
Exploiting Smart-Phone USB
Connectivity For Fun And Profit!

Angelos Stavrou & Zhaohui Wang!
Department of Computer Science !

 George Mason University!

Talk Outline!

  Background	
 –	
 Why	
 USB	
 a2acks?	
 What’s	
 new	
 here?	

  New	
 a2ack	
 vectors,	
 different	
 from	
 simple	
 USB	
 storage	
 	

  Phone-­‐to-­‐Computer	
 A2ack	

  Computer-­‐to-­‐Phone	
 A2ack	

  Phone-­‐to-­‐Phone	
 A2ack	

  Demo	
 &	
 Discussion	
 Points!

  Defenses	
 &	
 Future	
 Work	

USB is Pervasive in Gadgets !

 All Smart-Phone devices use USB!
  Google Android Devices (HTC, Motorola, …)!
  Apple iPhone!
  Blackberry!
  Others !
!

 Multi-purpose Usage!
  Charging the Device Battery!
  Data & Media Transfer!
  Control external Devices (new capability)!

!

USB-borne Threats only focused on Auto-Mounting !

USB-borne Threats are much more complex… !

 USB	
 protocol	
 can	
 be	
 (ab)used	
 to	
 connect	
 any	

device	
 to	
 a	
 compuLng	
 plaMorm	
 without	

authenLcaLon	

 Desktops,	
 Laptops,	
 phones,	
 kiosks,	
 tables	
 (ipad)	

 USB	
 Storage	
 is	
 just	
 the	
 Lp	
 of	
 the	
 iceberg	
 and	
 it	
 is	

usually	
 locked-­‐down	
 and	
 scanned	
 by	
 anL-­‐virus	

and	
 other	
 defenses	

 USB	
 Human	
 Interface	
 Devices	
 (HIDs)	
 are	
 one	

class	
 of	
 devices	
 that	
 are	
 much	
 more	
 appealing	

 Keyboard/Mouse/???	
 on	
 your	
 Android	
 Phone	

 Other	
 USB	
 devices?	
 	

USB-borne Threats are much more complex… !

Many	
 other	
 devices:	

 Ethernet/Wireless	
 Network	
 Adapter	

 No	
 password,	
 man	
 in	
 the	
 middle	
 for	
 your	
 network	

traffic	
 installed	
 as	
 the	
 default	
 “gateway”	

 Printer	

 Capture	
 all	
 the	
 documents	
 printed	

  JoysLc(!)	

 Biometric	
 USB	
 Reader	

 Brute	
 force	
 your	
 way	
 into	
 a	
 protected	
 system(?)	

	

Phone-to-Computer Attacks!
•  Program the Phone with USB Gadget API for Linux

•  Pretend to be a USB Human Interface Driver,

  Dell USB keyboard, VendorID=413C,ProductID=2105!

  Touchpad or Mouse!

•  Pre-programmed key code.
 User-lever or System-level attacks

  Anything you would imagine

•  Transparent to Victim Machine
  No Human Input or approval

HIDs are recognized automatically…

Phone-to-Computer Attacks (Cont)!
•  Traditional autorun attacks are easy but easily detectable

•  Autorun and autoplay are default since Windows XP SP2

 (MS KB967715) tries to address that

•  Flash Autoplay Content exploitation by re-enumeration
 Exploit different content (PDF, HTML, DOC, MP3)

 ReMount/unmount MMC card controlled by device

• Exploit Autoplay feature of default Media Programs
  Selectively prepare attack payload, i.e. Malicious mp3 files
targeting MacOSX iTunes, pdf targeting unpatched Adobe Reader

  Highly robust exploit, works for for a variety of programs

Computer-to-Phone Attacks!
  Gaining Root Access to the Smart Phone Device!

  Official: simulate screen tap event to the oem unlock menu on
selected devices!

  Universal: linux local root exploit (CVE-2009-1185,
RLIMIT_NPROC exhaustion) send via USB!

  Insert malicious payload!
  Kernel-level: disassemble boot partition !
  Replace kernel zimage with your own!
  Replace Applications !

!
  Remove traces by un-rooting to avoid detection!

  We can quickly cleanup, not need for traces!
  Next reboot, not traces at all!
  Very very difficult to identify, it has to happen before next reboot!

Computer-to-Phone Attacks (Cont.)!

  Kernel manipulation!

  Rootkits!

  Traffic Redirection to a known proxy!

  Data Exfiltration!

  Native ARM ELF binary !

  bypasses Android framework permissions and checks !

  A complete phone provisioning process fully
automated with evil payload!

  No application-level traces!

Phone-to-Phone Attacks - OTG!

  USB OTG (On-the-Go) controller !
  Capability to switch the controller and become a host or a gadget!
!

  Smart Phones are shipped with such OTG capable chipset!
  Qualcomm QSD8250, Texas Instruments OMAP 3430!

!
  The 5th pin (ID) pin identifies the function of the controller

host or gadget !
  floating ID denotes gadget, grounded ID denotes host!

USB(Mini) OTG Connector

Smart Phone as a Host Controller!

  Specially shorted USB mini-B dongle to signal the OTG
controller behave as a host!

  USB transgender or USB micro-A to Standard-A Female
cable.(out-of-box cable is micro-B to Standard-A Male)!

Smart Phone as a Host Controller (Cont.)!

  Power hub, for additional power supply!

!

  Host side software stack, UHCI/EHCI HCD driver, device
driver, userland programs!

!

USB Hacking 101!

