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MOMENTS AND STRESSES IN SLABS.

BY H. M. WESTERGAARD * AND W. A. Si-

I. INTRODUCTION.

1. The subject of the strength of flat slabs has received considerable

attention during the past ten years. In November, 1910, the floor of the

Deere and Webber Building J at Minneapolis was tested. This was the

first field test of a reinforced-concrete building floor in which strain meas-

urements in the reinforcement and in the concrete were taken at various

places in the building. Since that time many other tests have been made
and much study has been given to the analytical side of the problem.

While considerable work has been done on the correlation of the

analytical and the experimental results, it does not seem that the possibili-

ties of useful work in this direction have been exhausted. It is the purpose
of this paper to present information which correlates the results of tests of

a fairly large number of slab structures with the results of analysis, so that

the report may aid in the formulation of building regulations for slabs.

The field of this report may be divided into three parts: (a) analysis
of moments and stresses in slabs, (b) study of the relation between the

observed and the computed steel stresses in reinforced-concrete beams, made
for the purpose of assisting in the interpretation of slab tests, (c) a study
of the test results for flat slabs with a view of comparing x

the moments of

the observed steel stresses with the bending moments indicated by the

analysis, and of estimating the factor of safety.

The mathematical analysis is the work of Mr. Westergaard. The

analysis of the beam tests to show the relation between the computed and

the observed stresses is the work of Mr. Slater.
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II. ANALYSIS OF HOMOGENEOUS ELASTIC PLATES.

BY H. M. WESTERGAARD.

3. SCOPE OF THE ANALYSIS. A slab is sometimes analyzed by considering
it as divided into strips, each carrying a certain portion of the total load.

One may expect to obtain, by this method, an exact analysis of a structure

consisting of strips which cross one another and carry the loads as assumed.
This structure, however, is quite different from the slab. The degree of

approximation obtained may be judged by the resemblance or lack of

resemblance between the strip-structure and the actual slab. As the resem-

blance is not very close, the approximation, naturally, is not very satisfac-

tory. The ordinary theory of beams, too, is approximate, not exact, when

applied to actual beams. Assumptions are introduced in the beam theory:
for example, the plane cross-sections remain plane after the bending, and

the material is perfectly elastic. But the approximation in the beam theory
is much closer than in the strip analysis of plates. The explanation is

simple: the beam to which the beam theory applies exactly has a closer

resemblance to actual beams than the strip-structure has to slabs. It is

possible, however, to analyze slabs more exactly than can be done by the

strip method. If an analysis of slabs is to compare in exactness with beam

analysis, then it must be based on a structure which resembles actual slabs

more closely than does the strip structure. It is hardly possible at present
to cover by analysis the whole range of designs of reinforced-concrete slabs.

It is expedient, therefore, to confine this investigation to a single type. The

homogeneous slab of perfectly elastic material is selected ; homogeneous
slabs have a fairly close resemblance to other slabs, and exact methods

exist by which they may be analyzed. The selection of a homogeneous
elastic material agrees witli common practice in the investigation of

statically indeterminate structures. For example, the distribution of bend-

ing moments in a reinforced-concrete arch or frame is often determined by

replacing the structure by one of homogeneous material. The plan is then

to investigate distributions of moments in homogeneous slabs. These distri-

butions mav be used as a basis for the study of the experimental data.

Theoretical analysis is under the disadvantage that its processes are

often rather more remote from the actual phenomena which are studied,

than are the processes of direct physical tests. For this reason alone it

would be out of the question to rely on the results of theoretical analysis

only. There are, on the other hand, advantages of theoretical analysis

which fully warrant its extensive use in conjunction with physical tests.

One may appreciate these advantages by looking upon the theoretical analy-

sis as being, in a sense, a test in which the testing apparatus consists of

the principles of statics and geometry, expressed in equations, and in which

the structure tested is the structure assumed in the analysis. The equations

may be solved with any desired exactness, and the structure has dimensions
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and properties exactly as assumed, and is not subject to the incidental

variations which so often have made it impossible to draw definite conclu-

sions from physical tests. Besides, by the analysis one may cover whole

ranges of variations of the structure or at least a great number of indi-

vidual structures, while a physical test can deal with only a limited number
of cases. For these reasons the analysis is of particular value as a basis of

comparison and as a method of establishing continuity between results of

separate, individual tests.

It will be seen from the historical summary which follows that the

problem of flexure of plates is one on which scientists have been at work
for more than a century. The methods, which have been developed by such

men as Navier, St. Venant, Kirchhoff, and Lord Kelvin, have found their

way into engineering literature in Europe. It has been possible, therefore,

to build the present report, in part, on the work of previous investigators.

The agreement between the results of different analyses of rectangular
slabs supported oh four sides, serves as evidence that the methods are

dependable.
It has been thought desirable to follow the method of presenting the

results first, and details of the processes afterwards. A historical sum-

mary, a statement of the limitations of the theory, and a derivation of the

fundamental equations are followed by the report of results. The results

deal with rectangular slabs supported on four edges, and with flat slabs

supported on round column capitals. Details of the analysis will be given
in the appendix A.

4. HISTOBICAL SUMMARY. The incentive to the earliest studies of the

flexure of plates appears to have been an interest in their vibrations, in

particular those producing sound, rather than an interest in the stresses

and strength. Euler, after having developed his theory of the flexure of

beams, attempted to explain the tone-producing vibrations of bells by

assuming a division into narrow strips (or rings), each of which would
act as a beam,

1 but this application of the strip method was not satisfac-

tory. Jacques Bernouilli (the younger), in a paper presented in 1788,
2

treated a square plate as if it consisted of two systems of crossing beams or

strips, and he attempted in this way to explain the results of Chladni's

experiments with vibrating plates,
3 in particular the so-called nodal figures.

As might be expected, the results of this theory did not agree very well

with the experimental data. In 1809 the French Institut, at the instiga-

tion of Napoleon, proposed as a prize subject a theoretical analysis of the

tones of a vibrating plate. Mile. Sophie Germain 4 made some unsuccessful

attempts to win this prize, but won it in 1815, when she arrived finally at a

1
Euler, De sono campanarum, Novi Commentarii Academiae Petropolitanae, v. 10,

1766.
2
Jacques Bernouilli, Esaai theoretique sur les vibrations des plaques elastiques

rectangulaires et libres, Nova Acta Academiae Scientarum Petropolitanae, v. 5,

1787 (printed 1789).
* E. F. F. Chladni, Entdeckungen iiber die Theorie des Klanges, Leipzig, 1787.
4 See Todhunter and Pearson, A History of the Theory of Elasticity, Cambridge,

1886, p. 147.
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fairly satisfactory, though not faultless derivation of a fundamental equa-
tion for the flexural vibrations. But in the meantime, in 1811, Lagrange,
who was a member of the committee to pass on the papers, had indicated

in a letter this equation, which is known, therefore, as Lagrange's equation
for the flexure and the vibration of plates (with the term depending on the

motion omitted, it is the same as (11) in Art. 6).

In 1820, Navier,
5 in a paper presented before the French Academy,

solved Lagrange's equation for the case of a rectangular plate with simply

supported edges. By this solution one may compute the deflections and,

therefore, also the curvatures and the stresses at any point of a plate of

this kind, under any distributed uniform or non-uniform load. Navier's

solution could be applied only to plates of this particular shape and with

this type of support. Furthermore, a really acceptable derivation of

Lagrange's equation, a derivation based on the stresses and deformations

at all points of the plate, had not been found so far. Poisson,
6 in his famous

paper on elasticity, published in 1829, obtained such a proof. With it, he

derived a set of general boundary conditions (conditions of equilibrium
and of deformation at the edge of the plate), and was then able to obtain

solutions for circular plates, both for vibrations and for static flexure under

a load which is symmetrical with respect to the center. Poisson's theoret-

ical results were compared with results of tests, namely, with the experi-
mental values, found by Savart for the radii of the nodal circles of three

vibrating circular plates. A close agreement was found.

In a paper, published 1850, Kirchhoff 7 derived Lagrange's equation and

the corresponding boundary conditions by using the energy principle, or the

principle of least action. He found one boundary condition less than

Poisson, namely, four at each point instead of Poisson's five. This differ-

ence gave rise to some discussion, but finally, in 1867, Kelvin and Tait '

showed that there was only an apparent discrepancy, due to an inter-

relation between two of Poisson's conditions. This conclusion, as well as

Kirchhoff's and Poisson's theories as a whole, applies, as might be expected,
with limitations which are analogous to the limitations of the ordinary

theory of beams. For example, the plate-theory ceases to apply when the

span becomes small compared with the thickness of the plate, but, of course,

in that case the structure has really ceased to be a plate in the ordinary
sense. The question of the exact nature of the limitations called for

further researches. Such were made by Bouissinesq.
9 His investigations

have established the applicability of Poisson's and Kirchhoff's theories to

* See Saint-Venants annotated edition of Clebsch's Theory of Elasticity, Paris,
1883. Note by Saint-Vcnant, pp. 740-752.

* S. D. Poisson, Memoire sur 1'equilibre et le mouvement des corps elastique,
Memoirs of the Paris Academy, v. 8, 1829, pp. 357-570. See Todhunter and Pearson,
History of the Theory of Elasticity, 1886, pp. 241, 272.

* G. Kirchhoff, Ueber das Gleichgewicht und die Bewegung einer elastischen

Scheibe, Crelles Journal, 1850, v. 40, pp. 51-88.
1 Kelvin and Tait, Natural Philosophy, ed. 1, 1867. See A. E. H. Love, Mathe-

matical Theory of Elasticity, ed. 1906. p. 438.
6
J. Boussinesq, fitude nouvelle sur 1'equilibre et le mouvement des corps solides

elastiq'ues dont certaines dimensions, sont tres-petites par rapport a d'autres, Journal
de Mathematiques, 1871, pp. 125-274. and 1879, pp. 329-344.



MOMENTS AND STRESSES IN SLABS. 5

homogeneous elastic plates whose ratio of the thickness to the span is

neither very large nor very small, that is, plates whose dimensions are not

extreme.

With a theoretical foundation thus laid, the time was ready for efforts

to obtain numerical results by application of the theory, that is, by solution

of the general differential equation in specific cases of technical, or other-

wise scientific importance. There was due also a change of chief interest

in the problem from the question of vibrations to that of stresses and

strength, that is, the time had come for the structural, rather than the

acoustic problem to stand in the foreground. Lavoinne,
10 in 1872, tackled

the question of a plane boiler bottom supported by stay-bolts. The problem
is essentially the same as that of the flat slab (of homogeneous material)

supported directly on column capitals, without girders, and carrying a

uniform load. Lavoinne's solution is for the case in which Poisson's ratio

of lateral contraction is equal to zero, but, as will be shown later, a correc-

tion for this lateral effect may be made afterward without any difficulty.

Lavoinne, by the use of a double-infinite Fourier series, solves Lagrange's

equation for a uniformly loaded, infinitely large plate which is divided by
the supports into rectangular panels, and which has its supporting forces

uniformly distributed within small rectangular areas around the corners

of the panels. The scries for the load become divergent when the size of

the rectangles of the supporting forces becomes zero, that is, when the

supports are point-supports. The same problem was treated by Grashoff,"

whose solution, however, is incorrect, since it disregards some of the

boundary conditions. G. IT. Bryan,
12 in 1890, made an analysis of the

buckling of a rectangular elastic plate, due to forces in its own plane.

Maurice Levy
13 showed how Lagrange's equation, when applied to rec-

tangular plates with various types of supports, may be integrated by a

single-infinite series depending on hyperbolic functions, instead of the

double-infinite Fourier series in Navier's solution.

In the meantime, a different path of investigation, namely, that of

semi-empirical methods, had been entered into by Galliot and by C. Bach.

Galliot" compared observed deflections of plates in lock-gates (under

hydraulic pressure) with the results of an approximate theory, which, in

this manner, he found applicable as a basis of design. Bach's 15

empirical
formulas are based on laboratory tests in connection with some very simple
theoretical considerations. An example will illustrate his method. He
found by test that the line of failure, the danger section, of a square plate,

10 Lavoinne, Sur la resistance des parois planes des chaudieres a vapeur, Annales
des Fonts et Chaussees, v. 3, 1872, pp. 276-303.

11 F. Grashof, Elasticitat und Fcstigkeit, ed. 1878, p. 351.
13 G. H. Bryan, On the stability of a plane plate under thrusts in its own plane,

London Math. Soc., v. 22, 1890, pp. 54-67.
_

18 Maurice Levy, Sur 1'equilibre elastique d'une plaque rectangulaire, Comptes
Rendus. v. 129, 1899, pp. S3S-539.

14
Galliot, fitude sur les portes d'ecluses en tole, Annales des Fonts et Chaussees,

1887, v. 14, pp. 704-756.
16 C. Bach, Versuche fiber die Widerstandsfahigkeit ebener Flatten, Zeitschr. d.

Ver. deutscher Ingenieure, v. 34, 1890, pp. 1041-1048, 1080-1086, 1103-1111,1139-1144.
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simply supported along the edges, is along the diagonals. It happens that

the average bending moment per unit length across the diagonal can be

determined by a simple analysis based on elementary principles of statics

(the result is 1/24 id 2 where w is the load per unit-area, I the span). But

this analysis gives no information as to the distribution of the bending
moment. Bach, then, multiplies the average moment by an empirical con-

stant, found by comparison with the tests. The investigation included cases

of rectangular and circular plates, with distributed or concentrated loads.

Bach's formulas, because of their simplicity and sound empirical basis,

have been used rather extensively. A similar treatment of the problem
of the plane boiler-bottom, supported by stay-bolts, was added later. 16 The

analysis of flat slabs, which was indicated in 1914 by Nichols," may be

recognized as falling into the same category as Bach's analyses. Since its

first appearance, Nichol's analysis has been used by many as a basis of

comparison between results of tests and rules of design.

Since the close of the nineteenth century the investigators of the theo-

retical side of the question have been confronted with three definite tasks.

Analyses which would cover the extreme cases in which the plate is either

very thick or very thin were called for; new theoretical methods were

needed, for example, for the solution of Lagrange's equation; and numer-

ical results applying to specific cases had to be worked out.

Theories applying to plates of ordinary thickness, as well as to thick

plates with a short span, have been developed by Michell,
18

Love,
19 and

Dougal." The latter, when he applied the exact theory to plates of ordi-

nary thickness, found agreement, in a number of specific cases, with the

results derived by Lagrange's equation. Thin plates, whose deflections

have become so large compared with the thickness that the curving of the

cross-section must be considered, have been treated by A. Foppl.-
1

As an example of the development of methods, mention may be made

again of Levy's solution of hyperbolic functions. Dougall. in the paper

just quoted, used Bessel-functions, and obtained thereby some rapidly con-

verging solutions. Other solutions by various series have been contributed

by Hadamard," Lauricella,"
3

Happel,
24 and Botasso. 25 The modern theory

16 C. Bach, Die Berechnung flacher, durch Anker oder Stehbolzen unterstiitzer

Kesselwandungen und die Ergebnisse der neuesten hierauf bezuglichen Versuche,
Zeitschr. d. Ver. deutscher Ingenieure, 1894, pp. 341-349.

17
T. R. Nichols, Statical limitations upon the steel requirement in reinforced-

concrete flat slab floors. Am. Soc. C. E., Trans., v. 77. 1914, pp. 1670-1681.
18

J. H. Michell, On the direct determination of stress in an elastic solid, with
application to the theory of plates, London Math. Soc. Proc., v. 31, 1899, pp. 100-124.

19 A. E. H. Love, Mathematical Theory of Elasticity, ed. 1906, pp. 434-465.
20

J. Dougall, An analytical theory of the equilibrium of an isotropic elastic plate,
Edinburgh Royal Soc. Trans, v. 41, 1903-4. pp. 129-227.

"A. Foppl, Technische Mechanik. v. 5, ed. 1918, pp. 132-144; also: A. and L.

Foppl, Drang und Zwan?, v. 1. 1920, pp. 216-232.
22

J. Hadamard, Stir le probleme d' analyse relatif a 1'equilibre des plaques
elastiqucs encastrces. Institut de France, Acad. des Sciences, Memoires presentes par
divers savants, v. 33, 1908, Xp. 4, 128 p.p.

21 G. Lauricella, Sur 1'integration de 1'cquation relative a 1'cquilibre des plaques
elastiques encastrees, Acta Mathematica, v. 32, 1909, pp. 201-256.

-* H. Happel, Ueber das Gleichgewicht rechteckiger Flatten. Gottinger Nachrichten,
Math. phys. Klasse, 1914, pp. 37-62 (rectangular plate with fixed edges and with a
concentrated load at the center).

25 Matteo Botasso, Sull'equilibrio delle piastre elastiche piane appoggiate lungo il

contorno, R. Accademia della scienze di Torino, Atti, v. 50, 1915, pp. 823-838.
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of integral equations has opened the way for new solutions, by series which

may fit almost any type of plate (see, for example, Hadamard's and

Happel's \vorks, which were just quoted). A method of a different type is

Ritz's 28
approximate method, which was indicated in 1909, which may be

applied to any elastic structure, and which was applied by Ritz himself to

plate problems, and after him, by other writers, to water tanks, domes, etc.,

and to plates. The method makes use of series of properly chosen functions,

each of which must satisfy the boundary conditions of the problem, and

each of which is introduced in the series with a variable coefficient which is

unknown beforehand. Then one determines a suitable, finite number of

these coefficients by the principle of energy-minimum. Ritz's method has

proved itself an effective addition to our analytical equipment. Another

approximate method is that of difference equations which was used by N. J.

Nielsen" in a work on stresses in plates. His results will be mentioned

later. By the method, the differentials of the differential equations are

replaced by finite differences, and the problem is then reduced to the solution

of a set of linear equations, in which, for example, the deflections at a finite

number of points enter as variables. The method is used, in fact, when

string curves for distributed loads (for example, in the investigation of

beams) are replaced by string polygons.

Investigations in the theory of plates, made with the purpose of obtain-

ing definite results in specific cases, have appeared in a fairly great number

during recent years. Estanave,
28 in a thesis in Paris, 1900, analyzed various

cases of the flexure of rectangular plates. Simic,
29 in 1908, gave an approxi-

mate solution for rectangular plates with simply supported edges. He
used a rather short series of polynomials. The results agree fairly well

with those found by later investigations. Hager,
30 in a work published

in 1911, applied trigonometric series, and used Ritz's method, in an investi-

gation of rectangular slabs. His results are incorrect, in so far as they

apply to homogeneous plates, because the torsional moments in the sections

parallel to the edges are not considered; the results may, however, have

some interest with reference to two-way-reinforced concrete slabs, which

have a reduced torsional resistance in these sections. The same criticism

applies to an investigation, first published in 1911, by Danusso. 31
. He

28 Walter Ritz, Ueber cine neue Methode zur Losung gewisser Variationsprobleme
der mathematischen Physik, Crelles Journal, v. 135, 1909, pp. 1-61. See also H.
Lorcnz, Technische Elastizitatslehre, 1913, p. 397.

27 N. J. Nielsen, Bestemmelse af Spaendinger i Plader ved Anvendelse af Dif-

ferensligninger, Copenhagen, 1920.
28 E. Estanave, Contribution a 1'etude de 1'equilibre elastique d'une plaque mince,

Paris, 1900.
29 Jovo Simic, Ein Beitrag zur Berechnung der rechteckigen Flatten, Zeitschr. des

oesterr. Ingenieur- und Architekten-Vereines, v. 60, 1908, pp. 709-714. Another paper
by Simic (Oesterr. Wochenschrift fur den offentlichen Baudienst, 1909), was criti-

cized by Mesnager (see the paper quoted later, of 1916, p. 417) on the ground that
torsional moments had not been duly considered.

30 Karl Hager, Berechnung ebener rechteckiger Flatten mittels trigonometrischer
Reihen, Munich and Berlin, 1911. For criticism, see Mesnager's paper of 1916, which
is quoted below, pp. 414-418.

31 See Arturo Danusso, Beitrag zur Berechnung der kreuzweise bewehrten Eisen-
betonplatten und deren Aufnahtnetrager. Prepared in German by Hugo von Bronneck
after the articles by Danusso in II Cemento, 1911, No. 1-10; Forscherarbeiten auf dem
Gebiete dcs Eisenbetons, v. 21, 1913, 114 pp.
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replaces the rectangular slab, as Jacques Bernoulli! had done in 1789, by

two systems of crossing beams which are connected at the points of inter-

section, only he considers a finite, instead of an infinite number of such

beams. This structure, again, has no torsional resistance in the sections

parallel to the sides. A structure consisting of three closely spaced systems

of crossing beams in three different directions would, on the other hand,

have both torsional and bending resistance in all directions. Such a struc-

ture was used by Danusso in the analysis of a triangular plate, and his

results may be expected to be approximately correct in this special case, as

long as Poisson's ratio may be assumed equal to zero.

In a note issued in 1912 by the French Council on Bridges and Roads 12

some design formulas were presented, together with various analyses based

on the differential equation of flexure. The years 1913 to 1916 brought
forth a rather valuable collection of exact or approximately exact studies

of rectangular slabs supported on four sides. The authors referred to are

Hencky," Paschoud,
34

Leitz,
35

Xadai,
34 and Mesnager,

37 and they appear to

have worked entirely independently of each other. Their numerical results

agree, on the whole, very well. A treatment of flat slabs by Eddy,
18

pub-

lished in 1913, was, unfortunately, not free from faults. Incorrect boundary

conditions, inconsistencies in the consideration of the negative moments

across the rectangular belts, and the use of an abnormally high value of

Poisson's ratio, namely, one-half, led, naturally, to incorrect results. One

may also object to his use of the terms "true" and apparent" stresses and

bending moments in a manner which is contrary to common usage.

N". J. Nielsen's27
investigation, published in 1920, was mentioned on

account of the use of difference equations. He proved the applicability of

the method by applying it to known cases, where the results found by

previous investigators had shown approximate agreement. Analyses of

rectangular slabs supported on four sides served this purpose. He then

analyzed the action of flat slabs with different loading arrangements, with

square or rectangular panels, stiff or flexible columns, etc., and he made

special studies of the stresses in exterior panels and corner panels. The

approximation obtained does not seem to be quite satisfactory in all the

12 Conceil General des Fonts et Chaussees, Calcul des hourdis en beton arme,
Annales des Fonts and Chaussees, 1912, VI, pp. 469-529.

33 H. Hencky, Ueber den Spannungszustand in rechteckigen ebener Flatten, 1913,
94 pp. (thesis in Darmstadt).

*4 Maurice Paschoud, Sur I'applicatipn de la methode de Walter Ritz a 1'etude de
1'equilibre elastique d'une plaque carree mince, thesis in Paris, 1914, 56 pp. (See
Mesnager's paper, quoted later.)

** H. Leitz, Die Berechnung der frei aufliegenden, rechteckingen Flatten, Forsch-
erarbeiten auf dem Gebiete des Eisenbetons, v. 23, 1914, 59 pp. He added later an
analysis of rectangular plates with fixed edges, see his paper: Die Berechnung der
eingespannten, rechteckigen Platte, Zeitschr. f. Math. u. Phys., v. 64, 1917, pp. 262-272.

" Arpad Nadai. Die Formanderungen und die Spannungen von rechteckigen
elastichen Flatten, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, v. 170-

171, 1915, 87 pp. Also, in a shorter presentation, in Zeitschr. d. Ver. deutscher
Ingenieure, 1914, .pp. 487-494, 540-550.

r Mesnager, Moments et fleches des plaques, rectangulaires minces, portant une
charge uniformement repartie, Annales des Fonts et Chaussees. 1916, IV, pp. 313-438.

** H. T. Eddy, The theory of the flexure and strength of rectangular flat plates
applied to reinforced-concrete floor slabs, 1913.
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cases. This deficiency might have been remedied by the use of a greater
number of terms, but thereby the complexity of the work would, of course,

have increased. Nielsen's analysis is the first in which approximately exact

methods of analysis are applied, on an extensive scale, to the flat-slab prob-
lem. His results will be quoted later, on various occasions.

The experimental work on steel plates had been continued, in the

meantime, by Bach."1 Another contribution of the sort is due to Craw-
ford.40 A test of a rubber model, designed to represent a flat-slab structure,

was made by Trelease tt for the Corrugated Bar Co. The experimental work
on concrete slabs is mentioned at other places in this report.

