
exist in the orders of soul, they exist in nature and, last of all,
in bodies. Let us then note how they have their being in
each class of things corresponding to the position of that
class. All limits exist preeminently in Nous, but partless and
without differentiation of kind, so that they all subsist covertly
and indivisibly in a single form under the idea of the point.
Likewise they all exist in souls, but under the form of the line;
that is the reason why Timaeus constructed the soul out of
straight lines and circles,® for every circle is only a line. And
they all exist in the things of nature, but under the idea of the
plane. This is why Plato thought it proper to exhibit the ideas
constitutive of natural bodies with the help of planes;’ the
analysis of bodies into plane surfaces brings us to the proxi-
mate cause of their appearances. Finally, all the limits are
in bodies, since all the forms exist in them, but in a material
fashion in accordance with the divisible nature of bodies.

Consequently all the limits are everywhere, and each comes
to light in its proper place, their appearances varying accord-
ing to the power that prevails in them. As to the point, it is
everywhere indivisible and distinguished by its simplicity from

8927 On the straight lines in the soul see note at 16.22 above.
79211 Le. in Tim. 53c¢c-55c,
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divisible things; but as it descends in the scale of being, even
the point takes on the character distinctive of divisibles, Some-
times it has its seat altogether above them in keeping with the
superiority of its cause, sometimes it is ranged beside them,
and sometimes it takes up temporary residence among them
and, drinking as it were from the partibility of inferior beings,
relaxes its own partlessness, Just as the unit in one of its
aspects is generative of numbers and in another aspect serves
as the matter underlying numbers, and in neither case is
number itself but a principle of number in one or the other of
these ways, so likewise the point is sometimes the constitutive
priaciple of magnitudes and at other times a principle in a
different sense, but not as the generative cause,

But is the point the only thing that is without parts, or is
not this a characteristic also of the instant in time and of
unity among numbers? The answer is that the philosopher,
whose field of inquiry is the universe of beings, should exam-
ine everything that is in any way divisible as well as the
natures of the indivisibles that are sovercign over them,
whereas the scientist in a special area—conducting his inquiry
from certain limited starting-points to which alone he refers
his results, without attending to the procession of beings in
the cosmos—has the responsibility of examining and ex-
pounding only that indivisible nature which® is appropriate to
his first principles. It is his responsibility to see that simplicity
which is primary in the objects that he studies. In geometrical
matter, then, the point alone is without parts, and in arith-
metic the unit; and the definition of the point, though it may
be tmperfect from another point of view, is perfect as far as
the science before us is concerned. The physictan says that
the elements of bodies are fire, water, and the like, and he
carries his analysis of bodies only thus far; but the physicist
proceeds to other elements simpler than these. The former
defines as element what is simple to sense-perception, the
other what is simple in thought; and each of them is right
with regard to his own science. We must not therefore con-

893,15 Reading with Barocius 4 for % and, in the next line, &pdr
for ¢pd in Friedlein.
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sider the definition of point mistaken, nor judge that it is
imperfect; for with respect to the subject-matter of geometry
and the starting-points of this science, it is adequately given.
It all but clearly says that “what is without parts is a point for
my purposes and a principle for me; and the simplest object
is none other than this.” In such fashion must we understand
the statement of our geometer,

By denying parts to it, then, Euclid signifies to us that the
point is the first principle of the entire subject under examina-
tion. Negative definitions are appropriate to first principles, as
Parmenides teaches us in setting forth the first and ultimate
cause by means of negations alone. For every first principle
is constituted by a different essence from that of the things
dependent on it, and to deny the latter makes ‘evident to us
the peculiar property of the principle. For that which is their
cause, but not any one of the things of which it is the cause,
becomes in a sense knowable through this method of ex-
position.

But someone may object: How can the geometer contem-
plate a partless something, a point, within the imagination if
the imagination always apprehends things as shaped and
divisible? For not only the ideas in the understanding, but also
the impressions of intellectual and divine forms, are accepted
by the imagination in accordance with its peculiar nature,
which furnishes forms to the formless and figures to what is
without figure. To this difficulty we reply that the imagmation
in its activity is not divisible only, neither is it indivisible.
Rather it moves from the undivided to the divided, from the
unformed to what is formed. For if the imagination were di-
visible only, it would be unable to preserve in itself the various
impressions of the objects that come to it, since the later
ones would obscure those that preceded them—ijust as no
body can at the same time and in the same place have a
series of shapes, for the earlier ones are erased by the later.
And if it were indivisible, the imagination would not be
inferior to the understanding or to the soul, which views
everything as undivided; nor could it exercise form-giving
functions. It is necessary therefore that its activity should
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start from what is partless within it, proceed therefrom to
project each knowable object that has come to it in concen-
trated form, and end by giving each object form, shape, and
extension. If, then, it has a nature of this kind, the character
of indivisibility is in a certain sense within it, and it is pri-
marily by virtue of this character that we must say it contains
the being of the point; and by virtue of the same character
the form of line also exists wrapped up within it. Possessing
this double character of indivisibility and divisibility, the
imagination contains the point in undivided and intervals in
divided fashion.

Since the Pythagoreans, however, define the point as a unit
that has position, we ought to inquire what they mean by
saying this.* That numbers are purer and more immaterial
than magnitudes and that the starting-point of numbers is
stmpler than that of magnitudes are clear to everyone. But
when they speak of the unit as not'® having position, I think
they are indicating that unity and number—that is, abstract
number'—have their existence in thought; and that is why
each number, such as five or seven, appears to every mind as
one and not many, and as free of any extraneous figure or
form. By contrast the point is projected in imagination and
comes to be, as it were, in a place and embodied in intelligible
matter. Hence the unit is without position, since it is im-
material and outside all extension and place; but the point
has position because it occurs in the bosom of imagination
and is therefore enmattered. Owing to its affinity with the
principles, the unit is simpler than the point;'? for the point, by

29523 The purpese of the following paragraph appears to be to
dispute the Aristotelian interpretation (Mer. 1080b16-20 and passim)
that the Pythagoreans considered numbers to have magnitude.

109526 1t is certain that &% has dropped out between dém» and
Eyovsar in 96.1, otherwise the contrast between riw pér uovdda and
74 8¢ onuelor (96.6) is not expressed.

11 963  uovadicds. For the meaning given this term in the transla-
tion see note at 95.23.

1296.12  greypst. This is the older word for “point,” supplanted in
Euclid and his successors by onueior. Proclus ordinarily uses the
Euclidean term, as in the preceding sentence; but here and at 59.18
(both times in a historical context) he uses the earlier Pythagorean
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having position, goes beyond the unit. And additional deter-
minants in the bodiless concepts effect a lessening of being in
the things that accept them,

II. A line is length without breadth.®

The line is second in order as the first and simplest exten-
sion, what our geometer calls “length,” adding “without
breadth” because the line also has the relation of a principle
to the surface. He taught us what the point is through nega-
tions only, since it is the principle of all magnitudes; but the
line he explains partly by affirmation and partly by negation.
The line is length, and in this respect it goes beyond the un-
dividedness of the point; vet it is without breadth, since it
is devoid of the other dimensions. For everything that is
without breadth is also without depth, but the converse is not
true. Thus in denying breadth of it he has also taken away
depth, and this is why he does not add *“without depth,” since
this is implied in the absence of breadth,

The line has also been defined in other ways, Some define
it as the “flowing of a point,”** others as “magnitude extended
in one direction.” The latter definition indicates perfectly the
nature of the line, but that which calls it the flowing of a
point appears to explain it in terms of its generative cause and
sets before us not line in general, but the material's line. This
line owes its being to the point, which, though without parts,
is the cause of the existence of all divisible things; and the
“flowing” indicates the forthgoing of the point and its genera-

term. Aristotle uses both, but sroyps more often. Plato uses neither;
and Aristotle reports that he rejected the concept as a geometrical
fiction (Mer. 992a20-22). See Ross’s note on this passage (Aristorle's
Metaphysics, Oxford, 1958, 1, 203-207) and Heath, Enclid 1, 155¢.

1596.16  Aristotle {(Topics 143b11) cites this definition of the line.
It was therefore current before Euclid's time and perhaps should be
attributed to Plato and his school.

14977 Referred to by Aristotle in De An. 409a4d. The definition of
line as “magnitude extended in one direction" is essentially Aristotle’s,
as Heath notes (Euciid 1, 158); see Metr. 1020a11-12.

1397.11 The text reads dvior, “immaterial,” but this must be a slip,
since the line described in the immediate sequel is the material line,
and I have translated it accordingly, as does ver Eecke.
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tive power that extends to every dimension without diminution
and, remaining itself the same, provides existence to all
divisible things.

All these things are known to everyone. But let us recall the
more Pythagorean doctrine that posits the point as analogous
to the monad, the ling to the dyad, the surface to the triad, and
the solid to the tetrad. On the other hand, considering them as
extended, we shall find that the line is one-dimensional, the
surface two-dimensional, and the solid three-dimensional;
hence Aristotle says*® that body comes to completion with the
number three. It is no wonder that the point, because of its
partlessness, has been primarily associated with the monad;
but of the things that come after the point, although they
correspond to the numbers that arise from the monad and
keep the same relation'” to the point that the numbers have
to the monad, yet each participates in what is immediately
before it and has the same value in relation to its next and
successor as its antecedent has to it. That is, the line has the
rank of two with respect to the point, but of one with respect
to the surface; the surface has the rank of three with respect to
the point and the line, but of two with respect to the solid;
and so body is tetradic with respect to the point and triadic
with respect to the line.’® Both of these orderings have their
justification, but that of the Pythagoreans is closer to first
principles, for it starts from the top and follows the nature of
things. The point is twofold, because it exists cither by itself
or in the line. As a limit only, and one, possessing neither
wholeness nor parts, it is a likeness of the very summit of
being and so is ranked as analogous to unity. For unity is
primarily there where ancestral unity dwells, as the Oracle
says.’® Since the line is the first thing to have parts and to be a

159725 D¢ Caelo 268a8.

17981 Reading with Barocius rebror for refrwe in Friedlein.

14 98.7f. The text here is puzzling, but T have not ventured to
cmend it.

1# G818 75 Aévyier. Kroll investigated the contents, origin, and date
of this Oracle to which Proclus and other late Neoplatonists refer
and brought together the fragments that can be rescued from these
citations. Proclus’ interest in these QOracles is well attested by his
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whole, and since it is both monadic because unidimensional
and dyadic because of its forthgoing—for if it is an infinite
line it partakes of the indefinite dyad, and if it is finite it re-
quires two limits, 2 whence and a whither**—for these reasons
itis an imitation of wholeness and of that grade of being which
is extended oneness and generates duality, For this it is that
produces transformation into length,® that is, into divisible
extendedness in one dimension together with participation in
duality. The surface is both triad and dyad; being the recep-
tacle of the primary figures as well as the first nature that
takes on form and shape, it resembles both the triad that
primarily bounds all beings and also in a way the dyad which
divides this triadic nature. But the solid, extended in three
directions and defined by the tetrad that corprehends all
ratios in itself,*? carries our thoughts to that intelligible
cosmos which by the aid of the tetradic property—that is,
the feminine and penerative power—produces the separation
of the orders of bodily things and the division of the universe
into three.

These matters could be worked out further. Because the
line is second and owes its existence to the first change from
partlessness, the Pythagorean doctrine properly calls it dyadic,
That the point comes after the monad and the line after the

biographer Marinus; see the Introduction, “Proclus: His Life and
Writings.” Both Porphyry and Iamblichus before him had written
commentaries on the Chaldaean Oracles. Those who would like to
pursue this inquiry further should begin with Dodds’ essay in the
Journal of Roman Studies xxxvil, 1947, reprinted as Appendix II in
his The Greeks and the Irrational (Berkeley, 1951), where they will
find abundant references to the recent literature. For the Oracle cited
here see Kroll, 15, A new edition of the Chaldaean Oracles by Edouard
des Places is promised for the current year.

20 98.22 I can make nothing of wpés oy dr’ adrhe in Friedlein, and
his conjecture mpdrov én’ adrfis is little more intelligible. Either Baro-
cius did not have these words in his text, or if he did, he chose not to
translate them. I follow his example.

21992 Reading with Grynaeus fxeramwy for fxrer in Friedlein,

2299.10 The first solid number, according to Pythagorean lore, is
four—three dots making the base and one the apex of a triangular
pyramid. The numbers 1, 2, 3, 4 yield the most consonant intervals in
the musical scale. See Van der Waerden, 95.
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dyad and the surface after the triad the Parmenides indicates
when it denies first plurality of the One and then wholeness;*?
if plurality comes before wholeness, so also number comes
before the continuous, the dyad before the line, and the
monad before the point. For it is fitting to describe as *not
many” the monad that generates plurality {and as “neither
whole nor part” the point that brings the whole into being].>*
For of the whole it is said that it has parts.

So much can be said about the line on more speculative
grounds. But we should also accept what the followers of
Apollonius say, namely, that we have the idea of the line when
we ask only for a measurement of length, as of a road or a
wall. For breadth does not enter into our consideration, since
we reckon only the distance in one direction. Similarly when
we measure a plot of land we look only at the surface, and
when we are measuring a well, the three-dimensional cavity;
in this case we consider all the dimensions together and de-
clare that such-and-such is the volume of the well, according
to its length, breadth, and depth. And we can get a visual
perception of the line if we look at the middle division separat-
ing lighted from shaded areas, whether on the moon or on the
earth. For the part that lies between them is unextended in
breadth, but it has length, since it is stretched out all along
the light and the shadow.

II1. The limits of a line are points.

Every compound gets its boundary from the simple, and
every divisible thing from the indivisible. The principles of
mathematics provide images of these truths; for when Euclid
says that the line is limited by points, he is clearly making the
line as such unlimited, as not having any limit because of its
own forthgoing. So just as the dyad is bounded by the monad
and, when contrclled by it, sets a term to its own unchecked
boldness, so also the line is bounded by points. And being dual
in nature, when it participates in the point, which contains the

239022 Parm. 137c.
z¢ 100.2 I have accepted with madifications Friedlein’s suggestions
for filling up this lacuna.
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idea of unity, it does so in the fashion of a dyad, Now in
imagined and perceived objects the very points that are in the
line limit it, but in the region of immaterial forms the partless
idea of the point has prior existence. As it goes forth from
that region, this very first of all ideas expands itself, moves,
and flows towards infinity and, imitating the indefinite dyad,
is mastered by its own principle, unified by it, and constrained
on all sides. Thus it is at once unlimited and limited—in its
own forthgoing unlimited, but limited by virtue of its partici-
pation in its limitlike cause. For as it goes forth, it is held by
itself within the compass of that cause and is bounded by its
unifying power. Hence also in [sensible] likenesses the points
that constitute the extremity and the beginning of a line are
said to bound it. In that upper realm, then, the limit tran-
scends what is limited, but here it is twofold, for it exists in
the limited thing itself. This affords a remarkable illustration
of the principle that the forms existing in themselves are
causally prior to the things that participate in them but, in
giving themselves to their participants, take on an existence
after their kind, becoming plural and divisible as their subjects
are, and enjoying their diversity.

This further fact we must also anticipate about the line:
our geometer makes a threefold use of it. Thus he takes it as
limited at both ends, as in the problem “Upon a given finite
line to construct an equilateral triangle”;* then as unlimited
in one direction and limited in the other, as in the problem
“To construct a triangle from three straight lines that are
equal to three given straight lines”2 (for in the construction
he says “given a straight line limited in one direction but
unlimited in the other”); [and, lastly, as unlimited in both
directions, as in the problem “To a given infinite line to draw
a perpendicular to it from a point lying outside the line”].?”
Thus line is understood in three senses by our geometer.

Besides these matters, this point also is worthy of attention
and should not be passed over: in what sense are points said

2510215 Inl 26 102,18 As in XXII.
27102.20 1 have adopted and translated Baracius® plausible filling
of the lacuna here. The proposition used as illustration is XII.

— 83—



103

104

THE COMMENTARY

to be limits of a line, and of what sort of line are they limits?
They cannot be limits of the infinite line, nor of every finite
line. For there is a line which is finite but does not have points
as its limits. The circle is such a line, bending back upon itself
and making no use of limits as does the straight line. Such
also is the ellipse.?® Perhaps, then, we should consider the
line only insofar as it is a line.?® For we can conceive a
segment of a circumference bounded by points and a part of
an ellipse likewise having points as its boundaries; but the
circle and the ellipse have another property by virtue of
which they are not only lines, but also productive of figures.
If, then, we consider both of them as lines, they have points
as limits; but if they are thought of as producing the sorts of
figures mentioned, then they bend back on themselves. And if
you think of them as they are being drawn, you will find
where they are bounded by points; but taking them as already
drawn, with their beginnings and their ends joined together,
you can no longer see their extremities.

1V. A straight line is a line which lies evenly with
the points on itself.

Plato assumes that the two simplest and most fundamental
species of line are the straight and the circutar and makes
all other kinds mixtures of these two, both those called spiral,
whether lying in planes or about solids, and the curved lines
that are produced by the sections of solids. According to
Plato, the point, if we may say so, appears to bear the likeness
of the One, for the One also is without parts, as he has shown
in the Parmenides. Since there are three hypostases® below
the One—namely, the Limit, the Unlimited, and the Mixed—
it is through them that the species of lines, angles, and figures
come to be. Corresponding to the Limit are, in surfaces, the
circular line, the angle bounded by circular lines, and the

26 103.6 Bupess, “shield.”

29 103,7 This is a strange phrase, for it contradicts the statement
{101.7) that the line “as such™ is unlimited. The point of this para-
graph is only to show that, if a line has limits, those limits are points.

See Heath, Euclid 1, 165,
30 1049 See notes at 3.5 and 5.18.
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circle;* and, in solids, the sphere, To the Unlimited cor-
responds the straight line in all these groups, for it is found
in them all, presenting its characteristic appearance on each
occasion. And the mixtures in all of them correspond to the
principle of the Mixed. For there are mixed lines, such as
spirals; mixed angles, such as the semicircular and the horned
angles;** mixed figures, such as sections of plane figures and
arches;** and mixed solids, such as cones, cylinders, and the
like. Hence the Limit, the Unlimited, and the Mixed are
present in all of them. Aristotle’s opinion is the same as
Plato’s; for every line, he says, is either straight, or circular,
or a mixture of the two.* For this reason there are three
species of motion—motion in a straight line, motion in a
circle, and mixed motions,

Some dispute this classification, denying that there are only
two simple lines and saying that there is also a third, namely,
the cylindrical helix, which is traced by a point® moving uni-
formly along a straight line that is moving around the surface
of a cylinder. This moving point generates a helix any part of
which coincides homoeomerously with any other, as Apol-
lonius has shown in his treatise On the Cochiias. This charac-
teristic belongs to this helix alone, For the segments of a
spiral in a plane are dissimilar, as are those of the spirals
about a cone or sphere; the cylindrical spiral alone is homoe-
omeric, like the straight line and the circle. Are there not,
then, three simple lines, instead of two only?

To this difficulty we shall reply by saying that this helix is
indeed homoeomeric, as Apollonius has shown, but is by no
means simple. For to have similar parts and to be simple are
not the same thing. Among natural bodies gold and silver

31 104.13 These are chosen as examples of lines, angles, and
figures respectively, as is implied by xaré wdvra raira in line 14.

32 104.18 The former is the angle made by the diameter and the
circumference of a circle, the latter that made by the circumference

and a tangent to the circle; cf. 127.14. On the horned angle see Heath
1, 178, 382, and Fuclid i1, 391

33 104.1%  dyides, i.e. arcs other than semicircles.

84 104,24 For Plato see Parm. 145b: for Aristotle De Caelo
268171, and Phys. 261b29.

35105.3 Reading onueios for opueiov in Friedlein.
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consist of similar parts but are not for that reason simple.
The very mode of generating the cylindrical helix shows that
it is a mixture of simple lines, for it is produced by the move-
ment of a straight line about the axis of a cylinder and by the
movement of a point along this line. It owes its existence,
then, to two [dissimilar]* simple motions, so that it is to be
classed among the mixed, not the simple lines. For what
comes to be out of diverse principles is not simple, but mixed;
and Geminus has rightly declared that, although a simple line
can be produced by a plurality of motions, not every such
line is mixed, but only one that arises from dissimilar motions.
Imagine a square undergoing two motions of equal velocity,
one lengthwise and the other sidewise; a diagonal motion in a
straight line will result. But this does not make the line a
mixed ene, for it is not brought into being by a line different
from itself and moving simply, as was the case with the
cylindrical helix mentioned. Nor is it true that a circular line
comes about by mixture if one imagines a straight line moving
in a right angle® and describing a circle with its middle paint;
for when a straight line is moving thus, its extremities, moving
nonuniformtly,™ describe straight lines, whereas the middle
point, moving nonuniformty, describes a circle, and the other
points ellipses.** So a circular line is generated as a result of
nonuniform motion of the middle point, under the condition
given that the line is moving not naturally, but with its ex-
tremities on the sides of a right angle.*® But enough of these
matters.

36 105.23 Consistency with 105.25 and 106.3 requires that dréusiot
be inserted here.

37 106.10  Le. with its extremities on the two sides of a right angle.

36 106.13 Reading dropdrws for duaids here, after Tannery, who
has analyzed this example in 11, 36,

30 106.14f. Presumably this illustration is taken from Geminus,
who may have provided the demonstration for the interesting theorem
employed. For this demonstration see ver Eecke, 96, note 4.

40 106.19 The point of this illustration is not clear. It would appear
that the circle thus resulting is a mixed line, like the ellipse. Either
Proclus has incorrectly transcribed what he found in Geminus, or
Geminus was himsetf not clear about the distinction between simple
and mixed lines. Elsewhere in Proclus' citation of Geminus' doctrine
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One might think that, although both the straight line and
the circle are simple lines, the straight line is the simpler. For
it contains not even any dissimilarity in thought, whereas
concavity and convexity in the circle indicate difference; and
the straight line does not suggest the circle, whereas the
circular line does bring to mind the idea of the straight line,
if not through its mode of generation, at least by its relation
to a center. What, then, if someone should say that the circle
needs the straight line for its existence? For if one end of a
finite line remains stationary and the other moves, it will
describe a circle whose center is the stationary extremity of
the straight line. Should we not reply that what describes the
circle is not the line, but the point that moves about the
stationary point? The line only defines its distance from the
center, whereas what produces the circle is the point in
circular movement. But enough of this.

It appears that the circular line belongs with the Limit and
has the relation to other lines that the Limtit has to all things;
for of the simple lines the circular alone is limited and makes
a figure, whereas the straight line belongs with the Unlimited
and hence can be projected indefinitely without end. So as all
other things arise from the Limit and the Unlimited, likewise
the whole class of mixed lines, both those in planes and those
about solids, come from the circle and the straight line. For
this reason the soul contains in advance the straight and the
circular in her essentiat nature, so that she may supervise the
whole array of unfimiteds as well as all the limited beings®
in the cosmos, providing for their forthgoing by the straight
line and for their reversion by the circle, leading them to
plurality by the one and collecting them all into unity by the
other. And not only the soul, but also he who constituted the
soul and furnished her with these two powers possesses in
himself the primordial causes. For “holding in advance the

of mixed lines there is unclearness, if not confusion. See noles below
at 111.9 and 113.23.

110723 Reading with Grynaeus and apparently Barocius wepa-
roeds instead of mepirroady in Friediein.
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beginning, middles, and ends of all things,” says Plato, “he
bounds straight lines as he moves around by nature.”!* He
goes forth to all things with his providential activity while he
is turned upon himself, “abiding in his accustomed nature,” as
the Timaeus says.*® The straight line is a symbol of the inflex-
ible, unvarying, incorruptible, unremitting, and all-powerful
providence that is present to all things; and the circle and cir-
cular movement symbolize the activity that returns to itself,
concentrates on itself, and controls everything in accord with a
single intelligible Limit. The demiurgic Nous has therefore
set up these two principles in himself, the straight and the
circular, and produced out of himself two monads,** the one
acting in a circular fashion to perfect all intelligible essences,
the other moving in a straight line to bring all perceptible
things to birth, Since the soul is intermediate between sensibles
and intelligibles, she moves in circular fashion insofar as she
is allied to intelligible nature but, insofar as she presides over
sensibles, exercises her providence in a straight line. So much
regarding the similarity of these concepts to the order of
being.

Euclid gives the definition of the straight line that we have

‘set forth above, making clear by it that the straight line alone

covers a distance equal to that between the points that lie
on it. For the interval between any two points is the length
of the line that these points define, and this is what is meant
by “lying evenly with the points on itself.”« If you take two
points on a circle or any other kind of line, the length of the

1z |08.7 Laws 716a. Burnet’s text of the Laws has elfeiq instead of
etfefas in Proclus (line 6) which gives a different meaning.

13 108,10 Tim. 42e.

15 108.18 A monad, in Proclus’ thought, is an originative prin-
ciple of a series of beings, as the number one is of the series of
numbers. See his Elements of Theology, Prop. 21.

45 [09.13 On the many attempts to explain the meaning of this
phrase see Heath, Euclid 1, 166ff., and Tannery W, 540-544. Proclus’
attempt to make it the equivalent of Archimedes’ “definition™—the
shortest distance between two poinis—is hardly successful, Tannery
sees the expression as having its origin in the language of the everyday
craftsman, such as the carpenter evening a piece of wood, or the
stonemason levelling a surface by a stretched cord or dressing a
wall by means of a plumb line.
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line between the two points taken is greater than the distance
between them, This seems to be a characteristic of every line
except the straight. Hence it accords with a common notion
that those who go in a straight line travel only the distance
they need to cover, as men say, whereas those who do not go
in a straight line travel farther than is necessary.

Plato, however, defines the straight line as that whose
middle intercepts the view of the extremes.*® This is a neces-
sary property of things lying on a straight line but need not be
true of things on a circle or any other extension. This is why
astronomers say that the sun is in eclipse at the time when
both it and the moon are on a straight line with our eye; for
then our view of it is intercepted by the moon which has come
between it and us. Perhaps this property of the straight line
affords a proof that in the realm of being, as things go forth
from their causes, the middle orders of things have the
property of differentiating the separateness*™ of the extremes
from the community of nature that unites them, just as in the
process of reversion they draw back to their first causes the
entities that lie at intervals from themselves.

But Archimedes defined the straight line as the shortest of
all lines having the same extremities.** Because, as Fuclid's
definition says, it lies evenly with the points on itself, it is the
shortest of all lines having the same extremities; for if there
were a shorter line, this one would not lie evenly with its own
extremities. In fact all other definitions of the straight line
fall back upon the same notion—that it is a line stretched to
the utmost, that one part of it does not lie in a lower and
another in a higher plane, that all of its parts coincide simi-
larly with all others, that it is a line that remains fixed if its

46 109.22 Parm, 137e. This is the only pre-Euclidean definition of
straight line that we hear of. Aristotle quotes it in Topics 148b27.
Heath (Euciid 1, 168) suggests that Euclid’s definition is based on
Piato’s, changed to eliminate any implied appeal to vision, which, as a
physical fact, could not properly find a place in a purely geometrical
definition,

47 110.7 Reading with Baroctus and Grvnaeus dmosrécews instead
of imoordrews in Friedlein,

¢ 110.12 In his On the Sphere and Cylinder 1, ad init.

— 89—



i1t

THE COMMENTARY

end points remain fixed, that it cannot make a figure with
another line of the same nature.*? All these definitions express
the property which the straight line has by virtue of being
simple and exhibiting the single shortest route from one¢ ex-
tremity to the other. So much for definitions of the straight
line.

Geminus divides lines first into incomposite and composite,
calling a composite line one that is broken and forms an
angle.”® Incomposite™ lines he then divides into those that
make figures and those that extend indefinitely. By those that
make figures he means the circular, the elliptical, and the
cissoidal;®? and by those that do not, the section of a right-
angled cone, the section of an obtuse-angled cone,** the con-
choid, the straight line, and all such. Again, following another
method, he divides incomposite lines into simple and mixed.™
And of simple lines some, such as the circular, make figures;

48 110.23 The first, third, and fourth of these alternative “defini-
tions” are found in Heron, and the second and fifth are found in
Euclid himself (I. 4: XI. 1), though not as definitions (Hcath, Euclid
1, 168).

50 111.3 Proclus gives us two classtfications of lines from Geminus,
The second appears at 111.9-112.18, {0 which a later passage (176.27-
177.23) adds some interesting details. On these classificalions see
Heath, Ewclid 1, 160ff.

51 [11.4 aieferor is clearly a mistake for dvivferor here,

52 111.6 The cissoid is the curve invented by Diocles (late second
or eatly first century B.C.) for solving the problem of doubling the
cube, On its construction see Heath 1, 264-266, and Euclid 1, 164.

53 111.8 T.e. the parabola and the hyperbola respectively. Before
Apollonius the conic sections were thought of as made by a plane at
right angles to one of the sides of the cone; hence a right-angled cone
vielded what was after Apollonius called a “parabola,” an obtuse-
angled cone a “hyperbola,” and an acute-angled cone an “ellipse.” But
the older theory and its terminology persisted after Apollonius’ time,
as Proclus' language shows. Sec note to 420.23 below. On the con-
struction of the conchoids see Heath, Euclid 1, 1604

54 111.9f. Tannery (u, 37} has pointed out that the classification
of lines and figures into simple and mixed, insisted on by Geminus,
does not occur in Pappus. Since this threefold classification of lines
into straight, circular, and mixed is traced by Proclus back to Plato
(103.21-104.5}, its origin, Tannery thinks, should be sought in aa at-
tempt to return to Plato’s ideas. This was an vofortunate encroachment
by philosophy on the domain of mathematics, for it could not result
in any rational classification either of lines or of figures,
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others, like the straight line, are unbounded. Of mixed lines
some lie in planes, others are on solids: of those in planes
some return uponr themselves, like the cissoid, and others
extend indefinitely; and of those in solids some come to our
attention through the sections of solids, and others lie around
the solids. For the helix on a sphere or a cone is around a
solid, but a conic or spiric section arises from such-and-such a
section of a solid. Some of these sections, in particular the
conic, were discovered by Menaechmus—and Eratosthenes
refers to this when he says, “Don’t produce the conic section
triads of Menaechmus™¥*—others by Perseus,*® who com-
posed an epigram on his discovery:

Having discovered three spirals on five sections
Perseus honored the gods with this dedication.

The three conic sections are the parabola, the hyperbola, and
the ellipse. Of the spiric sections one is interlaced like a
horse’s hobble,** another is broad in the middle and thins out
at the sides, and another is elongated and has a narrow middle
portion but broadens out at the two ends.>® The other mixtures
are limitless in number, for the number of solid figures is
infinite and their sections are of numerous kinds, For if the
straight line in circular motion generates a surface, so also do
conic sections, and conchoids, and circular lines themselves;s®
and as these resulting solids are cut in all sorts of ways, they
reveal the varied species of lines.

Of the lines that are on the surface of bodies some are
homoeeomeric, like the spiral around a cylinder, but all the
others are anhomoeomeric. Hence from these distinctions it
may be gathered that the only three lines that are homo-

5311423 See Eutocius' Commentary on Archimedes (Heiberg,
Archimedes m, 112.20),

%8 111.24 Perseus is known to us only from this and another
reference in Proclus {356.12), On the spiric curves that he is said to
have discovered and investigated see Heath n, 203-206.

57 1§2.5 Le. like the figure 8.

52 112.8  On the corresponding spiric surfaces see 119.9-17.

t8 112.14 The translation of the preceding obscure sentence is
based on the interpretation of Tannery 11, 24,
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eomeric are the straight line, the circle, and the cylindrical
helix, Two of them lie in a plane and are simple; one is mixed
and lies around a solid. This has been clearly shown by
Geminus, who had previously demonstrated®® that the two
lines drawn from a point to a homoeeomeric line and making
equal angles with it are themselves equal. Ambitious students
should go to his writings for the proofs, since he also shows
how spirals, conchoids, and cissoids are generated.

We have given the names and classifications of these lines™
in order to encourage the able student to inquire into them;
we consider it superfluous in the present work, however, to
make a precise inquiry into each of them, since our geometer
has revealed here only the simple and fundamental lines, the
straight line in the definition before us and the circumference
in his account of the circle (for there he will tell us that the
line that bounds a circle is a circumference). Nowhere does he
mention mixed lines. And yet he knows mixed angles, such
as the semicircular and the horned angles; mixed plane figures,
such as segments and sections; and mixed solids, such as
cones and cylinders, Of each of the others he has given the
three kinds,? but of the line only these two, the straight and
the circular, considering that in a treatise on the elements
he should bring in only simple species; and all the other lines
are too complex.® Let us also, then, following our geometer,
end our classification of lines with these simple ones.

V. A surface is what has length and breadth only.

Next in rank after the point and the line comes the surface,
which is extended in two ways, length and breadth, but re-
mains without depth, thus possessing a simpler nature than
what is extended in three ways. Hence our geometer adds

80 112.23 Despite Barocius and Grynaeus, Friedlein's mpoamodeifas,
not wpecawsbeifas, is the correct reading, as is shown by 251.8.

611137 Reading with Barccius leteoppoauer for loropjooper in
Friedlein,

82 113,20 The species corresponding to the Limit, the Unlimited,
and the Mixed.

63 11323 Perhaps another reason is that Fuclid did not consider
mixed lines of mathematical importance, See note at 111.9.
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“only” after the mention of the two dimensions, implying that
there is no third dimension in the surface. This word is indeed
equivalent to the denial of depth; and our author’s purpose
here also is to indicate both the superior simplicity of the
surface as compared to the solid by using a negation (or an
addition equivalent to a negation) and its subordination to
the beings above it by using affirmative characterizations,
Others have defined it as the limit of a body, saying in a
sense the same thing, for the bounding element falls short of
what it bounds by one dimension. Others define it as magni-
tude extended in two ways, and others still differently, but
meaning the same thing however they frame their definitions.

We have the notion of surface, it is said, when we measure
pieces of land and determine their boundaries according to
length and breadth; and we get some perception of it when
we look at shadows. These are without depth, since they
cannot go under the ground, and have only breadth and
length. The Pythagoreans used to say that the surface is
related to the triad, because all the figures on it have the
triad as their first cause. For the circle, which is the principle
of all curvilinear figures, carries a hidden trinity in its center,
diameter, and circumference; and the triangle is the premier of
all rectilinear figures, as everyone can see, because it is deter-
mined by the number three and formed by it.

VI. The limits of a surface are lines.

If we take these propositions as likenesses, we can under-
stand that every being simpler than what immediately follows
it supplies a boundary and limit to its successor, Soul bounds
and perfects the activity of nature, nature does likewise for
the motion in bodies, and prior to both of them Nous measures
the revolutions of soul and the One measures the life of Nous
itself, for the One is the measure of all things. So also in
geometry the solid is bounded by the surface, the surface in
turn by the line, and the line by the point, for the point is the
limit of them all. In the realm of immaterial forms and partless
ideas the line, being uniform in its forthgoing, bounds and
contains the varied activity of the surface and immediately
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unifies its boundlessness, while in the realm of their [sensible]
likenesses the limiting factor belongs to the very thing that is
limited and in this way furnishes it with its boundary,

If someone here also®* should ask how lines can be the
limits of the surface in general but not of all finite surfaces
{for the surface of the sphere is limited, not however by lines
but by itself), we should reply that, if we take surface as
extended in two dimensions, we shall find that it is bounded
by lines according to its length and its breadth; but if we
consider the spherical surface as itself shaped and invested
with an additional quality, we take it as having joined its end
to its beginning and made of its two extremities one, a unity
existing in potentiality only, not in actuality.*

VIL. A plane surface is a surface which lies evenly with the
straight lines on itself.

The older philosophers did not think to posit the plane
(érimedov) as a species of surface (émepdrac) but took the two
terms as equivalent for expressing magnitude in two dimen-
stons. Thus the divine Plato said that geometry is the study of
planes (érimeSa)®® and contrasted it with stereometry as if he
thought surface and plane were the same thing. Likewise
also the inspired Aristotle. But Euclid and his successors make
the surface the genus and the plane a species of it, as the
straight line is a species of line. This is why, by analogy with
the straight line, he defines the planc scparately from the
surface. For the straight line, he says, is equal to the interval
that lies between its points, and the plane likewise occupies

ts 1164 Recall the similar difficulty raised at 102.23 with respect
to points as Yimits of Hnes, Here Proclus is in effect contending only
that, if a surface has limits, these limits are lines.

85 {16.14 1 suspect that Proclus has inadvertently interchanged
“potentiality” and “actuality” here, and so apparently does ver Eecke.
But Barocius and Schénberger adhere to the text, as I do.

e 116,21 Plato, Rep. 528d. Aristotle uses both émgdree and
Erimebor for “surface” (e.g. Car. 5a3f.). Plato, however, at least in
the dialogues, does not use the former term at all in the sense of
“surface.” But Diogenes Laertius (III, 24) says that Plato was the first
philosopher to give a name to the plane surface (&rimedor émpdraa).

This attribution may well be derived from some tradition about his
oral teachings. See Heath, Euclid 1, 169,
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a place equal to that between two straight lines lying on it,
This is what is meant by “lying evenly with the straight
lines on itself.” Others, meaning the same thing, have said
that the plane is a surface stretched to the utmost, and others
that it is a surface such that a straight line is congruent with
all its parts. And some would say that it is the least of all the
surfaces that have the same boundaries, or that it is one whose
middle parts intercept the view of the extremities; and one
could transfer all the definitions of the straight line to the
plane surface by merely substituting the genus surface.®’
For these characters—the stratght, the circular, and the mixed
—ecxtend all the way from lines to solids, as we have said;
and they exist both in planes and in solids in an analogous
fashion.®® Hence the Parmenides says that every figure is
straight, circular, or mixed.® If, then, you wish to consider
straightness in surfaces, take the plane, which the straight line
fits on tn all ways; or if circularity, take the spherical surface;
or if the mixture of the two, take the cylindrical, or the conical,
or some similar surface.

But we must realize, says Geminus, that the mode of mixture
is different in a mixed line so-called and in a mixed plane,
Mixture in lines does not come about through composition,
nor through blending. For example, the helix, a mixed line,
does not have one part straight and another curved, like a
mixture resulting from composition; nor when cut does the
helix yield any trace of its simple constituents, as things that
are blended de; its terms have been destroyed and fused
together. 50 Theodorus the mathematician®™ is wrong in

87 117.13 On alternative definitions of plane surface in antiquity
see Heath 1, 171f.

88 [17.17 This language is strange, but what Proclus evidently
means by a “straight solid” is a solid which is bounded only by planes.

89 117.18 Parm. 145b; but note that this passage says nothing
about solids.

70118.7 “Theodorus the mathematician™ i3 certainly not the
Theodorus of Cyrene mentioned above (66.6), but probably the
Theodorus of Soli, in Cilicia, who is cited by Plutarch on certain
mathematical difficulties in the Timaeuws. See Plutarch, De Defectu
Oraculorum XXXII, 426F; De Animae Procreatione in Timaeo XX,
1022D; and Tannery 11, 37.
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assuming that mixture in lines is a blending. In the case of
planes, however, mixture arises neither by composition nor by
fusion, but rather by a kind of blending. If we think of a circle
lying in a plane with a point above it and from the point
project a straight line to the circumference of the circle and
set the line in revolution, we shall produce a conical surface,
which is mixed. Now if we cut it, we can resolve it back into
simple surfaces; by making a section from the apex to the base
we get a triangle, but by cutting it parallel to the base we get a
section that is a circular plane. Yet in the case of lines the
appearance does not show that mixture is the result of blend-
ing, for it does not take us back to the simple nature of the
elements, whereas surfaces when cut reveal immediately from
what sort of lines they have been produced. Thus the mode of
mixture in lines is different, as has been said, from that in
surfaces,

Just as with lines there were certain ones, as we saw, that
are simple, namely, the straight and the circular, of which
most people have a conception without being taught, though
the species of mixed lines required a more technical under-
standing, so also we have at once a notion of the most ele-
mentary kinds of surfaces, the plane and the spherical, though
it is only through science and scientific reasoning that we
discover the variety of surfaces that arise by mixture. What is
remarkable about them is that from the circle there can often
be generated a mixed surface. This is what we say happens in
the case of spiric surfaces,” for they are thought of as
generated by the revolution of a circle standing upright and
turning about a fixed point that is not the center of the
circle,” Thus three kinds of spiric surface are generated, for
the center™ lies either on the circumference, or inside, or
outside the circle. If the center is on the circumference, the
continueus spiric surface is generated; if within the circle, the

711199 Called “tores” in modern mathematics. On this passage
see Heath 11, 203-206, and Fuclid 1, 162f.

72 119,12 Le, about an axis that does not pass through the center
of the circle.

73 119.13 The axis of revolution.
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interlaced spiric surface; and if outside, the open spiric sur-
face. And the spiric sections are three in number correspond-
ing to these different kinds of surface.™ But every spiric
surface is mixed, although the motion that generates it is one
and circular, Mixed surfaces are also generated, however, not
only from simple lines moving in the manner described, but
also from mixed lines. The comic lines,”™ though three in
number, make four mixed surfaces, called conoids. By the
revolution of the parabola about its axis the right-angled
conoid is generated; by the revolution of the ellipse are pro-
duced the so-called spheroids’™>—the elongated spheroid if
the revolution is about the major axis, the flattened sort if
about the minor axis; and from the revolution of the hyper-
bola comes ancther conoid.””

It should be realized that sometimes we get the idea of
the surfaces from the lines and sometimes learn the lines from
the surfaces. For example, from the conic and spiric surfaces
we come to think also of conic and spiric lines. And we must
anticipate this further point of difference between lines and
surfaces: there are three homoeomeric lines, as was said
before, but only two homoeomeric surfaces, the plane and
the spherical—not the cylindrical, for not all the parts of a
cylindrical surface coincide with one another.

We have said enough about the differences between sur-
faces. Qur geometer has chosen one of them, the plane, for
definition as the subject in which he will study the figures and
their properties, for his tnquiry can proceed more easily with
this than with any other surface. On the plane it is possible to
think of straight lines, circles, spirals, and the sections and
contacts of straight lines and circles, as well as to make ap-

74119.17 Proclus is in error here; all three spiric sections (de-
scribed in 112.4-8) arise from plane sections of the open spiric sur-
face. See Heath, Euclid 1, 163, and Tannery 1, 24-28.

75 119.21 Reading with Barocius kwrekal for sowmrwcat in Friedlein.

76119.25 lLe. ellipsoids.

171202 The obtuse-angled conoid, according to Barocius’ text.
Grynaeus has the unintelligible #huwwvoedés, The &ho in Friedlein has
evidently replaced a word which was illegible or unintelligible to some
copyist.
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plication of areas and construct the various kinds of angles.
Not all these matters can be investigated on any other surface.
For how could we understand a straight line or a rectilinear
angle on a spherical surface? Or how on a conical or cylin-
drical surface could we study the sections of circles or straight
lines? It is reasonable, then, that he should define this par-
ticular surface and build his entire treatise upon it. For this
reason also he gives his work the subtitle “plane geometry.”
And thus we must think of the plane as projected and lying
before our eyes and the understanding as writing everything
upon it, the imagination becoming something like a plane
mirror to which the ideas of the understanding send down
impressions of themselves,

VIII. A plane angle is the inclination to one another of two
lines in a plane which mect one another and do not lie
in a straight line.

Some of the ancients put the angle in the category of rela-
tion, calling it the inclination either of lines or of planes to
one another; others place it under quality, saying that, like
straight and curved, it is a certain character of a surface or a
solid; others refer it to quantity, asserting that it is either a
surface or a solid quantity. For the angle on a surface is di-
vided by a line, that in solids by a surface, and what is divided
by them, they say, can only be a magnitude; and it is not
linear magnitude, for a line is divided by a point. So it remains
that it is either a surface or a solid quantity.

But if it is a magnitude and all finite homogeneous mag-
nitudes have a ratio to one another, then all homogeneous
angles, at least those in planes, will have a ratio to one an-
other, so that a horned angle will have a ratie to a rectilinear.
But all quantities that have a ratio to one another can exceed
one another by being multiplied; a horned angle, then, may
exceed a rectilinear, which is impossible, for it has been
proved that a horned angle is Jess than any rectilinear angle.™

And if it is only a quality, like heat or coldness, how can
it be divided into equal parts? For equality and inequality
belong no less to angles than to magnitudes, and divisibility

78 122.7 For the demonstration sce Euclid IIL 16.
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in general is an intrinsic property of angles and magnitudes
alike. But if the things to which these properties intrinsically
belong are quantities and not qualities, then it is clear that
angles are not qualities. Of quality the relevant modifications
are more and less, not equal and unequal. We should then
have to refrain from saying that angles are unequal, one
greater than another, and instead call them unlike, one of
them more an angle than another, Anyone can see that this is
alien to the nature of mathematics; for an identical definition
applies to all angles, and one is not more an angle than
another.

As to the third possibility, if the angle is an inclination and
in general belongs to the class of relations, it will follow that,
when the inclination is one, there is one angle and not more.
For if the angle is nothing other than a relation between lines
or between planes, how could there be one relation but many
angles? If you imagine a cone cut by a triangle from apex to
base, you will see one inclination at the apex of the half-cone,
that of the sides of the triangle, but two separate angles, one
the angle on the plane of the triangle, the other on the mixed
surface of the cone; and both of these angles are contained by
the above-mentioned two lines, The relation of these lines,
then, did not make the angle. And yet it is necessary that we
call the angle either a quality, or a quantity, or a relation.
Figures are qualities, the ratios between them are relations,
and so we must refer the angle also to some one of these
three genera,

Such are the difficulties. Now Euclid says the angle is an
inclination, whereas Apollonius calls it the contracting of a
surface at a point under a broken line, or of a solid under a
broken surface (this seems to be the way in which he defines
angle in general).” But let us follow our “head”®® and say

70 123,18 Reading ofrws for ofres in Friedlein. Ver Eecke suggests
that Proclus is referring to a definition oceurring in a work of Apol-
lonius which had probably disappeared from circulation.

80123.19 This is clearly a reference to Syrianus of Alexandria,
who was head of the Academy during Proclus' early years in it (see
the Introduction, “Proclus: His Life and Writings"). There are a
score or more such references to Syrianus in the Commentary on the
Timaeus,
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that the angle as such is none of the things mentioned but
exists as a combination of all these categories, and this is why
it presents a difficulty to those who are inclined to make it
any one of them. The angle is not the only thing that has this
character. The triangle also has it: it partakes of quantity (a
triangle is said to be equal or unequal to another, and quan-
tity is, as it were, matter for these properties); and quality also
belongs to it by virtue of its shape. This is why triangles can
be called similar and equal, deriving one attribute from one
category, the other from another. So the angle surely needs
the underlying quantity implied in its size, it needs the quality
by which it has something like a special shape and character
of existence, and it needs also the relation of the lines that
bound it or of the planes that enclose it. The angle is some-
thing that results from all of these, and is not just one of them.
It is divisible and receptive of equality and inequality by virtue
of the quantity in it, but it is not compelled to accept classifica-
tion among homogeneous magnitudes because it also has a
distinguishing quality that often makes angles incomparable
with one another. Nor is the angle made one if the inclination
is one, since the quantity between the inclined sides com-
pletes jts being. Now if we observe these distinctions, we shall
be able to solve the difficulties. We shall find the peculiar
property of the angle is not that it is, as Apollonius said, a
contracting of a surface or a solid, although this contributes
to its nature, but rather that contracted surface itself at the
given point, contained by the inclined lines or by a single Jine
bent upon itself, or that contracted solid itself that underlies
the planes inclined towards one another. Thus one may define
it as a qualified quantity, constituted by such-and-such a rela-
tion,* and not quantity as such, nor quality nor relation alone,

So much needed to be said about the pature of angles to
obtain a preliminary understanding of the whole genus before
we distinguish its species.®?

51125.1 Sc. of lines or planes.

82 125.6 The promise in this apparently introductory sentence is

not fulfilled until 126.7. I agree with Schénberger that the passage
from 125.6 to 126.6 has been misplaced; its opening sentence suggests
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Such are the three opinions about the angle. Eudemus the
Peripatetic,* who wrote a book on the angle, declared it to
be a quality. Looking at the way in which it is produced, he
says that it is nothing other than the fracture of a line; and if
straightness is a quality, so also is fracture; therefore, since
the angle has its origin in quality, it is certainly quality. But
Fuclid, and zall who claim it is inclination, classify it among
relations. It is made a quantity by those who say the angle is
“the first interval under the point.” Plutarch® is one of these,
and he insists that Apollonius held the same opinion. For
there must be, he argues, some first interval under the inclina-
tion®® of the containing lines or planes. Yet since the interval
under the point is continuous, it is impossible to determine the
first interval, for every interval is infinitely divisible. Besides,
even if in some way we could determine the first interval and
draw a straight line through it, we would produce a triangle,
not a single angle. Carpus of Antioch® says the angle is a
quantity, specifically, the distance between the containing
lings or planes. Although this is a distance “in one sense”
(¢ &), the angle nevertheless is not a line, he contends, for

that it was designed to come at 123.14, after “to some one of these
three genera.”

83 125.7 Eudemus of Rhodes (called “the Peripatetic’ here and at
3792) was the author of the history of geometry that Proclus evi-
dently uvsed for the historical account beginning at 65.7. He is cited
as Proclus' authority also at 299.3, 333.6, 3521411, 419.15. Eudemus
appears to have derived his conception of the angle as quality from
Aristatle: ¢f. Car. 10all with Phys. 188a25; and Heath, Euclid 1,
1774,

84 125,16 This is Plutarch of Athens, the teacher of Proclus and
the immediate predecessor of Syrianus as head of the Academy. See
the Introduction,

53 125,19 Reading with Barocius «hiew for ehdew in Friedlein.

86 12525 Called later “Carpus the engineer” (241.19), He is in-
cluded in Pappus’ Collection, and Simplicius (in CAG v, 192.23,
Kalbfleisch)} cites Iamblichus as including him among the “Pythag-
cvreans” who solved the problem of squaring the circle. Nothing is
knawn, however, of the “curve of double motiocn™ which he used in
his solution (Heath 1, 225), Taanery (11, 554) is inclined to think that
he lived at the time of Heron, or a little later. On the date of Heron
see note at 41.10 above. Proclus quotes a passage of considerable
length from Carpus below (241.18f1.).
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not everything extended “in one sense” is a line. But this is the
height of paradox, if there is a magnitude other than a line that
extends in only one sense. But enough of this.

Of angles we must remark that some exist on surfaces,
others in solids; and of those on surfaces some are on simple,
others on mixed surfaces. That is, there can be an angle on a
cylindricat or a conical, as well as on a spherical surface or a
ptane. Of those on simple surfaces some are on spherical
surfaces, and others have their existence on planes, For ex-
ample, the zodiacal circle at the equinoctial intersection makes
two angles at the tips of the intersecting circumferences. Such
angles lie on spherical surfaces. Of those on planes some are
contained by simple lines, others by mixed, and others by the
two combined. In the ellipse, for example, an angle is formed
between the axis and the boundary of the etlipse. One of these
lines is mixed, the other simple. And if a circle cuts an ellipse,
there will be an angle contained by its circumference and the
boundary of the ellipse. Whenever cissoid lines converge to a
single point, as do ivy leaves (indeed the cissoids get their
name from this resemblance), they make an angle, one ob-
viously contained between mixed lines; and whenever the
hippopede, one of the spiric sections, makes an angle with
another,®" this angle also is contained within mixed lines. The
angles formed by straight lines and by circumferences are
contained by simple lines. Of these again some are con-
tained by similar lines. For two circumferences intersect-
ing or tangent to one another produce angles, and of
three sorts: either biconvex, when the convex parts of the
circumferences are outside;® or biconcave, when both con-
cave segments are outside, angles that are called “scraper-
like”; or a mixture of convex and concave, like the angles of
lunes. And an angle may be contained also by a straight line
and a circumference, and in either of two ways: either by a
straight line and a convex circumference, such as the angle in
a semicircle; or by a straight line and a concave circumference,

87 127.1 Omitting 7& in Friedlein. On the hippopede see 112.5.
55 127.8  See the diagrams in the next note.

— 102 —



128

DEFINITIONS

like the horned angle.** The angles formed by two straight
fines will all be called rectilinear, and they also are differen-
tiated into three kinds.®

All these angles that are constructed on plane surfaces our
geometer defines in this treatise under the common designa-
tion of “plane angle,” asserting that their genus is inclination
and their locus the plane (for angles have position), that they
are produced by two lines (and not by three or more, as are
solid angles) that come together not as parts of a straight
line extending in one direction, but at an inclination®! to one
another and with an area contained between them. Now this
definition, in the first place, seems to deny that an angle can
be produced by a single line. Yet the cissoid, a single line,
makes an angle, and so does the hippopede. We call “cissoid™
the line as a whole, not its parts {for then we could say that it
is its parts converging on one another that make the angle);
likewise it is the whole spiric section, not its parts, that we
call the hippopede. Thus each of them, being one, makes an
angle with itself, not with another line. In the second place,
this definition appears to be mistaken in defining angle as
inclination; for how can there be two angles formed by one
inclination? How can we continue 1o speak of equal and
unequal angles? And there are all the other abjections that are
customarily brought against this opinion. Thirdly, the con-
dition “not lying on a straight line” is unnecessary with regard
to certain angles, such as those formed by circutar lines. The
definition is complete without it, for the inclination of these

85 12714 The following diagrams will illustrate the species of
angles mentioned. DCE is biconvex, ACB is biconcave, and ACD and
BCE are lunular angles. Of thosc formed by a circle and a straight
line CBD is the angle in a semicircle, and ABD is a horned angle,

Ac B A

90 127.16 Obviously right, obtuse, and acute. Cf. Deff. X-XII.
91 128.1 Reading with Barocius «iios for sxhdews in Friedlein.
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lines to one another will make the angle, and it is at the outset
impossible that circular lines should lie in a straight line.

So much we had to say about Euclid’s definition, in part
interpreting and in part exposing difficulties in it.

IX. When the lines containing the angle are siraight,
the angle is called rectilinear.

The angle is a symbol and a likeness, we say, of the coher-
ence that obtains in the realm of divine things—of the
orderliness that leads diverse things to unpity, divided things
to the indivisible, and plurality to conjunction and com-
munion. For the angle functions as a bond between the
several lines and planes, focussing magnitude upon the un-
extendedness of points and holding together every figure that
is comstructed by means of it. Hence the Oracles call these
angular conjunctions the “bonds™® of the figures, because of
their resemblance to the constraining unities and couplings in
the divine world by which things separated are joined to one
another. Plane angles typify the more immaterial, the simpler,
and the more perfect modes of unification, whereas the angles
in solid bodies represent those unifying processes that go forth
even to the lowest realities and provide community for things
sundered and a congenial ordering for things that are utterly
disparate. Of plane angles some represent the primary and
unmixed unifying agencies, others those that contain the
infinity of their own progressions;® some the unifying® forces
of the intelligible forms; others those of sensible ideas; and
others the binding principles of intermediate things. Circular
angles imitate the causes that enwrap intelligible diversity in a
unity, for circular lines ever bending back upon themselves
are images of Nous and intelligible forms; rectilinear angles
represent the presiding causes in sensible things that bring
about the interdependence of their ideas; and mixed angles
show forth the causes that preserve the community between

21297 ouvoxnises. For the Oracles see note at 98,18 above; and
Kroll, 73.11-12, 74.2.

83 120.17 A cryptic 1eference to the distinction between right
angles and obtuse or acute angles. See 131.13-134.7,

21 12919 Reading with Barocius éromeiovoas for évemowiew in
Friedlein.
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sensible and intelligible forms in a single and unshakeable
unity.

