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Chapter 1. Networking Objectives 
The American architect Louis Henry Sullivan described his design philosophy with the simple statement 
"form follows function." By this credo he meant that a structure's physical layout and design should reflect 
as precisely as possible how this structure will be used. Every door and window is where it is for a reason.  

He was talking about building skyscrapers, but this philosophy is perhaps even more useful for network 
design. Where building designs often include purely esthetic features to make them more beautiful to look 
at, every element of a good network design should serve some well-defined purpose. There are no 
gargoyles or frescos in a well-designed network.  

The location and configuration of every piece of equipment and every protocol must be carefully 
optimized to create a network that fulfills the ultimate purposes for which it was designed. Any sense of 
esthetics in network design comes from its simplicity and reliability. The network is most beautiful when it 
is invisible to the end user.  

So the task of designing a network begins with a thorough study of the required functions. And the form 
will follow from these business requirements.  

1.1 Business Requirements 

This is the single most important question to answer when starting a network design: why do you want to 
build a network? It sounds a little silly, but frequently people seem confused about this point. Often they 
start building a network for some completely valid and useful reason and then get bogged down in 
technical details that have little or nothing to do with the real objectives. It is important to always keep 
these real objectives in mind throughout the process of designing, implementing, and operating a network.  

Too often people build networks based on technological, rather than business, considerations. Even if the 
resulting network fulfills business requirements, it will usually be much more expensive to implement than 
is necessary.  

If you are building a network for somebody else, then they must have some reason why they want this 
done. Make sure you understand what the real reasons are. Too often user specifications are made in terms 
of technology. Technology has very little to do with business requirements. They may say that they need a 
Frame Relay WAN, or that they need switched 100Mbps Ethernet to every desk. You wanted them to tell 
you why they needed these things. They told you they needed a solution, but they didn't tell you what 
problem you were solving.  

It's true that they may have the best solution, but even that is hard to know without understanding the 
problem. I will call these underlying reasons for building the network "business requirements." But I want 
to use a very loose definition for the word "business." There are many reasons for building a network, and 
only some of them have anything to do with business in the narrow sense of the word. Networks can be 
built for academic reasons, or research, or for government. There are networks in arts organizations and 
charities. Some networks have been built to allow a group of friends to play computer games. And there 
are networks that were built just because the builders wanted to try out some cool new technology, but this 
can probably be included in the education category.  

What's important is that there is always a good reason to justify spending the money. And once the money 
is spent, it's important to make sure that the result actually satisfies those requirements. Networks cost 
money to build, and large networks cost large amounts of money.  
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1.1.1 Money 

So the first step in any network design is always to sit down and list the requirements. If one of the 
requirements is to save money by allowing people to do some task faster and more efficiently, then it is 
critical to understand how much money is saved.  

Money is one of the most important design constraints on any network. Money forms the upper limit to 
what can be accomplished, balancing against the "as fast as possible" requirement pushing up from below. 
How much money do they expect the network to save them? How much money do they expect it will make 
for them? If you spend more money building this network than it's going to save (or make) for the 
organization, then it has failed to meet this critical business objective. Perhaps neither of these questions is 
directly relevant. But in that case, somebody is still paying the bill, so how much money are they willing to 
spend?  

1.1.2 Geography 

Geography is the second major requirement to understand. Where are the users? Where are the services 
they want to access? How are the users organized geographically? By geography I mean physical location 
on whatever scale is relevant. This book's primary focus is on Local Area Network (LAN) design, so I will 
generally assume that most of the users are in the same building or in connected building complexes. But if 
there are remote users, then this must be identified at the start as well. This could quite easily spawn a 
second project to build a Wide Area Network (WAN), a remote-access solution, or perhaps a Metropolitan 
Area Network (MAN). However, these sorts of designs are beyond the scope of this book.  

One of the keys to understanding the local area geography is establishing how the users are grouped. Do 
people in the same area all work with the same resources? Do they need access to the same servers? Are 
the users of some resources scattered throughout the building? The answers to these questions will help to 
define the Virtual LAN (VLAN) architecture. If everybody in each area is part of a self-contained work 
group, then the network could be built with only enough bandwidth between groups to support whatever 
small amounts of interaction they have. But, at the opposite extreme, there are organizations in which all 
communication is to a centralized group of resources with little or no communication within a user area. Of 
course, in most real organizations, there is most likely a mixture of these extremes with some common 
resources, some local resources, and some group-to-group traffic.  

1.1.3 Installed Base 

The next major business requirement to determine is the installed base. What technology exists today? 
Why does it need to be changed? How much of the existing infrastructure must remain?  

It would be extremely unusual to find a completely new organization that is very large, has no existing 
technology today, and needs it tomorrow. Even if you did find one, chances are that the problem of 
implementing this new technology has been broken down among various groups. So the new network 
design will need to fit in with whatever the other groups need for their servers and applications.  

Installed base can cause several different types of constraints. There are geographical constraints, such as 
the location and accessibility of the computer rooms and LAN rooms. There may be existing legacy 
network technology that has to be supported. Or it may be too difficult, inconvenient, or expensive to 
replace the existing cable plant or other existing services.  

Constraints from an existing installed base of equipment can be among the most difficult and frustrating 
parts of a network design, so it is critical to establish them as thoroughly and as early as possible.  
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1.1.4 Bandwidth 

Now that you understand what you're connecting and to where, you need to figure out how much traffic to 
expect. This will give the bandwidth requirements. Unfortunately, this often winds up being pure 
guesswork. But if you can establish that there are 50 users in the accounting department who each use an 
average of 10kbps in their connections to the mainframe throughout the day, plus one big file transfer at 
5:00 P.M., then you have some very useful information. If you know further that this file transfer is 5 
gigabytes and it has to be completed by 5:30, then you have another excellent constraint.  

The idea is to get as much information as possible about all of the major traffic patterns and how much 
volume they involve. What are the expected average rates at the peak periods of the day (which is usually 
the start and end of the day for most 9-5 type operations)? Are there standard file transfers? If so, how big 
are they, and how quickly must they complete? Try to get this sort of information for each geographical 
area because it will tell you not only how to size the trunks, but also how to interconnect the areas most 
effectively.  

In the end it is a good idea to allow for a large amount of growth. Only once have I seen a network where 
the customer insisted that it would get smaller over time. And even that one got larger before it got smaller. 
Always assume growth. If possible, try to obtain business-related growth projections. There may be plans 
to expand a particular department and eliminate another. Knowing this ahead of time will allow the 
designer to make important money-saving decisions.  

1.1.5 Security 

Last among the top-level business requirements is security. What are the security requirements? This is 
even important in networks that are not connected to anything else, like the Internet or other shared 
networks. For example, in many organizations the servers in the Payroll Department are considered 
sensitive, and access is restricted. In investment banks, there may be regulations that require the trading 
groups to be separate from corporate financing groups. The regulatory organizations tend to get annoyed 
when people make money on stock markets using secret insider information.  

The relationship between security and geography requirements may make it necessary to implement 
special encryption or firewall measures, so these have to be understood before a single piece of equipment 
is ordered.  

1.1.6 Philosophical and Policy Requirements 

Besides the business requirements, there could be philosophical requirements. There may be a corporate 
philosophy that dictates that all servers must be in a central computer room. Not all organizations require 
this, but many do. It makes server maintenance and backups much easier if this is the case. But it also 
dictates that the network must be able to carry all of the traffic to and from remote user areas.  

There may be a corporate philosophy that, to facilitate moves, adds, and changes, any PC can be picked up 
and moved anywhere else and not require reconfiguration. Some organizations insist that all user files be 
stored on a file server so that they can be backed up. Make sure that you have a complete list of all such 
philosophical requirements, as well as the business requirements, before starting.  

1.2 OSI Protocol Stack Model  

No book on networking would be complete without discussing the Open System Interconnection (OSI) 
model. This book is more interested in the lower layers of the protocol stack. One of the central goals of 
network design is to build reliable networks for applications to use. So a good design starts at the bottom of 
the stack, letting the upper layers ride peacefully on a stable architecture. Software people take a 
completely different view of the network. They tend to be most concerned about the upper layers, from 
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Layer 7 down to about Layer 4 or 5. Network designers are most concerned with Layers 1 through 4 or 5. 
Software people don't care much about cabling, as long as it doesn't lose their data. Network designers 
don't care much about the data segment of a packet, as long as the packet meets the standard specifications.  

This fact alone explains much of my bias in focusing on the lower parts of the stack. There are excellent 
books on network programming that talk in detail about the upper layers of the stack. That is largely 
beyond the scope of this book, however.  

1.2.1 The Seven Layers 

The OSI model is a useful way of thinking about networking. It's important not to confuse it with reality, 
of course. The most commonly used networking protocols, such as TCP/IP, don't completely match the 
model. But it is still a useful model. Table 1-1 shows this simple model in its usual form.  

Table 1-1. The OSI model  
Layer Name Uses Examples 

7 Application User and application data The reason for having a network in the 
first place 

6 Presentation Data formatting, encryption, character 
encoding 

ASCII versus EBCDIC, software 
encryption of a data stream 

5 Session Negotiates and maintains connections Name and address correlation, software 
flow control 

4 Transport End-to-end packet sequencing and 
reliability UDP, TCP, SPX 

3 Network Routing, flow control, translation 
between different media types IP, IPX 

2 Data Link 
(MAC) 

Basic framing of packets, error detection, 
transmission control 

Ethernet packets, including collision 
mechanisms 

1 Physical Electrical and optical media, signaling 
and properties 

Cabling, the electrical or optical pulses 
sent through the cabling 

1.2.1.1 Layer 1 

The Physical Layer is at the bottom. This includes the parts of the network that you can see, such as cables, 
patch panels, jacks, and optical fibers. Specifications for the Physical Layer have to do with the differences 
between categories of cables, the wavelength properties of optical fibers, the length restrictions, and 
electrical specifications. This is extremely important stuff, but most network designers only think about it 
briefly when they do the cable plant.  

Other physical-layer issues, such as laser intensity, wavelength characteristics, attenuation, and so on, are 
important to engineers who design the equipment and cables. But for the network design they appear only 
in decisions to match the specifications of different pieces of hardware and cabling.  

1.2.1.2 Layer 2 

The Data Link Layer is where things start to get a bit more abstract, so some examples might help. This 
layer is where the difference between Ethernet, Fast Ethernet, and Token Ring exists. It includes all of the 
specifications about how to build a packet. It describes how the different nodes on this network avoid 
contention using collisions or token passing or perhaps some other algorithm. For broadcast media (as 
opposed to point-to-point media where you know that if you send out a packet, it can only be received by 
one other device), it defines how to actually specify for which device or devices the packet is destined.  
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Before going on, let me point out the ways that these first two layers are both connected and separable. For 
example, you have a certain physical layer, such as Category 5 twisted pair cabling. Then, when you 
decide to run Ethernet over this physical medium, you are constrained to use a particular type of signaling 
that works with this medium. It is called 10BaseT. There are other types of Ethernet signaling, such as 
10Base2. In this case, though, you would have to use coaxial cable designed to have 50 Ω (ohm) 
characteristic impedance. But, over this twisted pair cabling, you could just as easily run Token Ring. Or, 
if you are working with Token Ring, you could choose instead to use Type 3 shielded cabling.  

The point is that Ethernet means a particular way of forming packets and a particular way of avoiding 
contention (collisions). It can run over many different types of physical media. Going up the protocol 
stack, the same is true at each layer. You can run TCP/IP over Ethernet, or over Token Ring, ATM, or 
FDDI, or over point-to-point circuits of various descriptions. At each layer there is a set of specifications 
on how to get to the layer below. You can think of this specification as being the line between the layers of 
the stack. So the line between the Physical Layer and the Data Link Layer includes 10BaseT, 100BaseFx, 
and so forth.  

Strictly speaking, these distinctions are described in sublayers of the standard OSI model. The IEEE 
provides detailed specifications of these protocols.  

1.2.1.3 Layer 3 

The Network Layer includes the IP part of TCP/IP. This is where the IP address lives. The Network Layer 
specifies how to get from one data-link region to another. This is called routing. See Section 1.3 for a more 
detailed description of what routing means.  

There are several other Network Layer protocols besides IP. One of the most popular for LANs is called 
IPX, which forms the basis of the Novell Netware NOS (Network Operating System). However, IPX can 
also be used by other systems including Microsoft Windows and Linux.  

As an aside on the subject of the OSI model, it is quite common to use both IP and IPX simultaneously on 
the same network, over the same physical-layer equipment. But what's particularly interesting is that they 
don't have to use the same Data Link Layer protocol for their framing. Usually IP packets are framed using 
the Ethernet II data link layer. Meanwhile, IPX usually uses IEEE 802.2 with 802.3 Ethernet framing. 
There are several subtle differences between Ethernet II and 802.2, and it would certainly not be possible 
to run an IP network using both simultaneously on the same segment. But it is quite common to configure 
all of the devices on the network to expect their IP frames in one format and IPX in a different format.  

1.2.1.4 Layer 4 

At Layer 4, things become still more abstract. The IP protocol has two main transport-layer extensions, 
called TCP and UDP. TCP, or Transmission Control Protocol, is a connection-oriented protocol. This 
means that it forms end-to-end sessions between two devices. It then takes care of maintaining this session, 
keeping packets in order and resending them if they get lost in the network. For this reason, TCP is not 
useful for one-to-many or many-to-many communication. But it is perfect for building applications that 
require a user to log in and maintain a connection of any kind. A TCP session has to begin with a session 
negotiation that sets up a number of communications parameters such as packet size. At the end, it has to 
be torn down again.  

UDP, or User Datagram Protocol, is connectionless. It is used for applications that just send one packet at a 
time without requiring a response. It is also used by applications that want to maintain their own 
connection, rather than using TCP. This can be useful if a server needs to support a large number of clients 
because maintaining connections with TCP can be resource-intensive on the server. In effect, each UDP 
packet is a complete session. UDP is also useful for multicast type applications or for applications where 
the data is time sensitive, so retransmitting a packet is worse than dropping it.  
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TCP, being a connection-oriented protocol, is inherently reliable. It ensures that all data sent from one end 
to the other gets to its destination intact and in the right order. UDP, on the other hand, is inherently 
unreliable. This doesn't mean it's bad; it just means that the application has to make sure that it has 
received all of the data it needs.  

The other important thing that happens at Layer 4 is the differentiation between different application 
streams. In both TCP and UDP (as well as in IPX/SPX at the same layer) there is a concept called a port. 
This is really nothing more than a number. But it is a number that represents an application. For an 
application to work, there has to be not only something to send information, but also something on the 
other end to listen. So a server will typically have a program running that listens for incoming packets on a 
particular port (that is, packets that have the appropriate number in the port-number part of the packet).  

The network also cares about port numbers because it is an easy way to differentiate between different 
applications. The port number can be used to set priorities so that important applications can pass through 
the network more easily. Or the network can reject packets based on port number (usually for security 
reasons, but sometimes just to clean up artificially for ill-behaved application chatter).  

1.2.1.5 Layer 5 

Layer 5 is not used in every protocol. It is where instructions for pacing and load balancing of different 
clients will occur, as well as where sessions are established. As I mentioned previously, the TCP protocol 
handles session establishment at Layer 4, and the UDP protocol doesn't really have sessions at all.  

To make matters more confusing, the TCP/IP telnet and FTP protocols, for example, tend to handle the 
session maintenance as Layer 7 application data, without a separate Session Management layer. These 
protocols use Layer 4 to make the connection and then handle elements such as username and password 
verification as application information.  

Some protocols such as SNA can use a real Session Layer that operates independently from the Transport 
Layer. This ability to separate the layers, to run the same Session Layer protocol over a number of possible 
Transport Layers, or to build applications that have different options for session control, is what makes it a 
distinct layer.  

1.2.1.6 Layer 6 

The Presentation Layer, Layer 6, is also not universally used. In some cases, a data stream between two 
devices may be encrypted, and this is commonly handled at Layer 6. But encryption can also be done in 
some systems at Layer 2, which is generally more secure and where it can be combined with data 
compression.  

One common usae of Layer 6 is in an FTP file transfer. It is possible to have the protocol interpret the data 
as either 7-bit or 8-bit characters. Similarly, some terminal-emulation systems use ASCII characters, while 
others use EBCDIC encoding for the data in the application payload of the packet. Again, this is a Layer 6 
concept, but it might not be implemented as a distinct part of the application protocol. In many cases, 
conversions like these are actually made by the application and then inserted directly into Layer 4 packets. 
That is to say, a lot of what people tend to think of as Layer 6 concepts are not really distinct protocols. 
Rather, they are implementation options that are applied at Layers 4 and 7.  

1.2.1.7 Layer 7 

And, finally, Layer 7 is called the Application Layer. This is where the contents of your email message or 
database query live. The Application Layer is really the point of having a network in the first place. The 
network needs to get information efficiently from one place to another. The Application Layer contains 
that information. Maybe it needs to be chopped up into several packets, maybe it needs to be translated into 
some sort of special encoding scheme, encrypted and forwarded through 17 different types of boxes before 
it reaches the destination. But ultimately the information gets there. This information belongs to Layer 7.  
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1.2.2 Where the OSI Model Breaks Down 

In a sense, the model doesn't break down. It's more accurate to say that it isn't always strictly followed. 
And there are a lot of places where it is almost completely abandoned. Many of these examples involve 
concepts of tunneling.  

A tunnel is a protocol within a protocol. One of the most frequent examples is a Virtual Private Network, 
or VPN. VPNs are often used to make secure connections through untrusted networks such as the Internet. 
Taking this example, suppose the users of a corporate LAN need to access some important internal 
application from out on the Internet. The information in the database is too sensitive to make it accessible 
from the Internet where anybody could get it. So the users have to make an encrypted VPN connection 
from their computers at home.  

They first open a TCP connection from their home computers to the VPN server through the corporate 
firewall. This prompts them for usernames and passwords, and they log in. At this point everything seems 
to follow the OSI model. But then, through this TCP session, the network passes a special VPN protocol 
that allows users to access the internal LAN as if they were connected locally (although slower). They 
obtain a new IP address for this internal connection and work normally. In fact, they also can pass IPX 
traffic through their VPN to connect to the corporate file server. So the VPN is acting as if it were a Layer 
2 protocol because it is carrying Layer 3 protocols. But in fact it's a Layer 6 protocol.  

Now, suppose the users' own Internet connection is made via a DSL connection. One of the most popular 
ways to implement DSL in North America is to emulate an Ethernet segment, a Layer 2 protocol. But the 
connection over this Ethernet segment is made using PPPoE (PPP over Ethernet), a Layer 3 protocol that 
carries PPP, a Layer 2 protocol.  

To summarize, there is a Layer 1 physical connection to the DSL provider. Over that the users run Ethernet 
emulations (Layer 2). On top of the Ethernet is PPPoE, another Layer 2 protocol.[1] Over that they run IP to 
communicate with the Internet at Layer 3. Then, using this IP stack, they connect to the VPN server with a 
special Layer 4 connection authenticated at Layer 5 and encrypted at Layer 6. Over this is new Ethernet 
emulation (back to Layer 2). The users can then run their normal applications (Layers 3-7) on top of this 
new Layer 2. And, if you wanted to be really weird, you could start over with another PPPoE session.  

[1] PPPoE is a particularly interesting protocol when studied on the OSI stack because it looks 
like Layer 3 protocol to the Ethernet protocol on top of which it sits. But it presents a standard 
Layer 2 PPP interface to the IP protocol that lives above it on the stack. 

Things get very confusing if you try to map them too closely to the OSI model. But, as you can see from 
the previous example, it is still useful to think about the various protocols by function and the layers that 
represent those functions.  

1.3 Routing Versus Bridging 

Chapter 3 will discuss the design implications of the differences between routing and bridging. The 
discussion of the OSI model here makes it a good place to define them and talk about their technical 
differences.  

I will use the terms "bridging" and "switching" interchangeably throughout this book. This is because early 
manufacturers of multiport fast bridges wanted to make it clear that their products were distinct from 
earlier products. The earlier products, called "bridges," were used primarily for isolation and repeating 
functions; the newer products tended to focus on reducing latency and increasing throughput across a 
network. Technically, they perform the same basic network functions. But these vendors wanted to make 
sure that consumers understood that their products were different from the earlier devices: so they gave 
them a different name.  
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To make matters more confusing, it has become fashionable to talk about "Layer 3 switches." These are 
essentially just routers. But, in general, they are special-function routers that route between like media, 
which allows certain speed optimizations. So, where you might use a Layer 3 switch to route between two 
VLANs, both built on Fast Ethernet, you would never use one to control access to a WAN. You probably 
would want to think very carefully before using a Layer 3 switch to regulate traffic between a Token Ring 
and an Ethernet.  

Routing means sending packets from one Layer 3 network region to another using Layer 3 addressing 
information. These two Layer 3 regions could use different Layer 1 or 2 protocols. For example, one may 
be Ethernet and the other ATM. So part of the routing process requires taking the Layer 3 packet out of the 
Ethernet frame in which it was received, deciding where to send it, then creating ATM cells to carry this 
packet. Because ATM uses a cell size that is much smaller than the Ethernet packet size, the router has to 
chop up the Layer 3 packet and wrap each fragment in an ATM cell before sending it. When receiving 
from the ATM side, it has to wait until it receives all of the ATM cells that form one Layer 3 packet, 
reassemble the fragments in the correct order, and wrap it up in an Ethernet frame before sending it on. 
This allows easy transfer of data between LAN and WAN or between different LAN types.  

Technically, bridging has some overlap into the Network Layer as well, because it specifies how the 
broadcast domains that are part of the Data Link Layer can interact with one another. But the special 
difference between routing and bridging is that in routing the Data Link properties don't need to have 
anything in common. It is easy to route IP from Ethernet to Token Ring without needing to consider 
anything but the IP addresses of both ends. But in bridging, the MAC (Media Access Control) addresses 
from one side of the bridge are maintained as the frame crosses over to the other side.  

It is possible to bridge from Ethernet to Token Ring, for example. But the Token Ring devices must 
believe that they are talking to another Token Ring device. So the bridge has to generate a fake Token Ring 
MAC address for each Ethernet device, and a fake Ethernet MAC address for each Token Ring device 
taking part in the bridge.  

With routing, though, there is only one MAC address visible, that of the router itself. Each device knows 
that it has to communicate with all off-segment devices through that address.  

So routing scales much better than bridging when large numbers of devices need to communicate with one 
another. But the drawback is that the extra work of translating from one data-link layer to another means 
that the router has to read in every packet, decide where to send it, reformat it for the new medium, and 
then send it along.  

With switching, however, it is possible to read in just enough of the packet to figure out where it needs to 
go and then start sending it out before it has all been received. This is called cut-through switching. Store-
and-forward switching, in which the entire packet is read before forwarding, is also common. But the 
bottom line is that switching is generally faster than routing.  

Layer 3 switching is sort of a hybrid. If you know that you are switching between like media, then the only 
things you need to change when you pass the packet along are the source and destination MAC addresses 
(and the checksum will also need to be corrected). This is considerably less work than the general media-
independent problem of routing. So these Layer 3 switches are usually faster than a general-purpose router.  

The other advantage of a Layer 3 switch over a router is that it can often be implemented as a special card 
in a Layer 2 switch. This means that it is able to do its work while touching only the backplane of the 
switch. Because the switch backplane doesn't need to go very far, and because it usually runs a proprietary 
high-speed protocol, it is able to run at extremely high speeds. So it is as if you were able to connect your 
router, not to a 100-Mbps Fast Ethernet or even to 1000Mbps Gigabit Ethernet, but to a medium many 
times faster than the fastest readily available LAN technologies. And this is done without having to pay a 
lot of extra money for the high speed access.  

Chapter 3 will discuss how to use these sorts of devices effectively.  
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1.4 Top-Down Design Philosophy 

Once the actual requirements are understood, the design work can begin, and it should always start at the 
top. Earlier in this chapter I described the standard seven-layer OSI protocol model. The top layer in this 
model is the Application Layer. That is where one has to start when designing a network. The network 
exists to support applications. The applications exist to fulfill business requirements.  

The trick is that the network will almost certainly outlive some of these applications. The organization will 
implement new applications, and they will likely have new network requirements. They will form new 
business units, and new departments will replace old ones. A good network design is sufficiently flexible 
to support these sorts of changes without requiring wholesale redesign. This is why an experienced 
network designer will generally add certain philosophical requirements to the business requirements that 
have already been determined.  

The network needs to be scalable, manageable, and reliable. Methods for achieving each of these topics 
will be examined in considerable detail throughout this book. It should be obvious why they are all 
important, but let me briefly touch on some of the benefits of imposing these as requirements in a network 
design.  

Making a design scalable automatically dismisses design possibilities where switches for different 
workgroups are either interconnected with a mesh or cascaded one after another in a long string. 
Scalability will generally lead to hierarchical designs with a Core where all intergroup traffic aggregates.  

Manageability implies that you want to see what is going on throughout the network easily. It will also 
demand simple, rational addressing schemes. Some types of technology are either unmanageable or 
difficult to manage. You probably wouldn't want to eliminate these outright because they may be cost 
effective. But you probably don't want to put them in key parts of the network.  

Reliability is usually the result of combining a simple, scalable, manageable architecture with the business 
throughput and traffic-flow requirements. But it also implies that the network designer will study the 
design carefully to eliminate key single points of failure.  

There are other important philosophical principles that may guide a network design. A common one is that, 
except for specific security exclusions, any user should be able to access any other part of the network. 
This will help ensure that, when new services are deployed, the network will not need to be redesigned.  

Another common design philosophy says that only network devices perform network functions. In other 
words, never use a server as a bridge or a router. It's often possible to set up a server with multiple 
interface cards, but this philosophy will steer you away from doing such things. Generally speaking, a 
server has enough work to do already without having the resources act as some kind of gateway. It will be 
almost invariably slower and less reliable at these functions than a special-purpose network device.  

If your network uses TCP/IP, will you use registered or unregistered IP addresses? This used to be a hotly 
debated subject, but these days it is becoming clear that there is very little to lose by implementing a 
network with unregistered addresses, as long as you have some registered addresses available for address-
translation purposes.  

Perhaps the most important philosophical decisions have to do with what networking standards will be 
employed. Will they be open standards that will allow easy interoperability among different vendors' 
equipment? Or will they be proprietary to one vendor, hopefully delivering better performance at a lower 
price? It is wise to be very careful before implementing any proprietary protocols on your network because 
it can make it exceedingly difficult to integrate other equipment later. It is always possible that somebody 
will come along with a new technology that is vastly better than anything currently on the market. If you 
want to implement this new technology, you may find that the existing proprietary protocols will force a 
complete redesign of the network.  
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Chapter 2. Elements of Reliability 
Reliability is what separates a well-designed network from a bad one. Anybody can slap together a bunch 
of connections that will be reasonably reliable some of the time. Frequently, networks evolve gradually, 
growing into lumbering beasts that require continuous nursing to keep them operating. So, if you want to 
design a good network, it is critical to understand the features that can make it more or less reliable.  

As discussed in Chapter 1, the network is built for business reasons. So reliability only makes sense in the 
context of meeting those business requirements. As I said earlier, by "business" I don't just mean money. 
Many networks are built for educational or research reasons. Some networks are operated as a public 
service. But in all cases, the network should be built for clearly defined reasons that justify the money 
being spent. So that is what reliability must be measured against.  

2.1 Defining Reliability 

There are two main components to my definition of reliability. The first is fault tolerance. This means that 
devices can break down without affecting service. In practice, you might never see any failures in your key 
network devices. But if there is no inherent fault tolerance to protect against such failures, then the network 
is taking a great risk at the business' expense.  

The second key component to reliability is more a matter of performance and capacity than of fault 
tolerance. The network must meet its peak load requirements sufficiently to support the business 
requirements. At its heaviest times, the network still has to work. So peak load performance must be 
included in the concept of network reliability.  

It is important to note that the network must be more reliable than any device attached to it. If the user can't 
get to the server, the application will not work—no matter how good the software or how stable the server. 
In general, a network will support many users and many servers. So it is critically important that the 
network be more reliable than the best server on it.  

Suppose, for example, that a network has one server and many workstations. This was the standard 
network design when mainframes ruled the earth. In this case, the network is useless without a server. 
Many companies would install backup systems in case key parts of their mainframe failed. But this sort of 
backup system is not worth the expense if the thing that fails most often is connection to the workstations.  

Now, jump to the modern age of two- and three-tiered client-server architectures. In this world there are 
many servers supporting many applications. They are still connected to the user workstations by a single 
network, though. So this network has become the single most important technological element in the 
company. If a server fails, it may have a serious effect on the business. The business response to this risk is 
to provide a redundant server of some kind. But if the network fails, then several servers may become 
inaccessible. In effect, the stability of the network is as important as the combined importance of all 
business applications.  

2.1.1 Failure Is a Reliability Issue 

In most cases, it's easiest to think about reliability in terms of how frequently the network fails to meet the 
business requirements, and how badly it fails. For the time being, I won't restrict this discussion to simple 
metrics like availability because this neglects two important ways that a network can fail to meet business 
requirements.  

First, there are failures that are very short in duration, but which interrupt key applications for much longer 
periods. Second, a network can fail to meet important business requirements without ever becoming 
unavailable. For example, if a key application is sensitive to latency, then a slow network will be 
considered unreliable even if it never breaks.  



14

In the first case, some applications and protocols are extremely sensitive to short failures. Sometimes a 
short failure can mean that an elaborate session setup must be repeated. In worse cases, a short failure can 
leave a session hung on the server. When this happens, the session must be reset by either automatic or 
manual procedures, resulting in considerable delays and user frustration. The worst situation is when that 
brief network outage causes loss of critical application data. Perhaps a stock trade will fail to execute, or 
the confirmation will go missing, causing it to be resubmitted and executed a second time. Either way, the 
short network outage could cost millions of dollars. At the very least, it will cause user aggravation and 
loss of productivity.  

Availability is not a useful metric in these cases. A short but critical outage would not affect overall 
availability by very much, but it is nonetheless a serious problem.  

Lost productivity is often called a soft expense. This is really an accounting issue. The costs are real, and 
they can severely affect corporate profits. For example, suppose a thousand people are paid an average of 
$20/hour. If there is a network glitch of some sort that sends them all to the coffee room for 15 minutes, 
then that glitch just cost the company at least $5,000 (not counting the cost of the coffee). In fact, these 
people are supposed to be creating net profit for the company when they are working. So it is quite likely 
that there is an additional impact in lost revenue, which could be considerably larger. If spending $5,000 to 
$10,000 could have prevented this brief outage, it would almost certainly have been worth the expense. If 
the outage happens repeatedly, then multiply this amount of money by the failure frequency. Brief outages 
can be extremely expensive.  

2.1.2 Performance Is a Reliability Issue 

The network exists to transport data from one place to another. If it is unable to transport the volume of 
data required, or if it doesn't transfer that data quickly enough, then it doesn't meet the business 
requirements. It is always important to distinguish between these two factors. The first is called bandwidth,
and the second latency.

Simply put, bandwidth is the amount of data that the network can transmit per unit time. Latency, on the 
other hand, is the length of time it takes to send that data from end to end. The best analogy for these is to 
think of transporting real physical "stuff."  

Suppose a company wants to send grain from New York to Paris. They could put a few bushels on the 
Concorde and get it there very quickly (low latency, low bandwidth, and high cost per unit). Or they could 
fill a cargo ship with millions of bushels, and it will be there next week (high latency, high bandwidth, and 
low cost per unit). Latency and bandwidth are not always linked this way. But the trade-off with cost is 
fairly typical. Speeding things up costs money. Any improvement in bandwidth or latency that doesn't cost 
more is generally just done without further thought.  

Also note that the Concorde is not infinitely fast, and the cargo ship doesn't have infinite capacity. 
Similarly, the best network technology will always have limitations. Sometimes you just can't get any 
better than what you already have.  

Here the main concern should be with fulfilling the business requirements. If they absolutely have to get a 
small amount of grain to Paris in a few hours, and the urgency outweighs any expense, they would 
certainly choose the Concorde option. But, it is more likely that they have to deliver a very large amount 
cost effectively. So they would choose the significantly slower ship. And that's the point here. The business 
requirements and not the technology determine what is the best way.  

If the business requirements say that the network has to pass so many bytes of data between 9:00 A.M. and 
5:00 P.M., and the network is not able to do this, then it is not reliable. It does not fulfill its objectives. The 
network could pass all of the required data, but during the peak periods, that data has to be buffered. This 
means that there is so much data already passing through the network that some packets are stored 
temporarily in the memory of some device while they wait for an opening.  
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This is similar to trying to get onto a very busy highway. Sometimes you have to wait on the on-ramp for a 
space in the stream of traffic to slip your car into. The result is that it will take longer to get to your 
destination. The general congestion on the highway will likely also mean that you can't go as fast. The 
highway is still working, but it isn't getting you where you want to go as fast as you want to get there.  

If this happens in a network, it may be just annoying, or it may cause application timeouts and lost data, 
just as if there were a physical failure. Although it hasn't failed, the network is still considered unreliable 
because it does not reliably deliver the required volume of data in the required time. Put another way, it is 
unreliable because the users cannot do their jobs.  

Another important point in considering reliability is the difference between similar failures at different 
points in the network. If a highway used by only a few cars each day gets washed away by bad weather, 
the chances are that this will not have a serious impact on the region. But if the one major bridge 
connecting two densely populated regions were to collapse, it would be devastating. In this case one would 
have to ask why there was only one bridge in the region. There are similar conclusions when looking at 
critical network links.  

This is the key to my definition of reliability. I mean what the end users mean when they say they can't rely 
on the network to get their jobs done. Unfortunately, this doesn't provide a useful way of measuring 
anything. Many people have tried to establish metrics based on the number of complaints or on user 
responses to questionnaires. But the results are terribly unreliable. So, in practice, the network architect 
needs to establish a model of the user requirements (most likely a different model for each user group) and 
determine how well these requirements are met.  

Usually, this model can be relatively simple. It will include things like:  

• What end-to-end latency can the users tolerate for each application?  
• What are the throughput (bandwidth) requirements for each application (sustain and burst)?  
• What length of outage can the users tolerate for each application? 

These factors can all be measured, in principle. The issue of reliability can then be separated from 
subjective factors that affect a user's perception of reliability.  

2.2 Redundancy 

An obvious technique for improving reliability is to duplicate key pieces of equipment, as in the example 
of the heavily used bridge between two densely populated areas. The analogy shows two potential benefits 
to building a second bridge. First, if the first bridge is damaged or needs maintenance, the second bridge 
will still be there to support the traffic. Second, if the roads leading to these bridges are well planned, then 
it should be possible to balance their traffic loads. This will improve congestion problems on these major 
routes.  

Exactly the same is true of key network devices. If you duplicate the device, you can eliminate single 
points of failure. Using redundancy can effectively double throughput in these key parts of the network. 
But, just as in the highway example, neither benefit is assured. Duplicating the one device that never fails 
and never needs maintenance won't improve anything. And throughput is only increased if the redundant 
equipment is able to load-share with the primary equipment.  

These two points are also clear when talking about the car bridge. It may be difficult to justify spending 
large amounts of money on a second bridge just because the first one might one day be flooded out, unless 
the danger of this failure is obvious and pressing. Bridges are expensive to build. Besides, if high water 
affects the first bridge, it might affect the second bridge as well. In short, you have to understand your 
expected failure modes before you start spending money to protect against them.  
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Similarly, if the access roads to the second bridge are poorly designed, it could be that nobody will use it. 
If it is awkward to get there, people will balance the extra time required to cross the heavily congested first 
bridge against the extra time to get to the under-used second bridge.  

Finally, if the first bridge is almost never seriously congested, then the financial commitment to build a 
second one is only justified if there is good reason to believe that it will be needed soon.  

All of these points apply to networks as well. If a network is considered unreliable, then implementing 
redundancy may help, but only if it is done carefully. If there is a congestion problem, then a redundant 
path may help, but only if some sort of load balancing is implemented between the old and new paths. If 
the problem is due to component failure, then the redundancy should focus on backing up those 
components that are expected to fail. If it is being built to handle future growth, then the growth patterns 
have to be clearly understood to ensure that the enhancements are made where they are most needed.  

Redundancy also helps with maintenance. If there is backup equipment in a network, then the primary 
components can be taken offline without affecting the flow of traffic. This can be particularly useful for 
upgrading or modifying network hardware and software.  

2.2.1 Guidelines for Implementing Redundancy 

Clearly some careful thought is required to implement redundancy usefully. There are a number of general 
guidelines to help with this, but I will also discuss instances where it might be a good idea to ignore these 
guidelines.  

The first rule of thumb is to duplicate all Core equipment, but don't back up a backup.[1] Figure 2-1 and 
Figure 2-2 show a typical small part of a large LAN without and with redundancy, respectively. In Figure 
2-2 the Core concentrator and the router have both been duplicated. There is even a second NIC installed 
in each of the servers. What has been accomplished in doing this?  

[1] As I will discuss later, there are actually cases where it is useful to back up a backup. If there 
are good reasons to expect multiple failures, or if the consequences of such a multiple failure 
would be catastrophic, it is worth considering. However, later in this chapter I show 
mathematically why it is rarely necessary. 
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Figure 2-1. A simple LAN without redundancy 

Figure 2-2. A simple LAN with Core redundancy 
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For the time being, I will leave this example completely generic. The LAN protocols are not specified. The 
most common example would involve some flavor of Ethernet. In this case the backup links between 
concentrators will all be in a hot standby mode (using Spanning Tree). This is similar to saying that the 
second highway bridge is closed unless the first one fails. So there is no extra throughput between the 
concentrators on the user floors and the concentrators in the computer room. Similarly, the routers may or 
may not have load-sharing capability between the two paths. So it is quite likely that the network has 
gained no additional bandwidth through the Core. Later, I go into some specific examples that explore load 
sharing as well as redundancy, but in general there is no reason to expect that it will work this way.  

In fact, for all the additional complexity in this example, the only obvious improvement is that the Core 
concentrator has been eliminated as a single point of failure. This may be an important improvement. But it 
could also prove to be a lot of money for no noticeable benefit. And if the switchover from the primary to 
secondary Core concentrators is a slow or manual process, the network may see only a slight improvement 
in overall reliability. You would have to understand your expected failure modes before you could tell how 
useful this upgrade has been.  

This example looks like it should have been a good idea, but maybe it wasn't. Where did it go wrong? 
Well, the first mistake was in assuming that the problem could be solved simply by throwing gear at it. In 
truth, there are far too many subtleties to take a simple approach like this. One can't just look at physical 
connectivity. Most importantly, be very careful about jumping to conclusions. You must first clearly 
understand the problem you are trying to solve.  

2.2.2 Redundancy by Protocol Layer 

Consider this same network in more detail. Besides having a physical drawing, there has to be a network-
layer drawing. This means that I have to get rid of some of the generality. But specific examples are often 
useful in demonstrating general principles.  

Figure 2-3 shows the same network at Layer 3. I will assume that everything is Ethernet or Fast Ethernet. I 
will also assume a TCP/IP network. The simplest nontrivial example has two user VLANs and one server 
VLAN.  

I talk about VLANs, routers, and concentrators in considerable detail in Chapter 3 and Chapter 4. But for 
now it is sufficient to know that a VLAN is a logical region of the network that can be spread across many 
different devices. At the network layer (the layer where IP addresses are used to contact devices), VLANs 
are composed of groups of devices that are all part of the same subnet (assuming IP networking for now). 
Getting a packet from one VLAN to another is the same, then, as sending it from one IP subnet to another. 
So the traffic needs to pass through a router.  

There are two groups of users, divided into two VLANs. These users may be anywhere on the three floors. 
All of the servers, however, are on a separate server VLAN. So, every time a user workstation needs to 
communicate with a server, it has to send the packet first to the router, which then forwards the packet over 
to the server.  
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Figure 2-3. A simple LAN with no redundancy—network-layer view 

Notice in Figure 2-3 how different the diagram looks at the network layer than it did at the physical layer. 
It is the same network, but looked at in another complementary way. There are many different ways to 
implement the same physical network logically. This subject will be discussed in depth later in this book 
because exploiting this flexibility is what network design is all about.  

In Figure 2-3 there are two user VLANs and one server VLAN. These two user segments are spread 
throughout the three physical floors in Figure 2-1 and Figure 2-2. So the users shown in Figure 2-3 could 
be anywhere in the building. The server VLAN exists only in the basement and only supports the servers. 
In theory there is no reason why this VLAN could not also be distributed among all of the concentrators, as 
the user VLANs were. But in this example, assume that the servers have been given their own VLAN.  

Data has to pass through the router to get from one VLAN to another. In the physical-layer diagram 
(Figure 2-1), the router looks almost like just another server. It is much harder to see why it should have a 
backup. But in the network-layer diagram (Figure 2-3), it becomes the focal point of the whole network. 
Here is it clear that this router handles all intersegment traffic. Since the example assumes that the servers 
are all on separate segments from the users, essentially all application traffic except printing will pass 
through that router.  

At the network layer the router is a single point of failure, just as the concentrator was at the physical layer. 
If either of these devices stops working, it will disable the entire network. This is why, in Figure 2-2, I
replaced both the router and the concentrator.  

I also made some other changes. I didn't duplicate the concentrators on the floors for the users, but I did 
duplicate the trunks connecting them to the basement. Why would I do this? Actually, there are a few good 
reasons for this. First, because I duplicated the backbone concentrators in the basement, I need to connect 
the floor concentrators to both of them. This way, if there is a failure of one of the backbone concentrators, 
it won't isolate an entire floor of users. This was the reasoning behind having a second connection to each 
of the servers.  

Suppose there wasn't a backup interface on the servers, but the Core concentrators still duplicated as 
shown. If either of these concentrators then failed, the network would lose contact with all of the servers 
that were connected to that concentrator. Since all of this redundancy was implemented for these servers, it 
wouldn't do much good if they still had the same single point of failure. In the same way, the trunks 
between the Core and floor concentrators have been duplicated so that either Core concentrator could 
break without losing contact with the users. But the network could still lose contact with all of the users on 
that floor if the local concentrator failed. So why have I made just the trunks redundant and not the local 
concentrators?  
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The answer is that I'm not trying to make the network perfect, just better. There is a finite probability that 
any element anywhere in the network might fail. Before introducing redundancy, the network could lose 
connectivity to the entire floor if any of a long list of elements failed: the backbone concentrator, the floor 
concentrator, the fiber transceivers on either end of the trunk, the fiber itself. After the change, only a 
failure of the floor concentrator will bring down the whole floor. Section 2.2.7.1 will show some detailed 
calculations that prove this. But it is fairly intuitive that the fewer things that can fail, the fewer things that 
will fail.  

Every failure has some cost associated with it, and every failure has some probability of occurring. These 
are the factors that must be balanced against the added expense required to protect against a failure. For 
example, it might be worthwhile to protect your network against an extremely rare failure mode if the 
consequences are sufficiently costly (or hazardous). It is also often worthwhile to spend more on 
redundancy than a single failure will cost, particularly if that failure mode occurs with relative frequency.  

Conversely, it might be extremely expensive to protect against a common but inconsequential failure 
mode. This is the reasoning behind not bothering to back up the connections between end-user devices and 
their local hubs. Yes, these sorts of connections fail relatively frequently, but there are easy workarounds. 
And the alternatives tend to be prohibitively expensive.  

2.2.3 Multiple Simultaneous Failures 

The probability of a network device failing is so small that it usually isn't necessary to protect against 
multiple simultaneous failures. As I said earlier, most designers generally don't bother to back up a backup. 
Section 2.2.7.1 later in this chapter will talk more about this. But in some cases the network is so critically 
important that it contains several layers of redundancy.  

A network to control the life-support system in a space station might fall into this category. Or, for more 
down-to-earth examples, a network for controlling and monitoring a nuclear reactor, or a critical patient 
care system in a hospital, or for certain military applications, would require extra attention to redundancy 
because a failure could kill people. In these cases the first step is to eliminate key single points of failure 
and then to start looking for multiple failure situations.  

You'd be tempted to look at anything that can possibly break and make sure that it has a backup. In a 
network of any size or complexity, this will probably prove impossible. At some pragmatic level, the 
designer would have to say that any two or three or four devices could fail simultaneously.  

This statement should be based on combining failure probabilities rather than guessing, though. What is 
the net gain in reliability by going to another level of redundancy? What is the net increase in cost? 
Answering these questions tells the designer if the additional redundancy is warranted.  

2.2.4 Complexity and Manageability 

When implementing redundancy, you should ask whether the additional complexity makes the network 
significantly harder to manage. Harder to manage usually has the unfortunate consequence of reducing 
reliability. So, at a certain point, it is quite likely that adding another level of redundancy could make the 
overall reliability worse.  

In this example the network has been greatly improved at the cost of an extra concentrator and an extra 
router, plus some additional cards and fibers. This is the other key point to any discussion of redundancy. 
By its very definition, redundancy means having extra equipment and, therefore, extra expense. Ultimately, 
the cost must balance against benefit. The key is to use these techniques where they are needed most.  

Returning to the reasons for not backing up the floor concentrator, the designer has to figure out how to put 
in a backup, how much this would cost, and what the benefit would be. In some cases they might put in a 
full duplicate system, as in the Core of the network in the example. This would require putting a second 
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interface card into every workstation. Do these workstations support two network cards? How does 
failover work between them? With popular low-cost workstation technology, it is often not feasible to do 
this. Another option might be to just split the users between two concentrators. This way, the worst failure 
would only affect half the users on the biggest floor.  

This wouldn't actually be considered redundancy, since a failure of either floor concentrator would still 
knock out a number of users completely. But it is an improvement if it reduces the probability of failure 
per person. It may also be an improvement if there is a congestion problem either within the concentrator 
or on the trunk to the Core.  

Redundancy is clearly an important way of improving reliability in a network, particularly reliability 
against failures. But this redundancy has to go where it will count the most.  

Redundancy may not resolve a congestion problem, for example. If congestion is the problem, 
sophisticated load-balancing schemes may be called for. This will be discussed in more detail in 
subsequent chapters.  

But if fault tolerance is the issue, then redundancy is a good way to approach the solution. In general it is 
best to start at the Core (I will discuss the advantages to hierarchical network topologies later), where 
failures have the most severe consequences.  

2.2.5 Automated Fault Recovery 

One of the keys to making redundancy work for fault-tolerance problems is the mechanism for switching 
to the backup. As a general rule, the faster and more transparent the transition, the better. The only 
exceptions are when an automatic switchover is not physically possible, or where security considerations 
outweigh fault-tolerance requirements.  

The previous section talked about two levels of redundancy. There was a redundant router and a redundant 
concentrator. If the first Core concentrator failed, the floor concentrators would find the second one by 
means of the Spanning Tree protocol, which is described in some detail in Chapter 3. Different hardware 
vendors have different clever ways of implementing Spanning Tree, which I will talk more about later, but 
in general it is a quick and efficient way of switching off broken links in favor of working ones. If 
something fails (a Core concentrator or a trunk, for example), then the backup link is automatically turned 
on to try to restore the path.  

Now, consider the redundancy involving the Core router. Somehow the backup router has to take over 
when the primary fails. There are generally two ways to handle this switchover. Either the backup router 
can "become" the primary somehow, or the end devices can make the switch. Since it is a router, it is 
addressed by means of an IP address (I am still talking about a pure TCP/IP network in this example, but 
the general principles are applicable to many other protocols).  

So, if the end devices (the workstations and servers) are going to make the switch, then they must 
somehow decide to use the backup router's IP address instead of the primary router's IP address. 
Conversely, if the switch is to be handled by the routers, then the backup router has to somehow adopt the 
IP address of the primary.  

The end stations may realize that the primary router is not available and change their internal routing tables 
to point to a second router. But in general this is not terribly reliable. Some types of end devices can update 
IP routing tables by taking part in a dynamic routing protocol such as Routing Information Protocol (RIP). 
This mechanism typically takes several minutes to complete.  

Another way of dealing with this situation at the end device is to specify the default gateway as the device 
itself. This method is discussed in detail in Chapter 5. It counts on a mechanism called proxy ARP to deal 
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with routing. In this case the second router would simply start responding to the requests that the first 
router previously handled.  

There are many problems with this method. One of the worst is that it generally takes several minutes for 
an end station to remove the old ARP entries from its cache before trying the second router.  

It is also possible to switch to the backup router manually by changing settings on the end devices. This is 
clearly a massive and laborious task that no organization would want to go through very often.  

Each of these options is slow. Perhaps more importantly, different types of end devices implement these 
features differently. That's a nice way of saying that it won't work at all on some devices and it will be 
terribly slow on others. This leads to a general principle for automated fault recovery.  

2.2.5.1 Always let network equipment perform network functions  

Wherever possible, the workings of the network should be hidden from the end device. There are many 
different types of end devices, all with varying levels of sophistication and complexity. It is not reasonable 
to expect some specialized, embedded system machine for data collection to have the same sophisticated 
capabilities as a high-end general-purpose server. Further, the network equipment is in a much better 
position to know what is actually happening in the network.  

But the most important reason to let the network devices handle automated fault recovery is speed. The 
real goal is to improve reliability. And the goal of reliability is best served by hiding failures from the end 
devices. After all, the best kind of disaster is one that nobody notices. If the network can "heal" around the 
problem before anything times out and without losing any data, then to the applications and users it is as if 
it never happened.  

When designing redundancy, automated fault recovery should be one of the primary considerations. 
Whatever redundancy a designer builds into the network, it should be capable of turning itself on 
automatically. So whenever considering redundancy, you should work with the fault-tolerance features of 
the equipment.  

2.2.5.2 Intrinsic versus external automation 

There are two main ways that automated fault-recovery systems can be implemented. I will generically 
refer to these as intrinsic and external. By intrinsic systems, I mean that the network equipment itself has 
software or hardware to make the transition to the backup mode. External, on the other hand, means that 
some other system must engage the alternate pathways or equipment.  

An example of an external fault-recovery system would be a network-management system that polls a 
router every few seconds to see if it is available. Then, upon discovering a problem, it will run a script to 
reconfigure another router automatically to take over the functions of the first router. This example makes 
it clear that an automated external system is better than a manual process. But it would be much more 
reliable if the secondary router itself could automatically step in as a replacement.  

There are several reasons why an intrinsic fault-tolerance system is preferable to an external one. First, it is 
not practical for a network-management system to poll a large number of devices with a high enough 
frequency to handle transitions without users noticing. Even if it is possible for one or two devices, it 
certainly isn't for more. In short, this type of scheme does not scale well.  

Second, because the network-management box is most likely somewhere else in the network, it is 
extremely difficult for it to get a detailed picture of the problem quickly. Consequently, there is a relatively 
high risk of incorrectly diagnosing the problem and taking inappropriate action to repair it. For example, 
suppose the system is intended to reconfigure a backup router to have the same IP address as a primary 
router if the network-management system is unable to contact the primary. It is possible to lose contact 
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with this router temporarily because of an unrelated problem in the network infrastructure between the 
management station and the router being monitored. Then the network-management system might step in 
and activate the backup while the primary is still present, thereby causing addressing conflicts in the 
network.  

The third reason to caution against external fault-tolerance systems is that the external system itself may be 
unreliable. I mentioned earlier that the network must be more reliable than any device on it. If this high 
level of reliability is based on this lower requirement, it may not be helping much.  

So it is best to have automatic and intrinsic fault-recovery systems. It is best if these systems are able to 
"heal" the network around faults transparently (that is, so that the users and applications don't ever know 
there was a problem). But these sound like rather theoretical ideas. Let's look briefly at some specific 
examples.  

2.2.5.3 Examples of automated fault recovery 

Consider the redundant router shown in Figure 2-2 and Figure 2-4. Suppose that one of the user 
workstations shown in the diagram is communicating with one of the servers. So packets from the 
workstation are intended for the IP address of the server. But at Layer 2 the destination address in these 
packets is the Ethernet MAC address of the primary router. This router is the default gateway for the 
VLAN. So it receives all packets with destination addresses not on the subnet associated with this VLAN, 
and it forwards them to the appropriate destination VLAN.  

Figure 2-4. A simple LAN with redundancy—network-layer view  

Now, suppose that this primary router's power supply has failed. Smoke is billowing out of the back, and it 
can no longer send or receive anything. It's gone. Meanwhile, the secondary router has been chattering 
back and forth with the primary, asking it whether it is working. It has been responding dutifully that it 
feels fine and is able to continue forwarding packets. But as soon as the power supply failed, it stopped 
responding to these queries. After a couple of repeated queries, the secondary router decides that it must 
step in to save the day. It suddenly adopts the Ethernet MAC address and the IP address of the primary on 
all of the ports that they have in common. Chapter 3 will discuss the details of how these high-availability 
protocols work.  

The workstation has been trying to talk to the server while all of this is happening. It has sent packets, but 
it hasn't seen any responses. So it has resent them. Every one of these packets has a destination Ethernet 
MAC address pointing to the primary router and a destination IP address pointing to the server. For a few 
seconds while the secondary router confirmed that it was really appropriate to take over, these packets 
were simply lost. But most applications can handle the occasional lost packet without a problem. If they 
couldn't, then ordinary Ethernet collisions would be devastating.  
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As soon as the secondary router takes over, the workstation suddenly finds that everything is working 
again. It resends any lost packets, and the conversation picks up where it left off. To the users and the 
application, if the problem was noticed at all, it just looks like there was a brief slow-down.  

The same picture is happening on the server side of this router, which has been trying to send packets to 
the workstation's IP address via the Ethernet MAC address of the router on its side. So, when the backup 
router took over, it had to adopt the primary router's addresses on all ports. When I pick up the discussion 
of these Layer 3 recovery mechanisms in Chapter 3, I talk about how to ensure that all of the router's 
functions on all of its ports are protected.  

This is how I like my fault tolerance. As I show later in this chapter, every time a redundant system 
automatically and transparently takes over in case of a problem, it drastically improves the network's 
effective reliability. But if there aren't automatic failover mechanisms, then it really just improves the 
effective repair time. There may be significant advantages to doing this, but it is fairly clear that it is better 
to build a network that almost never appears to fail than it is to build one that fails but is easy to fix. The 
first is definitely more reliable.  

2.2.5.4 Fault tolerance through load balancing 

There is another type of automatic fault tolerance in which the backup equipment is active during normal 
operation. If the primary and backup are set up for dynamic load sharing, then usually they will both pass 
traffic. So most of the time the effective throughput is almost twice what it would be in the nonredundant 
design. It is never exactly twice as good because there is always some inefficiency or lost capacity due to 
the load-sharing mechanisms. But if it is implemented effectively, the net throughput is significantly better.  

In this sort of load-balancing fault-tolerance setup, there is no real primary and backup system. Both are 
primary, and both are backup. So either can fail, and the other will just take up the slack. When this 
happens, there is an effective drop in network capacity. Users and applications may notice this change as 
slower response time. So when working with this model, one generally ensures that either path alone has 
sufficient capacity to support the entire load.  

The principal advantage to implementing fault tolerance by means of load balancing is that it provides 
excess capacity during normal operation. But another less obvious advantage is that by having the backup 
equipment active at all times, one avoids the embarrassing situation of discovering a faulty backup only 
during a failure of the primary system. A hot backup system could fail just as easily as the primary system. 
It is possible to have a backup fail without being noticed because it is not in use. Then if the primary 
system fails, there is no backup. In fact, this is worse than having no backup because it has the illusion of 
reliability, creating false confidence.  

One final advantage is that the money spent on extra capacity results in tangible benefits even during 
normal operation. This can help with the task of securing money for network infrastructure. It is much 
easier to convince people of the value of an investment if they can see a real improvement day to day. 
Arguments based on reducing probability of failure can seem a little academic and, consequently, a little 
less persuasive than showing improved performance.  

So dynamic load-balancing fault tolerance is generally preferable where it is practical. But it is not always 
practical. Remember the highway example. Suppose there are two bridges over a river and a clever set of 
access roads so that both bridges are used equally. In normal operation, this is an ideal setup. But now 
suppose that one of these bridges is damaged by bad weather. If half of the cars are still trying to use this 
bridge and one-by-one are plunging into the water, then there is a rather serious problem.  

This sounds silly with cars and roads, but it happens regularly with networks. If the load-balancing 
mechanism is not sensitive to the failure, then the network can wind up dropping every other packet. The 
result to the applications is slow and unreliable performance. It is generally worse than an outright failure 
because, in that case, people would give up on the applications and focus on fixing the broken component. 
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But if every other packet is getting lost, it may be difficult to isolate the problem. At least when it breaks 
outright, you know what you have.  

More than that, implementing the secondary system has doubled the number of components that can each 
cause a network failure. This directly reduces the reliability of the network because it necessarily increases 
the probability of failure.  

Further, if this setup was believed to improve reliability, then it has provided an illusion of safety and a 
false sense of confidence in the architecture. These are dangerous misconceptions.  

So, where dynamic load balancing for fault tolerance is not practical, it is better to have a system that 
automatically switches to backup when a set of clearly defined symptoms are observed. Preferably, this 
decision to switch to backup is made intrinsically by the equipment itself rather than by any external 
systems or processes.  

If this sort of system is employed as a fault-tolerance mechanism, it is important to monitor the utilization. 
It is common for network traffic to grow over time. So if a backup trunk is carrying some of the production 
load, it is possible to reach a point where it can no longer support the entire load in a failure situation. In 
this case the gradual buildup of traffic means that the system reaches a point where it is no longer 
redundant.  

If this occurs, traffic will usually still flow during a failure, but there will be severe congestion on these 
links. This will generally result in degraded performance throughout the network.  

2.2.5.5 Avoid manual fault-recovery systems 

It is universally true that automatic recovery processes are better than manual processes. There is far too 
much uncertainty in manual procedures. Differences in levels of experience and expertise in the network-
operations staff can mean that sometimes the manual procedures work brilliantly. Sometimes the same 
procedure can fail catastrophically because of incorrect problem determination or execution. Almost 
invariably, human-rooted procedures take longer both to start and to complete than automatic processes.  

There are only two valid reasons to use a manual recovery process. Either there is no cost-effective way to 
implement a reliable automatic system, or there are significant security concerns with an automatic system.  

In the first case, it is generally wise to re-evaluate the larger design to understand why automatic features 
of the equipment are not applicable or are too expensive. Redesigning other elements could allow 
application of automatic fault recovery. But presence of key pieces of older equipment might also make 
automation impossible. In this case it would be wise to look at upgrading to more modern network 
technology.  

The security reasons for manual processes are more difficult to discuss. But they come down to manually 
ensuring that the system taking over the primary function is legitimate. For example, a concern might be 
that an imposter device will attempt to assert itself as a new primary router, redirecting sensitive data for 
espionage reasons. Or a dial backup type system might be unwilling to accept connections from remote 
sites unless they are manually authenticated, thus ensuring that this backup is not used to gain unauthorized 
access to the network.  

Usually there are encryption and authentication schemes associated with these sorts of automated 
processes to protect against exactly these concerns. In some cases the data is considered too sensitive to 
trust with these built-in security precautions. So, in these cases a business decision has to be made about 
which is more important, reliability or security.  
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2.2.6 Isolating Single Points of Failure 

One often hears the term single point of failure tossed around. In a network of any size or complexity, it 
would be extremely unusual to find a single device that, if it failed, would break the entire network. But it 
is not unusual to find devices that control large parts of the network. A Core router will handle a great deal 
of intersegment traffic. Similarly, a switch or concentrator may support many devices. So, when I talk 
about single points of failure, I mean any network element that, if it failed, would have consequences 
affecting several things. Further, for there to be a single point of failure, there must be no backup system. If 
a single point of failure breaks, it takes out communication with a section of the network.  

Clearly single points of failure are one of the keys to network stability. It is not the only one, and too much 
effort spent on eliminating single points of failure can lead to levels of complexity that also cause 
instability. So it is important to be careful with this sort of analysis. It can't be the only consideration.  

I discuss other factors contributing to stability later, but for now I want to focus on this one. What makes 
one single point of failure more severe than another depends on the network. It will depend on how many 
users are affected, what applications are affected, and how important those users and applications are to the 
organization at that specific point in history. Losing contact with an application that is only used one day 
per year doesn't matter much unless it happens on that one day. While it's certainly not true that everybody 
in an organization is of equal value to the organization (or they'd all make the same amount of money), the 
number of people affected by a failure is clearly an important factor.  

In general it isn't possible to say definitively which failure points are the most important. And it isn't 
always practical to eliminate them all. In Figure 2-2, two single points of failure at the Core of the network 
were eliminated by adding redundant equipment. But the concentrators on each floor were not made 
redundant. If one of these concentrators fails, the network will still lose connection to all of the users on 
that floor.  

The simplest way to qualitatively analyze stability is to draw out a complete picture of the network and 
look at every network device one by one. In the previous section, both the physical- and network-layer 
diagrams were necessary to see all of the key points in the network, and the same is true here. In the 
preceding simple example, the router's critical function in the network was not immediately obvious from 
the physical-layer diagram. In a more complicated network the dependencies could be even less clear.  

Look at each box in both of your drawings and ask what happens if this device fails. You may want to look 
at both drawings at the same time, referring back and forth between them. If the answer is that another 
device takes over for it, then you can forget about this device for the time being and move on to the next 
device. Similarly, if the device you are looking at exists purely as a standby, then you can skip it. What 
remains at the end are all of the places where something can go seriously wrong. In the process, remember 
to include the connections themselves. Fiber optic cable can go "cloudy," and any cable can be accidentally 
cut. Consider, for example, what would happen if somebody accidentally cut through an entire fiber 
conduit. It happens. Many network designers make a point of running their redundant connections through 
separate conduits.  

For each of the remaining elements, it is useful to ask qualitatively how serious a problem it is if it fails. 
What is affected? How many users are unable to do their jobs? In many cases you will find that some 
people are unable to run some applications. How important is this to the organization? Rate these problem 
spots.  

Doing this, it should quickly become apparent where the most glaring trouble spots are in your network. In 
effect you are doing the calculations of the next section "by eye." This tends to assume that the Mean Time 
Between Failure (MTBF) values for all network elements are similar. That may not be accurate if you are 
comparing a small workgroup hub to a large backbone switch. But, at the same time, chances are that the 
backbone switch is a much more critical device, in that it probably supports more traffic and more users.  
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As was shown in the previous section, the more of these key failure zones that can be eliminated, the better 
the overall stability of the network.  

Consider an example network. Figure 2-5 and Figure 2-6 show the Layer 1/2 and Layer 3/4 views of the 
same fictitious network. There are many problems with this network, making it a good example for 
analysis. But clearly there has been some effort at improving the stability. The engineers who run this 
imaginary network have twinned the switches carrying the router-to-router VLANs, "Core A" and "Core 
B." And they have built all of the user VLANs, the server VLAN, and the WAN with redundant 
connections as well. But there are still several serious problems.  

Figure 2-5. Physical-layer view of a rather poor LAN 
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Figure 2-6. Network-layer view of a rather poor LAN 

Look at the "touchdown"[2] Ethernet segment in Figure 2-6. Clearly there is a single point of failure in each 
of the two firewalls. But perhaps this company's Internet usage and the connections to its partner firms are 
considered of lower importance to other Core parts of the network. So this may be all right. But they have 
made an effort to make the connections to the touchdown segment redundant, attaching it to both Router A 
and Router B.  

[2] This is a relatively common technique for connecting external networks into a LAN. It will be 
covered in more detail in Chapter 3.

Look at the same part of the network in Figure 2-5. The touchdown segment is carried entirely on one 
Ethernet hub. So the probability of failure for their Internet access, for example, is actually higher than the 
probability of failure for the firewall.  

At the Core of the network, care has been taken to include two main switches, Core switch A and Core 
switch B. But then both of the main application servers were connected to switch B. This means that much 
of the advantage of redundancy has been lost.  

Now skip over to the right-hand sides of these diagrams. Figure 2-6 shows that the bridge that 
interconnects all of the Token Rings is a single point of failure. But there are two connections for Routers 
D and E. Now look at Figure 2-5.

Making two router connections seems to have been an almost wasted effort. After leaving the routers, all 
the traffic passes through a single Token Ring MAU, through a single fiber transceiver, through a single 
pair of fiber strands, through another single fiber transceiver, and then to a single bridge. These are all 
single points of failure. Connecting several single points of failure together in serial allows the failure of 
any one device to break the entire chain. So clearly the probability of failure is significantly higher than it 
has to be.  
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If you are dealing with a high-availability application where certain outages would be serious disasters, 
then the process of finding danger spots becomes more difficult. In these cases, it is best to break down the 
network into zones and deal with them separately. I discuss how to build network zones in the discussion 
of topology in Chapter 3. This concept makes isolating your problems much easier. The idea is to have a 
few well-controlled points where one network zone touches the next one. Then, as long as there is fault 
tolerance in the interconnections, you can analyze the zones more or less in isolation.  

To deal with multiple failure situations, you can follow a strategy similar to the one described in the 
previous case, which was looking only for single points of failure. Except that this time it will be necessary 
to make several passes through. On the first pass, you will look at every network element and decide what 
will happen if it fails. In a high-availability network, the answer to each of these questions should be that 
there is a redundant system to take over for the failed element automatically.  

Next you will systematically look at each device and assume that it has already failed. Then go through the 
remainder of the network and analyze what would happen for each element if it failed in the absence of 
that first failed element. This process sounds time consuming, but it is not quite as bad as it sounds.  

Suppose there are 100 elements to consider in this zone. Remember to include all connections as elements 
that can fail as well, so the number will usually be fairly high. The initial analysis has already established 
that any one element can fail in isolation without breaking the network. Now start by looking at element 
number 1, and supposing it has failed, decide what happens if element number 2 fails. And continue this 
process through to element 100. On the next pass you start by assuming that element number 2 has failed. 
This time you don't need to consider what happens if element number 1 fails, because you did that in the 
last pass. So each pass through the list is one shorter than the last one.  

In practice, this sort of qualitative analysis usually takes many hours to complete. But it is a worthwhile 
exercise, as it will uncover many hidden problems if done carefully. Most of the time it will be obvious 
that there is no problem with the second element failing, since it is backed up by another element unrelated 
to the first failure. In fact, it is often worth doing this exercise in a less mission-critical network because it 
will show how vulnerabilities are connected.  

But, as I mentioned earlier in passing, just eliminating the single points of failure does not guarantee a 
stable network. The sheer complexity of the result can itself be a source of instability for several reasons. 
First and most important, the more complex the network is, the greater the chance that a human will 
misunderstand it and inadvertently break it. But also, the more complex a network, the more paths there 
will be to get from point A to point B. As a result, the automated fault-recovery systems and automated 
routing systems will have a considerably harder time in finding the best path. Consequently, they will tend 
to take much longer in converging and may try to recalculate the paths through the network repeatedly. 
The result is a frustratingly slow and unreliable network despite the absence of single points of failure.  

2.2.7 Predicting Your Most Common Failures 

I have talked about implementing redundancy where it is most needed. But so far I have only given general 
comments about where that might be. I've mentioned duplicating systems "in the Core" and at "single 
points of failure," but the methods have been mostly qualitative and approximate. As a network designer, 
you need to know where to look for problems and where to spend money on solutions. This requires more 
rigorous techniques.  

There is an analytical technique based on MTBF that provides a relatively precise way of numerically 
estimating probabilities of failure for not only individual components in a network, but also for whole 
sections of networks. I will demonstrate this technique. I will also discuss some more qualitative methods 
for finding potential problem spots.  
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2.2.7.1 Mean time between failures 

One of the most important numbers your equipment manufacturer quotes in the specification sheet is the 
Mean Time Between Failures (MTBF). But this value is frequently misunderstood and misused. So I will 
discuss the concept a little bit before going on.  

This number just represents a statistical likelihood. It means that half (because it's a statistical "mean") of 
all equipment of this type will no longer be functioning after this length of time. It does not mean that 
sudden and catastrophic failure will occur at the stroke of midnight. Failure can happen at any time. But 
just giving an average without saying anything about the shape of the curve makes it difficult to work with.  

Figure 2-7 shows some possible versions of what the curve might look like. These curves plot the number 
of device failures as a function of time. There are N total devices, so at time MTBF, there are N/2 devices 
remaining.  

The thick solid line represents a very ideal world where almost all of the gear survives right up until 
moments before the MTBF. Of course, the price for this is that a large number of devices then all fail at the 
same time.  

Figure 2-7. Mean time between failures, as it relates to probability of failure per unit of 
time 

The dashed line, on the other hand, shows a sort of worst-case curve, in which the same number of devices 
fail every day. This is probably not a realistic approximation either because there are a lot of devices that 
either don't work when you open the box or fail soon after. Then age will take a toll later as gear gradually 
burns out through heavy use. The dotted curve represents a more realistic curve.  

But the interesting thing is that, when you look at these curves, it's clear that the dashed line isn't such a 
bad approximation after all. It's going to be close. And up until the MTBF time, it will tend to overestimate 
the probability of failure. It's always a good idea to overestimate when it comes to probability of failure, 
because the worst you can do is end up with an unusually stable and reliable network. It's also going to be 
the easiest to do calculations with.  

So the dashed line is the one I use for finding the most common failure modes. The slope of this line gives 
the failure rate, the number of failures per unit time, and because it is a straight line, the approximation 
assumes a constant failure rate. A little arithmetic shows that the line rises by N/2 in a distance of MTBF, 
so the slope is N/(2 x MTBF). So, if the MTBF is 10 years, then you will expect to see 5% of your devices 
fail every year, on average. If the MTBF is 20 years, then the value drops to 2.5%. Most network-
equipment manufacturers quote an MTBF in this range.  

If you had only one device, then a 5% per year failure rate is probably quite acceptable. You may not care 
about redundancy. But this book is concerned with large-scale networks, networks with hundreds or 
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thousands of devices. At 5% per year, out of a network of 1000 devices, you will expect to see 50 failures 
per year. That's almost one per week.  

The important point to draw from this is that the more devices you have, the greater the chances are that 
one of them will fail. So, the more single points of failure in the network, the greater the probability of a 
catastrophic failure.  

2.2.7.2 Multiple simultaneous failures 

So the MTBF gives, in effect, a probability of failure per unit time. To find the probability for 
simultaneous failures, you need a way of combining these probabilities. I have already described the 
method of simply adding probabilities to find the aggregate failure rate. But this is a different problem. The 
important question here is the probability of exactly two or three or four simultaneous failures.  

The naïve approach to combining probabilities would be to say that the probability of two simultaneous 
failures is twice the probability of one. This would be close to true for very small values, but not quite 
right. To see this, imagine a coin toss experiment. The probability of heads is 50%. The probability of 
flipping the coin 3 times and getting 2 heads is not 100%. And it certainly isn't equal to the probability of 
flipping the coin 100 times and getting 2 heads.  

Now suppose that it is an unfair coin that has a probability P of coming up heads. In fact, it's an extremely 
unfair coin. P is going to be less than 1%. Later I adapt this simple probability to be a probability of failure 
per unit time, as it is needed for combining these MTBF values. But first I need the probability, kPn, of 
tossing the coin n times and getting heads k times. The derivation of this formula is shown in Appendix A.

For network MTBF, the interesting values are related to number of failures per unit time. If the MTBF 
value is M, then you can expect N/(2 x M) failures out of a set of N per unit time. If N = 1, then this is the 
probability per unit time of a particular unit failing. But you can't just plug this into the formula for kPn.
Why not? Look at the formula. It contains a factor that looks like (1-P)n-k. The number 1 has no units. So 
the number P can't have units either, or the formula is adding apples to oranges.  

So it is necessary to convert this probability per unit time to a net probability. The easiest way to do this is 
to decide on a relevant time unit and just multiply it. This time unit shouldn't be too short or too long. The 
probability of having two failures in the same microsecond is very small indeed. And the probability of 
having two failures in the same year is going to be relatively large, but it is quite likely that the first 
problem has been fixed before the second one occurs.  

This is the key to finding the right length of time. How long does it take, on average, to fix the problem? 
Note that this is not the length of time for the backup to kick in, because the result is going to show how 
appropriate that backup is. If the backup fails before the primary unit has been fixed, then that's still a 
multiple-failure situation. So the best unit is the length of time required to fix the primary fault.  

For this I like to use one day. Sometimes it takes longer than one day to fix a major problem; sometimes a 
problem can be fixed in a few hours. But a one-day period is reasonable because, in most networks, a day 
with more than one major-device failure is an exceedingly busy day. And when there are multiple device 
failures in one day, there is usually a lot of reporting to senior management required. In any case, it 
generally takes several hours to repair or replace a failed device, so a one-day period for the time unit 
seems appropriate. At worst, it will overestimate the failure rates slightly, and it's always better to 
overestimate.  

I will denote thie MTBF per-day value by the letter M. So the probability of one particular device failing in 
a given day is P = 1/2M.
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So, substituting into the probability formula gives: 

where m = M/1 day. 

This formula gives the probability that, in a network of n devices, each with an MTBF value of M, there 
will be k failures in one day. Figure 2-8 is a graph of the probabilities for some representative values. 
Notice that for most of the values plotted, it is quite rare to have any failures at all. But for a network of 
1000 nodes, each with a 100,000-hour MTBF, there will be failures on about 1 day in 10. If that same 
network had 10,000 nodes in it, the analysis predicts that only 30% of all days will have no failures. 36% 
of days would have some device fail, and about 1 day in 5 would see 2 or more failures. Even the smaller 
network with only 1000 nodes would have days with 2 failures 0.6% of the time. That amounts to just over 
2 days per year. So it will happen.  

Figure 2-8. Probability of failure 

Generally you want to work out these probabilities for your whole network. You should plan your network 
for a level of redundancy that the business can handle. Personally, I don't like to deal with multiple failures 
in a single day, so I plan my networks so that these bad days are expected much less than once every year. 
But you need to determine what your business and your network-management team can handle.  

2.2.7.3 Combining MTBF values 

In general, in a multivendor network, there will be many different MTBF values. In fact, many vendors 
quote distinct MTBF values for every component of a modular device. They do this because how you 
combine these values to find the number relevant to your network depends greatly on how you decide to 
use the device.  

This section will describe how to combine the values. I start by looking at how to combine the MTBF 
values for a single device and then move on to how to combine these values for various elements making 
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up a network. A common technique for this sort of estimation says that the chain is as strong as its weakest 
link. But this is not actually a very good rule, as can be seen with a simple example.  

Suppose you have a generic device. Maybe it's a router. Maybe it's a switch of some sort. It doesn't really 
matter for this example. Table 2-1 shows some fairly typical made-up values for the MTBFs of these 
various components.  

Table 2-1. Typical component MTBF values  
Component Hours 
Chassis 2,000,000 
Power supply 100,000 
Processor 200,000 
Network card 150,000 

It is extremely rare for the chassis to fail. If it does fail, it is usually due to damage such as bent pins from 
swapping cards too aggressively or heat damage to the backplane. Power supplies, however, are much less 
reliable. Typically the power supply is the most likely component failure in any piece of electronic 
equipment. See Table 2-2 for failure probabilities of typical components.  

Table 2-2. Typical component-failure probabilities  
Component Probability 
Chassis 0.0006% 
Power supply 0.0120% 
Processor 0.0060% 
Network card 0.0080% 

So, this generic device has a chassis, two power supplies (for redundancy), a processor module, and two 
network modules. There is no redundancy for the processor or for the network modules. What is the 
aggregate MTBF for the device? This could involve any failure to any component. But the twist is that, if 
one of the power supplies fails, the other will take over for it.  

First these MTBF values have to be converted to probabilities of failure per day. Recall that the formula 
for this is just 1/(2m), where m = MTBF/1 day.  

First combine the probabilities for the two power supplies failing simultaneously. That would be two 
simultaneous failures out of a set of two. This is just 2P2 = P2 in the joint probability formula. The square 
of 0.0120% is a very small number, 1.44 x 10-6%. So clearly the decision to use redundant power supplies 
has significantly improved the weakest link in this system.  

Any of the remaining components can fail independently and count as a device failure, so you can just add 
these probabilities to get the net probability.  

You can now convert this back to an aggregate MTBF for the device. Since P = 1/(2m), m = 1/(2P). So, in 
this case, m = 53,100 hours.  

As you can see, the weakest-link rule is quite wrong. It would have said that you could neglect the power 
supplies because they are redundant (and it would have been right in saying that). Then it would have 
picked out the network card's 150,000-hour MTBF value.  
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The trouble with this is that it completely neglects the fact that there are several elements here, any of 
which can fail. The chances of getting into a car accident are exceedingly small. Most people only have a 
few in their entire lives. And yet, in a large city there are accidents every day. It's the same with networks. 
The more components you have, the more likely something will fail.  

To take this example slightly further, let's try to understand why many hardware vendors offer the 
capability of redundant processor modules. In this case the net probability is:  

which corresponds to an aggregate MTBF for the device of 72,300 hours. So, duplicating the processor 
module has improved the net MTBF for the device by 36%.  

There is one final example to look at before moving on to calculating MTBF values for an entire network. 
Often, particularly for power supplies, devices employ what is called "N+1" redundancy. This means that 
there is one extra power supply in the box. Suppose the device needs only 3 power supplies to work. Then 
you might install a fourth power supply for redundancy. For a complete failure, you need to lose 2 of the 4 
power supplies. To calculate the probability for this, use the formula derived in the previous section:  

with k = 2 and n = 4. 

Recall that the single power-supply failure probability was 0.0120%. For two fully redundant power 
supplies the probability is (0.0120%)2 = 0.00000144%. So it becomes clear that N+1 redundancy in these 
small numbers provides a large benefit and is a cost-effective strategy.  

The net probability of failure for the entire device (with dual processors, as in the previous example) would 
become:  

which is effectively the same as the previous example with full redundancy for the power supplies.  

As a quick aside, consider how N+1 redundancy works for larger values of N. How much can the situation 
be improved by adding one extra hot standby? In other words, I want to compare the probability for one 
failure out of N with the probability for two simultaneous failures:  
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and: 

So 2Pn / 1Pn ~ n/4m. This means that as long as N is much smaller than 4 times the MTBF in days, the 
approximation should be reasonable. But, for example, if the MTBF were 100 days, then it would be a very 
bad idea to use N+1 redundancy for 25 components. In fact, it would probably be wise to look at N+2 or 
better redundancy long before this point.  

The same prescription can be used for calculating the probability of failure for an entire network. Consider 
the network shown in Figure 2-1 and Figure 2-2. How much has the network's net MTBF improved by 
making the Core redundant? Note, however, that there are failures in this more general case that do not 
wipe out the entire network. For example, if any of the floor concentrators fails, it will affect only the users 
on that floor. However, it is still useful to do this sort of calculation because it gives an impression of how 
useful it has been to add the redundancy.  

Calculating the MTBF for only the Core could well miss the possibility that the worst problems do not lie 
in the Core. In any case, it is worthwhile understanding how often to expect problems in the entire 
network.  

Table 2-3 presents some representative fiction about the MTBF values for the individual components in the 
network. Note that I have included the fiber runs between the floors, but I assume that the fiber 
transceivers are built into the concentrators, and are included in the MTBF for the device. Also note that 
for simplicity, I use the same model of device for the floor and Core concentrators. This would probably 
not be true in general.  

Table 2-3. Example component-failure probabilities  
Component Hours Probability 
Concentrator 150,000 0.0080% 
Fiber connection 1,000,000 0.0012% 
Router 200,000 0.0060% 

Adding up the net probability for the network without redundancy gives:  

So the net MTBF is 28,846 hours. And, with redundancy: 

which gives a net MTBF of 38,460 hours. This is a 33% improvement in MTBF, or a 25% improvement in 
Pnet. So implementing redundancy has helped significantly. Looking specifically at the terms, one can 
easily see that the terms for the Core are now very small. The bulk of the failures are expected to occur on 
the floor concentrators now. Interestingly, this was true even before introducing the Core redundancy. But, 
clearly, the redundancy in the Core has radically improved things overall.  

This way of looking at reliability provides another particularly useful tool: it shows where to focus efforts 
in order to improve overall network reliability further.  
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It could be that there are only 3 users on the first floor and 50 on the second. In some sense, the failure of 
the second floor is more important. So it may be useful to produce a weighted failure rate per user. To do 
this, look at each device and how many users are affected if it fails. Then, in the calculation of Pnet,
multiply the number of users by the probability. When you do this, the number is no longer a probability, 
and you can no longer convert it back to an MTBF. You can only use it as a relative tool for evaluating 
how useful the change you propose to make will be. See Table 2-4 for user failure probabilities for sample 
components.  

Table 2-4. Example component-failure probabilities by user  
Component Hours Probability Users 
First floor concentrator 150,000 0.0080% 3 
First floor fiber connection 1,000,000 0.0012% 3 
Second floor concentrator 150,000 0.0080% 50 
Fiber connection 1,000,000 0.0012% 50 
Third floor concentrator 150,000 0.0080% 17 
Third floor fiber connection 1,000,000 0.0012% 17 
Backbone concentrator 150,000 0.0080% 70 
Router 200,000 0.0060% 70 

So adding up the weighted probability for the nonredundant case gives: 

I have changed the symbol from Pnet to Wnet. This is to remind you that this is not a real probability 
anymore. It is just a tool for comparison.  

Now let's look at the redundant case: 

This shows that the changes have improved the per-user reliability by better than a factor of 2. It also 
shows that doing any better than this will mean doing something for the people on the second floor, 
because the terms corresponding to them make up more than 2/3 of the total value of Wnet.

But perhaps network engineering is on the first floor and marketing or bond trading is on the second. In 
this case, losing the 50 users on the second floor could be a net benefit to the company, but losing the 3 
network engineers would be a disaster. If this is the case, you may want to use another weighting scheme, 
based on the relative importance of the users affected. Remember, though, that these weighted values are 
no longer probabilities. Weighting the different terms destroys what mathematicians call normalization. 
This means that these W values will not sum to 1. So you can't use the numbers where you would use 
probabilities, for example, in calculating MTBF.  

2.3 Failure Modes 

Until I have talked about the various standard network topologies, it will be difficult to have an in-depth 
discussion of failure modes. But I can still talk about failure modes in general. Obviously, the worst failure 
mode is a single point of failure for the entire network. But, as the previous section showed, the overall 
stability of the network may be governed by less obvious factors.  
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At the same time, this proves that any place where you can implement redundancy in a network drastically 
improves the stability for that component. In theory it would be nice to be able to do detailed calculations 
as earlier. Then you could look for the points where the weighted failure rates are highest. But in a large 
network this is often not practical. There may be thousands of components to consider. So this is where the 
simpler qualitative method described earlier is useful.  

What the quantitative analysis of the last section shows, though, is that it is a serious problem every time 
you have a failure that can affect a large number of users. Even worse, it showed that the probability of 
failure grows quickly with each additional possible point of failure. The qualitative analysis just finds the 
problem spots; it doesn't make it clear what the consequences are. Having one single point of failure in 
your network that affects a large number of users is not always such a serious problem, particularly if that 
failure never happens. But the more points like this that you have, the more likely it is that these failures 
will happen.  

Suppose you have a network with 100,000 elements that can fail. This may sound like a high number, but 
in practice it isn't out of the ordinary for a large-scale LAN. Remember that the word "element" includes 
every hub, switch, cable, fiber, card in every network device, and even your patch panels.  

If the average MTBF for these 100,000 elements is 100,000 hours (which is probably a little low), then on 
net you can expect about one element per day to break. Even if there is redundancy, the elements will still 
break and need to be replaced: it just won't affect production traffic. Most of these failures will affect very 
small numbers of users. But the point is that, the larger your network, the more you need to understand 
what can go wrong, and the more you will need to design around these failure modes.  

So far I have only discussed so-called hard failures. In fact, most LAN problems aren't the result of hard 
failures. There are many kinds of failures that happen even when the network hardware is still operating. 
These problems fall into a few general categories: congestion, traffic anomalies, software problems, and 
human error.  

2.3.1 Congestion  

Congestion is the most obvious sort of soft problem on a network. Everybody has experienced a situation 
where the network simply cannot handle all of the traffic that is passing through it. Some packets are 
dropped; others are delayed.  

In dealing with congestion, it is important to understand your traffic flows. In Figure 2-5, user traffic from 
the various user floors flows primarily to the Internet, the application servers, and the mainframe. But there 
is very little floor-to-floor traffic. This allows you to look for the bottlenecks where there might not be 
enough bandwidth. In this example all traffic flows through the two Core VLANs. Is there sufficient 
capacity there to deal with all of the traffic?  

Congestion is what happens when traffic hits a bottleneck in the network. If there is simply not enough 
downstream capacity to carry all of the incoming traffic, then some of it has to be dropped. But before 
dropping packets, most network equipment will attempt to buffer them.  

Buffering basically means that the packets are temporarily stored in the network device's memory in the 
hopes that the incoming burst will relent. The usual example is a bucket with a hole in the bottom. If you 
pour water into the bucket, gradually it will drain out through the bottom.  