Among the treatises in which the slab-problem is dealt with extensively

may be mentioned those by Love, Foppl, and Lorenz.42

5. LIMITATIONS OP THE THEORY. The properties of the plates dealt

with in the following analysis will now be defined.

a. In order to simplify the discussions the plates will be assumed to be

horizontal, the applied forces vertical.

6. The plates are medium-thick. A medium-thick plate is defined here

as one which is neither so thick in proportion to the span that an appre-
ciable portion of the energy of deformation is contributed by the vertical

stresses ( shears, tensions, and compressions ) , nor so thin that an appre-
ciable part of the energy is due to the stretchings and shortenings of the

middle plane when the plate is bent into a double-curved surface. All

plates and plate-like structures may be divided into four groups according
to thickness: thick plates, in which the vertical stresses are important;
medium-thick plates, to which the present analysis applied; thin plates,

whose resistance to transverse loads depends in part on the stretching of

the middle plane; and membranes, which are so thin that the transverse

resistance depends exclusively on the stretching. The membrane, of course,

is not a plate in the ordinary sense, any more than a suspended cable is a

beam. The thick and the thin plates require special theories, such as those

developed by Michell, Love, Dougall, and Foppl (see Art. 4). These extreme

cases are eliminated by definition. Plates of such proportions as are gener-

ally used in reinforced-concrete floor slabs may be classified as medium-

thick, and fall within the scope of the analysis.

c. The plates are homogeneous and of uniform thickness. Since the

vertical stresses do not contribute directly to the work of deformation or to

the deflections, it is sufficient to specify the elastic properties with regard

89 C. Bach. Versuche iiber die Formanderung tind die Widerstandsfaliigkeit ebeiier

Wandungen, Zeitschr. d. Ver. deutscher Ingenieure, 1908, pp. 1781-1789, 1876-1881.
40 W. J. Crawford, The elastic strength of flat plates, an experimental research,

Edinburgh Roy. Soc. Proc., v. 32, 1911-1912, pp. 348-389. Additional note by C. G.
Knott, pp. 390-392.

41 Corrugated Bar Co., Bulletin on flat slabs, Buffalo, 1912.
"A. E. H. Love, Mathematical Theory of Elasticity, ed. 1906, Chapter XXII.
A. Foppl, Technishe Mechanik, v. 3 and v. 5 (ed. 1919 and 1918).
A. and L. Foppl, Drang und Zwang, v. 1, 1920.
H. Lorenz, Technische Elasticitatslehre, 1913, Chapter VII.
See also: Todhunter and Pearson, History of the theory of elasticity, 1886-1893;

and: Encyclopedic der mathematischen Wissenchaften, Vol. IV, 25, 1907, pp. 181-190,
and 27, 1910, pp. 348-352.
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to the horizontal strains, llooke's law is assumed to apply to the horizontal

strains, and the elastic properties, then, depend on two constants; namely,

E = modulus of elasticity for horizontal tensions and compres-

sions, and

K = Poisson's ratio of lateral horizontal contraction to longitu-

dinal horizontal elongation.

d. A straight line, drawn vertically through the plate before bending,

remains straight after bending. This assumption is consistent with the

preceding specifications that the plate is medium-thick, and is homogeneous
and of uniform thickness, and it is entirely analogous to the assumption in

the theory of beams that a plane cross-section before bending remains plane

after bending. It follows that the horizontal unit-stresses, tensions, com-

pressions, and shears, in vertical sections are distributed according to

straight-line diagrams, as the tensions and compressions in the cross-section

of a beam.

e. The zero-points in these diagrams for the horizontal stresses in ver-

tical sections are in the middle plane, which is therefore a neutral plane.

As to the question of the consistency of these assumed properties refer-

ence may be made to the theoretical works mentioned in the historical sum-

mary (Art. 4) .

6. THE EQUATIONS APPLYING TO A SMALL KECTANGULAB ELEMENT
OF THE SLAB.

The following notation is used:

x. y = horizontal rectangular coordinates (see Fig. 1).

z = vertical deflection, positive downward.

V = vertical shear per unit length in the section perpendicular to a; at

noint (x, tj) ; the positive direction of V is indicated by the

arrow in Fig. 1.

V .

= same in section perpendicular to y.

A/x
= bending moment per unit length in the section perpendicular to a?

at point (x, y} ; M is positive when causing compression at the

top and tension at the bottom.

M =: same in section perpendicular to y.

M torsional moment per unit length in sections perpendicular to x

and ?/ at point (x, y} ; the positive directions are indicated by
the arrows in Fig. 1 ; that is, the torsional moment is considered

positive when it causes shortenings at the top along the diagonal

through the corner (#,?/) of the element.

K = modulus of elasticity of the material.

K =Poisson's ratio of lateral contraction to longitudinal elongation.

Concerning E and K, see the preceding article.

7 moment of inertia per unit longlh; / = ^ d 3 when d is the thick-

ness of the slab.

Fig. 1 shows a small rectangular element of the slab with the forces

and couples acting on it. The location of the element is denned by the

horizontal coordinates x and ;/ of the midpoint of the lower left-hand edge
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in the figure. The dimensions are dx and dy in the x- and y-directions, and

the thickness of the slab in the ^-direction. The deflection at point (x, y) is

measured by ~, which is positive downward.

The loads are: first, the applied surface load w per unit-area, in the

^-direction; that is, a total load of w dx dy; secondly, the internal vertical

y

K'j^M

* surface had in d/recfon z.

x ondy are ftorizenfa/cvordinates.

cfx

FIG. 1. KECTANGULAB ELEMENT OF SLAB.

shears, bending moments and torsional moments which are listed in Table 1.

The values per unit-length are y y + x
dx y etc., hence

the total values are yx dy, (Fx + -=-
x
dx) dy, Vydx > etc - The

ox

vertical shears and the bending moments are of the same nature as the

vertical shears and the bending moments in beams. The torsional moments
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M are resultants of the horizontal shears in the vertical faces. The values

of M for the lower and left-hand faces in Fig. 1 are equal on account of

the law of equality of shears in sections perpendicular to one another.

TABLE I. FORCES AND COUPLES IN FIG. 1.

TABLE I.

Face
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The equations (
1 ) to (

4
) were derived by the statical conditions of

equilibrium without reference to the deformations. That is, (
1 ) to ( 4 )

apply without reference to the particular elastic properties. Since they are

merely equations of equilibrium, they apply to non-homogeneous slabs, such

as reinforced-concrete slabs, and to slabs with reduced torsional resistance,

as well as to the homogeneous elastic plates.

We now consider the deformations and their relations to the loads.

The plate is again assumed to be homogeneous. Fig. 2 illustrates three

types of deformation: bending in the a?-direction shown in Fig. 2 (a) ;
in

the t/-direction shown in Fig. 2(b) ;
and torsion in the a?i/-directions shown

in Fig. 2(c). Any state of flexure of an element of the slab may be

resolved into component parts of these three types. The amounts of defor-

8
2
7,

mation are measured in Fig. 2 (a) and Fig. 2(b) by the curvatures _

S2

an(j ?. (as in beams), and in Fig. 2(c) by the rate of change of slope,

that is, by
8x

82Z

8\8)/

(a) (bl '"I

FIG. 2. DEFORMATIONS OF ELEMENT OF SLAB.

A bending moment M acting alone, produces the curvatures _ =
M

X '

82rc M ^X
? in the or-direction, _ _ JT? in the y-direction, and no twist;

El Sy
2 El

these results may be taken directly from the theory of beams. The torsional

couples M produce a twist _
Sx

which may be determined by intro-

ducing temporarily another system of coordinates, as'
, y' , making angles of

45 with the system of on, y. The couples M are replaced by an equivalent
combination of couples consisting of the bending moments M M in the

in the i/'-direction. These bending moments

Mz-(l+K) 8
2
z_ ___~

El

x -direction and M = M
y z

82

produce the curvatures
j ,2

~
OX El El 8y' El

in terms of which the twist may be expressed by the transformation formula

_~
El



14 MOMENTS AND STRESSES IN SLABS.

In the general case the bending moments M and M
,
and the tors

moment if are all present, and the resultant deformations are then

(5)

SxSy El (7)

Equations (5), (6), and (7) express the deformations in terms of the

moments. By solving them with respect to the moments, the moments are

found in terms of the deformations:

M El ( S
ZZ rsS?Z\M*

=

Mf*(&?-Xfyz) '

(S)

., El ( fftfz. S*z\

ty-JTPW&f-Jf*) . (9)

., El ( S?Z\
and

Mz=M;\{toSy) (10)

By substituting these values of the moments in equation (4), which is

a relation between the moments and the applied load, a direct relation is

found between the applied load * and the deformations, .;. The result is

Lagrange's equation for the flexure of plates, or, the "plate equation,"

We may introduce Laplace's operator

= Jif + 6^
ox 6y

which gives

^
(Sx

4
&r<5y

z
Sy

4

Then Lagrange's equation (S), may be written in the simpler form

(12)

One may determine, in a similar manner, a direct relation between the

shear Y and the deflections z
s by combination of the equations (2), (5),

(tf),and (7). One finds:

El ^AZ

r
. ElYy-~l-K* Sy

'

,14)
Calculations are sometimes made under the assumption that Poison's

ratio is equal to zero. Let M
x<

J/
yi M^ r

x ,

T'
y ,

and c, denote the

moments, shears, and deflections when Poisson's ratio is equal to zero, while

M'x . . . .
, V\ . . . .

,

~' are tne corresponding values, for the same load,
when Poisson's ratio has a value K which is different from zero. There are
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certain relations between the two sets of values which apply when the

boundary of the area under consideration, as marked by the supports and

by the edges of the plate, is fixed, or consists of simply supported straight

edges, or consists of parts which are fixed and parts which are simply

supported along straight edges. These relations apply to the slabs dealt

with in this report, but they do not apply, in general, when the supports

are elastic, or when there are unsupported edges, or simply supported

curved edges. The relations may be verified by inspection of equations (11)

or (12), (8) and (9), (10), and (13) and ( 14) , respectively. The relations

are:

(16)

K/=K ,

Since Poisson's ratio K varies according to the material used, it is

expedient to make the calculations of
, j^j M ...... , etc., on the basis of

K = 0. The values ', M 1 M' ...... , etc., for any particular value of K
may then be determined afterward by formulas (15 to (18).

When K = Q, then the equations (12), (5) to (10), (1.3) and (14)

assume the simplified forma:

S*z\ ,, / S*z
f

(20)

(21)

where Az =TTT -t -5?o" oy
' OA^ oA~oy~ oy

'

Equations (19) to (22), in connection with equations (15) to (IS),

constitute a set of fundamental relations, by which plates may be analyzed.
The most difficult part of the problem lies in the solution of Lagrange's

equation, (19). This equation must be solved in each case witli due con-

sideration of the particular boundary conditions.

The reactions in a beam are expressed by the end shears, and end

moments. In a similar way, the reactions in a slab may be expressed in

terms of the shears, bending moments, and torsional moments at the edge.

The torsional moments along a straight simply supported outer edge may
be replaced by an equivalent vertical reaction by the method indicated by
Kelvin and Tait. The method is described fully in Xadai's work on rec-

tangular plates ( see the historical summary ) .
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The above differential equations in rectangular coordinates have fur-

nished the larger number of the results which are indicated in the following
articles. Polar coordinates may be introduced instead of rectangular
coordinates by transformation of the above equations; they have been used

with advantage in the analysis of circular slabs (see for example Foppl's

treatment). Beside the method of differential equations two other methods

stand out as effective in analysis, and they have furnished some of the

results which are quoted and used in the following articles. These methods

are: Ritz's method, which is based on the energy variations for the whole

plate; and the method of difference equations, which was used by Nielsen

(see Art. 4) .

7. MOMENTS IN RECTANGULAR PLATES SUPPORTED ON FOUR SIDES.

The following notation is used :

a = longer span.
b = shorter span.

a = b/a = ratio of shorter span to longer span.
w = uniformly distributed load per unit-area.

A/,,^ positive moment per unit-width at the center of the panel, in the

direction of the short span. J/
bc

is referred to as the "positive
moment in the short span."

M maximum positive moment per unit width in the direction of the

long span, or "maximum positive moment in the long span."
This maximum moment occurs somewhere on the center line

parallel to the long sides, but not necessarily at the center of the

panel (see the small diagrams at the top in Fig. 3).

Mbe
= negative moment per unit-width at the center of the long edge, in

the direction of the short span, or "negative moment in the short

span."

Jl/ negative moment per unit-widtli at the center of the short edge,

in the direction of the long span, or "negative moment in the

long span."

M
d ,

= moment per unit-width at the corner across a line through the

corner, making angles of 45 degrees with the sides (see the

sketches at the top of Fig. 3 ) .

Fig. 3 to Fig. 11 show results of analyses of rectangular slabs sup-

ported on four sides. The slabs are single panels. The edges are assumed
to remain undeflected in their original plane. The edges are either simply

supported or fixed, as indicated in titles of the figures. The load is uni-

formly distributed.

In Fig. 3 to Fig. 10 the abscissas represent the ratio, oc , of the

shorter span 6 to the longer span a. The right-hand edge of each diagram

corresponds to cc = 1, that is, to a square slab, while the left-hand edge

corresponds to cc = 0, or a = oo
,

that is, to an infinitely long slab

supported along the two parallel edges. The ordinates in Fig. 3 to Fig. 10

are coefficients, M/irlr, of moment per unit width. The diagrams (a), to
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the left in Fig. 3 to Fig. 8, show moments coefficients calculated

by analysis, while the diagrams (b), to the right, consist of simplified
curves of approximately the same shape as the curves to the left. The

values indicated in the diagrams to the left in Fig. 3 to Fig. 8, are based on

a Poisson's ratio, K, equal to zero. The points marked by small squares
and triangles are based on results found by Nadai and by Hencky, respect-

ively.* The points marked by circles were determined in the present

investigation by independent calculations. In these calculations infinite

series were used which are based on Navier's and Levy's solutions! of

Lagrange's equation ((11), (12), or (19), in Art. 6). The series are

similar, but not identical, to those used by Nadai and Hencky. Each coeffi-

FIG.

0.2 0.4 0.6 0.8 1.0

Ratio of Short Span to LonqSpan
b/a-a

(al

3. BENDING MOMENTS PER UNIT WIDTH IN RECTANGULAR SLABS

o o.z 0.4 0.6 0.8 ia

Ratio ofShort Span fo LonqSpan Va-oc

WITH SIMPLY SUPPORTED EDGES.

Poisson's ratio equal to zero; (a) calculated values; (b) simplified curves.

cient indicated in Fig. 3 to Fig. 8 is the outcome of a rather large amount of

numerical work. The resiilts shown in Fig. 3 to Fig. 8 might be supple-

mented by coefficients which have been determined by Leitz, Mesnager, and

lSTielsen,t some of whose results will be quoted later. On the whole, the

results obtained in the different investigations are very consistent.

The results stated by Nadai and Hencky are based on a Poisson's ratio

K = 0.3, while the values given in Fig. 3 to Fig. 8 are for Poisson's ratio

equal to zero. Coefficients which apply when Poisson's ratio is zero may be

derived by formulas (16) in Art. 6, from the corresponding coefficients

which apply when Poisson's ratio has some other value. Nadai's and

* See Art. 4, footnotes 36 and 33, respectively.
t See Art. 4, footnotes 5 and 13; also, A. E. H. Love, Mathematical theory of

elasticity, 1906, p. 468.

} See Art. 4, footnotes 35, 37, and 27, respectively.
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llencky's results were transformed in this manner, as will be shown by ait

example. Take the moments at the center of a simply supported slab with

6/a = O.G. Nadai, in hia Table 6, p. 38, indicates the values M' =0.1289
to (a/2)

2 for the short span, and M'^ = 0.0704w(a/2)
2
, for the long span.

Formulas (16), in Art. 6, then determine the corresponding values for

K :

Mv
- M' - KM' 0.1289- 0.3X0.0704 wb*

1 - K* I 0.32 0.62.22

and, in the same way, J/
x 0.0243u'62 These values of the momenta at

the center, for cc = 0.6, are indicated in Fig. 3 (a). The coefficients given
in Fig. 3 to Fig. 8 are for Poisson's ratio equal to zero.
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moment in the long span. This curve defines coefficients which are greater
than the corresponding values at the center of the long span; that is, the

maximum moment in the long span of a rectangular panel does not occur

at the center, except when the slab is nearly square. Moment diagrams for

the center line of the long span are shown in Fig. 11. Two cases are

represented, namely, oc = i and oc = 0. The coefficients 0.0257 and

0.0234, which are indicated in Fig. 3 (a), appear as maximum ordinates in

Fig. 11; and the coefficient 0.0174, for oc = y2 , appears in both figures, as

applying to the moment at the center, in the direction of the long span.
A simply supported square or rectangular slab (simply supported on

four sides), when loaded, has a tendency to bend up at the corners. In

the slabs treated here the corners are assumed to be anchored, that is, the

supports provide for a concentrated downward reaction at each corner.

With this force acting, stresses and moments are set up at each corner:

there is a positive moment, M across the line which makes angles of 45

deg. with the sides, that is, across the diagonal in the square slab; there is

O.Z 04 06 08 1.0

Ratio of Short Span to LongSpan
b/a-a:

ft

02 0.4 06

Ratio ofShort Span to Long Span %-fc
(bl

FIG. 5. POSITIVK BENDING MOMENTS PER UNIT WIDTH IN FIXED SPAN OF

RECTANGULAR SLAB; Two PARALLEL EDGES FIXED AND Two EDGES

SIMPLY SUPPORTED.

Poisson's ratio equal to zero; (a) calculated values; (b) simplified curves.

an equally large negative moment in the direction of this line, and there is

an equally large torsional moment in the sections parallel to the sides.

The presence of negative moments in the direction of the diagonal of a

square slab may be understood easily when one considers the curve of

deflections along the whole diagonal. This curve has a horizontal tangent
at the corner, because the deflected surface lias a horizontal tangential

plane at this point. The convex side of this elastic curve, therefore, is

upward; that is, the moment is negative. The following values of the

coefficients, M
Ai /ivb

2

,
in a square slab were determined : by Nadai's

analysis, 0.0479; by Mesnager (his paper, p. 369), 0.0464; and by the

present investigation, 0.0463. The concentrated downward reaction is equal
to twice the diagonal or torsional moment per unit width; that is, the

present analysis leads to a corner reaction equal to 2 X 0.0463wj6 2 =
0.0926w&2

. Leitz indicates this reaction as 0.092w62
.

The average coefficient of moment across the diagonal in a simply sup-
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ported square slab may be determined by simple statical principles.* It is

1/24 0.0417; that is, practically the average of the extreme values,

0.0463 and 0.0369, occurring at the corner and at the center, respectively.

The coefficient 1/24 has been used frequently as a basis of design. This

value, 1/24, may be justified on the ground that when the proportional
limit is exceeded, or when the material begins to yield, in a part of the

diagonal section, the stresses will be redistributed so that they become more

nearly uniformly distributed.

The curves in Fig. 3 (a) do not have equations which can be expressed

by simple algebraic formulas. It is possible, however, to indicate simple
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indicated in Fig. 3(b) some weight was given to the desirability of having
simple formulas, upon which design computations might be based.

Fig. 4, Fig. 5, and Fig. 6 deal with rectangular slabs which have two
fixed opposite edges and two simply supported opposite edges. In a uni-

formly loaded single continuous row of simply supported panels each panel
acts, on account of the continuity, in the same way as the single panel
with two fixed and two simply supported edges. The torsional moments
and bending moments are zero at the corners in these slabs. As in Fig.
3 (a), separate curves are indicated in Fig. 4 (a) and Fig. 5 (a) for the

maximum moments in the long span; these curves lie, in part, above the

corresponding curves for the moment at the center. Certain individual

points, which were derived from Nadai's work (p. 62, Table 9, in his work),
lie at a distance from the curves drawn through the rest of the points.
There are three such points lying below the bottom curve in Fig. 4 (a), and

.06

.04

02 0.4 0.6 0.8

Ratio of Short Span to LongSpan

02 0.4 0.6 0.8 1.0

Ratio ofShortSpan to LongSpan %-a:

FIG. 7. POSITIVE BENDING MOMENTS PER UNIT WIDTH IN RECTANGULAR
SLABS WITH FIXED EDGES.

Poisson's ratio equal to zero; (a) calculated values; (b) simplified curves.

three points, belonging to the same cases, lying above the top curve in

Fig. 5 (a). In Fig. 6 (a) one point lies below the bottom curve. There is a

possibility of an error in these points. Fig. 6 (a) shows the peculiar result

that greater negative moments are produced when the long span is fixed

than when the short span is fixed. The simplified curves to the right in

Fig. 4, Fig. 5 and Fig. 6 follow rather closely the curves to the left.

Fig. 7 and Fig. 8 deal with slabs fixed on four sides. Unfortunately,
this case, on account of the greater difficulties involved, has been treated

less extensively than the preceding cases. Navier's and Levy's solutions

do not apply to these slabs. Ritz's method, which was applied to these

slabs, for example, by Nadai, leads to a fairly satisfactory analysis. The

curves in Fig. 7 (a) are drawn according to Hencky's results. For the

moments at the center of a square plate various writers have indicated

values, which lead to the following coefficients: Heneky, 0.0177; Nadai,

0.0177; Mesnager, 0.018; Leitz, 0.01S4; Nielsen, 0.0171; the present

investigation, by an approximate method, 0.0194. For the, negative moments

at the center of the edge of a square panel the same writers have indicated
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the following coefficients:* Hencky, 0.0513; Nadai, 0.0487; Mes-

nager, 0.0474; Leitz, 0.0515; Nielsen, 0.0511; the present investiga-

tion, by an approximate method, 0.0493. The curve for M , in Fig.

7(b), and the line for M in Fig. 8(b), have been drawn according to an

estimate, and they may have to be revised later.

Fig. 9 contains a summary of all the simplified cur^s in Fig. 3 to Fig.

8. The curves for the negative moments are shown to the left, those for

the positive moments to the right. Table II gives a summary of the for-

mulas represented by these curves. A corresponding set of formulas,

applying exactly to an elliptic plate with fixed edges and with Poisson's

ratio equal to zero,f is indicated, for the purpose of comparison with the

other formulas, in the bottom line in the table.

2fc

M^'-^wb^

0? 0.4 0.6 0.3 10

Ratio ofShorf Span -fa LongSpan tya-cc

FIG. 8. NEGATIVE BENDING MOMENTS PER UNIT WIDTH IN RECTANGULAR

SLABS WITH FIXED EDGES.

Poisson's ratio equal to zero; (a) calculated values; (b) simplified curves.

Fig. 10 (a) illustrates the influence of change in Poisson's ratio. Such

a change causes a redistribution of the moments in the slab. The case

dealt with is again that of the slab with simply supported edges. Two of

the curves in Fig. 3 (a) are reproduced, namely, the curve for the moment

in the short span at the center, and the curve for the moment at the corner,

in a section making angles of 45 degrees with the sides; that is, the curves

for M^ and M*. respectively'. These curves are marked X = 0; those
DC alag

for K = 0.3 are indicated in the figure. The computations of the changed
moment coefficients were made according to forrmilas (16) in Art. 6. They

apply when Poisson's ratio, K, is equal to zero. The corresponding curves

* See the investigations quoted in Art. 4 in footnotes 33 (Hencky, p. 53) ; 36

(Nadai, p. 86); 37 (Mesnager, p. 413); 35 (Leitz); 27 (Nielsen, p. 139). Leitz's

paper of 1917, unfortunately was not available to the writer. Leitz's results for the

square slab are quoted from Nielsen.

t See A. Foppl, Technische Mechanik, Vol. 5, ed. 1918, p. 106.
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change from A = to K = 0.3 is seen to increase the moment at the center,
and to decrease the moment at the corner. In the square slab the moments
across the diagonal are redistributed; the point of maximum moment
across the diagonal is moved from the corner to the center.

The stresses at a point in a homogeneous slab are directly proportional
to the moments at the point. But the maximum stress at a point does not

necessarily define the "nearness of rupture" or "tendency to failure" at the

point. This tendency depends on the whole "state of stress" at the point,
or, in the slab, on the state of moments at the particular point. In a square
slab the moments at the center are equal in all directions, while at the
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If the shear and strain theory applies, the equivalent stress at a given point

may be computed, as the larger of the following two quantities: one is the

modulus of elasticity times the greatest unit-elongation or unit-shortening
at the point in any direction; the other is the greatest shearing stress at

the point, divided by a certain constant, which, according to Becker's

results, is 0.6. An equivalent moment in a slab is a bending moment which

would produce the equivalent stress. According to Becker's results, the

equivalent moment at a point is computed, then, as the larger of the follow-

ing two quantities: one is El times the numerically largest curvature in

any vertical section at the point; the other is the largest torsional moment

Hff* 0656)

Sending Moments at

Comer across ttie

Diagonal

02 04 06 03 10 02 04 06 OS
Ratio of Short Span to LongSpan ^/a-tz Ratio ofShort Span to LongSpan

1
:

(a) (b)

FIG. 10 (a). INFLUENCE OF VARIATION IN POISSON'S RATIO, K, ON THE

MOMENTS IN RECTANGULAR SLABS WITH SIMPLY SUPPORTED EDGES.

