646 PAPER # Cobalt(II) Chloride-Catalyzed Chemoselective Sodium Borohydride Reduction of Azides in Water Francesco Fringuelli, Ferdinando Pizzo,* Luigi Vaccaro Università di Perugia, Dipartimento di Chimica, Via Elce di Sotto, 8-06123 Perugia, Italy Fax +39(075)5855560 Received 4 October 1999; revised 7 February 2000 **Abstract**: Reduction of azides to amines and amides was carried out with NaBH₄/CoCl₂•6H₂O in sole water at 25 °C under catalytic heterogeneous conditions. A broad spectrum of azides was reduced in a short time, chemoselectively in high yield and purity. Key words: azide, reduction, cobalt (II) chloride, sodium borohydride The reduction of the azido group to an amino group has been extensively investigated because of a wide range of applications in organic synthesis, especially in nitrogencontaining heterocycles¹ and carbohydrate chemistry.² Most of the reducing agents that have been used are of a non-hydride type. Some have been known for a long time³ and others have been discovered in the last decade; the best known are: SmI₂,⁴ Sm/I₂,⁵ Me₃SiI,⁶ Fe/NiCl₂·6H₂O,⁷ AlI₃,⁸ (PhCH₂NEt₂)₂MoS₄,⁹ Zn/NiCl₂,¹⁰ In/NH₄Cl,¹¹ H₂N-NMe₂/FeCl₃·6H₂O,¹² and S(SiMe₃)₂.¹³ Hydride-reducing agents are widely employed, but some of them have limitations. Diborane is not applicable to compounds having double or triple bonds.³ LiAlH₄ has to be used in a large excess, requires a long reaction time and is not tolerable to some functionalities (CO₂R, NO₂, CHO, COR, epoxide). 3,14,15 NaBH₄ is a mild reducing agent and except for arylsulphonyl azides does not usually reduce azides to amines.^{3,14} Improvements have been obtained by using NaBH₄ under phase-transfer-catalysis conditions¹⁴ or in THF with stoichiometric amounts of methanol¹⁶ or by using complex reducing agents such as NaBH₄/ NiCl₂, ¹⁷ NaBH₄/CuSO₄, ¹⁸ however, a complete chemoselectivity is not always achieved. Modified sodium borohydride reducing agents such as borohydride exchange resin-Ni(OAc)₂, ¹⁹ Zn(BH₄)₂, ¹⁵ and LiMe₂NBH₃²⁰ have also been used. Bu₃SnH with a catalytic amount of azobis(isobutyronitrile) has been employed to reduce azidonucleosides and azidodeoxysugars.²¹ In all cases, the organic solvent is the preferred reaction medium and to our knowledge, sole water has never been used.²² This is quite surprising especially with reference to NaBH₄/metal salts as reducing systems. They are usually used in methanol, although NaBH₄ in this medium is considerably less stable than in water at pH >7. $^{25-27}$ In order to perform the reduction in methanol²⁶ a large excess (5–10 equivalents) of hydride is required. The use of sole wa- ter as a reaction medium should allow us to minimize the excess of NaBH₄, and to reuse the catalyst in further runs. We have been studying organic reactions in water and have shown that an aqueous medium can be conveniently used in aldol-like condensations, ^{28a} epoxidations, ^{28b-c} and Diels-Alder cycloadditions.