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You can run, you can hide: The epidemiology and statistical mechanics of zombies
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We use a popular fictional disease, zombies, in order to introduce techniques used in modern epidemiology
modeling, and ideas and techniques used in the numerical study of critical phenomena. We consider variants of
zombie models, from fully connected continuous time dynamics to a full scale exact stochastic dynamic simulation
of a zombie outbreak on the continental United States. Along the way, we offer a closed form analytical expression
for the fully connected differential equation, and demonstrate that the single person per site two dimensional
square lattice version of zombies lies in the percolation universality class. We end with a quantitative study of
the full scale US outbreak, including the average susceptibility of different geographical regions.

DOI: 10.1103/PhysRevE.92.052801 PACS number(s): 89.75.Hc, 87.23.Cc, 87.23.Ge, 87.10.Mn

I. INTRODUCTION

Zombies captivate the imagination. The idea of a deadly
disease that not only kills its hosts, but turns those hosts into
deadly vectors for the disease is scary enough to fuel an entire
genre of horror stories and films. But at its root, zombism is
just that—a (fictional) disease—and so should be amenable
to the same kind of analysis and study that we use to combat
more traditional diseases.

Much scholarly attention has focused on more traditional
human diseases [1], but, recently, academic attention has
turned a bit of thought onto zombies as a unique and interesting
modification of classic disease models. One of the first
academic accounts of zombies was the 2009 article by Munz
et al. [2], in which an early form of a compartmental model of
zombism was introduced. Since then, there have been several
interesting papers published including works that perform
Bayesian estimations of the zombie disease parameters [3],
look at how emotional factors impact the spread of zombies [4],
using zombies to gain insight into models of politics [5], or into
the interaction of a zombie epidemic and social dynamics [6,7].
Additional essays can be found in two books collecting
academic essays centered around zombism [8,9].

Besides the academic papers, zombies have seen a resur-
gence in fiction. Of particular note are the works of Max
Brooks, including a detailed Zombie Survival Guide [10],
as well as an oral history of the first zombie war [11] in a
hypothesized post outbreak world. In both these works Brooks
provides a rich source of information about zombies and their
behavior. In particular, he makes the connection to disease
explicit, describing zombies as the result of a hypothetical
virus, Solanum.
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Zombies form a wonderful model system to illustrate mod-
ern epidemiological tools drawn from statistical mechanics,
computational chemistry, and mathematical modeling. They
also form an ideal vehicle for public outreach: the Center
for Disease Control uses preparation for a zombie apoca-
lypse [12,13] to promote emergency preparedness. In this
work, we will build up to a full-scale simulation of a zombie
outbreak in the continental United States, with realistic values
drawn from the literature and popular culture (Sec. V; simula-
tion accessible online [14]). Before that, we shall use statistical
mechanics to scrutinize the threshold of zombie virulence that
determines whether humanity survives (Sec. IV). Preceding
that, we shall show how methods from computational chem-
istry can be used to simulate every individual heroic encounter
between a human and a zombie (Sec. III). But we begin by
describing and analyzing a simple model of zombies (the SZR
model)—the simplest and most natural generalization to the
classic SIR (susceptible-infected-recovered) model used to
describe infectious disease spread in epidemiology.

II. SZR MODEL

We start with a simple model of zombies, the SZR model.
There are three compartments in the model: S represents the
susceptible population, the uninfected humans, Z represents
the infected state, zombies, and R represents our removed state,
in this case zombies that have been terminated by humans
(canonically by destroying their brain so as to render them
inoperable). There are two transitions possible: a human can
become infected if they are bitten by a zombie, and a zombie
can be destroyed by direct action by a human. There are two
parameters governing these transitions: β, the bite parameter
determines the rate at which a zombie will bite a human if they
are in contact, and κ the kill parameter that gives the rate that a
human kills the zombie. Rendered as a system of coupled dif-
ferential equations, we obtain, for a particular interaction site,

Ṡ = −βSZ, (1)
Ż = (β − κ)SZ, (2)

Ṙ = κSZ. (3)

Notice that these interactions are density dependent, in the
sense that the rate at which we convert humans to zombies and
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kill zombies is dependent on the total count of zombies and
humans in this site. This is in contrast with most models of
human diseases, which frequently adopt frequency dependent
interactions wherein S,Z,R would have been interpreted as
the fraction of the population in the corresponding state.