We must therefore look to these paradigms also when as-
signing the causes of particular things. Among the Pythag-
oreans we find some angles dedicated to certain gods, others
to others.” Thus Philolaus makes the angle of 2 triangle
sacred to some, and the angle of a square sacred to others,
assigning different angles to different gods, or the same angle
to more than one god and several angles to the same god,
according to the various potencies in him. And I think the
philosopher of Asine®® has in mind these features of the demi-
urgic triangle, the primary cause of all the order among the
elements, when he sets some gods at the sides and others at
the angles, the former presiding over the forthgoing and po-
tentiality of things, the latter over the unification of wholes
and the reassembling into unity of the things that have issued
forth. Thus do these features of the angle bring our thoughts
around to the contemplation of being,

If the lines are here said to contain® the angle, this is not to
be wondered at, for in this world unity and partlessness are
introduced from without. And among the gods and in the
realm of the truly real, the complete and indivisible Good has
primacy over the things that are plural and separated.

X-XII. When a straight line set up on a straight line makes
the adjacent angles equal 1o one another, each of the equal
angles is a right angle and the straight line standing on the
other is called a perpendicular to that on which it stands. An
obtuse angle is an angle greater than a right angle. An
acute angle is an angle less than a right angle.

These are the three kinds of angles that Socrates in the
Republic says are accepted as hypotheses by geometers,*s the

5 130.10 This passage is supplemented by what is said at 132.17
and 167.1. On Philolaus see note at 22.14,

#6 130.15 Reading with Grynaeus and Barocius 'Aswaios instead
of Friedlein’s emendation Aénvaies. This is clearly a reference to
Theodorus of Asine, an immediate disciple of Porphyry and of Iam-
blickus, whom Proclus calls § xéyas OetSwpos in his Commeniary on
the Timaeus {1, 2133 and passirm, Diehl).

57 130.23 See 318,13 and note,

98 131.11 Rep. 510c. On this use of the term “hypothesis™ see note
at 178.3.
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angles produced when the rectilinear angle is divided into
species—the right, the obtuse, and the acute. The first of
them is distinguished by equality, sameness, and likeness; the
others are characterized by relative greatness and smallness
and in general by inequality, difference, and indefinite more-
and-less. Most geometers are unable to give a reason for this
classification but take it as a hypothesis that there are three
angles; and if we demand an explanation, they deny that we
have a right to ask it of them. But the Pythagoreans, who
refer the solution of this triple distinction to first principles,
have no difficelty in giving the causes of this difference among
rectilinear angles. For one of their principles is constituted
by the Limit which is the source of the definiteness and self-
identity of all things that have come to completion, the cause
also of equality and of everything in the better of the two
columns of contraries;®® their other principle is the Unlimited
which produces progressien to infinity, increase and diminu-
tion, inequality, and every sort of difference amoeng the things
it generates, and in general is the head of the inferior column.
Therefore since rectilinear angles also come to be in accord-
ance with these principles, it is reasonable that the idea which
proceeds from the Limit should produce the one right angle,
ruled by equality and similarity to every other right angle,
always determinate and fixed in nature, not admitting of either
growth or diminution; whereas the idea that comes from the
Unlimited, being second in rank and dual in nature, reveals a
pair of angles about the right angle characterized by inequality
of greater and smaller, more and less, and subject to unlimited
variation, the one through degrees of obtuseness, the other
through degrees of acuteness.

For these reasons, therefore, they refer right angles to the
immaculate essences in the divine orders and their more par-
ticular potencies, as causes of the undeviating providence
that presides over secondary things—for what is upright, un-
inclined to evil, and inflexible accords with the character of
those high gods—whereas they say that obtuse and acute
angles are left in the charge of the divinities that supervise

v9 1322 See note at 7.3.
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the forthgoing of things and the change and variety of their
powers. The obtuse angle is an image of the extension of the
forms to everything, while the acute is a likeness of the cause
that discriminates and activates all things. Furthermore, the
rightness that preserves identity of being is like the essence in
things themselves, whereas obtuseness and acuteness resemble
their attributes, for they are receptive of the more-and-less
and undergo indefinite change without end. Rightly, then, they
exhort the soul to make her descent into the world of genera-
tion after the undeviating form of the right angle, inclining no
more to one side than to the other, nor being affected more by
some things than by others, for the possession of fellow-feeling
drags her down into the error and indeterminacy of matter,
The perpendicular thus is also a symbol of directness, purity,
undefiled unswerving force,’® and all such things, a symbol of
divine and intelligent measure. For by perpendiculars we
measure the altitude of figures, and it is by reference to the
right angle that we define the other rectilinear angles, since
they have no limiting principle in themselves; they are corn-
sidered only as exceeding or falling short,*? each of them
being in itself indeterminate. Hence they say that virtue is
like rightness, whereas vice is constituted after the fashion of
the indeterminate obtuse and acute, possessing both excesses
and deficiencies and showing by this more-and-less its own
lack of measure. We shall therefore lay it down that the right
among rectilinear angles is the image of perfection, undeviat-
ing energy, intelligent limit and boundary, and everything
similar to them, and that the obtuse and acute angles are
likenesses of indefinite change, trrelevant progression, differ-
entiation, partition, and unlimitedness in general. So much
for these matters,

To the definitions of the obtuse and acute angles'®® we
must add the genus: each of them is rectilinear, one larger
and the other smaller than a right angle. Not every angle
smaller than a right angle is acute, for the horned angle is

100 133,14 Omitting Friedlein’s comma after dvrdpews.

101 133,19  Sc. of the right angle.
192 134.8 Sc. as given at 131.7-8.
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smaller than any right angle—indeed smaller than any acute
angle—but is not acute; and likewise the semicircular angle
is smaller than any right angle but is not acute. The explana-
tion is that these are mixed, not rectilinear angles. Clearly also
many angles contained between circular lines appear to be
greater than right angles, but they are not for that reason
obtuse; for the obtuse angle must be rectilinear. I call atten-
tion to this and observe also that in defining a right angle our
geometer takes a straight line standing on another straight
line and making the adjacent angles equal to one another,
whereas he explains the obtuse and the acute angles without
assuming a straight line inclined towards one side, referring
instead to the right angle; for the right angle is the measure
of angles other than right, just as equality is the measure of
unequal things, and the lines inclined towards either side are,
as he saw, infinite in number, not one only as is the perpen-
dicular, Furthermore, his comment that the angles are equal
“to one another” I regard as a mark of his geometrical pre-
cision, For it would be possible for these angles to be equal
to other angles and not be right angles; hence it is because they
are equal to one another'®® that they are necessarily right
angles. The addition of “adjacent” does not seem to me
irrelevant, as some have incorrectly supposed; it makes plain
the definition of the right angle. The reason why each of the
angles is a right angle is that they are adjacent and equal,
since the lack of inclination of the upright straight line
towards either side is the cause of the equality of both the
angles and of the rightness of each. It is, then, not simply
their equality to onc another, but their being adjacent that,
together with their being equal, is the cause of the rightness of
the angles.

In addition to what has been said, I think it proper to recall
here also the purpose of the author of the Elements, that he is
discoursing about the figures constructed in a single plane,
Hence this definition of the perpendicular is not applicable to
all perpendiculars, but only to that which lies in the same

109 1353 a\hfhaes is obviously misplaced; it is meaningless with
épdds but needed with the following {aas.
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plane; this was not the occasion for a definition of the so-
called solid perpendicular. As he has defined the plane angle,
so also he defines the plane perpendicular, since the solid per-
pendicular necessarily makes right angles not on one ling only,
but on all the lines that touch it and that lie in the plane; for
this is its property.

XIIL. A boundary is what is the limit of something.

The term *boundary™ (6pos) should not be applied to every
magnitude—the boundary of 2 line, for example, is rather a
“limit” (#épas)—but to plane areas and solids. In this work
our author calls “boundary” the line that encloses an area:
and it is a limit in this sense, not as the point is said to be the
limit of a line, but as that which shuts in and closes off some-
thing from what lies around it.2** The term has been at home
in geometry from the beginning, for geometry is the art by
which men were accustomed to measure lands and keep their
boundary marks (dpovs) distinct; and it is from this activity
that they became aware of this science. Hence when the
author of the Elements calls the outer enclosing line a boun-
dary, he naturally calls it also a limit of areas. For everything
enclosed is limited by its enclosing line. Of the circle, for
example, the circumference is the boundary and limit, but the
plane surface itself is an area; and similarly with other
fipures.

XIV. A figure is that which is contained by any
boundary or boundaries.

Since figure has many meanings and is divided into differ-
ent kinds, we must first look at these differences in order to
arrive at figure as it is presented in this definition. A figure,
then, is something that results from change, arising from an

104 1368 Proclus wishes to emphasize, first, that dpos and =épas
are not synonymous--the latter being the more peneral term, for
which reason it is used as genus in this definition—and, secondly, that
3pos had from the beginning a special application to areas, as it has in
the definition that immediately follows. Aristotle, however, uses the
two terms as synonymous; see Heath, Euclid 1, 182, who cites De
Gen., An. 745a 6, 9.
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effect produced in things that are struck, or divided, or de-
creased, or added to, or altered in form, or affected in any
one of various other ways. There are figures produced by art
(for example, by modelling or sculpturing), in accordance
with the idea preexisting in the artist’s mind, the art providing
the form and the matter receiving therefrom its shape, beauty,
and seemliness. More august and imposing figures than these
are the works of nature’s craftsmanship, some of them con-
taining the constitutive proportions in the sublunary elements,
others in the heavens defining the powers and motions of the
heavenly bodies.’* For the heavenly bodies, both in them-
selves and in their relations to one another, present a great
and marvellous variety of figures, exhibiting now one and now
another of the shapes that bear the likeness of intelligible
forms; and they copy in their rhythmic choruses the bodiless
and immaterial forces resident in the figures. Beyond these are
the figures of souls, the purest and most perfect in beauty, full
of life, by their self-motion preeminent over things that are
moved by external causes, and by their immateriality and
lack of extendedness superior to extended and embodied
things. About them the Timaeus has instructed us in revealing
the essentially demiurgic character of the figure that belongs
to souls.1*® Even more divine than the figures of souls are the
intelligible figures; they are in every way superior to divided
things, shining everywhere with indivisible and intelligible
light, generating, effecting, perfecting all things, being present
equally in all of them though themselves'®” steadfast and un-
moved, bringing unity to the figures of souls and keeping the
aberrations of sensible figures within appropriate bounds. And
high above all these are the perfect, uniform, unknowable,
and ineffable figures of the gods which, being mounted'®®
on the intelligible figures, impose limits upen the whole
universe of figures and hold everything together in their
unifying boundarics. Their propertics have been represented

105 137.12  Reading with Schonberger atr@r for adrdr in Friedlein.

108 137,24 Tim. 36b-d,

197 138.3  Reading with Schinberger avrols for alreis in Friedlein.
108 1388 émoxovuera. See note at 90.13.
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for us by the theurgic art'*® in its statues of the gods, whom it
clothes in the most varied figures. Some of them it portrays
by means of mystic signs that express the unknowable divine
potencies; others it represents through forms and shapes,
making some standing, others sitting; some heart-shaped,
some spherical, and some fashioned still otherwise; some
simple, others composed of several shapes; some stern, others
mild and expressing the benignity of the gods; and still others
fearful in shape. To these figures it adjoins various symbols
for different gods, as they are appropriate to the divinities
represented.,

Figure, then, begins above with the gods themselves and
extends down to the lowest orders of beings, exhibiting even
mn them its derivation from the first of causes. For the perfect
figures are necessarily prior to the imperfect, those grounded
in themselves prior to those that exist in other beings, and
those that preserve their nature undefiled to those that are
stuffed with their own privations. Material figures partake of
the unshapeliness of matter and lack the purity that they
should have; the figures in the heavens are divisible and have
their existence in other things; the figures of souls admit of dif-
ferentiation and variety and every kind of development; the
intelligible figures, together with unity, contain progression to
plurality; and at the head of them all stand the very figures of
the gods, independent, uniform, simple, generative, having alt
perfection in themselves and from themselves offering to all
things the perfecting agency of the forms.

We cannot, then, allow what is usually said, that figures in
the sense world are produced by additions or subtractions or
alterations. For such incomplete processes could not contain
the original and primary cause of their products. Nor would

202 138.10 Beovpyiz, a kind of sympathetic magic practised for
religious purposes by some of the later Neoplatonists. By this “art” an
image invested with the symbols of a god, and duly consecrated, is
made capable of “participating in divinity,” of moving and of speak-
ing (Proclus, Commentary on the Timaeus u1, 155.18ff, Diehl).
Proclus’ interest in theurgy is abundantly attested (see the Introduc-
tion); but this is the only occurrence of the term in this Contmnentary.
For further details about theurgy in the Hellenistic age, see Dodds,

The Greeks and the Irrgtional, Berkeley, 1951, Appendix II, “Theur-
gy,” esp. 2914f,
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we see the same figures produced by contrary causes: the
same shape, for example, could come about either by addition
or by subtraction. Rather we shall posit that the causes men-
tioned are subservient to others in the process of generation
and affirm that the end is defined for them by other and prece-
dent causes. Neither is it true, as some say, that immaterial
figsures lack reality and only material things exist; nor true
what still others say, that they exist indeed apart from matter,
but only in thought and by abstraction. For how could the
precision, beauty, and orderliness of these figures be preserved
if they were merely abstractions?'® Being of the same kind
as sense objects, they fall far short of certainty, preciston, and
accuracy; and if they later take on accuracy, orderliness,
and perfection, from what source will these characters be
derived? From sense objects? But sense objects do not have
them to contribute. Or from intelligibles? But intelligibles have
them more perfectly. To say they come from nonbeing is the
most impossible of all; for nature has in no wise produced
imperfect beings and left the perfect ones nonexistent, and it
is impious to suppose that our soul generates things more
accurate, perfect, and better ordered than Nous and the gods.

Prior to sense objects, therefore, are the self-moving intel-
ligible and divine ideas of the figures. Although we are stirred
to activity by sense objects, we project the ideas within us,
which are images of things other than themselves; and by their
means we understand sensible things of which they are
paradigms and intelligible and divine things of which they are
likenesses. As these ideas within us unfold, they reveal the
forms of the gods and the uniform boundaries of the universe
by which the gods, without command, bring all things back to
themselves and enclose them. The gods have a wondrous
knowledge of the universe of figures and a potency capable of
generating and supporting all secondary things; the figures in
the realm of nature have the power of creating appearances,
though they are dévoid of knowledge and intelligent compre-
hension; individual souls have immaterial thought and spon-
taneous knowledge, but not the generative and activating

110 1401, With this argument cf. the more extended one at
12.104.
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cause. Therefore just as nature stands creatively above the
visible figures, so the soul, exercising her capacity to know,
projects on the imagination, as on a mirror, the ideas of the
figures; and the imagination, receiving in pictorial form these
impressions of the ideas within the soul, by their means affords
the soul an opportunity to turn inward from the pictures and
attend to herself, It is as if a man looking at himself in a
mirror and marvelling at the power of nature and at his own
appearance should wish to look upon himself directly and
possess such a power as would enable him to become at the
same time the seer and the object seen. In the same way, when
the soul is looking outside herself at the imagination, seeing
the figures depicted there and being struck by their beauty and
orderedness, she is admiring her own ideas from which they
are derived; and though she adores their beauty, she dismisses
it as something reflected and seeks her own beauty, She
wants to penetrate within herself to see the circle and the
triangle there, all things without parts and all in one another,
to become one with what she sees and enfold their plurality, to
behold the secret and meffable figures in the inaccessible
places™® and shrines of the gods, to uncover the unadorned
divine beanty and see the circle more partless than
any center, the triangle without extension, and every other
object of knowledge that has regained unity. Clearly, then,
the self-moved figure is prior to what is moved by another; the
partless is prior to the self-moved; and prior to the partless is
the figure which is identical with unity. For all figures attain
consummation in the henads,”*? the source from which they
all entered into being.

111 141,23 Restoring Grynaeus' derfors for dyvyeiors in Friedlein,

112 142,5 The doctrine of the divine henads is a development in
Neoplatonic thought after Plotinus. The henads are unities beside the
OCne and help to bridge the gulf between the One and reality. Syrianus
and Proclus gave the doctrine a theological interpretation by identify-
ing the henads wilh the gods of traditional Greek mythology. The
doctrine “represents an attempt to account for the existence of indi-
viduality by importing plurality into the first hypostasis, yet in such a
manner as to leave intact the perfect unity of the One.” See Proclus’
Elements of Theology, Props. 113-127, with the commentary of
Dodds, 259, On the relation of the divine henads to the Rgures
see 146,11
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But we have drawn out at great length these matters of
Pythagorean doctrine. Our geomecter, locking at the figure in
imagination and primarily defining it (although his formula
fits sensible things in a secondary way), says that figure is
what is contained by a boundary or boundaries. He takes it
at once as joined with matter and extended in imagination
and rightly calls it limited and bounded. For everything that
has matter, whether intelligible or sensible, has a boundary
coming from outside itself. Figure is not itself a limit, but
limited; it is not its own boundary (the bounding is other
than what is bounded), nor is it in it but contained by it. Since
it is born with guantity and subsists with it, quantity is its
substratum, while the definition of that quantity is the figure,
that is, its form and shape.*® For figure limits it, giving it a
character and such-and-such a boundary, either simple or com-
posite. Since figure too, like the idea of the angle, exhibits in
its own subdivisions the twofold progression of the Limit and
the Unlimited, it applies the single boundary and the simple
form to the things it bounds when it acts in accordance with
the Limit and the many boundaries by virtue of the Unlimited.
This is why everything figured has either one or more than
one boundary.

Euclid, then, calling figure the figured and enmattered thing
coexistent with quantity, naturally designates it as contained.
Posidonius, however, defines figure as the containing limit,
separating the idea of figure from quantity and making it the
cause of definiteness, limitation, and inclusion; for the factor
that encloses is other than what is enclosed, the limit other
than what is limited, It seems that he is looking at the outer
enclosing boundary, while Euclid is looking at the whole of
the object. So one of them says the circle is a figure by virtue
of the whole plane surface with its outer circuit, whereas the
other says it is a figure by virtue of the circumference. The
one shows that he is defining the figured and considering it
together with its substratum, the other that he wishes to ex-

113 142,22 1 assume that xal popgd, if it belongs in the text at all,
has been misplaced.
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press the idea of figure itself as limiting and confining the
quantity.

If a captious logician should criticize Euclid’s definition
because it defines the genus by means of the species (for what
is included within one boundary and what is included within
more than one are species of figures), we must reply to him
that genera'* already contain in themselves the characters of
their species, Whenever the ancients wish to make clear the
nature of a genus from the powers it contains,*'s they appear
to proceed by way of the species, although in fact they are
explaining the genus from itself and from the powers it
contains. Thus this single definition of figure includes, by
virtue of the Limit and the Unlimited in it, the differentiae of
the many particular figures; and he who defines it thus is not
out of order in including in his definition the differentiae of
its powers.

But whence comes the idea of figure and from what sort of
principles is it perfected? I answer, first, that it owes its being
to the Limit and the Unlimited and the Mixture of the two.
This is why it generates some kinds by virtue of the Limit,
others by reason of the Unlimited, and others according to
the Mixed. For circular figures it invokes the idea of the Limit,
for rectilinear that of the Unlimited, and for figures derived
from both the idea of the Mixed. In the second place, it is
perfected by the kind of wholeness that discriminates unlike
parts so that, when it applies wholeness to any form, it also
divides the figure into the different forms that constitute it.
The circle, for example, and every rectilinear figure can be
divided into parts unlike their ideas, a matter which the author
of the Elements himself takes up in his Divisions, where he
divides a given figure sometimes into like and sometimes into
unlike parts. Thirdly, it has the potency of thoroughgoing
plurality, and through this it exhibits all kinds of shapes and
generates multiform ideas of figures, unfolding unceasingly

114 14325 Reading with Grynaeus and Schénberger xal 72 +évy
for xaré 7yéen in Friedlein.

115 1443 Putting Friedlein’s comma after instead of before of
mahatof.
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until it has reached the end term and revealed every variety
of kind, Just as in the upper world it is shown that the One
coexists with being and being exists in the One, so also the
idea of figure shows that circular lines are implicated in
straight and straight in cireular; that is, it projects its whole
nature in characteristic fashion in each thing, and all of them
are in all when the whole is simultaneously in all of them and
in each separately. And this power it possesses from that
higher ordering. In the fourth place, it receives from the
first number the measures applicable to the procession of the
kinds and thus constitutes all things according to numbers,
some by simpler, others by morc complex numbers. Triangles,
squares, pentagons, and all polygonal figures issue forth in
company with the inexhaustible variations "in numbers.
Through what cause this comes about most men do not know;
but to these who know the place of number and of figure the
explanation of the cause is transparent. In the fifth place, from
another and secondary kind of wholeness, that which divides
into similar parts, it is equipped to divide forms into parts
like one another, whereby it resolves the triangle into triangles
and the square into squares. This is just what we do, as I said,
when we exercise ourselves with [sensible] images of them; but
the procedure has its prototype in the first principles them-
selves.

When we attend to these explanations, we are able to inter-
pret many characteristics of figures by tracing them back to
the causes that are prior to them. The one universal figure has
the rank we have assigned to it, receiving its perfecting power
from all the causes mentioned. Thence it proceeds to the
species of the gods,'*® distributing its shapes and acting differ-
ently towards the different gods, to some giving simple shapes,
to others mixtures of the simple one, allotting to some the
basic figures that are generated in plane surfaces, and to those
that mount!*™ upon solid masses the appropriate solid figures,
All of them are in all things, for the forms of the gods are
complete and endowed with all powers, yet each one has a

116 146.6 Omitting rar’ after «ai in Friedlein.
117 146.10  See note at 90.13.
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characteristic property assigned to it according to a specific
principle. One of them, for example, contains all things after
the manner of a circle, another in triangular fashion, and still

another after the fashion of a square; and similarly for the
solid figures.

XV, XVI. A4 circle is a plane figure contained by one line
such that all the straight lines falling upon it from one point

among those lying within the figure are equal to one another.
And the point is called the center of the circle.

The first and simplest and most perfect of the figures is the
circle, It is superior to all solid figures because its being is of
a simpler order, and it surpasses other plane figures by reason
of its homogeneity and self-identity. It corresponds to the
Limit, the number one, and all the things in the column of
the better.'*®* Hence whether you analyze the cosmic or the
supercosmic world, you will always find the circle in the class
nearer the divine, If you divide the universe into the heavens
and the world of generation, you will assign the circular form
to the heavens and the straight line to the world of generation;
for insofar as the circular form is found in the changes and
figures of the world of generation, it is derived from above,
from the heavenly order. It is because of the circular revolu-
tion of the heavens that generation returns in a circle upon
itself and brings its unstable mutability into a definite cycle.
If you divide bodiless things into soul and Nous, you will say
that the circle has the character of Nous, the straight line
that of soul. This is why the soul, as she reverts to Nous, is
said to move in a circle.''® Soul bears to Nous the relation that
generation has to the heavens. For the heavens move in a
circle (he remarks that the circle is an imitation of Nous),1#

112 147.5 See note at 7.3.

119 147,18 Sc¢, by Plaio in the Laws and the Timaeus.

120 147.20 [ suspect that the words put in parentheses by Friedlein
are what was formerly a marginal comment made by an editor. If
this supposition is correct, the intended subject of ¢noiv is Proclus,
not Socrates, as Barocius supposes. There is obviously a lacuna after
Juxis in the following line; I have adopted the supplement suggested
by Barocius,
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but the devetopment of the soul [is in a straight line], because
her property is to come to be now in one and now in another
form. Again, if you distinguish body and soul, you will put
everything that is body on the side of the straight line and
make everything psychicat partake of the identity and homo-
geneity of the circle. For the former is composite and possesses
varied powers, like the rectilinear figures; the other is simple
and intelligent, moving and acting of its own accord, turned
inwards, and occupied with itself. Hence the Timaeus, though
it constructs the primary bodies in the universe by means of
straight lines, gives them a circular revolution, that is, a form
derived from the soul which uses the cosmos as its vehicle.®

From what has been said it is clear that the circle every-
where has primacy over the other figures. But we must also
contemplate the entire series to which the circle gives rise.
Beginning above and ending in the lowest depth of things, it
perfects all of them according to their suitableness for par-
ticipation in it. On the gods it confers the power of reverting
to and being unified with their principles, of remaining in
themselves without departing from their own blessedness. The
highest unitics among them it sets up as centers and aiming-
points for the secondary divinities, fixing the plurality of the
powers in them firmly about these centers and holding them
together by the simplicity of these unities. To intelligent
beings the circle gives the power of being continuously active
in relation to themselves, enabling them to be filled with
knowledge from their own store, to assemble the intelligibles
in themselves and perfect their insights from within. For Nous
always gives itself the object of its thought, and this object is,
as it were, its center; Nous clings to it, Joves it, and becomes
one with it, converging upen it the whole of its intellectual
powers. Souls are illuminated by autonomous life and motion,
which enables them to revert to Nous and circle about it, en-
joying self-renewal through the special periodic revolu-
tions which unfold the partlessness of Nous. Here again

121 1484 See Tim. 34c for the circular revolution and 53cfl. for
the construction of the primary bodies. On the vehicle see note at
90.13,
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the ranks of the intefligibles, like centers, will have
preeminence over souls, whose activity it is to revolve
about them. For every soul is centered in her intelligent part,
where she is truly and most fully one; but because of her
plurality she traverses a circle in her desire to embrace the
Nous within herself. On the heavenly bodies the circle con-
fers their likeness to Nous, their homogeneity and uniformity,
their function of enclosing the universe within limits, their
fixed and measured revolutions, their eternal existence without
beginning or end, and all such things. The sublunary elements
owe to the circle the cycle of their changes, their likeness to
the heavenly cycle, the presence of the ungenerated among
things generated, of the stationary amidst changing things, and
of the bounded amongst divisibles. All things exist eternally
through the cycle of generation, and the equilibrium among
them all is maintained by its batancing destruction; for if
generation were not recurrent, the order of things and
the whole cosmic scheme would soon have been dis-
solved, Animals and plants owe to the circle the likeness
between parents and offspring. For animals and plants are
born from seed and produce seed in their turn: generation
becomes reciprocal, with a recurring cycle of growth from
the immature to the fully grown and back again, so that decay
accompanies generation. On things that we call “contrary to
nature” the circle imposes order by limiting their boundless-
ness and regulating even them rightly by using the last traces
of the powers resident in it, Hence such unnatural events
recur at determinate intervals, and times of dearth as well as
of fruitfulness are based on the revolutions of the circles, as
the myth of Muses has it.”*? All evils may have been banished
from the divine to this mortal region, yet even they are in
revolution, as Socrates says,'*® and have a share of cyclical
ordering. Hence nothing is unmixedly evil and abandoned by
the gods; rather the providence that perfects all things brings
even the boundless variety of evils under the limit and order
appropriate to them.

122 150.5 Rep. 545¢ff. 123 150.8 Theaer. 176a.
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Thus the citcle regulates all things for us down to its
humblest beneficiaries and has left nothing without a share in
its bounty, as it dispenses beauty, homogeneity, shapeliness,
and perfection. Even in numbers it controls the middle centers
of the whole procession as it unfolds from unity to the decad.
For the numbers five and six alone exhibit the cyclic power
by turning back upon themselves in the terms that are
derived from them, since when they are multiplied,** they
end with themselves. Multiplication, as a reaching for plur-
ality, is a likeness of procession, while their ending with their
own forms is an image of reversion. The power of the circle
brings about both these processes by arousing the generating
causes of plurality from what is at rest as a center and by
enveloping, after its acts of generation, the plurality of its
products into their originating causes. Two numbers, there-
fore, at the center of the series possess this property: one of
them heads the whole class of things capable of reversion,
namely, the class of the male and the odd; the other summons
the female and the even and whatever belongs to the genera-
tive series back to their native causes, in conformity with the
power of the circle.

But let us make an end here of these matters and observe'#*
that the mathematical account of the circle reaches the height
of precision. The definition states that it is a figure (since
obviously it is limited and contained on all sides by a
single boundary, and hence does not belong to the nature of
the Unlimited, but to the column of the Limit), and more-
over a plane figure (for figures are found both in planes
and in solids), and the first of plane figures (since not only
does it surpass solids in simplicity, but it also has the place of
primacy among plane figures, being contained within a single
line, without variety in its boundaries, and is thus akin to unity
and defined by unity), and a figure having all the lines equal
that are drawn to this bounding line from one of the points

124 150.22 Se. by themselves.
125 151.14 Reading with Grynaeus fewptrwner instead of fewpd-
aoper in Friedlein.
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within it.*?¢ For of the figures bounded by a single line some
have all the lines drawn from the middle equal and others do
not. The ellipse, for example, is contained by a single line,
yet not all the lines drawn to it from the center are equal, but
two of them only; and the plane figure delimited by the curve
of the cissoid has one surrounding line but no center from
which all lines drawn to it are equal. Then, since the center in
the circle is always one point (for more than one point cannot
be the center), he adds that the lines to the boundary “from
one point” are all equal; for though there are an infinite num-
ber of points within the circle, one only of this infinite number
has the character of the center. And since this one point from
which all the lines to the circumference are equal lies either
within or outside the circle (for every circle has a pole from
which all the lines to the circumference are equal), he adds
further “of the points lying within the figure.” It is not without
reason that he takes into account the center only, ignoring the
pole, because he wishes to restrict his consideration to what
lies in a plane, and the pole is above the plane assumed. Of
necessity, therefore, he adds at the end that this point
which lies within the ciccle and from which all the lines drawn
to the circumference are equal is the center of the circle.
For there are only two such points, the pole and the center,
but one is outside the plane, the other within it. f you imagine,
for example, a gnomon standing at the center of the circle,
then its extreme point is the upper pole, and all the lines
drawn from it to the circumierence of the circle are demon-
strably equal to one another. Likewise in a cone the apex
of the whole figure is the pole of the circle at its base.

Now that it has been made precise what is meant by
a circle, its center, the circumference of the circle, and the
figure as a whole, let us once more ascend from these details
to the contemplation of their paradigms. Let us think of the
center among them, with its unitary, indivisible, and steadfast

12¢ 152.3 The absence of Proclus’ usual lucidity and precision
in this passage, coupled with its grammatical irregularities, suggests
that it has been corrupted.
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superiority in every instance; the distances from the center,
as the ways in which this unity issues forth as far as possible
into indefinite plurality; and the circumference of the circle,
as the element through which, in the reversion to the center
by the things that have gone forth from it, the many powers
are wrapped about their own unitary source, all pressing
towards it and desiring activity around it. As in the circle the
center, the distances, and the outer circumference all exist at
the same time, so also in the paradigms there are no parts
that are earlier in time and others that come to be later, but all
are together at once—-rest, procession, and reversion. But the
figures differ from the paradigms in that the latter are without
parts or spatial intervals, whereas the figures are divided, the
center being in one place, the lines from the center in another,
and the circumference that bounds the circle in stifl another.
But up there they are all in one. If you take what correspends
to the center, you will find everything in it; if you take the
procession coming out of the center, you will find that this
also contains everything; and likewise if you take the rever-
sion. When you have seen that they are all of them in each
other, and have discounted the imperfection implicit in their
extendedness, and have banished from thought the spatial
position around which they are distributed, you will discover
the truly real circle itself-—the circle which goes forth from it-
self, bounds itself, and acts in relation to itself; which is both
one and many; which rests and goes forth and returns to itself;
which has its most indivisible and unitary part firmly fixed, but
is moving away from it in every direction by virtue of the
straight line and the Unlimited that it contains, and yet of its
own accord wraps itself back into unity, urged by its own
similarity and self-identity towards the partless center of its
own nature and the One that is hidden there. And once it
has embraced this center, it becomes homogeneous with it
and with its own plurality as it revolves about it. What turns
hack imitates what has rematned fixed; and the circumference
is like a separate center converging upon it, striving to be the
center and become one with it and to bring the reversion
back to the point from which the procession began.
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Such is the character of the center everywhere. It ranks as
a goal {or the beings that have their existence around it and as
the source of the multiple processions from it. This is what the
mathematical center typifies, since it is the end point of all
the lines that lead to the circumference and presents equality
to them as the image of its own unity. It is thus that the
Oracles define it: “The center, from which all the lines to the
rim are equal . . . .”'* But as “from which” indicates the
source of the divergence of the lines, so *to which” indicates
the center of the circumference; for the circumference in all
its extent gathers itself towards the center.

If we must identify the first cause through which the circular
figure is brought to light and perfected, I should say it is the
very highest of the intelligibles. For the center resembles the
principle of the Limit, while the lines from it, being indefinite
in number and length, typify Boundlessness, so far as in them
lies; and the line which bounds their indefinite extendedness
and gathers it back to the center is like the hidden cosmic
order they constitute, which Orpheus!?® describes as moving
in a circle:

The Boundless in a circle
Was moving unweariedly.

For since it moves in an intelligent fashion about the intel-
ligible and has that as the center of its motion, it is properly
said to work cyclically. Hence from this proceeds the triadic
god who comprehends in himself the primary cause of the
procession of the rectilinear figures; and from this comes the
appellation’® placed upon this god by the wise men most
familiar with theological mysteries. And the triangle is the first

127 155.5 Barocius’ translation contains the beginning of the fol-
lowing line “and te which . .. ,” which is missing in Friedlein. Some-
thing like this may have been in the original text to explain Proclus’
reference to this phrase in the following line. But Taylor notes that
wpbs § is wanting in all the published collections of the Babylonian
Oracles. Kroll {65) cites the text without this supplement.

128 15518 Otto Kem (ed.}, Orphicorum Fragmenta, Berlin, 1922,
No. 71a.

120 15526 Tpwudyiores (7). See note at 46,25,

— 123 —



157

THE COMMENTARY

of the rectilinear figures. The figures, then, first come to light
in the successive hierarchies of the gods, but they have their
being in the preexisting hidden causes in the intelligible world.

XVIL. A diameter of the circle is a straight line drawn
through the center and terminated in both directions by the
circumference of the circle; and such a straight line also
bisects the circle.

The avthor of the Elemenis himself makes it clear that he is
defining not every diameter, but the diameter of the
circle. The square also has a diameter, and so does the
parallelogram in general, and among solid figures the sphere.
But in these cases such a line is also cafled a “diagonal,” and
in the case of the sphere an “axis” also, “diameter” alone
being used for the circle, Even for the ellipse, the cylinder, and
the cone we are accustomed to say “axis,” “diameter” being
peculiar to the circle. The genus of diameter is straight line.
But there are many straight lines in the circle, as there are
indefinitely many points;** and just as the center is one of
those points, so only that line is called the diameter which
goes through the center and which neither stops short of the
circumference nor goes beyond the boundary of the circle but
is terminated by the circumference in both directions. This
shows how the diameter 1s drawn. What is added at the end,
that it cuts the circle in half, indicates its peculiar effect upon
the circle in comparison with all the other straight lines drawn
through the center but not terminated by the circumference
in both directions. :

The famous Thales is said to have been the first to demon-
strate that the circle is bisected by the diameter. The cause of
this bisection is the undeviating course of the straight line
through the center; for since it moves through the middle and
throughout all parts of its identical movement refrains from
swerving to either side, it cuts off equal lengths of the cir-
cumference on both sides. If you wish to demonstrate this
mathematically, imagine the diameter drawn and one part of

130 156.21f, Omitting with Barocius the full stop after eneefwr and
pér ovr after drelpor,
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the circle fitted upon the other. If it is not equal to the other,
it will fall either inside or outside it, and in either case it will
follow that a shorter line is equal to a longer. For all the
lines from the center to the circumference are equal, and
hence the line that extends beyond will be equal to the line
that falls short, which is impossible. The one part, then, fits
the other, so that they are equal. Consequently the diameter
bisects the circle.'®

But if from one diameter two semicircles are produced, and
if an indefinite number of diameters can be drawn through
the center, it will follow that the number of semicircles is twice
infinity.*** This difficulty is alleged by some persons against
the indefinite divisibility of magnitudes. We reply that a mag-
nitude is indefinitely divisible, but not into an infinite number
of parts. The latter statement makes an infinite number actual,
the former merely potential; the latter assigns existence to the
infinite, the other only genesis.'** With one diameter, then,
two semicircles come into being, and the diameters will never
be infinite in number, even though they can be taken in-
definitely. So the number of semicircles will never be twice
infinity; those that are produced at any time will be twice a
finite number, for the diameters taken at any time are always
finite in number. And why should not every magnitude have
only a finite number of divisions,*** seeing that number exists
before magnitude and sets bounds to its sections, thus fore-
stalling infinity by bounding at any time only what has come
into being?

131 1582 “Presumably Proclus gives Thales’ proof. Euclid's in-
corporating the assertion in a definition where it certainly doesn't
belong is probably due to a desire to avoid proofs in which a geometric
object is moved. In the same way Euclid probably states Post. IV to
avoid a proof in which motion is used, like the one given by Proclus
at 188.20Mf, See von Fritz, in Archiv fiir Begrifisgeschichte 1, T6fL."
(I?fz)lS&S “This is the earliest example known to me of an argu-
ment relating to those paradoxical features of infinite collections which
Cantor was the first to straighten out.,” (L.M.}

133 158.10 There is more about the infinite below, at 278f. and

28411,
134+ 158,16 Reading o uéhhe: for ot pénes in Friedlein,
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XVIIL, XIX*5 4 semicircle is the figure contained by the
diameter and the circumference cut off by it. And the
center of the semicircle is the same as that of the circle.

From the definition of the circle our author discovered the
nature of the center, which differs from all the other points
in the circle; and from the center he defined the diameter and
distinguished it from the other straight lines drawn within the
circle. And from the diameter he teaches us what the semi-
circle is, that it is contained by two boundaries—two boun-
daries always different from each other, a straight line and a
circumference—and that the straight line is not any chance
line, but the diameter of the circle. For a segment of a circle
less than and a segment greater than a semicircle will each be
contained by a straight line and a circumference; but such
segments are not semicircles, because the division of the circle
is not made through the center.

Now all figures of this sort are dyadic, as the circle is mo-
nadic, and are composed of unlike elements. For every figure
contained by two boundaries is contained either by two cir-
cumferences, like the lunule; or by a straight line and a cir-
cumference, like the fipures just mentioned; or by two mixed
lines, as when two ellipses intersect (for their boundaries will
cut off and enclose an area);'*® or by a mixed line and a
circumference, as when a circle cuts an ellipse; or by a mixed
and a straight line, such as the half of an ellipse. The semi-
circle, then, is formed of unlike parts, but of parts that are
simple and that are joined to one another by juxtaposition.
Quite properly, therefore, before the definition of triadic
figures, the exposition proceeds, after the circle, to the figure
formed by two elements. Two straight lines cannot enclose an
area, but a straight line and a circumference can; and so can
two circumferences, either making angles, as in the lunular
figure, or forming a figure without angles, as do two con-

135 158.21 These two definitions are numbercd together as Def.
XVIII in Heiberg's text of Euclid.

138 159,18 Reading r3 for r& in Fredlein, and in the following
line ywpiov for the impossible snueion.
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centric circles.'® The area cut off between them is contained
by two circumferences, the one inside, the other outside; and
they do not form an angle, for they do not cut one another,
as in the lunule and in the biconvex figure, **

It is clear, furthermore, that the center of the semicircle is
the same as the center of the circle. For the diameter with the
center upon it completes the semicircle, and from this center
all the lines to the circumference are equal; and the circum-
ference is also part of the circle, and lines drawn to all
parts of the circumference of the circle are equal when drawn
from the center, Hence the center of the circle and the center
of the semicircle are one, It should be noted that this alone of
the figures, that is, of plane figures, has its center on its perim-
cter. So one can summarize and say that there are three
positions for the center: either within the figure, as with the
circle, or on the perimeter, as with the semicircle, or outside
it, as with certain conic lines,

Therefore the semicircle has the same center as the circle.
What does this characteristic of the semicircle indicate to us,
and of what things is it a likeness? Does it not show that the
things which have not fully departed from first principles but
still have some share of them can be concentric with them
and participate in the same causes? For the semicircle has two
things in common with the circle, its diameter and its circum-
ference. This is why they have a common center. And so per-
haps the semicircle is to be compared with those beings of
secondary rank below the simplest principles which still par-
ticipate in them and because of their kinship with them,
though it is imperfect and halfway, can nevertheless be traced
back to being and to their primary cause,

137 160.5 These two possibilities are illustrated as follows in one
of our early manuscripts:

N/

138 160.9  See illustrative diagram above at 127.14.
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XX-XXII1.1** Rectilinear figures are those which are
contained by straight lines, trilateral figures being those
contained by three, quadrilateral those contained by four,
and multilateral those contained by more than four
straight lines.

After the figure with one boundary, which has the relation
of a first principle to all the figures, and the semicircle with
its two boundaries, our author presents the procession of
rectilinear figures corresponding to the endless number series.
This explains why he mentions the semicircle, because with
respect to its boundaries it has something in common with
the circle on the one hand and with rectilinear figures on the
other, just as two is intermediate between unity and plur-
ality.*** Unity produces a greater quantity by addition than
by multiplication, whereas number has the reverse effect,
producing a greater quantity by multiplication than by ad-
dition; but the number two produces an equal quantity when
multiplicd by itself and when added to itself. So just as two is
a mean between unity and plurality, so the semicircle has a
community with rectilinear figures with regard to its base and
with the circle with regard to its circumference.

The rectilinear figures come forth in orderly fashion ac-
cording to the series of numbers from three to infinity. This
is why the author of the Elements begins here. He defines
“trilateral,” *quadrilateral,” and then figures called by a
common name “multilateral.” Trilateral figures are also multi-
lateral, but they have a special as well as the common desig-
nation, whereas for the others, since we are unable to follow
the endless procession of the numbers, we are content to
use the common designation. Our author mentions only the
trilateral and the quadrilateral, since three and four are the
first of the numbers, three being unmixedly odd among the
odd numbers and four the most even of even numbers. He
brings in these two for the comstruction of the rectilinear
figures in order to show their dependence on all the numbers,

132 161,13 Def. XIX in Heiberg's text.

110 161,25 Literally “between unity and number.” The Pythag-
oreans defined number as a plurality of units.
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both even and odd; moreover, because in the first book he is
going to explain triangles and parallelograms as the most
elementary figures, he naturally stops the particular enumera-
tion with them and includes all the others under the common
designation “multilateral.” So much for this.

We must now begin afresh and say that of plane figures
some are contained by simple lines, others by mixed, and
others by both sorts. Of those contained by simple lines some
are contained by similar lines, such as rectilinear figures, and
some by dissimilar lines, such as semicircles and segments
and arches that are less than semicircles. Of those contained
by similar lines some are bounded by circular, others by
straight lines; and of those contained within circular lines
some are bounded by one, others by two, and others by
several. The circle itself is bounded by one line; of those
bounded by two, some are without angles, like the “crown”
that is contained between the circumferences of two con-
centric circles, and others with angles, like the lunule; and
of those bounded by more than two there are an indefinite
number, for some figures are contained by three or four or
more circumferences, If three circles are tangent, for example,
they will cut off a three-sided area bounded by three circum-
ferences; and if there are four tangent circles, there will be an
area bounded by four circumferences; and so on in the same
way. Of figures contained by straight lines some are bounded
by three, others by more. It is not possible for an area to be
contained by two straight lines, still less by one such; so
every area that is contained within one or two boundaries
belongs either to those bounded by mixed lines or to those
bounded by circumferences. “Bounded by mixed lines” can
mean either that mixed lines contain the area, such as the
area cut off by the curve of a cissoid, or that unlike boundaries
contain it, as with the arch. For mixture may come about in
two ways, either by juxtaposition or by fusion.'** Not every

111 164.4 Barocius’ text at this point includes the following sen-
tence not contained in Friedlein: “Hence every rectilinear figure is
either triangular, or quadritateral, or multilateral in varying degrees.”
In the next line “or multilateral” is inserted after “quadrilateral.”
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trilateral or quadrilateral figure is rectilinear, for such a
number of sides can occur in figures bounded by circumfer-
ences. So much for the classification of plane figures.

It has been said earlier that the straight line is a symbol of
procession, motion, and infinity and resembles those gen-
erating and diversifying deities in the hierarchy that are causes
of change and motion. It follows that rectilinear figures are
at home with those gods that preside over the generating
activity of the forms as they go forth into all things, This is
why the world of generation is primarily ordered in con-
formity with these figures; it derives its being from them,
since its existence is dependent on motion and change.

XXIV-XXIX. 12 Of wrilateral fipures an equilateral triangle

is that which has its three sides equal, an isosceles triangle
that which has two of its sides alone equal, and a scalene
trigngle that which has its three sides unequal. Further, of
trifateral fipures a right-angled triangle is that which has one
of its angles a right angle, an obtuse-angled triangle that
which has one of its angles obtuse, and an acute-angled
triangle that which has its three angles acute.

The classification of triangles here is based partly on their
angles and partly on their sides. The classification based on
sides, being famitiar, comes first; then follows the classifica-
tion based on angles, which is specifically characterizing; for
the three angles—right, obtuse, and acute—beleng only to
rectilinear figures, whereas equality and inequality of sides
are obviously found also in nonrectilinear figures. He says
therefore that some triangles are equilateral, some isosceles,
and some scalene; for a triangle either has all its sides equal,
or all of them unequal, or only two of them equal. Then,
starting afresh, he says that some triangles are right-angled,
some obtuse-angled, and some acute-angled. The right-angled
triangle is defined as having one of its angles a right angle,
and the obtuse-angled similarly, for it is impossible that a
triangle should have more than one right or one obtuse
angle; and the acute-angled triangle is that which has all its

142 164,18 Deff. XX and XXI in Heiberg's text.
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angles acute. It is not sufficient in this case to say that it has
one acute angle, for thus all triangles would be acute-angled,
since any triangle whatever has two acute angles, the acute-
angled triangle alone having all three angles acute.

But it seems to me that, when the author of the Elements
makes a separate classification based on the angles and an-
other based on the sides, he is simply recognizing that not
every triangle is also trilateral. For there are four-sided tri-
angles, called “barb-like” by others,"*? but “hollow-angled”
by Zenodorus.* Think of a three-sided figure having on one
of its sides two lines projecting inwards, It will have an area
bounded by the two outer [lines and the two inner ones, and it
will have one angle contained by the two outer lines]*** and
two others contained by the outer lines and the inner ones and
situated at the extremities where these two pairs of lines
converge. Such a figure is clearly a four-sided triangle 1+
It does not follow, then, wherever we find a figure with three
angles—whether all acute, or one right, or one obtuse—that
we have necessarily found a trilateral, that is, an isosceles
triangle or some other three-sided figure; for it could even be
four-sided. You could likewise obtain a quadrangle with more
than four sides. So we cannot at once declare from the number
of its angles how many sides a figure has. But enough of this.

The Pythagoreans assert that the triangle is the ultimate
source of generation and of the production of species among
things generated. Consequently the Timaeus says that the
ideas of natural science, those used in the construction of the
cosmic elements, are triangles.*” They are divided into three
kinds, bring into unity things that are in every way divided

148 16523 1 follow Friedlein's conjecture that wap' adrois is a
corruption of wap’ dihocs.

144 165.24 Zenodorus, a geometer of the second or first century
B.C. who wrote a treatise on isometric figures, considerable parts of
which have been preserved by Theon of Smyrna and by Pappus. See
Heath 11, 207-213; Gow, 271f.; Van der Waerden, 268f.

145 166.2f. There is another lacuna here. I have followed the
conjectural restoration of Friedlein.

146 166.6 For a diagram and discussien of this figure see 3282,

and note at 329.7.
147 166,18 Tim. 53eff.
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and changeable, are full of the indefiniteness of matter, and
set up in advance the dissoluble bonds of material bodies, just
as triangles themselves are contained by straight lines and
have angles that bring together the plurality of these lines
and provide them an imported fellowship and contact with
one another. Rightly, then, Philolaus'*® dedicates the angle
of the triangle to the four gods Kronos, Hades, Ares, and
Dionysus, since he includes within their province the entire
fourfold ordering of the cosmic elements derived from the
heavens or from the four segments of the zodiacal circle.
Kronos gives being to all the moist and cold essences, Ares
engenders every fiery nature, Hades has control of all ter-
restrial life, and Dionysus supervises moist and warm genera-
tion, of which wine, being moist and warm, is a symbol. All
these are distinct as far as their action on secondary things is
concerned, but they are united with one another, and this is
why Philolaus brings them to unity under one angle, If the
differences between triangles contribute to the process of
generation, it is reasonable to admit that the triangle is the
chief agent in the production of sublunary things. The right
angle furnishes them with their essence and bounds the meas-
ure of their being, and the idea of the right-angled triangle
therefore is the essence-constituting factor for the generated
cosmic elements. The obtuse angle furnishes them with ex-
tendedness in general, and the idea of the obtuse-angled tri-
angle enlarges the enmattered forms and increases their vari-
ety and extent. The acute angle renders nature herself subject
to division, and the idea of the acute-angled triangle prepares
the way for the endless distinctions that come to be. In short,
the idea of the triangle underlies the extended and completely
divisible being of material bodies. So much we thought it nec-
essary to observe regarding triangles.

¥From these classifications’*® you can understand that the

118 1§7.1 On Philolaus see note at 22.14; and for other references
to him see 130.10, 173.11, 1744,

149 18,4 This phrase evidently refers back to the carly part of the
commentary on this definition, 164.27-166.13, the material about the
Pythagoreans being in a sense a digression,
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species of triangle arc seven in all, neither more nor less. The
equilateral triangle is one only and is acute-angled; but each
of the other two has three kinds. The isosceles is either right-
angled, obtuse-angled, or acute-angled; and the scalene like-
wise has the same three forms. If, then, each of these exists
in three species and equilateral triangles are of one kind only,
let us say that there are seven kinds of triangle in all. You can
also understand from the differences found in their sides the
analogy they bear to the corders of being. The equilateral
triangle, always controlled by equality and simplicity, is akin
to the divine souls, for equality is the measure of unequal
things, as the divine is the measure of all secondary things.
The isosceles is akin to the higher powers that direct material
nature, the greater part of which is regulated by measure,
whereas the lowest members are neighbors to inequality and
to the indeterminateness of matter; for two sides of the isosce-
les are equal, and only the base is unequal to the others. The
scalene is akin to the divided forms of life that are fame in
every limb**® and come limping to birth filled with matter,

XXX-XXXIV . Of quadrilateral figures a square is that
which is both equilateral and right-angled, an oblong

that which is right-angled but not equilateral, a rhombus
that which is equilateral but not right-angled, and a rhomboid
that which has its opposite sides and angles equal to one
another but is neither equilateral nor right-angled. Let -
quadrilaterals other than these be called trapezia.

Quadrilaterals ought first to be divided into two groups,
one called parallelograms, the other nonparalielograms, and
parallelograms into some that are both right-angled and equi-
lateral, such as squares, others that are neither, such as
rhomboids, and others either right-angled and not equilateral,
such as oblongs, or equilateral and not right-angled, such as
rhombi. For parallelograms necessarily have either both
equality of sides and right-angledness, or neither of them, or
one of them only; and the last is possible in two ways, so that

180 168.23  ywhetovo:, & play on the meaning of gxaiyrés, “lame.”
151 169.1 Def. XXII in Heiberg's text,
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parallelograms exist in four species. Of nonparallelograms
some have only two sides parallel and the other sides not, and
some have no sides at all parallel; the former are called
trapezia, the latter trapezoids. Of trapezia some have the sides
that join the parallels equal, others have them unequal; the
former are called isosceles trapezia, the latter scalene, Hence
there will be seven kinds of quadrilaterals: the square, the
oblong, the thombus, the rhomboid, the isosceles trapezium,
the scalene trapezinm, and the trapezoid.!®?

Posidonius makes a perfect division of rectilinear quadri-
laterals by positing these seven species of them, as he does
alse for the triangle.*** Euclid, however, cannot make the
division into parallelograms and nonparallelograms, since he
has not spoken of parallel lines nor taught us what the paral-
lelogram itself is. All trapezia and trapezoids he calls by the
general name “trapezia,” thus setting them off from the other
four classes, to which he correctly assigns the property of
paralielograms, that is, of having their opposite sides and
angles equal. For the square, the oblong, and the rhombus
have their opposite sides and angles equal; but he adds this
only for the rhomboid, since to say that it is neither equilateral
nor right-angled would be to set it forth by mere negations.
When we are at a loss for specific characterizing definitions,
we are compelled to use generic terms; and that he himself
shows this character to be common to all parallelograms we
shall learn later.

The rhombus resembles a square that has been shaken, and
the rhomboid an oblong that has been set in motion; hence

152 170012 The Munich codex has the following diagrams in the
margin:

ISQSCELES
SQUARE RHOMBUS TRAPEZIUM
\ \ f \ TRAPEZOID
SCALENE
DBLONG RHOMBOID TRAPEZIUM

(A

153 170015 Cf. 168.5-12 where, however, Posidonius is not men-
tioned.
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they do not differ from the square and the oblong with respect
to their sides, but only in the obtuseness or acuteness of their
angles, the others being right-angled. If you imagine the
square or the oblong being pulled at opposite corners, you
will find these angles contracting and becoming acute, the
others spreading out and appearing obtuse. It seems that even
its name is applied to the rhombus from this motion. I you
imagine the square in revolution,®** it will appear to be dis-
torted at its corners, just as the circle when twitled like a
sling appears to be an ellipse.

One might well ask why the square specifically has recetved
the designation “quadrangle.”'** “Triangle” is the common
term for all three-angled figures, including those not equi-
angular or equilateral; and “pentagon” is similarly used.
Why, then, cannot “quadrangle” likewise be applied to other
four-stded**® figures? Our geometer indeed, when discussing
these other figures, employs such phrases as “equilateral
triangle’* and “a pentagon which is equilateral and equi-
angular,**® which indicate that the triangle or the pentagon
could be other than equilateral and equiangular. But the word
“quadrangle” at once means the equilateral and right-angled
figure. The reason is this. The square is the only area whose
very nature exhibits an ideal with respect both to its sides and
to its angles. [Its sides are equal, and] each of its angles, being
a right angle, holds the measure of angles, a measure per-
mitting neither increase nor decrease; because it is supertor
in both respects, then, it has properly received the generic
designation, The triangle, even though it has equal angles,
has them all acute, and in the pentagon they are all obtuse.
Rightly, therefore, the square, being perfected by the equality

164 1722 poufotuevor. CE. péufe, “twirl.”

185 172.5  rerpdvywwor. This term was used alike for “square” and
for “quadrilateral” before and even after Euclid. His introduction of
rerpdmhevpor enabled ambiguity to be avoided (Heath, Euclid 1, 188),
yet the older use persisted. Even Proclus (166.10) has said that we
could have rerpéywra with more than four sides, and here the term
can hardly mean “squares.”

156 172,10 Proclus should have said “four-angled.”

157 172,11 E.g. in Def. XXIV (Heiberg's XX).