^{28d} Recently, we prepared $\beta\text{-azidoalcohols}$ and $\alpha\text{-hydroxy-}\beta\text{-azidocarboxylic}$ acids by a pH-controlled and metal-catalyzed azidolysis of alkyl- and aryl-1,2-epoxides^{29a} and 2,3-epoxycarboxylic acids respectively. 29b Our project concerns the synthesis of β -amino alcohols and β -hydroxy- α -amino acids in a one-pot procedure starting from the corresponding epoxides by azidolysis and subsequent reduction of the azido group. Here, we report a mild and efficient NaBH₄/ CoCl₂-catalyzed reduction, in sole water, of azides to amines and amides. The NaBH₄/CoCl₂ system has been used to reduce several functional groups except azido, and has never been used in water only.²⁷ A variety of azides were reduced quickly at 25 °C and in excellent yields with a catalytic amount of CoCl₂•6H₂O (0.1 equivalents) in water, in the presence of NaBH₄ (2.0 equivalents).³⁰ The reaction was carried out in heterogeneous phase by simply adding a water solution of NaBH₄ to a stirred mixture of azide and CoCl₂•6H₂O; this addition was strongly exothermic. When the azide is highly hydrophobic, the best results, in terms of yield and time, are achieved by carrying out the reaction in the presence of 10% equivalents of cetyltrimethylammonium bromide (CTABr). NaBH₄ is unreactive towards the azido group in both heterogeneous and homogeneous aqueous medium in the presence of CTABr. The reduction is quantitative and the results are summarized in Table 1. The azides 3a and 7a-10a and the products 3b-10b are new compounds. Aliphatic, cycloaliphatic, aryl, aroyl, and arysulphonyl azides are efficiently and quickly reduced and the reducing agent tolerates functionalities such as CO₂H, CO₂Me, OH, and OCH₂O. Moreover, the reaction is so fast that NO₂, CMe₂=CRH and CN functionalities are not reduced.³¹ After removing the reaction product by ethyl ether extraction of the aqueous reaction mixture, the mother liquor could be reused but its pH value is of crucial importance. At the end of the reduction process, the aqueous medium is strongly basic (pH>11) and if used as is, the reaction proceeds with low yield. The best efficiency was obtained by lowering the pH of the aqueous mixture to 8.0 by adding some drops of concentrated HCl before adding the Table 1 Reduction of Azides with NaBH₄/CoCl₂⋅6H₂O in H₂O at 25 °C $$R-N_3 \xrightarrow{\text{NaBH}_4/\text{CoCl}_2 \cdot 6\text{H}_2\text{O}} R-NH_2$$ | | Substrate | | Product | Time
(min) | Yield"
(%) | |-----|--|-----|---|---------------|-----------------| | la | N ₃ | 1b | NH ₂ | 10 | 95 | | 2a | N₃