Crucial Steps for USB Hacking:!
  Understand the USB Background (coming up)!

 Low-level “USB Hubs” VS device driver!

  Good tools to help debugging (Demo !
 Some tools are helpful but have flaws as we will show!
 Combination of tools much better!

  (Some) Hardware hacking!
 Craft cables to put the phone in “Master” mode!
 Use the phone to connect and hack Other Phones!

  Patience!!

!

USB Reconnaissance !

OperaLng	
 System	
 FingerprinLng	
 using	
 USB:	

 Not	
 all	
 USB	
 implementaLons	
 are	
 the	
 same	

 Windows	
 vs	
 Linux	
 vs	
 Mac	
 OSX	

 Flavors	
 of	
 Windows	

 The	
 protocol	
 is	
 the	
 same	
 but	
 not	
 the	

implementaLon	
 	

 USB	
 devices	
 in	
 “slave”/	
 gadget	
 mode	
 can	
 idenLfy	

the	
 OS	
 upon	
 connecLon	

 Smart	
 (i.e.	
 programmable	
 USB	
 devices)	
 can	
 do	
 so	

much	
 more	
 as	
 we	
 will	
 see.	

USB Reconnaissance !

USB Gadget
Observations

Operating System

Full function probe

Device alive probe

Bare device w/o
configuration retries

Single adb/umass
interface bus reset

6 12 1

USB Background: Hierarchical Topology!

USB: Series of Events (Overview)!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

The host continues enumerate all
the interfaces

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

Get Interface Descriptor

USB Interface Class,

Subclass, Protocol

The host sets up endpoints for
every interface

USB data transfer starts

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

The peripheral
specify interface

information

USB: Series of Events !
Interrupt notifying the host that a

device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor
The

peripheral
identifies

itself

USB: Series of Events!

The host send Get Device
Descriptor setup request

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Speed, VendorID,

ProductID, Serial

No., Manufacture

The
peripheral
identifies

itself

USB: Series of Events!

The host send Get Device
Descriptor setup request

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Speed, VendorID,

ProductID, Serial

No., Manufacture

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

USB: Series of Events!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

USB: Series of Events!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

Get Interface Descriptor

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

The peripheral
specify interface

information

USB: Series of Events!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

The host continues enumerate all
the interfaces

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

Get Interface Descriptor

USB Interface Class,

Subclass, Protocol

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

The peripheral
specify interface

information

USB: Series of Events!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

The host continues enumerate all
the interfaces

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

Get Interface Descriptor

USB Interface Class,

Subclass, Protocol

The host sets up endpoints for
every interface

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

The peripheral
specify interface

information

USB: Series of Events (Overview)!

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

The host continues enumerate all
the interfaces

Interrupt notifying the host that a
device connected

USB Host USB Peripheral

Standard USB Handshake

Get Device Descriptor

Get Configuration

Mass-storage, USB

ether etc.

Speed, VendorID,

ProductID, Serial

No., Manufacture

Get Interface Descriptor

USB Interface Class,

Subclass, Protocol

The host sets up endpoints for
every interface

USB data transfer starts

The
peripheral
identifies

itself

The peripheral
supply the

configuration, can
be dynamically

changed in smart
gadget

The peripheral
specify interface

information

Device Configuration Map!

USB Host Enumeration!

  Enumeration: How the host learns about devices!

  All USB devices must support (HW/SW) control
transfers, the standard requests, and endpoint zero.!

  Smart gadgets are often composite devices!

  Enumeration is transparent and automatic!

USB Enumeration Hierarchy!

 Device!
  Configuration!

  Interface!
 Endpoint!

  Configuration changes the "
ProductID!
  USB debugging will Change N1’s

ProductID from 4e11 to 4e12)!

Demo Demo Demo!
•  Show Exploitation of Computer using the phone as
Keyboard!

• Android based "
!but *any* smart phone device with modern USB
!controller can perform the attack!

• *Any* operating system is vulnerable, core functionality not
just a hack!

• We can lunch, reboot, redirect, …!

Discussion!

•  USB connections are unprotected in current USB
1.1/2.0/3.0 protocol!

•  USB is the new venue for emerging exploits due to
trust in physical proximity !

•  Smart gadget can cause more damages than
traditional passive USB devices.!

• Mutual USB authentication!

• Revise the USB protocol for security features!

Phone-to-Computer Defenses!

Potential Defense Strategies �

•  Disable autorun on USB storage device

 MS KB971029, non mandatory

•  Disable all USB storage devices from automatically
attaching

 MS KB823732

•  Validate the Autenticity of the USB Devices once upon
connect

  Bluetooth devices

  Does not prevent attacks from corrupted devices

Discussion – Defenses?!
•  Potential Defenses – Adding Device Authentication is :!

Discussion– Defenses?!

  Adding static token authentication is not enough!

  Guessable!

  Easy to bypass (wait for the USB device to get authenticated,
swap to another device)!

  Data Exfiltration!

  Mutual Dynamic Authentication is good but…!

  Passive and Dumb devices cannot cope with!

  Many devices support partially the protocols!

  Windows USB-Hub subsystem a problem…!

Discussion– Defenses?!

  Getting the Human in the loop!

  Bluetooth has tried that!

  It works but only to validate the device it cannot prevent a device
which is “approved” but compromized from corrupting and
taking over the other end.!

  The Solution requires Human to verify both Type of
Device and restrict its permissions!

  Very very difficult given the current user body!

  Can only be applied to enterprise settings!

  Disabling the USB not an option (Why? Recharging…)!