FIG. 10 (b). "EQUIVALENT MOMENTS," BASED ON THE "SHEAR AND STRAIN"

THEORY, IN RECTANGULAR SLABS WITH SIMPLY SUPPORTED EDGES.

in ai^y section at the point, divided by 0.6. Such equivalent moments are

indicated in Fig. 10 (b). The slabs are the same as in Fig. 10 (a), and the

curves refer to the center and to the corner. The methods of computation
are indicated in the figure. According to equations (15) and (20) in Art.

6, El times the curvature may be computed as ( 1 K-) times the moment

corresponding to Poisson's ratio equal to zero. M and M
,
as used in

(he notes in Fig. 10(b), are the moments corresponding to Poisson's ratio

equal to zero. The curves in Fig. 10 (b) explain why a square slab with

K = 0.3 may fail at the corners first, in spite of the fact that the stresses

are smaller at the corner than at the center.

Fig. 10 fa) and Fig. 10 (b) and the discussion in connection with these

figures Bhow how the results derived for the case in which Poisson's ratio is
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zero may be interpreted and used when Poisson's ratio has any other value,

provided the law of failure of the material is known. Whether or not the

curves and formulas indicated in Fig. 3 to Fig. 9, in Fig. 11, and in Table

II may be applied as a basis for design of actual slabs, should be deter-

mined for the individual materials by comparison with experimental
results.

8. MOMENTS IN SQUARE INTERIOR PANELS OF UNIFORMLY LOADED FLAT

SLABS.

Notation :

I = span, measured from center to center of the columns.

c = diameter of the column capitals.

w = load per unit-area, uniformly distributed over all panels.

W = total panel load.

The slab under consideration is a girderless or "flat" slab, supported

directly on the column capitals, which are assumed to be round. Lines

connecting the centers of the columns divide the floor into square panels,

=3E3?

o .2b 6b .8b b tzb l.4b I6b idb sb
Distance a/ong x-

@
FIG. 11. MOMENTS ALONG THE CENTER LINE OF THE LONG SPAN IN REC-

TANGULAR SLABS WITH SIMPLY SUPPORTED EDGES.

with a column at each point of intersection. An interior panel is consid-

ered. It is surrounded on all sides by similar panels, all carrying the same

load. For the convenience of the analysis it may be assumed that there is

an infinite number of equal, square panels, all carrying the same load. The

slab is assumed to be fixed in the column capitals at the edge of each column

capital. A panel of this description, loaded as indicated here, will be

referred to as "a normal panel." On account of the symmetry, the column

capitals supporting the normal panel will not tend to rotate about a hori-

zontal axis, the tangents across the edges and center lines of the normal

panel will remain horizontal, and the torsional moments along the center

lines of the panel and along the parts of the edges between the column

capitals will be zero.

Fig. 12 shows sections for which it lias become customary to indicate

the moments. The terms column-head sections, mid-section, outer sections.

and inner section are in accordance with common practice. The moments

in these sections are taken in a direction perpendicular to the straight parts

pf the sections. Moment coefficients for tbese sections will be stated pres-
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ently, but first some remarks will be made concerning the processes of the

analysis.

The present investigation is built, in part, on certain results which

were found by N. J. Nielsen *
in his analysis of plates by the method of

difference equations. Nielsen analyzed various types of square interior

panels of uniformly loaded flat slabs: first, point-supported slabs, in which

tli column capitals and the columns have been reduced to point supports;

second, slabs in which the supporting forces are uniformly distributed within

squares with side 0.21 and with the centers at the centers of the column;
third and fourth, slabs supported on square column capitals with the sides

0.21 and OAl, respectively; fifth, a slab with dropped panels (areas of in-

creased thickness around the supports) ; and sixth, a slab in which there is no

bending resistance across the central parts of the edges of the panels, that

is, no bending resistance in parts of the mid-sections. Nielsen divided the

panel into elementary squares with side \ = 0.11. l/6i, 0.21, or 0.251. The

Column-head M/d-Secr/on CaJu/nn-head
Secf/on) \Secf/on

]

Outer ' Inner i Outer

\5ecfiffr Section S0:f/on\

FIG. 12. MOMENT SECTIONS FOR FLAT-SLAB PANELS.

variables in the equations are the deflections at the corners of these squares;
one equation is indicated for each such corner. Since finite squares are used

instead of infinitesimal rectangular elements the method is approximate,
not exact, as applying to homogeneous slabs.f The smaller the value of \
the closer is the approximation. The value \ = O.ll gives, on the whole,

rather satisfactory results. \ = 1/61 to 0.251 gives results, use of which

may be made in comparative studies of distributions of deflections and

moments in different slabs; such use of some of Nielsen's results will be

made later (in Art. 10). But the moment coefficients found with \ =
1/61 or more, hardly seem to be sufficiently exact when considered as inde-

pendent results applying to fundamental cases. For this reason the use of

Nielsen's results was limited here to those obtained with \ = O.ll. This

value of X was used by Nielsen only in the first two of the cases men-

* N. J. Nielsen, Bestemmebe af Spaendinger i Plader ved Anvendelse af Differen-

sligninger, 1920 (referred to in Art. 4, footnote 27).
t The difference equations apply exactly to a certain rib-structure in which the

bending deformations are concentrated at the points of intersection of the ribs, and
in which the torsional resistance is supplied by special structural elements which con-
nect one rib with another.
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tioned, that is, in the analyses of the point-supported slab and of the slab

with the supporting forces uniformly distributed within small squares;
in the other cases he used \ > O.H. Those of Nielsen's results, with

X r= O.H, which apply to the point-supported slab, were represented graph-

TABLE IT. APPROXIMATE FORMULAS FOR BENDING MOMENTS PER UNIT
WIDTH IN RECTANGULAR SLABS AND ELLIPTIC SLABS

SUPPORTED ON THE PERIPHERY.

The Tormulas are represented qrophicatlLimfiq31orT<i9.
a -/onqerspan, b -shatterspan;ot-Obi Fbissons rot/o-O.

Momenta in span b.

/It center '

/?/" center

of edqe. of5/ab.

Moments in span g
At center

ofedqe
~Mae

A/onq center

fineofslob.

Fburedqes

simply

supported.

wb

1+ZoC
3

Span &
fried;

-Span g_

simple.

1-t-OAoC?
o wb^

60

Span g_

f/xed;

Spanb.
simple.

ItO-Boc

All

edc/es fixed.

llipt/c j~/ab
wiih fixededqe;

diameters
j>

f+jof+a*
-0C

ically for the purpose of the present investigation, and adjustments were

made, similar to those by which a string polygon is modified into a string

curve. By such adjustments of the curves for moments and deflections it

was possible to improve the approximation slightly. It would be possible

to analyze the point-supported slab by differential equations, and to obtain,

thereby, an increased degree of exactness, but in this study it seemed

desirable to make use of the available results. The degree of approximation
obtained by this use may be judged by comparing the moment coefficients

for square slabs supported on four sides, found by Xielsen with \ equal to

one-tenth of the side, as quoted in the preceding article, with the corre-

sponding moment coefficients found in other analyses.
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The use of Nielsen's results in connection with results found in the

present investigation by means of the differential equations will now be

described. The point-supported slab is not important in itself, because

actual slabs do not have point supports. But the results found for the

point-supported slab may be used in the analysis of the normal panel, sup-

ported on round column capitals, in the same way as moment diagrams for

simple beams are used in the study of continuous beams or beams with

fixed ends. The diagrams for fixed beams can be found from the diagrams
for simple beams by adding the effects of the end moments. The simple

beam is considered in this connection as a "substitute structure" which

temporarily replaces the given fixed beam, and which is made to act like the

given beam by adding the end moments. In a similar way the point-

supported slab may be used as a substitute structure which temporarily

replaces the slab supported on column capitals, and which is made to act

like the original slab, that is, have the same deflections and moments at all

J
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TABLE III. PERCENTAGES OF SUM OF POSITIVE AND NEGATIVE MOMENTS
RESISTED IN SECTIONS SHOWN IN FIG. 12.

Results of analysis of a square interior panel of a uniformly loaded homogeneous flat slab.

The sum of positive and negative moments is approximately equal to

c=diameter of column capital; /=span; W= total panel load; Poisson's ratio =0.
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lions at the point supports, will make the slab deflect in such a way that

the circles marking the edges of the column capitals practically become a

contour line along which the tangential planes are horizontal and coin-

ciding. By introducing certain supplementary loads, beside the ring loads,

the conditions of the edges of the column capitals may be satisfied with any
desired degree of approximation. Corrections by means of such supple-

mentary loads were omitted, because the degree of approximation obtained

without these loads appeared to be acceptable; besides, since the degree of

approximation is limited in one part of the problem by the use of the

approximate results found by difference equations, the gain by a further

increase of exactness in the part of the problem discussed here would be

only slight.

It remained^ then, to investigate the effects of the ring loads, to deter-

mine their intensity, and to make the proper additions to the moments in

the point-supported slab. The method used was that of differential equa-
tions. Lagrange's equation ((11), (12), or (19), in Art. 6) was solved

for the case of the ring loads by double-infinite series, and the moments at

definite points, produced by the ring loads, were computed by corresponding
double-infinite series. As in the preceding article, and for similar reasons,

Poisson's ratio was taken as zero (compare, in particular, the discussion

made in connection with Fig. 10 (a) ). Details of this analysis will be pre-

sented in Appendix A.

The results will now be described. Reference is made again to Fig. 12,

which shows the customary moment sections. Table III gives results

found for these sections. The moments are stated in per cent of the sum
of the numerical values of positive and negative moments in all the sections

in Fig. 12. Values are given for four sizes of the column capital. The per-

centages resisted in the different sections in Fig. 12 are seen to change

only slightly when c changes from 0.151 to 0.30Z, and to deviate only slightly

from the constant values given in the last column : namely, 48 per cent in

the column-head sections, 17 per cent in the mid-section, 21 per cent in the

outer sections, and 14 per cent in the inner section.

The total moments in the various sections depend upon the moments

per unit-width at the individual points of the slab. Fig. 13 indicates

points and sections at which the moments per unit-width are of particular

interest. Moment coefficients for these sections are stated in Table IV.

Fig. 14 shows diagrams of coefficients of moment per unit-width across

the edge and the center line of the panel. The coefficients are values of

Jf/wP.

Lavoinne,* in a paper published in 1872, derived the stresses in certain

sections of a uniformly loaded point-supported slab. He stated coefficients

of stresses; but moment coefficients MAc/l-, of the type used in Fig. 14,

may be found by dividing his stress coefficients by six. Thus, Lavoinne's

*
Lavoinne, Sur la resistance des paroi? planes des chaudieres a vapenr, Annal

Fonts et Chaussees, 1872, pp. 276-295; the numerical coefficients are quoted frc

?86. See the historical summary in Art. 4, footnote 10.
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analysis gives the following moment coefficients: at the center of the slab,

0.17/6 = 0.0283, to be compared with 0.0283 in Fig. 14; at the center of

the edge along the edge, 0.34/6 0.0567, while Fig. 14 gives 0.0592; at

the center of the edge across the edge, 0.20/6 = 0.0333, while Fig. 14

gives 0.0319. Since Lavoinne stated only two decimal places in each

FlG. 14. COEFFICIENTS OF BENDING MOMENTS PER UNIT WIDTH IN A

SQUARE INTERIOR PANEL OF A UNIFORMLY LOADED FLAT SLAB WHEN
POISSON'S RATIO is ZERO; MOMENTS ACROSS THE EDGE AND THE

CENTER LINE.

coefficient, the agreement may be considered as fairly satisfactory.

Lavoinne's solution is by double-infinite trigonometric series.

Fig. 15 shows coefficients, M/wl~, of moment per unit-width along

the edge and the center line of the panel. Eacli of the curves must satisfy

a certain condition, which applies also to beams with fixed ends: the

positive and the negative area of each of the moment diagrams must be
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Fi. 15. COEFFICIENTS OF BENDING MOMENTS PER UNIT WIDTH IN A

SQUARE INTERIOR PANEL OF A UNIFORMLY LOADED FLAT SLAB WHEN
POISSON'S RATIO is ZERO; MOMENTS ALONG THE EDGE AND THE CENTEB
LINE.
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numerically equal. This condition applies to the curves in Fig. 15 because

the slope of the slab is zero at the edge of the column capital and at

the center, that is, at the points where the curves in the diagram end; the

application of the condition under these circumstances follows from equa-

FIG. 16. COEFFICIENTS OF BENDING MOMENTS PEE UNIT WIDTH IN A

SQUABE INTERIOR PANEL OF A UNIFORMLY LOADED FLAT SLAB WHEN
POISSON'S RATIO is ZERO; MOMENTS ACROSS AND ALONG THE

DIAGONALS.

tions (20) in Art. 6. An examination of the curves in Fig. 15 showed

equality of the positive and negative areas.

Fig. 16 shows coefficients of moment per unit-width acrosa and along

the diagonals. In drawing the ciirves for the momenta along the diagonal,

use was made of the condition that the positive and negative parts of each
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moment diagram must be numerically equal. The diagonal momenta at the

edge of the column capital could not be determined with the degree of

exactness obtained elsewhere, because the torsional moments at these points,

in the point supported slab, in sections parallel to the panel edges, had not

been determined by the difference equations with the same degree of exact-

ness as other moments. The negative moment across the edge of the column

capital is approximately the same along the diagonal, as along the panel

edge, in fact, it is approximately constant all the way around the column

capital. Accordingly, the coefficients of end-moment along the diagonal,

stated in Fig. 16, were taken as equal to the corresponding negative

moment coefficients in Fig. 15, which apply at the panel edge. Certain

small discrepancies, which possibly may be explained by the deviations in

the negative diagonal moments, will be discussed in connection with the

next two figures.

Mi.

OZnl
3

Moments

FIG. 17. DIAGRAM SHOWING THE EQUILIBRIUM OF THE FORCES AND COUPLES

ACTING ON AN OCTANT AND A QUADRANT OF A SQUARE PANEL

(c = 0.30).

Fig. 17 shows forces and couples acting on two separate octants of a

normal panel with c = 0.30Z. For each octant the downward resultants of

the applied loads acting at the centroids of the area, and the upward resultant

of the vertical supporting forces or shears at the edge of the column capital
form a couple; these couples are: M , for one octant, M'

, for
i -fn i +11

the other. In the plane vertical sections there are bending moments, jV/m
Mlv ,

and Myi
in one octant, M'

lir M'1V ,
and A/'VI

i" the other, but

on account of the symmetry there are no torsional moments and no vertical

shears in these sections. The moment Afy and M' are the resultant

moments in the curved sections at the edge of the column capital. In the

diagram to the right, in the figure, the different couples are represented as

vectors. Each vector is laid off parallel to the vertical plane of the couple
which it represents; the direction is that of the upper one of two horizontal

force* representing the couple. The couple vectors M and M',.,,
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are shown resolved into the components i/
r

and MU , M\ and M'n .

The couple vectors form two polygons, one for each octant, but with the

side Jf
yi

in common. Eacli octant is in equilibrium; therefore, if the

couples are represented correctly, each polygon should close. Fig. 17 shows
small gaps at the end points of the vectors M and M> These gaps
are a measure of the discrepancies which have entered, so far, into the

calculations and into the particular graphical representation in the figure.

The method of obtaining the particular vectors represented in the

vector diagram in Fig. 17 will now be described, and possible sources of the

gaps will be discussed. The couple M I
, with the components M and

Afjj,
is considered first. The two components could be computed exactly

if the point of application of the resultant shear were known exactly.

Afj and Mu were computed under the assumption that the vertical shear

at the edge of the column capital is uniformly distributed, or, that the

resultant passes -through the centroid of the circular arc formed by the

Afr

c^

C-QZOl

'.'j

Scale
'

01 .0?Wl

FIG. 18. COUPLES ACTING ON AN OCTANT OF A SQUARE PANEL (c = 0.15;

0.20; 0.25).

section. The distribution of the shear at the edge of the column capital

is known to be approximately uniform, but if it is not entirely uniform,

the end point of M. may have to be moved slightly. It is possible that a

shifting of the end of M into its correct position would reduce the gap
were determined byat the end of M, The vectors M and

measuring areas in Fig. 14, of the diagrams of moments across the center

line and the edge. Afy was determined by a corresponding area in Fig.

16. M was computed under the assumption that the bending moment
across the edge of the column- capital is constant, and that the torsional

moment along the edge of the column capital is zero. If these assumptions
are correct, the direction of lfy will bisect the 45 deg. angle between the

panel edge and the diagonal. But the assumption of even distribution is

not more than approximately correct; as stated before, the diagonal

moment across the edge is not known with the degree of exactness obtained

elsewhere. By a slight change in the bending moments and by introducing

small torsional moments, If may be changed so as to eliminate the gap
between M and M In fact, the gap may be eliminated, practically,

by changing the direction of the couple jl/y slightly without changing the

magnitude.
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Fig. 18 shows vector polygons of the same kind as those shown in the

preceding figures. The diagrams apply to slabs with c/l = 0.15, 0.20, and

0.25. As in the preceding figure, gaps are left open between M and Al

The method used here in the study of the equilibrium of the resultant

couples acting upon an octant of the slab is analogous to that used by
J. R. Nichols * in his study of the moments in a quadrant of the slab.

In fact, the analysis represented in Fig. 17 and Fig. 18 may be looked upon
as Nichols's analysis applied to an octant of the slab. The sum of positive
and negative moments indicated in Fig. 17 is the total moment indicated

by Nichols's analysis. The approximate value which Nichols gave in the

discussion of his paper t

M =
\Wl(l

-
\?-)* (23)

o O (

is so nearly equal to the value which he derived originally that it may be

used instead; it is the value used in connection with Table 3 and stated

at the head of this table.

The moment coefficients for the column-head sections, mid-section, outer

sections, and inner section, as taken directly from the diagrams in Fig. 14,

Fig. 15, and Fig. 16, led to the gaps in the polygons in Fig. 17 and Fig. 18.

While a part of the discrepancy may be due to a slight error in the total

moment, and while it is possible that the main part of the discrepancy is

due to the unevenness in the distribution of moments at the edge of the

column capital, it \vas considered feasible to make adjustments by correct-

ing each bending moment in proportion to its size. That is, the percen-

tages of total moment indicated in Table 3 were left unchanged; they are

the original percentages based on areas measured in the diagrams in Fig.

14. Adjustments of the coefficients of moment per unit-width, stated in

Table 4, were introduced by a correction of the factors which are stated

at the head of the table, and which were used in transforming the coeffi-

cients M/wV, of the type used in the diagrams, into coefficients of the type
used in Table IV.

9. UNBALANCED LOADS ON FLAT SLABS. The load on one panel of a

flat-slab floor-structure has some influence on the stresses in the adjoining

panels. If a load which is originally uniformly distributed over all panels
is changed by removing or reducing the loads on some of the panels, the

stresses in the remaining panels will be increased in some sections and

decreased in others. The loads, by this change, become unbalanced.

Unbalanced loads cause the tangents across the panel edges to rotate; they

may produce bending moments in the columns or may cause the column

capitals to rotate about horizontal axes. Unbalanced loads on continuous

beams produce analogous effects; for example, the positive moments in one

span increase when the downward loads in the two adjacent spans are

removed. In the analysis of flat-slab structures the varying degree of

See Art. 4, footnote 17.

t J. R. Nichols, Discussion on reinforced-concrete flat-slab floors. Am. Soc. C. E.,
v. 77, 1914, p. 1735.
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stiffness of the columns must be taken into consideration; this stiffness of

the columns affects the stresses under unbalanced loads.

Fig. 19 and Fig. 20 show certain results of the study of unbalanced
loads. Further studies of the effects of these loads are made in connection

with Fig. 21 to Fig. 24.

Ratio of Loads

FIG. 19. BENDING MOMENTS IN OUTER SECTIONS DUE TO UNBALANCED
LOADS; DIFFERENT UNIFORM LOADS ON ALTERNATE Hows OF PANELS.

A flat-slab structure is considered in which each floor consists of a

large number of equal square panels. For the sake of convenience of

analysis the number of panels may be assumed to be infinite in all direc-

tions, as in the preceding article. All the columns are assumed to be alike.

Poisson's ratio is again assumed to be equal to zero. The small figures at

the bottoms of Fig. 19 and Fig. 20 show the loading arrangement on one

floor: each alternate row of panels carries the full uniform load, w per

unit-area, the other rows carry the reduced uniform load, w per unit-area.
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The positive moments in the outer and inner sections shown in Fig. 19 and

Fig. 20 reach extreme conditions when w is as large as possible, and when
w is as small as possible, for example, when W

Q
Is equal to the dead load

only. The abscissas in Fig. 19 and Fig. 20 represent the ratio w /to of the

The left-hand edges correspond to w = 0, that is, every other row

50

loads.

A .6

Ratio of Loads^/
FIG. 20. BENDING MOMENTS IN INNER SECTIONS DUE TO UNBALANCED

LOADS; DIFFERENT UNIFORM LOADS ON ALTERNATE Rows OF PANELS.

of panels is entirely unloaded. The right-hand edges correspond to w =. to,

that is, uniform load tr on all panels as in the preceding article. The

ordinates in Fig. 19 and Fig. 20 represent percentages of the total moment

1 2
MO = - Wl (1 c)

2
; M is the sum of the numerical values of the

8 o
moments in the outer sections, inner section, column-head sections, and mid-

section when the panel is loaded by w. The values indicated on the right-
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hand edges, 21.0 in Fig. 19, and 14.0 in Fig. 20, are the percentages apply-

ing to the condition of uniform load over all panels. These two per-

centages are approximate values, taken from the last column in Table III

in the preceding article; they are nearly equal to the exact values, which

vary only slightly within the range of variation of c/l. The two upper

pencils of lines in Fig. 19 refer to the fully loaded panels, the panels loaded

by w; the two lower pencils refer to the panels which carry only the par-

tial load w
o . Two extreme cases are represented, one by the two middle

pencils, the other by the two outer pencils. In one extreme case the col-

umns are perfectly rigid, and in the other the column capitals are perfectly

free to rotate about horizontal lines. The latter condition may be estab-

lished by introducing hinges in the columns directly below the column

capitals and directly above the slab. Actual slab-structures fall between

Hie two extreme conditions, which, therefore, are analyzed first. Methods

by which one may interpolate between the extreme cases will be indicated

later.

(a) (b)

FIG. 21. UNBALANCED LOADS PRODUCING MAXIMUM POSITIVE MOMENTS
IN THE SLAB;

(a) total applied load;

(b) component, + -^,
of applied load.

(c) component, , of applied load;

According to Fig. 19, when w is zero, and when the columns are rigid,

the percentage of moment in the outer sections in the loaded panels ranges
from 20.3 for c =z OM to 23.5 for c 0.15L In the unloaded panels the

corresponding percentage is small, ranging from + 0.3 to 2.6, the latter

figure indicating a small negative moment. When the columns are free

to turn, the load on one panel has a marked influence on the moments in

the other panels. According to Fig. 19, when w is zero, the percentage
for the outer section ranges from 41.4 to 49.6 for the loaded panels, and

from 20.4 to 28.6 for the unloaded panels. The negative percentages

represent fairly large negative moments. The use of the diagram may be

illustrated by an example. Assume w QAw, c = 0.2l; then if =121 2- wl (I
- -

c)
2 = - wl* (1 - -

. 0.2)
2 = 0.0939t0Z3. The diagram gives

the following values of the moment in the outer sections: in the fully
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loaded panels, 0.218M when the columns are rigid, 0.347M when the

column capitals are free to turn; in the partially loaded panels, 0.075Af

when the columns are rigid, 'o.053M w^en the column capitals are free

to turn.

Fig. 20, which refers to the inner section, is analogous to Fig. 19.

The percentage of moment varies in the same general manner as in Fig. 19.