OH | 2b | NH ₂ OH | 10 | 97 | | 3a | OH N ₃ | 3b | OH NH ₂ | 30 | 93 ^b | | 4a | N ₃ | 4b | NH ₂ | 15 | 94 | | 5a | N ₃ | 5b | NH ₂ | 10 | 96 | | 6a | $\overset{OH}{\longrightarrow} N_3$ | 6b | OH NH ₂ | 20 | 92 ^b | | 7a | CO ₂ Me
TOH
'N ₃ | 7Ь | CO ₂ Me
OH
'''NH ₂ | 10 | 95 | | 8a | $\bigcup_{0}^{N_3}$ | 8b | ONH ₂ | 60 | 92 | | 9a | N_{N_3} | 9b | N_{NH_2} | 10 | 98 | | 10a | N ₃ | 10b | NH ₂ | 20 | 91 | | 11a | | 11b | $-\!$ | 10 | 97 | | 12a | $HO_2C - \underbrace{ \begin{array}{c} O \\ II \\ S \\ O \\ O \\ \end{smallmatrix}} N_3$ | 12b | HO_2C \longrightarrow O II S \longrightarrow NH_2 O | 10 | 97 | | 13a | O ₂ NN ₃ | 13b | O_2N — NH_2 | 20 | 92 | | | MeO₂Ć
O | | MeO₂Ć
Q | | | | 14a | N_3 | 14b | NH ₂ | 10 | 96 | ^aYield of isolated product; ^b 10% mol equiv of CTABr. azide and NaBH₄. The yields of the 2nd, 3rd, 4th, and 5th runs for azides **1a** and **11a**, chosen as representative examples, were excellent (Table 2). In conclusion, catalytic amount of the reducing system NaBH₄/CoCl₂·6H₂O (catalyst), not previously employed for the reduction of azides, in sole water and under mild conditions, reduces chemoselectively a broad spectrum of azides to amines and amides with high yields. The easy availability of the reducing system, the nature of the reaction medium and the possibility to recycle the catalyst make this procedure attractive and advantageous. F. Fringuelli et al. **Table 2** Efficiency of the Reused Aqueous Mixture of Reducing System at $25\,^{\circ}\text{C}^{\text{a}}$ | Run | $1a \rightarrow 1b$
Yield (%) | $11a \rightarrow 11b$ Yield (%) | | |-----|----------------------------------|---------------------------------|--| | 1 | 95 | 97 | | | 2 | 97 | 96 | | | 3 | 98 | 95 | | | 4 | 96 | 95 | | | 5 | 96 | 97 | | ^a After 10 min of reaction time. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX - ADVANCE 400 MHz spectrometer; chemical shifts are reported in ppm and coupling constants are reported in Hz, using CDCl₃ or CD₃OD as solvents with TMS as internal standard. IR spectra were obtained on a FT-IR Bruker IFS 113v spectrophotometer. Microanalyses were performed on *Carlo Erba* Elemental Analyzer mod. 1106. Mps were taken on a Büchi 510 melting point apparatus and are uncorrected. Reaction progress was monitored by GC analysis, performed on a Hewlett Packard 5890 Series II equipped with an SPB-5 fused silica capillary column (30 m, 0.25 mm diameter), an "on column" injector system, a FID detector and H₂ as carrier gas. Compounds **1a–11a**, and **14a** were prepared by following known procedures.^{29, 32} Compounds **12a, 13a, 1b, 2b**, and **11b–14b** are commercial. Compounds **3a, 7a–10a**, and **3b–10b** are new compounds. The azides **3a** and **7a** were prepared by azidolysis of the corresponding epoxides under basic conditions^{29a} and Cu(II) catalyzed,^{29b} respectively. The azides **8a, 9a**, and **10a** were prepared by following the described procedure starting from the respective bromide.