158 172.12 E.g. in Bk. IV, Prop. 11,
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of its sides and the rightness of its angles, has alone of all
quadrilaterals received this designation; for to those species
that excel we often apply eulogistically the designation of the
genus,

The Pythagoreans thought that this more than any other
four-sided figure carries the image of the divine nature. It is
their favorite figure for indicating immaculate worth; for the
rightness of the angles imitates integrity, and the equality of
the sides abiding power. Change is the offspring of inequality,
and steadfastness of equality; hence the causes of the firm
foundation of all things and of pure and impartial power are
naturally expressed by the square figure as an image of these
properties. Philolaus, moreover, in another of his reflections
calls the angle of the square the angle of Rhea, Demeter, and
Hestia. For since the square is the substance of carth and
the element nearest it, as we learn from the Timaeus>*
and since the earth receives effluences and generative powers
from all these goddesses, he rightly dedicates the angle of the
square to these life-giving divine forces. For some call the
earth Hestia or Demeter, and they say that it partakes of all
that Rhea is, and in her ar¢ all the generating causes in earthly
fashion. Hence he declares that the single bond of unity
among these species of the divine is the angle of the square.
They also liken the square to the whole of virtue, since it has
four right angles, each of them perfect in the way in which
we say that each of the virtues is perfect and self-sufficient,
namely, as a measure and a landmark for life, and all of them
intermediates between the obtuse and the acute angles. We
must not omit to observe that Philolaus dedicates the angle of
the triangle to four gods and the angle of the square to three,'*
showing their penetration of one another and the communion
of all in all, of ocdd numbers in the even and of even in the
odd, Hence a tetradic triad and a triadic tetrad that partake

169 173.15 This passage implies that the construction of the pri-
mary bodies described in the Timaeus should be attributed to Philo-
laus. But scc note at 22.14.

100 1745  Cf. 130.10-12, 167.1-3,
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of the generative and creative goods maintain the whole order
of generated things. The number twelve, which is their
product, ascends towards a single monad, the sovereignty of
Zeus. Phitolaus says that the angle of the dodecagon is the
angle of Zeus, because Zeus holds together in a single unity
the whole duodecimal number, In Plato likewise Zeus leads
“the twelve” and has absolute dominion over all things.'®

So much we thought it necessary to say about four-sided
figures in order to bring out the thought of the author of the
Elements and also to provide starting-points for speculative
reflections to those who seek knowledge of the intelligible and
invisible world.

XXXV.1%2 Parallel straight lines are straight lines which,
being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.

The basic propositions about parallels and the attributes
by which they are recognized we shall learn later, but what
parallel straight lines are is defined in the words above. They
must lie in one plane, he says, and when produced in both
directions do not meet but can be extended indefinitely. Lines
that are not parallel may be produced tc a certain distance
without meeting, but what characterizes parallel lines is that
they do not meet when extended indefinitely; and not simply
this, they are capable of indefinite extension in both directions
without meeting. Lines that are not parallel may be capable
of indefinite extension on one side but not on the other; as
they near each other on one side, they diverge more on the
other. The reason is that two straight lines cannot enclose
an area, and they would if they converged on both sides.
Further, the definition rightly adds that the straight lines
must be in the same plane; for if one of them should be in
the given plane and the other above it, they would always
be asymptotes to one another, whatever their position, but
they would not for this reason be parallel.

161 174,16 Phaedr. 246ef.
1e2 1751 Def. XXIII in Heiberg's text.
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So the plane must be one, and the lines must be produced
indefinitely in both directions and meet in neither. When these
conditions obtain, they will be parallel straight lines.

This is the way Euclid defines parallel straight lines. But
Posidonius says that parallel lines are lines in a single plane
which neither converge nor diverge but have all the perpen-
diculars equal that are drawn to one of them from points
on the other. Those lines between which the perpendiculars
become progressively |[longer or] shorter [intersect somewhere
because they]'®® converge upon one another; for a perpen-
dicular can determine both the heights of figures and the
distances between lines. Hence when the perpendiculars are
equal, the distances between the straight lines are equal, but
when they become greater or less, the distance increases or
decreases and the lines converge on the side on which the
perpendiculars are shorter.

But we must understand that absence of intersection does
not always make lines parallel, for the circumferences of con-
centric circles do not intersect; the lines must also be extended
indefinitely. This characteristic can be found not only in
straight lines but in others as well. One can think of a helix
inscribed around a straight line which can be prolonged with
the straight line indefinitely and never meet it. Such cases
Geminus rightly distinguishes from the former ones at the
outset.!** Some lines, he says, are finite and enclose a figure,
like the circle, the perimeter of an ellipse, the cissoid, and
many others; others are unlimited and can be extended
indefinitcty, like the straight line, the section of a right-angled
or an obtuse-angled cone,*** and the conchoid. Again of those
capable of being extended indefinitely some never enclose a
figure, like the straight line and the above-mentioned conic
sections, while others come together and, after making a

1483 176.11 Barocivs has a fuller text herc. I have included in
brackets the words taken from his translation.

164 176,26 The following account of Geminus' doctrine supple-
ments an earlier one at 111.3. See note at that point.

1435 177.5 Le. the parabola and the hyperbola, See note at 111.8.
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figure, then extend on indefinitely,'®® Of these some are
asymptotic, namely, those which however far extended never
meet, and others that do intersect are symptotic, Of asymp-
totic lines some are in the same plane with one another,
others not; and of the asymptotes that are in the same plane,
some are always equidistant from one another, others are
constantly diminishing the distance between themselves and
their straight lines, like the hyperbola and the conchoid.
Although the distance betwcen these lines constantly de-
creases, they remain asymptotes and, though converging upon
one another, never converge completely. This is one of the
most paradoxical theorems in geometry, proving as it does
that some lines exhibit a nonconvergent convergence. Of the
lings which are always equidistant from one another those
straight lines which never make the interval between them
less and which lie in the same plane are parallel. So much I
have selected from Geminus’ Philokalia’®” to elucidate the
subject before us.

168 177.9  Heath (Ewnclid 1, 160f.) suggests that the curve meant
here is a varicty of the conchoid. $ee also Tannery 11, 23.

167 177.24  Is this the title of Geminus’ comprehensive work or of

one of ils books, of which there must have been many? See Heath,
Euclid 1, 39,
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POSTULATES AND
AXIOMS

HE FIRST principles of geometry are divided into three

groups: hypotheses, postulates, and axioms. We have
explained the differcnce between them in the earlier
portions of this work,® but now let us examine particularly
and more precisely the distinction between postulates and
axioms, since they are the chief subjects of inquiry in the
present section. Hypotheses, or what are called definitions,
we have considered in the foregoing,

It is a common character of axioms and postulates alike
that they do not require proof or geometrical evidence but are
taken as known and used as starting-points for what follows.
They differ from one another in the way in which theorems
have been distinguished from problems.? Just as in a theorem
we put forward something to be seen and known as a conse-
quence of our hypotheses but in a problem are required to
procure or construct something, so in the same way® axioms
take for granted things that are immediately evident to our
knowledge and easily grasped by our untaught understand-
ings, whereas in a postulate we ask feave to assume something
that can easily be brought about or devised, not requiring
any labor of thought for its acceptance nor any complex
construction. Hence clear knowledge without demonstration
and assumption without construction distinguish axioms and

1178.3 At 76.6fI. Heiberg's text has Gpoc instead of {moféoes
and wowral fproera: instead of Proclus' dfwdpara, On these questions of
terminology and the substantive issues underlying them respecting the
foundations of Greek geometry see von Fritz, “Die APXAI in der
griechischen Mathematik,” in Archiv fir Begriffsgeschichie 1, 1953,
13-102, and Arpid Szabd, “Anfiinge der Euklidischen Axiomen-
systems,” in Q. Becker (ed.), Zur Geschichte der Griechischen Mathe-
maiik, Darmstadt, 1965, 355-461.

2178.13 See 71.74.

31792 Reading with Barocius xard ratrd for xeré rabre in
Friedlein.
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postulates, just as knowing from demonstration and accepting
conclusions by the aid of constructions differentiate theorems
from problems.

Principles must always be superior to their consequences
in being simple, indemonstrable, and evident of themselves.
In general, says Speusippus, in the hunt for knowledge in
which our understanding is engaged we put forward some
things and prepare them for use in later inquiry without having
made any elaborate excursion, and our mind has a clearer
contact with them than sight has with visible objects; but
others it is unable to grasp immediately and therefore ad-
vances on them step by step and endeavors to capture them
by their consequences. For example, drawing a straight line
from a point to a point is something our thought grasps as
obvious and easy, for by following the uniform flowing of the
point and by proceeding without deviation more to one side
than to another, it reaches the other point. Again if one of the
two ends of a straight line is stationary, the other end moving
around it describes a circle without difficulty. But if we should
wish to draw a one-turn spiral, we need a rather complicated
device, for the spiral is generated by a complex of motions;
and to construct an equilateral triangle will also require a
special method for constructing a triangle. Geometrical in-
telligence will tell me that, if I think of a straight line one end
of which is fixed and the other revolving about it, while a
point is moving along it from the stationary end, I describe a
monostrophic spiral; for when the end of the line which de-
scribes a circle has reached its starting-point at the same time
as the point completes its movement along the line, they
coincide and make me such a spiral. And again if 1 describe
two equal circles and join their point of intersection with the
centers of the circles and draw a straight line from one center
to the other, I shall have an equilateral triangle. It is far from
true, therefore, that these things can be done at first glance
and by simple reflection; we should be content to follow the
procedures by which the figures are constructed.

Whether such a construction is made easily or with diffi-
culty, or whether a demonstration proceeds through more or
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fewer middie terms, depends on the aptitudes of those who
use these methods: but that a demonstration or a construction
is necded at all results from the characteristic that con-
clusions Jack the clarity of postulates and axioms. Both of
these, postulate and axiom, must be simple and easy to
grasp. But a postulate prescribes that we construct or provide
some simple or easily grasped object for the exhibition of a
character, while an axiom asserts* some inherent attribute that
is known at once to one's auditors—such as that fire is hot,
or somc other quite evident truth about which we say that
they who are in doubt lack sense organs or must be prodded
to use them. So a postulate has the same general character as
an axiom but differs from it in the manner described. For each
of them is an undemonstrated starting-point, one in one way,
the other in another, as we have explained.

Some persons, however, insist on calling them all pos-
tulates, just as they call all inguiries problems. Thus Archi-
medes at the beginning of his fust book On FEquilibria®
says “we postulate that when ¢qual weights are taken from
equal lengths the remainders are equally balanced.” Yet one
might rather call this an axiom. Others designate all of them
axioms, as they call a thecorem everything that requires a
demonstration, The same analogy, it scems, has led them to
transfer a term from a specific to a general use, Nevertheless,
just as a problem differs from a theorem, so a postulate differs
from an axiom, even though both of them are undemon-
strated; the one is assumed because it is easy to construct,
the other accepted because it is easy to know, This is the
ground on which Geminus distinguishes postutate from axiom.
Others would say that postulates are peculiar to geometry,
while axioms are common to all sciences that deal with
quantity and magnitude. For it is the geometer who knows
that all right angles are equal and that a finite straight line may
be produced in a straight line, whereas that things equal io the

11819 Reading, apparently with Barocius, Méyeo for Méyew in
Fricdlein.

5181.18 Adopting Hultsch's emendation reé a {ooppomGy for rov
dmooppomisn {Rheinisches Museum MF. x1x, 1864, 450i1.).
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same thing are equal to cach other is a commen notion used
by the arithmetician and by all other scientists, cach adapting
the common truth to his particular subject-matter. But
Aristotle, as we have said earlier,” maintains that a postulate
is demonstrable and, even though not accepted by the learner,
can still be taken as a starting-point, whereas the axiom is as
such indemonstrable and everyone would be disposed to
accept it, even though some might dispute it for the sake of
argument.

These, then, are the three ways in which postulate and
axiom are distinguished. According to the first—that which
bases the distinction on the fact that the postulate produces
and the axiom knows—clearly it is not a postulate that all
right angles are equal. Nor is the fifth, that when two straight
lines are intersected by a third making the two interior angles
on one side of it less than two right angles, then the straight
lines when extended will meet on that side on which the two
angles are less than two right angles. For these statements
are not assumed for the sake of any construction, nor do they
demand that we produce anything; they only show a charac-
teristic belonging respectively to right angles and to straight
lines produced cn the side on which the angles are less than
two right angles. According to the second mode of distin-
guishing them, it will not be an axiom that two straight lines
do not enclose an area, although some persons still list it as
an axiom. For this is a character that betongs to the subject-
matter of geometry, like the principle that zll right angles are
equal. According to the third, the Aristotelian method, every-
thing that can be made convincing by proof will be a postulate,
and whatever is indemonstrable an axiom. It was therefore in
vain that Apollonius attempted to provide demonstrations for
axioms. Geminus aptly comments that the one party have
thought up demonstrations for indemonstrables and endeav-
ored to establish what everybody knows by means of less
well known middle terms, as Apollonius did when he tried to
demonstrate the truth of the axiom that things equal to the

6 182.14 See 76.8 and note.
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same thing are equal to each other,” whereas the other party
include things that need demonstration among the undemon-
strated matters, as did Euclid himself with his fifth and his
fourth postulates. For some say that his fourth alse is doubt-
ful and needs to be demonstrated. Is it not ridiculous that
theorems whose converses are demonstrable should be ranged
among the indemonstrables? For that the interior angles made
by intersecting straipght lines are less than two right angles is
demonstrated by Euclid himself in the theorem “in every
triangle two angles taken together in any way are less than
two right angles.”® And it is also clearly demonstrable that
the angle equal to a right angle is sometimes not a right
angle.® We ought not to admit, then, says Geminus, that the
converses of these propositions are indemonstrable. Thus it
seems, according to his arrangement, that there are only three
postulates, the other two and their converses requiring to be
established by demonstration, and that it is superfluous to
include among the axioms “two lines do not enclose an area”
if it can be established by demonstration.

So much for the difference between postulates and axioms.
Returning to axioms, we note that some of them are peculiar
to arithmetic, some peculiar to geometry, and some common
to both. That every number is measured by the number one
is an arithmetical axiom; to geometry belong the principles
that two equal straight lines will coincide with each other and
that every magnitude can be divided indefinitely; but that two
things equal to the same thing are equal to each other, and
similar axioms, are common to both sciences. But each of
them makes use of them only so far as its subject-matter re-
quires, geometry for magnitudes, arithmetic for numbers. In
the same way some postulates are peculiar to certain sciences,
others are common. That a number can be divided into least

7183.20 See 194.20ff.

81842 “This seems to me a low point in the commentary, Buclid
proves XVII because it is a weaker assertion than the parallel postu-
late. . . . His realization of the necessity for such a postulate despite
the provability of its converse may have been his greatest contribution
to geometry.” (LM.)

o 184.3 Proclus himself shows this at 189.121F,
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parts we should say is a postulate peculiar to arithmetic, that
every finite straight line can be produced in a straight line
peculiar to geometry, and that quantity is capable of indefinite
increase common to both. For both number and magnitude
are capable of such increase.

PosturLaTes I-111. Let it be postulated to draw a straight
line from any point io any point, to produce a finite
straight line continuously in a straight line, and 1o describe
a circle with any center and distance.

These three, because of their clarity and their demand
that we produce something, are necessarily ranked among the
postulates, at least according to Geminus. The drawing of a
line from any point to any poiat follows from the conception
of the line as the flowing of a point and of the straight line
as its uniform and wndeviating flowing. For if we think of the
point as moving uniformly over the shortest path, we shall
come to the other point and so shall have got the first postulate
without any complicated process of thought, And if we take a
straight line as limited by a point and similarly imagine its
extremity as moving uniformly over the shortest route, the
second postulate will have been established by a simple and
facile reflection. And if we think of a finite line as having one
extremity stationary and the other extremity moving about
this stationary point, we shall have produced the third postu-
late; for the stationary point will be the center and the straight
line the distance, and whatever length this line may have, such
will be the distance that separates the center from all parts of
the circumference.

If someone should inquire how we can introduce motions
into immovable geometrical objects and move things that are
without parts—operations that are altogether impossible—we
shall ask that he be not annoyed if we remind him of what
was demonstrated in the Prologue about things in the imagina-
tion,** namely, that our ideas inscribe there the images of all
things of which the understanding has ideas and that this
unwritten tablet was the lowest form of “nous,” the “passive.”

10 186.3 See 51.13-54,14.
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This statement, however, does not remove our difficulty, for
the “nous” that receives these forms from elsewhere receives
them through motion. But let us think of this motion not
as bodily, but as imaginary, and admit not that things without
parts move with bodily motions, but rather that they are
subject to the ways of the imagination. For “nous,” though
partless, is moved, but not spatiatly; and imagination has ifs
own kind of motion corresponding to its own partlessness. In
attending to bodily motions, we lose sight of the motions that
exist among things without extendedness, Partless things are
free from material space and external movements, but an-
other kind of motion and another space coordinate with their
motion can be discerned in them. We say that the point has
position in the imagination and do not ask how something
can remain partless and still be moving somewhere and
surrounded by space; for the space of extended things is
extended, that of unextended things unextended. Conse-
quently the forms peculiar to geometrical objects are quite
other than the things whose existence comes from them. The
motion of bodies is one thing, the motion of objects conceived
in imagination is something else; and the space of extended
objects is other than the space of partless beings. We must
keep them separate and not confuse them, lest we disarrange
the natures of things.

It appears that of these three postulates the first expresses
in an image how existing things are contained among their
more partless causes and bounded by them, and that they are
comprehended by them on all sides even before they come to
be. The straight line, for example, links already existing points
one to another, is bounded by them and included between
them. The second postulate shows how things can hold fast to
their own origins and yet go out to all things, preserving con-
tinuity with their principles and not being separated from
them, but ever driven by the all-powerful cause in them to
move forth. And the third postulate shows that whatever goes
forth turns back again to its own starting-point, for the revolu-
tion of the moving part of the line about its stationary end
which generates the circle imitates the circular return.
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But we must understand that the character of being pro-
duced indefinitely does not belong to all lines. It belongs
neither to the circular nor to the cissoid,'* nor to any of the
figure-describing lines, nor even to all those that do not make
figures. For not even the monostrophic spiral can be produced
indefinitely, since it has its existence between two points; nor
can any other of the lines so gencrated. Nor is it possible to
join every point with every other by every line, for not every
line can exist between all points. So much for these matters;
let us pass on to what follows.

POSTULATE IV, And that all right angles are equal to
one another.

If we admit that this statement is self-evident and does not
require proof, it is not a postulate according to Geminus, but
an axtom; for it attributes an intrinsic property to right
angles and does not ask that something be produced by
simple reflection. Nor is it a postulate according to Aristotle’s
classification, for in his opinion a postulate requires a proof.
But if we say it can be proved and seek to prove it, neither
then, in Geminus’ opinion, will it be classed among the
postulates.'®

Now the equality of right angles is manifest from our com-
mon notions; having the relation of a first term or bound!®
with respect to the indefinite increase or decrease of the angles
on either side of it, the right angle is equal to every right
angle. For this is how we have produced the primary right
angle, by making equal the two angles on either side of the
upright straight line against which it stands. But if we must
provide a graphic proof of this postulate, let us assume two
right angles, ABC and DEF. I say they are equal. If they are
not, one of them will be greater than the other. Let this be the

*1187.21 Heath (Euclid 1, 164f.) notes that Proclus’ conception of
the cissoid and of the single-turn spiral is peculiar in that he thinks of
the former as a closed curve and similarly regards the latter as stopping
short at the point reached after one complete revolution of the straight
ling (187.22-23). On the latter see also Tannery 1, 39.

12 188.11 Se. but rather among the theorems.

18 188.13 Reading with Barocius 8sov instead of 3pov in Friedlein.
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angle at B. Then if DE be made to coincide with AB, the line
EF will fall within the angle, say, at BG.** Let BC be extended
to H. Since ABC is a right angle, so also is ABH, and the
two angles are equal to one another {for a right angle is by
definition equal to its adjacent angle). Angle ABH, then, is
greater than angle ABG.*> Now let BG be extended to K.
Since ABG is a right angle, its adjacent angle also will be a
right angle, equal to ABG. The angle ABK, then, is equal to
angle ABG, so that angle ABH is less than ABG. But it is
also greater, which is impossible. Hence it is false that a right
angle can be greater than a right angle.

This proof has been given by other commentators and
required no great study. But Pappus'® has rightly pointed out
that the converse of this postulate is not true, namely, that the
angle equal to a right angle is always a right angle. Only if the
angle is rectilinear will it always be a right angle; it is possible
to show that an angle with circular boundaries is equal to a
right angle, and clearly we should not call such an angle a
right angle. For in our classification of rectilinear angles we
assumed that a right angle is produced by a straight line which
stands upright with respect to the base line, so that an angle

14 189.1 Reading with Grynaeus and Barocius mrrére instead of
rworredw in Friedlein,

15 189,5 Reading agn for the obviously erroneous afv in Friedlein.

18 189,12 Pappus of Alexandria lived at the end of the third and
the beginning of the fourth century. He is the author of several com-
mentaries, including one on Euclid, which have been lost, and of a
Collection in eight books covering the whole of Greek geometry,
which is extant and has been edited by Hultsch, 1876-1878. See Heath
11, 355-439, and on Proclus’ use of Pappus Euclid 1, 24-27; also Gow,
304-311; and Van der Waerden, 286-250.
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equal to a right angle will not always be a right angle unless
it is also rectilinear. Let us imagine two equal lines AB and

A

B c

BC making a right angle at B, and let us describe with center
and distance two equal semicircles upon them, AEB and
BFC. Since the semicircles are equal, they will coincide with
one another and the angle EBA will be equal to the angle
FBC. Let ABF be added to each. Then the right angle as a
whole will be equal to the lunular angle EBF, and yet this
lunular angle is not a right angle. In the same way, if the
angle at ABC is an obtuse or an acute angle, it can be shown
that the lunular angle is equal to it, for this is the kind of
circular angle that can always be coordinated with rectilinear

A

C

angles. But we should note this: in the case of the right angle
and the obtuse angle we must add the angle included hetween
the straight line AB and the circumference BF, whereas in the
case of the acute angle it must be subtracted; for the straight
line AB cuts the circumference BFC. Both these cases are set
forth in the diagrams,

Let these proofs, then, be taken as showing both that all
right angles are equal to one another and that not every
angle equal to a right angle is a right angle. For if such an
angle is not even rectilinear, how could it be called a right
angle?
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This postulate also shows that rightness of angles is akin to
equality, as acuteness and obtuseness are akin to inequality.
Rightness is in the same column with equality,'” for both of
them belong under the Limit, as does likeness also. But
acuteness and obtuseness are akin to inequality, as is also un-
likeness; for all of them arc the offspring of the Unlimited.
This is why those who look at the quantity of angles say that a
right angle is equal to a right angle, while others, looking at
the quality, say it is similar. For similarity has the same po-
sitton among qualities that equality has among quantities.

POSTULATE V. And that, if a straight line falling on two
straight lines makes the interior angles on the same side
less than two right angles, the straight lines, if produced
indefinitely, will meet on that side on which are the angles
less than the two right angles.

This ought to be struck from the postulates altogether. For
it s a theorem—one that invites many gquestions, which
Ptolemy*® proposed to resolve in one of his books—and
requires for its demonstration a number of definitions as well
as theorems.* And the converse of it is proved by Euclid
himself as a theorcm. But perhaps some persons might mis-
takenly think this proposition deserves to be ranked among
the postulates on the ground that the angles’ being less than
two right angles makes us at once believe in the convergence
and intersection of the straight lines. To them Geminus has
given the proper answer when he said that we have learned
from the very founders of this science not to pay attention to
plausible imaginings in determining what propositions are to

17 191.8  See note at 7.3.

13 191.23 Claudius Ptolemaeus, an Alexandrian astronomet and
geographer of the second century, author of the famous Zirrafis
(known to us through the Arabs as the 4lmagest), a comprehensive
treatise on Greek astronomy in thirteen books. See Heath 1, 273-297;
Gow, 293-301; Van der Waerden, 271-274. For more about the book
mentioned in this passage see Proclus 365.7-368.23, and Heath 1,
295-297,

19 19125 Cf. 365.71.
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be accepted in geometry. Aristotle likewise says that to accept
probable reasoning from a geometer is like demanding proofs
from a rhetorician.”” And Simmias is made by Plato to say,
“I am aware that those who make proofs out of probabilities
are impostors.”®! So here, although the statement that the
straight lines converge when the right angles are dimin-
tshed is true and necessary, yet the conclusion that because
they converge more as they are extended farther they will meet
at some time is plausible, but not necessary, in the absence of
an argument proving that this is true of straight lines. That
there are lines that approach each other indefinitely but never
meet seems implausible and paradoxical, yet it is never-
theless true and has been ascertained for other species of lines.
May rot this, then, be possible for straight lines as for those
other lines? Until we have firmly demonstrated that they
meet, what is said about other lines strips our imagination of
its plausibility. And although the arguments against the inter-
section of these lines may contain much that surprises us,
should we not all the more refuse to admit into our tradition
this unreasoned appeal to probability?

These constderations make it clear that we should seek a
proof of the theorem that lies before us and that it lacks the
special character of a postulate. But how it is to be proved,
and with what arguments the objections to this proposition
may be met, we can only say when the author of the Elements
is at the point of mentioning it and using it as obvious.?2 At
that time it will be necessary to show that its obvious character
does not appear independently of demonstration but is turned
by proof into a matter of knowledge.

Axioms [-V, Things which are equal to the same thing are

also equal to one another; and if equals be added to equals

the wholes are equal; and if equals be subtracted from equals

the remainders are equal; and the whole is greater than the
2019211  Nie, Eth, 1094b26f.

21 192,13  Phaedo 92d.
221937 See 364.13 and 371.10.
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parl; and things which coincide with one another are equal
to one another.*?

These are what are generally called indemonstrable axioms,
inasmuch as they are deemed by everybody to be true and no
one disputes them, Often indeed premises in general, of what-
ever sort they may be, whether they occur to us with genuine
immediacy or require some supplementary teaching, are called
“axioms.” The members of the Stoa, at least, are accustorned
to designate every simple affirmative proposition an “ax-
iom,”?" and whenever they write logical treatises for us
they entitle them “About Axioms.”* But some persons more
accurately distinguish axioms from other premises and call
“axiom” a premise that is immediate and self-evident because
of its clarity, as Aristotle and the geometers say. According to
them, axiom and “common notion” mean the same thing.
We are therefore far from inclined to praise the geometer
Apollonius for furnishing, as he thought, proofs of the
axioms, doing the precise opposite?® of Euclid; for Euclid
enumerated what is demonstrable among the postulates,
whereas Apollonius tried to discover demonstrations for in-
demonstrables. But demonstrables and indemonstrables differ
in nature from one another, as we saw; and the sciences
dealing with immediate premises that everywhere strike us
because of their clarity belong to a different class from the
sciences that employ demonstrations, for these get their
starting-points from the former, taking and using them as
they are needed for establishing their own conclusions.

23 193.14 Barocius' translation contains ten axioms; Heiberg's
Greek text contains nine, of which four are bracketed as presumably
later additions, leaving only the five listed by Proclus. But Axioms IV
and V in Proctus are listed in the reverse order in Heiberg; and in
Heiberg they carry the heading sowsl &wora: (“common notions™)
instead of dafwuara (“axioms”), On these variations in designation
and in content see note at 178.3.

24 1942 See nate at 77.3.

25 194.3 T follow Barocius here instead of the unintelligible text of
Friedlein. For this title sce von Arpim 1, 5.6f.

26 194.12 Reading with Barocius drwevavriws for dmevarrios in
Friedlein.
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The proof that Apollonius was persuaded he had discov-
ered for the first of the axioms involves a middle premise that
is not better known than the conclusion, if indeed it is not
more doubtful. One can learn this from a passing glance at his
proof. “Let A be equal to B,” he says, “and the latter to C.
I say that A is also equal to C. Since A, being equal to B,
occupies the same space as it, and since B, being equal to C,
occupies the same space as it, A also occupies the same space
as C. Therefore they are equal.” This argument involves two
propositions that we must have previously accepted: one, that
things which occupy the same space as each other are equal;
the other, that things which occupy the same space as some
identical third thing also occupy the same space as each other.
Obviously these are far less clear than the proposed axiom.?”
For how do things fill the same space so as to be equal? Do
they occupy it simultaneously as wholes, or successively in
turn, or by some system of proportion? So it is altogether
unacceptable to shift attention to space, which is far more
unknown to us than the things in space. At any rate its nature
is controversial and difficult to discover. Not to multiply words
on this matter, we must present all axioms as immediate and
self-evident, known from themselves alone, and trustworthy.
He who adjoins a proof to things already abundantly evident
does not confirm their truth but weakens the clarity that they
have when we accept them without instruction.

This, then, we must accept in advance as the criterion of
the peculiar character of axioms and understand that they all
belong to the common genus of mathematics, For each of
them is true not only of magnitudes, but also of numbers, of
motions, and of times. This is necessarily so. For equal and
unequal, whole and part, greater and less, are common char-
acters of both discrete and continuous magnitudes. The in-
vestigation of time intervals also requires that all these propo-
sitions be accepted as obvious; and so does the study of
motion, and number, and magnitude. In all these areas it is

27 195.11 Von Fritz (Archiv fir Begriffsgeschichie 1, 1955, 65,
100) suggests that Apollonius’ purpose was rather to prove the transi-
tivity of congruence for lines than to prove the first axiom.
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true that things equal to the same thing are equal to each
other, and so also is any other of the axioms that we may
assume. These axioms are common, but each individual uses
them with reference to his specific subject-matter and to the
extent which his subject-matter demands. One man applies
them to magnitudes, another to numbers, another to intervals
of time. In this way, although the axioms are general, they
lead to specific conclusions in each science.

Furthermore, there is no need to reduce them to the lowest
possible number, as Heron* does when he proposes three
only; for that the whole is greater than the part is also an
axiom, which our geometer often invokes for aid in his proofs,
and so too that things which coincide are equal, a principle
that immediately hereafter contributes to the proof of the
fourth theorem. Nor do we need to add others and then still
others, some peculiar to geometry (in violation of what we
have said about axioms as common principles), such as that
two lines do not enclose an arca, or some that are only corol-
laries of those mentioned, such as that doubles of the same
thing are equal; for this last follows from the principle that if
you add equals to equals the sums are equal. For when
quantities equal®® to half of a given quantity add this very
half, they become double the same thing and are equal to one
another by virtue of the equal additions. And by this principle
not only doubles, but triples and any multiples of the same
things, will evidently be equal.

With these axioms Pappus says we should include “If un-
equals be added to equals, the excess of one sum over the
other is equal to the excess of one of the added quantities over
the other,” and its complement, “If equals be added to un-
equals, the excess of one sum over the other is equal to the
excess of one of the original quantities over the other.”
Although these principles too are evident of themselves, yet
they can be demonstrated in the following fashion. Let A
and B be equals, and let unequals C and D be added to them,
C being greater than D by E. Then since A is equal to B and

2R 196,16 On Heron see note at 41,10,
29 196.27 Reading with Grynacus iea for feer in Friedlein.
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F equal to D, A and F together are equal to B and D. For if
equals be added to equals the sums are equal. Hence C and A
together exceed B and D by E only, the quantity by which
alone C exceeds D, Again let C and D be unequals, let equals
A and B be added, and let the excess of C over D be E. Then
since A is equal to B and A and F together are equal to B and
D, the sum of A and C will exceed the sum of B and D by E
alone, the amount by which C exceeds D.

These results are consequences of the axioms laid down
above and are rightly omitted in most copies.®* And all the
others that he® adds are anticipated in the definitions and
follow from them: for example, that all parts of a plane, and
all parts of a straight line, coincide with one another (for
everything that is stretched to the utmost has this character);
that a point divides a line, a line divides a plane, and a plane
divides a solid (for all these figures are divided by the ele-
ments by which their adjacent parts are bounded); and that
infinity in magnitude exists both by addition and by removal,
though potentially in each case (for every continuous magni-
tude is capable of indefinite division and indefinite increase).

30 198.4 Standard texts? Or lists of axioms? 197.6 suggests such a

standard list.
31 [98.5 l.e. Pappus,
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OW THAT we have summed up these matters, it re-
mains' for us to examine the propositions that come
after the principles. Up to this point we have been dealing
with the principles, and it is against them that most critics of
geometry have raised objections, endeavoring to show that
these parts? are not firmly established. Of those in this group
whose arguments have become notorious some, such as the
Sceptics,® would do away with all knowledge, like enemy
troops destroying the crops of a foreign country, in this case a
country that has produced philosophy, whereas others, like
the Epicureans, propose only to discredit the principles of
geometry. Another group of critics, however, admit the prin-
ciples but deny that the propositions coming after the prin-
ciples can be demonstrated unless they grant something that is
not contained in the principles. This method of controversy
was followed by Zeno of Sidon,* who belonged to the school
of Epicurus and against whom Posidonius has written a whole
book and shown that his views are thoroughly unsound,
The disputes about the principles have been fairly well
disposed of in our preceding exposition, and Zeno’s”attack
will concern us a little later.® For the present let us briefly

1199.2 1 follow Barocius in reading Aourér for Aoirdr. This sectior
of the text (to 200.18) in Barocius is continuwous with the preceding
and constitutes the end of the Principia. Grynaeus also makes it con-
tinuous with the preceding but provides no separate heading for the
Propositions that follow.

2199.5 To explain r& uépy in Friedlein’s text we must assume that
raira has dropped out just before these words.

31999 ‘Egexrinod, the followers of Pyrrho of Elis, who advocated
withholding judgment in order to avoid falling into error. Diog. Laert.
I, 16; IX, 69-70.

+ 199,15 Zeno of Sidon, an Epicurean of the late second and early
first century B.C., noted as a lucid and copious author. Diog. Laert.
VIL, 35; X, 25; Cicero, Academica I, 46.

32006 At 214,181,
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review the definitions of theorem and problem, the distinction
between them, the parts of each and the kinds into which
they can be divided, and then turn te the exposition of the
matters demonstrated by the author of the Elements. We shall
select the more elegant of the comments made on them by the
ancient writers, though we shall cut short their endless
loquacity and present only what is most competent and
relevant to scientific procedures, giving greater attention to the
working out of fundamentals than to the variety of cases and
lemmas which, we observe, usually attract the attention of the
younger students of the subject.

L% On a given finite straight line to construct an equilateral
triangie.

Science as a whole has two parts: in one it occupies itself
with immediate premises, while in the other it treats system-
atically the things that can be demonstrated or constructed
from these first principles, or in general are consequences of
them. Again this second part, in geometry, is divided into the
working out of problems and the discovery of theorems. It
calls “problems” those propositions whose aim is to produce,
bring into view, or construct what in a sense does not exist,
and “theorems” those whose purpose is to see, identify, and
demonstrate the existence or nonexistence of an attribute,
Problems require us to construct a figure, or set it at a place,
or apply it to another, or inscribe it in or circumscribe it
about another, or fit it upon or bring it into contact with an-
other, and the like; theorems endeavor to grasp firmty and
bind fast by demonstration the attribuies and inherent prop-

8200.19 There is no point in reproducing Friedlein's separate
niumbering of problems and theorems, and T have merely assigned
numbers to the propositions, as does Heiberg in his edition of the
Elernents. The distinction beilween theorem and problem is one to
which Proclus attaches great methodological importance; but although
he usually indicates at the beginning of his commentary on a proposi-
tion whether it is a problem or a theorem, yet in later references to
it he usually calls it a theorem, or more simply designates it by a
number, e.g. “the ninth,” or “the fourth.”
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erties belonging to the objects that are the subject-matter of
geometry.

Every kind of question that is a possible subject of inquiry
is considered by geometry, some of them being referred to
problems, others to theorems. Geometry asks the question
“What is it?” and that in (wo senses: it wants either the defini-
tion and notion or the actual being of the thing. I mean, for
example, when it asks “What is the homoeomeric line?” it
wishes to find the definition of such a line, namely, *the ho-
moeomeric line is a line all of whose parts fit upon each
other,” or to grasp the actual species of homoeomeric lines,
that is, “it is either a straight line, a circular line, or a cylin-
drical helix.” In addition, geometry asks “Does the object
exist as defined?” This it does most of all in diorismi, examin-
ing whether the question proposed is or is not capable of solu-
tion, to what extent it is so capable, and in how many ways.
And of course geometry asks “What sort of thing is it?” For
when it investigates the properties that belong intrinsically to
a triangle, or a circle, or to parallel lines, this is clearly an
attempt to determine what sort of thing it is.

Many persons have thought that geometry does not investi-
gate the cause, that is, does not ask the question “Why?”
Amphinomus is of this opinion, though Aristotle originated
it.” But you will find this question also included in geometry,
says Geminus. For is it not the task of the geometer to inquire
why it is that an indefinite number of equilateral polygonal
figures can be inscribed in a circle, whereas in a sphere it is
not possible to inscribe an indefinite aumber of polyhedra
with equal sides and angles and composed of similar faces?
For whose task would it be, if not the geometer’s, to ask and
find the answer to this question? It is true that, when the
reasoning employs reduction to impossibility, geometers are
content merely to discover an attribute; and again when they
use a previous demonstration to prove a particular concluston,

1202.11 This reference to Aristotle is difficult to understand. The
Post. Anal. insists that demonstration i3 reasoning that establishes
the cause (alrie or & +¢): cf. esp. 85b23ff. And the airia that Aris-

totle demands appears to be identical with the conception of Geminus,
as cited here.

-~ 158 —



203

204

PROFOSITIONS: PART ONE

the cause is not evident. But if the conclusion is universal and
applies to all similar cases, the reason why is by that very
fact made manifest.

So much for the questions that geometry considers. Every
problem and every theorem that is furnished with all its parts
should contain the following elements: an enunciation, an
exposition, a specification, a construction, a proof, and a
conclusion.® Of these the enunciation states what is given and
what is being sought from it, for a perfect enunciation consists
of both these parts. The exposition takes separately what is
given and prepares it in advance for use in the investigation.
The specification takes separately the thing that is sought and
makes clear precisely what it is. The construction adds what
is lacking in the given for finding what is sought. The proof
draws the proposed inference by reasoning scientifically from
the propositions that have been admitted. The conclusion re-
verts to the enunciation, confirming what has been proved.

So many are the parts of a problem or a theorem. The most
essential ones, and those which are always present, are enun-
ciation, proof, and concluston; for it is alike necessary to
know in advance what is being sought, to prove it by middle
terms, and to collect what has been proved. It is impossible
that any of these three should be lacking; the other parts are
often brought in but are often left out when they serve no
need. For example, both specification and exposition are
omitted in the problem “To construct an isosceles triangle
having each of its base angles double the other angle.”® And
in most theorems there is no construction, because the ex-
position is sufficient, without the addition of anything else, to
prove the proposed conclusion from the given, When, then,
do we say the exposition is lacking? When the enunciation
contains no statement of what is given. For although enun-
ciation in general consists of what is given and what is sought,
this is not always so. Sometimes it states only what is sought,
that s, what must be known or constructed, as in the problem

8203.4f. The Greek terms here are respectively wpéraces, Eedeocs,
Seopiopds, xaragxewt, drédeckis, ovpTépadus.

©204.2 Euclid 1V. 10.
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just mentioned. For that problem does not announce what is
the given from which we are to construct an isosceles triangle
having each of its equal angles double the remaining angle, but
simply that we are to construct such a triangle. At the same
time even in this case we understand the proposal on the basis
of preexisting knowledge, for as it happens we know the
meaning of “isosceles,” of “equality,” and of “double”; and
such preexisting knowledge, Aristotle says,'? is the characteris-
tic feature of all discursive learning. Nevertheless there is no
specific hypothesis, as in other problems—for example, when
we are required to divide a given finite straight line into two
equal parts.’! For here a straight line is given, and we are
asked to divide it into two parts; so what is given is separate
from what is sought. When, therefore, the enunciation con-
tains both these elements, then we find both specification
and exposition; but when the given is lacking, sc are these
others also. For the exposition is dependent on the given
and the specification will be identical with the enunciation.*?
For what else could you say in defining the problem men-
tioned than that we are to construct an isosceles of such-and-
such a sort? But this is what the enunciation said. Whenever,
therefore, an enunciation does not contain a statement both
of what is given and of what is sought, the exposition is silent
because there is no given element to expound, and the speci-
fication is omitted in order not to repeat the enunciation. You
could find many other such problems, particularly in the
arithmetical books and in Book X, where we are asked, for
example, to find two straight lines commensurate in square
that have a mean proportional between them,'* and many
other cases of this sort.

Furthermore, everything that is given is given in one of the
following ways: in position, in ratio, in magnitude, or in
species, A point is given in position only; but the line and

16 204,17 FPost. Anal, 71al-2.

11204.20 X below.

12205.1 Omitting with Schénberger the period and the ydp in the
following sentence.

12205.11  Euclid X. 28. The arithmetical books are VII, VIIL, and
IX.
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the other figures may be given in all these ways. When we
speak of a given angle [to be bisected] as rectilinear, we
declare its kind, that is, show what sort of angle is given,
namely, a rectilinear, so that we may not attempt to bisect a
curvilinear angle by the same method, When we are required
from two given unequal straight lines to cut off from the
greater a length equal to the lesser,'* our given is presented in
magnitude; for greater and less, finite and unbounded, are
predications peculiar to magnitude. When we say that if
four magnitudes are in proportion they will also be in propor-
tion alternately,'® what is given is an identity of ratios among
these four quantities. Whenever we are asked to place at a
given point a straight line equal to a given line,'® then the
point is given in position; and since the position may vary, the
construction admits of various possibilities. The given point
may lie outside the straight line, or on it and at either one of
its ends, or on the portion between its extremities, Since,
therefore, the given may be understood in these four ways,
clearly the exposition may be fourfold in kind. Sometimes two
or three of the ways of being given are combined.

What is called “proof” we shall find sometimes has the
properties of a demonstration in being able to establish
what is sought by means of definitions as middle terms, and
this is the perfect form of demonstration; but sometimes it
attempts to prove by means of signs.*™ This point should not
be overlooked. Although geometrical propositions always de-
rive their necessity from the matter under investigation, they
do not always reach their results through demonstrative
metheds. For example, when from the fact that the exterior
angle of a triangle is equal to the two opposite interior
angles it is shown that the sum of the interior angles of a
triangle is equal to two right angles,'® how can this be called a
demonstration based on the cause? Is not the middle term
used here only a sign? For even though there be no exterior

1420521 Asin Il 132061 Asin V. 16,
16206.4 Asin IL

17 206.15  rexudma. See Arist, Prior Anal. T0bI-3.

18 206,22 As in XXXII below.
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angle, the interior angles are equal to two right angles; for it
is a triangle even if its side is not extended. But when we
demonstrate that the triangle constructed by the drawing of
circles is equilateral, our approach is from the cause. For we
can assert that it is the similarity and equality of the circles
that causes the equality of the sides of the triangle.

Furthermore, mathematicians are accustomed to draw what
is in a way a double conclusion. For when they have shown
something to be true of the given figure, they infer that it is
true in general, going from the particular to the universal
conclusion. Because they do not make use of the particular
qualities of the subjects but draw the angle or the straight
line in order to place what is given before our eyes, they
consider that what they infer about the given angle or straight
line can be identically asserted for every similar case. They
pass therefore to the universal conclusion in order that we
may not suppose that the result is confined to the particular
instance. This procedure is justified, since for the demonstra-
tion they use the objects set out in the diagram not as these
particular figures, but as figures resembling others of the same
sort, It is not as having such-and-such a size that the
angle before me is bisected, but as being rectilinear and noth-
ing more. Its particular size is a character of the given angle,
but its having rectilinear sides is a common feature of all rec-
tilinear angles. Suppose the given angle is a right angle. If
I used its rightness for my demonstration, I should not be
able to infer anything about the whole class of rectilinear
angles; but if ] make no use of its rightness and consider
only its rectilinear character, the proposition will apply
equally to al!l angles with rectilinear sides.

Let us view the things that have been said by applying
them to this our first problem. Clearly it is a problem, for it
bids us devise a way of constructing an equilateral triangle.
In this case the enunciation consists of both what is given and
what is sought. What is given is a finite straight line, and what
is sought is how to construct an equilateral triangle on it. The
statement of the given precedes and the statement of what is
sought foltows, so that we may weave them together as “If
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there is a finite straight line, it is possible to construct an
equilateral triangle on it.” If there were no straight line, no
triangle could be produced, for a triangle is bounded by
straight lines; nor could it if the line were not finite, for an
angle can be constructed only at a definite point, and an un-
bounded line has no end point.

Next after the enunciation is the exposition: “Let this be
the given finite line.”® You see that the exposition itself men-
tions only the given, without reference to what is sought.
Upon this follows the specification: “It is required to con-
struct an equilateral triangle on the designated finite straight
ling.” In & sense the purpose of the specification is to fix our
attention; it makes us more attentive to the proof by an-
nouncing what is to be proved, just as the exposition puts us in
a better position for learning by producing the given element
before our eyes. After the specification comes the construc-
tion: “Let a circle be described with center at one extremity
of the line and the remainder of the line as distance; again let
a circle be described with the other extremity as center and the
same distance as before;* and then from the point of inter-
section of the circles Jet straight lines be joined to the two
extremities of the given straight line.” You observe that for
the construction 1 make use of the two postulates that a
straight line may be drawn from any point to any other and
that a circle may be described with [any] center and distance.
In general the postulates are contributory to constructions and
the axioms to proofs. Next comes the proof: “Since one of the
two points on the given straight line is the center of the circle
enclosing it, the line drawn to the point of intersection is

12208.17 Euclid’s construction is as follows. Since Proclus follows
Euclid’s proof fairly closely in the commentary on this proposition, it
is unnecessary to reproduce Euclid’s reasoning here.

C

/\
\/

20209.3 This and the following line in Friedlein have obviously
been corrupted. Barocius had a better text, and I follow his translation,
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equal to the given straight line. For the same reason, since
the other point on the given straight line is itself the center
of the circle enclosing it, the line drawn from it to the point
of intersection is equal to the given straight line.” These
inferences are suggested to us by the definition of the circle,
which says that all the lines drawn from its center are equal.
“Each of these lines is therefore equal to the same line; and
things equal to the same thing are equal to each other” by the
first axiom. “The three lines therefore are equal, and an
equilateral triangle [ABC]*' has been constructed on this
given straight line.” This is the first conclusion following upon
the exposition. And then comes the general conclusion: “An
equilateral triangle has therefore been constructed upon the
given straight line.” For even if you make the line double
that set forth in the exposition, or triple, or of any other length
greater or less than it, the same construction and proof
would fit it,

To these propositions he adds: “This is what it was re-
quired to do,” thus showing that this is the conclusion of a
problem; for in the case of a theorem he adds: “This is what
was to be demonstrated.” For problems announce that some-
thing is to be done, theorems that some truth is to be dis-
covered and demonstrated. In general, then, our geometer
adds these words to his conclusions to show that what the
enunciation stated has been accomplished, joining the end to
the beginning in imitation of the Nous that unfolds itself and
then returns to its starting-point. But he does not always add
the same words: sometimes they are “This is what it was
required to do” and sometimes “This is what was to be dem-
onstrated,” according to the difference between problems and
theorems.

We have thus exercised ourselves and clarified all these
distinctions by applying them to a single case, the first prob-
lem. The student should do this also for the remaining
propositions, asking which of the principal elements are in-

21 20923 Inserted from Euclid’s text, which Proclus must have
used in his exposition, in order to mark the contrast between the two
conclusions drawn.
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cluded and which are left out, in how many ways the given is
formulated, and what are the principles from which we obtain
the construction or the proof. For a comprehensive survey of
these matters will provide no little exercise and practice in
geometrical reasoning.

Now that we have made these distinctions, let us briefly
run through certain things dependent on them, namely,
lernma, case, porism, objection, and reduction.?

The term “lemma” is often used to designate any proposi-
tion invoked for the purpose of establishing another, as when
we assert that a proof can be made from such-and-such a lem-
ma.* But the specific meaning of “lemma” in geometry is “a
proposition requiring confirmation.” Whenever for a con-
struction or a demonstration we assume something that has
not been demonstrated but needs to be proved, in such a case,
considering that the assumed proposition, though doubtful,
is worthy of inquiry on its own account, we call it a lemma, It
differs from a postulate and an axiom in being a matter for
demonstration, whereas they are invoked in their own right
without demonstration to establish other propositions. The
best aid in the discovery of lemmas is 2 mental aptitude for
it. For we can see many persons who are keen at finding
solutions but do so without method. Thus Cratistus,® in
our own day, was expert in arriving at the desired result from
first principles, and with the fewest possible; but it was
natural ability that led him to his discoveries. Nevertheless
there are certain methods that have been handed down, the
best being the method of analysis, which traces the desired
result back to an acknowledged principle. Plato, it is said,
taught this method to Leodamas,?* who also is reported to

22210.28f. The corresponding Greek terms are Ajpua, wries,
mopwoua, Ivoraas, dwaywyd.

282114 Proclus gives an example below (216.1f.) of the use of
a lemma and introduces and establishes a lemma at 319.5f. VII below
is also a lemma, he says (264.15), preparatory to the proof of VIII.

24211.16 Mothing more seems 1o be known of Cratistus,

23211.22 Cf. Diog. Laert. III, 24, That Plato taught the method
of analysis need not mean that he discovered it. See Heath 1, 291f,,
and Euclid 1, 134,
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have made many discoveries in geometry by means of it: A
second is the method of digeresis, which divides into its natural
parts the genus proposed for examination and which affords
a starting-point for demonstration by eliminating the parts
irrelevant for the establishment of what is proposed. This
method also Plato praised as am aid in all the sciences.?® A
third is the reduction to impossibility, which does not directly
show the thing itself that is wanted but by refuting its contra-
dictory indirectly establishes its truth. Such is the scientific
meaning of “lemma,”

A “case” announces that there are different ways of making
the construction, by changing the position of the peints, lines,
planes, or solids involved. Variations in case are generally
made evident by changes in the diagram, wherefore it is called
“case,” because it is a transposition in the construction.?’

“Porism” is a term applied to a certain kind of problem,
such as those in the Porisms of Euclid.?® But it is used in its
special sense when as a result of what is demonstrated some
other theorem comes to light without our propounding it.
Such a theorem is therefore called a “porism,”*® as being 2
kind of incidental gain resulting from the scientific demon-
stration.

An “cbjection” prevents an argument from proceeding on
its way by opposing either the construction or the demonstra-
tion. Unlike the proposer of a case, who has to show that the
proposition is true of it, he who makes an objection does not
need to prove anything; rather it is necessary [for his op-
ponent] to refute the objection and show that he who uses it is

in error.

262121 The method of division (Siaipests} is emphasized in
almost all of Plato’s later dialogues, particularly in the Phaedrus,
Sophist, Poliricus, and Philebus.

27212.10 Perhaps because wvrdois, the noun corresponding to the
verb wimrw, often means a “fall,” e.g. of dice, as in Plato’s Rep. 604c.

28 212.13 For further light on Euclid’s lost Porisms see 301.21-
302.13.

2# 212,16 From ropitw, “furnish,” “provide.” For further explana-
tion see 303.5-17.

— 166 —



213

214

PROPOSITIONS: PART ONE

“Reduction” is a transition from a problem or a theorem
to another which, if known or constructed, will make the
original proposition evident. For example, to solve the prob-
lem of doubling the cube geometers shifted their inquiry to
another on which this depends, namely, the finding of two
mean proportionals; and thenceforth they devoted their ef-
forts to discovering how to find two means in continuous
proportion between two given straight lines. They say that the
first to effect reduction of difficult constructions was Hippoc-
rates of Chios,*® who also squared the lune and made many
other discoveries in geometry, being 2 man of genius when
it came to constructions, if there ever was one.

So much for these matters. Now let us move on to the
problem before us. It is evident to everyone that the equi-
lateral is the most beautiful of triangles and most akin to the
circle, which has all its lines from the center equal and a
single simple line bounding it** from without. And the en-
closing of the triangle by the two circles, by each of them
indeed only in part—for it is inscribed in the whole of neither
circle but only in the area consisting of segments of both®*—
seems to indicate in a likeness how the things that proceed
from first principles receive perfection, identity, and equality
from these principles. In this way too the things that move in
a straight line are carried about in a circle through the eternal
world-process, and souls, despite their movements from place
to place,*® are likenesses of the unmovable activity of Nous
because of their periodic return to their starting-points. It is
said also that the life-giving source of souls is bounded by a
twofold Nous. If, then, the circle is the likeness of intelligible
being, and the triangle the likeness of the first soul because of
the similarity and equality of its angles and its sides, it would
seem reasonable to demonstrate it by means of circles as an

32 213.8 On Hippocrates see note at 66,4 above.

4121317 Reading with Barocius adrér for adré in Friedlein.

3221320 Reading with Grynaeus and Barocius & r&» for #xrov in
Friedlein,

3321326 It is tempting to adopt Friedleins emendation redoeas for
Grynaeus’ rufoers. But see Proclus, Elements of Theology, Prop. 198.
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equilatéral middle area cut off in them. And if, furthermore,
every soul proceeds from Nous and returns to Nous and par-
ticipates in Nous in a twofold fashion, for this reason also it
would be proper that the triangle, which is a symbol of the
three natures in the constitution of the soul, should take its
origin from being comprehended by two circles.?* Let these
remarks, however, be taken only as reminders, through their
likenesses, of the nature of things.

Since some persons have raised objections to the construc-
tion of the equilateral triangle with the thought that they were
refuting the whole of geometry, we shall also briefly answer
them. The Zeno whom we mentioned above?®® asserts that,
even if we accept the principles of the geometers, the later
consequences do not stand unless we allow that two straight
lines cannot have a common segment. For if this is not

C

N
\/

granted, the construction of the equilateral triangle is not
demonstrated. Let AB be the straight line, he says, on which
we are to construct the equilateral triangle. Let the circles be
drawn, and from their point of intersection draw the lines
CEA and CEB having CE as a common segment, It then
follows that, although the lines from the point of intersection
are equal to the given line AB, the sides of the triangle are not
equal, two of them being shorter than AB, But if their equality
is not established, neither are its consequences. Therefore,
says Zeno, even if the principles be granted, the consequences
do not follow unless we also presuppose that neither circum-
ferences nor straight lines can have a common segment.
84214.13 For understanding the “periodic return,” the “life-giving
source,” the “twofold Nous,” and the “thres natures in the constitution
of the soul" we must turm to Proclus’ Efements of Theology, particu-
larly Props. 184-211, though Plato’s Timaeus, one of the chief sources

of these doctrines, must always be kept in mind.
3521418 At 199.15.
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To this we must reply first that in a sense it is presupposed
in our first principles that two straight lines cannot have a
common segment. For the definition of a straight line con-
tains it, if a straight line is a line that lies evenly with all the
points on itself. For the fact that the interval between two
points is equal to the straight line between them makes the
line which joins them one and the shortest; so if any line
coincides with it in part, it also coincides with the remainder,
For if each of the lines is stretched to the utmost, it must
necessarily, because it is the shortest, coincide as a whole with
the whole of the other. And, furthermore, this principle is also
evidently assumed in the postulates. For the postulate that a
finite straight line may be extended in a straight line shows
clearly that the extended line is one and that its extension
results from a single motion.

But if this be taken as a lemma and we demand that it be
proved, let the line AB be, if possible, the common segment
of AC and AD, and let a circle ACD be drawn with center at
B and AB as distance. Then since ABC is a straight line
through the center, AEC is a semicircle; and since ABD is a
straight line through the center, AED is a semicircle. Hence
AEC and AED are equal to one another, which is impossible.

N

To this demonstration Zeno would reply that the proof we
gave® that a diameter bisects its circle depends on our pre-
vious assumption that two circumferences cannot have a com-
mon segment. For we presupposed that one of the two cir-
cumferences would coincide with the other or else, not coin-
ciding, fall either inside or outside it. But there is nothing, he
says, to prevent its failing to coincide as a whole but coincid-
ing in part. And as long as it has not been proved that the

221612 At 157.10f,
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diameter bisects its circle, the proposition before us cannot be
demonstrated. To this Postdonius gave the right answer when
he made fun of the shrewd Epicurean®” for not realizing that
the proof is valid even though the circumferences coincide
only in part. At the part where they do not coincide one
circumference is inside, the other outside, and the same ab-
surd consequences result when we draw a straight line from
the center to the outer circumference. For the lines, because
they are drawn from the center, will be equal, both that to the
outer circumference, which is longer, and that to the inner
circumference, which is shorter. Then either they completely
coincide and are equal to one another, or one will coincide
with the other in part and diverge in part, or no part of one
will coincide with any part of the other; and if this last is the
case, the one circumference will lie either outside or inside the
other. All these alternatives are refuted in the same way. So
much for this argument.