Suppose first that the amount you pour in is less that the total capacity of the bucket. In this case the water 
will gradually drain out. The bucket has changed a sudden burst of water into a gradual trickle.  

On the other hand, you could just continue pouring water until the bucket overflows. An overflow of data 
means that packets have to be dropped, there simply isn't enough memory to keep them all. The solution 
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may be just to get a bigger bucket. But if the incoming stream is relentless, then it doesn't matter how big 
the bucket is: it will never be able to drain in a controlled manner.  

This is similar to what happens in a network when too much data hits a bottleneck. If the burst is short, the 
chances are good that the network will be able to cope with it easily. But a relentless flow that exceeds the 
capacity of a network link means that a lot of packets simply can't be delivered and have to be dropped.  

Some network protocols deal well with congestion. Some connection-based protocols such as TCP have 
the ability to detect that some packets have been dropped. This allows them to back off and send at a 
slower rate, usually settling just below the peak capacity of the network. But other protocols cannot detect 
congestion, and instead they wind up losing data.  

Lost data can actually make the congestion problem worse. In many applications, if the data is not received 
within a specified time period, or if only some of it is received, then it will be sent again. This is clearly a 
good idea if you are the application. But if you are the network, it has the effect of making a bad problem 
worse.  

Ultimately, if data is just not getting through at all for some applications, they can time out. This means 
that the applications decide that they can't get their jobs done, so they disconnect themselves. If many 
applications disconnect, it can allow the congestion to dissipate somewhat. But often the applications or 
their users will instead attempt to reconnect. And again, this connection-setup traffic can add to the 
congestion problem.  

Congestion is typically encountered on a network anywhere that connections from many devices or groups 
of devices converge. So, the first common place to see congestion is on the local Ethernet or Token Ring 
segment. If many devices all want to use the network at the same time, then the Data Link protocol 
provides a method (collisions for Ethernet, token passing for Token Ring) for regulating traffic. This 
means that some devices will have to wait.  

Worse congestion problems can occur at points in the network where traffic from many segments 
converges. In LANs this happens primarily at trunks. In networks that include some WAN elements, it is 
common to see congestion at the point where LAN traffic reaches the WAN.  

The ability to control congestion through the Core of a large-scale LAN is one of the most important 
features of a good design. This requires a combination of careful monitoring and a scalable design that 
makes it easy to move or expand bottlenecks. In many networks congestion problems are also mitigated 
using a traffic-prioritization system. This issue is discussed in detail in Chapter 10.

Unlike several of the other design decisions I have discussed, congestion is an ongoing issue. At some 
point there will be a new application, a new server. An old one will be removed. People will change the 
way they use existing services, and that will change the traffic patterns as well. So there must be ongoing 
performance monitoring to ensure that performance problems don't creep up on a network.  

2.3.2 Traffic Anomalies 

By traffic anomalies, I mean that otherwise legitimate packets on the network have somehow caused a 
problem. This is distinct from congestion, which refers only to loading problems. This category includes 
broadcast storms and any time a packet has confused a piece of equipment. Another example is a server 
sending out an erroneous dynamic routing packet or ICMP packet that caused a router to become confused 
about the topology of the network. These issues will be discussed more in Chapter 6.

But perhaps the most common and severe examples are where automatic fault-recovery systems, such as 
Spanning Tree at Layer 2, or dynamic routing protocols, such as Open Shorted Path First (OSPF) at Layer 
3, become confused. This is usually referred to as a convergence problem. The result can be routing loops, 
or just slow unreliable response across the network.  
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The most common reason for convergence problems at either Layer 2 or 3 is complexity. Try to make it 
easy for these processes by understanding what they do. The more paths available, the harder it becomes to 
find the best path. The more neighbors, the worse the problem of finding the best one to pass a particular 
packet to.  

A broadcast storm is a special type of problem. It gets mentioned frequently, and a lot of switch 
manufacturers include features for limiting broadcast storms. But what is it really? Well, a broadcast 
packet is a perfectly legitimate type of packet that is sent to every other station on the same network 
segment or VLAN. The most common example of a broadcast is an IP ARP packet. This is where a station 
knows the IP address of a device, but not the MAC address. To address the Layer 2 destination part of the 
frame properly, it needs the MAC address. So it sends out a request to everybody on the local network 
asking for this information, and the station that owns (or is responsible for forwarding) this IP address 
responds.  

But there are many other types of broadcasts. A storm usually happens when one device sends out a 
broadcast and another tries to be helpful by forwarding that broadcast back onto the network. If several 
devices all behave the same way, then they see the rebroadcasts from one another and rebroadcast them 
again. The LAN is instantly choked with broadcasts.  

The way a switch attempts to resolve this sort of problem usually involves a simple mechanism of counting 
the number of broadcast packets per second. If it exceeds a certain threshold, it starts throwing them away 
so that they can't choke off the network. But clearly the problem hasn't gone away. The broadcast storm is 
just being kept in check until it dies down on its own.  

Containment is the key to traffic anomalies. Broadcast storms cannot cross out of a broadcast domain 
(which usually means a VLAN, but not necessarily). OSPF convergence problems can be dealt with most 
easily by making the areas small and simple in structure. Similarly, Spanning Tree problems are generally 
caused by too many interconnections. So in all cases, keeping the region of interest small and simple helps 
enormously.  

This doesn't mean that the network has to be small, but it does support the hierarchical design models I 
discuss later in this book.  

2.3.3 Software Problems 

Software problems are a polite term for bugs in the network equipment. It happens. Sometimes a router or 
switch will simply hang, or sometimes it will start to misbehave in some peculiar way.  

Routers and switches are extremely complex specialized computers. So software bugs are a fact of life. But 
most network equipment is remarkably bug-free. It is not uncommon to encounter a bug or two during 
initial implementation phases of a network. But a network that avoids using too many novel features and 
relies on mature products from reputable vendors is generally going to see very few bugs.  

Design flaws are much more common than bugs. Bugs that affect Core pieces of code, like standard IP 
routing or OSPF, are rare in mature products. More rare still are bugs that cannot be worked around by 
means of simple design changes.  

2.3.4 Human Error 

Unfortunately, the most common sort of network problem is where somebody changed something, either 
deliberately or accidentally, and it had unforeseen consequences. There are so many different ways to 
shoot oneself in the foot that I won't bother to detail them here. Even if I did, no doubt tomorrow we'd all 
go out and find new ones.  



40

There are design decisions that can limit human error. The most important of these is to work on 
simplicity. The easier it is to understand how the network is supposed to work, the less likely that 
somebody will misunderstand it. Specifically, it is best to make the design in simple, easily understood 
building blocks. Wherever possible, these blocks should be as similar as possible. One of the best features 
of the otherwise poor design shown in Figure 2-5 is that it has an identical setup for all of the user floors. 
Therefore, a new technician doesn't need to remember special tricks for each area; they are all the same.  

The best rule of thumb in deciding whether a design is sufficiently simple is to imagine that something has 
failed in the middle of the night and somebody is on the phone in a panic wanting answers about how to fix 
it. If most of the network is designed using a few simple, easily remembered rules, the chances are good 
that you'll be able to figure out what they need to know. You want to be able to do it without having to race 
to the site to find your spreadsheets and drawings.  
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Chapter 3. Design Types 
A large-scale network design is composed of several common building blocks. Every LAN, of whatever 
size, has to have an Access system by which the end stations connect to the network. There are several 
inexpensive options for LAN connections, such as Ethernet and Token Ring. As a philosophical principle, 
the network should be built using basic commonly available technology. The design shouldn't have to 
reinvent any wheels just to allow the machines to talk to one another.  

So, just as basic commonly available technologies exist for connecting end stations to LANs, there are 
common methods for interconnecting LAN segments. Once again, these technologies and methods should 
involve the most inexpensive yet reliable methods. But in this stage of interconnecting, aggregating, and 
distributing traffic between these various LAN segments, the designer runs into some serious hidden 
problems.  

There may be thousands of ways to connect things, but most of these methods result in some kind of 
reliability problems. This book intends to establish general methodologies for designing networks so that 
designers can avoid these sorts of problems.  

3.1 Basic Topologies 

There are four basic topologies used to interconnect devices: bus, ring, star, and mesh. In a large-scale 
LAN design, the ultimate goal includes a number of these segments. Figure 3-1 to Figure 3-4 show these 
four basic topologies.  

Figure 3-1. Bus topology 

Figure 3-2. Ring topology 

3.1.1 Basic Concepts 

Before getting into the solutions, I want to spend a little bit of time making sure that the potential problems 
are clear. What are the real goals of the network design? What are the options? Ultimately, I want to help 
point you toward general approaches that can save a lot of worry down the road.  



42

The main goal is to build an infrastructure that allows end devices to communicate with one another. That 
sounds simple enough. But what is an end device? I don't include network devices when I talk about end 
devices. This fact sounds pedantic, but it's important. A network device is one that cares about the lower 
layers of the protocol stack. It exists to facilitate the flow of traffic between end devices. End devices are 
the devices that care about Layer 7. End devices run applications, request data from one another, present 
information to humans, or control machinery; most importantly, end devices should never perform network 
functions.  

Why do I make this point? I believe that a number of common practices on networks are dangerous or at 
least misguided, and they should be stopped. Here are some examples of cases in which end devices are 
permitted to perform network functions (such as bridging or routing) at the expense of network stability:  

Figure 3-3. Star topology 

Figure 3-4. Mesh topology 

• File servers with two LAN NIC cards, configured to bridge between the two interfaces  
• Application servers with one or more WAN cards in them that allow bridging or routing  
• Servers with any number of NIC cards taking part in dynamic routing protocols such as RIP or 

OSPF  

In each of these cases (which I am quite sure will get me in trouble with certain vendors), an end device is 
permitted to perform network functions. No file or application server should ever act as a router or a 
bridge. If you want a router or a bridge, buy a real one and put it in. Note that I am not talking about 
devices that just happen to have a PC form factor or use a standard PC CPU. For example, a dedicated 
firewall device with a specialized secure operating system is a network device. As long as you refrain from 
using it as a workstation or a server, you're fine. But in no case should a file or application server act as a 
bridge or a router.  

The concern is that any device that is not dedicated to performing network functions should not be 
permitted. Furthermore, with the exception of highly specialized security devices such as firewalls and 
similar gateways, using any general-purpose computing device in a network function is a bad idea. So, 
even if you only use the Linux PC as a router, and that's the only thing it does, it is still going to be less 
reliable and probably more expensive than using a device designed from the outset as a router. I don't like 
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home-rolled network equipment. Real routers and switches are not very expensive, and trying to build your 
own is not going to save you any money in the long run, no matter how good of a programmer you are. At 
some point in the distant future, somebody else will inevitably have to deal with it and will fail to 
understand the unique system.  

The same thing is true in reverse. Network devices should not perform Layer 7 functions. No router should 
run an email server. No firewall should be a web or email server. Sometimes you will run applications on 
your network devices, but they are never Layer 7 functions. For example, running a DHCP server from a 
router might be expedient. Or, having a web server on a router is often worthwhile if it is used only for the 
purposes of managing the router itself in performing its network functions. Having a Network Time 
Protocol (NTP) server running on your network equipment, with all other devices synchronizing their 
clocks to "the network" is also useful. But these are all very specific exceptions, and none of them are 
really user applications.  

Failing to separate network functions from application functions creates so many problems that it is hard to 
list them. Here are a few of the most compelling:  

• Generally, network engineers are not properly trained to deal with application issues. In most 
organizations, there are staff members who are better equipped to manage applications and 
servers. These people can't do their jobs properly if the network staff controls the resources. For 
example, if the corporate web site is housed inside of the corporate firewall, how effectively will 
the web mistress work with it? What if a bug is in the web server? Upgrading code could mean 
taking the whole Internet connection offline.  

The same situation is true of devices that include email functions such as POP servers with 
network functions. Such devices, if also central components of the network, make maintenance on 
the email server extremely difficult.  

• Running applications is hard work. Running network functions is also hard work. Doing both at 
the same time often creates serious memory and CPU resource problems. These problems tend to 
occur during the most busy peak periods of the day, thereby breaking not just the application, but 
the entire network when it is most needed.  

• I've already indicated that the network must be more reliable than any end device. If the network is 
an end device, then it presents an inherent reliability problem.  

• If an end device takes part in a dynamic routing protocol such as RIP or OSPF, and it is either 
misconfigured or suffers a software bug, then that one end device can disrupt traffic for the entire 
network. This is why no end device should ever be permitted to take part in these protocols. There 
are much more reliable ways of achieving redundancy, which I will discuss throughout this book.  

• Finally, it is common for file servers with multiple NICs to be configured for bridging. Having 
multiple NICs can be very useful—it might allow the server to exist simultaneously on several 
segments, or it might allow the server to handle significantly more traffic. But if these NICs are 
also permitted to bridge or route traffic between them, they can easily create network loops that 
disrupt traffic flows. These bridging and routing functions should always be disabled on servers. 
Consult your server vendor for information on how to ensure that these functions are disabled.  

With respect to running dynamic routing protocols on an end device, a device might passively listen to a 
routing protocol (particularly RIP) but not send out routing information. This situation is certainly less 
dangerous than allowing the end device to affect network routing tables, but it is still not a good idea; in a 
well-designed network, no end device should ever need to care how the network routes its packets. It 
should simply forward them to a default gateway and forget about them. Part of the problem here is that 
RIP in particular can take a long time to update after a failure. In general, allowing the network to take full 
responsibility for traffic flow is more reliable.  
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3.1.1.1 Bus topology 

In a bus topology, there is a single communication medium, which I often call "the wire." It actually 
doesn't need to be a physical piece of wire, but a wire is a useful image. In fact, 10Base2 Ethernet looks 

exactly like Figure 3-1, with a long 50 (50 ohm characteristic impedance) coaxial cable connecting all 
of the devices. Because of the analogy with 10Base2, it is customary to draw an Ethernet segment like this, 
with a straight line intersected at various points by the connections (sometimes called "taps") to the various 
devices. In the drawing, this line (the wire, or bus) extends beyond the last device at each end to symbolize 
the fact that the bus must be terminated electrically at both ends.  

On a bus, any device can communicate directly with any other device and all devices see these messages. 
This is called a "unicast."[1] Similarly, any device can send a single signal intended for all other devices on 
the wire. This is a "broadcast."  

[1] This odd word, "unicast," comes from the word "broadcast." A broadcast is sent to 
everybody, a "mulitcast" is sent to several recipients, and a "unicast" is sent to just one 
recipient. 

If every device sees every signal sent by all other devices, then it's pretty clear that there's nothing fancy 
about a broadcast. To get point-to-point unicast communication going, however, there has to be some sort 
of address that identifies each device uniquely. This is called the MAC address.  

There also has to be some sort of mechanism to ensure that all devices don't try to transmit at the same 
time. In Ethernet the collision detection algorithm (CSMA/CD), which I will talk about more in Chapter 4,
prevents such a problem. The other network standard that employs this basic topology is called "token 
bus," which works by passing a virtual "token" among the devices. Only the device that holds the token is 
allowed to transmit. The term "token bus" is not used much anymore, so I will not cover it in detail in this 
book.  

There are a few common failure modes in a bus topology. It is possible to have cable break in the middle, 
thereby isolating the two sides from each other. If one side holds the router that allows devices on the 
segment to get off, then the devices on the other side are effectively stranded. More serious problems can 
result if routers are on both sides of the break.  

The other problem that often develops in bus architectures is loss of one of the bus termination devices. In 
the case of 10Base2, this termination was a small electrical resister that cancelled echoes from the open 
end of the wire. If this terminator was damaged or removed, then every signal sent down the wire was met 
by a reflected signal. The result was noise and a seriously degraded performance.  

Both of these problems are avoided partially by using a central concentrator device such as a hub or a 
switch. In fact, new Ethernet segments are usually deployed by using such a device.  

3.1.1.2 Ring topology 

The second basic segment architecture is a simple ring. The most common example of the simple ring 
architecture is Token Ring. SONET and FDDI are based on double ring architectures.  

In Token Ring, each device has an upstream and a downstream neighbor. If one device wants to send a 
packet to another device on the same ring, it sends that packet to its downstream neighbor, who forwards it 
to its downstream neighbor, and so on until it reaches the destination. Chapter 4 describes the Token Ring 
protocol in more detail.  

Token Ring relies on the fact that it is a ring. If a device sends a frame on the network, it expects to see that 
frame coming around again. If it was received correctly, then this is noted in the frame. Thus, the ring 
topology allows a simple verification that the information has reached its destination.  
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The closed ring also facilitates token passing and ensures that the network is used efficiently. Thus, a 
broken ring is a serious problem, although not as serious as a broken bus, since the Token Ring protocol 
has a detailed set of procedures for dealing with physical problems such as this.  

It might look like each device taking part in the Token Ring acts as a bridge, forwarding each frame from 
its upstream neighbor to the downstream neighbor. But this is not really accurate, since the network 
interface cards in each device passes the Layer 2 frames along, regardless of their content. Even if the 
frame is intended for the local device, it still must pass along a copy, although it will change a bit in the 
header to indicate that it has been received.  

FDDI uses another ring architecture that gets around this broken ring problem in a rather clever way. In 
FDDI, two rings run at all times. The tokens on these two rings travel in opposite directions, so the 
upstream neighbor on one ring is the downstream neighbor on the other. However, in normal operation, 
only one of these rings is used. The second ring acts as a backup in case of a failure, such as a broken ring.  

Figure 3-5 shows what happens when the rings break. If the connection between devices A and B breaks, 
then the devices know about it immediately because there is two-way communication between them, and 
they have now lost contact with one another. They respond by closing the ring. Now when device A 
receives a token from device E on the clockwise-rotating ring, instead of sending it on to B, it turns around 
and sends it back to E on the counterclockwise-rotating ring. The token doesn't get lost because the rings 
have healed around the fault. The same thing happens if one of the devices taking part in the FDDI ring 
disappears.  

Figure 3-5. Fault tolerance of a dual-ring architecture 

3.1.1.3 Star topology 

In practice, most Ethernet and Token Ring LANs are implemented in a star topology. This implementation 
means that a central device connects to all of devices. All devices communicate with one another by 
passing packets first to this central device.  

In one option for a star topology, the central device aggregates the traffic from every device and broadcasts 
it back out to all other devices, letting them decide for themselves packet by packet what they should pay 
attention to. This is called a hub. Alternatively, the central device could act as a switch and selectively send 
traffic only where it is intended to go.  

The star topology is often called hub and spoke, as an analogy to a bicycle wheel. This term can be 
misleading because sometimes the hub is a hub and sometimes it's a switch of some kind. So I prefer the 
term star.

Most modern LANs are built as stars, regardless of their underlying technology. There are many reasons 
for this. It's certainly easier to upgrade a network by upgrading only the device in the closet, without 
having to change the expensive cabling to every desk. It's also much easier to make fast switching 
equipment in a small self-contained box than it would be to distribute the networking technology 
throughout the work area.  
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Even when Token Ring and Ethernet are implemented using a star topology, they still obey their own rules 
internally. For example, a Token Ring MAU transmits frames to each port in succession, waiting each time 
until it receives the frame back from the port before transmitting it to the next port. In Ethernet, however, 
the hub simultaneously transmits the frame to all ports.  

The prevalence of star topology networks has made it possible to build general-purpose structured cable 
plants. The cable plant is the set of cables and patch panels that connect all user workspaces to the 
aggregation point at the center of the star.  

With a structured cable plant of Category 5 cabling and IBDN patch panels, it's relatively easy, for 
example, to switch from Token Ring to Ethernet or from Ethernet to Fast Ethernet. Executing a change like 
this means installing the new equipment in the wiring closet, connecting it to the rest of the network in 
parallel with the existing infrastructure, and then changing the workstations one by one. As each 
workstation is changed, the corresponding cable in the wiring closet is moved to the new switching 
equipment.  

Chapter 4 discusses structured cable plants in more detail. 

When it comes to fault tolerance, however, star topologies also have their problems. The central 
aggregation device is a single point of failure. There are many strategies for reducing this risk, however. 
The selection and implementation of these strategies are central to a good network design.  

3.1.1.4 Mesh Topology 

A mesh topology is, in some ways, the most obvious way to interconnect devices. A meshed network can 
be either fully meshed or partially meshed. In a fully meshed network, every device is connected directly to 
every other device with no intervening devices. A partial mesh, on the other hand, has each device directly 
connected to several, but not necessarily all of the other devices.  

Clearly, defining a partial mesh precisely is a bit more difficult. Essentially, any network could be 
described as a partial mesh with this definition. Usually, a mesh describes a network of multiple point-to-
point connections that can each send and receive in either direction. This definition excludes descriptions 
of both the ring and bus topologies because the ring circulates data in only one direction and the bus is not 
point-to-point.  

Since a mesh has every device connected to every other device with nothing in between, the latency on this 
sort of network is extremely low. So why aren't mesh networks used more? The short answer is that mesh 
networks are not very efficient.  

Consider a fully meshed network with N devices. Each device has to have (N-1) connections to get to 
every other device. Counting all connections, the first device has (N-1) links. The second device also has 
(N-1) links, but the one back to the first device has already been counted, so that leaves (N-2). Similarly 
there are (N-3) new links for the third device, all the way down to (N-N = 0) for the last device (because all 
of its links were already counted). The easiest way to see how to add these devices up is to write it in a 
matrix, as shown in Table 3-1.

Table 3-1. Connections in a meshed network  
1 2 3 4 ... N 

1 x 1 1 1 1
2 x 1 1 1
3 x 1 1
4 x 1
...  ... ... 
N x



47

An "x" runs all the way down the diagonal of the matrix because no device talks to itself. The total number 
of boxes in the matrix is just N2. The number of entries along the diagonal is N, so there are (N2-N) links. 
But only the upper half of the matrix is important because each link is only counted once (the link from a 

b is included, but not b a, because that would be double counting). Since there is exactly the same 
number above the diagonal as below, the total number of links is just N(N-1)/2.  

Making a fully meshed network with 5 devices requires 5(5-1)/2 = 10 links. That doesn't sound so bad, but 
what happens if this number is increased to 10 devices? 10(9)/2 = 45 links. By the time you get to a small 
office LAN with 100 devices, you need 100(99)/2 = 4950 links.  

Furthermore, if each of these links is a physical connection, then each of the 100 devices in that small 
office LAN needs 99 interfaces. It is possible to make all those links virtual—for example, with an ATM 
network. But doing so just moves the problem and makes it a resource issue on the ATM switching 
infrastructure, which has to keep track of every virtual circuit.  

The other reason why meshed networks are not particularly efficient is that not every device needs to talk 
to every other device all of the time. So, in fact, most of those links will be idle most of the time.  

In conclusion, a meshed topology is not very practical for anything but very small networks. In the 
standard jargon, it doesn't scale well.  

3.1.2 Scalability 

This discussion has just looked at certain basic network topologies. These concepts apply to small parts of 
networks, to workgroups, or to other local groupings. None of the basic topologies mentioned is 
particularly useful for larger numbers of users, however. A mesh topology doesn't scale well because the 
number of links and ports required grow too quickly with the number of devices. But ring and bus 
architectures also don't scale particularly well.  

Everybody seems to have a different rule about how many devices can safely connect to the same Ethernet 
segment. The number really depends on the traffic requirements of each station. An Ethernet segment can 
obviously support a large number of devices if they all use the network lightly. But in a Token Ring 
network, even devices that never talk must take the token and pass it along. At some point, the time 
required to pass the token all the way around the ring becomes so high that it starts to cause timeouts. The 
number of ring members required to achieve this state is extremely high, though. Other types of problems 
generally appear first.  

Both Ethernet and Token Ring networks have theoretical upper limits to how much information can pass 
through them per second. Ethernet has a nominal upper limit of 10Mbps (100Mbps for Fast Ethernet and 
1000Mbps for Gigabit Ethernet), while 4, 16, and 100Mbps Token Ring specifications are available. 
Clearly, one can't exceed these nominal limitations. It actually turns out that the practical limits are much 
lower, though, particularly for Ethernet.  

The collision rate governs throughput on an Ethernet network. Thus, the various rules that people impose 
to set the maximum number of devices in a particular collision domain (i.e., a single Ethernet segment) are 
really attempts to limit collision rates. There is no generally reliable rule to decide how many devices can 
go on one segment.  

This fact is easy to deduce from a little calculation. Suppose you have an Ethernet segment with N devices. 
Each device has a certain probability, P, of wanting to use the network at any given moment. The 
probability of having k simultaneous events is:  
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Thus, for two devices, both wanting to talk at the same time, k = 2.  

Taking this equation a step further to work out real numbers is more difficult because it would require a 
detailed discussion of collision back-off algorithms. One would also have to be very careful about how P
was calculated, as a collision is only counted when two devices actually send packets simultaneously. 
Usually, one sends first and the second device simply buffers its packet and waits until the wire is free. But 
the most important result is already here. The probability that two devices want to talk at the same time is 
proportioned to N2, where N is the number of devices on the segment.  

Interestingly, the probability goes like P2. P is the probability that a particular device will want to use the 
network (in a suitable unit of time, such as the MTU divided by the nominal peak bandwidth). This 
probability is clearly going to be proportional to the average utilization of each device. The probability 2PN
is essentially the probability that a device will have to wait to transmit because another device is already 
transmitting. Since the probability of having to wait is proportional to P2, a small increase in the average 
utilization per device can result in a relatively large increase in the collision rate. But the real scaling 
problem is because of the factor of N2, which rises very quickly with the number of devices.  

This is why there are so many different rules for how many devices to put on an Ethernet segment. The 
number depends on the average utilization per device. A small increase in this utilization can result in a 
large increase in the collision rate, so it is not safe to trust these general rules.  

Remember that collision rates cause the effective throughput on an Ethernet segment to be significantly 
smaller than the nominal peak. You will never get a 10Mbps throughput on a shared 10BaseT hub. You 
will never get 100Mbps on a Fast Ethernet hub, either. In fact, if there are more than 2 or 3 devices you 
probably can't get close to that nominal peak rate. Typically, the best you will be able to get on a shared 
Ethernet segment is somewhere between 30 to 50%. Sometimes you can do better, but only if the number 
of talking devices is very small. This is true for both Ethernet and Fast Ethernet hubs, but it is not true for 
switches.  

Each port on an Ethernet switch is a separate collision domain. If every device is connected to its own 
switch port, then they are all on their own collision domains. Now they can all talk at the same time, and 
the switch will make sure that everything gets through.  

Token Ring, on the other hand, has a much simpler way of avoiding contention. If two devices want to talk 
at the same time, they have to wait their respective turns. If another device is inserted into the ring, then 
everybody has to wait slightly longer. The average amount of time that each device has to wait is roughly 
proportional to the number of devices on the ring, N. This result is much better than N2.

Also note that in Ethernet, the collision rate goes up proportionally to the square of the average utilization 
of each device. In Token Ring, the average wait time between each device's transmission bursts is the 
corresponding rate limiting factor. This factor scales roughly to the average per device utilization, not its 
square.[2]

[2] Some people say that Token Ring is deterministic because of this property, meaning that you 
can readily calculate how the traffic from a group of devices will aggregate on the entire ring. 
But you can do similar calculations for Ethernet if you understand how to combine probabilities 
and how the collision mechanisms work. It's just a harder calculation. Since everything is 
measured statistically anyway, having a deterministic model for your network is actually not 
much of an advantage. 
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As a result, a Token Ring "segment" can hold more devices than an Ethernet segment before contention 
becomes a serious problem. It's also much safer to rely on general rules for how many devices to put on a 
ring. Even with Token Ring, there is an upper limit of how many devices can take part in a particular 
segment. Efficiency usually demands that you break up your rings through a bridge or a switch, exactly the 
same as for Ethernet.  

You have seen that all of the basic LAN building blocks have different types of scaling problems. A 
16Mbps Token Ring can hold more devices than a 10Mbps Ethernet segment, but in both cases there is a 
practical upper limit to how many devices you can put on the network before you start having performance 
problems. I have already alluded to one practical solution that allows us to continue growing our network 
beyond these relatively small limitations: switches.  

You can connect a large number of Ethernet segments or Token Rings with a central switch. This switch 
will create a single point of failure, as I discussed in the previous chapter, but it will also move the problem 
up only a level. Now, instead of having a limit of N devices per segment, there is a limit of N devices times 
the number of ports on the switch. Expanding beyond this new upper limit is going to create a new 
problem.  

Solving this new problem is what this whole book is about.  

3.2 Reliability Mechanisms 

Before moving on to larger-scale topologies, it is important to review some of the systems for automated 
fault recovery that are used in large networks. Just inserting backup switches and routers connected with 
backup links is not enough. The network has to be able to detect problems quickly with its primary paths 
and activate the backup devices and links.  

There are two main methods for doing this, and most large-scale networks use both. You can detect and 
repair the fault at either Layer 2 or at Layer 3. The Layer 2 mechanism employs a special IEEE standard 
called Spanning Tree. As an IEEE standard, Spanning Tree is applicable across a wide range of Layer 2 
networks, including the commonly used Ethernet and Token Ring protocols.  

Conversely, there are many different ways of detecting and working around faults at Layer 3. Selecting 
among these different possibilities depends on what the Layer 3 protocols on the network are and on the 
scope of the fault tolerance. There are purely local mechanisms as well as global ones.  

3.2.1 Spanning Tree 

Spanning Tree, also called STP or IEEE 802.1d, is a Layer 2 protocol that is designed to accomplish two 
important tasks. It eliminates loops and it activates redundant links for automated fault recovery. Figure 3-
6 shows a simple bridged network that employs Spanning Tree for both of these purposes.  

Figure 3-6. Spanning Tree is used to eliminate loops and activate backup links 
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Figure 3-6 has four switches. D1 and D2 are the central Distribution switches, while A1 and A2 are 
downstream Access switches that connect to end-device segments. The Spanning Tree priorities have been 
adjusted to give D1 the lowest value, making it the "Root Bridge."  

Now, suppose D1 has a packet intended for a device on A1. It has several ways to get there. It can go 
directly, or it can go over to D2, which also has a link to A1. Or, it can go to A2, back to D2, and over to 
A1. The worst thing it could do is to go around in circles, which it can also do in this diagram. In fact, 
every device in the picture except the one containing the end device wants to helpfully forward the packet 
along to any other device that might be able to deliver it. This forwarding results in a big mess of loops. 
Spanning Tree removes this problem.  

3.2.1.1 Spanning Tree eliminates loops 

Each port taking part in Spanning Tree can be in one of five different states: blocking, forwarding, 
listening, learning, or disabled. Blocking means that Spanning Tree is preventing this port from forwarding 
packets. Each switch looks at its neighbors and inquires politely whether they are the Root Bridge or 
whether they can help it get to the Root Bridge. Only one Root Bridge is allowed in a broadcast domain, 
and that device is the logical center of the network. This is why the priorities have been set manually to 
force the network to elect D1 as the Root Bridge. D2 is configured to be the second choice in case D1 fails. 
You never want a switch that serves the end-device Access level of the network to be Root Bridge.  

In this way, the network is always able to designate a Root Bridge. This device serves as the main 
Distribution point for all packets that a switch can't otherwise deliver itself. Every switch keeps track of the 
next hop that will take it to the Root Bridge. In effect, the network, with all of its redundant cross-
connections, becomes a simple tree topology, which eliminates the loops.  

3.2.1.2 Spanning Tree activates backup links and devices 

Now suppose the link from A1 to D1 suddenly fails, as shown in the diagram. A1 knows it has lost its Root 
Bridge connection because it stops exchanging hello packets on that port. These packets exist purely for 
this reason—to keep checking that everything is working properly. When the link breaks for any reason, 
A1 remembers that it had another link to the Root Bridge via D2, and so it tentatively activates that port. It 
isn't certain yet that this way is correct, so it doesn't start forwarding data; instead, it goes into a "listening" 
state. This state allows it to start exchanging Spanning Tree information over this other port—to see if this 
is the right way.  

Once A1 and D2 have established that they can use this link as a valid backup, both ports go into a 
learning state; they still do not forward data packets; they first must update their MAC address tables. 
Until the tables are updated, switch D2 doesn't know what devices are on A1. Then, once they have 
synchronized all of this information, both switches set this new port to a forwarding state, and the recovery 
process is complete.  

In this picture, all switches are connected directly to the Root Bridge, D1. All links that do not lead to 
Rome are set to the blocking state, so A1 and A2 both block their links to D2. At the same time, D2 sets all 
the links it has that do not lead to D1 to blocking as well. The other links—the ones that do lead to the 
Root Bridge—are all set to their forwarding state.  

The thick line connecting D1 and D2 is a higher bandwidth link. Suppose the thin lines are 100Mbps 
Ethernet links, while the thick line is a 1000Mbps Gigabit Ethernet link. Clearly the thick line is a better 
link to the Root Bridge than one of the slower links. So, the engineer sets the priority on this port so that, if 
there is a choice between what link to use, the switch always chooses the faster one.  

Having a link between D1 and D2 is important. Imagine what would happen if it were not present and the 
link between A1 and D1 failed. A1 would discover the new path to the Root Bridge through D2, exactly as 
before. However, D2 doesn't have its own link directly to D1, so it must instead pass traffic through A2 to 
get to the Root Bridge. This means that traffic from A1 to the Root Bridge must follow the circuitous 
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path—A1 to D2 to A2 to D1. In this simple example, the traffic passes through every switch in the 
network! This situation is clearly inefficient.  

But wait—it gets worse. Now suppose a third switch, A3, is connected to both D1 and D2, and the link 
from A1 to D1 fails. A1 will again try to use D2 as its backup, but D2 now has two possible paths to the 
Root Bridge—one through A2 and the other through A3. It picks one of these links at random as the best 
path—say A2—and it blocks the other. Now, because of an unrelated failure elsewhere in the network, A2 
has extra traffic load and A3 has no redundancy.  

In the hierarchical network designs that this book recommends, the configuration with two redundant Core 
(or Distribution) switches connected to each of several Access switches will be common. Therefore, it is 
important to include a separate trunk connecting the two central switches each time this configuration is 
used.  

It can take several seconds for conventional Spanning Tree to activate a backup link. This may not sound 
like a long time, but it can be a serious problem for some applications. Fortunately, trunk failures don't 
happen very often, but techniques for improving recovery time are available.  

Spanning Tree has three adjustable timers that can be modified to make convergence faster. These times 
are called hello, forward delay, and maximum age. All bridges or switches taking part in Spanning Tree 
send out hello packets to their neighbors periodically, according to the hello timer. All neighboring devices 
must agree on this interval so that they all know when to expect the next hello packet. If the timers do not 
agree, it is possible to have an extremely unstable network, as the switch with the smaller timer value 
thinks that its trunks are continuously failing and recovering.  

The forward delay timer determines how long the switch will wait in the listening and learning states 
before it sets a port to the forwarding state. The maximum age timer determines how long the switch 
should remember old information.  

By reducing the hello and forward delay timers, you can improve your convergence time in a failure, but 
there are limits to how far you can push these numbers. The forward delay timer exists to prevent 
temporary loops from forming while a network tries to recover from a serious problem. The switch has to 
be certain that the new link is the right one before it starts to use it.  

For example, suppose your Root Bridge fails. In this case, all switches must elect a new Root Bridge. In 
the example, the priorities are adjusted so that, if D1 fails, D2 becomes the Root Bridge. D2 has to realize 
that D1 has failed and has to alert every other device that it is now the Root Bridge. The forward delay 
timers on all of these switches have to be long enough to allow this process to complete.  

Having a short hello interval is the easiest way to speed up the convergence of a Spanning Tree network. 
But even this process has to be done carefully. Remember that a packet is sent in both directions over all of 
your production trunks once every time interval. If the interval becomes too short, then link congestion and 
CPU loading problems can result. If hello packets are dropped for these reasons, Spanning Tree may 
assume that links have failed and try to find alternate paths.  

The best set of Spanning Tree timers vary from network to network. By default, the values of the hello and 
forward delay timers will be approximately a few seconds each. The best way to determine the appropriate 
values is to start with the defaults and then try reducing them systematically. Then try deliberately failing 
links to verify that these settings result in a stable network. In most cases, the default parameters are very 
close to optimal. Since timer changes must be made on all devices, it is generally best to use the defaults 
unless there is a compelling requirement to improve convergence efficiency.  

Some switch vendors have implemented additional Spanning Tree features that facilitate faster 
convergence and greater stability. Generally, these features work by allowing ports that are nominally in 
blocking states to behave as if they are in a perpetual learning state. This way, in the event of a simple 
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failure, they can find the new path to the Root Bridge more quickly. Of course, in the case of a Root Bridge 
failure, the network still has to calculate a new topology, and this calculation is difficult to speed up.  

3.2.2 Layer 3 Recovery Mechanisms 

There are two main methods of implementing fault tolerance at Layer 3. You can either take advantage of 
the dynamic routing protocol to reroute traffic through the backup link or you can use an address-based 
redundancy scheme, such as HSRP (Hot Standby Router Protocol) or VRRP (Virtual Router Redundancy 
Protocol). The choice depends on the location.  

I have already said that running a dynamic routing protocol on any end devices is a bad idea. If the 
problem is to allow end devices to stop using a failed default gateway on their LAN segment and use its 
backup instead, the dynamic routing protocol can't help. Instead, you need to use HSRP or VRRP. There is 
considerable similarity between these two protocols, which is why I mention them together. HSRP is a 
Cisco proprietary system defined in RFC 2281, and VRRP is an open standard defined in RFC 2338. In 
general, it is not a big problem to use the proprietary standard in this case because, if two routers are 
operating as a redundant pair, the chances are good that they are as nearly identical as possible; they will 
almost certainly be the same model type and probably have the same software and card options. This is one 
of the relatively rare cases in which the open standard doesn't matter very much.  

Both of these protocols work by allowing end devices to send packets to a default gateway IP address that 
exists on both routers. However, end devices actually send their packets to the Layer 2 address associated 
with that default gateway IP address in their ARP cache. They don't use the default gateway address 
directly. When the backup router takes over for the primary router's default gateway functions, it must 
adopt both the IP address and the Layer 2 MAC address. Both VRRP and HSRP have quick and efficient 
methods of making this change. When one router fails, the other takes over and the end stations on that 
segment are not even aware that a problem has occurred.  

On segments that do not have any end stations, particularly router-to-router segments, there is no need for 
HSRP or VRRP. In these cases, all devices can take part in the dynamic routing protocol (such as OSPF). 
In these places, using HSRP or VRRP is not a good idea because it has the potential to confuse the routing 
tables of the other routers on the segment. These routing protocols are very good at maintaining lists of 
alternative paths and picking the one that looks the best. If two paths have the same "cost," then most 
routers simply use both, alternating packets between them. If one router fails, the other routers quickly 
drop it out of their routing tables and start using the remaining path exclusively.  

3.3 VLANs 

VLAN is an acronym for "Virtual LAN." This name gives a good picture of what it is. A VLAN is, in 
effect, a logical LAN segment. But physically, it is spread throughout a larger network. The term VLAN 
also refers to a LAN port grouping within a single switch. If ports 1, 2, 5, and 12 are all part of the same 
broadcast grouping on an Ethernet switch, then this segment is also often called a VLAN. However, this 
designation is used mainly for simplicity when this switch is connected to another switch and they share 
this VLAN between them.  

Figure 3-7 shows two switches connected by a trunk. Each switch has three VLANs. Switch A has VLAN 
1, VLAN 2, and VLAN 3, while Switch B has VLAN 1, VLAN 2, and VLAN 4. Designating VLANs with 
numbers in this way is common. Ports 1, 2, 5, and 12 of Switch A are assigned to VLAN 1. On Switch B, 
VLAN 1 consists of ports 3, 5, and 7. Since these two switches are connected through a trunk, all seven 
ports can now communicate as if they were all part of the same LAN segment.  

In an IP network, the ports from the same VLAN can all be part of the same IP subnet. In an IPX network, 
then they share the same IPX network number. Other ports on both switches are unable to communicate 
with any of these ports except through a router. They must all be on different IP or IPX networks.  



53

Figure 3-7. VLANs are shared through trunks 

Similarly, all ports assigned to VLAN 2 on Switch A are part of the same logical network as the VLAN 2 
ports on Switch B. To make things a little more interesting, I have also included a VLAN 3 and a VLAN 4. 
VLAN 3 only appears on Switch A, while VLAN 4 is only visible on Switch B. Since these two VLANs 
are both entirely local to their respective switches, they do not use the trunk. If I were to define a new 
VLAN 3 on Switch B and assign a port to it, it could also use the trunk to allow the VLAN 3 ports on both 
sides to communicate.  

So that's a VLAN; it's a simple but exceptionally powerful and useful concept. Like all powerful concepts, 
it can be used well or abused horribly.  

The advent of VLAN technology was a mixed blessing to large-scale LANs. On the one hand, it has made 
it much easier to build a rational hierarchical network with a minimal number of components, which is 
very cost effective. On the other hand, VLANs make it easy to construct extremely bad network designs.  

3.3.1 Avoid Spaghetti VLANs 

The worst thing you can do in any network is build a random mess of spaghetti. With VLAN technology, 
you can create a completely rational and logical physical network of switches and trunks and then ruin it 
by superimposing an irrational VLAN design on top of it. You can assign one port on each of a hundred 
switches in a dozen different buildings to the same VLAN. All VLANs can exist everywhere 
simultaneously.  

But why would this situation be bad? It sounds like it could be a great thing. You could have a highly 
integrated office real-estate plan so a working group or department may have members spread throughout 
the campus. Well, there are two main problems with this sort of topology. First, it's hard to manage and 
troubleshoot problems in such a network. Second, it leads to terrible problems with latency and trunk 
congestion.  

Consider the first problem. Suppose you have to troubleshoot a problem in which two devices cannot 
communicate. The first step in such a problem is to figure out where these devices are in both a Layer 2 
and a Layer 3 picture. Once you have located these devices, you try to figure out where things are broken. 
Is there an intermediate device that can get to one of these devices? Can other devices on the same IP 
subnet as one of the problem devices communicate with it? Can this third device communicate with the 
other end?  
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Those are the questions an engineer always starts with. In a network of spaghetti VLANs, however, it is 
entirely possible that this third device is in a completely different part of the physical network. If it can't 
communicate, you may have only proved that there is a physical problem. Is it part of the same physical 
problem or a different one? You have to determine where these devices are both logically and physically 
and figure out what trunks they use to communicate through. Unraveling the spaghetti of the VLANs can 
be extremely frustrating and time consuming.  

Now, suppose you have a large network in which every VLAN is present on every switch. A broadcast 
from one device on one of these VLANs must be sent to all other devices on the same VLAN. That means 
that a broadcast has to go to every other switch and traverse every trunk. This scenerio is at least as 
inefficient as building a huge bridged network where every device is effectively part of the same single 
VLAN.  

Lesson number one in building a network with VLANs is to use them sparingly and thoughtfully. VLAN is 
an extremely powerful concept with wide-ranging benefits to a network designer. But power usually comes 
with risks, and I want to help you to realize the benefits while minimizing these risks.  

An old rule of network design, the 80/20 rule, is intended to keep loads down on routers. Some designers 
have used 60/40, 70/30, or even 90/10, but just about everybody has such a rule. It says that 80% of your 
traffic is local and only 20% need to cross the Core. Clearly, the less traffic that has to cross through the 
Core, the happier and less congested it will be, but making these sorts of rules isn't always practical. As 
network designers, we have very little control over how the applications are used, but we can exercise 
some direction. If most user traffic is destined for one central mainframe device, then there is no way we 
will ever be able to make such rules.  

This rule is useful in VLAN construction, particularly in deciding which users will be in which VLAN 
groupings. But it is important to weigh this rule against the Spaghetti Factor. The point of the 80/20 rule is 
to try to reduce loading on the routers that direct your VLAN-to-VLAN traffic. In some organizations this 
is not practical, sometimes the only way to create well-segmented VLANs is by adding too many devices 
to the VLAN or by making every VLAN present on every switch. In such situations, remember that the 
point is to create a stable, reliable network; in a conflict, the 80/20 rule should be sacrificed before 
reliability and manageability.  

3.3.2 Protocol-Based VLAN Systems 

I need to talk about one other extremely serious VLAN-related trouble pit before moving on to specific 
VLAN topologies. There are really two main ways that a switch can color packets to associate them with a 
particular VLAN. The switch can say that every packet coming from any given switch port is 
automatically on only one VLAN. Or, alternatively, it can look at each packet and decide what VLAN to 
put it on based on what it sees.  

Some switch vendors have implemented their VLAN technology with some clever protocol-dependent 
VLAN tagging features. Each time one type of packet (e.g., a particular application) is sent out, the switch 
assigns that packet to VLAN 1 and forwards it appropriately. Another packet, corresponding to a different 
application, would be forwarded as if it were on VLAN 2.  

This feature sounds, on the surface, like it should be extremely useful and clever. It is definitely clever. But 
please use it with extreme caution. Many potential disasters are hiding in a feature this clever.  

First, suppose that both protocols are IP-based. Then the network has a serious problem. How is it 
supposed to handle the IP addressing of these two VLANs? Which one will the default router for this IP 
address range take part in? It could be set up to take part in both. This way, the packets used by a particular 
application are shunted off onto a different VLAN so they can use higher speed trunks. But this leads to 
serious troubleshooting and fault-tolerance problems. So it should be avoided.  
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This sort of topology might be useful if a semitrusted external information vendor's server is to be placed 
on the network. Then, when workstations communicate with that server, the traffic is segregated from the 
rest of the network. This segregation could have important security benefits because this special server 
could then be prevented from taking part in the regular VLAN for these users. In other words, the protocol-
based VLAN tagging feature is a sort of security filter. However, if you want a security filter, why not just 
use a filter? It is simpler conceptually to just implement a security filter on the one VLAN so packets from 
the vendor's switch port are treated specially.  

Suppose you want to have your IP traffic all use one VLAN and have all other protocols use a different 
VLAN. This situation is actually more useful and sensible than the all-IP case. You might use some 
nonroutable protocol such as NetBEUI or a legacy LAT application. Then you could construct your 
network so everybody takes part in the same VLAN for the nonroutable traffic, but your IP traffic would 
be segregated. This is, in fact, the only time when I would recommend using this sort of feature.  

You must be extremely careful when you try to troubleshoot this network. You have to remember that the 
nonroutable protocol is on a different VLAN than the IP traffic. So traditional troubleshooting tools such 
as ping and traceroute are not going to provide useful information on this other VLAN. A ping may work 
fine over the IP VLAN, but that has nothing to do with how the same network handles the NetBEUI 
VLAN. In general, this sort of feature should be considered dangerous and avoided unless there is 
absolutely no other way to accomplish the design goals. Even then it should be used with extreme care.  

Usually, the best way to implement VLANs is by switch port. This way, each device is a member of only 
one VLAN, regardless of protocol. Overlaying several different logical topologies on the same network 
will always cause confusion later when troubleshooting unrelated network problems.  

3.4 Toward Larger Topologies 

Until now, this chapter looked at small-scale LAN structures and described some of the concepts, such as 
VLANs and reliability mechanisms, that allow designers to glue these small-scale concepts together into a 
large network. Now I'd like to move on to talk about how these basic building blocks are used to put 
together large-scale networks. To do this, I need to put many of these ideas into their historical context. 
New technology has allowed larger and more stable networks. It is useful to talk about the simpler 
creatures that evolved into more sophisticated modern networks. By reviewing how we got where we are, I 
hope to prevent you from making old mistakes or reinventing old wheels.  

3.4.1 Collapsed Backbone 

There are many ways to create larger networks from basic LAN segments. The simplest is to just 
interconnect several Ethernet segments or Token Rings via a single switch. This type of large-scale LAN 
architecture is called a Collapsed Backbone. Although it may sound like the painful result of a highway 
accident, the Collapsed Backbone topology gets its name from the concept of a network backbone that 
interconnects various segments.  

In general, the backbone of the network can be either collapsed or distributed. I use the general term 
backbone to refer to a high-capacity part of the network that collects traffic from many smaller segments. It 
can gather traffic from several remote LANs onto a network backbone that connects to a central computer 
room.  

The network backbone concept also works well in more peer-to-peer networks where there is no central 
computer room, but there is communication among the various user LANs. Figure 3-8 shows a simple 
example of a traditional network backbone design. In the early days of LAN design there was no such 
thing as the collapsed backbone—it was itself just some sort of LAN.  
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Figure 3-8. A simple network backbone technology 

3.4.1.1 Why collapse a backbone? 

The various user LANs connect to some sort of shared medium that physically runs between the separate 
areas. This medium could be some flavor of Ethernet, in which case the little boxes making these 
connections could be bridges, switches, or repeaters of some kind. Or the backbone could be a completely 
distinct network technology such as ATM or FDDI, in which case the little boxes must be capable of 
interconnecting and converting between these different network types.  

Figure 3-9 shows the same diagram with a collapsed backbone. Here, some sort of central router or switch 
has long-haul connections to the various user areas. Typically, these connections would be fiber 
connections. Note that there is still a backbone, exactly the same as in the previous diagram, but here the 
backbone is contained inside the central concentrator device.  

Figure 3-9. A collapsed backbone technology 
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The two diagrams look essentially similar, but there is a huge potential performance advantage to the 
collapsed backbone design. The advantage exists because the central concentrator device is able to switch 
packets between its ports directly through its own high-speed backplane. In most cases, this means that the 
aggregate throughput of the network is over an order of magnitude higher.  

The essential problem is that all network segments must share the bandwidth of the backbone for all traffic 
crossing it. But how much traffic is that? If the separate segments are relatively autonomous, with their 
own file and application servers, there may be very little reason to send a packet through the backbone. 
But, in most large LAN environments, at least one central computer room contains the most heavily used 
servers. If everybody shares these servers, then they also share the backbone. Where will the bottleneck 
occur?  

3.4.1.2 Backbone capacity 

In the diagram shown, bottleneck is actually a bit of a moot point because there is only one central server 
segment. If all traffic crossing the backbone goes either to or from that one segment, then it's fairly clear 
that all you need to do is control backbone contention a little bit better than on the server segment and the 
bottleneck will happen in the computer room. But this is not the usual case. Drawing the central server 
segment with all of those servers directly connected to a Fast Ethernet switch at full duplex would be more 
realistic. With just three such servers (as in the drawing), the peak theoretical loading on the backbone will 
be 600Mbps (100Mbps for Fast Ethernet times two for full duplex times three servers).  

Clearly that number is a maximum theoretical burst. In the following section I will discuss how to 
appropriately size such trunk connections. The important point here is that it is very easy to get into 
situations in which backbone contention is a serious issue.  

This is where the collapsed backbone concept shows its strength. If that central concentrator is any 
commonly available Fast Ethernet switch from any vendor, it will have well over 1000Mbps of aggregate 
throughput. The backplane of the switch has become the backbone of the network, which provides an 
extremely cost effective way of achieving high throughput on a network backbone. The other wonderful 
advantage to this design is that it will generally have significantly lower latency from end to end because 
the network can take advantage of the high-speed port-to-port packet switching functions of the central 
switch.  

In Figure 3-8, each user segment connects to the backbone via some sort of Access device. The device may 
be an Ethernet repeater, a bridge, or perhaps even a router. The important thing is that any packet passing 
from one segment to another must pass through one of these devices to get onto the backbone and through 
another to get off. With the collapsed backbone design, there is only one hop. The extra latency may or 
may not be an issue, depending on the other network tolerances, but it is worth noting that each extra hop 
takes its toll.  

3.4.1.3 Backbone redundancy 

The biggest problem with this collapsed backbone design should already be clear. The central collapse 
point is also a single point of failure for the entire network. Figure 3-10 shows the easiest way around this 
problem, but forces me to be more specific about what protocols and technology the example network 
uses.  
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Figure 3-10. A collapsed backbone with redundancy 

The most common way to collapse a LAN backbone is through a layer 2 Ethernet switch. So let's suppose 
that each user segment is either Ethernet or Fast Ethernet (or perhaps a combination of the two). The 
central device is a multiport Fast Ethernet switch with an aggregate backplane speed of, say, 1Gbps (this 
number is much lower than what is currently available in backbone switches from any of the major 
vendors, but it's high enough for the example). Each user LAN segment connects to these central switches 
using two fiber optic Fast Ethernet connections, one to each switch.  

Then the two switches can be configured to use the Spanning Tree protocol. This configuration allows one 
switch to act as primary and the other as backup. On a port-by-port basis, it is able to ensure that each user 
LAN segment is connected to only one of the two switches at a time. Note that a switch-to-switch 
connection is indicated in the diagram as well. This connection is provided in case LAN segment 1 is 
active on Switch A and segment 2 is active on Switch B. If this happens, there needs to be a way to cross 
over from one switch to the other.  

There are several important redundancy considerations. First, it may seem more complicated to use port-
by-port redundancy rather than redundancy from one whole switch to the other. After all, it means that 
there will probably be complicated switch-to-switch communication, and seems to require the switch-to-
switch link that wasn't previously required. But this is actually an important advantage. It means that the 
switch can suffer a failure affecting any one port without having to flip the entire backbone of the network 
from one switch to the other. There are a lot of ways to suffer a single port failure. One could lose one of 
the fiber transceivers, or have a cut in one of our fiber bundles, or even have a hardware failure in one port 
or one card of a switch. So minimizing the impact to the rest of the network when this happens will result 
in a more stable network.  

This example specified Ethernet and Spanning Tree, but there are other possibilities. If all LAN segments 
used Token Ring, for example, you could use two central Token Ring switches and the Token Ring flavor 
of Spanning Tree. Exactly the same comments would apply.  

Alternatively, for an IP network you could have done exactly the same thing at Layer 3 by using two 
central routers. In this case, you could use the Cisco proprietary HSRP protocol or the RFC 2338 standard 
VRRP protocol. These protocols allow two routers to own this address, but only one is active at a time. 
The result provides exactly the same port-by-port redundancy and collapsed backbone properties using 
routers instead of switches.  
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3.4.2 Distributed Backbone 

The alternative to the Collapsed Backbone architecture is a Distributed Backbone. Later in this chapter, I 
describe the concept of hierarchical network design. At that point, the implementation of distributed 
backbone structures will become clearer. For now, I need to discuss some general principles.  

A Distributed Backbone just indicates more than one collapse point. It literally distributes the backbone 
functions across a number of devices. In a network of any size, it would be extremely unusual to have a 
true single collapsed backbone. A large network with a single collapsed backbone would have a terrible 
single point of failure. It would also probably suffer from serious congestion problems if all inter-segment 
traffic had to cross through one point. Even if that collapse point had extremely high capacity, it would 
probably be difficult to get a high enough port density for it to be useful in a large network.  

All practical large-scale networks use some sort of distributed backbone. Moving the backbone functions 
outside of a single chassis introduces two main problems: trunk capacity and fault tolerance.  

3.4.2.1 Trunk capacity 

Suppose you want to distribute your backbone-switching functions among two or more large switches. The 
central question is how much capacity should you provide to the trunk? By a trunk I mean any high-speed 
connection that carries traffic for many end-device segments. In this book, I often use the term trunk to 
refer specifically to a connection that carries several VLANs. I want to consider the more general case 
here.  

A naïve approach would be simply to add up the total burst capacity of all segments feeding this trunk. If 
you had, for example, 5 Fast Ethernet (100Mbps half-duplex) LAN segments flowing into one trunk, then 
you would need 500Mbps of trunk capacity. But this scenerio presents a serious problem. How do you 
practically and inexpensively get this much bandwidth? Do you really have to go to a Gigabit Ethernet or 
an ATM just because you're trying to run a few trunks? Even load sharing isn't much of an option because 
you would need as many Fast Ethernet trunks as you have segments, so why use trunks at all in that case?  

Needless to say, this approach is not very useful. You have two options for more efficient ways to think 
about trunk sizing. You could either develop some generally useful rules of thumb, or you could give up 
completely and just keep throwing bandwidth at it until the congestion goes away. You could actually take 
a rigorous approach to this second idea by using simulation tools. In the end, you will always have to 
monitor your trunks for congestion and increase their capacity when you start to get into trouble. A few 
good rules would give a useful starting point. Trunks should have more capacity than the average 
utilization. The only question is how much of a peak can the network deal with. Congestion on these trunk 
links is not a disaster in itself. Later in this book I talk about prioritization schemes to ensure that the 
important data gets through no matter how heavy the flow is. But there needs to be enough capacity for the 
normal peak periods, and this capacity needs to be balanced against cost because the higher speed 
technologies are significantly more expensive to implement.  

The key to this discussion is the fact that all end segments are not statistically expected to peak at once. 
Most of the time, there will be an average load associated with all of them. Every once in a while, one or 
(at most) two experience a burst to full capacity. The basic rule for sizing trunks is to make sure that they 
have enough capacity for two end (shared) segments to peak at the same time plus 25% of capacity for all 
the remaining end segments. If the trunk has full-duplex transmission, consider the directions separately.  

For an example, look at Figure 3-8. A central trunk connects four user segments with a server segment. 
First assume that this is a half-duplex trunk and that all end segments are 10Mbps Ethernet segments. Then 
the rule says to allow for two times 10Mbps plus 25% of three times 10Mbps, which works out to be 
27.5Mbps. It would be completely safe to use a Fast Ethernet trunk in this case.  
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If the trunk technology is capable of full-duplex transmission, then you need to consider the two directions 
separately. Suppose that all traffic is between the users and the servers, with little or no user segment to 
user segment communication. This situation will help to establish the directions. For the user-to-server 
direction, there are four 10Mbps Ethernet segments. If two of these segments burst to capacity at the same 
time, the other two reach 25% of their capacity, and the trunk load will be 25Mbps in this direction. In the 
other direction, there is only one segment, so if it bursts to capacity, then it will have only 10Mbps in the 
return direction. As a side benefit, this activity shows that upgrading the server segment to full-duplex Fast 
Ethernet doesn't force an upgrade on the full-duplex Fast Ethernet backbone.  

But this rule doesn't work very well for LANs that have every PC connected to a full-duplex Fast Ethernet 
port of its own. The rule allows two PCs to burst simultaneously and add 25Mbps to the trunk for every 
other PC on the network. 50 PCs connected in this way would need a full-duplex trunk with 1.4Gbps in 
either direction. This doesn't make much sense.  

Individual workstations do not behave like nice statistical collections of workstations. The problem is not 
in assuming that two will burst simultaneously, but rather in the 25% of capacity for the rest. When 
workstations are connected to a switch like this, the typical utilization per port looks like silence 
interspersed with short hard bursts. A completely different sort of rule is necessary to express this sort of 
behavior.  

A simple way to say it is that some smal percentage of the workstations will operate at capacity, while the 
rest do nothing. The actual percentage value unfortunately changes radically depending on the organization 
and even on the department. A graphic design group that spends its time sending large graphic image files 
might have a relatively high number. A group that only uses the network for printing the occasional one-
page document will have a much smaller number. A general rule requires a reasonable mid-point number 
that is useful for Distribution trunks in a large network. A fairly safe number for this purpose is 5%. This 
percentage may be a little on the high side for many networks, so you can consider reducing it to 2.5%. 
Bear in mind that the smaller this number is, the less capacity for expansion allowed in your network.  

Consider another example to demonstrate this rule. Suppose the end-segments in the network shown in 
Figure 3-8 have switched full-duplex Fast Ethernet to every desk. Suppose that 25 workstations are in each 
of the four groups. Then, for the user to server traffic, the trunk should allow for 5% of these 4 x 25 = 100 
workstations to burst to their full 100Mbps capacity simultaneously. Thus, the trunk will operate at 
500Mbps in at least this direction. Gigabit Ethernet or ATM can achieve these bandwidths, as can various 
vendor-proprietary Ethernet multiplexing technologies.  

But wait, there's a twist in this example. So far, the discussion has assumed that all traffic is between the 
users and the servers. So what good does it do if the network can burst to 500Mbps on the trunk for traffic 
destined for the server segment, if the server segment can't deal with this much traffic? If 5 or more servers 
are all connected similarly to full-duplex Fast Ethernet switch ports, then this is possible. But the burst 
would have to be conveniently balanced among these servers. In this case, because traffic patterns are 
known very precisely, it is possible to reduce the trunk capacity to save money. The point is that this rule is 
just a starting point. You should always re-evaluate according to your own network conditions. Also note 
that the rule doesn't apply at all on the server side because you should always expect the servers to work 
the network very hard.  

3.4.2.2 Trunk fault tolerance 

A trunk, like any other part of the network, can fail. If it happens to carry all traffic from some part of the 
network at the time, though, it could be disastrous. Since trunk failures are potentially serious, it is always 
wise to include some sort of redundancy in every trunk. In fact, in most organizations I have seen 
personally, trunk failure is more common than hardware failure on key network equipment. This 
information is anecdotal, and I have no statistics on it, but it makes sense that delicate strands of optical 
fiber stretching long distances might be more vulnerable than a tank-like Ethernet switch chassis. If that 
switch is located in a locked room while the fiber has to run through a conduit shared with other building 
tenants, there's an even stronger reason to worry about the fiber. In some cases, it is physically damaged 
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while technicians are doing other work. But even if fiber is never touched and the conduit remains sealed 
forever, eventually it degrades due to a host of environmental hazards, such as background radiation.  

All of this information is intended to scare the reader into worrying about trunk failures. In most network 
designs, the trunks are the first things I would want to provide redundancy for. There are many ways to do 
so. The actual redundancy mechanism depends on trunk type. If the trunk is itself a multiplexed collection 
of links (like Cisco's EtherChannel or Nortel's MultiLink Trunking), then redundancy is inherent in the 
design. In this case, it would be wise to employ an N+1 redundancy system. This means that the trunk 
capacity should be sized as discussed in the previous section, and then increased by one extra link. This 
way, there is still sufficient capacity if any one link fails.  

However, if a single fiber pair carries the trunk, then the only useful way to add redundancy is by running a 
second full-capacity trunk link. Since one of the main concerns is environmental or physical damage to the 
fiber, putting this second link through a different conduit makes sense.  

The only remaining question is whether to make the backup trunk link a hot standby or to have it actively 
share the load with the primary link. And the answer, unfortunately, depends on what you can get with the 
technology you're using. In general, if you can do it, load sharing is better for two reasons:  

• In case you inadvertently underestimate your trunk capacity requirements, or in case those 
requirements grow over time, load sharing gives you extra bandwidth all the time.  

• If the primary can fail, so can the backup. The difference is that you notice when the primary fails, 
and you don't necessarily know when the backup fails. If traffic goes through it all the time, then 
you'll usually know pretty quickly that you've had a failure of your backup link.  

3.4.3 Switching Versus Routing 

In the discussion of backbone designs, I mentioned that the same general design topologies are applicable 
to both Layer 2 and Layer 3 implementations. Thus, at many points the designer can choose to either 
bridge or route. There are philosophical reasons for choosing one or the other in many cases, but there are 
also several practical reasons for favoring either switching (bridging) or routing implementations.  

3.4.3.1 Ancient history 

The old rule for designing large-scale LANs was "bridge on campus, route off campus." There were good 
reasons for this rule, but many of these reasons are less relevant today than they once were. Figure 3-11 
shows an example of a LAN designed using this rule. It consists of a number of separate Ethernet-based 
work groups, all interconnected via an FDDI ring. I don't call this an "old-style" design to disparage it. In 
its day, this was cutting-edge technology. Although I modify the basic rule later in this chapter, the general 
design concept points out some important principles of network design that are still applicable.  
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Figure 3-11. Old-style "bridge on campus, route off campus" design 

Suppose that the network protocol in this diagram was TCP/IP. The entire campus, then, would have been 
addressed from the same large address range, such as a Class B or Class A. In fact, because all of these 
segments were bridged together, there would have been no technical requirement to break down the user 
segments into their own specific address ranges. The whole campus looked like one gigantic common flat 
network at the IP layer.  

In practice, however, most network administrators would have broken down their larger address range into 
subranges, and allocated these subranges to different user LAN segments. This allocation would be done 
purely for administrative reasons and to make troubleshooting easier.  

In this old-style design, if someone on one of the user LAN segments wants to access the central database, 
they first look up the IP address (probably using DNS). They then send out an ARP (Address Resolution 
Protocol) packet to find the Ethernet MAC address associated with this IP address. This ARP packet goes 
out through the bridge and onto the FDDI backbone ring. Every other bridge on the ring forwards this 
packet onto its local segment. Eventually, the packet reaches the database server, which responds 
appropriately.  

This approach immediately points out one of the important limitations of this design principle. Broadcast 
packets (like the ARP packet in the example) are sent to every distant corner of the network. This may be 
fine if there is very little broadcast traffic, but some broadcasts, like ARP, are a Core part of the network 
protocol. Every station sends broadcasts. There are necessarily limits to how big one can make a bridged 
network before routine broadcast traffic starts to choke off production application traffic.  

This model does a nice job of segregating the regular application traffic, though. Suppose a user on the left 
side of the picture talks to a server on the right with regular unicast packets. Each packet on both sides of 
the conversation contains the Ethernet MAC address of the destination device. All bridges are smart 
enough to keep track of the MAC addresses on each port. So, a packet heading for the database server 
enters the FDDI ring because the user's local bridge knows to find that MAC via the ring. Then every other 
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bridge on the ring simply leaves the packet alone until it reaches the one that has that MAC address on its 
LAN segment. Thus, normal application traffic takes an efficient direct route.  

Now consider traffic destined for the remote site shown on the far right-hand side of the picture. Two rules 
of networks are almost immutable. The first is that bandwidth costs money; the second is that distance 
costs money. From these two rules, it is safe to conclude that high bandwidth over long distances costs a 
lot of money. Whatever technology is used to connect to the remote site, it almost certainly has much 
lower bandwidth than any LAN element.  

This point is important because the rule was "bridge on campus, route off campus." In other words, it says 
that you should bridge where bandwidth is cheap and route where it's expensive. Bridging allows all 
broadcast chatter to go everywhere throughout the bridged area. You simply want to avoid letting this 
chatter tie up your expensive WAN links. On the LAN, where bandwidth is cheaper, you will want to use 
the fastest, cheapest, most reliable technology that you can get away with. At least in earlier times, that 
meant bridging.  

A bridge is generally going to be faster than a router because the decisions it makes are much simpler. The 
manipulations it does to packets as they pass through it are much simpler as well. In the example, these 
bridges interconnect Ethernet and FDDI segments, so the Layer 2 information in the packets needs to be 
rewritten. This is a simpler change, though, than what a router needs to do with the same packet.  

3.4.3.2 Modernizing the old rule 

This old rule has merit, but it needs to be modernized. It is still a good idea to keep broadcast traffic off of 
the WAN, for exactly the same reasons that it was important 10 to 15 years ago. However, two current 
trends in networking are leading network designers away from universally bridging throughout a campus. 
First, many more devices are being connected to the network than there ever were in the past. Second, 
certain changes in network technology have changed the way things scale.  

Let me explain what I mean by this second point. In the old-style network of Figure 3-11, user 
workstations were connected to shared 10Mbps Ethernet segments. All segments were interconnected via a 
100Mbps FDDI ring. If you have a dozen active devices sharing a 10Mbps Ethernet segment, the collision 
overhead limits the total throughput on the segment to somewhere between 3 and 5Mbps in practice. So 
each of these dozen devices can use a steady state bandwidth of a few hundred kbps and a burst capacity of 
a fewMbps.  

Today it is common to connect end devices directly to 100Mbps Fast Ethernet switch ports, and backbone 
speeds are several Gbps. Thus, each station has access to a steady state bandwidth of 100Mbps sending and 
receiving simultaneously. Each station is therefore able to use 200Mbps of backbone capacity, with the 
lack of local contention increasing the tendency for routine traffic to burst from very low to very high 
instantaneous loads. This is almost a factor of 1000 higher than in the older style of network, but our 
backbone speed has only increased by a factor of between 10 and 100.  

In other words, each station is now able to make a much larger impact on the functioning of the network as 
a whole. This is why traffic prioritization and shaping (flattening out the bursts) have become so much 
more critical in network design. If more cars are on the road, there is a limit to how much the flow rate can 
be improved by just increasing the number of lanes. New methods of traffic control are needed as well.  

3.5 Hierarchical Design 

What's really valuable about the old-style design shown in Figure 3-11 is that it leads to the useful and 
practical concept of hierarchical network design. Figure 3-12 and Figure 3-13 show what a hierarchical 
network design is and how it works. At this point, however, whether this network is basically bridged or 
routed is still questionable.  
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Figure 3-12 is a conceptual drawing of the hierarchical design model. There are three main levels, the 
Core, Distribution, and Access. These terms are widely used. End stations are connected at the Access 
level. You will sometimes see a drawing like this in which central servers are connected at the Core. If end 
node devices are connected at the Core, then the model is not strictly hierarchical. It may be some sort of 
hybrid. Or, more likely, the diagram could be an application-oriented diagram rather than a network 
diagram.  

Figure 3-12. Hierarchical network-design concept 

Figure 3-12 shows how connections are made. End devices connect at the outside edges of the diagram. 
They are connected to the Access Level of the network. This level exists primarily to give a place for these 
end devices to connect to the network. At the center of the diagram is the Core Level, which performs the 
main traffic switching functions, directing packets from one part of the network to another. The 
Distribution Level exists to connect the Access and Core Levels.  

The name "Distribution Level" is appropriate for a couple of reasons. First, this level is what allows the 
network to spread out the distributed backbone. Second, the Distribution Level distributes data from the 
Core out to the Access Levels of the network.  

The basic idea is to separate the different functions of the network and hopefully make them more 
efficient. What does a network do? It directs traffic (Core), it conveys packets from one place to another 
(Distribution), and it provides connection points for end devices (Access). In a small network these 
functions could all be performed in one box, or even a simple piece of wire. But the larger the network, the 
more these component functions have to be separated for efficiency.  

There are usually important cost advantages to using a hierarchical model. For example, the Access Level 
needs to give a high port density with a low cost per port. At the Core Level, it is more important to have 
high throughput devices with a few high-speed ports. Expecting one type of device to fill both of these 
categories isn't always reasonable.  

Figure 3-13 shows a more specific example of how to think about hierarchical design models. In the 
middle is the Distribution Level, which carries traffic between the various Access groups and the Core. 
Two new ideas here were not shown in Figure 3-12. The first is the addition of some redundancy; the 
second is the implication that not all traffic needs to cross the Core.  

Figure 3-13. Hierarchical network-design model 
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Each of the Access Level devices is connected to two devices at the Distribution Level. This connection 
immediately improves the network throughput and reliability. Doing this has effectively eliminated the 
Distribution Level devices as single points of failure. For example, if Distribution "cloud" A broke then all 
three of the Access groups using it can switch over to Distribution "cloud" B transparently.  

I am deliberately leaving the contents of these clouds vague for the moment. Notice that I have included a 
connection between Distribution clouds A and B so that the Core connection for either can break and 
traffic will simply shift over to the other.  

Now consider the traffic patterns. Suppose an end device connected to Access cloud 1 wants to talk to 
another end device in the same cloud. There is no need for the packets to even reach the Distribution 
Level. Similarly, if that same device wants to talk to an end node connected to Access cloud 2, it doesn't 
need to use the Core. The packets just go through Distribution clouds A and B to get from Access cloud 1 
to Access cloud 2. It needs to cross the Core only when the packet needs to go further afield, to another 
Access cloud that is not connected to the same Distribution cloud.  

This principle is important because, if used carefully, it can drastically reduce the amount of traffic that 
needs to cross the Core. Because everybody shares the Core, the design principle needs to be used as 
efficiently as possible.  

Recall the 80/20 rule that I mentioned earlier in this chapter. This rule is particularly applicable to the 
Distribution Level. If certain groups of users tend to use the same resources, then it makes sense to group 
them together with these resources. It's best to group into the same VLAN. But putting them into the same 
Distribution groups also saves traffic through the Core. In most large companies, separate business 
divisions have their own applications and their own servers. Try to consider these relationships when 
deciding how to divide your Distribution and Access groups.  

To look more deeply into the various clouds shown in Figure 3-13, I need to first tell you where the 
network routes and where it uses bridging or switching.  

3.5.1 Routing Strategies 

Relaxing the "bridge on campus, route off campus" rule opens up the question of where to use routers. 
Designers could use them at every level of the LAN, including the Access Level, if they wanted to. Or, 
they could use them just at the Distribution Level and use switches in the Core and Access Levels. How do 
they decide what's right?  

Well, you need to start by remembering what routers do. A router is a device that connects two or more 
different Layer 3 addressing regions. So, by the same token, routers break up Layer 2 broadcast domains. 
A router is also a convenient place to implement filtering, since it has to look much further into the packet 
than a switch does.  

There are also negative aspects of routers. Every packet passing through a router has to be examined in 
much more detail than the same packet passing through a switch. The Layer 2 MAC addresses and framing 
have to be rewritten for every packet. Thus, latency through a router is necessarily going to be higher than 
through a switch.  

Furthermore, Layer 3 dynamic routing protocols such as OSPF, RIP, and EIGRP must all be considered 
every time a router is installed. The designer has to ensure that the dynamic routing protocol will be stable 
and will converge quickly and accurately whenever the state of a network connection changes. The more 
routers in a network, the more difficult this process becomes.  

Because of these negative aspects of routing, I would happily bridge the whole LAN if I could get away 
with it, but I've already discussed the inherent problems in this strategy. What else can be done?  
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When the requirements include filtering for security, the answer is easy; use a router. If a sensitive part of 
the network needs to be separated from the rest (for example, the Payroll Department or the Corporate 
Finance Department of a brokerage company), the designer should make sure that it's behind a router.  

For the rest of the network, the routers are used only for breaking up broadcast domains. The improved 
congestion control properties from installing routers have to be balanced against the extra latency that they 
introduce. At the same time, you have to be careful of how you implement your dynamic routing protocols.  

3.5.1.1 One-armed routers and Layer 3 switches 

One way of implementing a router into the Core of a network is to use a so-called one-armed router. This 
picturesque term refers to a router that connects to several logical networks via a single physical interface. 
One clever modern way of accomplishing this feat is by making the router a card in a Layer 2 switch. This 
card, called a Layer 3 switch, then makes a single physical connection to the shared backplane of the 
switch. This backplane is generally an extremely high-speed proprietary medium. Attaching the router 
directly to it resolves several problems simultaneously.  

First, you don't need to pay a huge amount of money to install a super high-speed network media module 
in the switch just to run the connection out to an external router. Instead, you can bring the router directly 
to the backplane of the switch. Second, the high bandwidth available on the backplane drastically reduces 
congestion problems that often plague one-armed router constructions. Third, because the Layer 3 switch 
module only has to form packets for the proprietary backplane of the switch, it is able to drastically reduce 
overhead required when routing between different media types. It only needs to know one Layer 2 
protocol, which is the proprietary protocol used internally on the backplane.  

It is possible to make a one-armed router act as a Layer 3 switch and achieve many of the same benefits. 
The single port on the router can be configured to support several VLANs, looking like a trunk connection 
to the switch. If this router-to-switch connection is sufficiently fast, such as a Gigabit or ATM link, then it 
is almost the same as a Layer 3 switch. Specifically, it has the benefit of being able to flip packets between 
different VLANs all using the same Layer 2 protocol.  

This construction can be a useful way of getting the benefits of a Layer 3 switch when using equipment 
that doesn't support integrated Layer 3 switching, or for which the performance of these switches is poor. 
However, I would expect to see better performance from an integrated Layer 3 switch that is able to access 
the higher capacity backplane directly.  

Using a construction in which several different Layer 3 networks converge on a single point makes sense. 
In a network like the one in Figure 3-11, putting a one-armed router on the FDDI backbone would have 
been fairly common. Then the various bridged Ethernet segments shown could be on different IP subnets. 
The FDDI interface on the router would also have an address from each of the various subnets. Although 
this scenerio was not uncommon, there are several deficiencies in a network built this way.  

Network designers put routers into networks to separate broadcast domains. If they are just going to bridge 
everything together and have a single one-armed router in the middle, then they haven't separated the 
broadcast domains. Furthermore, they've made the network one step worse because they have introduced a 
new, artificial single point of failure for the entire network.  

The same criticism is not necessarily true for Layer 3 switches, though. If the network consists of many 
VLANs, then the trunks between the switches ensure that all VLANs are visible on the backplane of the 
switch. Thus, the Layer 3 switch will not only route, but will also flip the packets between the various 
VLANs. This step can be done very efficiently, and the problem of failure to segregate the broadcast 
domains largely disappears (however, as I will discuss later in this chapter, it is possible to make bad 
design decisions for the VLAN structure that will negate this advantage).  

The question remains, where should you use these sorts of devices? One obvious answer is the Core Level 
of the network. At the Core you have the greatest need for speed, and the greatest potential number of 
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converging VLANs. But this second point is only true if you have no (or few) routers in the Access and 
Distribution Levels of the network. Figure 3-14 shows a hierarchical LAN design in which all VLANs 
converge on the Core of the network. In the two Core switches at the center, a pair of Layer 3 switches 
handles all routing for the network. Everything is redundant at the Core and Distribution Levels.  

Figure 3-14. Hierarchical LAN with central routing 

In this picture, there are four Access switches for each pair of Distribution switches. A total of four user 
LANs converge on the Core switches from above, and another four converge from below. Now the 
designer has to make important decisions about how to handle the VLAN trunks, which affect how routing 
is handled in the Core. There are many options. One option is to simply make everything one large VLAN, 
in which case there is no need to route anything. Or, one could make several small VLANs, all of which 
are visible everywhere in the network. Once again, this means that there is very little advantage to having 
the routers because all (bridged) VLANs must send their local traffic through the entire network anyway.  

Always bear in mind that one of the key points in putting in routers is to limit the chances of broadcast 
traffic from one part of the network causing congestion someplace else. A VLAN is a broadcast domain, so 
you might think that making lots of VLANs results in small broadcast domains and eliminates your 
broadcast problems. This is only partially true, however. Remember that each trunk probably contains 
several VLANs. If an Access Level trunk circuit holds all VLANs for the entire network, it has to carry all 
of the broadcast packets. The effect is the same as if you had done no VLAN segregation at all, only with 
more inherent latency.  
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In Figure 3-14, I assume that I have been able to reduce the traffic so that the upper two Distribution 
switches carry completely different VLANs than the lower two. The only way to get between them is 
through the Layer 3 switches contained in the two Core switches. These Layer 3 switches also have to 
handle the inter-VLAN routing within each of these two groups of VLANs. Figure 3-15 shows the same 
picture at the Network Layer. In this case, it is easy to see the pivotal role played by the Layer 3 switch. 
For symmetry, I have shown four VLANs for both the upper and lower pair of Distribution switches (see 
Figure 3-14). However, as I will discuss later in this chapter, there is no need for the VLANs to correspond 
to the physical Access switches.  

Figure 3-15. Hierarchical LAN with central routing—network-level view 

The important thing to note from Figure 3-15 is that a total of eight VLANs converge on the redundant pair 
of Layer 3 switches. It is not possible for traffic to cross from any VLAN to another without passing 
through one of them. Obviously, redundancy is an important concern, as I will discuss in a moment. But 
there's another important feature. Because all off-segment traffic for each segment must pass through these 
devices, they tend to become serious network bottlenecks if congestion is not controlled carefully. The fact 
that they are connected directly to the backplane of the two Core switches starts to look like a necessity. 
This relatively small example collapses eight separate full-duplex 100Mbps feeds from the various Access 
switches.  

3.5.1.2 Redundancy 

Another key feature shown in Figure 3-14 is redundancy. The two Core switches are completely 
redundant. If all of the traffic aggregates onto a single router that handles the whole enterprise, then that's 
one colossal single point of failure. With some manufacturers, you have the option of putting a redundant 
Layer 3 switch module in the same chassis. This option is certainly an improvement, as I showed in the 
previous chapter. It's still necessary to do all of the MTBF calculations to figure out how much of an 
improvement it gives, though, and to show how the result compares with having a completely separate 
chassis plugged into different power circuits.  

Unfortunately, I can't do this calculation for every possible switch type because vendors implement new 
switches with awe-inspiring regularity. You need to watch out for devices with which the failure of some 
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other component, such as a controller module, affects functioning of the Layer 3 switch module or its 
redundancy options. Every switch seems to do these things differently.  

The bottom line is that, to achieve good redundancy with a single chassis device, there can be no single 
points of failure within the device. Typical MTBF values for the chassis of most switches is sufficiently 
long not to be a serious concern. If you are going to implement a single-chassis solution, however, it has to 
have redundant Layer 3 switch modules, redundant power (N+1 redundancy is usually sufficient), and 
redundant connections to all Distribution Level devices. It may also require redundant CPU modules, but 
in some designs the CPU module is used only for reconfiguring otherwise autonomous media modules. Be 
careful, though, because such a design might mean that redundancy of Layer 3 switch modules will not 
work in the event of a CPU module failure. In this case, the net MTBF needs to be calculated. Even in this 
case, I am talking about a multiple failure situation (CPU module plus one of the Layer 3 switch modules), 
for which the aggregate MTBF should still be quite high.  

The other solution, which is conceptually simpler, is to use two separate chassis, as shown in Figure 3-14
and Figure 3-15. However, in this case you have to use a router redundancy protocol to allow one of these 
devices to take over for the other. In the most common (and most stable) configuration, end devices send 
all of their off-segment traffic to a default gateway. In the one-armed router model, this default gateway is 
the same physical device for all of the segments. To make the module in the second switch chassis become 
the active default gateway for all segments, it has to somehow adopt the same IP address.  

This adoption is most easily accomplished by means of either the Cisco proprietary HSRP protocol or the 
open standard VRRP protocol.  

3.5.1.2.1 Router-to-router segments 

When two or more routers or Layer 3 switches function between the same set of LAN segments, it is 
common to implement an additional segment just for the routers. This construction is shown in Figure 3-
16.

Figure 3-16. Implementation of a router-to-router segment 

The diagram shows three user LAN segments connecting to the two routers called Core A and Core B. 
These two routers also interconnect using the special router-to-router segment. If other routers are in this 
location, then they would be connected here as well. These other devices might be WAN routers or other 
special function routers like tunnel termination points for X.25 or SDLC sessions, for example.  
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The router-to-router segment serves two main purposes. First, and most obvious, if special function routers 
are at this location, it provides a place to connect them where they will not suffer interference from user 
LAN traffic. In many cases, these legacy protocols exist because the applications using them are extremely 
critical to business. Routine word processing and low priority LAN traffic should not be allowed to disrupt 
the more important tunneled traffic, so it needs to go on its own segment. And, conversely, end-user 
devices don't need to see dynamic routing traffic.  

To see the second reason, however, suppose that these other devices are not present and the network 
consists of the two Core routers and three user segments. Now suppose the first Ethernet connection on 
Core A breaks. HSRP or VRRP kicks in promptly, making Core B the default gateway for this segment. 
Core A is still the default gateway for the other two segments, though. Now consider the flow of traffic 
between Segment 1 and Segment 2.  

A user on Segment 1 sends a packet to its default gateway, Core B. Core B forwards this packet out its port 
for Segment 2 and the user on this segment receives it. The response, however, takes a very different route. 
This packet goes to the default gateway for Segment 2, which is Core A, but Core A doesn't have an active 
port on Segment 1 because it's broken. It has to somehow send this packet over to Core B. I'll presume for 
the moment that there is a good dynamic routing protocol, so the two routers know how to get to one 
another and know which ports are functioning properly.  

Core A sends the packet through one of the user LAN segments over to the Core B router. From there, it is 
sent out and received by the right user. So, there are two possibilities in this case. Either the packet was 
forwarded back out on Segment 2 to get over to the other router, or it was sent across on segment three. If 
it went via Segment 2, then that packet had to appear on this LAN segment twice, which could have a 
serious affect on overall congestion. If it went via segment three, then it potentially causes congestion on a 
completely unrelated user segment where it has no business being. This could be a security issue, but it is 
more likely just a congestion problem.  

The easiest way around this sort of problem is to implement a special router-to-router segment. The routing 
protocols must then be carefully adjusted so that this segment is always preferred whenever one router 
needs to access the other.  

Some network designers consider this problem aesthetic and ignore it. If all router ports are connected to 
high-bandwidth full-duplex switch ports, then the problem is much less dangerous. Another thing to 
remember is how VLAN trunks might be loaded in failure situations. For example, if the router-to-router 
segment is carried in the same physical trunk as the user segments, then it doesn't prevent congestion.  

3.5.1.2.2 Physical diversity 

As long as I'm talking about router redundancy, I need to mention a special side topic because it can be 
quite dangerous. On the surface it sounds like putting those two routers in different physical locations 
would be a good idea. For example, they might be in different rooms, on different floors, or even in 
different buildings. This arrangement could save the network in the case of a fire or large-scale power 
problem. But it could also make some simpler types of problems much worse.  

To see why, look at Figure 3-16 and suppose that the left half of the picture including router Core A and 
two user segments are all in one building and everything else is in another building. Now, suppose that you 
have a relatively simple and common problem—a fiber cut between the two buildings. I'll go one step 
further and assume that both routers have some other form of connection back to a central network. 
Perhaps this is actually part of the Distribution level of a larger network, for example. The problem still 
exists without this added twist, but I think this example makes it a little easier to see it.  