³² ## 1-Azido-3-(1',3'-benzodioxol-5'-yl)propan-2-ol (3a) IR (CCl₄): v = 3421, 2916, 2901, 2106, 1503, 1489, 1443, 1249, 928, 810 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.99 (br s, 1H, OH), 2.64–2.67 (m, 2H, H-3), 3.20 (dd, J = 6.6, 12.5 Hz, 1H, H-1a), 3.31 (dd, J = 3.9, 12.5 Hz, 1H, H-1b), 3.81–3.94 (m, 1H, H-2), 5.87 (s, 2H, -OCH₂O-), 6.55–6.74 (m, 3H, H-Ar). 13 C NMR (CDCl₃): δ = 40.2, 55.6, 71.5, 100.7, 108.1, 109.4, 122.0, 130.7, 146.1, 147.6. Anal. Calcd for C₁₀H₁₁N₃O₃: C, 54.29, H, 5.01, N, 19.00. Found: C, 54.65, H, 4.98, N, 18.79. ### Methyl *trans-*2-Azido-1-hydroxycyclohexanecarboxylate (7a) Oil IR (CCl₄): v = 3521, 2944, 2865, 2102, 1729, 1449, 1436, 1356, 1260, 869 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.20–2.05 (m, 8H), 3.52 (dd, J = 4.9, 9.4 Hz, 1H, H-1), 3.61 (br s, 1H, OH), 3.82 (s, 3H, Me). ^{13}C NMR (CDCl₃): δ = 21.4, 22.4, 27.3, 33.8, 52.8, 66.2, 76.3, 174.3. Anal. Cald for $C_8H_{13}N_3O_3$: C, 48.23, H, 6.58, N, 21.09. Found: C, 48.25, H, 6.61, N, 21.08. ### 2-(1', 3'-Dioxan-2'-yl)ethyl Azide (8a) IR (CCl₄): 3674, 3504, 3005, 2961, 2859, 2508, 2114, 1705, 1470 cm^{-1} . ¹H NMR (CDCl₃): δ = 1.20–1.42 (s, 1H, H-5′a), 1.86 (dt, J = 5.1, 6.8 Hz, 2H, H-2), 2.03–2.15 (m, 1H, H-5′b), 3.39 (t, J = 6.8 Hz, 2H, H-1), 3.81 (m, 2H, H-4′a, H-6′a), 4.10 (m, 2H, H-4′b, H-6′b), 4.65 (t, J = 5.0 Hz, 1H, H-2′). ¹³C NMR (CDCl₃): $\delta = 25.6, 34.4, 46.5, 66.8, 99.4$. Anal. Cald for $C_6H_{11}N_3O_2$: C, 45.85, H, 7.05, N, 26.74. Found: C, 45.91, H, 7.01, N, 26.78. #### 4-Azidobutanenitrile (9a) Oil. IR (CCl₄): 3254, 3014, 3941, 2872, 2504, 2254, 2105, 1731, 1705, 1290, 1258 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.90 (q, J = 6.7 Hz, 2H, H-3), 2.40 (t, J = 6.7 Hz, 2H, H-2), 3.42 (t, J = 6.7, 2H, H-4). ¹³C NMR (CDCl₃): $\delta = 14.3, 24.7, 49.3, 118.5$. Anal. Cald for $C_4H_6N_4$: C, 43.63, H, 5.49, N, 50.88. Found: C, 43.60, H, 5.51, N, 50.87. #### 5-Azido-2-methyl-2-pentene (10a) Oil IR (CCl₄): v = 2972, 2930, 2917, 2876, 2088, 1718, 1675, 1451, 1295, 1265, 828 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.63–1.65 (m, 3H, Me), 1.71–1.73 (m, 3H, Me), 2.30 (br q, J = 7.1 Hz, 2H, H-4), 3.24 (t, J = 7.1 Hz, 2H, H-5), 5.11 (br t, J = 7.1 Hz, 1H, H-3). ¹³C NMR (CDCl₃): δ = 17.6, 25.6, 27.8, 51.0, 119.8, 134.8. Anal. Calcd for $C_6H_{11}N_3$: C, 57.57, H, 8.86, N, 33.57. Found: C, 57.63, H, 8.83, N, 33.62. # Reduction of Azides with NaBH₄/CoCl₂·6H₂O in H₂O; General Procedure To a mixture of azide (2.0 mmol) and $CoCl_2 \bullet 6H_2O$ (0.048 g, 0.2 mmol), and when necessary (Table 1) CTABr (0.07 g, 0.2 mmol), at 25 °C was added dropwise under stirring a solution of NaBH₄ (0.0152 g, 4.0 mmol) in H₂O (4 mL). The formation of a black precipitate indicated the formation of a cobalt boride species. The mixture was stirred at 25 °C for more than 10 min when necessary (Table 1). At the end of the reaction the mixture was extracted with Et_2O (5 × 10 mL). The organic phase was dried (Na₂SO₄) and concentrated under reduced pressure to give the pure amine or amide, The yields are reported in Table 1. #### **Re-use of Reducing Agent** The pH of remaining mother liquor (approx. 