Zeno has also constructed another proof, as follows, which
he tries to discredit. Let there be two straight lines, AC and
AD, having a common segment AB, and let BE be drawn at
right angles to AC. The angle EBC will then be a right angfe.
If, then, the angle EBD is a right angle, they will be equal,

B

which is impossible; and if it is not a right angle, let FB be
drawn at right angles to AD. Angle FBA is then a right
angle; but angle EBA was also a right angle; therefore they are
equal to each other, which is impossible. This is the proof; he
attacks it as presupposing something that is established later,

3721621 Reading, apparenily with ver Eecke, 'Emwelpecor for
'Emixovpor.
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that one can draw a line at right angles to a given straight line
from a given point. Posidonius says that such a proof has
never appeared in an elementary treatise and that Zeno is
slandering the geometers of his time in accusing them of using
a shabby proof. Nevertheless, he says, there is something to be
said for this proof, since one of two straight lines can clearly
be at right angles to the other; that is, any two straight lines
can make a right angle. This indeed we presupposed in defin-
ing a right angle; for it is by virtue of this particular inclination
alone that we construct the right angle. So let it be this one
that we have by chaice erected. Besides, he adds, Epicurus
himself, and all other philosophers, admit that they have
proposed many possible as well as many impossible hypoth-
eses for the sake of examining their consequences,

So much for the equilateral triangle, We must also con-
struct the others, and first the isosceles. Let the line AB be
that on which an isosceles is to be constructed. Let circles be
drawn as they were for the equilateral triangle, and let the line
AB be prolonged in both directions to the points C and D.
CB is then equal to AD. With B as center and distance CB

let the circle CE be drawn; and again with A as center and
distance DA let the circle DE be drawn. From E, the point of
intersection of the circles, let lines EA and EB be joined to the
points A and B. Then since EA is equal to AD, and EB to
BC,*® and AD to BC, EA is also equal to EB. But they are

98 218.25 Inserting 5 before Bv in Friedlein.
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also longer than AB. The triangle ABE is therefore isosceles;
and this is what we were required to construct.

Now let it be further required to construct a scalene
triangle upon the given straight line AB. Let circles be drawn
with centers and distances as before. Let a point C be taken
on the circle whose center is A, and let the connecting line AC
be drawn; upon this let a point D be taken and the line DB

A

be drawn. Then since the center is A and AB is equal to AC,
AB is longer than AD, B also is a center, and therefore EB is
equal to AB. DB thus is longer than AB, and AB is longer
than AD. The three sides DB, BA, and AD are therefore un-
equal. Hence the triangle is scalene, so that we have con-
structed the three kinds of triangle.

These matters are common knowledge. What is elegant in
these constructions is that the equilateral triangle, which is
equal on every side, can be constructed in only one way,
whereas the isosceles, which has only two of its sides equal,
can be constructed in two ways; for the given straight line is
either shorter than either of the two equal sides, as in the
triangle we constructed, or longer than both. And the scalene,
having all its sides unequal, can be constructed in three ways;
for the given straight line is either the longest or the shortest
of the three or longer than one and shorter than the other.
The reader can practise himself by examining at length or
briefly each of these three hypotheses. For us what has been
presented must suffice,

In general we shall see that some problems have a unique
solution, others more than one, and some an indefinite num-
ber. We call “ordered,” to use Amphinomus’ term, those
that have only one solution, “intermediate” those that have
more than one but a finite number and “unordered” those
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having an indefinite variety of solutions. How problems are
handled that are capable of one or more than one solution
is clear with regard to the triangles considered; the equilateral
triangle is constructed in a single way, and of the others one
has two solutions and the other three. Problems admitting
of an indefinite number of solutions would be such as the
following: “To divide a given straight line into three parts
in continued proportion.” If the line be divided in a ratio of
two to one, and if then the square on the shorter length be
applied® to the longer so as to fall short by a square figure,
it will have been divided into three equal parts. But if the
greater segment be more than double, say, triple the lesser
and an area equal to the square on the lesser be applied to the
greater in such a way as to fall short by a square, the line will
have been divided into three unequal parts in continued pro-
portion. Since there are an indefinite number of ways in which
the line can be divided into two parts of which the greater is
more than double or triple the lesser—for the series of mul-
tiples proceeds to infinity—there are consequently an in-
definite number of ways in which the line may be divided
into three parts in continued proportion,

We must also recognize that “problem’ is used in several
senses. Anything propounded may be called a problem,
whether it be put forward for the purpose of instruction or of
construction. But its special use in mathematics is to denote
something proposed for theoretical construction, since the
constructing carried out in mathematics is done for the pur-
pose of theory. Frequently things incapable of solution are
called problems; but more characteristically we use this desig-
nation for what is capable of solution and is neither excessive
nor deficient. A problem such as the following is excessive:
“To construct an equilateral triangle having its vertical angle
two-thirds of a right angle.” For this brings in an unneeded
addition, since this property belongs to every equilateral tri-
angle. Of excessive problems those that exceed by containing

39 220019  On the “application of areas” used in this example see
419.154. and note at 420.23. The algebraic solution of the problem
here discussed is neatly given by Heath, Euclid 1, 128,
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inconsistent or unreal conditions are called “impossibles,”
while those that contain realizable conditions are called “more
than problems.” A problem is deficient and is called “less
than a problem” when it needs to have something added to
make it definite and bring it into order and scientific deter-
minateness, such as “To construct an isosceles triangle.” This
is insufficiently determinate and requires an addition specify-
ing what sort of isosceles is wanted, whether one having its
base greater or less than each of the equal sides, or one having
its vertical angle double each of those at the base, like the
half-square, or one having each of the base angles double the
angle at the vertex, or one having these angles in some other
ratio, triple or quadruple. One could vary the possibilities
endlessly. These examples show that problems properly so-
called aim at avoiding the indeterminateness that renders
them capable of an indefinite number of solutions; neverthe-
less even those that are deficient are called problems, for the
term is ambiguous. Clearly the very first problem in the
Elements is in this respect superior in that it is neither exces-
sive nor deficient nor indeterminate and thus having indef-
initely many solutions; for such should be the character of
what is to be an “element” of the others.

I1. At a given point to place a straight line equal to
a given straight line.

Some problems have no cases, while others have many;
and the same is true of theorems. A proposition is said to have
cases when it has the same force in a variety of diagrams,
that is, can be demonstrated in the same way despite changes
in position, whereas one that succeeds only with a single posi-
tion and a single construction is without cases. For the pres-
ence of cases, whether in a theorem or a problem, generally
shows itself in the constructions, Now our second problem has
many cases. In it the point is given in position, and given only
in this way; but the line is given both in species (for it is not
simply a line, but this kind of line) and in position. We want
to place a straight line equal to this straight line with its ex-
tremity at the given point, wherever the point may lie. It is
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evident in any case that the point is in the assumed plane of
the straight line and not in a plane above it; for we must
assume one plane for all the problems and theorems of plane
geometry.

But someone may raise a difficulty: In what sense is it re-
quired that we draw a line equal to the given straight line?
What if the given line is infinite? The statement of the given
here applies equally to a finite and to an infinite line; and the
given shows in its entirety what is set forth and proposed to
us for inquiry. Euclid himself makes this clear by sometimes
saying “On a given finite line to construct an equilateral tri-
angle,”*® and again “To a given infinite straight line to erect
a perpendicular.”** To anyone who raises this difficulty we
must say: Has he not at once made clear, in asking that we
place at a given point a line equal to a given line, that the
given line is finite? In any case the line drawn from the given
point will be bounded at that point itself, so that much more
will that line be finite to which the drawn line is to be equal.s?
Consequently when he says “at a given point,” he limits at the
same time both straight lines, that which is given as well as
that which is to be drawn equal to it.

It is clear that cases of this problem arise from differences
in the position of the point. The given point lies either out-
side the given straight line or on it; and if it lies on it, it will
be at one of the two extremities or between them; and if it
lies off the line, it will either be at one side, so that the line
joining it with the extremity of the straight line will make an
angle with it, or lie in the direction of the given line, so that
the line if protonged will fall upon the point. Qur geometer has
taken a point lying off the line and at one side;*3 but for the

4022323 Le.inl. 11223.24 le. in XII.

422242 “Proclus’ argument is obviously unsatisfactory, since the
line may be infinite in one direction. Euclid’s use of the words ‘finite’
and ‘infinite’ is quite careless. Usually he omits both and assumes that
he is dealing with finite lines. Nothing he proves requires the use of
infinite lines.” (IM.} But see XII and Proclus’ remarks in his com-
mentary on it (284.4-17).

12224.15 In I Euclid assumes the straight line BC and the point
A, then draws AB, constructs the equilateral trangle DAB, and pro-
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sake of practice we must consider all cases, and we shall
choose the more difficult one to expound.

Let AB be the given straight line and C the given point,
lying on the line between its two extremities; and let there be
constructed, as in the proposition in the Elements, an equi-
lateral triangle DCA on the line CA. Let DC and DA be
produced. With A as center and distance AB let the circle
BE be described, and again with D as center and distance DE
the circle EF. Then since A is the center, AB is equal to AE,
and for the same reason DE is equal to DG; and of these
lines DC is equal to DA (for the triangle DAC is equilateral),
and hence the remainder AE is equal to CG. And AE was
equal to AB, as has been shown. CG is therefore equal to

E

AB. Consequently to the given point C a line has been drawn
equal to the line AB.

So many are the cases that arise from the position .of the
given point; and there are still many more resulting from

duces DA to E and DB to F; then with center B and distance BC he
describes the circle CGH, and again with center D and distance DG
the circle GKL. Then since BC is equal to BG, and DL is equal to

=

DG, and in them DA is equal to DB, the remainder AL is equal to
the remainder BG and therefore equal to BC. This is what was to be
constructed,
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variations in the construction of the equilateral, in the pro-
ducing of its sides, and in the describing of the circles. Let
point A be taken as in the proposition in the Elements, along
with the straight line BC, and let AB be joined. Then let an
equilateral triangle be constructed with its vertical angle not
above (for there is not room)** but below, and let ADB be
this triangle. Then AD is either equal to BC or shorter or

C

Fa

longer. If it is equal (Fig. 1), the problem is solved. If it is
less, let a circle be drawn with center at B and distance BC,
and let the lines AD and BD be produced to F and G; and
with center at D and distance DG let a circle GE be described
(Fig. 2). Now since DG is equal to DE (for they are drawn
from a center) and AD is equal to BD (as sides of an equi-
lateral triangle), the whole lire AE is equal to the whole
line BG. But BG and BC are equal, as lines drawn from a

AN
AV

D

FIG. 2 FIG. 3

4422516 A similar objection occurs at 275.7 and 289.21. Heath
(Euclid 1, 23} notes that Heron in his commentary or the Elements
sometimes used constructions alternative to Euclid’s to obviate ob-
jections of this sort.
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center; therefore AE is equal to BC, which is what was to be
constructed, But if AD is longer than BC (for this is the
remaining alternative), let a circle CE be described with
center B and distance BC (Fig. 3). Circle CE will therefore
cut BD. Again with center D and distance DE let a circle be
described. Its circumference FE will therefore cut line AD.
Then since D is the center of circle FE, FD is equal to DE.
But DA was also equal to DB; therefore the remainder AF is
equal to BE. But BE is equal to BC, for they are drawn from
a center. Hence AF is equal to BC and is drawn from A,
which is what was to be constructed. There are many other
cases, but these are enough to record for the present. With
their help those who are diligent can exercise themselves
on the others.

There are some, however, who would do away with the con-
struction used in this proposition and ifs varieties, arguing as

D

follows. Let A be the given point and BC the given straight
line. With center A and distance equal to BC let a circle ED
be described and a straight line be drawn from A to the cir-
cumference, namely, AD. This therefore is equal to BC, for
its distance from the center was taken equal to BC, and the
thing required has been done. Now anyone who reasons thus
begs the question. For when he says that circle ED is de-
scribed with center A and distance BC, he has already, in a
way, taken a line equal to BC and placed its extremity at A;
that is, he has begged the question*® in using this extremity of
the distance as center and the remainder as radius of the

4522722 Reading with Grynaeus and Barocius ¢urdrrer for
@vhdrros in Friedlein. On the impropriety of drawing the circle with
a “compass-carried distance” (as De Morgan puts it) see Heath,
Euclid 1, 246.
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circle described. But in the problem before us the center of
the circle is not part of the distance, which lies elsewhere, We
shall therefore in no wise adopt this method of proof.

III. Given twe unequal straight lines, to cut off from
the greater a straight line equal to the less.

This our third problem has two straight lines given unequal
in length and requires that we take away from the greater
a line equal to the less. This problem too has many cases.
For either the given unequal straight lines are separate from
one another, as in the proof presented by the author of the
Elements,*s or they meet at one of their extremities, or they
cut each other, or the extremity of one cuts the other, and that
in one of two ways, either the greater cutting the less or the
less the greater. Now if they meet at one extremity, the proof
is evident. For using the common extremity as center and the
lesser line as distance,* you can describe a circle that will
cut the greater line and take from it a line equal to the less,
since whatever be the length of the greater line cut off by the
circle that crosses it, this will be equal t¢ the lesser line. But
if one line at its extremity cuts the other, either the greater cuts
the less, or vice versa; and if they cut one another, they are
cut into equal or into unequal parts by each other, or one is
cut into equal and the other into unequal parts, and that in
two ways. All these possibilities provide a marvellous variety
for practice. Let us set forth a few of the many cases.

46 228.11 To solve III Euclid proceeds as follows. Taking as given
AB and C, the two unequal lines, he uses the construction in the
preceding problem to draw AD equal to C. Then with center A and
distance AD he describes the circle DEF, Since AE is equal to AD

&
)

and AD to C, AE is equal to C and is the length required to be cut
off from AB.

17 228.17 In this case the center is part of the distance used and
hence is not subject to the disqualification that led 1o the rejection of
the comstruction suggested at the end of the previous problem.
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FIG. 1

Let AB and CD be unegual straight lines. Let CD be the
greater, and let its extremity cut AB at C (Fig. 1). With A as
center and distance AB let a circle BF be described and an
equilateral triangle AEC be constructed on AC. Let lines EA
and EC be produced. Again with E as center and distance EF
let circle HGK be described. Again with C as center and
distance CG let circle GL be drawn. Now since EF and EG
are equal (for E is their center) and of these EA is equal to
EC, the remainder AF is equal to CG. But AF is equal to AB
(for A is their center), and CG to CL (for C is their center).
Consequently a distance CL equal to AB has been cut off.

Now let CD be less than AB, and let its extremity cut AB
at C. It cuts AB, then, either at the midpoint or not. at the
midpoint, First let it cut AB at the midpoint (Fig. 2). Then
either CD is half of AB and AC is equal to CD; or it is less
than half, and by drawing a circle with center C and distance
CD vou can cut off from AC a line equal to CD (Fig. 3); or
it is greater than half, and by placing a line AF equal to CD

FIG. 2 FIG. 3 FIG. 4
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with its extremity at point A and describing a circle with
center A and distance AF you will cut off from AB a line
equal to AF, that is, to CD (Fig. 4). But suppose CD cuts AB
elsewhere than at the midpoint, and let AC be the part of it
that is greater than half. If, then, CD is half or less than half of
AB, using C as center and CD as distance you can cut off
from AC a line equal to CD (Fig. 5). Or CD is greater than
half of AB and is either equal to AC (in which case the
problem is solved) or longer than it; and again by placing a

F

) ‘ A a8
D
FIG. 5 FIG &

line equal to CD at A you can do the same thing; for with A
as center and AF as distance you can describe a circle cutting
off from AB a length equal to AF, that is, to CD (Fig. 6).
And if they cut one another, like CD and AB, let a circle
AF be drawn with center B and distance BA (Fig. 7). Join
BC, and let BC be produced to F. Then since the two straight

F
A

FIG.7

lines BF and CD are unequal and CD at its extremity cuts
BF, it is possible to take a length equal to BF from CD, or a
length equal to CD from BF; for both cases have been demon-
strated.*® Consequently it is possible also to take away from

¢ 232.6 This passage has evidently occasioned considerable per-

plexity to the scribes, for the Mss variants are numerous. Its sense
will be clear, however, if we recall that in 229.4-231.14 we considered
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AB a length equal to CD, or from CD a length equal to AB.
For AB and BF are equal to each other.

We have thus from a classification of cases tried to show
their variety. The proof given by the author of the Elements
is admirable, for it suits all the constructions mentioned;
that is, it is possible, for any position, to place at the ex-
tremity of the greater line a length equal to the less and, by
taking this extremity as center and the posited length as
distance, to describe a circle that will cut off from the greater
a length equal to the less, whether they cut one another, or
only one cuts the other, or however otherwise they may be
placed.

IV. If two triangles have iwo sides equal to two sides
respectively and have the angles contained by the equal
straight lines equal, they will also have the base equal to
the base, the triangle will be equal to the triangle, and the
remaining angles will be equal to the remaining angles
respectively, namely, those which the equal sides subtend.

This is the first theorem we are given in the Elements.
The propositions before it have all been problems, the first
concerned with the construction of triangles, the second and
third proposing to find a straight line equal to another straight
line; and of these one constructs an equal line from the non-
equal,*® the other finds the equal by subtraction from the
unequal. Now since equality, which is the first attribute in the
category of quantity, has been provided us with respect to
both triangles and straight lines,® our geometer follows up

cases that arise when CD at its extremity cuts AB, first under the
supposition that CD is the longer of the two lines (229.5-18), and then
{229.19-231.14) under the supposition that CD is the shorter. These
are the two possibilities that recur in the present section (231.15-
232.9) when CD at its extremity is taken as cutting BF (=AB), hence
they do not need to be considered again. My translation does not
follow Friedlein’s text exactly, for I have adopted suggestions con-
tained in his apparatus.

4523316 Le. from the point. Cf, 234.23f,

5023320 What Proclus means to say here is, as the following
lines show, that the existence of triangles and the eguality of lines
have been provided by the preceding problems.
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these problems with this first theorem set forth above. For
unless he had previously shown the existence of triangles and
their mode of construction, how could he discourse about
their essential properties and the equality of their angles and
sides? And how could he have assumed sides equal to sides
and straight lines equal to other straight lines unless he had
worked these out in the preceding problems and devised a
method by which equal lines can be discovered? Suppose
someone, before these have been constructed, should say:
“If two triangles have this attribute, they will necessarily also
have that.” Would it not be easy for anyone to meet this
assertion with “Do we know whether a triangle can be con-
structed at all?” And suppose one went on to assert: “And
if two triangles have the two sides equal to two sides, etc.,”
would not someene have questioned whether it is not possible
that no straight lines should be equal to one another? And
especially in geometrical forms that there should be inequality
but no equality at all? We shall learn at least that the horned
angle is always unequal, never equal, to an acute angle, that
the same is true of the angle in a semicircle, and that the
transition from the greater to the less does not always pro-
ceed through equality. It is to forestall such objections that the
author of the Elements has given us the construction of tri-
angles, a common method for the three kinds, and also the
methods for producing equal lines, of which there are two, one
that produces the equal line when a line does not previously
exist at all, and the other that gets it by cutting it off from a
longer line. These propositions are rightly preliminary to the
theorem by which he proves that triangles having two sides
equal to two sides respectively, and the angles contained by
these equal sides equal, also have the base equal to the base,
the area® equal to the area, and the other angles equal to the
other angles.

There are three things proved and two things given about
these triangles. One of the given elements is the equality of

512357 éuBedér (cf. 236.22), “It is interesting to note that this
word never occurs in Euclid's Efements. He just talks about figures
being equal.” {I.M.)
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two sides (really two given sides, but obviously given in
ratio to one another} and the equality of the angles contained
by the equal sides. And the things to be proved are three: the
equality of base to base, the equality of triangle to triangle,
and the equality of the other angles to the other angles.*
Since it would be possible for the triangles to have two sides
equal to two sides and yet the theorem be false because the
sides are not equal one to another but one pair to the other
patr, he did not simply say, in his statement of the given, that
the lines are equal, but that they are equal “respectively.” For
if it should happen that one of the triangles had one side of
three units and the other of four, while the other triangle had
one side of five units and another of two (the angle included
between them being a right angle), the two sides of the one
would be equal to the two sides of the other, since their sum
is seven in each case. But this would not show the one triangle
equal to the other; for the area of the former is six, of the
latter five. The reason for this discrepancy is that the sides
are not also equal respectively. We often fail to watch out for
this in the distribution of plots of land; and many persons
have taken the larger of two plots and got a reputation for
justice as having chosen an equal portion, because the sum of
the boundaries is the same in both cases. We must therefore
take the sides as equal respectively, and whenever the author
of the Elements adds this phrase, we should note that he does
so for a reason. Even when speaking of the equality of the
pgiven equal angles, he adds “the angles contained by the equal
sides” in order that we may not be misled by imprecise lan-
guage into assuming that he means angles at the base. As to
the “base” of a triangle, when no side has previously been
named, we must suppose it to denote the side towards the
observer, but when two sides have already been mentioned,
it must mean the remaining side. So here the author of the
Elements, having already taken two sides as equal to two
sides, calls the other sides the bases of the triangles.

52235.13f. Reading with Barocius # for # in each of its three oc-
currences in these lines,
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Two triangles are said to be equal when their areas are
equal. It can happen that two triangles with equal perimeters
have unequal areas because of the inequality of their angles.
“Area” I call the space itself which is cut off by the sides of
the triangle, and “perimeter” the line composed of the three
sides of the triangle. These are different things, and triangles
with equal perimeters must also have the angles along one
side equal if the areas are to be equal. It happens in some
cases that, when the areas are equal, the perimeters are un-
equal and, when the perimeters are equal, the areas are
unequal. Consider two isosceles triangles, each having its
equal sides five units in length, but one having a base of
eight, the other a base of six units. The person inexperienced
in geometry would say that the triangle having the base of
cight units is the greater, for its total perimeter is eighteen
units. But the geometer would say that the area of both is
twelve; and he can prove it by dropping a perpendicular
from the vertex of each triangle and multiplying its length
by half of the base. It is also possible, as I said, that triangles
with equal perimeters have unequal areas, and some persons
have wronged their associates in a distribution of lands by
relying on the equality of perimeters and in fact getting a
greater portion,

Base is said to be equal to base and generally a straight line
to another straight line when the congruence of their extrem-
ities makes the whole of the one line coincide with the whole
of the other. Every straight line coincides with every other,
and in the case of equal lines their extremities also coincide.
A rectilinear angle is said to be equal to a rectilinear angle
when, if one of the sides containing it is placed upon one of
the sides containing the other, the second side of the first
coincides with the second side of the other. When the other
sides fail to coincide, that angle is greater whose side falls
outside, and that angle less whose side falls inside. For in the
one case the one angle includes the other, in the other case it
is included by the other. We shall infer the equality of two
angles from the congruence of their sides in the case of recti-
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linear angles, as well as for others that are similar in form®
. . . such as the lunular, the scraper-like, and the biconvex,
since it is possible for angles to be equal without having their
sides congruent. There is a certain lunular angle that is equal
to a right angle, and it is impossible that circumferences
should be congruent with straight lines.

This also must be understood in advance, that the side that
lies opposite an angle is said to subtend it. Every angle in a
triangle is contained by two sides of the triangle and subtended
by the other. This is why our geometer has added to “the
angles also are equal” the clause “which the equal sides sub-
tend,” so that we may not think it indifferent what angle we
take and assert to be equal to any chance one of the other
two angles of the triangle but should call equal the angles that
equal sides subtend. And of the equal sides one subtends one
angle and the other the other.®

So much, then, by way of preliminary explanations to
clarify the theorem. For the proof we must also assume in
advance that two straight lines cannot enclose a space. Our
geometer takes this for granted.*® For if the extremities of the

53 238.8 Something has dropped out between duoe:dsv and olov. The
three angles mentioned are not examples of dusedi (cf. 241.5-8}), and
they are obviously cited as examples of angles whose equality does not
justify an inference of congruence. For these three varieties of angles
see 127.7f.; and for the lunular angle that is equal to a right angle see
189.21it.

5423824 Omitting ple iy mepeyovady, which makes sense only
as a marginal notation explanatory of 4 wév that has improperly crept
into the text after 4 &2

552392 Buclid’s proof of IV runs as follows. Given are two
triangles ABC and DEF having the two sides AB and AC equal
respectively to the two sides DE and DF and the angle BAC equal to
the angle EDF. If triangle ABC is applied to triangle DEF so that
point A is placed on point D, and the straight line AB on DE, then
B will coincide with E, because AB is equal to DE. Then if AB coin-
cides with DE, the straight line AC will also coincide with DF, because
the angle BAC is equal to the angle EDF, Hence C will also coincide
with F, because AC is equal to DF. And since B also coincided with
E, the base BC will coincide with base EF; for if it does not, two
straight lines will enclose a space, which is impossible. Hence the
whole triangle ABC will coiucide with the whole triangle DEF and
will be equal to it, and the remaining angles will also coincide with the
remaining angles and be equal to them.
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bases coincide, he says, the bases coincide; otherwise two
straight lines will enclose a space. How do we know that this
is impossible? Let ACB and ADB be two straight lines en-
closing a space, and let them be prolonged indefinitely, On B
as center and with distance AB let the circle AEF be de-

Y,
\

F

scribed. Since ACBF is a diameter, AEF will be half of the
circumference. Again since ADBE is a diameter, AE will be
half of the circumference. Hence AE and AEF are equal,
which is impossible.®® Two straight lines therefore do not
enclose a space. This principle the author of the Elements
recognizes in the first postulate when he says “To draw a
straight line from any point to any point,” which implies that
it is always one straight line and not two that can join the
two points. Several circular lines connecting the two points
can be drawn on the same side, as well as on the opposite
side, Thus it is that the extremities of a diameter are con-
nected by two circumferences but by one straight line; and it
is possible to draw an indefinite number of circular lines both
inside and outside the semicircles uniting the given points. The
reason is that the straight line is the least of all the lines that
have the same extremities. Everywhere the least counts as a
unit and measure of other things; so just as the right angle,
being one, serves as measure of the infinitely many other
angles (for through it we discover them), so also the straight
line serves as measure of the lines that are not straight. So
much for these matters.

The proof of this theorem, as anyone can see, depends

56 239.15  “Proclus’ reasoning here is inconclusive, since E and F
may coincide. It is perhaps worth noting that Heath (following
Heiberg) thinks the reference {o two lines enclosing a space is not
genuine Euclid.” (I.M.)} See Euclid 1, 249,
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entirely on the common notions and grows naturally out of
the very clarity of the hypotheses. Because two sides are
equal respectively to two sides, they coincide with one an-
other; and because the angles contained by these equal sides
are equal, they also coincide. Since the angle coincides with
the angle and the sides with the sides, the lower extremities
of the sides also coincide; and if they coincide, the base coin-
cides with the base; and if three sides coincide with three
sides, so also does the triangle with the triangle and everything
with everything. Visible equality, therefore, in things of the
same form is manifestly the ground of the entire proof. For
there are two axioms here that comprise the whole procedure
of this theorem. One is that things which coincide are equal
to one another. This is true without qualification and does
not require a clarifying supplement. The author of the Ele-
ments uses it for establishing the equality of the bases, of the
areas, and of the other angies; for these, he says, are equal
because they coincide. The other is that things that are equal
coincide with one another. This is not true in all cases, but
only of things that are similar in form. Similar in form I call a
straight line to a straight line, a circular segment to another
segment of the same circle, and angles to other angles con-
tained by similar lines similarly placed. Because the things of
this sort that are given are equal, they coincide with one
another. So the whole proof could be summarized as follows,
Given these elements equal to those, that is, two sides to two
sides and the angles contained by them, they coincide with
each other; and if they coincide with one another, so does the
base with the base and every part with every part; and if they
coincide, they are equal. If, then, it is given that these ele-
ments are equal to those, it follows that every part is equal to
every part. This shows us the primary method of identifying
triangles that are equal in every respect. So much for the

proof in general.
Carpus the engineer,”” in his work on astronomy, has re-
vived the discussion about problems and theorems-—whether
57 241,19 On Carpus of Antioch see note at 125.25 above.
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opportunely or not may be ignored for the present., In any
case he falls upon this distinction and says that problems are
prior in rank to theorems because problems discover the sub-
jects whose attributes are under investigation. And the enun-
ciation of a problem, he says, is simple, requiring no addi-
tional technical knowledge at all; it only demands that some-
thing clearly possible be done, such as constructing an isosce-
les triangle or, given two straight lines, cutting off from the
greater a length equal to the less. What is unclear or difficult
about these? But the enunciation of a theorem, he says,
is a laborious matter and needs much precision and scientific
acumen if it is not to appear redundant or lacking in some
element of truth, as is illustrated by this the first of the
theorems. And for problems one common procedure, the
method of analysis, has been discovered, and by following it
we can reach a solution; for thus it is that even the most
obscure problems are pursued. But the handling of theorems is
a difficult matter, and no one to this day, he declares, has been
able to teach a uniform way of approaching them. Conse-
quently the ease also with which a problem can be handled
would make it the simpler form. Having made these distinc-
tions, he proceeds:

For these reasons, therefore, problems precede theorems
even in the Elements. The Elements begins with them, and
the first theorem is fourth in order, not because the fourth®s
is proved by the previous problems, but because, even if
nothing from them is needed for its proof, they have to be
given the precedence because they are problems and this
is a theorem. In this theorem he relies entirely upon the
common notions, and in a sense takes the same triangle
as lying in different places; for congruence, as well as the
equality which is inferred from it, is completely dependent
on the clear judgment of sense-perception. Nevertheless,
despite the fact that the proof used in the first theorem is of
this sort, he rightly placed the problems before it, because
they in general have the prior rank.

58243.1 Reading with Barocius rérapror for méumrer in Friedlein.
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Now problems rightly do come before theorems in order
of presentation, especially for those who are coming to science
from the arts concerned with sensible things; but in worth
theorems are superior to problems. All of geometry, it ap-
pears, where it touches on the various arts, operates by way
of problems; but where it borders on the highest science it
rises by way of theorems from problems to theorems, from
secondary to primary things, from the more practical arts to
the more scientific insights. It is therefore vain to criticize
Geminus for saying that a theorem is more perfect than a
problem, Carpus himself gives problems the priority in order,
but Geminus judges primacy in terms of worth and perfection.
And as for the fourth proposition, we have explained in what
way it requires the problems that precede it, by which we
have learned how to construct the triangle and to discover
equality. But we should add here® that, although this is the
simplest and most fundamental of the theorems (for it is
demonstrated without artifice from the primary notions
alone), yet a theorem that demonstrates some property about
triangles that have two sides equal to two sides and the
contained angles equal is rightly placed after the problems by
which the subjects of this property and the given elements in
general have been constructed.

V. In isosceles triangles the angles at the base are equal;
and if the equal straight lines are produced further,
the angles under the base will be equal.

Some theorems are simple, others composite. By simple
theorems I mean those whose hypotheses and conclusions
are indivisible, having one thing given and one thing 1o be
proved—as if, for example, the author of the Elements said
“Every ijsosceles triangle has the angles at its base equal.” A
composite theorem is one consisting of a number of parts,
having either its hypothesis composite, or its conclusion com-
posite with its hypothesis simple, or both hypothesis and
conclusion composite, Of composite theoreins some are inter-

59244.1 Reading with Barocius wpodxelsw fOr mpoweisfo int
Friedlein.
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woven and others entire.®® An entire theorem is one which,
though composite, cannot be divided into simple theorems.
The fourthk, for example, has both a composite hypothesis
and a composite consequent, but you cannot divide the given
and make simple theorems, For if triangles have only the {two]
sides equal or only the vertex angles, the conclusion does not
follow. Interwoven theorems are such as can be divided into
simple ones, like this: “Triangles and parallelograms with the
same altitude are to one another as their bases”; for it is
possible to divide it, saying “Triangles with the same altitude
are to one another as their bases,” and make the same state-
ment for parallelograms. Of composite theorems some have a
composite conclusion derived from a single hypothesis, others
have composite hypotheses and draw a single conclusion from
them ail, and others have both conciusion and hypothesis
composite. Thus in the fourth® the conclusion is composite,
for three things are inferred in this theorem, namely, that the
bases are equal, that the triangles are equal, and that the
other angles, those subtended by the equal sides, are equal.
But the hypothesis is composite in the common theorem
about triangles and parallelograms with the same altitude.
And both are composite in this: “The diameters of circles and
of ellipses bisect both the areas and the lines that contain the
areas.” Of interwoven theorems some are universal, whereas
others draw a general conclusion from particulars.®? For
instance, if we say “The diameter bisects the circle and the
ellipse and the parallelogram,” we do not take each of the
interwoven subjects universally but make a general state-
ment true of them all. But if we say “In a circle all the lines
through the center bisect one another and make the angles of
all the segments equal,” we are speaking universally. In the
case of the ellipse not all the angles of the segments are equal,
but only those that are made by the axis. In general geometers
have made such composite propositions both with a view to

8024423  dodumhexra,

8124515 Reading é» ¢ & for fvraida, as Friedlein conjectures.

8224526 For this distinction between a universal conclusion and
one that is merely general see Arist. Post. Anal. 73a25-74b4.
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brevity and for the purpose of analysis; for often things left
uncompounded do not lend themselves to analysis and only
when put together provide an easy way of getting back to first
principles.

With the foregoing observations in mind we must certainly
call the fifth theorem composite, and composite in both mem-
bers, in what is given and in what is sought. The author of the
Elements indicates this by dividing the theorem, which itself
is one, into two parts and setting out separately for each what
is given and what is sought, saying “In isosceles triangles the
angles at the base are equal,” and then immediately after-
wards, “and if the equal lines be produced further, the angles
under the base are equal.” We should not think of this as two
theorems, but as one, though composite both in' what is given
and in what is sought. And each of the parts is true and
complete, wherefore the analysis®® also is true in each case.
For if the angles at the base are equal, the triangle is isosceles;
and likewise if the angles under the base are equal, the equal
sides have been prolonged and the triangle is isosceles. But
although the author of the Elements will establish the con-
verse as regards equal angles at the base, he does not do so
with respect to the equal angles under the base, although this
also is true.

The reason for this omission we shall speak of later;® but
let us first inquire why he even includes in this theorem the
equality of the angles under the base. He is never going to use
this result for the construction or the demonstration of any
other problem or theorem. Since it will not be used later, why
was it necessary to bring it into this theorem? To this question
we must reply that, even if he was never intending to use
“and the angles under the base of an isosceles triangle are
equal” [in establishing later theorems], nevertheless it will be
useful in meeting objections to them and refuting their ad-
versaries. It is a mark of scientific and technical skill to
arrange in advance for the undoing of those who attack what

€3 24623 Le. the geometrical converse, or the inference of the
premises from the conclusion.
242476 Le, at 248.11ff. and 258.144F.
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is going to be said and to prepare the positions from which one
can reply, so that these previously demonstrated matters may
later serve not only for establishing the truth, but also for
refuting error. You can understand from this the usefulness of
geometrical order for rhetoric. The man who is able to do this
in his speeches, foreseeing the arguments that will be brought
against the main points that he is going to make and, before
they are used, preparing for their refutation by seemingly un-
necessary material in his earlier statements, would be exhibit-
ing the surest method of winning a debate. And this in fact is
what the author of the Elements does; desiring to teach us, in
advance of the theorems, the means by which we can refute
objections to them by using the proposition demonstrated
here, he also demonstrates “and the angles under the base of
an isosceles triangle are equal” and so prepares the way for
the refutation of unfounded objections. As we proceed it will
be clear that we can meet objections both to the seventh and
to the ninth theorems by this principle. This also explains why
the sixth does not contain also the converse of this part of the
fifth, since this part has no usefulness as a leading theorem®s
but only incidentally contributes to our understanding of the
science as a whole,

If anyone should demand that we demonstrate the equality
of the base angles of an isosceles without prolonging the equal
sides®*—for it is not necessary to demonstrate their equality

% 248.13 On the distinction between a “leading theorem™ and its
converse see 254.61f.

A8248.18 Euclid's proof of V depends on producing the equal
sides AB and AC of the given isosceles triangle ABC. Taking a point
F at random on BD, cutting off from AE a length AG equal to AF,
and joining FC and GB, he proves by IV the equality of the two
triangles AFC and AGB, then the equality of triangle BFC to triangle

CGB. Thus angle FBC is equal to angle GCB and angle BCF to angle
CBG. Then since the whole angle ABG was proved equal to
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through the equality of the angles under the base—we can
show the proposition to be true by altering the construction
slightly and putting the outer angles inside the isosceles. Let
ABC be an isosceles triangle, let any chance point, say D, be
taken on AB and a length AE equal to AD be taken from
AC, and let the lines BE, DC, and DE be drawn. Then since
AB is equal to AC and AD is equal to AE and angle A is
common, BE will be equal to DC, and the remaining angles
equal to the remaining angles, so that angle ABE is equal to
angle ACD, Again since DB is equal to EC and BE is equal
to DC and angle DBE is equal to angle ECD and the base DE

A

B C

is common, all corresponding parts are equal, so that angle
EDB is equal to angle DEC and angle DEB is equal to angle
EDC. Then since angle EDB is equal to angle DEC, when
equal angles DEB and EDC have been subtracted, their re-
mainders, angles BDC and CEB, are equal. But DB and DC
are sides equal respectively to EC and BE, and BC is the
common base, and all corresponding parts are equal;*” so the
remaining angles, those subtended by the equal sides, are
equal. Angle DBC therefore is equal to angle ECB; for one of
them, DBC, is subtended by DC and the other, ECB, by EB.
Hence the angles at the base of an isosceles triangle are equal
even when the equal sides are not prolonged.

Pappus has given a still shorter demonstration that needs no
supplementary construction, as follows. Let ABC be isosceles

angle ACF, and in these angles CBG is equal to BCF, the remain-
ing angle ABC is equal to the remaining angle ACB, the angles at the
base of triangle ABC. And angle FBC was above proved equal to
angle GCB, and they arc under the base.

o7 249,13 For &pa in Friedlein read {aa; <f. lines 7-9.
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with side AB equal to side AC. Let us think of this triangle
as two triangles and reason thus: Since AB is equal to AC
and AC is equal to AB, the two sides AB and AC are equal
to the two sides AC and AB, and the angle BAC is equal to

A

B C

the angle CAB (for they are the same); therefore all the
corresponding parts are equal, BC to CB, the triangle ABC
to the triangle ACB,*® the angle ABC to the angle ACB, and
angle ACB to angle ABC. For these are angles subtended by
the equal sides AB and AC, Hence the angles at the base of
an isosceles are equal. It looks as if he discovered this method
of proof when he noted that in the fourth theorem it was by
uniting the two triangles so that they coincide with each other,
thus making them one instead of two, that the author of the
Elements perceived their equality in all respects. In the same
way, then, it is possible for us, by assumption, to see two
triangles in this single one and so prove the equality of the
angles at the base.

We are indebted to old Thales for the discovery of this and
many other theorems. For he, it is said, was the first to
notice and assert that in every isosceles the angles at the base
are equal, though in somewhat archaic fashion he called the
equal angles similar. But even more should we admire the
men of more recent times, of whom Geminus is one, who
have demonstrated something even more universal, namely,
that equal straight lines from any point falling upon a homoe-
omeric line make equal angles, so that whether the triangle
have a straight line or a circumference or a cylindrical helix as

®3250.8 Reading A for By; and in the next line av@ instead of
efy (first cccurrence in the line).
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its base the angles at its base are equal. Geminus uses this
theorem in showing that there are three and only three lines
that are homoeomeric: the straight line, the arc of a circle,
and the cylindrical helix. And this is the genuine universal®
to which this character primarily belongs, just as to have two
of its angles greater than the third is an attribute that belongs
essentially to every triangle, as will be shown later. Conse-
guently, although every isosceles triangle has its base angles
equal, this attribute does not belong universally to the isosce-
les, but to the straight lines falling upon a homoeomeric line,
for it is they that primarily have the property of subtending
equal angles.

VL. If in a triangle two angles are equal, the sides which
subtend the equal angles will also be equal.

This is the first of the theorems to exhibit the two pro-
cedures of conversion and reduction to impossibility. For it
is the converse of the theorem preceding it, and its proof
employs the reduction to impossibility. We must explain
both of them, so far as they are relevant to our present
undertaking.

Conversion among geometers has two meanings. In the
strict and primary sense it occurs when two theorems inter-
change their conclusions and their hypotheses with each other,
that is, when the conclusion of the first becomes the hypothesis
of the second and the hypothesis of the first is adduced as
conclusion of the second. For example: “In an isosceles tri-
angle the angles at the base are equal” (here the hypothesis
is “isosceles triangle,” and the equality of the angles at the
base is the conclusion); and “Triangles having equal angles at
the base are isosceles.” The latter is precisely what the sixth
theorem asserts, taking as hypothesis the equal angles at the
base and as conclusion the cquality of the sides that subtend
those equal angles. The other form of conversion involves only
a certain interchange among the component parts. If, for
example, a theorem is composite and arrives at a conclusion
from several hypotheses, we take the conclusion and one

© 251,12 See note at 245.26.
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hypothesis and reach a conclusion consisting of one or more
of the other hypotheses. It is in this sense that the eighth
theorem will be the converse of the fourth. The fourth states
“When the sides and angles are equal, the bases that subtend
them are equal”; the™ other “On equal bases equal sides
contain equal angles.” Of these components “on equal bases™
was the conclusion of the former, while the positing of equal
sides was one of its hypotheses, Of these two forms of conver-
sion the primary type is uniform and determinate, but the
other is varied and can run to a great number of theorems;
there is not a single converse, but many, because of the plur-
ality of hypotheses in the composite theorem. Often, however,
we make a single converse of a theorem whose hypothesis
consists of two or more members, when they are not all
determinate, but some indefinite.

But we must also note in this connection that many con-
versions are made fallaciously and are not true converses, For
example, every hexagonal number is triangular,” but it is not
true that every triangular number is hexagonal. The reason is
that the former character is of more general, the latter of more
particular application; and one can be asserted of the other
only as true in every instance. But propositions about attri-
butes that a subject has primarily and essentially can be
converted. These matters also have engaged the attention of
the mathematicians in the circle of Menaechmus and Am-
phinomus.

Among converse theorems themselves we are accustomed
to call some *leading theorems” and others “converses.”
When, for example, we posit a genus and demonstrate its
property, this we call a leading theorem; but whenever, con-
trariwise, we make the property our hypothesis and our con-
clusion the genus to which this property belongs, such a
theorem we call a converse. “Every isosceles triangle has its

7 253.3 Reading 7 for & in Friedlein.

7125318 Triangular numbers are obtained by adding successive
members of the series of integers (1, 2, 3, 4, ., . .}, ie. 3, 6, 10,
15, . . . ; hexagonal! numbers are obtained by adding successive
members of the arithmetical progression with a difference of 4 (1,
59,13, 17,...),1e. 6, 15, 28, 45, ., .. See Heath 1, 76-79.
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base angles equal” is a leading theorem, for its hypothesis is
what is naturally primary, namely, the genus itself, the isosce-
les triangle; but “every triangle having two angles equal also
has the subtending sides equal and is isosceles” is a converse,
for it exchanges the subject for its attribute, making the latter
its hypothesis and proving the former from it. So much we
had to say regarding geometrical conversions.

Although reductions to impossibility lead us always to
something clearly impossible, that is, to something whose
contradictory is generally admitted, sometimes they lead us to
principles inconsistent with the common notions or postulates
or definitions, and sometimes to results that contradict some-
thing previously proved. This sixth theorem, for example,
shows its consequences to be impossible because it contra-
venes the common notion that says the whole is greater than
the part.”? By contrast the impossibility at which the eighth
arrives is one that would overthrow not a commeon notion, but
something that has been demonstrated in the seventh theo-
rem; for what the seventh denies the eighth shows to be af-
firmatively asserted by those who do not accept its con-
clusion.

Every reduction to impossibility takes the contradictory of
what it intends to prove and from this as a hypothesis pro-
ceeds until it encounters something admitted to be absurd
and, by thus destroying its hypothesis, confirms the proposi-
tion it set out to establish, In general we must understand
that all mathematical arguments proceed either from or to the
starting-points, as Porphyry™ somewhere says. Those that
proceed from the starting-points are themselves of two kinds,
as it happens, for they proceed either from common notions,
that is, from self-evident clarity alone, or from things previ-
ously demonstrated. Those that proceed to the starting-points
are either affirmative of them or destructive. But those that
affirm first principles are called “analyses,” and their reverse
procedures “syntheses” (for it is possible from those prin-
ciples to proceed in orderly fashion to the thing sought, and

722552 See Euclid's demonstration in note to 256.15.
78255.14 On Porphyry see note at 56.24.
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this is called “synthesis™); when they are destructive, they are
called “reductions to impossibility,” for it is the function of
this procedure to show that something generally accepted and
self-evident is overthrown.’* There is a kind of syllogism in it,
though not the same as in analysis; for the structure of a
reduction to impossibility accords with the second type of
hypothetical argument, For example, if in triangles that have
equal angles the sides subtending the equal angles are not
equal, the whole is equal to the part. But this is impossible;
therefore in triangles that have two angles equal the sides that
subtend these equal angles are themselves equal. So much
regarding reductions to impossibility.

As we said, the author of the Elements employs con-
version in the enunciation, which takes the conclusion of the
fifth theorern as the given and its hypothesis as what is to be
proved, and reduction to impossibility in the construction and
the proof.”® Should it be objected that in cutting off from AC a
length equal to AB we should not cut it off from C but from A,
we can adopt this hypothesis and arrive at the same im-
possibility. Let AD be equal to AB. Then let BA be pro-

1425526 le,, if the proposed premise is accepted. Thus what is
gverthrown is this initial premise (the dpy# in this sense), not one
of the generally accepted and self-evident dpyel. Analysis confirms the
initial premise, if it can be confirmed, by tracing it back to first
principles, whereas the reduction to impossibility destroys it by show-
ing that its consequences contradict first principles or their conse-
guences,

78256.15 For the proof of VI Euclid assumes triangle ABC with
angle ABC equal to angle ACB, with unequal sides AB and AC, of
which AC is the longer, By cutting off from AC a length DC equal to
AB and joining DB, he proves that triangle DBC is equal to triangle

A
D

B c

ABC, the less to the greater, which is impossible. Hence it is incorrect
to assume that AB is not equal to AC, and it is therefore equal to it.
In Heiberg's text AB is taken as the greater side, but I have modified
his diagram 1o make it accord with the text that Proclus seems to
have had before him. The validity of the proof is of course not
affected.
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E
A

B A ¢

longed, and let AE be equal to DC. The whole of BE is then
equal to AC. Let EC be drawn. Now since AC is equal to BE
and BC is a common side, two sides are equal to two sides,
and the angle at B is equal to angle ACB by hypothesis. All
corresponding parts are therefore equal, by the fourth, so that
triangle EBC is equal to triangle ABC, the whole to the part,
which is impossible.

Now that the answer to this objection is clear, the next
thing is to demonstrate the other part of the converse, for
the author of the Elements has in the sixth theorem as a whole
converted only a part of the fifth, and we must add the con-
verse that remains. This wilt be that which takes as hypothe-
sis that the angles under the base of a triangle are equal and
proves that the triangle is isosceles. Let ABC be the triangle
and the sides AB and AC be extended and the angles under
the base be equal. I say that ABC is isosceles. For let the
point E be taken on AE, let CF be made equal to BE, and
let lines EC, BF, and EF be drawn. Then since BE is equal to
CF and the line BC is common, two sides are equal to two
sides, and angle EBC is equal to angle FCB, for they are

A
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the angles under the base. All parts are therefore equal to
all the parts, by the fourth. Their bases EC and BF are
thus equal, the angle BEC is equal to angle CFB, and
angle CBF to angle BCE, for they are subtended by equal
sides. Now the whole of angle EBC was assumed equal to the
whole angle FCB, and of these the part FBC is equal to ECB;
therefore the remainder EBF is equal to the remainder FCE.
And BE is equal to CF, and BF is equal to EC, and these two
sides contain equal angles, and all corresponding parts are
equal, so that angle BEF is equal to angle CFE. Conse-
quently the sides AE and AF are equal, by this very sixth
theorem which is here demonstrated.”® And from these two
sides equal segments, BE and CF, have been cut off, so that
the remainders AB and AC are equal. Therefore triangle
ABC is isosceles. Thus if a triangle has its two angles equal,
it is isosceles; and if with its sides prolonged it has equal an-
gles under the base, again the given triangle is isosceles.
What, then, is the reason why the author of the Elements
did not also convert this second part? Is it not that it was
irrelevant even in the fifth theorem to show that the angles
under the base are equal, this being introduced for the
purpose of meeting other difficulties, and that to prove a
triangle is isosceles when the angles under its base are equal
neither constitutes a leading demonstration™ nor helps him in
the solution of other questions? Besides, this converse is
evident from the following theorems, and they furnish him
the points of departure for proving that, when the angles
under the base are equal, the triangle is isosceles. For if
every straight line meeting another and making two angles
with it makes these angles equal to two right angles,” then
when the angles under the base are given as equal, the angles
on the base will of course also be equal; and since they are
equal, the sides that subtend them will also be equal. Using as

162587 Perhaps this remark is intended to forestall the criticism
(see Heath, Euclid 1, 257) that he assumes the result of VI in proving
the converse of the second part of V.

77258.19 For the meaning of “leading” see 254.71F.

782593 XIIT below.
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he does this theorem throughout his treatise, he was able to
infer that, when angles under the base are equal, the triangle
is isosceles, if ever it was needed for the proof of any
theorem. And very soon hereafter he will have clearly proved
that, if a straight line stands upon a straight line and makes
angles with it, it will make either two right angles or angles
whose sum is equal to two right angles. The theorems that
come before that one is established do not need this converse,
and those that come after can be proved by means of it, if
the need should arise.

VIL. Upon an identical straight line, if two straight lines
have been constructed upon it, there cannat be constructed
two other straight lines equal respectively to the former two
and having the same extremities but meeting

at a different point on the same side.

This theorem has a character that is rare and not often
found in scientific premises; for to be framed negatively and
not affirmativety hardly suits their nature. At any rate the
enunciations of geometrical and arithmetical theorems are
usually affirmative. The reason is, as Aristotle says,™ that the
universal affirmative proposition is best fitted for science,
since it is more self-sufficient, needing no negative premise to
supplement it, whereas the universal negative needs an af-
firmative if it is to be proved. For without an affirmative
premise there is no proof nor syllogism; and this is why the
sciences that demonstrate do so affirmatively for the most
part and rarely make use of negative conclusions.

The enunciation of this theorem is remarkably full and
precise, and the many added phrases that make it irrefutable
and unambiguous safcgnard it against the attacks of pettifog-
ging critics. First of all, our geometer stipulates “on the same
straight line” to prevent our misleading the users of this
premise by showing on a second straight line two straight
lines constructed equal respectively to the first two. In the
second place, given a single straight line, he does not say that

19 260.1 Post. Anal. 79a17-32,
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the two straight lines constructed on it are simply equal to the
two siraight lines (there would be no impossibility in that),
but that they are equal respectively. Would it be extraor-
dinary if we should construct a second pair of lines equal
together to the first pair, with one of its members longer and
the other shorter? “Respectively” expresses the impossibility
intended. Thirdly, he adds “meeting at another point.” What
if we took two lines equal respectively to the two lines
already constructed and congruent with them and thus con-
structed both them and the two given straight lines meeting
at the same vertical point? For if the straight lines are equal,
of course their extremities coincide. Fourthly, there is the
phrase “on the same side.” Could we not on the same given
straight line make the first two straight lines extend on one
side and the second two on the other, so as to make the
straight line the common base of two triangles with opposite
vertices? In order that we may not impute our own error to
the author of the Elements if we are thus misled, he adds “on
the same side.” Fifthly, he subjcins “having the same extrem-
ities as the given straight lines.” For it would be possible on
the same straight line to construct two lines equal respectively
to the two given lines and meeting at a different point on the
same side, using the whole of the straight line and construct-
ing the two lines upon it, when the two lines constructed do
not have the same extremities respectively as the two given
lines, but different ones. If we imagine two diagonals of a
square constructed on one of its sides, there will be two
lines equal to two lines, a side and a diagonal equal to the
parallel side and the other diagonal, yet these equal lines will
not have the same extremities; for neither the parallel sides
nor the diagonals, though equal, will have the same ex-
tremities. If we observe all these qualifications, the enunciation
is correct and the reasoning in its proof unassailable.®®

80262.3 Euclid’s proof of VII runs thus: Given two straight Iines
AC and CB constructed on the straight line AB and meeting at the
point C, if possible let two other straight lines AD and DB be con-
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But perhaps some persons, notwithstanding all these scien-
tific restrictions, will be bold encugh to object and say that
what our peometer calls impossible is possible, even under
the conditions laid down. Let AB be the straight line, and on
it let lines AD and DB be constructed equal to lines AC and
CB, and let AD and DB be inside the others, so that they
meet at different points, C and D, and have the same extremi-
ties, A and B, as the given straight lines. Suppose, further,
AC equal to AD and CB io DB. To those who make this

E

A B

objection we shall reply by drawing the line DC and extend-
ing AC and AD. From this construction it is clear that triangle
ACD is isosceles, since AD is equal to AC according to their
thests and the angles under its base are equal, namely, ECD

structed on the same straight [ine AB, meeting at another point I and
equal to the former two respectively. Let CD be drawn. Then since
cC B

A B
AC is equal 1o AD, angle ACD is equal to angle ADC; therefore angle
ADC is greater than angle DCB, and hence angle CDB is still greater
than angle DCB. Again since CB is equal to DB, angle CDB is
equal to angle DCB. But it was also proved much greater than it,
which is impossible.
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and FDC.** Angle FDC is therefore greater than angle BCD;
much more, then, is angle BDC greater than BCD. But again
since DB is equal to CB and the angles BDC and BCD at
the base are also equal, then the same angle is both much
greater than and equal to another, which is impossible, This,
we see, is precisely what we said when commenting on the
fifth theorem, that the equality of the angles under the base
would be useful, if not for the demonstration of later theorems,
at least for the solution of objections to them. For now we
have refuted the objection by inferring that, if AC and AD
are equal, the angles ECD and FDC will also be equal. Tt will
be evident in the case of other theorems also, that this prin-
ciple contributes in the same way to the solution of difficulties
raised.

But suppose someone should say: “Let straight lines BD
and BC be constructed on line AB equal to lines AC and AD,
BC equal to AC and BD to AD, at different points, A and B,
and having the same extremities, C and D, with lines AC and
AD.” What can we say to this argument? Obviously that
both the given straight lines constructed on the straight line
AB and the lines equal to them must be constructed on the
same straight line AB, for this is what the author of the
Elements says in his enunciation. But the straight lines AC
and AD are not constructed on the straight line AB; they are
constructed at a point on the straight line AB, but not on the
line. So the lines constructed on the straight line AB—that is,
AC, BC and AD, BD—are different from the lines posited in

Cc

Y. g

%1 262.22 Friedlein's conjectural addition to the text is not really
necessary, and I have left it untranslated.
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this argument and from the lines equal to them, though the
lines constructed were supposed to be equal to the lines con-
structed on the straight line AB.** So much by way of answer
to this question.