The procedure of the analysis will now be discussed. The load consist-

ing of w and to on alternate rows of panels is denoted by w,w The
moments produced by this load are linear functions of w

Q ; and when w
ia considered as a constant, they are linear functions of the ratio w

o /w.
It follows that when the moments for the extreme values w =0 and

o

w =w are known, that is, the moments represented at the left and right

edges in Fig. 19 and Fig. 20 are known, then the moments for intermediate

values may be determined by linear interpolation, as represented by the

straight lines in the two figures. It remains, therefore, to make an analysis

for the load w,0, (or w and zero in alternate rows of panels) . This load, w,0,

may be resolved into two components by the scheme indicated in Fig. 21

and Fig. 23.* The load w,Q on each floor in Fig. 21 (a) is resolved into two

romponents: -f- ,
shown in Fig. 21 (b), uniformly distributed over all

2

panels; and -|- shown in Fig. 21 (c), consisting of the upward and
2* 2'

downward uniform loads t/;/2 on alternate rows of panels. The load

_ is anti-symmetrical with respect to the dividing edges, that is, the
2' 2

edges at which the load changes from -f- w'/2 to w/2. The structure

itself is symmetrical with respect to the vertical sections through these

edges. Consequently, under the load -}- _ the deflections at points
2' 2'

which are symmetrical with respect to the dividing edges are equal and

opposite; the dividing edges remain straight and undeflected; the moments
in sections which are symmetrical with respect to the dividing edges are

equal and opposite; and the moments at the dividing edges are zero.

When the column capitals are free to turn, and when their diameter

is gmall, the slab, under the load -f- will deflect within each row
2' 2'

of panels as if that particular row were separated from the rest of the

slab, and as if it were simply supported on girders at the two parallel

edges of the row. The moment per unit-width across the center line of

the row, accordingly, is -f- I" in the row loaded by -}- _. and - /'

89 O ' Q O
W

in the row loaded by _ Since the column capitals are in the regions
2'

near the points of inflection, a change in the size of the diameter of the

This scheme was used by Nielsen (Spaendinger i Plader, 1920, p. 192).



MOMENTS AND STRESSES IN SLABS. 41

column capitals, even to the greatest size c = 0.31, has only a slight influ-

ence on the state of flexure of the slab under the load -|- as long
2' 2'

as the column capitals are free to turn. Minor local redistributions of the

moments occur near the edges of the column capitals as a result of this

change in the diameter of the column capital, but in the inner and outer

sections the influence of this change is negligible. That is, the values

.t 1
2

may be used without reference to the size of the column capital.
8 2

The method of calculation for the load w,Q, when the column capitals are

free to turn, may be shown by an example. Take c = 0.21. The corre-

sponding total moment is M = - wl3
(1 - -. 0.2)

2 = 0.0939wZ3
. The

8 3 W W 1 W I

moments in the outer sections due to the load + ,

~
are =*= -

I
2 -

wl3

= = 0.333Af . The moment in the outer sections, due to the

w w 1

uniform load
, ,

is
-

. 0.21 Af = 0.105A/ . The resultant moments in
t

the outer sections are then: in the loaded panels, 0.333A/ + 0.105A/ =
0.438Af

o ;
in the unloaded panels _

0.333AT,, + 0.105A/ = _ 228A/ .

The percentages 43.S and 22.8 are shown at the left-hand edge in Fig. 19.

The other percentages represented at the left-hand edges in Fig. 19 and

Fig. 20 were calculated in the same manner.

The slab-structure with rigid columns and immovable column capitals

was analyzed as a statically indeterminate structure in which the turning

couples transferred from the slab through the column capital to the column

are introduced as statically indeterminate quantities. The structure with

column capitals free to turn is used in the analysis as a substitute structure.

In this substitute structure the column capitals turn under the influence

of the load
_|

_ but the slope of the column capitals may be

reduced to zero, and thus the substitute structure may be made to act like

the original structure, by applying a turning couple of the proper magni-
tude and direction at each column capital. The resultant moments in the

slab are found, then, by adding the moments produced by the turning

couples to those already existing. In order to find the magnitude of the

turning couples and the effects of them, a study was made of bending
moments and slopes produced by turning couples 21 of constant magni-

tude, applied at the column capitals. Results of this study are stated in

Table V(a). Tn order to derive these results the structure with column

capitals free to turn was replaced by a second substitute structure in which

the column capitals are removed altogether. This second substitute struc-

ture is the same point-supported slab that was used in the preceding article

in the study of the slab with the same load in all panels. The second sub-

stitute structure is loaded at the points of support by concentrated couples
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21 and by certain additional concentrated loads which may be called ring

couples. A ring couple may be obtained by applying two equal and two

opposite ring loads, of the kind described in the preceding article, so close

together that the whole system of forces may be considered as a concen-

trated load. The concentrated couples acting alone do not produce uniform

slopes at the circles marking the edges of the column capitals; but uni-

formity of the slopes at these circles is restored by adding ring couples of

the proper intensity. The second substitute structure is thus made to act

like the first substitute structure, which is the slab with column capitals

which are free to turn relative to the columns. The influence of the ring

couples on the moments at the center line of the row is small; it is meas-

ured by the difference between the moments stated in the first column in

TABLE V (a). PENDING MOMENTS AND fLOPES DUE TO TURNING COUPLES

+21 APPLIED AT THE COLUMN CAPITALS.

The turning couples are clockwise and counter-clockwise in alternate rows of columns.
i is perpendicular to the rows, y is in the direction of the rows. The couples are in planes parallel to zt.

*= gpan; c= diameter of column capital; /= moment of inertia per unit-width; Poisson's ratio=0.

ell
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o

equal to zero is determined, then by the formula M
C
= 2 1.

-
(25)

8

M
c

is the resultant couple which is transferred through each column capital,
from the columns to the slab in the original structure, which is the struc-

ture with rigid columns and immovable column capitals. An example will

show the manner of computing Mc
and the resultant bending momenta

which are shown at the left-hand edges in Fig. 19 and Fig. 20. Tako

c = 0.2Z. Equation (24) gives S
Q .

0.985. Table V(a) gives

9751 48EI
s = -

.
The couple transferred through each column capital is, then,

according to formula (25), Me
= -= ^- .-- = 0.0842wZ3 = 0.897A/ .

s 0.97o \2i

According to Table V(a) the moment in the inner section in the slab with
column capitals free to turn, produced by the turning couples ^ 21 is

=*= 0.525?. The corresponding moment produced by the turning couples

- 0.525Z . Mc - 1

+ Mc is then + - - = + -
. 0.525 . 0.897M = + 0.236A/ .

I J-i

The signs, minus and plus, refer to the loaded and unloaded row of panels,

respectively. According to Fig. 20 the moments in the inner section in the

slab with column capitals free to turn, produced by the load w,0, are

0.403A/ in the loaded row of panels and 0.263Af in the unloaded row.
O

The resultant moments in the inner sections in the slab with rigid columns
are then:

in the loaded row of panels: 0.403A/ _ 0.236A/ = 0.167M
Q

-

in the unloaded row of panels: _ 0.263M
Q + 0.236A/ = -0.027A/ .

The coefficients 0.167 and 0.027 are expressed as percentages and are

shown at the left-hand edge in Fig. 20. The remaining percentages belong-

ing to the two middle pencils in Fig. 19 and Fig. 20 were computed in a

similar manner.

Two extreme cases have been considered so far: one with perfectly

stiff columns and fixed column capitals; the other with columns which are

flexible or supplied with hinges at the ends, so as to allow the column

capitals to turn freely with the slab. Actual slab-structures have an inter-

mediate degree of rigidity of the column capitals. These structures can be

dealt with if a method of interpolation between the extreme cases can be

devised, so that one can say that a given case belongs, for example, 70 per

cent or 0.7 to one extreme case, and 30 per cent or 0.3 to the other. For

the purpose of the interpolation two definite ratios are introduced measur-

ing the degree of fixity of the column capitals and the degree of freedom of

the column capitals to rotate. These ratios are

k = fixity of the column capitals,

k' = 1 k = freedom of the column capitals to rotate.

These ratios are defined as follows: Let M denote the moment in a certain

section, A/, and A/B the moments which would occur in the same section

if the column capitals were fixed and free to turn, respectively. The ratios
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fc and k' are defined, then, as far as the particular section is concerned, by
the equations:

M**kMA +k'MBt (26)

fc+fc'-l. (27)

For example, M = 130000 in. Ib, MA = 100000 in. Ib, and MB
= 200000

in. Ib, gives k = 0.7, k' = 3 ; the column capitals may be said to be 70

per cent fixed and 30 per cent free to turn. M may be calculated by formula

(26) when MA , A/B ,
k and k' are known. The limiting values of k and k'

are and 1; the combination k = 1, k' = represents the extreme case of

fixed capitals; the combination k = 0, k' = 1 represents the case of column

capitals which are free to turn.

The values of k and k' may be different at the different moment sec-

FKJ. 22. MOMENTS IN COLUMNS DUE TO UNBALANCED LOAD SHOWN IN

FIG. 21;

(a) columns without capitals;
(h) columns with capitals;

tions. But in certain important, rases, for example, in those shown in Fig.

21 and Fig. 23, /.- and k' are independent of the position of the moment

section; k and k', then, are constants belonging to this structure as a

whole. Let

M' ~ moment transferred from a column through the column capital
to the slab in the structure with intermediate rigidity of the

column capitals;

M moment transferred from a column through the column capital

to the slab in the structure with fixed column capitals.

Application of (2(5) to these moments gives

A/'
c -We (28)

where fr is the fixity k referring to the moments which are transferred

through the column capitals. Assume that a calculation by (28) leads to
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the same value of k for all the column capitals within an area which

includes a large number of panels in botli directions. It may be shown

that A; in (26), under this condition, is the same for all sections and is

equal to the constant value k
;

the moment M in any section may be

expressed as a linear function of the moments M'
', by substituting

M' _. k M ,
the moment M becomes a linear function of

ke', according
to (26) and. (27) M is a linear function of k; the limits of k and k

c

are the same, and 1 ; consequently, k = k as was to be proved. In

Fig. 21 and Fig. 23 M' and M are the same in all columns, except for

the direction clockwise or counter-clockwise; that is, in each slab, k is the

same at all column capitals and in all moment sections. The loading

arrangement in Fig. 21 produces the greatest possible moments in the outer

and inner sections; the arrangement in Fig. 23 produces large moments
in the columns.

1

L. 7
,|,

7 -J. 7 I ^ >

(a) (b) (ci

FIG. 23. UNBALANCED LOADS PRODUCING LARGE MOMENTS IN COLUMNS;

(a) total applied load;

(b) component, +
-^,

of applied load;

(c) component, , of applied load.

The analysis is facilitated by resolving the loads ivQ shown in Fig.

21 (a) and Fig. 23 (a) in each case into two components: namely,^-, ,

2t

shown in Fig. 21 (b) and Fig. 23(b), and
!fl,

-
}
shown in Fig. 21 (c) and

Fig. 23 (c). To make the analysis simple, the dimensions, including the

diameter of the columns, are assumed to be the same through several

stories.

The dimensions and the loads are denoted as in Fig. 21 and Fig. 23.

Fig. 22 and Fig. 24 show diagrams of the bending moments in the columns;

they show also the notation for these bending moments. The moments of

inertia of the sections are

T = moment of inertia of the cross section of the slab for the whole

panel width,

7 = moment of inertia of the columns.

A simplified case is considered first, in which the slab-structure is

replaced by a frame whose girders and columns have the same moments of

inertia, /' and J, as the slab structure; at the joints there are no column
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capitals, but the connections between the four adjoining members are rigid.

Tin: moment diagrams of the columns are shown in Fig. 22 (a) and Fig.

24 (u). Analysis, for example, by the method of least work, by the method

of tlio substitute structure, or by the slope-deflection method, leads to the

following values:

In Case I, Fig. 21 and Fig. 22 (a), with

K

me finds

that is,

Jl
I'h'

.wl* d_ 1 \

-24 I
1

I+K)

k - 1 -
1+K ' 1+K

(29)

(30)

(31)

to) (b)
Fin. 24.- MOMENTS IN COLUMNS DUE TO UNBALANCED LOAD, SHOWN IN

FIG. 23;

(a) columns without capitals;

(b) columns with capitals

In Case II, Fig. 23 and Fig. 24 (a), again with

JlK -

one finds

that is,

24

I'h"

1 - (32)

(33)
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In the slab-structure the bending moments are not uniformly distrib-

uted over the width of the sections. One may say, that the moment of

inertia /' of the section is not fully effective. The presence of the column

capitals, on the other hand, has the effect of reducing the clear spans and

increasing the rigidity of the structure. The slopes or angles of rotation

of the column capitals in Fig. 21 and Fig. 22 (b) must be equal or equal
and opposite. The moment diagram of the cylindrical part of the column

between the top of the slab and the bottom of the column capital above,

must have its centroid, therefore, at the center of the total distance meas-

ured between the centers of the slabs. In Fig. 2-1 (b) the point of inflection

is at the center of the cylindrical part of the column. The dimensions of

the moment diagrams in Fig. 22 (b) and Fig. 24 (b) have been computed
without considering the influence of the thickness of the slab upon tin;

stiffness of the column. This influence may be taken into account by

measuring h from the top of the slab to the bottom of the column capital

above, i from the bottom of the column capital to the bottom of the slab;

7t'= h -f- i is, accordingly, the clear distance from the top of one slab to

the bottom of the slab above.

The slope of the column at the capital must be equal to the angle of

rotation or slope of the capital. In terms of the moments in the columns,

the slopes, Q, of the columns at the capitals are

irwr in FiS- 22 (b) '
-

wr in Fig 24 (b) ' ( 34)
i fLJ O C<J

In terms of the moments 2X, transferred from the columns through the

capitals to the slab, and in terms of the applied load w,0 or
_j_ ^ _ }-.

f

^-

the angle of rotation, or slope, of the column capitals in Fig. 21 to Fig. 24

may be expressed approximately as follows, as may be seen by comparison
with the last line in Table V(a) and with formula (24) :

*

2 -0.80 -1.02E7'
'

48-1.02#/'

By equating Q to Q> and substituting the values of X given on the diagrams
in Fig. 22 (b) and Fig. 24 (b), in terms of X', the following values; are

obtained :

In Case I, Fig. 21 and Fig. 22 (b), one finds

x ' ~
24

!~"+ /1+3 i\
2 "A "_~c\"_ :

JT
;;;

(30)

The fixity k of the column capitals is the ratio of this quantity to the. value

of the same quantity when J = oo that is,

k -1 - -JL A/ L_ (S7J
l+K' l+K'
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where

(38)
0.80-1.02 I'h

In case II, Fig. 23 and Fig. 24 (b), one finds

Jl

x , wl3 1. 021'h ,

39)"

24 1 j. (\ +1\ /I - \ JZ
3
+

\ /i/\ F/ 0.80 -1.027'/i

The fixity k of the column capitals is determined as in Case I by comparing
X' with its value when J= oo one finds

A- = 1 k' = (40)
1 + 3K '

1 + 3K
'

where

j _ _\ IL/__ j__ LZ. "
(41)

0.80- 1.02 7'/t

When the fixity has been computed, the maximum moment X' in the cylin-

drical part of the column may be computed as

X' _^?0fc_
24

Sample calculations of freedom of the column capitals to rotate, fixity

of the capitals, and moments in the columns, according to formulas (26)

to (42), are shown in Table V(b). In examples (1) the columns are rather

slender, in examples (2) and (3) they are comparatively stiff. The mate-

rial is assumed to be homogeneous. The dimensions i should be measured,
as stated before, as the vertical distance between the bottom of the column

capital and the bottom of the slab. In example (
1

) ,
Case I, the column

capitals are found to be about 28 per cent fixed, 72 per cent free to turn.

Fig. 19 and Fig. 20 show that with these degrees of fixity and freedom to

rotate, unbalanced loads will have a considerable influence on the bending
moments. In examples (3), Case I, the fixity is 90 per cent; that is, the

moments in the inner and outer sections of the loaded panels will not differ

greatly from the moments under uniform load.

It should be noted that those approximate values of fixity, freedom to

rotate, and moments in the column, which are computed by considering
the structure as a frame, do not differ greatly from the corresponding
values in the lower part of Table V(b), which are calculated more exactly.

One may conclude that other flat-slab structures may be analyzed, in most

cases with a satisfactory approximation, as far as the moments in the

columns are concerned, by methods applying to frames. For example, the
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TABLE V(b). SAMPLE CALCULATIONS OF THE RIGIDITY OF COLUMN
CAPITALS.

T/re /rjcr/e/-/er/ /s ersstfnee/ fe 6e Aosnevf/reot/s. Tftf
/octets ore /tre//ictrtK/ //j /-/f.2**/ and f/a.JtSf^f. 7#f

of r/te co/umns ane '

moment of inert/a of s/ot> />er /*ne/ nf/'t///if

moment of /nerf/a of co/t/mns;

fixity of coAumrt c<yo/7a/s;
'freeeto/rr o/ co/t/nrn caprta/s to

//O. fv

ofco/umr.

/ Sfory
r/jett o

0/amfffr of co/umn. </

O.ffOl

s/nucfufv tv/'/A c

6.Z3

Case I o.r/s 0/37

0.4&3

O 096

O.904-

0459 0.03+

ffo/aevt///7 co/um/i X-A'-

3. /7a/--S/ao structure

c
i

/r

aosz
0.31

O./02

O.Z2

0.041
07/1

0.32

0-662

O.Z2

0.462

0.32

0091
0-4/1

CaseI K =

0.7Z0

O.Z00

OL350

0.74/

6.ZZ

0./S4

0.36Z

.69

0.09ft

0.904

0O98

O.902.

/ff.36

rtf. 24T6

0.4S/

O. "49

0. 02.17

0.47/ 0.049

O.OZ27 0.0375'

0.948

O.O397

30./O

0032

0.968

O.O37/

0033

O 967

O.O373
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slope-deflection method *
may be used to advantage when the design is less

uniform than assumed in Table V(b) ;
for example, when the diameter of

the columns is different in the different stories.

So far, attention has been given mainly to the moments due to unbal-

anced loads in the outer and inner sections. The negative moments in the

column-head sections and mid-section are affected less by unbalanced loads

than are the positive moments. In a frame structure the maximum nega-

tive moment in the second-floor girder between the third and fourth span
occurs with the following combination of loaded and unloaded spans; W
is the total load on one span:

Loads on Span Xo.123456
4th fl.x>r O W W O
3rd floor W O O W
2nd floor BOWWOW
1st floor W O O W

With span I, total story height h', and moments of inertia I' of the girders

and J of the columns as before, the negative moment in the second-floor

girder between the third and fourth span becomes, as may be verified by

the slope-deflection method,
_ _ /

"

. __T . .

(43)

where K = IJL as before (formula (29)). This moment is found to be

approximately equal to

TI7 II f\ A \

(44)

When J = oo the moment becomes Wl/24. Or, the ratio, Q, of increase of the

negative moment by a change to columns of finite stiffness is approximately

Q = l + T4^ = l+0.4fc', (45)
1 + K

where k' is the freedom of the column capitals to rotate under the loading

arrangement in Fig. 21. The ratio Q may be assumed to apply approxi-

mately to the negative moments in flat slabs. For example, k' = 0.72, as

given in the first column in Table 5(b), gives Q = 1.29, or 29 per cent

increase, while k' = 0.10 gives an increase of 4 per cent.

The case in which only a single panel is loaded is of no particular

importance as a condition for design; greater bending moments are pro-
duced by a uniform load on all panels or by loading in rows than by single-

panel loading. A number of tests have been made, however, with a single

panel loaded, and the case should be investigated for the purpose of the

study of these tests.

See Wilson, Richart, and Weiss, Analysis of Statically Indeterminate Structures,
by the Slope Deflection Method, Univ. of 111. Eng. Exp. Sta. Bull. 108, 1918; Hool
and Johnson, Concrete Engineers' Handbook, 1918, p. 411, p. 629.
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When the columns are stiff, the single-panel load produces approxi-

mately the same effects in the panel as a "checker-board load," by which

the panels corresponding to the black and white fields of a checker-board

are loaded and unloaded respectively.* The checker-board load leads to a

simpler analysis than the single-panel load. The checker-board load W,

may be resolved into two components, one, . .. uniformly distributed
9 9

~\A7 \\f
over all panels, the other, -f

-
, -~, positive and negative in alternate

panels. The first component produces one-half the moments derived in

Art. 8. The second component, on account of the anti-symmetry leaves the

panel edges straight; that is, if the column capitals are small, each panel
deflects as a single square panel which is simply supported on four sides

and loaded by + W/2 or W/2.
A study is made of the equilibrium of one-half of a loaded panel. This

half-panel is a rectangle with two sides of length I, containing the column-

head sections, mid-section, outer sections, and inner section, and two sides

of length 1/2. The moments are taken about the edge containing the mid-

section and column-head sections. The following results were found for the

point-supported slab with checker-board loading W, O, the moments being

expressed in terms of the total moment M = Wl:

Moment in inner section: 0.13A/
;

outer sections: 0.13A/
o ;

mid-section: 0.09A/
;

column-head section: 0.24A/ .

Total for the moment sections: 0.59A/

Moments of vertical shears plus torsional moments

in the short sides of the rectangle: 0.41M

Total: \~WM~
Moment of applied load W/2: _ 1.00M

Total moment about edge containing mid-section : 0.

According to these results 41 per cent of the total moment leaks out

by shear and torsion in the short edges of the rectangle. In deriving the

moments in the various sections use was made of the results, stated in

Art. 8, Table 3, obtaiued for a flat slab with all panels loaded; of the value

stated in Fig. 3 (a), of the moment at the center of a square slab simply

supported on four sides; and of the value of the moments and shears at

other points of a square slab simply supported on four sides, stated by

Leitz.f In slabs with column capitals the proportions of moments may be

assumed to be approximately the same as in the slabs with point supports,

provided the column capitals are not too large. Or, by substituting

1 *? rM _ --Wl(l -)- one may use the expressions just stated for the
8 of

* See Nielsen, p. 196, where this case is invaitigated.
t See Nielsen, p. 133.
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point-supported slab, as approximate expressions for moments in the slab

with column capitals.

10. MOMENTS IN WALL PANELS, CORNER PANELS, OBLONG INTERIOR

PANELS, AND PANELS WITHOUT BENDING KESISTANCE IN THE MID-SECTION.

Table VI contains approximate values of moments in panels of several

different types. The results of the computations are found in the column
next to the last in the table. The calculations are based on Nielsen's *

work, and they are of an approximate character. In the analysis of these

cases by difference equations Nielsen used a rather large value of the

side X of the elementary square, and he assumed point supports instead

of supports on column capitals. It was his scheme that the values deter-

mined in this manner should be used as a basis of comparison between the

different cases; this use has been made of his results in Table VI. The
exterior panels dealt with in Table VI are assumed to be simply supported

along the walls on rigid lintel beams.

An example will illustrate the method followed in computing Table VI.

Take sections D and E in the third case in Table VI, that is, the case of

two adjacent rows of wall panels with lintel beams. Nielsenf gives the

following coefficients M/wl- of moment per unit width when Poisson's ratio

is zero: at the center of D, at
= 0.0861; at the center of E, Cj = 0.0661;

midway between, 6j = 0.0725. The spaces between these points are equal to

the side \ =
i/4 of the elementary square which was used in the difference

equations. The three coefficients are to be interpreted as the altitude of

three rectangles, placed together as in Fig. 25 at the left. The three rec-

tangles constitute the moment diagram in approximate form. A more

nearly correct diagram is obtained by drawing a smooth curve which has

the altitudes of the rectangles as average ordinates in the three intervals

covered by the rectangles. The curved diagram is now replaced, as shown
at the right in Fig. 25, by two rectangles whose altitudes are average
ordinates within the two intervals covered by the bases. The formulas

stated in Fig. 25 for these altitudes apply approximately, and they were
used in the calculation of the table. In this manner the following coeffi-

cients of moment per unit-width are found in sections D and E :

in the outer section D,

ai + bi Q! -
ci 0.0861 + 0.0725 0.0861 - 0.0661

~2~~ ~~15~ ~~2~~ ~T5~~ 6 '

and in the inner section E,

61 + c, a.
-

c, 0.0725 + 0.0661 0.0861 - 0.0661

~T ~T5~ ~T~ ~l5~
The corresponding moments per unit width, O.OS06W and 0.0680W, where
W = icV, and the average value 0.0743W applying to section F, are stated

in Table VI. By applying the same method, with the side of the elementary

* N. J. Nielsen, Spaendinger i Plader, 1920; the five cases represented in Table 6
are dealt with in his work on pages 210, 189, 212, 217, and 205, respectively,

t Nielsen, p. 214.
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TABLE VI. MOMENTS IN OBLONG PANELS, WALL PANELS, CORNER PANELS,
AND PANELS WITHOUT BENDING RESISTANCE IN THE MID-SECTION.