4 mL) after extraction with Et_2O of amine or amide was adjusted to 8.0 by adding a few drops of concd HCl. Azide (2.0 mmol) was then added, followed by NaBH₄ (0.0152 g, 4.0 mmol) in small doses. The mixture was stirred at 25 °C for more than 10 min. when necessary (Table 1) and then extracted with Et_2O . The mother liquor can continue to be reused. Two examples are illustrated in Table 2. # 1-Amino-3-(1', 3'-benzodioxol-5'-yl)propan-2-ol (3b) Oil. 1 H NMR (CD₃OD): δ = 2.63–2.85 (m, 3H, H-1, H-3), 2.95 (m, 1H. H-1), 3.85–4.00 (m, 1H, H-2), 5.88 (s, 2H, -OCH₂O-), 6.63-6.78 (m, 3H, H-Ar). 13 C NMR (CD₃OD): δ = 42.1, 45.3, 70.0, 102.1, 107.5, 110.5, 123.4, 132.0, 147.7, 149.0. Anal. Calcd for $C_{10}H_{13}NO_3$: C, 61.53, H, 6.71, N, 7.17. Found: C, 61.60, H, 6.68, N, 7.21. #### (-)-3β-Amino-4α-hydroxy-trans-carane (4b) Mp 88–89 °C (*n*-hexane/Et₂O); $[\alpha]_D^{25}$ –8° (*c* 0.98, CHCl₃) ¹H NMR (CDCl₃): δ = 0.59–0.71 (m, 2H, H-1, H-6), 0.90 (s, 3H, H-8), 0.93 (s, 3H, H-9), 1.02 (br s, 3H, H-10), 0.97–1.06 (m, 1H, Hβ-2), 1.59 (ddd, J = 7.8, 10.2, 14.4 Hz, 1H, Hβ-5), 1.80 (dd, J = 9.4, 14.4 Hz, 1H, Hα-2), 1.98 (dd, J = 7.2, 14.4 Hz, 1H, Hα-5), 2.15 (br s, 3H, NH₂, OH), 3.09 (dd, J = 7.3, 10.2 Hz, 1H, H-4). $^{13}\text{C NMR (CDCl}_3)$: $\delta = 15.8, 17.5, 19.5, 19.6, 21.4, 27.2, 28.8, 35.7, 52.3, 74.2.$ Anal. Calcd for $C_{10}H_{19}NO$: C, 70.96, H, 11.31, N, 8.27. Found: C, 70.85, H, 11.45, N, 8.25. #### (+)-4β-Amino-3α-hydroxy-cis-carane (5b) Mp 113–114 °C (*n*-hexane/Et₂O); $[\alpha]_D^{25}$ +35° (*c* 1.80, CHCl₃) ¹H NMR (CDCl₃): δ = 0.56–0.71 (m, 2H, H-1, H-6), 0.77–0.88 (m, 1H, Hβ-5), 0.95 (s, 3H, H-8), 0.97 (s, 3H, H-9), 1.07 (s, 3H, H-10), 1.29 (dd, J = 6.1, 15.4 Hz, 1H, Hβ-2), 1.81 (dd, J = 8.5, 15.4 Hz, 1H, Hα-2), 1.96–2.06 (m, 1H, Hα-5), 2.30 (br s, 3 H, NH₂, OH), 2.78 (dd, J = 5.3, 10.5 Hz, 1H, H-4). ¹³C NMR (CDCl₃): δ = 15.8, 18.3, 20.8, 24.7, 26.9, 28.6, 31.8, 34.2, 56.6, 72.5. Anal. Calcd for $C_{10}H_{19}NO$: C, 70.96, H, 11.31, N, 8.27. Found: C, 70.80, H, 11.40, N, 8.20. #### 1-Aminooctan-2-ol (6b) ¹H NMR (CDCl₃): δ = 0.89 (t, J = 6.9 Hz, 3H, H-8), 1.55–1.75 (m, 10H), 1.55 (br s, 3H, NH₂, OH), 2.51 (dd, J = 8.3, 12.6 Hz, 1H, H-1a), 2.86 (dd, J = 3.3, 12.6 Hz, 1H, H-1b), 3.40–3.60 (m, 1H, H-2). ¹³C NMR (CDCl₃): δ = 14.4, 23.7, 26.7, 30.5, 33.0, 36.0, 48.0, 72.7. Anal. Calcd for $C_8H_{19}NO$: C, 66.16, H, 13.19, N, 9.64. Found: C, 66.23, H, 13.12, N, 9.63. ### Methyl *trans*-2-amino-1-hydroxy-cyclohexanecarboxylate (7b) IR (CCl₄): v = 3526, 2941, 2864, 2362, 1725, 1450, 1436, 1362, 1302, 1231 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.20–2.08 (m, 8H), 2.23 (br s, 1H, OH), 2.73 (dd, J = 5.0, 10.2 Hz, 1H, H-2), 3.77 (s, 3H, Me). ^{13}C NMR (CDCl₃): $\delta = 22.4,\ 23.9,\ 31.3,\ 35.0,\ 52.1,\ 57.4,\ 77.8,\ 174.9.