When the fiber was cut, VRRP or HSRP kicked in and made sure that all three segments still have a 
default gateway, so all inbound traffic from the user LAN segments will be delivered properly. The 
problem is with the return path. Look at the ports for LAN segment number 1. Both routers Core A and 
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Core B have valid connections to this segment, but only one of them actually contains the particular user 
expecting this packet. Which one is right?  

In many cases, if the central router has two paths available with the same cost, it just alternates packets 
between the two. The first one gets to the correct destination. The second one goes to the other router—the 
one that has a valid connection to the segment that has the right IP address but just doesn't have this user 
on it because the connection between the two sides is broken. So the packet is just tossed off into the ether 
and lost forever.  

Different routers implement this in different ways. For example, some routers work based on flows. A flow 
is a single session. This concept is important to Quality of Service, so it is discussed in detail in Chapter 8.
In this case, the router handles each flow separately, routing all packets belonging to a particular session 
through the same path.  

This just means that some sessions will work and others will try to follow the path that is broken. Also, for 
applications that do not use a Layer 4 connection, such as those built using UDP, it is not possible to divide 
applications into unique flows. In these cases, some of the packets will be randomly lost.  

This will happen for all of the user segments. So a measure that was intended to give better reliability in a 
rare failure mode has actually reduced the reliability in a more common failure mode.  

If you really want to use physical diversity in this way, it has to be combined with path redundancy. 
Instead of running all of your LAN segments through the same fiber conduit so they could all break 
together, you could have another fiber conduit. In this second conduit, you would run redundant 
connections for all segments. Then, to complete the picture, you would use Layer 2 switches with 
Spanning Tree to switch to the backup fiber in case the primary breaks.  

Figure 3-17 shows how this concept might work. In this figure, I've only drawn one of the segments for 
simplicity. The thick dashed lines represent the backup fiber pairs, which go through the second conduit. 
For symmetry, I've also included a backup connection from Switch A to the user segment, even though this 
segment is within the same building. The connection between Switch A and Switch B is required for 
Spanning Tree to work properly, as I discussed earlier in this chapter.  

The Core A and Core B routers are assumed to be directly connected to their respective switches, so you 
don't need to worry about extra redundancy in these connections. Spanning Tree is configured on Switches 
A and B so that when the primary fiber stops working, the secondary one is automatically engaged. The 
same procedure would be followed on all other segments, including the router-to-router segment, if 
applicable.  

Figure 3-17. Physical diversity the safe way 
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In this picture the local floor connection is shown as a concentrator. The actual technology is irrelevant, 
however. It could be a hub, or a switch, or even a piece of 10Base2 cable connected to the fiber pairs by 
means of transceivers.  

3.5.1.3 Filtering 

There are three reasons why you might want to implement filtering on a router:  

• Security 
• Clean up for ill-behaved applications 
• Policy-based routing 

If you really want hard security on an IP network, you should probably be looking at a proper firewall 
rather than a router. But, in many cases, you just want a little security. In an IPX network, a router may be 
the only practical option for implementing security precautions.  

You can do several different types of security-based filtering on a router:  

• Filtering based on source or destination IP address 
• Filtering based on UDP or TCP port number 
• Filtering based on who started the session 
• Filtering based on full IPX address or the external network number 

The decision about which combination of these different filters to use depends on what you're trying to 
accomplish. So, I want to look at some different examples and see how different filter rules might apply.  

3.5.1.3.1 Filtering for security 

It is fairly common, particularly in financial companies, to have an external information vendor such as a 
news or stock quote service. The vendor's service involves putting a box on the client's internal LAN to 
allow them to access real-time information. The security problem is obvious: the external vendor 
theoretically has full access to the client LAN. Since financial companies usually have strict rules about 
access to their internal networks, they need to provide a mechanism that allows the information vendor's 
box to see only the genuine application data that it is supposed to see.  

Assume that the vendor's special application server is hidden on a special segment behind a router. Now 
what sorts of filters can be implemented on this router?  

The first type of filter, based on source or destination address, is probably not going to be useful here. 
There could be many internal users of this service, and you don't want to have to rewrite your filter rules 
every time somebody new wants access. It doesn't do any good to filter based on the address of the server 
because that's the only device on the special segment anyway.  

The second type of filter, based on TCP or UDP port number, on the other hand, should be quite useful 
here. Since the application probably uses a designated port number (or perhaps a range), this could be a 
good way to identify the application packets.  

The third type of filter is only useful if the application is TCP-based. If it is UDP-based, then the router 
cannot discern a session, so it can't tell who started the conversation. If it is TCP-based, and if the 
application starts with the user logging in (which is common), then this filter will help you to prevent the 
vendor's box from being used to initiate an attack on the client LAN.  

What you really want is to combine the second and third filter types. You can do this on a Cisco router just 
adding the "established" keyword to an Access list for the required TCP port number.  
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The other example concerns the IPX filter. It's fairly common to have a special Novell server for sensitive 
data like personnel and payroll records, or other secret information. The payroll server makes a good 
example. The company might have this server on the Human Resources segment and use standard Novell 
authentication systems to ensure that only authorized people can see secret files.  

But the organization may be concerned that these measures are not sufficient to prevent people from trying 
to give themselves a special pay bonus. To help prevent this, you can keep this server on a special segment 
and configure the router to disallow any access from off-segment. The trouble is that members of the 
Human Resources staff still need to get to the other corporate Novell servers. The CEO or other high-
ranking corporate officials that it is supposed to seemight need access to the Human Resources server. So 
you can build a special filter that allows only the CEO's full IPX address (which includes the workstation's 
MAC address) to connect to the full IPX network number (including internal and external network 
numbers) of the server. Then you can allow all other internal network numbers to leave the segment. 
Consult your router vendor's documentation for information about constructing IPX filters.  

3.5.1.3.2 Filtering for application control 

Some applications do not behave in a friendly manner on a large network. An application might try to do 
any number of unfriendly things. For example, it might try to register with a server on the Internet. Or, it 
might send out SNMP packets to try and figure out the topology of the network. Sometimes a server tries 
to probe the client to see what other applications or protocols it supports. From there, the list branches out 
to the truly bizarre forms of bad behavior that I'd rather not list for fear of giving somebody ideas.  

The trouble with most of these forms of bad behavior is that, if you have several hundred workstations all 
connecting simultaneously, it can cause a lot of irrelevant chatter on your network. If you don't have the 
spare capacity, this chatter can be dangerous. The SNMP example is particularly bad because a number of 
applications seem to think that they should have the right to poll every router on the network. In general, 
you don't want your servers to know or care what the underlying network structure looks like. It can 
actually become a dangerous problem because SNMP queries on network gear often use excessive CPU 
and memory resources on the devices. If several servers try to gather the same information at the same 
time, it can seriously hamper network performance. I have seen this problem cripple the Core of a mission-
critical network during the start-of-day peak.  

If you suspect that you have a problem like this, you need to use a protocol analyzer to get a good picture 
of what the unwanted information looks like. You also need to prove experimentally that this information 
is really unwanted. Some applications may just work in mysterious ways.  

Once you have established what the unwanted data looks like and where it's coming from, then you can 
start to filter it out. Usually, it's best to put the filters close to the offending server (hopefully it's the server 
and not the client that is to blame) to help contain the unwanted traffic.  

3.5.1.3.3 Policy-based routing 

Policy-based routing is a Cisco term. Some other vendors' routers have similar capabilities, but I have to 
admit I learned this stuff first while using Cisco gear, so I still think in Cisco terms. This term means that 
the router is able to make routing or prioritization decisions based on whether a particular packet matches 
predefined characteristics. Perhaps it is a source or destination IP address, or perhaps a TCP, a UDP port 
number, or a packet size. By whatever mechanism, you define rules for what happens when the router 
receives packets of this type.  

The rule may specify that you tag the packet with a special priority code so that every other device in the 
network will know that this packet is important and will forward it first (or last, or whatever). Or, the rule 
may be that certain types of packets use the high-speed trunk, while others use the low-speed trunk.  

This last case, in which a routing decision is made based on the policy, is what gives the concept its name. 
It warrants special comment, though. In general, it is extremely dangerous to do this kind of thing for three 
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reasons. First, it can interfere with redundancy mechanisms. Second, it makes troubleshooting 
unnecessarily difficult. (The low-priority ping packet gets through, but the application doesn't work. Is it 
the server or the high-priority trunk that's down?) Third, it has a nasty tendency to run up the CPU on your 
router (although this tendency is less likely in IOS Version 12 and higher because of support for 
FastSwitching of policy-based routing). Yes, it will work, but it's an extremely bad idea in most real world 
networks. Having said this, however, using the same feature to tag packets for priority works extremely 
well.  

One final comment on filtering on a router: it's important to watch your CPU utilization. Modern routers 
tend to try to offload most routing decisions onto hardware associated with the port itself, so most packets 
never have to hit the CPU. This situation results in much faster and more efficient routers. But, depending 
on the router and the specific type of filter you are implementing, you may be forcing a lot of the 
processing back to the CPU. The result could be that your powerful expensive router is no longer able to 
handle even modest traffic volumes. So, when implementing filters, always take care to understand what it 
will do to the processing flow through the router. Often the best way to do this is simply to mock up the 
change in a lab and see what happens to your CPU statistics.  

3.5.2 Switching and Bridging Strategies 

In a LAN, every connection that isn't routed must be either bridged or repeated. I won't discuss repeaters 
much in this book. In modern LAN technology, there is rarely a good reason to use them. In nearly all 
cases, a switch is a better choice, both for cost and functionality. For that matter, conventional bridges are 
also increasingly rare, having been replaced by switches.  

Of course, these comments are mostly semantics. People still use hubs. And what is a hub but a multi-port 
repeater? People still use switches, which are really multi-port bridges.  

If you are dealing with a portion of a LAN that is all logically connected at Layer 3, then you have two 
main choices for our Layer 2. You can use a hub or a switch. This is true regardless of whether the LAN 
technology used at Layer 2 is Ethernet, Fast Ethernet, or Token Ring. It is also true for Gigabit Ethernet, 
although in this case I question the usefulness of Gigabit Ethernet hubs, preferring switches in all cases. 
Fortunately, it appears that the market agrees with me, as I am not aware of any major network hardware 
vendor who has implemented the hub part of the Gigabit Ethernet specification.  

So I'll start by discussing where to use hubs and where to use switches in an Ethernet or Token Ring 
environment.  

Switches have three main advantages over hubs:  

• Higher throughput 
• The ability to communicate at full-duplex (Ethernet) 
• Better control over multicast traffic 

There are two disadvantages to weigh against these advantages: 

• Switches are more expensive 
• It is much easier to use diagnostic tools such as protocol analyzers on a hub than a switch  

A hub (sometimes called Media Attachment Unit [MAU] in Token Ring literature) is basically a way of 
sharing the network's Layer 2 medium. This sharing necessarily has overhead. In Ethernet, the overhead 
comes in the form of collisions. In Token Ring, it appears as token passing latency. In both cases, the 
system for deciding who gets to speak next takes a toll.  

If you replace the hub with a switch instead, then this overhead essentially disappears. There are only two 
devices on the segment (or ring)—the end device and the switch itself. If it is a Token Ring switch, then 
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every end device gets, in effect, its own token. There is never any waiting for the token, so each device can 
use the entire 16Mbps capacity of the ring.  

If it is an Ethernet switch, on the other hand, the only times you should expect to see collisions are when 
both the switch and the end device try to talk at once. Even this small collision rate can be eliminated if 
you go to full-duplex Ethernet. On a large shared Ethernet segment, you can only practically achieve 
between 30% and 50% of the capacity because of the collision overhead. On a half-duplex switch this 
jumps well over 90% of capacity for every device and 100% for full-duplex switching. Thus, the net 
throughput of a switch is considerably higher than a hub with the same number of ports, for both Token 
Ring and Ethernet.  

Most Fast Ethernet and many Token Ring switches can operate in a full-duplex mode. This means that they 
can send and receive simultaneously without collisions. Obviously this mode only works when a single end 
device is attached to each switch port. You can't have a full-duplex connection to a hub. Using a full-
duplex switch has the effect of theoretically more than doubling the throughput to each device. It more 
than doubles because a half-duplex port still loses some capacity due to collisions. This advantage is most 
significant on servers, where it is not unusual to have a high volume of traffic both sending and receiving.  

3.5.2.1 Containing broadcasts 

Broadcasts are an integral part of many network protocols including TCP/IP and IPX. However, having too 
many broadcasts on a network can cause serious problems. The most obvious problem is simply bandwidth 
utilization. However, it is important to remember that broadcasts are delivered to every end device. 
Because these broadcast packets are addressed generically, the network interface cards of these end 
devices cannot tell whether they are important. So they are all passed up the protocol stack to be examined 
by the main CPU of the end device. Having a lot of broadcasts on a LAN segment can cause CPU loading 
problems on end devices, even when they are not actively using the network. Thus, broadcasts must be 
controlled.  

A bridge or switch is supposed to forward broadcasts. This is, in fact, one of the most fundamental 
differences between bridging and routing. Forwarding broadcasts allows devices that are part of the same 
Layer 3 network to communicate easily. All global information on the network is shared.  

A hub can't stop a broadcast without breaking the Layer 2 protocol. Those broadcast packets have to 
circulate, and stopping one would also throw a wrench into the congestion control mechanism (token 
passing or collisions). A switch or bridge, however, can choose which packets it forwards.  

Normally, the way a switch or bridge makes this decision is by looking at its MAC address table. If the 
packet has a destination MAC address that the switch knows is on a particular port, then it sends the packet 
out that port. If the packet has an unknown destination address or if it has a broadcast or multicast 
destination address, then the switch needs to send it out to every port.  

If the network is very large, then the number of packets that need to go out every port can become a 
problem. Usually, in most networks, the broadcast volume is a relatively small fraction of the total number 
of packets. Pathological conditions called "broadcast storms" (see the discussion in the previous chapter) 
can make this broadcast volume suddenly high, though. If these conditions occur frequently, then serious 
performance problems may occur on the network.  

Controlling broadcasts is one of the main reasons why network designers have historically gone from 
bridged to routed networks. With many modern switches, it is possible to push this decision further 
because of broadcast control mechanisms available on these devices. Usually, the broadcast control 
mechanism works by simply monitoring how frequently broadcast packets are seen on a port or on the 
switch as a whole. When the broadcast volume rises above this high-water mark, the switch starts to throw 
away broadcast packets.  
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Clearly, this threshold level has to be high enough that the network rarely loses an important broadcast 
packet (such as an ARP packet). It also has to be low enough so it doesn't interfere with the normal 
functioning of the network.  

This way of treating broadcast storms is reasonably effective. It doesn't prevent them, of course; there will 
still be storms of packets. But this kind of simple measure ensures that they don't represent a serious traffic 
performance problem on the network.  

There is an interesting trade-off in the place where the decision is made to start throwing away packets. If 
the decision is made on a whole switch that happens to be in a broadcast-heavy network, then throttling for 
broadcast storms can actually interfere with normal network operation. On the other hand, just looking at 
the per-port broadcast volumes ignores the possibility that the storm has been caused by the interaction 
between several different devices.  

One of the most difficult types of broadcast storms to control starts with a single device sending out a 
broadcast packet. Then one or more other devices on the network receive this packet and respond to it by 
either sending out a new broadcast (such as an ARP for the originator's IP address) or forwarding the 
original broadcast back onto the network. A good example is the old RWHO protocol, which broadcasts 
periodically.  

Some IP stack implementations like to send an ARP packet in response to a broadcast packet from an 
unknown source. This way, they are able to keep a more complete ARP cache. A large number of different 
devices that respond like this simultaneously, can choke the network for an instant. RWHO is still run on 
many network print servers by default for historical reasons (although I will never understand why it is still 
needed). This problem is actually rather common, and it can be extremely serious if the timeout in the ARP 
cache is shorter than the interval between RWHO broadcasts.  

In this case, the per-port monitoring is not effective at stopping the storm. The storm originates with a 
single broadcast packet, which is the one that really should be stopped, but it is the response that causes the 
problem, and that response comes from everywhere.  

The moral of this story is that just because you implement broadcast storm controls on your switches 
doesn't mean that you won't have broadcast storms. However, if you have such controls in place, you will 
be able to prevent this storm from migrating to another switch. The second switch will see an incoming 
storm on its trunk port and will block it. The problem is at least partially contained.  

3.5.2.2 Redundancy in bridged networks 

Redundancy in bridged networks is important for exactly the same reasons as in routed networks. The only 
differences are in the methods and protocols for redundancy. Just as in the router case, the first step is to 
install a second switch that is capable of taking over if the first fails. Thus, it needs an automatic 
mechanism for this to work effectively.  

The most commonly employed fault recovery mechanism in bridged networks is the Spanning Tree 
protocol. The other type of fault recovery system that I mentioned earlier in the case of trunks is a 
multiplexed arrangement of individual connections. That type of system works well for trunks, but is very 
difficult to use to make the switches themselves redundant. It is difficult because the individual connection 
lines must connect between two specific endpoints. If you have a Distribution level switch connecting to a 
Core switch, you can use this type of system.  

For good redundancy, you should have the Distribution switches connected to two Core switches. If the 
multiplexed bundle of links is split between two switches, then the packets can be sent in two different 
ways. Some trunk mechanisms treat the bundle in parallel and break up each packet into small fragments, 
which are each sent through different links and reassembled at the other side. Other multilink solutions, 
such as Cisco's Fast EtherChannel, ensure that each packet is sent through a single link intact. In this case, 
the extra capacity is achieved by distributing packets among the various links in the bundle.  
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In any case, splitting one bundle among two different switches makes it much harder for the switches to 
effectively manage the bandwidth. It is generally simplest to think of the bundle as a single logical trunk 
and connect it between the two end point switches. Just avoid splitting the bundles.  

3.5.2.3 Filtering 

Most organizations do little or no filtering on their switches. For most networks, this is the right amount. It 
is generally much easier to filter on routers than switches. However, in some cases it is more effective to 
filter on the switches. In general, the same reasons for filtering on routers also apply here:  

• Security 
• Cleaning up for ill-behaved applications 

The other reason I listed in the router case, policy-based routing, could theoretically apply here as well. But 
that sort of facility should be used sparingly at best, and where it is used, routers are a more natural place 
for it, so I do not include it here.  

Security filtering is usually handled on switches in two ways. Many vendors offer some sort of port-level 
security, in which only a specified MAC address is permitted to connect to a particular port. The second 
type of security filtering typically restricts packets according to their contents, usually allowing only 
packets with certain source MAC addresses to communicate with sensitive devices.  

Port-level MAC address security features allow the switch (or hub, since this feature is also available on 
some hubs) to lock out any devices except the one specified. If a particular workstation is supposed to be 
connected to a particular port, then only that workstation will function on that port. If another device is 
connected, it will have a different MAC address and the switch (or hub) will disable the port, requiring 
manual intervention.  

This sort of feature is provided to prevent people from putting unauthorized equipment on the network. It 
is not perfect because many types of devices can use a manually configured MAC address instead of their 
burned-in-address (BIA). But it is a useful measure if this sort of problem is a concern. Note, however, that 
there is significant administrative overhead comes in maintaining the table of which MAC addresses are 
permitted on which ports throughout a large network. Generally, I wouldn't use this feature unless a 
compelling security concern warranted it.  

In the second type of security filtering, you instruct the switch to look at the packet before transmitting it. 
If a sensitive server, for example, is only permitted to communicate with a small list of other MAC 
addresses, then this information could be programmed into the switch. Not all switches allow this sort of 
functionality, and it can be difficult to maintain such a switch. Once again, this feature should only be used 
if there is a strong overriding security concern.  

I have already talked about certain broadcast storm problems. These problems are commonly handled with 
a simple volume filter. In some cases, it may be worthwhile to use a more specific filter. For example, I 
was once responsible for a network that suffered from the RWHO problem mentioned earlier. I was able to 
write a special purpose filter to restrict these packets on the switch. As for the security-based filtering, it 
was also a huge administrative problem. This sort of filtering should be used sparingly, and only where 
absolutely necessary. Bear in mind that switch manufacturers know this, so they tend not to provide 
extensive filtering capabilities.  

3.5.3 VLAN-Based Topologies 

Now that I have discussed how not to use VLANs, I'd like to turn to more positive matters. VLANs are 
typically used in bridged sections of a LAN, but they give two important advantages over older bridging 
techniques. First, they allow much more efficient use of trunk links. The ability to combine several 
segments into one trunk without having to first bridge these segments together allows you to use far fewer 
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physical resources (ports and fiber or copper connections). Second, a VLAN-based architecture built on 
top of a rational hierarchical structure allows great flexibility in expanding or modifying the network 
without having to fundamentally change the Core.  

Here are a few good ways of employing VLANs in a hierarchical network design. Figure 3-18 shows a 
rather typical VLAN topology. In this picture, several different segments are visible on the various Access 
Level switches. These VLANs are collected on the two redundant Distribution Level switches. At the 
Core, two redundant routers handle the VLAN to VLAN routing.  

Figure 3-18. VLANs in a hierarchical network design 

Although this diagram is a vastly simplified version of what you might find in a real large-scale LAN, it 
demonstrates some important features for VLAN topologies. First consider the trunk design.  

3.5.3.1 Trunk design 

Each Access Level switch has two trunk connections to redundant Distribution switches. This switch 
provides excellent fault tolerance. For the purposes of this discussion, let's assume that the trunks are 
configured so that only one trunk is active at a time. The primary trunk must fail completely before the 
secondary trunk becomes active. This fault tolerance scheme is fairly typical for trunks. Each Access 
switch has two trunk connections to provide complete redundancy. Notice that if you had to run a separate 
link for every VLAN, you would need six links for redundant connections to each Access switch. Worse 
still, if you added another VLAN on this Access switch, you would need two more ports and two more 
fiber connections. With the design shown in Figure 3-18 you can keep adding more VLANs to the existing 
trunks until you start to get congestion problems.  

Figure 3-18 has five different VLANs. VLAN 1, the management VLAN, is present on all switches. I will 
talk about network management considerations in more detail later in this book, but for now I will just 
point out that separating your management traffic from your business traffic is a good idea. With this sort 
of VLAN structure, putting the management segment for all switches on the same VLAN is very 
convenient. In any case, one can generally expect management traffic requirements to be much smaller 
than for business application traffic.  
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VLAN 1 is used for network management because some low-end switches require their management IP 
address to be associated with VLAN 1. Since the VLAN naming convention is globally relevant over large 
portions of the network, it's a good idea to use VLAN 1 for management on all switches just in case it's 
required on a device somewhere in the region.  

The other four VLANs are all user segments of various types. I have arbitrarily put two such user segments 
on each Access switch. The actual number of VLANs you should support on each Access switch depends 
on geography and port density. In general, it is a good idea to keep it fairly low for efficiency on your 
trunks.  

Notice no user VLANs appears on all Access switches. VLAN 101 appears on the first two switches, but is 
not present on the third. Similarly, VLAN 102 is only configured on the first switch. This configuration is 
important because of the way it affects trunk utilization. The trunks serving the first Access switch carry no 
broadcast traffic from VLAN 103 or 104, so that spaghetti VLANs can be avoided. If I had not done this, I 
would have quickly wound up with Spaghetti VLANs. Remember that one of the main reasons for 
segregating our traffic is to break up the broadcast traffic. If all VLANs are present on all switches, then all 
broadcasts traverse all trunks. In such a network, the only benefit to using VLANs is that the end devices 
don't see as many broadcast packets. VLANs can provide much greater benefits if they are used more 
carefully, though. Network designers use VLANs for efficiency, so they should not throw that efficiency 
away on a Spaghetti VLAN topology.  

The Distribution switches collect all VLANs. In general, this sort of two-point redundancy is a good idea 
at the Distribution Level, but there will usually be several pairs of Distribution switches collecting VLANs 
for large groups of Access switches. For example, this diagram might just show the first two Distribution 
switches, which collect the first 4 user VLANs (plus the management VLAN) for the first 12 Access 
switches (of which I have shown only 3). Then the next pair of Distribution switches might collect the next 
6 user VLANs for the next 8 Access switches, and so forth. Each group of switches will have a VLAN 1 
for management. This VLAN 1 may or may not be the same VLAN 1 throughout the network, but it can be 
simpler to handle routing if it is.  

3.5.3.2 Trunking through a router 

The previous example had the routers at the Core. This location turns out to be one of the most natural 
places for them in a VLAN-based network design. Suppose, for example, that you wanted to put your 
routers at the Access Level. Then you necessarily route between user VLANs, so it becomes harder to 
bridge different user segments via VLANs. The same is true to a lesser extent if you wanted to put the 
routers at the Distribution Level.  

It's more difficult, but possible, to have the same VLAN existing on two different sides of a router. Figure 
3-19 shows one way to accomplish this feat. This picture shows three switches interconnected by three 
different routers. Switch A holds VLAN 102, Switch B holds VLAN 103, and Switch C holds VLAN 104. 
VLAN 102 has IP address 10.1.102.0, VLAN 103 has 10.1.103.0, and VLAN 104 has 
10.1.104.0. So, as long as the three routers know how to route to these three IP addresses, everything 
will work fine.  

But there is a problem with VLAN 101. This VLAN, which has IP address 10.1.101.0, is present 
behind all routers. So if a device on VLAN 101 on Switch A wants to communicate with another device on 
VLAN 101 on Switch B, the packet will hit Router A and won't know where to forward this packet. After 
all, the IP address range 10.1.101.0 is directly connected to one of its Ethernet ports. The IP address 
range is broken up behind different routers. Even the VLAN tagging information present on the other three 
VLANs disappears as soon as it hits the routers.  
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Figure 3-19. A VLAN split by routers 

Routers are Layer 3 devices and they forward packets based on Layer 3 protocol information. VLAN 
information is fundamentally a Layer 2 concept. Thus, the only way to get around this problem is to 
configure a bridge or a tunnel that emulates Layer 2 between the various routers or switches (it could be 
done either as a router-to-router tunnel, or a switch-to-switch, or even switch-to-router bridge group). 
Then, when the device on VLAN 101 on Switch A sends a packet to the device on VLAN 101 on Switch 
B, the packet enters the tunnel and is transmitted to both Switch B and Switch C automatically. In short, 
the network has to bypass the routers.  

There are many problems with this sort of solution. It is inherently more complicated because of the extra 
step of setting up tunnels or bridge groups. The designer has to be extremely careful that whatever fault 
tolerance systems he has in place supports the tunnel or bridge group transparently. As I have mentioned 
previously, having an IP subnet broken across two routers is disastrous.  

There is also potentially much extra traffic crossing these links. Suppose a device on Switch C, VLAN 
104, wants to communicate with a device on Switch A, VLAN 101. The packet first goes to Router C, 
where it is forwarded to the local Switch C instance of VLAN 101. Then the switch bridges the packet over 
to Switch A. This packet passes through Router C twice.  

Now suppose a device on VLAN 101 on Switch A sends out a broadcast packet to every other device on 
VLAN 101. This packet has to be duplicated and sent out to both Switches B and C (hopefully they will be 
configured to not reforward the packet again or it will cause a mess), again passing through the local router 
twice. The network in this simple picture has effectively doubled whatever broadcast congestion problems 
it might have otherwise had.  

Now suppose that a device on any of these VLAN 101 segments wants to send out a packet to a VLAN 
102 device. The destination is not on the local segment, so the source device must send this packet to the 
default router. But there are three routers on this segment—which one is the default? In fact, it could be 
any of them, so a device on Switch A may need to send its packets to Router B, which then forwards the 
packet back to Router A to be delivered to VLAN 102. The backward path is just as convoluted.  
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The other problem with this configuration is that it makes network management difficult. Suppose there is 
a problem in the IP address range 10.1.101.0. The engineer trying to solve the problem still doesn't 
have any idea where that device is. There could be a problem with any of the three routers or with any of 
the three switches, and it could affect devices in one of the other locations.  

The network designer should try to avoid this situation whenever possible. A good rule is to never try to 
split a VLAN across a router. It can be done, but the potential for serious problems is far too high. There is, 
however, one important case when it is unavoidable: when some external network vendor provides the 
intermediate routed network. The two sides of the same VLAN could be in different buildings on the 
opposite sides of a city, for example. If the link supplied by the network vendor is provided through a 
routed network, then there may be no other option but to use such an approach.  

3.5.3.3 Trunks 

So far I've talked about trunk links like they had some sort of magical properties, but there is really nothing 
particularly special about them. A trunk can be any sort of physical medium. Generally, it should support 
relatively high bandwidth to be effective, but the actual medium could be just about anything. The most 
common technology used in trunks is Fast Ethernet, although Gigabit Ethernet is increasingly popular. 
ATM links are also used frequently. FDDI used to be fairly common, but it is being replaced as a trunk 
technology because Fast and Gigabit Ethernet systems are cheaper and faster.  

What makes a trunk link special is the fact that it carries several distinct VLANs simultaneously. This is 
done by an extremely simple technique. Each packet crossing through the trunk looks exactly like a normal 
packet, but it has a couple of extra bytes called the VLAN tag, added to the Layer 2 header information. 
The tag's precise format and contents depend on the specific trunk protocol.  

Trunks are useful because they allow the network designer to economize greatly on switch-to-switch links. 
If you had to carry three different VLANs (a modest and reasonable number) from an Access switch to a 
pair of redundant Distribution switches without using trunks, you would need at least six links. But if you 
did use trunks, you could achieve full redundancy with only two links. Better still, if you suddenly had to 
set up a new VLAN on that Access switch, you could do it all in software. There is no need to run another 
pair of uplink fibers to the Distribution switches.  

To work as a trunk connecting two switches, both ends must know that the link in question is intended to 
be a trunk. They must also agree on the trunk protocol (which specifies the VLAN tagging format). This 
protocol usually has to be configured manually. But then, by default, most switches treat this link as a 
common trunk for all the VLANs this switch knows about. Some switches allow you to separately specify 
which VLANs use which trunks. In some ways, this specification is contrary to the spirit of trunks. But it 
can be a simple method for balancing the loading of your trunks, and in particular a method to divide up 
the broadcast traffic.  

Generally, the trunks connect Access Level switches to Distribution Level switches in hierarchical network 
designs. Then there may or may not be further trunks connecting Distribution to Core Levels, depending 
on where the routers are. Extending trunks between two Access Level devices is not usually recommended; 
one usually wants to keep the relationship between the different levels as clear and clean as possible. 
Access devices that act as Distribution devices can make troubleshooting network problems difficult.  

3.5.3.3.1 Trunk protocols 

There is an IEEE standard trunk protocol, called 802.1Q. Because this standard was developed and 
released in 1998, after the requirement for such a protocol appeared, a handful of vendor-proprietary trunk 
protocols also exist. One of the most common is Cisco's ISL protocol, but several other proprietary trunk 
protocols are on the market.  
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ISL and 802.1Q share many similarities. Both protocols feature a generic VLAN header that can support 
several different standard LAN types. A trunk can contain many different VLANs, each of which can run 
many different Layer 3 protocols.  

Other proprietary trunk protocols have other nice features as well. The Cabletron SmartTrunk system was 
relatively popular at one time because of its automated fault-recovery and load-sharing properties.  

However, I recommend using the open standard wherever possible. All major manufacturers now 
implement 802.1Q, so there is very little reason to use the proprietary trunk solutions any longer, and I 
don't recommend doing so. The unique nature of trunking makes it one of the most important areas for 
using open standards.  

Most networks have distinctly different requirements at their Access Level than in the Core or Distribution 
Levels. Consequently, it is quite likely that the switches at these different levels could come from different 
vendors. Since the hierarchical design model has most of its trunks running between these different levels 
and only a small number within a level, there is a good chance that you will have to connect a trunk 
between switches made by different vendors.  

The difference between a regular Ethernet frame and an 802.1Q tagged frame is shown in Figure 3-20.
Four extra octets (8-bit bytes) are added to the frame just before the length/type field. To ensure that this 
tagged frame isn't mistaken for a normal Ethernet frame, the "tag type" field is always the easily identified 
sequence "81-00" (that is, the first byte is 81 in hex and the second is 00 in hex). Then the remaining two 
bytes specify the VLAN information. For compactness, these two bytes are broken down into three fields 
of different bit lengths.  

Figure 3-20. Q VLAN tagging format compared with normal Ethernet framing 

The priority field is a three-bit number, also called "Class of Service" in some literature. Because it has 
three bits, this field can have values from 0 to 7. I will talk more about prioritization later in this book. But 
for now it's important only to note that Class of Service is a MAC-level priority, so it is not the same thing 
as the higher layer QoS concepts such as the TOS (Type of Service) or DSCP (Distributed Services 
Control Point) fields in the IP packet header. Putting this new Class of Service field in Layer 2 makes it 
easier for Layer 2 devices such as switches to use it.  

Also note that the priority field is independent from the VLAN identifier field. It is possible to classify 
priorities on a trunk so that one VLAN has precedence over another and that a particular application on one 
VLAN has precedence over another application on a different VLAN. This concept will be important when 
you start to encounter congestion on your trunks.  

The one-bit CFI field is the "Canonical Format Indicator." This field is set to 1 if a RIF (Routing 
Information Field) is in the Data segment of the frame, and 0 if there isn't. A RIF is a piece of information 
that allows a device to request a particular path through a bridged network. The CFI field makes it easier 
for switching devices to deal with RIF data by saving them the time of looking for this data when it isn't 
present.  
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And then comes the 12-bit VLAN identifier field. Having 12 bits, it could theoretically handle up to 4,094 
different VLANs (since there is no VLAN zero and VLAN 4,095 is reserved). But I urge caution in 
configuring VLAN numbers greater than 1000 because of intervendor compatibility problems. The 
problem is that some switch vendors implement VLANs internally using their own native proprietary 
systems and then merely translate to 802.1Q. Some of these internal schemes have trouble with VLAN 
numbers greater than 1000. Worse still, some early VLAN schemes could only support a few hundred 
VLAN numbers, so don't assume that it will work until you've tried it.  

Always remember that if you share VLAN numbers across a large Distribution Area, every switch in this 
area must agree on VLAN numbers. This is rarely a serious problem because a Distribution Area 
containing more than a few hundred VLANs would suffer from serious efficiency problems anyway.  

3.5.3.3.2 Trunk redundancy 

All of our discussion of trunks so far in this chapter has assumed that you will run redundant trunk links 
everywhere, but, in fact, there are two different ways to handle trunk redundancy. You can use Spanning 
Tree to keep one entire trunk dormant until there is a failure on its partner. Or, you can run both trunks 
simultaneously and consider all of the individual VLANs running through them to be distinct virtual links. 
Then you can run Spanning Tree separately for each VLAN.  

In fact, it is not possible to run Spanning Tree separately for each VLAN when using 802.1Q, but it is 
possible with other trunk protocols, such as Cisco's ISL.  

The per-VLAN option is considerably more complex, but it can sometimes be useful. Consider, for 
example, the network shown in Figure 3-18. The first Access switch has trunk connections to both 
Distribution switches. Suppose the upstream connections to VLAN 101 on the first Distribution switch 
were to break. In this case, you would want to use the second trunk, which goes to the second Distribution 
switch.  

This scenario is actually relatively easy to get around. All you need is a trunk link between the Distribution 
switches. Then the first Distribution switch acquires its lost connection to VLAN 101 via the second 
Distribution switch through this trunk link.  

In fact, it is extremely difficult to come up with examples where this is not the case. In general, since I 
always prefer simplicity to complexity, I prefer to use Spanning Tree on whole trunks rather than more 
individual VLANs within a trunk. Further, because many switches do not support running Spanning Tree 
for individual VLANs, compatibility helps to dictate the best methods as well.  

However, this example brings up an important issue. If you run Spanning Tree on the individual VLANs in 
a network, you should not run it on the trunk as a whole. Conversely, if you run it on the trunk, you should 
disable it on the individual VLANs. It is very easy to generate serious loop problems by using a mixture of 
the two approaches.  

When considering trunk redundancy, it is important to think through what will happen when a trunk 
breaks. A good hierarchical design with Spanning Tree should have very few problems recovering from a 
fault. One thing to beware of is a failure that breaks a Layer 3 network.  

Figure 3-21 shows a network that has two routers for redundancy. These networks both serve the same IP 
subnet and the same IPX network. Assume that they have an automated system for IP redundancy such as 
VRRP or HSRP. No such system is required for IPX, so if the primary router on the segment fails, the 
other one will take over.  
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Figure 3-21. When a trunk breaks, it must not fragment a Layer 3 network 

The same VLAN, number 101, which has IP address 10.1.101.0, exists on both switches. Then, for 
diversity, the first router connects to the first switch and the second router connects to the second switch.  

This design is seriously flawed. Consider what happens when the trunk connecting the two switches fails. 
Suddenly two distinct unconnected LAN segments have the same IP address range and the same IPX 
network number. Now both routers provide valid routes to these networks. Thus, no communication will 
work properly to either segment. This is almost exactly the same problem I described earlier with two 
routers on the same LAN segment, but here you can see that it happens with VLANs as well.  

How does one resolve this problem? A couple of different approaches are available. One method connects 
both routers to both switches, as shown by the addition of the dashed lines in Figure 3-21. This solution is 
not always practical, depending on the capabilities of the routers, since it implies that both routers have 
multiple interfaces on the same network.  

In fact, the simplest solution is to just run a second trunk between the two switches, as shown with the 
dotted line. Then you can simply rely on Spanning Tree to activate this link if the primary fails. 
Furthermore, if you suffer a complete failure of one entire switch, then you lose half of your workstations, 
but at least the other half continues to work. A failure of one router allows the other to take over 
transparently, so this is the most acceptable solution.  

However, in a good hierarchical design, this sort of problem is less likely to arise because each Access 
switch connects to two different Distribution switches. Thus, the network would need to have multiple 
simultaneous trunk failures to get into this sort of problem.  

3.5.3.3.3 Trunks on servers 

Some types of servers support VLAN trunks directly so that you can have a single server with 
simultaneous presence on several different VLANs, as shown in Figure 3-22.
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Figure 3-22. Some servers connect directly to trunk links to access several VLANs 
simultaneously 

This is certainly an interesting thing to do, but it's important to understand why you would want to do this 
before trying it. There are different ways to achieve similar results. For example, many servers support 
multiple network interface cards (NIC). Installing two NICs in a server and connecting them to different 
VLANs via different switch ports has the benefit of simpler configurations on both the switch and the 
server and provides higher net throughput. Alternatively, if you can't afford to use multiple physical ports 
for whatever reason, then you could just as easily put the server behind a router and let the traffic route to 
all of the different user segments.  

However, this strategy is cost-effective in some cases. For example, if the trunk connection is a Gigabit 
Ethernet link, it might be significantly less expensive than deploying a router solution, as routers with 
high-speed interfaces tend to be very expensive. At the same time, Gigabit Ethernet ports on switches can 
be costly. This strategy may be a convenient way of deploying a server for multiple user VLANs.  

However, this method does not scale very well. If there will be many such servers, it would likely be less 
expensive in the long run to build a specialized high-speed server segment behind a router. Because it is a 
trunk link, the different VLANs will also compete with one another for server bandwidth on this link.  

In previous chapters I made the point that only network devices should perform network functions. 
Therefore, I don't like connecting an end device to multiple VLANs, whether it is through a single port or 
through multiple ports. An end device should have a single connection to the network unless there is a 
compelling reason to do something more complicated.  

3.5.3.4 VLAN Distribution Areas 

One of the key concepts in building a VLAN-based network is the VLAN Distribution Area. Many 
networks have only one VLAN Distribution Area, but having only one in extremely large networks is not 
practical. It may be useful to break up the Distribution Areas of a network to improve efficiency. Figure 3-
23 shows what I mean by a Distribution Area. This example is unrealistically symmetrical but the 
symmetry is not relevant to the concept.  
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Figure 3-23. Distribution Areas 

In this diagram, four Access switches are connected to each pair of Distribution switches; Access switches 
A1, A2, A3 and A4 all connect to Distribution switches D1 and D2. Similarly, the next four Access 
switches connect to the next two Distribution switches, and so on. The central routing Core of the network 
allows the VLANs that appear on these various switches to connect to one another.  

The four VLAN Distribution Areas in this picture are arbitrarily named A, B, C, and D. There is really no 
need to name your Distribution Areas, but it might help to rationalize the scheme if you do so. The 
essential idea is that the VLAN scheme is broken up so that there is no connection between the VLANs of 
different areas.  

Why would you want to break up the scheme this way? Well, there are two main advantages to this 
approach. First, you may need to reuse certain VLAN numbers. This might happen because certain VLAN 
numbers such as VLAN 1, which is often reserved for network management purposes, are special. Or, it 
may happen simply because of limitations on VLAN numbering schemes on some hardware. For example, 
some types of switches only allow VLAN numbers up to 1000 or 1005, despite the theoretical limit of 
4094 in 802.1Q.  

The second and more compelling reason for breaking up your VLAN Distribution Areas is to simplify your 
Spanning Tree configuration. The network shown in Figure 3-23 has four different Root Bridges. All 
traffic has to pass through the Root Bridge in Spanning Tree networks. This situation can result in wildly 
inefficient traffic patterns. Breaking up your hierarchical design, as in this example, allows you to control 
your traffic patterns so that all packets between Core and Access Levels take the most direct path.  

The disadvantage to building a network this way is that it makes it harder to share VLANs throughout the 
larger network. For example, since no trunks exist between Distribution Areas A and B, sharing VLANs 
between these areas is not possible. It is critically important that you thoroughly understand what VLANs 
need to go where when constructing a VLAN Distribution system.  

In most cases, it is best to build these Distribution Areas geographically. It is quite rare to find an 
organization that does not physically group employees performing related tasks. If there is a need for easy 
information sharing over the network, then chances are that this need exists for physical proximity as well. 
This is not true universally, of course, but most organizations attempt to group themselves this way. A 
logical way to build Distribution Areas would be to build on a campus LAN, or by groups of floors in a 
large building.  
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The other nice feature about using Distribution Areas in this way is that it tends to prevent propagation of 
the VLAN Spaghetti problem. It tends to force the network to use both a reasonable number of VLANs in 
an area as well as prevent too much geographical spreading of VLANs.  

3.5.3.5 Sizing VLAN Distribution Areas 

Although technical and theoretical limitations on how many VLANs one can define in a VLAN 
Distribution Area exist, practical limitations are considerably lower. The Distribution switches have to see 
all of these VLANs, as do the routers that allow VLAN-to-VLAN connections. If the connection to the 
router is done by means of trunk connections, then the router has to have a logical interface for every 
VLAN.  

Every additional VLAN in a Distribution Area requires additional CPU and memory resources in the 
Distribution (and possibly also the Core) Level of the network. Since every vendor implements these 
features differently, establishing solid rules for the maximum number of VLANs in a VLAN Distribution 
Area is not possible. A dozen VLANs are not likely to cause any problems, but a thousand is probably a 
bad idea. The two places you need to be concerned about are the routers that handle VLAN-to-VLAN 
connections and the Distribution switches (particularly the Root Bridge) that have to handle all the 
individual VLANs.  

On Cisco routers, the usual rule for a safe upper limit to the number of logical interfaces is somewhere 
between 50 and 200, depending on the type of router and the amount of processing required. If the router 
(or Layer 3 switch) has to do a lot of filtering or has to look at more than just the destination address of 
each packet, then the number of VLANs should be reduced radically.  

Remember that these numbers, while just general orders of magnitude, are for the entire router. If the 
router is used to interconnect several different Distribution Areas, then the number of VLANs in each area 
should be kept low to allow the router to function effectively.  

The same arguments apply to the switches themselves. If the Distribution switches act strictly as switches, 
without needing to do any filtering, prioritization or other CPU intensive activities, they should be able to 
handle more VLANs. The more additional work the switch needs to do, the fewer VLANs it should have to 
carry.  

In many cases, the governing factor for how many VLANs to allow in a Distribution Area is actually the 
backplane bandwidth of the Root Bridge (which should be the primary Distribution switch for the area) 
and the aggregate downstream bandwidth used by the trunks to the Access switches. There is a single Root 
Bridge through which all off-segment packets for a VLAN must pass.  

Earlier in this chapter, I said that a good rule for trunk aggregation is to assume that 5% of the devices on 
the network will burst simultaneously. If you apply this limit to the backplane of the Root Bridge, then you 
should get an extreme upper limit to how many devices should be supported by a single Distribution Area, 
independent of the number of VLANs used.  

Typical modern switch backplane speeds are between 10 and 50Gbps. If all workstations are connected to 
Fast Ethernet ports, then this switch can support somewhere between 10,000 (for the 10Gbps backplane) 
and 50,000 (for the 50Gbps backplane) workstations. Because the aggregate backplane speed includes all 
possible directions, I have included a factor of 2 to account for both sending and receiving by the bursting 
workstations.  

Clearly, these numbers are vast overestimates for several reasons. First, these nominal aggregate backplane 
speeds are measured under optimal conditions and ideal traffic flow patterns that are almost certainly not 
realized in a live network. Second, this switch may have to do a lot of work filtering, tagging, and 
prioritizing traffic, as well as its primary switching functions. So it probably doesn't have the CPU capacity 
to handle this much traffic, even if its backplane does. Third, you should always keep a little bit of power 
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in reserve for those rare moments when the network is abnormally busy. Fourth, related to the third point, 
you should always allow room for growth.  

A reasonably safe hands-waving estimate for the maximum number of workstations that should go into a 
Distribution Area is somewhere on the order of 1000. If every VLAN supports 50 workstations, it would 
probably be a good idea to keep the number of VLANs in each Distribution Area at around 20.  

As the backplane speeds of these switches increases, generally so do the attachments speeds of devices. 
The reader may have access to switches with backplane speeds of several hundred Gbps that were not 
available when this book was written. If the reader also has a number of devices connected using Gigabit 
(or the emerging 10Gbps Ethernet Standard), then the factors still come out about the same.  

3.6 Implementing Reliability 

Reliability in a network comes primarily from careful design work—the result of the right mixture of 
simplicity and redundancy. Too much redundancy in either equipment or connections results in 
complexity, which makes a network harder to maintain and more likely to break in strange, unexpected 
ways, having too many links also makes it hard for the dynamic routing protocols to find the best paths 
through the network, which results in instability as well. Of course, you need some redundancy to 
eliminate your key single points of failure. However, you should never sacrifice the simplicity in your 
overall concept of the network.  

Coupled with this concept is the issue of scaling. The concept of the network should be clear enough that 
adding new parts or eliminating old ones should not change it fundamentally. Scaling becomes a reliability 
issue because every network grows and changes over time. You should ensure that something that once 
worked will continue to work.  

Throughout this chapter, I show example networks that have every Distribution Area connected through 
two Distribution switches, with every Access switch connected to both. Every Core or Distribution router 
has a backup. Every trunk link has a secondary link. These backup connections are never ad hoc; they are 
part of the global plan of the network. If a particular structure is used in the Distribution Level of the 
network, then it is used similarly in every Distribution Area. This modular construction scheme makes the 
network much easier to manage and easier to grow, migrate, and change.  

Wherever you use backup links and backup devices, you must have automated fault recovery systems. 
There is little point in implementing a secondary device that does not automatically take over when the 
primary fails. Once again, simplicity of concept is the rule in the fault recovery system.  

It is best to use as few automated fault recovery systems as possible. Spanning Tree is able to swing traffic 
to backup trunk links when the primary trunks fail, but the same configuration can also bring a backup 
switch on line if the primary switch fails. There is no need in this case to implement more complex 
strategies that might treat these two problems separately.  

3.6.1 Multiple Connections 

Not every device can have a backup. In most cases, it is neither cost effective nor technically practical to 
back up the Access Level of the network. Most end devices can only effectively use one network 
connection. Any system of redundancy at the Access Level ultimately reaches a single point of failure 
somewhere. Since one of the primary design goals is simplicity, it is best to acknowledge that one cannot 
readily implement redundancy in the Access Level and should instead work on ensuring the reliability of 
the rest of the network.  

Looking back at Figure 3-23, each Access switch has two trunks, one to each of two redundant 
Distribution switches. With this configuration, you can lose any trunk connection, or even one of the 
Distribution switches, without affecting user traffic through the network.  
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In this picture, both Distribution switches also have redundant connections to the network Core, but the 
Core itself is not shown in detail. It is not shown because, up to this point, the network design is fairly 
generic. Later in this chapter, I will discuss the different options for locations of routers in a large-scale 
LAN. They can be in the Core, in the Distribution Level, or in both. The appropriate types of connections 
for these different design types are slightly different.  

The key to working with backup links, switches, and routers is in the automated fault recovery system 
used. Since a Distribution Area is essentially a set of parallel broadcast domains, the best way to 
implement redundancy is to use Spanning Tree.  

I mentioned earlier in this chapter that to use Spanning Tree effectively, the two Distribution switches must 
have a trunk connection between them. Another way of looking at this is by our simplicity requirement. 
The Spanning Tree Protocol needs to have a Root Bridge, which is the main switch for a Distribution Area 
through which all traffic must pass. Simplicity tells you that you should have every other switch in the 
Distribution Area connected as directly as possible to this Root Bridge. If possible, the Root Bridge should 
have a single trunk connection to every other switch in the area. Then, the backup Root Bridge switch also 
must have a direct trunk connection to the primary. Similarly, every other switch in the area needs a direct 
trunk to the backup Root Bridge in case the primary fails.  

There are inherent scaling problems with directly connecting every switch to both of the two Distribution 
switches, which will always limit the number of switches in a Distribution Area, as I have already 
discussed. Keeping your Distribution Areas relatively small and modular will be good for overall network 
performance anyway.  

Router-to-router redundancy has different requirements for multiple connections than the switch-to-switch 
case I was just discussing. The dynamic routing protocols for IP operate completely differently from the 
Spanning Tree Protocol. Instead of shutting down redundant links, IP routing protocols seek only to rate 
the different path options and select the most appropriate at the time. If one path goes away, another is 
selected from the list of possibilities.  

Again, simplicity is the watchword for IP dynamic routing protocols. Every router in an OSPF area must 
maintain information about all of its neighboring routers (the ones with which it shares a direct link), and 
routing table information about every other device in the area. It is important to keep the topology of an 
area as simple as possible. The simplest schemes connect everything redundantly, but with as few 
connections as possible.  

3.7 Large-Scale LAN Topologies 

There are three main options for large-scale topology. If you want to use VLANs, and their benefits should 
be clear by now, then you need to have routers to interconnect them. Your options basically come down to 
where to put these routers. You can put them in the Core or in the Distribution Level, or you put them in 
both. It is usually best to avoid putting routers at the Access Level of a LAN, but for very large networks it 
is easy to see that you get much better scaling properties if you include routers in the Distribution Level.  

3.7.1 Routers in the Core Level 

Perhaps the simplest and most obvious way to build a large-scale hierarchical network is to use a model 
like that shown in Figure 3-24. In this diagram, several different Distribution Areas are connected via a 
central Routing Core consisting of two routers. All Distribution Areas are redundantly connected to both 
Core Routers from both Distribution switches.  
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Figure 3-24. A hierarchical network with central routing 

The result of all these redundant connections is that any device in the Core or Distribution Levels can fail 
without affecting network operation. Each Distribution Area has redundant Distribution switches, either of 
which can act as a Root Bridge for this area. Both Distribution switches have connections to both of the 
two Core routers. If either Core Router fails, you have complete redundancy.  

The best part of the redundancy in this network is its simplicity. There are only two central routers (there 
may be additional routers connecting to remote sites, as I will discuss shortly), and either can quickly take 
over all central routing functions in case the other fails. Because of the way that these routers are 
connected to one another and to all Distribution switches, they can both be used simultaneously. However, 
the extent to which these routers share the load depends on how the dynamic routing protocols are 
configured.  

The limitation to this design is the capacity of one of the Core Routers. You must configure these two 
routers so that either is able to support the entire network load in case the other fails. So Figure 3-25 shows 
a simple way of overcoming this limitation. It still has a central routing Core, but now there are four 
routers in the Core. Each pair of routers is responsible only for a small part of the network.. 
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Figure 3-25. Central routing model for increased capacity 

There are many different ways to connect such a Core. Figure 3-25 shows a Core with four routers that are 
interconnected with a full mesh. I have already indicated that a full mesh does not scale well, so if the 
network will need further expansion, full mesh would not be a good option. Figure 3-26 shows a similar 
network but with six central routers connected to one another by a pair of central switches.  

Note that there need be no VLANs defined on these two switches. Both switches S1 and S2 have 
connections to all six routers. A natural way to define the IP segments on these switches is to have one 
switch carry one subnet and the other carry a different subnet. Then if either switch fails, the dynamic 
routing protocol takes care of moving all traffic to the second switch.  

In this sort of configuration, it is generally useful to make the routers act in tandem. Assuming that 
Distribution Areas consist of two Distribution switches and several Access switches, you would connect 
both switches to both routers in this pair, and you can connect several Distribution Areas to each pair of 
routers. The actual numbers depend on the capacity of the routers. All connections will be fully redundant. 
Then only the Distribution switches that are part of this group of Distribution Areas will connect to this 
pair of routers. The next group of Distribution Areas will connect to the next pair of Core Routers.  

3.7.2 Routers in the Distribution Level 

There are two ways to bring the routers into the Distribution Level. One is to simply extend the concept 
shown in Figure 3-26 and arbitrarily proclaim that the two central switches S1 and S2 are now the Core 
and the routers are all in the Distribution Level. The distinction between "Core" and "Distribution" Levels 
is somewhat vague and depends partially on where you draw the lines. One problem with this way of 
drawing the lines is that these routers interconnect different Distribution Areas, so it is a little tenuous to 
claim that they are part of the Distribution Level.  
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Figure 3-26. Central routing and switching 

The second way of bringing routers into the Distribution Level is to have one (or preferably two, for 
redundancy) router for each Distribution Area. This option is shown in Figure 3-27.

Figure 3-27. Distributed routing and central switching 

One advantage to this approach is that it provides a very natural application of Layer 3 switching. Each 
Distribution switch could contain a Layer 3 switching module. This way, you can provide efficient VLAN-
to-VLAN communication within each Distribution Area. You would then construct two additional VLANs 
on each Distribution switch that would connect to the two central switches.  

In this sort of model, where routing functions are downloaded to the Distribution Level, another sort of 
efficiency can be used. Since how you decide which VLANs comprise a VLAN Distribution Area is 
somewhat arbitrary, you can deliberately choose your areas to limit traffic through the Core. This may not 
always be practical, particularly if the Distribution Areas are selected for geographical reasons. If it can be 
done, though, it may radically improve the network performance through the Core.  

3.7.3 Routers in Both the Core and Distribution Levels 

It's pretty clear that the network shown in Figure 3-27 has good scaling properties, but there are limits to 
even this model. In Chapter 6, I will discuss the IP dynamic routing protocol called OSPF. This protocol 
allows IP routers to keep one another informed about how best to reach the networks they are responsible 
for. There are other dynamic routing protocols but OSPF is an open standard and an industry norm. The 
comments that follow turn out to be applicable to most of the alternatives as well.  
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In Figure 3-27, all of the routers talk directly to one another through the Core switches. In any dynamic 
routing protocol, every router must know about all of its neighboring routers. It maintains a large table of 
these neighbor relationships and has to keep it continuously up to date. The more neighbors it has, the 
harder this job becomes, with similar scaling properties to a fully meshed network. The usual rule is that 
you never want more than 50 routers in one OSPF area. There are exceptions to this rule, as I will discuss 
in the section on OSPF, but it is never wise to push it too far.  

If you want no more than 50 routers in your Core, then you can have no more than 25 VLAN Distribution 
Areas, since there are two routers in each area. With a capacity of over a thousand users in each 
Distribution Area, this is a limit that only large organizations will hit. However, it turns out that it isn't 
terribly difficult to overcome.  

All you need to do is create a hybrid of the two solutions, with routers in the Core and Distribution Layers. 
Each Core router will handle several Distribution routers to allow excellent scaling properties. Figure 3-28
shows an example of how this hybrid might work. In this figure, the two Core routers that serve the 
Distribution Areas shown are the OSPF Area Border Routers (ABR) for these Distribution Areas.  

Figure 3-28. Distributed routing coupled with central routing 

There are two other key advantages to this sort of design. First, it makes it extremely easy to spread the 
Distribution Areas geographically. In fact, you could even make your Core spread physically throughout a 
campus area, or even across several cities. However, doing so is generally not a good plan. The Core in 
this case represents our OSPF area 0 (a concept that I will explain in Chapter 6). There can be performance 
and reliability problems in a network that has its area 0 dispersed over wide area links. These problems can 
be overcome with careful tuning of OSPF parameters, but it leads to a network Core that has to be 
monitored very closely. A broken link in the Core could have disastrous consequences.  

It is actually simpler to have the Core in a single geographical location and to bring the links to the various 
Distribution Areas via WAN links.  

That point leads to the second advantage. It is very easy to integrate a large WAN into this sort of design, 
as I will show in the next section.  
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3.7.4 Connecting Remote Sites 

In all but rare exceptions, if you want to get data to remote locations, it is best to route it. Bridging over 
WAN links should never be the first choice. Thus, the question becomes, where do you connect the routers 
for these remote sites into your LAN?  

There are three possible types of WAN links that you might be interested in connecting. There might be a 
few geographically remote sites connecting into your LAN, or you might want to attach a more elaborate 
branch network. The third option involves connecting to external networks such as the public Internet.  

In both of the internal cases, it is best to put these connections on routers, and in both cases you should put 
these routers as close to the Core as possible. Exactly where you connect them depends on where your 
other routers are. In the external case, the connection should almost certainly be behind a firewall. The 
question you need to answer here is where to put the firewall.  

For internal networks, including both WANs of minor and major proportions, you have to share dynamic 
routing information with the existing routers. I assume throughout this discussion that this dynamic routing 
protocol is OSPF, but again, the comments apply generally to most dynamic routing protocols.  

The main difference between the case of the small and large WAN is just one of numbers. A WAN of any 
size should never be part of the network's OSPF area 0. For a single external site, you might be able to get 
away with it, so I will briefly discuss the single site case.  

The easiest way to treat a single external site is to think of it as a VLAN Distribution Area of its own. If it 
is a sufficiently important external site, then you might want to allow multiple routers and multiple WAN 
links. A smaller site might be connected with only a single link, probably with dial backup.  

There will be a router on the remote site with some sort of WAN circuit connecting it to a router on the 
main site. One simple way of connecting this router on the main site is to treat it as just another VLAN 
router. For the case where routers are connected only in the Core, the easiest method is to connect this 
WAN router to the Core routers as if it were one of them.  

It is generally not a good idea to use the LAN Core router as a WAN router. The requirements for LAN 
Core routers are different from the requirements for a WAN router. The LAN Core router has to handle a 
lot of VLANs and has to move packets between similar media as quickly as possible. The WAN router has 
to buffer data and act as a point of junction between LAN and WAN. It is likely that this role will force 
you to use different router models, perhaps even from different vendors for these two functions.  

In the cases in which the VLAN routers are moved into the Distribution Level, it becomes easier to 
connect the WAN routers. Then, for either a single-site or a multiple-site WAN, you would connect them 
as shown in Figure 3-29.
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Figure 3-29. Connecting to remote networks in the Distributed Routing model 

This diagram shows both a single-site and a multiple-site WAN. For the single-site WAN, I assume that 
the remote site is sufficiently complex to require its own hierarchical network. If it were smaller, then a 
single switch might be sufficient.  

For the multiple-site WAN, the entire cloud is connected to two routers for redundancy. Both routers 
connect to the LAN Core switches. These new WAN Access routers become members of the OSPF area 0. 
In the multiple-site case, there will be too many downstream routers to put them all into area 0. This means 
that the router at the main site must be an OSPF area Border Router. Again, I will explain this concept in 
more detail in Chapter 6.

The other common way of connecting remote sites uses a WAN Touchdown segment. This segment is 
simply a separate router-to-router LAN segment or VLAN that only connects WAN routers, as shown in 
Figure 3-30. In this picture, the Touchdown Segment is created by two redundant routers that connect into 
the network Core. These routers may be part of the Core, or they may be Distribution Level routers; it all 
depends on the type of large-scale topology being used.  
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Figure 3-30. Connecting to remote networks with a WAN Touchdown Segment 

The segment itself is a single VLAN that may be implemented on more than one switch or hub. A single 
segment like this has an inherent lack of redundancy. However, it can easily be improved by doubling the 
segment as indicated by the dotted lines.  

The Touchdown Segment model for connecting WAN routers to a LAN is a fairly common technique. It 
has several advantages over connecting the WAN directly to the Core of the network due to the segment 
being separated from anything internal by means of routers.  

First, if there is a requirement for security filtering, then this is a safer method for connecting the WAN. 
The remote sites may be less trustworthy than the internal network, or they may even be connections to an 
information vendor's site. In these cases, it is easy to offer basic security support by implementing filtering 
on the two routers that connect the Touchdown segment or segments to the main network.  

Second, WAN links are inherently less reliable than LAN links. It may be desirable to protect the internal 
network from the effects of unstable links by using these routers as a sort of buffer zone. One of the 
problems with using a dynamic routing protocol is that flapping links cause all other routers in the area to 
repeatedly update their routing tables to reflect each change of state. One way to protect against this 
updating is by using the two routers that connect to the Core as a transition point in the routing protocol. 
You could run a different routing protocol on the Touchdown segments than you do in the Core, or you 
could use Border Gateway Protocol (BGP, another routing protocol) on these routers to separate the 
Touchdown segment's routing protocol from the internal network's routing protocol. BGP will be discussed 
in Chapter 6.

A third advantage to using Touchdown Segments this way is that it provides an easy expansion method for 
better scaling. If the Touchdown Segments become congested, building additional segments in the same 
pattern is relatively easy. If you were connecting each WAN router as a separate Distribution Area, then 
you would have to think very carefully about its connections to the Core each time. However, with 
Touchdown Segments, it is much more straightforward to expand the architectural model.  

3.7.5 General Comments on Large-Scale Topology 

Throughout all of these examples, I have assumed considerable symmetry in the large-scale topology. 
Although I haven't made a point of discussing this topic until now, it is actually an important feature of a 
good design. It's important to decide on a global strategy for the network and then follow it. Combining 
different types of designs doesn't work well.  
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For example, if your network is large enough to require using routers at the Distribution Level, then all 
Distribution Areas should have routers. It is certainly reasonable to have a migration plan to do this one 
area at a time, but this phase is transitional. In the target design, the network should follow consistent rules.  

There will always be portions of the network that need to be treated as exceptions. It is generally a good 
idea to devise a standard method for dealing with exceptions, as I did with the remote sites considered in 
the previous section. If a few special VLANs require filtering, then they should all be treated with the same 
technique.  

A theme that will repeat throughout this book is simplicity of concept. The benchmark for the appropriate 
level of simplicity is that an engineer familiar with the network in general should be able to troubleshoot 
problems on the network without documentation. This rule may sound arbitrary, but any engineer who has 
been awakened to diagnose network problems over the phone in the middle of the night will immediately 
recognize its value.  

Another key advantage to this level of simplicity is that it allows new staff to learn the system quickly. 
Building a network that only one genius can understand is a terrible mistake. Sooner or later this genius 
will grow tired of taking trouble calls and will want to train a successor. Furthermore, a simple network 
design can also be handed over easily to relatively junior operations staff to manage. This feature has 
obvious advantages for maintainability, and maintainability is an important key to reliability.  
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Chapter 4. Local Area Network Technologies 
This chapter focuses on the selection of appropriate LAN technologies for a network. Many options are 
available. At the more traditional end of the LAN technology spectrum, we have various flavors of 
Ethernet and Token Ring. Competing with these technologies are some very interesting modern 
alternatives such as ATM and wireless networking. Each of these different technologies has its strengths 
and weaknesses. Some are strikingly effective in certain situations, while awkward and difficult in others.  

4.1 Selecting Appropriate LAN Technology 

You should consider four main factors when selecting a LAN technology: 

• Cost efficiency 
• Installed base 
• Maintainability  
• Performance 

4.1.1 Cost Efficiency 

One of my central assumptions throughout this book is that the network is built for some business reason. 
It may not directly involve making money, but there must be some benefit to having the network that 
justifies the expense of building it. Clearly, the benefit is never infinite, so as network designers, we have a 
responsibility to build a network that meets the requirements for the lowest possible cost.  

This problem is particularly important in the selection of network technologies. The classic example is that 
Token Ring cards for PCs are more expensive than the equivalent Ethernet cards. This fact alone has 
explained why so many organizations have undergone expensive changes in their LAN infrastructure to 
use more cost-effective options. As discussed previously, Token Ring has many performance benefits over 
Ethernet. But if the cost of Ethernet is low enough and the cost of Token Ring is high enough, then you can 
engineer around the performance benefits to build an Ethernet network that is at least as good as Token 
Ring, but less expensive. Or, you may decide to spend more money on Token Ring and get better 
performance.  

Similarly, you could get a high-performance network by running Gigabit Ethernet to every desk. But the 
cost of doing this would be orders of magnitude higher than the same network using Fast Ethernet. There 
may still be valid business reasons for wanting to build the faster network. However, it is more likely that a 
hybrid of the two approaches would meet all of the business requirements with a much more attractive 
budget.  

In general, faster technology is more expensive. This is not universally true, however. Fast Ethernet 
equipment has become nearly ubiquitous, making the cost of building a Fast Ethernet network similar to 
the cost of building a regular 10Mbps Ethernet. This is even truer of the 4Mbps and 16Mbps Token Ring—
it is now difficult to find Token Ring equipment that doesn't support both standards.  

The other important cost/performance decision in both Ethernet- and Token Ring-based networks is the 
granularity of shared and switched segments. The finest granularity network has a switch port for every 
end device, which has significant performance benefits—particularly because it allows full-duplex 
operation. However, switch ports are generally more expensive than hub ports. A more cost-effective 
solution might involve a hybrid network in which some important end devices are directly attached to 
switch ports, while others are grouped in small numbers on hubs.  

Another important economy involves the use of unmanageable Access devices. Small workgroup hubs and 
switches with no management capabilities are available for remarkably low prices. In the same vein, it is 
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still possible to build an old-fashioned 10Base2 network, using a long piece of coax cable (often called 
"thin-net"), for almost nothing.  

These inexpensive Access options definitely have their place. They may be ideal for the home or small 
office LAN. They can also be used to increase the effective port density of the network's Access Level by 
allowing small groups of users to share ports, as shown in Figure 4-1. This figure shows a Distribution 
Area containing two Distribution switches and three Access switches. Workgroup hubs and workgroup 
switches are connectd to these Access switches. Some users are connected through the workgroup devices 
and some are connected directly to the Access switches. Note that I have shown some of these workgroup 
devices with dual attachments to the Access switches to provide extra redundancy.  

Figure 4-1. Increasing effective port density of the LAN Access Level with unmanageable 
devices 

This approach works well, but two main structural disadvantages should be considered. First, even if the 
end devices are able to connect to a workgroup switch at full-duplex Fast Ethernet speeds, they are still 
constrained by the uplink speed to the Access switch. If the Access switch is also Fast Ethernet, then 
remember that these end devices must share that link. This option may or may not be acceptable, given the 
application traffic patterns.  

The second disadvantage is the increased probability of failure. The diagram shows that some of the 
workgroup devices have dual connections to the Access switches, and having these connections is a good 
way of helping to reduce the net probability of failure. However, workgroup devices are generally not built 
for the same level of serious use as the chassis switches that I prefer for the Access switches. Specifically, 
they often have external power supplies of similar quality to those used for low-end consumer electronics.  

Augmenting the network's Access Level with workgroup hubs or switches (or passive MAUs in Token 
Ring networks) is sometimes a reasonable way to reduce costs. Giving up manageability can be dangerous, 
though, or at least inconvenient. Connecting end devices directly to Access switches allows control over 
their VLAN membership. Connecting these devices through an intermediate workgroup hub or switch, 
however, generally means that every device on the workgroup hub or switch must be part of the same 
VLAN. This requirement affects flexibility.  

A more serious problem is the loss of fault management information. An unmanageable workgroup hub or 
switch cannot tell you when one of the devices misbehaves or when a cable is faulty. It can't tell you when 
its power supply is overheating. You might be able to get some information about an ill-behaved device 
somewhere on a workgroup hub by looking at the more complete management information on the Access 
switch. It can be difficult to narrow down which device is in trouble, though.  
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Most seriously, if there are problems with one or more devices connected to a workgroup switch, then the 
only noticeable result will be performance problems for the other devices in that workgroup. The 
workgroup switch will not pass bad frames to the Access switch,[1] and it can't complain about the bad 
frames it receives from its end devices. It is possible to have a serious problem that simply will never be 
seen unless the users are diligent about complaining.  

[1] It is customary to use the word "frame" when talking about the Layer 2 view of a chunk of 
data and the "packet" at Layer 3. 

4.1.2 Installed Base 

Installed base is another facet of cost effectiveness. The chances are slim that you are building a new 
network from scratch. In most cases, there is existing equipment, existing applications, servers, and a cable 
plant. A significantly cheaper alternative network technology may be available. If migrating to that means 
that you have to absorb a high cost in changing your installed base, then simply staying with the existing 
technology may be more cost-effective.  

For example, a large company may make extensive use of native Token Ring protocols to connect to 
legacy mainframe equipment. Token Ring equipment is more expensive than Ethernet equipment, but after 
factoring in the cost of replacing the mainframe, rewriting the applications to use TCP/IP, and changing 
every end device to use this new application, they probably won't want to make the change.  

This is where it is useful to have a long-term strategic information technology vision for the entire 
organization. If you have a long-term goal to phase out these legacy applications, then you need to build a 
network that can accommodate a phased-in migration to the target technology. Perhaps you will migrate 
the Core of the network from Token Ring to Fast and Gigabit Ethernet with TCP/IP routing and use DLSw 
to tunnel the native Token Ring protocols. Then, when the new servers and applications are available, you 
can migrate user devices in relatively small groups.  

An installed base doesn't need to cripple a network, but it can limit your design options temporarily.  

4.1.3 Maintainability 

One of the biggest potential hidden costs in a network is maintenance. I have mentioned how using 
unmanageable workgroup devices in the Access Level of the network can make it harder to find problems. 
I previously mentioned that the design principle of simplicity makes network maintenance easier. 
Remember that these are not just annoyance factors for the engineer who gets stuck with the ultimate 
responsibility for running the network. There are costs are associated with these issues.  

The trouble is that quantifying these costs can be extremely difficult. How can you tell, for example, that 
cutting a particular corner will result in needing an extra staff member to keep the network going? Only 
experience can tell you what the hidden costs are. In general, since your design goals are centered on 
reliability, the more corners you cut, the less reliable the results will be. Lower reliability generally 
translates into higher maintenance costs.  

4.1.4 Performance 

And this topic brings us to performance considerations. You always want to build the fastest and best 
network you can for the money. Of course, by "best," I mean that the network best fulfills the business 
application requirements. A brilliant network with unbelievable throughput and low latency is useless if it 
doesn't support the applications for which it was built.  

I mention performance last because it is far too easy to get absorbed in abstract issues of technology 
improvement. You always have to bear in mind that a network is built for a business reason. It has a budget 
that is based on how much money this business goal is worth to the organization. If you spend more on 
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building and maintaining the network than it is worth to the organization, either through money saved or 
revenue earned, then the network actually hurts the organization more than it helps.  

Within these limitations, your goal is to build the best network that you can. That also implies that you 
have to select technology that is appropriate to what you want to accomplish. Part of a LAN may serve an 
environment where cabling is impossible, so wireless technology could be a natural fit. But wireless 
technology tends to offer relatively poor bandwidth and latency compared to a similar network built with 
Fast Ethernet. When selecting appropriate technology, you have to be sensitive to these trade-offs and 
understand the strengths and weaknesses of the different options available to you.  

4.2 Ethernet and Fast Ethernet 

Ethernet is a bus topology LAN technology with a collision-based mechanism for dealing with contention. 
Physically, there are several different options for implementing an Ethernet network. I am generally 
including Fast Ethernet in these comments because the similarities between Ethernet and Fast Ethernet are 
strong. I will explicitly note where the comments do not apply to both.  

Physical implementations of Ethernet and Fast Ethernet are generally determined by their IEEE 
designations. For 10Mbps standard Ethernet, the most common option today is 10BaseT. This option uses 
standard twisted pair cabling, such as Category 5 (although 10BaseT also works well over Category 3 
cable plants). Other options include 10Base2 and 10Base5, which implement the LAN bus with an 
extended cable.  

In 10Base2 (also called "thin-net"), the cable is an inexpensive 50 impedance coaxial cable that is 
terminated at both ends with an impedance-matching resistor. Devices connect to the wire by means of T-
junction connectors along the length of the cable. Some end devices are equipped with 10Base2 
connectors, but a transceiver is frequently required. I will discuss transceivers later in this section.  

10Base5 (also called "thick-net") is less common these days because it is difficult to maintain and 
considerably more expensive than higher speed options. This system uses a thick coaxial cable with 
considerably longer distance limitations than 10Base2 (500 meters for 10Base5 versus 185 meters for 
10Base2). Devices connect to the wire using a "vampire tap," which uses a retractable spike to connect to 
the wire in the middle of the cable. A transceiver is then required to connect this tap connector to the end 
device.  

It is safe to consider both 10Base2 and 10Base5 as essentially obsolete technology, but they are still in use 
in some older networks, which is why I mention them here.  

Besides copper-based Ethernet technologies, several different fiber optic systems are grouped together 
under the general IEEE title of 10BaseF. The most common 10Mbps fiber optic Ethernet standard is 
10BaseFL. Other options exist, such as 10BaseFB and 10BaseFP. The term FOIRL (Fiber Optic Inter-
Repeater Link) is often used generically to describe any 10BaseF transceiver, although technically, FOIRL 
describes an earlier standard.  

Since the same fiber optic cabling is capable of transmitting Gigabit Ethernet, there is seldom much point 
in installing new 10BaseF systems. It is still used primarily in places where the distance limitations on 
copper Ethernet standards make it necessary to use fiber optic cable, which has much longer distance 
capabilities. The dominant flavors of Fast Ethernet are 100BaseTX, which runs over standard Category 5 
twisted pair cabling, and 100BaseFX, which uses a fiber optic cable.  

Designations such as 10BaseT may appear mysterious and arbitrary, but they have simple logic. The first 
part of the designation refers to the theoretical peak bandwidth—in this case, it is 10Mbps. For 100BaseT, 
it is 100Mbps. The word "Base" signifies baseband rather than broadband signaling. Baseband simply 
means that there is just one carrier frequency. Broadband, on the other hand, can multiplex several 
different signals on the same medium by transmitting them with different carrier frequencies.  



102

The last part is used inconsistently. The "2" in 10Base2 means 200 meters for the maximum distance of a 
segment, while the "5" in 10Base5 stands for 500 meters. When twisted pair standards such as 10BaseT 
came along, the developers probably felt that designating the type of medium was more important. Instead 
of calling the new twisted pair Ethernet standard 10Base1 to show that it has a 100-meter distance limit, it 
was called 10BaseT to designate that it operates over twisted pair cabling. Similarly, when the fiber optic 
standards were developed, the letter "F" was adopted to designate this different cabling standard.  

The naming standards start to get a little strange when we get to names like 100VG-AnyLAN (actually, 
100VG-AnyLAN isn't really Ethernet at all, because it doesn't use collisions to control contention). If the 
reader wants more details on these standards and the naming conventions, it is best to look at the reference 
section of this book to find other books that focus more specifically on these matters.  

4.2.1 Ethernet Framing Standards 

Figure 4-2 shows the standard 802.3 Ethernet frame structure. Several standard fields are defined, and they 
must all be present in some form.  

Figure 4-2. Ethernet framing formats, including 802.1Q VLAN tagging 

The frame starts with a "preamble." The preamble consists of a string of seven bytes of the binary pattern 
"10101010" to indicate that the device is about to start sending a frame. Then the eighth byte, called the 
"start of frame delimiter," is nearly the same as the preamble except for the last bit: "10101011". The 
preamble and the start of frame delimiter are not included in the frame length counter. Once you get past 
the preamble and start of frame delimiter, you get into the interesting parts of the Ethernet frame. Three 
important fields are in the frame header: the source and destination MAC addresses and the length/type 
field.  

All Ethernet MAC addresses are 6 bytes long. Every network interface card (NIC) has a globally unique 
address "burned-in" to it. It is possible to override this burned-in address (BIA) to create a locally 
administered address (LAA). However, there are also more special-purpose MAC addresses, such as 
multicast and broadcast addresses. I will discuss these special-purpose addresses later in this book.  

The destination MAC address is always first. This gives the network devices every possible advantage in 
forwarding packets as quickly as possible. Modern high-speed networking equipment is able to read the 
frame as it is received. Since the network usually only need to look at where the packet is going, if the 
destination address is first, it is often possible to start directing the frame to the appropriate destination port 
just from this information.  

The source MAC address comes next. This is the address of the device that sent the frame. Note that it is 
not necessarily the originator of the packet. If the packet came from an intermediate device such as a 
router, then the source address will be that of the router. This address is included mostly for the benefit of 
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the recipient device, which needs to know where to send its responses. If the return path needs to pass 
through a router, then the router's address needs to be here.  

The third important field in the Ethernet frame header is the multipurpose "length/type" field (also called 
Ethertype). This 2-byte number could either be a length or a type. The only way to tell the difference is that 
the maximum valid length is 1500 bytes.[2] If the value in this field is less than or equal to 1500, it is 
interpreted as a length.  

[2] Note that this length is the size of the packet's data segment. If you include the MAC 
header's 6-byte source and destination addresses, the length/type field itself, and the 4-byte 
checksum at the end of the packet, the maximum Ethernet frame length is 1518 bytes. The 8-
byte Ethernet preamble is not included when people talk about frame sizes. 

Similarly, anything larger than 1500 must be a type. Just to be absolutely certain, there is a small gap to the 
nearest "round" number in hexadecimal, 0600, which is 1536 in decimal. The actual values in the type field 
represent different protocols, and the IEEE keeps track of these values. An up-to-date list of assigned 
values is available online from the IEEE web site at http://standards.ieee.org/regauth/ethertype/type-
pub.html. This list includes a very large number of companies that have registered particular Ethernet 
protocol types, although only a handful of types are commonly seen in most production LANs.  

Novell reserves Ethernet types 8137 and 8138 for IPX. Type 8137 designates an older version of IPX that 
is not widely used anymore, while 8138 is the most typical for modern IPX installations. Apple's Ethernet 
protocol uses type code 809B. The Banyan Network Operating System uses 0BAD and 0BAF, and 8191 is 
reserved for NetBEUI, which is frequently used for PC file-sharing systems. The most common type field 
values are 0800, used for frames containing standard IP packets, and 0806, used for IP ARP packets.  

In most LANs, IPX uses the length rather than the type. If you look at a protocol analyzer, you will 
probably see all of the IPX frames with a length/type value of something less than 05DC (the hex value of 
the decimal number 1500).  

TCP/IP, on the other hand, almost universally uses the type rather than length. The reason for the 
difference is largely historical. The type interpretation is used by an earlier standard for defining Ethernet 
frames, called Ethernet II. The length interpretation, on the other hand, is the method employed by the 
newer IEEE 802.3 standard.  

It should be obvious why it is more efficient to use the type field as a type rather than as a length. If any 
one protocol prefers to use its length, then that protocol has effectively trampled over 1500 possible type 
codes. Furthermore, it is much more efficient if the protocol stacks of both the end and network devices 
don't have to read into the data portion of the frame before they can figure out what type of packet it is. Not 
every device cares about every protocol (particularly when the packets are received as broadcasts), so 
knowing whether they should bother decoding any given packet is useful. But there are other benefits to 
this system.  

For protocols that use the 802.3 standard, it is necessary to use another method for identifying the type. 
Using this method is done by adding Sub-Network Access Protocol (SNAP) information to the packet. 
SNAP is part of the LLC (Logical Link Control) sublayer of the Data Link Layer. It is defined as an 
extension to the 802.2 standard. The presence of a type rather than a length value in the "length/type" field 
automatically tells the receiving station to look for LLC information later in the packet.  

This process may sound complicated, but it allows greater flexibility in the protocol. Rather than a single 
type field, 802.2 allows the creation of an arbitrary Protocol Data Unit (PDU), which can be used to 
contain a huge variety of extensions to the protocol. This LLC PDU information is tacked on to the start of 
the data portion of the packet, immediately after the standard Ethernet header information. In effect, it 
looks like another type of header, placed after the MAC header.  
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Also note that the 802.2 LLC sublayer is not unique to Ethernet. Exactly the same SNAP PDU that defines 
IPX in an Ethernet frame can be used to define IPX in a Token Ring frame.  

SNAP is just one simple example of this type of a PDU. Inside the SNAP PDU is a field that defines that 
protocol type.  

At the end of every 802.3 Ethernet frame is a 4-byte checksum called Frame Check Sequence (FCS). This 
checksum is a relatively simple method of ensuring that the packet was not damaged as it crossed through 
the network. Generally, one doesn't expect to see very many checksum errors in a stable Ethernet network. 
Those that are seen are usually caused by other problems, such as late collisions. However, when random 
electrical problems are on a link, these checksums are useful in finding them.  

This checksum is calculated on the entire Ethernet frame from the Destination Address right up to the Data 
(and possible padding). If the payload protocol contains another checksum, it provides an extra layer of 
certainty. When there are checksum failures, it can also be used to investigate which layers of the protocol 
see the problem. For example, if the Ethernet level FCS field is good, but the TCP checksum is bad, then 
the problem must have existed before the packet hit this part of the network.  

The same 802.3 Ethernet frame used for 10Mbps Ethernet is also used for 100Mbps, Gigabit, and 10 
Gigabit Ethernet. The same MAC multicast and broadcast addresses are used by all of these standards. The 
use of these addresses makes life much easier for the network designer because it means that you can 
freely mix these different standards to fit your immediate needs.  

For example, you can have Gigabit Ethernet trunks connecting your Distribution switch to your Access 
switches. Then you can have 100Mbps Fast Ethernet links to some workstations, and even step down to 
workgroup hubs of standard half-duplex 10BaseT for the less active user workstations. Throughout this 
complex hybrid of media types, the same Ethernet frames can be transmitted without change.  

4.2.1.1 Ethernet addresses 

Every 6-byte Ethernet address is divided into two parts. The first three bytes represent the vendor, and the 
rest are allocated by that vendor in whatever method is appropriate. The first half of the address is called 
the vendor Organizationally Unique Identifier (OUI) value. Again, an up-to-date list of OUI values is 
available on-line from the IEEE at http://standards.ieee.org/regauth/oui/oui.txt.

One of the OUI codes for Compaq is 00-80-5F. With this OUI, they are able to define MAC addresses 
for their equipment by specifying the last three octets by whatever system is most meaningful. One 
example might be 00-80-5F-12-34-56.

Only the vendor who owns a particular OUI may generate MAC addresses in that range. Every device has 
a unique MAC address, but they are really the so-called BIA. Many devices have the capability to override 
the BIA with a user-defined MAC address, called an LAA. This capability can be useful if one device has 
to masquerade as a second device. In Chapter 3, I discussed the HSRP and VRRP protocols that use this 
sort of MAC address masquerading to facilitate automated fault recovery.  

Some protocols, such as DECNET, can generate MAC addresses dynamically. This generation can cause 
confusion when looking at a protocol analyzer on the segment because, for example, the MAC used for 
DECNET would be different from the MAC used by the same device for TCP/IP. In the case of DECNET, 
this problem is relatively easy to spot because DECNET addresses always use an OUI value of AA-00-
04.

This situation can lead to problems for network segments that have DECNET and TCP/IP operating 
together. Some devices confuse the two MAC addresses. For example, if a router has DECNET enabled 
suddenly, it may opt to use the new DECNET MAC for its IP packets as well, ignoring IP packets destined 
for its BIA. Whether this problem occurs depends on the router implementation.  
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There are two other important classes of Ethernet MAC addresses: the broadcast and multicast addresses.  

A standard broadcast address of FF-FF-FF-FF-FF-FF is used by all Ethernet protocols to indicate a 
packet that should be delivered to every other device in the broadcast domain. When a device sends out a 
broadcast packet, it usually either advertises itself as a service of some kind or looks for a network 
resource.  

A good example of using a broadcast to look for a network resource is the IP ARP packet. In an ARP 
packet, the requesting device specifies its own IP and MAC addresses and the IP address for which it is 
looking. Then it sets the Layer 2 destination to FF-FF-FF-FF-FF-FF and sends it out. This way, the 
packet gets sent to every other device in the local address range, and hopefully the owner of the requested 
IP address will respond. In some cases, a router might respond by Proxy ARP for a downstream device. 
The two devices can then hold their conversation in private without bothering everybody else on the LAN.  