-*loadperpanel(uniform over a// panels.). M -B Wl(i-$ )*
' A Wld-3 V*. Ma- 1 Wa(/~ )t Mt-AWtif-J

Types
of

panels
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square again equal to Z/4, to the normal interior panel, one finds the

moment in the outer section D equal to 0.0579W. The ratio of increase for

the wall panel is calculated, then, as q = 0.0806/0.0579 = 1.39 (see fifth

column for q). If this ratio is correct, the moment in section D in the

wall panel, when the columns are replaced by point supports, may be com-

puted as M " qMq
where M is the moment in section D in the normal

panel, that is, M = 1.39 '0.21 1 0.29
Z

- When the point supports
w i

are replaced by columns with capitals, one may expect that the factor

1 1 r 1
is to be replaced by M' = - Wl (1 _ 1)2. the coefficient i occurs in

8 3 I 3
o

this expression instead of the usual because the clear span in this
o

case is I %c instead of the value I c found in the interior panels.
The moments in the lintel beam in sections L and M are computed

under the assumption that the beam is continuous, with supports opposite
the columns.

^v
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proportions between the values of Mn ,
For example, one finds under this

assumption in the column-head section:

- 0.1248**..L
(
_M -

0.52M,- 0.0781u>&2 a v -.~w
b)

- v,.u^
ft

.

The remaining values of M were computed in the same manner. The
ratios of M to the corresponding M in the normal panel were computed
afterward.

The moments in the oblong panels are represented graphically in Fig.
26, where the abscissas are values of the ratio V*i of the spans,; Z, is the

span in the direction in which the moment is taken. The points represent-
ing the moments in Table VI lie on or near the two straight lines and the

-45

I*
\30
$
V*

*1

!
/5

/*

^lu&g&L

ms.tt%VTufcl

_f^f^^
r&&M^~

oiz 0.4 i.oO.6 O.8
Ratio of Spans,

FIG. 26. MOMENTS IN OBLONG PANELS.

iz 1.4

two parabolas which are shown, with their equations, in Fig. 26. These

equations may be used as formulas for the moments in the various moment
sections in oblong panels. They show, as might be expected, that the

moments are more nearly uniformly distributed over the short sections

than over the long sections.

Nielsen derived the following values of the reactions of the columns:

in the case of two adjacent rows of wall panels, R = 1.203W; in the case

of four adjacent corner panels, R = 1.313W.

Nadai * derived the following values of the moments per unit width

for a single square panel, which is simply supported on point supports at

the four corners; he assumed Poisson's ratio equal to 0.3; at the center of

the panel 3/ = 0.1115W, at the center of the edge in the direction of the

edge, M = 0.151TF, the latter being the maximum moment in the panej.

NAdai, p. 70.
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III. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE
STRESSES IN REINFORCED CONCRETE BEAMS.

BY W. A. SLATER.

11. GENERAL CONSIDERATIONS. It has been generally recognized that in

the tests which have been made on reinforced-concrete floors the measured

tensile stresses in the reinforcement do not account for all of the moments
which are applied to the slab. This has been especially apparent in the

cases in which the measured stresses were low. In the tests of flat slabs the

coefficient of the resisting moment of the measured steel stresses has been

found to increase as the measured stresses increased. This increase in the

coefficient indicates that, for the low loads at least, the tensile stress

accounts for only a portion of the applied bending moment. Table VII

quotes published results which show that for different loads, the difference

in the proportion of the total moment which is accounted for by the

measured tensile stresses is likely to be considerable. It is very desirable

that a means be found for determining how great this difference is, but the

slab tests cannot be used for this purpose since the coefficient of the bending
moment is the main thing that is in question in the slab tests.

To show the relation between the bending moment and the resisting

moment in beams a study of observed tensile stresses in 84 reinforced-

concrete beams tested at an age of 13 weeks has been made. These beams

were tested by the Technologic Branch of the United States Geological

Survey at St. Louis about 1905 to 1908, and have been reported* in Techno-

logic Paper No. 2 of the Bureau of Standards, by Humphrey and Losse.

All the test data of those beams here presented may be found in that paper.

The results of this study are shown in Fig. 31 and 32 as a relation between

the observed and the computed stresses, but it is evident that the relation

of the observed stress to the computed stress is the same as the relation of

the computed moment of the observed tensile stresses to the applied moment.

Test results from the same source and from other sources were used by
Professor Hatt in a study of the relation of the computed moment of the

measured tensile stresses in the reinforcement to the applied moment for

beams and slabs. Professor Hatt found that beam tests from different

sources gave different results, and the writer also has found this to be true.

It is shown, however, in Professor Hatt's paperf that there is a certain

degree of conformity between test results from a considerable variety of

sources, and the writer feels justified in using the beams of Technologic

Paper No. 2 for the purpose of determining a law which will serve as a

basis for the comparative study of the moment in slabs.

12. LIMITATIONS TO GENERAL APPLICABILITY OF THE TEST RESULTS

While it is recognized that there are limitations which must be observed in

the application of these results to other conditions than those under which

they were obtained, it is believed that, because of the wide range which the

See alsn Bulletins 329 and 344, U. S. Geological Survey.
t W. K. Hatt. Moment Coefficients for Flat Slab Design with Results of a Test

Proceedings American Concrete Institute, Vol. 14, p. 165 (1918).
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tests cover, the limitations are less serious than would be those of any other

tests which might have been used for this purpose.
For the beam tests there are reasons for expecting a difference between

the observed stresses and the computed stresses. In a cracked beam the

stress at the cracks may approach the computed stress, but between the

cracks the concrete assists so greatly in carrying the stresses that the

average measured unit-deformation over the gage length is likely to be

considerably less than the maximum unit-deformation, especially at the

lower loads. It is possible also that even at the section where a crack

occurs a portion of the moment may be resisted by the tensile stresses in the

concrete. There probably are other reasons for the differences though it is

believed that these are the most important.

By taking measurements of deformation over a short gage length

within a longer gage length on the same reinforcing bar it has been shown*

that higher stresses exist at certain places than are indicated by the average
measured deformation. The fact that in the beams used as the basis of the

present study failure occurred at observed stresses which were somewhat

TABLE VII. UNCORRECTED MOMENT COEFFICIENTS FROM
PUBLISHED REPORTS.

(Sum of coefficients for positive moment and negative moment.)

Test.
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All the beams were 13 ft. long, 8 in. wide, and 11 in. deep. The

amount of reinforcement varied in the different beams from two one-half-

inch round to eight one-half-inch round bars. For the beams having four

bars or less all were placed in one layer. For the beams having five bars

or more the bars were placed in two layers. The vertical distance between

the centers of the bars of the two layers was l 1
/^ in. The distance from the

top of the beam to the center of the lover layer of bars was 10 in. The

ratio of reinforcement, based upon the depth to the center of gravity of

the reinforcement, varied in the different beams from 0.0049 for the beams

with two bars, to 0.0212 for the beams with eight bars. In Technologic

Paper No. 2 the percentage of reinforcement was based upon the depth to

the center of the lower layer of bars. On account of the difference in the

method of computing the ratios of reinforcement the ratios given here are

slightly greater for the beams having two layers of bars than the ratios

given in Technologic Paper No. 2.

All the concrete used in the beams was of a 1:2:4 mixture. Four

different aggregates were used. These were granite, gravel, limestone, and

TABLE VIII. STRENGTH MODULUS OF ELASTICITY AND VALUES OF n.
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the concrete and which did not measure directly the deformations in the

steel. The arrangement of the extensometers gave the deformations in the

steel at the level of the bottom layer of reinforcement. These are the

deformations on which the studies in the Technologic Paper are based.

Since in the present study the depth of the beam was taken as the depth
to the center of gravity of the cross section of the reinforcement it became

necessary to reduce the deformations reported in the Technologic Paper to

the corresponding deformations at that depth. This modification affected

only the beams having more than one layer of bars.

14. METHOD OF ANALYZING RESULTS OF BEAM TESTS. The analysis of

the results of the beam tests consists in deriving an empirical equation for

the observed stress in terms of the computed stress and the percentage of

reinforcement. For the beams used in this study the load-strain diagrams
(in which values of H/bd? were plotted as ordinates and the unit-

deformations in the steel were plotted as abscissas) are made up of three

parts, ( 1 ) the part in which little or no cracking of the concrete had taken

place; (2) the part in which the concrete had cracked and the stress in the

reinforcement was below the yield point; and (3) the part in which the

stress in the steel was at or beyond the yield point. It was found that the

first two parts were nearly straight lines which, if projected, intersected

at a point which corresponds quite closely to the unit-deformation at which

a breaking down of the concrete in tension may be expected to occur. In

the study of the results of these beam tests empirical equations for these

two straight lines were determined. In the diagrams representing these

empirical equations the straight lines are connected by smooth curves, but

no attempt has been made to state an equation for the curved portion. The

part of the load-strain diagram for which the yield point of the steel has

been reached or passed has not been included in the study.

Fig. 27 gives typical load-strain diagrams* for certain of the gravel

concrete beams used in this study. In Fig. 29 there is a sketch of a load-

strain diagram with notation which will assist in making clear the manner

in which the analysis was carried out. The lines OA and BC represent the

straight lines which may be fitted to the two portions of the diagrams
below the yield point of the steel. The slopes of the line OA for all the

beams used were plotted, and from these points an equation for the slope

was derived. The plotted points and the equations of the lines which were

fitted to them are given in Fig. 28. Likewise the slopes of the lines BC for

all the beams used were plotted in Fig. 29 and the equation of the slope was

derived. The intercept OB of the lines BC for all the beams were plotted

in Fig. 30 and equations of the intercept were derived in like manner. The

height of the intercept OB might be used as a measure of the load at which

the breaking down of the concrete in tension occurred, but it is not entirely

satisfactory as a measure of this action of the beams, and Fig. 30, showing

these intercepts plotted as ordinates, is introduced only to indicate this

The tabulated data used in this figure are given in Tech. Paper No. 2, U. S.

Bureau of Standards, 1911.
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step in the derivation of the equations of the relation between the observed

and the computed stresses. The equation of the slopes of the lines OA, and

the fact that the lines pass through the origin give sufficient information

with which to determine the equation of the lines OA. The equation of the

slope of the lines BC, and the equations of the intercept OB of these lines

on the vertical axis, were stated in terms of observed and computed stresses,

and were solved simultaneously for the equations of the lines BC. The

graphical representation of the equations determined in this way for the

granite, gravel, and limestone concretes is given in Fig. 31. The equations
which apply to the beams of cinder concrete are somewhat different and

are shown in Fig. 32. In all the computations the value of / (the ratio of

the moment arm to the depth d) was taken as 0.86G.
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the rate of increase of tensile deformation was affected in an important

degree by the amount of reinforcement, while the effect of the quality of

the concrete on the rate of increase in deformation was entirely negligible.

In Fig. 28 the magnitudes of the ordinates to the respective points are,

in general, in the order of the values of the modulus of elasticity of the

concretes . represented. The ordinates representing the cinder concrete,

which had a modulus of elasticity about half as great as that of the other

concretes (see Table VIII), are uniformly about half of those for the other

5500OO\

OOZ 004 006 .006 OIO .0/Z .0/4 0/6

ffbtio of Reinforcement, p
0/8 020 022

FIG. 29. RELATION BETWEEN RATIO OF REINFORCEMENT AND SLOPE OF

LOAD-STRAIN DIAGRAM ABOVE LOAD AT WHICH CONCRETE CRACKED.

concretes. Even for the granite, gravel, and limestone concretes, whose

moduli of elasticity showed only slight differences, the magnitudes of the

average ordinates to the points take the same order as the values of the

modulus of elasticity. Although the compressive strengths occupy the same

order of magnitude as the moduli, it seems logical to attribute the effect

on the rate of deformation to the variation in the modulus of elasticity

rather than to the variation in the compressive strength. Whether the

important factor was the modulus of elasticity or the compressive strength,

the facts here pointed out justify the statement that the rate of tensile
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deformation was affected in an important degree by the quality of the

concrete.

Since the abscissas in Fig. 28 are ratios of reinforcement the slopes of

the curves fitted to the plotted points in this figure will be a measure of the

effect of the amount of reinforcement on the rate of increase of tensile

deformation. Both average lines (that for stone and gravel concretes and
that for cinder concrete) have slopes which are very small in proportion
to the slope of the line in Fig. 29, whicli represents the conditions for the

stage of the test after the formation of cracks. This comparison justifies
the statement that the effect of the amount of reinforcement on the rate

of deformation was almost negligible for the stage of the test in which the

concrete was not generally cracked.

The greatly increased slope of the average line in Fig. 29 over the

slopes shown in Fig. 28 forms the basis of the statement that for stages

%Z50
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16. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE STRESSES.

The significance and scope of the results of the study of the relation

between the observed and the computed stresses in the reinforcement may
best be visualized by reference to Fig. 31 and 32, which show graphically the

derived equations of the observed stress in terms of the computed stress

and the percentage of reinforcement. For the part of the test below which

the concrete is cracked these equations are,

0.52/s

1 +
.021

P

1.04f

for the stone and gravel concretes and

for the cinder concrete.

(1)

(2)

For max. load J
C

-400OO^ 40000(02^

10000 20000 3OOOO 40000 50000 6OOOO 7QOOO

Computed 5fresj, , /bper 54.in

FIG. 31. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE STRESSES
IN REINFORCEMENT OF BEAMS TESTED AT ST. Louis.

Diagrams from derived equations for beams of stone concrete and of gravel
concrete's.

For the part of the test above which the concrete is generally cracked the

equations are,

1.04p/_
- 144

p - .002

1.04p/_
- 144

3600 for stone and gravel concretes and,

for cinder concrete.

p - .002

(3)

(4)

In these equations, / is the observed stress, / is the computed stress, and

p is the ratio of longitudinal reinforcement based upon the depth from the
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compression surface of the beam to the center of gravity of the tension

reinforcement.

In Fig. 31 and 32 the lines representing the stresses in beams having
less than 0.5 per cent of reinforcement are dotted because these lines repre-
sent extrapolation below the lowest percentage of reinforcement used in any
of the beams tested. Since most of the slabs to whose study the results of

these beam tests may be applied have not more than 0.5 per cent of rein-

forcement it is important to consider whether the extrapolation is justifi-

able. The average lines fitted to the points in Fig. 28, 29 and 30 were

projected from 0.0049, the lowest ratio of reinforcement for any of the

beams tested, to the lower value of 0.002. This extrapolation covers a

small portion of the total range in the percentages of reinforcement repre-

4000C

for max. /Mdf-4tXm-400G0(8Z+7p)-y&/^-r--.
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FIG. 32. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE STRESSES

IN REINFORCEMENT OP BEAMS TESTED AT ST. Louis.

Diagrams prepared from derived equations for beams of cinder concrete.

sented by the beams which were tested, and the curves which were projected

are well denned by the experimental points. It seems, therefore, thstt there

is justification for this extrapolation. An inspection of Fig. 28, 29 and 30,

on which the curves of Fig. 31 and 32 are based, will assist in forming an

opinion as to whether the extension of the scope of the diagrams of Fig. 31

and 32 below 0.49 per cent of reinforcement is warranted by the test data.

Fig. 29, 31, and 32 indicate that for beams having only 0.2 per cent

of reinforcement when the concrete breaks down in tension the reinforce-

ment immediately would be stressed to failure. That is, when the concrete

breaks down in tension the slope of the load strain diagram becomes zero

for a beam with only 0.2 per cent of reinforcement. That this condition

ia approached as the amount of reinforcement becomes small is shown by
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inspection of Fig. 29. The same thing is shown directly in the flatness

of the slope of the load stress diagrams for beams 336, 337 and 338 of

Fig. 27, which have the smallest amount of reinforcement of any of the

beams studied. That there should appear to be no difference in the amount
of reinforcement required to bring about this condition for the beams of

cinder concrete from that which was required for the beams of stone

concrete, may be due to a break in the mean line of Fig. 29 between 0.5

and 0.2 per cent of reinforcement. Whether such a break occurs is not
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FIG. 33. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE STRESSES

IN REINFORCEMENT OF BEAMS TESTED AT ST. Louis.

Test results for beams of stone concrete and of gravel concrete compared with
results from derived equations.

known because no beams with less reinforcement than 0.49 per cent were

tested.

In order to make certain by a direct comparison, that equations ( 1 )
to

(4) represent the relation between the observed and the computed tensile

stresses, Fig. 33 and 34 have been prepared. Points showing the observed

and the computed unit deformations throughout the tests of representative
beams have been plotted, and for comparison with them the graphs of the

equations which represent the relation between the observed and the

computed stresses for the same beams are shown in the same figures.

Each point plotted in these figures represents the average load and the

average deformation for the three beams of its kind. Considering the
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range of concretes and the range in the amounts of reinforcement used in

the beams represented, the agreement between the test results and the

empirical equations seems good.
In Fig. 31 and 32 the slopes of the lines which represent the stages of

the test in which the concrete had not cracked were approximately inversely

proportional to the values of the modulus of elasticity of the concrete.

The slopes (1.04/8)
of all the lines for the cinder concrete beams were

just twice as great as the slopes (0.52/8) for the corresponding beams of

stone or gravel concrete. The values of n (the ratio of the modulus of

10000 20000 30000

5f/TS55, /, A

4000O 5QOOO

FIG. 34. RELATION BETWEEN OBSERVED AND COMPUTED TENSILE STRESSES

IN REINFORCEMENT OF BEAMS TESTED AT ST. Louis.

Test results for beams of cinder concrete compared with results from derived

equation.

elasticity of the steel to that of the concrete) were, on the average, 2.33

times as great for the cinder concrete as for the stone and the gravel

concretes. Assuming that the value of the slope may be taken as propor-

tional to the value of n an equation is found which gives values closelj

approximating the test results when the proper values of n are used in the

equation. The equation is

f\"7 m f

(5)



68 MOMENTS AND STRESSES IN SLABS.

For all the beams of stone or gravel concrete reported in Technologic

Paper No. 2 the average of the unit-deformations in the reinforcement at

the time that the first crack was observed is 0.000113 and this corresponds
to a stress of 3390 Ib. per sq. in. For all the cinder concrete beams reported
in that paper, the average unit-deformation at the occurrence of the first

crack was 0.000179. This deformation corresponds to a stress of 5370 Ib.

per sq. in. The intersections of the two straight portions of the diagrams
of Fig. 31 for the stone and gravel concretes, lie at an observed tensile

stress of about 3200 Ib. per sq. in. In Fig. 32 the intersections for the

cinder concrete lie at a tensile stress of 6260 Ib. per sq. in. These values

are seen to correspond quite closely to the stresses at which the first cracks

were discovered.

For the stage of the test above the cracking of the concrete the only
difference between the equation which represents the relation between the

observed and the computed stresses for the stone and gravel concrete

( equation ( 3 ) ) and the corresponding equation for the cinder concrete

beams (equation (4) ) is that in the former there is an additive term

( 3600 Ib. per sq. in.) which is lacking in the equation for the cinder

concrete beams. It may seem unexpected that such a term as this should be

present, but that the difference expressed by the term is present is made

entirely clear by attempting to fit the equation for. the cinder concrete to

the results for the stone and the gravel concretes.

The intensity of the bond stresses between cracks will be affected by
variations in the modulus of elasticity of the concrete, and it may be per-

missible to assume that the variation in the additive term in equation (3)

is proportional to the variation in the value of n (the ratio of the modulus

of elasticity of the steel to that of the concrete). With this as an assump-
tion a more general equation which, for the beams under consideration,

represents quite accurately the relation between the observed tensile stress

and the computed stress after the concrete had cracked is

17. OBSERVED TENSILE STRESS AT MAXIMUM LOAD. It is desirable to

determine the relation between the maximum loads which the beams car-

ried and the stress in the steel which corresponds to the observed deforma-

tion (here termed observed stress) at those loads. On account of the

possibility that the steel had been stressed beyond the proportional limit

before reaching the maximum load it is not feasible to determine the stress

at the maximum load directly from the measured deformation. In order to

determine the desired relation, the straight lines BC of Fig. 29 were pro-

duced to the maximum load, and the unit-deformation given by this line at

the maximum load was used to determine the stress at that load. In this

way the ratios, q, of the stress at maximum load to the yield point were

determined and are given in Fig. 35. The equation which expresses the

average relation between q and the ratio of reinforcement, p, is

q-0.82 + 7p. (7)
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The yield-point stress used in these computations was 40,000 Ib. per sq. in.

The observed tensile stress at the maximum load was generally slightly
less than the yield point. It is possible that the stress at a crack was

enough greater than the stress found from the deformations over the

entire gage length to bring the stress at the maximum load up to the yield

point. This possibility is further indicated by the fact, which is brought
out in equation (7), that the observed stress approached the yield point
more closely for the beams with a large percentage of reinforcement than
for the beams with a small percentage. The result expressed in equation
(7) should not be unexpected since the bond stresses between cracks would
have more influence in reducing the total deformations in beams in which
the amount of reinforcement is small than in those in which it is large.

.002 .004 .006 .006 .O/O .012 .014 .O/6 .0/8 -020 .022

FIG. 35. RELATION BETWEEN RATIO OF REINFORCEMENT AND RATIO OF

OBSERVED STRESS AT MAXIMUM LOAD TO YIELD-POINT STRESS.

Equation (7) has been introduced into the diagrams of Fig. 31 and 32

to show the observed and the computed stresses at which tension failure in

the reinforcement is likely to occur. In making this application of the

equation the yield point was assumed to be 40,000 Ib. per sq. in., approxi-

mately the average value found in the tests of the coupons taken from the

beams. No test data were available from which to show the relation

between the stress at maximum load and the yield-point stress for higher

or lower yield points. However, by assuming that for small differences in

yield point the loads carried would be proportional to the yield-point stress,

the dotted curves for yield points of 38,000 and 42,000 Ib. per sq. in. were

obtained. The error of these estimates becomes large for the beams with

small amounts of reinforcement, hence these additional curves were not

carried beyond the values for one-half per cent of reinforcement.

18. FACTOR OF SAFETY AGAINST TENSION FAILURE. The factor of safety

for a structure may be denned as the ratio found by dividing the working
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load for the structure into the load which will cause failure of the structure.

There may be differences of opinion as to how the load which is to be used

for determining the factor of safety should be applied. For these tests

there was only one possible load which could be considered, the load which

was built up by uniform increments until failure was brought about, the

whole test requiring not more than a few hours. For the purpose of elimi-

nating from the study of the factor of safety the effect of slight variations

in the yield point of the steel, the maximum loads given in Technologic

Paper No. 2 were corrected to give a load which presumably would have

caused failure if the yield point of the steel had been 40,000 Ib. per sq. in.

The maximum loads reported were increased or decreased by an amount

which was proportional to the difference between the yield-point stress and

40,000 Ib. per sq. in. To these corrected maximum loads were added the

weights of the beams, and the resulting loads were used in the computation
of the factor of safety. The working load was taken as the load which

gives a computed tensile stress of 16,000 Ib. per sq. in. In these computa-

TABLE IX. FACTORS OF SAFETY AGAINST TENSION FAILURE.

Kind of Concrete.
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The agreement between the plotted points and the smooth curves is as

good as will generally be found from methods which are as nearly inde-

pendent as were these. Both sets of results are based upon the same

reasoning, but they are reached by different methods of using the test data.

The indication of the smooth curves is that the factor of safety for the

cinder concrete was less than that of the other concretes, but the plotted
values do not bear out this conclusion. It cannot be said, however, that the

arrangement of the points is independent of the kind of concrete. If an

attempt were made to draw a curve which fits the values shown for each

kind of concrete the curve for the gravel and that for the limestone con-

crete would be the highest and the lowest respectively, while the curves

for the granite concrete and the cinder concrete would be intermediate and
would practically coincide. This is somewhat surprising since both the

s
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it clear that such a basis of estimating the factor of safety is wrong, and

yet occasionally a claim of such a factor of safety, arrived at in this

manner, is made.

19. SUMMARY, (a) It was found that the load-strain diagrams for the

beams could be represented quite closely by two straight lines which inter-

sect at a point which corresponds to the strain, in the tension side of the

beam, at which the concrete cracked in tension. Through a study of the

average slopes, and average intercepts of these lines, it was found to be

possible to state equations which give, with a considerable degree of

accuracy, the relation between the observed and the computed stresses in

the reinforcement of the beams.