It is clear that the author of the Elements demonstrates this
theorem by means of the reduction to impossibility and that
the impossibility contravenes the common notions that the
whole is greater than the part and that the same thing cannot
be both greater than and equal to another. It appears also that
this theorem is a lemma preparatory to the eighth theorem,
for it contributes to the proof of it and is neither an element
in the strict sense nor elementary.*s For its use does not extend
widely. At least we shall find that our geometer makes very
sparing use of it.

VIIL. If two triangles have two sides equal to two sides
respectively and the base equal to the base, they will also
have the angles equal which are contained by the equal
straight lines.

The eighth theorem is the converse of the fourth, but not a
converse of the primary type, for it does not take as its conclu-
sion the whole of the hypothesis of the fourth and as its hy-
pothesis the whole of the conclusion. Instead it unites a part
of the hypothesis of the fourth with a part of the conclusion
and demonstrates one part of what was given. “Having two
sides equal to two sides” is a hypothesis in both theorems;
but “having the base equal to the base™ was a part of the
conclusion of the former, though it is given in this one.

82 264.7 To understand Proclus’ answer it is necessary to realize
that cviicracfe: éni is the conventional phrase in Greek geometry for
constructing a triangle on a line, using the line itself as the base of the
triangle. Hence a Greek geometer should understand that the problem
of constructing two lines upon a given fine and meeting at a point
means drawing them from the extremities of the given line, Heath,
Euclid 1, 259, Thus in Proclus’ diagram the lings constructed on AB,
in this sense of the terms, are the two pairs AC, BC and AD, BD,
whereas the lines posited in this argument are AC and AD, to which
BC and BD are respectively equal.

83 264 16 For the meaning of “lemma,” “element,” and “ele-
mentary” see 211.11F, and 72.MT.
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And “having the [contained] angles equal” was given in the
fourth, but the eighth seeks to prove it. So the conversion is
eifected merely by an interchange between the given elements
and elements in the conclusion.

If someone should want to know why it is eighth in
order and does not come immediately after the fourth as its
converse, as the fifth is followed by the sixth which is its
converse (indeed most converse theorems follow their lead-
ing theotems and are demonstrated immediately after them),
we must say that the eighth needs the seventh, For it is proved
by use of the reduction to impossibility, and the impossibility
involved is such as becomes known to us from the seventh.
And this in turn needed the fifth for its proof. Necessarily,
therefore, the seventh and the fifth were established before the
theorem now being proved. And since the converse of the fifth
could easily be proved from first principles, it was propetly
placed immediately after the fifth, both because of its kin-
ship to it and because the impossibility shown by the reduc-
tion depends on the common notions and not, as in the
eighth, upon another theorem. Propositions that contravene
the common notions are clearer means of refutation than
those that contradict theorems; for the latter are grasped
by demonstration, whereas our knowledge of the former
is superior to demonstration.

The author of the Efements, then, demonstrates the present
theorem by means of the seventh which he has just proved.®

84266.16 Euclid demonstrates VIII as follows: Given two triangles
ABC and DEF having sides AB and AC equal respectively to sides

DE and DF and the base BC e¢qual to the base EF, he applies triangle
ABC to triangle DEF, placing B on E and BC on EF. Point C will

A DG
Ac A
B E
coincide with F, because BC is equal to EF. Then AB and AC will
also coincide with DE and DF; for if not, they will fall beside them,

like EG and GF, which is the construction that is shown by the pre-

ceding fheorem to be impossible, So angle BAC will also coincide with
angle EDF and will be equal to it
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But the school of Philon say that they can prove the eighth
without the use of the seventh.®” Let us suppose, they say, two
triangles ABC and DEF having two sides equal to two sides
and the base BC equal to the base EF. Place the triangle

A "

G

ABC in the same plane with DEF, making their bases coin-
cide, but on the cther side of the line EF, so that their vertices
are opposite. Instead of ABC let the triangle thus placed be
EFG, with EG equal to DE and FG equal to DF. FG will then
lic either on a straight line with DF or not on a straight line,
and if not on a straight line, making with it either an angle
opening inwards or an angle opening outwards. First let us
suppose it makes a straight line. Then since DE is equal
to EG and DFG is a single straight line, the triangle DEG

N
N

is isosceles, and the angle at D is equal to the angle at G. If
FG is not on a straight line with DF, let it make an angle

85 266.18 Philon of Byzantium, probably of the second century
B.C. See Heath 11, 300-302. Philon’s exposition and construction are
somewhat confused in Friedlein. I have drawn upon Barocius for my
translation of the first few lines.
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opening inwards, and let line DG be drawn. Then since DE
and EG are equal and they have a common base DG, angle
EDG is equal to angle EGD. Again since DF is equal to
FG and they have a common base DG, angle FDG is equal
to angle FGD. But angle EDG was equal to angle EGD, and
hence the whole of angle EDF is equal to the whole of angle
EGF, which is what it was required to demonstrate. Thirdly,
let FG make an angle opening outwards with DF, and let
line DG be joined outside. Then since DE and EG are
equal and they have a common base DG, angles EDG
and EGD are equal. Again since DF and FG are equal and
they have a common base DG, angle FDG is cqual to angle

D

G

FGD. But the whele angles EDG and EGD were equal to
each other; therefore their remainders, angles EDF and EGF,
are equal to each other, and we have found what was enunci-
ated, having demonstrated the theorem for every position of
the line FG without making any use of the seventh. Was it not,
then, superfluous, they say, for the author of the Elementis to
introduce it? For if it was only for the sake of the eighth that
we brought it in, and if the eighth can be demonstrated with-
out it, is not the seventh manifestly useless?

To this we must reply, as others have done before us, that
the demonstration of the seventh is of the greatest utility to
astronomers in the area of eclipses. For by the use of this
theorem they say they can show that three successive eclipses
cannot occur at equal intervals from one another, that is,
the third separated from the second by the same interval of
time as the second from the first. For example, if the second
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has occurred six months and twenty days after the first, the
interval before the third occurs cannot be this length of time
but must be either longer or shorter. They say that this is
demonstrated to be the case by the seventh theorem, and that
this is not the only theorem the author of the Elements has
demonstrated because it contributes to astronomy as a sec-
ondary aim, but many other theorems and problems as well.
Take the last theorem in Book IV, which shows how to in-
scribe the side of a fifteen-angled figure in a circle—what rea-
son can anyone suggest for his proposing it other than the
bearing of this problem on astronomy? For by inscribing this
fifteen-angled figure in the circle through the poles we get the
interval between the poles of the celestial equator and those
of the zodiacal circle, which are separate from each other by
the length of the side of a fifteen-angled figure. It seems, then,
that the author of the Efements, looking to astronomy, has
given us proofs of many matters that prepare us for that
science. And seeing that this seventh is proved from the fifth
and that it provides an uncomplicated proof of the eighth, he
gave it this position; for although Philon's procedure is
elegant, its use of a variety of cases makes it unsuited for an
elementary treatise. So much for our answer to this question.

If anyone should wonder why he did not add to the
eighth the other details included in the fourth, namely, the
equality of the triangles and of the remaining angles, our
answer is that, when the angles at the vertex were proved to
be equal, the equality of all parts to one another followed
through the fourth. This, then, was the only thing it was
necessary to prove independently; the rest could be inferred
as consequences of it.

It appears that what makes the angles at the vertex equal is
both the equality of their containing sides and the equality of
the bases. For when the bases are not equal, the angles do not
remain the same, even though the containing sides are sup-
posed [equal],®® but the shorter or longer the base, the smaller
or larger the angle. Nor when the bases are the same but the

862709 Reading with Barocius Iowr just before imoketudrwr in
Friedlein.
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sides become unequal does the angle remain the same; rather
it becomes greater as the sides become less and less as they
become greater, for the angles undergo a change of character
the reverse of that of their containing sides. Imagine yourself
dropping sides to a base of fixed length. If you decrease the
length of the sides, you will increase the size of the angle
which they contain by making the interval between them
greater; but if you raise them up and add to their length, you
make smaller the angle which they contain, for they meet at a
greater distance, since their vertex is further from the base. It
is safe to say, then, that both the identical tength of the bases
and the equality of the sides determine the equality of the
angles.

IX. To bisect a given rectilinear angle.

He mingles theorems with problems and interweaves prob-
lems with theorems and, by using both, achieves a full treat-
ment of the elements, now providing the subjects, now inves-
tigating their attributes. So having shown in the previous
theorems that in a single triangle the equality of the sides
implies the equality of the angles, and conversely, and having
done likewise for two triangles {(except that for two triangles
the method of conversion was different from that for one), he
now turns back to problems with the demand to bisect a given
rectilinear angle.

Clearly the angle here is given in kind, for it is a “recti-
linear” that is mentioned, not any chance angle, The bisection
of angles in general is not a matter for an elementary treatise,
since it is even questioned whether bisection of an angle is
always possible. One could doubt, for instance, whether we
can bisect the horned angle. Determinate also is the ratio of
the cut required, and this again with good reason. To divide in
any ratio that might be chosen—as into three, or four, or five
equal parts-—goes beyond the present means of construction.
We can divide a right angle into three parts by using some of
the theorems that follow, but we cannot thus divide an acute
angle without resorting to other lines that are mixed in kind.
This is shown by those who have applied themselves to the
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problem of trisecting a given rectilinear angle. Nicomedes®'
made use of conchoids—a form of line whose construction,
kinds, and properties he has taught us, being himself the
discoverer of their peculiarities—and thus succeeded in tri-
secting the rectilinear angle generally. Others have done the
same thing by means of the quadratrix of Hippias and that of
Nicomedes, they too using mixed lines, namely, the quadra-
trices. Still others have started from the spirals of Archimedes
and divided a given rectilinear angle in a given ratio, The
thoughts of these men are difficult for a beginner to follow,
and so we pass them by here, We can perhaps examine them
more appropriately in the third book of the Elements, where
the author bisccts a given circumference.®® There one finds
the same method of inquiry employed not only for bisecting,
but also for trisecting; and his procedures for dividing a
circumference into three equal parts use the same lines as
those used by the ancients.*® Rightly, then, our geometer,®
who has mentioned only the straight line and the circumfer-
ence, bisects only rectilinear angles and circumferences. Since
the species that arise from them by mixture are difficult to
enumerate and explain without a meticulous examination, he
passes them by, omitting all such questions as require the use
of mixed lines and restricting his inquiry to the primary and
simplest forms and to the matters that can be constructed or
studied by their means alone. Of this sort is the problem
before us, to bisect a given rectilinear angle. For his construc-
tion here he uses one postulate and the first and third theo-
rems, and for the demonstration only the eighth theorem. For

87 272.3 Nicomedes, of the third century B.C. For the little that we
know of him see Heath 1, 225f, 11, 199; and for the trisection of the
angle and the constructions referred to just below, Eucfid 1, 265-267.

88 272,16 Cf. Enclid TIL 30,

89 272,20 The reference 1o trisecting is puzzling, “The text here is
misleading, because the methods used throughout the Elements are
insufficient for trisecting a circumference, ie. an arc of a circle.,”
(I.M.)

20 272.20f, The text of these lines has been corrupted. I assume
with Friedlein that ~ecouérpns, or some similar word, has dropped out
after & in line 20; and for the rest T have made use of Barocius, who
found, or constructed, a more readable text,
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problems always require a demonstration, as we said earlier,
and get their scientific character from it.

Some may perhaps object to our geometer that the equi-
lateral triangle constructed by him does not have its vertex
between the two straight lines, but may have it on either of
them or outside both, and that this becomes clear from the
Elements.” Let the angle BAC be the angle which it is re-
quired to bisect. Take a point B on AB, cut off a length CA
equal to BA, let BC be joined, and on this line construct an
equilateral triangle BCD. Clearly this point D will lie either
between lines AB and AC, or on AB, or on AC, or outside of
both. The author of the Elements takes it as lying between
them. To this they object and make difficulties with his proof,
saying that it may lie on one of the straight lines or outside
both of them. Let us suppose, then, that D lies on AB, in such
a fashion as to make BCD equilateral. DB is then equal to
DC, the angles at the base, CBD and BCD, are equal, and
thus the whole angle BCE is greater than angle CBD. But

A A

0
o E £ F
since BA is equal to CA, triangle ABC is isosceles and has the
angles under its base BC equal. Hence angle BCE is equal to
angle CBD; but it was greater, which is impossible. It
is therefore not possible that the vertex of the equilateral
triangle should lie on the line ABD. In the same way we can
prove that it does not lie on line ACE. Let it then lie outside
both, if possible. Then since BD is equal to CD, the angles
at the base, BCD and CBD, are equal. Therefore angle BCD

?1273.15 Euclid’s proof of IX can be so readily reconstructed from
Proclus’ description that there is no need to reproduce it in a footnote.
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is greater than angle CBE, and hence angle BCF is greater
still than angle CBE. But it was also equal (for it lies under
the base BC of the isosceles triangle ABC), and this is im-
possible. Consequently point D does not lie ouiside the two
straight lines on this side. Similarly it can be shown that it
does not lie outside them on the other side. You see again
that we have refuted the objections by using the theorem that
an isosceles triangle has the angles under its base equal. This
is that proposition of which we have said earlier that many
assertions contrary to science can be shown to be unsound
and easily refutable by its means; and this useful function it
discharges for our geometer.,

1f someone should say that there is no room under the base
BC,* we shall have to construct the equilateral triangle on the
same side as BA and AC. In that case it is necessary that its
sides either coincide with BA and AC, if these are supposed
equal to BC; or lie outside them, if BA and AC are shorter
than BC; or lie inside, if they are longer than BC. First let

A

B c

them coincide and BAC be itself an equilateral triangle. Let D
be a point on BA; from AC cut off a length AE equal to AD;
and let the lines DE, BE, CD, and AF be joined. Then since
BA is equal to AC and AD to AE, the two sides BA and AE
are equal to the two sides AC and AD, and they enclose the
same angle, so that all corresponding parts are equal and
angle DBE is equal to angle ECD. And since line DB is equal
to line EC, and line BE to line CD, all corresponding parts
are equal, so that angle DEB is equal to angle EDC, for they
are subtended by equal sides. Line DF is then equal to line

922757 Reading elrae. with Barocins and Grynaeus instead of
eldévar in Friedlein. See note at 225,16 above.

— 214 —



277

PROPOSITIONS: PART ONE

EF, by the sixth. Then since AE is equal to AD and AF is
commen and DF is equal to EF, the angle DAE has been
divided into equal parts, which is what it was required to do.
Now suppose the sides of the equilateral triangle lie outside

D

B c
E

lines BA and AC, Let these sides be BD and DC, and let DA
be drawn and produced to E. Then since BD and DC are
equal and DA is a common side, and BA and AC are equal,
angle BDA is equal to angle CDA, by the eighth. Again since
BD and DC are equal and enclose equal angles with the
commeon side DE, as has been demonstrated, base BE is equal
to base EC, by the fourth. Then since BA is equal to AC and
AE is common, angle BAE is equal to angle CAE, which is
what it was required to prove. But if the sides of the equi-

A

B c

lateral triangle, BD and DC, fall within the lines BA and AC,
again let AD be joined. Then since BA is equal to AC and AD
is common and base BD is equal to base DC, angle BAD is
therefore equal to angle CAD, by the eighth. So the angle at
A has been bisected, however the equilateral triangle be
placed.
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Now that we have completed these demonstrations, let us
take up the theorems that follow, adding only that an angle in
a hypothesis may be given in one of four ways: either in
position, as when we say that it lies on this straight line and
at this point and is so given in the hypothesis; or in kind, as
when we say it is a right angle, or acute, or obfuse, or in
general rectilinear or mixed; or in ratio, as when we say it is
double or triple another, or simply larger or smaller; or in
magnitude, as when we say it is the third of a right angle.
The angle here is given in kind alone.

X. To bisect a given finite straight line.

This too is a problem. It posits a finite straight line, since a
line unlimited in both directions can in no wise be made
determinate, and if it is without limit in one direction only,
any division will cut it into unequal segments, wherever the
point of section be taken, for the part that extends to infinity
will necessarily be greater than the remainder, which is lim-
ited, The remaining alternative, then, is that a line which is to
be bisected must be taken as finite in both directions.

This problem may move some persons to suppose that
geometers assume in advance as a hypothesis that a line does
not consist of indivisible parts. For if it did, a finite line would
consist of either an odd or an even number of parts. But if it
has an odd number of parts, it seems that when a line is bi-
sected the indivisible is bisected, since otherwise onie seg-
ment would consist of a larger number of indivisible parts and
be greater than the other. Consequently it will not be possible
to bisect a given line if its magnitude consists of indivisible
parts. But if it is not composed of indivisible parts, it will be
divisible to infinity. This, then, they say, appears to be an
agreed principle in geometry, that a magnitude consists of
parts infinitely divisible. To this we shall give the reply of
Geminus, that geometers do assume, in accordance with a
common notton, that what is continuous is divisible, The
continuous, we say, is what consists of parts that are in con-
tact, and this can always be divided. But they do not assume
that what is continuous is also divisible to infinity; rather they
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demonstrate it from appropriate principles. For when geome-
ters demonstrate that there is incommensurability among
magnitudes and that not all magnitudes are commensurable
with one another, what else could we say they are demon-
strating than that every magnitude is divisible indefinitely
and that we can never reach an indivisible part which is the
least common measure of magnitudes? This, then, is demon-
strable, but it is an axiom that every continuum is divisible;
hence a finite line, being continuous, is divisible. This is the
notion that the author of the Elements uses in bisecting the
finite straight line, not the assumption that it is divisible to
mnfinity. That something is divisible and that it is divisible to
infinity are not the same. One could use this problem also to
refute the doctrine of Xenocrates® that asserts indivisible
lines. For in general if there exists a line, it is either a straight
line and can therefore be bisected, or circular and greater than
some straight line—for every circular line has some straight
line shorter than itself—or mixed and hence even more
subject to division, since its simple components are divisible.
But these matters must be reserved for study elsewhere.

Our geometer bisects a given finite straight line by using
for his construction the first and the ninth, and for his proof
the fourth only, since he shows the bases to be equal by means
of the angles.** Apollonius of Perga bisects a given finite
straight line in the following way. Let AB, he says, be the

/N
Y,

88279.5 Xenocrates of Chalcedon, a disciple of Plato and head of
the Academy after the death of Speusippus.

9£279.16 Eunclid constructs on the given line AB an equilateral
triangle ABC, bisects the angle ACB, and then by IV proves that the
line CD which bisects the angle also bisects the line AB.
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finite strajght line which is to be bisected. With A as center
and distance AB let a circle be described, and again another
circle with B as center and distance BA; and let the points of
intersection of the circles be joined by line CD. This line bisects
the line AB. For let lines CA and CB be drawn; then each
of them is equal to AB, DA and DB are equal for the same
reason, and CD is a common base; therefore angle ACD is
equal to angle BCD, so that AB is bisected in accordance with
the fourth. Such is the kind of proof of the present problem
given by Apollonius. It too starts from an assumed equilateral
triangle, but instead of proceeding from the bisected angle at
C it proves that the line is bisected because of the equality of
the bases. The proof given by the author of the Elements is
therefore much better, since it is simpler and proceeds from

the principles.?®

XI. To draw a straight line at right angles to a given
straight line from a given point on it.

Whether we take the straight line as limited in both direc-
tions, or unlimited in both, or unlimited in one and limited in
the other, with the point lying on it, the construction with
which our geometer solves this problem succeeds.*® For even
if the given point lies on the extremity of the ling, we can
produce the same construction by extending the straight line,
Clearly the point here is given in position, and in position only
as lying on the straight line; but the straight line is given only
in kind, for its length, ratic, and position are not determined.
Fhe author of the Elements proves this proposition by using
the first and third theorems and one of the postulates (namely,
the first), and also the eighth theorem and the definition of a

93 280,11  dmd ror dpxdr must mean here “in proper order from
principles.” The criticism of Apollonius’ procedure is not that he does
not have first principles, but that he does over again what has already
been done in IX. For a similar use of this phrase see 326.13 and 336.8.

96 280,19 To prove XI Euclid assumes a straight fine AB and a
point C on it, takes another point D at random on AC, cuts off on
CB a length CE equal to DC, and on DE constructs an equilateral
triangle FDE; he then proves by V111 and Def. X that FC is at right
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line at right angles. If anyone should demand that we take the
point at the extremity of the line without extending the line
beyond it and draw the right-angled line from this point, we
can show that this also is possible. Let the line be AB and
the given point A, and let any point C on AB be taken and
from it a line CE at right angles to AB be constructed in the

A c

manner taught in this theorem. And let a distance CD be
cut off on CE equal to AC and the angle at C be bisected by
the line CF, and from D let a line be drawn at right angles to
CE meeting CF at F and from F to A the line FA be joined.
I say that the angle at A is a right angle, For since CD is
equal to AC, the side CF is common, and they enclose equal
angles—for the angle at C has been bisected—then DF is
equal to FA, and all corresponding parts are equal, by the
fourth, so that the angle at A is equal to the angle at D and
is therefore a right angle. Thus our problem is solved. But
the author of the Elements has no need of this device, for he
stipulates that the Jine be drawn “at right angles,” not “at a
right angle.” We should not, then, take the point at the
extremity of the line if the straight line is to make angles, not
an angle only, with the given line,

Apollonius draws the line at right angles in the following
way:?7

[Let AB be the given line and C a point on it.] Take any
point D on AC, cut off from CB a length CE equal to CD,
then with center at D and distance DE let a circle be de-
scribed, and again another circle be described with center
E and distance DE; and let a line be drawn from F to C.

87 282.9 The words in brackets are added from Barocius.
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I say that this is the line at right angles. For if we draw
lines FD and FE, they will be equal; and equal also are
CD and CE, and FC is common, so that the angles at C are
equal, by the eighth. They are therefore right angles,

Once more you see that this proof, which requires the drawing
of circles, is more complex than that given by the author of
the Elements, since it was possible at once to erect an equi-
lateral triangle on DE and establish the theorem.*® All other
features in the two proofs are identical. The proof by means
of the semicircle is not even worth mentioning, for it assumes
many of the later propositions and completely departs from
the order of the Elements.®®

XIL To a given infinite straight line, from a given point
which is not on it, to draw a perpendicular straight line.

This problem was first investigated by Oenopides,'*® who
thought it useful in astronomy. In archaic fashion, however,

2828223 Le. the method of constructing an equilateral triangle
has already been fouad in 1, and to repeat it here is unnecessary. See
note to 280.11,

502833 From what Proclus says about this proof we can imagine
that it ran something like this. Given a line AB and a point C on it
from which it is required to construct a line at right angles, take a
point D, not on AB, nor on the extension of AB, and with D as

F

A — -]

c E

center and DC as distance draw a circle intersecting AB at a point B

other than C. From E draw through D a diameter of the circle to F.

The line drawn from C to F will be at right angles to AB, by III. 31.
100 283.7 On Oenopides see note at 66.2.
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he calls the perpendicular a line drawn ‘“gnomonwise,”
because the gromon also is at right angles to the horizon.
‘This “perpendicular™ differs from the line drawn “at right
angles” only in relation to its point of origin, as the word for
perpendicular (xdferos) indicates, and not in substance.l™
Again there are two kinds of perpendicular, plane and solid.
Whenever the line and the point from which a perpendicular
is dropped are in the same plane, it is called a plane perpen-
dicular, but when the point is above and outside the assumed
plane, a solid perpendicular. The plane perpendicular is
drawn to a line, the sclid to a plane. Hence the latter neces-
sarily makes right angles not with one line, but with all the
lines'*? in the plane, for the perpendicular was drawn to the
plane. In this problem, then, the author of the Elements is
proposing that a plane perpendicular be drawn; for it is
proposed that it be drawn to a straight line, and the argument
proceeds on the assumption that all the elements involved
are in a single plane.

Now when considering the construction of a line at right
angles, we had no need of the infinite, since the point was
taken as lying on the line itself; but in the case of the perpen-
dicular the given line is assumed to be infinite, since the point
from which the perpendicular is to be dropped lies somewhere
outside the line. If the line were not infinite, it would be
possible so to take the point that it would lie outside the given
line, but on a straight line with it, so that the lineé when
prolonged would fall on it; and thus the problem could not be
solved. For this reason he posits the straight line as infinite,
so that if the point is taken only on one or the other side of
the line, there will be no place left in which it can lie in a
straight line with the given straight line and thus will lie out-
side and not on it,

101 283.12f. ILe. the line “at right angles" in the preceding propo-
sition was to be erecred on the line, whereas the “perpendicular” is to
be dropped upon it. Reading #nai with Grynaens and Barocius instead
of gael in Friedlein, and «dferos (“plumb line™) instead of xddodos
{*descent”). There is a play on these words at 290,171

102283.21 Sc. that meet it, as Proclus has more correctly said at
135.22. Cf. Euclid X1, Def, 3,
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This is the reason, then, why the line to which the perpen-
dicular is to be dropped is given as infinite. But it is worth
inquiring in what sense in general the infinite has existence,
It is clear that, if there is an infinite line, there will also be an
infinite plane, and infinite in actuality if the problem is to be a
real one. That in sensible things there is no magnitude indefi-
nitely extended in any direction has been sufficiently shown by
the inspired Aristotle’®® and by those who derive their
philosophy from him. For it is not possible for the body
moving in a circle to be infinite, nor any other of the simple
bodies, for the place of each is determinate. But neither is it
possible that there should be an infinite of this sort among
separate and indivisible ideas; for if there is no extension nor
magnitude in them, there can hardly'®* be infinite magnitude.

It remains, then, that the infinite exists in the imagina-
tion, only without the imagination’s knowing the infinite.
For when the imagination knows, it simultaneously assigns
to the object of its knowledge a form and limit, and in know-
ing brings to an end its movement through the imagined ob-
ject; it has gone through it and comprehends it. The infinite
therefore, is not the object of knowing imagination, but of
imagination that is uncertain about its object, suspends
further thinking, and calls infinite all that it abandons, as im-
measurable and incomprehensible to thought. Just as sight
recognizes darkness by the experience of not seeing, so imag-
ination recognizes the infinite by not understanding it. It pro-
duces it indeed, because it has an indivisible power of pro-
ceeding without end, and it knows that the infinite exists be-
cause it does not know it. For whatever it dismisses as some-
thing that cannot be gone through,'®® this it calls infinite. So if
we supposed the infinite line to be given in imagination, exact-
Iy like triangles, circles, angles, lines, and all the other geomet-
rical figures, should we not ask in wonder how a line can ac-

103 28424 Phys, 204a8-206a8; De Caelo 271b1-276a17,

104 2855 Reading with Grynaeus and Barocius oxehfi 4" &v instead
of oxoerd, el in Friedlein.

105 285,18  ddcekirnrow, like Biéfers in 285.9, is an echo of Aristotle’s
Phys. 204a2-7, 207629,
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tually be infinite and how, being indeterminate, it associates
with determinate notions? But the understanding from which
our ideas and demonstrations proceed does not use the in-
finite for the purpose of knowing it, for the infinite is al-
together incomprehensible to knowledge; rather it takes
it hypotheticalty and uses only the finite for demonstration;
that is, it assumes the infinite not for the sake of the infinite,
but for the sake of the finite. If our imagination could see that
the given point does not lie on the extension of the finite line
and is so separated from it that no part of the line could
underlie the point, the demonstration would no longer need
the infinite. It is therefore that it may use the finite line
without risk of refutation or doubt that it posits the infinite,
relying on the boundlessness of imagination as the source
which generates it.

This is enough for the present concerning the hypothesis
of the infinite. Let us now move on to the objections that have
been brought against the construction used in this problem,o
Let the straight line be taken as infinite, they say, and the
point C from which the perpendicular is to be drawn and the
point D on the other side of the line from C be given, as our
geometer says; but let us have the circle cutting the line AB
at A and B and also at F, as in the position diagrammed.*
To this argument we reply that what it says is impossible.
For let AB be bisected at H, join CH and extend the line to
the circumference [at D], and let CA and CB [and CFJ®
be joined. Then since these are lines from a center, and AH is
equal to HB, and CH is a common side, all corresponding
parts are equal. CH therefore makes right angles at H. Again

106 286,15  Euclid's proof of XII poes as follows: Given an infinite
straight line AB and a point C not on it, he takes a point D at random
on the other side of the line and with center C and distance CD de-
scribes a circle cutting the given line at G and E. He then bisects GE,
draws a line from C to the midpoint H, and proves by VIII that CH
is perpendicular to AB.

107 286.22 This is a legitimate objection to Euclid's unexpressed
assumption that the circle cuts AB in only two points. Proclus tries to
answer the objection, but his refutation is inconclusive; see note at
289.6.

168 2872 The words in brackets are supplied from Barocius.

— 223 —



288

THE COMMENTARY

since CA and CB are equal, they make equal angles at points
A and B. But CA is also equal to CF, so that angle CAF is
equal to angle CFA; and CB is equal to CF, so that angle

A ~__Lr— 8
D

CFB is equal to angle CBF. Then since the angles at A and B
are equal, angle CFA is equal to angle CFB, and they are
adjacent and consequently right angles. Both of the angles at
H are right angles, and hence CH is equal to CF; but CF is
also equal to CD, for they are lines from a center; therefore
CH is equal to CD, which is impossible. Consequently the
circle does not cut the straight line AB at afiother point.

But if anyone should say that the circle described bisects
AB at F, again we can show the same impossibility. [Let all
the lines be drawn as before, and]'*® let FB be bisected at H.
Then since AF and FB are equal, CF is common, and base
CA is equal to CB, all corresponding parts are egual, so that
the angles at F are right angles. Again since FH s equal to
HB and CH is common and the base CF (let it be drawn) is
equal to CB (for they are lines from a center), the angles at

¢
\ D
A\‘"'-'/F\“"E‘/B A—F K H B

100 287.17  From Barocius.
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H are right angles, for they are equal and adjacent. Then since
each of the angles CFH and CHEF is a right angle, CF is equal
to CH. But CF is equal to CE, for they are lines from a center.
Therefore CH is equal to CE, which is impossible.

There remains the third objection to be dealt with. Let the
described circle, they say, cut the straight line both at A and
B and at F and H. Then if we bisect AB at K and join CA,
CF, CK, and CB, we can show that this is impossible. For
since AK and KB are equal, CK common, and the bases CA
and CB equal, the angles at A and B are equal, and the angles
at K are right angles. But each of the sides CA and CB is
equal to CF; therefore the angles at F are right angles, for they
are equal and adjacent; and hence CF is equal to CK, for
they subtend right angles. But CF is equal to CD, for they are
lines from a center; therefore CD is equal to CK, which is
impossible. It is thus not possible for the described circle to
cut the straight line AB either at one or at two points other
than points A and B.»°

These, then, are the objections. There are also cases in the
construction involved in this problem, and these we must treat
separately from the objections. A case and an objection are
not identical; the case proves the same thing in another way,
but an objection is adduced to show absurdity in the proof
objected to. By not discriminating between these, commen-
tators have introduced them all together and have not made it
clear whether they are asking us to diagram cases or ‘objec-
tions, We therefore distinguish them and adduce the cases after
the objections. Let AB be the infinite straight line and C the

1102896 On the insufficiency of Procles’ refutation see Heath,
Euclid 1, 272f. *His method of proof only enables us to show that, if
the circle meets AB in one more point besides G, E, it must meet it in
mote points still. We can always find a new point of intersection by
bisecting the distance separating any two points of intersection.” One
consequence would be that there are an infinite number of perpen-
diculars from C to AB. “This in fact is possible under the Riemann
hypothesis; but for a proof that it is not possible in Euclidean space,
we have to wait until XVL. This involves no difficalty, since X1I is
not used before.” But Heath also shows how, if it had been necessary,
Euclid could have demonstrated this assumption by means of the
“invaluable” VII.
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given point, Someone may say there is no room on the other
side of the line, but only on the side on which C lies. !
Taking, then, point D on the straight line, and with C as
center and CD as distance, we can describe a circumference
DEF; then bisecting DF at H, we can join CD, CH, and CF.
Then since DH is equal to HF, CH common, and CD equal

E
E F

¢

L
A D H F B A b 8

to CF (for they are lines from a center), the angles at H are
equal adjacent angles and are therefore right angles. CH,
then, is the perpendicular to DF. Finally, if anyone should
say that the described circle does not cut the straight line AB
but is tangent to it, like the circle DE, we can take a point F**2
outside and, with C as center and distance CF, can reach the
desired result as in the case expounded above.

Enough about the cases of the problem, which have been
presented to provide exercise for our readers. If I may add
some reflections on these two problems, it seems that the line
crected at right angles is an imitation of life lifting itself to the
upper world from the hollows here below, rising undefiled
and remaining uninclined towards worse things, whereas the
perpendicular («dferos) is a likeness of life following the
path downwards (xdfeSoc)'*® and holding itself free of the
indeterminateness in the world of generation. For the right
angle is a symbol of undeviating energy, held in control by
equality, definiteness, and boundaries. This is clearly why
the Timaeus, in its account of the divine soul, calls the “circle

11128921 See note at 225.16,

112 290,10 4 ¢ in Friedlein and Barocius is obviously an error.
What is needed is a point outside the circle DE. In line 12 read r¢
51 for g e

112 290.20f, See note at 283.12f.
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of the other,” that which contains the ideas of sensible things,
a right circle.'' In our souls it is fractured in all sorts of
ways and undergoes complex distortions because of its con-
nection with generation, but in the universe it is firmly set,
unwavering and undefiled, above sensible things. And if the
infinite straight line is a symbol of the whole world of becom-
ing in infinite and indeterminate change and of matter itself
which possesses no boundary nor shape, and if the point
lying outside carries the likeness of partless being devoid of
anything material, most certainly, then, the perpendicular
dropped from above would be an imitation of life proceeding
immaculately from the One and Indivisible into the world of
generation. And if, furthermore, the perpendicular cannot be
otherwise shown than through the use of circles, this too
would furnish an indication of the stability imparted through
Nous to living things. Although life itself, being essentially
change, is indeterminate, yet it acquires definiteness and is
filled with pure power when it partakes of Nous and goes
forward with it.

XL If a straight line set up on a straight line makes angles,
it will make either two right angles or angles equal to two
right angles.

Qur author has returned to theorems, in consequence of
what he has demonstrated in the problems, He has drawn a
perpendicular to a straight line at right angles to it, and the
next step was to inquire what angles will be made and
how they will be related to the straight line if the line standing
on it is not perpendicular.’*® This theorem shows generally

1142913 Cf. Tim. 37bt & 7oi 6arépov xixhas épdés iy and Proclus’
Commentary on the Timaeus u, 209.18, Diehl: riv 4p8dy xinhor.

152922 Euclid proves XIII in the following manner: Given a
straight line AB set up on line CD and making angles CRA and ABD.
If these angles are equal, they are two right angles, by Def, X. If not,
let BE be drawn from B at right angles to CD, by XI. Therefore CBE
and EBD are two right angles. Now since CBE is equal to the two
angles CBA and ABE, let angle EBD be added to each. Therefore
angles CBE and EBD are equal to the three angles CBA, ABE, EBD,
by Axiom II. Again since angle DBA is equal to the fwo angles
DBE and EBA, let angle ABC be added to each; therefore angles DBA
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that every straight line standing on a straight line and making
angles with it makes either two right angles, if it stands
upright without inclining towards either end, or angles equal
to two right angles, if it inclines towards one and away from
the other end of the given straight line, For whatever amount
it takes away from one right angle by inclining to one side it
adds to the other by diverging from that side.

We should notice how much concern for precision our
geometer shows in this proposition also. For he does not
simply say that every straight line standing on another
straight line makes either two right angles or angles equal to
two right angles but adds “if it makes angles.” For suppose it
stands at the extremity of the straight line and makes on¢
angle with it. Would it be possible for this to be equal to two
right angles? Obviously not, for every rectilinear angle is
less than two right angles, just as every solid angle is less
than four right angles. Even if you take the angle that seems
the most obtuse, you can only give it such a magnitude as will
still fall short of the measure of two right angles. We must
then so erect the straight line that it makes angles.

This, as I said, is a mark of his scientific precision. But what
does he intend when he adds that it makes “either two right
angles or angles equal to two right angles?” For when it
makes two right angles, it makes angles equal to two right
angles, since all right angles are equal to one another. Is it
not that the one expression denotes an attribute common to
both equal and unequal'*® angles, the other a property of
equal angles only? Whenever both a general and a special
attribute can be affirmed truly of something,''” we are ac-
customed to indicate its character by the special attribute;
but whenever we cannot hit upon this, we are satisfied with

and ABC are equal to the three angles DBE, EBA, and ABC. But the
angles CBE and EBD were also proved equal to the same three angles;
therefore {by Axiom 1) angles DBA and ABC are equal to angles
CBE and EBD, i.e. to two right angles.

116 2932  The sense vequired supports Friedlein's suggestion for the
insertion of xai rév dricwr.

117 2934 Putting Friedlein's comma after xewdr, not after dhnfeiy.
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the general character for the clarification of the things under
consideration. That adjacent angles are equal to {two]"'® right
angles is a general statement that applies indeed to right
angles, but not to right angles alone; but that they are right
angles is a statement distinctive of their equality, Conse-
quently to say only that the angles are equal to two right
angles is to imply unequal angles, for to them alone is it
truly applicable, not to equal angles. And this the author of
the Elements has logically distinguished by “[equal] to two
right angles”; for this phrase in and by itself denotes a
pair of unequai angles.

From this we can see how equality is a measure and a
boundary of inequality as well. For even though the diminu-
tion and increase of the obtuse and acute angles is indefinite
and undetermined, yet this increase and diminution are said
to be limited and bounded by the right angle. And though
each of them departs in a different direction from likeness to
the right angle, yet both of them by a certain unity of nature
refer back to the standard of the right angle; and since they
are unable to equal the simplicity of the right angle, they
attain equality when it is doubled. The dyad, which is in itself
indefinite, is a paradigm of their indeterminateness. Here it
seems we have a manifest image of the forthpoing of the
primary causes which stand as a single boundary line ever
the same about the indefiniteness of generation. For how
otherwise could the world of generation, which partakes of the
more-and-less and undergoes limitless change, be brought
into harmony with the intelligible world, and in a sense made
like to it, than by participation in those causes*** which with
their productive powers are always going forth and dupli-
cating themselves? For in their simplicity and partlessness
they completely transcend the world of generated things. So
much we can derive from this theorem for understanding
the whole of things.

112 2937 Inserting &veir before épfais, as in lines 11 and 14 below,

1122949 Reading with Barocius % before instead of after fia +4s
peléfews.
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X1V, If with any straight line, and at a point on it, two
straight lines adjacent'® to one another and rot lying

on the same side make the adjacent angles equal io two
right angles, the two straight lines will be in a

straight line with one another,

This is the converse of the theorem just demonstrated.
Converses always follow their leading theorems. The pre-
vicus theorem constructed a straight line on another and
showed that it makes the adjacent angles either two right
angles or equal to two right angles. This theorem assumes
angles making two right angles at a straight line and shows
that it is one straight line that makes them at the straight
line mentioned. What was given in the former is the con-
clusion in this, and it is proved by the reduction to impos-
stbility. This is the method ordinarily used for proving the
converse of a theorem, although in problems, at least, our
geometer admits also leading constructions.

In this theorem too we can observe an unexcelled level of
precision in scientific expression. In the first place, after say-
ing “if with any straight line,” he adds “and at a point on it.”
Suppose, since the straight line has two extremities, a line
drawn at one end and another at the other made the angles
on the straight line equal to two right angles, Could they for
this reason be on a straight line with each other? How could
they be, being drawn from different points of the straight
line? For this reason he adds “and at a point on it,” intending
that the two angles should lie at one point. Secondly, since
it would be possible for straight lines drawn from the same
point on a straight line not to be adjacent to one another (for
one could assume countless straight lines at a single point),
he adds “two straight lines adjacent to one another.” Thirdly,
since lines adjacent to one another can be considered as
either on the same side or on both sides, but those adjacent on
the same side cannot be in a straight line with one another, he
has ruled this out and bidden us take the adjacent lines as

120 294 16 The &#s in Proclus is not found in our text of Euclid.

Most mathematicians would regard it as unnecessary. Schiénberger
remarks that Proclus is “more popish than the Pope.”
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situated on opposite sides; for those are what can be proved
to lie on a straight line. Let lines BC and BD be two lines
standing on the straight line AB and on the same side of it.
These, moreover, are adjacent to one another, for there is
no other straight line between them. Things are adjacent to
one another when there is nothing of the same sort between

A

[}

D

them, For example, we call columns adjacent to one another
when there is no other column between them. Of course there
is air between, but nothing of their kind. Because these lines
lie on the same side, they cannot have the property of being
in a straight line, even though the angles they make with AB
may be equal to two right angles—for there is nothing to
prevent the angle at ABD from being one and one-third of a
right angle and angle ABC being the remaining two-thirds.

So much for the enunciation. In the construction he uses
one postulate, the second (that a finite straight line can be
extended in a straight line),*** just as in the proof he uses the
preceding theorem and two axioms (things equal to the same
thing are equal to one another, and if equals be subtracted
from equals the remainders are equal); and for the reduction
to impossibility he uses the axiom that the whole is greater
than the part, for when the one common angle had been
subtracted, the whole was equal to the part, which is im-
possible.1%2

121 296,18 *Post. IV is also used in this proof." {L.M.)

122296.24 Euclid’s proof of XIV is as foHows: With straight line
AB and at the point B on it, let two straight lines BC and BD not
lying on the same side make the adjacent angles ABC and ABD equal
to two right angles. Then BD is in a straight lice with CB. For if it is
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That it is possible for two adjacent lines drawn at the same
point on a straight line and lying on the same side of it to
make angles on the straight line equal to two right angles we
can demonstrate thus, after Porphyry. Let AB be a straight
line. Take any chance point on it, say C, and let CD be
drawn at right angles to AB, and let angle DCB be bisected
by CE.2#3 Let a perpendicular EB be dropped from E, let it be
extended, and let BF be equal to EB and CF be joined. Then
since EB is equal to BF, BC is common, and these sides

D £

F

contain equal angles (for they are right angles), base EC is
equal to base CF, and all corresponding parts are equal.
Angle ECB is therefore equal to angle FCB. But angle ECB is
half of a right angle, for a right angle was bisected by EC;
hence FCB is half of a right angle. Angle DCF is therefore
one and one-half of a right angle. But DCE is half of a
right angle; therefore on line CD and at point C on it there
are two adjacent straight lines CE and CF lying on the same
side of it and making with it angles equal to two right angles,
CE making an angle equal to half of a right angle, and CF an

not, let BE be in a straight line with BC. Then since AB stands on the
straight Jine CBE, angles ABC and ABE are equal to two right angles,
But angles ABC and ABD are also equal to two right angles; there-
fore angles CBA and ABE are equal to angles CBA and ABD. Let
angle CBA be subtracted from each; then the remaining angle ABE is
equal to the remaining angle ABD, the Jess to the greater, which is
impossible. Therefore BE is not in a straight line with CB. Similarly
we can prove that neither is any other line except BD. Therefore BD
is in a straight line with CB.

123297.10 *This argument is strangely stated. AB is taken as given,
and CD drawn perpendicular to it. But CD should be given, and BC
drawn perpendicular to it.” (LM.)
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angle cqual to one and one-half of a right angle. Thus to
prevent our drawing the impossible conclusion that CE and
CF, which make angles with DC equal to two right angles, lie
on a straight line with one another, our geometer has added
the phrase “not lying on the same side.” Hence the lines that
make with a line angles equal to two right angles must lie on
opposite sides of the line, though starting at the same point,
one extending to this and the other to that side of the straight
line.

XV, If two straight lines cut one another, they make the
vertical angles equal to one another.

Vertical angles are different from adjacent angles, we say,
in that they arise from the intersection of two ‘straight lines,
whereas adjacent angles are produced when one only of the
two straight lines is divided by the other. That is, if a straight
line, itself undivided, cuts the other with its extremity and
makes two angles, we call these angles adjacent; but if two
straight lines cut each other, they make vertical angles, We
call them so because their vertices come together at the same
point; and their vertices are the points at which the lines*
converging make the angles.

This theorem, then, proves that, when two straight lines cut
one another, their vertical angles are equal. It was first dis-
covered by Thales, Eudemus says, but was thought worthy
of a scientific demonstration only with the author of the
Elements. Not all the principal parts are present in this dem-
onstration, for the construction is lacking. But the proof,
which is indispensable, depends on the thirteenth theorem
and uses also two axioms: one, that things equal to the
same thing are equal to each other; the other, that if equals
be subtracted from equals the remainders are equal,i?s

124 298.23  émimeda here must be an error; eddeiar Or ypopupai i
obviously required, with a corresponding change in the preceding
participle. Tt is strange that neither Barocius, nor Taylor, nor Schon-
berger, nor ver Eecke seems to feel any scruples agzinst reading
“planes.”

12529911 “Proclus fails to notice that Post. IV is also used in
this proof.” (1.M.)
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Euclid’s theorem is clear;'*® and its converse is another
equally clear: if upon a straight line we assume two straight
lines not on the same side and making the vertical angles
equal, these lines lic on a straight line with each other. Let

A D

E B

AB be a straight line and C be any point on it, and at C let
two straight lines CD and CE be taken not on the same side
and making angles ACD and BCE equal. I say that CD and
CE lie on a straight line, For since CD stands on AB, it
makes angles DCA and DCB equal to two right angles. But
angle ACD is equal to angle BCE. Hence DCB and BCE
are equal to two right angles. Then since on a straight line BC
two adjacent straight lines CD and CE, not on the same side,
make with it adjacent angles equal to two right angles, CD
and CE lie on a straight line with one another. The converse
of the present theorem is therefore demonstrated. Qur geom-
eter, it seems, omitted this converse because it is easily proved
by the same method of reduction to impossibility which we
used to prove the preceding theorem. Taking the same hy-
potheses as above, I say that CD lies on a straight line with
CE. For if it does not, let us take CF as lying on a straight
line with CD. Then since two straight lines, AB and DF, cut
one another, they make the vertical angles equal; hence angles
ACD and BCF are equal. But angles ACD and BCE were

126 299,12 Euclid’s proof of XV (adapted to the lettering of Proclus’
diagram) points out that AC standing on ED makes angles ECA and
ACD equal to two right angles and that EC standing on AB makes
angles ECA and ECB equal to two right angles; hence angles ECA
and ACD are equal to angles ECA and ECB. Subtracting ECA from
each, ACD is equal to ECB. Similarly ACE can be proved equal to
DCB.
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equal. Therefore angle BCE is equal to angle BCF, the greater
to the less, which is impossible. Consequently there is no other
straight line that is on a straight line with CD, and CD and CE
therefore are on a straight line, assuming the vertical angles
to be equal. Since this is the same proof as that adduced in
the fourteenth theorem, would it not have been superfluous to
bring in this converse? For the sake of practice, however, we
have established it both by the reduction to impossibility and
by direct proof.

It seems that the force of this fifteenth theorem comes from
the homoeomery of straight lines and from their being
stretched to the utmost, since lines so characterized and cross-
ing one another necessarily have the same inclinations to
one another on both sides. Circular lines, and in general lines
that are not straight, do not necessarily make their vertical
angles equal when they cut one another, but sometimes
equal and sometimes unequal. For instance, if two equal
circles cut one another through their centers, or even at some
point other than their centers, they make the lunular angles
at the vertex equal, but of the other angles—that is, the bi-
convex and the biconcave—one is the greater.!?” But in the
case of straight lines their being stretched to the utmost
makes equal [on both sides] the divergence of the segments
of the one from those of the other.

127 301.15 See diagram at 127.14. ACD and BCE in this diagram
are equal, each of them, according to 333.15, being equal to two-thirds
of a right angle. Of the other two angles one, presumably ACB, is
greater than the other, DCE,
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PorisM. From this it is clear that, if two straight lines
cut one another, they make the four angles
equal to four right angles.

“Porism” is a geometrical term and has two meanings.'®
We call “porism” a theorem whose establishment is an inci-
dental result of the proof of another theorem, a lucky find!#
as it were, or a bonus for the inquirer. Also called “porisms”
are problems whose solution requires discovery, not merely
construction or simple theory. We must see that the angles
at the base of an isosceles triangle are equal, and our knowl-
edge in such cases is about already existing things. Bisecting
an angle, constructing a triangle, taking away or adding a
length—all these require us to make something. But to find
the center of a given circle, or the greatest common measure
of two given commensurable magnitudes, and the like—these
lie in a sense between problems and theorems. For in these
inquiries there is no construction of the things sought, but a
finding of them. Nor is the procedure purely theoretical; for it
is necessary to bring what is sought into view and exhibit it
before the eyes. Such are the porisms that Euclid composed
and arranged in three books,!#

But of such porisms we shall not speak here; the porisms
in the Elements are theorems that come to light along with
the demonstrations of other thecrems, without being them-
selves the object of the preceding inguiry, like the one stated
here. For the question under investigation was whether the
vertica] angles are equal if two straight lines cut one another;

A b

c B

128 301.22  Cf. 2121211

129 301.24  fpuacor, “gift of Hermes,” “windfall.”

130 302.13 On the attempts to reconstruct from this and other
evidence the contents of Euclid’s lost Perisms see Heath 1, 431-438.
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and the proof of this also carries with it the proof that the
four angles are equal to four right angles. For when we said
“Let AB and CD be two straight lines cutting one another at
point E; then since AE stands on CD, it makes the adjacent
angles equal to two right angles; and again since BE stands
on CD, it makes the adjacent angles equal to two right
angles,” then together with the conclusion drawn there we
also proved that the angles about E are equal to four right
angles,

A porism, then, is a theorem whose truth becomes evident
without effort through the proof of another problem or
theorem. For we appear to hit upon porisms as it were by
accident, not as answers to problems or inquiries; hence we
likened them to lucky finds. And it may be that the masters
in mathematics gave them this designation in order to show
ordinary people, who get excited over some apparent gain,
that these, and not the sort of things they suppose, are the true
windfalls and gifts of the gods. For they are produced by the
resources we have within us; our prolific capacity for knowl-
edge adds them to the results of the preceding inquiries, thus
revealing the inexhaustible richness of the world of theorems.

Such, then, is the way in which the peculiar character of
porisms is to be described. They can be classified, first, by the
sciences in which they appear: some porisms belong to
geometry, others to arithmetic. The one before us is geo-
metrical, that which occurs at the end of the second theorem
in the seventh book arithmetical. Secondly, by the propositions
that precede them: some follow on problems, others on
theorems. The present one results from a theorem, but that
in the second [proposition of the seventh] books! comes from
a problem. Thirdly, according to their methods of proof: some
are established by direct proof, others by reduction to impos-
sibility. The one before us is made evident by direct proof,
whereas that which is implied in the proof of the first theorem

131304.2  Barocius translates as if he read & ¢ Sevréon rod d836uoy
Bifiniov, which probably indicates a better text at his disposal and
certainly is what Proclus intended. The only porism in the second book
(that following II. 4) belongs to a theorem, not & problem. The porism
Proclus intends to refer to here is that mentioned four lines earlier, at
303.23.
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of the third book comes to light by a reduction to impossi-
bility. There are many other ways of classifying porisms, but
these are enough for us at present.

The porism that we are now discussing, in teaching us that
the space about a point can be divided into angles equal to
four right angles, forms the basis of that paradoxical theorem
which proves that only the following three polygons can fill up
the space about a point: the equilateral triangle, the square,
and the equilateral equiangular hexagon. The equilateral tri-
angle, however, must be taken six times, for six angles, each
two-thirds of a right angle, will make four right angles; the
hexagon three times, for each angle of a hexagon is equal to
one and one-third of a right angle; and the square four times,
for each angle of a square is a right angle. Hence six equi-
lateral triangles, meeting at their angles, complete the four
right angles, and similarly three hexagons, and four squares.
All other polygons, however they may be put together at their
angles, either fall short of or exceed four right angles; only
these, in the numbers mentioned, can equal four right angles.
This theorem is Pythagorean.

This porism also enables us to prove that, if more than
two lines—three, or four, or any number you like—cut one
another at a single point, the angles that result will be equal
in sum to four right angles, for they divide up the space of
four right angles. It is clear also that the angles will always be
double the number of the straight lines. Thus if two straight
lines cut one another, there will be four angles equal to four
right angles; if three lines intersect, six angles; and if four,
eight; and so on indefinitely, for the number of the straight
lines is always doubled. But the angles, though increasing in
number, decrease in size, because the magnitude that they
divide remains the same, namely, four right angles.

XVI. In any triangle, if one of the sides is produced, the
exterior angle is greater than either of the interior
and opposite angles.

Some persons have cited this enunciation elliptically,
without “i one of the sides is produced,” and thereby have
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given occasion—perhaps to others and certainly to Philip-
pus,™#? as Heron the engineer tells us—to criticize it. For the
triangle as such never has an exterior angle. But all who
desire to prevent this criticism state the proposition with the
addition of the omitted clause, since this accords with our
geometer’s custom. For example, in the fifth theorem, wishing
to demonstrate that the angles under the base of an isosceles
triangle are equal, he adds: “when the equal sides are pro-
duced,” the angles under the base are equal. Though this
theorem may appear elliptically in other texts, it certainly was
written in its full form by the author of the Elements.
What, then, does the enunciation say?'** That in any
triangle, if you produce one of its sides, vou will find the
exterior angle constructed on it to be greater than either of
the opposite interior angles.?** A little [ater'® it will be
demonstrated that it is equal to both of them, and this proves
that it is greater than either. Of necessity he compares it with
the opposite angles, not with the adjacent one; for the ex-
terior angle can be either equal to or less than the angle adja-
cent to it, whereas it is always greater than either of the
others. For example, if the triangle is a right-angled one and
you think of one of the sides around the right angle as pro-
duced, the exterior angle will be equal to its adjacent angle.
And if it is an obtuse-angled triangle, it will be possible for
the adjacent inner angle to be greater than the exterior angle.

13230524 This Philippus is probably the Philippus of Mende
mentioned at 67.23.

123 306.9 Putting the question mark after mpéraces, as does Baro-
cius, and removing it in line 12.

124 306.12 Euclid proves XVI as {ollows: Let ABC be a triangle,
and let one side BC be produced to D. Let side AC be bisected at
E, let B and E be joined and BE produced in a straight line to F,
making EF equal to BE. Let F and C be joined and AC be drawn
through to G. Then in triangles ABE and CFE sides AE and EB are
equal to sides CE and EF respectively, and angle AEB is equal to
angle FEC {by XV); therefore the triangles are equal, and angle BAE
is equal to angle ECF. But angle ECD is greater than angle ECF, and
hence angle ACD is greater than angle BAC. Similacly if BC be
bisected, angle BCG (i.e. angle ACD, its vertical angle) can be proved
greater than angle ABC.

135 306.13  In XXXII.
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But with respect to the opposite angles—for the angle adja-
cent to the exterior one is but one of the angles within the
triangle, whereas there are two opposite angles—the exterior
angle is greater than either of them, though not greater than
the angle adjacent to it.