And a typical example of a service advertisement is the Novell Service Advertisement Protocol (SAP). In 
this case, the server periodically sends SAP packets to every device on the network, telling potential LAN 
clients about what sorts of services the server offers. The SAP may say, for example, that this server offers 
file-sharing services, printing, or time, database, or other application services. In a large LAN with many 
servers, SAP can represent a lot of traffic. I discuss IPX SAP issues in more detail in Chapter 7.

Multicast packets are intended for groups of users, but not necessarily the entire network. To help achieve 
this feat, another group of what might be called "multicast OUIs" is defined. For example, the IP multicast 
standard specifies the address range from 01-00-5E-00-00-00 to 01-00-5E-7F-FF-FF for 
all IP multicast traffic.  

There is a simple rule for multicast MAC addresses: the lowest bit in the first octet of any multicast MAC 
address is always 1. The way 802.3 specifies byte ordering of information in the frame header, this is the 
first bit received. The IEEE has been careful to ensure that every standard vendor OUI has this bit equal to 
0.  

It is possible, therefore, to convert any standard vendor OUI to a multicast OUI by simply flipping this bit 
from a 0 to a 1. For example, Cisco has the OUI 00-00-0c, which allows Cisco to define multicast 
MAC addresses that begin with 01-00-0c.

I talk more about multicast IP networking in Chapter 10.

4.2.2 Collision Detection 

Ethernet is always specified with strict distance limitations. These distance limitations are carefully 
calculated so that the first bit of the preamble can reach all parts of the network before the last bit of data is 
transmitted, even for the smallest possible frame size.  

When a device wants to send a packet, it first listens to verify that nothing else is currently transmitting. 
This verification is called the "carrier sense" phase. If the line is quiet, it starts to send its frame. 
Meanwhile, another device may also want to send data, and it does the same thing. If the network is built 
within Ethernet specifications, the second device sees the frame coming from the first device before it has 
finished sending its own. It will realize that it has suffered a collision, and will send a "jamming" pattern to 
ensure that the first device knows that its packet has been damaged. The first device, meanwhile, has seen 
the start of the second device's packet, and it too sends the jamming pattern.  

This procedure is normal when a collision is encountered. Then both devices wait for a random short time 
interval called the "backoff" interval before trying again. This time interval must be random because if 
both devices waited the same amount of time, then they would just collide again as soon as the backoff 
interval had expired. This whole system is called Carrier Sense Multiple Access/Collision Detection 
(CSMA/CD). It is fundamental to all multiple-access Ethernet systems.  
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A "late collision" means that the collision process has been followed, but that one of the devices was past 
the minimum frame size for the medium when it saw the colliding frame. This collision is a bad sign 
because it either means that the second device does not follow Ethernet rules for collision detection or that 
it is too far away to see the frame in time. Either way, late collisions usually indicate a serious problem 
because the time required to inject a whole packet into the Ethernet segment is less than the time required 
to have it hit the farthest point on that network. A collision can happen to a packet in flight, but the sender 
will not know about it, and therefore won't be able to retransmit the lost data. This is why late collisions 
should always be taken seriously.  

There is an important difference between a collision and simply having to wait to transmit. When a device 
wants to send data, it first listens to the wire to see if another device is already talking. If the line is busy, it 
waits until the current packet is finished. After the current packet is completely sent, the device waits a 
standard Inter-Frame Gap Time to make sure that the line is really free before it tries to send its packet. A 
collision only happens if another device also sends a packet at the same time.  

The critical difference is that, while a device waits to talk, the network is fully utilized. When two packets 
collide, no information is transmitted. I make this distinction because some devices report statistics on 
packets that have been delayed or "deferred," as well as packet collisions. The mere presence of either 
deferred packets or collisions is not a sign of problems. The packets or collisions are both perfectly normal 
aspects of Ethernet that we expect to see all the time. What you don't want to see is a high ratio of 
collisions to packets sent. This ratio is a very accurate measure of network efficiency.  

Note, however, that switched full-duplex access is a completely different matter. In fact, collision detection 
doesn't exist in full-duplex operation. When a network segment operates in full-duplex mode, only two 
devices are on that segment. One of these devices is usually a switch. Because it is full-duplex, both 
devices can send and receive at the same time without contention, so there can never be a collision. This 
feature makes full-duplex much simpler to implement and gives much better performance.  

In full-duplex operation, each device sends a frame whenever it has a frame to send, with two small 
caveats. First, a standard time interval called the Inter-Frame Gap Time must elapse after the last frame is 
sent and before the next one. This relatively short time period required by the protocol ensures that the start 
of the next frame is properly distinguished from the last one.  

Note that one relatively common Ethernet problem occurs when a half-duplex device is connected to a full-
duplex switch, or vice versa. This is normally not a problem, since most devices are set up by default to 
automatically detect and negotiate the best duplex settings. However, sometimes the negotiation process 
fails to work properly, particularly when the equipment comes from different vendors. It is also possible to 
statically configure most Ethernet equipment to use either duplex setting exclusively. This configuration 
represents a good solution to the problem of improper negotiation, but it also makes it possible to configure 
a conflict.  

The problem with this particular conflict is that, in most cases, the connection still works, but the full-
duplex device ignores collision information. The result is that the half-duplex device sees large numbers of 
late collisions.  

A special addition was made to the 802.3 standard when full-duplex modes of operation became available. 
The problem with being able to talk all the time is that you might exceed your partner's capacity to listen. 
Buffers can fill up, particularly if upstream bottlenecks prevent the data from being passed along as it is 
received. Without collisions to offer a natural mechanism for forcing a backoff, a new mechanism had to 
be added to the protocol. This mechanism is the PAUSE frame.  

The PAUSE frame is a short instruction that simply tells the other device that it must stop sending anything 
for a specified short period of time. The time interval is a number from 0 to 65,535, which measures time 
in units of "pause quanta." One pause quantum is the time it takes to send 512 bits. Fast Ethernet is able to 
transmit 100Mbps serially, so the time to transmit one bit is 0.01 s (microseconds). The maximum total 
pause duration in Fast Ethernet, then, is .35 seconds.  
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Because Gigabit Ethernet uses 10-bit rather than 8-bit encoding at Layer 1, the maximum pause time 
actually drops by a little more than a factor of 10.  

There are several interesting features of this PAUSE frame. It is always sent to the multicast address 01-
80-C2-00-00-01, and it is the only defined member of a new class of MAC Control packets. Perhaps 
future versions of 802.3 will require other types of control messages. In general, the PAUSE looks like a 
regular 802.3 frame, except that the value in the length/type field is 88-08. The data segment of the frame 
contains the two-byte Control Opcode type, followed by the value of the pause time variable and sufficient 
padding of zeros to make the frame reach the required length. Since this is the only defined Control 
message, it has a Control Opcode of 00-01.  

4.2.3 Hubs, Bridges, and Switches 

I have already discussed hubs, bridges, and switches in earlier chapters. Here I will focus on design issues 
of the various options.  

A hub is a way of allowing devices to share a collision domain, while a switch is a way of separating 
collision domains. All other things being equal, the smaller the collision domains are, the better the overall 
network performance will be. Clearly, if you could afford to do it, you'd rather put every single 
workstation on its own switch port. However, this solution is not always practical.  

Much of the literature on Ethernet discusses the so-called 5-4-3 Repeater rule. This rule is at best a loose 
approximation of IEEE standards. It also represents a completely outdated way of looking at Ethernet 
segment combinations that I don't support. I favor a simpler rule, for which I'll make up the name the 1 
Repeater rule. My simplified rule says that every time I use a hub, I will connect it directly to a switch. 
Cascading hubs and repeaters one after another is dangerous and is never necessary in a modern, well-
designed network. The only time I will break my 1 Repeater rule is when I need to use transceivers that are 
also technically repeaters. In this case, it is acceptable to connect a hub to a switch by means of a pair of 
transceivers, one at each end.  

In any case, I never recommend connecting one hub directly to another hub. Hubs should only connect 
back to the Access switches (or Distribution switches, in a very small network). Even in a small office or 
home network, cascading multiple hubs together results in instability and poor performance. In large 
networks, it has the added problem of making troubleshooting far more difficult than it needs to be.  

These comments apply to both 10 and 100Mbps Ethernet configurations. 

In a network of any size, manageability of Access devices becomes increasingly important. It doesn't 
matter whether the Access devices are hubs or switches. What matters is that the network manager can 
easily tell when end devices have problems. Approaching the same problem from the other direction, the 
network manager also needs to be able to find individual devices by MAC address wherever they are on 
the network.  

These goals are relatively easy to achieve by just using manageable hubs and switches and having good 
network management software. Chapter 9 discusses how to build a manageable network in more detail. A 
key requirement will always be that Access devices have to be manageable.  

The only place where unmanageable Access devices are acceptable is in networks too small to be managed 
proactively. In a home or small office network there probably will not be a dedicated system monitoring 
the few network devices, and the small number of devices actually makes it less necessary to monitor 
them. As discussed in Chapter 2, the probability of any one device failing is relatively small. It only 
becomes a serious issue when there are so many devices on the network that one can statistically expect to 
see something fail fairly often. Fault isolation in small networks is rather simple when there are very few 
possible failure points.  
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In small networks, manageable hubs and switches do not actually provide much real benefit. Since 
unmanageable devices are usually significantly less expensive, it makes sense to use them here. In any 
network large enough to warrant full-time network staff, though, it is best to have network management 
functionality on all network devices.  

In some bridged protocols, such as some IBM LLC protocols, the number of bridge hops can become 
extremely important. Thus, it is important to know where all bridges in the network are. A network could 
have an unmanaged bridge that the network engineer may not know about.  

This is the case for all of the so-called 10/100 hubs. These devices are hubs in the standard sense of the 
word, except that they have the added feature of being able to autosense whether the devices connecting to 
them are capable of 100Mbps Fast Ethernet speeds. If the device is Fast Ethernet capable, then the hub 
operates as a 100BaseT hub.  

Obviously, it is not possible to run a hub with a mixture of 10BaseT and 100BaseT ports. The two 
protocols are electrically different at the physical layer. Thus, these devices are actually made up of two 
hubs—one for 10BaseT and the other for 100BaseT. Whenever a new device is connected to a port on this 
hub, it automatically senses which Ethernet standard is appropriate. In the case of NICs that are also able to 
operate in either mode, the autonegotiation process tries to pick the fastest speed available. There are some 
cases of vendor incompatibility problems in this autonegotiation process, so it is possible to get the slower 
connection.  

When the autonegotiation process decides to use the 10BaseT standard, the hub connects the port internally 
to its 10BaseT hub circuitry. When it finds Fast Ethernet capability, it uses the faster 100BaseT internal 
hub circuits. To allow these two sides of the hub to communicate internally, a bridge contained inside the 
hub interconnects the two hubs at the logical link layer.  

4.2.4 Transceivers 

A transceiver is a specialized device used to interconnect two different physical media types. The term is 
just a contraction of "transmitter" and "receiver," which, unfortunately, is no longer as meaningful a name 
as it originally was.  

Some of the earliest transceiver implementations were the devices that converted the media-independent 
Attachment Unit Interface (AUI) port that was common on a NIC to whatever medium was required. For 
example, some transceivers that converted AUI were 10Base2, 10Base5, 10BaseT, and 10BaseF. The 
advantage with this scheme was that users could buy a simple generic Ethernet card and use whatever type 
of transceiver was appropriate to their requirements.  

However, with the advent of Fast Ethernet, this solution became less practical. There is a media-
independent interface defined for Fast Ethernet, called simply Media Independent Interface (MII). 
However, this interface has not enjoyed widespread acceptance, and MII transceivers are rare and 
expensive. It is more common to find Fast Ethernet devices implemented with a built-in transceiver; they 
present only a RJ45 or a fiber optic connector.  

In these cases, if you want to convert from, say, RJ45 to fiber connections, you would have to use another 
type of transceiver. This media conversion device is actually two transceivers in one box. It is a 100BaseT 
transceiver on the RJ45 side and is a 100BaseFX transceiver on the fiber optic side. Between these two 
transceivers is a repeater. This may sound like an academic distinction, but it can be important. Some 
repeaters act more like switches, since they can operate at full-duplex; but most do not.  

Suppose you want to connect the 100BaseT ports on two devices, such as a trunk link, between two 
switches. However, these devices are physically separated by more than 100 meters—perhaps they are on 
different floors. You can connect them easily by using a fiber optic connection. Connect an RJ45-to-fiber 
Fast Ethernet transceiver to both ends and connect the fiber between the two.  
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In this environment, unless the two transceivers are both capable of operating at full-duplex, the trunk link 
must be configured as half-duplex at both ends.  

4.3 Token Ring 

Token Ring is a ring topology LAN technology with a token-passing mechanism for eliminating 
contention. There are actually two standards for Token Ring. It was originally developed by engineers at 
IBM who created the initial specification. Subsequently, the IEEE took on the responsibility of making an 
industry standard Token Ring specification, under the designation 802.5. There are slight differences 
between the two standards, but they interoperate without any issues. One of these minor differences is that 
the IEEE reduced the maximum number of devices on a ring from 260 to 250 for Type 1 shielded cabling. 
The maximum number of devices for a ring built with Category 5 unshielded twisted pair cabling (UTP) is 
only 72, however.  

Figure 4-3 shows the formats for both an empty token and a frame that carries user data. Several features 
are remarkably similar to Ethernet and some are quite different. For example, the maximum Ethernet frame 
is 1518 octets long, while the maximum Token Ring frame size can be as much as 4550 octets in a 4Mbps 
ring, or 18,200 for a 16Mbps ring. In general, the Token Ring frame size is governed by the ring's hold-
time parameter, which governs how long any one device is permitted to have the token.  

Figure 4-3. Token Ring frame formats 

Both Ethernet and Token Ring use 6-byte addresses. This fact makes bridging between the two much 
easier. However, there is one significant twist. Token Ring orders its bytes so that the most significant bit 
comes first, while Ethernet does exactly the opposite. If you bridge Ethernet and Token Ring segments 
together, you have to translate the addresses from one format to the other by changing the bit ordering.  

A quick side note on the subject of Ethernet to Token Ring bridging is that there are in fact two different 
options for running LLC2 on Ethernet. The most common method is to simply use 802.3 format frames. 
The second option that appears in some installations is the so-called 80d5 format. This strange name refers 
to the Ethernet type code for the Ethernet II style frames. I have seen some overly helpful LLC2 server 
software that uses both frame types. This software tends to cause serious confusion on the bridge and 
should be avoided.  

In general, bridging works well between Ethernet and Token Ring networks, but it is important to be 
careful of Maximum Transmission Unit (MTU) and watch out for these address translation issues. This 
warning implies, in turn, that it is possible to create a bridge between two Token Ring segments through an 
intermediate Fast or Gigabit Ethernet segment. If this is the goal, it would usually be more practical to use 
a TCP/IP tunnel protocol such as DLSw. This protocol would then allow the Token Ring MTU to be 
preserved through the Ethernet leg of the connection.  

There are two common standards for Token Ring; one operates at 4Mbps and the other at 16Mbps. A high-
speed standard also operates at 100Mbps. But, unlike the 4 and 16Mbps standards, the 100Mbps version 
has not seen widespread use to date.  
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In most cases, running the same equipment at either 4 or 16Mbps is possible. This possibility is useful, 
since it allows the network to use the lowest common technology. But there is an unfortunate converse to 
this property: once a ring has started operating at either speed, introducing a new device at the other speed 
can cause serious problems for the entire ring.  

The token in Token Ring refers to the way that the ring avoids packet collision problems. There is a simple 
token packet that contains no user information. This packet is passed from station to station around the ring 
from an upstream to downstream neighbor. If a device has something to send, it waits until it gets the 
token. Then it replaces the token packet with a data packet, which it sends to its downstream neighbor 
instead of the token. The first two fields of this data packet look similar to the original token packet, except 
for one bit (the token bit) that indicates that data will follow.  

This device then continues to transmit data until it either runs out of data to send or until it sends a 
predefined maximum number of bytes. The data can be sent either as one packet or it can be broken up into 
several separate packets, which can be useful if the device is talking to many other devices. Once it is done 
talking, it places a new token on the ring so that other devices will have an opportunity to talk as well. This 
method ensures that every device gets to participate fairly.  

The packets that are sent this way all pass from the sender to its downstream neighbor, which forwards 
them on to the next downstream neighbor, and so forth, until they reach all the way back around the ring to 
the original sender. The sender is then responsible for removing the frames from the ring (which is called 
"stripping"). Once these frames are removed from the ring, the sender replaces a token onto the ring so the 
next device can talk.  

Another interesting feature that is available in the 16Mbps Token Ring (but not in the 4Mbps standard) is 
Early Token Release (ETR). In this case, the sender doesn't wait until it has seen its own frames finish 
circulating around the ring. Instead, it puts the token back onto the ring for the next device as soon as it has 
finished its transmission. This placement makes the ring much more efficient. What's particularly useful 
about ETR is that not all devices on the ring need to support it. In fact, it should be fairly obvious that the 
whole ring benefits from improved throughput if even a few devices can do this.  

The most common problem that arises in Token Ring topologies is a broken ring. If, for whatever reason, 
the ring is not closed, then the packets never get back to their starting point. As I just described, the normal 
token-release mechanism depends on the source device receiving the frames it has sent before it passes the 
empty token along for another device to use. A broken ring is a serious problem.  

The ring deals with a break by sending around a beacon packet. The device that is immediately 
downstream from the break alerts the rest of the ring by sending this special type of frame. The beacon 
frame contains the Layer 2 MAC address of the upstream neighbor that has lost its connection. In this way 
the failure domain, the area in which the break has occurred, is identified. This identification allows the 
ring to go into its reconfiguration procedure.  

A particular device on the ring is designated as the ring monitor. This device is responsible for putting new 
tokens onto the ring when they are lost. In a broken ring situation, the monitor device is able to keep 
communication working. However, this situation is considerably less efficient than having a properly 
closed ring.  

Token Ring has, in general, seen significantly less industry acceptance than Ethernet, despite having some 
useful advantages. There are important exceptions, particularly in mainframe environments, where Token 
Ring is more popular, but Ethernet is definitely more popular. With the advent of higher speed versions of 
802.3, the industry preference for Ethernet appears to be growing.  

The main reason for this gap in acceptance is simply the implementation cost. Token Ring hubs and 
switches cost more than Ethernet hubs and switches. However, the largest portion of the cost difference 
comes from the higher prices of Token Ring NICs and the cost of the Token Ring chipsets used by these 
cards.  



111

The development of 100Mbps Fast Ethernet finally eliminated the bandwidth advantages of Token Ring. 
By the time the new 100Mbps Token Ring devices were available, Gigabit Ethernet was also coming out. 
Although Token Ring has not reached any theoretical limitations, it seems unlikely that a Gigabit Token 
Ring standard will be available before the 10 Gigabit Ethernet makes it obsolete.  

The result is that Token Ring tends to be used primarily in organizations with large legacy mainframe 
environments that make extensive use of Token Ring and protocols such as LLC2. In organizations with 
modern mainframes, there is a trend toward adopting TCP/IP as the protocol of preference and toward the 
installation of Gigabit Ethernet modules into the mainframes or their front-end processors.  

4.3.1 MAUs, Bridges, and Switches 

One of the most popular methods for connecting devices to a Token Ring is the Multistation Access Unit 
(MAU). This unit is traditionally an unmanaged device, with the classic example being the IBM 8228. The 
8228 requires no external power. Rather, the individual end devices provide the power for the MAU to 
operate. When no device is connected to a port, a relay switch disconnects it from the ring. Then, when a 
device connects, it provides power to this relay and is inserted into the ring electrically.  

At either end of the MAU are ports labeled "Ring-In" (RI) and "Ring-Out" (RO). These ports are provided 
to allow several MAU devices to be chained together into a larger ring. The RI port from one MAU is 
connected to the RO port of the next, and so on around the ring until the RO port of the first MAU is 
connected back to the RI port of the last to close the ring. These RI and RO ports are not equipped with the 
same sort of relay switching as the regular device ports, so they can only be used for interconnecting 
MAUs.  

The IBM 8228 uses IBM UDC connectors (also called "hermaphroditic" connectors because they are both 
male and female), which are usually used with IBM Type 1 shielded cabling. However, there are also RJ45 
MAU units from both IBM and other manufacturers. Generally, the RJ45 units require external power like 
Ethernet hubs. Other than this, no real functional differences exist between these two types of MAUs.  

A managed Token Ring hub is also sometimes called a Controlled Access Unit (CAU). This hub generally 
operates in a similar manner, except that it becomes possible to monitor utilization and error statistics on 
individual ports, and activate or deactivate ports individually. Some of these hubs have the ability to assign 
individual ports to different physical rings internally, similar to an Ethernet VLAN.  

Token Ring switching is really nothing more than Token Ring bridging, just like in Ethernet. Also as in 
Ethernet networks, Token Ring switches are becoming a popular method of connecting important end 
devices to the network. In effect, the switch becomes a multiport bridge that interconnects a large number 
of different rings.  

Typically, source-route bridging is used in Token Ring networks. Besides the simple bridging functions 
that allow a separate token on each port, source-route bridging allows devices to find the optimal path 
through the network. They find this path by means of Routing Information Field (RIF) data that is added to 
packets as they travel through the network.  

When a device wants to find a particular MAC somewhere on the network, it sends out an "explorer" 
packet. This broadcast frame finds its way throughout the whole network, hopefully to the desired 
destination. Along the way, the explorer packet picks the RIF information that describes the path it took. 
The destination device then responds using the shortest path.  

As with Ethernet switches, Token Ring switches are able to implement VLANs. This is done in exactly the 
same way as on Ethernet. All ports that are part of the same VLAN are bridged. Meanwhile, distinct 
VLANs do not communicate directly, but must instead communicate through a router.  
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Each port on a Token Ring switch is a distinct ring, regardless of VLAN membership. This situation is 
analogous to Ethernet, where each port is a distinct collision domain, regardless of VLAN membership. 
Two ports that are members of the same VLAN have a bridge connecting them, while ports from distinct 
VLANs do not. As in Ethernet, when individual end devices are connected to a switch directly, it is 
possible to use a full-duplex version of the protocol allowing simultaneous sending and receiving of 
packets. This full-duplex version of Token Ring requires that the end device have Direct Token Ring 
(DTR) capabilities. DTR is not part of the 802.5 standard, but is nonetheless a widely implemented feature.  

4.4 Gigabit and 10 Gigabit Ethernet 

At Layer 2, Gigabit Ethernet looks exactly like 10Mbps and 100Mbps Ethernet. They all apply the same 
802.3 standards for framing and addressing. This similarity is convenient because it means that 
interconnecting Ethernet segments of these different types is simple. At Layer 1, however, the electrical 
signaling standards for Gigabit Ethernet are completely different.  

The first set of Gigabit IEEE standards was specifically geared toward a fiber optic implementation. 
Naturally, the first Gigabit devices on the market all used fiber optic connectors. However, shortly 
thereafter, an addendum was released that included specifications for running Gigabit Ethernet over 
Category 5 unshielded twisted pair (UTP) cabling. Gigabit Ethernet over Category 5 cabling is called 
1000BaseT. It allows for distances of up to 100 meters, similar to the 100BaseT and 10BaseT standards. 
This is convenient because it means that Gigabit Ethernet should, in principle, be able to operate over the 
same cable plant as an existing Fast Ethernet implementation.  

However, there is one important caveat to this Category 5 implementation of Gigabit Ethernet, as I discuss 
later in this chapter. The original specifications for Category 5 cable plants did not specify signal reflection 
properties of connectors, which turn out to be important in Gigabit. Thus, older Category 5 cabling may 
not work properly with Gigabit Ethernet.  

The physical layer differences between even fiber optic implementations of Fast Ethernet and Gigabit 
Ethernet go well beyond merely changing the clock rate. The most important issue is the use of 8B10B 
encoding. At its lowest level, Gigabit Ethernet uses a 10-bit byte; at these extremely high speeds, it can be 
difficult to accurately distinguish between bits. Thus, 10-bit patterns have been selected to represent the 8-
bit octets. The specific 10-bit patterns are chosen for their transmission reliability. There is 25% of extra 
overhead in encoding this way, but the improvement in reliability compensates for this additional 
overhead.  

To make implementation details easier, the Gigabit Ethernet group has defined a natural transition point in 
their protocol stack called the Gigabit Media Independent Interface (GMII). This sublayer is similar in 
concept to the Fast Ethernet MII and the standard Ethernet AUI interface. Each case specifies a point that 
is technically in the middle of Layer 1. Everything above this point is generic to all different 
implementations of the protocol. This way, only the hardware and the protocols below the dividing point 
need to change when a new physical layer is defined.  

Most Gigabit Ethernet hardware uses either a physical fiber optic or an RJ45 connector. However, it is 
possible to implement a Gigabit Ethernet interface on a device using a generic GMII connector. Then the 
network designer could simply connect the appropriate GMII transceiver.  

4.4.1 Gigabit to the Desk 

Now that Gigabit Ethernet is available over Category 5 cabling, putting Gigabit NICs into servers and 
workstations has become technically viable. The market is also already seeing price competition between 
NIC vendors, which drives down the costs of running Gigabit to the desktop.  

I recommend using full-duplex switched connections for connecting end devices directly to Gigabit 
Ethernet networks; there would be little real advantage to running a shared half-duplex Gigabit network 



113

over running a switched full-duplex Fast Ethernet network. In any Ethernet environment with several 
devices sharing a collision domain, the effective throughput is typically 30 to 40% of the total capacity, so 
you can expect to get something on the order of 300-400Mbps total aggregate capacity out of a shared 
Gigabit hub. Each individual device on this hub would get some small fraction of this total on average. So, 
for a small network with 5 Gigabit devices sharing a hub, you would expect each device to have access to 
an average of 60-80Mbps. The peaks for each device are, of course, much higher than this, but it is 
reasonable to expect that devices being considered for Gigabit Accesses will be heavily used—at least in 
the near future.  

One can already achieve a higher average utilization using simple switched Fast Ethernet. Because the cost 
of Fast Ethernet is still much lower than Gigabit Ethernet for both the NICs and network devices, it is not 
cost-effective to use Gigabit Ethernet this way.  

Consequently, if an organization has end devices that are important enough and used heavily enough to 
warrant connecting to the network at Gigabit speeds, it makes sense to use full-duplex switched 
connections. As it turns out, the marketplace appears to have already made this decision, as Gigabit hubs 
are not made by any major vendor, while there are several vendors selling Gigabit switches.  

In a unanimous decision, the IEEE 802.3 committee on 10 Gigabit Ethernet has decided not to bother 
implementing anything but a full-duplex version of the new protocol. So, although the standard is not yet 
complete as of the time of writing this book, we already know a few things about what it will look like. We 
know that there will be no such thing as a 10 Gigabit hub and that there will be no defined collision 
mechanism. This is a good thing. It seems that the market has already decided that the Gigabit standard is 
most useful in a switched full-duplex mode. Most organizations using Gigabit Ethernet use it as a trunk or 
backbone technology or attach only a small number of important servers at Gigabit speeds.  

It is important to remember that this is similar to how Fast Ethernet started out. In the future, some 
organizations may have large numbers of Gigabit end user devices.  

Adoption of the new high-speed protocol as a standard for end devices has been a little slow, mostly 
because of the time lag between the fiber and copper standards for delivering the medium. However, now 
that a version of Gigabit Ethernet that works over Category 5 cabling has been finalized and hardware 
vendors are releasing equipment based on the standard, there should be more use of the high-speed 
protocol.  

The lack of a half-duplex version for 10 Gigabit Ethernet means that, when it is available, it will probably 
not be quickly extended to the desktop. It is not yet completely clear what sort of twisted pair copper 
cabling the 10 Gigabit standard will eventually use. Category 5 cable is certainly reaching its limitations 
with Gigabit Ethernet. However, the emerging Category 6 standard has not yet been fully embraced by the 
10 Gigabit working groups, which are naturally focused on optical fiber implementations.  

The bottom line is that it will be many years before you can expect to see 10 Gigabit Ethernet extended to 
the desktop. At the very least it will require new cable plants for most organizations, unless they happen to 
have optical fiber running to their desks.  

I envision Gigabit and 10 Gigabit Ethernet as backbone and trunk technologies. Given the trunk 
aggregation rules discussed in Chapter 3, it is clear that if an organization makes extensive use of Fast 
Ethernet today, then it needs an inexpensive fast trunk technology. These new Gigabit and 10 Gigabit 
standards are ideally suited to this purpose.  

4.4.2 Gigabit as a Backbone Protocol 

One of the most positive features of Gigabit Ethernet trunks is their ability to use a common 802.3 framing 
throughout all levels of the network. This is important because the same VLAN tags and MAC addresses 
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are shared throughout any Distribution Area. You don't want to have to rewrite or tunnel these pieces of 
information for three reasons.  

First, each step introduces latency. Second, you sometimes want to put a protocol analyzer on a trunk to 
see what passes through it. If you can't readily distinguish the VLAN associated with a frame and if you 
can't easily identify the source and destination devices, it can be difficult to tell if you have a problem. 
Most modern protocol analyzers are able to read into a packet to help with this problem, but it can still be 
difficult to see what's going on, depending on the types of tunneling employed.  

The third advantage to using the same 802.3 frame at each stage of a packet's journey through the network 
is that it ensures consistency in the treatment of its priority. As I mentioned previously, the Class of 
Service (CoS) field is associated with the VLAN tag. Knowing this allows the network to have a consistent 
logical identifier for the prioritization scheme to use at each hop up until the packet hits a router. At the 
router, of course, a higher layer identifier (such as the IP TOS or DSCP field) has to carry the information, 
since the packet will lose its Layer 2 information as it crosses through the router.  

I consider Gigabit and 10 Gigabit Ethernet naturally suited to trunk links in large-scale LANs. 
Interestingly, much of the current discussion regarding these standards involves their use in larger 
Metropolitan Area Network (MANs) and Wide Area Networks (WANs) as well. As it is currently common 
to see MAN and WAN networks implemented using ATM and delivered to the customer premises as an 
Ethernet or Fast Ethernet port, it does seem natural to extend this delivery to Gigabit speeds as well. 
Certainly this extension would give efficient near-capacity access to the current highest-speed ATM link 
technologies. It might turn out to be a good low-cost delivery mechanism for these links. However, any 
more detailed discussion of WAN technologies or speculation on yet unwritten standards is beyond the 
scope of this book.  

4.5 ATM 

At one time, ATM looked like it was going to take over the entire networking world. With highly 
successful WAN implementations coupled with LAN Emulation (LANE), it looked like ATM would be 
able to provide inexpensive end-to-end solutions. However, the emergence of Gigabit and 10 Gigabit 
Ethernet standards appear to make this less likely. Implementing a LAN with end-to-end 802.3 framing is 
certainly easier than building a distinct Distribution and Core level network that merely emulates 802.3 at 
the edges of the Access Level.  

However, for WAN carriers, particularly telephone companies that are concerned with carrying voice, 
data, and perhaps even video information over the same network, ATM is still the natural choice. There is 
no 802.3 implementation that is as efficient over long distances as ATM. The small ATM cell size makes it 
perfect for carrying real-time voice and video information with minimal latency.  

There are two real problems with using ATM in a large LAN. The first problem is the additional overhead 
of the various LAN Emulation servers required for either LANE or Multiple Protocol Over ATM (MPOA) 
implementations. The second serious drawback is the high cost-to-bandwidth ratios. The fastest commonly 
available ATM modules for LAN switching are OC-12, and some vendors also make OC-48 modules. The 
wire speed for OC-12 is only 622Mbps, OC-48 runs at 2.48Gbps (2488Mbps), as compared to 1000Mbps 
for Gigabit Ethernet. The OC-12 modules are generally more expensive than Gigabit Ethernet and offer 
less bandwidth. Currently, only fiber optic implementations are available for either OC-12 or OC-48, 
which is generally more expensive than twisted pair implementations of Gigabit Ethernet.  

OC-192, which has a wire speed of 10Gbps, is still a viable option for high-speed LAN backbones if speed 
is the primary objective. With 10 Gigabit Ethernet just around the corner, it is unlikely that the additional 
expense of implementing an ATM LAN backbone will be justified in the long run. Furthermore, current 
OC-192 products tend to be deliberately targeted toward WAN and MAN service providers, so support for 
LAN Emulation implementations is weak.  
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If you want high-speed LAN infrastructure, ATM is probably not the most cost-effective way to get it. 
However, because many sites still have some ATM infrastructure, and because some networks require the 
highest speeds available, I will spend a little bit of time discussing ATM's properties.  

ATM uses a completely different design philosophy than Ethernet or Token Ring. An ATM network is 
composed of a number of switches interconnected by high-speed (usually fiber optic) links. The native 
ATM packet is called a "cell." Each cell consists of a 5-octet header and a 48-octet payload, as shown in 
Figure 4-4. The small size of these cells ensures that latency passing through the network is minimized. 
This minimization is critical for real-time communications such as voice or video. Furthermore, by making 
every cell exactly the same size, the work of the switches becomes much easier. All cells are switched 
according to the information in the cell header. Once a connection is established, the switch always knows 
exactly what the bit offset is to find every piece of information it needs to do this switching, thereby 
minimizing the amount of work it has to do.  

Figure 4-4. ATM cell format 

The key to taking advantage of these efficiencies lies in the creation of Virtual Circuits (VCs)through the 
ATM network. A VC can be either a Permanent Virtual Circuit (PVC) or a temporary Switch Virtual 
Circuit (SVC). Once a VC is created, however, the end point switches know it by a Virtual Path Identifier 
(VPI) and a Virtual Channel Identifier (VCI). Each Virtual Path can theoretically contain as many as 
65,536 Virtual Channels. A switch can address up to 256 different Virtual Paths.  

PVCs are commonly used in WAN applications, allowing the virtual creation of high-speed long-haul links 
through existing ATM clouds. SVCs, on the other hand, have many different sorts of applications and are 
frequently seen in LANE-type situations.  

Figure 4-4 shows a User-Network Interface (UNI) cell. This cell is what one would most commonly expect 
to see at the edges of a LAN, as it is used to connect between a switch and an end device (in this case, the 
end device could also be a router). There is, however, another cell format called Network-Network 
Interface (NNI) that is used to connect switches to one another. For private networks, there is another cell 
format defined for Private Network-Network Interface (PNNI) as well. However, describing switch-to-
switch interactions in ATM networks is beyond the scope of this book.  

ATM was designed as a fast, scalable, low-latency network protocol for transporting a variety of real-time 
data types. One of the most common applications is found in Telephony applications. Most modern 
telephone networks are now built using ATM fabric because of its efficient resource utilization and 
relatively low cost for high-speed long-distance links. It is also commonly used in wide-area data networks 
for the same reasons. However, in both cases, the network service provider frequently hides the ATM 
network from the customer and presents some sort of emulated service instead. For example, most modern 
Frame Relay WAN links are actually provided over an ATM network fabric.  

Several different so-called Adaptation Layers are defined for ATM. Data communication uses ATM 
Adaptation Layer 5 (AAL5), which defines how the ATM cell payload is used to carry packet-type data. 
Similarly, AAL1 is used for emulating legacy circuit technology such as T1 or E1 circuits with Constant 
Bit Rate (CBR) Quality of Service characteristics. AAL2 is intended for transmitting packetized audio and 
video information with a variable bit rate (VBR). AAL3 and 4 are generally merged as AAL3/4, which is 
similar to AAL2, except that it includes no facility for keeping timing information intact across the 
network.  
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Quality of Service is built into the ATM protocol. Several standard methods for delivering packets are 
defined according to how much bandwidth needs to be reserved for each Virtual Channel or Path. This is 
called the bit rate, so you can have CBR, in which no bursting is assumed. The channel is always run as if 
it contains a steady stream of data. Running it this way is useful for emulating analog services. However, it 
is wasteful of network bandwidth if you are able to packetize your data—allowing bursts when you need 
them and letting the network go quiet when you don't need them. To allow these options, ATM defines 
VBR and UBR.  

VBR has two options, real-time and non-real-time. The real-time option is generally used for applications 
that are particularly sensitive to latency, such as video. The non-real time option is more frequently used 
for data communications. UBR, on the other hand, handles all packets on a "best efforts basis."  

The last category is Available Bit Rate (ABR). ABR is an adaptive system in which the end nodes are able 
to take advantage of extra bandwidth. When the network is short of resources, it can ask the end devices to 
slow down. This method of handling bandwidth resources is often used in LANE applications.  

4.5.1 ATM LAN Services 

ATM is typically used in a LAN in one of four different ways. The earliest ATM LAN applications were 
usually built using the standard defined in IETF RFC 1483. This standard specifies a method for bridging 
standard LAN protocols such as Ethernet and Token Ring over an ATM network. Usually, this type of 
system is used with a set of ATM PVC links. The standard needs only to define how packets from the 
various LAN protocols are chopped up into small ATM cells and carried through the network.  

RFC 1483 is an effective way of extending a LAN bridge across a WAN, and it is also useful as a LAN 
backbone. If you have a LAN that has an ATM-based Core or Distribution level, then it is simple to use 
RFC 1483 encapsulation for your various trunk links. All you need to do is to build a set of ATM PVC 
links between the various Distribution switches and use these PVCs as the trunks.  

Some vendors of ATM equipment have clever proprietary systems for maintaining PVCs through an ATM 
network. These systems allow the ATM network to contain a number of different physical paths between 
the two end points. When a network link or node fails, then the other ATM switches detect the failure and 
reroute the PVCs through another physical path. Thus, rerouting provides excellent fault tolerance 
capabilities.  

Another common early technique for using ATM in the LAN is defined in RFC 1577 and updated in RFC 
2225. This technique is called "Classical IP and ARP over ATM." Classical IP provided an effective 
method for connecting end devices to an ATM network directly. But it has the serious drawback that it is 
specific to the IP protocol. Thus, it does not work with any other common LAN protocols such as IPX or 
NetBEUI. In effect, it views ATM as just another Layer 2 protocol, similar to Ethernet or Token Ring. As 
such, it has to use a new form of ARP, called ATMARP, to allow ATM-attached IP devices to find one 
another.  

ATMARP is handled by the creation of a new server. Since ATM is always connection-based, and you 
don't necessarily want to create a lot of VCs every time you need a physical address, an ARP cache server 
with a well-known ATM address is included in each IP subnet area.  

Because of the high cost per interface of using ATM, most installations using RFC 1577 do so only on a 
handful of important servers. These servers are then directly connected to ATM switches. This connection 
lets these servers tap directly into the LAN backbone. However, Gigabit Ethernet is currently a more 
natural and cost-effective way to implement this sort of high-speed server farm. Thus, Classical IP is 
becoming less common than it once was.  

The remaining two ATM LAN systems are closely related. The first is LANE, and the second Multiple 
Protocol Over ATM (MPOA). MPOA contains a set of improvements and upgrades over LANE, but 
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otherwise the two systems are functionally similar. In both cases, end devices are connected to standard 
LAN equipment, usually Ethernet or Token Ring. The LAN switches include ATM connections as well as 
LAN connections. The trunk links are made up of ATM connections between these LAN switches.  

Rather than using VLANs and 802.1Q tagging, ATM LANE and MPOA use Emulated LANs (ELANs). 
This service allows the ATM network to bridge the standard Ethernet or Token Ring LAN traffic, creating 
connections as required.  

The biggest difference between an Ethernet or Token Ring LAN and an ATM network is that the ATM 
network is connection oriented. This means that every conversation passing through an ATM network 
must use a virtual circuit. This virtual circuit can be either permanent (PVC) or temporary (SVC), but a 
connection must be built and maintained for the conversation to work. Ethernet and Token Ring, on the 
other hand, allow any device to communicate with any other device whenever they feel like it. All that is 
needed is the destination device's MAC address, and a packet can be sent to it directly.  

Emulating a LAN using ATM requires sophisticated call setup procedures. The ATM network has to be 
able to keep track of all LAN MAC addresses and use this information to quickly create new SVCs 
between the appropriate switches whenever two devices want to talk. The ATM network also has to 
monitor these SVCs to make sure that the calls are torn down when they are no longer required.  

Each device that connects directly to the ATM cloud is called LAN Emulation Client (LEC). The LEC is 
usually a LAN switch with an ATM interface, but it could be a native ATM device such as a server with an 
ATM interface. Each LEC can talk to any other LEC that is in the same ELAN.  

Every ELAN must have two special servers called the a LAN Emulation Server (LES) and Broadcast and 
Unknown Server (BUS). As the name suggests, the BUS is responsible for handling the LAN broadcasts 
and for resolving unknown MAC addresses. The LES is what the LEC talks to first whenever it wants to 
start a conversation with another LEC. The LES then begins the process of setting up the SVC required for 
the conversation.  

There is also a universal server called the LAN Emulation Configuration Server (LECS) that is common to 
all ELANs on the entire ATM network. This server keeps track of which ELAN each LEC belongs to. 
Every time a new LEC is activated, it has to ask the LECS for information about its ELAN and for help in 
finding the appropriate LES and BUS servers. As such, the LECS is a critical device to the entire network, 
but it actually is not used very often.  

Most LANE and MPOA implementations offer clever methods for switching to redundant backup LES, 
BUS, and LECS servers. Usually, these servers are themselves contained in the management modules of 
the ATM switches. These servers are critical network devices, so it is wise to have them housed inside of 
network equipment. Whatever the physical configuration, they absolutely must have fully redundant 
backups capable of restoring all functionality quickly in the event of a failure. In one LANE installation I 
know of, a LECS failure required several minutes to switch over to the backup. Although the network was 
still operational during this period, a failure that occurred during a peak period, such as the start of the 
business day when calls are first being set up throughout the network, would be disastrous.  

There is significant additional complexity involved in building redundancy for LES, BUS, and LECS 
servers. The network designer must ensure that failover from primary to backup is acceptably fast. This 
issue has proven to be a serious hidden problem with many ATM-based LANs, and is yet another reason 
for using Gigabit Ethernet instead.  

4.6 FDDI 

Fiber Distributed Data Interface (FDDI), like ATM, was once a good choice for LAN backbones because 
of higher available speeds. But, just as with ATM, it appears to have been supplanted by the advent of 
high-speed Ethernet technology. In general, I don't advise implementing new FDDI networks without a 
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compelling and unique requirement. However, it is important to understand FDDI because many networks 
still contain FDDI elements. If a network designer wants to upgrade a LAN infrastructure that contains 
FDDI components, she needs to understand how it works. It is likely that legacy FDDI installations are in 
critical parts of the network.  

FDDI is a fiber optic-based networking protocol that uses two counter-rotating rings. I discussed it briefly 
in the previous chapter and showed how its clever fault tolerance system works. Since the protocol allows 
data transmission at 100Mbps, it was once useful as a network backbone. It has also been used effectively 
to create server farms close to the network Core Level. However, Fast Ethernet and 100Mbps Token Ring 
have effectively killed FDDI, and Gigabit Ethernet has rendered it obsolete. We still sometimes see legacy 
FDDI equipment supporting server farms. There are also some older implementations of network disk 
arrays and server clusters using FDDI that are still in operation.  

You can build an FDDI network in two ways. The simple method is to connect fiber patch cords directly 
between the various ring components. Each device connects to the next, all the way around the ring. It is 
also possible to use an FDDI switch and construct a star topology. In this latter case, the ring becomes 
naturally full-duplex and closely resembles a switched Token Ring construction. Of course, it is possible to 
combine the two approaches, using the central switch as a multiport FDDI bridge.  

Perhaps the simplest way to execute a phased removal of an FDDI backbone is to first bridge the FDDI 
ring to a Gigabit Ethernet switch. Then the FDDI devices can be migrated to the Ethernet switch one at a 
time. This way, there is no need to readdress the devices. This is important particularly in the case of server 
farms because readdressing servers may require changing configurations on a potentially large number of 
client devices.  

4.7 Wireless 

Over the last few years, wireless networking has seen a huge increase in public acceptance and in use. It is 
still considerably more expensive, less reliable, and slower than conventional wire-based networks. 
However, in many cases, wireless is the most convenient method for delivering network services.  

Two main standards are currently used for wireless local area communications: 802.11 and Bluetooth. In 
their most popular current implementations, both protocols use the 2.4 GHz ISM and 5 GHz UNII bands. 
(ISM stands for Industrial, Scientific, and Medical, and UNII for Unlicensed National Information 
Infrastructure.) These bands are reserved sets of frequencies that can be used without a license.  

Despite having the same frequencies and similar throughput capabilities, these two protocols are not 
compatible with one another. Thus, it is important to understand the strengths and weaknesses of both.  

Bluetooth (whose underlying protocol is currently being standardized by the IEEE under the 802.15 
designation) was created as a wireless method for replacing serial, parallel, and USB-type cables. It also 
includes a LAN specification, but even this specification is based on an underlying serial cable emulation. 
Thus, the LAN links created with Bluetooth always use point-to-point protocol (PPP), which is a logical 
link protocol frequently used over modem-type links.  

The 802.11 standard, on the other hand, is intended purely as a wireless LAN protocol. As such, its logical 
link protocol is similar to Ethernet. In fact, it uses Carrier Sense Multiple Access/Collision Avoidance 
(CSMA/CA), as opposed to Ethernet's CSMA/CD, avoiding collisions because the radio medium does not 
allow for reliable collision detection.  

In general, the topology of a wireless LAN involves a number of wireless devices connecting to a central 
Access point device. It is also possible to build an ad hoc peer-to-peer network. However, this book is 
about large-scale LANs, so it is most concerned with how this sort of technology would be used in such a 
LAN.  
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Figure 4-5 shows how a wireless LAN might work in the context of a larger network. Every device taking 
part in the wireless network has its own radio receiver and transmitter built into it. It uses this radio to 
connect to an Access point device. The Access point is effectively a wireless hub. In fact, in many ways, it 
behaves exactly like an Ethernet hub.  

Figure 4-5. A simple wireless LAN 

Like a hub, the Access point provides a central connection point. Also like a hub, it allows all connecting 
devices to share a common pool of network bandwidth. The more devices you connect to a single Access 
point, the smaller the share of the bandwidth each receives. This is one of the two important considerations 
in deciding how many Access points will be required. The other important question is how much physical 
area must be covered.  

Before building a wireless LAN, the first question is what the wireless network will actually be used for. 
Will it be used to deliver standard LAN services to stationary devices, such as desks or factory assembly 
line stations? This might be the case because traditional LAN cabling can be awkward, expensive, or 
dangerous to deliver in some settings. Another place where wireless technology is useful is in highly 
mobile networks. For example, it might be necessary to communicate with a mobile robotic device that 
could be anywhere on a factory floor. Or, people might be walking around the floor of a warehouse with 
laptop computers for inventory checking.  

The mobility of the wireless devices turns out to be extremely important. Since the greatest distance one 
can cover with a wireless LAN is about 100 meters, it is often necessary to have several different Access 
points throughout the work area and to allow devices to "roam" from one area to another. In 802.11, the 
area served by each Access point is called a Basic Service Set (BSS). The collection of BSS "cells" is 
called an Extended Service Set (ESS). These concepts are illustrated in Figure 4-6.
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Figure 4-6. Roaming in a wireless LAN (device moves from one Access point to another) 

Roaming is a key concept in wireless communications and is mentioned in the 802.11 specification. 
However, the specification does not include standards for roaming protocols that allow devices to freely 
move from one BSS to another or from one ESS to another. The only way to accomplish this movement 
with current technology is by means of vendor proprietary roaming protocols and software. If roaming is a 
requirement, then it is important to ensure that all of the wireless communications equipment comes from 
the same vendor (to ensure interoperability).  

It is possible to use either Bluetooth or 802.11 to construct a wireless LAN replacement. In general, 802.11 
is the better choice for several reasons. First, Bluetooth devices generally operate at much lower power, 
and consequently have less range. Typical ranges quoted by manufacturers are 10 meters, compared with 
100 meters for 802.11. Second, the nominal throughput with an 802.11 system is generally much better 
than for Bluetooth. Bluetooth LAN bandwidths are typically between 1 and 2Mbps, the same as the 
original 802.11 systems. However, the newer 802.11b specification allows speeds of up to 11Mbps, and 
802.11a can run at over 70Mbps.  

Furthermore, because Bluetooth is intended primarily as a way of replacing short cables to peripheral 
devices, these bandwidths are completely adequate and appropriate to this purpose. Thus, we will probably 
see future development of still higher-speed versions of 802.11 than for Bluetooth. However, just as with 
the upgrade from 100Mbps to 1000Mbps Ethernet, each new 802.11 specification will likely have physical 
layers that are different from previous versions. Indeed, this is already the case with the upgrade to 
802.11b. As with these 802.3 examples, upgrading to the newer standard is usually relatively easy to 
accomplish, while switching from one standard to another (for example, Token Ring to Ethernet or, worse 
still, ATM to Gigabit Ethernet) can be costly and difficult.  

Another new version of 802.11, called 802.11a, operates on the 5 GHz band. The 5 GHz band has a larger 
range of frequencies available than does the 2.4 GHz band. This fact, coupled with innovative physical 
coding schemes, means that 802.11a LANs will have bandwidths of at least 54Mbps. One vendor even 
claims to have a dual-channel mode that will operate at a theoretical maximum bandwidth of 108Mbps, 
although more conservative estimates say that it can deliver 72Mbps. At the time of the writing of this 
book there are not yet any commercial products using this technology, but they are expected shortly.  

Finally, there is the issue of security in comparing the 802.11 and Bluetooth wireless systems. Because of 
the shorter ranges and the typical sorts of applications, Bluetooth does not actually require as much 
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sophisticated security as does 802.11. In a true wireless LAN with larger ranges of operation and the 
potential for much more sensitive applications, security becomes extremely important. For this reason, 
802.11 includes a specification for Wired Equivalent Privacy (WEP).  

Unfortunately, a group from Berkeley recently analyzed the actual cryptographic properties of WEP and 
found it badly wanting.[3] In their report, they made several key recommendations for improving 802.11 
security and included some network design ideas for limiting an organization's exposure.  

[3] See the paper "Intercepting Mobile Communications: The Insecurity of 802.11" by Borisov, 
Goldberg, and Wagner, published in the proceedings of the Seventh Annual International 
Conference on Mobile Computing and Networking, July 16-21, 2001. 

First, a little bit of background is necessary. WEP is an optional method for implementing security in a 
wireless LAN. It can be turned on or off by the network administrator. When it is activated, every packet 
sent through the wireless medium is encrypted using an RC4 keystream. RC4 is a method of creating long, 
pseudorandom sequences of characters, and it is generally considered highly secure.  

In 802.11, a common starting string (called the Initial Vector) is known by all end devices and by the 
central Access point. In fact, implementing an 802.11 network with a different Initial Vector (IV) for every 
device is possible, but not commonly done. The problem is that several types of attacks, which I will not 
describe here, can allow some or all the packets encrypted this way to be decrypted. The longer an attacker 
listens to the network, the better the decryption becomes.  

This attack is not trivial. It requires a deliberate and concerted effort over the course of a few days to get 
enough information to decrypt all of the packets sent over a wireless LAN reliably. However, it is possible 
to do it, and it would be very difficult, if not impossible, to detect the intrusion. As network designers, we 
must take the possibility seriously.  

Furthermore, the attacks described in the article are not all purely passive "listening" attacks. It is also 
possible to circumvent Access security in WEP and connect devices to the 802.11 network. Since the LAN 
is wireless, people in the building across the street could potentially gain active access to your corporate 
network without ever leaving their office.  

There are two ways to approach these security problems. You can either wait until the WEP improvements 
mentioned in the article have been adopted and implemented, or you can consider the wireless LAN 
insecure and not trustworthy from the outset. It all depends on how urgent the requirement for wireless 
communications is to the organization. If you can wait for the protocol improvements, it would probably 
be better to do so.  

If it is necessary to build a wireless portion to a corporate LAN, then the most secure way of doing so with 
current technology is to put the actual Access point on the outside of a firewall, similar to how Internet 
connections are made. The article mentioned previously recommends putting the wireless Access point 
outside of the Internet firewall, but this solution is not ideal because it potentially exposes workstations and 
the wireless Access point itself to Internet-based attacks. Furthermore, it presents IP addressing problems 
to organizations that do not possess large ranges of registered addresses. A better solution is to implement 
the wireless Access point behind a separate firewall.  

With the Access point secured in this way, you then need to make the individual wireless connections 
secure through the firewall to the interior of the network. Making such selections secure is readily 
accomplished using standard Virtual Private Network (VPN) technology. Since VPN cryptography has 
been around for several years, it has finally reached a point at which it is relatively secure against all but 
the most concerted brute force attacks.  

Figure 4-7 shows how wireless security might work. This drawing shows two distinct firewalls, one for the 
public Internet and the other for general untrusted devices. Many organizations have connections to 
external vendors and information suppliers. The information supplied by these vendors is business critical, 
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but legitimate security concerns about exposing the internal network to external networks still exist. Thus, 
these external networks are called "untrusted," although a better term might be "semitrusted." This is an 
appropriate location for the wireless LAN connection.  

Figure 4-7. For security reasons, a wireless LAN should be connected through a firewall 

Wireless users then connect to the Access point device located behind the firewall. Once they have 
authenticated appropriately with the Access point, using standard 802.11 authentication systems, they 
establish a VPN connection through the firewall to the secure internal network. This combination of 
security measures gives the wireless users as much security as any standard cable-based LAN connection.  

4.8 Firewalls and Gateways 

Each time I discuss firewalls in this book, I refer to IP examples. This is because, quite simply, there are no 
real firewalls for other protocols. It might be useful to have an IPX firewall that could handle IPX address 
translation and SAP proxy services, but I am aware of no such commercially available device. The reason 
for the large number of sophisticated IP firewalls is clearly connected to the growth of the Internet. The 
fact that every large organization needs an Internet connection has become a fact of life. This connection is 
simply not safe without a firewall, so there is extensive demand for IP firewalls. But the lack of public IPX 
or Appletalk networks, for example, has meant that there is very little demand for sophisticated firewalls 
for these protocols.  

I have already mentioned that the difference between a bridge and a router is related to the OSI Layer 
where they operate. A bridge preserves Layer 2 information but can change Layer 1 properties. Put another 
way, a bridge terminates Layer 1 and continues a Layer 2 connection. A router preserves Layer 3 and 
changes Layer 2. It also terminates Layer 2 connections and allows Layer 3 to carry on. This distinction is 
important because there is considerable confusion in marketing literature about what firewalls and 
gateways are.  
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In a TCP/IP application, a router is one level of gateway device. More commonly, the word refers to an 
application gateway device that terminates the TCP session on one side and starts a new session on the 
other. It does not retain Layer 4 information like packet sequence numbers, but it does pass application 
data through, perhaps with reformatting. Therefore, an application gateway is a network device that 
operates above Layer 4.  

This sort of gateway that runs the same protocol on both sides is sometimes also called a proxy host. One 
common application is a web proxy, which proxies HTTP connections. In this case, the proxy is done both 
for security reasons, allowing only one device to directly connect to the public Internet, and for efficiency. 
If the same web sites are visited repeatedly, the proxy host can cache the commonly viewed information. 
When a client device requests information from the web site that has recently been cached, it can receive it 
more quickly from the proxy server. This convenience has the added benefit of reducing traffic on the 
Internet access links.  

However, some gateways also run different protocols on both sides. For example, it is relatively common 
to use gateways to access remote SNA services. If the workstations run a routable protocol, such as IP or 
IPX, they can connect to the SNA gateway device. This gateway then connects directly to the SNA host 
and converts the traffic in both directions.  

A firewall is rarely so well defined. For instance, there are firewalls that are, in fact, little more than 
routers. They may do extensive packet filtering and they may even do network address translation (NAT) 
to change IP addresses. But their net effect is to change only Layer 3 information without necessarily 
terminating the Layer 4 session and establishing a new one on the other side. Some firewalls act as 
gateways, fully terminating each call and passing only application data through from one side to the other. 
Some firewalls also effectively operate as packet filtering bridges.  

A firewall is a security device. It can only be defined in terms of the security it provides. An application 
gateway, however, is a network device with a specific network meaning. Because every firewall operates 
in a unique way, it is difficult to make general statements about them. Rather, it is best to evaluate specific 
security requirements and select a firewall that appropriately fills these requirements.  

For large networks with serious security issues, I always recommend using a specially designed 
commercial firewall. I especially recommend it for firewalls protecting access to a public network such as 
the Internet. There are many ways to make a firewall, including commonly available software for the 
Linux operating system. These systems may work well enough for a small office or home network, but it is 
important to remember that network security is not simple. Building a highly secure firewall is not easy. 
Commercial firewall manufacturers frequently issue bug fixes and updates to correct recently discovered 
flaws and foil clever new attacks. It is unlikely that a homemade system will be kept up-to-date like this.  

Similarly, it is not difficult to implement basic packet filtering on most commercial routers. This filtering 
may be sufficient for use with a semitrusted external network, such as that connecting to an external 
information vendor. But it is unlikely that this sort of safety measure will be adequate against a genuinely 
hostile environment like the Internet. If your network is valuable enough to protect with a firewall, it is 
valuable enough to protect with a proper firewall.  

It is beyond the scope of this book to offer any particular guidance in selecting one commercial firewall 
over another. Essentially, all of them are good and offer excellent levels of security. However, they all 
have subtle differences that make some more useful in some environments than others. Furthermore, 
because several new security products come onto the market each year, it is best to simply evaluate 
security requirements at the time they arise and select the best currently available product.  

However, remember that no firewall will make your network inherently secure and keep your data safe. At 
best, it will prevent interactive connections from the outside of your network to the inside. However, there 
are many ways to steal information and even more ways to corrupt information or to disrupt network 
services. Most of these methods do not involve interactive connections from an external network. I discuss 
security in more detail in Chapter 10.
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4.9 Structured Cabling 

One of the most important, yet least discussed, factors in building a successful LAN is a good cable plant. 
Of course, by cable I mean not only copper, but also fiber optic cabling. A good cable plant design 
considers several factors.  

First, there is a difference between vertical and horizontal cable runs. In a simple high-rise office tower 
with one LAN room on each floor, the difference is relatively clear. Vertical cable runs interconnect the 
different floors, while horizontal cabling is used to connect users to the LAN Access equipment such as 
hubs or switches. In a more complicated real estate plan, the terms become a bit confusing because not all 
horizontal runs are parallel to the ground, and not all vertical cable runs are perpendicular to it.  

By horizontal cable runs, I mean Access Level wiring. I only use this term to describe cables that connect 
end station equipment to Access hubs and switches. Vertical cabling, on the other hand, is never used for 
end stations. Rather, it is used to interconnect hubs and switches. In a hierarchical design, vertical cabling 
usually means cabling that connects Access Level hubs and switches to Distribution switches. Vertical 
cabling is also often used to connect Distribution to Core devices.  

4.9.1 Horizontal Cabling 

For the horizontal cable runs, the important considerations are:  

• Type of cabling employed 
• Number and type of connectors at each desk 
• Number and type of connectors in each computer room rack 
• Patch panel design 
• Physical routing of cable 

The gold standard for horizontal cabling is currently Category 5 (sometimes just called Cat5). This system 
was originally introduced to support 10BaseT networks, with all of the required growth capability for Fast 
Ethernet, which was not yet commonly available. It turns out that Category 5 is even able to support 
Gigabit Ethernet, so the investment in a Category 5 cable plant has been well worth the money.  

One of the most fortuitous features of the Category 5 specifications for Fast and Gigabit Ethernet is that, 
like 10BaseT, they all specify a distance limitation of 100 meters. If the cable plant was built to respect this 
specification, it should theoretically be able to handle these speed upgrades.  

Furthermore, Category 5 cabling can also support 4 and 16Mbps Token Ring standards with the same 100-
meter distance limitation. And in all cases, the same standard RJ45 connector is used, so you can freely 
change your environment among any of the most popular LAN standards without needing to change your 
cabling. This fact is important because, although the cable itself may not be terribly expensive, the cost of 
rewiring an entire work area to support a new cabling standard is daunting.  

However, the Category 5 standard has evolved slightly since it was introduced. To support Gigabit 
Ethernet, it became necessary to modify the standard, called Enhanced Category 5 or Category 5e. This 
enhanced standard includes limits on signal reflection properties and cross talk at junctions. While it is true 
that a good Category 5 cable plant supports Gigabit Ethernet, if the installation is more than a few years 
old, it may have trouble with Gigabit speeds. The compatibility can be tested easily by any certified 
cabling contractor. It is definitely a good idea to pretest any cable plant before assuming that it will support 
an upgrade from Fast to Gigabit Ethernet.  

A new Category 6 standard is currently nearing the final stages of acceptance. Some organizations have 
rushed to implement the new standard in the hopes that it will provide further growth capabilities. But 
there have been a number of reported interoperability problems with the Category 6 cable systems, mostly 
caused by pushing ahead before the standard was completed. Furthermore, if these organizations 



125

implement Category 6 in the hopes that it will support similar future growth to 10 Gigabit Ethernet, they 
may be sorely disappointed. The 10 Gigabit Ethernet project is moving ahead quickly, but has not yet 
settled on any copper-based cabling standard. And it is possible that they will have to bypass Category 6 
and jump directly to Category 7, which is also currently in development.  

The current picture of the world of cabling standards is rather uncertain. There are no guarantees that any 
of today's cabling standards will support tomorrow's high-speed networking. The good news is that a good 
Enhanced Cat5 cable plant will readily support both 100Mbps Fast Ethernet and Gigabit Ethernet speeds.  

One of the best cost-saving measures available when designing a horizontal cable plant is simply deciding 
how many LAN drops will be put at each user work area. In general terms, the cost of pulling one cable to 
a desk is the same as pulling several cables. This is because the cabling contractor simply bundles all wires 
together and pulls the bundle. The same amount of labor is required either way. In cabling jobs, the labor 
cost is commonly around 75% of the total cost. Doubling the number of LAN drops at each desk will likely 
increase the total cost by 25%. However, coming back to pull a new bundle of cables to every desk after 
the original job is done can be prohibitively expensive. It is better to slightly overestimate the number of 
LAN drops that will be required at each desk.  

An organization that expects every user to have only one network device on his or her desk should 
probably consider pulling two LAN drops to each desk. This way, if several users suddenly need a second 
workstation or a printer, it is easily accommodated with minimal expense. Similarly, if it is known from 
the start that a lot of users will have two network devices on their desks, then pulling at least three LAN 
drops would be wise.  

Some organizations, particularly investment banks with large computerized trading floors, opt to pull both 
fiber and copper cabling to every desk. This way, they know that they will be able to support future speed 
increases, even if the standards for copper cabling change. But this option is probably overkill for most 
office applications.  

Another common cost-saving measure in horizontal cabling is combining LAN and telephone cable runs, 
terminating them all on the same termination block at the workstation. This measure is particularly useful 
if the telephone system uses the same wiring closet as the LAN does.  

The same considerations apply to the cabling of server racks in the computer room. Some organizations 
take advantage of their raised computer room floor to do all of their server cabling in an ad hoc, as needed 
fashion. However, this can make troubleshooting problems extremely difficult because there will be no 
reliable pattern associating particular racks with patch panels.  

I generally recommend precabling every rack in the computer room in a rational pattern. Then, if 
additional cables are required, they can be pulled with minimal disruption. Remember that every time 
somebody works under the floor tiles, they risk disrupting power or network cables that are already 
present. For this reason, many organizations have strict rules prohibiting any such work during business 
hours. Thus, precabling the racks can result in significant time savings when connecting new systems.  

Patch panels are critical to maintaining the required signal loss and reflection characteristics of LAN 
cabling systems. Generally, the horizontal runs that terminate under user desks are collected on patch 
panels in a wiring closet near the work area. The total distance limit on any twisted pair copper cable run 
should be kept below 100 meters because this length is the upper limit to most 802.3 and 802.5 
specifications. This length restricts the service area of any given wiring closet.  

The most common method for terminating the horizontal cable runs in the wiring closet is to use a patch 
panel of RJ45 connectors. This panel is called the station field, as shown in Figure 4-8. It was once 
common to also have a similar second patch panel called the equipment field that connected to LAN 
Access hubs or switches. However, with the advent of higher speed LAN technology, simply using the 
RJ45 connectors on the front of the Access equipment as the equipment field is usually preferable. You 
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generally do not want to introduce an additional connection point, as it can result in too much signal loss 
and reflection.  

Figure 4-8. Typical horizontal cabling construction 

Also, to reduce signal loss and reflection, it is generally preferable to run directly from the back of the 
station field patch panel to the user's desk, with no intermediate terminations or patch panels. Again, in 
earlier implementations, using an intermediate BIX style (that is, punch-down connectors with individual 
wires rather than RJ45 connector jacks) panel was relatively common, since this style gave the cabling 
contractor extra flexibility in running the cabling.  

The patch cords, both at the user's desk and connecting from the station field to the Access equipment, 
must be compatible with the cabling specification used for the horizontal runs and the patch panels. This 
compatibility becomes particularly important in Gigabit applications where signal reflections and cross talk 
between wire pairs can destroy the signal. In fact, existing cable plant problems are almost invariably in 
the patches and terminations.  

One last important thing to consider when designing a cable plant is the physical routing of the cables. For 
horizontal cabling, this routing generally means avoiding sources of electrical noise. Fluorescent lights are 
some of the worst noise sources in an office building, and they are often difficult to fully avoid. However, 
the noise radiated from any such source decreases rapidly with distance, so an extra few feet can make a 
huge difference.  

Usually, it is better to pull horizontal LAN cabling through the floor or walls rather than the ceiling. In an 
open-concept office, using walls may be impossible, however. The relatively common practice of running 
cables through the ceiling and down into each user cubicle by means of a hollow pole is unattractive and 
tends to age poorly; over time the floor layout will inevitably change. If the LAN drops come up out of a 
panel in the floor, it is often easy to move cubicle walls by several feet in any direction. However, with the 
hollow pole systems, the pole generally has to line up perfectly with the cubicle wall. Even shifting the 
wall by a few inches can result in a mess of bizarre angles.  

Some buildings were never designed for cabling through the floor. Some building designs use thick floors 
of solid concrete. The only way to run cable through the floor is actually to drill through to the false ceiling 
of the floor below and run the cables through those holes. Drilling holes through cement (called "coring") 
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can be extremely expensive. In these cases, it may be necessary to run the horizontal cables through the 
ceiling and down hollow poles, but I recommend this option as a last resort.  

4.9.2 Vertical Cabling 

For vertical cabling the considerations are similar, except that you should never connect end stations 
directly to vertical cable runs. The important considerations are:  

• Type of cabling employed 
• Patch panel design 
• Physical routing of cable 

The distances involved in vertical runs are often larger than the distances used in horizontal runs. This is 
particularly true when talking about "vertical" runs between buildings. Consequently, for vertical cabling 
you generally want to use fiber optic cabling instead of copper, although there are still times where copper 
cabling is required between floors. Vertical copper cabling, often called "house pairs," is usually run in 
large bundles with 25 pairs of wires twisted together, which retain the Category 5 specifications. These 
cable bundles are normally terminated either on an Amphenol connector or on a BIX-style punch-down 
block. They can be used either for standard LAN protocols over shorter distances or for legacy serial 
standards such as X.25 or SDLC connections.  

There are two main types of fiber optic cable—single mode and multimode. Multimode fiber is less 
expensive, and devices that use it have lower optical power requirements, making them less expensive. 
However, this lower power generally means that multimode fiber is useful only for shorter distances. Most 
vertical cable runs use multimode fiber optic cabling. For longer distance requirements the power of the 
injected signal has to increase, which usually requires single mode fiber cable.  

The rule has historically been that multimode fiber is used for LANs and any short distance requirements 
while single mode is used by WAN and MAN service providers. This rule may need to be altered because 
of multimode distance restrictions on Gigabit Ethernet.  

The current Gigabit Ethernet specification restricts multimode fiber cable runs to 500 meters. This length is 
enough to reach from the top to the bottom of the world's tallest office buildings, but it is not sufficient to 
cross even a modest-sized campus. Thus, some organizations will probably need to pull new single-mode 
fiber runs between buildings to allow them to take full advantage of Gigabit Ethernet trunks.  

Fiber patch panels are similar in concept to patch panels for twisted pair cabling. Usually, a bundle of 
fibers is run from any given LAN wiring closet to a central Distribution LAN room. Multimode fiber 
comes in a variety of different bundles. The smallest bundles generally include only a single pair of fibers. 
As with horizontal LAN cabling, the main expense in pulling a bundle of fiber optic cable is in the labor, 
not the cable. Thus, it is usually wise to pull a larger bundle of fibers, even if there is no immediate 
requirement for more than one pair. Remember that fiber is almost always used in pairs, so it is easy to use 
up all available strands quickly when new requirements emerge.  

The usual method for running vertical fiber cabling is to designate a few Distribution LAN rooms where 
the Distribution Level switches will be housed. Then all Access devices that use this Distribution Area will 
be housed in local wiring closets. You need to run at least one bundle of fibers from each local wiring 
close to the Distribution LAN room. Then you can simply use fiber patch cords to connect the Access 
equipment to the patch panel on one end and the Distribution equipment to the patch panel on the other 
end.  

Fiber optic cabling is not susceptible to electrical interference. It is, however, far more susceptible to 
cutting and breaking than copper wire. You can use two common methods to help protect against these 
problems.  
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First, though the fiber bundles themselves are held together in a protective sheath, this sheath is not 
sufficient to protect the delicate fiber from damage. The bundles are usually passed through long metal 
conduits, which helps protect them against damage from accidental bumping or crushing.  

Second, and most important to a stable LAN design, running two sets of fiber bundles through different 
conduits is a good idea. It is even better if these conduits follow completely different physical paths. For 
example, in many cases, vertical cabling runs through the elevator shafts of a building. The preference here 
would be to run two bundles through separate conduits located in different elevator shafts. This way, even 
if a fire or other similar disaster in the building destroys one physical path, it doesn't destroy your only way 
of connecting to a remote area.  

In this case, you would also carefully construct your trunks so that you always run redundant pairs of 
trunks, one from each conduit. Then if you have a physical problem that damages one fiber bundle, 
Spanning Tree or some other mechanism will activate the backup trunk and there will be no service outage.  

Another good reason to use physically separate fiber conduits is that fiber cable itself is susceptible to low 
levels of background radiation. If one conduit happens to pass through an area that has unusually high 
radiation (a radiology office, or perhaps some impurity in the concrete), then over time the fiber could 
become cloudy and start showing transmission errors. In this case, the other conduit will probably not have 
the same problem. Thus, you can simply switch over to the backup link.  
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Chapter 5. IP 
The most common Layer 3, or network layer, protocols in use on LANs are Internet Protocol (IP), IPX, 
and AppleTalk. IP, sometimes called TCP/IP, is an open standard protocol that is defined and developed 
by an organization called the Internet Engineering Task Force (IETF). The standards that define IP are 
distributed in the form of Request for Comment (RFC) documents that are freely available from many sites 
on the Internet. IP, IPX, and AppleTalk are all routable protocols and thus effective for large-scale 
networking.  

Nonroutable protocols such as NetBEUI, SNA, and the older LAT protocol pose serious scalability 
problems to a LAN because they require that all segments sharing resources be bridged together. Breaking 
up broadcast domains (network regions interconnected by repeaters or bridges) by using routable protocols 
leads to much more efficient networks.  

There are other routable protocols in use on LANs, such as the Banyan Vines VIP protocol. Banyan 
Worldwide officially changed its name to ePresence Solutions in 2000 and dropped support for all Banyan 
products in 2001 to become a service-centered, rather than a product-centered, company. Thus, this 
protocol is effectively obsolete and should be avoided in any LAN architecture.  

Sometimes you'll encounter a handful of other routable protocols, such as DECNET and OSI. DECNET 
was used primarily by equipment made by Digital Equipment Corporation. When that company broke up, 
most organizations that had used DECNET began to migrate away from it. It can still be found in some 
networks, however. OSI, on the other hand, is a general purpose routable protocol that was once 
championed as the next great thing in networking. But it never quite managed to secure a foothold in the 
networking marketplace.  

Over the last several years, IP has been replacing these other protocols as the favorite option of many 
network designers. This growth of IP has been fueled by a number of factors, particularly the public 
Internet, which uses IP exclusively. Accompanying this growth has been a steady development of new 
features for IP. Features such as DHCP, VRRP/HSRP, multicast, and Quality of Service capabilities have 
effectively eliminated the technological advantages of some of these other protocols. Today, the only 
reason to consider other protocols is for compatibility with legacy applications.  

I discuss IPX design issues in Chapter 7. IPX has some particularly interesting properties that affect how it 
is used in a LAN, and I still frequently encounter it in large LANs. AppleTalk, on the other hand, is a topic 
that would require an entire book of its own to do it justice. Its breadth puts it beyond the scope of this 
book.  

IP is the protocol that the Internet uses, appropriately enough. Most comments I make in this section are 
specific to IPv4. A newer version, called IPv6 (or sometimes IPNG for "next generation"), is not yet in 
wide use. It seems likely that one day IPv6 will supplant the current IPv4 as the dominant version. I 
discuss IPv6 in more detail in Chapter 10.

5.1 IP-Addressing Basics 

IP network addresses consist of 4 octets (8-bit bytes). The standard notation for this address is to express 
each octet as a decimal number from 0 to 255, separated by dots (dotted-decimal notation), for example, 
10.212.15.101. Because groups of these IP addresses identify network segments, it must be possible 
to express ranges of addresses in a simple summary notation. Using a netmask expresses these ranges. The 
netmask is another 4-octet number that is also often expressed as decimal numbers separated by dots. 
However, it is actually easiest to understand the meaning of the netmask in its binary representation.  

Each 1 bit in the netmask indicates that the corresponding bit in the IP address is part of the network 
address. Each 0 bit in the netmask similarly identifies a host part of the address. As shown in Figure 5-1, if 
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the address 10.212.15.101 has a mask of 255.255.255.0, then the network portion of the 
address is 10.212.15.0 and the host portion is just the last 101.

Figure 5-1. Netmask example showing addresses and masks in decimal, hexadecimal, and 
binary 

The netmask can also create larger or smaller networks. If the mask is 255.0.0.0, then you can put a 
large number of hosts on a small number of networks. Similarly, a mask of 255.255.255.252 allows 
a very small number of hosts and potentially more networks. The smaller networks that can be created this 
way are called subnets. Depending on the mask, though, not all IP addresses are usable.  

Consider the common example where the netmask is 255.255.255.0, and assume that the network 
address is 10.212.15.0. As a result, the first usable host address in this range is 10.212.15.1 
and the last one is 10.212.15.254.

The general rule is that you cannot use addresses that have either all ones or all zeros in the binary 
expression of the host parts of their addresses because these addresses are reserved for local broadcast 
purposes. Consider a subnet with a mask of 255.255.255.252 whose address is 
10.212.15.100. The first available address to use on this subnet is 10.212.15.101. The last 
one is 10.212.15.102. Thus, this network segment can only have two devices on it.  

Table 5-1 shows the number of host addresses available for several commonly used netmask options.  

Table 5-1. Commonly used subnet masks 
Netmask Host bits available Number of hosts Applications 
255.255.255.255 0 1 Host mask 
255.255.255.252 2 2 Point-to-point links 
255.255.255.248 3 6 Small special-purpose segments 
255.255.255.240 4 14 Small special-purpose segments 
255.255.255.224 5 30 Medium-sized segments 
255.255.255.192 6 62 Rarely used 
255.255.255.128 7 126 Rarely used 
255.255.255.0 8 254 General-purpose segments 

Notice that the first entry in this table, the one with netmask 255.255.255.255, has a binary 
representation that is all ones. In effect, the entire address is a network address. Clearly, this leaves no 
room for host addresses, but that doesn't mean that you can't configure a host on this network; you just 
can't differentiate between the hosts that are within a particular network using this address. As long as only 
one host is in the network, there is no conflict.  

How can there be a network with only one host? What will that host send its packets to in order to get to 
other networks? Paradoxically, this netmask can be quite useful; it is typically used as a loopback address, 
for example. This is a purely internal address within a host that can be used for special purposes such as 
management. It is also common to use a loopback address for tunnel terminations, since this loopback 
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interface is always guaranteed to be active, even if the device itself is on a backup circuit. Loopback 
addresses are also often used in conjunction with dial backup applications.  

The 192 and 128 masks are rarely used for subtle compatibility reasons. This has to do with the closely 
related concepts of multiple subnet broadcasting and address classes. These concepts are now considered 
optional parts of the IP Core standard. I discuss these issues later in this chapter.  

At one time it was fashionable to use more complicated subnet masks. Instead of just using masks that had 
all ones up to a certain bit, usually in the last octet, some large networks used masks such as 
255.255.255.56, for which the bit pattern in the last octet is 00111000. The idea of these masks 
was to provide a way to open up a smaller address range. For example, the engineer could start with a 
mask of 255.255.255.248 (11111000). She might initially assign a particular Ethernet segment 
the subnet 192.168.1.16. Then, as that segment grows beyond the 6 available addresses, she could 
give it an additional block by just changing the subnet mask to 255.255.255.120 (01111000). 
The available range of addresses now includes 192.168.1.17-23 and 192.168.1.144-150.
The range from 17 to 23 is the addresses that have the 0 bit in the first position. The address 144-150 has a 
1 in this bit position. Table 5-2 shows why this works.  

Table 5-2. Subnetting "counting from the left"  
First three octets Last octet Binary last octet Comment 
255.255.255. 120 0-1111-000 Mask 
192.168.1. 16 0-0010-000 All zeros 
192.168.1. 17 0-0010-001 First address available 
192.168.1. 23 0-0010-111 Last address, first half 
192.168.1. 144 1-0010-000 First address, last half 
192.168.1. 150 1-0010-110 Last address available 
192.168.1. 151 1-0010-111 All ones 

This procedure of subnetting is called "counting from the left." While it is effective, it is not commonly 
used anymore for several reasons. First, how the range from 17-23 is connected to the range from 144-150 
confuses most casual observers. This confusion will invariably make troubleshooting much more difficult 
than it needs to be. Second, if you really want to use this scheme, then you have to set the second range 
aside just in case you need it later. If you think you might need more addresses, though, why not just 
assign larger subnets in the first place? The third reason to avoid using this sort of scheme is that 
specifying a subnet mask by just counting the one-bits has become commonplace. So the mask 
255.255.255.240 would be the 28-bit mask. It is common to specify the subnet 192.168.1.16 
with this mask as 192.168.1.16/28. But 255.255.255.120 also has 28 bits of ones, so there 
is a risk of confusing these two networks.  

Finally, this type of subnetting scheme clearly breaks one of network design's Core principles. It is 
inherently complicated and difficult to understand. Simplicity is always the best policy in network design.  

Some networks may still use a counting-from-the-left subnetting scheme. This scheme is used because, 
once started, it would be difficult to get away from it without readdressing large numbers of end devices. 
However, I believe that this technique is not good, and I recommend migrating away from it if possible.  

5.2 IP-Address Classes 

IP defines four network classes called A, B, C, and D. Class A networks provide the largest number of 
addresses. Before subnetting is done, a Class A network has a mask of 255.0.0.0. Unsubnetted, it 
supports up to 16,777,214 host addresses. Of course, it would be extremely unusual to use a Class A 
address without subnetting. Similarly, Class B networks have a mask of 255.255.0.0 before 
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subnetting. Continuing the pattern, Class C networks use 255.255.255.0 and Class D networks 
consist of only one address, 255.255.255.255.

Strictly speaking, Class only refers to the network mask before any subnetting is done. Sometimes people 
use the language loosely and call a subnet that has a mask of 255.255.255.0 a Class C subnet. That 
is not really what "class" means, however. There is actually a simple rule involving the first few bits of any 
IP address that determines what the class of a network is. If the first bit is a 0, which is to say that the first 
octet of the address has a value from 1 to 127, then it is a Class A address. If the first bit is 1 and the 
second bit is 0, then it is a Class B address. Class B addresses run from 128 to 191; Class C addresses have 
1s in the first 2 bits and a 0 in the third bit, which includes everything from 192 to 223; Class D networks 
begin with 3 bits of 1s and a 0 in the fourth bit; a final group of Class E addresses includes everything else. 
Table 5-3 illustrates this.  

Table 5-3. Classes of IP addresses  

Class Range of network 
addresses Mask Maximum number of host 

addresses per network 
Number of 
networks 

A 0.0.0.0-127.0.0.0 255.0.0.0 16,777,214 128 
B 128.0.0.0-191.255.0.0 255.255.0.0 65,534 16,384 

C 192.0.0.0-
223.255.255.0 255.255.255.0 254 2,097,152 

D 224.0.0.1-
239.255.255.255 255.255.255.255 1 248,720,625 

E 240.0.0.1-
255.255.255.255 255.255.255.255 1 248,720,625 

Note that some of these address ranges are reserved and will never be available for normal network 
addressing. For example, the networks 0.0.0.0 and 127.0.0.0 are reserved. The network 
0.0.0.0 is used as a generic broadcast address and every host has a local loopback address of 
127.0.0.1 by which it knows itself. In many routing protocols, the global default address is designated 
as 0.0.0.0 with a netmask of 0.0.0.0.

These entire ranges are set aside and not used for anything. The other important block of reserved 
addresses is the 224-239 range. Everything that starts with 224 through 239 is reserved for multicast 
addresses. An address starting with 255 in its first octet will probably not be assigned because of potential 
confusion with broadcast address conventions. Similarly, the entire range of Class E addresses is 
effectively unusable.  

Originally, the classification scheme stopped with the last two classes taken together as Class D. The 
newer Class E range was developed to separate a distinct group of single-host addresses from the emerging 
multicast requirements.  

Class is now considered an outdated concept. I have discussed it here because the word is still used. The 
various Internet authorities have stopped allocating IP addresses according to class, and all routing through 
the Internet uses Classless Inter-Domain Routing (CIDR). The currently preferred method for expressing 
the size of a network is to use the number of bits in the mask. For example, you would refer to the Class A 
address 10.0.0.0 as 10.0.0.0/8. If you grouped together the first two unregistered Class B 
networks, you would call the resulting range of addresses 172.16.0.0/15.

In CIDR, the IP address can be divided into host and network portions at any bit, but there are still some 
important addresses in this scheme. The address 0.0.0.0 is sometimes used as a source address. Any 
host can use it, particularly when the host doesn't know its own address (for example, during the first steps 
of a DHCP query). Similarly, it is possible to use an address in which the network part consists of all zeros 
and the host part is properly specified. Again, this address can only be used as a source address.  
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The address 255.255.255.255, which is all ones in binary, is used as a destination address in a local 
broadcast. In effect, it indicates all hosts on the local network. This address is also used frequently when a 
device doesn't know anything about its local network number, as in the first steps of a DHCP query.  

Related to this issue is the address in which the host portion is all ones in binary and the network portion is 
a real subnet address. Again, this address can only be used as a destination address. In this case, the packet 
is intended for all hosts on a particular subnet. The CIDR specification also allows one to specify a 
broadcast destination address in which the main network address is a real address and the subnet address 
and the host portion of the address are all ones. This specification is intended as a broadcast to all hosts in 
all subnets. However, I have never seen this specification used in practice, and it seems less than useful, if 
not unwise.  

As in the Class system, any address with the decimal number 127 in the first octet is reserved as a local 
loopback address. Even in CIDR, all Class D addresses are reserved for multicast purposes.  

5.3 ARP and ICMP 

Address Resolution Protocol (ARP) and Internet Control Message Protocol (ICMP) are both key low-level 
parts of the IP protocol that one encounters every day. ARP is how end devices on the same network 
segment learn the Layer 2 MAC addresses for one another. ICMP is used for a wide variety of different 
network control and management functions.  

5.3.1 ARP 

For a device to take part in a Layer 3 protocol such as IP, it has to be able to send and receive these packets 
through a Layer 2 medium. Suppose a device wants to communicate with another device on the same 
Ethernet segment. It knows the IP address for this destination device, but, in general, it doesn't know the 
Ethernet MAC address. The 802.3 protocol says that if this is going to be a point-to-point conversation, 
then the Ethernet frame must have valid source and destination addresses.  

The conversation can't begin until these two devices discover one another's MAC addresses. And, of 
course, this problem isn't specific to Ethernet. The same problem exists on every Layer 2 network, whether 
it is Token Ring or ATM. You must have a valid Layer 2 destination address before you can send even the 
first packet.  

This is the problem that ARP solves. For simplicity, I will restrict this discussion to Layer 2 network 
technology that supports broadcasting. ARP still exists for non-broadcast media such as ATM networks, 
but it becomes significantly more complicated in these cases.  

The solution is remarkably simple. Every device on the network segment receives broadcasts. All one has 
to do is send out a broadcast packet called an ARP Request and look for the required destination IP 
address. If one of the devices receiving this packet is the owner of this IP address, it sends back an ARP 
Reply.  