(b) The relation between the observed and the computed stresses in

the reinforcement for the beams studied was found to be affected by the

variation in the quality of the concrete, the amount of reinforcement, and

the intensity of the computed stress.

(c) For stages of the test below the cracking of the concrete the

rate of increase of the tensile deformation was affected in an important

degree by the quality of the concrete, while the effect of the amount of

reinforcement on the rate of increase of tensile deformation was almost

negligible.

The rate of increase in the tensile deformation in the reinforcement

at this stage of the test was found to be approximately proportional to the

reciprocal of the modulus of elasticity of the concrete in compression as

determined by tests of control cylinders.

(d) For stages of the test above the cracking of the concrete the rate

of increase of the tensile deformation was affected in an important degree

by the amount of reinforcement, while the effect of the quality of the con-

crete on the rate of increase in deformation was entirely negligible.

The total amount of deformation, however, was found to be greater for

the beams of cinder concrete than for the beams having a greater com-

prcssive strength and modulus of elasticity. The difference in amount of

the deformation for the different concretes was constant for all percentages
of reinforcement and for all stages of the test between the cracking of the

concrete and the reaching of the maximum load, as far as the data of the

tests give a basis for judgment on this subject.

(e) The observed tensile stress in the reinforcement was less than the

computed stress for all loads up to and including the maximum load. The

difference was greater both proportionally and quantitatively for the beams

with small percentages of reinforcement than for beams with large per-

centages. This was true for all loads. Correspondingly for all percentages

of reinforcement the difference was greater for low loads than it was for

high loads.

(f) The indications were that with a reinforcement of not less than

0.2 per cent the strength of the reinforced beam would be the same as the

strength of an unreinforced beam. This holds for the cinder concrete

beams as well as for those made with concrete of a higher compressive
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strength and higher modulus of elasticity. Since no beams with less than
0.49 per cent of reinforcement were tested this observation must be taken

as an indication and not as a fact established for the beams studied.

(g) The observed stress in the reinforcement at the maximum load

was found to be less than the yield point for all the beams studied. It was

found, however, that the ratio of the stress at maximum load to the yield

point was greater for the beams with large percentages of reinforcement

than for the beams with small percentages.

(h) The average factor of safety (see Art. 18 for definition) was found

to be 10 per cent greater than the ratio of the yield point of the reinforce-

ment to the working stress in tension which was used in determining the

working load. When averages for all the concretes are considered a con-

sistent decrease in the factor of safety with increase in percentage of rein-

forcement was found. The factor of safety was 18 per cent greater for

beams with 0.49 per cent of reinforcement than for beams with 2.12 per
cent of reinforcement.

IV. TESTS OF SLABS SUPPORTED ON FOUR SIDES.

BY H. M. WESTERGAABD.

20. TESTS OF SLABS SUPPORTED ON FOUR SIDES. Information as to the

strength of slabs supported on four sides was obtained by a series of tests

made during the years 1911 to 1914 in Stuttgart in Germany under the

direction of Bach and Graf,* and by a test made in 1920 at Waynesburg,

Ohio, for J. J. Whitacre, under the direction of W. A. Slater.

In Bach's and Graf's test 52 slabs, simply supported along the edges,

and 35 control strips, supported as beams, were loaded to failure. The

strength of the slabs was to be compared with the strength of the strips. A
record of the progress of the test was obtained by measuring the deflections

at a number of points and the slopes at the centers of the edges, and by

observing the development of cracks. Fig. 37 and Fig. 38 show typical

examples of the record made of the cracks; the numbers indicate the loads

in metric tons at which the particular cracks appeared.

Two mixtures of concrete were used, with the following properties:

Type A B

Mixture ". 1:2:3 1:3:4

Per cent of water 9.2 9.7

Prism strength in compression after 44-48

days, Ib. per sq. in 2,290 1,835

Initial modulus of elasticity in compression,

Ib. per sq. in 4,050,000 3,400,000

The 1: 3: 4 mixture was used in three slabs, which were designed to fail

*
Reported by Bach and Graf in Deutschcr Ausschuss fur Eisenbeton, v. 30,

1915. See the Bibliography in Appendix C.
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in compression (slabs g in Table II) and in the corresponding six control

strips ( 26 and 27 in Table X ) . The 1:2:3 mixture was used in all the

other slabs and strips. At the time of the test the age of the specimens
was from 40 to 54 days. The yield point of the steel was from 49,600 Ib.

per sq. in. to 75,200 Ib. per sq. in. The slabs were two-way reinforced, with

the bars parallel either to the sides or to the diagonals.

FIG. 37. TOP OF SQUARE SLAB OF 200 CM. SPAX, TESTED BY BACH AND GRAF.

Table X and Fig. 39 show certain results of the tests of the control

strips. In order to imitate the conditions of the two-way reinforced slabs

most of the strips were built with transverse bars either above or below

the longitudinal reinforcement (as indicated in one of the columns in

Table X). The transverse bars were found to hasten the development of
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the first crack, but the table shows that these bars have only little influence

on the ultimate strength of the strips. The strips of typos 18 to 25 failed

by tension in the steel. The table gives the modulus of rupture of the

steel, that is, the steel stress computed by the ordinary theory of reinforced-

concrete with n = 15, for the observed maximum load (with the dead

FIG. 38. BOTTOM OF SQUARE SLAB OF 200 CM. SPAN, TESTED BY BACH AND

GRAF.

weight taken into consideration). In the strips that failed in tension the

ratio of the modulus of rupture of the steel to the yield point of the steel

was found to be approximately / If - 1.26 (1 lOp), where p is the

ratio of steel. The strips of types 26 and 27 failed in compression at an

average modulus of rupture of the concrete of 3490 Ib. per sq. in. (computed
with n 15), that is, 1.90 times the prism strength.
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Table XI* and Fig. 40 show some of the results obtained from the tests

of 40 slabs out of the 52 which were tested. The surface of each of the

square slabs, a to g of the rectangular slabs h, and of the rectangular slabs

i, was divided into 50 cm. squares; that is, into 16, 24, and 32 squares, respect-

ively; equal loads were applied at the centers of these square's, each load
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* Table XI is modeled after similar tables used by E. Suenson (Ingenioeren,
1916, p. 541) and by N. T. Nielsen Hngenioeren, 1920. p. 724), in the studies of the
same experimental material. Table XI was computed from the original data reported
by Bach and Graf; the results computed here agree approximately with those found
by Suenson and by Nielsen. Suenson compared the experimental coefficients of
moment in rectangular slabs with those found by an approximate theory. Nielsen
computed the stresses by using coefficients which he derived by the method of difference

equations.
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distributed within a circle 9 cm. in diameter. Thus, the loads on each of
these slabs were nearly uniformly distributed. Of the remaining twelve
slabs, not included in Table XI, two were loaded by a concentrated load at
the center, seven by eight concentrated loads near the center, while three
slabs were double panels, continuous over a transverse beam, and carrying
nearly uniformly distributed loads.

If a square slab, simply supported on four sides, is loaded uniformly
by the total load W, the average moment across the diagonal becomes

1/24 W = 0.041 7W. If the total load W is divided into 16 concentrated

equal loads applied at the centers of 16 squares into which the slab is

divided, the average moment across the diagonal becomes 3/64 W =
0.0469 W. When these 16 loads, instead of being concentrated, are distrib-

/-;
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\I.ZO

l./S

rin



78 MOMENTS AND STRESSES IN SLABS.

addition, the coefficients 0.0369 and 0.0463, applying to the center and to

the corner, respectively, see Fig. 3 (a) in Art. 7, were used for the square
slabs with non-uniform spacing of the steel (slabs d^ and d2 ) ; finally,

0.0733 and 0.0964, coefficients of moment per unit-width, in the short span
at the center, taken from Fig. 3 (a) in Art. 7, were used for the rectangular
slabs h and i. Since the bending moments computed for the square slabs

are moments across the diagonal, the section modulus pjd? per unit-width

may be taken as the average for the two layers of steel if the steel is par-
allel to the sides; in the slabs, / /a, and g, with reinforcement parallel to

160

>55
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>45
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reinforced-concrete with n = 15, developed under the observed maximum
load; that is, t is tlie modulus of rupture in bending.

The stresses f developed in the slab may be judged by comparison
with the yield point /

of the steel and the modulus of rupture f (level-

oped in the strips. Such comparisons are made in the last three columns in

Table XI. The ratios fjf are represented graphically in Fig. 40.

The slabs e were designed to fail in compression. The stresses devel-

oped were: tension, 39,600 Ib. per sq. in.; compression, 3430 Ib. per sq. in..
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which is 0.983 times the corresponding stress developed in the strips, and
1.87 times the prism strength of the concrete in compression.

Certain conclusions may be drawn from Table XI and from Fig. 40:

(a) The slabs show, on the whole, the same decrease of modulus of

rupture with an increasing ratio of steel as did the strips which were
tested as beams.

(b) The thinner slabs develop, on the whole, greater moduli of rupture
than the thicker slabs with the same span and reinforcement. This result

may be explained by the dish action which occurs when the deflections have

become appreciable compared with the thickness of the slab. The slabs

a, and a,, for example, which were 12 cm and 8 cm thick, respectively,
deflected about 6 cm at the center at the maximum load. By the double

curvature of a slab the vertical sections resisting the bending moments
assume an arc-shape instead of the original rectangular shape, and thus the

section modulus is increased. At a given deflection, this effect is compara-

tively greater in a thin slab than in a thick slab. The dish action of the

thin slab may be interpreted as a reversed dome action, in which the central

area is essentially in tension, while the outer area is essentially in com-

pression. The additional tensions and compressions explain the added

carrying capacity, beyond what may be expected on the basis of the coeffi-

cients of moment which were derived for the medium-thick stiff homo-

geneous elastic plates.

(c) The design with closer spacing of the bars in the upper than in

the lower layer of steel, so as to make the section moduli equal for the two

layers, does not appear to be advantageous.

(d) Reinforcement parallel to the diagonals appears to be less effective

than reinforcement parallel to the sides. If the corners had been prevented
from bending up by anchoring, the corners were observed to deflect

slightly upward, and if the steel along the diagonal had been bent up so

as to reinforce against negative moments at the corner, greater strength

might possibly have been developed with the same amount of steel.

(e) The slab has an ability to redistribute the stresses as the deflec-

tions increase, as the steel stresses approach or reach the yield point, and

as cracks develop. By the redistribution the large stresses become smaller

and the small stresses larger than would be predicted according to the dis-

tribution in the homogeneous elastic slabs for which the theory in Part II

was derived. The phenomenon of redistribution is well known from other

fields. For example, in a flat steel tension bar with a circular hole there

is, at small stresses, a relative concentration of stress at the edge of the

hole, but when the yield point has been reached the stresses may be prac-

tically uniformly distributed. Redistribution of stresses is a typical gen-

eral feature in statically indeterminate structures of ductile materials.

Thus, the property of the slab as a highly statically indeterminate structure

becomes important; it explains additional strength beyond what might
otherwise be expected. In the homogeneous elastic square slab with simple

supports on four sides and with Poisson's ratio equal to zero the coeffi-

cients of moment per unit-width across the diagonal are, according to Art.
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7: at the corner, 0.0463; at the center, 0.0369; average for the whole

diagonal, 0.0417. The stresses across the diagonal may be redistributed so

as to become nearly uniform; accordingly the average coefficient, 0.0417,

was applied to all the square slabs in Table XI. The maximum coefficient

0.0463 would have made the corresponding stresses and ratios of stresses

in Table XI and in Fig. 40, 1.11 times greater than the values shown. The
coefficients 0.0463 would have led to a less close agreement between the

slab strength and the strip strength than is found in Table XI and in Fig. 40.

The redistribution of stresses across the diagonal may explain the rather

large stresses computed for the corners of the slabs d^ and dt . These

stresses were computed by using the largest coefficient of moment in con-

nection with the smallest percentage of steel. Evidently the stresses have

transferred toward the center, where the spacing of the steel is closer, and

as a result of this redistribution the steel at the center appears to be more

effective, per pound weight, in resisting the utlimate loads, than the steel

near the edges. In the rectangular slabs the rather large moduli of rupture,

84,900 and 95,500 Ib. per sq. in., computed by the coefficients of moment for

the short span at the center, may be explained partly by a redistribution

of the stresses across the long center line, whereby the actual stresses at the

center are reduced, and partly by a transfer of stresses from the short span
into the long span. N. J. Nielsen,* by using moment coefficients found by
the method of difference equations, with Poisson's ratio equal to zero, deter-

mined ratios of slab strength to strip strength for the square slabs loaded

nearly uniformly, for the square slabs loaded by eight forces near the

center, for the square slabs loaded by one force at the center, and for the

rectangular plates. He found the ratio of slab strength to strip strength to

be fairly uniform for all the slabs, including the rectangular slabs, by

assuming different values of the moment of inertia for the two spans,

namely, such values that the maximum computed stresses become equal in

the two spans, with the steel in the two directions utilized fully.

A comparative study of computed and observed deflections of one of

the double panels ( two square panels, continuous over a transverse beam ) ,

under a load equal to about one-fourth of the ultimate load, was made by
X. J. Nielsen,f who used the method of difference equations. By considering

the plate as made of homogeneous material with a modulus of elasticity of

4,110,000 Ib. per sq. in., and by taking the deflections of the transverse

beam as observed, he found the computed and the observed deflections at

the centers of the panels to be equal, and he found the deflection curves

and contour lines shown in Fig. 41. Near the transverse beam the observed

deflections are seen to be smaller than the computed deflections. Thi-s

difference may be due to the rather heavy reinforcement across the trans-

verse beam.

The test made in 1920 at Waynesburg, Ohio, for Mr. J. J. Whitacre,

throws further light on the question of the redistribution of stresses, as

compared with the stresses in homogeneous elastic slabs, and on the ques-

*
Ingenioeren, 1920, p. 724.

tN. J. Nielsen, Spaemlinger i Plader, 1920, p. 74.
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tion of the ultimate strength of the slabs.* The test was made with a two-

way reinforoed-concrete and hollow tile Hour slab, in. thick, with 18

panels. Fig. 42 shows the plan of the floor. The tiles are G in. by 12 in.

by 12 in., open at the ends so as to allow the concrete to How in, filling up

a part of the tile. The tiles are separated by 4-in. concrete ribs in both

directions. Each rib is reinforced by a ^-in. round bar at the bottom, and,

in addition, in the part of the rib near the panel edges, by a ^-in. round

bar at the top. The yield point of the steel was 54,000 Ib. per sq. in.

Large negative moments were produced at the edges by loading all the

panels and the cantilevers adjacent to B, C, and E, at the same time.

Results of this part of the test are shown in Table XII. The applied load

on each panel was a nearly uniformly distributed load, consisting of four

piles of bricks with 18-in. aisles. Equivalent entirely uniformly distributed

applied loads were derived by multiplying the average applied loads

(within the areas defined by the clear spans) by the factors 0.91, 0.92, and

0.93 for the square, medium long, and longest panels, respectively; these

FIG. 41. COMPARATIVE STUDY BY N. J. NIELSEN OF OBSERVED DEFLECTIONS

(SHOWN BY DOTTED LINES) AND COMPUTED DEFLECTIONS (SHOWN BY

FULL LINES) IN A DOUBLE PANEL TESTED BY BACH AND GRAF.

factors were determined by an approximate theory. The equivalent loads

stated at the head of Table XII are found by adding the dead load, 50 Ib.

per sq. ft., to the equivalent uniform applied load. The observed stress, /,

at the center of the edges, was considered to be made up of an estimated

dead-load stress of 500 Ib. per sq. in., plus the increase of stress due to the

live load; this increase was found as the maximum ordinate of a smooth

curve plotted from strain-gage readings on several gage lines across the

* A detailed report on this test has not yet been published. Only certain aspects
which have a general bearing on the question of the moments and stresses in slabs are

discussed here.
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particular edge. In Table XII the ratio of the corrected steel stress /
corresponding to the computed stress in a beam, to be observed stress, /,

has been determined by means of formulas (1) and (3) in Part III, as

though the material were solid stone or gravel concrete instead of concrete

and hollow tiles. Since the reinforcing bars are 16 in. apart, the ratio of

reinforcement at the center of the edge is, p = 0.00260. Formula ( 1 ) ,

which applies at small stresses, before the concrete has cracked, gives

then,

/.
0.52 J_

7"
"

i + 021 17 -5

p

and formula (2), which applies after the cracking has begun, gives the

relation

54000
0.222,

by which the values were computed in Table XII. The computation of the

-^ i 1 i 1

f
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TABLE XII. COEFFICIENTS OF NEGATIVE MOMENTS IN WAYNESBVRG TEST.

Test of reinforced concrete and hollo** fi/e floor slat; IB panels supported
on girdtrs as shown in fri'ff.'-42<5trfsses and moments at-centej-s of
edges. All panels /oadfct. fauiya/ent trni/orm loads (incl dead load)in /b.per sq.ft.
a*Vi _- _ _ f_ r-t ** > * j _ 3 rf? l_f Ay ^/\ O *. /" n J T S\ T\ n^>t r* fr'u . _'*



MOMENTS AND STRESSES IN SLABS. 85

The theoretical values of the coefficients were taken from the approxi-
mate curves in Fig. 8(b) in Art. 7. These values are somewhat smaller

than the corresponding directly determined coefficients in Fig. 8 (a), but

they may be assumed to apply after the stresses across the edges have been

redistributed to some extent. That a further shifting of the stresses from
the short span to the long span takes place at increasing deformations, is

indicated by the fact that the oblong panels in Table XII have corrected

coefficients, based on observations, which are greater than the theoretical

values for the long span, and are smaller than the theoretical values for the

short span; but the sum of the corrected coefficients for the long span and
the short span is approximately equal to the sum of the corresponding
theoretical coefficients. It is probable that at increasing loads there is

also a transfer of stress from the edges to the central portion of each panel;
and that this transfer may partly explain the rather small values found

for some of the coefficients in Table XII.

In a later part of the test large loads were applied in panels H, J, and

K, while the loads on the surrounding panels were reduced. In the square
interior panel H, for example, the average applied load was increased to

1413 Ib. per sq. ft., giving, by the computation used in Table XII, an

equivalent uniform load of 50 + 0.91-1413 = 1336 Ib. per sq. ft. This

value is probably somewhat too large because of the unavoidable arch action

in the piles of brick; the four piles were joined together 12 ft. above the

slab and were continued as one pile up to the total height of almost 22 ft.

When the deflections increase the resultant pressure transmitted through
each of the four piles is thrown toward the corners of the panel, and the

equivalent uniform load becomes correspondingly smaller. Since the

amount of the reduction is not known, the value just stated, 1336 Ib. per

sq. in., will be used without reduction in the computation of stresses. Since

the adjacent panels were unloaded, the panel H may be considered in this

computation as a single square panel with the edges half fixed and half

simply supported. Accordingly, the average of the numerical values of the

moment coefficients at the center and at the edge in slabs with simply sup-

ported and with fixed edges is used, that is (see Fig. 3 (a), Fig. 7 (a), and

Fig. 8 (a)).

i (0.0369 + +0.0177 + 0.0487) = 0.0258.
4

By assuming this moment coefficient, and by assuming the same effective

depth and ratio of steel as in the calculation of Table XII, one finds the

"computed stress" in panel H under the maximum load equal to

, 0.0258 wV 0.0258 1336 15 2

> =
-jjdr-

=
0.00260- 0.92 -4.7P

= 14600 lb ' per Sq ' m '

This stress is 2.71 times the yield point stress of the steel, jy
= 54,000 lb.

per sq. in., and 2.21 times the strip strength, f bs
=66,200 lb. per sq. in.,

as determined from Bach's and Graf's tests by the line in Fig. 39. In

estimating the significance of this result it should be noted that some arch

action in the piles of brick probably made the applied load not fully effect-

ive; that the material is different from ordinary reinforced-concrete; that
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the moment coefficients may have been reduced by redistribution of the

stresses across the center line, across the diagonal and across the edge;
that this redistribution may have been aided by the deflections of the sup-

porting girders; and that the deflection at the center was so large, 1.4 in.,

that the dish action or reversed dome action which is characteristic of thin

slabs, may have aided in carrying the load. It is not known what load

would have" produced failure.

The average loads, determined by dividing the total applied load by
the panel area, applied in panels J and K at the same time and under

similar conditions without producing failure, were 1184 Ib. per sq. ft. and

920 Ib. per sq. ft., respectively.

V. TESTS OF FLAT SLABS.

BY W. A. SLATER.

21. GENERAL DESCRIPTION. In the following pages are given the

results of tests of certain flat slabs. It has been necessary to make the

discussion of the results very brief and only sufficient statement on each

subject has been made to enable the reader to interpret the data given in

the diagrams and tables.

The study of the tests is based almost entirely upon tensile stresses

since it is impossible to know with sufficient accuracy for this purpose what

compressive stresses arg indicated by the compressive deformations and

because the amount of reinforcement in flat slabs is generally so small that

the tensile stresses will almost always be critical rather than the com-

pressive stresses.

The results for most of the tests have been published previously. Those

for the two Purdue tests, the Sanitary Can Building test, and the Shonk

Building test have not been published, and those of the International Hall

test* were published only in part. Because of the fact that the results of

the Purdue test had not been published, the reinforcing plans, the location

of gage lines, the measured deformations and the deflections are given in

Appendix B. Further data are given in Table XIII.

It had been expected to give the results for the Sanitary Can Building
test and the Shonk Building test as fully as for the Purdue tests, but this

has not been possible. The following statement, together with the data

given in Table XIII, will be sufficient to give significance to the moment
coefficients given in Fig. 45 for these tests. It is expected that in a later

publication of the Bureau of Standards the full data of these tests will be

included.

The tests of the Sanitary Can Building and the Shonk Building were

made by A. R. Lord, of the Lord Engineering Company, Chicago, 111. Prof.

W. K. Hatt, of Purdue University, Lafayette, Ind., was in touch with these

tests at the request of the Corrugated Bar Company. The report by Mr.

Trans. A. S. C. E., Vol. LXXVII, p. 1433 (1914).
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Lord and that by Professor Hatt have been drawn upon for the data used

in preparing this paper.
Both buildings are located at Maywood, 111., a suburb of Chicago.

The floors of both are fiat slabs, having column capitals 5 ft. in diameter

and dropped panels 8 ft. square. In each building four panels were loaded

and in each case two of the loaded panels were wall panels and the other

two were the adjacent interior panels. The panel length in the direction

parallel to the wall and also perpendicular to the wall for the two interior

panels is 22 ft. for both buildings. For the wall panel, the panel length

perpendicular to the wall is 21 ft. 3 in. for the Sanitary Can Building and

20 ft. 7 in. for the Shonk Building. The Sanitary Can Building has 24-in.

octagonal interior columns and wall columns 20 by 45 in. rectangular in

cross section. The Shonk Building has 22-in. octagonal interior columns

and wall columns 21% in. rectangular in cross section. The Sanitary Can

Building has two-way reinforcement and the Shonk Building has four-way
reinforcement. There was some difference in distribution of reinforcement,

but in the two slabs the total area provided for negative moment was

about the same, and the total area for positive moment was about the same.

The area of reinforcement at the principal design sections and the meas-

ured depth d to the reinforcement are shown in Table XIII.

Each floor was designed for a live-load of 150 Ib. per sq. ft. The

maximum superimposed test load was about 400 Ib. per sq. ft. The dead

load brought the total test load up to about 535 Ib. per sq. ft. in each test.

The highest observed stresses in the reinforcement were about 24,000 Ib.

per sq. in. in both floors, and this high stress occurred in only a few places.

The misplacement of the reinforcement in the Bell St. Warehouse*

probably had an influence on the distribution of resisting moments between

positive and negative, which would not be expected in slabs of that type.

At least, this feature should be considered in studying the results of

the test.

The original data of the* test of the Western Newspaper Union Building

were not available, therefore, in determining the moment coefficients for this

test, it was assumed that the moment of the observed tensile stresses at any

load less than the maximum bore the same ratio to the resisting moment

reported for the test load of 913 per sq. ft.f that the sum of the observed

stress and the estimated dead load stress for the load under consideration

bore to the .sum of the observed stress for the maximum test load and the

estimated dead load stress.