$ Anal. Calcd for $C_8H_{15}NO_3$: C, 55.47, H, 8.73, N, 8.09. Found: C, 55.48, H, 8.77, N, 8.10. ## **2-**(1', **3'-dioxan-2'-yl)ethyl amine** (**8b**) Oil. IR (CCl₄): 3379, 2972, 2860, 2338, 1588, 1379, 1143, 1003, 804.3 cm⁻¹ ¹H NMR (CDCl₃): δ = 1.20–1.32 (m, 1H, H-5′a), 1.68 (dt, J = 5.1, 6.6 Hz, 2H, H-2), 1.85 (br s, 2H, NH₂), 1.94–2.12 (m, 1H, H-5′b), 2.75 (t, J = 6.6 Hz, 2H, H-1), 3.60–3.78 (m, 2H, H.4′a, H-6′a), 3.95–4.10 (m, 2H, H-4′b, H-6′b), 4.58 (t, J = 5.1 Hz, 1H, H-2′). ¹³C NMR (CDCl₃): δ = 22.2, 25.6, 37.1, 38.4, 66.7, 101.1. Anal. Calcd for $C_6H_{13}NO_2$: C, 54.94, H, 9.99, N, 10.68. Found: C, 54.99, H, 9.97, N, 10.71. #### 4-Aminobutanenitrile (9b) Oil IR (CCl₄): 3383, 3319, 2957, 2872, 2478, 2250, 2104, 1699, 1602, 1426, 1377, 1315, 1090, 885, 859 cm $^{-1}$. ¹H NMR (CDCl₃): δ = 1.95 (q, J = 6.9 Hz, 2H, H-3), 2.41 (t, J = 6.9 Hz, 2H, H-2), 2.81 (t, J = 6.9 Hz, 2H, H-4). ¹³C NMR (CDCl₃): $\delta = 14.5, 28.7, 40.4, 120.7$. Anal. Calcd for $C_4H_8N_2$: C, 57.11, H, 9.59, N, 33.30. Found: C, 57.13, H, 9.64, N, 33.31. #### 4-Methylpent-3-enylamine (10b) IR (CCl₄): v = 2970, 2910, 2903, 2856, 1718, 1681, 1429, 1291, 1210, 821 cm⁻¹. ¹H NMR (CDCl₃): δ = 1.60 (s, 3H, Me), 1.68 (s, 3H, Me), 1.78 (br s, 2H, NH₂), 2.10 (dd, J = 6.8, 13.7 Hz, 2H, H-2), 2.70 (dd, J = 6.6, 6.7, Hz, 2H, H-1), 5.06 (m, 1H, H-3). ¹³C NMR (CDCl₃): δ = 17.7, 25.7, 32.1, 41.9, 121.6, 132.7. Anal. Calcd for $C_6H_{13}N$: C, 72.66, H, 13.21, N, 14.12. Found: C, 72.58, H, 13.25, N, 14.13. #### Acknowledgement This work was supported by the Consiglio Nazionale delle Ricerche (CNR), Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and Università degli Studi di Perugia. #### **References and Notes** - (1) Smith, S. C.; Heathcock, C. H. J. Org. Chem. 1992, 57, 6379. - (2) McDonald, F. E.; Danishefsky, S. J. J. Org. Chem. 1992, 57, 7001. - (3) Scriven, E. F.; Turnbull, K. Chem. Rev. 1988, 88, 297. - (4) Goulaouic-Dubois, C; Hesse, M. Tetrahedron Lett. 1995, 36, 7427. - Huang, Y.; Zhang, Y.; Wang, Y. Tetrahedron Lett. 1997, 38, 1065. - (6) Kamal, A.; Rao, N. V.; Laxman, E. Tetrahedron Lett. 1997, 38, 6945. - (7) Baruah, M.; Baruah, A.; Prajapati, D.; Sandhu, J. S.; Ghosh, A. Tetrahedron Lett. 1996, 37, 4559. - (8) Barua, A.; Bez, G.; Barua, N. C. *Indian J. Chem., Sect. B* **1999**, *38*, 128. - (9) Ramesha, A. R.; Bhat, S.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7682. - (10) Boruah, A.; Baruah, M.; Prajapati, D.; Sandhu, J. Synlett 1997, 1253. - (11) Reddy, G. V.; Rao, G. V.; Iyengar, D. S. *Tetrahedron Lett.