The body of the ARP Request packet contains both the sender and receiver IP and MAC addresses. Some 
information is, of course, duplicated in the Layer 2 frame header. Since the sender doesn't actually know 
the receiver's MAC address, it fills in the broadcast address FF:FF:FF:FF:FF:FF.

The ARP Reply then contains similar information. The sender and receiver fields are swapped and the 
missing MAC address is filled in.  

When the first device receives the ARP Reply in response, it puts the information in its ARP Cache. This 
cache is simply a local table of IP and MAC addresses for all devices it has communicated with recently. 
This cache allows the first device to avoid another ARP exchange as long as the two devices are in contact. 
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However, if a device is not heard from in a standard timeout period, it is removed from the table. This 
period is usually about 20 minutes, but individual devices can define it locally.  

5.3.2 ICMP 

The first kind of ICMP packet most people think of is a ping. The ping function is an echo request and 
response facility that allows one to test whether certain devices are reachable on the network. ICMP 
actually has a wide range of other uses, particularly for reporting network errors.  

The ping function is relatively simple. One device sends an ICMP echo request packet to another. The 
receiving device then responds to this packet with an echo response. This response has many uses, 
particularly in network management. It is also frequently used by applications that want to verify that a 
server is available before starting a session. For network management, it provides a simple way to measure 
end-to-end latency in the network—by taking the time difference between sending the request and 
receiving the response packet.  

ICMP packets also provide a way to report several important error conditions. For example, one fairly 
common error situation is to have a packet dropped because there is no route available to the destination.  

Another important example is when an IP packet is too large to pass through a particular section of the 
network. Ordinarily, this is not a problem because the router simply breaks up the packet into fragments 
and passes it along. However, some applications set a flag in their packets to prevent them from being 
fragmented. In this case, the router has no choice but to drop the packet.  

In each of these cases, the router that drops the packet alerts the source device of the problem by sending a 
special ICMP message. This message allows the application or the user to take appropriate action to fix the 
problem. In the case of the large packet, the router might simply try again using smaller packets, for 
example.  

Another common and important type of ICMP message is the ICMP Redirect. The redirect is most 
frequently seen when two or more routers are on the same network segment as the end device. If these 
routers handle different sets of IP addresses, the end device could inadvertently send a packet to the wrong 
router. This is particularly common if one of the routers is configured as the default gateway for the end 
device.  

When this happens, the first router simply forwards the packet over to the other router and sends an ICMP 
redirect message. This message tells the end device that it has delivered the packet, but that, for future 
reference, another router has a more direct path. The end device should then update its internal routing 
table to use this second router the next time it sends such a packet.  

This issue is particularly important for the network designer to understand because some devices do not 
respond correctly to ICMP redirection. In these cases, it is often necessary to configure the routers to not 
send these messages and just to forward the packets. Otherwise, the segment can suffer from extra 
congestion due to all of the redirection messages—one for every application packet.  

In general, I prefer to only have one router on any end device segment, configured as the default gateway 
for all end devices. As I've mentioned earlier, this router can be made redundant by adding a second router 
and using HSRP or VRRP. As far as the end devices are concerned, there is only one way off the segment. 
Network segments built this way should never see any ICMP Redirect messages.  

5.4 Network Address Translation 

One common feature of many firewalls is Network Address Translation (NAT). Many routers now offer 
NAT as an optional service. NAT can function in several different ways, but they all involve rewriting the 
source address in IP packets. NAT is also sometimes called address masquerading.  
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Figure 5-2 shows a typical NAT implementation. The protected internal network is on the inside of the 
firewall, to the left. The external network is to the right. Perhaps the most important feature here is that the 
IP addressing of the internal network is completely unregistered.  

I will discuss IP addressing schemes shortly, but one common scheme involves using an open range of 
addresses that cannot be owned by any organization. These addresses are, in effect, public domain. 
Because of this, they can never be presented to a public network. Since any organization is allowed to use 
the IP address range 10.x.x.x, for example, then it is impossible for the public network to know which 
of the millions of sites using this range is the right one.  

Figure 5-2. Network Address Translation 

Figure 5-2 has the interior of the network using 10.x.x.x for its address range. This means that the 
firewall must rewrite every packet that passes through it so that the 10.x.x.x addresses on the inside 
are changed to legitimate addresses on the outside. A workstation on the inside of the firewall uses the IP 
address 10.1.1.5. The outside of the firewall has the legitimate registered address 204.148.40.5.
For the example, assume that this organization has registered the entire range 204.148.40.x.

Every packet passing through the firewall from 10.1.1.5 must have its source address rewritten to 
something in the range 204.148.40.x. There are three common ways to do this. You can make every 
internal device appear with the same address as the outside of the firewall, 204.148.40.5. The second 
option is to create a range of legitimate addresses, such as 204.148.40.51, 52, 53, and 54. These 
addresses are then uniquely and permanently assigned to specific internal devices, so 10.1.1.5 will 
always appear on the outside of the firewall, 204.148.40.51, 10.1.1.6 will always appear as 
204.148.40.52, and so forth.  

The last commonly available option is to assign a pool of address such as 204.148.40.51-54, as in 
the previous example. This time, the addresses will be dynamically associated with internal devices. When 
one device wants to make a connection to the Internet, it gets whatever address is the next one available in 
the list. The next internal device gets the second address from the list, and so forth. This technique makes 
better use of the address resources than the previous example because an idle device returns its external 
address to the pool.  

The most common method, however, is the first one, in which every internal device has the same IP 
address on the outside of the firewall. This situation makes the entire network look to the outside world as 
if it is a single, very busy device. Internally, the firewall must do a very difficult task, however. It must 
keep track of which of the many sessions are associated with which internal devices.  

This method is considerably easier to use with TCP than with UDP-type services because the firewall can 
keep track of the different TCP sessions. With UDP, the firewall has to try to associate incoming packets 
with previous outgoing UDP packets. If a particular internal device sends out a UDP packet on a particular 
port number, then the firewall simply waits a short time for a response from that same external IP address 
and directs it to the originating internal device.  
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The problem becomes even harder for ICMP packets such as ping, though. The firewall has only the IP 
address of the external device to connect to the originating internal device. If several people all try to ping 
the same external device at the same time, it can be very difficult for the firewall to figure out which 
response packets to direct to which internal devices. To the outside world, all packets look like they came 
from the firewall itself; they all have the same source IP address.  

Not only must the firewall rewrite the source address of every outgoing packet, but it must also rewrite the 
destination address of all incoming packets. If it doesn't know how to rewrite the address, then most 
firewalls take the safe approach—they assume that the incoming packet is unsolicited and drop it.  

NAT can cause serious confusion in some places. Specifically, some applications include the IP address 
information somewhere inside the packet's data segment. One common example of this is SNMP. If one 
attempts to manage a network through a firewall, NAT can become extremely confusing.  

The worst case comes when a network management service vendor tries to manage the networks of several 
different clients who all use the same IP address ranges. The vendor may try to use NAT to rewrite the 
addresses of the monitored client machines, but data contained inside the SNMP packets indicate the real 
source address, and the conflicting address ranges have to be removed by other means.  

A worse example is seen in the applications of certain information service providers. Some of these 
applications work by means of TCP connections from the client workstation to the vendor's server. The 
TCP connection starts with a packet from the client workstation that passes through the firewall. As I 
discussed earlier, the packet's header contains four key pieces of information: the source and destination IP 
addresses and the source and destination TCP port numbers. The firewall rewrites the source address and 
often also rewrites the source TCP port. The server then responds with a packet addressed back to the 
modified source address (which is delivered to the firewall) and the modified source port. This information 
is rewritten by the firewall to the original values and directed back to the client workstation.  

If the source IP address and port number are also contained within the data part of the packet, perhaps for 
some sort of authentication system, then the server has considerable room to be confused. It cannot 
communicate directly with the real source IP address indicated. The real source TCP port number is also of 
no use to it.  

Unfortunately, there is no universal solution to this problem. Some firewalls are able to work around parts 
of the problem—for example, by maintaining the source TCP port number. But in the worst examples, the 
only way around the problem is to simply eliminate the firewall, eliminate NAT, and use a standard router 
with extensive packet filtering to implement the required security precautions.  

5.5 Multiple Subnet Broadcast 

On any individual subnet, you can issue a broadcast to every other device on the subnet by doing two 
things. First, on the data link layer (Layer 2), you set the MAC address to the appropriate broadcast address 
for that medium. For Ethernet and Token Ring, the broadcast address is FF-FF-FF-FF-FF-FF—that 
is, all bits are set to one. Note that this address is consistent with what I mentioned earlier when talking 
about multicast addresses on Ethernet. Any time the lowest order bit of the destination MAC address is set 
to one, the packet is either a multicast or broadcast. Then, on the IP layer, you just set the destination 
address of the packet to be the subnet address followed by all ones or all zeros for the host portion of the 
address.  

In fact, the standard prefers using all ones for the broadcast addresses, but both are used in practice. If the 
subnet uses a mask of 255.255.255.0, as in 10.1.2.0, then the broadcast address for this subnet 
would be 10.1.2.255 (all ones, the preferred version) or 10.1.2.0 (all zeros). Similarly, if the 
mask were 255.255.255.240 for the subnet address 10.1.2.32, then the all-ones broadcast 
address would be 10.1.2.47. The addresses in this subnet that are available for hosts range from 
10.1.2.33 to 10.1.2.46.
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The IP standard defines another type of broadcast called the all-subnets broadcast, which is seldom used in 
practice. It is considered optional, but on most equipment it must be explicitly disabled if it is not required. 
The all-subnets broadcast is exactly what it sounds like. It allows a broadcast to be sent simultaneously to 
every subnet in a network. The address for the all-subnets broadcast is simply the broadcast address for the 
entire network address. The previous example had a subnet of 10.1.2.32 with a mask of 
255.255.255.240. But this is a subnet of the Class A network 10.0.0.0. Thus, you can send an 
all-subnets broadcast by addressing a packet to 10.255.255.255.

If you were dealing with a subnetted Class C network such as 192.168.1.0, then you have a mask of 
255.255.255.0 for the whole network. The subnets may have a mask of 255.255.255.224, for 
example. Then the subnets would be as shown in Table 5-4.

Table 5-4. Example subnets on a Class C network  
Subnet Binary representation of last octet Comment 
192.168.1.0 000-00000 All zeros in the network portion of the address 
192.168.1.32 001-00000 First nonzero subnet 
192.168.1.64 010-00000  
192.168.1.96 011-00000  
192.168.1.128 100-00000  
192.168.1.160 101-00000  
192.168.1.192 110-00000  
192.168.1.224 111-00000 All ones in the network portion of the address 

This table should make the mechanics of subnetting clearer. Just as the all-zeros or all-ones addresses in 
each subnet are not used for host addresses, the all-zeros and all-ones subnet addresses are also 
problematic. Specifically, if you want to do any all-subnets broadcasting, you cannot use these networks. 
However, all-subnets broadcasting becomes ill-defined with CIDR.  

If you look back at Table 5-1, it becomes clear why the subnet masks 255.255.255.192 and 
255.255.255.128 are rarely used. The bit pattern for the number 192 is 11000000. If you subnet a 
Class C network, only the first two bits of the last octet are available for indicating subnets. If you don't 
use the all-zeros or all-ones subnets, you are left with only 01-000000 and 10-000000, which are 64 and 
128, respectively. The situation is even worse if you want to use a mask of 255.255.255.128 on a 
Class C address because the bit pattern for 128 is 10000000, leaving you only one bit for selecting the 
subnet. This bit can be either one or zero, and that means it is always either all ones or all zeros, and 
therefore possibly reserved for broadcasts.  

There are three important caveats to all of this. Because multiple subnet broadcasting is optional, you can 
still use the all-ones or all-zeros subnets if you just disable the feature on every router in the network. Since 
the routers are the only devices that care about propagating any packet between subnets, they are the only 
devices that need to be affected by this change.  

The second caveat is that only subnets of Class C networks are covered here. If you subnet a Class A 
network, then you need ensure that you have a nonzero or nonone bit somewhere in the subnet address. 
However, this is a dangerous strategy. There have been a number of non-compliant IP implementations 
over the years, and the inability to distinguish properly between IP address classes is a bug that has 
appeared in some of these flawed implementations. In particular, some implementations assume that every 
subnet is a subnet of a Class C, regardless of the first octet in the address.  

The third caveat is that you can use CIDR. As mentioned earlier, traffic passing through the Internet 
already assumes classless addressing. However, many organizations still use class-based addressing 
internally. If you enable classless routing, then the multiple subnet broadcast option also automatically 
disappears in most CIDR implementations because there is no longer any way to define a unique broadcast 
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address for the entire network.[1] If the designer wants larger subnets, such as a 255.255.255.128, or 
even larger subnets, as in 255.255.254.0, it is best to explicitly disable the all-subnets broadcast 
feature and enable classless routing on all routers in the network.  

[1] Note that the CIDR documents do not rule out an all-subnets broadcast. RFC 1700, when 
describing CIDR, states that all-subnets broadcasts still exist. However, it is not fully defined, 
and I am not aware of any working implementations or of any useful applications. Using 
multicast would probably be a better way to accomplish the same thing. 

On some types of routers, the command to disable multiple subnet broadcasting takes the approach of 
allowing the all-zeros subnet addresses. But it should be clear that this is another way of saying the same 
thing, since you can't have all-subnets broadcasting if you don't reserve the all-zeros and all-ones subnet 
addresses for that purpose.  

5.6 General IP Design Strategies 

Until now, I have looked only at theoretical ideas about how subnetting works. Now I want to talk about 
how to use it in a real network. The first step, before anything else can be done, is to decide how many 
segments are required and how many devices these segments need to support. These estimates need only 
be rough ballpark estimates because a good designer always assumes that a network will grow in time. 
This estimate constrains what sort of IP-address range is required. Generally, the network should be built 
out of subnets of a larger network because you will want to take advantage of route summarization later. 
Simply allocating a new distinct Class C network for every user segment is not useful.  

5.6.1 Unregistered Addresses 

At one time, there was a hot debate about the use of unregistered addresses on large LANs. Many 
organizations developed internal policies that forbade the use of unregistered addresses on principle. 
Before the advent of firewalls with NAT, it would have been impossible to connect these networks to the 
public Internet (or even to build nonpublic shared Internets between collaborating organizations) without 
the IETF centrally controlling all IP address allocations.  

This sort of policy had an unfortunate side effect that nearly destroyed the Internet. An IP address has only 
4 octets, so there can be at most 4,294,967,295 devices. Four billion sounds like it should be enough, but 
remember that the first half of these addresses are allocated as Class A networks, of which only 128 are 
possible (and some are reserved, as mentioned above). The next quarter includes the 16,384 possible Class 
B addresses (and again, some of these are reserved). Thus, three quarters of the available address range is 
used up on just 16 thousand large companies, universities, and government agencies. The Internet has 
many millions of participants, though, and they all must have registered IP addresses. Clearly, it isn't a 
possible, practical, or responsible use of scarce resources to use registered addresses on internal corporate 
networks.  

The alternative is using unregistered addresses, but you have to be careful with unregistered addresses. If 
you arbitrarily pick an address range for internal use, the chances are good that this range is already in use 
somewhere on the Internet. As long as you hide everything behind a firewall and use NAT to hide your 
unregistered address, you won't conflict openly with anything. But one day you want to exchange email 
with whoever actually owns this address range or even connect to their web site, it will not work.  

There is an easy resolution to this problem: you just need to use addresses that you know are not in use and 
never will be. The IETF set aside several ranges of addresses for exactly this purpose, and they are 
documented in RFC 1918. The allowed ranges are shown in Table 5-5.
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Table 5-5. RFC-allowed unregistered IP addresses  
Class Network Mask Comment 
Class A 10.0.0.0 255.0.0.0 One large Class A network 
Class B 172.16.0.0 through 172.31.0.0 255.255.0.0 16 Class B networks 
Class C 192.168.0.0 through 192.168.255.0 255.255.255.0 255 Class C networks 

Anybody is free to use these addresses for anything they like, as long as they don't connect them directly to 
the Internet. For a very small LAN, such as a home or small office, it makes sense to use one of the 
192.168 addresses. In the author's home LAN, I use 192.168.1.0, for example, with a firewall to 
connect to the Internet. The Internet Service Provider (ISP) supplies a registered address for the outside 
interface of the firewall. For larger networks where a Class B is required, the organization is free to pick 
from any of the 16 indicated unregistered addresses. There is only one unregistered Class A network, so 
almost every large network in the world uses 10.0.0.0 for its internal addressing. This doesn't cause 
any problems unless these organizations need to communicate directly with one another without 
intervening firewalls, which sometimes happens, particularly when one organization provides some sort of 
network service to another, as might occur with information service providers, network-management 
service providers, and corporate mergers. When conflicts like this occur, the best way to get around them is 
to carve off separate sections of the network interconnected by firewalls performing NAT.  

5.6.2 IP Addressing Schemes 

A successful IP addressing scheme operates on two levels. It works on a global level, allowing related 
groups of devices to share common ranges of addresses. It also works on a local level, ensuring that 
addresses are available for all local devices, without wasting addresses.  

The global issue assumes that you can break up the large network into connected regions. Having done so, 
you should summarize routing information between these regions. To make route summarization work in 
the final network, you need a routing protocol that is able to do this work for you. Thus, a key part of any 
successful IP addressing scheme is understanding the specific routing protocol or protocols to be used.  

Another important global-scale issue is the network's physical geography. An organization with a branch-
office WAN usually needs a large number of small subnets for each of the branch offices. It also probably 
has a similar large number of point-to-point circuits (perhaps Frame Relay or ATM virtual circuits) for the 
actual WAN connections.  

However, an organization that is concentrated on a single campus, perhaps with a small number of satellite 
sites, needs to break up its address ranges in a completely different way. Many organizations are a hybrid 
of these two extremes, having a few extremely large sites and a large number of small sites. Other 
organizations may start off in one extreme and, through growth, mergers, and acquisitions, find themselves 
at the other end. I can't really recommend a single IP addressing strategy that suits every organization, but I 
can talk about some principles that go into building a good strategy:  

• Create large, yet easily summarized, chunks 
• Set standard subnet masks for common uses 
• Ensure that there is enough capacity in each chunk for everything it needs to do  
• Provide enough flexibility to allow integration of new networks and new technologies  

5.6.2.1 Easily summarized ranges of addresses 

Take these points one at a time. First, creating large, yet easily summarized, chunks is relatively 
straightforward. Summarization makes it easier to build the network in distinct modules. This means that 
routers can deal with all of the routes for a particular section of the network with a single routing table 
entry. This ability is useful, no matter what sort of dynamic (or static) routing protocol is used in the 
network.  
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To be summarized, you have to be able to write the chunk of addresses with a single simple netmask. For 
example, if you use the 10.0.0.0 unregistered Class A range, then you might make your chunks by 
changing the second octet. The first chunk might be 10.1.0.0 with a mask of 255.255.0.0. This 
chunk will usually be written 10.1.0.0/16 to indicate 16 bits of mask. Then the second chunk would 
be 10.2.0.0/16, and so forth. If the mask turns out to be too small for the requirements of the 
network, it is easy enough to work with a shorter mask. Then you might summarize in groups of four, as in 
10.4.0.0/14, 10.8.0.0/14 and so forth. Here, the mask is 255.252.0.0.

Another approach to creating easily summarized chunks of addresses uses the unregistered Class B range 
of addresses. In this case, you might simply start with 172.16.0.0/16 for the first chunk, 
172.17.0.0/16 for the second, and so forth. Remember that only 16 of these unregistered Class B 
ranges are available. Instead, you might make your chunks smaller, as in 172.16.0.0/18,
172.16.64.0/18, 172.16.128.0/18, and 172.16.192.0/18.

The two key issues here are figuring out how many of these chunks are required and how big they must be 
to accommodate the network's requirements. If the number of chunks becomes too large, then you will 
need to create a hierarchy of address ranges. As I will discuss in Chapter 6, these chunks are appropriate 
for the size of an Open Shortened Path First (OSPF) area, but if you create too many areas, you need to be 
able to break your network into multiple Autonomous Systems (ASes). Then you will also require route 
summarization between ASes. I define these terms in Chapter 6, but for now you can just think of an OSPF 
area as an easily summarized group of addresses and of an AS as an easily summarized group of areas.  

For a quick example of how this might be done, suppose you want to use 10.0.0.0 for the network. 
Then you might make your OSPF areas with a mask of 255.255.0.0, so each area has the same 
number of addresses as one Class B network—they will be denoted 10.0.0.0/16, 10.1.0.0/16,
10.2.0.0/16, and so forth. You might decide that for performance reasons you need to restrict the 
number of areas within an AS to a number like 50, for example. Unfortunately, 50 is not a nice "round" 
binary number, but it is not far from 64, which is.  

Providing a few too many potential areas may turn out to be useful later, if you have to make one AS 
slightly larger than the others. It is not a bad thing to have to go to 64. In this case, the ASes are 
summarized on a mask of 255.192.0.0. The first one will be 10.0.0.0/10, the second will be 
10.64.0.0/10, and so forth.  

One final note on summarizing—the chunks do not all need to be the same size. One area can have small 
and large subnets, as long as the area can be summarized. Similarly, one AS can have small and large 
areas, as long as you can still summarize every area. You can even mix differently sized AS, as long as 
they also can be summarized easily.  

The first AS could be 10.0.0.0/10, as noted previously. The second and third could be 
10.64.0.0/11 and 10.96.0.0/11. The second 10-bit mask range is broken into two 11-bit mask 
ranges. Breaking up the ranges this way—by subdividing some of the larger chunks with a larger mask—is 
the best way to look at the problem. The same idea applies to subdividing area-sized chunks that are larger 
than required.  

Dynamic routing protocols don't require this sort of summarization, but summarizing routes will result in a 
more stable and easily administered network.  

5.6.2.2 Sufficient capacity in each range 

How big does each chunk of addresses need to be? As mentioned before, it is easier to subdivide ranges of 
addresses than it is to merge them. You probably want to err on the large side, if you can. The only way to 
answer the question is to decide what you're going to put in this range. For the time being, suppose that the 
address range is for an OSPF area. The same reasoning applies to sizing OSPF AS, but on a larger scale. If 
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you use a different dynamic routing protocol, such as RIP or EIGRP, the differences are again just a matter 
of the appropriate scales for these protocols. Focusing on the OSPF area version of the problem, the usual 
rule for area size is 50 routers in an area.  

I will discuss this in more detail later when I talk about OSPF. As you will also see later, there must be a 
Core or backbone area that all of the other areas connect to. Thus, you have to be concerned about sizing 
the Core area as well as the peripheral areas.  

The largest hierarchical LAN designs, discussed in Chapter 3, had two routers in each VLAN Distribution 
Area and a central Core with a handful of routers. Even with this design, the network would probably need 
at least 15 VLAN Distribution Areas before needing to be broken up into OSPF areas. Conversely, OSPF 
area structure becomes important very quickly in even a modest-sized WAN. The sizes of your LAN and 
WAN OSPF areas will probably be completely different, and one certainly wouldn't expect them to have 
the same sort of internal structure.  

This book is about building large-scale LANs, so I will carry on with a relatively simple example involving 
a large campus network that connects 100 departments. Each department is its own VLAN Distribution 
Area in your hierarchical design model, so each department has two routers and several VLANs.  

A VLAN Distribution Area is far too small to be a good OSPF area. However, all routers in each OSPF 
area must connect to the Core area through a small number (I will assume two) of Area Border Routers 
(ABRs). The main constraint in the size of each OSPF area is not the rule of 50 routers per area. Rather, 
you will quickly run into bandwidth limitations on those ABRs if you connect too many VLAN 
Distribution routers to them, so you might want to set a limit of 10 VLAN Distribution Areas per OSPF 
area, or perhaps only 5. A detailed bandwidth requirement study would yield the most appropriate 
topology.  

Suppose that the network will have five VLAN Distribution Areas per OSPF area. You need to look at 
how many VLANs live in each Distribution Area and the netmask of each VLAN. If you know you have 
up to 25 VLANs, each with a mask of 255.255.255.0, then you can finish the puzzle. You need 
about 125 Class C-sized subnets in each OSPF area, and you need this chunk to be summarized. That 
number is easily accommodated in a Class B-sized range. With a mask of 255.255.0.0, you could fit 
in 256 subnets.  

Note that this example implies that a mask one bit longer could have been used to accommodate 128 
subnets. However, as I mentioned earlier, it is good to err on the high side in these sorts of estimates. The 
difference between 125 and 128 is only a 2% margin of error, which is far too close for such back-of-the-
envelope estimates.  

The whole campus has 100 departments and a total of 20 departmental OSPF areas, each containing 5 
departments. In addition, the network has a Core OSPF area, with a total of 21 areas. If each area has a 
mask of 255.255.0.0, then the whole network has to be able to accommodate 21 masks of this size. 
Clearly, this network won't be able to use the 172.16.0.0/16-172.31.0.0/16 set of Class B 
addresses. There is more than enough room in the 10.0.0.0/8 Class A network.  

This example shows the general thought process that needs to be followed when finding the appropriate 
sizes for the area-sized chunks of addresses. It is also easily extended to AS-sized chunks of addresses. 
Suppose, for example, that bandwidth and stability issues force the network engineer to break up the Core 
of this example campus network. To make the example interesting, suppose that the engineer has to break 
the network into three ASes.  

There are 20 OSPF areas to divide among these three, which could mean two sets of 7 and a 6. Each of 
these areas has its own Core area, giving two 8s and a 7. The nearest round number in binary is 8. There is 
no room for growth, so once again, it is good to err on the large side and use groups of 16. This means that 
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the ASes will have a summarization mask of 255.240.0.0. The first one would be 10.0.0.0/12,
the second 10.16.0.0/12, and the third 10.32.0.0/12.

5.6.2.3 Standard subnet masks for common uses 

One of the most useful things network designers can do to simplify the design of an IP network is to set up 
rules for how to use subnets. There are actually three types of rules:  

• What subnet masks to use for what functions 
• How to select a subnet from the larger group of addresses for the area 
• How to allocate the addresses within the subnet 

The fewer different subnet masks in use in a network, the easier it is to work with the network. Many 
people, particularly less experienced network personnel, find the binary arithmetic for subnetting 
confusing.  

In many networks, it is possible to get away with only three different subnet masks. For point-to-point 
links that can only physically support two devices, you can safely use the longest mask, 
255.255.255.252. For most regular LAN segments, you can use 255.255.255.0, which is the 
same size as a Class C, and relatively easy to understand. Then you can allocate one other netmask for 
special subnets that are guaranteed to remain small, but nonetheless contain more than two devices. A good 
mask for this purpose is 255.255.255.240, which supports up to 14 devices.  

Since there are broadcast-efficiency issues on larger LANs, it is best to try to keep the number of devices 
in a VLAN below a reasonable threshold. A good natural number for this purpose is the 254 host 
maximum allowed by the 24-bit mask, 255.255.255.0. Nonetheless, many organizations like to 
expand their VLAN-addressing range by using a mask of 255.255.254.0 or even 
255.255.252.0. There is certainly nothing wrong with doing this. But if a network uses a mixture of 
VLANs with masks of 255.255.252.0 and 255.255.255.0, it is very easy to get confused in 
the heat of troubleshooting a difficult problem. For this reason, I tend to avoid these larger masks. I also 
feel that broadcast issues make Class C-sized subnets more efficient in a VLAN, but this latter issue will 
not be true on every network.  

Many organizations also like to try to improve their address-allocation efficiency by using other in-
between-sized subnet masks. For example, for smaller user LAN segments, they might opt to use a mask of 
255.255.255.224. This mask undoubtedly winds up being necessary when trying to address a large 
network with a single Class B address. For example, if a network designer insisted on using a registered 
Class B range for a network, he might find that this kind of measure is needed to avoid running out of 
addresses. Getting into this sort of crunch using the unregistered Class A 10.0.0.0 would take either a 
monstrously huge network or terrible inefficiency.  

Suppose you allocate an OSPF area's address range to a set of user VLANs. Suppose you have selected a 
standard netmask for all such subnets, but you also need to decide how to allocate these addresses from the 
larger range. This allocation is largely arbitrary, but it is useful to have a common standard for how to do 
it. The usual way to do this is to divide the area range into different groups according to netmask. For 
example, suppose the area range has a mask of 255.255.0.0 and that three different types of masks 
are in use—255.255.255.0 (24 bits), 255.255.224.0 (27 bits), and 255.255.252.0 (30 
bits).  

The range consists of 255 Class C-sized units. The first mask size uses one of these units for every subnet. 
The second one allows you to fit up to 8 subnets into each unit. You can also fit 64 of the smallest subnets 
into each unit. Then work out how many of each type of subnet you expect to require.  
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The smallest-sized subnets actually have two uses. It is useful to assign a unique internal loopback IP 
address to every router. Some networks use a mask of 255.255.255.255 for this purpose, but the 
rules hand over one entire Class C-sized group of addresses for these addresses. There never should be 
more than about 50 devices in any OSPF area. Since 64 30-bit subnets are in one of these groups, and since 
keeping the number of different masks to a minimum is a good idea, it makes sense to use a mask of 
255.255.255.252 for these loopback addresses. You then need to see how many real point-to-point 
subnets are needed. This step requires a better idea of the network topology. The rules should be as general 
as possible. In effect, I am talking about the worst cases, so I can follow the rule no matter how much the 
future surprises me with new technology.  

I might want to say that up to 50 routers will be in an OSPF area and perhaps 3 point-to-point circuits on 
each one. This tells me to set aside the first 4 Class C-sized groups for 30-bit subnets. Then I need to figure 
out how many 27-bit subnets I will require. I can fit 8 of these subnets into one Class C-sized group, so if I 
think that 64 of these will be enough, then perhaps I can reserve the next 8 groups. And this will leave the 
remaining 242 groups for 24-bit subnets.  

Note that throughout these arguments I made an effort to break up the groups along bit-mask lines. I could 
have said that I wanted 5 groups of 30-bit subnets, but I chose 4 groups to keep the subgroups aligned in 
sets that the network can easily summarize with another netmask. I did this not because I have any 
foreseeable need to do so, but because one day I might have to break up an area into parts. If that happens, 
I want to make things as easy to split up as possible. At the same time, I don't want to make life more 
complicated if that split is not required.  

You could make up a scheme where, for example, every sixteenth group contains 30-bit subnets and the 
next two are used for 27-bit subnets. This scheme would work, and it might make subdividing the area 
somewhat easier. However, subdividing an area will be hard no matter what you do, so it's more important 
to make everyday life easier.  

Finally, the network designer needs to have standards for how she uses the addresses within a subnet. This 
depends not only on the subnet mask, but also on its use. Once again, if a small number of generally 
applicable rules can be made up, then troubleshooting a problem at 3 A.M. will be much easier.  

A common example of this sort of rule involves the default gateway for the subnet. Most network 
designers like to make the first address in the subnet belong to the main router to get off this subnet. For 
the 24-bit subnet (255.255.255.0) 10.1.2.0/24, this address would be 10.1.2.1. In a 
subnet that uses HSRP or VRRP, this default gateway address would be the virtual or standby address. The 
real router interfaces would then have the next two addresses, 10.1.2.2 and 10.2.2.3, 
respectively. Many designers like to reserve a block of addresses at the start of the range just for network 
devices.  

In a 30-bit point-to-point subnet (255.255.255.252) such as 10.1.2.4/30, only two addresses 
are available, 10.1.2.5 and 10.1.2.6. Devising a general rule for deciding which device gets the 
lower number is useful. I like to use the same rule mentioned earlier and make the lower number the 
address of the device leading to the Core. If this address is used to connect to a remote branch, then the 
remote side gets 10.1.2.6 and the head-office side will get 10.1.2.5. Sometimes this link might be 
a connection between two remote sites or two Core devices. In this case, which router gets the lower 
number becomes arbitrary. In the case of point-to-point links between a router and a host, the router gets 
the lower number.  

Establishing specific rules for how the addresses are allocated can be useful for any VLAN. Many 
organizations have rules so specific that it is possible to tell from just looking at the IP address whether the 
device in question is a user workstation, a server, a printer, or a network device. This knowledge can 
greatly simplify troubleshooting and implementation.  
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5.6.2.4 Flexibility for future requirements 

So far, I have tried to encourage designers to leave extra space. You need extra addresses in each subnet, 
extra subnets in each area, and extra room for more areas in the network. Network growth is driven purely 
by business factors that are largely unpredictable or, at least, unknown to the network designer.  

One of the most profound challenges that a network designer can face is the acquisition of another 
company. This situation usually involves merging two networks that, in all likelihood, share address space 
and use conflicting standards. Even if this doesn't happen, healthy organizations tend to grow over time, 
which means that their networks must have growth capacity. A good IP addressing strategy always 
involves carefully overestimating the requirements, just in case.  

5.6.3 The Default Gateway Question 

The default gateway on any subnet is the IP address of the router that gets you off the segment. In fact, 
many routers may exist on a subnet. These routers may all lead to different destinations, but the default 
gateway is the one that you send a packet to when you don't know which one of the other routers can 
handle it.  

In hierarchical network architectures, it is not common to put several routers on a segment. In this sort of 
design, it is generally best to use two routers and HSRP or VRRP for redundancy instead. But in a general 
network it is possible to have multiple routers all leading to different destinations.  

The end devices need to have some sort of local routing table. In its simplest form, this routing table says 
two things. First, it directs all packets destined for the local subnet to just use the network interface card. 
Second, it contains a route for the default gateway, often expressed as a route to the IP address 0.0.0.0,
with a mask of 0.0.0.0. This default gateway route is traditionally handled in one of two ways. Either 
it points to the local router, or it simply directs everything to use its own LAN interface without specifying 
a next hop. This second option requires the local router to act as an ARP proxy device for the remote 
networks it can route to. When the end station wants to send the packet to the unknown network, it first 
sends out an ARP packet for the destination device. That device is not actually on the local LAN segment, 
so it cannot respond to this ARP, but the router that knows how to get there responds for it. In proxy ARP, 
the router responds to the ARP packet with its own MAC address. The end device then communicates 
directly with the router at Layer 2 and the packets are routed normally.  

At one time, this second option was the only way to reliably give a LAN segment router redundancy. If 
one router for the segment died, the second one would simply take over the traffic. Both would be 
configured for proxy ARP and both would handle live traffic all the time under normal operating 
conditions.  

There are two problems with this strategy. The first is that every ARP query is a broadcast. Even in a fully 
switched VLAN architecture, every time a device wants to communicate outside of its subnet, it must 
disturb every other device in the VLAN. This disturbance is unlikely to cause large traffic overhead, but it 
is nonetheless inefficient. Furthermore, because it must ARP for every off-segment host separately, there is 
a short additional latency in every call setup.  

The second problem is more serious. Most end devices use a simple ARP cache system that allows only 
one MAC address to be mapped to each destination IP address. If one router fails, the second will not be 
able to take over. Rather, the end device will continue trying the first router until the ARP cache entry 
times out. This timeout period is typically at least 5 minutes and often as long as 20. Clearly this time is 
not good enough if the network actually requires a robust fault-recovery system. But a shorter time is 
clearly inefficient.  

This proxy ARP approach does give a convenient way to build IP-level fault tolerance for a LAN segment. 
However, the advent of VRRP and HSRP provides a much quicker and more efficient way of achieving the 
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same result. In a hierarchical LAN design, the best high-availability topology involves two routers running 
VRRP or HSRP. Every end device on the subnet then treats the virtual address shared by these two routers 
as the default gateway.  

5.7 DNS and DHCP 

Two important IP-related applications are used in most large-scale LANs. Domain Name Service (DNS) is 
an application that provides mapping between host names and the corresponding IP addresses. Dynamic 
Host Configuration Protocol (DHCP) is a facility that provides a way to dynamically configure IP devices 
when they connect to the network.  

The DNS client lookup procedure is built into just about every operating system. This procedure allows 
you to connect to your favourite web site by its name rather than having to remember the IP address. When 
you look up an arbitrary address on the Internet, your computer sends out a query to a preconfigured DNS 
server IP address. This query asks the DNS server to convert (or resolve) this name into an address. Once 
your local computer has the information it requires, it stores it so it won't need to ask again.  

The greatest advantage to using DNS this way is not that it allows a human to remember the name rather 
than the address, although this feature is convenient. Rather, it is important because it allows the 
administrator to change IP addresses with relative ease. For example, if it is necessary to take the server 
offline and replace it with another, the administrator can simply set DNS to map the same name to a new 
address.  

For efficiency, the end devices that request this name-to-address conversion generally store it in a local 
cache. Thus, DNS provides the ability to associate a maximum age for a particular address. For example, 
when the DNS server responds with the IP address, it may also tell the client device that it should only 
remember this address for five minutes. Once this period is over, if the client connects to this device again, 
it needs to do another lookup.  

The naming system used by DNS is hierarchical. The various segments are separated by dots. For example, 
there might be a web server named www.oreilly.com. In this case, the top-level domain is .com. There are 
several top-level domains such as .org, .net, and .gov, as well as country-specific codes such as .us, .uk,
and .ca.

The next field to the left defines the organizational domain name. There can be many hosts within that 
organization, one of which is called "www". In fact, DNS allows the administrators of the local domain to 
define more layers of hierarchy.  

DHCP is a protocol that makes it possible to automatically configure end devices. The most common 
things to include in this configuration are the device's IP address, mask, and default gateway. It is also 
possible to configure several other kinds of information, such as the addresses of the DNS servers, time 
servers, database, or application servers. Indeed, the protocol itself is highly flexible and makes it possible 
(in theory) to configure just about anything the end device might need.  

The interesting thing about DHCP is that, in the common example of setting up an IP address, the client 
device doesn't have enough information to get onto the network when it starts out. It doesn't have an IP 
address and it doesn't know where its default gateway is. In general, it doesn't even know the IP address of 
the DHCP server. All this device can really do is send out an all-hosts broadcast to 
255.255.255.255 looking for a DHCP server. For its source address, it has to use the generic source 
address 0.0.0.0, because it doesn't know anything else to use. In the default situation, the router for this 
network segment refuses to pass along a broadcast of this type. You either need to have a DHCP server for 
every segment or the router needs to cooperate.  

Usually, the router is set up to automatically forward these broadcasts to a particular IP address, which will 
be the DHCP server. This IP address could be somewhere very far away in the network, perhaps several 



146

hops away. The router has to not only forward the client's request packet through the network to the server, 
but it also has to be able to receive the configuration information from the server so it can pass it along to 
the client. Most routers have the ability to pass this information along. On Cisco routers, doing this 
requires the use of the IP Helper Address feature.  
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Chapter 6. IP Dynamic Routing 
The network needs to understand how to get packets through from one side to the other. This can be 
accomplished in several ways. In a simple network with only one or two routers, it is probably most 
efficient to configure this routing information into the routers manually. However, in a large or complex 
network, the routers need to learn and update routing information through the network automatically. This 
is particularly true for networks that offer multiple redundant paths for fault-tolerance purposes.  

Dynamic routing protocols give the network a way of healing around link or equipment failures. This is 
because they can see all of the different paths through a network and pick the best one at any given 
moment. When one path becomes unusable, another is selected.  

The routing of IP packets is always handled by means of a routing table. This table is basically just a list of 
destination networks and the next hop required to get to these destinations. It may also contain other 
supplemental information, such as an estimate of how much it costs to use that particular route, and it may 
contain several different options for directing traffic to some destinations.  

This concept of the cost of a route is relatively open and vague. The cost could be a function of any 
number of variables, such as the number of hops, the net latency of the path, the minimum bandwidth 
along the path, as well as other less tangible factors. For example, it may be better to avoid a particular 
route because of a usage charge. Or in some cases the network administrators direct traffic through 
networks under their direct control, instead of using a possibly shorter path through a foreign network.  

It is interesting how these routing tables come into being, how they are updated when the topology 
changes, and how they avoid problems like loops. Several commonly used methods keep routing tables up-
to-date.  

The earliest and more popular routing protocols typically used a Distance Vector Algorithm. Then Link 
State Algorithms became popular. I discuss one popular protocol, Border Gateway Protocol (BGP), that 
uses a completely different algorithm relying on a Path Vector system.  

All of these algorithms fulfill two main functions. First, they allow the routers on the network to keep track 
of changes in the state of the network that require changing routing tables. Second, they provide a 
mechanism for eliminating routing loops.  

A routing loop is exactly what it sounds like: one router forwards a packet to its next hop to be delivered to 
the eventual destination. But instead of sending the packet on, the second router just forwards it back to the 
first one, perhaps via other intermediate routers. This is clearly a serious problem for a network, and it is 
relatively easy to get such loops when the routers are responsible for figuring out for themselves how to 
send data through the network. This is why sophisticated algorithms are required to prevent them.  

Before discussing the more sophisticated dynamic methods of maintaining routing tables through a 
network, I start with simple static routing. This discussion helps explain the problems that dynamic routing 
was developed to solve. Further, it is common in large networks to use a mixture of static and dynamic 
routing, so it is important to understand where each method is useful.  

6.1 Static Routing 

Conceptually, the simplest method for maintaining routing tables is to configure them into the routers 
manually. This method naturally relies on the accuracy of the network administrator to avoid problems 
such as loops. It is also up to the administrator to update the tables whenever something changes anywhere 
in the network.  
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Maintaining a large network using static routes presents several problems, however. It is cumbersome and 
labor intensive. It is impossible to achieve automatic fault tolerance because changing routes in response to 
a network failure always takes time. It also demands that the network administrator have perfect 
knowledge of the state of the network.  

Furthermore, when building static routing tables on a network of any size, making mistakes that isolate 
remote parts of the network is remarkably easy. When this happens, technicians may need to visit the 
remote devices and manually reconfigure them from the console. Put simply, static routing is not an 
effective way of handling the main routing of a network. However, it still has its place, even in a network 
that uses a more sophisticated dynamic routing protocol to build its tables. For example, when connecting 
to external networks, it is often easier to configure a few static routes than to share routing information 
with the external network. This is particularly true when the external network is always accessed through 
one point. If this Access point goes down, the network doesn't have a backup path, so there is no point in 
updating the route to elsewhere.  

In fact, it may be worse to try more sophisticated methods. Suppose there is more than one external 
network, such as an Internet connection and a separate secure connection to a partner organization. If that 
secure connection becomes unavailable, you probably don't want the packets sent out to the Internet 
instead. In all likelihood, this would happen if the network exchanged routing information with the partner 
organization.  

This is because the partner network's IP-address range is not part of the internal range. When the dynamic 
routing information from that network disappears, the global default static route pointing out to the public 
Internet is used instead. Depending on the specific type of failure and the exact network configuration, the 
same thing could happen if you used a static route to the partner network. For the purposes of this example, 
let me assume that the static route was added in a way that allows it to remain in effect even if the link 
goes down.  

You may need to use static routes in networks involving equipment that doesn't support the preferred 
dynamic routing protocols. In this case, though, you would only use the static routes to get through these 
isolated parts of the network.  

Static routes definitely have their place, but they should be used sparingly. Each time you configure a static 
route you have to ask whether it would be better if this routing information were learned dynamically. As 
you will see in the following discussion, once a static route exists on one of your routers, it is relatively 
easy to use the dynamic routing protocol to distribute this information throughout the rest of the network.  

6.1.1 Floating Static Routes 

Another important kind of static route is a floating static route. This feature is not available on all vendors' 
routers. A floating static route is like a normal static route, but it isn't always present. That is, if a better 
route is available, the router will not look at this static route. But if that better route disappears, then the 
router will revert to the floating static route.  

The way it works is simple enough in concept. The floating static route is manually configured in the 
router, the same as any other static route. But it has an extremely high metric to indicate a high cost 
associated with this path. If there is any other path available, it will be better than this one and 
consequently will not be used.  

This feature is commonly used in dial-backup situations, for example. When the network is working 
properly, a remote router receives its routing table via a dynamic routing protocol. However, when there is 
a failure, the router stops receiving any dynamic routing information, and it flushes all of this dynamic 
information out of its routing table. When that happens, the floating static route suddenly starts to look 
good despite its high metric. The router inserts this route into its routing table, and this triggers the dial-
backup process.  
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The key to floating static routes is that there is a magic metric value. Normally, if a router has a static 
route, it will use it. On Cisco routers it is conventional to use a metric of 200 or greater for floating static 
routes, although values as low as 150 appear to work just as well.  

6.2 Types of Dynamic Routing Protocols 

It is customary to describe routing protocols by both their function and the algorithms they employ. 
Functionally, a routing protocol can be either an Interior Gateway Protocol (IGP) or an Exterior Gateway 
Protocol (EGP). There are three commonly used routing algorithms. Distance Vector Algorithms are used 
by RIP, IGRP, and EIGRP. OSPF, on the other hand, uses a Link State Protocol Algorithm to find the best 
paths through the network. BGP uses a Path Vector Algorithm.  

I describe the algorithms in more detail in the context of the actual protocols, but it is necessary to clarify 
the difference between Interior and Exterior Gateway Protocols before I go on.  

Simply put, an Interior Gateway Protocol handles routing within an Autonomous System, and an Exterior 
Gateway Protocol deals with updating routes between Autonomous Systems. But what is an Autonomous 
System?  

This term replaces the more vague term network. If one organization has a network, that concept is easy to 
understand. If that network is connected to another organization's network, how many networks are there? 
Really there is just one big network, since you can send packets from a device on one side to those on the 
other. Is the public Internet one network, a collection of millions of small networks, or a little of both?  

The word network stops having much meaning when you talk about these very large scales. It is actually 
the administrative boundaries between these networks that matter. Interconnecting two networks allows 
traffic to flow between them, but this doesn't change the fact that Company A controls the first network 
and Company B controls the second one.  

It has been necessary to introduce the phrase Autonomous System (AS) to describe this separation of 
control. To make things more confusing, once this distinction exists, you can then break up a large 
corporate network into many ASes.  

This brings me back to the original definition of terms. IGPs operate within an AS. You can opt to break 
up a network into several ASes to isolate your IGPs. It is often possible to make an extremely large or 
complex network operate more efficiently by splitting it up.  

In most cases you can create a stable LAN with only one AS and one IGP. Most IGPs (excluding RIP) can 
handle all but the largest local or Campus Area Networks with one AS if they are configured properly. In 
extremely large networks it can become necessary to split up ASes.  

There are other situations that force a network designer to interconnect distinct ASes within a smaller 
network. In some cases, a large enterprise network might be managed by different groups, sharing only a 
backbone. It's also common to connect ASes of different companies because of mergers or other 
cooperative business requirements. I include a discussion of BGP in this chapter to deal with these sorts of 
situations.  

The possibility of using several ASes in a network introduces the concept of an Autonomous System 
Boundary Router (ASBR). These are the routers that interconnect different ASes. This term is most useful 
to the IGPs, as the ASBR represents a portal to the next AS.  

As long as I'm talking about boundaries between hierarchical levels of dynamic routing protocols, another 
important type of router is an Area Border Router (ABR). This concept will be discussed in depth in 
Section 6.5. OSPF has a built-in hierarchical structure in which each AS is divided up into a number of 
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separate areas. Using areas helps to reduce the amount of routing information that each router needs to 
maintain. The ABR routers act as portals between these areas.  

Throughout this chapter I point out the ways that the different routing protocols contribute to the 
hierarchical design model favored by this book.  

6.3 RIP 

One of the oldest dynamic routing protocols used by IP is the Routing Information Protocol (RIP). RIP 
uses a Distance Vector Algorithm. It should be stressed from the outset that RIP is a poor choice for a large 
network. I include it in this discussion for two reasons. First, it makes a good introduction for readers who 
might be unfamiliar with dynamic routing protocols. Second, despite its age, it is still common to 
encounter specialized pieces of network equipment that support RIP as their only dynamic routing 
protocol. Integrating these devices into a network requires a good working knowledge of RIP.  

There are two common versions of RIP called, appropriately enough, RIP-1 and RIP-2. RIP-1 is the 
original version introduced during the early days of ARPANET (the spiritual predecessor to the modern 
Internet) and is documented in RFC 1058, although the protocol was a de facto standard long before this 
RFC was published. RIP-2 is an updated version of RIP that improves several key operational problems 
with the original version. The current version of the protocol is documented in RFC 2453.  

Although it is often useful in isolated pockets of a network, there are several reasons to avoid using RIP on 
a network-wide basis. It is slow in responding to topology changes. It is only effective in small- to 
medium-sized networks and breaks down completely if the distance between any two parts of the network 
involves more than 15 hops. It can also cause serious traffic-overhead problems in a network with a large 
number of routes, particularly over slow links.  

The original RIP implementation was actually made for UNIX hosts because it effectively predated 
modern routers. Thus, every BSD UNIX operating system has always been equipped with a program called 
routed (for routing daemon). This is not merely an interesting quirk of history; it also represents one of the 
most dangerous problems with running RIP: there are end devices that expect to take part in the routing 
protocol.  

Defenders of the routed argue that it helps these end devices find the appropriate routers for their desired 
destinations. However, if a network is well designed, it should be possible to simply point all end devices 
to a single, default gateway address that lets them reach all destinations transparently. In a well-designed 
network there is never any need to run a dynamic routing protocol on end devices.  

End devices don't need to know how the network routes their packets. Letting them take part in the 
dynamic routing protocol doesn't just give these devices unnecessary routing information. It also allows 
these end devices to affect the routing protocol, even though they aren't in a position to understand the 
physical topology of the network.  

As a result, it is quite easy for an end device running routed to mislead the network about the best paths. In 
particular, if the end device is configured with a default gateway, it will attempt to tell the rest of the 
network about this information. Then if something goes wrong on the network—causing real routes to 
disappear—the routers will look to the next best option. This often turns out to be the end device that 
broadcasts the false default route. Since a default route is a route to anywhere, all routing in the network 
suddenly becomes confused.  

In most cases there is a simple way to get around this problem. You can configure the routers that connect 
to end-device segments so that they ignore all RIP information coming from those segments. This means 
that you can only use specialized router-to-router segments to carry routing protocol information. These 
segments cannot contain any end devices.  
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With RIP an end device can listen passively to routing updates without taking an active role in building the 
routing tables. This is significantly less dangerous. However, if a network is well designed, there should be 
no need for any end device to see this information. It should be able to get a packet to any valid destination 
just by forwarding it to its default router. This default router should respond to topology changes faster and 
more accurately than the end device. So allowing the end device to make important routing decisions is 
likely less reliable.  

6.3.1 RIP Functionality 

The main idea behind RIP is that every router maintains its own routing table, which it sends to all of its 
neighbors periodically. The neighbors update their own tables accordingly. Every route in the table has a 
cost associated with it, which is usually just the number of hops to the destination.  

Figure 6-1 has a small network containing four routers and eight Ethernet segments. Router A knows about 
the two routes directly connected to it: 10.1.5.0/24 and 10.1.12.0/24. It also knows that it has 
two neighboring routers, B and C.  

Figure 6-1. Distributing routing information with RIP 

When Router B receives information about these routes from Router A, it adds these routes to its own 
table. For the routes that Router A indicates are directly connected, Router B has to specify some higher 
cost.  

In RIP this cost is called a metric. By default, the metric just counts the number of hops. Router A uses a 
metric of 1 for its directly connected networks, so Router B will increment this metric and show the same 
entries in its routing table with a metric of 2.  

At this point, Router B's routing table is shown in Table 6-1. The table lists the routes in numerical order 
by destination network because the routers generally display them this way. Router B now sends this same 
information along to Router D. At the same time, all other routers in the network similarly exchange their 
routing tables. Clearly, it will take a few rounds of updates before Routers C and D have one another's 
tables.  

Table 6-1. Intermediate routing table for Router B  
Destination network Metric Next hop 
10.1.5.0/24 2 Router A 
10.1.6.0/24 1 Local 
10.1.7.0/24 1 Local 
10.1.12.0/24 2 Router A 

When the process is complete, Router A's routing table looks like Table 6-2. Note that Router A doesn't 
have a direct connection to Router D, which owns 10.1.8.0/24 and 10.1.9.0/24, so it has to 
direct traffic for these destinations to Router B.  
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Table 6-2. Final routing table for Router A  
Destination network Metric Next hop 
10.1.5.0/24 1 Local 
10.1.6.0/24 2 Router B 
10.1.7.0/24 2 Router B 
10.1.8.0/24 3 Router B 
10.1.9.0/24 3 Router B 
10.1.10.0/24 2 Router C 
10.1.11.0/24 2 Router C 
10.1.12.0/24 1 Local 

As long as nothing in the network changes, this routing table remains constant. If something changes, such 
as a link becoming unavailable, the protocol needs to make it known. To do this, every router sends its 
current routing table to all of its neighbors every 30 seconds. This update serves two purposes: it allows the 
routers to ensure that the neighbor routers are all still working, and it makes sure that everybody has the 
latest routing table.  

Suppose the link between Routers B and D suddenly breaks. Router B finds out about this because it stops 
seeing updates from Router D. But Router B shouldn't react immediately. There may just be a delay or 
some noise in the network. Perhaps the update message was lost due to congestion caused by a random 
burst of traffic. There are many reasons why an individual update might not be received. So RIP waits 180 
seconds before declaring the routes dead. After the route is considered dead, the protocol will wait another 
120 seconds before actually removing it from the table.  

This long wait time reflects, in part, the poorer network media available when the protocol was developed. 
It was not unusual to lose several packets in a row, so the relatively long wait time is a trade-off between 
wanting to respond quickly to the change in topology and wanting to prevent instability. A busy or noisy 
link shouldn't cause the routing tables to search continually for new paths. Doing so results in an unstable 
network.  

When a new router is placed on the network, it needs to get a good routing table as quickly as possible. 
When it first comes up, the router sends out a special request message on all of its active interfaces. Any 
neighboring routers found on these interfaces respond immediately to this request with a full routing table, 
rather than waiting for the regular update cycle. The new router integrates this information into its own 
routing table, adding information about the new routes that are unique to this new device. Then it turns 
around and updates its neighbors with the resulting routing table, and the neighbors propagate the new 
routes throughout the network.  

Instead of using the default metric just to count hops to a destination, it can be useful to specify higher 
values for slower links and lower values for higher bandwidth links. In this way, the network tends to 
prefer the fastest paths, not just the shortest.  

Figure 6-2 shows an example of how this concept might work. Router R1 has connections to both R2 and 
R3 that can eventually lead it to the destination network, 10.1.6.0/24. The link to R2 is a standard 
Ethernet connection, and the link to R3 is a 56Kbps point-to-point serial link. The network should favor 
the faster link, so the Ethernet connection is given a metric of 3 and the serial connection a metric of 10. 
Similarly, suppose that the connection from router R2 to R4 is Ethernet, so this too will have a metric of 3. 
The connections between R2 and R3 and between R3 and R4 are Fast Ethernet, though, so these high-
speed links will have a metric of 1.  
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Figure 6-2. Slower links can be configured with higher metrics 

There are four possible paths to get a packet from R1 to the destination network 10.1.6.0/24. It can 
go from R1 to R2 to R4, with a total metric of six. Or, it can go R1 to R2 to R3 to R4, for a total of five. 
Similarly, the packet can go R1 to R3 to R4 with a metric of 11. The final possible path is from R1 to R3 to 
R2 to R4, which has a metric of 14.  

So the lowest metric path is the one that goes R1 to R2 to R3 to R4. Because the metric values have been 
adjusted, the path with the lowest metric is not necessarily the one with the lowest hop count. It is the 
fastest path, though, which was the point of changing the defaults.  

It isn't necessary to give the same metric to all links of a particular type. In fact, you have to be very 
careful with RIP that you never exceed a total metric of 15 along any valid path. This requirement is too 
restrictive to establish set rules of different metrics for different media speeds. However this philosophical 
approach will be quite useful later in Section 6.5.

6.3.2 Avoiding Loops 

In every dynamic routing protocol, one essential goal is to find the best way to get from A to B. This 
generally means that every router in the network has to figure out how to get from itself to every place 
else. Every router has its own routing table that says, regardless of how the packet got here, this is how to 
get to its ultimate destination. The problem is that, with every device making these decisions on its own, it 
is possible to wind up with routing loops. Figure 6-3 shows a small network that has four routers. Suppose 
end device A wants to send a packet to end device B.  

Figure 6-3. Routing loops 

A first looks at its own internal routing table for B's address. The destination is not part of its own subnet, 
so it has to find a route to the destination subnet. Since only one router is on the segment, the end device 
needs only one default gateway entry in the local routing table. This entry sends everything to router R1.  

Now R1 has two options for how to direct the packet. The destination IP address in the packet is 
10.1.6.15, so it looks in its routing table for anything that matches this address. There are clearly two 
possibilities in the picture, R2 and R3. Suppose it sends the packet to R2.  

Then R2 must decide how to get to the destination, and it has three possible paths from which to choose: 
the ones leading to R1, R3, and R4. If everything is working properly, it should see that the path through 
R4 is the shortest and use that. Suppose it picks one of the others, though—the one through R3, for 
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example. This might happen if a high cost has been assigned to the link to R4, indicating that it is a slow or 
expensive link.  

The routing tables can start to get into trouble because R3 also has three possible paths. Two of these 
paths, the ones to R1 and R2, send the packet back where it has already been. If R3 chooses either of these 
paths, it will create a loop.  

Fortunately, IP includes a mechanism to break loops like this so that packets do not circulate indefinitely. 
Every IP packet has a Time To Live (TTL) field in its header. Originally, when network latency was very 
high, TTL had a real time meaning, but today it is simply a hop counter. In most IP packets the TTL field 
starts out with a value of 255. Each time a router receives this packet, it decrements the TTL value before 
forwarding it. If the value eventually reaches 0, the packet is discarded. When I talk about multicast 
networking in Chapter 10, I discuss another useful application of this TTL field.  

You should notice a few important things about routing loops. First, they are fundamentally a Layer 3 
phenomenon. It doesn't matter whether the network has multiple connections. A loop could happen if R2 
forwarded the packet back to R1 so even if there are no physical loops, a network can still have routing 
loops.  

Also realize that a routing loop happens on a per-route basis. The network might have a loop for one route, 
say 10.1.6.0, but have no problems with another destination, such as 10.1.5.0. This is different 
from a Layer 2 loop, which can take all of the traffic into the spin cycle. Every good routing protocol has 
several techniques for finding and eliminating loops. One of the main ways that RIP avoids loops is by 
counting to infinity.

The protocol's designers believed that RIP would not converge well in large networks. They estimated that 
if the distance between any two devices was more than about 15 hops, guaranteeing reliable convergence 
after a topology change would be difficult. So they somewhat arbitrarily defined infinity as the number 16. 
This may seem like a small number, but it should be as small as possible if the routers have to count to it 
quickly.  

Look at Figure 6-4. Suppose Router R4 suddenly dies and there is no longer any router available for 
10.1.6.0/24. The protocol somehow has to flush this route out of the tables of the other three routers.  

Figure 6-4. Counting to infinity 

Routers R2 and R3 will both eventually time out waiting for an update and remove the route they learned 
from R4. However, Routers R1 and R5 both have routes to get to R4; they can send packets via either R2 
or R3.  

In the next updates from R1 and R5, R3 will see that they both have routes with a metric of 3 for this 
destination. R3 will set its own metric to 4 and try to use one of these routes. Meanwhile, R2 will see the 
same information and do the same thing. Both R2 and R3 will distribute this information back to R1 and 
R5 in the next cycle.  

When R1 and R5 learn that their preferred paths for this destination have suddenly developed higher 
metrics, they will simply update their own tables, setting the metric to 5. The updated tables are sent back 
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to R2 and R3, which set their metrics for this route to 6 and send it back again. It should be clear why 
having infinity as small as possible is a good thing. The extinct route will not be removed from the routing 
table until all routers agree that it is infinitely far away.  

RIP has another simple but clever technique for avoiding loops. The protocol stipulates that a router can 
only send out information about routes that it actually uses. Even if several paths are available, the routers 
preselect the best one and only worry about the others if this best route becomes unavailable.  

For example, look at Figure 6-4 again. Router R2 knows that it can get to the destination network 
10.1.6.0/24 through R4. Even though it has heard about alternate routes from both R1 and R3, it 
never advertises these. Then, when the path through R4 becomes unavailable, it picks either the path 
through either R1 or R3 and ignores the other.  

When R3 also loses its connection with R4, only one possibility remains: R1. However, R1 only advertises 
the path that it actually uses, which is the one through R2. Eliminating unused—and therefore 
unnecessary—path options allows the protocol to converge on new paths more quickly when the topology 
of the network changes.  

The triggered update is another important feature of RIP helping it converge more quickly. As I described 
earlier, all of the routing table exchanges normally happen on a timer. However, when a router's interface 
physically goes down, the router knows for certain that the associated route is no longer available.  

Even with static routes, when this happens the router will flush the corresponding route from its tables. 
When using RIP, the router follows up on this action by immediately telling its neighbors that this route 
has disappeared. It does this by telling the other routers that this route now has a metric of 16.  

Each time a router changes its metric for a particular route, it also executes a triggered update of this 
information. This allows the information to propagate through the network quickly.  

Meanwhile, another router might still have a connection to this network that had been considered worse 
because of a higher metric. This new information will propagate through the network as it is now better 
than the other unavailable route.  

6.3.3 Split Horizons in RIP 

The counting-to-infinity example in the previous section might have seemed slightly more complicated 
than necessary by including router R5 in the middle. But this was necessary because of another clever 
feature of RIP called Split Horizon that is designed to help destroy loops.  

In a regular Split Horizon algorithm, routers simply refrain from passing information back to the router 
that originally sent it. If R1 and R2 have a link, as they do in Figure 6-4, then R1 will not bother telling R2 
about the routes it heard from R2 in the first place.  

In fact, RIP employs a slightly modified version of a Split Horizon algorithm called Split Horizon with 
Poisoned Reverse. To understand this, suppose again that R1 and R2 are sharing routing information. 
When R1 sends its routing table to R2, it includes the routes it received from R2, but it sets the metric to 16 
(remember 16 = infinity in RIP). To see how this causes things to converge faster, the reader is invited to 
repeat the counting-to-infinity example using the network in Figure 6-3, which is the same as Figure 6-4,
but without router R5.  

6.3.4 Variable Subnet Masks 

One of the most serious drawbacks with the original RIP specification was how it handled subnets. In 
Version 1, RIP assumed that all of the subnets for a given network had the same mask. As I already 
discussed, the ability to vary subnet masks in a complex network is extremely useful. This ability is called 
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Variable Length Subnet Mask (VLSM). It allows not only more efficient use of the address space, but also 
makes it much easier to summarize the routes to a particular part of the network.  

Removing this restriction was a driving force behind the introduction of RIP Version 2. To accomplish 
this, the protocol had to be modified so that every subnet address could have its subnet mask specified with 
it. In the original Version 1 specification, the mask information was not included. Consequently, every 
subnet of any given network was assumed to have the same mask.  

This issue is sufficiently serious that it eliminates RIP Version 1 as a candidate routing protocol in most 
modern networks. However, there are two alternative options. One is to use RIP Version 2 if the equipment 
supports it. The other, equally viable option, is simply to restrict the use of RIP to small portions of the 
network where the condition of equal subnet masks can be satisfied.  

RIP Version 2 also has the advantage of using multicast rather than broadcast to send its updates. The 
advantages of multicast are discussed in depth in Chapter 10. In this case it makes it safer to have end 
devices on the same network segment as routers that communicate via RIP. Because they are broadcast, 
RIP Version 1 packets must be examined by every device on the network segment. If there are many 
routers on the network segment, this can cause CPU loading problems on the end devices, even those 
devices that don't know or care anything about RIP.  

In fact, the only reason that RIP Version 1 is ever used in a modern network is for compatibility reasons 
with legacy equipment. In most of these cases, the RIP routing information is isolated to local 
communication between the legacy equipment and a modern router. This modern router then redistributes 
the RIP routes into a more appropriate routing protocol. To allow full two-way communication, this router 
must also summarize the rest of the network into RIP for the legacy equipment to use.  

6.3.5 Redistributing with Other Routing Protocols 

Another key difference between RIP Versions 1 and 2 is the inclusion of Route Tags. A Route Tag is a 
two-octet field used to indicate routes that come from outside of the RIP AS. These could come from 
another IGP or an EGP, or they could even specify routes that are statically configured on a router.  

RIP does not use the Route Tag information directly while routing packets, but it is included because it is 
often useful to know from where different routes came. In other routing protocols Route Tags often ensure 
that traffic remains inside the AS wherever possible. So, any tagged route will have a higher cost than the 
worst interior route to the same destination.  

This is not practical in RIP, however, because of the small range of allowed metrics. Since any route with a 
metric of 16 is considered unreachable, it is not possible to use this for exterior routes. The low value of 
infinity in RIP makes it extremely difficult to balance metrics so as to prefer certain paths to others.  

So the Route Tag field is included primarily for information and to allow RIP to pass this information to 
other routing protocols (in particular, BGP) that can use it.  

6.4 IGRP and EIGRP 

In response to the scaling problems of RIP, Cisco developed a proprietary IGP of its own called Interior 
Gateway Routing Protocol (IGRP). This protocol was later updated and improved, with the result called 
Enhanced IGRP (EIGRP). Because these protocols are proprietary, they are only implemented on Cisco 
equipment. As always in this book, I recommend that readers avoid proprietary protocols for compatibility 
reasons. However, I include this discussion on IGRP and EIGRP because they are remarkably efficient and 
easy to implement. Furthermore, Cisco has produced not only IP, but also IPX and AppleTalk versions of 
EIGRP, making multiprotocol networks easier to administer.  
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IGRP and EIGRP are distance-vector algorithms just like RIP. But they are able to operate on much larger 
networks while consuming much less bandwidth. There are a number of differences between the original 
IGRP and the more recent EIGRP. One of the most important is that, like RIP Version 1, IGRP cannot 
handle Variable-Length Subnet Masks (VLSM). The other main difference is the use of a new algorithm 
called Diffusing Update Algorithm (DUAL )in EIGRP, which provides better convergence properties.  

The enhancements in EIGRP make it a much more useful protocol. I recommend avoiding IGRP in favor 
of EIGRP wherever possible. In fact, the only place where IGRP is likely to be used is in older networks 
originally built before the advent of EIGRP. In most cases it is relatively easy to complete an upgrade from 
IGRP to EIGRP simply by configuring the protocols to redistribute routing information into one another. 
Then it should be possible simply to move the IGRP/EIGRP dividing line through the network one router 
at a time. Note that this might require the temporary use of additional static routes because IGRP does not 
cope well with splitting up networks in ways that cannot be easily summarized. The remainder of this 
section focuses on EIGRP.  

6.4.1 Basic Functionality 

An important difference between EIGRP and RIP is how they handle routing updates. While RIP sends out 
the entire routing table periodically, EIGRP only sends incremental updates. So, if a router has no updates 
to send, it sends only a tiny HELLO packet to each of its neighbors. This allows EIGRP to consume much 
less bandwidth than RIP.  

The first thing an EIGRP router does when it comes up on the network is send out HELLO packets to 
establish the neighbor relationships with all of the routers on directly connected networks. As soon as it 
discovers a new neighbor, the router sends it a query requesting that it send its routing table.  

EIGRP is uses a Distance Vector routing algorithm, like RIP. However, unlike RIP, the distances are 
calculated based on the speed and latency of each path. The latency is found by adding up the round-trip 
delays of every link in the path. The speed comes from the bandwidth of slowest link. The actual formula 
used by EIGRP[1] is:  

[1] In fact, this is the simplified version of the formula that results from using the default k values. 
There are five variables, k1 to k5, that control the relative weightings of the delay and 
bandwidth. They also introduce using the reliability and load of the link to control the metric 
further. However, I advise using the default k parameters to avoid confusion and instability that 
can result from accidentally choosing poor combinations of values. As always in networking, 
simplicity is a virtue. 

The delays in this equation are measured in microseconds; the bandwidth in kilobits per second.  

Figure 6-5 shows a simple example of how these metrics work. Router R1 connects to Router R2 via a 
10Mbps Ethernet connection. The delay on this link (including the latencies of the routers themselves) is 
2000 microseconds (2 milliseconds). Router R2 connects to Router R3 over a 4Mbps Token Ring with a 
delay of 3500 microseconds (3.5 ms).  
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Figure 6-5. Metrics in EIGRP 

In calculating the metric to the network 10.1.6.0/24, Router R1 must first figure out what the lowest 
bandwidth is. It gets this information from its neighbor, R2. R2 has already found out that the minimum 
bandwidth is associated with the 4Mbps Token Ring that it uses to connect to R3. So R1 compares this to 
its own link and uses the lower one. In this way, each router along a multihop path needs only to include 
one minimum bandwidth for each route. At each successive hop, the next router compares the reported 
minimum bandwidth with that of its own link and takes the slower one.  

For each successive hop, the routers must also keep track of the total delay so far. Each router adds the 
delay for its own leg to the running total. This greatly simplifies the calculations that each router needs to 
perform. In this example:  

This metric is a large number. In RIP the maximum metric is 15. In EIGRP the maximum is 232 = 
4,294,967,296. Clearly, this means that EIGRP can't use the same counting-to-infinity algorithm to get out 
of loops the way RIP does.  

Instead, EIGRP relies on its Split Horizon implementation and on its neighbor relationships to avoid loops. 
Recall from the RIP discussion that Split Horizon means that the router doesn't advertise itself as a route to 
any device that it considers closer to the destination. In particular, if a router is using a particular next hop 
router to get to some destination network, then it never tells the next hop router that it knows how to get to 
that destination.  

RIP used a modified version of Split Horizon in which it does advertise the path to the destination network, 
but it does so with a metric of infinity so that it is never used. This is called Split Horizon with Poisoned 
Reverse. EIGRP uses a similar rule for exactly the same reasons.  

EIGRP only works with incremental updates rather than distributing the entire routing table. So when a 
router detects a topology change, it alerts its neighbors to flush this route from their tables. They can then 
determine a new optimal path. There is no need to count to infinity incrementally before removing the 
route. The DUAL algorithm eliminates routing loops.  

Unlike OSPF, EIGRP does not support the use of areas. The entire AS acts as a single unit. However, 
EIGRP can use its autosummarization feature to achieve many of the same benefits as OSPF does using 
areas. In fact, the existence of areas in OSPF forces all route summarization to be done at the Area Border 
Routers. In EIGRP, however, route summarization can be done at multiple levels.  

EIGRP is said to be a Classless routing protocol because it can summarize at any bit in the network 
address, without being concerned about the class of the address range. Thus, a carefully designed 
hierarchical network can have a very efficient routing table. Figure 6-6 shows an example of how this 
might work. This is a hierarchical network design with a large number of Distribution Areas. When 
allocating the IP addresses downstream from the Distribution Routers, one has to be careful to ensure that 
the routes can be summarized.  
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Figure 6-6. Route summarization in an EIGRP network 

The most important restriction on this sort of summarization is that you cannot break up any summarized 
address range across multiple Distribution Areas. In Figure 6-6 a range of subnets from 10.25.0.0 to 
10.25.3.0 to is given the first group of LAN segments in Distribution Area 1. These could be 
subnetted in whatever way is appropriate. But Routers D1C and D1D can summarize the connections to 
this group as 10.25.0.0/22. Then you need to be careful only that you don't assign subnets from 
these ranges anywhere else in the network.  

Following the summarization process up the diagram toward the Core, Routers D1A and D1B can have a 
single summary route for both 10.25.0.0/22 and 10.25.4.0/22, namely 10.25.0.0/21.
These routes then point to Routers D1C and D1D.  

Suppose the designer needs to reserve a large number of subnets for growth in this Distribution Area. He 
might allow the summary route for the entire area to be 10.25.0.0/17. Then Distribution Area 2 
could be summarized as 10.25.128.0/17. In this way, each router can have an extremely compact 
routing table that is easy to update throughout the network. The routers in the Core don't have to care about 
whether a particular subnet, such as 10.25.3.5/32, is behind router D1C or D1F. All they have to 
know is that D1A and D1B take care of a large range of addresses that happens to include this subnet.  

The same sort of summarization also happens in the other direction. If Distribution Area 2 is summarized 
as 10.25.128.0/9, then every router in Distribution Area 1 will see a route for this summary network 
pointing into the Core. There is no need for these routers to see any more detail.  

By default, EIGRP automatically summarizes whenever two different IP networks meet if the networks 
represent two different Classes. For example, where a section of network containing 172.16.0.0/16 
meets another one using 172.17.0.0/16, they will both be summarized.  

However, if the subnet addresses are allocated in a good hierarchical scheme, you can configure the routers 
to summarize other smaller ranges. It is a good idea to do so because every router should have a simple, 
concise, routing table.  

If the network is not planned this way, then summarization doesn't make sense. For example, some of the 
subnets of 10.25.3.0 are located in Distribution Area 1 and others are in Distribution Area 2, then it is 
not possible to summarize either one.  

EIGRP can also handle multiple routes to a particular destination. The network in Figure 6-6 has two 
connections from each router to the next level above it. Each of the higher-level routers will see two routes 
to everything downstream from it. EIGRP allows these routers to keep and use both of these routes.  
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In the example, there are two paths from Router D1A to 10.25.3.0: one through D1C and the other 
through D1D. If both of these links have the same metric, then EIGRP uses equal-cost multipath routing. 
In most cases, the router simply alternates the traffic flows between the different paths. The packets 
belonging to a particular TCP session are called a flow. So equal cost multipath routing keeps all of these 
packets on the same path. However, as each new session is established, the router attempts to balance the 
paths since they have the same cost.  

If the packets from several different flows are coming sufficiently quickly, the router sends the second 
packet out the second path before the first packet has finished departing along the first path. This allows a 
simple form of load sharing between the paths. However, this form of load sharing is not terribly 
bandwidth efficient, so you will get considerably less than twice the bandwidth of one path in practice.  

6.4.2 Active and Stuck-in-Active Routes 

EIGRP uses an interesting technique for keeping its routing tables up-to-date. Even though it only uses the 
best route, the EIGRP topology table keeps a list of every path to every subnet. This way, if the best path 
goes away it can select a feasible successor. But if there are no feasible successors when a route 
disappears, the router puts this route into an "ACTIVE" state and queries its neighbors to find a new path 
to the destination. If one or more of the neighbors knows a path to this destination network (or a summary 
route that contains this one), they respond. But if they do not have a route, they in turn query their 
neighbors.  

Sometimes the destination is simply nowhere to be found. This can happen because a failure somewhere in 
the network has isolated some subnets. Sometimes the process of trying to find a new path can fail to 
converge. In the ever-expanding chain of queries from one router to the next, each device is waiting for a 
response. If the network is too large or if it contains too many high-latency sections, it may become 
difficult for this process to converge.  

If the queries for an "ACTIVE" route are not satisfied within the timeout period of a few minutes, the 
router gives the dreaded "Stuck In Active" message. It then clears the neighbor relationship with the router 
that failed to respond. This can happen either because the route has disappeared or because a 
communication problem has broken the chain of queries somewhere in the network. Either way, "Stuck In 
Active" represents a serious problem, particularly if it happens repeatedly.  

When the routers in an EIGRP network issue large numbers of "Stuck In Active" messages, it is important 
to determine where thing are getting "Stuck." This is by far more serious than the "ACTIVE" problem, 
which just means that a route is missing. When these messages appear, the network engineer should find 
out which neighbor relationships are being reset. This could be happening anywhere in the network, not 
necessarily on or adjacent to the router that reports the "Stuck In Active."  

The easiest way to find these problems is to ensure that EIGRP is configured to log neighbor status 
changes. Then, when the "Stuck In Active" messages appear, attempt to track where the neighbor 
relationships are flapping. In some cases the neighbors that are changing are randomly dispersed 
throughout the network. This may indicate that the EIGRP AS has simply become too large to be stable. 
This can happen particularly when the automatic route summarization features of EIGRP are not used 
effectively.  

6.4.3 Interconnecting Autonomous Systems 

EIGRP networks are grouped into Autonomous Systems (ASes). Each router that has EIGRP configured 
must specify the AS number. All neighbors must be in the same AS to exchange routes.  

It is possible to break up an EIGRP network into multiple ASes, but these ASes cannot be directly 
connected to one another. The problem is that the router sitting on the border between the two ASes is a 
full member of both. It maintains a distinct topology database for each AS. But consider what happens 
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when a route in one of the ASes disappears. As I discussed in the previous section, that route becomes 
"ACTIVE" as EIGRP attempts to find an alternate path. When the router that is a member of both ASes 
marks this route as "ACTIVE," it queries all of its neighbors for a possible alternate. That includes the 
neighbors that belong to the other AS. So any ACTIVE route queries from one AS are forwarded over to 
the other AS. This means that if there are stability problems in one AS, they will be inherited by the other.  

The main reason to break up a network into multiple ASes is to help convergence and stability of each of 
the smaller units. In doing so you must be careful to separate these ASes more effectively by using another 
protocol between them. Since EIGRP is an IGP, it is natural to use an EGP, such as BGP, to perform this 
function. However, it can also be effective simply to use another IGP such as RIP or OSPF.  

Like RIP, EIGRP lets you tag routes that originate from outside of the AS. But, while RIP made it difficult 
to use this information to make routing decisions, it is relatively straightforward in EIGRP. This 
information is commonly used to keep traffic inside the AS if any internal path exists. For example, 
consider a network with two ASes. It might turn out that the shortest path between two segments in the 
same AS actually passes through the second AS. But usually this is not desirable. After all, what is the 
point of breaking up the network into ASes if there is no real division between them? In EIGRP, these 
route tags ensure that if there are two routes for a particular network, one internal and one external, then 
the internal one is preferred automatically.  

Sometimes you might want to use that external route for administrative or cost reasons. More commonly, 
there might be two or more different external routes for a particular network. For example, there might be 
more than one Autonomous System Boundary Router (ASBR) connecting to one or more external ASes. In 
this case the external route with the best metric may not actually be the administratively preferred path.  

For these types of situations, Cisco lets you use policy-based routing to act on these route tags. In the 
simplest implementation, the routers at the edges of the ASes might just add a large delay to one external 
route.  

Although they are intended to act as IGP, IGRP, and EIGRP are sometimes used themselves as EGPs to 
interconnect OSPF ASes. EIGRP has excellent route-summarization properties, making it also useful for 
summarizing routes between ASes.  

A real EGP such as BGP has better native filtering properties than EIGRP does. Furthermore, because 
EIGRP is a proprietary standard, it is probably not appropriate for interconnecting the networks of different 
organizations.  

However, two or three OSPF ASes can be easily interconnected within the same organization. This is 
particularly true if the network designer intends to share all routes between these ASes. EIGRP is 
extremely simple to configure, and it works well when redistributing routing information with OSPF. So 
for purely internal uses like this, it may be easier to use EIGRP than BGP to function as the EGP.  

6.4.4 Redistributing with Other Routing Protocols 

Cisco has made it very easy to distribute routes between EIGRP and other routing protocols. All you need 
to do is configure a border router that talks to both protocols. Then, in configuring the two protocols, one 
just instructs each to redistribute routes from the other. But usually AS boundaries serve multiple purposes. 
It is usually necessary to restrict what information flows between the two protocols.  

At a minimum, you must be careful about how the metrics of the external routes look to each protocol. 
They will be tagged as external routes, so you can always use policy-based routing if you need to. But, as I 
discussed in Chapter 3, policy-based routing should be used as sparingly as possible. In fact, it is best if 
used only at the boundary between the two protocols—that is, only on the ASBR routers.  
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Routers can also set default metrics for all injected external routes in both ASes. This is useful when the 
two protocols handle metrics in fundamentally different ways, as with RIP and EIGRP. In this case the 
network designer might want RIP to show all of the external EIGRP routes with a minimum metric of 5. 
On the EIGRP side, she might want to specify a large minimum administrative delay for all injected RIP 
routes. Setting default metrics in this way is often the simplest way to control the routes injected from 
foreign routing protocols.  

The situation becomes more complicated when some routes should not be redistributed. For example, there 
might be a third AS, perhaps running still another routing protocol. Suppose the network has an EIGRP AS 
connecting to each of two different OSPF ASes. Then the designer decide must if she wants the EIGRP AS 
to carry traffic between these other two systems. If not, then the boundary router between OSPF AS 
number 1 and the EIGRP AS can simply refuse to pass along the routing information for AS number 2.  

Cisco makes this easy with the use of distribute lists in the EIGRP configuration.  

6.5 OSPF 

Open Shortest Path First (OSPF) uses a Link State Algorithm for finding the best paths through a network. 
This is a completely different way of looking at dynamic routing than with the Distance Vector protocols 
discussed earlier. Version 2 of OSPF is the most recent. It is defined in RFC 2328.  

Routers running OSPF don't exchange routing tables with one another. Instead, they exchange information 
about which networks they connect to and the states of these links. This state primarily means whether it is 
up or down, but it also includes information about its type of interface. Every router in the OSPF area (a 
term that I define shortly) carries an identical copy of this Link State database. The database of links in the 
network is then used to create a shortest-path tree, from which the routing table is calculated.  

A simple example should help to explain these concepts. Figure 6-7 shows a simple network that runs 
OSPF. For now I avoid any questions of media type and IP addressing. These are all point-to-point links. 
Arbitrary cost is indicated beside each link in the diagram. Some of the links are faster than others. I use a 
cost of 1 for allfast links and 10 for the slow ones.  

Figure 6-7. A simple OSPF network 

Table 6-3 shows the Link State information for this network.  
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Table 6-3. Link State database  
R1 R2 R3 R4 R5 R6 R7 

R1  1 1
R2 1  1 1
R3 1  10  
R4  1 10 10 10 
R5  1 10  
R6  10 10  10 
R7  10  10  

Now OSPF uses this Link State information to construct a shortest-path tree. Even though the Link State 
information is identical on every router, each one has its own unique shortest-path tree. Figure 6-8 shows 
the shortest-path tree for Router R6. At first glance it looks like just a redrawing of the same network 
diagram from Figure 6-8, but it is actually somewhat different.  

Figure 6-8. Shortest-path tree for Router R6 

In particular, although there is a connection from R4 to R7, R6 would never use this link because it has its 
own links to each of these destinations. Also, the shortest path from R6 to R5 in terms of number of hops 
goes R6—R4—R5. But the link from R4—R5 is slower than the apparently longer path from R4—R2—
R5. Since the shortest-path tree only cares about the links the network will actually use, it shows this more 
circuitous (but nonetheless shorter in terms of cost) path.  

Every router in the network builds its own shortest-path tree and uses this information to construct its 
routing tables. Each entry in the routing table indicates the next hop, exactly as it did for the other routing 
protocols mentioned earlier.  

The preceding example was deliberately constructed so that there one would be only one best path to each 
destination. In any real network this is rarely the case. OSPF provides a mechanism called equal-cost 
multipath. This means that the tree-building algorithm actually discovers and uses these alternate paths. 
This makes the picture harder to draw, but it works the same way conceptually.  

Different vendors have different ways of dealing with equal-cost multipath routing. In most cases there is a 
configurable maximum number of paths that will be considered. If there are four equal-cost paths to a 
destination, the router might only use the first two that it discover. Usually this does not cause any 
problems, but it could result in routing tables that do not look as expected. Consult your router vendor's 
documentation for details on how it handles equal-cost multipath routing.  

OSPF requires that every router in a grouping have the same Link State database. Scaling efficiency 
dictates that these groupings shouldn't contain more than about 50 routers. This number is far too small to 
support most large networks. So clearly there must be a mechanism for subdividing OSPF ASes.  
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This AS has the same meaning as it did for the discussions of RIP, IGRP, and EIGRP. It is a large 
administrative grouping of routers that all share routing information using a single IGP.  

An area is simply a group of routers that all share the same Link State database. The process by which all 
routers in an area learn the Link State database from one another is called flooding.

When a new router connects to the network, it first attempts to establish neighbor relationships with every 
other router that it can see directly. Most of these neighbors will then become adjacent, meaning that they 
directly exchange Link State information with one another. There are exceptions where routers that are 
neighbors do not become adjacent, but I discuss this later.  

Then the new router sends its current Link State to all of its adjacent neighbors. This Link State 
information is contained in a Link State Advertisement (LSA). Since every router taking part in this OSPF 
area needs to see the same Link State database, the neighbors proceed to pass this information along to all 
of their adjacent neighbors. These neighbors in turn send the new information to their neighbors and so on 
until every router in the area has updated its database. Meanwhile, the new router also receives the current 
Link State database from its neighbors. Very quickly every router in the area obtains the new database. 
They then must recalculate their shortest-path trees and the resulting routing tables.  

The fact that every router in an area must have an identical copy of the Link State database poses an 
important scaling problem with OSPF. The more routers there are in the area, the more different links each 
router has, and the more memory the Link State database will consume. This is actually the smaller 
problem, though. A more serious scaling problem comes from the difficulty in calculating the shortest-path 
tree as the area becomes more and more complicated.  

The usual rule of thumb is that no area should contain more than 50 routers. In a simple network design 
where every router's shortest-path tree is easily calculated, this number can be pushed up. This is 
particularly true if the routers are all configured with faster processors and extra memory.  