22. CORRECTION OF MOMENT COEFFICIENTS. In reporting results of

flat slab tests it has been customary to state the moment of the observed

stresses in the reinforcement as a proportion of the product of the total

panel load and the span. It has been known from beam tests that the

Pacific N. W. Soc. Civ. Eng., Vol. IS (Jan. and Feb., 1916); Eng. Record, Vol.

73, p. 647; Eng. News-Record, April 19, 1917.

t Bulletin 106, Univ. of 111. Eng. Exper. Sta., p. 36. Also Proc. A. C. I.. Vol.

XIV, p. 192 (1918).



88 MOMENTS AND STRESSES IN SLABS.

total moment of the observed stresses is less than the applied moment.

The ratio of the applied moment to the moment of the observed stress is

equal to the ratio of the computed stress to the observed stress. This may
be shown as follows:

M = KW I = Afsjd
A/, - KiW I

from which 3f K /s

and

where

7v =

K and Ki are coefficients

KW I = applied moment
KI W I = moment of observed stress

fs = computed stress

/i = observed stress

Other terms have their usual significance.
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FIG. 43. MOMENT COEFFICIENT FOR SLAB J; (a) UNCORRECTED; (6)

CORRECTED.

These equations show that for a beam the true moment coefficient K^

may be determined by multiplying the moment coefficient of the observed

stress by the ratio of the computed stress to the observed stress. This ratio

is here termed the moment correction. Although it is recognized that the

behavior of a slab differs from that of a beam it seems reasonable to assume

that the relation between applied moments and the moment of the observed

tensile stresses in the reinforcement should be the same for a slab as for a

beam if the percentage of. reinforcement, the modulus of elasticity of the

concrete, the depth d and the depth of covering of the reinforcement are the

same for the slab as for the beam.
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The beams tested by the U. S. Geological Survey, and reported in

Part III, afford a basis for determining the moment correction for a wide

range in the percentage of reinforcement and the modulus of elasticity of

the concrete, and to this extent the moment corrections found for these

beams will be useful for estimating from the observed stress in the slabs

the moment applied to the slabs. The fact that in this investigation only
one depth, d, and only a slight variation in the covering of the tension

reinforcement were used, limits the usefulness of this investigation as

applied to interpreting test results of flat slabs, but no other series of

tests is known which covers so wide a range of conditions, and, notwith-

standing these limitations, it seems reasonable to expect that, on the whole,

the application of the moment corrections from Fig. 31 and Fig. 32 to the

16
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moment coefficient, determined by means of the observed stress in the flat

slab, should give a fair idea of the true moment coefficients for these slabs.

23. MOMENT COEFFICIENTS. The moment coefficients have been stated

M
as values of the expression in which M is the sum of the

m -
a- r

positive and negative moments in the direction of either side of the panel,

W is the total panel load, c is the- diameter of the column capital and I is

the span in the direction in which moments are considered. This is a con-

venient form of expression and it has been found possible to state the

moments found by the analysis in terms of it witli a satisfactory degree of

See Art. 8.
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The vise of the same form of expression in stating the test results

simplifies the comparison with the analytical result. In determining the

value of M from the tests for use in calculating these moment coefficients

the equation M Afjd was evaluated. Wherever it was possible the

moments were determined separately for the sections of positive and of

negative moment shown in Fig. 12, using the values A, f, and d, shown by

observation for these sections. In some cases it was necessary to use an

average value of fj for both sections of positive moment and another average
value for both sections of negative moment. In some cases measured values
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are shown the panel lengths in the two directions were so nearly the same
that it did not seem desirable to show separately the coefficients for the

two directions. The deficiencies in the test data available, and the unknown
factors which affect the behavior of the slab, would introduce errors which
are larger than the difference between the moments in the two directions.

In order to determine experimentally the difference in moments in the two

directions, when the spans are so nearly equal, a large number of tests

would be required, and the deficiencies in the test data would have to be

/- TotalMoment(nu-

pos.andnea.)
<?- TotalNegative

Moment.
3- Neq.Moment;Col.
HeadSection.

4- Tofa/Positive

Moment

5-Fbs. Moment;
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-MOMENT COEFFICIENTS FOR BELL STREET WAREHOUSE;
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supplied. One test, that of the Larkin Building, was available, in which

the differences in the size of the panels was considerable; but in this test,

except in the lower loads, the number of panels loaded was not sufficient to

give corresponding conditions in the two directions, and the coefficients for

that slab are not presented.

The computed average tensile stress, shown as abscissas in Fig. 43 to

48, were determined from the equation

\

Ajd

in which

W is the total panel load, live and dead, and 2 Ajd is thp sum of the
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values of Ajd for the sections shown in Fig. 12. The values of Ajd for

these sections are given in Table XIII.

It was shown in Art. 16 that the relation between the observed stress

and the computed stress in the reinforcement is affected by variations in the

value of n (that is, of the modulus of elasticity of the concrete, since that

of the steel is practically constant). Equations (5) and (6), Art. 16, show
this effect below and above the load at which the concrete cracked. Corre-

spondingly the value of the corrected moment coefficient will be affected by
these variations in n.

Fig. 49 has been prepared to show the effect of a variation in the value

of n on the coefficients. Small circles indicate the coefficients for the value

of n, which was used in obtaining the corrected moment coefficients shown
in Fig. 43 to 48. This is the average value of n for the stone and the

JJ|M-/2"

^
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It will be seen in Figs. 43 to 48 that the uncorrected moment coefficients

are all less than the theoretical value, %. For the lower computed stresses

the corrected coefficients are generally in excess of ys , but for the highest

computed stress, that is, for the highest load applied, the average coefficient,

0.111, is less than the theoretical coefficient.

The fact that for the lower computed stresses the corrected moment
coefficients generally were higher than the theoretical value, indicates that

too large a correction factor was used. No means of knowing how much
the factor used was in error is evident, but the fact that as the computed
stress increases the uncorrected and the corrected moment coefficients

approach each other in value seems to reduce the uncertainties as to the

correct values of the moment coefficients to a narrower margin than that

which has limited the usefulness of practically all the field tests that have
ever been made on reinforced-concrete slabs. On the average, the agreement

Z 4 68 IO IZ 14

Values of n
FIG. 49. EFFECT OF VARIATION IN MODULUS OF ELASTICITY ON VALUE OF

MOMENT COEFFICIENTS AT Low LOADS.

of the corrected coefficients for the higher computed stresses with the result

found by analysis in Part II is sufficiently close to warrant the belief that,

if all the sources of error in the measurement of deformations and in the

interpretation of test results could be removed, the analysis and the tests

would be in substantial agreement. It is pointed out in Art. 20, in discuss-

ing the results of the test of a slab in which there were beams on the

boundary lines of the panels, that although, for the lower loads, the test

results were in fair agreement with the analysis of that type of slab, there

was, for the higher loads, an accommodation of the slab to the conditions

imposed upon it, which made the slab capable of carrying a much greater

ultimate load than is accounted for by equating the applied bending moment
and the apparent resisting moment. On account of the lack of tests of flat

slabs carried to the point of failure, and in which the design was such as

to preclude failure from some other cause than bending, it cannot be stated

that, to the same extent, a similar source of additional strength is present

in flat slabs as was present in the Waynesburg slab, which was supported on
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four sides. There are some indications, however, that there was greater

strength in the flat slabs than appears from the conclusion that the test

results and the analysis of moments are in fair agreement. Some indica-

tion of this greater strength is seen in the description of the Purdue tests,

Appendix B.

24. FACTOB OF SAFETY. Table XIII gives summarized data of all the

tests studied. The purpose of this table is to give the best estimate of what

the factor of safety against failure of the structure would have been if

sufficient load had been applied in each case to produce failure. For all

the tests reported, except the Purdue tests, the factor of safety is an esti-

mated quantity which gives the ratio of the estimated maximum load which

the slab would carry to the design load (sum of dead and live load), com-

puted as indicated in the table. Although the factor of safety is shown for

three moment coefficients, the design load is shown for only one coefficient.

The design load will be inversely proportional to the coefficient used in the

design. For the Purdue test slabs the factors of safety given are the ratios

of the load actually applied to the slab to the design load shown in the

table. The "average observed stress, /" of the table, therefore, has no sig-

nificance for those slabs, but they are given because of their value as mat-

ters of general information concerning the tests. The stresses for the

maximum load of 872 Ib. per sq. ft., on slab J, were not reported, and the

average observed stress given for that slab is, therefore, that for the load

of 664 Ib. per sq. ft. (live and dead), the highest load for which the meas-

ured stresses were reported. For all other tests the average observed

stress given in the table is that for the "maximum test load" given in the

table. The average observed stresses, as reported, were roughly weighted

to take account of the distribution of the gage lines over the sections of

maximum stress due to negative moment and positive moment. For the

Purdue tests this weighting was not necessary, since the stresses were meas-

ured in all the bars crossing these sections.

The "estimated dead load stress" of Table XIII is given by equation

(1) or equation (3) of Part III, in which
ys

is the value of

,
I

Js 2 Ajd

In this equation W is taken as the total dead load of the panel. Since the

value of / was generally below the points in the curves of Fig. 31, which

represent the cracking of the concrete, equation ( 1
) was generally used in

estimating the dead load stress rather than equation ( 2 ) .

In estimating the maximum load for slabs it was assumed that the

yield point of the steel was 40,000 Ib. per sq. in., and that failure would

have occurred at a computed average stress, which is the same as the com-

puted stress given in Fig. 31 at the intersections of the straight lines, of

equation ( 3 ) , part III, with the locus representing the equation / = 40,000

(0.82-|-7p) given in Fig. 31. The assumption of 40,000 Ib. per sq. in. as
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the yield point was made in order to bring all the tests to a common basis

for the purpose of comparison and in order to obtain a factor of safety not

higher than might be expected if reinforcement having that yield point
were used. Obviously reinforcement having a yield point of 55,000 Ib. per

sq. in. should be expected to give a higher factor of safety than that having
a yield point of 40,000 Ib. per sq. in., when the working stress in tension

is 16,000 Ib. per sq. in. in both cases.

The considerations in the two preceding paragraphs indicate that the

true factor of safety was probably higher than the values given in Table

XIII. On the other hand it must be recognized that the design load found

with the use of the measured depth d would be smaller and the factor of

safety somewhat larger if the depth d assumed in the design of the slabs

were used for the computations of factor of safety. This is due to the fact

that, on account of misplacement of the reinforcement, the measured depth
to the reinforcement is usually somewhat less than the depth used in design.

The average factor of safety for the structures reported in Table XIII,

estimated on the basis of a moment coefficient of 0.1067 Wl 1 1 - - -l 2*

\ 3 l)

is 3.23 and that for the moment coefficient of 0.09 Wl (\ _ ? 2\ 2* is 2.72.

\ 3 l)

It is to be noted that for the tests which were carried to destruction of the

slab, or nearly so (the two Purdue tests and Western Newspaper Union

Building test) the values were above these average values.

It has been established by tests that the maximum load on a simple
beam occurs at a tensile stress only slightly greater, say 10 per cent, for

steel of structural grade, than the yield point of the steel in tension and not

at the ultimate strength of the steel. This is true not only for reinforced

concrete beamsf but also for steel beams.$

Kecognizing this fact, and at the same time using a working stress of

16,000 Ib. per sq. in: in steel of structural grade, whose yield point is 33,000

Ib. per sq. in., is, in fact, recognizing the sufficiency of a factor of safety

of about 2.25. Based upon the use of a moment of 0.09 Wl M _ ^ .\ 2 for
\ O i /

design, the slabs reported in Table XIII would, on the average, develop this

factor of safety of 2.25 even though they were to have failed at loads

approximately 15 per cent greater than the loads which were applied. To

one familiar with the behavior of the structures listed in Table XIII, or

with similar structures during and after the tests, it is obvious that they
would have carried at least that much additional load.

* These are the total moments recommended by, respectively, the Joint Committee
on Concrete and Reinforced Concrete and the American Concrete Institute Committee
on Reinforced Concrete and Building Laws.

t Art. 18 and Fig. 36; also A. N. Talbot Bull. 1. Univ. of 111. Eng. Exp. Sta.

(1904), p. 27; Turncaure and Maurer "Principles of Reinforced Concrete Construc-
tion," 2nd ed. (1909), p. 142.

t H. F. Moore Bull. 68, Univ. of 111. Eng. Exp. Sta. (1913), p. 14.

$ Standard Specifications for billet steel concrete reinforcement bars A 15-14. A. S
T. M. Standards. 1913. D. 148.
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It seems certain, therefore, that for the flat slabs under discussion

the factor of safety against failure in bending, based on a total moment ol

0.09 Wl(l - -
y)

2
,
is at least as great as that which can be counted upon

in the most elementary flexural unit, the simple beam built of, or reinforced

with, steel of structural grade and designed with the usual working

stresses. Based upon a total moment of 0.125 Will _
)

* the factor of

\ u 1 1

safety is correspondingly greater.

An effort was made to obtain, from failures of flat slabs in service,

information as to what were the serious weaknesses in the design. A study
of a letter from Edward Godfrey* citing 29 failures of reinforced-concrete

buildings brings out the fact that all of the building floors there discussed,

including flat slabs among others, failed during construction or as a result

of a severe fire. While some of the failures during construction may have

been partly due to deficiencies in the design the lack of proper safeguards
in construction were so evident and so important that with the meager
data available any effort to analyze the failures would be long drawn out

and largely speculative. The fact that the majority of the failures referred

to occurred during winter weather or in structures which had no oppor-

tunity to cure properly in warm weather is in itself sufficient indication

that poor construction conditions contributed largely to the failure. To

attempt to guard against abusive lack of safeguards in construction by
severe requirements for design would be ineffective and prohibitively

extravagant and would itself encourage the omission of these safeguards.

There probably are cases in which deficiencies of design have caused

trouble in flat slab structures, but cases of this kind, with data of the

design and loading sufficient to be of value in the study of the factor of

safety, have not been found in the preparation of this paper.

25. SHEARING STRESSES. In Table XIII the maximum shearing stresses

on a vertical section at a distance d, from the edge of the column capital

for the tests summarized in that table are given. Those shearing stresses

were computed on the basis of a depth jd. The highest shearing stress

developed was in the case of the Western Newspaper Union Building. The

reportf does not indicate that the test developed any weakness in shear.

In order to develop a factor of safety as high in shear as the estimated

factor of safety in bending based upon the total moment, 0.1067 Will
~

j

J
,
the shearing stress in the section under question could have been at

O i j
least 87 Ib. per sq. in. at the design load. Using the factor of safety in

bending for the total moment of 0.09 Win _ ~
.

)

the shearing stress for

the design load could have been at least 102 Ib. per sq. in. There were

some indications that the failure of slab J may have been due to shear.

* Edward Godfrey, "An open letter to W. A. Slater," Concrete, February, 1921.

t Univ. of 111. Eng. Exp. Sta. Bulletin 106.
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The allowable shearing stresses at the design load which would give the

same factors of safety as those shown for the moments would have been

49 Ib. per sq. in. and 58 Ib. per sq. in. respectively.

The shearing stresses are not given for the Jersey City Dairy building

nor for the International Hall. This is because the loads reported in this

table were not such as to give uniform shear around the perimeter of the

column capital, and it is not known what the maximum shear was.

VI. SUMMARY.

The theoretical analysis deals with slabs of homogeneous perfectly

elastic material and of uniform thickness. Two types are considered in

particular: slabs supported on four sides and flat slabs supported on

columns with round capitals. Moment coefficients derived by principles of

equilibrium and continuity are shown in the diagrams and tables.

The close agreement between the moment coefficients, determined by
several investigators, in slabs supported on four sides, is an indication that

dependable methods are now available by which homogeneous elastic slabs

may be analyzed.

In the analysis of flat slabs the moment sections used in the Joint

Committee report of 1916 were found suitable for the purpose of stating the

resultant moments. In a square interior panel of a uniformly loaded

floor slab, with a large number of panels in all directions, the percentages

of the total moment (or sum of positive and negative moments) which

are resisted in the column-head sections, mid-section, outer sections, and

inner section are found to be nearly independent of the size of the column

capital.

A study is made of unbalanced loads, for example, loads in rows;

unbalanced loads are found to produce large moments in the slabs if the

columns are slender, and large moments in the columns if the columns are

rigid. Moment coefficients are stated also for various cases of oblong

panels, wall panels, and corner panels.

The tests of slabs supported on four sides indicate that when the

deformations increase, certain redistributions of moments and stresses take

place, with the result, in general, that the larger coefficients of moments

are reduced. The ultimate load is found to be, in general, larger, and in

some cases much larger, than would be estimated on the basis of the theo-

retical moment coefficients and the known strength of beams with the same

ratio of steel.

When the moments of resistance of the observed stresses in the rein-

forcement in flat slabs were multiplied by the ratio of the applied moment
in simple beams to the resisting moment of the observed stress, corrected

moments for the slabs were obtained which, in comparison with the results

of the analysis of flat slabs presented in Part II, were (a) much greater

for the lower loads than for the higher loads, (b) greater for the lower

loads than the theoretical moments and (c) slightly less for the higher

loads than the theoretical moments.
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If the effect of the difference in the modulus of elasticity for the slabs

from that for the beams on which the comparison is based could be elimi-

nated it seems that the agreement between the analysis and the tests would

be fair. Such information as is available on the effect of the modulus of

elasticity on the results points in the direction stated.

The average value of the estimated factor of safety for the slabs

studied was 3.23 for the working loads based upon the moment coefficients

recommended by the Joint Committee on Concrete and Reinforced Concrete

and 2.72 for the working loads based on the coefficients recommended by the

American Concrete Institute.

APPENDIX A.

DETAILS OF THE ANALYSIS OF HOMOGENEOUS PLATES.

BY H. M. WESTERGA.ARD.

Al. Notes referring to Art. 7. Solutions of the Differential Equation of

Flexure for Slabs Supported on Four Sides, (a) Rectangular slabs

with simply supported edges.*

The analysis of the rectangular slab with simply supported edges is

simplified by assuming certain special values of the dimensions, of the

clastic constants, and of the load: namely,

a = "f = long span, in the direction of x;

b = oc TT = '_ = short span, in the direction of y;

M
w = . = load per unit-area;

7T
2

7 =
1; Poisson's ratio K = 0.

The origin of the coordinates x, y is at the center of the slab.

With these special values, one finds wb- = 1
;

that is, the moments
M

become equal to the coefficients of moment, -ii_
. Since El = 1 and K = 0,

wb2

the moments or coefficients of moment become numerically equal to the

curvatures. The expediency of analyzing with a Poisson's ratio equal to

zero was discussed in Articles 6 and 8, where also methods of modifying
the results when Poisson's ratio has some other value were indicated.

(See equations (15) to (18) in Art. 6 and Fig. 10(b)).

In order to solve Lagrange's equation of flexure ( (11), (12), or (19)

in Art. 6),

where $
4

5" g<
AA=r-4

+ 2 rj^-i + 7-4dx* t>x &y by

* Navier's solution is used here (see, for example, A. E. H. Love, Mathematical
Theory of Elasticity, ed. 1906, p. 468). Levy's solution (Love, p. 469) was used by
Nadai in dealing with the same problem (see the historical summary in Art. 4, foot-

note 36).
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8*
the term is expressed by a double-infinite Fourier series, as follows:

mtn
8 '6/3

m ~(~U

(m.n- 1,3,5,7 ) (47)

This expression applies at all points of the slab except at the edges. If

the load w had consisted of only one of the terms in (47), the solution of

Lagrange's equation would be: z equal to a similar term, which is equal to

a constant times the load at the particular point. With w equal to the

complete series ( 47 ) , the solution of ( 46 ) becomes :

CO5
(48)

This solution satisfies equation (46), as may be verified by substitution,

and it satisfies also the boundary conditions, that at the edges z -
0,

5>2 $2

-
0, and

Z - 0. The deflections, therefore, are expressed correctly by
Sz2 8j/

2

equation (48).

By double differentiations of (48), one finds the bending moments

(according to (20) in Art. 6) to be:

M S'z I6tf
* n -{-tfFm'-

Sx'
=

-fig. g . nlm'+fWy
C 5 005 Pny (49)

and

(50)

and the torsional moment (according to (21) in Art. 6) to be

rl .,Q3 m , . \
al
^
D

Mr x -T-r = j 2123 -. , ai ,, z sin mx sinBny
6x5y TT i.3t,3"(m+J)n) (51)

The moment coefficient at the center of a square slab is found by

substituting x = y = and
ft
= 1 in (49) or (50), and it is

M _J6_ -H)
m
l
a m

~

16

5+\f 3(9+9)* 5(

_J_ N 1

7(1+49)*) "J

.^0.2245-00369, (52)

as shown on the diagram in Fig. 3 (a). This calculation is typical; other

coefficients shown in Fig. 3 (a) were computed in the same way. It may be

noted that in (52) the terms of the double-infinite series are arranged in
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groups with m -(-
= 2, 4, 6, 8, 10 .........

, respectively, and thus the

double-infinite series is transformed into a single-infinite series.

The moment M
a across the diagonal at the corner in a square slab

is numerically equal to the torsional moment M at the point, defined by

(51) ; that is,

(53)

The moment M at the corner of a rectangular slab across a line

making angles of 45 degrees with the sides, is determined by an expression
similar to (53), but containing the ratio fi of the long span to short span.

In the limiting case in which
ft

= oo (or, ex =0), this expression may
be reduced to the form,

(54)

which is the value shown at the left-hand edge in Fig. 3 (a).

(b) Infinitely long strip, extending from x to x = oo between

the simply supported edges y - ; fixed edge along the i/-axis. This
t

slab is a special rectangular slab with the spans a ** oo, b jf. Load

w--; v* = - . K = 0; El = 1.

4 4

The solution of Lagrange's equation,

is written in the form

z = z -\- 2,

where c, is the deflection at the point (x,y) when the support at the t/-axis

is removed, so as to make the edge deflect freely. The remainder zt is the

amount which is added when external forces applied at the free edge at the

y-axis make the deflections and the slopes at this line again equal to zero.

2, is the deflection of a simple beam with a span equal to TT , and may be

expressed as a polynomial in y, but may also be expressed by the Fourier

series

21 = cos y & cos3?/ -f
B cosSy

-
^ cos7y+ ......

,

as may be verified by comparison with the expression for the load

w = - = cos y -- cos3?/ + - cos5y - cos7y + .......
4 357

The deflection z2 must satisfy the following conditions: at all points,
Sz

AA zz = 0; at the short edge, z2
= zi and = 0; at the long edges, z2 -

8
2z

and =0. These conditions are satisfied by

, (-\fy-
(/-t-mxje

N

s co5 my
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i

Fince = 0, the bending moment along the z-a\is becomes

(55)

When x = O, this moment becomes Ma - 2 ~^Tm 3

= Ri'r

IT' .
' "* 1

wb* -
,
the corresponding momsnt coafficient becomes ~? = _

,
as

4 u-'O
2 8

shown at left-hand edge in Fig. 6 (a). The series (55) converges rapidly.

Values of Max were computed for x = 05, 1.0, 2.0, 3.0, and 4.0; the greatest

positive value, 0.1339, which was found with x = 2.0, gives the coefficient

M = 0.0173, as shown at the left-hand edge in Fig. 5 (a).
u-b2

y y

5imply supported

Fiu. Al. RECTANGULAR SLAB.

(c) The rectingulnr slab shown in Fig. A I. Two parallel edges are fixed

and tv.'o parallel edges simply supported Simple span =
""; fi*ed span = I.

Load w =
;
when / >TT, then ivb2 =

;
when I44 , then wb2 = - I

2
;

4

7=1; tf = 0.

The solution given here is essentially Levy's solution.* The procedure
is essentially the same as in the preceding case, (b), which is the special

case in which I = oo .

Lagrange's equation

AAz = (56)

is solved by

z = zi + z-i (57)

where, as in case (b), zl is the simple-beam deflection, obtained when the

* See the historical summary, Art. 4, footnote 13, or A. E. H. Love, Mathe-
natical Theory of Elasticity, Ed. 1906, p. 469.
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edges y and y' are removed, c, may be expressed either by a polynomial in

y or by the Fourier series

Zi = cosij
- -

cos'3y + cos5y
- ...... (58)

The- remaining part cs of the deflection must satisfy the following condi-

tions:

AA2 ,
= () at all points; (59)

8,
Z2 = 0, s =0 at the simply supported edges; (60)

5

s =
0, ~Y

= at the fixed edges; (61)

Zi = z\ at the fixed edges. (62)

The conditions (59) and (60) may be satisfied, as may be verified by
differentiation, by an expression of the form

S (-D^rz^Z -r-$m coS my (63)

where

e+xe (64)

in which Km and k are cimstants. This solution will satisfy the condi-

tion (61) when

>+(ml-l)e
-m

(65)

and it will satisfy the condition (62) when

K =_L_
/ +

(+rnh-TO l)e (66)

The deflections, then, are defined completely by equations (57) (58), and

(63) to (66).