* **1999**, *40*, 3937. - (12) Kamal, A.; Reddy, B. S. N. Chem. Lett. 1998, 593. - (13) Capperucci, A.; Degl'Innocenti, A.; Funicello, M.; Mauriello, G.; Scafato, P.; Spagnolo, P. *J. Org. Chem.* **1995**, *60*, 2254. - (14) Rolla, F. J. Org. Chem. 1982, 47, 4327. - (15) Ranu, B. C.; Sarkar, A.; Chakraborty, R. J. Org. Chem. 1994, 59, 4114. - (16) Soai, K.; Yokoyama, S.; Ookawa, A. Synthesis 1987, 48. - (17) Sarma, J. C.; Sharma, R. P. Chem. Ind. 1987, 764. Rao, H. S. P.; Reddy, K. S.; Turnbull, K.; Borchers, V. Synth. Commun. 1992, 22, 1339. - (18) Rao, H. S. P.; Siva, P. Synth. Commun. 1994, 24, 549. - (19) Yoom, N. M.; Cho, J.; Shon, Y. S. Synth. Commun. 1994, 23, 3047. - (20) Alvarez, S. G.; Fisher, G. B.; Singaram, B. *Tetrahedron Lett.* **1995**, *36*, 2567. 650 F. Fringuelli et al. PAPER - (21) Samano, M. C.; Robins, M. J. Tetrahedron Lett. 1991, 32, 6293. Poopeiko, N. E.; Pricota, T. I.; Mikhailopulo, I. A. Synlett 1991, 342. - (22) The water was used in a phase-transfer procedure 14 as reagent in the reduction that uses PPh₃, 23 and as co-solvent in the reduction with H_2S^{24a} and $TiCl_3$. 24b - (23) Pilard, S.; Vaultier, M. Tetrahedron Lett. 1984, 20, 1555. Knouzi, N.; Vaultier, M.; Carrié, R. Bull. Soc. Chim. Fr. 1985, 815 - (24) a) Adachi, T; Yamada, Y.; Inoue, I.; Saneyoshi, M. Synthesis 1977, 45. b) Stanovnik, B.; Tisler, M.; Slovenko, P.; Gracner, M. Synthesis 1978, 65. - (25) Wade, R. C. J. Mol. Catal. 1983, 18, 273. - (26) Osby, J. O.; Heinzman, S. W.; Gane, B. J. Am. Chem Soc. 1986, 108, 67. - (27) Ganem, B.; Osby, J. O. Chem Rev. 1986, 86, 763. - (28) a) Fringuelli, F.; Pani, G.; Piermatti, O.; Pizzo, F. *Tetrahedron* **1994**, *50*, 11499. - b) Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. - Tetrahedron Lett. 1989, 30, 1427. - c) Fringuelli, F.; Germani, R.; Pizzo, F.; Santinelli, F.; Savelli, G. *J. Org. Chem.* **1992**, *57*, 1198. - d) Fringuelli, F.; Piermatti, O.; Pizzo, F. In *Targets in Heterocyclic Systems*; Attanasi, O. A.; Spinelli, D., Eds.; SCI: 1997; p 57–73; - (29) a) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. **1999**, *64*, 6094. - b) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Synlett 2000, 306. - (30) Cobalt (II) chloride with aqueous NaBH₄ generates a black precipitate of cobalt boride, which catalyzes the decomposition of borohydride with hydrogen evolution. The reduction is more like catalytic hydrogenation, but a cobalt hydride species as active reducing agent cannot be excluded.²⁷ - (31) When the reaction time is extended to 4 hours, the double bond of compound **10b** is reduced. - (32) Curphey, T. J. Org. Prep. Proced. Int. 1981, 13, 12. #### Article Identifier: 1437-210X,E;2000,0,05,0646,0650,ftx,en;xH07999SS.pdf