Some, however, have united two theorems, this and the
one next to be demonstrated, and expressed the enunciation
as follows: “In any triangle, if one side is produced, the ex-
terior angle of the triangle is greater than either of the interior
and opposite angles, and any two of the interior angles taken
together are less than two right angles.” There is some excuse
for their uniting the theorems, in that our geometer himself
does so later in the case of equal angles: “In any triangle the
exterior angle is equal to the two interior and opposite angles,
and the three angles of a triangle are equal to two right an-
gles.”"**¢ 8o here they think it appropriate in a similar case to
unite the conclusions and make the enunciation composite, It
is clear that what is proposed for demonstration will be com-
posite, and the hypothesis, at least if it is presented with the
above-mentioned addition, will also be composite, for we must
suppose two things, the given triangle and one side produced.
And if it is stated without this addition, it is potentially com-
posite, though actually simple; for even if this addition is not
posited, it must always be understood as part of the given,
since the very fact of supposing that there is an external
angle assumes that the side has been produced, $o much for
this,

The present theorem enables us to infer that it is im-
possible to have three equal straight lines falling from the
same point upon the same straight line. For let three straight
lines, AB, AC, and AD, drawn from one and the same point
to the straight line BD, be equal. Then since AB is equal to
AC, the angles at the base are equal, and angle ABC is
therefore equal to angle ACB. Apgain since AB is equal to
AD, angle ABD is equal to angle ADB. But angle ACB was
equal to angle ABC; therefore ACB is equal to ADB, the

138 307,12 In XXXII.
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exterior angle to the interior and opposite angle, which is
impossible. Thus three equal straight lines cannot be drawn
from the same point to the same straight line.

By means of this theorem we can also demonstrate that
which says that, if a straight line falling on two straight lines
makes the exterior angle equal to the interior and opposite
angle, these straight lines cannot form a triangle, nor can
they intersect, since this angle will be both greater than the
other and equal to it, which is impossible. Let AB and CD
be straight lines, and let BE, falling on them, make equal
angles ABD and CDE. Then AB and CD will not intersect.
For if they intersect, the angles remaining equal, angle CDE
will be equal to angle ABD, though it is exterior and greater
than the interior and opposite angle. Necessarily, then, if they
intersect, the angles no longer remain equal, but the angle at
D in every case increases.’*” For if, while AB remains fixed,

A ¢

B D E

137 309.4 More accurately, “becomes relatively larger.” In only two
of the three cases considered below does the angle at D actually in-
crease.,
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you think of CD as moving towards it in order that they may
intersect, you will make the divergence at angle CDE greater,
for the more CD moves towards AB, the more it diverges
from DE. And if you think of CD as remaining fixed and AB
as moving towards it, you will make angle ABD smaller, for
AB simultaneously moves towards CD and BD. And if you
make both of them move towards one another, you will find
that AB, in moving towards BD, also contracts its angle,
while CD, in moving towards AB, diverges from DE and
thus increases the angle CDE. Of necessity, then, if a triangle
is produced and AB and CD intersect, the exterior angle wilt
be greater than the opposite interior one; for if the interior
angle remains the same, the exterior is increased, and if the
exterior remains the same, the interior is decreased, or both
change,'® the interior contracting and the cxterior expanding.
The cause of these changes is the motion of the straight lines,
the one moving towards the side where it makes the interior
angle, the other moving away from the side where it makes
the exterior angle. From this you can infer how constructing
things brings before our eyes the true causes of the con-
clusions.

XVIL. In any triangle two angles taken together in any
manner are less than two right angles.

The present theorem demonstrates generally that any two
angles of a triangle are less than two right angles; and the
sequel determines by how much they are less, namely, by the
third angle of the triangle. For the three angles are equal to
two right angles,'® so that the two of them will be less than
two right angles by the third angle. The proof given by the
author of the Elements follows an obvious path, since it uses
the previous theorem,'*® But here, as in the previous theorem,

138 310.1 Delete ¢ in Friedlein.

180 310,16 This anticipates the conclusion of XXXII.

140 310,19 Euclid proves XVIT as follows: Given the triangle ABC
with side BC produced to I}, the exterior angle ACD is greater than
the interior and opposite angle ABC, by the preceding theorem. Add-
ing ACB to each, we see that angles ACD and ACB are greater than
angles ABC and BCA. But angles ACD and ACB are equal to two
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we must look at the construction of the triangles in order to
discover the cause of this present character. So again let AB
and CD be lines at right angles to BD. If there is to be a
triangle, AB and CD must incline towards one another. But

A c A C

B D B e

their inclination decreases the interior angles, so that they
become less than two right angles, for they were right angles
before the inclination. Similarly if we think of lines AC and
BD as standing on AB at right angles to it, the same conse-
quences will follow from the lines’ being inclined to ome
another, and the angles on AB will become less than two
right angles. And similarly for the remaining side.

This, then, is the cause, not that the exterior angle is greater
than either of the interior and opposite angles. For it is not
necessary that a side be produced, nor that there be any
exterior angle constructed; but it is necessary that any two of
the interior angles be less than two right angles. And how
can what is not necessary be a cause of what is necessary?:4
The cause is, as I said, the factor stated, namely, the inclina-
tion of the straight lines towards the base, which decreases
the angles. Since the author of the Elements demonstrates the
conclusion by means of the exterior angles, now let us estab-
lish the same result without producing one of the sides. Let
ABC be a triangle, let any chance point D be taken on BC,

right angles; therefore angles ABC and BCA are less than two right
angles, Similarly we can prove that angles BAC and ACB are less
than two right angles, and so also angles CAB and ABC.

141311.21 1In Aristotle’s theory of demonstration a necessary con-
clusion can only be derived from necessary premises; see Posr. Anal.
73a24 and passim. Necessity in the strict sense is not identical with
formal necessity,
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and let AD be joined. Then since one side, BD, of the triangle
ABD has been produced, the exterior angle ADC is greater
than the interior angle ABD. Again since one side, DC, of
triangle ADC has been produced, the exterior angle ADB is
greater than the interior angle ACD. But the angles about AD

A

B8 D C

are equal to two right angles, by the thirteenth. Therefore the
angles ABC and ACB are less than two right angles. Similarly
we can prove that angles BAC and BCA are less than two
right angles by taking a point on AC and joining a straight line
from B to the point taken. And once more we can show that
angles CAB and ABC are less than two right angles by taking
a point on AB and joining a straight line to this point from
C. The conclusion, then, has been demonstrated by the same
theorem without producing any of the sides of the triangle.

With the help of this theorem we can also prove that it is
impossible to draw two perpendiculars from the same point
to an identical straight line. For let AB and AC be two per-
pendiculars dropped from A upon BC. Angles ABC and ACB
are therefore right angles. But since ABC is a triangle, any
two of its angles are less than two right angles. Hence ABC
and ACB are less than two right angles. But they are also

A
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equal to two right angles because the lines are perpendicular,
which is impossible, Consequently it is not possible to draw

two perpendiculars from the same point to the same straight
line.

XVIIL In any triangle the greater side subtends the
greater angie.

We have learned through the fifth and sixth theorems that
the equality of the sides of a triangle makes equal the angles
subtended by them and that the equality of the angles likewise
shows the subtending sides to be equal. But that the inequality
of the sides implies the inequality of the subtended angles, and
conversely, we learn from this and the following theorem, that
is, the eighteenth and the nineteenth. The former proves that
the greater side subtends the greater angle, the latter that the
greater angle is subtended by the greater side. They are con-
verses of each other, considering in contrary subjects the same
attributes as do the fifth and sixth theorems. But obviously
with scalene triangles we shall take the terms “greater and
lesser sides” as relative and distinguish between the greatest,
the intermediate, and the least sides: and likewise for the
angles. In the case of isosceles triangles it will be enough to
distinguish merely the greater and the less, for it is one side
that is unequal to the two others, either greater or less, just as
in the treatment of equilateral triangles these propositions
have no place at all.**?

You see how the propositions that demonstrate equality of
angles or sides suit both equilateral and isosceles triangles,
and those that demonstrate inequality suit both scalene and
isosceles. The reason is that some triangles are the product of
equality alone, some of inequality alone, and some of both,
having one character by virtue of equality and another be-
cause of inequality. And there are some beings that are akin
to the Limit, others to the Unlimited, and others that are gen-

142314,12 1 adopt Schénberger’s supposition that 315.4-10 has
been misplaced in the text and was intended to follow at this point.
If this supposition is correct, it should be read before the following
paragraph,
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erated from both by the principle of the Mixed. Thus this
triad of principles permeates everything: lines, angles, figures,
and among figures the three-sided, the four-sided, and all their
successors. But the Limit in geometrical forms is sometimes
manifested through likeness, sometimes through equality; the
Unlimited sometimes through unlikeness, sometimes through
inequality; and the Mixed sometimes arises out of likenesses
and unlikenesses, and sometimes out of equalities and in-
equalities.’*> The reason is that geometrical figures belong to
the categories of quantity and quality.

These being the two attributes** indicated, it is clear that,
when the author of the Elements says “in any triangle,” he
does not mean the equilateral triangle, but “any triangle that
has a greater and a lesser side.” For we must consider what is
given as the leading element, and the conclusion must be
thought of as conforming to it. Thus “Whatever triangle has a
greater and a lesser side, this will have its greater side sub-
tending its greater angle.”

In his construction our geometer takes the triangle ABC
and the side AC as greater than the side AB; and in order to
prove that the angle at B is greater than the angle at C, he
cuts off from AC a length AD equal to AB.'*5 One could
maintain that the length cut off should be at C; so let us

1433152 Reading instead of Friedlein's text the fuller one im-
plied in Barocius: ¢ éuowrdrer xai drogoorirwy, €f loorTdrwy xal drgo-
THTWY.

144 3154 The two attributes are “greatet” and “less,” the terms
discussed in 314.5-12, which this comment seems intended to follow
(see note at 314.12). The text of the present passage has been cor-
rupted as well as displaced, but the general meaning is clear.

14531514 In the proof of XVIII Euclid assumes a triangle ABC
having the side AC greater than side AB, takes a length AD on AC
equal to AB, and draws BD. Then, by XVI, angle ADB is greater than
angle DCB. But angle ADB is equal to angle ABD; therefore ABD is

also greater than ACB, and hence ABC is greater stil! than ACB,
which is what was to be proved.

246 —



316

317

PROPOSITIONS: PART ONE

prove the proposition before us on this hypothesis, after
Porphyry. Let DC be the length equal to AB, let AB be pro-
duced to E, and let BE be equal to AD, The whole of AE
is then equal to AC. Let EC be joined. Then since AE is equal
to AC, angle AEC is equal to angle ACE, by the fifth.

A

E

Therefore angle AEC is greater than angle ACB. But angle
ABC is greater than angle AEC, for the side EB of triangle
CBE has been produced, and angle ABC, being exterior, is
greater than the opposite interior angle. Hence angle ABC is
even greater than angle ACB, which is what it was required to
prove.

Such are the geometrical proofs. But clearly the cause of
this attribute is the increase or decrease in length of the side
itself that subtends the angle. For when it is greater it spreads
out the angle, and when smaller it diminishes and contracts
the angle also. This is because of the full tension of the
straight line; being stretched to the utmost, it changes the size
of the angle according to its own increase or decrease. I make
these statements about a single triangle, since it is possible
for the same angle to be subtended by a longer or a shorter
line and for the same straight line to subtend larger or
smaller angles. For let ABC be any isosceles triangle, and
let a point D be taken on side AB, a length AE equal to AD
be taken on side AC, and DE be joined. The angle at A is
then subtended by both DE and BC, one of which is longer
and the other shorter; and by the same reasoning it is possible
to take countless other straight lines of varying lengths as
subtending angle A. Again let ABC be an isosceles triangle,
having BC shorter than BA and AC. On BC let an equilateral
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triangle BDC be constructed, and let AD be drawn and pro-
duced te E. Then since angle BDE is an exterior angle of
triangle ABD, it is greater than angle BAD; and in the same
way angle CDE is greater than angle CAD. The whole angle
BDC is then greater than angle BAC, and the same straight
line subtends both the larger and the smaller angle. And it has
been shown that the same angle can be subtended by longer
or shorter lines. In one and the same triangle, however, one
line subtends one angle, the greater line always the greater
angle and the shorter line the smaller angle. The cause of this
we have seen.

XIX. In any triangle the greater angle is subtended by
the greater side.

This theorem is the converse of the previous one. In each
case both what is given and what is sought are simple. The
conclusion of that is the hypothesis of this, and the hypothe-
sis of that is the conclusion of this. That theorem precedes
because it takes as given the inequality of the sides, and this
one follows because its hypothesis is unequal angles; for the
sides of rectilinear angles are thought of as containing,**® the
angles as contained. And in that theorem the method of proof
is direct, but in this it proceeds by a reduction to impossibility.

Our geometer proves the impossibility by division ™

146 31813 *“As containing,” or “as superior t0,” the verb meptdyeer
having this double meaning, on which Proclus appears to play here.

147 318 16 T.e. by distinguishing the possible altersatives and dis-
proving each of them in turn, except the conclusion to be established.

The material given in quotation marks is not an exact quotation, but
rather a paraphrase, of Euclid's proof as we have it in our text.
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“When the angles are unequal,” he says, “I say that the sub-
tending sides also are unequal, and the greater side subtends
the angle given as greater. For if the side that subtends the
greater angle is not greater than, it is equal to or less than the
other side, But if it is equal to it, the angles they subtend are
also equal, by the fifth; and if it is less, the angle it subtends
is the lesser angle, by the preceding theorem, for it has been
demonstrated that the greater side subtends the greater angle
and the lesser side the lesser angle. But the relation of these
angles is the reverse, Consequently the side that subtends the
greater angle is greater than the other side.”

But it is also possible to demonstrate the present proposi-
tion without this use of division if we first prove a little lemma,
as follows ;14

If an angle of a triangle is bisected and the straight line
bisecting it meets the base and divides it into unequal
parts, the sides that contain the angle will be unequal,
and the greater will be that which meets the greater
segment of the base, and the less that which meets the
lesser.

Let ABC be 2 triangle. Let the angle at A be bisected [by the
line AD],*** let AD divide BC into unequal segments, and let
CD be greater than BD. I say that AC is greater than AB.

A

E

1453194 ‘This alternate proof and the lemma on which it depends
seem to have been contained in Heron’s commentary. See Heath,
Euclid 1, 285. Cf, 346.13.

14¢319.13 The phrase in brackets comes from Barocius, as does
the bracketed phrase in line 18.
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Let AD be produced {to E] and DE be made equal to AD.
And since CD is greater than DB, let DF be laid off equal to
BD, and let EF be drawn and produced to G. Then since AD
is equal to DE and BD to DF, two sides are equal to two
sides, and they contain equal vertical angles. Therefore the
base AB is equal to base EF, and all corresponding parts are
equal, so that angle DEF is equal to angle DAB. But this is
equal to DAG, so that side AG is also equal to EG, by the
sixth. Therefore AC is greater than EF. And EF is equal to
AB. Hence AC is greater than AB, which is what it was
required to prove.

Taking this lemma as established, we can prove that the
greater side subtends the greater angle. Let ABC be a triangle
having the angle at B greater than the angle at C. I say that
AC is greater than AB. Let BC be bisected at D, let AD be
drawn and produced so that DE is equal to AD, and let BE

A

E

be joined. Then since BD is equal to DC and AD to DE, two
sides are equal to two sides, and they contain equal vertical
angles. The base BE is therefore equal to AC, and all cor-
responding parts are equal, so that angle DBE is equal to the
angle at C. But the angle at C is less than angle ABD.1*
Hence angle DBE is less than angle ABD. Now let angle ABE
be bisected by the line BF. EF will then be greater than AF.
Then since in triangle ABE the angle at B has been bisected
by BF and EF is greater than AF, BE is greater than AB, by
the previously proved lemma. But BE has been shown to be

150 321,1 Le. by hypothesis,
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equal to AC. Therefore AC is greater than AB, and the
conclusion wanted has been proved,

It was obviously from a desire to avoid complexity in the
order of demonstration that the author of the Elements
avoided this method of proof, preferring to proceed by divi-
sion and reduction to impossibility because he wished to
establish the converse of the preceding theorem without any-
thing intervening. The eighth theorem, which is the converse
of the fourth, introduced considerable confusion in making
the conversion difficult to recognize, It is preferable to prove
a converse by the reduction to impossibility while preserving
continuity than to break the continuity with the preceding
demonstration. This is why he almost always proves a con-
verse by the reduction to impossibility.

XX. In any triangle two sides taken together in any manner
are greater than the remaining side.

The Epicureans are wont to ridicule this theorem, saying
it is evident even to an ass and needs no proof; it is as much
the mark of an ignorant man, they say, to require persuasion
of evident truths as to believe what is obscure without ques-
tion. Now whoever lumps these things together is clearly
unaware of the difference between what is and what is not
demonstrated. That the present theorem is known to an ass
they make out from the observation that, if straw is placed at
one extremity of the sides, an ass in quest of provender will
make his way along the one side and not by way of the two
others. To this it should be replied that, granting the theorem
is evident to sense-perception, it is still not clear for scientific
thought. Many things have this character; for example, that
fire warms. This is clear to perception, but it is the task of
science to find out how it warms, whether by a bodiless power
or by physical parts, such as spherical or pyramidal particles,
Again it is clear to our senses that we move, but how we
move is difficult for reason to explain, whether through a part-
less medium or from interval to interval, and in this case how
we can traverse an infinite number of intervals, for every
magnitude is divisible without end. So with respect to a
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triangle let it be evident to perception that two sides are
greater than the third; but how this comes about it is the
function of knowledge to say,

This is enough by way of answer to the Epicureans. We
must give a brief account of the other proofs of this proposi-
tion that the followers of Heron and Porphyry have con-
structed without producing the straight line, as the author of
the Elements does.** Let ABC be a triangle and let it be re-
quired to prove that AB and AC are greater than BC. Let
the angle at A be bisected [by the line AE]L** Then since
angle AEC is an exterior angle of triangle ABE, it is greater
than angle BAE. But angle BAE is equal to angle EAC.
Therefore angle AEC is greater than angle EAC, so that side
AC is greater than side CE. By the same reasoning AB is

A

B E c
greater than BE, for angle AEB is an exterior angle of triangle
AEC and greater than angle EAC, that is, greater than BAE,
so that AB is also greater than BE. Consequently AB and
AC are greater than the whole of BC. We can construct a
similar proof for the other sides.

Again let ABC be a triangle. If it is an equilateral triangle,
two of its sides will of course be greater than the third; for of
three equal quantities two of them, however chosen, will
always be double the third. If it is isosceles, it has a base either
less or greater than either of the equal sides. If the base is less,

113239 In proving XX Buclid assumes the triangle ABC, draws
BA through to D, making DA equal to AC, and joins DC. Then since
DA is equal to AC, angle ADC is also equal to angle ACD, by V;
therefore angle BCD is greater than angle ADC. And in triangle
DCE angle BCD is greater than angle BDC; therefore by XIX side
DB is greater than side BC. But DA is equal to AC; therefore BA and
AC are greater than BC, Similarly we can prove that AB and BC are
also greater than CA, and BC and CA greater than AB.

152 323,12 From Barocius.
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again two sides will be greater than the third. But if the base
is greater, let BC be greater, and let a length BE be cut off
equal to each of the other sides, and let AE be joined. Then
since angle AEC is an exterior angle of triangle AEB, it is

A
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greater than angle BAE. By the same reasoning angle AEB
is greater than angle CAE. The two angles about AE are
therefore greater than the whole angle at A, and one of them,
BEA, is equal to angle BAE, since AB is equal to BE. There-
fore the other, angle AEC, is greater than angle CAE, so
that AC is greater than CE. But AB was equal to BE, and
hence AB and AC are preater than BC. If ABC is a scalene
triangle, let AB be the greatest side, AC the side of middle
length, and BC the least. Now the greatest taken together with
either of the others is obviously greater than the third, for by
itself it is greater than either. And if we want to prove that
AC and BC are greater than AB the greatest, we shall proceed
as in the case of the isosceles by cutting off from the greatest
side a length equal to one of the others, joining its extremity
with C, and making use of the properties of exterior angles.

Again let ABC be any triangle. I say that AB and AC are
greater than BC. For if they are not, they will be either equal
to BC or less than it. Suppose them to be equal, and take
away a length BE equal to AB. The remaining length EC is
thus equal to AC. Then since AB is equal to BE, they subtend
equal angles. Likewise since AC equals EC, they also sub-
tend equal angles. Hence the angles at E are equal to those at
A, which is impossible.®® Now suppose AB and AC to be

133 325.11 Because the angles at E are equal to two right angles?
“I suspect the impossibility is that angle CEA is greater than BAE

and AEB is greater than CAE, by XVI. Proclus uses this kind of
reasoning in his next argument (325.16f.3.” (I.M.)
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less than BC, and let BD be laid off equal to AB and CE
equal to AC, Then since AB is equal to BD, the angle BDA
is equal to angle BAD; and since AC is equal to CE, angle
CEA is equal to angle EAC. Hence the two angles BDA and
CEA are equal to the two angles BAD and EAC. But since
angle BDA is an exterior angle of triangle ADC, it is greater
than angle EAC, for it is greater than DAC. By the same
reasoning, since angle CEA is an exterior angle of triangle
ABE, it is likewise greater than angle BAD, for it is greater
than angle BAE. Angles BDA and CEA are [therefore]'**
greater than the two angles BAD and EAC. But they were
equal to them above,'™ which is impossible. Therefore AB
and AC are neither equal to BC nor less than it, but greater.
Similarly for the other sides.

XXI. If on one of the sides of a triangle, from iis exiremities,
there are constructed two straight lines within the triangle,
the straight lines so constructed will be less than the remain-
ing two sides of the triangle but will contain a greater angle.

The meaning of the enunciation is evident, the proof given
by our geometer is clear, and the theorem follows from first
principles.**¢ It depends on two theorems, the one proved

154 326.1 é&pe is missing here. Barocius’ translation suggests that
he found it in his text.

155 31262 Taking éxei as having been displaced from its proper
position after abrals.

198 326,13  Eueclid's proof of XXI is: Given BD and DC two
straight lines constructed on side BC of triangle ABC and within the
triangle, let BD be drawn through to E. Then the two sides AB and
AE of triangle ABE are greater than BE, by XX, Let EC be added to
each; therefore AB and AC are greater than BE and EC. Again in
triangle CED the two sides CE and ED are greater than CD. Let
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before this and the sixteenth. For to prove that the lines
constructed within the triangle are shorter than the lines of
the triangle outside them, he requires the theorem that in any
triangle two sides are greater than the third; and for showing
that the angle they contain is greater than that contained by
the outer lines, he uses the proposition that in any triangle
the exterior angle is greater than the interior and opposite
angle.

It will furnish evidence of his geometrical precision and at
the same time be a reminder of the paradoxes in mathematics
if we show that it is possible to construct two lines within a
triangle on one of its sides—not on the whole of it, but on a
part—which will be greater than the outer lines and on the
other hand will contain an angle that is less than that between
the outer lines. The demonstration of this will make clear
why it was necessary that the author of the Elements add
that the lines constructed within the triangle must start “from
the extremities” of the common base, that is, must be con-
structed on one of the sides as a whole, not upon a part of
the whole. At the same time, as I said, it will reveal one of the
paradoxes in geometry. For is it not a paradox that the lines
constructed on the whole of the side are less than the outer
lines, whereas those constructed on a part of it are greater?

Let us suppose, then, a right-angled triangle ABC, having
the angle at B right; and let any point D be taken on BC, and
let AD be joined. AD is then greater than AB.!" Let a
length DE be cut off on AD equal to AB, and let EA be
bisected at F¥ and FC be joined. Then since ACF is a triangle,
AF and FC are greater than AC. But AF is equal to FE, and

DB be added to each; therefore CE and EB are greater than CD and
DB. But AB and AC were proved greater than EB and CE; thus AB
and AC are stil} greater than CD and DB. Again in triangle CDE the
exterior angle BDC is greater than angle CED, by XVI. Likewise in
triangle ABE the exterior angle CEB is greater than angle BAC, But
angle BDC was proved greater than angle CEB; therefore it is still
greater than angle BAC.

157327.17 “Angles ABD and ADB are less than two rights, by
XVII. Therefore ADB is less than a right, so less than ABD. There-
fore AD is greater than AB, by XIX.” (IL.M.)
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hence FE and FC are greater than AC, But DE is equal to
AB; therefore FC and FD are greater than AB and AC, and
they are within the triangle. Again let ABC be an isosceles
triangle having its base BC greater than either of the equal
sides, and let a length BD be cut off on BC equal to AB. Let
AD be joined, and a point E on AD be taken at random and
joined to C by EC. Then since AB is equal to BD, angle
BAD will be equal to angie BDA; and since angle BDA is an

A
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exterior angle to triangle EDC, it will be greater than the
intertor and opposite angle DEC, so that angle BAD is greater
than angle DEC. Hence angle BAC is even greater than angle
DEC. And angle BAC is contained by the outer lines, and
angle DEC by the inner lines. Consequently DE and EC have
been constructed within the triangle containing an angle less
than that contained by the outer lines, and the proposition has
been demonstrated without the use of the parallel lines of the
commentators.’®® It is therefore necessary that the lines con-

152 328,16 It would be inappropriate to prove this proposition by
using the theory of parallel lines, which has not yet been established,
if some other procedure is available. Proclus’ language suggests that
some of the commentators had been guilty of this error, According to
ver Eecke (see his note ad loc.), Pappus was one of them. The point
is well iltustrated later at 340.5ff,, where Proclus, in defending Euclid
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structed begin at the extremities of the base. For the lines
constructed on a part of the base have been shown to be
sometimes longer than the outer lines and to contain a smaller
angle. When they are thus constructed from the extremities,
they reveal the shape of the so-called barb-like triangle. This
also is one of the paradoxical problems in geometry, to find
a four-sided triangle, such as BAC. Though bounded by four
sides BA, AC, CE, and EB, it has three angles, one at B,
another at A, and a third at C. Consequently the figure here
presented is a four-sided triangle 2

A

B c

XXII. Out of three straight lines which are equal to three
given straight lines to construct a triangle: thus it is
necessary'®™ that two of the straight lines taken together in
any manner should be greater than the remaining one.

We have gone over to problems again, He asks us to con-
struct, given three straight lines two of which are greater than
the third, a triangle with sides equal to the given straight lines,
He sees, first, that it is impossible to construct a triangle from
lines that already have a prescribed position, but possible

against certain objections, is compelled to assume what is to be
proved later, viz. this very theory of parallels, in order to show that
the theorems whose omission is complained of could not have been
established by Euclid at this stage of his exposition.

153 3297 Cf. 165.22ff. It was the practice of Greek geometers not
to recegnize as an “angle” any angle not less than two right angles;
consequently the reentrant angle is ignored, and angle BEC is regarded
as outside the figure. Cf. 268.2, where the angle made by DF and FG
in the diagram is said to be “outside.” See Heath, Euclid 5, 263f.

100 323,10 For G 8¢ in Friedlein read 3ef 3%, since this is the
reading in our Euclid text and is required by the sense. See Heath,
Euclid 1, 293.
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only from lines equal to them, and, secondly, that of the lines
which are to make the triangle two “taken together in any
manner” must be greater than the other, for in any triangle
two sides are greater than the remaining one, as has been
demonstrated. This is why he adds that two of the lines from
which we start must in every case be greater than the third,
or a triangle will not result from lines equal to them; and, be-
sides, this added clause alone serves to refute the objections
brought against his construction.

This problem, then, belongs among the determinate, not
the indeterminate ones; for, like theorems, some problems are
indeterminate and some determinate. If we simply say “Out of
three straight lines equal to three given straight lines to
construct a triangle,” this is indeterminate and insoluble; but
if we add “two of them taken together in any manner are
greater than the third,” it is determinate and soluble. This
fact also comes out: just as theorems are distinguished ac-
cording to truth or falsehood, so problems are differentiated
according to their manifest possibility or impossibility.

A little attention to the construction will teach us that the
objections brought against it can be answered by the restric-
tion stated, We shall follow the words of our geometer. “Let
A, B, and C be straight lines, of which two, taken together
in any manner, are greater than the other.” And now we
must make the required construction. “Let a straight line DE
be laid out terminating at D in one direction but without

K
d

AlB

limit in the other. Let there be laid oft a length DF equal to
A, a length FG equal to B, and a length GH equal to C. With
F as center and distance FD let a circle X be described;
again with G as center and distance GH let a circle L be
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described; and let the two circles cut one another.” This is
what the author of the Elements assumes.®* Someone may
ask: “From where does he get this? For perhaps the circles
are only tangent to each other, or not even in contact. For of
three positions, they must have one: they either cut each
other, or are tangent, or are separate from each other.” Now
[ say that they necessarily cut one another. Let us first sup-
pose them to be tangent to one another. Then since F is the
center of circle K, DF is equal two FN; and since G is the

K
A=t
N .

center of circle L, GH is equal to GN; then the two lines DF
and GH are equal to the one line FG. But they were assumed
to be greater than it, since A together with C is greater than
B and these lines are equal to those. Again, if it be possible,
let the circles be separate from one another, like K and L.
Then since F is the center of circle K, DF is equal to FN; and
since G is the center of circle L, GH is equal to GM. Conse-
quently FG as a whole is greater than DF and GH. For FG
exceeds DF and GH by NM. But DF and GH were posited as

greater than FG, as lines A and C are greater than B; for DF
is equal to A, FG to B, and GH to C. It is necessary, then,
that circles K and L cut one another. So the author of the

1813319 From this point Euclid proceeds to solve XXII by draw-
ing lines from F and G to the point of intersection of the circles and
then proving that the triangle which they make is the triangle required.
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Elements was right in assuming that the circles intersect, since
he had also posited that of the three straight lines two of them
taken together in any way are greater than, neither equal to
nor less than, the other one, If the circles are tangent, the two
lines must be equal to, and if separate must be less than the
third,

XXIII., On a given straight line and at a point on it 1o
construct a rectilinear angle equal to a given
rectilinear angle.

This too is a problem, and the credit for its discovery be-
longs rather to Oenopides, as Eudemus tells us, It requires
us to construct on a given straight line and at a given point on
it an angle equal to a given rectilinear angle. For necessary
reasons our geometer adds that the given angle is rectilinear,
since it is not possible to construct on a straight line an angle
equal to any angle whatever. It has been proved that only two
of the circular angles are equal to rectilinear angles, namely,
the “axe,” which has been shown to be equal to any rectilinear
angle, and the lunular angle which is equal to two-thirds of a
right angle.®? This species of lunule is produced when two

162 333,1SH. This passage has confused all previous translators. The
first of these two species of circular angles that are equal to rectilinear
ones has been discussed at 189.23ff, where its equality to any recti-
linear angle is demonstrated. But there it is called unroeides, “moon-
like” ¢190.8). Here, however, it is called the “axe™ (wéhexvs), Whereas
the second species mentioned here is called unvoedés, This has led
Barocius, Taylor, and ver Eecke in their translations to imply that the
terms have been inadvertently interchanged, and Schénberger explicitly
to assert it. The truth is, however, that Proclus is referring to two
species of lunular angles, one that is equal to zny rectilinear angle
{cf. 190.12-14), and the other equal to two-thirds of a right angle.
The latter is a special case which results from two circles intersecting
each other through their ceniers, a point which Proclus mentions here
to differentiate it from the others. Both types were presumably also
called méhexs, a fact which leads to the apparent confusion in Proclus’
exposition. Taylor (1, {26) and ver Eecke (284) give a proof which
may be that which Proclus intended, showing that the second species
of lunule mentioned is equal to two-thirds of a right angle. Let the
circles AC and BD be drawn passing through their respective centers
A and B; and from the center C, with a radius CB equal to AB, de-
scribe the arc ABD and draw lines CB, CD, and CA. Then since
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circles cut one another through their centers. The requirement
that the construction be on a straight line makes determinate
the kind of angle to be constructed, not indeterminate, but
either rectilinear or mixed; and since no mixed angle can be
equal to a rectilinear, it is ¢vident that this angle is rectilinear.

The author of the Elements has done what is required by
using without qualification the preceding problem to con-
struct a triangle from three straight lines equal to the three
given lines;'®* but you could get the construction of the tri-
angle in 2 more instructive manner, as follows. Let AB be a

ACB is an equilateral triangle, as CBD is also, each of the angles
ACB and BCD will be equal to two-thirds of a right angle; and since
the mixed angle BCE is equal to the mixed angle DCF, the angle
ECF will be equal to angle BCD, i.e. to two-thirds of a right angle.
1833346 Euclid solves XXIITI as follows: Given the straight line
AB and the rectilinear angle DCE, to construct on AB at A an angle
equal to DCE, he takes points D and E at random on €D and CE
respectively, joins DE, then constructs a triangle FAG on AB whose
sides AF, AG, and FG are equal respectively to CD, CE, and DE.
Then, by VIII, angle DCE is equal to angle FAG. Heath (Euclid 1,
295) remarks that the construction of the triangle assumed in this

proposition Is not exactly the construction vsed in XXIIL “We have
here to construct a triangle on a certain finite straight line AG as base;
in XXII we have only to construct a triangle with sides of given length
without any restriction as to how it is to be placed.” Hence the
construction of XXII cannot be used here without qualification.
Proclus modifies the method of XXII and thus constructs the triangle
in what he considers a “more instructive fashion." He appears later
(335.151.} to plume himself modestly on this contribution he has made
to Euclid's construction.
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straight line, A the given point on it, and CDE the given
rectilinear angle. Now let us do what is required. Let CE
be joined and AB be produced in both directions, to F and
G, and let FA be equal to CD, AB to DE, and BG to CE.
With A as center and distance FA let the circle K be de-
scribed; and again, as in the preceding problem, with center

M
K L ¢
F G DAE
N

B and distance BG let circle L be described. These circles
therefore intersect one another, as has been proved. Let them
then intersect at points M and N, and from M draw lines to
the centers, and likewise from N. Then since FA is equal to
AM and to AN, and FA is equal to CD, AM and AN are
each equal to CD. Again since BG is equal to BM and to
BN, and BG is equal to CE, therefore BM and BN are each
equal to CE. But AB also is equal to DE. The two lines AB
and AM are therefore equal to DE and DC, and the base BM
is equal to CE; hence angle MAB is equal to the angle at D.
Again the two lines AN and AB are equal to the two lines CD
and DE, and the base BN is equal to the base CE; hence angle
NAB is equal to angle CDE. The task required has been done
twice: we have constructed not one only, but two angles equal
to the given angle, one on each side of the line AB, so that in
the sequel, on whichever side we choose to make the construc-
tion, cur resuit will be sure and unimpeachabie.

This is our contribution to the construction given by the
author of the Elements. But we do not commend the proof
given by Apollonius, since it requires theorems proved in
Book 1I1. He takes CDE as any angle and AB as the straight
line. With D as center and distance CD he draws an arc CE,
and likewise with A as center and distance AB the arc BF.
He then cuts off a length BF equal to CE, joins AF, and
declares A and D to be equal angles as standing on equal
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C
D

E

B
A

F

arcs. He must also assume that AB is equal to CD, in order
that the circles may be equal. Now such a construction em-
ploying later theorems'®* we regard as alien to the nature of
an clementary treatise and prefer that of our geometer because
it is an orderly consequence of principles,

XXIV. If two triangles have two sides equal fo two sides
respectively but have one of the angles contained by the
equal straight lines greater than the other, they will alse have
one base greater than the other.

He has gone over to theorems again and now presents
reasonings concerning inequality in two triangles similar to
those he has given about equality. Assuming two triangles
with two sides equal respectively, he posits at one time that
the vertical angles are equal and at another time that they are
uneqgual [and the bases at one time equal and at another time
unequal]*** and shows that the equality of the vertical angles
implies the equality of the bases, that the equality of the bases
implies the equality of the angles at the vertex, and that in-
equality implies inequality. The present theorem is therefore
the opposite of the fourth; for that assumed equal angles at the
vertex of the triangles and this unequal angles, and that
proved the bases of the triangles to be equal, whereas this
proves them to be unequal, like the angles. This theorem is
also the leading theorem for the one following, for that pro-
ceeds from the bases to the angles which the bases subtend
and infers their inequality, whereas this proceeds conversely

184 336.6 Apollonius’ solution requires the use of III. 28 and 29.
185 336.19 From Barocius.
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from the angles to the bases under them. So'¢ the following
preposition, being the converse of this in the sense just de-
scribed, is the opposite of the eighth theorem; for the eighth
proves from the equality of the bases that the vertical angles
are equal, and this one shows from the inequality of the bases
that the angles also are unequal. Of these four theorems—the
fourth, eighth, twenty-fourth, and twenty-fitth—two, the
fourth and the eighth, are concerned with equality; two, this
and the following one, with inequality; two, the fourth and the
one we are now considering, start from the angles; and two,
the eighth and the one after this, start from the bases. But
common to all four is the necessary assumption that the two
triangles have two sides equal respectively; for if they are
unequal, all inquiry is vain and subject to error.

So much in general about the propositions before us. Now
let us examine the construction that the author of the FEle-
ments gives for this theorem and supply what it omits. He
takes two triangles ABC and DEF having sides AB and AC
equal respectively to DE and DF and the angle at A greater
than the angle at D. To prove that BC is greater than EF, he

constructs on DE and at point D upon it an angle EDH equal
to the angle at A—the greater of the two angles A and D—
and draws DH equal to AC.** Now when EF is produced,

A D

B cC E F H

166 337.11 Reading with Schonberger dove aird 3 instead of Horep
al ro in Friedlein.

167 33811 Despite Proclus’ assertions at 340.10 and 14 that he is
following the diagram in Euclid’s text, it is impossible to make either
his diagram or his lettering accord with those in our text of Euclid.
Procius’ diagram substitutes H (8) everywhere for G (%) and to add
to the complications the diagrams at 338.14-339.10 and at 340.7-343.10
are the reverse of those in our Euclid. Instecad of trying to bring these
two traditions into accord, I have left Proclus' text as it is, warning
the reader that he will have to make some accommodations in com-
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point H will lie either above the line, or on it, or below it.
The author of the Elements takes it as lying above the line.
But let us suppose it to be on the line and prove it again
from this assumptton. The two lines AB and AC are equal to
lines DE and DH, and they contain equal angles. The base
BC is then equal to EH. But EH is greater than EF, so that
BC is greater than EF. Now let us suppose that it lies below
EF. Then drawing line EH we shall say that, since AB and
AC are equal to DE and DH and they contain equal angles,

a

8 ¢ F H
therefore BC is equal to EH. Now since within the triangle
DEH lines DF and EF have been constructed on DE, they are
less than the outer lines. But DH is equal to DF, for it is
equal to AC; hence EH is greater than EF. But EH is equal to
BC and hence BC is greater than EF, Thus the theorem has
been demonstrated for every position.

Since in the fourth theorem our author proved also that

paring it with the Euclid text to be given in this footnote. Euclid's
proof of XXIV is as follows: Given triangles ABC and DEF having
sides AB and AC equal respectively to DE and DF and the angle at
A greater than the angle at D, let there be constructed on DE at point
D an angle EDG equal to angle BAC, and let DG be drawn equal to

A o]

AC, and join EG and FG. Then since AB is equal to DE, AC to DG,
and angle BAC to angle EDG, BC is equal to EG, by IV, Again since
DF is equal to DG, angle DGF is also equal to angle DFG, by V.
Therefore angle DFG is greater than angle EGF, and the angle EFG
greater still than angle EGF. And since EFG is a triangle having
angle EFG greater than angle EGF, side EG is also greater than side
EF, by XIX. But EG is equal to BC, and therefore BC is also greater
than EF, which is what was to be proved.
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the arcas of the triangles are equal, why did he not add to
this theorem that the areas as well as the bases are unequal?
To this difficulty let it be said that the same reasoning does
not hold for unequal as for equal angles and bases. The
equality of the angles and the bases implies the equality of
the triangles, but when they are unequal, the inequality of the
areas does not necessarily follow. The triangles can be either
equal or unequal, and that which has the greater angle and
base may be greater or it may be less. For this reason the
author of the Elements omitted a comparison of the triangles,
particularly since the investigation of these matters requires
the doctrine of parallel lines. But if we must now make a com-
parison of the areas, let us do so, assuming in advance what is
to be proved later. Using the diagram of this proposition in the
Elements, we assert that, if the angles at A and D) are equal to
two right angles, the triangles are demonstrably equal; if they
are greater than two right angles, that triangle which has the
greater angle is less; and if they are less than two right angles,

A H K

A D
B c

E G
F

it is greater. Taking the constructions as given in the Ele-
ments, let ED and FD be produced [to K and H],*** and let us
suppose angles BAC and EDF equal to two right angles. Then
since angle BAC is equal to angle EDG, angles EDG and
EDF are equal to two right angles. But angles EDG and KDG
are also equal to two right angles. Let the common angle EDG
be subtracted, and the remainder, angie EDF, is equal to
angle KDG. But angle EDF is equal to angle HDK (for they
are at the vertex), and therefore angle KDG [is equal to
HDK].2®* And since angle GDH is an exterior angle to tri-
angle GDF, it is equal to the two opposite angles at G and F.
But these are equal to one another, for DG is equal to DF.

168 34015 From Barocius.
159 341.2 From Barocius.
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Angle GDH is therefore double the angle at G. The angle at
G is then equal to angle KDG, and they are alternate angles;
DE is therefore parallel to FG. Consequently triangles GDE
and FDE are on the same base DE and between the parallels
DE and FG. Therefore they are equal. But triangle GDE is
equal to triangle ABC, and hence triangle DEF is equal to
triangle ABC.

You see that we needed three theorems from the doctrine
of parallels: one, that in every triangle the exterior angle is
equal to the two opposite interior angles; another, that if a
straight line falls on two straight lines making the alternate
angles equal, the straight lines are parallel; and the third,
that triangles on the same base and in the same parallels
are equal. The author of the Elements knew this and there-
fore omitted this comparison of the triangles.

Now let angles BAC and EDF be greater than two right
angles, and carry out the same constructions. Then since
angles BAC and EDF, that is, angles EDG and EDF, are
greater than two right angles and angles EDG and GDK are
equal to two right angles, if the common angle EDG is sub-
tracted, angle EDF is greater than angle GDK; that is, angle
KDH is greater than angle GDK.*™ Angle GDH—that is, the

H K
D
A

/\ .
B C E

F

double of the angle at G—is therefore greater than the double
of angle GDK. Angle GDK is then less than the angle at G.
Let angle DGL be constructed equat to angle GDK, and let
EL be drawn, Then GL and DE are paraliel, Triangles GDE
and LDE are therefore equal. But triangle LDE is less than
triangle FDE; therefore triangle GDE is less than triangle

1703424 The Greek text here is somewhat confused. I follow

Barocius, since his translation gives the sense required by the geo-
metrical reasoning.
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FDE. But triangle GDE is equal to triangle ABC. Therefore
triangle ABC, which has the greater angle, is less than triangle
FDE.

Now suppose, thirdly, that the unequal angles are less than
two right angles, and complete the same constructions, Then
since angles EDG and GDK are equal to two right angles, if
we subtract the common angle EDG, the angle EDF (that is,
KDH) is less than GDK; hence the whole angle GDH is less
than the double of angle GDK. But GDH is also double the
angle at G [that is, DGF]. Therefore the angle GDK is greater

than the angle at G. Let angle DGL be constructed equal to
angle GDK, let GL meet EF at L, and let DL be joined. GL is
then parallel to DE; hence triangles GDE and DLE are equal
to one another. But triangle DLE is greater than triangle
FDE, and GDE is equal to ABC. Consequently triangle ABC
is greater than triangle DEF.

Thus it has been proved that triangle ABC is either equal
to, greater than, or less than triangle DEF when the angles at
A and D are equal to, or greater than, or less than two right
angles. And all these are possible assumptions. For suppose
the angle at A is one and one-half times a right angle and that
at D half a right angle. Are they not then equal to two right
angles? Or if A is one and a half and D a right angle, are they
not greater than two right angles? Or if A is one and a half
and I a third of a right angle, are they not less than two
right angles? And in each of these cases A is greater than D.
All these comparisons'™ were possible for us only through

171 344,6 Friedlein’s text has no substantive with rdsz:. 1 assume
with Barocius that something like evyxpioes is implied.
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the use of parallel lines, and this is why they are necessarily
omitted by the author of the Elements.

XXV, If two triangles have two sides equal to two sides
respectively but have one base greater than the other, they
will aglso have one of the angles contained by the equal
straight lines greater than the other.

This theorem is the opposite of the eighth and the converse
of the one before it. The author of the Elements has presented
these theorems in pairs, one pair concerning equality of angles
and bases, another concerning inequality, in each pair taking
a leading proposition and its converse and, for the leading
proposition, vsing direct proof and for the converse reduc-
tion to impossibility. In this way he proceeds for each kind
of triangle, now showing that the equality of the sides im-
plies the equality of the subtended angles, and inequality
inequality,’™ and again conversely showing that the equality
of the angles implies the equality of the subtending sides, and
inequality inequality.

Coming now to the present theorem, we leave it to the eager
student to find out from the books how our geometer demon-
strates it, since his procedure is quite clear."® But the proofs
that others have produced for the same proposition we shall
recount briefly, and first the proof discovered and set forth by
Menelaus of Alexandria.l™ “Let ABC and DEF be two tri-

172 345.6 Reading ryr dvicéryra after v§ dveéryr: as in line 8.

173 345,12 Euclid proves XXV indirectly, and by division (cf.
note at 318.16). Thus if the angle at A is not greater than the angle at
B, it mnst be either equal to or less than D. But it cannot be equal to
D, for then the bases of the two triangles would be equal, by IV: nor
can it be less than D, for then the base of its triangle would be less
than that of the other, by XXIV. Therefore the angle at A is greater.

17434514 Menelaus of Alexandria, who lived during the latter
half of the first century, is important because of his contributions 10
spherical geometry and trigonometry. He wrote a Spherica in three
books, preserved for us in an Arabic version, which defines the
spherical triangle and demonstrates the basic propositions about it
corresponding to Euclid’s theorems about the plane triangle. He also
wrote an Elements of Geometry. The proof cited by Proclus probably
comes from this work. See Heath 11, 260-273, and Van der Waerden,
274-276.
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angles having the two sides AB and AC equal to the two sides
DE and DF and BC greater than EF. ] say that the angle at A
is greater than the angle at D. Let a length BG be laid off on

D
A E F
m
B

H

BC equal to EF, let an angle GBH be constructed at B equal
to DEF, and let BH be equal to DE. Join HG, let the line be
produced to K, and let AH be joined. Then since BG is equal
to EF and BH is equal to DE, the two sides are equal to two
sides, and they contain equal angles. Consequently GH is
equal to DF, and angle BHG to angle EDF. And since GH
is equal to DF and DF to AC, then HG is equal to AC. HK
is longer than AC, so that even more is it Jonger than AK.
And angle KAH is therefore greater than angle KHA. Again
since BH, being equal to DE, is equal to AB, angle BHA is
equal to angle BAH. The whole angle BAK is hence greater
than the whole angle BHK, and the whole angle BHK has
been demonstrated to be equal to the angle at D. Therefore
angle BAC is greater than the angle at D.” Such is the proof
of Menelaus.

Heron the engineer proves the same theorem, without
using the reduction to impossibility, as follows. Let ABC and
DEF be triangles and the hypotheses the same as before.
Since BC is preater than EF, let EF be produced and EG be
made equal to BC. Similarly let ED be produced and DH be
made equal to DF. With D as center and distance DF let a
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circle be described going through H, namely, FKH, And
since AC and AB are greater than BC, and since they are
equal to EH and BC is equal to EG, a circle described with
center E and distance EG will cut EH. Let GK be the circle

A

[ 94

E F G

that cuts it, and let lines KD and KE be drawn to the
centers of the circles from the point of their intersection, Now
since D is the center of FKH, KD is equal to DH, that is, to
DF and to AC. Again since E is the center of circle GK, KE
is equal to EG, that is, to BC. Then since the two lines AB
and AC are equal to the two lines DE and DK and BC is equal
to KE, the angle BAC is equal to the angle EDK. Therefore
angle BAC is greater than angle FDE.,

XXV If two triangles have two angles equal 1o two angles
respectively and one side equal to one side, namely,
either the side adjoining the equal angles or that subtending
one of the equal angles, they will also have the remaining
sides equal to the remaining sides and the remaining angle
equal to the remaining angle.

Anyone wishing to compare triangles with respect to their
sides, angles, and areas must either assume equal sides only
and inquire whether the angles are equal, or assume equal
angles only and inquire about the equality of the sides, or
take a combination of angles and sides. Now assuming equal
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angles only, he was unable to prove that the sides of the
triangles are also equal; for the smallest triangles may have
equal angles with the greatest and yet have sides and included
areas that fall short of the others, though they have each of
their angles one by one equal to theirs. But positing the sides
only as equal, he proved that all parts are equal by the eighth
theorem, which assumes two triangles having two sides equal
respectively and the base equal to the base and demonstrates
that they have equal angles and enclose equal areas. The
author of the Elements omits to add this last point, since it is
a necessary consequence of the fourth theorem and needs no
proof. Taking a combination of sides and angles, he had to
assume cither one side equal to a side and one angle equal to
an angle, or one side and two angles of the triangles equal, or
vice versa one angle and two sides, or one angle and three
sides, or one side and three angles, or more than one side and
more than one angle, But he did not try with one side and one
angle to prove the proposed equality of the other parts. It is
clearly possible for two triangles that have only one side and
one angle equal to be unequal in all other respects. For exam-
ple, let AB be a straight line standing at right angles on CD,
with BD greater than BC, and let AC and AD be joined.
These triangles have a common side and an angle in one

VAR

equal to an angle in the other, but they are in all other
respects unequal. But it was possible to take one side and two
angles and prove the other parts equal, and this he does in the
present theorem. But to take one side and three angles equal
was to posit too much, since the equality of the other parts can
be proved from two equal angles only. Again, taking one
angle and two sides, he proved in the fourth theorem that the
other parts are equal.’”* But to take one angle and three sides

175 349,13 It is strange that neither here nor in his later comments
at 350.14-24 on the fourth theorem does Proclus mention the case in
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equal was superfluous, for the assumption of two equal sides
was enough by itsell to show the equality of the other parts
Finally, to assume two equal sides and two equal angles, or
two sides and three angles equal, or two angles and three
sides, [or three angles and three sides}'">—all these were un-
necessary, for what follows from fewer premises will certainly
follow also from more, assuming that the hypotheses are set
forth with the given qualifications.””” Thus it is clear that
three hypotheses only needed to be examined: the hypothesis
of three sides only, the hypothesis of two sides and one angle,
and its opposite, that which takes one side and two angles;
and it is this last that our geometer now adds.’”® This is why
we have only three theorems concerning equality in triangles
with respect to their sides and their angles, all the other hy-
potheses being either insufficient to prove what is wanted or
sufficient but redundant, since the same things can be proved
on fewer assumptions.

Now just as our author, when he assumed two sides equal
to two sides and an angle equal to an angle, did not take any
chance angle but, as he there added, “the angle contained by
the equal straight lines,” so also when he assumes two angles
equal to two angles and a side to a side, he does not take any
chance side but “either the side adjoining the equal angles or a
side that subtends one of the equal angles.” For neither in the
fourth theorem is it possible by taking any chance angle as
equal, nor in this one by taking any side indifferently, to prove

which two sides and an angle opposite one of them are sufficient, under
certain conditions, to make the two triangles equal. It cannot have
been unknown to him, for Menelaus in his Spherica (1. 13) includes
the corresponding theorem in spherical geometry (see previous note ),
For a discussion of this “ambiguous case” see Heath, Enciid 1, 306,

178 349,18  From Barocius.

177 349.21 Reading with Grynaeus and Barocius sofésrwy instead
of dedvrwr in Friedlein,

11634926 I omit the details of Euclids proof of XXVI, since
Proclus makes no further reference to it. Euclid proceeds by division,
showing by reduction to impossibility that each alternative other than
that stated in the enunciation is false. This makes a lengthy and tedious
proof and is a remarkable illustration of Euclid’s desire to avoid the
proof by superposition, which would have been very short and easy.
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that the remaining parts are equal. For example, let BC in the
equilateral triangle ABC be divided into unequal parts by the
line AD. This produces two triangles having sides AB and AD
equal to AC and AD and one angle, the angle at B, equal to

4

B o c

the angle at C. But the other parts, BD and DC, are not equal
(for they were posited as unequal), nor are the other angles.
The reason is that we have not taken as our equal angle the
angle contained by the equal sides. For the same reason, then,
the present theorem also will manifestly fail if we do not ob-
serve the restriction he lays down, to take as the equal side that
which subtends one of the equal angles or the side adjoining
the equat angles. Let ABC be a right-angled triangle having
its angle at B right and side BC greater than AB, Let AB be
produced, let there be constructed on BC and at point C on it
an angle BCD equal to angle BAC, and let AB and CD when
produced meet at D. ABC and BCD are then two triangles
having a common stde BC and two equal angles, angle ABC

A

B c

D

equal to CBD (for both are right angles), and angle
BAC equal to BCD by construction. Therefore the triangles
are equal, it seems; and yet it can be demonstrated that BCD
is greater than ABC. The reason is that we have taken the
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common side BC, which in triangle ABC subtends one of the
equal angles, the angle at A, but in triangle BCD adjoins the
equal angles. It should have either subtended one of the equal
angles or adjoined the equal angles, in both cases. Because we
did not watch this, we have declared equal a triangle which
is necessarily greater. For how could BCD fail to be greater
than ABC? At point C con straight line BC let an angle FCB
be constructed equal to angle ACB, for angle BCD, like the
angle at A, is greater than angle ACB. Then since there are
two triangles ABC and BCF having two angles ABC and
BCA equal respectively to the two angles CBF and FCB and
a common side BC adjoining the equal angles, the triangles
are equal. And since BCD is greater than FCB, it is greater
than ABC. Our earlier proof that it is equal resulted from
taking the side at random. This contribution to the precise
understanding of the present matter comes from Porphyry;
but Eudemus in his history of geometry attributes the theorem
itself to Thales, saying that the method by which he is re-
ported to have determined the distance of ships at sea shows
that he must have used it.

From the analysis given above we can obtain a general
view of the whole theory of equality between triangles and
can explain the omission of certain hypotheses by proving
that they are erroneous or superfluous. At this point we shall
assume that the first section of the Elements comes to an end.
The author has constructed triangles and compared them
with respect to their equality or inequality, establishing their
existence by construction and their identity!® and differences
by comparison. For existence involves three factors: Being,
Sameness, and Otherness, both quantitative and qualitative,
according to the individual characters of the subjects con-
cerned. Thus through these propositions as likenesses he has
shown us that everything is both identical with itseif and
other than itself because of the plurality it contains; that is,
all are the same with one another and other than each other,
for equality and inequality have been discovered to exist in
each single triangle and in two or more,

179 353.3 Reading with Barocius ravréryra for loéryra in Friedlein.
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WE HAVE learned from the foregoing all that it is
possible to say in an elementary treatise regarding the
construction of triangles and their equality or inequality.
Euclid next goes through the four-sided figures, primarily
instructing us about parallelograms but including in the theory
of them his teaching about trapezia. Earlier in our treatment
of the Hypotheses® four-sided figures were divided into paral-
lelograms and trapezia, and the parallelogram into its several
species, and the trapezium likewise. Since the parallelogram
is regular, through its participation in equality, while the tra-
pezium has not the same nor a similar regularity, it is logical
that he should first work out the doctrine of parallelograms
and examine the trapezium in comnection with them. For
trapezia are revealed by the sectioning of parallelograms, a
matter which will become clear as we proceed.

But again it is impossible to say anything about the con-
struction of parallelograms, or about their equality, without
the theory of parallel lines. For, as its name indicates, a paral-
lelogram is the figure contained by parallel straight lines
lying opposite one another. Hence of necessity he begins his
instruction with paralle]l lines and, after proceeding a short
way, turns from them to the theory of parallelograms, using
as a connecting link between these two portions of the
Elements a theorem that seems to be examining a property of
paraliel lines but in fact furnishes the primary genesis of the
parallelogram. This theorem is “The straight lines joining
equal and parallel straight lines in the same directions are
themselves also equal and parallel.”? Although this theorem
considers a property of lines that are equal and parallel, yet by

13548 Le, Deff, XXX-XXXIV.
2355.16 XXXIII. See note at 385.2,
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the mention of “joining” it shows that a parallelogram is a
figure that has its opposite sides equal and parallel.