However, it is a good idea to keep OSPF areas small and simple. This helps ensure that the network can 
respond quickly and accurately to topology changes.  

In general, routers that are neighbors are also adjacent. But there are places where this is not the case. The 
exceptions happen for broadcast media like Ethernet segments and Token Rings, as well as for 
Nonbroadcast Multiple Access (NBMA) media. ATM and Frame Relay networks can be implemented as 
NBMA, as can some types of wireless networks.  

If a broadcast medium such as an Ethernet segment contains several routers, then every router is a neighbor 
to every other router. This effectively forms a mesh of relationships. As I mentioned earlier in this book, 
meshes do not scale well. So OSPF allows routers on broadcast and NBMA networks to simplify their 
relationships by electing a Designated Router (DR) for the segment. They also elect a Backup Designated 
Router (BDR) to take over if the DR fails. Then every other router on the segment becomes adjacent to 
only the DR and BDR. This changes the mesh into a star.  

The DR handles all flooding of Link State information for the segment. This router does not take on any 
special role in routing, however. The DR function is only used to make exchange of Link State data more 
efficient.  

If the DR becomes unreachable for any reason, then the BDR automatically takes over for it and becomes 
the new DR. It remains in this role until it also fails. So in many networks the DR is just the router that has 
been up the longest. But this is not always desirable. For administrative reasons, sometimes a network 
designer wants to restrict which routers take on these functions. In this case, it is possible to set an OSPF 
priority on every router connected to the broadcast or NBMA medium to control the election process.  
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The router with the highest priority is elected as the DR, and the second highest becomes BDR. However, 
this election only happens if there is no DR, either because it's a new network or because the DR has 
failed.  

Frequently there are routers that the network engineer does not want as DR for the segment. In this case the 
priority is simply set to zero.  

6.5.1 Area Types 

OSPF allows the designer to break up the AS into a number of smaller areas. Between these areas are Area 
Border Routers (ABR). An ABR controls the flow of routing information between the different areas, 
while maintaining distinct Link State databases for each.  

There are two main types of areas and a number of subcategories. The main distinction is whether an area 
is capable of acting as a Transit area.  

A Transit area carries traffic that originates in a different area (or a different AS) and is destined for still 
another area. These external destinations may be other areas, or they may even be other ASes, perhaps 
running different routing protocols. Conversely, a non-Transit area is one that can only carry traffic that 
either originates or terminates in that area.  

The main reason for this distinction has to do with how external routes are summarized. If an area uses 
summary and default routes for everything external, then other areas can't use it to get to external or other 
areas. It simply doesn't have sufficient information to allow this kind of flow-through. So a Transit-capable 
area is one that does little or no summarization.  

There are three common options for how this summarization can be done. They are called Stub, Not-So-
Stubby, and Totally Stub.  

A Stub area is one that uses a summary route for everything outside of the AS. If the whole network is 
contained in one AS, perhaps with a single default route to the Internet, then a Stub area provides very 
little benefit. However, Stub areas can be quite efficient in networks that have a large number of external 
routes.  

If any of the routers in the area connect to a different AS, then the area cannot be Stub. However, it is 
possible to use a Not-So-Stubby Area (NSSA) for this purpose.  

NSSA are defined in RFC 1587. This option allows for the summarization of some external routes but not 
others. If there is a router internal to the NSSA that connects to the external AS, then those external routes 
are not summarized. Any external routes that originate in a different area are summarized.  

Finally, a Totally Stub area summarizes everything from outside of the area. So even routes that are 
internal to the AS but originates in a different area appear only as summary routes. This can be useful for 
portions of a network where routers have limited resources. It is also useful when a large number of the 
links in the area are slow or have high latencies. In these cases the area cannot transmit large amounts of 
routing information. So it makes sense to summarize everything from outside of the area.  

Not all vendors implement Totally Stub areas. This feature originated with Cisco and is not included in any 
of the RFC documents that define the OSPF standard. Some other vendors have also implemented Totally 
Stub areas, however. As with all nonstandard options, it should be used with caution. All of the routers in 
any given area must agree on the type of area. So if some routers are not capable of operating in a 
particular mode, they may be unable to participate in the area.  

NSSA and Stub areas, on the other hand, are implemented by nearly every router vendor.  
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Route summarization in this discussion is similar to how it was used with EIGRP. In a normal non-Stub 
area, OSPF distributes routing information on every individual subnet, including those in external regions 
of the network. A summary reduces this information to a small number of routes that describe large ranges 
of addresses.  

For this to work, it must be possible to reach every valid address in this range through a single Access 
point. In the case of summary routes for networks outside of the AS, the destination must point to the 
Autonomous System Boundary Router (ASBR). For summary routes of networks in other areas (or where 
the ASBR is in another area), every router in the area will simply direct traffic to the Area Border Router 
(ABR).  

Because it is a Classless routing protocol, OSPF uses a system of the longest possible match when looking 
at summary routes. Suppose a packet has a destination of 10.2.3.5. The router forwarding this packet 
will look in its routing table to see how to deal with it. It might have a default route of 0.0.0.0, which it 
will use as a catch-all in case it can't find a better match. It might also have a summary route for 
10.0.0.0/8. Again, if it can't find a better match, it will use this one. If there are several possible 
matches, the router will always use the one with the longest mask, which will be the most specific route. In 
this example, if there is a route for 10.2.3.4/30, this will be better than any either 10.0.0.0/8 or 
0.0.0.0/0.

Note also that the ABR routers summarize in both directions. The routes from outside of the area are 
summarized when they are distributed into the area. Similarly, the internal area routes are summarized 
when the ABR presents them to the rest of the network. So if an area has a summary route of 
10.1.4.0/22, then it is up to the ABR to distribute this summary information to the neighboring area. 
If it is summarizing this way, then it does not distribute any of the specific routes for this area.  

Just as ASes are defined by numbers, areas also have numeric identifiers. Every AS must have at least one 
Transit-capable area called area 0.  

Areas are sometimes called by a single number, and sometimes by numbers written out in the same format 
as IP addresses. So Area 0 is sometimes written as 0.0.0.0. It is usually a good idea to have the default 
route for an AS connected to Area 0.0.0.0. But this has nothing to do with this naming convention. In 
fact, the numerical identifiers for areas (except for Area 0) are completely arbitrary. Since every area must 
connect directly to Area 0, and only to Area 0, there need not be any relationship between the names of 
different areas.  

However, it can make administration and troubleshooting simpler if areas have meaningful names. Some 
organizations make their area names identical to the summary of networks inside the area. So, if an area 
can be summarized with the route 10.1.16.0/22, then the area might be called 10.1.16.0.

Other organizations choose their area designations to represent administrative information. For example, 
they might have a group of areas belonging to each of several different divisions of the organization. One 
of these divisions—Engineering, for example—might be called 5.1.10.0. Then the Engineering OSPF 
areas would be called 5.1.10.1, 5.1.10.2, and so forth. Meanwhile, the Marketing division might 
have 10.2.5.1, 10.2.5.2, and so forth.  

The numbers are completely arbitrary, so it is up to the network designer to come up with a scheme that is 
meaningful to the organization.  

6.5.2 Area Structures 

Every AS must have an Area 0. Every other area in the AS must connect directly to Area 0 and no other 
area. In other words, every OSPF AS is a star configuration. So OSPF lends itself well to hierarchical 
network design.  
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The routers that connect one area to another Area Border Routers (ABR). Every ABR straddles the line 
between Area 0 and at least one other area. Figure 6-9 shows an example of how this works.  

Figure 6-9. Layout of areas in an OSPF AS 

There are three areas in this picture. Area 0.0.0.0 is called the backbone or Core area. There are six routers 
in this area. Four of these routers are ABRs, and the other two are purely internal. Routers that are purely 
internal to Area 0 are called backbone routers, so I have named them BBR 1a and BBR 1b.  

There are two other areas indicated in this picture, Area 1.1.1.1 and Area 2.2.2.2. Each of these 
areas connects to the backbone area through a redundant pair of ABR routers. Each area also contains two 
other routers. Routers in nonbackbone areas that are not ABRs are called Internal Routers (IR). Most of the 
routers in the network will wind up being IRs.  

This figure shows multiple ABRs connecting to each area. This is important because it affects how 
summarization is done. Suppose Area 1.1.1.1 is a Stub area. Then all of the IR routers inside this area 
will see two types of routes. Any route that originates inside the AS will be a full route with no 
summarization. But every route from other ASes will be summarized into a default route such as 
172.16.0.0/14 or 0.0.0.0/0.

This summary route will then be distributed by Link State flooding to every router in the area. In the 
example, both of the internal routers in this area are directly attached to both of the ABRs. So they will see 
equal-cost multipath routes for these summary routes.  

Suppose Area 2.2.2.2 is not a Stub area. Then every router in this area will see all of the full routes 
originating with every router in the network. They will only see the Link State database for routers in their 
own area, but they will see routes for everything else.  

Figure 6-9 showed two ABR routers for each area. This was done to remove the single point of failure that 
a single ABR would represent. But it presents a special problem for OSPF to deal with. The two ABR 
routers must present the same information to the Core. To ensure that they are in synch, it is important to 
always mesh the ABRs in any one area. The same issues will be even more applicable when talking about 
ASBRs later in this chapter. This is because ASBRs ensure that summary routes are correct for an entire 
AS. ABRs only have to summarize an area, but they still need to keep the routing information up-to-date.  

In many networks there is an additional reason for meshing the ABRs for any given area. It is common for 
every IR in an area to have connections to a pair of ABRs. Then if one of these links fails, the second ABR 
will take over all of the traffic. However, if the ABRs summarize the area routes when passing them to the 
Core, then the Core does not need to know about this failure inside the area. So, if traffic from the Core to 
the IR used the ABR with the failed link, the ABR-to-ABR link provides a new path to the IR. Otherwise, 
every little change in a remote area will cause changes in the routing tables of the backbone. The backbone 
area should see only routing changes that result from serious problems.  



168

This diagram shows a pair of ABR routers that connect Area 0 to each of the non-Core areas. In fact, if the 
ABR routers have relatively powerful processors and lots of memory, they act as ABR for a number of 
non-Core areas.  

One could, for example, have a single ABR router with three high-speed interfaces. The first interface 
connects to Area 0, the second interface connects to Area 1.1.1.1, and the third to Area 2.2.2.2.
This router then acts as ABR to both areas. There need be no particular relationship between Area 
1.1.1.1 and Area 2.2.2.2 in this case. The point is just to economize on the number of ABR 
routers required.  

There are no theoretical limits on how many areas an ABR can support. But there are relatively strict 
practical limits imposed by CPU performance and memory capacity. Most modern routers can readily 
handle two areas plus Area 0. Some powerful devices can be ABR for 4 or 5 areas with relative ease. Ask 
your hardware vendor for guidance before attempting to support multiple areas through a single ABR 
router. It may require a memory or CPU upgrade.  

So far, the benefits to summarization have concerned efficient use of resources. But summarization has 
another key benefit. If you don't summarize, then you must propagate every route through the network. In 
particular, if the ABRs don't summarize into Area 0, then they must propagate every individual route into 
Area 0. This is usually not a problem, but every time a link changes state, the route flaps—that is, a Link 
State advertisement is flooded through the area. When this information crosses into another area, such as 
Area 0, it also has to update the routing tables in this area.  

Normally, this is not a problem. But suppose the circuit that connects a number of routers to an ABR is 
faulty. Every time this circuit goes up and down, the ABR must send out Link State advertisements for all 
of the routes that have changed state. If it happens too frequently, it can cause stability problems in the 
network Core. So summarization is not just a resource issue; it is also a stability issue.  

I have one final comment on OSPF Area structures. In vendor documentation and even in the OSPF RFC, 
you frequently read about Virtual Links. These are effectively routing tunnels that allow physically remote 
routers to become adjacent neighbors. This is sometimes used when a router needs to be in one area, but is 
physically located in another.  

For example, a network might consist of a chain of four areas in a row. The first area is Area 1, the second 
is Area 0, and the last two are Areas 2 and 3. Area 0 connects Areas 1 and 2 properly, but there is a 
problem in getting to Area 3. One solution is to configure a virtual link from Area 0 to the router that 
connects Areas 2 and 3 together. Then this router becomes an ABR for both of these areas.  

It should now be clear that needing to use virtual links is a symptom of a bad design. It is far too easy for a 
virtual link to break and partition an area. When the area that breaks is Area 0, this is disastrous. I strongly 
caution against using virtual links. They may make otherwise impossible configurations possible, but they 
will never make a network stable.  

6.5.3 Interconnecting Autonomous Systems 

Just as with RIP and EIGRP, it is possible to join OSPF Autonomous Systems. This could happen because 
two otherwise separate networks need to talk to one another. Or it could be that one AS has to be divided 
into two or more pieces. Routers that connect one AS to another are called Autonomous System Boundary 
Routers (ASBR).  

Technically, an ASBR can be placed in any non-Stub Area or in any NSSA. However, in a hierarchical 
design it is usually preferable to place the ASBR routers in Area 0. In principle, routers from anywhere in 
the AS will want to connect to the ASBR and the network beyond it.  
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However, if the ASBR is in one of the non-Core areas, then traffic from a different area must travel a 
potentially large distance to get to the ASBR. This tends to be rather inefficient. Also, if there are multiple 
ASBR routers connecting to several different ASes, all via different areas, then it can be very difficult to 
know which default 0.0.0.0/0 route is the best one. However, if the ASBR routers are all located in 
Area 0, it becomes much easier to keep tight control over external routing.  

Finally, if the designer is building a hierarchical network design, then it should be hierarchical at all levels, 
not just within the OSPF AS. So this concept leads to the idea of a central EGP Core that interconnects a 
number of IGP ASes. In this view the most natural place to connect the OSPF and EGP clouds is in the 
Core of the OSPF AS, Area 0.  

The one important exception to this is using static routes or a foreign routing protocol such as RIP to 
accommodate network gear that doesn't support OSPF. It is not uncommon to encounter legacy equipment 
in outlying portions of the network. In this case it is essentially unavoidable: you need to have an ASBR in 
an area other than Area 0.  

It is important to make sure that this area is a Transit Area. It can be either a non-Stub Area or NSSA. The 
choice between these two options depends mainly on how much other routing information comes from 
outside of the AS. If the AS has very few external routes, then a non-Stub Area is simpler and therefore 
preferable. But if there are many external routes, then an NSSA should use router resources more 
efficiently.  

Strictly speaking, since OSPF is an IGP, you should interconnect ASes using an EGP such as BGP. It is 
possible to use another IGP for this purpose, however. IGRP and RIP actually work relatively well for this 
purpose. However, it is usually not a good idea to interconnect two ASes running the same IGP without 
some other protocol in the middle. This is essentially to control the flow of IGP information.  

I mentioned previously that it is a bad idea to connect two EIGRP ASes directly. OSPF behaves somewhat 
better in this regard. But it is still good practice to use a foreign protocol in the middle to help control how 
routes are distributed between the ASes.  

There are two reasons for splitting up an OSPF AS. First, it might have grown so large that it no longer 
converges quickly after a link failure. This is relatively rare, however. More frequently a designer might 
want to split up an AS to help isolate regions of instability. Whenever a link fails, the route associated with 
this link must be updated throughout the AS. If the ABR routers for the area containing the failed link give 
Area 0 summary rather than detailed routing information, then there is nothing to update. But if every route 
is listed in detail, then this detailed information must be rigorously updated whenever it changes.  

Now consider an AS that contains a mixture of LAN and WAN areas. Suppose that a WAN area contains a 
Frame Relay cloud with a single circuit supporting hundreds of remote sites. If this circuit fails, the ABR 
for this area must update Area 0 with all of these individual routing updates. When the circuit comes back 
up, all of the routes must be updated again.  

If this happens frequently, it can make the routers in Area 0 extremely busy recalculating their routing 
tables. That can result in Area 0 itself becoming unstable. So some network designers like to separate their 
WAN components into one or more distinct ASes that are separate from the more stable LAN components.  

6.5.4 Redistributing with Other Routing Protocols 

The simplest example of redistributing other routing information into OSPF is the use of static routes. This 
is effectively the same as redistributing from one AS into another. Every route that does not come from 
within the AS and is not generated by the standard Link State advertisements is considered an external 
route and is tagged as such.  
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When an external route is injected by an ASBR, a cost is associated with it. This need not be a real 
indication of the number of hops or the speed of links on the outside of the ASBR. In fact, you only need to 
be careful with the costs of external routes when there are two or more different ASBRs offering 
connections to the same network. In this case, OSPF adds its own internal costs to each hop through the 
network.  

To reliably control which external path is used in this scenario, all ASBR routers that connect to the 
external network should be located together in Area 0. Then if one ASBR is preferred, it injects the route 
with the best cost. If this is not done—for example, if two ASBR routers with the same external routing 
information are located in different Areas—then predicting which one will be used is difficult. Some 
routers may use one, and others may use the other ASBR. This may be desired. But it is simpler and easier 
to maintain if all ASBR routers are located in Area 0.  

In fact, OSPF uses two different types of external routes. An arbitrary router inside an AS looking at a 
Type 1 external route sees a metric equal to the cost for that route at the ASBR, plus the cost required to 
get to the ASBR. For Type 2 external routes, on the other hand, the internal portion of the cost is ignored.  

If there are two ASBR routers injecting the same Type 1 route with the same metric, then each internal 
router chooses the closer ASBR. But if it is a Type 2 route, then it always picks the same ASBR, regardless 
of which one is closer. The ASBR it picks will be the one with the best external cost. If the metrics for two 
Type 2 routes are equal, then the internal distance is used to break the tie.  

Where both Type 1 and Type 2 routes exist for a particular network, the internal routers will always select 
the Type 1 route.  

A special case is the injection of an external route that overlaps with address range of the AS. This is 
generally dangerous. But there are times when a static route must be used because OSPF is not naturally 
aware of the route. This might happen, for example, if there is foreign equipment in the network that does 
not run OSPF.  

OSPF will always use the most specific route first. So, ven if there is a lower cost route that includes the 
subnet mentioned in the static route, the specific route will be used. For example, suppose a route to 
192.168.5.0/24 is distributed through the normal Link State process. This could be distributed 
either as a summary route or as a normal route. Suppose there is one particular host, 
192.168.5.16/32, that is connected differently, perhaps through a PPP or SLIP connection directly 
to a router port. Then this router could inject this host route (a host route has a mask of 
255.255.255.255) with the appropriate metric for this medium. OSPF would then use this host 
route properly for this specific device and the network route for everything else in the segment. This 
should work even if the host route has a higher cost than the network route.  

6.5.5 IP Addressing Schemes for OSPF 

OSPF relies on route summarization to work efficiently. Unlike EIGRP, which allows route summarization 
at any point, OSPF only summarizes at ABR and ASBR routers. So where EIGRP can benefit from highly 
sophisticated addressing schemes that summarize on many levels, OSPF can use somewhat simpler IP 
addressing schemes.  

Each AS must be completely summarized by a simple network/mask combination. As mentioned 
previously, it is always possible to inject external routes that overlap with the internal range. But this 
should be avoided because it is confusing. If multiple ASes are used, they should all have their own clearly 
summarized ranges. Then, each area within each AS should be composed strictly of a summarized 
subgroup from the AS address range.  

For example, suppose you have a network with two ASes. The first uses the range 10.1.0.0/16, and 
the second uses 10.2.0.0/16. This will make it easy for the ASBR routers to summarize the links that 
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connect them. Then the areas within the first AS may have address ranges that look like 10.1.0.0/22,
10.1.4.0/22, 10.1.8.0/21, 10.1.16.0/21, and so forth. Note that these ranges are not all 
the same size. There is no reason to restrict areas to summarize the same way as one another.  

If you fail to create clearly summarized address ranges at the ASBR and ABR boundaries, OSPF has to 
work much harder than it would otherwise. This is extremely inefficient. It is also very difficult for human 
engineers to diagnose problems when there is no simple and clear pattern to the IP addresses.  

6.5.6 OSPF Costs 

Earlier in this chapter I indicated that the OSPF cost values are arbitrary. They are used to select the best 
paths through a network. So, in general, faster links will be configured to have lower costs. In fact, if you 
assume the same latency for every type of link (which is not true in reality), then you can define the cost to 
be inversely proportional to the bandwidth.  

This leads to one of the most popular methods for setting OSPF costs. You can take a reference bandwidth 
as the fastest link in the network and make its cost 1. Then every slower link has a cost that is just the 
reference bandwidth divided by the slower link's bandwidth. If your reference bandwidth is a Gigabit 
Ethernet link in the network's Core, then every Fast Ethernet (100Mbps) link will have a cost of 10, 
10Mbps Ethernet links will have 100, and a T1 (1.544Mbps) will cost 6476.  

This is a relatively good system, but it has one critical flaw that makes it unworkable in many networks. 
The maximum value for an OSPF cost is 65,535. In fact, it is important to avoid coming anywhere close to 
this value because a path that includes such a link plus any number of faster links could easily have a total 
cost greater than the maximum. When this happens the entire path becomes unusable. This is effectively 
the same problem as when a RIP metric exceeds 15.  

The problem is that many networks include too large a range of bandwidths. Suppose, for example, that the 
fastest link in the network is a Gigabit Ethernet link, and the slowest is a 9.6kbps dialup line. If the Gigabit 
link has a cost of 1, this implies that the 9.6kbps line must have a cost of 104,166, which is considerably 
larger than 65,535. This problem becomes worse in a network with a 10Gbps link in its Core, because then 
even relatively common 56kbps circuits have excessively high costs.  

Let's revisit the reasoning behind this standard linear rule to adapt it to these real networks. The range of 
bandwidths available forces many network designers to use a non-linear rule. Certainly, the faster links 
must have lower costs than slower ones. But do links that are one-tenth as fast really need to bear a cost 
that is 10 times as high? This would make the net cost of a path passing through nine Fast Ethernet links 
better than the cost of a single 10Mbps Ethernet link. Is this realistic?  

The main problem is what nonlinear method to use to include the bandwidth factor. What it really comes 
down to is deciding how many hops through high-speed links equals one slow hop.  

Clearly, an important factor is the latency of each of these links. The latency for a short 10Mbps Ethernet 
is roughly governed by the length of time required to wait for carrier and inject the packet. Time of flight 
to the farthest part of the segment is less than the time to transmit the entire packet (or else the segment 
will suffer from late-collision problems). The same is true for 100Mbps Ethernet, but because the carrier 
frequency for 100Mbps Ethernet is 10 times as fast, the latency should be roughly one-tenth as long.  

Adding more hops to the path also increases the latency because each router in the path takes some time to 
process the packets. In the case of Ethernet and Fast Ethernet, the amount of work is almost exactly the 
same. So assume that each router adds roughly the same additional latency as a Fast Ethernet segment 
does. Then passing through N Fast Ethernet hops will add N link delays plus N-1 router delays, for a total 
of 2N-1. This implies that the break-even point based on latency alone will be when 2N-1 = 10, or N = 5.  
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Now consider how the bandwidth should scale neglecting latency effects. Nominally, if a link is 10 times 
as fast, then an application can send 10 times as much data through it. But this assumes that this 
application is the only one using this link. In fact, the faster links usually aggregate traffic from a number 
of slower links. The amount of competition for the bandwidth on some remote link depends on the network 
design and traffic patterns. Generally speaking, these links have some constant utilization for which many 
devices compete, plus excess capacity that they can use fairly freely.  

Putting these factors together suggests a simple formula with the cost inversely proportional to the square 
root of the nominal bandwidth. Note that a great deal of hand waving went into finding an appropriate 
formula. It is balanced so that a Fast Ethernet link is roughly three times as good as a 10Mbps Ethernet 
link. Similarly, Gigabit Ethernet links are roughly three times as good as Fast Ethernet. This simple rule 
scales the same way throughout the entire range. Best of all, it results in usable cost numbers for the 
slowest links in a network, as shown in Table 6-4.

Table 6-4. Suggested OSPF cost values for different media types.  
Medium Nominal bandwidth Cost in 1/bandwidth model Cost in 1/square root model 
9.6kbps line 9.6kbps 1,041,666[1] 1020 
56kbps line 56kbps 178,571[1] 422 
64kbps line 64kbps 156,250[1] 395 
T1 Circuit 1.544Mbps 6,476 80 
E1 Circuit 2.048Mbps 4,882 69 
T3 Circuit 45Mbps 222 14 
Ethernet 10Mbps 1,000 31 
Fast Ethernet 100Mbps 100 10 
Gigabit Ethernet 1Gbps 10 3 
10 Gigabit Ethernet 10Gbps 1 1 
4Mbps Token Ring 4Mbps 2,500 50 
16Mbps Token Ring 16Mbps 625 25 

[1] These costs are all higher than the maximum cost value of 65,535, and they would be 
adjusted in practice.  

Table 6-4 also includes the costs that result from using the more common model in which cost is inversely 
proportional to bandwidth. In both cases I adjusted the costs so that the fastest link, the 10Gigabit Ethernet, 
has a cost of 1.  

Both of these models are just basic suggestions for starting points. The network designer should carefully 
consider the OSPF costs of every link in the network to ensure that they are appropriate. Poor choices of 
values can lead to serious traffic routing problems. But, as with all network design problems, simple 
consistent rules will usually result in a more stable network.  

It is particularly important to include room for growth. If there is even a remote chance that your network 
will one day include Core links that are faster than the 10 Gigabit Ethernet speed suggested in this table, 
make sure to scale all of the cost values up accordingly. Then the new fastest link will have a cost of 1, and 
all of the other links will be correspondingly more expensive. Making this change after a network is built 
can be time consuming and highly disruptive.  

There is an interesting exception to the preceding comments. OSPF areas are configured so that only Area 
0 carries traffic from one area to another. If a packet starts in any area besides Area 0 and then leaves that 
area, then it cannot return to the area in which it started. If it then passes into another area, then it must 
have its ultimate destination in that area. So the problem of selecting the best path breaks up into 
components. First, OSPF needs to find the best path through the originating area. If the destination is in the 
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same area, then it needs the best path to the destination. But if the destination is in some other area, then all 
it cares about is finding the best path to Area 0.  

Once the packet is in Area, 0 OSPF needs to find the best path within this area. It may terminate in Area 0, 
or it may lead to an ABR for another area. Finally, in the destination area it needs to find the best path to 
the final device. But the point is that the protocol does not need to know the entire path from end to end 
unless the path is contained entirely in one area. It just needs the best path to the next ABR.  

Consequently, it doesn't matter if you use different costing rules in different areas. For example, Area 0, 
being the Core of the network, might contain several 10 Gigabit Ethernet links. But it is unlikely that this 
area will contain anything slower than a T1 circuit. So you can use one set of costs appropriate to this 
range of bandwidths. Similarly, a destination area might contain a number of remote WAN sites connected 
via 56kbps circuits. But as long as the fastest links in this area are 100Mbps Fast Ethernet, you can use a 
consistent set of costs based on 100Mbps bandwidth. However, as with all aspects of network design, it is 
preferable to have a single common rule that applies everywhere. So this exception is best used only as an 
interim measure while readjusting metrics throughout an AS.  

6.6 BGP 

Border Gateway Protocol (BGP) is currently in its fourth version, which is defined in RFC1771. Although 
the Core protocol has not changed since 1995, there have been some additions to it.  

BGP is an EGP. All of the other routing protocols that I have discussed so far in this chapter are IGP. In 
the usual configuration, IGP protocols function purely within an AS, while EGP protocols are used to 
interconnect ASes. The main exception to this rule is that sometimes an IGP can be used in a limited 
function to link together two ASes running a different protocol. For example, you can link two OSPF ASes 
using EIGRP or RIP. However, using a real EGP offers many important advantages.  

BGP is by far the most popular EGP. There is an earlier EGP protocol called, confusingly enough, EGP. 
But BGP is much more robust and offers many more useful features for policing traffic flows. Most 
importantly, BGP Version 4 allows fully classless routing.  

Classless routing is important because there are many cases where organizations want either to subnet or to 
supernet their address ranges. I have already discussed subnetting. Supernetting is a similar idea, except 
that it allows an organization to group together a number of contiguous smaller class networks.  

For example, suppose an organization uses four unregistered Class C networks, 192.168.4.0/24,
192.168.5.0/24, 192.168.6.0/24, and 192.168.7.0/24. They could distribute routing 
information to these four addresses by means of the supernet route 192.168.4.0/22. Similarly, two 
different organizations might opt to share the Class B range 172.19.0.0/16. So one could use 
172.19.0.0/17, and the other 172.19.128.0/17. They could then exchange all of their routing 
information with a single simple summary.  

This feature, called Classless Interdomain Routing (CIDR), is becoming relatively common throughout the 
Internet. This is because the growth of Internet participation has led to a drastic shortage of IP addresses. 
So the IETF has been forced to get creative with its address allocation. Since BGP is the primary routing 
protocol for interconnecting organizations on the Internet, it has become completely classless.  

The Internet presents some interesting challenges to a routing protocol. There are some regions of the 
Internet that share a common backbone. However, internationally the Internet is best viewed as a 
completely arbitrary collection of interconnected networks.  

A large number of individuals and organizations connect to the Internet through one or more Service 
Provider networks. These Service Provider networks in turn connect with one another and with high-speed 
Internet backbone networks that are themselves essentially just fast Service Provider networks. In addition, 
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there are a number of educational and governmental organizations that behave almost like Service Provider 
networks by acting as interconnection points for a number of other networks.  

Internally, each Service Provider network may use any routing protocol to distribute routing information. 
Also internally, these networks form one or more ASes. When connecting to other networks—either client 
networks or other Service Providers—these networks use BGP to share routing information.  

So BGP must share routing information between ASes. It must also summarize information about what 
routes lie behind each AS. Devices on my network need to get to some distant part of the world by first 
passing through my Service Provider. My Service Provider needs to know that it can reach this network 
through some other Service Provider, and so forth, until my packet finally reach its destination.  

In short, BGP functions not router to router, but AS to AS. It resolves loops and finds the shortest path in 
AS-sized chunks.  

BGP also has another more complex role to play in AS-to-AS routing. Some organizations might want to 
take part in the Internet (or, for that matter, any shared IP network). But they might not be willing to act as 
a conduit for traffic between other organizations. So BGP has a filtering function that allows considerable 
control over what routes are distributed to which AS neighbors.  

BGP uses a different routing algorithm than either RIP or OSPF. Like RIP, it only keeps track of 
information about the nearest hops and the routes that can be reached through them. But unlike RIP, it 
doesn't use a simple metric to decide which path is the best. Instead, it maintains information about the 
entire path to the destination. The method for doing this is called a Path Vector Algorithm.  

This means that every route that BGP knows about is accompanied not by a simple number representing 
cost or distance, but by the actual path. It is easy to avoid loops when you can look at the whole path and 
see that the same intermediate step appears more than once. The path is not a sequence of routers, but a 
sequence of ASes, which is why it is called AS_PATH.  

If Autonomous Systems exchange routing information using BGP, then each one must have one or more 
routers that speak both BGP and the IGP. These routers are called Autonomous System Boundary Routers 
(ASBR). Figure 6-10 shows how three ASes might be connected.  

Figure 6-10. Interconnecting three ASes using BGP 

Figure 6-10 shows two BGP ASBR routers in each AS for redundancy. These ASes could be running any 
combination of IGP protocols, such as OSPF, RIP and EIGRP. The two ASBR routers inside each AS 
communicate with one another using iBGP, the interior protocol. ASBR routers in different ASes use 
eBGP, the exterior protocol. This is an important distinction because two routers that provide access to 
each AS must present a unified picture of what is inside. This means they share a common view of the 
interior of the AS, and they also share the most up-to-date information about all of their AS neighbors.  

You have to configure a full mesh of iBGP connections between all of the ASBR routers in each AS. 
Every ASBR connection, whether iBGP or eBGP, uses a TCP session to exchange routing information. 
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This TCP session is not discovered, but must be manually configured on each router, and it then remains 
permanently active.  

However, as mentioned earlier in this book, fully meshed networks do not scale very well. So there have 
been some additions to the BGP protocol that aim to relax this requirement. The most important of these 
protocol additions are Route Reflection (discussed in RFC 2796) and BGP AS Confederations (RFC 
3065). These documents are both relatively recent, so not all router vendors have implemented their 
recommendations. Even those that have incorporated these options have only done so recently, so older 
equipment may not support them.  

There are many different ways of connecting ASes. An AS may have only one ASBR and connect only to 
one other AS. In this case the routing information that it conveys to the rest of the world only concerns its 
own IP addresses. This is similar to an AS that has multiple Access points but does not allow traffic to pass 
through it. These are both called nontransit ASes.  

A third option is an AS that has multiple Access points and allows traffic to pass through it. This is called a 
transit AS. In Figure 6-10, there is no connection between AS 200 and AS 300. To allow devices in these 
two networks to communicate with one another, AS 100 must pass along routing information received 
from each to the other. However, AS 200 and AS 300 only need to pass along their own summary routing 
information into AS 100.  

A useful feature of BGP is the ability to restrict what routing information is conveyed. This in turn has the 
effect of restricting whether a particular AS is used for transit between other ASes. So, for example, an AS 
might be configured to provide transit services for some external networks, but not others. This can be 
done either per-network or per-AS. It might only pass transit information to some of its downstream 
neighbors.  

6.6.1 Autonomous System Numbers 

Since BGP uses AS Numbers to identify routing elements, there must be rules for how these AS Numbers 
are allocated. If BGP is to work on the public Internet, then clearly two organizations can't both use—for 
example, AS Number 100. A conflict in AS Numbers is as serious as a conflict in IP addressing. AS 
Numbers detect routing loops, so they must be globally unique.  

The standard rules for allocating AS Numbers are defined in RFC 1930. These rules apply to all IP 
networks and to all routing protocols. The range from 64,512 to 65,534 (and possibly also 65,535) is 
reserved for private networks. These AS Numbers cannot be advertised on the public Internet. This is 
similar to the private use of unregistered IP address ranges such as 10.0.0.0/8. So it makes a great 
deal of sense to use AS Numbers from this range particularly for any AS that uses unregistered IP 
addresses. This way neither the addresses nor the AS Numbers will ever be in danger of reaching the 
public Internet.  

The AS Numbers from 1 through 22,527 have been divided up among three main international Internet 
standards organizations[3] to allocate to networks that connect to the public Internet. Of the remaining 
numbers, 0 and the range from 22,528 through 64,511 are currently held in reserve by the IANA for future 
purposes. There is some inconsistency between IANA documents and RFC 1930 in the availability of AS 
Number 65,535. The IANA indicates that this number is reserved, while RFC 1930 lists it as part of the 
unregistered range. So it is probably best to avoid using 65,535 to avoid possible future compatibility 
problems.  

[3] In the Americas, Caribbean, and sub-Saharan Africa, ARIN (American Registry for Internet 
Numbers, http://www.arin.net) is responsible for allocating all AS numbers. In Asia and the 
Pacific region, this is done by AP-NIC (Asia Pacific Network Information Centre, 
http://www.apnic.net). RIPE NCC (Réseaux IP Européens Network Coordination Centre, 
http://www.ripe.net) allocates these numbers for Europe. 
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6.6.2 Where to Use BGP 

BGP is useful anywhere two or more ASes need to exchange routing information dynamically. If the 
information never changes, then it is considerably simpler to just use a static route.  

Many factors lead to networks requiring continuously updated routing information. For example, there 
might be more than one way to get to a distant AS. Figure 6-11 shows four ASes. To get from AS 100 to 
AS 400, a packet can go through either AS 200 or AS 300. It might have an administrative reason for 
preferring one of these paths, but if the preferred path becomes unavailable, it will need to switch to the 
other.  

Figure 6-11. A simple network having multiple AS paths 

However, there is a simpler reason for needing to use a dynamic EGP protocol in Figures 6-10 and 6-11. 
Both of these cases have multiple ASBR routers. For example, there are two ASBR routers in AS 100 and 
AS 200. There are then four paths between these two ASes. A static route would not allow the network to 
use these paths for redundancy.  

BGP is unnecessary in the simple example of one AS connecting to the Internet via a single Service 
Provider. In this case the ISP can easily handle all inbound traffic with a single static route that 
summarizes the block of registered addresses for this client network. All outbound traffic is handled 
similarly by directing the route 0.0.0.0/0 to the Service Provider's network. This is the configuration 
that most organizations use to connect to the public Internet. So most of these organizations do not need to 
use BGP for their Internet connections. Consequently, they do not need to register an AS Number.  

BGP becomes useful to the client, however, when the network uses two or more different ISPs. Then they 
can configure BGP to give redundancy in the Internet connection. In this case the network needs a 
registered AS Number, even if the client network is not configured to allow transit from one ISP to 
another. In this case the designer will want to configure BGP to distribute the routes for the internal AS 
only. This will prevent the client network from becoming transit capable.  
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Chapter 7. IPX 
Internetwork Packet Exchange (IPX) is a Layer 3 protocol that forms the basis for Novell's network 
operating system (NOS) called NetWare. IPX was developed from the earlier Xerox Network System 
(XNS). Today, it is used almost exclusively to support networks of Novell NetWare servers. It is primarily 
used for file and printer sharing, but the capabilities are broader. IPX is able to carry a large variety of 
applications.  

Unfortunately, some of the terminology adopted by Novell is different from that used in IP networks. For 
example, Novell calls every device that provides IPX services a router. This term can cause some 
confusion. Thus, in this book, I continue with the already adopted language. I call a device that provides 
application services a server. In this book, a router is a device that primarily performs Layer 3 network 
functions. As always, I strongly caution the reader against using general-purpose application servers to 
perform network functions such as bridging and routing.  

Just running applications creates a lot of work for application servers. At peak utilization times, they 
frequently are unable to perform their network functions as well. Therefore, when the network is needed 
the most, it is unavailable for all applications, not just the ones served by this device. I mention this fact 
specifically in the context of IPX because Novell servers are frequently configured to either bridge or 
route—a situation I do not recommend.  

Every device in an IPX network has a globally unique address. This address is divided into two parts. A 
32-bit address called the network number defines on which segment the device lives and the 48-bit node 
number defines the specification on the segment. Usually, the node number is identical to the device's 
MAC address.  

The network number is similar to IP, which also uses 32-bit addresses, but IPX does not use the same 
notation for its addresses. While IP shows the four octets of the address as separate decimal numbers 
separated by dots, IPX network and node numbers are usually written in hexadecimal format. Furthermore, 
in most cases, leading "0" digits from the IPX network number are dropped when the address is written. 
For example, a network might include the network number A1A. This number means that its address is 
really 00000A1A. The first and second octets of the address are both 00. The third octet has a value of 
0A (10 in decimal) and the last has the value 1A (26 in decimal).  

Another difference from IP is the absence of a subnet mask. The whole network number refers to a 
particular network. This reference causes confusion in networks that have more than one server on a LAN 
segment. To get around this problem, every Novell server also has an internal network number. This 
internal number need not have a relationship to the network number of the segment.  

As I discuss later in this section, if the network uses Novell Link State Protocol (NLSP) areas, it is more 
efficient to allocate all addresses in blocks. This allocation includes both the LAN network numbers and 
these internal network numbers.  

The services associated with any particular server are generally associated with the internal network 
number. The server acts like a router that connects the external LAN segment address to this internal 
network number that, in turn, represents the unique server.  

One of the most important issues to remember when building an IPX network is that these IPX network 
numbers are not administered rigorously. Novell does offer a service called the Novell Network Registry 
that allocates and tracks IPX network numbers. This allocation and tracking permits different organizations 
to interconnect their IPX networks without worrying about address conflicts. However, participation in the 
Novell Network Registry is optional. Thus, merging two IPX networks together can be extremely 
challenging.  
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When merging occurs, it is quite common to find that both IPX network numbers and server names appear 
in both networks. The only solution to this problem is to adopt a single common standard for naming and 
addressing servers and IPX networks. However, this standard can take a long time to implement, and 
corporate priorities may make it necessary to merge the networks quickly.  

There is a convenient way around this problem. Usually, in such situations just a few servers actually need 
to be simultaneously accessible to both networks. These few servers can then be readdressed and renamed 
according to the new common standard. You can then build a simple IPX routing firewall between the two 
networks by using a pair of routers with a LAN segment between them. One router connects this common 
segment to the first network and the other connects to the second network.  

You can then implement Access lists on the exchange of IPX routing and service information (I discuss 
these protocols shortly). The two routers prevent those network numbers and server names that are in 
conflict from entering this common segment. Then, as IPX names and addresses are migrated to the new 
standard, the new addresses pass through the routing firewall setup. In this way, one can gradually migrate 
the entire networks to a common addressing scheme. When it is complete, the firewall connection can be 
replaced by a common LAN infrastructure.  

There are three reasons for deploying two routers with a common segment (rather than a single router) 
between them. First, much greater control is possible over the routing Access lists because the first can see 
all of the first network's routes and services and only pick and choose those that will be permitted to pass 
to the second network. Second, this sort of filtering can be rather CPU- and memory-intensive in a large 
network. Splitting the task between two routers helps ensure stability. Third, it might become necessary to 
implement one or more servers on this intermediate segment. For example, if both networks use IPX for 
their email services, then the network designer can implement an email relay server on this intermediate 
segment. Since this LAN segment is visible to both sides, it is also a natural place to put central file servers 
or servers that download common information to remote user servers.  

IPX itself is a connectionless protocol and similar in concept to IP. Programmers can build connectionless 
applications to run over IP using UDP. For applications that require connections, with the network protocol 
ensuring that all of the packets arrive intact and in order, an IP programmer would instead use TCP.  

IPX also has a connection-based transport layer called Sequenced Packet Exchange (SPX). Like UDP and 
TCP, SPX includes the concept of well-known port numbers to ensure that a server knows to which 
application to connect the session.  

7.1 Dynamic Routing 

IPX has dynamic routing protocols that are in many ways similar to those that I already discussed for IP. 
They fall into the same general categories of Distance Vector and Link State protocols, and they apply 
many of the same loop-avoidance mechanisms. The basic goals are the same—to find the best multihop 
path to a particular destination automatically, to converge quickly after topology changes, and to eliminate 
loops.  

7.1.1 Novell RIP and SAP 

The services or applications that any particular server has to offer are described by Service Advertisement 
Protocol (SAP) packets that are sent around the network. End-user workstations receive these SAP 
broadcast packets and use them to build a list of all available services on the network.  

Running parallel to these Service Advertisements is a routing protocol called Routing Information Protocol 
(RIP). IPX RIP shares several similarities to IP RIP. Both are Distance Vector algorithms. However, while 
IPX RIP keeps track of the number of hops to a destination, it doesn't use the information in exactly the 
same way as IP RIP. Both protocols use the hop count metric to avoid loops. In the case of IPX RIP, the 
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actual routing decisions are made according to which route has a shorter time delay to reach the 
destination.  

Time delay is measured in ticks. The length of a tick is selected so that there are 65,535 ticks in an hour 
(65,535 is the largest number that can be expressed in 16 bits). Thus, there are roughly 18.2 ticks in a 
second, each one being about 55 milliseconds long. RIP makes its routing decisions based on this time 
delay and uses the hop count only as a "tie breaker" when two paths have the same net time delay.  

RIP routing updates are made on a schedule. Each RIP packet can contain up to 50 routing table entries, 
and each device attempts to pass its entire routing table along to all of its neighbors. The exception to this 
situation is the fact that IPX RIP employs a Split Horizon algorithm that does not pass routing information 
back to the device from which it was originally learned. At each successive hop, the devices increment the 
hop counts indicated in the received routing table. They also add to the time delay a new delay that is 
measured by the network-interface card.  

The SAP protocol carries information about what devices support what application services. This 
information does not change as frequently as routing information. Generally, if a server is available, then 
all of the services it offers are also available. Thus, SAP generally works as a query and response.  

When a new workstation appears on a network, it sends out a general query looking for information about 
what servers are available on the network and what services they support. When a new server appears on 
the network, its neighbors ask it what services are available on the network. When a server stops 
responding to queries, its services are eventually flushed from the SAP tables of other devices on the 
network.  

Since NetWare is intended to operate across large network environments, a user on a remote LAN segment 
must be able to get information about the services supported by central servers in the computer room. To 
make this possible, SAP information is relayed around the entire network from router to router. In this 
way, every device is able to see a list of available services anywhere in the network.  

This SAP information includes some routing information. It is not sufficient to say only that a server 
named ACCOUNTING supports a database application. The network has to know where that 
ACCOUNTING server is. However, although these SAP packets include routing information, this 
information is not used to route the packets. The information used to route packets comes from RIP. 
Therefore, one of the most confusing problems in an IPX network comes when the RIP and SAP 
information is inconsistent.  

This is particularly true when filtering either RIP or SAP. This filtering is often done to control the size of 
the routing and service tables on routers and servers. Also, because RIP periodically updates all of its 
neighbors with its entire routing table, network engineers often want to filter RIP to control bandwidth. 
Later in this chapter, I explain why too much SAP on a large network is a potentially greater problem. 
Thus, SAP filtering is usually more restrictive than RIP filtering.  

Unless properly controlled, RIP and SAP traffic can cause serious congestion problems, particularly on 
low-speed WAN links. RIP and SAP, however, are distinct protocols, so they must be filtered separately.  

It is not uncommon to wind up with inconsistent filters. Then the network can get into a situation in which 
an end-user workstation sees that a server called ACCOUNTING offers a database service, but cannot 
reach that server. Conversely, if the RIP but not the SAP is present, then the user will not even see this 
service, but might connect to other services on the same LAN segment, or even the same server. This is 
one of the most common network problems on a large IPX network.  

An up-to-date list of registered Novell SAP numbers can be found online at 
http://www.iana.org/assignments/novell-sap-numbers/.  
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7.1.2 EIGRP 

Cisco's EIGRP protocol is capable of supporting IPX, as well as IP (it also can distribute AppleTalk 
routing information). EIGRP distributes both route and service information. That is, it replaces both RIP 
and SAP. If a network uses EIGRP, it is important to disable IPX RIP and SAP on all router-to-router 
links.  

However, on the router-to-server links, RIP and SAP must be enabled. Because RIP and EIGRP calculate 
metrics differently, routing tables can become terribly confused if both protocols are present between two 
adjacent routers. Always take care to disable or filter out the one that is not in use.  

EIGRP can provide several important efficiencies over standard RIP and SAP. First, it supports a much 
larger network radius. A RIP network can have at most 15 hops between any two networks. This is for 
exactly the same reason that the IP RIP maximum size is 15 hops. The maximum size of an EIGRP 
network depends on the architecture. Usually one encounters problems due to too many devices before 
exhausting the theoretical maximum number of hops.  

IPX EIGRP works essentially the same way as IP EIGRP. The main conceptual difference is that IPX 
EIGRP must carry SAP information, as well as routing information. Again, these updates are performed 
separately and can be filtered separately. Thus, the network actually still has the same potential problems 
with route and SAP information being inconsistent. This situation is almost impossible to avoid.  

The chief advantage of using EIGRP over RIP and SAP is its bandwidth economy. EIGRP only distributes 
changes to its tables, rather than sending the entire table periodically. If there are no updates, then 
neighboring routers only exchange HELLO packets. Conversely, RIP and SAP must periodically distribute 
their entire tables to ensure consistency.  

Another potential advantage of using EIGRP is the availability of equal-cost multipath routing. This 
routing represents a significant advantage in IP networks. However, I usually try to vary routing costs so 
that one path is absolutely preferred in IPX. This is because some IPX applications do a poor job of 
recovering when packets are delivered out of order.  

In general, when one has equal-cost multipath routing, the routers distribute the packets among all possible 
paths. This means that two successive packets will take different paths through the network. It is possible 
that they will arrive in inverted order. For a well-behaved application this rarely presents a problem. But 
some IPX applications do not cope well with packet-sequence errors.  

It should be noted that some IP applications also suffer from this malady, but the IP world has had equal-
cost multipath routing for a long time. Consequently, natural selection has eliminated most of these unfit 
applications. However, in the IPX universe, equal-cost multipath routing has been introduced relatively 
recently. Therefore, many legacy IPX applications behave poorly in this environment.  

7.1.3 NLSP 

Novell also has created a more efficient routing protocol to overcome some deficiencies of RIP and SAP. 
This protocol, called Novell Link State Protocol (NLSP), is derived from the OSI Intermediate System to 
Intermediate System protocol (IS-IS). IS-IS is not discussed in this book, but NLSP shares many 
similarities with OSPF, so I discuss it by analogy with OSPF.  

As a replacement for RIP, NLSP carries all of the routing information for an IPX network. As a 
replacement for SAP, it also carries service advertisements. However, NLSP does not completely replace 
RIP and SAP. End stations still require these protocols to find their servers.  
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The usual mode of operation for NLSP is to run RIP and SAP on the local segments. Then the servers on 
these local segments speak NLSP back to the router (or routers) that provide network connectivity to this 
segment. Router-to-router communication then uses NLSP for the main infrastructure of the network.  

NLSP works best when all servers and routers in the IPX network use NLSP and only the end station-to-
server communication uses RIP and SAP.  

Like OSPF, NLSP is organized hierarchically into an Autonomous System (AS) that holds several areas. 
Each AS has an associated NLSP System ID number that is common throughout the network. Areas in 
NLSP serve the same functions as they do in OSPF. They allow network address summarization, which in 
turn results in efficient routing. They allow the Link State database to be broken up.  

All routers and servers in any particular NLSP area share a common Link State database that is updated by 
flooding incremental changes, exactly as in OSPF. However, like OSPF, routers and servers in one area do 
not see the Link State information for routers and servers in a different area.  

NLSP areas are defined according to the IPX summary addresses for the enclosed networks. To use NLSP 
effectively, it is important to use areas for exactly the same reasons as in OSPF. As in OSPF, effective 
summarization is important for areas to work properly. However, unlike OSPF, areas do not function at all 
if the enclosed networks cannot be summarized.  

An NLSP area is specified by an IPX network and mask that together summarize all IPX network 
addresses in the area. For example, one could specify an area with the address 00258A00 and mask 
FFFFFF00. Then this area would include the networks 00258A00, 00258A01, and so forth up to 
00258AFF.

As with IP address masks, you can use masks that break the range at any bit. So another valid area could 
be 030AC000 with a mask of FFFFE000. In this case, the range included in this area is 030AC000 
to 030AC1FF. Writing these pairs out in binary, as in Table 7-1, helps to show how they work.  

Table 7-1. IPX address mask pair examples  
Address / Mask 

Hx 00258A00 / FFFFFF00 

Binary 
network 00000000 (00) 00100101 (25) 10001010 (8A) 00000000 (00) 

Binary mask 11111111 (FF) 11111111 (FF) 11111111 (FF) 00000000 (00) 

Allowed range
00000000 

(00) only 

0010101 

(25) only 

10001010 

(8A) only 

00000000 to 11111111 
(00) to (FF) 

Hex 030AC000 / FFFFE000  
Binary 
network 00000011 (03) 00001010 (0A) 11000000 (C0) 00000000 (00) 

Binary mask 11111111 (FF) 11111111 (FF) 11111110 (FE) 00000000 (00) 

Allowed range
00000011 

(03) only 

00001010 

(0A) only 

11000000 and 
11000001 

(C0) and (C1) 

00000000 to 11111111 
(00) to (FF) 

This summarization property of areas has important design implications. It means that designers must be 
extremely careful about how they allocate their IPX network numbers. Most IPX networks that were 
initially implemented with RIP never had any requirement for this sort of summarization. Consequently, 
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for many organizations, the conversion from RIP and SAP to NLSP requires that all servers be 
readdressed.  

The language of NLSP diverges somewhat from OSPF. NLSP defines three different levels of routing. 
Level 1 routing occurs within an area, Level 2 routing occurs between areas, and Level 3 routing occurs 
between ASes.  

OSPF requires that an Area 0 must sit at the center of the AS. Then all other areas are connected to this 
area directly by means of Area Border Routers. NLSP does not have this restriction. It is possible to 
construct NLSP areas in somewhat arbitrary configurations, with Level 2 routing taking place between 
them. However, the OSPF architectural model is good and should be followed in NLSP as well.  

It might seem tempting to designate the central area with a network number and mask pair of 00000000 
and 00000000 by analogy with OSPF's Area 0. In this way, the central area would effectively include all 
possible IPX network numbers. But including these numbers is not a good idea because it implies that the 
central area actually encloses all other areas, which is not possible. The central area is just another area, 
similar to all of the others. It contains a group of routers and servers that communicate using Level 1 
routing. It also communicates to the other areas using Level 2 routing. Thus, the central area must have a 
summary address of its own that is distinct from every other area.  

Figure 7-1 shows how one might use NLSP to build a hierarchical network. Note that in this picture only 
one connection exists between each "leaf" area and the central area. This arrangement is only to make the 
picture easier to read. As with OSPF, these key links should always be made redundant. In fact, NLSP 
supports an equal-cost multipath mode just as OSPF does. The same basic design principles for 
redundancy apply to both.  

Figure 7-1. A hierarchical NLSP network design 

In an IPX network of any size, it is important to limit the number of entries in the Service Advertisement 
table. This limitation is not merely for bandwidth reasons. Using NLSP or EIGRP makes it possible to 
drastically reduce the bandwidth taken to distribute this information.  

The problem with a large IPX network is simply the size of the table. It is not uncommon for a large IPX 
network with hundreds of servers to have thousands or tens of thousands of advertised services. This is 
because every network-attached printer must send a SAP. Similarly, every Windows NT workstation 
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running IPX sends out at least one SAP by default unless SAP is disabled, and every server generally runs 
several services besides simple file sharing, remote console, and directory services.  

The table size for large networks adds up to a huge amount of information that must be distributed to every 
IPX router and server in the network. Each one of these devices is responsible for redistributing this 
information to every device downstream from it. In many cases, it represents more information than the 
routers can reliably handle. They start to run out of memory, and, worse, they start to run out of the CPU 
power required to process the data.  

The vast majority of these advertised services originate with end devices such as workstations and printers. 
They are not required anywhere but in their originating segment. Thus, it is critically important for network 
stability that the routers must filter out all nonessential SAP information and prevent it from crossing the 
network.  

The most appropriate place to do this filtering is usually on the router that connects the LAN Access 
segment to the network Distribution Level. Since a good network avoids using servers of any type as 
routers—preferring real routers—filtering on the servers isn't necessary. Rather, it all must be done on the 
routers.  

7.2 General IPX Design Strategies 

There are a few basic design strategies that can make an IPX network more efficient and reliable. Some of 
these strategies, like special addressing schemes, are analogous to good design principles that I have 
already discussed for IP networks. Others, such as those having to do with minimizing SAP traffic, are 
specific to IPX.  

7.2.1 IPX Addressing Schemes 

As discussed earlier in the section on NLSP, IPX route summarization can present a problem for many 
networks. However, there is a relatively tidy solution to this problem for networks that run IP and IPX in 
parallel. If the IP network runs OSPF and the IP addressing scheme has been properly constructed to allow 
area route summarization, then it is possible to derive IPX addresses from IP addresses.  

You can derive these addresses easily. IP and IPX addresses contain the same number of bytes, and they 
both summarize from the left. Thus, you can do a decimal-to-hexadecimal conversion of the IP address to 
get the IPX network number.  

For example, if the IP address of a file server is 10.1.21.15, then you can convert the four bytes to 
hexadecimal notation as 0A01150F. This is the address of the file server itself, so you can use this 
address for the IPX Internal Network Number. The External Network Number is effectively the address of 
the LAN segment.  

In this case, the subnet's address is 10.1.21.0, so the IPX External Network Number would be 
0A011500. If there was a second file server on this segment with an IP address of 10.1.21.16, then 
its IPX Internal Network Number would simply be 0A011510, and it would have the same External 
Network Number as the first server.  

Now, if you have built your OSPF areas properly, you should be able to summarize all addresses inside of 
an area. If the area containing this example server's LAN is summarized as 10.1.0.0/16, then the 
NLSP area will become 0A010000 with a mask of FFFF0000. Everything maps perfectly between the 
two protocols if you choose to number your servers in this way.  
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If the IPX network does not use NLSP, then there are essentially no restrictions on how the IPX network 
numbers are allocated. In many networks, IPX network numbers are also randomly distributed throughout 
the network.  

This random distribution is a poor strategy, however. It makes sense to use IPX network numbers that 
correspond to IP addresses for several reasons. First, most modern networks using IPX also use IP, so there 
is a natural convergence between the two. Second, if one day the network is converted to NLSP, there is no 
need to readdress every device. Third, if a simple rule gives the correlation between the IP and IPX 
addresses, then troubleshooting is much simpler.  

This last point deserves extra comment. It is relatively common to build IPX networks that also run IP, so 
it is natural to bind the IP protocol to an interface on the server. When troubleshooting network problems, 
it is often useful to send test packets to see whether point A can reach server B.  

However, IPX does not have a universally standard equivalent to the IP PING utility. IPX PING does exist, 
but there are several different standards, and they do not work together. Furthermore, for a server to 
respond to an IPX PING request, it must have the appropriate NetWare Loadable Module (NLM) loaded. 
Therefore, there are many reasons why an IPX PING test might not work, even though nothing is wrong 
with the network.  

However, all IP devices should support ICMP ping (firewalls are a notable exception to this rule). If a 
network administrator is concerned about network connectivity between two segments, using an IP ping 
test can be useful, even though this is a different protocol. If an IP ping works, but there is no IPX 
connectivity, then the administrator can focus on IPX issues immediately. If neither work, then it is more 
likely that the problem is with physical connectivity.  

Networks should always be designed as easy to manage, and troubleshooting is an important part of 
management. Anything you can do to make troubleshooting easier will give you a more reliable network in 
the long run.  

7.2.2 RIP and SAP Accumulation Zones 

In a large IPX network the routers are likely to have to employ significant amounts of route and SAP 
filtering. This filtering works in two directions. From the edges of the network into the Core, the network 
should prevent unnecessary SAP information from causing bandwidth or memory problems. From the 
Core out to the edges, it should distribute only the required routes and SAPs.  

In most cases, it is not necessary for users in one department to see the local server for another department. 
They both may require access to a central server that handles global authentication, however.  

To handle this situation, a designer can create a RIP and SAP Accumulation Zone somewhere in the Core 
of the network. An example of this configuration is shown in Figure 7-2. This figure shows four different 
user area groups. These groups may be NLSP areas, or there may be some other functional organization. 
Routers in each user area have redundant connections to a pair of Core routers. These connections provide 
extra fault tolerance.  
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Figure 7-2. IPX network design with RIP and SAP accumulation zone 

The user-area routers distribute RIP and SAP information inward to this redundant pair of routers. In the 
center of the picture is an Ethernet segment that I call the Accumulation Zone. Each router that is 
connected to this Accumulation Zone shares all of the RIP and SAP information that it receives with this 
segment. Note that this information need not be collected using either the RIP or SAP protocols. This 
model works equally well for any dynamic routing protocol.  

Then RIP and SAP information is distributed back out to the user areas by the Accumulation Zone routers. 
Note that none of these routers actually needs to have the entire route or SAP tables. Rather, they can all 
just dump their tables onto this central segment for others to use as required. They can also take in only 
those routes and SAPs that they themselves require.  

The advantage to this approach is that a central point in the network has all the RIP and SAP information 
that anybody could ever need. At the same time, though, keeping track of this information doesn't 
overwhelm any device.  

Suppose there is a sudden requirement for a user in one user area to have access to a particular server in 
another area. Then you can simply allow its Accumulation Zone routers to receive and distribute this 
information to that user's own server. This provides maximum flexibility to managing the IPX network. At 
the same time, it avoids the most serious problems with having to support a large route or SAP table.  

7.2.3 Efficiency in IPX Networks 

I conclude this section with a brief discussion of other basic things you can do to improve efficiency in an 
IPX network.  

I already mentioned the need to keep the number of SAPs to a bare minimum. This information can be 
gathered in an Accumulation Zone, as mentioned earlier. However, in a large IPX network, it can easily 
overwhelm the memory and bandwidth resources of the network devices to maintain all of it. Thus, the 
first thing to do is to create a thorough list of filters to restrict what routes and services are advertised.  

Another aspect of the same issue is limiting the amount of server-to-server traffic. Usually this sort of 
traffic is not necessary. You often need to allow communication between user-area servers and central 
servers. However, you should try to keep this traffic flow in a star format as much as possible.  

Finally, in any large IPX network, it is critical to avoid using RIP and SAP protocols. These protocols 
work well in small- to medium-sized networks. But remember that routers and servers must all take part in 
the routing protocols. Suppose, for example, that two servers communicate via RIP, but are separated by 
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three routers. Then the internal network numbers of these servers are, in fact, five hops apart, so an IPX 
network is usually somewhat larger than it appears on the surface.  

In even a moderate-sized network, it is not difficult to find distances that are greater than 15 hops, which is 
too large for RIP to handle. As I already mentioned, RIP and SAP scale rather poorly for bandwidth usage. 
It is a good idea to try to move away from these protocols in any large-scale IPX network.  

It is possible to make an IPX network appear smaller than it is, however, by tunneling the IPX traffic 
inside of IP. For example, suppose that getting from a user-area router to the central Accumulation Zone 
requires several router-to-router hops. You can make it require a single hop by configuring an IPX tunnel 
between the Accumulation Zone router and the last user-area router before the server.  

Even in this case, however, you should avoid using RIP and SAP. Although this design avoids the hop-
count problem, you still have to be concerned about the bandwidth-usage problem with these protocols.  
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Chapter 8. Elements of Efficiency 
Efficiency is a nebulous term. In general, it measures how thoroughly one manages to achieve some 
desired result as a function of the required resources. The biggest problems in implementing efficiency in a 
computer network are essentially matters of definition. What is the desired result for a network, and what 
resources are actually required?  

With a relatively narrow view of the desired results in network design, it essentially comes down to the 
factors that I mentioned earlier when talking about network reliability. The network must deliver data to 
the destination. It must do so within the required application constraints. In most networks, the desired 
result is effectively quantified with just four parameters: latency, jitter, throughput, and dropped packets. I 
will define these terms when I come to talk about Quality of Service later in this chapter.  

The hard part of describing efficiency is actually in defining the resources. Which resources should the 
definition include? Some resources are obvious. Everybody would agree that it's necessary to worry about 
CPU and memory utilization in their routers. The same is true for the bandwidth utilization on the various 
links that connect network devices. But some resources are harder to quantify or harder to see. How do you 
compare the relative importance of these resources? Do you want to save bandwidth, for example, at the 
expense of CPU load?  

The ultimate resource for any organization comes down to money, and efficiency has to be defined for the 
entire organization. Suppose, for example, that you can save money by running a particular application on 
a particular type of server. The money you save has to be balanced against the extra money it costs to 
upgrade parts of the network. Perhaps the new implementation will turn out to be more expensive overall 
than the old way. But perhaps it will also allow the organization to win new business that will more than 
pay for the difference in cost. Doing such an upgrade is worthwhile for the organization. You just have to 
understand where you are drawing the line around what resources to include. Conversely, the network 
engineer may look at a Core router and see abnormally high CPU and memory utilization. If fixing this 
problem means spending hundreds of thousands of dollars, the organization may not feel that the expense 
is justified.  

Ultimately, efficiency is a matter of the global economics of the organization. This subject, however, is far 
beyond the scope of this book. The resources that I can reasonably talk about here are the ones that are 
specific to the network. I can discuss how to make the best use of the resources already in the network, so I 
look at the four parameters—latency, jitter, throughput, and dropped packets—that describe how well the 
network works. I also look at network resources such as bandwidth, CPU, and memory utilization. It is 
never possible to obtain perfect efficiency, though. Therefore, a network designer's most difficult job is to 
decide what tradeoffs will give the best design possible under the circumstances and will fit in best with 
larger corporate goals.  

8.1 Using Equipment Features Effectively 

There are usually several ways to configure any given piece of network equipment to achieve the same 
basic result. These different configurations usually do not use resources in the same way, and they often do 
not have exactly the same performance characteristics. For example, an inefficient configuration of a router 
might mean that it has to do too much processing on each packet. This extra processing increases the 
amount of time that each packet spends inside the router and probably also increases the memory 
utilization of the router, as it has to buffer large numbers of packets.  

A typical example of this increase happens when an engineer fails to use special features of the equipment. 
For example, in many routers the ability to make most common routing decisions is delegated to logic 
circuits supporting the interface card. This approach works well because it means that the CPU is free to 
coordinate the activities of the different cards. The result is vastly improved net throughput; however, the 
advantage can be completely lost if this engineer implements a CPU-bound process that examines the 
contents of every packet.  
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For example, the engineer might turn on a feature that prioritizes or routes packets based on their contents. 
This sort of feature usually requires the CPU to examine the packet. So the packet cannot be processed 
solely by the interface. The same CPU loading happens if the router is configured to rewrite the contents of 
the packets, as in an address-translation feature systematically.  

This has several implications for network design. Locally, it is important to ensure that each device does 
only what it needs to do and that it does so by the most efficient method. Globally, it means that network 
designers have to be careful about what network functions are performed where.  

The local issue is really a matter for the network engineer who should sit down with the manuals for the 
network hardware and find the most efficient way to implement the functions of this device. If special 
optimizations are available, such as Cisco's Fast Switching, then they should be used. Discussing the 
implementation details with the hardware vendor may also help, since the vendor should be aware of the 
features of the equipment.  

The global issue, however, is for the network designer to resolve. A good example of this resolution comes 
up in prioritization and Quality of Service (QoS) implementation. The best place to decide on the priority 
of a packet is at the point where that packet enters the network. The entry-point router should examine the 
packet and mark its header with the appropriate priority value. Then, each subsequent device that handles 
the packet reads this priority value and treats the packet appropriately. The worst thing a designer can do is 
make every router look at the packet in detail and decide again what its priority should be.  

Looking at a single byte in the header is easy for a router and can frequently be handled in highly 
optimized code in the hardware. However, looking at several bytes and making a decision about each 
packet takes a huge amount of extra resources. In most cases, it also increases the forwarding latency and 
reduces the number of packets that the router can handle.  

8.2 Hop Counts 

Efficiency means using the smallest amount of resources to accomplish the desired result. All other things 
being equal, heavily used network paths should have as few hops as possible.  

Efficiency is actually a natural outcome of using a hierarchical network design. Building a network in a 
tree-like structure so that every leaf is no more than three hops away from the central Core of the network 
means that the greatest distance between any two leaves is six hops. Conversely, if the network has a 
relatively ad hoc structure, then the only effective upper limit to the number of hops between any two end 
points is the number of devices in the network.  

Keeping hops counts low has several advantages. First, all routing protocols that were discussed in Chapter 
6 and Chapter 7 (for IP and IPX, respectively) converge faster for lower hop counts. This convergence 
generally results in a more stable network. More specifically, it means that the network recovers more 
quickly after a failure. If a path is available to route traffic around the failure point, it can be found quickly 
and put into use.  

Other advantages all have to do with the delivery of packets through the network. Every extra hop 
represents at least one additional queue and at least one additional link. Each additional queue introduces a 
random amount of latency. If the queue is relatively full, then the packet may spend extra time waiting to 
be processed. If the queue is realtively short, on the other hand, it may be processed immediately. If the 
network is extremely busy, the packet may be dropped rather than being kept until its data is no longer 
relevant.  

This queuing delay means that every additional hop increases the net latency of the path. Latency is 
something that should be kept as low as possible in any network. Because this extra latency is random, the 
more hops that exist, the more variation there is in the latency.  
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This variation in latency is called jitter. Jitter is not a problem for bulk data transfers. But in any real-time 
applications such as audio or video, it is disastrous. These applications require that the time to deliver a 
packet from one point to another be as predictable as possible, or the resulting application will suffer from 
noticeable gaps. These gaps will appear as audible pops or skips and frozen or jumping video images.  

Finally, there is the problem of what happens to a packet that passes through a highly congested device in 
the network. The device can do two things with a new packet entering its buffers. It can either put it into a 
queue to be forwarded at some future time, or it can decide that the queues are already too full and simply 
drop the packet. Clearly, the more hops in the path, the greater the probability of hitting one that is highly 
congested. Thus, a higher hop count means a greater chance of dropped packets.  

This rule is true even if the network is rarely congested. A relatively short, random burst of data can 
temporarily exhaust the queues on a device at any time. Furthermore, the more hops there are in the path, 
the greater the probability of hitting a link that generates CRC errors. In most LAN media, the probability 
of CRC errors is relatively low, but this low probability is multiplied by the number of links in the path. 
Thus, the more hops there are the higher the probability that the packet will become corrupted and have to 
be dropped.  

8.3 MTU Throughout the Network 

The size of the largest data packet that can pass along any particular section of network is called the 
Maximum Transmission Unit (MTU). Suppose, for example, that a network contains both Ethernet and 
Token Ring segments. The default MTU for Ethernet is 1,500 bytes. For a 16Mbps Token Ring, the 
maximum MTU is 18,200 bytes. If a packet travels from one of these media to the other, the network will 
have to find a compromise.  

There are two main ways to resolve MTU mismatch problems. The network can either fragment the large 
packets, or it can force everything to use the smaller value. In most cases, the network will fragment 
packets if it can and negotiate the greatest common MTU value only if it is not allowed to fragment. The 
efficiency issue is that both fragmentation and MTU negotiation consume network resources. However, 
fragmentation has to be done with every oversized packet, and MTU negotiation is done primarily during 
session establishment. MTU negotiation also happens if the path changes and the new path contains a leg 
with a lower MTU value.  

In TCP sessions, the Path MTU Discovery process starts when a packet that has the Don't Fragment (DF) 
bit in the IP header set is sent. This bit literally instructs the network not to fragment the packet. 
Fragmentation is the default. Suppose a TCP packet passes through a network and it gets to a router that 
needs to break that packet to send it to the next hop on its path. If the DF bit in the IP header is not set, then 
the router simply breaks the packet into as many pieces as necessary and sends it along. When the 
fragments reach the ultimate destination, they are reassembled.  

If the DF bit is set, then the router drops the packet and sends back a special ICMP packet explaining the 
situation. This packet tells the sender that the packet has been dropped because it could not be fragmented. 
It also tells the sender the largest packet it could have sent. Doing so allows the sender to shorten all future 
packets to this Path MTU value.  

Note that it is more efficient in general to reassemble at the ultimate destination rather than at the other end 
of the link with a lower MTU. This is because it is possible that the packet will encounter another low 
MTU segment later in the path. Since there is significant overhead in both fragmentation and reassembly, 
if the network has to do it, it should do it only once.  

Many protocols do not have a Path MTU Discovery mechanism. In particular, it is not possible to negotiate 
an end-to-end MTU for a UDP application. Thus, whenever a large UDP packet is sent through a network 
segment with a lower MTU value, it must be fragmented. Then the receiver has to carefully buffer and 



190

reassemble the pieces. However, most UDP applications deliberately keep their packets small to avoid 
fragmentation.  

If the network is noisy or congested, it is possible to lose some fragments. This loss results in two 
efficiency problems. First, the device that reassembles the packet from the fragments must buffer the 
fragments and hold them in its memory until it decides it can no longer wait for the missing pieces. This is 
not only a resource issue on the device, but it also results in serious latency and jitter problems. The second 
problem can actually be more serious. If any fragment is lost, then the entire packet must be resent, 
including the fragments that were received properly. Data lost due to congestion problems will make the 
problem considerably worse.  

Obviously, it is better if the network doesn't have to fragment packets. Thus, in a multiprotocol network it 
is often better to configure a common MTU manually throughout all end-device segments.  

This configuration is not always practical for Token Ring segments that run IBM protocols. Suppose a 
tunneling protocol such as Data Link Switching (DLSw) connects two Token Ring segments through an 
Ethernet infrastructure. Generally, it is most efficient to use the greatest MTU possible. In this case, 
however, there is an important advantage. The DLSw protocol is TCP based and operates as a tunnel 
between two routers. These routers can discover a smaller Path MTU between them. They can then simply 
hide the fragmentation and reassemble from the end devices. They will appear to pass full-sized Token 
Ring frames.  

Even here, the routers suffer from additional memory utilization, and there will be latency and jitter issues 
on the end-to-end session. If at all possible, it is better to reduce the Token Ring MTU to match the lower 
Ethernet value.  

8.4 Bottlenecks and Congestion 

Avoiding bottlenecks in any large network is impossible, and it isn't always necessary or desirable to do so. 
One of the main efficiencies of scale in a large network is the ability to oversubscribe the Core links. 
Oversubscribing means that most designers deliberately aggregate more network segments than the 
network can support simultaneously. Then they hope that these segments don't all burst to their full 
capacity at once. This issue was discussed in Chapter 3 in Section 3.4.2.1.

Just oversubscribing is not a problem. The network has a problem only when it cannot support the actual 
traffic flow. This is called congestion, and it results in increased latency and jitter if the application is lucky 
enough that the network can queue the packets. If it is not so lucky, the network has to drop packets.  

A little bit of congestion is not a bad thing, provided it is handled gracefully. However, systematic 
congestion in which one or more network links cannot support typical traffic volumes is a serious issue. 
The network can handle intermittent congestion using the various QoS mechanisms discussed later in this 
chapter. For systematic congestion, however, the designer usually has to modify the network design to 
reduce the bottleneck.  

By intermittent congestion, I mean congestion that never lasts very long. It is not uncommon for a link to 
fill up with traffic for short periods of time. This is particularly true when bursty applications use the 
network.  

QoS mechanisms can readily handle short bursts of traffic. They can even handle longer periods of 
congestion when it is caused by low-priority applications such as file transfers. However, when a high 
volume of interactive traffic causes the congestion, it is usually considered a systematic problem. In 
general, QoS mechanisms are less expensive to implement than a redesign of the network, so it is usually 
best to try it first.  
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Another common method for handling intermittent congestion is using a Random Early Detection (RED) 
system on the router with the bottleneck. The RED algorithm deliberately drops some packets before the 
link is 100% congested. When the load rises above a certain predetermined threshold, the router begins to 
drop a few packets randomly in an attempt to coax the applications into backing off slightly. In this way, 
RED tries to avoid congestion before it becomes critical.  

However, it is important to be careful about RED because not all applications and protocols respond well 
to it. It works very well in TCP applications, but in UDP applications, as well as Appletalk and IPX, RED 
does not achieve the desired results. These protocols cannot back off their sending rates in response to 
dropped packets.  

There are essentially two different ways to handle a systematic and persistent congestion problem at a 
network bottleneck. You can either increase the bandwidth at the bottleneck point, or you can reroute the 
traffic so it doesn't all go through the same point.  

Sometimes you can get a bottleneck because some redundant paths in a network are unused, forcing all of 
the traffic through a few congested links. Examining the link costs in the dynamic routing protocol can 
often provide a way to alleviate this problem.  

In many protocols, such as OSPF, it is possible to specify the same cost for several different paths. This 
specification invokes equal-cost multipath routing. In some cases you may find that, despite equal costs, 
some of these paths are not used. This may be because the routers are configured to use only a small 
number (usually two) of these equal-cost paths simultaneously. Many routers offer the ability to increase 
this number. However, it is important to watch the router CPU and memory load if the number is increased 
because maintaining the additional paths may cause an additional strain on the device.  

Ultimately, if a subtle rerouting cannot alleviate the bottleneck, it will be necessary to increase the 
bandwidth on the congested links. Doing so is not always easy. If the link is already the fastest available 
technology in this type, then you have to do something else.  

Other options are usually available to you in these situations. You might migrate to a different high-speed 
link technology, such as ATM or 10 Gigabit Ethernet. Or, you may have the ability to multiplex several 
fast links together to make one super high-speed link. If even this is not possible, then it is probably best to 
start configuring new redundant paths through the network to share the load.  

8.5 Filtering 

One of the most important things a designer can do to improve how efficiently a network uses resources is 
to filter out ill-behaved or unwanted traffic. This is particularly true for chatty protocols that tend to 
transmit data that is not necessary. A good example of filtering for efficiency comes from IPX networking. 
In an IPX network, every device that has any sort of service to offer sends out Service Advertisement 
Packets (SAP). This information then circulates not just over the local segment, but throughout the entire 
network. Although unnecessary SAP information may not have a significant effect on the bandwidth used 
in the network, it can have a large impact on the amount of memory that Core routers need to keep track of 
this information. Specifically, every printer sends at least one SAP; so does every Windows NT 
workstation.  

In a large network, it is difficult enough to ensure that the SAP information regarding important servers is 
distributed correctly. If there are unneeded SAPs for every printer and workstation, then the amount of 
required memory can easily exceed the available resources. So this is a good example of the need for 
filtering. The first router that sees the unwanted SAP information simply discards it without passing it 
along. The information stays local to the LAN segment where it is used and does not use up key network 
resources.  
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Filtering can also restrict malicious, unwanted traffic. For example, some popular Internet-based attacks 
use certain types of ICMP or packets used in setting up TCP calls. If these packets are not eliminated, they 
may cause serious network problems. Thus, these specific types of packets can be filtered at the network 
boundaries.  

I want to stress once again that connecting to an untrusted external network without a firewall is foolish. 
However, in some organizations, these same sorts of problems can arise either because of malicious 
employees or because of innocently executed malicious programs. In these cases, it may become necessary 
to filter the unwanted traffic at the user LAN segment level, just as I suggested eliminating unwanted IPX 
SAP information.  

In many networks chatty little unnecessary applications (and network games!) can be easily filtered and 
prevented from crossing the network. The key is to remove the unwanted traffic as soon as possible. This 
usually means that the filtering should be applied at the edges of the network. If the network adjoins 
another network, then the border routers should perform this filtering before the unwanted traffic enters the 
network. Similarly, if the filtering is to restrict traffic from user LAN segments, then the best place to run 
the filter is on the default gateway routers for these segments.  

8.6 Quality of Service and Traffic Shaping 

As I mentioned before, four measurable parameters define how well a network performs: latency, jitter, 
bandwidth, and dropped packets.  

Bandwidth is a term borrowed from transmission theory. If a signal has only one frequency that is 
broadcast perpetually, then it doesn't contain any information. If that carrier signal is modulated, then you 
can use it to carry a data signal. As soon as you do this, you introduce some fluctuation into the frequency 
of the carrier signal. Sometimes the carrier wave pulse comes a little bit earlier because of the modulation, 
and sometimes it comes a little late. If you draw a graph of the frequency, sometimes it's a little lower than 
the carrier, and sometimes it's a little higher. However, the average is equal to the carrier wave's frequency.  

The width of this frequency curve is called the bandwidth, and it is a measure of how much information the 
signal carries. The width in frequencies is going to be a frequency itself, and frequencies are measured in 
Hz (cycles/s). If you can put one bit in a cycle of the wave, then it is exactly the same as bits per second. 
That's how the term originates. However, modern communications protocols use sophisticated 
compression and include extra overhead for error checking and so forth. Thus, using the term "bandwidth" 
to describe the throughput on a link is no longer accurate. The meanings of words migrate over time, and 
today people generally use the word bandwidth to mean the amount of data that a medium can transmit per 
unit time.  

In any given network, several applications compete for the same bandwidth resources. Each application 
has a bandwidth requirement—a certain minimum amount of data that it has to send and receive. The 
network designer must balance these various requirements and find a way for the applications to all work 
well together. There are two ways to do this. You can either carve off a certain dedicated amount of 
bandwidth for each application, or you can make them share the total fairly. There are pros and cons to 
both approaches, as I describe next.  

Latency is the amount of time it takes to get from one point in the network to another. Obviously, latency 
varies depending on the two points, how far apart they are, how many hops are between them, and the 
nature of the media. Three main factors affect latency: bandwidth, physical distance, and queuing time.  

Bandwidth affects latency in a simple way. If the link can support a certain number of bits per second, then 
that is how many bits a device can inject per second into the link medium. It takes 10 times as long to 
inject a packet onto a 10Mbps Ethernet as it does onto a 100Mbps Fast Ethernet segment. There are 
exceptions to this rule for media that support carrying several bits at once in parallel. But parallel media 
are fairly uncommon.  
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Physical distance also affects latency in a simple way. The further the packet has to fly, the longer it takes. 
This time of flight component to latency is most relevant over WAN links, since it is governed by the 
speed of light in the transmission medium. The speed of light in fiber optic cable is governed by the 
refractive index of the medium. For glass, this index is about 1.5, so the speed of light in optical fiber is 
about 2/3 of its value in vacuum. In wire, the speed is somewhat slower than this, although the actual speed 
varies depending on the kind of cable. This effect may sound small, and usually it is for LAN- and 
campus-sized networks, but for WAN links it can be a large part of the total latency. The distance from 
New York to Los Angeles is about 4000 km. So the one-way time of flight for a signal through optical 
fiber is about 20 milliseconds. Signals sent around the world suffer significantly larger time-of-flight 
delays. Finally, queuing time introduces an additional random component to network latency, as I 
discussed earlier in Section 8.2.

Jitter is the packet-by-packet variation in latency. Of the three components to latency that I just mentioned, 
only the queuing time is subject to change. So this is the main factor in causing jitter. If the latency is 
changing very gradually, then it will not generally cause serious application problems. The most noticeable 
jitter issues happen when the latency of one packet is significantly different from the latency of the next 
packet following it in the same data stream. This is what causes skips, pops, and frozen frames in audio 
and video applications. So jitter is defined as the difference in latency between any two successive packets, 
as opposed to a general difference or standard deviation from the mean latency.  

As I mentioned, the main cause of jitter is queuing. So devices need to be careful with how they handle 
queuing of data streams for jitter-sensitive applications. Basically, they should queue the packets as little as 
possible in these sensitive data streams.  

Normally routers set up their queues so that whenever one of these jitter-sensitive packets arrives, it simply 
sends it to the front. Equivalently, they can give this application its own queue to ensure that other 
applications do not interfere. As long as the application doesn't send a sudden burst of packets to cause 
congestion within its own flow, the jitter should be minimal.  

The final performance parameter is the number of dropped packets. Obviously the goal is to drop as few 
packets as possible. But there are times when the amount of data transmitted through the network is simply 
greater than what it can carry. Devices can only buffer for so long before they have to start throwing some 
data away.  

Systematically dropping excess packets is also called policing. It is important that it be done fairly. Low-
priority data should be dropped before high priority. But some high-priority data is extremely sensitive to 
jitter. In these cases, it may be better to drop the packet than to hold it in a buffer until it can be 
transmitted. Controlling how and when devices decide to drop packets is critical to maintaining any QoS 
criteria on a network.  

8.6.1 QoS Basics 

QoS implementations come in three functional flavors. Any real network implementing a QoS system 
generally uses more than one of these.  

The first option is that the network can do nothing to discriminate between different applications. This is 
called Best Efforts Delivery. The second functional flavor is called Preferential Delivery. In this case, 
network devices define certain applications as more important than others and give them precedence 
whenever they encounter congestion. The final option, called Guaranteed Delivery, allows the network to 
reserve a guaranteed minimum bandwidth through the network for each important application.  

In Best Efforts Service, packets are transmitted through the network if there is sufficient capacity. If 
congestion occurs along the path, then the packet may be dropped.  
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Note that Best Efforts is not necessarily the same thing as First In First Out (FIFO). FIFO is a queuing 
strategy in which the router deals with packets in the order in which they are received. There are several 
other possible queuing (sometimes called scheduling) algorithms. For example, many routers use Fair 
Queuing or Weighted Fair Queuing algorithms instead of FIFO.  

Preferential Delivery requires the network engineer to make certain decisions about which applications are 
more important than others. For example, an FTP file transfer might be considered low priority, since it is 
effectively a batch-mode bulk transfer. An interactive business-critical application, on the other hand, 
would have a high priority.  

Generically, Preferential Delivery means that if a device is dropping packets, it will drop low priority first. 
If it delivers packets, it delivers the high priority first. As I describe later in this chapter, the delivery 
priority could be different from the drop precedence.  

Preferential Delivery does not mean that devices have to use any particular queuing strategy. Standard 
FIFO queuing is probably not going to provide a terribly effective way of implementing Preferential 
Delivery, but Weighted Fair Queuing is certainly a reasonable option. However, one can also implement a 
Preferential Delivery mechanism simply by sorting the various priority data streams into their own FIFO 
queues.  

The Guaranteed Delivery service model means that each application is allocated a certain minimum 
amount of bandwidth through the network. There are different ways of implementing this bandwidth 
guarantee.  

In some cases, the different applications have different reserved bandwidths through certain links. Whether 
an application uses its reserved minimum or not, that bandwidth is set aside for it. In other 
implementations, the specific applications have reserved bandwidths, but if they do not use it, other 
applications can borrow from the unused pool.  

Some implementations allow each application a certain minimum bandwidth plus an option to burst above 
it if there is excess capacity. In this case, it is common to specify that packets sent using this burst capacity 
can be dropped if they encounter congestion.  

One particularly interesting implementation of Guaranteed Delivery is the so-called Virtual Leased Line 
(VLL). In this case, the application is guaranteed a minimum and a maximum bandwidth with no 
congestion, no dropping, and minimal jitter. VLL is often implemented in conjunction with a tunnel, 
making the VLL look like a realistic dedicated link to the routers.  