The bending moments in the x- and y- directions may be found by

double differentiations of (57), (58), and (63). One finds

S'z S
z

z, pf-i)
2^ SX

M* = - TT - - r~t = ^ j -r~r cos my^ J
..

3

+ e cos my

and

* v J5v*
=

~Jt
z

~
JT*

=
T \~A ~y I r

' '
( 68)

The series (67) and (68) converge rapidly. When these series are used in

connection with formulas (64) to (66) they are suitable for numerical
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computations, and they were used in determining the points shown by
small circles in Fig. 4 (a), Fig. 5 (a), and Fig. 6 (a).

With i/=0 and 1= oo, formula (67) becomes the same as (55).

(d) Slabs with four ficced edges.

The approximate moment coefficients for square slabs, represented in

Fig. 7 and Fig. 8 by points marked with circles, were determined by approx-
imate expressions which contain trigonometric and exponential functions

of x and y; they are somewhat similar in form to those applied in the

preceding cases. Neither Navier's nor Levy's solution applies directly to

the slab with four fixed edges. Ritz's method, which was used, for example,

by Nadai and Paschoud in analyses of fixed slabs, is found to lead to suit-

able solutions of the problem.*
A2. Theory of Ring Loads, Concentrated Couples, and Ring Couples.

Certain concentrated loads, each consisting of a group of forces within a

small area, were introduced in Articles 8 and 9, where procedures of

analyses of flat slabs were outlined, and where the results of these analyses
were presented. The loads introduced are: the ring loads, which were

defined in Art. 8, and which are used in the analysis of the normal square
interior panel of a uniformly loaded flat slab; and the concentrated

couples and ring couples, which were defined in Art. 9, and which are used

in the study of unbalanced loads.

By the use of the concentrated loads in the analysis of flat slabs a

procedure is followed which has general applicability, and which was used

in one form in the preceding article (in cases (b) and (c) ) :

Lagrange's equation,

AA* = Lz__*
2

-, (12)

is solved, for the given loads and boundary conditions, by expressing the

deflection in the form

z = * + 2*m (69)

where z satisfies (12), without necessarily satisfying the boundary condi-

tions, while each function z satisfies the equation

AA2m = 0, (70)

which is Lagrange's equation for w =0.
The deflection z in (69) may be, for example, the deflection of the

point-supported slab under the load w. Then, z may be the deflection due

to one of the concentrated loads, acting alone on the slab at a point of

support, with the surrounding supports removed. By introducing one such

concentrated load at each point of support or panel corner, and by adding
the deflections due to all of the loads, one forms the series (69) , which may
be an infinite series, by differentiation of which one may obtain corre-

sponding series for the moments. The concentrated loads must be so

selected that all of the loads, including the applied load w, will cause the

Sec the historical summary, Art 4, footnotes 26. 34, and 36.



MOMENTS AND STRESSES IN SLABS. 105

point-supported slab to deflect, outside the circles marked by the edges of

the column capitals, exactly as the slab deflects which is supported on
column capitals and loaded by w.

In the theory of the concentrated loads, now to be presented, it is

assumed at first that only one concentrated load acts on the slab. Then,

groups of loads are considered. The slab is assumed to extend indefinitely
in all directions. Furthermore, let:

K = Poisson's ratio = 0, as before;

r = yx2
_j_ yi

= radius vector measured from the origin of the co-

ordinates.

(a) Ring loads.

Lagrange's equation

AAz = 0, (71)

for the case in which 10 =0, is satisfied at all points, except at the origin, by

z = Clr+c', (72)

where C and c' are constants. The deflected surface, according to this

equation, is a surface of revolution about an axis through the origin. A
load, concentrated at the origin, and producing the state of flexure defined

by (72), may be called, by definition, a ring load. The intensity of this

ring load is measured conveniently by CEI, where El is the usual stiffness

factor of the slab. Since C is a distance, the ring load CEI may be meas-

ured in Ib. in.
3 units. One finds by differentiation of (72) :

^_ cy

(73)
*~ x

'
) *L* , C(x_'-_y_v; 6jz ZCxy

<5y

z f 4 '

<5x<5y
*"*

(74)

that is

8z
z. <5

Z
2

that is -=~? + v- / Az = &nd AAz =
.

AV Ay'

According to formulas (22) in Art. 6, the vertical shears are proportional
to the derivatives of &z; that is, the vertical shears are zero at all points

except the origin. The moments in the directions of x and y are defined by
the second derivatives in (74). The moment in the direction of radius

vector, or the radial moment, is

MJ-J T
~ O-/^/ /7K\

2 . ( / O I

In a circular section with center at the origin and with radius r, there

is, then, a uniformly distributed radial moment, defined by (75), but no

torsional moment and no vertical shear. In the light of the state of flexure

in the circular section with center at the origin and radius r,, one may

explain the nature of the ring load. Assume that the material is removed

within the circle with radius r,, and that a radial moment, determined by

(75) is applied as an external load, uniformly distributed over the circum-

ference of the circle. Then the slab, under the influence of this load alone.
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will deflect according to formula ( 72 ) , because thereby it satisfies all the

boundary conditions. Now assume that the circle with radius r, is not cut

out, but that instead some load within the circle produces at the circumfer-

ence of the circle the state of flexure that was assumed before as a result

of the external loads. On account of the identity of conditions at the cir-

cumference of the circle, the state of flexure outside the circle will remain

unchanged, as determined by equation (72). More than one kind of load

within the circle may produce this same effect: the load may consist of

upward and downward loads P, uniformly distributed over the circumfer-

ences or areas of two concentric circles; or it may consist of an upward
load P at the origin combined with a down load P which is uniformly dis-

tributed over the area or the circumference of a circle with center at the

origin and radius not larger than r,. But whether the load is made up in

one way or another, if the radius rl is small, the load may be considered as

one concentrated load; namely, the ring load whose magnitude is measured

by CEI, and whose effects are defined completely by equation ( 72 ) .

It may be noted that, according to equation (72), the deflection at the

origin is infinite. Since the origin lies always within the smallest circle

containing the whole load, the infinite deflection at the center has only
theoretical significance. When the ring load is applied at a point of sup-

port, then, in order to avoid the assumption of any infinite deflections, one

may conceive of the support as being distributed over the circumference

of a small circle whose center is at the original point of support and at a

fixed elevation.

The expressions (74) are well suited for computations of such series

as may be formed when a large number of ring loads are applied at the

same time.

(b) Concentrated couples.

Lagrange's equation ((71))

for w = is satisfied at all points except at the origin by the solution

z = A x I . r + ax, (76)

where A and a are constants. By differentiation one finds:

,77,

&z = A z ,

(79)

02
this value of A ? is proportional to the value of in the preceding case,

o

(a), which gave A^ = 0; it follows, therefore, in the present case, that

AA * = 0.

In the state of flexure just represented the ?/-axis remains undeflected.

A circle drawn on the slab, with center at the origin of coordinates, remains
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plane, but rotates about the y-axis, through some angle. On account of the

anti-symmetry with respect to the y-axis, the resultant of the stresses

in the cylindrical section r = r, is a couple about the y-axis. Now r,

may be given any small value, that is, the couple must be transferred to the

slab at the origin as a concentrated couple.

The magnitude of the concentrated couple may be found by considering
the stresses in two sections parallel to the y-axis, on opposite sides of the

origin. By formulas (22), in Art. 6, one finds the vertical shear per unit-

width in a section parallel to the y-axis to be

The total vertical shear in this section becomes, then,

The total bending moment in a section parallel to the y-axis, with x posi-

tive, is equal to

while a negative x gives -)- 2^ AEI. The resultant of the stresses in the

two sections + x is then equal to the concentrated couple =4 TT AEI (80),

turning, when A. is positive, in the direction from z to x.

A number of concentrated couples may be dealt with by computing
series of the terms contained in equations (77) and (78).

(c) Ring couples.

The deflection due to two equal and opposite ring loads, close to the

origin and to one another, and with centers on the x-axia, may be expressed

as equal to a constant times the first partial derivative, with respect to x, of

the deflection which is due to a single ring load, and is expressed by equa-

tion (72). This derivative was given in equation (73). Thus, when B is

a constant, the function

Z = *k, (81)
r2

is the deflection due to a ring couple which is applied at the origin in the

direction of x, and is measured in intensity by the quantity BEI. One

finds by differentiation of (81) :

x r 4
Sy~ r* (82)

7?
=
~~^/

= ~^r
(

/
~

r 2
!

'

(83)

and Az = AAz =
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(d) Other types of concentrated loads.

If the function z = F(x,y) satisfies Lagrange's equation AA * =
at all points except at the origin, which is a singular point, then also the

function

gm+n F
2 "

8xm 8y
n

will satisfy the equation A A* = at all points except at the origin ; and

z, like the original function F, will define some concentrated load at the

origin. Other solutions may be formed by integration of F. Thus from the

fundamental solutions (72) and (76), for ring loads and concentrated

couples, and from the solution

rl.rdr (85)

which defines a single concentrated force proportional to D,, at the origin,

one may derive an infinite number of solutions, each defining a correspond-

y
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the coordinates of the extreme loads in the first quadrant, that is, the loads

on the line A :

S-'.^C AP- (87)

If the number of loads is very large, then the summation may be replaced

by an integration. By making use of the axes of symmetry, one finds then

r
x, <dy 2"C f *dy~ ydx 2.C. /"

* r 08 irC,

This difference of slope may be reduced to zero if at the edge of the plate,
which is assumed to be at infinity, a certain additional load is applied;

FIG. A3. GKOUP OP RING LOADS.

namely, a bending moment, uniformly distributed over the edge, producing
a uniform bending moment in the slab in all directions, equal to

(89)

With this additional moment present, small circles, drawn in the central

portion of the slab, concentric with the ring loads, all with the same radius,

will remain co-planar; and they will be contour lines of the deflected

surface if one of them remains horizontal. On account of this relation to

the ring loads the moment M is assumed, in the analysis of the uniformly
loaded flat slab, to act with the group of ring loads.

(f) The co-action of concentrated couples and ring couples.

A concentrated couple 4 T AEI, and a ring couple BEI, whose effects

are determined by equations (76) and (81), respectively, are assumed to

act on the slab, at the origin, in the o^-plane. The circles r-= const, remain

plane under the influence of this combined load. The slope in the direction
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of x varies, in general, from one point to another on the circle r = const.

The condition may be imposed, however, that all points of a certain circle,

for example, the circle r= *L which marks the edge of a column capital,
Jt

must have a common tangential plane. By comparing equations (77) and

(82) one finds that all elements of the deflected surface at the circle r =

f
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FIG. Bl.^ REINFORCING PLAN FOB SLAB J.

have a zero slope in the direction of y, and consequently have a common

tangential plane, when

B=4-- (90)

Concentrated couples =* ^TtAEI and ring couples =t B7 are used

in the analysis of flat slabs with alternate rows of panels unloaded. The
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rows considered are parallel to the i/-axis. One concentrated load of each

kind is assumed at each column center. The double signs =t refer to

alternate rows of columns. Because of the loads at the surrounding sup-

ports, equation (90) expresses in this case only approximately the condi-

tion that there is a common tangential plane at all points of the circle

r =
.

The following formula, which* is a modified form of (90), and

which is a close approximation, takes into consideration the concentrated

@
FIG. E2. I OCATION OF GAGE IINES FOR TOP OF FLAB S.

loads at the nine points definea by the coordinates y = I, 0, -f- I, and cc

= / (negative values of A and B) and x = (positive A and B) ;this

formula was derived by equating to one another the slopes in the direction

of x at the points /O, -\ and (-
,
0\

:

(91)

Formula (91) was used in computing values of B when alternate rows of

flat slab panels are unloaded.
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APPENDIX B.

TESTS OF SLABS AT PURDUE UNIVERSITY

BY W. A. SLATER.

Bl. Description of Tests. The tests referred to as the Purdue teata

were made for the Corrugated Bar. Co. under the direction of Prof. W. K.

flfeZE

Gaqe lines are shawoi

they
muttqfeorifseen

through the slab fromobnv

FIG. B3. LOCATION OF GAGE LINES FOB BOTTOM OF SLAB J.

Hatt at Purdue University, Lafayette, Ind., on two test slabs, J and S,

each of which had four panels 16 ft. square.

The dimensions of the concrete in the two slabs were the same, but the
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Goqe lines are shown

a5 they wouldappearif

seen through the column

from the outside

FIG. B4. LOCATION OF GAGE LINES ON COLUMNS AND MARGINAL BEAMS
OF SLAB J.

Unit Be*mutKn ardy^s to Scale Mealed J-awH oammoxmim
SmriySfpff^n

FIG. B5. LOAD STRAIN AND LOAD-STRESS DIAGRAMS FOR Top OF SLAB J.
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amount of reinforcement for slab S was considerably less than that for slab J.

The latter fact will help to account for the smaller load which was carried

by slab S than by slab J, but another important consideration is the fact

that for slab S the average strength of the concrete control cylinders at 28

days was only 1215 Ib. per sq. in. while the strength of the control cylinders
for slab J was 2305 Ib. per sq. in.

The methods of making the test are similar to those which have been

described in reports of various tests on floors of buildings.*

The important dimensions of the slab are shown in Table XIII. The

amount and distribution of the reinforcement are shown in Fig. Bl and B9.

JO 10 JO .10 10 ?0 30 40 50 60 70 60 00 100 I/O 120 130 1.40 ISO 160

Deflection. Inches

Fio. B7. LOAD DEFLECTION DIAGRAMS FOR SLAB J.

The location of gage lines is shown in Fig. B:>, B3, B4, BIO, Bll, and B12.

The measured stresses in the reinforcement and deformation in the concrete

are shown in Fig. B5, BO, B13 and B14. The deflections are shown in Fig.

B7 and B8. Certain information concerning these tests has already been

published! and reference to the published report will supply certain results

of the test which are lacking in this paper.

In the tests of both slabs the load Avas applied as nearly uniformly as

possible. In order to afford access to the gage lines on the top surface of

the slabs, aisles were left in the loaded area. When the load was high

enough these aisles were bridged over and sufficient load was placed

immediately over them to give practically a uniform distribution of load.

* Univ. of 111. Eng. Exper. Sta. Bulletins 64 and 84.

t W K Halt "Moment Coefficients for Flat-slab Design with Results of a Test,"
Froc. A. C. I. V. 14, p. 174 (1918).
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B2. Loading of Slab J. In the test of slab J the highest load applied

uniformly over the entire slab was 595 Ib. per sq. ft. At this load the

measured stress in the reinforcement was at the yield point in gage lines

which crossed the mid-section of the slab (see Fig. 12 which shows location

of sections), and the highest deflection reported for any panel was 1.1 in.

After the load had been in place about two days longer the deflection had
increased to 1.25 in. At this stage of the test it is reported that there was
no evidence of crushing of the concrete. The entire load was removed from
the slab and about 40 days later a load of 803 Ib. per sq. ft. was applied
"over one panel, the overhang, and into the adjoining panel, etc."* Failure

occurred under this load by punching of the column* capital through the

0016

Legend
Section A-A inferiorpanel

B-B wall

FIG. B8. STRAIN DISTRIBUTION FOR REINFORCEMENT IN WALL PANEL AND

INTERIOR PANEL OF SLAB J.

dropped panel. The fracture had the angle of a diagonal tension failure.

Assuming the full live and dead load of an area 16 ft. square to have

been carried on the central column, the computed shearing stress on the

vertical section of depth jd, which lies at a distance d from the edge of the

column capital, was 233 Ib. per sq. in. Although the "failure of the slab

. . . began with a feathering of the concrete on the dropped panel at the

edge of the column capital"* this shearing stress is high enough that it

seems that diagonal tension may have been a factor in causing failure.

B3. Loading of Slab S. The maximum load applied to slab S was

450 Ib. per sq. ft. The official report of the test states that this load "was

attended by complete failure of the concrete in compression and the stretch-

ing of the steel to the yield point."* The load-strain diagrams, Fig. B13

and B14, show that the reinforcement generally was highly stressed both

at sections of negative moment and at sections of positive moment, and

Proceedings A. C. I., Vol. XIV, pp. 182 and 183 (1918).
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photographs of the slabs show the crushing of the concrete around the
capital. However, the highest deflection reported was only 1.30 in. at the
center of a panel, and when the load was removed the deflection decreased
to 0.4 in. Relatively this deflection was small and the recovery was large
and the test does not afford a conclusive answer to the question as to what
load would have been required to cause collapse of the structure, or, in other
words, as to what was the factor of safety against destruction of life and
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FIG. B9. REINFORCING PLANS FOB SLAB S.

property. In view of the large load carried by the Waynesburg slab after

the yield point of the negative reinforcement had been reached it does not
seem unreasonable to believe that this slab might have carried more load
without actual collapse.

B4. Moments in Wall Panels. In the design of slab J and slab S

provision for greater positive moments in the wall panels than in the
interior panels was made by using a larger area of reinforcement for the

positive moment in the wall panels than in the interior panels. The same
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number of bars was used at the two positions, but for the wall panels square
bars were used and for the interior panels round bars were used. This

gives 27 per cent more reinforcement for the wall panel than for the interior

panel. Strains measured are shown in Fig. B8 and B16. For the lower

loads the stresses were almost equal in the two panels of slab J, but were

somewhat higher for the wall panel in slab S than for the interior panel.

For the higher loads the stresses were higher for the interior panels in

FIG. BIO. LOCATION OF GAGE LINES FOB Top OF SLAB S.

both cases. The indication from this test is that the allowance of 27 per

cent greater moment for wall panels than for interior panels was in excess

of the requirement for wall panels. The moments in the wall panels will be

dependent upon the moment of inertia of the wall columns and probably upon
the manner in which the negative reinforcement at the edge of the wall

panel is distributed, and for this reason the results in Fig. B8 and B16

should not be applied to other cases without taking into account the effect

of these features of the design.
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APPENDIX C.

BIBLIOGRAPHY.
References are made in the following list, to published results and to

some unpublished results of tests on flat slabs or on slabs supported on

beams which lie on the edges of the panels, but which have no intermediate

beams.

In general the following sequence is used in references cited: Name or

designation of structure tested, city, brief characterization of type of rein-

forcement, number of panels loaded, reference to periodicals by number in

parentheses, date of publication.

NDTE--Z qxf. foBoO onN side

of this column txbn cap

f
-
Oaqe lines are tfom as they nou/dappear

if seen through ffe shb from,etwe.
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The periodicals or institutions referred to in the bibliography are

designated by the following numbers:

( 1 ) Proceedings National Association of Cement Users and of its

successor, the American Concrete Institute.

(2) University of Illinois, Engineering Experiment Station.

(3) Indiana Engineering Society.

(4) Proceedings Pacific Northwest Society of Civil Engineers.

Gaqe lines on steel

concrete

FIG. B13. LOAD STRAIN AND LOAD-STRESS DIAGRAMS FOR TOP OF SLAB S.

(5) Transactions American Society of Civil Engineers.

(6) Journal of the Engineering Institute of Canada.

(7) Bulletin on Flat Slabs by Corrugated Bar Co.

(8) Engineering and Contracting.

(9) Engineering News.

(10) Engineering Record.

(11) American Architect.
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.10 .29 10 ?0 30 40 .X .60 W BO 90 ICC 110 12) 130 140

Deflection, Inches,

FIG. B15. LOAD DEFLECTION DIAGRAMS FOB SLAB S.

Legend
5ecttonA-A interiorpanel

B-B wall

^TX?X*K7*^ ,f.-/. - ..

FIG. B16. STRAIN DISTRIBUTION IN WALL PANEL AND INTERIOR PANEL
OF SLAB S.
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LIST OF TESTS.

1. C. Bach and O. Graf: Versuche mit allseitig aufliegenden, quadra-
tischen and rechteckigen Eisenbetonplatten, Deutscher Ausschuss fiir Eisen-

beton, v. 30, Berlin, 1915, 309 pp. These laboratory testa were made in

Stuttgart, 1911 to 1914, under the direction of Bach and Graf. 52 slabs

supported on four sides and 35 control strips supported as beams were

tested to failure. The tests are reported in detail, without attempt, how-

ever, to explain or analyze the results. Analyses of the results have been

made later by Suenson and by Nielsen; see E. Suenson, Krydsarmerede

Jaernbetonpladers Styrke, Ingenioeren (Copenhagen), 1916, No. 76, 77,

and 78; N. J. Nielsen, Krydsarmerede Jaernbetonpladers Styrke, Inge-

nioeren, 1920, pp. 723-728.

2. Deere and Webber Building, Minneapolis, 1910, 4-way, 9 panels,

(1) 1910, (2) Bull. 64, 1911, (9) 12-22-1910, (8) 12-22-1910.

3. Test of Rubber Model Flat Slab, 1911, 9 panels, (7) 1912, (1)

1912, p. 219.

4. Powers Building, Minneapolis, 1911, 2-way, 4 panels, (1) 1912, p.

61, (9) 4-18-1912, (10) 4-20-1912.

5. Franks Building, Chicago, 1911, 4-way, 4 panels, (1) 1912, p. 160.

6. Barr Building Test Panel, St. Louis, 1911, 2-way supported on

beams, (1) 1912, p. 133.

7. St. Paul Bread Co. Bldg., 1912, 4-way, 1 panel, (5) 1914, p. 1376.

8. Larkin Building, Chicago, 1912, 4-way, 5 panels, (1) 1913, (10)

1-1913.

9. Northwestern Glass Company Building, Minneapolis, 1913, 4-way,

4 panels, (5) 1914, p. 1340.

10. Worcester (Mass.) Test Slab, 1913, (2) Bull. 84, 1916.

11. Shredded Wheat Factory, Niagara Falls, N. Y., 1913, 2-way, 9

panels, (1) 1914, (2) Bull. 84, 1916.

12. International Hall, Chicago, 1913, 4-way, 4 panels, (5) 1914, pp.

1433-1437.

13. Soo Line Terminal, Chicago, 1913, 4-way, 4 and 5 panels, (2) Bull.

84, 1916, (9) 8-16-1913.

14. Curtis Ledger Factory, Chicago, 1913, 2-way at columns, 4-way

elsewhere, 4 panels, (2) Bull. 84, 1916.

15. Schulze Baking Co. Building, Chicago, 1914, 4-way, 4 panels, (2)

Bull. 84, 1916.

16. Schwinn Building, 1914-15, long time test, 4-way, 1 panel, (1)

1917, p. 45.

17. Sears Roebuck Building, Seattle, 1915, 2-way, (4) Jan. and Feb.,

1916.

18. Bell St. Warehouse, Seattle, 1915, 4-way, 4 panels, (4) 1916, (10)

5-13-16.

19. Eaton Factory. Toronto, Out., about 1016. 4-way, 4 panels, (6)

April, 1919.
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20. S.-M.-I Slab, Purdue University (1917) circumferential reinf., 4

panels, (1) 1918.

21. Sanitary Can Building, Maywood, 111., 1917, 2-way, 4 panels, (1)

1917, p. 172, and 1921, p. 500.

22. Shonk Building, Maywood, 111., 1917, 4-way, 4 panels, (1) 1917, p.

172, and 1921, p. 500.

23. Western Newspaper Union Building, Chicago, 1917, 4-way, 4 panels,

(1) 1918, p. 291, (2) Bulletin 106, 1918.

24. Slabs J and S, Purdue Univ., 1917, 2-way, 4 panels each, (1) 1918,

p. 174, also 1921, p. 500.

25. Slab R, Purdue Univ., 1917, circumferential" reinf., 4 panels, (1)

1917, p. 172.

26. Arlington Building, Washington, D. C., 1918, 2-way tile and con-

crete supported on beams. (Under preparation as Tech. paper of U. S.

Bureau of Standards.)

27. Whitacre Test Slab, Waynesburg, Ohio, 1920, 2-way, tile and

concrete, supported on beams, 18 panels, (11) 8-11-20 and 3-16-21 also under

preparation as Tech. Paper U. S. Bureau of Standards.

28. Channon Building, Chicago, 1920, circumferential reinf. 4 panels,

(1) 1921, p. 500.

29. Jersey City Dairy Company's Building, Jersey City, N". J., 1913,

2-way, 1 panel, tested by Corrugated Bar Co., Buffalo, N. Y., not published.