From this it is clear that the doctrine of parallel lines must
be taken up first. There are three inherent and essential
properties of parallel lines to be considered, properties which
are characteristic of them as such and convertible with them.
We must examine them, not only all three together, but
each of them separately from the others, One of them is that
when a straight line cuts paralle] lines their alternate angles
are equal; another, that when a straight line cuts parallel
lines the interior angles are equal to two right angles; and the
third, that when a straight line cuts parallels the external
angle is equal to the interior and opposite angle. Each of these
properties when demonstrated is sufficient to show that the
straight lines are parallel.

This is the way in which other mathematicians also are
accustomed to distinguish lines, giving the property of each
species. Apollonius, for instance, shows for each of his conic
lires what its property is, and Nicomedes likewise for the
conchoids, Hippias for the quadratrices, and Perseus for the
spiric curves. After a species has been constructed, the ap-
prehension of its inherent and intrinsic property differentiates
the thing constructed from all others. In the same way, then,
the author of the Elements first investigates the properties of
parallel lines,

XXVIL. If a straight line falling on 1wo straight lines makes
the alternate angles equal to one another, the straight lines
will be parallel to one another.

It is taken for granted in this theorem,® or rather in all
theorems in plane geometry, that straight lines are in one
plane. I have added this remark because straight lines are
not always parallel when alternate angles are equal, unless
they lie in the same plane. If two straight lines are lying
crosswise to one another, one in one plane and the other in

3356.21 The text is intolerably elliptic here, if it has not been
corrupted, I translate, following Barocius, as if it read émi roii wpoxer-
pévou Qs dpohoyoueror mpaeihnmTar,
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another, there is nothing to prevent a straight line falling
upon them from making their alternate angles equal, while yet
the lines lying thus are not parallel. Thus it is presupposed
that everything that we write about in plane geometry we
imagine as lying in one and the same plane, Hence this addi-
tion was not necessary,

But about the word “alternate™ we should know that our
geometer uses it in two senses, sometimes as referring to a
certain position, sometimes as denoting a certain sequence
of terms in proportion. It is in this latter sense that he uses
“alternate” in Book V and in the arithmetical books;* but it
has the former sense in this book and in all the others when
the topic is paratlel lines intersected by another line. Angles
that are produced in different directions” and are not adjacent
to one another, but separated by the intersecting line, both of
them within the paraltels but differing in that one lies above
and the other below, he calls “alternate”® angles. Thus if AB
and CD are straight lines and EF a line falling upon them, he

A / B

C F D
says that angles AEF and DFE, and again CFE and BEF, are
alternate, because their positions are the reverse of one
another,

We must also understand that, with the straight lines
situated thus, analysis reveals six possible combinations of
two angles; and of these our geometer assumes three only
and ignores three. We can take the angles as lying in the same
direction or not in the same direction; and if they lie in the
same direction, we must take them as either both within the
straight lines which the proof shows to be parallel, or both
outside them, or one outside and the other inside. And like-
wise if they are not in the same direction, we must again take

+357.13 Books VII-IX.
535717 uh émi ra adra, i.e. on different sides of the transversal.
635720 dradndl. Cf. dvpAhaypéres éxovaus in line 25 below.
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them as either both outside the straight lines that are inter-
sected, or both inside, or one inside and ome outside. An
identical diagram will make clear what I mean. Let AB and
CD be straight lines, and let EF fall upon them and be
produced to H and K. Now if you take the angles as lying in

the same direction, you may take them as either both inside,
like BEF and EFD, or AEF and EFC; or both outside, like
HEB and DFK, or HEA and CFX; or one inside and one
outside, like HEB and EFD, or KFD and FER, or HEA and
EFC, or KFC and AEF, for there are four pairs that meet
this condition. And if you take the angles as not lying in the
same direction, you may take them as either inside, like AEF
and EFD, or CFE and FEB; or both outside, like AEH and
DFXK, or HEB and CFK; or one inside and one outside, and
here again we have four pairs, either AEH and EFD, or
HEB and EFC, or KFC and FEB, or KFD and FEA. Beyond
these there is no other way of taking them.

Of these six ways in which the angles can be taken, our
geometer selects three only, and their consequences reveal the
characteristic properties of parallel lines.” One of the three
assumtes angles not lying in the same direction, and of these
only angles that lie inside the parallel lines (the angles that he
calls “alternate”), so that the combinations of two angles
outside and of one outside and one inside are ignored. Of the
hypotheses that take angles in the same direction he con-
siders the supposition that both angles are inside (which he
says are equal to two right angles) and that one angle is

T359.8ff. The text is puzzling here. I suspect that radra efs in line
8 is a corruption of raérais, and I have so translated it.
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inside and the other outside (which he says are equal),
omitting only the assumption that they are both outside.

Now the omitted hypotheses, we maintain, vield the same
results, Let HEB and DFK be angles lying in the same direc-
tion and both outside. I say that they are equal to two right
angles. For if EFD is equal to HEB and BEF to DFK, and if
BEF and EFD are equal to two right angles, so also are DFK

and HEB equal to two right angles, Again assume two angles,
AEH and EFD, not? lying in the same direction, one inside
and the other outside. I say that they are equal to two right
angles. For if AEH is equal to BEF, and BEF and EFD are
equal to two right angles, then AEH and EFD ar¢ equal to
iwo right angles. Again let AEH and DFK be angles not lying
in the same direction and both of them outside the straight
lines. 1 say that they are equal to each other. For if AEH and
BEF are equal to each other and DFK is equal to BEF, then
AEH is equal to DFK. Consequently if one takes the results
of the three hypotheses that our geometer has taken, all the
same consequences follow as true which would follow from
the other three hypotheses, except that in the cases our
geometer has taken there are two which show the posited
angles equal to each other and one showing them equal to
two right angles; whereas, conversely, of the others two show
them to be equal to two right angles and one shows them to
be equal to each other. Thus of the six possible hypotheses
it follows from three that the angles are equal to two right
angles and from three that they are equal to each other. Hence
it is natural that the omitted hypotheses should have a con-

835927 Reading u% instead of wév in Friedlein.
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verse relation to those that he has chosen to mention. It ap-
pears that our geometer chose from these hypotheses the ones
that are more affirmative or simpler; and this is why he took
from those not lying in the same direction only internal
angles, the angles he calls “alternate,” and from those lying in
the same direction the case of two interior angles and the
combination of one interior and one exterior, avoiding the
other cases as requiring a more negative or a more complex
expression. But whether this or some other cause should be
assigned, it is clear from what we have said how many are
the consequences they involve.?

XXVIIL. If a straight line falling on two straight lines makes
the exterior angle equal to the interior and opposite angle in
the same direction, or the interior angles in the same direction
equal to two right angles, the siraight lines will be parallel.

The preceding theorem proved that straight lines are paral-
lel if [alternate] angles lying in different directions and within
the straight lines are equal to one another; this one proves the
same conclusion by putting forward the two other hypotheses,
one of them dividing the angles into one interior and one ex-
terior, the other supposing them both to be interior. It would
appear that the author of the Elements has divided his theo-
rems in a strange fashion. Either he should have taken the

¥ 361.4 Proclus does not refer to Euclid's proof of XXVII, but
because of its importance for the peneral theory of parallels it is well
for us to have it before us. Given the straight line EF falling on the
two straight lines AB and CD and making the allernate angles AEF
and EFD equal to one another, to prove that AB is parallel to CD.
If they are not parallel, AB and CD when produced will meet either

A E 8

c F o]

in the direction of B and D or towards A and C. Suppose them to meet
in the direction of B and D at G. Then in triangle GEF the exterior
angle AEF is equal to the interior and opposite angle EFG, which is
impossible, by XVL. Similarly it can be shown that they cannot meet
towards A and C. But straight lines which do not meet in either
direction are parallel, by Def. XXXV (XXIII in Heiberg's text).

— 281 —



362

THE COMMENTARY

three hypotheses separately and made three theorems or
included them all in one, as Aigeias of Hierapolis!® does in his
epitome of the Elements; or if he wished to divide them into
two, he should have made his division orderly by dealing in
one with the hypotheses that assume the angles to be equal
to one another and in another with that which takes them to
be equal to two right angles. But instead in one theorem he
posits the aiternate anples as equal, while in the other he takes
an external angle as equal to an internal angle and the in-
ternal angles in the same direction as equal to two right angles.
What is the reason for such a division? Clearly it was not the
equality of the angles to each other, or alternatively their
equality to two right angles, that concerned him, nor did he
use this criterion for separating the theorems from one an-
other; rather it was whether the angles are taken as lying in
the same or in different directions. The preceding theorem
takes them as lying in different directions, for that is what
alternate angles are, whereas this one takes them as lying in
the same direction, as the enunciation makes clear.

How the author of the Elements proves that when the in-
terior angles are equal to two right angles the straight lines are
parallel is evident from his book.'? But Ptolemy, in a book in

10 361,21 Nothing further is known of Aigeias.

11 362.11  As Heath points out {Eucfid 1, 311}, the criterion of
XXVII is that actually used to prove parallelism and is, moreover, the
basis of the construction of parallels in XXXI, whereas XXVIII only
reduces the other two hypotheses to that of XXVII. Thus precision of
reference, as well as clearness of exposition, is better secured by the
arrangement that Euclid adopts.

12 362,14 Euclid's proof of XXVIII is as follows: Let the straight
line EF falling on the two lines AB and CD make the exterior angle
EGB ecqual to the interior and opposite angle GHD, or the interior
angles in the same direction, viz. BGH and GHD, equal to two right

E
A
C D
F

angles. Then since anglte EGB is equal to angle GHD and angle EGB
to angle AGH, by XV, angle AGH is also equal to angle GHD, and
they are alternate; therefore AB is parallel to CD, by XXVIIL. Again
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which he proposes to prove that straight lines produced from
angles less than two right angles meet in the direction in which
lie the angles less than two right angles, begins by proving this
theorem, that when the interior angles are equal to two right
angles the straight lines are parallel, and does so as follows.

Let AB and CD be two straight lines cut by a straight line
EFGH in such a fashion as to make angle BFG and FGD
equal to two right angles. I say that the straight lines are
parallel, that is, nonsecant.'® If possible, let FB and GD

E

A F/ B
< / P

H

be produced to meet at K. Then since straight line GF
stands on line AB, it makes angles AFG and BFG equal to
two right angles. Likewise since GF stands on CD, it makes
angles CGF and DGF equal to two right angles. Conse-
quently angles AFG, BFG, CGF, and DGF are equal to
four right angles, of which two, BFG and DGF, are posited
as equal to two right angles; hence the other two angles,
AFG and CGF, are also equal to two right angles.** If,
then, when the interior angles are equal to two right angles
the lines FB and GD when produced meet one another at
K, so also FA and GC when produced will meet, for

since angles BGH and GHD are equal to two right angles, then since
AGH and BGH are also equal to two right angles, by XIII, if we sub-
tract angle BGH from each, the remaining angle AGH is equal to the
remaining angle GHD. And they are alternate; therefore AB is
parallel to CD, by XXVIIL

1336227  deiumrrwro.

1336312 “This seems to be a fallacy. Ptolemy wants to prove
that two lines satisfying certain conditions never meet. He cannot do
this by disproving the assumption that lines satisfying this condition
always meet. Ptolemy commits the same kind of fallacy again (366.1).
Proclus caiches the second one (368.8)." (I.M.) See Heath, Euclid 1,
204,
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angles AFG and CGF are also equal to two right angles.
The straight lines will meet either on both sides or on
neither if these, like those, are equal to two right angles.
Suppose, then, that FA and GC meet at L. Then straight
lines LABK and LCDK enclose an area, which is im-
possible, It is therefore not possible that the lines should
meet when the interior angles are equal to two right angles.
Therefore they are parallel.

XXIX. 4 straight line jalling on parailel straight lines makes
the alternate angles equal, the exterior angle equal to the
interior and opposite angle in the same direction, and the
interior angles in the same direction equal to two right angles.

This theorem is the converse of both the preceding ones,
for the conclusion of each of them is made the hypothesis
here, and what is given in them is proposed for proof. We
should note this additional difference among converses: a
converse may be the converse either of a single theorem, as
the sixth is of the fifth, or of more than one theorem, as this is
of those preceding it. In this theorem the author of the
Elements uses for the first time the postulate, “If a straight line
falling on two straight lines makes the interior angles in the
same direction less than two right angles, the straight lines if
produced will meet in that direction in which are the angles
less than two right angles.”'® As T said in the part of my

1536418 Post. V. It is used by Euclid in his proof of the first of
the three elements in the conclusion of XXIX, i.e. the equality of the
alternate angles, AGH and GHD in the diagram. If angle AGH is
unequal to angle GHD, one of them is greater. Let it be AGH. Let
angle BGH be added to each; then angles AGH and BGH are greater

E

A & g

H
D
¢ F
than angles BGH and GHD. But angles AGH and BGH are equal to
two right angles; therefore angles BGH and GHD are less than two
right angles. But straight lines produced indefinitely from angles less
than two right angles meet, by Post. V. Therefore AB and CD, if
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exposition that precedes the theorems,'® not everyone admits
that this generally accepted proposition is indemonstrable.
For how could it be so when its converse is recorded among
the theorems as something demonstrable? For the theorem
that in every triangle any two interior angles are less than two
right angles is the converse of this postulate.'” Since also!® the
fact that two straight lines when produced approach one
another more and more nearly is not, as I said before,® a
sign that they will meet, because other lines have been
discovered that converge towards one another more and more
but never meet.

Hence others before us have classed it among the theorems
and demanded a proof of this which was taken as a postulate
by the author of the Elements. Ptolemy is thought to have
proved it in his book entitled “That lines produced from
angles less than two right angles meet one another.” His
proof employs many of the theorems established by the author
of the Elements prior to this one. In order not to add to our
labors, let us assume that these are all true and take it as a
litle lemma that they have been proved by the previous
arguments. One of the propositions taken as previously
proved is this, that lines produced from angles equal to two
right angles never meet.?

produced indefinitely, will meet, But they do not meet, for they are
by hypothesis parallel. Therefore angle AGH is not unequal to angle
GHD, but equal to it. Next since angle AGH is equal to angle EGB,
by XV, therefore angle EGB is also equal to angle GHD. Adding
angle BGH to each, we see that the two angles EGE and BGH are
equal to the two angles BGH and GHD, But angles EGR and BGH
are equal to two right angles, by XIII. Therefore angles BGH and
GHD are also equal to two right angles.

18 364,19 At 191.211F.

17 364.25 XVII,

18 364.25 éwel xai is puzzling here. I suspect a lacuna in the text,
the loss of a sentence (such as “Nor is it self-evident”) which this
clause was intended to support.

173654 192.1-193.2,

20 365.16 For Ptolemy's proof of this proposition see 362.20-
363.18. Ptolemy now attempts to prove Euclid's XXIX without the
use of Post. V.
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I say, therefore, that the converse also is true, namely, that
when parallel straight lines are cut by a straight line the
interior angles in the same direction are equal to two right
angles. For it is necessary that the line cuiting the parallel
lines make the interior angles in the same direction either
equal to two right angles or less or greater than two right

A F

VA

G

angles. Let AB and CD be parallel lines, and let GF fall
upon them, I say that it does not make the interior angles
in the same direction greater than two right angles. For if
angles AFG and CGF are greater than two right angles,
the remaining angles, BFG and DGF, are less than two
right angles. But these same angles are also greater than
two right angles; for AF and CG are no more parallel than
FB and GD, so that if the line falling on AF and CG makes
the interior angles greater than two right angles, so also
does the line falling on FB and GD make the interior angles
greater than two right angles. But these same angles are
less than two right angles (for the four angles AFG, CGF,
BFG, and DGF are equal to four right angles), which is
impossible, Similarly we can prove that the line falling on
the parallels does not make the interior angles in the same
direction less than two right angles. If, then, it makes them
neither greater nor less than two right angles, the only con-
clusion left is that the line falling on them makes the in-
terior angles in the same direction equal to two right
angles. When this has been demonstrated, the proposition
before us?* can indisputably be proved. I say that, if a
straight line falls upon two straight lines and makes the
interior angles in the same direction less than two right
angles, the straight lines if produced will meet in that direc-
tion in which are the angles less than two right angles. For

21 366.15 Euclid’s Post. V, which was the subject of Ptolemy's

book.
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let us suppose that they do not meet. But if they are non-
secant in the direction in which are the angles less than two
right angles, much more will they be nonsecant in the other
direction in which are the angles greater than two right
angles, so that the straight lines will be nonsecant in both
directions; and if so, they are parallel. But it has been
proved that the line which falls upon parallels will make
the interior angles in the same direction equal to two right
angles. The same angles are therefore both equal to two
right angles and less than two right angles, which is
impossible.

Having proved this, Ptolemy tries to add extra precision to
it and reach the proposition before us by proving that, if a
straight line falis upen two straight lines and makes the
interior angles in the same direction less than two right angles,
not only are the straight lines not nonsecant, as he has proved,
but also they will meet in that direction in which are the angles
less than two right angles, not in the direction in which they
are greater,

Let AB and CD be two straight lines, and let the line
EFGH fall upon them and make angles AFG and CGF
less than two right angles. Hence the other angles are
greater than two right angles, Now it has been demon-

/s
—

strated that the straight lines are not nonsecant. But if they
meet one another, it will be either in the direction of A and
C or in the direction of B and D. Let us assume that they
meet in the direction of B and D at point K. Then since
angles AFG and CGF are less than two right angles and
angles AFG and BFG are equal to two right angles, if the

— 287 —
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common term, angle AFG, is subtracted, angle CGF will
be less than angle BFG. It follows that the exterior angle
of triangle KFG is less than the opposite interior one, which
is impossible. Consequently they do not meet in this
direction. But they do meet. Therefore they meet in the
other direction, that in which are the angles less than two
right angles.??

This is Ptolemy’s proof. It is worth pausing to see whether
there may not be a fallacy in the hypotheses that he has
adopted. I mean in those which assert that, when a straight
line cuts the nonsecant lines and makes four interior angles,
the angles in the same direction on both sides?® are either
equal to two right angles or greater or less than two right
angles.? His division is not exhaustive, There is no reason why
one who calls nonsecant the lines produced from angles less
than two right angles should not say that the angles lying in
the same direction on one side are preater than two right
angles and those in the same direction on the other side less
than two right angles, that is, that no single principle can be

22 367,27 “This argument is very messy, and I am dubious that
Proclus i3 reproducing Ptolemy accerately. The assumption (366.21})
that, if the two lines don’t meet on the one side, they can't meet on
the other is unconvincing and unnecessary, since the next argument
(367.3ff.) proves they can’'t meet on the other. The whole argument
should be simply this: Using the diagram on 367, the two lines cannot
meet at K for the reason given (367.10ff,). But they must meet,
because if they don’t they are parallel, and by the preceding argument
{365.16) a straight line cutting parallel lines makes the interior
angles in the same direction equal to two right angies. Therefore the
two lines AB and CD meet on the side away from K.” (LM.) As to
I.M.’s doubt, note the cccurrence of Aéyw at 362.26, 365.16, 366.16;
i.e. Proclus professes to be quoting Ptolemny throughout.

23 368.5 ol éwl 74 alrd car dudérepe, L, in the same direction on
both sides of the transversal,

24 368.7 Ptolemy jusiifies this assumption by saying (366.2.6)
that FA and GC are no more parallel in one direction than FB and
GD are in the other; and this is equivalent, Heath says (Ewclid 1, 206),
“to the assumption that through any point only ope parallel can be
drawn to a given straight line. That is, he assumes an equivalent of
the very postulate he is endeavoring to prove.” This equivalent is now
known as Playfair's Axiom and is often substituted for Euclid's
postulate in modern textbooks.
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admitted to cover them.® Since his division is not exhaustive,
the proposition under examination has not been demonstrated.
Furthermore, this also must be said against the proof, that it
does not show the impossibility to be one intrinsic to parallels.
For it is not because a straight line cutting parallels makes the
angles in the same direction on both sides greater or less than
two right angles that the hypotheses are reduced to absurdity;
it is because the four angles interior to the lines that are cut are
equal to four right angles that each of the hypotheses becomes
impossible, since even if one does not take the straight lines as
parallel the same consequences follow from assuming these
same hypotheses,

With these remarks we shall end our comments on Ptolemy,
for the weakness of his proof is evident from what has been
said. Now let us examine those who say it is impossible that
lines produced from angles less than two right angles should
meet. Taking two straight lines AB and CD and line AC
falling upon them and making the interior angles less than
two right angles, they think they can demonstrate that AB
and CD do not meet. Let AC be bisected at E, and let a length
AF equal to AE be laid off on AB, and on CD a length CG
equal to EC. It is clear that AF and CG will not meet at any
point on FG; for if they meet, two sides of a triangle will be

A F K
B8

E H

c [ L o

equal to a third, AC, which is impossible. Again let line FG
be drawn and bisected at H, and let equal lengths be laid off.
These likewise will not meet, for the same reasons as before,
By doing this indefinitely, drawing lines between the non-
coincident points, bisecting the connecting lines, and laying off

22 368.12 This sentence apparently refers to the reasoning of

Ptolemy quoted at 366.16f1.; but I suspect that it has lost something
that might have made its reference clearer.
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on the straight lines lengths equal to their halves, they say
they prove that lines AB and CD will not meet anywhere.
Such are their arguments. To them we must reply that what
they say is true but that it does not prove as much as they
think, It is true that it is not possible in this simple way to fix
the point at which intersection occurs. It is not true, however,
that the lines never meet at all. Let it be granted that AB and
CD do not meet when angles BAC and DCA are defined by
points F and G. But there is no reason why they should not
come together at K and L, even if FK and GL are equal to
FH and HG. For if AK and CL meet at K and L, the angles
KFH and LGH are no longer the same; that is, some of FG
has come to belong to AK and CL; and thus in turn the lines
FK and GL are greater than the base by as much as they take
away from within the line FG.2® This also should be said. In
affirming without qualification that lines produced from angles
less than two right angles do not meet, they are overthrowing
what they do not intend. Let the diagram be the same as

A__F

C G °
before. Now is it possible or not to draw a straight line from
A to G? If they say it is not possible, they are denying not
only the fifth postulate, but also the first, which claims the
right to draw a straight line from any point to any point. If
it is possible, iet the line be drawn. Then since angles FAC
and GCA are less than iwo right angles, it is clear even more
that GAC and GCA are less than two right angles. Therefore

24370,10 “Proclus cerlainly seems to have missed the point here,
as his last remark on this topic shows (371.7). Points L and K cannot
coincide, because if they did there would be a triangle, namely, FGL
(or FGH}, with two of its sides equal to its third. The real point is,
of course, that the described process of extending AF and CG im-
poscs a finite upper bound on their length. Their point of intersection
is beyond this bound.” (I.M.)
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AG and CG meet at G, and they are produced from angles
less than two right angles. It is consequently not possible to
say without qualification that lines produced from angles less
than two right angles do not meet. On the contrary, it is clear
that some lines produced from angles less than two right
angles do meet, though the argument proving this of afl such
lines is still to be found. Since “less than two right angles” is
indeterminate, one could say that with such-and-such an
amount of lessening the straight lines remain nonsecant,
whereas with another amount less®” than this they meet.

To anyone who wants to see this argument constructed,?
let us say that he must accept in advance such an axiom as
Aristotle used in establishing the finiteness of the cosmos:?®
If from a single point two straight lines making an angle are
produced indefinitely, the interval between them when pro-
duced indefinitely will exceed any finite magnitude. At least he
proved that, if the lines extending from the center to the cir-
cumference are infinite, the interval between them is infinite;
for if it is finite, it is possible® to increase the interval between
them, so that the straight lines are not infinite. Straight lines
extended indefinitely, then, will diverge from each other a
distance greater than any given finite magnitude. If this is

laid down, I say that, if a straight line cuts one of two
parallel lines, it cuts the other also, Let AB and CD be
parallel lines and EFG a line cutting AB, I say that it also

27 371.10  #radogova, if it is not a slip on the part of the author,
or the corruption of an original éxdrrwow, must be taken proleptically,
i.e. “another amount that still further decreases the angles.”

26 371.11 This argument is the Adyos referred to at 371.6, viz. the
proof of Euclid's Post. V.

20 371.14 De Caelo 27102811

8¢ 371.20 Reading with Barocius dvvarér for d8ivarer in Friedlein.
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cuts CD. For since there are two straight lines through point
F, when FB and FG are extended indefinitely, they will have
an interval between them greater than any magnritude and
hence greater than the distance between the parallel lines.
And so when they are separated from each other a greater
distance than that between the parallel lines, FG will cut CD.
Therefore if a straight line cuts one of two parallels, it cuts the
other also,

Having proved this, we can demonstrate the proposition
before us as a consequence of it. Let AB and CD be two
straight lines and EF falling upon them and making angles
BEF and DFE?® less than two right angles, I say that the

straight lines will meet in that direction in which are the angles
less than two right angles. For since angles BEF and DFE
are less than two right angles, let angle HEB be equal to the
excess of two right angles over them, and let HE be produced
to K. Then since EF falls upon KH and CD and makes the
interior angles equal to two right angles namely, HEF and
DFE, HK and CD are parallel straight lines. And AB cuts
KH; it will therefore cut CD, by the proposition just demon-
strated. AB and CD therefore will meet in that direction in
which are the angles less than two right angles, so that the
proposition before us has been demonstrated .

XXX. Straight lines parallel to the same straight line are also
parallel to one another.

In propositions concerning relations it is our geometer’s
custom to show the identity pervading all things that have the

31 372.14 Reading 8¢ for et in Friedlein.

32373.2 Heath (Euclid 1, 208) points out that the axiom borrowed
from Aristotle and the theorem proved by Proclus at 371.24f1. hold
only for Euclidean space. The former is incorrect on the elliptic hy-
pothesis, the latter incorrect on the hyperbolic hypothesis. Thus
Proclus' proof begs the guestion by assuming Euclidean space, of
which the postulate to be established is a criterion.
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same relation to the same thing. Thus in the Axioms he as-
serted that things equal to the same thing are equal to each
other, and in later propositions®® he will affirm that things
similar to the same thing are similar to each other and that
ratios that are the same with the same ratio are the same with
one another. So now also, in the same way, he proves that
straight lines parallel to the same straight line are parallel to
one another. But it happens that this principle is not valid
for all relations. For things that are double the same thing
are not also double one another, nor are things that are one
and one-half times the same thing one and one-half times
one another. It seems that this principle applies only to
those relations that are unambiguously®* convertible, namely,
equality, similarity, identity, and the position of parallel
lines. For a parallel is parallel to a parallel, as an equal is
equal to an equal and a similar is similar to a similar; and
parallelism is similarity of position, if we may so call it,

In his bock, then, he asserts and proves that lines
parallel to the same line are in every case so related as to be
parallel to each other. Our author himself takes the lines
that are parallel to the same line as extremes and the line to
which they have a similar relation as lying between them, so
that the assertion may also be evident to us from a common
notion.*® For if the outer lines meet one another, most cer-
tainly they will intersect the line lying between them and no
tonger be parallel to it. But it is possible also by interchanging
the positions of the lines to demonstrate the proposition by the

333739 le V.1l and VL 21,

34 373.18 ovrwrinws. These relations are what modern logic calls
symmetrical.

853745 Euclid proves XXX as follows: Given AB and CD parallel
to EF, as in the accompanying dizgram, to prove that AB is also
parailel to CD. Angle AGK is equal to angle GHF, by XXIX. Likewise

A S 8

E H
Lt D

GHEF is equal to angle GKD, by the same proposition. Hence angle
AGK, being equal to angle GHF, is also equal to angle GKD; and
they are alternate, so AB is parallel to CD,
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same procedures as those used by our geometer here. Thus
let us take AB, the line to which both CD and EF are parallel,
as lying above the other two lines, and not between them.?*
For line HKL falling upon them will make each of the
angles HKD and KLF equal to angle AHK, because they are
alternate, so that it will also make angles HKD and KLF

equal to one another. Therefore CD and EF are parallel. 1f
someone should say, “Let AH and HB be parallel to CD, then
they are parallel to each other,” we shall reply that AH and
HB are not two lines, but parts of one parallel line. For we
must think of parallel lines as produced indefinitely, and
AH when produced coincides with HB; it is therefore the
same as it, and not another line. Therefore all the parts
of a parallel line are themselves parallel to the straight
line to which it is parallel, both to the whole of it and
to its parts. Thus AH is parallel to KD and HB to CK;
for when produced indefinitely they remain nonsecant.

We had to add these remarks® because of the difficulties
raised by sophists and the immature attitudes of students.
Most persons delight in turning up such fallacious inferences
and giving unnecessary trouble to scientific expositors.

There is no need to convert this theorem and prove that
lines parallel to one another are also paraliel to the same
straight line. For if we posit one of them as parallel to another

26 374 10ff. The text here is hopeless; neither Friedlein’s nor
Schénberger's suggested emendation commends itself to me, and
Barocius gives little help. Fortunately the general sense is clear,

37 375.8 Reading reiira for refrees in Friedlein. “It is imteresting
that what Proclus calls a fallacious inference involves a conception of
parallel lines more like the modern one than Buclid’s or Proclus'. For
the modern every straight line is paraliel to itself. See also 3768
(ILM.)

—294—



376

PROPOSITIONS: PART TWO

line, that and the other parallel will both be parallel to the
same line, and we come to the original theorem.

XXXI. Through a given point to draw a straight line parallel
to a given straight line.

It was necessary for us not only to be taught in the
Elements the essential properties of parallel lines, but also to
investigate their coastruction by geometrical methods and
ascertain how a straight line can be drawn parallel to another;
for in many cases construction makes clearer to us the
nature of the things investigated. This, then, the author of
the Elements effects by means of the problem before us, He
takes a point and a straight line and draws through the point a
parallel to the straight line.** We must assume in advance that
the point necessarily lies outside the straight line. For since
he has said “through a given point,” we cannot place the
point on the straight line itself, because a parallel drawn
through it will not be other than the straight line. So by
mentioning separately the point and the straight line, he has
shown that the point must be taken outside the straight
line. This is just what he made clear in the case of the per-
pendicular by adding a qualification: “To a given infinite
straight line, from a given point which is not on it, to draw a
perpendicular.””?® This, then, is one feature common to these
two problems. Another is that from the same point two per-
pendiculars cannot be drawn to the same straight line, nor
through the same point can two parallels be drawn to the
same straight line. This is why the author of the Elements,

38 376.4 Euclid solves XXXI as follows: Given a peint A and a
straight line BC, to draw through A a line paralle] to BC. Take a
point D at random on BC, draw AD, and on AD at A construct, by
XXIII, an angle DAE equal to angle ADC. Let the straight line AF

.
a D c

be drawn in a straight line with EA. EF, then, is parallel to BC, as

shown by the equality of the alternate angles EAD and ADC, by
XXVIIL

% 376.14 XIL
— 295 —



377

THE COMMENTARY

using the singular, says “to draw a straight line,” in that case
a perpendicular and here a parallel. There the uniqueness of
the line was proved, but here it is evident from what has just
been proved. For if two parallels to a straight line can be
drawn through the same point, there will be parallels inter-
secting one another at the given point, which is impossible.*®

But we must note the difference between the premises
“from a given point” and “through a given point.” In the
one case the point is the origin of the line drawn, and the
line is therefore drawn “from™ it; in the other case it lies on
the drawn line itself, and the line is therefoere drawn
“through” it. It is not as cutting the given point that the
straight line s said to go through it, but as falling upon it
and defining its own distance from the given straight line by
the interval between the point and the straight line. For what-
ever distance separates the given point from the given straight
line is the interval between the parallel and that straight line.

XXXIL. In any triangle, if one of the sides is produced, the
exterior angle of the triangle is equal to the two interior and
opposite angles, and the interior angles of the triangle are
equal to two right angles.

What was lacking in the sixteenth and seventeenth theo-
rems our author adds in this, For we learn from it not only
that the exterior angle of a triangle is greater than either of
the opposite interior ones, but also how much greater; for,
being equal to both angles, it is greater than either by the
amount of the other. And not only do we know, as these
theorems showed us, that any two of the angles of a triangle
are less than two right angles, but also how much less, namely,
by the amount of the third angle. Those earlier theorems were
in a way less determinate, and this one gives scientific definite-
ness to them both. But we should not for this reason say that
they are superfluous. They have helped us towards a number
of proofs which we shall use in the present case. Furthermore,
as our knowledge passes from imperfection to perfection, it

10 376,25 By XXX.
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necessarily moves from imprecise results to determinate and
irrefutable doctrines,

The author of the Elements proves each part of the con-
clusion by drawing a parallel outside the trtangle.s* But it is
also possible to prove the same things by drawing a parailel

A

B
F c €

inside, changing only the order of the things demonstrated. He
first proves that the exterior angle is equal to the opposite
interior cnes, and from this he establishes the rest; but let us
proceed in the reverse order. Let ABC be a triangle, and let
its side BC be produced to E. Let a point F be taken on BC
and AF be joined, and through F let a line FD be drawn
parallel to AB. Then since FD is parallel to AB and both
AF and BC intersect them, the alternate angles are equal, and
the exterior angle is equal to the interior one.** The whole
angle AFC is therefore equal to angles FAB and ABF.
Similarly we can prove, by drawing a parallel, that angle
AFB is equal to angies FAC and ACF. Thus the two angles
AFB and AFC are equal to the three angles of triangle ABC.
The three angles are consequently equal to the two right

41378.4 Euclid's proof of XXXII: Given triangle ABC with side
BC produced to D, Euclid draws CE parallel to AB. Then angles

A E

B8 [ D

BAC and ACE are equal, being alternate angles between parallels
AB and CE; and ECD is equal to the interior and opposite angle
ABC; therefore the whole angle ACD is equal to the two interior and
opposite angles BAC and ABC. Let ACB be added to each; then
BAC, ABC, and ACB are equal to ACD and ACB, which are
equal to two right angles.

42378.17 Le. FAB and AFD are equal as alternate angles within
parallels, and DFC is equal to the corresponding interior angle ABF.

— 297 —



379

380

THE COMMENTARY

angles, namely, AFB and AFC. But angles ACF and ACE
are also equal to two right angles. Let the common angle
ACF be subtracted; then the remainder, the exterior angle,
is equal to the interior and opposite angles. This, then, is
the way in which the theorem is demonstrated.

Eudemus the Peripatetic attributes to the Pythagoreans the
discovery of this theorem, that every triangle has intermal
angles equal to two right angles, and says they demonstrated
it as follows, Let ABC be a triangle, and through A draw a
line DE parallel to BC. Then since BC and DE are parallel,

b A £

B C

the alternate angles are equal, and angle DAB is therefore
equal to ABC and EAC to ACB. Add the commion angle
BAC. Then angles DAB, BAC, CAE—that is, angles DAB
and BAE, which are two right angles—are equal to the three
angles of the triangle ABC. Therefore the three angles of a
triangle are equal to two right angles. Such is the proof of the
Pythagoreans.

But we must also examine the converses of our author’s
theorem. The theorem is one, but its converses are two, since
the theorem is compound, with regard both to the conclusion
and to what is given. The hypothesis is twofold: a triangle,
and one of its sides produced. The conclusion is also a
double one: one part is that the exterior angle is equal to the
interior and opposite angles, the other that the three interior
angles are equal to two right angles. If, then, we posit that the
exterior angle is equal to the opposite interior angles, we
prove that the produced side is in a straight line with one of
the sides of the triangle; and if we posit that the three interior
angles are equal to two right angles, we prove that the figure
is a triangle. Thus the conclusion as a whole is the converse of
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the whole of the given.*® Then let ABC be a triangle, with its
exterior angle ACD equal to the interior and opposite angles.

A

B c D

I say that BC has been produced to D and BCD is one
straight line. For since angle ACD is equal to the interior and
opposite angles, let angle ACB be added to both. The angles
ACD and ACB are then equal to the three angles of the
triangle ABC. But the three angles of the triangle ABC are
equal to two right angles; (and therefore angles ACD and
ACB are equal to two right angles].** And if upon a straight
line and at a point on it two successive straight lines not on
the same side make adjacent angles equal to two right angles,
the straight lines are on a straight line with one another.*®
BC therefore is on a straight line with CD. Again let ABC be
a [rectilinear]** figure having only three angles, A, B, C, equal
to two right angles. I say that it is a triangle and AC is one
straight line. For let BD be joined. Then since the angles in

A

8 c

each of the triangles ABD and DBC are equal to two right
angles, and since of these the angles in triangle ABC are
equal to two right angles, the remaining angles ADB and
CDB are equal to two right angles; and they are on the line

43 380.6 ‘This is the first of the three kinds of conversion distin-
guished at 409.1-6. Cf, 252.253,

44 380.16 From Barocius.

45 380.20 By X1V,

5 380,21 From Barocius.
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BD, so that DC and DA are on a straight line with each
other, [Similarly we can prove that AB and BC are straight
lines.]*” Therefore if the figure be a rectilinear figure which
has its interior angles equal to two right angles, it is necessarily
a triangle.

Not that a figure is necessarily a triangle if it has its interior
angles equal to two right angles. For you can find a figure
bounded by circular sides with its interior angles equal to
two right angles. Let ABCD be a square; on one side AB
let 3 semicircle AEB be described inside it, and on the other

F

sides, and outside, the semicircles G, F, H. The figure
bounded by the semicircles will have two angles, GAE and
EBH, equal to angles CAB and DBA (this was proved in the
Postulates),*s and these are the only angles in this figure. It
is possible, then, for a figure not a triangle to have its interior
angies equal to two right angles.

So much about the converses. We can now say that in
every triangle the three angles are equal to two right angles.
But we must find a method of discovering for all the other
rectilinear polygonal figures—for four-angled, five-angled,
and all the succeeding many-sided figures—how many right
angles their angles are equal to. First of all, we should know
that every rectilinear figure may be divided into triangles, for
the triangle is the source from which all things are constructed,
as Plato teaches us when he says, “Every rectilinear plane
face is composed of triangles.”*® Each rectilinear figure is

47 3§1.4 From Barocius. 48 381.17 At 18%.171],

40 382.5 Tim. 53¢ % 3pth 1iis éwumébov Bdrews éx Tprydvwy auréorTaker.

For an explanation of this cryptic text see A. E. Taylor, 4 Com-
mentary on Plato's Timaeus, Oxford, 1928, 362.

— 300 —



383

PROPOSITIONS: PART TWO

divisible into triangles two less in number than the number of
its sides: if it is a four-sided figure, it is divisible into two
triangles; if five-sided, into three; and if six-sided, into four,
For two triangles put together make at once a four-sided
figure, and this difference between the number of the
constituent triangles and the sides of the first figure
composed of triangles is characteristic of all succeeding fig-
ures. Every many-sided figure, therefore, will have two more
sides than the triangles into which it can be resolved. Now
every triangle has been proved to have its angles equal to
two right angles. Therefore the number which is double the
number of the constituent triangles® will give the number of
right angles to which the angles of a many-sided figure are
equal. Hence every four-sided figure has angles equal to four
right angles, for it is composed of two triangles; and every
five-sided figure, six right angles; and similarly for the rest.

This, then, is one inference that we can draw from this
thecrem with regard to zll figures that are polygonal and recti-
linear. Let us briefly state another that follows from it: When
all the sides of a rectilinear figure are produced at one time,
the exterior angles constructed are equal to four right
angles.® For the angles in both directions must be equal to
right angles double the number of the sides, since on each of
the extended sides angles are constructed equal to two right
angles; and if we subtract the right angles to which the in-
terior angles are equal, the remaining angles, the exterior
ones, are equal to four right angles. For example, if the figure
is a triangle and all its sides are produced at once, the interior
and exterior angles produced are equal to six right angles, and
of these the interior angles are equal to two, so that the
remaining angles, the exterior ones, are equal to four. If it is
a four-sided figure, the sum of them all will be eight right
angles, double the number of sides; and of these the interior
angies are equal to four, and therefore the exterior ones are
equal to the other four. If it is five-sided, all the angles will

50 38215 Following Barocius and ignoring rév ywridy in Friedlein.
513833 This diagram taken from Heath, Euclid 1, 322, may be
helpful.
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equal ten right angles, the interior ones being equal to six
and the exterior to the other four. And so on indefinitely in
the same way.

Besides these, let us list the following consequences of this
theorem: that every equilateral triangle has each of its angles
equal to two-thirds of a right angle; that an isosceles triangle
whose vertical angle is a right angle has each of the other
angles half a right angle, as in the half-square; and that the
scalene half-triangle produced by dropping a perpendicular
from any angle of an equilateral triangle to the side which
subtends it has one of its angles right, another two-thirds of a
right angle (the angle already in the equilateral triangle), and
the third angle therefore one-third of a right angle, for the
three must together be equal to two right angles. I do not
mention these matters without a purpose, but because they
prepare us for the teaching of the Timaeuns.®*

Finally, we should say that the property of having its in-
terior angles equal to two right angles is an essential property
of the triangle as such. This is why Aristotle, in his treatise on
apodictic reasoning, when discussing intrinsic attributes uses
this as a ready example.®® Just as a primary and intrinsic
property of every figure is to be bounded, so also is it an
intrinsic property of every rectilinear triangle, though not of
every figure, to have its interior angles equal to two right
angles. The truth of this theorem seems to coincide with our
commeoen notions. For if we think of a straight line with per-
pendiculars standing at its extremities and then think of these
perpendiculars as coming together to produce a triangle, we
see that in proportion to their convergence they reduce the
size of the right angles which they made with the straight
line, so that the amount which they took away from the
original right angles they gain at the vertical angle as they
converge and so of necessity make the three angles equal to

two right angles.

s2 384.4 Cf. Tim. 53d-54b.
33 384.9 Post. Anal. TIb3IA.
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XXXIIL The straight lines joining equal and parallel straight
lines in the same directionss* are themselves also
equal and parailel.

This theorem we called® a kind of boundary between the
study of parallels and the study of parallelograms. It appears
to state a property of equal and parallel lines but it also gives
us, without openiy doing so, the method of constructing a
parallelogram. For a parallelogram is formed by the equal and
parallel lines assumed and the lines which connect them and
which are demonstrated likewise to be equal and parallel.s®
Hence the next theorem proceeds at once, as if the parallelo-
gram had been constructed, to investigate the essential proper-
ties of such areas.

This is evident; but we must observe also the precision
of the enunciation. First, it was not sufficient to say that the
lines connected are equal, for lines that connect equal lines are
not always equal unless the assumed two lines are parallel
as well. In an jsosceles triangle, if a point is taken on one of
its equal sides and a line drawn through it paraltel to the base,
this parallel to the base and the base itself connect equal sides
but are not themselves equal, for the lines that meet at the
vertex of the triangle were not parallel. Secondly, neither does
our author suppose that, when the posited straight lines are
parallel though unequal, he can make the lines connecting

54 385.2 4¢ri v& adrd uépn. This phrase is not immediately clear to
an English reader. But Proclus' commentary (386.12ff.} shows that
for a Greek geometer it meant “at the corresponding extremities.”

55 385.5 At 355.91.

58 385.13 Euclid demonstrates XXXIII as follows: Given AB and
CD as equal and parallel lines connected at their extremities in the
same directions by straight lines AC and DB; let BC be joined. Then
since AB and CD are parallel and BC has fallen upon them, the alter-
nate angles ABC and BCD are equal, by XXIX. And since the two
triangles have sides AB and BC equal respectively to sides DC and
BC and angle ABC equal to angle BCD, the base AC is equal to the
base BD, the triangle ABC is equal to the triangle DCB, and angle
ACB equal to angle CBD, by IV. And since the line BC falling upon
the two lines AC and BD has made the alternate angles equal to one
another, AC is parallel to BD, by XXVII. And it was also proved
equal to it.
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them parallel. This also is evident in the construction just
described for the isosceles triangle. The line drawn and the
base are parallel, but the lines connecting them are not par-
allel, for they are parts of the sides of the isosceles triangle.
Obviously it is necessary for the equality of the connecting
lines that the position of the lines they connect be parallel,
and for the position of the parallel lines we need the equality
of the connecting lines. For this reason the author of the
Elements includes both properties in his statement of the
lines that are connected—that is, that they are equal to one
another and are parallel—in order that he may demonstrate
both of them also with respect to the connecting lines. Third-
ly, we should add that, when the straight lines are given as
equal and parallel, the lines connecting them are not always
equal and parallel. For if we do not make these lines con-

A

D

nect extremities “in the same directions,” it is impossible that
the connecting lines he parallel; instead they will intersect one
another, and they can sometimes be equal and sometimes not.
If you take a square or an oblong area, such as ABCD, and
join AD and BC, the diagonals are indeed equal but not
parallel; and yet they connect equal and parallel lines, namely,
the opposite sides of the area described. And if you take a
rhombus or a rhomboid figure, the diagonals, besides not
being parallel, are not even equal. For since AB is equal to
CD, and AC is a common side, and the angle BAC is unequal
to angle ACD, so also the bases will be unequal. Quite prop-
erly, then, the autbor of the Elements requires that the lines
connecting equal and parallel lines make the connections “in
the same directions,” in order that, supposing the equal and
paraliel lines to be AC and BD, we do not take AD and BC

— 304 —



388

PROPOSITIONS: PART TWO

as the connecting lines, but rather AB and CD. For these we
can demonstrate to be equal and parallel, but those we
could never prove to be parallel, and although we could show
them 1o be equal in the case of squares and oblong figures,
we could never demonstrate this for rhombi and rhomboids.
Rather the opposite can be demonstrated, that is, that they
are unequal because of the inequality of the interior angles
on the same side.

XXXIV. In parallelogrammic areas the opposite sides and
angles are equal to one another, and the diameter bisects
them,

Taking the parallelogram as already constructed by the
preceding theorem, our author now examines the properties
that belong to it primarily, that is, the characteristics of its
special structure. They are these: the opposite sides are equal,
the opposite angles are equal, and the areas are cut in half by
the diameter. For it is to areas that the words “and the
diameter bisects them” refer, meaning that the area is the
whote that is bisected, not the angles through which the
diameter passes. These three traits, then, belong to parallelo-
grams as such: the equality of their opposite angles, the equal-
ity of their opposite sides, and the bisection of their areas by
their diameters. You see that he has obtained these specific
properties of the parallelogram from all its parts—from its
sides, from its angtes, and from its area.s’

57 388.13 Euclid’s proof of XXXIV takes as given the parallelo-
grammic area ABCD, with diameter BC. Since AB is paralle! to CD,
the alternate angles ABC and BCD are equa!l, by XXIX. Similarly
since AC is parallel to BD, the alternate angles ACB and CBD are
equal. Therefore in triangles ABC and DBC the two angles ABC and
BCA are equal respectively to angles DCB and CBD, and the side BC
adjoining the two angles in each is commeon; therefore, by XXVI, side
AB ts equal to side CD, and AC to BD, and angle BAC to angle CDB.
Thus the whole angle ABD is equal to the whole angle ACD, And the
angle BAC was also proved equal to angle CDB; so the opposite sides
and angles are equal. And since in trizngles ARC and DCB the two
sides AB and BC are equal to the two sides CD and BC respectively
and angle ABC is equal to angle BCD, triangle ABC is equal to
triangle DCB. Therefore the diameter bisects the parallelogram ABCD.
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There are four kinds of parailelograms, which we dis-
tinguished in the Hypotheses,” namely, the square, the ob-
long, the rhombus, and the rhomboid. It is worth noting
further that, if we divide these four species into rectangular
and nonrectangular, we shall find not only that the diameters
of rectangular parallelograms bisect the areas, but also that
their diameters themselves are equal when the angles are
right angles and unequal when they are not, as was said in the
preceding theorem; and if we distinguish equilateral from
nonequilateral, again we shall find that in the equilateral
paraltelograms not only are the areas bisected by the diame-
ters, but also the angles through which they are drawn; for
in the square and the rhombus the diameters bisect the angles
as well as the areas, whereas in the oblong and the rhomboid
they bisect the areas only. Let ABCD be a square or a
rhombus and AD its diameter. Then since AB and BD are
equal to AC and CD (for the sides are equal), and angles
ABD and ACD are equal (for they are opposite), and they

A C

B D B D

have a common base, therefore all corresponding parts are
equal, so that angles BAC and CDB are bisected, Now et
the figure be oblong or rhomboid. Then if angle CAB is bi-
sected, while angle CAD is equal to angle ADB,*® the result
will be that angle BAD® is equal to angle ADB and AB equal
to BD. But they are unequal. [Therefore angle CAB is not
bisected by the diameter. Likewise angle CDB, which is equal
to it, is not bisected.]** Let us sum it all up as follows, In the
square the diameters are equal because of the rightness of the

53 388.14 At 169.10ff.

59 389.11 As an alternate angle between parallels.

00 389,12 As equal 1o CAD on the assumption that CAB is bi.

sected.
61 389.13 ‘These two sentences in brackeis come from Barocius.
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angles, the angles are bisected by the diameters because of
the equality of the sides, and the area is divided into equal
parts by the diagonal because of the property common to all
parallelograms, In the oblong the diameters are equal [by
virtue of its being a rectangle], the angles are not bisected by
the diameters [because it is not equilateral], but the division
of the area into equal parts is present, and this by virtue of
its being a parallelogram. In the rhombus the diameters are
unequal [since it is not rectangular],®® but they bisect not
only the areas, because it is a parallelogram, but also the
angles, because it is equilateral. And in the remaining figure,
the rhomboid, the diameters are unequal because the figure is
not rectangular, they divide the angles unequally because it is
not equilateral, and only the areas on both sides of the
diagonal are equal because it is a parallelogram,

We have said this in order to bring out the differences that
exist between the four species of parallelograms, The follow-
ing technical point also comes to light in this theorem and
should not be passed over, namely, that some theorems are
universal and others not. What we mean by each of these
statements will come to mind if we divide®® the conclusion of
this theorem into a part that is universal and a part that is not.
Yet it would seem that every theorem is universal, that is, that
every attribute demonstrated by the author of the Elements
is 2 universal one. For example, this theorem seems to say
not only that to have opposite sides and angles equal is a
universal character of all parallelograms, but also that each of
them is bisected by the diameter. Nevertheless we affirm that
the former properties have been demonstrated universally, the
last not. In one sense the term “vniversal” is used to denote a
statement true of all instances of its subject, in another sense
to mean a statement about everything to which the same
attribute belongs.®t Every isosceles triangle has its three
angles equal to two right angles” is universal, because it is

52390.1 All material in brackets comes from Barocius.

62 390.14 perépyecfa: appears to be a misplaced dittograph of
uepepladar. I follow Barocius in ignoring it.

¢4 391.1 For this distinction see Arist, Post. Anaf. 73a25-74b4.
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true of all isosceles triangles. But universal also is “Every
triangle has its three angles equal to two right angles,” because
it embraces everything to which as such this attribute belongs.
Hence we say we have proved that it belongs primarily to
the triangle to have its angles equal to two right angles, It is
in this sense of the term that we say some theorems are
universal and others not universal and say of this theorem
that one part of its conclusion has universality and the other
not. That parallelograms have their opposite sides and angles
equal is universal, for this character belongs only to paral-
lelograms; but that the diameter of a parallelogram bisects
the area is not a universal statement, because it does not
embrace all the things in which this character is observed,
for it belongs also to circles and to ellipses.®® Our earliest
conceptions of things appear to be of this partial sort, and
only as inquiry proceeds do we take in the whole. Thus the
ancients, having perceived that the diameter bisects the
ellipse, that it bisects the circle, and that it bisects the paral-
lelogram, proceeded to investigate what was common in these
cases.

A man may mistakenly suppose, Aristotle says,® that
he is proving something universally when he is not, because
the common subject to which the character primarily belongs
has no name. For instance, it is not possible to say what the
common element is in numbers, magnitudes, motions, and
sounds, to all of which the rule of alternate proportion
applies. And it is difficult to set forth what is common to the
ellipse, the circle, and the parallelogram; for one is recti-
linear, another is circular, and the other is bounded by a
mixed line. This is why, when a man proves that the diameter
bisects the parallelogram, we think he is proving universally,
because we have not grasped the common subject of which
this statement is true. Such a statement, then, about paral-
lelograms is not universal, for the reason stated; but the state-
ment that every parallelogram has its opposite sides and
angles equal is universal. For if we posit a figure that has its

e3 391,17 Sc. to be bisected by their diameters.
€8 391,23  Post. Anal. T4a5-74b5,
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opposite sides and angles equal, it can be proved that it is a
parallelogram. Let ABCD be such a figure with a diameter
AD. Then since AB and BD are equal to AC and CD, and
the angles contained by them are equal, and they have a

A c

B D

common base, all corresponding parts are equal. If, then,
angle BAD is equal to angle ADC and angle ADB to CAD,
it follows that AB is parallel to CD and AC to BD, so that
ABCD is a parallelogram.

So much for this, It seems also that this very term “paral-
lelogram™ was coined by the author of the Elements and that
it was supgested by the preceding theorem. For when he had
shown that the straight lines connecting equal and parallel
lines in the same directions are themselves equal and paralle],
he had clearly shown that both pairs of opposite sides, the
connecting and the connected lines, are parallel; and he
rightly called the figure enclosed by parallel lines a “paral-
lelogram,” just as he had designated as “rectilinear” the
figure enclosed by straight lines.

It is clear also that the author of the Elements puts the
parallelogram among four-sided figures. But it is worth
reflecting whether every rectilinear figure with an even num-
ber of sides, when it is both equilateral and equiangular, ought
not to be called a parallelogram. For such a figure has its
opposite sides equal and parallel and its opposite angles
equal—for example, the hexagon, the octagon, the decagon.
For if you think of a hexagon ABCDEF and join A and C,
you can prove line AF to be parallel to CD. For since the
angle at B (and every other angle of the hexagon, if it is
equiangular) is one and one-third of a right angle, and since
AB is equal to BC (for the figure is posited as equilateral),
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then angles BAC and BCA will each be one-third of a right

angle, and consequently angles FAC and ACD are right
angles, so that AF is parallel to CD. Similarly we can prove

A F

c D

that the other opposite sides are parallel; and likewise for the
octagon and the others. If, then, a parallelogram is a figure
included within opposite sides that are parallel, there will be
parallelograms that are not four-sided. But evidently for the
author of the Elements every parallelogram is four-sided. This
is ¢clear above all in the theorem® in which he asserts that a
paralielogram on the same base as a triangle and in the
same parallels is double the triangle, for this is true only of
four-sided figures.

XXXV, Parallelograms which are on the same base and
in the same parallels are equal to one another.

As we said that some theorems are universal and others
particular, and added the meaning of this distinction, and
that some theorems are simple and others compound, and
explained what each of these types is, so now, follbwing
another distinction, we say that some theorems are locus-
theorems and others not. I call “locus-theorems” those in
which the same property occurs throughout the whele of a
certain locus, and I call “locus” a position of a line or a
surface producing one and the same property. Some locus-
theorems refer to lines, others to surfaces; and since some
lines are plane and others solid—plane lines being those
which, like the straight line, lie in a plane and whose genera-

873943 XLI below,
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tion®® is simple, and solid lines those which are produced by
some sectioning of a solid figure, like the cylindrical helix®s
and the conic lines—I should say further that of locus-theo-
rems referring to lines some have a plane and others a solid
locus. The theorem before us is therefore a locus-theorem, it
is one of the locus-theorems referring to lines, and it has a
plane locus. For the whele space between the parallel lines
is the locus of the parallelograms constructed on the same
base which the auther of the Elements shows to be equal to
one another, An example of the so-called solid locus-theorems
is the following: “The parallelograms inscribed in the asymp-
totes and the hyperbola are equal”;*® for the hyperbola is
clearly a solid line, since it is a section of the cone.