In general, Guaranteed Delivery allows the designer to specify not only bandwidth but also latency and 
jitter limitations. This specification is necessary for real-time interactive applications such as voice and 
video. In these applications, the data stream is usually almost constant, and jitter is intolerable.  

The queuing mechanisms required to accomplish this are naturally more complex than the algorithms that I 
have discussed so far. They all involve setting up different queues for the different data streams and then 
servicing these queues appropriately. To minimize jitter, each queue has to be serviced on a timer instead 
of whenever the router gets around to it.  

8.6.2 Layer 2 and Layer 3 QoS 

So far, everything I discussed has left the actual implementation fairly generic. In principle, you can 
implement the QoS functionality at either Layer 2 or Layer 3.  

The advantage to Layer 3 is, of course, that you can set a priority parameter in the Layer 3 packet header 
and have it visible at every hop through the network. This results in a good end-to-end QoS 
implementation and allows you to ensure consistent application behavior throughout the network.  
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Setting a parameter at Layer 3 tells the network very little about how it should actually handle this packet 
as it is routed from one media type to another.  

There are also Layer 2 QoS features. Token Ring has the ability to send high-priority frames preferentially 
to lower priority frames. ATM has extremely sophisticated QoS functionality that allows you to specify 
sustained and burst rates directly, for example. Ethernet, on the other hand, has no native QoS 
functionality. However, Ethernet VLAN tags can specify a Class of Service value to affect how the frames 
in trunks are handled at each subsequent switch.  

Over network regions that involve hopping from one segment to another via Layer 2 switches, you need a 
Layer 2 QoS implementation. This implementation allows you to specify how the switches handle the 
frames.  

Meanwhile, a network needs Layer 3 QoS to allow consistent handling of packets as they pass through 
routers. Ideally, the Layer 3 information should be used to generate Layer 2 QoS behavior.  

When a router receives a packet that has a high Layer 3-priority indication, it should use this information at 
Layer 2 in two ways. First, it should copy this information appropriately into the Layer 2 header so other 
Layer 2 devices can handle the packet properly. Second, it should select the appropriate Layer 2 QoS 
functionality when delivering the packet.  

8.6.3 Buffering and Queuing 

When a router receives a packet to pass along from one network to another, it often cannot transmit 
immediately. The medium may be in a busy state. For example, it could be an Ethernet segment on which 
another device is already talking. Or, the outbound port may already be busy sending another packet.  

When a packet cannot be forwarded because of a temporary situation like this, it is usually best if the 
router holds onto it for a short time until it can send it along. This is called buffering. The packet is copied 
into the router's memory and placed in a queue to be transmitted as soon as possible.  

There are several different kinds of queues. The simplest, which I have already mentioned earlier in this 
chapter, is a FIFO queue. A router using FIFO queuing simply puts all of the packets for a particular 
outbound physical interface in one place and sends them in the order they were received. FIFO queues are 
conceptually simple and may seem to treat all applications fairly, but in fact there are serious problems 
with FIFO queues when the network becomes busy.  

Many bulk file-transfer applications, such as FTP or HTTP, have the property of sending data as fast as the 
network can accept it. When this data hits a bottleneck or congestion point in the network, it fills up the 
router's input queue until the router has to start dropping packets. Then the application backs off until it 
matches the available capacity of the network. Unfortunately, if other less-aggressive applications try to 
use the same network, their packets are also dropped when the queue fills up. Thus, FIFO queuing tends to 
favor the aggressive applications.  

The worst part is that these aggressive applications are relatively time insensitive. The low-rate data flows 
that are choked off are often used for interactive real-time applications. Thus, FIFO queuing has the worst 
possible behavior in this situation. To get around this problem, other more sophisticated queuing 
algorithms have been developed. One of the most popular algorithms is called Fair Queuing.  

In Fair Queuing, the router breaks up the incoming stream of packets into separate conversations and 
queues these conversations separately. Then the router takes packets from each queue in a simple rotation. 
It can take either a single packet at a time from each queue or, alternatively, a group of packets up to a 
certain predefined number of bytes.  
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Weighted Fair Queuing is a slight modification to this algorithm. Instead of picking equally (by number of 
packets or bytes) from each queue, the router assigns a weight to each queue. This weight can be based on 
any of a large number of different parameters such as the rate at which packets are received into the queue 
or the sizes of the packets. It can also be associated with formal priority markings such as IP Precedence or 
DSCP. In this way, Weighted Fair Queuing actually spans the gap between Best Efforts and Preferential 
Delivery service modes.  

By breaking up the incoming stream of packets into individual conversations, Fair Queuing algorithms 
ensure that no one application can take all of the available bandwidth.  

Returning to the FTP file-transfer example with Fair Queuing, the packets in this file transfer go into their 
own queue. If that queue fills up, then the router drops only FTP packets, but the other traffic streams are 
unaffected. When the FTP application notices that packets have been dropped, it slows down the rate that it 
sends data. In this way, Fair Queuing and Weighted Fair Queuing prevent any one data stream (usually 
called a flow) from taking over the network.  

Another Queuing option commonly used with Preferential Delivery is called Priority Queuing. This term 
means that each incoming packet is categorized by some rule and put into a queue. There will usually be a 
small number, perhaps as many as five of these queues, ranging in priority from high to low. The router 
services these different queues, taking packets preferentially from the high-priority queues.  

This servicing is typically done by specifying a maximum number of bytes or packets to take in each pass 
from each queue, with the highest priority receiving the best service. In the most extreme version, the first 
priority queue is emptied before the second priority queue is considered. However, this process is usually 
just a recipe for ensuring that low priority traffic is not delivered at all.  

You should be aware of three main problems with any Priority Queuing model. First, because every packet 
must be examined to determine its priority, high CPU loads on routers can occur. Care must be taken in 
limiting which routers need to do this examination and in making the test as simple as possible. Preferably, 
it should be based on just the IP TOS or DSCP field, which is described later in this chapter.  

The second problem is that a straight-priority queue model allows different traffic flows within each 
priority grouping to interfere with one another. Effectively, each individual queue is a FIFO queue. Thus, it 
is important to understand how the application traffic flows work before selecting an implementation. If 
there is potential for one conversation within an application group to choke off the others in that group, 
then Priority Queuing is not appropriate.  

The third problem happens when devices have too many different priorities. Each packet must be 
examined and compared to some criteria to find the appropriate priority. If there are many different 
priorities, then there are many different tests to perform on each packet, which results in high-router CPU 
load during peak traffic periods.  

Also, using too many different priorities may divide the available bandwidth into too many pieces. This 
division then leaves each queue with a tiny amount of useful bandwidth, so it is always congested.  

Suppose, for example, that a network has to support one extremely important application and eight less-
important applications, all of which compete for a small amount of bandwidth. Each time the router 
services the high-priority queue, it grabs two packets. It then delivers one packet from each of the eight 
low-priority queues. In this example, the router winds up delivering four lower-priority packets for every 
high-priority packet. This situation clearly becomes worse the more queues each device has.  

Furthermore, the more different queues the router has to service, the longer it takes to get back to the high-
priority queue. This delay results in serious jitter problems, since there is a large random element in how 
long it will take to deliver any given packet. Thus, it is crucial to keep the number of different priorities as 
small as possible.  
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8.6.4 Integrated and Differentiated Services 

The Internet Engineering Task Force (IETF) has specified two different standards for IP QoS. These 
standards are called Integrated Services (intserv) and Differentiated Services (diffserv).  

The basic idea of intserv (also called IS in some documents) is to allow applications to request resources 
such as bandwidth or latency characteristics from the network. The network then keeps track of this 
individual conversation and ensures that it always has the reserved resources.  

Although it is not required, the most common way to implement this resource request uses ReSerVation 
Protocol (RSVP). The end stations taking part in the user application use RSVP to request a specific 
performance characteristic from the network. RSVP is discussed later in this chapter.  

The network then maintains state information about the individual conversations (called flows). This 
maintenance has an enormous overhead in a large network with thousands of simultaneous conversations. 
Therefore, it is not usually practical in the Core of a large network.  

Integrated Services attempts to get around this scaling problem by allowing the network to aggregate the 
flows. In a complex network, allowing any-to-any communication, this aggregation poses further problems 
if it is done dynamically. In a hierarchical network, it should be possible to aggregate flows successfully at 
least on the in-bound direction to the Core of the network.  

Differentiated Services takes a simpler approach to the same problem. By taking over the seldom-used 
TOS byte in the header of the IP packet, it defines an end-to-end priority. This priority value, called the 
Differentiated Services Control Point (DSCP), specifies how each router along the path will treat the 
packet.  

Each router along the path reads this DSCP value. This step is easy for the routers because the information 
is stored in a single byte in the IP header. The DSCP value tells each router how to forward the packet, 
specifying a Per-Hop Behavior (PHB). There are standard PHB profiles that the router can follow. But the 
network engineer can configure the routers manually to interpret specific DSCP values differently.  

Two standard flavors of PHB have been defined for Differentiated Services. These flavors are called 
Expedited Forwarding and Assured Forwarding, although the names are somewhat misleading. Assured 
Forwarding (AF) does not imply guaranteed delivery as the name might suggest, but expedient delivery 
according to priority levels. Conversely, Expedited Forwarding (EF) is not merely expedient, as it does 
provide service assurances.  

There are three main differences between the Integrated and Differentiated Services models for QoS:  

• Integrated Services must maintain state information about individual traffic flows. Conversely, 
Differentiated Services combines all traffic of a particular type, which results in much better 
scaling properties for Differentiated Services in large networks.  

• To set up a nondefault forwarding behavior, Integrated Services uses an external protocol such as 
RSVP reserve network resources. This is done on a per-conversation basis. It also works well with 
multicast data streams. Differentiated Services allows the end stations to define the way each 
individual packet is handled. This definition is done by setting the DSCP byte in the IP header of 
each packet. The network can optionally change this value if it is not appropriate.  

• Because Differentiated Services defines the handling properties of each packet by referring to the 
DSCP byte in the header, it can handle path failure and path redundancy situations transparently. 
Integrated Services, on the other hand, needs the robust path-tracking features of RSVP to cope 
well with multiple paths or with changes in path routing through the network. Even with these 
capabilities, however, there is a significant probability of losing reserved resources when the path 
changes.  
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8.6.4.1 Assured Forwarding in Differentiated Services 

The Assured Forwarding standard for Per-Hop Behavior Differentiated Services is defined in RFC 2597. 
In AF, two basic properties define how each packet will be forwarded. The standard defines four Classes 
and three different values for Drop Precedence.  

The Class value is essentially a forwarding priority. Packets with the same Class value are all queued 
together. The standard requires that the packets of individual conversations be forwarded in the same order 
that they are received, as long as they are all of the same Class.  

The most common way to implement AF is to give a separate queue to each Class. This allows the network 
to ensure that flows from different Classes do not interfere with one another. It also permits higher-priority 
Classes to receive more bandwidth from the network by increasing the amount of data taken from the more 
important queues each time the router takes packets from them.  

In addition to the four Classes, AF defines three different types of Drop Precedence. This number simply 
tells the router which packets to drop first in case of congestion. When the Class queue fills up and the 
router needs to start dropping packets, the ones with lower Drop Precedence values are protected. The 
router should scan through the queue and drop the packets with the highest Drop Precedence values first. If 
dropping the packets does not alleviate the congestion problem, then the router should drop all of the next-
highest Drop Precedence packets before dropping the ones with the lowest Drop Precedence values.  

In this way, AF can give important data streams better treatment as they pass through the network. Note, 
however, that AF does not necessarily guarantee a particular fraction of the total bandwidth for any one 
Class. It also doesn't give guaranteed end-to-end performance characteristics for specific data flows. 
Furthermore, it does not have the ability to give direct control over parameters such as jitter or bandwidth. 
It is merely a method for providing Preferential Delivery.  

8.6.4.2 Expedited Forwarding in Differentiated Services 

The Expedited Forwarding standard for PHB Differentiated Services is defined in RFC 2598. The basic 
goal of EF is to provide guaranteed service characteristics such as bandwidth, latency, and jitter.  

One type of proposed EF implementation is the Virtual Leased Line (VLL). This implementation is 
essentially a reserved chunk of bandwidth through a network coupled with a queuing mechanism that 
restricts jitter. As with a real leased line, however, a VLL cannot handle any traffic in excess of its 
bandwidth limits. If an application tries to send packets too quickly, they will be dropped. Thus, EF is 
usually used in conjunction with some sort of Traffic Shaping.  

8.6.5 IP TOS and Diffserv DSCP 

The IP standards foresaw the need for specifying Quality of Service as long ago as 1981 in RFC 791. This 
document defines the current standard IP (IPv4) packet format and includes a byte called Type of Service 
(TOS). As QoS requirements and technology grew more sophisticated, this field has been replaced by the 
Distributed Services Control Point (DSCP), which includes significant backward compatibility with the 
older standard.  

The TOS or DSCP value is typically set by the end devices. If an application knows that it needs special 
priority through the network, then it is able to set the appropriate value in each packet separately to affect 
how the network handles it. The network, however, is generally free to alter these values if they are not 
appropriate. If network devices change TOS or DSCP values, however, you should be careful about where 
it is done.  

As I discussed elsewhere in this chapter, there is a lot of CPU overhead in categorizing and marking 
packets. Thus, the network should do it as little as possible. That usually means that it will mark the 
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packets with the appropriate TOS or DSCP values as the packets enter the network. The first router they 
encounter should be the only one making this change. Then the packets can traverse the network, enjoying 
the appropriate service level at each hop. If they leave this network and enter another, then they might be 
marked again with a different value.  

The original standard for the format of the TOS field is defined in RFC 791. It breaks the 8-bit field into 2 
3-bit sections. The first three bits specify the Precedence, and the second three specify a particular vision 
of PHB. The final two bits were designated as unused and set aside for future requirements. The 
approximate service types defined in Table 8-1 became the standard IP Precedence values.  

Table 8-1. Standard IP Precedence values  
IP Precedence Decimal value Bit pattern 
Routine 0 000 
Priority 1 001 
Immediate 2 010 
Flash 3 011 
Flash Override 4 100 
Critical 5 101 
Internetwork Control 6 110 
Network Control 7 111 

The Internetwork Control value, 110, is reserved for network purposes such as routing protocol 
information. The highest-precedence value, Network Control, 111, is intended to remain confined within a 
network (or Autonomous System). Any of the other values can be freely assigned to specific user 
applications.  

The third through sixth bits separately designate the required delay, throughput, and reliability 
characteristics, respectively. If the bit had a value of 0, then it could tolerate a high delay, low throughput, 
or low reliability. If the bit had a value of 1, then the packet needs a low delay, high throughput, or high 
reliability. The standard recommends setting only two of these parameters at a time, except in extreme 
situations.  

In RFC 2474, these definitions were updated to allow them to work with Distributed Services. The TOS 
byte was renamed the DS byte. It was again broken into a 6-bit component, the DSCP, and two unused 
bits.  

The 6-bit DSCP is broken into two 3-bit sections. The first three bits define the Class, and the last three 
define the PHB. This definition is done to help provide backward compatibility with networks that 
implement IP Precedence in the older TOS format. To create the four different Classes and three Drop 
Precedence values for Assured Forwarding, RFC 2597 defines the bit patterns as shown in Table 8-2.

Table 8-2. Assured Forwarding DSCP values 
Drop Precedence Class 1 Class 2 Class 3 Class 4 
Lowest Drop Precedence 001010 010010 011010 100010 
Medium Drop Precedence 001100 010100 011100 100100 
Highest Drop Precedence 001110 010110 011110 100110 

It is easy to see from Table 8-2 that the first three bits define the Class and the last three bits define the 
Drop Precedence. With three bits, it is possible to define several more Classes than the four defined in the 
standard. Specifically, the values 000, 101, 110, and 111 are all unused in Assured Forwarding. The Class 
values 110 and 111 are reserved for network purposes such as routing protocol information. Thus, these 
values are not available for general users. By default, any packet with a Class value of 000 is to be given a 
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Best Efforts level of service. However, there is room for introduction of a new Class 5, if it is required. I 
use this value later when I talk about Expedited Forwarding.  

This set of definitions for the AF DSCP is clearly compatible with the older TOS format. The only 
difference is that the older definitions of delay, throughput, and reliability are replaced with a new two-bit 
pattern indicating drop precedence. The last bit is always equal to zero.  

There is only one defined DSCP value for EF. RFC 2598 recommends using the value 101110 for this 
purpose. Note that this is the obvious extension to the values in Table 8-2. Since EF offers service 
guarantees that are not available in AF, it is in some sense a higher priority. One additional Class value is 
available before reaching the reserved values—the value 101, which would be Class 5. At the same time, 
since packets designated for EF should not be dropped, they have the highest drop precedence value, 110. 
This value inherently means that only one type of EF is available.  

A network can't have, for example, two flavors of EF—one with low and the other with high reserved 
bandwidth. If this separation is required, the best strategy is to define additional Control Point values and 
configure the routers to recognize them. In this case, it is better to fix the first three bits at 110 and use the 
second three bits to specify the different forwarding characteristics. However, it is important to remember 
that devices on other networks (such as the public Internet) will not recognize these parameters and may 
not handle the packet as delicately as you would like.  

8.6.6 Traffic Shaping 

Traffic Shaping is a system for controlling the rate of data flow into a network. Networks often use it in 
conjunction with other QoS mechanisms.  

There are two main ways to control the rate of flow of traffic. A device can either throw away packets 
whenever the specified rate limit is reached, or it can buffer packets and release them at the specified rate. 
The process of discarding packets that exceed a bandwidth parameter is usually called policing. Saving 
packets for future transmission is called buffering.

In any real-world application, of course, it is necessary to do both policing and buffering. If an application 
persistently sends data at twice the rate that the network can forward it, then it doesn't matter how many 
packets are put into the buffer because the network simply can't send them all along. If the traffic flow is 
characterized by a number of short bursts, then network devices can easily buffer the bursts to smooth 
them out—provided, of course, that the time average of the traffic rate is less than the available output 
bandwidth.  

Traffic Shaping can be done either on an entire pipe of incoming data or on individual data flows. Usually, 
network designers implement Traffic Shaping only at network bottlenecks and at input points into the 
network.  

EF is a good example of a place where Traffic Shaping needs to be used in conjunction with a QoS 
mechanism. The EF model specifies a certain sustained bandwidth level that the data flow is allowed to 
use. If an application exceeds this flow rate, then the excess packets are dropped. The best way to 
implement such a service is to ensure that the data stream entering the network is restricted to less than the 
reserved bandwidth. This data flow may enter the network from a user segment within the network, in 
which case the first router the traffic encounters does the traffic shaping.  

Dropping packets, while undesirable, is not a completely bad thing in a network. Many protocols such as 
TCP have the ability to notice when they start losing packets because every packet has a sequence number. 
If packets do not follow in sequence then the end devices usually wait a short time to see if the missing 
packet will eventually arrive. When this time has elapsed, the receiving device sends a notification to the 
sending device to tell it about the missing packet.  
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When this happens, the sender assumes that the network has a reliability problem, and it reduces the 
number of packets it will send before it gets an acknowledgement (the TCP Window). Reducing the 
packets also reduces the amount of bandwidth that the application consumes.  

By dropping TCP packets, the network can effectively control the rate that the application sends data. It 
tends to back off until it no longer sees dropped packets. This data-flow rate is exactly equal to the preset 
Traffic Shaping limit.  

However, not all applications behave as well as TCP when they suffer from dropped packets. For example, 
UDP packets generally do not need to be acknowledged. Thus, UDP applications may not respond 
properly to traffic shaping. IPX has similar issues. The connection-oriented SPX protocol can respond to 
dropped packets by reducing its windowing, similar to TCP. But other IPX protocols are not so well 
behaved.  

In general, it is a good idea to monitor applications that use heavily policed links to ensure that they behave 
well. If they do not, then you must increase the bandwidth to reduce the congestion.  

8.6.7 Defining Traffic Types 

Usually, traffic types are defined by some relatively simple parameters. Generally, looking at well-known 
fields within the IP packet header is fairly easy. Thus, these fields are the main factors used in identifying 
different traffic types.  

In IP packets, five fields are typically used for classifying traffic. These fields are the source and 
destination IP addresses, the protocol type (primarily TCP, UDP, and ICMP), and the source and 
destination port numbers (for TCP and UDP).  

Obviously, this amount of information is limited, but many applications can be easily identified with some 
combination of these parameters. Indeed, Fair Queuing applications use the set of all five fields to identify 
specific flows uniquely within a larger data stream.  

For example, if a router needs to identify FTP file transfers, it needs only to look for a TCP protocol packet 
with either a source or destination port number of 20 or 21 (FTP uses 21 for control and 20 for actual data 
transfer). Similarly, if there is a large database server whose traffic needs to be protected, the router can 
simply look for its IP address in either the source or destination address field.  

Note that in both of these examples the router looked in both the source and destination fields. This is 
because, in general, it is necessary to classify both sides of the conversation. If the router looks only at the 
destination address, then it will see the traffic going to the device with that address, but it will miss all of 
the traffic coming from it.  

Similarly, a TCP session usually begins with a request on a well-known destination port from client to 
server. The client includes a dynamically assigned source port when it places this call. The server then uses 
this dynamic port number to identify the destination application when it talks back to the client.  

In general, the router doesn't know which end is client and which end is server. When looking for a 
particular TCP port, the usual practice is to look in both the source and destination fields of a packet.  

Some applications are not easily identified. For example, some applications use a dynamically generated 
port number. Using this port number can have important security and programming advantages, but it is 
extremely difficult for the network to give this session preferential treatment.  

Conversely, some systems group many applications together. In some cases, such as with the Citrix 
system, the server passes only screen updates of applications running on a central server to the user 
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workstation. Passing only screen updates makes it impossible to tell which packets correspond to which 
applications.  

Citrix also includes the ability to run file transfers. In this case, however, the system's designers were 
thoughtful enough to include a batch-mode designation for these data streams and to put the flag specifying 
this mode in an easily accessible part of the packet. In this way, the network can at least distinguish 
between interactive and batch traffic. However, this is not always sufficient granularity.  

The same problem occurs in many other network services. For example, it is sometimes necessary to give 
different Remote Procedure Call (RPC) applications different priorities. However, the fact that they all use 
the same basic Layer 4 architecture makes this difficult. In fact, this problem exists for any application 
built at a higher layer on the protocol stack. For programmers, building a new application on stock 
networking Application Program Interface (API) calls such as RPC can be extremely useful. If all of these 
applications wind up using the same TCP port numbers, it becomes hard to distinguish between them.  

This distinction might be necessary for security reasons, as well as QoS reasons. For example, blocking 
Java code from being downloaded from certain web pages might be useful. However, blocking the code 
requires that the router distinguish between different types of URL information within a single web page. 
To the router, it all just looks like an HTTP connection.  

One partial solution to this problem (there can never be a completely general solution because of the nature 
of the problem) is Cisco's proprietary Network-Based Application Recognition (NBAR) software. NBAR 
works with a set of specific Packet Description Language Module (PDLM) modules that tell the router 
how to find higher-layer information in the IP packet. When using NBAR to distinguish two applications 
that both use the same Layer 4 information, the router must have the appropriate PDLM module loaded. 
The PDLM modules then allow the router to distinguish between applications that use the same network 
layer information.  

This information can then be applied to Access lists in the same way that Layer 3 information can be 
isolated. Once the information is accessible to an Access list, it is relatively easy to use it to set the DSCP 
or TOS bits in the IP header. The packet can then pass through the network with the appropriate QoS 
behavior.  

The other parameter that is often used to define QoS classes is the size of the packet. Real-time 
applications such as packetized voice or video systems will often use a very small packet size. Small 
packets can usually be delivered with lower latency. If the data segment of a packet represents a constant 
amount of information, then it follows that a longer packet contains more data. Thus, a longer packet also 
represents a longer time period when capturing sound or video samples. If the application has to wait a 
longer time to fill up a packet before it is sent, then this clearly results in a higher latency.  

Real-time applications often use shorter packets than low-priority batch-mode applications. For this reason, 
some networks give preferred treatment to smaller packets.  

8.6.8 RSVP 

ReSerVation Protocol (RSVP) is an IP protocol that allows end devices to request particular resource 
characteristics from the network. It is a control protocol similar in concept to ICMP, so it does not carry 
the data stream. Instead, it just reserves the resources.  

The general concept is that an end device requiring certain network resources will send an RSVP packet 
through the network. This is an IP packet whose destination is the other end device taking part in the 
application conversation. The packet passes through the network, hop by hop. Each intermediate router 
reads the packet and allocates the appropriate resources, if possible.  
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If a router is unable to comply with the request, it responds back down the path with a packet indicating 
that the request has been refused. All intermediate routers again read the packet and release the resources. 
If the router is willing and able to reserve the resources for this application, it passes the packet along to 
the next device along the path.  

If the RSVP request goes through the entire network, the end device responds with a message indicating 
that the request has been granted.  

One clear problem with this model is that most good network designs don't have a single unique path 
between any two points. One of the main design principles is to use multiple-path redundancy.  

RSVP includes elaborate methods for rerouting the reserved path in case of a network failure. When the 
routing table in a router in the middle of the network changes, it attempts to establish a new reserved path 
using the new routing information. Also, RSVP uses a periodic system to verify that the reserved resources 
are still available.  

If a network failure forces a change in path, then the new path may refuse to grant the reservation request. 
In fact, this refusal is quite likely because the new path may suddenly find itself carrying a heavy 
additional load. Under these circumstances, it probably will not allow new reservation requests.  

Thus, the application may suddenly lose its reserved resources without losing actual network connectivity. 
In a large network, this loss tends to result in considerably less-stable performance than the simpler 
Differentiated Service model.  

Another problem arises because of multiple redundant paths through a network. There are two ways to 
handle redundant paths. If a router handling an RSVP request notices that it has more than one possible 
way to get to the destination, it could reserve bandwidth on both paths and forward the RSVP request to 
downstream next-hop devices. Or, it could select one of the paths and use it for the application.  

The first case is clearly inefficient because the application reserves resources that it will not use. If the 
router shares the load among all possible paths, then reserving the full bandwidth requirement on each path 
individually is inefficient.  

On the other hand, if the router deliberately selects only one of the possible paths for this traffic stream, 
then it loses one of the key advantages to a highly redundant design philosophy. Worse still, the highest 
level of fault-tolerant redundancy is used only for the lowest-priority traffic.  

The only alternative is to have the RSVP protocol actively track all possible paths through the network. In 
doing so, it must have an accurate model for how effectively the network can share loads among these 
paths. This level of tracking is not practical in a large network.  

8.6.9 Network-Design Considerations 

The best QoS implementations readily break up into two functional parts. The first router a packet 
encounters upon entering the network should set its TOS or DSCP field. Then the rest of the devices in the 
network only need to look at this one field to know how to treat this packet.  

There is a very simple reason for this division of labor. The process of reading and classifying packets can 
be extremely CPU intensive, so the network should do it only once.  

Furthermore, when getting closer to the Core of a hierarchical network, one expects to see more traffic. 
The easiest place to do the classification is at the edge. In many cases, the edge router is in a unique 
position to do this classification. For example, if the edge router runs any sort of tunneling protocol, such 
as DLSw, then it can see application information in the packet before it is encapsulated into the tunnel 
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protocol. This fact is even truer when the edge device encrypts the packet contents, as in a VPN 
architecture.  

In this case, there is essentially no way to differentiate between applications after the packet is encrypted. 
The only practical place to do the classification is the edge router. Then, once the packet enters the 
network, it needs a design that permits treating the different traffic classes appropriately. In an Integrated 
Services implementation, the design must be built to respond to RSVP requests.  

RSVP suffers from efficiency problems when many paths run through the network. Because it requires 
every router to keep track of all reserved data flows, it does not scale well to large networks. However, 
there is a relatively straightforward way of getting around this problem.  

It is possible to use Integrated Services only at the edges of the network and build the Core with 
Differentiated Services. The key to making this possible is in the flow-aggregation properties of Integrated 
Services. These properties specify that the network is allowed to group a set of flows together if they all 
have similar properties and then treat them all at once. That principle is good in theory, but Differentiated 
Services is usually limited to either Assured or Expedited Forwarding. Thus, you have to be careful about 
how you map specific RSVP requests to DSCP values and how you implement the Per-Hop Behavior.  

An obvious way to make a gateway between an Integrated Services edge and a Differentiated Services 
Core is through EF. EF allows explicit reservation of bandwidth up to and including VLL 
implementations.  

Note that this reservation implies that the network must aggregate an arbitrary number of reserved 
bandwidth flows. Thus, it is possible to oversubscribe the bandwidth that has been reserved in the Core. 
However, if oversubscription occurs, the router that acts as the gateway between the Integrated and 
Differentiated Services regions simply refuses any further RSVP requests.  

For packets passing through Differentiated Services networks, there are many ways to implement the 
required traffic-flow characteristics. The simplest method is to use Weighted Fair Queuing on every router 
in the Core.  

This method does not strictly meet the requirements of either EF or AF PHB models because it does not 
have the prescribed drop precedence characteristics. However, Weighted Fair Queuing does allow the 
different flows to be weighted according to the DSCP Class (or TOS IP Precedence, since they are 
compatible).  

If a strict implementation of either EF or AF is not required, this implementation is much easier. If a strict 
AF model is required, then you must to consult the router vendor to find out how to turn on this style of 
queuing.  

For EF implementations, on the other hand, you should define the different performance criteria carefully. 
How much bandwidth is reserved? What are the latency and jitter requirements? These parameters in turn 
define how the software that services the queues is configured. Most importantly for EF implementations, 
how are the different logical paths defined?  

If many physical path possibilities exist between two end points (which is a design philosophy that I 
strongly advocate), then the designer has to be absolutely clear on how structures such as VLL will be 
implemented. Is the VLL only defined along one path, or is it configured through multiple paths?  

In general, I prefer to keep network design as simple as possible. In almost all cases where QoS is required, 
I recommend the AF model of Distributed Services. Classification is to be done at the edges of the 
network. Then every other device in the network needs to implement only the appropriate PHB.  
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If congestion within the network is kept under control, it is rarely necessary to implement any real 
bandwidth reservation. For light congestion, there is little or no observable difference. However, if 
congestion becomes severe or sustained, then it is usually easier to increase the bandwidth than it is to 
implement a more strict QoS system. If there is a serious congestion problem in the network, then 
implementing strict bandwidth reservation for one application only makes the congestion problem worse 
for every other application using the network.  

In any QoS implementation, remember that bandwidth is a finite and limited resource. All you can with 
QoS is to allocate it a little more fairly. If there is simply not enough to go around, then QoS cannot solve 
the problem.  
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Chapter 9. Network Management 
Network management is an afterthought in many networks. This is a pity because the network designer can 
do many things to facilitate network management. In most large organizations, the job of network manager 
is considered "operations," while network design is done by a different implementation group. Frequently, 
these two groups report to different departments of the company.  

If a network can be managed easily, then it is inherently more reliable. Thus, manageability is a 
fundamental design goal for a good network. Before I launch into a discussion of design implications for 
manageability, I need to spend some time talking about what I mean by network management.  

9.1 Network-Management Components 

The OSI has published an official definition of network management that includes five different 
components: configuration management, fault management, performance management, security 
management, and accounting management. I usually think of performance management as being composed 
of two separate subcomponents. The first is a tactical performance management, and the second is the 
more strategic long-term capacity planning component.  

9.1.1 Configuration Management 

Configuration management actually includes two different but related activities. The first keeps track of 
physical hardware, serial numbers, locations, patching information, and so forth. The second part of 
configuration management is the process of modifying, backing up, and restoring the software 
configuration of network equipment. This aspect of configuration management often becomes the focus of 
the whole activity. Many hardware vendors for routers and switches have excellent software for building 
and modifying software configurations. This software usually includes the ability to do scheduled backups 
of running configurations. This ability is an extremely important feature. If you have a recent configuration 
backup, then replacing a failed router with a new one is a fast and easy operation. Without a backup, this 
replacement is time consuming and usually requires an experienced engineer to reconstruct the software 
configuration.  

However, remember the physical tracking side of configuration management, especially if you deal with 
the configurations of Layer 2 devices such as hubs and switches. If network managers have accurate 
information about physical locations, MAC addresses, and cabling for end devices such as user 
workstations, then they can easily handle hardware moves, adds, and changes. In most organizations, 
business requirements force network administration to respond quickly and efficiently to requests for end-
user moves and service changes. However, the cabling and hardware records are usually out-of-date, so 
every small move requires a technician to visit the site and carefully document the equipment and cabling. 
This process is expensive and slow.  

Unfortunately, no software can solve this problem; it is primarily a procedural issue. Technicians making 
changes have to keep the records up-to-date, and the cabling and patch panels have to be periodically 
audited to ensure accuracy of the records. However, the network designer can do much to facilitate this 
process. If the patch panels are well designed and there is a clear correlation between physical floor 
location and cable numbers, then the technicians can at least get a running start at the job.  

9.1.2 Fault Management 

Fault management is what most people picture regarding network management. This management is the 
active monitoring of the various key network components to find problems and alert the appropriate 
people. But there is another side to fault management that is also important, particularly to the network 
designer—the troubleshooting process.  
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Troubleshooting occurs after the appropriate person knows of a problem. Usually, all that the fault-
management software says is that a failure occurred somewhere near a particular device. It is usually not 
able to say what caused the problem, precisely which device needs attention, or even what the failure 
actually was. Upon receiving an alert, the network engineer must troubleshoot the problem, try to isolate 
the source, and look for a solution. For many problems there is a short-term solution to get the network 
back up immediately, as well as a long-term solution to make sure it doesn't happen again.  

9.1.3 Performance Management 

Performance management requires monitoring the network carefully and looking for bottlenecks and 
congestion issues. There is some overlap between performance management and fault management when 
performance problems become so severe that they interfere with the basic functioning of the network.  

Capacity planning is the natural outcome of performance management. When network managers discover 
a systematic performance problem, such as a bandwidth shortage through performance management, they 
turn to capacity planning to resolve this problem. Capacity planning is fundamentally a network-design 
issue.  

9.1.4 Security Management 

Security management is the set of activities that ensure that the network's security measures work properly. 
Every firewall must be carefully monitored to see if it is in danger of compromise or if it is being abused in 
some way. Similarly, security management includes the maintenance of any filtering or encryption options.  

9.1.5 Accounting Management 

Security management leads directly into the concept of accounting management. Accounting partly deals 
with security. One of the main reasons for giving individual users different accounts is to ensure that they 
can only have access to the resources they require. This access is essentially a security issue. However, 
accounting management also includes the general problem of keeping track of who uses what on the 
network. In some cases, this information is used to bill for these services.  

It should now be clear that all of the different activities of network management have network-design 
implications.  

9.2 Designing a Manageable Network 

A well-designed network has network management included in its basic requirements. At each stage of the 
design process, one of the key questions should be "how will this be managed"? The network designer 
should know from the outset where the network-management servers will be, both physically and logically, 
on the network. If special protocols are used for network management, then the design must ensure that 
this information can be delivered. If protocol analyzers or RMON probes are used to monitor network 
performance and assist in troubleshooting, then these devices should be placed in the design.  

A probe is used to watch all of the traffic passively as it passes by. The issue of where to put probes is 
particularly difficult. In a switched or VLAN-based environment, probes are nearly useless if they are not 
deployed carefully.  

Before switches, when Ethernet networks were made up of large bus configurations, it was possible to 
deploy a few probes and see everything. The probes would be placed near the Core of the network. From 
there, they could easily be switched to whatever LAN segment needed monitoring. However, in a switched 
Ethernet design, every end device is on its own LAN segment. This situation fundamentally changes how 
network monitoring has to be done.  
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One way to use a probe is to look at all traffic going to and coming from a particular end device by 
configuring the probe's switch port to mirror the port connecting to this device. This mirroring requires, of 
course, that a probe be available for use with this switch. In the ideal case where everything can be 
monitored centrally without having to leave the network operations center, this implies that there must be a 
separate probe on every switch. This prospect can be rather expensive. Thus, many organizations use either 
full or partial RMON probes built into their switches instead. The use of these probes allows good 
monitoring capabilities for every device in the network.  

Another way to use a probe is on trunk links. In a hierarchical VLAN architecture, keeping a close watch 
on trunk utilization is important because this is where congestion problems usually first arise.  

The discussion of hierarchical designs in Chapter 3 showed that trunks are used in four ways. They connect 
the Access Level to the Distribution Level and the Distribution to the Core. Internal trunks also exist 
within the Distribution and Core Levels. The important thing is that, while most of the switches wind up 
being at the Access Level, all trunks have at least one end in the Distribution or Core Levels. Thus, there is 
no need to deploy probes for monitoring trunk links to the Access Level. Not needing to deploy the probes 
at every switch should provide an important cost savings.  

Chapter 3 also mentioned another important design issue for large-scale LAN environments in the 
discussion of hierarchical VLAN designs—the presence of a dedicated network-management VLAN. 
Obviously, the same VLAN cannot be present in different VLAN Distribution Areas, but every 
Distribution Area should have such a VLAN.  

There are several reasons for having a separate network management VLAN that contains no user traffic:  

• If you monitor traffic on a user VLAN, you don't want to see the probe traffic mixed in with user 
traffic.  

• If you have to transfer configuration or software to or from the network devices, you don't want 
this traffic to interfere with production-application traffic.  

• Separating the management VLAN from user traffic can be useful for security reasons. A router 
can then completely block SNMP and other management-specific traffic from passing between 
user and management VLANs. Blocking the traffic greatly reduces the chances of a successful 
attack.  

• Perhaps most importantly, if there is a serious problem with a user VLAN, having a separate 
network-management VLAN allows the network engineer to get to the switch and hopefully fix 
the problem.  

A network-management VLAN should always be part of the network design for every Distribution Area. 
This VLAN should contain the management addresses for all hubs and switches in the managed 
Distribution Area. It should also hold the management interfaces for all probes and protocol analyzers in 
the area. If any devices, such as Inverse Terminal Servers, are used for out-of-band management, then 
these devices should also be connected through this management VLAN.  

The management VLAN can suffer failures without affecting production traffic. Thus, it is not necessary to 
provide the same level of redundancy for this VLAN as for the rest of the network. However, if a large 
number of devices are to be managed through this VLAN, then it is wise to make it fairly robust. Economy 
of design may mean just building this VLAN according to the same specifications as the rest of the 
production network.  

A network designer can do several different things at the physical layer to ensure that a network is 
designed to be managed effectively. These steps generally involve ease of access, clear labeling, and 
logical layout.  

By ease of access, I mean that equipment that needs to be touched frequently should be in a prominent 
position. It should be safe from being bumped accidentally; there should also be no obstructions such as 
walls or poles to prevent a technician from seeing or handling the equipment. A good example would be 
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cabling patch panels. Patch panels are almost always the network elements that need the most frequent 
physical access. Fiber patch panels tend to be used less frequently than the patch panels for user LAN 
drops. It is common for fiber patch panels to be mounted too high or too low to access easily.  

Usually, the best way to handle LAN-cabling patch panels is to mount them in logical groups in equipment 
cabinets with locking doors. When the technician needs to make changes, the door can be easily unlocked 
and opened. The changes can then be documented and the door locked again to prevent tampering.  

Documenting Patch-Panel Changes 
There are two good methods for documenting patch-panel changes. One method is to have every change 
accompanied by a work order. The technician notes the changes on the work order. Then, when the work 
order is closed, the changes can be input into a database or spreadsheet of cabling information. The other 
method, which is probably more effective in most organizations, is to simply have a printed spreadsheet of 
the patching information taped to the inside of the cabinet door. When a technician makes a change, he 
immediately notes it on this sheet of paper. Then somebody needs to gather up the paper sheets 
periodically, input the changes, and print out new paper sheets to tape back inside the cabinets. The 
principle advantage to this method is that not all changes are accompanied by work orders. In particular, 
emergency changes usually have to be done quickly by whoever is on call. This person may not have time 
to access the work-order system and update databases with the small changes that they had to make to fix 
the problem.  

A clear, consistent, and simple labeling scheme is critical, particularly for patch panels and patch cords. 
Every patch-panel port should have a unique code number, and the formats of these codes should be 
consistent. These codes should clarify to what this port attaches. Suppose, for example, that you want to 
number the patch panels in a wiring closet that supports a large number of end users. In general, there 
should be a consistent floor plan in which every user work area is numbered.  

Then, if each work area has three or four drops, you usually label the patch-panel ports with the work-area 
number followed by an alphabetic character to indicate to which cable drop the port connects. Each patch-
panel port has a unique number that is easily associated with a particular cable drop in a particular work 
area. Thus, for example, desk number 99 may have 3 jacks beside it. If two of these jacks are for data and 
one is for voice, then you might number them 99-A, 99-B, and 99-V, respectively. This way, which ports 
are for what purposes is completely clear both at the desk and in the wiring closet.  

If you later found that you had to run an additional data cable to this desk, you could number it 99-C. An 
additional voice line, perhaps for a fax machine, could be numbered 99-W.  

These designations are merely intended as examples. Every network is different, so the network designer 
has to come up with a locally appropriate scheme.  

Giving consistent labels to the patch cords that connect to these patch panels is also important. There are 
many different ways of doing this. Some organizations like to label the patch cord with a tag that indicates 
what is on the other end. For example, suppose that a cord connects panel 1, port 2 to panel 2, port 3. Then 
the first end plugs into panel 1, port 2, and it has a label saying "panel 2, port 3." This method is quite 
common, and it is generally not very good. The problem is that, at some point, somebody will need to 
move that patch cord. If they fail to change the label in the heat of the moment, then they will have a 
situation that is worse than having no labels at all because the labels cannot be trusted.  

The simplest and most effective method for labeling patch cords that I have seen is simply to give every 
patch cord a unique number. These cables can be prenumbered and left in convenient locations in each 
wiring closet. Whenever a patch cable is connected between two ports, the technician writes the 
information on the sheet inside the cabinet. Patch panel 1, port 2 connects to patch cord number 445, which 
connects to panel 2, port 3. This system greatly facilitates the process of auditing patch panels. All that you 
need to do is go through the patch panels port by port and write down what patch-cord number connects to 
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that port. Then you can put all of this information into a spreadsheet and sort it by patch-cord number to 
see all of the cross-connections immediately.  

If the spreadsheets get badly outdated, and there is an emergency problem involving a particular port, then 
the technician will have to trace the cable manually regardless. An effective labeling scheme will be of no 
help if the spreadsheets are outdated.  

Having universal rules for what constitutes a logical patch-panel layout is difficult. This is because what is 
logical depends on how the cabling is used. For example, suppose every user workstation has two LAN 
drops, labeled A and B. The first drop is for data and is connected to a computer. The second drop is for an 
IP telephone. In this case, it makes sense to separate the patch panels to put all drop As together in one 
group of panels and all drop Bs together in another group. Alternatively, if all drops are intended for user 
workstations and many users simply have two workstations, then grouping the A and B drops together may 
be simpler. In this case, the pattern might even alternate A and B on the same patch panel.  

What is universal is that the patch-panel layout should make finding devices easy. Usually, workstations 
are numbered logically through the user work area. Consecutive numbers should indicate roughly adjacent 
workstations. Then the ports on the patch panel should be arranged in numerical order. In this way, it 
becomes easy for the technician who usually deals with cabling in this wiring closet to look at the patch 
panel and know at least approximately where the corresponding workstations are.  

However, even with the best of initial intentions, the pattern can be badly broken over time. This is 
because you frequently have to deal with changes to the work area. Sometimes a cubicle pattern may 
change on the floor, and sometimes you need to run extra cabling to support extra devices. The network 
designer and manager have to tread a very careful line between forcing these changes into the logical flow 
of the entire area and wanting to minimize changes to unaffected areas. This situation usually means that 
any new drops are taken as exceptions and put at the end of the existing group of patch panels.  

One of the most important considerations in designing a network to be manageable is deciding how and 
where to connect the network-management equipment. Is there a separate network-management center to 
accommodate? Do nonoperational staff members like the network designer sit in a different area? Do they 
require access to the network-management center's equipment through the network?  

In general, the design should include a separate VLAN just for network-management equipment. This 
VLAN is not necessarily the same one mentioned earlier. That management VLAN was used to access 
management functions on remote network equipment. This network management-equipment VLAN 
houses servers and workstations used to manage the network.  

This VLAN is usually as close to the Core of the network as possible. However, it is not always close to 
the Core. Many organizations are opting to outsource their network-management functions. This 
outsourcing permits highly trained staff to be available at all hours. It also means that network 
management must be done from offsite, usually from behind a firewall.  

9.3 SNMP 

No discussion of network management in IP networks would be complete without including the Simple 
Network Management Protocol (SNMP). I want to stress that SNMP is primarily used for fault 
management and, to a lesser extent, for configuration and performance management. It is definitely not the 
only tool required for a complete network-management system, but it is an important one.  

SNMP is a UDP-based network protocol. It has been adapted to run over IPX, as well as IP. However, IP is 
by far the most common network protocol for SNMP.  

SNMP has three general functions. It can request information from a remote device using a get command. 
It can be used to configure the remote device with a set command. Or, the remote device can send 
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information to the network-management server without having been prompted, which is called a trap. A 
trap is usually sent when there has been a failure of some kind. In general, a trap can be sent for any reason 
deemed useful or appropriate for this particular device. However, the main application alerts the network-
management server of a failure of some kind.  

In general, two types of devices speak SNMP. The remote device that is managed has a relatively small 
engine called an SNMP agent. The agent is a piece of software that responds to get and set packets. It also 
monitors the functioning of the device it runs on and sends out trap packets whenever certain conditions 
are met.  

The other general type of device is the SNMP server. This server is typically a relatively powerful 
computer whose only function is to monitor the network. The server polls remote devices using get and set 
commands. The IP address of the server is configured in the remote agents so that they will know where to 
send trap messages.  

Many network engineers prefer not to use SNMP for configuration. This is because they believe there are 
too many serious security problems with the model, making it relatively easy to attack and reconfigure key 
pieces of network equipment. These problems can make configuration much more difficult. However, if 
there is a security concern, then turning off SNMP write access on your network devices is worthwhile.  

There are several commercial SNMP server systems. They usually come with a number of complex 
features such as the ability to discover and map the network and display it graphically. Almost all modern 
network equipment includes an SNMP agent, at least as an optional feature.  

The amount of information that can be exchanged with SNMP is enormous. Every device that has an 
SNMP agent keeps track of a few basic variables that the server can query with get commands. Thousands 
of other optional variables are appropriate for different types of devices. For example, a router with a 
Token Ring interface allows the server to poll for special parameters that are relevant to Token Ring. If 
this router doesn't have any Ethernet ports, then it doesn't make sense for it to keep track of collisions, 
since there will never be any. However, it does need to keep track of beacon events, for example.  

This same router also has a number of special-purpose variables that are unique to this type of equipment 
and this particular vendor. All of these different variables are accessed by a large tree structure called the 
Management Information Base (MIB). People talk about "the MIB" and different vendor-specific "MIBs." 
However, it is all one large database. The only difference is that some parts of it are used on some types of 
devices, some parts of it are defined by particular hardware vendors, and others are globally relevant. Thus, 
I prefer to talk about vendor- or technology-specific "MIB extensions."  

Every network-hardware vendor has its own set of MIB extensions. These extensions allow different 
vendors to implement special customizations that express how they handle different interface types, for 
example. They also allow the different vendors to give information on things such as CPU load and 
memory utilization in a way that is meaningful to their particular hardware configuration.  

Three different revisions of SNMP are currently in popular use—SNMP-1, 2, and 3. The differences 
between these revisions are relatively subtle. They primarily concern factors such as security. The 
important thing is to ensure that your SNMP server understands to which version of SNMP the agent on 
each device expects to speak. Most networks wind up being a hybrid of these different SNMP flavors.  

9.3.1 How to Monitor 

In general, a network is monitored with a combination of polling and trapping. Devices are polled on a 
schedule—every few minutes, for example. But you need a way to determine if something bad has 
happened in between polls. This requires the device to send trap packets whenever important events occur. 
On the other hand, traps alone are not sufficient because some failures prevent the remote device from 
sending a trap. If the failure you are concerned about loses the only network path from the remote device to 
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the network-management server, then there is no way to deliver the trap. Thus, failures of this type can 
only be seen by polling, so any successful network-management system always uses a combination of 
polling and trapping.  

Setting an appropriate polling interval is one of the most important network-management decisions. You 
want to poll as often as possible so that you will know as soon as something has failed. Polling a device too 
frequently can have two bad side effects.  

First, polling too often, particularly on slow WAN links, has the potential to cause serious bandwidth 
problems. For example, suppose each poll and each response is a 1500 byte packet. Then, each time you 
poll, you send a total of 3000 bytes through the network. If you poll each of 100 different remote devices 
all through the same WAN serial interface (a common configuration in Frame Relay networks), then each 
poll cycle generates 300 kilobytes of traffic. Therefore, if you poll each of these devices once every 30 
seconds, then this generates an average of 10kbps on the link just because of polling traffic.  

These numbers are relatively small, but in a large network they can become large very quickly. If instead 
of polling 100 devices, you have a network with 100,000 devices, then that 10kbps becomes 10Mbps. This 
increase will cause a noticeable load on even a Fast Ethernet segment.  

The second problem with a short polling interval, however, is much more dangerous. Consider the example 
of 100 remote devices again. Suppose one of these devices is not available. The usual prescription is that 
the server will try three to five times, waiting a default timeout period for a response. The default timeout 
is usually between 1 and 5 seconds, so the server will have to wait between 3 and 25 seconds for this 
device before it can move on to the next one in the list. As a result, if there are several simultaneous 
problems, or a single problem affects several downstream devices, the management server can get stuck in 
its polling cycle. When this happens, it spends so much time trying to contact the devices that are not 
available that it loses the ability to monitor the ones that are still up effectively.  

A number of different SNMP server vendors have come up with different ways of getting around this 
polling-interval problem. Some vendors allow the server to know about downstream dependencies—if a 
router fails, then the server stops trying to contact the devices behind it.  

Another clever method for dealing with the same problem is to break up the queue of devices to be polled 
into a number of shorter queues. These shorter queues are then balanced so that they can poll every device 
within one polling cycle even if most devices in the list are unreachable. The most extreme example of this 
is when the queues contain only one poll each. This means that all polling is completely asynchronous, so 
no failure on one device can delay the polling for another device. This situation loses some of the 
efficiencies of using queues, however, and may consume significantly more memory and CPU resources 
on the server. Some servers can use some variation of both methods simultaneously for maximum 
efficiency.  

Whether the server discovers a problem by means of a poll or a trap, it then has to do something with this 
information. Most commercial network-management systems include a graphical-display feature that 
allows the network manager to see at a glance when there is a problem anywhere on the network. This idea 
sounds great, but in practice, it is less useful than it appears. The problem is that, in a very large network, a 
few devices are always in trouble. So the network manager just gets used to see a certain amount of red 
flashing trouble indicators. To tell when a new failure has really occurred, it is necessary to watch the 
screen for changes constantly. Constantly watching the screen can strain one's eyes, which tend to get sore 
from such activities, so network managers have different methods for dealing with this problem.  

Some people don't look at the map, but look at a carefully filtered text-based list of problems. This list can 
be filtered and sorted by problem type. It is even possible to have these text messages sent automatically to 
the alphanumeric pagers of the appropriate network engineers.  
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Another popular system is to use the network-management software to open trouble tickets automatically. 
These tickets must be manually verified by staff on a help desk. If they see no real problem, they close the 
ticket. If they do see a real problem, then they escalate appropriately.  

Any combination of solutions like this should work well, but beware of network-management solutions 
that are purely graphical because they are only useful in very small networks.  

SNMP monitoring has many uses. Until now I have focused on fault management. But it can also generate 
useful performance-management data. For example, one of the simplest things you can do is set up the 
server to simply send a get message to find out the number of bytes that were sent by a particular interface. 
If this poll is done periodically—say, every five minutes—the data can be graphed to show the outbound 
utilization on the port. In this way, you can readily obtain large historical databases of trunk utilization for 
every trunk in the network. Usually, the only limitation on this sort of monitoring is the amount of physical 
storage on the server.  

Besides port utilization, of course, you can use this method to monitor anything for which there is a MIB 
variable. You can monitor router CPU utilization, dropped packets, and even physical temperature with 
some device types.  

Another interesting, underused application of network-management information is to have automated 
processes that sift through the trap logs looking for interesting but noncritical events. For example, you 
might choose to ignore interface resets for switch ports that connect to end-user workstations. End users 
reboot their workstations frequently, so seeing such an event in the middle of the day is usually considered 
an extremely low priority. The network manager generally just ignores these events completely. But what 
if one port resets itself a thousand times a day? If you ignore all port-reset events, you will never know this 
information. This problem is actually fairly common.  

It is a good idea to have automated scripts that pass through the event logs every day looking for 
interesting anomalies like this. Some organizations have a set of scripts that analyze the logs every night 
and send a brief report to a network engineer. This sort of data can provide an excellent early warning of 
serious hardware or cabling problems. In fact, these reports highlight one of the most interesting and 
troubling aspects to network management. The problem is almost never that the information is not there. 
Rather, there is usually so much information that the server has to ignore almost all of it.  

In a modestly sized network of a few thousand nodes, it is relatively common to receive at least one new 
event every second. A human being cannot even read all of the events as they come in, much less to figure 
out what problems they might be describing. Instead, you have to come up with clever methods for 
filtering the events. Some events are important. These events are passed immediately to a human for 
support. Other events are interesting, but not pressing, and are written to a log for future analysis. Other 
events are best considered mere noise and ignored.  

The most sophisticated network-management servers are able to correlate these events to try to determine 
what is actually going on. For example, if the server sees that a thousand devices have suddenly gone 
down, one of which is the gateway to all others, then it is probably the gateway that has failed.  

The server can in principle do even more clever event correlation by examining the noncritical events. For 
example, it might see that a router drops packets on a particular interface. There are many reasons for 
dropping packets. Perhaps there is a serious contention problem on the link. If, at the same time, the free 
memory on the same router is low and the CPU utilization is high, then this router is probably not powerful 
enough to handle the load. Perhaps this router has been configured to do too much processing of packets in 
the CPU instead of in the interface hardware. If the dropped packets occur when the router receives a large 
number of broadcast packets, then it may be a broadcast storm and not a router problem at all.  

Setting up this sort of sophisticated event correlation can be extremely difficult and time consuming. Some 
relatively recent software systems are able to do much of this correlation out of the box. They tend to be 
rather expensive, but they are certainly more reliable than homemade systems.  
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9.3.2 What to Monitor 

In general, the network manager needs to monitor key devices such as switches and routers to see if they 
work properly. The simplest and most common sort of polling is the standard ping utility. Since every 
device that implements the IP protocol has to respond to ping, this is a good way to see if the device is 
currently up. In fact, a few devices, particularly firewalls, deliberately violate this rule for security reasons. 
However, if a device has disabled ping responses for security reasons, it will probably have SNMP 
disabled as well, so it has to be managed out-of-band anyway.  

Ping is really not a great way to see what is going on with the device. If the device supports SNMP at all, it 
is better to ask it how long it has been up rather than simply ask whether it is there. This way, you can 
compare the response with the previous value. If the last poll showed that the device was up for several 
days and the current poll says that it was up for only a few minutes, then you know that it has restarted in 
the meantime. This may indicate a serious problem that you would otherwise have missed. The SNMP 
MIB variable for up time is called sysUpTime. It is conventional to call the difference between the current 
value and the previous value for the same parameter on the same device delta.  

Table 9-1 shows several different standard tests that are done by a network-management system. Some of 
these tests, such as the coldStart, linkUp, and linkDown events, are traps. Note that it is important to look 
even for good events such as linkUp because the device may have an interface that flaps. In this case, the 
traps saying that the interface has failed may be undelivered because of that failure.  

Table 9-1. Standard set of items to monitor 
Parameter MIB variable Test Comments 

Reachability ICMP (not SNMP) 
Time > N, 
% not 
responded 

All devices, including those that don't 
support SNMP 

Reboot coldStart Trap Indicates that the SNMP agent has 
restarted 

Uptime sysUptime delta < 0 Number of seconds since the SNMP 
agent started running 

ifOperStatus delta ! = 0 Shows that the status of the interface 
has changed 

ifInOctets Record The number of bytes received 
ifInDiscards delta > N Incoming packets that had to be dropped
ifInErrors delta > N Incoming packets with Layer 2 errors 

Interface Status (for every 
active Interface on the device) ifOutOctets Record The number of bytes sent 

ifOutDiscards delta > N Outgoing packets that had to be dropped

ifOutErrors delta > N Outgoing packets sent with errors 
(should always be zero) 

ifInNUcastPkts  delta > N Incoming multicast and broadcast 
packets 

ifOutNUcastPkts delta > N Outgoing multicast and broadcast 
packets 

linkDown Trap Indicates that an interface has gone 
down 

linkUp Trap Indicates that an interface has come up 

This set of variables tells the network manager just about everything she needs to know for most types of 
devices. Many other important MIB variables are specific to certain technologies, however. For example, 
parameters such as CPU and memory utilization are important, but these parameters are different for each 
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different hardware vendor. Consult the hardware documentation for the appropriate names and values of 
these parameters.  

For routers, one is usually interested in buffering and queuing statistics. Again, this information is in the 
vendor-specific MIB extensions. There are also certain technology-specific MIB extensions. For example, 
an 802.3 MIB extension includes a number of useful parameters for Ethernet statistics. Similarly, there are 
useful MIB variables for Token Ring, ATM, T1 circuits, Frame Relay, and so forth. In all of these cases, it 
is extremely useful to sit down and read through the MIB, looking at descriptions of each variable. In this 
way, one can usually find out if there is a convenient way to measure particular performance issues or to 
look for particular fault problems that may be unique to the network.  

9.3.3 Ad Hoc SNMP 

All of the SNMP polling I have discussed so far has been periodic and scheduled. However, the same 
SNMP server software can also do ad hoc queries. This means that the network manager can use the 
system to generate a single poll manually. This can be an extremely useful tool for fault isolation and 
troubleshooting. For example, this facility can quickly query a set of different devices to see which ones 
have high CPU loads, errors, or whatever you happen to be looking for. Using this facility is usually much 
faster than logging into all of these devices manually and poking around on the command line. In fact, the 
network-management software for many types of hardware makes it possible to do a large list of standard 
ad hoc queries on a device automatically.  

Many hardware vendors make SNMP software called instance managers. This software gives a relatively 
detailed, graphical view of the complete state of one device all at once. Usually, these instance managers 
also provide the ability to make configuration changes via SNMP as well.  

For Ethernet switches, it is often true that the instance-manager software is the fastest and most efficient 
way to do basic configuration changes such as manipulating VLAN memberships.  

This topic actually brings up one of the most serious issues with SNMP. With SNMP Version 1 and, to a 
lesser extent, with Versions 2 and 3, it is remarkably easy to subvert the security. It is not difficult to load 
publicly available SNMP server software onto a PC. This software can then be used to reconfigure key 
pieces of network equipment.  

Even nonmalicious users and applications can cause problems. For example, some ill-behaved server-
management software automatically attempts to discover the network path to the remote managed-server 
devices. In doing so, this software generally does detailed SNMP polling of key network devices. Once the 
path is discovered, this software then periodically polls these network devices as if it were managing the 
network instead of just the servers.  

This situation is not in itself a problem because the server-management software is only polling and not 
actually changing anything. Remember that the SNMP agent running on a router or a switch is a CPU-
bound software process. It uses memory from the main memory pool. If a server program repeatedly polls 
this device, requesting large parts of its MIB, it can overload the device's CPU. Many such programs all 
requesting this data at the same time can cause network problems.  

As I have stressed repeatedly throughout this book, there is no reason for any end device to ever have to 
know the topology of a well-built network. It may be necessary in these cases to implement access controls 
on the SNMP agents of key devices. These access controls have the effect of preventing the agent from 
speaking SNMP with any devices other than the officially sanctioned SNMP servers.  

Some network engineers go further and actually block SNMP from passing through the network if it does 
not originate with the correct server. However, this measure is extreme. There may be well-behaved 
applications that happen to use SNMP to communicate with their well-behaved clients. In this case, the 
network should not prevent legitimate communication.  
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9.3.4 Automated Activities 

SNMP allows much flexibility in how network managers deal with the network. They can set up the 
network-management server to automatically poll a large list of devices on a schedule looking for well-
defined measures of the network's health. If the results are within the expected range of results, then the 
server concludes that this part of the network works properly. If the result is outside of the expected range, 
then the server treats it as a problem and somehow prompts an engineer to investigate further. As a rule, it 
is best if these noninvasive monitoring and polling activities are done automatically without requiring any 
user intervention. It is a routine repetitive task—exactly the kind of thing that computers are good at. The 
server can do many different types of things automatically. It is particularly useful to download a copy of 
the configuration information for every device in the network. This downloading is usually scheduled to 
execute once per night or once per week in networks that seldom change.  

Sometimes a network device fails completely and needs to be replaced. When this happens, it is necessary 
to configure the new device to look like the one replaces. If the network-management server maintains an 
archive of recent software configurations for all network devices, then this task is relatively easy.  

Another good reason to maintain automatic configuration backups is to note changes. For example, many 
organizations automatically download the configurations from every router and every switch each night. 
They then run a script that compares each new image to the previous night's backup. This information is 
encapsulated into a report that is sent to a network engineer. Usually, the only changes are the ones the 
engineer remembers making. But a report like this can be an extremely useful and efficient way to discover 
if somebody has tampered with the network.  

All of these fully automatic processes are completely noninvasive. Some organizations also use a 
noninvasive suite of test scripts. These test scripts are executed automatically if the network-management 
software sees a potentially serious problem. The result of these automated tests can be helpful in isolating 
the problem quickly.  

Sometimes network managers want to partially automate invasive procedures as well. For example, it is 
relatively common in a large network to have a script automatically change login passwords on routers. 
This way, every router can be changed in a single night. With any sort of invasive procedure, it is usually 
wise only to partially automate it. A user should start the script and monitor its progress. That person 
should then verify that the change is correct.  

Some network managers go further and allow full automation of invasive procedures such as scheduled 
VLAN topology or filtering changes. In some cases, invasive scripts are run to reconfigure network 
devices automatically in response to certain failures. I do not recommend this type of automation; it is 
simply too dangerous in a complex network. Usually, the automated change assumes a well-defined 
starting point. However, it is possible to have an obscure problem in the network create a different initial 
configuration than what the automated procedure expects. This configuration could cause the scripted 
changes to give unexpected, perhaps disastrous, results. It is also possible to have an unexpected event 
while the reconfiguration is in progress. In this case, the network might be left in some strange state that 
requires extensive manual work to repair.  

A large network is generally such a complex system that it is not wise to assume that it will behave in a 
completely predictable way. There are simply too many different things that can happen to predict every 
scenario reliably. If weird things happen, you should be in control, rather than allow a naïve program to 
continue reconfiguring the network and probably make the problem worse.  
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9.4 Management Problems 

A number of design decisions can make network management more difficult. This doesn't necessarily 
mean that you should avoid these features, but it does mean that you need to be aware of their implications. 
It usually also means that you need to devise ways of working around the management problems that you 
create.  

For example, sometimes parts of the network are hidden from a protocol, as in a tunnel, for example. If an 
IP tunnel passes through a number of devices, then it becomes impossible to see the intermediate devices 
in-band. If there is a problem in an intermediate device, and if there is no external way to observe that 
device, then it is impossible to tell which intermediate device has a problem, much less what the problem 
is.  

In the example of tunnel-hiding intermediate devices, the most obvious workaround is to provide out-of-
band access. This may mean something as simple as IP addressing in a different range. Or, it may require 
something as complex as putting modems on serial ports for the inaccessible devices.  

Besides architectural features, certain network applications and protocols can create management 
problems. Again, I don't necessarily advise avoiding them, but the designer should be aware of the 
problems and provide alternatives.  

9.4.1 DHCP 

Dynamic Host Configuration Protocol (DHCP) is a system that allows end devices to learn network 
information automatically. In its minimal form, DHCP allows end devices to acquire IP addresses 
dynamically, while learning the correct netmask and default gateway. However, other important pieces of 
network information can also be conveyed by DHCP. For example, DHCP can tell the end device about its 
time zone, as well as the addresses for time servers (NTP), name servers (DNS), log servers, printers, and 
cookie servers. It can specify various network parameters such as timer values and MTU values. Literally 
dozens of different kinds of information can be conveyed by DHCP. It even has some open fields that 
convey special vendor-specific application parameters. For all of these reasons, DHCP can greatly assist in 
the management of end devices. The device can be set up anywhere in the network, and it will 
automatically discover the correct DHCP server and learn everything it needs to know to use the network.  

One problem with DHCP, however, comes from its ability to assign addresses out of a pool. The first 
device to be turned on in the morning gets the first address, the second device gets the second address, and 
so on. This is by no means the only way to configure a DHCP server. It can also be set up to look for the 
end device's MAC address and give out a unique predetermined set of parameters that will always be 
associated with this device. But a simple dynamic assignment from a pool of addresses is frequently used 
because it is easy to implement. The problem with doing this is that there is often no easy way to determine 
which device has a particular IP address. This situation can be corrected by linking the DHCP server to the 
DNS server. When the DHCP server gives out a particular IP address, it informs the DNS server to which 
device it assigned this address. Then there is a simple association between the device's name and address.  

However, even with a linking between DNS and DHCP, it can be difficult to do some types of fault 
isolation when IP addresses are assigned from a dynamic pool. In particular, when looking at historical 
records correlating IP addresses with actual devices can be difficult. This correlation becomes a problem 
when, for example, a server records in its logs that it has had network problems associated with a particular 
IP address. It can be extremely difficult to reconstruct which actual device this was. The only solution is to 
ensure that the DHCP server keeps a reliable record of historical data. It must be possible to determine 
which end device had a particular IP address at a particular point in time. This data has to be reliable at 
least as far back in history as any other logging information.  

When DHCP is configured to give addresses from a pool as they are required, it often creates confusion on 
network-management servers, even if there is a good link between DNS and DHCP systems. These servers 
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tend to maintain large databases of every device in the network. This information is usually discovered 
automatically by periodically polling ranges of IP addresses. If a particular IP address is associated with a 
particular DNS name when the device is discovered, the network-management software records that 
association permanently in its database. Then, at some later time, it may record an error associated with 
that IP address. However, it will often report this error as being associated with the previous DNS name, 
which is no longer accurate.  

Some network-management software provides methods to work around this problem. It is possible simply 
to provide a mechanism to look up the names dynamically each time they are required, for example. 
However, remember that this is not usually the default configuration and that there is potential for 
confusion.  

This first problem can be mitigated somewhat by setting the DHCP lease time to be extremely long. This 
setting allows each device to receive the same IP address each time it reboots. If the lease time is 
sufficiently long, the addresses become effectively static.  

Another problem with using DHCP is its actual operation in a large network. In many networks, it is 
common practice to tie a particular end device's configuration information to its MAC address. This 
method is useful, but it means that this information must be maintained carefully. If the Network Interface 
Card (NIC) in the end device is changed because of a hardware problem, then the DHCP database must be 
updated. Similarly, if this end device is moved to another location, the DHCP database has to reflect this 
new information as well.  

These situations are not really problems, but rather facts of life in this sort of implementation. However, 
they do represent a significant amount of work that is required each time maintenance work is done on an 
end device.  

9.4.2 Architectural Problems 

Some types of architecture can result in network-management challenges. By architectural problems I do 
not necessarily mean that these architectural features are bad. In fact, some of these features, such as 
firewalls and VLAN trunks, are extremely useful. We would not want to do without them. When we use 
them, though, we have to ensure that there are ways around the management difficulties. This section 
discusses some of these problems and suggests some solutions.  

9.4.2.1 VLAN structures 

Most modern LANs use VLANs and trunks. There are too many advantages to these features to avoid 
them. However, you should be careful about how you monitor trunks. A trunk link that contains many 
different VLANs treats all of these VLANs as a single stream of traffic. Consequently, if there is a physical 
failure, it takes out everything. However, there are two basic ways to implement the Spanning Tree 
protocol in a VLAN trunk. In the most common configuration, the whole trunk is replaced by a redundant 
trunk in case of a failure. But some vendors have features that allow Spanning Tree to operate on each 
VLAN separately. The principal advantage to this approach is that the backup link is configured to take 
some of the load during normal operation. However, determining which VLANs are using which trunks 
can be very difficult. Thus, if a problem involves a few VLANs is discovered, it might take a long time to 
determine that all affected VLANs happen to traverse the same trunk at one point in the network.  

Conversely, the design could employ a system in which each trunk has a backup that is unused except 
when the primary fails. In this case there is the danger of suffering a secondary trunk failure and not 
noticing the failure because it has not affected any production traffic.  

The best way around both of these problems is simply to provide the network-management system with a 
detailed view of the VLAN and trunk status for every switch. Furthermore, since most problems that occur 
will be physical problems of some sort, it is important to maintain physical monitoring of all trunk ports on 
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the switch. This monitoring is particularly critical for trunk backup ports because they do not pass traffic. 
Thus, you have to rely on the switch to tell you when there is a problem.  

For all higher-layer problems, it is useful to have protocol analyzers available to monitor the flow of traffic 
through the trunks. These devices are usually too expensive to deploy on every trunk. It is often possible to 
set up a system to allow probes to be patched manually into the required location quickly.  

In general, there are several issues to consider when managing VLAN structures. Some hardware vendors 
provide useful software that allow the manipulation and configuration of VLANs. Individual ports can be 
readily moved from one VLAN to another. This movement is useful, but configuration management is 
only part of what the network managers need to do. They also need to do fault and performance 
management on all switches and trunks.  

This management requires a system that allows you to readily determine where a given end device MAC 
address is connected. If you look in the MAC address tables of the switches, every switch that supports the 
right VLAN knows about the device. But if you have to locate it by following trunks from one switch to 
the next, it can be extremely time consuming. Some software can make this easy, but it shouldn't be 
asssumed.  

There also needs to be a method for monitoring trunk traffic. This means both the gross trunk utilization 
and the per-VLAN portions of that overall utilization. The total trunk utilization is important because it 
indicates when it is time to upgrade the trunks. It also shows where trunk congestion occurs in the network. 
The network manager also needs to know exactly how much of each trunk's capacity is consumed by each 
VLAN. Knowing this shows which groups of users are actually causing the congestion problems. Then 
you can decide if, for example, they should be moved onto a new trunk of their own to prevent their traffic 
from interfering with other user groups.  

This per-VLAN utilization is somewhat harder to determine. A good protocol analyzer can do it, and some 
switches include sufficiently powerful probes to do this sort of analysis.  

9.4.2.2 LAN extension 

LAN extension is a general term for providing a Layer 2 LAN protocol over a larger distance. This 
provision might be handled with dark fiber and a few transceivers and repeaters. Or, it could be 
implemented using a LAN bridge through some wide-area technology such as an ATM network.  

The reason why LAN extension represents a management problem is that the actual inner workings are 
usually hidden from view. For example, one particularly common implementation of a LAN extension is to 
use RFC 1483 bridging. This simple protocol allows encapsulation of all Layer 2 information in ATM. The 
customer of this sort of service sees only a LAN port on either end of an ATM PVC link, which makes it 
possible to deliver what looks like a Fast Ethernet connection between two different cities, for example. 
The problem is that there is no easy way to determine if a problem exists in this link. All internal workings 
of the ATM network are hidden from view. All the customer's network-management software can see is an 
Ethernet port on either end of the link.  

Ethernet link always remains up because the Ethernet signaling is provided by a port on an ATM/Ethernet 
switch that is physically located on the customer premises. Thus, there is no way to receive a physical 
indication of a failure.  

The only way to work around this management problem is to configure the network management software 
to poll through the LAN extension links periodically. Doing this configuration requires a detailed 
understanding of the PVC structure within the ATM network.  

Figure 9-1 shows an example ATM LAN-extension configuration. In this example, one central site talks to 
each of three different branch sites. To the device shown in the main site, all three remote devices appear 
to be simply on the same Ethernet segment.  
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Figure 9-1. Managing a LAN-extension network 

Now suppose that you suffer a failure in the ATM cloud that knocks out the PVC to Branch 1. The other 
two devices look fine, but you have lost contact with the first device. Most critically for network 
management, however, the server has not received a trap of any kind for this failure. In fact, it is almost 
impossible to issue a trap on this sort of failure. The only way to verify that the link is still available is to 
continuously poll through that link to the other side. This polling can be either SNMP or ping. Of course, 
even with this sort of active polling through the links, the only indication of trouble is a complete loss of 
the remote site. Many things could cause such a failure; power or cabling problems within the remote site 
can cause the same symptoms.  

The best you can do is to detect that there has been some sort of problem. More troubleshooting is needed 
before you can conclude that there was a PVC failure in the ATM cloud.  

9.4.2.3 Filtering 

Another common feature in networks—one that I have advocated earlier in this book—is filtering. You can 
filter traffic, or you can filter routing information. In IPX, you can also filter SAP information.  

Filtering represents serious potential problems for network management. In particular, if there are traffic 
filters, you should be sure that the network-management traffic is still allowed to pass.  

There are cases in which stringent filters have been implemented for security reasons. For example, an 
application vendor might need to place a semitrusted server on the inside of a customer network to deliver 
the service. The customer might react to this situation by placing the server behind a router with strict 
filtering to allow only the desired application to pass through. The problem is that, at some point, there will 
be a problem and somebody will need to troubleshoot. If the router filters out all traffic except application 
traffic and the application is not working, then the network engineer is left with no way of testing. Is the 
server hung? Is the application broken? Or, is there perhaps a problem with its network connection? There 
has to be a way to verify network connectivity to the server, and this usually means ping.  

For this reason, wherever traffic filters are employed, simple ICMP (ping) packets should be permitted 
along with the application. This way, the network-management system can at least determine if there is 
basic connectivity. What you lose in security, you more than make up for in the reliability that comes from 
swift problem analysis.  
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In IPX networks, SAP information is frequently filtered separately from route information. This filtering 
can cause a relatively common problem. It is possible for the route and SAP filters to be different in a 
subtle way. Either the SAP or the route is visible, but not both. When both are not visible, the network-
management staff must be able to track the flow of routing and SAP information through the network. 
Remember to follow the whole round trip. SAP information flows from the server out to the end devices. If 
the end device can see the server in its server list, then the SAP must have arrived safely. There is 
generally no need in general for workstations to send SAP information back to the server.  

Then you have to follow the routing information. Routes must exist on the workstation end that points to 
the server; routes must exist on the server end that point to the workstation.  

9.4.2.4 Firewalls 

The most extreme form of filtering is a firewall. A firewall is always called for in any location where 
devices on one network must communicate with devices on another untrusted network. In general, no 
routing information flows through firewalls. They are usually configured only with static routes. If any 
dynamic routing capabilities are available within a firewall, they should be restricted to BGP-4.  

It can be extremely difficult to manage devices on the other side of a firewall. The typical configuration 
involves putting a network-management server inside of the firewall and the device to be managed on the 
outside of the firewall.  

Firewalls are generally set up to allow just about anything to pass from the inside to the outside, but they 
strictly block inbound traffic. If you ping the device on the inside from the outside, you generally get no 
response. If you instead ping something on the outside from the inside, it usually works because the 
firewall knows to expect the returning ping response.  

Let's look at this process in a little more detail. The network-management server sends out some kind of 
poll packet. For the time being, suppose that it is a ping request packet. This packet is received by the 
firewall. Most firewalls translate the IP source address of outbound packets. Instead of having the real 
network-management server's IP address, the packet has the firewall's external address when it is sent 
along. The external device receives this poll packet and responds. It creates a ping response packet and 
sends it to the firewall's IP address. The firewall has been waiting for this particular device to respond. It 
remembers that it passed through a ping request for this device that originated with the network-
management server. Thus, it changes the destination address in the packet to the network management 
server's IP address and delivers the packet. If the external device had sent this packet without being 
prompted, the firewall would not know how to forward it internally, so it would simply drop it.  

Now suppose the network manager needs something more sophisticated than ping. The firewall can be 
configured to pass SNMP packets, so the same pattern follows. The network-management server sends a 
packet. The source address is translated and the packet is delivered to the external device. The external 
device responds and sends the packet back to the firewall, which forwards it back to the server. Everything 
works well. But what about traps? SNMP traps are a critical part of the whole network-management 
system, but these traps are never prompted by a request. So how does the firewall know where to forward 
the inbound packets?  

Many firewalls have the ability to define special inbound addresses. In effect, the outside of the firewall 
appears to have several different IP addresses. One of these addresses is configured to correspond to the 
network-management server. As long as the external device forwards its trap packets to this special address 
on the outside of the firewall, it is possible to deliver the addresses.  

Alternatively, it is possible on many firewalls to deliver unexpected inbound packets based on their port 
number. SNMP has a well-known UDP port number of 161 for polls and poll responses, and 162 for traps. 
It is easy to ensure that all inbound SNMP traffic is forwarded to the network-management server.  
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Another interesting problem occurs when managing networks through firewalls. Sometimes the address 
translation works in the other direction. That is, the network-management server sees translated addresses 
for everything inside the managed cloud. Some network address-translation devices are capable of doing 
this kind of wholesale address translation, giving every device a new unique address.  

This configuration especially appears in cases in which an external network-management service provider 
is used. The internal network may contain sensitive information and therefore require protection from the 
service provider by means of a firewall. The firewall may be configured to pass only SNMP and ICMP 
packets (and perhaps telnet, FTP, and TFTP for configuration-management purposes) and to translate all IP 
addresses in the internal network.  

This address translation may be used for a good reason. If the network-management service provider 
manages two large networks, there is a good chance that both of them use the common unregistered 
10.0.0.0 address range. If the service provider wants to see both networks properly, they have to do 
some address translation.  

This configuration leads to serious complications, however. Many types of SNMP packets include IP 
addresses in their data segments. An IP address is just one of many pieces of management information that 
could be sent. However, this means that the address in the payload of the packet is different from the 
address in the header of the packet because of address translation. This difference causes serious confusion 
in many cases. There is no clean workaround. The best way to handle this situation is simply to avoid it. 
The network-management service provider is advised to maintain a separate, disconnected management 
server for each client.  

In some cases, such as when managing sections of the public Internet, there may be security concerns 
about allowing SNMP through the firewall. In fact, there are security concerns about using SNMP at all in 
such hostile environments. Most frequently, the devices that are connected directly to the public Internet 
have SNMP disabled.  

Disabling SNMP presents a serious management problem, however. How can the network manager 
monitor a device that doesn't use SNMP? As it turns out, a lot of devices, particularly in legacy networks, 
do not use SNMP. In all of these cases, it is necessary to use out-of-band management techniques. Some of 
these techniques are discussed later in this chapter.  

9.4.2.5 Redundancy features 

Redundancy is one of the most important features of a robust network design. It is also one of the most 
dangerous because it makes it possible to get away with extremely poor network-management procedures. 
Suppose, for example, that you have a large network in which every trunk is redundant. If you have a trunk 
failure anywhere in the network, you suffer no noticeable application failure. This is a good thing, but that 
broken trunk now needs to be fixed. If you have another failure in the same area, you could have a severe 
outage. However, if you do not manage the network carefully, you might have missed the failure. After all, 
the phones didn't ring.  

There have been many cases of networks running for years on a backup link because nobody noticed that 
the primary had failed.  

Just as serious, and even less likely to be noticed, is a failure of a redundant backup when the primary was 
still working properly. Some network managers rely on interface up and down traps that indicate that the 
backup link or device was activated. This is certainly a good way of telling that the primary has failed, but 
there is no change of state if the redundant backup systems fail first.  

Both of these scenarios reinforce the same point. All systems and links, even redundant backups, should be 
monitored constantly.  
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Constant monitoring can be particularly difficult in the case of links that are protected by Spanning Tree. 
Spanning Tree disables links that are in the backup state. It isn't possible to just ping through these links to 
see if they are operational. The Spanning Tree protocol does keep track of the status of its disabled links, 
however. There is an SNMP MIB extension specifically for monitoring Spanning Tree.  

The MIB extension is called the dot1dStp (for 802.1d Spanning Tree Protocol) defined if RFC 1286. It 
contains specific entries describing the state of every port, dot1dStpPortState. The values that each port 
can have correspond to the various allowed states: disabled(1), blocking(2), listening(3), learning(4), 
forwarding(5), and broken(6). Using this SNMP MIB extension should provide all of the necessary 
information about the health of all redundant Spanning Tree links.  

The ideal management technique for these links is to configure automated periodic polling for the states of 
all Spanning Tree ports using this special dot1dStpPortState variable. This information, 
combined with the traps generated by Link State changes, give a good picture of all primary and backup 
links.  

9.4.2.6 Tunnels 

There are several tunneling protocols. Some, like DLSw, are used to tunnel foreign protocols through IP 
networks. There are also several ways of tunneling IP in IP.  

There are many reasons for tunneling IP in IP. Usually, they have to do with needing to pass transparently 
through sections of the network that are either externally controlled or lacking in some important feature. 
A common example of the missing feature problem is a legacy IP network that does not support the 
required dynamic routing protocol. Similarly, a device might need to take part in multicast applications. If 
it is located behind network devices that do not support multicasting, then it might be necessary to pass a 
tunnel through these devices to reach the multicast-enabled portion of the network.  

It is also relatively common to use tunnels to hide the network structure of a foreign network that traffic 
must pass through. For example, it may be necessary to interconnect two buildings by means of a network 
operated by a telephone company. If the telephone company's network is essentially an IP network, this 
company might deliver the service as a tunnel to hide their internal network structure.  

Another common type of tunnel is the ubiquitous VPN. In this case, an organization extends its private 
internal network to include a group of devices, or perhaps a single device, on the public Internet. VPN 
tunnels usually have the additional feature of being encrypted as they pass through the foreign network.  

To the network manager, however, tunnels represent a difficult problem. If a failure or congestion occurs 
anywhere in the hidden region, the only symptoms are either interrupted or degraded service.  

It is not possible to narrow down the problem any further than this unless there is another way to see the 
actual network devices that the tunnel passes through. If the tunnel passes through a foreign network that is 
managed by another organization, then you can simply pass the problem over to them. For tunnels that 
pass through internal pieces of network, it is necessary to have an out-of-band management system of 
some kind.  

9.4.3 Out-of-Band Management Techniques 

Out-of-band management means simply that user data and management data take different paths. There are 
many ways to accomplish this. Usually, when people use this term, they mean that the device is managed 
through a serial port. But it is useful to consider a much broader definition.  

Devices are managed out-of-band for three main reasons:  

• Many Layer 1 and 2 devices are incapable of seeing Layer 3 addressing. 
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• Some data streams contain untrusted data, so the devices should not be managed in-band for 
security reasons.  

• Some networks contain tunnels that hide the intermediate devices. These devices must be 
managed from outside of the tunnel.  

First, let's look at the simplest type of out-of-band management. Transceivers, modems, and CSU/DSU 
type devices are almost impossible to manage in band. This is because these devices function at the 
physical layer. They do not even see the Layer 3 signaling that would allow them to send and receive 
SNMP packets. They could be given this capability, but it would require that they look at all frames that 
pass through them. That generally means that a faster CPU is needed. It can also introduce serious latency 
problems.  

However, many of these types of devices can be managed through a serial port. In fact, in many cases, 
there is full SNMP (and even RMON, in some cases) support by means of a SLIP or PPP connection 
through an RS-232 serial port.  

Not all lower-layer devices must be managed out-of-band. Many Ethernet and Token Ring hubs are 
managed in-band, for example. These Layer 2 devices are typically managed by a special purpose 
management card. This card is connected to the network as if it were an external device, but it lives inside 
the hub's chassis. In this way, the card can monitor the functioning of the hub without interfering with it.  

Security presents another common reason for out-of-band management. The classic example is a router 
that is connected directly to the Internet. It is dangerous to allow such devices to respond to SNMP gets 
and sets. The security within SNMP is too simplistic to prevent a dedicated saboteur from modifying the 
configuration.  

Many small organizations with only one router on the public Internet can get away with SNMP 
management of the device. They can apply access-list restrictions that drop all SNMP packets coming from 
or going to the Internet. Many organizations also prevent ICMP packets, but these restrictions would not be 
applied to the internal network. These devices can then be safely managed in-band through the port that 
faces the private network.  

However, this strategy does not work for any organization with several devices connected directly to the 
untrusted network. If there are several such devices, then it is possible that the topology has become 
complex, with multiple different paths to the Internet. This complexity makes a simple path-based 
restriction impractical. Also, if several different devices are all connected directly to the untrusted network, 
it is possible to compromise one device and then use it as a base. From this base, the other devices can be 
compromised more easily. Thus, for all but the simplest connections, security restrictions mean that 
devices directly connected to the Internet should be managed out-of-band.  

It can be useful to think of a special variety of management that is only partly out-of-band. This is the case 
for any tunnel that contains IP traffic. The tunneled traffic does not see any of the intermediate devices. 
However, these hidden devices can be managed using IP and SNMP through the same physical ports that 
contain the tunneled data.  

For management purposes, there are effectively two types of tunnels. The tunnel can pass through a section 
of network that has directly accessible IP addressing. Or, the tunnel might pass through devices that cannot 
be reached in-band from the network-management server.  

In the first case, a tunnel might pass through a group of legacy devices. This could be necessary because 
the legacy devices do not support the preferred dynamic routing protocol, such as OSPF. Or, it may be 
necessary because they do not support some key part of the IP protocol that is required for the data stream. 
This might be the case if there are MTU restrictions on the application, or if there are special QoS or 
multicast requirements. Or, maybe the tunnel is there to trick the routing protocol into thinking that a 
device is in a different part of the network, such as a different OSPF area. However, in these cases, the 
tunnel passes through devices that are managed in-band. They are part of the same IP-address range and 
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the same Autonomous System (AS). In effect, these devices are managed out-of-band from the tunnels, but 
through the same physical interfaces that tunnels use. In this case, the management is essentially in-band.  

There are also times when a tunnel passes through a different AS. The devices in the other AS could even 
be part of a distinct group of IP addresses that the network cannot route to directly. This is where the line 
between in-band and out-of-band becomes rather blurred.  

This construction is relatively common when a network vendor uses an IP-based network to carry the 
traffic of several different customers. They can get excellent fault tolerance through their networks by 
using dynamic IP-routing techniques, but they must prevent the different customer data streams from 
seeing one another. This prevention is easily done by simply passing tunnels through the vendor's network 
Core. The vendor places a router on each of the customer's premises and terminates the tunnels on these 
routers. Thus, no customer is able to see any of the Core devices directly, nor even the IP-address range 
used in it. In fact, the IP-address range in the vendor's Core can overlap with one or more different 
customer-address ranges without conflict. Everybody can use 10.0.0.0 internally, for example, 
without causing routing problems.  

In this case, however, the customer would not do out-of-band management on the vendor's network. It 
should be managed by the vendor. I mention this configuration, though, because sometimes an 
organization must be this sort of vendor to itself. This happens in particular during mergers of large 
corporations.  

In effect, all of these different options come down to management through either a LAN port or through a 
serial port. Management through a LAN port effectively becomes the same as regular in-band 
management. The only difference is that it might be necessary to engineer some sort of back-door path to 
the managed LAN port. However, management through a serial port always requires some sort of special 
engineering. Serial-port management is usually done in one of two ways. In some cases, a higher-layer 
protocol can run through the serial port using SLIP or PPP. In most cases, there is only a console 
application available through this port.  

If SLIP or PPP options are available, they can make management of these devices much easier. I 
recommend using it wherever possible.  

Figure 9-2 shows one common configuration for out-of-band management using a SLIP link.[1] The 
managed device is not specified, although it could be a CSU, a microwave transmitter, or any other lower-
layer device that does not see Layer 3 packets directly.  

[1] The example indicates the use of SLIP on the serial link, but any other serial protocol, such 
as PPP or HDLC, would work in exactly the same way. I specifically mention SLIP because it is 
common for this type of application. 

Figure 9-2. Out-of-band management using a SLIP link 
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In this case, a low-speed serial port on the router is configured for SLIP. A serial cable is then connected to 
the management port on the device. As anybody who has set up such a link will attest, there are many ways 
to misconfigure such a setup. Usually, SLIP links assume asynchronous serial connections. Conversely, 
most router serial ports are synchronous by default. Thus, the router's port must be configured to operate 
asynchronously.  

SLIP creates a point-to-point IP link over the serial line. Therefore, both ends must have IP addresses and 
the managed device must have its default gateway configured to point to the router's address on this link. 
Usually, the managed device will not run nor need to run any dynamic routing protocols, so ensure that 
these are turned off on the router for this port. However, the router needs to distribute the route to this 
device into the dynamic routing protocol so that the management server knows how to reach it.  

In many cases, the managed device uses the same physical serial port for SLIP that it uses for regular 
console connections. It is important to ensure that the port is configured for SLIP rather than console mode 
before connecting. This configuration usually just involves connecting a terminal to the console and 
switching the mode, then disconnecting the terminal and connecting the router in its place.  

With any serial connection, make sure that the DTE and DCE relationships are made correctly. This 
relationship is not just the physical pins on one end the cable being male and female on the other. It also 
specifies which pins are used for sending and receiving. The relationship becomes more involved for 
synchronous connections, in which you also have to worry about which device provides the clock signal. 
In most cases, the manufacturer assumes that the device is talking to a modem. Modems are always DCE, 
so the serial interface on the device is almost always DTE. Thus, the router must be configured to be DCE.  

Once this has all been done properly, it should be possible to do SNMP management of the device. It will 
have an IP address, and it should respond to ping and SNMP polling. Some of these devices also support 
telnet to allow a remote-console connection.  

For SNMP management, remember to set up the network-management station as the SNMP on the device. 
This usually does not restrict polling, but rather specifies where the device will send traps when it sees 
important error conditions. In general, it is a bad idea to specify a large number of trap recipients. One or 
two should be sufficient.  

If too many trap recipients are specified, then each time the device encounters a serious problem, it has to 
send trap packets to all the devices. Over a slow serial line, sending these packets can take a relatively long 
time, perhaps as long as a second or more. In a disaster situation, this is a very long time, and it may mean 
that the device is unable to send the trap to every recipient. It may also mean that the device's CPU is 
temporarily overloaded by creating and sending traps, which could worsen disaster situation.  

For devices that do not support SLIP or PPP, remote out-of-band management can become messy. 
Somehow, there has to be a console connection between the device's console serial port and the network-
management server. If there are more than a few of these devices or if they are physically remote, it is not 
practical to use direct serial cables. Thus, you have to come up with other methods for making these 
connections. Once you have these physical connections, you need to have a way to use them automatically. 
As I said earlier in this chapter, all network monitoring should be automated, and it should have a way to 
report problems to humans for investigation.  

Some network-management software provides the ability to build arbitrary scripts for managing 
nonstandard devices. If there is a way to connect physically to a device, the software has a way to ask that 
device about its health. In most cases, the network manager would then automate this script to run every 
few minutes. If there are no problems, the result is simply recorded in a log. If the device reports an error 
condition of some kind, it can trigger an alarm to allow a human to investigate.  

This fact alone indicates why having hardware standards is so important. If you have a thousand identical 
devices that you have to manage this way, you can do it all with the same script. You can also afford to 
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take the time to make this script robust and useful. However, if you have a thousand different devices from 
different hardware vendors, coming up with a thousand such scripts is impractical.  

Physically, there are two main ways to create these out-of-band physical connections. For remote 
locations, the best method is simply to attach a modem to the console port. This attachment allows the 
device to be contacted for maintenance even if the primary network is down. It is also problematic because 
the server cannot do a frequent poll of the device's health.  

Doing regular polling of serially managed devices requires a way to get this serial data into the network's 
data stream. A convenient device for doing this is called an inverse terminal server. An inverse terminal 
server is in many ways very similar to a normal terminal server. In fact, many commercial terminal servers 
are able to function as inverse terminal servers as well. Some low-speed multiport routers can also be used 
for this purpose.  

A terminal server has a LAN port and one or more serial ports. They were once extremely common, as 
they provided a way to connect dumb terminals to the network. Each terminal would connect to a serial 
port on the terminal server. Then, from the terminal server, the user could use a text-communication 
protocol, such as telnet, to connect to the application server.  

An inverse terminal server is similar, except that it makes connections from the network to the serially 
connected devices, rather than the other way around. Usually, this server works by making a telnet 
connection to the IP address of the terminal server, but on a special high-numbered TCP port that specifies 
a particular serial port uniquely.  

As Figure 9-3 shows, you can use an inverse terminal server to manage a number of different devices 
through out-of-band serial connections.  

Figure 9-3. Out-of-band management using an inverse terminal server 

The network-management server is configured to telnet to the appropriate set of IP address and TCP ports 
that represent a particular device. It then runs a script that queries the device about its health.  

As noted previously, when connecting a serial console port to a router, you have to be careful to configure 
the DCE and DTE relationships properly. However, unlike the SLIP example, in the case of text-based 
console ports, there is no common standard for the gender of the console connection.  

In some cases, the console port is DCE; in other cases, it is DTE. There are even pathological examples in 
which the gender of the cable does not match the Layer 1 signaling on the port. For example, it may be a 
female (DCE) connector physically, but with DTE pin arrangement. In this case, it is necessary to use a 
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null-modem adapter with the cable to convert DCE to DTE instead of just swapping female to male 
connectors.  

In other cases, you need to convert the gender, as well as the DCE/DTE relationship. There are no set rules 
to make this conversion. Therefore, it is usually a good idea to have a supply of gender-changer plugs and 
null-modem adapters on hand. To make matters worse, some devices require special cables because they 
use extra or nonstandard RS-232 signaling. Others do not use RS-232 standards. Consult the 
documentation of the device being connected.  

With many inverse terminal server devices, it is possible to also run SLIP or PPP on the various serial 
ports. In this way, you can combine several console ports on one inverse terminal server. Since a network-
management failure never affects service, it is not necessary to build redundancy. This permits the inverse 
terminal server to act as a router for several very slow links. The network-management server can then do 
direct SNMP polling to the out-of-band devices. Of course, if you can do SLIP or text-based console 
connections through an inverse terminal server, you can do a combination of the two. This configuration 
can provide a useful way of managing a group of these devices. For example, several CSU devices, 
firewalls, and other hard-to-manage devices may exist in the same computer equipment room. By running 
serial cables to a common inverse terminal server, it is possible to provide convenient secure management 
to all of them at once.  

The advantages of remote modem access can be combined with the ability to do periodic polling out-of-
band. Most inverse terminal servers provide the ability to connect a modem to one of the ports, as shown in 
Figure 9-3. This connection allows periodic polling of the console ports of the various serially attached 
devices through the network. If a serious network failure leaves this part of the network unreachable, the 
network manager can still get to it by dialing to the modem.  

With SLIP-type connectison on an inverse terminal server, you will definitely have a DCE/DTE issue with 
the ports. As I said earlier, usually the SLIP port on the managed device expects to talk to a modem, so it is 
usually DTE for the modem's DCE. Those ports on the inverse terminal server connecting to SLIP 
managed devices will likely be configured as DCE. However, the port that connects to the modem have to 
be DTE. As always, have a handful of gender changers and null-modem adapters on hand whenever setting 
up this sort of configuration.  

One final issue should be mentioned when connecting modems or terminal servers to a console port. This 
connection can represent a serious security problem on many devices. Most pieces of network equipment 
provide the ability to override the software configuration from the console during the boot sequence. This 
override is frequently called password recovery.

Password recovery means that an intruder can take advantage of a power failure to take control of a 
network device. From there, it might be possible to gain control of other network devices, perhaps even the 
Core of the network. Gaining control of these devices is a lot of work, requiring a skilled attacker, but it is 
possible. For this reason, some network-equipment vendors (particularly Cisco) actually include two serial 
ports, one called Console and the other Auxiliary. The Console port, but not the Auxiliary port, can be used 
for password recovery. In this case, it is safest to connect any out-of-band management equipment to the 
Auxiliary port.  
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Chapter 10. Special Topics 
This chapter deals with a few other topics that are too important to leave out, but didn't readily fit into 
other parts of this book: IP multicast, IPv6, and security. Not every site needs to employ these topics 
initially. To varying extents, they can all be retrofitted into existing networks.  

10.1 IP Multicast Networks 

Most TCP/IP applications operate like a telephone conversation. That is, one device makes a connection 
with another, they exchange information, and then they disconnect. This activity is appropriate and 
efficient for some types of applications. Allowing any device to call up any other device avoids the 
overhead of maintaining a mesh network in which every device is permanently attached to every other.  

There are some types of applications that do not work well in this telephone-call model, though. For 
example, it would be extremely inefficient to run a radio station this way. Radio stations work by 
broadcasting a single signal. This common signal is received by many end devices simultaneously. Thus, 
everybody who listens to this station hears the same news or music at the same time. It would be extremely 
inefficient if this simultaneous broadcast required sending the same signal separately to every device.  

Sending the same signal thousands of times is not only inefficient on the server; it also uses the network 
bandwidth poorly. Radio and television broadcasting are effective partly because the signals are sent only 
once. Sending the signals once allows a much higher-quality signal to be transmitted than what would be 
possible if the available bandwidth had to be broken into a separate channel for every listener or viewer. 
All receivers share the same signal and the same bandwidth.  

IP networks have exactly the same problem of limited bandwidth resources, so the IETF has developed a 
set of standards that allow for multicast IP applications.  

There are three parts to a successful implementation of a multicast application. First, the server and the 
application must have a sensible way of sending multicast information. This means in part that the 
application must have enough duplication of information that it makes sense to send it as a multicast.  

Second, the network must be able to handle multicast traffic. There are many subtle aspects to this ability. 
The multicast information should reach only those devices that want to see it to avoid wasting the 
resources of devices that don't care about this application. The network needs a way to duplicate the flow 
whenever it hits a fork in the road. The network also needs some way of figuring out which end devices 
listen to each multicast stream so that it can deliver them appropriately.  

Third, the end devices that receive the multicast data need a way to identify this traffic and process it into 
something meaningful. By definition, it is not addressed to them directly. Yet somehow it must be 
addressed so that only those devices that listen in on this data stream will pick it up.  

10.1.1 Multicast Addressing 

Chapter 5 pointed out that the range of IP addresses from 224.0.0.0 to 239.255.255.255 is 
reserved for multicast addressing. Chapter 4 noted that in Ethernet, the lowest bit in the first octet of any 
multicast Ethernet MAC address is always 1.  

The IETF reserved a block of Ethernet MAC addresses for IP multicast purposes. The addresses fall into 
the range spanning 01:00:5E:00:00:00 to 01:00:5E:7F:FF:FF. Looking at this in binary, 
23 bits can be used to express each multicast address uniquely. That is, there are 2 full 8-bit bytes plus 7 
bits of a third byte.  
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However, in the multicast range of IP addresses, there are three full bytes plus four bits in the first byte of 
the address. So this gives a total of 28 bits to specify unique multicast IP addresses. No matter how these 
IP addresses are encoded into MAC addresses, there will be some overlap.  

The rule for converting between multicast IP addresses and Ethernet MAC address is to copy the 23 
lowest-order bits of the IP address into the 23 lowest-order bits of the MAC address. For example, the 
multicast IP address 224.0.0.5 is used by OSPF for routers to update one another efficiently. The 
corresponding MAC Ethernet address is 01:00:5E:00:00:05. However, there could easily be a 
multicast application using a multicast IP address of 225.0.0.5, or even 224.128.0.5. The 
corresponding Ethernet MAC addresses for both of these addresses are exactly the same as the OSPF 
address, 01:00:5E:00:00:05.

This situation is not a problem because the IP protocol stack on the device that is listening for OSPF 
updates always checks the IP address to make sure that it has the right data stream. The same end device 
can even take part in both applications because the multicast protocol simply delivers the two data streams 
to the appropriate applications by using their destination IP addresses.  

For Token Ring networks, the addresses come from a similar rule, but with a different byte ordering. The 
byte-ordering rule for converting Ethernet to Token Ring addresses is discussed in Chapter 4.

As discussed earlier in this book, there are IP-address ranges that anybody can use anywhere for any 
purpose, provided that they don't appear on the public Internet. These address ranges, like 10.0.0.0,
allow network designers to develop flexible, internal addressing standards.  

The same is also true for multicast IP addresses. The range of IP multicast addresses from 239.0.0.0 
to 239.255.255.255 is reserved for "administratively scoped multicast" purposes. This means that 
these multicast addresses are purely local to a network. No multicast applications using an address in this 
range can pass into the public Internet.  

In addition to this address block for administratively scoped multicasting, there are a two other important 
blocks of multicast IP addresses. For multicast traffic that is local to a segment and used for low-level 
network-topology discovery and maintenance, such as OSPF and VRRP, there is a block of addresses from 
224.0.0.0 to 224.0.0.255.

However, all other well-known multicast applications are assigned addresses in the range from 
224.0.1.0 to 238.255.255.255. These addresses must be registered to be used—in contrast to 
the administratively scoped multicast addresses, which can be used freely. A current list of registered 
multicast addresses can be found online at http://www.iana.org/assignments/multicast-addresses/.  

10.1.2 Multicast Services 

The way a multicast application works is relatively simple in concept. It is quite similar to the earlier 
example of a radio transmission. The server has a designated multicast IP address for the application. 
When it wants to send a piece of information to all of the listening devices, it simply creates a normal IP 
packet and addresses it to this designated multicast IP address. The network then distributes this packet to 
all devices that take part in this multicast group. The server generally knows nothing about who those 
group members are or how many there are. It just sends out packets to these multicast addresses and relies 
on the network to deliver them.  

The most common type of multicast application operates in a simple one-to-many mode. That is, a central 
server sends the same information to a large number of client devices. This server might send out stock 
quotes or news stories, for example. Each time it has a new piece of information to disseminate, it just 
sends it out in a single multicast packet to the common multicast IP address.  
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The listening devices have some special work to do, however. Usually, an IP device just listens for its own 
IP address and its own Layer 2 MAC address. When an appropriately addressed packet comes along, it 
picks it up and reads it. If this device takes part in one or more IP multicast applications, it must also listen 
for these multicast IP addresses and the corresponding multicast MAC addresses. Conceptually, this is not 
difficult to understand, but it means that these devices need to have special multicast extensions to their IP 
protocol stack. Thus, not all end devices are capable of running multicast client software.  

The listening devices can receive the multicast packets in two ways. They might be on the same Layer 2 
medium (the same Ethernet segment, for example), in which case they receive the multicast packets 
directly. Or, they might be somewhere else in the network, in which case the network has to figure out a 
way to get the packet to the clients.  

The network knows where the clients are by using the IGMP protocol, which is discussed in the next 
section. That protocol only works once the clients and the server know about the multicast IP address for 
this application. This address can be assigned statically, as in the previous OSPF example.  

Multicast applications are deployed dynamically in some cases. This deployment requires another protocol 
that is responsible for dispensing and managing multicast IP addresses, similar to how DHCP dispenses 
and manages normal IP addresses. The protocol for doing this is called MADCAP. It is defined in RFC 
2730.  

Some organizations might find it useful to use dynamically assigned, multicast IP addresses. However, 
there is significant overhead in using MADCAP, just as there is in DHCP. It requires the existence of one 
or more specialized MADCAP servers to manage and dispense these addresses. Of course, these servers 
must be maintained, just as DHCP servers are. Before deploying a MADCAP server, it is important to 
figure out how frequently the organization needs to allocate dynamic multicast IP addresses. In many 
cases, it is easier to simply work with static addressing.  

There is one important multicast example that makes extensive use of dynamic multicast addresses. This is 
the general class of conference-type applications. In this case, a large number of end devices wish to share 
data with one another, similar to a telephone conference call or a mailing list. In this case, all (or many) of 
the devices either send or receive data to the multicast group address. There is no central server in this 
configuration, as it is the multicast equivalent of peer-to-peer communication. To let these conference 
groups spontaneously form and then spontaneously disband again, it is necessary to use dynamic multicast 
addressing. This, in turn, requires one or more MADCAP servers to manage this dynamic addressing 
process.  

Note that multicasting in IP is always essentially one-way communication. Each multicast server is the 
base of a tree. The leaves of this tree are the devices that listen to the multicast. There is no backward 
communication from the client to the server. If the application requires that the multicast client devices talk 
back to the server, then this must be done through some other method. A common example would be to 
use standard unicast UDP packets to communicate from the client to the server. In that case, each device 
that can send multicast packets to the group is itself a root to a multicast tree.  

The point is that the network must work out each of these paths separately. The existence of more than one 
server talking to the same group means extra work for the network in determinining how the downstream 
relationships work.  

Also note that the multicast server is not necessarily a member of the multicast group. If it is a member, 
then it will receive the packets that are sent to all group members, including the ones that it sends.  

In an application with one multicast server, it would be quite reasonable for this server to not be a member 
of the group. However, if there are several servers, then it might be useful to the application if these 
different servers kept track of what information the others were sending.  
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10.1.3 IGMP 

The protocol that handles multicast group membership is called Internet Group Management Protocol 
(IGMP). It is currently in its second version, which is defined in RFC 2236. A third version is currently 
under development, but is not yet published.  

IGMP operates locally between end devices and their first-hop routers. Some version of IGMP is required 
on every device that supports IP multicast functionality.  

The basic operation is relatively simple. When an end device wishes to join a multicast group, it sends a 
multicast packet to the local LAN segment reporting that it is now a member. If this device is the first 
member of the group on that segment, then the router has to start forwarding multicast packets for this 
group onto this segment. IGMP doesn't tell the router how it should find this multicast group if it isn't 
already receiving it. That router-to-router functionality is the responsibility of other protocols such as 
MOSPF and DVMRP.  

Periodically, the router polls the segment to find out if all members of a group have stopped listening. If 
there are no responses for a group, then it stops forwarding multicast data for that group.  

The idea is simply to avoid congestion that would be caused by sending all multicast packets everywhere 
in the network. IGMP makes it possible to restrict multicast traffic to only those LAN segments where 
devices listen to that specific multicast data stream. The router doesn't keep track of which specific devices 
are members of which groups. It only registers that there is at least one member of a group. As long as 
there is one member, it forwards the group's multicast data stream.  

The main differences between Versions 1 and 2 have to do with groups that change membership quickly 
and bandwidth-intensive multicast applications. If the membership in a group changes quickly, it can be 
difficult to know when the last member of the group left. Thus, IGMP Version 2 includes a number of 
features to help with this termination process. This process is particularly important for multicast groups 
that consume large amounts of bandwidth. For these applications, the network needs to keep track of 
membership very closely. Keeping track of it allows the network to conserve bandwidth resources that 
would otherwise have been consumed by this heavy data stream.  

Versions 1 and 2 interoperate well. It is possible to have a mixture of both Version 1 and 2 routers and end 
devices on the same LAN segment without causing problems. The segment is not able to gain the full 
benefits of Version 2 in this case, however.  

A third version is currently under development. Although it has not yet been published, at least one router 
vendor has already started to release equipment that uses this new version. Version 3 includes new features 
to restrict which devices are allowed to send multicast data streams. The receiving devices can specify 
multicast servers by their source IP address. Specifying these servers has security benefits, as it makes it 
more difficult for unwanted devices to act as multicast servers. A malicious multicast server can insert 
unwanted data into another multicast data stream. In most security-sensitive multicast applications, the 
data stream is encrypted. This encryption makes it difficult for the malicious server to insert bad data. 
However, it is still possible to use this technique to launch a denial-of-service attack.  

The new features of Version 3 also make it possible to optimize bandwidth better by restricting which 
multicast servers are received on which LAN segments.  

Although it is not the best way to solve the problem, source-address restrictions of this kind can be used to 
help enforce scope. This issue is discussed later in this chapter.  

One of the most useful recent developments in multicast networking is the ability to run IGMP on LAN 
switches, as well as routers. If devices are connected directly to switch ports, then, ideally, the switch 
should forward only multicast traffic for the groups to which each device belongs. Suppose, for example, 
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that a switch connects to four devices that receive multicast data, as shown in Figure 10-1. The device on 
Port 1 receives group 239.0.1.15. The device on Port 2 receives 239.0.1.16. The device on Port 
3 receives both of these groups, and Port 4 has no multicast membership.  

Figure 10-1. A simple multicast network 

If the switch understands the IGMP packets as these devices join their respective multicast groups, then it 
can forward the multicast data selectively. If the switch doesn't understand IGMP, then all four devices 
will see all of the multicast traffic. This is not a problem for Port 3, which sees both groups anyway, but 
Port 4 doesn't require any of this traffic. Ports 1 and 2 only want to see the groups to which they belong. 
This is particularly useful in a VLAN environment, where there can be large numbers of devices sharing 
the same broadcast domain.  

Not all switches support IGMP, but it is an increasingly popular feature. It is most frequently seen on 
switches that have other Layer 3 functionality, such as Layer 3 switching.  

10.1.4 Group Membership 

Although IGMP does a good job of managing groups at the network layer, it does not include application-
level functionality. That is, it allows individual devices to join existing groups only if they know the 
multicast IP address corresponding to that group. It does not provide a way for users to find out what 
multicast services are offered. It cannot determine the dynamically generated, multicast IP address for a 
particular application. Suppose, for example, that a user wants to join a multicast group that disseminates a 
news service. This service might be set up so that it always uses the same multicast IP address. In this case, 
the application can simply have this static address hardcoded into its configuration. If this application uses 
dynamically generated addresses or if the client application simply doesn't know the multicast address, 
then none of the protocols discussed so far provide a way for it to learn this information.  

This deficiency is well known, and a group within the IETF called the Multiparty Multimedia Session 
Control Working Group (MMUSIC) is currently working on solving it. The focus of this group is to 
develop protocols that are appropriate for large-scale multimedia applications. Small-scale applications do 
not have the same scaling problems as large-scale applications. If there are only three clients to a server, 
then it is much easier to build the application so that the server simply talks to the clients directly.  

The reason for the focus on multimedia applications is simply that the applications are the most likely 
areas where multicast transmission will be useful.  

MMUSIC currently has several higher-layer protocols in development used to manage groups and their 
members. The problems have been broken down into a number of key phases such as group creation and 
destruction, announcing new groups, and inviting members to join. To accomplish this task, they have 
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worked on protocols such as Session Initiation Protocol (SIP), Session Description Protocol (SDP), and 
Session Directory Announcement Protocol (SDAP). As of the time of writing this book, these protocols 
were still not fully adopted as standards, and there were no available commercial products based on them.  

For the time being, multicast applications must rely on other methods for handling group membership. 
Thus, most applications currently work with static addressing, or the clients query a known server to find 
information about the multicast groups it currently uses.  

10.1.5 Multicast Routing 

Routing of multicast traffic is different from standard IP routing. Because multicast traffic is essentially 
one way, the network only cares about how to route traffic from the multicast server to the various 
listening devices. All devices share the same multicast IP address. They are scattered throughout the 
network randomly. To make the problem harder, these end devices can join and leave multicast groups as 
often as they like.  

The edge routers communicate with the end devices directly using IGMP. These routers always know 
which multicast groups they need to forward. In a large network, there is a significant possibility that the 
edge routers are not already receiving this multicast group. In this case, these routers have to have a way to 
look for the required groups from other routers in the network.  

A few multicast routing protocols have been developed to allow routers to find and forward multicast 
groups as required. The most popular protocols are Multicast OSPF (MOSPF), Distance Vector Multicast 
Routing Protocol (DVMRP), and Protocol Independent Multicast (PIM). It is not possible to implement a 
multicast network involving more than one router that doesn't involve such a protocol.  

Not all of the following were considered official standards at the time of writing this book, however. 
Therefore, it may prove difficult to find commercial equipment that supports one or more of them. For all 
of its promise, IP multicast networking is still in its infancy.  

10.1.5.1 MOSPF 

MOSPF is a set of extensions to OSPF that efficiently handles routing of multicast traffic. As in OSPF, 
MOSPF is a Link State algorithm. All multicast routers in an MOSPF area have identical copies of the 
Link State database. The Link State database for conventional OSPF keeps track of the status of the 
various IP connections on all routers in the area. In MOSPF, on the other hand, the Link State database 
keeps track of where all of the multicast group members are. For each multicast group, there are one or 
more servers and one or more group members. Every router running MOSPF builds a shortest-path tree not 
from itself, as in OSPF, but from the source to all of the destinations. In this way, MOSPF builds a reliable 
and loop-free multicast routing table for every group. This table updates dynamically as the group 
membership changes.  

At many points in this shortest-path tree, there will be branch points where the same packet has to go to 
two downstream neighbors. MOSPF attempts to minimize the number of branch points, using common 
links wherever possible. At a certain point, however, it is necessary to split these data streams.  

MOSPF takes care of not only the routing, but also tells the router where and how to forward and duplicate 
packets. This information will be different for every different multicast group. The branch points will 
change as group membership changes. The packets for each group are only forwarded down links that lead 
to group members. Bandwidth efficiency means that this information should not be sent anywhere it isn't 
needed. All of this information must be dynamically updated.  

One of the biggest advantages to MOSPF is that it scales well over large networks, just like OSPF. It also 
interoperates well with OSPF. Thus, MOSPF is a natural choice for the multicast dynamic routing protocol 
in any network that already uses OSPF.  
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10.1.5.2 DVMRP 

DVMRP is, as the name suggests, a distance vector protocol. It was the first dynamic, multicast routing 
protocol. As such, it is missing many useful features and optimizations that are available in later protocols. 
However, it is simple and easy to configure in most networks, especially for networks that use another 
distance vector protocol such as RIP or IGRP, for regular IP routing. It may be the most natural choice in 
these cases.  

DVMRP uses IGMP as one of its basic tools. When an end device joins a multicast group, it informs its 
local router using IGMP. This router then uses IGMP to tell all of its neighbors that it, too, is a member of 
this group. Then, to eliminate loops, DVMRP takes advantage of the fact that the path back to the source is 
unique. It assumes that this same path can be used in the forward direction as well. Using it in the forward 
direction allows each router to calculate the best path back to the source. It can then simply request 
multicast packets for this group from whatever router is one hop closer to the multicast source.  

Unfortunately, DVMRP suffers from many of the same scaling problems as other distance vector 
protocols. It is probably not the best choice in a large network.  

 

10.1.5.3 PIM 

PIM can operate either in dense or sparse mode. Dense mode means that routers send all group 
information to all neighbors. They then prune back the links that do not require particular groups.  

Dense mode is efficient when there are relatively few groups and when membership is widespread 
throughout the network. However, if the network supports a large number of dynamic multicast 
applications, dense mode is extremely inefficient. (Technically, DVMRP is also considered a dense-mode 
protocol.)  

In sparse mode, on the other hand, individual routers send their neighbors explicit messages asking that 
they be included or excluded from forwarding particular groups, as downstream devices join or leave these 
groups. Protocol Independent Multicast—Sparse Mode (PIM-SM) is defined in RFC 2362. This protocol is 
much more complex than either MOSPF or DVMRP. It includes the ability, for example, to switch from a 
semistatic forwarding structure based on "rendezvous points" to a dynamic shortest-path tree depending on 
traffic volume. This switch can be made on a group-by-group basis, according to a locally configured 
volume trigger.  

PIM-SM scales very well to large networks, although setting it up is complicated. This protocol is a good 
choice for a large network whose unicast IP routing protocol is not OSPF. EIGRP networks, for example, 
are good candidates for PIM-SM multicast routing.  

10.1.5.4 BGMP 

Since most of the unicast routing information through the public Internet is maintained with BGP, the 
IETF has added multicast extensions to this protocol as well. The extended protocol is called Border 
Gateway Multicast Protocol (BGMP). However, the public Internet does not fully support multicast 
routing yet. Isolated pockets of the Internet do support it, including an experimental multicast backbone 
called MBONE. The main use of BGMP is to enable inter-Autonomous System multicast routing within an 
organization. In this case, it is often easier to simply use DVMRP or PIM instead.  
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10.1.6 Network-Design Considerations for Multicast Networks 

If a network is going to support multicast traffic, it is a good idea to carefully evaluate which protocols will 
be used. This decision depends on what protocols are used in the handling of regular unicast traffic, as well 
as the nature of the applications. In particular, if a network uses OSPF for its unicast routing protocol, it is 
natural to use MOSPF for the multicast routing. These two protocols interoperate well. It is not even 
necessary to convert all routers in the network. Conversion can be done in stages.  

However, there is one important case when OSPF and MOSPF can cause problems for one another. On 
any LAN segment that holds several OSPF routers, one of these routers will become designated router 
(DR) for the segment. A second router will become backup designated router (BDR), and the others will 
have no special status. The DR router will then handle all Link State flooding for the segment, and it will 
also summarize all routing information for this segment to the rest of the network. The DR for OSPF will 
also be the DR for MOSPF.  

So if a segment has a mix of OSPF and MOSPF routers, it is critical that an MOSPF router must be the 
DR. Otherwise, no multicast routing will be correctly handled on this segment. This routing is easily 
handled by setting the OSPF priorities to zero for all non-MOSPF routers on the segment.  

Other than this, MOSPF can be easily deployed to any network that already runs OSPF. The area 
structures, including the Area Border Routers (ABRs), and Autonomous System Border Routers (ASBRs) 
all map readily from one to the other. Naturally, this implies that if multicast traffic is to flow between 
areas, the ABRs must run MOSPF.  

Similarly, to allow multicast traffic to flow between Autonomous Systems (ASes), the ASBR devices must 
also have MOSPF. Of course, having MOSPF also implies that some sort of exterior gateway protocol that 
supports multicast routing exist between the ASes.  

Another important design consideration for multicast networks is whether the LAN switches can take part 
in IGMP. By default, only the routers run IGMP. Consequently, every time one device on a VLAN joins a 
multicast group, the entire VLAN sees all of the group traffic. The traffic load can become rather heavy if 
there are many multicast groups, each with a small number of members.  

Many newer LAN switches see the IGMP requests. As each device joins a particular multicast group, the 
switch starts allowing traffic to pass to the corresponding LAN port. Ports connecting to devices that are 
not members of this multicast group do not receive this traffic.  

If the switches can go further than this and support IGMP over trunk links, then the protocol is much more 
efficient. If none of the downstream switches contain members of a particular multicast group, then there is 
no need to forward multicast traffic out of the trunk port. Not forwarding the traffic may save a great deal 
of valuable trunk bandwidth.  

10.1.6.1 Multicast administrative zones 

So far, I have avoided talking about one of the most important potential problems with multicast 
networks—scope. Returning to the earlier radio analogy, radio stations have severe restrictions about how 
much power they can use to transmit signals. These restrictions have the effect of limiting how far these 
signals travel. A local radio station in one country might broadcast using the same frequency as another 
radio station in another country. There may even be other radio stations in a distant part of the same 
country using the same frequency.  

If every radio station in the world had to have a distinct frequency, radio receivers would become much 
more cumbersome. A lot of transmissions, such as weather or traffic reports from a distant part of the 
world, are probably not of universal interest.  
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Multicast applications have exactly the same characteristics. Worse still, many commercial multicast 
application vendors always use the same static multicast address. If Company X and Company Y both 
implement multicast applications on their networks using the same type of server, then they probably use 
the same multicast IP address. Thus, it is often necessary to restrict how far multicast traffic goes. Even 
within a particular organization this restriction is often important, as one department may not care about 
the multicast applications in another department.  

The original method for controlling this sort of scope was to use the IP Time to Live (TTL) field. This is a 
standard field in the IP packet header that is used only for loop elimination in conventional traffic.  

Most unicast applications don't restrict how far apart the client and server can be. These applications 
simply set the value to its maximum value, 255. As I mentioned in Chapter 6, the main use for this field is 
to help to eliminate loops. However, for multicast applications in particular, TTL can also be a good way 
to restrict scope.  

TTL is a standard field in the IP header that is always 8-bits long. Thus, it can have a value between 0 and 
255. If it has a value of zero, the packet is dropped. However, if the value is anything other than zero, the 
router receiving this packet decreases it by one. For example, whenever a multicast packet is intended only 
for the local segment, it always has a TTL value of 1. This is the case with all IGMP traffic, for example.  

If there is an application that must be restricted to a small area in the network, the server might set the TTL 
field to a small number like 4. Then the packet will travel three hops before being dropped. It is possible to 
go even further when restricting traffic. Many routers can be configured to drop any incoming packets that 
have a TTL value lower than some defined threshold.  

A multicast region can be confined by having the server generate the multicast packets with a value that is 
high enough to reach the farthest corner of the required region. Then all routers that border on the required 
region would set a TTL threshold value that is high enough to prevent the packets from passing any 
farther. For example, you might decide that a TTL value of 8 is high enough to get to the entire required 
area. Then, at all boundaries of the area, you would set a TTL threshold that is high enough to stop the 
traffic from going farther. Certainly, a value of 8 would be high enough no matter where the server is 
located in the region.  

The trouble with this TTL-based scheme for limiting the scope of multicast zones is its inflexibility. Some 
applications may need to be confined to the zone, while others need to cover a larger area. Furthermore, it 
is relatively easy to misconfigure one or more routers and allow multicast groups to leak out of the zone. 
This leaking could cause serious problems if the same multicast IP address is in use in a neighboring zone 
for another application.  

To address this problem, RFC 2365 defines the concept of administratively scoped IP multicasts. One of 
the key points in this document is the reservation of the address ranges from 239.0.0.0 to 
239.255.255.255 for purely local purposes. Any organization can use these multicast addresses for 
any purpose. The only restriction is that, like the reserved IP addresses such as 10.0.0.0, they cannot 
be allowed to leak out onto the public Internet. Furthermore, RFC 2776 defines a protocol called Multicast-
Scope Zone Announcement Protocol (MZAP) that handles the boundaries of these multicast zones 
automatically, preventing leakage between zones.  

For most networks, the multicast requirements are far too simple to require MZAP. Indeed, most 
organizations should be able to get by with a simple TTL-based scope implementation.  
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10.1.6.2 Multicast and QoS 

Several of the most interesting uses for multicast technology revolve around multi-media applications. 
However, as discussed in Chapter 8, multimedia applications generally have serious latency and jitter 
limitations.  

For multimedia multicast applications, latency is usually less of a factor than jitter. In live television 
broadcasting, it is not important if a delay of a few seconds occurs between the actual event and the time 
remote viewers see it. In fact, television stations use this fact to allow them to edit and censor the outgoing 
signals.  

Latency is not a problem, but jitter is critical. If a stream of video or audio data is sent out to a number of 
remote receivers, the packets have to arrive in the same order and with the same timing as they were sent. 
Otherwise, the end application needs to do extensive buffering. In many cases, this buffering is not 
practical, however. In these cases, the multicast application requires some sort of QoS.  

The RSVP protocol is capable of reserving network resources along a multicast path. Many designers 
developing multicast networks like to use RSVP. But, as I indicated in Chapter 8, a simpler technique 
based on the IP TOS or DSCP field is usually easier to deploy and frequently more effective in a large 
network. This is as true for multicast applications as it is for unicast. Before going too far in deploying any 
QoS system based on RSVP or Integrated Services, it is worthwhile to consider whether Differentiated 
Services could do the same job with less overhead.  

10.2 IPv6 

In the early 1990s the IETF recognized that it was starting to run short of IP addresses. The common 
practice at that time was for large organizations to connect their networks directly to the public Internet. 
Every device had to have a registered IP address.  

To make matters worse, there was extensive wasting of IP addresses caused by how the address ranges 
were subnetted. Address ranges were only allocated as Class A, B, or C ranges. It was clear at that time 
that IP was heading for a terrible crunch as the number of available addresses dwindled away. Thus, the 
IETF undertook a number of important initiatives to get around this problem. One of these initiatives 
developed a new version of the IP protocol that had a much larger address space. The result, IPv6, was first 
published in late 1995.  

IPv6 was an ambitious project because, not only did it increase the address range, it also included many of 
the new optional features that were added to the previous IP protocol (frequently called IPv4) over the 
years. The engineers who developed this new protocol wanted to build something that would last.  

At the same time, two other important initiatives helped alleviate the pressure of the addressing shortage. 
These initiatives included Classless Inter-Domain Routing (CIDR) and the combination of Network 
Address Translation (NAT) and unregistered addressing. These topics were discussed earlier in this book.  

The problem for IPv6 is that these other developments worked too well at reducing the pressure. After an 
initial urgent push, adoption of IPv6 has been slow. But these developments only fixed one of the most 
pressing problems with IPv4—the shortage of address space.  

In truth, IPv6 includes many significant improvements over IPv4, not just an increase in address space. 
There are several good reasons to migrate to IPv6 even though the urgency is gone. However, it will be a 
long, difficult, and expensive process for most organizations to make this transition, despite the advantages 
that it may bring. This process has created a barrier to acceptance of the new protocol that will probably 
persist until external factors force the change. This could happen because of the eventual shortage of IPv4 
address, or because of important new services that, for either technical or ideological reasons, are available 
only over IPv6.  
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Although several commercial IPv6 networking products are currently available, the protocol has not 
enjoyed wide acceptance. Very few large organizations have built IPv6 networks. Consequently, a lot of 
the discussion that follows is somewhat theoretical, as the practical hands-on experience doesn't yet exist.  

This is particularly true when it comes to security. The existing IPv4 public Internet is an extremely active 
testing ground for security concepts, much as a war zone is an active testing ground for military tactics. 
Whenever a new security measure is developed, somebody tries to violate it. IPv6 has not yet had the 
opportunity to demonstrate its real-world reliability in this way. Thus, it seems quite likely that there will 
be some serious growing pains as it reaches wider acceptance.  

The presence of this discussion in this book does not mean that I recommend rushing out and 
implementing IPv6 networks. Rather, it's here because knowing what sorts of technology are coming along 
in the future is important. If a network designer knows that the network will eventually have to support 
IPv6, then it can be designed with that eventual migration in mind.  

I may be accused of being a Luddite, but I never like to be the first kid on my block with the latest 
technology. It's usually better to let somebody else find the problems and then get the improved version. 
This is particularly true when the technology replaces something that has been tested and refined over the 
course of almost 20 years, as is the case for IPv4. Inevitably, there will be unforeseen problems with the 
first releases of IPv6 software. It is also inevitable that they will be found quickly and fixed as more 
networks adopt the new technology. Where you fit into this time line is largely a matter of choice.  

10.2.1 Header Structure 

The IETF has taken advantage of the opportunity represented by a new protocol version to simplify the 
Layer 3 header structure. IPv4 headers have a fixed format involving a large number of optional fields that 
are frequently unused (or unnecessary). IPv6, on the other hand, uses a much simpler modular approach. 
The IPv6 header involves several components that can be combined in various ways. The first header is 
always the standard IPv6 header that contains the source and destination addresses. Figure 10-2 shows this 
first header format. The layout used in this diagram is becoming a relatively common way to show large 
binary structures. The marks along the top show the 8-bit boundaries. The marks down the left side show 
every 32-bit division. In this layout, it is easy to see how the various fields line up with the byte 
boundaries.  

Figure 10-2. IPv6 header options 
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The first field in the IPv6 header is a version code whose value is, simply enough, 6. This field is 4 bits 
long.  

Next comes the 8-bit traffic class field. This field is identical to the DSCP field discussed in the previous 
chapter. It is used for defining Quality of Service levels.  

The third field is the first that is new with IPv6. This field is the flow label. The discussion of IPv4 queuing 
mechanisms in the previous chapter frequently mentioned traffic flows. In IPv4, these flows are defined by 
looking at a common set of source and destination addresses along with protocol information. It is 
important for mechanisms such as fair queuing to identify particular traffic flows uniquely. However, in 
IPv4, it is extremely difficult to identify them, which causes significant router overhead in identifying and 
classifying flows. IPv6 gets around this problem by creating a new field that identifies each flow uniquely. 
The end devices are responsible for assigning a value to this particular traffic stream. This assignment is 
expected to reduce the CPU and memory loading on routers. At the same time, it should reduce both 
latency and jitter caused by busy routers having to buffer packets before classifying them.  

The payload length field comes next. It is always 16 bits long, making the maximum packet size 65,535 
bytes long, although an IPv6 specification exists for longer packets. The value does not include the length 
of this initial header.  

The next header field replaces the Protocol field in the IPv4 header. For the most part, it uses the same 
protocol identification numbers as IPv4. In IPv6, though, it is also possible to use this field to specify that 
this header is followed by an IPv6 extension header to give additional functionality. I discuss why this 
header is important later in this section.  

Next comes the hop limit field. This field renames the IPv4 TTL parameter, which is appropriate since the 
value has nothing to do with time.[1] This is an 8-bit field, which allows for a maximum of 255 hops 
between any two devices. The IETF believes that this number should theoretically be high enough to 
accommodate the highest complexity that will ever be seen in the Internet.  

[1] The "time" in the name is actually a vestige of the earliest IP implementations. In the early 
days, the TTL field counted seconds. The meaning gradually shifted from counting time to 
counting hops as typical per-hop latencies dropped. 

Finally, the bulk of this header consists of the 128-bit source and destination addresses.  

Remember that this header is always exactly the same length and that the important features, such as the 
destination address, are always at exactly the same offset. This arrangement was done deliberately to help 
routers to find these fields easily; it should also help to improve router performance.  

After this basic IPv6 header, the packet can have a standard IP data payload. For example, if it is a TCP 
packet, then everything that follows would look identical to a TCP packet in IPv4. The next header field 
indicates what comes next. This field is the same as the IPv4 Protocol field. In the case of TCP, a value of 
6 is used in the next header field to indicate that what follows will be TCP information.  

There are several new options with IPv6. The new header types are called Hop-by-Hop Options, 
Destination Options, Routing, Fragmentation, Authentication, and Encapsulating Security Payload.  

The Hop-by-Hop Options header communicates with each router along the path. As the packet passes 
through the network, it may be necessary to have each router do something special. For example, the router 
might include special QoS information or it might be used to help trace a path.  

The Destination Options header allows similar special control, but only the ultimate destination of the 
packet is allowed to react to these options.  
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A type of source routing is possible with the Routing header. It allows a packet to loosely specify which 
routers it would like to pass through on its path. A similar feature is present in IPv4, but it is not widely 
used.  

Fragmentation is never done by the network in IPv6. This is another way IPv6 differs from IPv4. In the 
new protocol, end devices are expected to do a path-MTU discovery procedure and fragment their own 
packets. The standard specifies a minimum MTU of 1280 bytes. Any device that wants to avoid 
fragmentation problems and doesn't want to do a path-MTU discovery can always default to this MTU 
value to avoid problems. Media that cannot support this MTU, such as ATM, are supposed to emulate it 
with lower-level fragmentation.  

The last two types of extension headers, Authentication and Encapsulating, are used for security purposes. 
These headers will be discussed later in Section 10.3.

10.2.2 Addressing 

While IPv4 uses a 32-bit address, the IPv6 address has 128 bits. This capacity allows over 3 x 1038 
different addresses, which is a vast improvement over the IPv4 capacity of roughly 4 x 109. Increasing the 
available range of addresses was one of the driving forces behind the creation of IPv6. One disadvantage to 
having these large-number addresses is that they are cumbersome—even to write down. Therefore, the 
protocol designers have come up with a set of textual conventions for expressing IPv6 addresses.  

The 128-bit address is broken down into 8 16-bit segments that can be expressed as hexadecimal numbers 
separated by colons. Each 16-bit segment is represented by 4 hexadecimal digits. For example, a valid 
address would be:  

1A30:5BFE:0000:48C9:8A10:03BF:7801:0A3F 

The sixth and eighth fields in this address have leading zeros. It is not necessary to write down leading 
zeros. This situation also applies to the third field, which is composed of all zeros. This same address can 
also be written as:  

1A30:5BFE:0:48C9:8A10:3BF:7801:A3F 

The IPv6 specification allows any field, including the first and last, to have a binary pattern of either all 
zeros or all ones (FFFF). In fact, fields with all zeros are expected to be so common that there are special 
rules for them.  

Consider an address with several fields of all zeros: 

1A30:0:0:0:8A10:0:0:A3F 

The rule is that any string of adjacent zeros can be replaced by the compact form ::. Because this 
replacement could be extremely confusing, it can only appear once in an address. Thus, this address can 
also be written as follows:  

1A30::8A10:0:0:A3F 

To take this notation to extremes, the new loopback address to replace the IPv4 127.0.0.1 is 
0:0:0:0:0:0:0:1, which can be written simply as ::1.

Another notation for these addresses is used for expressing IPv4 addresses for IPv6. This notation is used 
to allow tunneling IPv4 packets through IPv6 networks without requiring explicit tunnels—a technique 
that is discussed later in Section 10.2.7.
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There are two ways that IPv4 addresses can be encoded within IPv6 addresses. IPv6 devices, such as 
routers able to communicate in both IPv4 and IPv6, have addresses that are simply 6 16-bit groups of 0s 
(96 bits) followed by the 32 bits of the IPv4 address. Pure IPv4 devices whose traffic is tunneled 
dynamically through an IPv6 network have a slightly different address format. In this case, the address 
consists of 5 16-bit groups of 0s (80 bits), then 1 16-bit group of 1s, followed by the 32 bits of the IPv4 
address.  

To see some examples of this, imagine an IPv6 part of the network, and suppose that it must communicate 
with an IPv4 device. Suppose there is an IPv6 device whose IP address appears to the IPv4 world as 
10.1.15.223. This device communicates with an IPv4 device whose address is 10.0.192.17.

In the IPv6 part of the network, these addresses are written with the last 2 16-bit groups written out in IPv4 
format. The first 1 will be 0:0:0:0:0:0:10.1.15.223, and the second will be 
0:0:0:0:0:FFFF:10.0.192.17. Of course, these addresses can also be written as 
::10.1.15.223 and ::FFFF:10.0.192.17, respectively.  

To denote address prefixes, the notation is derived from the IPv4 CIDR notation. A subnet that has an 
address range from 1A30:5BFE:0:0:0:0:0:0 to 
1A30:5BFE:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF would be written as 
1A30:5BFE::/16.

As with CIDR, this address could represent a number of smaller subnets, such as 1A30:5BFE::/48 
and 1A30:5BFE:1::F300/120.

The IPv6 addressing architecture defines several reserved ranges for special purposes. This definition is 
based on the leading bits in the address. I already mentioned a few special cases such as loopback 
addresses and the embedding of IPv4 addresses. These adresses both fall into the first reserved range, 
which begins with eight bits of zeros. Table 10-1 shows the initial address allocations.  

Table 10-1. IPv6 address allocations 
Binary Hex of first field Allocation 
0000 0000 0000 to 00FF Reserved 
0000 0001 0100 to 01FF Unassigned 
0000 001 0200 to 03FF NSAP 
0000 010 0400 to 05FF IPX 
0000 011 0600 to 07FF Unassigned 
0000 1 0800 to 0FFF Unassigned 
0001 1000 to 1FFF Unassigned 
001 2000 to 3FFF Aggregatable Global Unicast Addresses 
010 4000 to 5FFF Unassigned 
011 6000 to 7FFF Unassigned 
100 8000 to 9FFF Unassigned 
101 A000 to BFFF Unassigned 
110 C000 to DFFF Unassigned 
1110 E000 to EFFF Unassigned 
1111 0 F000 to F7FF Unassigned 
1111 10 F800 to FBFF Unassigned 
1111 110 FC00 to FDFF Unassigned 
1111 1110 0 FE00 to FE7F Unassigned 
1111 1110 10 FE80 to FEBF Link-Local Unicast Addresses 
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1111 1110 11 FEC0 to FEFF Site-Local Unicast Addresses 
1111 1111 FF00 to FFFF Multicast Addresses  

Note that in this allocation, most of this range is initially unassigned—but there are some interesting 
allocations. In particular, the address architecture sets aside space for mapping IPX and OSI NSAP 
addressing. This space is intended to allow these other protocols to exist effectively as subnets of IPv6 
space and to allow communication between the protocols. This space is most likely to be useful as an 
interim measure when migrating a network from one of these protocols to IPv6.  

The Aggregatable Global Unicast Addresses indicated in Table 10-1 are used as the main method of 
connecting to the public IPv6 Internet. The basic idea is to break down the address range into a hierarchy 
of ranges and then to assign these ranges to Internet service providers.  

Top Level providers connect directly to the Internet backbone. These providers are specified by a 13-bit 
identifier, so there can be up to 8192 of these Top Level providers.  

Below the Top Level providers are so-called Next Level and Site Level address ranges. A Top Level 
provider allocates a range of addresses to each of their Next Level providers. The Next Level providers 
allocate 80-bit Site Level address ranges.  

If the site then uses the autoconfiguration mechanism described next, 16 bits are left to specify every local 
network. This is the same size as the Class B range in IPv4.  

The point of this hierarchy is to allow several levels of aggregation. Allowing these levels should have the 
same effect of reducing routing tables that is achieved by using route summarization, as discussed earlier 
in this book. Achieving this benefit globally across the entire Internet should improve its scalability.  

Because IPv6 has so much more address space than IPv4, it should be possible to avoid Network Address 
Translation (NAT). By eliminating NAT, it should also be possible to eliminate the problems that it causes. 
For example, the previous chapter discussed how NAT can complicate network management, and earlier 
sections of this book talked about how address translation can break or complicate many applications.  

There are two main reasons for using NAT in IPv4 networks. The first is to allow the use of unregistered 
addresses. A network of thousands of nodes can be represented by a small number of registered addresses. 
NAT just replaces the internal unregistered addresses with these few registered ones as the packets cross 
out of the network. IPv6 also has ranges of unregistered address space. However, the amount of registered 
adress range is expanded so much that an organization should be able to address every internal device.  

The second reason for using NAT in IPv4 networks is security. NAT makes it possible to obscure the 
internal network architecture. This information can be useful to an attacker. However, IPv6 includes 
several special security features that should improve the overall security of the network, even without 
address translation.  

10.2.3 Quality of Service 

Quality of Service (QoS) in IPv6 is essentially similar to that of IPv4. Differentiated Services works in 
exactly the same way, using the traffic-class field in the main IPv6 packet header. Similarly, Integrated 
Services accompanied by a reservation protocol, such as RSVP, are supported by the new protocol.  

The main thing that is new is the flow-label field in the IPv6 header. This field facilitates much of the work 
of differentiating and classifying traffic for routers. They are no longer forced to look at several fields to 
establish when two packets are part of the same conversation. As discussed in Chapter 8, looking at several 
fields is necessary for many popular queuing algorithms, such as Fair Queuing. IPv6 makes the process 
much easier.  
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In some cases, the fields that are used in IPv4 to identify flows are not readily available. For example, 
when the data stream is encrypted, it is sometimes difficult for the routers to see all of the required fields. 
By putting a flow-identification field right in the Layer 3 header, IPv6 allows much better control over 
queuing. As a simple example, suppose a device is connected to the network via a VPN tunnel. This tunnel 
will carry all of the device's traffic in encrypted form. As this encrypted tunnel passes through a router, all 
traffic inside of it will appear as a single flow in IPv4. However, this situation may not be desirable. If this 
device is a user's workstation, it means a file transfer has the ability to choke off an interactive session.  

Because IPv6 identifies these different flows separately, it can treat the traffic within the tunnel 
appropriately. This is extremely difficult to accomplish in IPv4; it requires that different flows be given 
different DSCP or TOS values before they enter the encrypted tunnel.  

10.2.4 Security 

IPv6 includes both authentication and encryption options in the protocol at Layer 3. These options make it 
possible to include in the packet's header an authentication fingerprint that verifies that this packet came 
from the right source. It is also possible to encrypt packets either as a whole tunnel, as in a VPN, or on an 
individual basis.  

The packet-authentication option is the most important new feature here because it is possible to use VPN-
style encryption with IPv4. Authentication of individual packets is much harder in IPv4.  

Some common types of Internet security attacks involve spoofing and hijacking. A spoof is when the 
source address in the packet is not the actual source, but is some other device. Spoofing can be used in 
many ways. For example, it is possible to send an ICMP ping packet that requests a response from a 
device. The device that receives this packet sends its response to the source address in the packet. If this 
source address has been spoofed, then the response is sent somewhere else. If thousands of devices around 
the Internet all suddenly send unsolicited ping responses to a single device, serious problems can occur. 
Furthermore, this attack is essentially untraceable.  

A hijack attack is similar, except that it involves sending a source-spoofed TCP packet. In this case, the 
destination has an open TCP session already in progress with the real source device. Thus, it happily 
accepts the source-spoofed TCP packet that actually originates somewhere else.  

In IPv6, these problems should be reduced by the presence of the authentication header. This header is a 
digital signature that validates the source of the packet. Cryptographers say that the scheme should be 
extremely difficult to break.  

Technically, IPv4 also has the same packet-authentication mechanism available through IPsec. However, 
IPsec is optional in IPv4, and very few end devices take advantage of it.  

Encryption in IPv6 uses the encryption header extension. This extension allows any packet to be 
encrypted. Of course, it is necessary to have a reasonable way to decrypt the packet when it reaches its 
destination. Thus, it is probably not practical to encrypt individual packets in a flow. Rather, encrypting an 
entire conversation is far more effective. Of course, IPv4 has several mechanisms to accomplish the same 
thing. The industry standard is called IPsec, which forms the basis for the IPv6 implementation as well.  

10.2.5 Autoconfiguration 

One of the features that IPv6 supporters mention frequently is autoconfiguration of IP-addressing 
information on end devices. The concept is fairly simple, and it takes advantage of the greatly expanded 
address space.  

Autoconfiguration can occur in either a stateless or stateful way. The stateful method involves the use of an 
explicit configuration protocol and server, as in DHCP. This method is essentially the same as in IPv4. It is 
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called stateful because the server maintains information about the states of every end device. The stateless 
autoconfiguration mechanism, on the other hand, allows end devices to deduce enough information by 
listening to the network, that they can configure themselves.  

Combining these two mechanisms is also possible. For example, a device might get its initial basic 
configuration with the stateless method and then obtain the rest of the information from a server.  

The stateless autoconfiguration method is defined in RFC 2462. It is a multiple step process.  

In the first step, the device constructs a temporary unicast address using a link-local prefix and its own 
MAC address. This link-local prefix is a well-defined address prefix that is present on the router, but is not 
routed off the local segment. Before the device assigns this address to its interface, it sends out a Neighbor 
Solicitation packet. In IPv4 terminology, this packet is essentially a ping. If there is a response, then there 
is a conflict, and the address cannot be used.  

If the temporary address is not in conflict, the device can carry on with the autoconfiguration process. The 
next step is to send a multicast Router Solicitation packet to the All-Routers multicast address. This packet 
finds any routers that have interfaces on the same LAN segment.  

One or more of the routers on the segment respond to this query with a Router Advertisement. The 
response packet can tell the end device that it needs to talk to a DHCP server for either its address, for 
other required information, or both. Talking to the server is necessary for sites that do not wish to use 
stateless autoconfiguration or that have important server information that needs to be configured. In the 
default case, the Router Advertisement packet contains information about the address prefix, which is 
essentially the same as the IPv4 concept of a subnet and netmask. At the same time, the packet inherently 
tells the end device about a router that can be used for off-segment traffic.  

The device then generates its final address using this address prefix and its own MAC address. Once again, 
it needs to poll the segment to see if any other devices already use this address. If there is a conflict at 
either this stage or the earlier link-local address stage, then it is necessary to configure the device 
manually.  

The stateless autoconfiguration method uses the MAC address for the last 64 bits of IP address. On any 
given VLAN, there is sufficient address space to address over 18 x 1018 devices. This space is extremely 
wasteful of addresses, but the remaining 64 bits of address range that can be used for the prefix is still far 
greater than the 32 bits available in the entire IPv4 address.  

However, the important issue is not how many bits are in the entire address, but how many bits the 
organization has available. IPv6 is intended to provide a hierarchical addressing scheme that allows many 
levels of subnetting. It is possible that an organization will have to use an Internet provider that is many 
steps removed from the backbone. In this case, it may turn out that they have too few bits to use this 
stateless autoconfiguration method. For example, suppose that the address prefix for the entire organization 
is only 72 bits. Then using 64 of these bits for local addressing leaves only 8 bits for defining all of the 
network segments. This means that the organization can have at most 256 LAN segments, which is 
definitely not sufficient for many large organizations.  

Fortunately, in these cases it is still possible to use an IPv6 version of DHCP to configure the addressing. 
Using this option immediately opens up the organization's internal address range far beyond the size of the 
entire IPv4 Internet.  

This autoconfiguration method has an extremely important architectural consequence. If end devices listen 
to the network to determine an appropriate address prefix, then there can only be one address prefix on 
each LAN segment. Note that this situation is different from IPv4, where a single LAN segment can hold 
several subnets. In fact, the entire method bears a close resemblance to the system of autoconfiguration 
used in IPX networks. See Chapter 7 for a discussion of IPX.  
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10.2.6 Multicast and Anycast 

The multicast functionality of IPv6 is similar to that of IPv4. The most important difference is that IPv6 no 
longer has any broadcast functionality. Everything is done with multicasts of various scopes.  

This fact is important because the various broadcast types of IPv4 have caused great confusion. For 
example, IPv4 tried to make distinctions between all-hosts broadcasts and all-networks broadcasts. 
However, the all-networks broadcast turned out to be incompatible with the hierarchical addressing 
structure of CIDR, so it had to be dropped.  

IPv6 brings back the same functionality by using multicast. Because it allows good control over multicast 
scope, the problems IPv4 had with controlling the scope of all-networks broadcasts are no longer relevant.  

There are several basic levels for the scope of multicast addresses in IPv6. The difference is defined in the 
last 4-bit section in the first field of the address.  

As I mentioned in Section 10.2.2 after Section 10.2, any address whose first field is in the range from 
FF00 to FFFF is a multicast. The third hexadecimal number actually has only two defined values: 0 or 1.
If the value is 0, then it indicates a permanently assigned, static multicast address. A value of 1, on the 
other hand, specifies that this multicast address is transient. Transient addresses can be generated 
dynamically for short-lived applications. The rest of the range from 2 to F is left open for future 
assignment.  

The final hexadecimal number in the first field of the multicast address specifies the scope. Only a few of 
the possible values were assigned. These values are listed in Table 10-2.

Table 10-2. IPv6 multicast scope  
Assignment Value 
Reserved 0  
Node-local 1  
Link-local 2 
Site-local 5 
Organization-local 8 
Global scope E 
Reserved F 

For example, the multicast address FF01::1 is a static address that is local to the end device. Similarly, 
any address beginning with FF02 is confined to the local Layer 2 medium, just as IPv4 broadcasts are. 
Thus, the link-local all-nodes multicast address FF02::1 effectively fills the same role as the IPv4 
broadcast address.  

For multicasts that leave the segment, there are three defined levels of scope. The multicast can be site-
local, organization-local, or global. Global scope means that the multicast reaches the entire Internet. These 
definitions leave several gaps for future scope definitions.  

Anycast is a new feature with IPv6. It was previously proposed in RFC 1546 as a feature for IPv4, but was 
never implemented. I think anycast is one of the most interesting and potentially useful new features in the 
protocol. Basically, it is halfway between a unicast and a multicast. It allows the multicast server to send a 
packet to any group members—usually just the closest group member.  

In practice, the network may opt to deliver the packet to more than one group member, and it is also 
possible that subsequent packets will be delivered to different group members. Therefore, anycast 
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communication is not appropriate for any conversation that needs a concept of what was already said. 
Instead, it can be used only for stateless applications.  

Anycast addresses are taken from the regular unicast address ranges, so there is no intrinsic way of 
distinguishing them. In effect, each anycast address is simply a unicast address that is assigned to many 
different hosts. These addresses are then distributed through the network as host routes. This distribution 
has some potential scaling problems. If the anycast addresses are drawn from a different address range that 
cannot be summarized easily, then these addresses must exist as host routes in the routing table of every 
router on the network. If anycast addressing is not allocated carefully, it has the potential to cause serious 
problems in the future.  

Anycast can be useful in many ways. The server can use it, for example, to determine whether it still has 
any subscribers. By sending an anycast packet that requests a response, the server can discover that it is not 
currently required and go to sleep. Then it can wake up periodically and do an anycast poll to see if new 
group members have signed on.  

The most exciting possibilities for this feature actually work in the other direction—allowing any of a 
group of servers to respond to a client request.  

IPv4 has several well-known problems with using redundant network devices. For example, it is common 
to use some sort of traffic-director device to distribute packets to a group of identical servers. This 
arrangement is most commonly used for web servers. With a traffic-director device, it is necessary to have 
all servers located both logically and physically together on the network behind this device.  

Another method IPv4 uses to accomplish similar levels of redundancy or load sharing is a protocol such as 
VRRP or HSRP. Typically, these protocols are just used to allow two routers to share the same IP address. 
Two devices sharing the same address must be able to communicate directly with the same LAN segment.  

With anycast, it should be possible to eliminate extra elements such as traffic director boxes and special 
protocols by just using a single anycast address that represents all servers. The same technique could be 
used for DNS servers, NTP servers, or any other situation when multiple servers are used for redundancy 
and load sharing.  

In fact, this feature is exciting because an organization could have servers in a dozen countries around the 
world and users could automatically access whichever one was closest by using the anycast address. 
Furthermore, if one of these servers was unreachable for any reason, the network would simply find 
another one transparently.  

In general, one would probably not use anycast to provide router redundancy in IPv6. Instead, the 
specification allows two or more devices to share an IP address on the same LAN segment. There are a 
number of ways that this sharing could be implemented. This feature will probably emulate VRRP.  

10.2.7 Migrating from IPv4 to IPv6 

The IPv6 protocol has several features designed specifically to help with migration from IPv4. These 
features include the ability to tunnel IPv6 traffic in existing IPv4 networks, as well as IPv4 in IPv6 
networks.  

The tunneling of IPv6 in IPv4 requires the manual creation of point-to-point tunnels between IPv4 routers. 
When IPv4 is tunneled in IPv6, it is possible to have these tunnel generated dynamically. But this 
tunneling requires the use of a special reserved range of IPv6 addresses.  

Many organizations have had to do protocol migrations in the past. For example, some migrations from 
IPX or Appletalk to IPv4 have allowed users to access the Internet. In the previous generation of networks, 
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migrations involved Banyan, DECNET, and LAT. Thus, the methodology for doing a successful protocol 
migration has been worked through a few times in different contexts.  

Usually, the best way to proceed is to build parallel infrastructure. Building the infrastructure doesn't 
necessarily mean that all of the equipment needs to be replaced, though. It should be possible to build most 
of this parallel network over the same gear, using the same physical links, but there must be software 
changes on the routers and end devices. The equipment all needs to support IPv6, which usually means that 
a new protocol stack needs to be installed.  

In any organization, there will necessarily be legacy equipment that cannot be upgraded and will never run 
the new protocol. This situation is not a showstopper, however. It can be handled readily using gateway 
devices to do the protocol conversion. These gateways have a relatively simple job because they only need 
to replace Layer 3 information in a packet. Everything from Layer 4 up is unchanged in IPv6.  

The first step should be to obtain registered IPv6 addresses and decide on a final IPv6 addressing structure. 
This step, in many cases, simply copies the existing IPv4 structure. Whenever one is given a chance to 
eliminate flaws in an existing system, however, it's a good idea to at least think about it.  

For example, the age of the network may have caused an imbalance in the OSPF areas. Cisco has already 
announced an IPv6 version of EIGRP. Similarly, an IPv6 RIP and an IPv6 OSPF now exist, so it should 
not be necessary to change routing protocols. However, the change may provide an opportunity either to 
change or restructure the routing protocols if the network has outgrown the existing IPv4 structure.  

Once the target architecture is clear, the designer needs to figure out how to get there incrementally 
without taking down the whole network. Only in the smallest offices is it practical to take everything down 
at once and spend the weekend rebuilding the network.  

The other thing to remember is that you don't want just to get to IPv6; you should get to your target 
architecture. Thus, the migration plan needs to take the network to the ultimate goal as directly and 
painlessly as possible.  

This means, for example, that you probably don't want to make widespread use of temporary IPv6 
addressing. IPv6 makes autoconfiguration possible for end devices, and it even includes the concept of a 
deprecated address to allow a device to change addresses gracefully without losing packets sent to the old 
address. However, the more changes that you make, the more trouble you will have, so try to go directly to 
your final addressing structure whenever possible.  

Special features, such as dynamic tunnel generation of IPv4 through an IPv6 backbone, will require 
introducing an extra readdressing phase late in the migration project. Instead, I advocate a migration 
strategy that involves running both networks in parallel for a period of time and migrating devices from 
one to the other gradually. The way to implement this migration strategy is to provide dual protocol stacks 
on both the routers and end devices. The migration can start at the Core by simply upgrading the backbone 
routers to support IPv6 and defining IPv6 addresses on their interfaces. For the initial phase, there will be 
no user traffic over this IPv6 backbone structure. Having no user traffic allows the network engineers a 
chance to test everything.  

From the Core, the upgrade can proceed outward to include at least one user community and the servers 
that they use. It should be possible to keep everything running over the IPv4 infrastructure while observing 
one or two end devices using IPv6.  

At the same time, implementing IPv6 versions of certain network services, such as DHCP and DNS, is 
necessary. These services can be used to help control the migration, as the end devices consult these 
servers for their configurations and for information about their servers. When you want a particular user to 
start using a particular network server through IPv6 instead of IPv4, the DHCP server simply directs the 
end device to consult the IPv6 DNS server. This DNS server then instructs the end device to use the IPv6 
application server. Converting these users to IPv6 should be simply a matter of setting their workstations to 
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prefer the IPv6 view of their applications. If there are problems, converting back to the IPv4 network is 
simply a user-by-user software change. It should be possible to make most of these changes centrally 
without extensive use of field technicians.  

The converted user workstations need to retain their IPv4 protocol stacks for a while because they still 
have to access systems that were not converted. However, as more of the network is converted, you will 
reach a point where the number of legacy IPv4 services is relatively small. At this point, it should be 
possible to implement IPv4 to IPv6 gateway devices that will do the protocol conversion.  

These gateways could even be ordinary routers that are configured to do the conversion. They will 
probably continue to exist even after the main migration is complete. They will be required to support any 
legacy IPv4 equipment that is still required but for whatever reason cannot be converted. Once these 
gateways are in place, it should be possible to eliminate native IPv4 from the end devices gradually, and 
finally from the routers as well.  

Other migration strategies have been suggested in some protocol RFCs. For example, RFC 2529 suggests 
using a particular range of IPv6 addresses that maps onto the IPv4 address range. Using this range of 
addresses allows a very direct conversion process because the routers inherently act as gateways between 
the two protocols. Thus, it should be possible to migrate an entire network quickly by first setting up dual 
protocols on the routers, as shown previously, and then changing end devices. The new addresses will be 
IPv6 representations of the old IPv4 addresses.  

This method should be quite effective, but remember that it is necessary to then renumber the entire 
network to the target IPv6 addressing structure. As this renumbering is in progress, the dynamic routing 
protocol has to keep track of two different ranges of addresses. More importantly, it will have problems 
summarizing these addresses.  

Also note that the IPv6 autoconfiguration mechanism implies that each LAN segment can have only one 
IPv6 prefix (analogous to the IPv4 subnet address) at a time. Each segment must be converted all at once. 
This is the second en masse conversion that has to be done. Because of this additional step, I prefer the 
previously mentioned procedure.  

10.3 Security 

I have talked about security in several places throughout this book already, but there are a few points that 
warrant special consideration. In general, security is far too broad of a topic for even a single book. I 
usually take the view that the network cannot be the police. By this, I mean that there are too many ways to 
get around security restrictions. Placing too much reliance on the network is like locking the doors but 
leaving the windows open.  

In particular, many organizations have policies about such things as outgoing email. In some cases, they 
have active email filtering to try to block users from sending out corporate secrets. This is a good idea in 
many cases, as email makes an extremely convenient medium for espionage. However, many organizations 
appear to forget that it's just as easy to put a floppy disk with those same secrets in your pocket and walk 
out the door.  

The same is true for incoming data. Many organizations try to prevent viruses from coming in by scanning 
email as it arrives. Scanning is definitely a good idea, but it has to be accompanied by a general virus-
scanning process that catches them when they come in through the window instead of the door.  

To complicate matters further, no matter how good the network scanning is, it misses a lot. The outgoing 
file of corporate secrets could be in code. Even firewalls can be circumvented rather easily if one has 
access to the inside of the network.  
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See, for example, the April Fool's joke RFC 3093, which describes a way to make a tunnel through HTTP. 
Since most firewalls readily pass all HTTP packets, it is possible to hide an interactive session inside of an 
HTTP session. To the firewall, though, it just looks like legitimate web traffic.  

Network security should never be considered actual security; it is just one element of a corporate security 
policy. It is, in effect, just one small tool that should be used to protect the organization.  

Every organization should have a standard corporate security policy. This is a short document that 
describes what activities are allowed and what are not. To be effective, it needs to be backed up by well-
defined penalties when somebody deliberately violates the policy. Usually, these penalties involve 
anything from a reprimand to dismissal, and perhaps even criminal action in some cases. To be effective, 
everybody in the organization needs to be aware of the policy.  

This security policy document is sometimes combined with an appropriate use policy. Appropriate use 
policies generally define certain activities, such as distribution of pornography or engaging in abusive or 
criminal behavior using corporate resources, as unacceptable.  

The problem with these sorts of documents is that they are frequently too vague to be enforceable. Not 
everybody would agree on what constitutes pornography or abusive behavior. Thus, it is possible to have a 
situation in which somebody believes that she is respecting the policy, while her supervisor believes that 
she is not.  

For this reason, I personally prefer to keep security policy separate from appropriate use policy. It should 
be easier to create a well-defined security policy that does not need to be rewritten to solve problems of 
vagueness like this. If the appropriate use policy is a separate document, it can be rewritten without 
throwing the security policy into doubt at the same time.  

A security policy needs to address two main issues: espionage and sabotage. Espionage is theft of 
information. Sabotage is deliberate disabling or damage of systems or information.  

Sabotage using a sledgehammer is usually more effective than using the network. Espionage using a torch 
to cut your way into a safe of secret documents is also very effective. But neither of these methods has 
anything to do with the network, so they aren't covered by the network security policy. If you aren't 
extremely careful about restricting your definitions, building and enforcing this sort of policy can become 
an impossible task.  

There are arguably more ways to do effective sabotage than espionage because the goal is simpler. These 
methods usually take the form of denial-of-service attacks. However, sabotage can also involve the 
network equivalent of simple graffiti, as in web site vandalism.  

The security policy should be quite general. Once it is complete, you should think of ways to implement it. 
Think about what sorts of attacks are actually expected and where they are likely to originate. For example, 
do you believe that employees can be basically trusted, so that enforcement efforts can focus on external 
threats? Sometimes an organization has different internal groups who would benefit from one another's 
secrets.  

The classic example is an investment bank. These organizations typically include a group of stock traders 
and a group of corporate financiers. The finance people arrange for large loans and help companies issue 
stocks and bonds to raise capital. If the stock traders were aware of these activities, they could benefit 
greatly; unfortunately, being aware of them constitutes illegal insider trading, and it carries severe penalties 
when the authorities find out about it. Thus, investment banks have to be careful about internal espionage.  

In many organizations, the payroll department has computers that issue paychecks to employees. There has 
to be an appropriate level of security to prevent employees from giving themselves unauthorized bonuses.  
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Usually, the most serious threat is external. If the organization can't trust its employees, then it has far 
more serious problems.  

The issue of auditing is extremely important but frequently forgotten. There is no point in just locking the 
doors and assuming that they will remain locked. You have to check them periodically.  

In networking, every network Access point has to be monitored carefully. There are several standard things 
to look for. For example, are the remote-access accounts used properly? Do the accounts belonging to 
users who are on holiday appear to have heavy use? Futhermore, when a user is in the office, their remote 
access ID shouldn't be in use.  

To look for firewall-evading tunnels like the one discussed earlier in this chapter, you can examine firewall 
logs. In most cases, these connections should be fairly short-lived, and most of the information should flow 
inward. If long-lived connections have a lot of outbound information, then this activity should be 
considered suspicious.  

What is considered suspicious varies from one organization to the next, so somebody has to spend a lot of 
time with the log files to try and identify what sorts of things to look for. Once this is done, it is usually 
best if the logs are examined by an automated process. Firewall logs tend to be enormous files that are far 
too big for a human to read through and make sense of.  

Most importantly, every suspicious event should be investigated. Suspicious events that keep happening 
are even more suspicious.  

10.3.1 Hub and Switch Port-Level Security 

Many organizations use a Layer 2 security mechanism on their hubs and switches. Most high-end access 
devices have the ability to detect and compare the MAC addresses connected on each port to an expected 
address. If the device doesn't have the right address, then the port is disabled and a security trap is sent to 
the network management station. This situation radically increases the amount of work involved in 
maintaining these access devices. It also has a number of benefits as well.  

First, using a system like this means that all network records have to be kept at least somewhat up-to-date. 
If a PC moves from one place to another or if somebody rearranges a patch panel, things stop working.  

The security rationale behind this precaution, though, is to prevent unauthorized access to the network. 
Most networks are vulnerable to somebody walking in and leaving a small computer plugged in behind a 
filing cabinet. This device can then make a connection through the firewall to a server somewhere out on 
the Internet. By running a tunnel through this connection, it's easy for somebody to then have relatively 
free access to the entire network.  

Alternatively, this device could run an autonomous program to gather information or to disrupt the internal 
network.  

This sort of attack can be prevented in two important ways. First, any LAN ports that are not in use should 
be disabled. Disabling the ports prevents a device from being plugged into a random port on the wall that is 
no longer in use. Second, port-level MAC-address security needs to be enabled on the access device, 
whether it is a hub or a switch. Enabling the device is necessary to prevent somebody from taking a 
legitimate workstation connection and splitting it with a hub. Then the workstation that is supposed to be 
on the port and the unauthorized device can share the Access point.  

On many hubs, there is another reason for using this kind of security. While a switch port only receives 
traffic destined for that MAC address and multicasts, a hub port receives traffic that is intended for every 
other port as well. This reception allows a "packet-sniffer" type device to sit passively on the port and 
listen to everything that goes past on the network. Any PC can be easily converted to execute this type of 
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attack by simply installing publicly available software. Then whomever runs the attack can analyze the 
data that was gathered and use it to reconstruct secret information.  

Note that this process is possible on any hub-access device. Even the device that has a legitimate claim to 
be on a specific port can have this software loaded onto it. Some hubs have gone even further and have 
implemented jamming.

Ethernet rules require that each time a packet is sent through a hub, it has to be sent out every port. 
However, it is possible to jam the information in the packet by replacing it with a string of nonsense. 
Usually, this string is just a bit pattern such as 1010101.... The real packet is transmitted only to the 
port that should receive it, and every other port receives the jammed version.  

This situation is less common now than it once was because access switches are now cost competitive with 
hubs—particularly hubs with this level of sophistication. On a switch, this is not necessary, as the only port 
that receives the packet is the one to which it was addressed. There are still methods for attacking a switch 
with a "packet-sniffer" type device, but they are much more invasive and difficult to execute.  

10.3.2 Filtering Traffic 

In several places throughout this book, I mentioned the idea of using routers to filter traffic for security 
reasons. Using routers to filter traffic basically means using the router as a simple firewall. It is configured 
to look for particular types of packets and to restrict where they are sent.  

One common example involves putting a semitrusted server or router connection on the internal network. 
Doing so is sometimes necessary to deliver a service from an external service provider. No external service 
provider should ever be trusted fully, since they are intrinsically not subject to your organization's security 
policy.  

This issue becomes a bit fuzzy when it comes to WAN links. The WAN provider has much control over 
the link medium and can, in theory, see the data that you send through them. Thus, some organizations 
choose to encrypt data over such links. I discuss the methods for doing this in Section 10.3.3.

This issue also becomes fuzzy when the external service provider's function includes back-office processes 
such as manipulating important corporate data such as financial information. In these cases, the 
organization may just decide to treat the external organization as if it were trusted.  

For organizations that do not feel comfortable about this situation, however, several techniques improve 
the security. If the external service provider is considered potentially hostile, then a firewall may be 
required. However, in most cases, a simpler solution with a filtering router is probably sufficient.  

Remember that the threat may not be from the service provider's organization, but from your own 
organization's competitors who may be using the same service. Suppose, for example, that Company A and 
Company B both use Service Provider C. If C's network doesn't prevent A from accessing B's network, 
then corporate espionage through this path is possible.  

Many organizations choose to put these Access points behind routers. The routers are configured to allow 
only certain applications through. Usually, this configuration is specified by means of TCP port numbers, 
but it can also be easily restricted to certain IP addresses. Restricting on IP addresses can be useful when 
the service provider's server always uses the same address. The same can be effective internally when the 
access is always to the same internal device.  

Filtering on IP addresses alone is rarely completely reliable; it doesn't do anything about spoof attacks in 
which the source address of the packet is altered. It also doesn't help in cases when the service provider's 
server has been compromised by the attacker.  
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The most reliable mechanism is to filter on everything that you can. If the application is always on the 
same TCP port number, then make sure that only this port can pass the filter. If this port is combined with 
IP-address filtering, then the security is that much better.  

Note, though, that it is still possible in this case to launch an attack from inside the service provider's 
network using a spoofed source address and the known application TCP port number. This sort of attack 
can be extremely difficult to defend against. If it is considered likely, then a robust firewall is necessary.  

10.3.3 IPsec 

IPsec is a set of security mechanisms for use with IP. RFC 2401 defines the current version. A detailed 
discussion of this sophisticated cryptographic system is beyond the scope of this book. But discussing its 
network design implications is useful.  

IPsec is a public-key network security system that is used for both authentication and encryption of IP data. 
It is optional with IPv4. However, many of its functions have been integrated into the main IPv6 
specification.  

Public-key security means that both communicating devices share an encryption key or password. Each 
device has a public and a private key. The public key is generated from the private key using a 
nonreversible process and is then shared.  

Device B knows device A's public key, and vice versa, but neither knows the other's private key. Device B 
can send secret information to device A by encrypting it using an algorithm that can be reversed using A's 
private key. The data can only be encrypted using information that only the sender has. Then it can only be 
decrypted using information that only the recipient has.  

IPsec actually doesn't restrict the specific algorithm used. There are several good encryption algorithms 
such as DES, Triple DES, and RSA. They all have strengths, but legal restrictions exist on the use of Triple 
DES outside of the United States.  

IPsec specifies how these algorithmic techniques can encrypt and authenticate IP packets. It is possible to 
use either or both encryption and authentication.  

Encryption or authentication can be deployed using IPsec in two ways. It can be done for all of the traffic 
between two nodes, as a tunnel. Alternatively, individual traffic flows or conversations can be encrypted or 
authenticated separately. This process is called IPsec transport.

The tunnel mode is generally preferred because it can be used to hide information about the ultimate traffic 
destinations. For example, suppose a user has a PC connected to the internal network from the Internet via 
an IPsec tunnel (which is one way to implement a VPN system). In this case, somebody else might 
intercept and view the packets as they cross through the Internet. However, they will be encrypted, so they 
can tell very little from this process.  

Suppose this session is encrypted per-flow rather than across the whole tunnel. Then it is possible for the 
person intercepting packets to do what is called traffic analysis. Traffic analysis means that they might tell 
from the IP addresses and TCP ports that large numbers of files are passing between two specific 
individuals. In many cases this much information could be sufficient to guess the contents of the packets. 
By analogy, if you see several pizza delivery cars all arriving at the same house, you can be pretty certain 
that there's a party going on. You don't need to know what's on the pizzas. Thus, whenever possible, it is 
usually better to use a fully encrypted tunnel.  

There are cases when using this tunnel is not particularly feasible, however. For example, if the user 
communicates simultaneously with many different hosts that are not all behind the same gateway, it may 
be easier to use the per-flow system.  
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Understanding when authentication and encryption are needed is also important. Encryption is used to 
provide privacy. Authentication is used to verify the source. Clearly these functions are distinct but 
complementary. Authentication is particularly important if there is some question about the authenticity of 
the source. For example, if there is a danger that somebody will attempt to spoof or hijack a conversation, 
then authentication is critical. Encryption, on the other hand, is just used to make sure that nobody else can 
read the information. It doesn't necessarily mean that it comes from the expected source.  

The best security is achieved by using both authentication and encryption together. However, as with the 
per-tunnel versus per-flow implementations, this usage varies with the particular network application.  
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Appendix A. Appendix: Combining Probabilities 
Start with one flip of a coin. If you flip the coin once, you know the answer. Call the probability of getting 
heads P, so the probability of getting tails is (1-P). The symbol kPn represents the probability of getting k
heads in n flips.  

Flip the coin a second time. Now there are several possibilities. You could have two tails, two heads, a 
head and a tail, or a tail and a head. I wrote down the probabilities for one flip. The probabilities for the 
second flip are the same, but I have to multiply the first flip by the second. The probability of getting two 
heads in a row is the probability of getting heads on the first toss times the probability of getting heads on 
the second toss:  

The most interesting example is the 1P2. It says that the probability of getting one head in two tosses is the 
probability of getting a head then a tail, plus a tail then a head. Substituting in the values for 0P1 and 1P1
from the previous example gives:  

I want to flip the coin one more time before moving on to the general case:  
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With the three-flip case, what is happening becomes more obvious. It finds all the ways that I can select k
heads from n flips, and it multiplies by Pk to give the probability for this number of heads. Then I multiply 
again by (1-P)n-k to give the probability for this number of tails. Any statistics text will tell you that the 
number of ways of picking k from n is:  

So: 

Checking this equation against the values already calculated for n = 3 in the previous example shows that it 
is correct:  

Note that 0! and 1! are both equal to 1: 