Chrysippus,™ so Geminus tells us, likened theorems of this
sort to the Ideas. For just as the Ideas embrace the generation
of an indefinite number of particulars within determinate
limtits, so also in these theorems an indefinite number of cases
are comprehended within determinate loci, Their equality is
shown to result from this limitation; for the height of the par-
allels,’? which remains the same while an indefinite number
of parallelograms can be thought of on the same base, shows
all these parallelograms to be equal to one another.

The present theorem is the first locus-theorem that the
author of the Elements has presented. In his evident intent to
give us the utmost variety of theorems compatible with an
elementary work, he rightly did not omit this particular spe-

% 39422 Adopting ver Eecke’s suggestion that »éneis in Friedlein
is a copyist’s error for yéveris. CE. wéves:s in the parallel statement in
line 23.

88 394,25 “The inclusion by Proclus of the cylindrical helix among
solid loci, on the ground that it arises from a section of a solid figure,
would seem to be . . . due to some misapprehension” (Heath, Euclid 1,
330).

70395.11 This is, as ver Eecke notes, Prop. XII of the second book
of Apollonius® Conics.

1.395,14 Chrysippus of Tarsus, of the third century 5.C., the suc-
cessor to Cleanthes as head of the Stoa. He does not appear to have
made any contributions to mathematics, but this comment on the
Platonic Ideas is well worth Proclus' mention.

72395.19 l.e. the distance between them,

—311—



396

397

THE COMMENTARY

cies. But here, since this book is about rectilinear figures, he
gives us plane locus-theorems that refer to straight lines,
whereas in the third book, when he is concerned with circles
and their propetties, he will teach us the circular lines involved
in plane locus-theorems. Such is the theorem in that book,
“The angles inscribed in the same segment of a circle are all
equal to one another,” and the theorem, “The angies inscribed
in a semicircle are right angles.”® For of the indefinitely nu-
merous angles that may be constructed within a segment of a
circle on the same base all are proved to be equal, [and of the
angles contained by the base and the circumference of a semi-
circle all are proved to be right angles].™* These figures are
analogous to triangles and parallelograms constructed on the
same base {and between the same parallels).” This, then, is
the species of theorems that are next to be investigated, named
“locus-theorems™ by the ancient mathematicians,

It may seem a great puzzle to those inexperienced in this
science that the parallelograms constructed on the same base
fand between the same parallels]’® should be equal to one
another. For when the sides™ of the areas constructed on the
same base can be increased indefinitely—and we can increase
the length of these sides of the parallelograms as far as we
can extend the parallel lines—we may well ask how the areas
can remain equal when this happens. For if the breadth is
the same (since the base is identical) while the side becomes
greater, how could the area fail to become greater? This
theorem, then, and the following one about triangles belong
among what are called the “paradoxical” theorems in mathe-
matics. The mathematicians have worked out what they call
the *locus of paradoxes,” as the Stoics have done in their
dogmas,”"* and this theorem is included among them. Most

73 396.5 The theorems referred to here are IIL. 21 and 31.

74 396.7 From Barocius,

753969 From Barocius.

76 396,14 From Barocius.

771 396,15 ufixes denotes the length of the sides other than the
base, whdras the length of the base. See 397.11.

v8 3972 3elyuara. The reference here is, so von Arnim (ITI,
547ff.) thinks, to the Stoic paradoxes regarding the wise man-—that
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people at least are immediately startled to learn that multi-
plying the length of the side does not destroy the equality of
the areas when the base remains the same. The truth is,
nevertheless,’ that the equality or inequality of the angles is
the factor of greatest weight in determining the increase or
decrease of the area. For the more unequal we make the
angles, the more we decrease the area, if the side and base
remain the same; hence if we are to preserve equality, we
must increase the side. Take any parallelogram,® say ABCD,
and let AC be produced indefinitely. Suppose it to be a rec-
tangular figure, and on the base BD let another parallelogram
BEFD be constructed. Clearly the side has been increased, for

A C E F

H

B D

BE is longer than AB, since the angle at A is a right angle.
And this increase was necessary, for the angles of the paral-
lelogram BEFD have become unequal, some acute, the others
obtuse; and this has happened because side BE is, as it were,
folded back on BD and contracts the area. Let a line BG be
taken equal to AB and GH be drawn through G paralle] to
BD. Then the side of parallelogram BDGH is equal to the
side of ABCD, and the breadth is the same, but its area is
less, namely, less than that of BEFD. The inequality of the
angles has clearly made the area less, and the increase in the
side, by adding as much as the inequality of the angles has

he alone is free, beautiful, rich, happy, etc. But I find no hint of
Seiyuara in these numerous fragments, whereas these paradoxes are
often called déyuare. Our text should probably be amended, despite
the absence of any evidence of a varant reading,
7% 397.6  Reading with Barocius spws instead of éuoiws in Friedlein.
8033713  For ra in Friedlein read +é.
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taken away, preserves the equality of the areas; and the limit
of increase for the side is the locus of the parallels. The
square is demonstrably greater than the oblong, when both
are rectangular {and have equal perimeters];® and when both
are equilateral [and have equal perimeters), the rectangular
figure is demonstrably greater than the nonrectangular. For
the rightness of the angles and the equality of the sides are the
all-important factors affecting the increase of the areas; and
this is why the square is manifestly greater than all others with
an equal length of boundaries, and the rhombotd is the least
of all.

But these matters we shall prove elsewhere, for they are
more appropriate to the hypotheses of the second book. With
regard to the theorem before us we must realize that, when it
says the parallelograms are equal, it means that the areas, not
the sides, are equal, for the statement is about the included
spaces, the areas; and also that in the demonstration of this
theorem our author for the first time mentions trapezia. This
shows that he was right in the Hypotheses®? when, in explain-
ing what the trapezium is, he said that it is a species of four-
sided figure, but not a parallelogram. For a figure that does
not have both its opposite sides and its opposite angles equal
falls outside the class of parallelograms.

Now the author of the Elements demonstrates this theorem
by selecting the most difficult of the cases.*® But if someone

#1398 10 ‘The bracketed words here and in the next clause come
from Barocius.

82 30825 Le. in Def, XXXIV, 169.8.

823995 Euclid proves XXXV as follows: Let ABCD and EBCF
be parallelograms on the same base BC and within the same parallels
AT and BC. As opposite sides of parallelograms, AD is equal to BC

A D E F

B C

and EF to BC, so that AD is equal to EF; and since DE is common,
the whole AE is equal to the whole DF. But AB is also equal to DC.
Therefore triangles EAB and FDC have two sides AE and AB equal
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should say, “Let ABCD and BCDE be parallelograms on the
same base DB, so constructed that DC is the diameter of
parallelogram AB,” then we can prove at once that they are
equal. For triangle BCD is half of each of the two paral-
lelograms, since DC is the diameter of AB and BC the
diameter of DE. The diameters of parallelograms bisect them,
and hence AB is equal to DE. Again if we suppose that DC
cuts the side of parallelogram AB and that the parallelograms

A C E

D B D B8

have the position of ABDE and BCDF in the diagram, we can
demonstrate that these also are equal. For since AE equals
CF (for each is equal to DB, the opposite side), let us sub-
tract the common portion CE. AC is then equal to EF. But
AD is equal to EB, and angle CAD is equal to angle FEB,
for AD is parallel to EB. Therefore the base CD is equal to
the base FB, and the whole triangle ADC is equal to wiangle
EBF. Let the trapezium CB be added to them both. AB as a
whole is then equal to DF. You see that these three are the
only cases.* For CD either cuts EB, as in the case assumed
by the author of the Elements, or falls upon E, as in the
preceding diagram,®® or cuts AE, as we assumed just now;

respectively to two sides DF and DC and angle FDC equal to angle
EAB, by XXIX; therefore the base EB is equal to the base FC, and
the two triangles are equal. Let DGE be subtracted from each; then
the trapezium ABGD which remains is equal to the trapezium EGCF
which remains. Let triangle GBC be added to each; then the whole
parallelogram ABCD is equal to the whole parallelogram EBCF.

& 400.7 Reading rrdoeas instead of wws in Friedlein.

55 400.9 This is somewhat confusing, since the point designated E
in the last diagram corresponds to what was designated as C in the
preceding one; but the meaning is clear.

—315—



401

THE COMMENTARY

and the theorem has been proved true for all cases. But we
must note that of the two kinds of trapezia, those that have no
side parallel to another and those that have one side parallel
to another, it is only the second species of trapezia that is used
by our geometer and appears in the diagram here: for CE is
parallel to DB.

XXXV, Parallelograms which are on equal bases and in
the same parallels are equal 10 one another.

The preceding theorem took the bases as identical, whereas
this one takes them as equal though distinct from one another;
but common to both theorems is the assumption that the
parallelograms are in the same parallels, They must, then,
lie neither inside nor outside the given parallel straight lines.
Parallelograms are said to lie in the same parallels when
their bases and the sides lying opposite them coincide with
the same parallels. The author of the Elements proves the
theorem by assuming that the bases are completely separate
from one another.®® But there is nothing to prevent our

A c__H G

E F B D

26 401.6 Euoclid proves XXXVI as follows: Let ABCD and EFGH
be parallelograms on equal bases BC and FG and within the same
parallels AH and BG, Join BE and CH. Then since BC is equal to
FG and FG is equal to EH, BC is also equal 1o EH. But they are also
paratlel; hence, by XXXIII, the lines that join them, BE and CH, are

A D E H

%
4

B ¢ F G

equal and parallel, and EBCH is a parallelogram, by XXXIV. And it
is equal to ABCD, by XXXV, and also equal to EFGH, by the same
proposition. So ABCD is also equal to EFGH.

—316—



402

PROPOSITIONS: PART TWO

assuming that they so lie as to have a common segment. Thus
let AB and CD be parallelograms on equal bases EB and
FD [having a common segment and in the same parallels].®’
I say that they are equal, Let EC and BG be drawn. Then
since EF is equal to BD (for EB is equal to FD), CF equal
to DG, and angle EFC equal to angle BDG (for CF is parallel
to DG), EC is also equal to BG and also parallel to it; and
CB is a parallelogram. And it has the same base as each of
the parallelograms AB and CD and is in the same paral-

K_H AC D

B E F

lels. AB is therefore equal to CD. And if we suppose the
bases of the parallelograms to have no common segment,
nor to be separate from one another but—the only remaining
alternative—touching one another at a point, as do AB and
ED, we shall say that BE is equal to EF and to CD, so that
CB is also equal to DE [and parallel to it).*® For the lines
joining equal and parallel lines are themselves equal and
parallel. BD, then, is a parallelogram on the same base and
in the same parallels as AB and DE. Therefore parallelograms
AB and DE are equal,

Thus on our first approach we have distinguished alterna-
tive constructions for the theorem, saying that the bases either
have a common segment, or only touch one another, or are
separate from one another. But it is also possible, if they
touch, like BE and EF, to assume that the whole of DE
lies outside AE, or that the side CE coincides with AE,
or that CE cuts AH, or that CE falls as a diameter
on HE (and then DF will also be the same as AF), or, with

37 401.10 From Barocius.
8% 401.23 From Barocius.
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AH produced to K, that CE cuts it beyond H, with DF either
cutting AH or coinciding . , , ®

[XXXVIIL. Triangles which are on the same base and in the
same parallels are equal to one another.]*®

. . . they show. For it has been proved that areas can be
unequal when they™ are equal and equal when they are un-
equal. Such a misconception is held by geographers who infer
the size of a city from the length of its walls. And the partici-
pants in a division of land have sometimes misled their
partners in the distribution by misusing the longer boundary
line; having acquired a let with a longer periphery, they later
exchanged it for lands with a shorter boundary and so, while
getting more than their fellow colonists, have gained a repu-
tation for superior honesty. Let us suppose two isosceles
triangles, one of them having each of its equal sides five

60 402.19  There is a lacuna in our text extending from this point
until after the beginning of Proclus’ comment on XXXVIIL. None of
the Mss notes this gap, épapuéfovsar at this point being followed with-
out a break by dwogairerrac in 403.4. This suggests the loss of several
pages from the archetype from which our mMss are derived. Barocius
noted this gap and supplied the missing part of the commentary on
the preseat proposition with figures and explanations of his own. Since
the omitted matter, so far as we know, was only a further elaboration
of the various cases of this theorem, there is little reason for trans-
lating Barocius® conjectural supplement. But for convenience of refer-
ence the enunciation of the next proposition in Euclid’s text is included
in my translation, and Euclid’s proof appended in a footnote,

30403,3 Euclid's proof of XXXVII is as follows: Let ABC and
DBC be triangles on the same base BC and within the same parallels
AD and BC. Let AD be produced in both divecticns to E and F.
Through B Yet BE be drawn paralle! to CA, and through C let CF be
drawn paratlel (o BD, Then each of the figures EBCA and DBCF is a
parailelogram, and they are equal, by XXXV. Moreover, the triangle

E A 3] F

B [+

ABC is half of the parallelogram EBCA, by XXXV, for the diameter
AB bisects it. Likewise triangle DBC is half of the parallelogram
DBCF. Therefore triangle ABC is equal to triangle DBC.

91 403.4 The context shows that &kefvwr refers to the perimeters.
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units—cubits or fingerbreadths—in length and a base measur-
ing six of the same units, and the other with each of its equat
sides of five units and a base of eight of the same units. In
choosing between them the inexperienced person is likely to
be completely deceived. The one has a perimeter of eighteen,
the other of sixteen of the same units. But the geometer will
realize that their areas are equal, even though their perimeters
are unequal; for the area of each is twelve. That is, if you drop
a perpendicular from the vertex, you will bisect the bases and
in one have a half-base of three, in the other of four, and
conversely the perpendicular itself in the first case will be
four, in the other three; for the square on the side with a
length of five units must be equal to the square on the per-
pendicular and the square on half the base. Now when the
half-base is three, the perpendicular is four, and when the
half-base is four, the perpendicular is three. Then if you
multiply half the base by the perpendicular, you get the area
of the triangle; and this is the same in either case, whether
you make it three times four or four times three.

This has been said to show that we cannot at all infer
equality of areas from the equality of the perimeters; and so
we should not be amazed to learn that triangles on the same
base may have their other sides lengthened indefinitely in
the same parallels, while yet the equality of their areas re-
mains uachanged, But we can only regard triangles as in the
same parallels when, with their bases on one of the parallels,
they extend their vertices to the other, that is, when their
vertices lie on a single straight line parallel to the bases lying
on a single straight line.

XXXVIIL Triangles which are on equal bases and in the
same parallels are equal to one another.

This also is a locus-theorem like those about paralielo-
grams, positing the triangles as having equal bases. It appears
to me that of these four theorems—of which two establish
properties about parallelograms and two about triangles, and
some assume that the base is the same and some assume the
bases to be equal-—our author has given a single proof in the
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first theorem of the sixth book and that most people have
failed to notice that he does this. For when in that theorem he
proves that triangles and parallelograms with the same height
have to one another the ratio of their bases, he does nothing
other than demonstrate all these theorems more generally
from the principle of proportion. For to have the same height
is the same thing as to be in the same parallels, since all
figures in the same parallels have the same height, and con-
versely. For the height is the perpendicular from one of the
parallels to the other. In that proposition, then, it is demon-
strated by means of proportion that triangles and parallelo-
grams with the same height, that is, lying in the same parallels,
are related to one another as their bases are. When their
bases are equal, their areas are equal; when one is double the
other, so is its area; and whatever other ratic the bases
may have to one another, the areas will stand in that same
ratio. But here, since he could not use proportion, because he
has not yet taught us its principles, he is satisfied with equality
only, inferring it from the equality or identity of the bases.
So these four theorems are surpassed by that one, not only
because it uses a single proof for all that these four theorems
contain, but also because it adds something more, the identity
of ratios even when the bases are unequal.®?

So much for that. This theorem also has many cases. It is
possible to assume, as in the case of the parallelograms, that
the bases of the triangles have a common segment, or have no
segment in common but meet one another at a single point,
or are completely separate and have a line between them.®

92 46,9 Heath {Euclid 1, 334) qualifies Proclus’ comments here by
noting that Euclid's VI. 1 daes nat prove the propositions of the first
book, as Proclus seems to imply; they are in fact assumed in order to
prove YL 1.

93 406.15 1le. the segment CE in Euclid’s diagram below, The third
of the three alternatives mentioned by Proclus is the case chosen by
Euclid for demonstrating XXXVIII. His proof is as follows: Let ABC
and DEF be triangles on equal bases BC and EF and within the same
parallels BF and AD. Let AD be produced in both directions to G

G AD H

ZANN

8 C E F
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It takes but little understanding to see this. It is also evident
that in all the cases, however the bases or the vertices may be
placed, we should follow the same procedure, that is, draw
parallels to the sides and make each of the triangles a paral-
lelogram and through them establish the equality of the
triangles,

XXXIX. Equal triangles which are on the same base and on
the same side are also in the same parallels.

When our purpose was to demonstrate equality, we con-
structed theorems four in number, two for parallelograms
and two for triangles,’* assuming them as lying either on the
same base or on equal bases. But now, in converting these
theorems, we have passed over the converses regarding paral-
lelograms and considered only the two about triangles as
needing attention. The reason is that, since the method of
proof is exactly the same for parallelograms, using reduction
to impossibility and a similar construction, it is enough for us
to handle the simpler cases, that is, the triangles, exhibiting
the method and leaving it for the abler minds to carry through
the same reasoning in the other cases, since it is easy to see
that the same method is applicable to them; that is, we assume
equal parallelograms on the same or equal bases and affirm
that they are in the same parallels. For if they are not, one
figure will fall either inside or outside the produced parallels
bounding the other. In either case we shall assume it and the
parallels that bound it and prove,® as in the case of the
triangles, that the whole is equal to a part of itself, which is
impossible.

and H. Through B draw BG paralle] 10 CA, and through F draw FH
parallel to DE. Then GBCA and DEFH are parallelograms and are
equal to each other, by XXXVI. Trangle ABC is half of GBCA, for
the diameter AB bisects it; and likewise triangle FED is half of DEFH,
for the diameter DF bisects it. Therefore triangle ABC is equal to
triangle DEF.

54 407.7 Punctuating with a comma after rpeydwwy, not after
hauFdrovres, as in Friedlein.

25 407.23 Reading with Barocius delfouer instead of éseifauer in
Friedlein.
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It is clear that the author of the Elements is right in adding
“and on the same side.” For on a single base it is possible to
take equal triangles, one on one side and one on the other. But
such triangles never lie in the same parallels; nor need they
have the same height. This is the reason he added this phrase.

In the hypothesis that leads to absurdity there are two pos-
stble ways of drawing the parallel, [either inside or outside).”®
Qur author draws it inside,*” but we shall draw it outside and
prove the same result. Let ABC and DBC be [equal]™
triangles on the same base and on the same side. I say that
they are in the same parallels and that the line joining their
vertices is parallel to the base. Let AD be drawn. If it is not
parallel to the base, let AE, outside it, be the parallel. Let
CD be produced to E, and draw EB. Triangle ABC is then

B8 c

equal to triangle EBC; but triangle ABC is equal to triangle
DBC. Therefore EBC is equal to DBC, the whole to the part;
but this is impossible. Therefore the parallel does not fall
outside AD, And it has been demonstrated by the author of
the Elements that neither does it fall inside. Hence AD itself
is parallel to BC. Therefore equal triangles on the same side

96 408.7 From Barocius.

97 408.7 Euclid proves XXXIX as follows: Let ABC and DBC be
equal triangles which are on the same base BC and on the same side.
Join AD. If AD is not parallel to BC, draw AE parallel to BC, and
join EC. Then triangle ABC is equal to triangle EBC, by XXXVIL
But by hypothesis ABC is equal to DBC; therefore DBC is also equal
to EBC, the greater to the less, which is impossible. Therefore AE is
not parallel to BC; and in the same way we can prove that neither is
any other straight line, except AD.

%8 408.9 From Barocius,
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are within the same parallels. Thus the other half of the
proof by reduction to impossibility has also demonstrated that
they lie in the same parallels,

It is worth remarking that there are three kinds of con-
verse theorcms: the whole theorem may be the converse of a
whole theorem, such as the eighteenth of the nineteenth,
as we said; or the whole may be the converse of a part, as the
sixth is of the fifth; or a part may be the converse of a part,
like the eighth and the fourth, where it is not the whole of what
is given® in the one that is the conclusion of the other, nor
the whele of the conclusion in one the given in the other, but a
part only, These theorems about triangles'®® appear io be of
this character. In the theorems preceding them the conclusion
was that the triangles are equal. But these not only take
equality as given, but add a part of what was hypothesis in the
former; for “on the same, or equal, bases” was given in those
as well as in these. But in these hypotheses he adds something
which does not appear in those, either as conclusion or as
hypothesis: “on the same side” is an extra assumption here,

XL. Equal triangles which are on equal bases and on the
same side are also in the same parallels.

The type of conversion is the same in this, the proof is
similar, and what the author of the Elements leaves out in his
reduction to impossibility can be proved similarly, so that
there is no need to go over it again.’® Since there are three
parts in the preceding enunciations—that the figures are on

59 409.6 Reading with Barocius 3efoudvor for SeSeyueror in Fried-
lein.

120 409.9 lLe XXXIX and XL, which are the partial converses of
XXXVII and XXXVIIL

101 409.24 In his proof of XL Euclid draws his alternative line
inside the triangle, as in the previous proof, ignoring the case where
the line falls outside. Let ABC and CDE be equal triangles on equal
bases BC and CE and on the same side, and fet AD be joined. If AD
is not parallel to BE, let AF be drawn paraliel to BE, and join FE.
Then triangle ABC is equal to triangle FCE; hence DCE is also equal
to FCE, the greater to the less, which is impossible, Therefore AF is
not parallel to BE. Similarly we can prove that neither is any other
straight line, except AD.
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equal bases or on the same base, that they are in the same
parallels, and that they are equal, whether triangles or
parallelograms—<learly we can comvert in various ways by
taking two together and leaving out the third. We can sup-
pose the bases to be the same or equal and the triangles and
parallelograms to be in the same parallels and thus construct
four theorems; or take the figures as equal and the bases either
equal or the same and construct four others, of which the
author of the Elements omits the two dealing with paral-
lelograms and proves the two for triangles; or take the figures
as equal and in the same parallels and prove the third con-
dition, that they are either on the same base or on equal
bases, and thus make four others. These the author of the
Elements entirely omits, for the proof is the same for them,
except that two of the four are not true by themselves, for
equal parallelograms or triangles in the same parallels are not
necessarily on the same base. But the combined conclusion
from these hypotheses is true, namely, that they are on the
same base or on equal bases, though neither alternative
necessarily follows from the hypotheses adopted.

So of the ten theorems'® in all, our geometer has included
six and omitted four, and this to avoid repeating himself, the
proof being the same. For example, let us prove about tri-
angles that, if they are equal and in the same parallels, they
will be ont the same base or equal bases. For suppose it is not
so, and if possible, let triangles ABC and DEF with these
characteristics have unequal bases BC and EF, and let BC be
the greater. Subtract a length BH equal to EF, and draw AH.

A ]

B H C E F

102 410,23 There were three groups of four enumerated, but the
last group reduces to two, as explained above.
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Then since ABH and DEF are on equal bases, BH and EF,
and in the same parallels, they are equal. But ABC and DEF
are posited as equal. ABC and ABH are therefore equal,
which s impossible. Consequently the bases of the triangles
ABC and DEF are not unequal. The same method of proof
can be used for parallelograms. Then since the method of
proof is the same and the resulting impossibility the same,
namely, that the whole is equal to the part, they are rightly
omitted by the author of the Elements. Thus we have said
that there are necessarily ten theorems, and we have shown
which are omitted and have given the reason for his silence
about them. Now let us go on to the next theorems,

XLI. If a parallelogram has the same base with a triangle
and is in the same parallels, the parallelogram is double
the triangle,

This also is a locus-theorem. It combines the structures of
triangles and parallelograms that have the same [base and]*®
height; so since we have considered paratlelograms separately,
and again triangles, Jet us now take them both together and
consider in what ratio they stand to one another when they
have the same properties®® as in the preceding theorems, In
them it is the ratio of equality that is shown, for all triangles
on the same bases and in the same parallels are equal, and
likewise all parallelograms. But in these theorems what is
demonstrated is the first of the unequal ratios, the double;
for the parallelogram is proved to be double the triangle on
the same base and of the same height.

In proving the present theorem the author of the Elements
assumes the vertex of the triangle to lie outside the paral-
lelogram,'*> but we shall prove the same thing by taking it
on the other side of the parallelogram, that is, the side parallel

102 412.¥ The bracketed terms add a condition tacitly presupposed,
as is shown in line 13.

10+ 4129 Reading radrd for radrés in Friedlein.

105 412,20 Euclid proves XLI as follows: Let the parallelogram
ABCD have the same base BC with triangle EBC, and let it be within
the same parallels BC and AE. Foin AC. Then triangle ABC is equal
to triangle EBC, by XXXVII, But ABCD is double the triangle ABC,
by XXXIV. Therefore ABCD is double the triangle EBC.
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to their common base. Since the base is the same for both,
these are the two cases of this theorem, for the triangle must
have its vertex either inside or outside the parallelogram.o®
Therefore let ABCD be a parallelogram and EDC a triangle,
and let E liec between A and B, and let AD be joined. Then
since the parallelogram is the double of ACD and ACD is
equal to triangle EDC, the parallelogram is double the
triangle EDC. Thus it is clearly shown that the paral-

A E 2]

c o

lelogram is double the triangle when they have the same base.
And if the bases are equal, we can demonstrate the same
thing by drawing diameters of the parallelograms. For when
two triangles are equal, the double of one will be double the
other, and the triangies are equal because they have equal
bases and the same height. Our geometer has rightly left out
these cases, for the proof is the same; they will either have
an identical segment, or touch only at a point, or be separate
from one another; and regardless of these variations there is
one proof for all cases,

Finally, we can demonstrate the converses of this theorem
in the same way. One of the converses is “If a parallelogram
is double a triangle and they have the same base with each
other or equal bases, and if they are on the same side, they
are in the same parallels.” For if this is not true, the whole is
equal to the part, that is, the same argument as above will

106 412,26  “It is curious that Proclus does not mention (as he
usvally would) the case where the vertex of the triangle and a vertex
of the parallelogram coincide. Probably the reason is that, as Proclus
points out (41320, the position of the vertex of the triangle does not
malter in the proof.” {IL.M.)
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hold, For necessarily the vertex of the triangle will fall in the
parallels or outside them. Whichever it is, when a line is drawn
through the vertex parallel to the base, the same impossibility
follows. Another converse is “If a parallelogram is double a
triangle and in the same parallels, they will have the same
base or equal bases.” For if they are on unequal bases, we
assume figures with equal bases and show that the whole is
equal to the part. Hence all the proofs of these theorems end
in this commen impossibility. For this reason the author of the
Elements has left it to us to track down the variety of cases
here and has given his attention to the simpler and more
fundamental ones.

Now that we have made these comments, let us for the sake
of practice take not a parallelogram, but a trapezium which
has only two parallel sides, having the same base with a
triangle and lying in the same parallels, and let us see what
ratio it has to the triangle. Clearly it will not have the double
ratio, for then it would be a parallelogram, since it is a quadri-
lateral. I say that it is either more or less than double. Of the
two parallel sides one must be greater, the other less, since if
they are equal the lines that join their extremities will be
parallel. Now if the triangle has the greater side as base, the
quadrilateral will be less than double the triangle, and if it
has the shorter side as base, it will be more than double. Let
ABCD be a quadrilateral, with AB less than CD, and let AB
be produced indefinitely, and let triangle ECD have the same
base CD as the quadrilateral, and let DF be drawn through
D parallel to AC. The parallelogram ACDF is then double

A B £ F a B

C o € & F D

the triangle ECD, so that the quadrilateral ABCD is less
than double. Again let the triangle have AB as base, and let
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BF be drawn parailel to AC. Then ABCF is double the
triangle, so that quadrilateral ABCD is more than its double.

With these propositions demonstrated we assert that if, in a
quadriiateral which has enly two of its opposite sides parallel,
straight lines are drawn from the midpoint of one of the
parallel lines to the other, the quadrilateral will be either
greater than the double of the resulting triangle or less than
its double; but if straight lines are drawn from the midpoint
of one of the lines joining the parallels to the other, the
quadrilateral will always be double the resulting triangle. Let
us demonstrate the latter theorem. Let ABCD be the quadri-
lateral, with AD parallel to CB, and let DC be bisected at E.
Let lines EA and BE be joined, and let BE be produced and
fall upon AD at F. Now since the angles at E are equal (for

A 4] F

B c

they are at the vertex) and angle FDE is equal to angle
BCE,** FE will be equal to BE, and triangle DEF equal to
triangle BCE.*® Let triangle ADE be added to each. The
whole of triangle AFE is therefore equal to the two triangles
ADE and BCE. But triangle AFE is equal to triangle AEB,
for they are on equal bases, BE and EF, and are in the same
parallels.*® Therefore triangle AEB is equal to triangles
ADE. ...\

187 416.9 As alternate angles between parallets AF and BC.

108 416.10 As having side ED equal to side EC and the two
adjacent angles respectively equal.

109 416,13  “If the parallel to BF through A is drawn.” This
addition comes from the Ms in which Barocius found the completion
of ihe proof lacking in our Mss. See next note.

110 416.14 The remainder of Proclus' commentary on this prope-
sition, together with the whole of his commentary on XLII and the
beginning of his commentary on XLIII, are missing from all the Mss
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[XLIL Teo construct, in an angle equal to a given rectilinear
angle, a parallelogram equal to a given triangle. J+

which Barocius consulted, except one which contained the following
completion of the commentary on XLI:

.. and BCE, and the quadrilateral ABCD is double the triangle
AEB, which is what was to be proved. In the same way we can prove
that for the case in which connecting lines are drawn to CD from
the midpoint of AB, the quadrilateral is double the resulting triangle.
Therefore when from the midpoint of either of the lines that join
the parallels, lines are drawn to the extremities of the other, the
quadrilateral is double the resulting triangle. This has been demon-
strated for the sake of practice. Now let us turn to the propositions
that follow.

Barocius infers from its contents that this supplement is not the work
of Proclus; Proctus’ commentary, he thinks, would have been much
more extensive and would have dealt with cases not mentioned here.
Baracius’ opinion is confirmed on more mechanical grounds when we
compare this lacuna with the earlier one at the end of XXXVI
Neither Iacuna is noted in the Mss; in each case the text that precedes
is followed without a break by the words foliowing the lacuna (see
note at 402.19). This indicates the loss in gach case of several pages
from the codex from which our Mss are derived; and in the present
case this loss must have included the concluding portion of the com-
meniary on XLI, Since these identical defects occur in all our Mss, the
loss of these two groups of papes must have been sustained by their
archetype at an early date, Another lacuna suggesting a similar loss in
the archetype of some of our Mss occurs at 82.23 (see note at that
point); but in that case the missing portion of the text is fortunately
supplied by other extant Mss.

111 416,17 The following is Euclid's proof of XLII, which iz
included here for convenience of reference: Given the triangle ABC
and the rectilinear angle D, to construct in angle D a parallelogram
equal to triangle ABC. Let BC be bisected at F and AE be joined. On
EC and at point E on it let angle CEF be constructed, by XXIIL, equal
to angle D. Let AG be drawn parallel to EC and CG parallel to EF,

o k=

B E C

by XXXI. Then FECG is a parallelogram. And triangle ABE is equal
to triangle AEC, by XXXVIIL Therefore triangle ABC is double the
triangle AEC. But parallelogram FECG is also double the triangle
AEC, by XLI. Therefore parallelogram FECG is equal to triangle
ABC, and it has the angle CEF equal to the given angle D.
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[XLIIL. In any parallelogram the complements of the
parallelograms about the diameter are equal to
one another.|''?

. . . that the parallelograms do not touch one another at a
point.1* Because the complements are not quadrilaterals, we
must also expound this case in order to see that the same
consequence follows. In the parallelogram AB let parallelo-
grams CK and DL be inscribed about the same diameter,
with the straight line KL, a segment of the diameter, between

A G D
L

E K

c F B

them. Now you can say the same things as before. Triangle
ACD is equal to BCD, triangle ECK to KCF, and triangle
DGL to DHL; therefore the remainder, the five-sided figure
AGLKE, is equal to the five-sided figure BFKLH. And these
are the complements, Again if the parallelograms neither meet
at a point nor are separate from one another but overlap, the
same proof can be used, as follows. Let AB be a parallelogram
with diameter CD and parallelograms inscribed about it, one
of them ECFL and the other DGKH cutting the former. 1
say that the complements FG and EH are equal. For since

11241621 The following is BEuclid’s proof of XLIII: Let ABCD
be a parallelogram and AC its diameter, and about AC let EH and
FG be parallelograms and BK and KD the so-called complements,
which are to be proved equal to each other. Triangie ABC is equal to
triangle ACD, by XXXIV. Again triangle AEK is equal to triangle
AHK; and for the same reason triangle KFC is also equal to KGC.
Now since AEK is equal to AHK, and KFC to KGC, AEK together
with KGC is equal to AHK together with KFC, And the whole triangle
ABC is equal to the whole triangle ADC; therefore the complement
BK which remains is equal to the complement KD which remains.

113417.1 As the proof in the preceding note shows, Euclid has
dealt with the case in which the inner parallelograms touch one an-
other. Evidently Proclus has announced that he will consider the
other possible cases of the problem. “So let us assume ., . . ."
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triangle DGK as a whole is equal to triangle DHK and a part
of it, triangle KLM, is equal to triangle KLN (for LK is a
parallelogram), the trapezium DLNH which remains is equal

a_F c
[
S K
L N £
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to the trapezium DLMG. But triangle ADC is equal to
BDC, and triangle FCL in the parallelogram EF is equal
to triangle ECL, and trapezium DLMG is equal to DLNH;
therefore the remaining quadrilateral GF is equal to the
quadrilateral EH, The theorem has therefore been demon-
strated for all cases. There are three cases only, no more nor
less; for the parallelograms about the same diameter will
either cut one another, or touch one another at a point, or be
separated from one another by a segment of the diameter.
The term “complements” was derived by the author of the
Elements from the thing itseif, since complements fill the
whole of the area outside the two parallelograms. This is why
he does not regard it as deserving of special mention in the
Definitions. It would have required a complicated explanation
to make us understand what a parallelogram is and what are
the parallelograms that are constructed about the same diam-
eter as the whole; for only after these had been explained
would the meaning of “complement” have become clear.
Those parallelograms are about the same diameter which have
a segment of the entire diameter as their diameter; otherwise
they are not about the same diameter. For when the diameter
of the whole figure cuts a side of the interior paralielogram,

A C
E H
o B
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then this parallelogram is not about the same diameter as the
whole. For example, in the parallelogram AB the diameter
CD cuts the side EH of the parallelogram CE. Hence CE is
not about the same diameter as CD.

XLIV. To a given straight line to apply, in an angle equal to
a given rectilinear angle, a parallelogram equal to a given
triangle.

Eudemus and his school tell us that these things—the
application (w=apaBois) of areas, their exceeding (iwepfoir),
and their falling short (&é\\eus)—are ancient discoveries of
the Pythagorean muse. It is from these procedures that later
geometers took these terms and applied them to the so-called
conic lines, calling one of them “parabola,” another “hyper-
bola,” and the third “ellipse,” although those godlike men
of old saw the significance of these terms in the describing of
plane areas along a finite straight line. For when, given a
straight line, you make the given area extend along the whole
of the line, they say you “apply” the area; when you make
the length of the area greater than the straight line itself,
then it “exceeds”; and when less, so that there is a part of the
line extending beyond the area described, then it “falls
short.” Euclid too in his sixth book!* speaks in this sense of
“exceeding” and “falling short”; but here he needed “applica-
tion,” since he wished to apply to a given straight line
an area equal 1o a given triangle, in order that we might be
able not only to construct a parallelogram equal'® to a given
triangle, but also to apply it to a given finite straight line. For
example, when a triangle is given having an area of twelve
feet and we posit a straight line whose length is four feet, we
apply to the straight line an area equal to the triangle when
we take its length as the whole four feet and find how many
feet in breadth it must be in order that the parallclogram may
be equal to the triangle. Then when we have found, let us say,
a breadth of three feet and multiplied the length by the

1144207 VI 27-29.

115 420,12 Reading with Barocius and Schinberger {rov instead
of {eov in Friedlein.
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breadth, we shall have the area, that is, if the angle assumed
is a right angle. Something like this is the method of “applica-
tion” which has come down to us from the Pythagoreans.’¢

There are three things given in this problem: a straight
line along which the area is to be applied so that the line as a
whole becomes a side of the area itself, a triangle to which
the area applied must be equal, and an angle to which the
angle of the area must be equal. Again it is clear that, when
the angle is a right angle, the applied area will be either a
square or an oblong; and when it is acute or obtuse, the area
will be either a rhombus or a thomboid. The straight line
obviously must be finite, for it is not possible to apply an
area to an infinite line; so in saying that we are to apply an
area to “a given straight line,” he makes it clear that the line
is necessarily finite. He uses for the comstruction in this
problem the construction of a parallelogram equal to the given
triangle.'” Application and construction are not the same

116 420.23 The reader not familiar with Greek peometry should
supplement Proclus” brief account of this Pythagorean discovery with
the more extensive exposition in Heath r, 150-153, 394-396, It is an
essential part of what has appropriately been called “geometrical
algebra.” On the reasons for the appropriation of the terms “parabola,”
“hyperbala,” and “ellipse™ to designate the conic sections see Heath
m, 134-139, esp. 138f. Cf. note at 111.8,

117 421.12  Euelid’s impressive solution of XLIV is as follows:
Given a straight line AB, a triangle C, and a rectilinear angle D, to
apply to AB in an angle equal to D a parallelogram equal to C. Let
parallelogram BEFG be constructed, by XLII, equal to triangle C in
the angle EBG which is equal to D, let it be placed so that BB is in a
straight line with AB, let FG be drawn through to H, let AH be
drawn parallel to BG and EF, and let HB be joined. Then since line

A S

HF falls on parallels AH and EF, angles AHF and HFE are equal to
two right angles, by XXIX. Therefore anglezs BHG and GFE are less
than two right angles, and straight lines produced indefinitely from
angles less than two right angles meet; hence HB and FE when
produced will meet. Let them be produced and meet at K. Let KL be
drawn parallel to EA and FH, and let HA and GB be produced to
L and M. Then HLKF is a parallelogram; HK is its diameter, and
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thing, as we have said. Construction brings the whole figure
into being, both its area and all its sides, whereas application
starts with one side given and constructs the area along it,
neither falling short of the length of the line nor exceeding it,
but using it as one of the sides enclosing the area.

But why, you may ask, did he use theorems when demon-
strating the equality of triangles to triangles, but problems
when making triangles equal to parallelograms? Because, we
reply, the equality of things of the same species is natural and
can be determined by simple inspection, whereas equality be-
tween [dissimilar]**® things, because of the difference in
species, needs construction and artifice, since by itself it is
difficult to discover.

XLV. To construct, in a given rectilinear angle,
a parallelogram equal 1o a given rectilinear figure.

This problem is more general than the two in which he
investigates the construction and the application of paral-
lelograms equal to a given triangle. For whether it be a
triangle that is given, or a square, or a quadrilateral in general,
or any other sort of multilateral figure, this problem will en-
able us to censtruct a parallelogram equal to it. For any
rectilinear figure, as we said earlier, is as such divisible into
triangles, and we have given the method by which the number
of its triangles can be found."'® Therefore by dividing the
given rectilinear figure into triangles and constructing a
parallelogram equal to one of them, then applying parallelo-
grams equal to the others along the given straight line—that
line to which we made the first application—we shall have the
parallelogram composed of them equal to the rectilinear figure

AG and ME arc parallelograms about HK; and LB and BF are the
so-called complements. Therefore LB is egual to BF. But BF is equal
to triangle C3 therefore LB is also equal to C. And since angle GBE
is equal 10 angle ABM, angle ABM is also equal to angle D. Therefore
the parallelegram LB equal to the given triangle C has been applied
to the given straight line AB in the angle ABM which is equal to D.

118 42122 After oy & some word or words have dropped out,
such as &\hwr OF uh dpeediy.

11942213 At 381.23ff.
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composed of the triangles, and the assigned task will have been
accomplished. That is, if the rectilinear figure has ten sides,
we shall divide it into eight triangles, construct a parallelo-
gram equal to one of them, and then by applying in seven
steps parallelograms cqual to each of the others, we shall
have what we wanted.*?®

It is my opinion that this problem is what led the ancients
to attempt the squaring of the circle. For if a parallelogram
can be found equal to any rectilinear figure, it is worth
inquiring whether it is not possible to prove that a rectilinear
figure is equa! to a circular area. Indeed Archimedes proved
that a circle is equal to a right-angled triangle when its radius
is equal to one of the sides about the right angle and its
perimeter is equal to the base.??* But of this elsewhere; let us
proceed to the next propositions.

XLVI. On a given straight line to describe a square.

Our author particularly needs this problem for the estab-
lishment of the following theorem, but it seems that he also
wishes to give us the construction of the two best of the recti-
linear figures,*** the equilateral triangle and the square. He

120 42223 Eueclid’'s solution of XLV, abbreviated, is as follows:
Given the rectilinear figure ABCD and the rectilinear angle E, to con-
struct in angle E a parallelogram equal to ABCD. Dividing ABCD
into two triangles, he constructs parallelogram FH equal to triangle

D
<P
B
ABD in angle HKF which is equal to E, by the method shown in
XLII; he then applies parallelogram GM equa! to triangle DBC to the
line GH in the angle GHM which is equal to E, by the method shown
in XLIV. KFLM is a parallelogram (by XIV, XXIX, XXXIII,
XXXIV) and is the parallelogram whose construction is required.

121 423.8  In the Measurement of a Circle, Prop. L.

122 423,12 Reading with Barocius edfuypduucss instead of edov-
ypiuug in Friedlein. Euclid’s construction in XLVI is obvious. Given
a straight line AB on which it is required to describe a square, he
draws AC at right angles to AB, takes a point D on it such that AD
is equal to AB, through D draws DE parallel to AB, and through B
draws BE parallel to AD. ADEB is an equilateral parallelogram by
construction, and it is shown to be right-angled by XXIX and XXXIV.
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obviously needs these rectilinear figures for constructing the
cosmic figures, and especially the four that are subject to
generation and destruction; for the icosahedron, the octa-
hedron, and the pyramid are composed of equilateral triangles,
and the cube of squares.’?* This is why, I think, he prefers to
speak of “constructing” the triangle and “describing” the
square.*?* These terms he obviously finds appropriate to these
figures, for the triangle, being put together of many parts, re-
quires to be constructed, while the square, since it is gen-
erated from one of its sides, requires to be described. We get
the square by multiplying the number of the given straight
line by itself, but it is not so with the triangle; we draw lines
from elsewhere to the extremities of the straight line and put
them together into one equilateral triangle, and the drawing
of a circle is needed to find the point from which the straight
lines must be drawn to the extremities of the given straight
line 2%

This, then, is clear. But we must show that, when the
straight lines are equal on which squares are described, the
squares themseives are equal. Let lines AB and CD be equal,
and on AB let a square ABEG be described, and on CD the

G E H F

A B C D

square CDFH, and let GB and HD be joined. Then since AB
and CD are equal, and also AG and CH, and they include
equal angles, then GB is equal to HD, triangle ABG is

123 423.18 These are the four figures used in the Timaeus to ex-
plain the generation and transformations of water, air, fire, and earth
respectively.

124 423 20 See note at 82.22. In the following pages of the Greck
text squares are always described as drawn frem (not on) a line. My
translation ignores this peculiarity of Greek diction and conforms to
the modern mathematical idiom.

125 424.6 “These remarks make no sense to me. Obviously Post,
III is presupposed in the construction of the square as well as in that
of the triangle.” (LM.}

— 336 —



425

426

PROPOSITIONS: PART TWO

equal to triangle CDH, and the doubles of them are equal.
Therefore AE is equal to CF. And the converse is also true,
for if the squares are equal, the lines on which they are
described will be equal. Let AF and CG be cqual squares,
and let them so lie that AB is on a straight line with BC. Since
the angles are right angles, FB is also on a straight line with
BG. Let FC and AG be joined. Then since the square AF is
equal to the square CG, triangle AFB is equal to triangle
CBG. Let triangle BCF be added to each. Then the whole of
triangle ACF is equal to triangle CFG, and consequently AG
is parallel to FC. Again since angle AFG and angle CGF are

D F

G £

each half a right angle, AF is parallel to CG. Therefore line
AF is equal to line CG, for they are opposite sides of a paral-
lelogram. Then since ABF and BCG are two triangles having
alternate angles equal, lines AF and CG being parallel, and
one side AF equal to side CG, side AB will be equal to
side BC and side BF to side BG. Consequently it has been
demonstrated that the sides on which the squares AF and
CG have been described are themselves equal when the
squares are equal.

XLVIL In right-angled triangles the square on the side
subtending the right angle is equal to the squares on the
sides containing the right angle.

If we listen to those who like to record antiquities, we shail
find them attributing this theorem to Pythagoras and saying
that he sacrificed an ox'*® on its discovery. For my part,

126 4268 Reading with Barocius fovfureiv for fov@irye in Fried-
lein.
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though I marvel at those who first noted the truth of this
theorem, 1 admire more the author of the Elements, not only
for the very lucid proof by which he made it fast, but also
because in the sixth book he laid hold of a theorem even
more general than this and secured it by irrefutable scientific
arguments. For in that book he proves generally that in right-
angled triangles the figure on the side that subtends the right
angle is equal to the similar and similarly drawn figures on
the sides that contain the right angle.**” Every square is of
course similar to every other square, but not all similar
rectilinear figures are squares, for there is similarity in tri-
angles and in other polygonal figures, Hence the argument
establishing that the figure on the side subtending the right
angle, whether it be a square or any other kind of figure, is
equal to the similar and similarly drawn figures on the sides
about the right angle, proves something more general and
scientific than that which shows only that the square is equal
to the squares. For there the cause of the more general propo-
sition that is proved becomes clear: it is the rightness of the
angle that makes the figure on the subtending side equal to
the similar and similarly drawn figures on the containing
sides, just as the obtuseness of the angle is the cause of its
being greater and the acuteness of the angle the cause of its
being less.

How he proves the theorem'®® in the sixth book will be
evident there. But now let us consider how he shows the
theorem before us to be true, remarking only that he does not
prove the universal proposition here, since he has not yet
explained similarity in rectilinear figures, nor proved anything
in general about proportion. Hence many of the things here
proved in a partial fashion'** are proved in that book more
generally through the use of the above method. In the present

127 426,18 In V1. 31,

128 427.10 Reading with Barocius fedgnua for fewpiuer: in Fried-
lein.

128 427.14f. Something has evidently been lost here. I agree with
Schinberger, following Barocius® translation, that the text must have
originally read wohAd 7w drrabfa pepkaTepow Sederypdrwr fv dxelvy
BéBernrae kafohtnwTepoy.
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proposition the author of the Elements proves his conclusion
by means of the ordinary theory of parallelograms,!3°

There are two sorts of right-angled triangles, isosceles and
scalene. In isosceles triangles you cannot find numbers that
fit the sides; for there is no square number that is the double
of a square number, if you ignore approximations, such as
the square of seven which lacks one of being double the
square of five, But in scalene triangles it is possible to find
such numbers,'* and it has been clearly shown that the
square on the side subtending the right angle may be equal to
the squares on the sides containing it. Such is the triangle in

130 427 18 This “very lucid proof” of XLVII is as follows: Given
a right-angled triangle ABC, with angle BAC right, and squares in-
scribed on each of its sides according to the method shown in XLVI,
to prove that the square on BC is equal to the squares on BA and AC.
Through A let AL be drawn parallel to BD and CE, and let AD and
FC be drawn, Since BAC and BAG are right angles, it follows, by
XIV, that CA is on a straight line with AG; and for the same reason
BA is on a straight line with AH. Since angle DBC is equal to angle
FBA (for each is a right angle), let angle ABC be added to each.

oL E

Then the whole angle DBA is equal to the whole angle FBC. Then in
triangles ABD and FBC sides AB and BD are equal respectively to
sides FB and BC, and angle ABD is equal to angle FBC; therefore
the base AD is equal to the base FC, and the two triangles are equal,
by IV. Now the parallelogram BL is double the triangle ABD, by XLI,
and the square GB is double the triangle FBC. Therefore the parallelo-
gram BL is equal to the square GB. Similarly if AE and BK be joined,
the parallelogram CL can zlso be proved equal to the square HC.
Therefore the whole square BDEC is equal to the two sguares GB
and HC; i.e. the square on BC is equal to the squares on BA and AC,

131 42725 There is an unindicated lacuna in Friedlein's text after
Aaflelv, long enough at least to contain a connective with the following
deixvvrar. Barocius either had such a particle or saw the need and
supplied it.
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the Republic,'** in which sides of three and four contain the
right angle and five subtends it, so that the square on five is
equal to the squares on those sides. For this is twenty-five,
and of those the square of three is nine and that of four
sixteen. The statement, then, is clear for numbers,

Certain methods have been handed down for finding such
triangles, one of them attributed to Plato, the other to
Pythagoras. The method of Pythagoras begins with odd
numbers, positing a given odd number as being the lesser of
the two sides containing the angle, taking its square, sub-
tracting one from it, and positing half of the remainder as the
grcater of the sides about the right angle; then adding one
to this, it gets the remaining side, the one subtending the
angle, For example, it takes three, squares it, subtracts one
from nine, takes the half of eight, namely, four, then adds one
to this and gets five; and thus is found the right-angled triangle
with sides of three, four, and five. The Platonic method pro-
ceeds from even numbers. It takes a given even number as one
of the sides about the right angle, divides it into two and
squares the half, then by adding one to the square gets the
subtending side, and by subtracting one from the square gets
the other side about the right angle. For example, it takes
four, halves it and squares the half, namely, two, getting four;
then subtracting one it gets three and adding one gets five, and
thus it has constructed the same triangle that was reached by
the other method. For the square of this number is equal to
the square of three and the square of four taken together.'*®

These remarks are somewhat outside our subject, But
since the proof given by the author of the Elements is clear,
I do not think I should add anything superfluous but should
be content with what he has written, especially since those

132 428 1 Probably a reference to Rep. 546c.

13342908 By the Pythagorean method we get the three numbers
a (assumed to be odd), "’—;1 and ”—’%1 , which satisfy the equation
ag_,_@’:(iizl)', The Platonic method yields 2a, a?—1, aZ-1,

which satisfy the equation (2a)24(az—1)2=(a?+1)2 How “Pythag-
oras and Plato respectively discovered these methods is discussed by
Heath, Euclid 1, 356-360,
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who have made additions, such as the disciples of Heron
and Pappus, have been obliged to assume something proved
in the sixth book, and for no material purpose.’® Let us then
proceed to what follows,

XLVIIL ¥f in a triangle the square on one of the sides is
equal to the squares on the remaining two sides of the
triangle, the angle contained by the remaining two sides of
the triangle is right.

This theorem is the converse of the one before it and is a
whole-to-whole converse. For if the triangle is right-angled,
the square on the subtending side is equal to the squares on
the other sides, and if the square on the subtending side is
equal to those on the other sides, the triangle is right-angled,
and its right angle is that which is contained by the other
sides. The proof given by the author of the Elements is

clear. He assumes a triangle ABC having the square on
AC equal to the squares on AB and BC and draws a line on
this triangle from B at right angles to BC.*** If someone says
that the line at right angles should not be drawn in the direc-

134 429,15 Heath (Euclid 1, 366-368) gives an account of Pappus’
extension of XLVII and of Heron’s proof that lines AL, BK, and CF
in Buclid’s diagram meet in a point. The former is an “elegant™
theorem, and the latter, as proved by Heron, involves no use of any-
thing beyond Book I. It is likely, then, that Proclus® criticism is directed
against other members of their schools.

1354309 As Proclus says, Euclid assumes in the proof of XLVIII
a triangle ABC having the square on AC equal to the squares on AB
and BC; he draws BD at right angles to BC, makes BD equal to AB,
and draws CD. (The lettering on the diagram in Heiberg is slightly
different from that in Proclus' description, which 1 follow here.)
Then since BD is equal to AB, the square on BD is equal to the square
on AB. Let the square on BC be added to each. Then the squares on
DB and BC are equal to the squares on AB and BC. But by XLVII
the square on DC is equal to the squares on BD and BC; and the
square on AC is by hypothesis equal to the squares on AB and BC.
Therefore the square on DC is equal to the square on AC, so that side
DC is equal to AC. Then in the two triangles sides DB and BC are
equal respectively to AB and BC, and the base DC is equal to the
base AC; therefore angle DBC is equal to angle ABC, by VIIL. But
DBC is a right angle by construction: therefore ABC is also a right
angle, which is what was to be proved.
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tion in which the author of the Elements draws it, but in the
opposite direction, we shall reply that the idea is impossible,
since the line!*® cannot fall either within the triangle or outside
it but is identical with AB. For, if possible, let it fall as does
BE. Then since EBC is a right angle, CFB is acute, so that
the other angle, AFB, is obtuse. AB then is greater than BF.

I\

E
Therefore let BE be supposed equal to AB, and let EC be
joined. Then since EBC is a right angle, the square on EC is
equal to the squares on BE and BC. But BE is equal to AB,
and consequently the square on EC is equal to the square on
AB and BC. But the square on AC was equal to the same
squares. Consequently the square on EC is equal to the square
on AC, and EC is therefore equal to AC. But BE was equal to
AB. Therefore the two lines BE and EC have been con-
structed on BC equal respectively to the lines AB and AC,
which is impossible.?*™ Consequently the line drawn at right
angles does not fall within the triangle. But neither can it fall
outside, that is, on the other side of the line AB. If possible,
let it fall as does BG, and let BG be equal to AB, and let
CG be joined. Then since angle GBC is a right angle, the

o\,

A

square on CG is equal to the squares on BG and BC. But BG
is equal to AB, and hence the square on CG is equal to those
on AB and BC. But the square on AC was also equal to the
squares on AB and BC. Therefore CG is equal to AC. But
BG was also equal to AB on the same straight line BC,

138 430,14 Reading with Barocius abrie for abrir
1374312 By VIL
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which is impossible.!* Therefore the line drawn from B at
right angles to BC will fall neither inside nor outside. It will
therefore coincide with AB itself, and angle ABC is conse-
quently a right angle. In this way the objection is answered.

With this theorem the author of the Elements completes
his first book. He has presented many species of conversion,
with numerous examples of whole-to-whole, whole-to-part,
and part-to-part converses; he has devised a variety of prob-
lems, showing us how to bisect lines and angles, how to place
lines, construct figures, and apply areas; he has touched on
the so-called locus of paradoxes in mathematics and ac-
quainted us generously with locus-theorems themselves; he
has introduced us to both general and partial thecrems and
taught the difference between determinate and indeterminate
problems—all of which we, following his lead, have system-
atically expounded. He has directed the entire book to one
end, an introduction to the study of the simplest rectilinear
figures, finding their constructions and examining their es-
sential properties. As for us, if we are able to go through the
remaining books in the same fashion, we shall have much to
thank the gods for; but if other concerns draw us aside, we
ask those who are admirers of this science to expound the
remaining books by the same method, aiming always at what
is important and can be clearly divided, since the commen-
taries now in circulation contain great and manifold confusion
and contribute nothing to the exposition of causes, to dialec-
tical judgment, or to philosophical understanding.

148 431,10 Again by VIL
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