This distinction will become stark once we consider
large simulations with very inhomogeneous populations. By
claiming that zombies can be modeled by a single bite
parameter β that itself is a rate per person per unit time, we
are claiming that a zombie in a block with 5000 people would
be one hundred times as effective at infecting new zombies as
a zombie in a block with fifty people; similarly the zombie in
question would be killed one hundred times faster. This would
seem false for an ordinary disease like the flu, but in the case
of zombies, we argue that it is appropriate. Zombies directly
seek out hosts to infect, at which point the human and zombie
engage in a duel to the (un)death.

To facilitate analysis we can nondimensionalize the equa-
tions by choosing a relevant population size N , and recasting
in terms of the dimensionless time parameter τ = tβN and
dimensionless virulence α = κ/β

dS

dτ
= −SZ

N
,

dZ

dτ
= (1 − α)

SZ

N
, (4)

dR

dτ
= α

SZ

N
.

Unlike a traditional disease (e.g., as modeled by SIR), for
the zombie model, we have a stable configuration when either
the human or the zombie population is defeated (S = 0 or
Z = 0). Furthermore, unlike SIR, SZR admits an analytical
solution, assuming R(0) = 0, and with Z0 ≡ Z(0),S0 ≡ S(0):

P ≡ Z0 + (1 − α)S0, (5)

μ ≡ S0

Z0
(1 − α) = P

Z0
− 1, (6)

f (τ ) ≡ Pμ

eτP/N + μ
, (7)

Z(τ ) = P − f (τ ), (8)

S(τ ) = f (τ )

1 − α
. (9)

Given the analytical solution, it is clear to see that the sign of P

governs whether there will eventually be humans or zombies
in the final state. If α < 1,P > 0, so

lim
τ→∞ f (τ ) = 0, (10)

lim
τ→∞ Z(τ ) = P = Z0 + (1 − α)S0, (11)

lim
τ→∞ S(τ ) = 0, (12)

and the system will always flow to a final state composed of
entirely zombies and no humans, where P denotes the number
of zombies that survive.

If, however, α > 1, humans are more effective at killing
zombies than zombies are at biting humans. With enough

zombies in the initial state, we can still convert all of the
humans before they have time to kill all of the zombies.

We can recast the dynamics in terms of the variables P ≡
Z + (1 − α)S and χ = S/Z to gain further insights. First note
that

dP

dτ
= P ′ = Z′ + (1 − α)S ′ (13)

= (1 − α)
SZ

N
− (1 − α)

SZ

N
= 0, (14)

so P is a constant of the dynamics. As for χ :

χ ′ = S ′

Z
− SZ′

Z2
(15)

= − S

N
− (1 − α)

S

N

S

Z
(16)

= − S

N
(1 + (1 − α))χ (17)

= −P

N
χ. (18)

Hence if we choose N = |P |, we end up with the very simple
dynamics:

P ′(τ ) = 0, (19)

P (τ ) = P0 = Z(τ ) + (1 − α)S(τ ) = Z0 + (1 − α)S0, (20)

χ ′(τ ) =
{−χ, P > 0,

+χ, P < 0,
(21)

χ (τ ) = S(τ )

Z(τ )
= χ0

{
e−τ , P > 0,

e+τ , P < 0,
(22)

χ0 ≡ S0

Z0
. (23)

Here we see that the dynamics is simply an exponential decay
or increase in the ratio of humans to zombies χ = S/Z. The
final populations in either case are easy to see due to the
conservation of P . If zombies win we have

Z∞ = Z0 + (1 − α)S0. (24)

And if humans win

S∞ = S0 − Z0

α − 1
. (25)

A. SIR model

This dynamics should be compared to the similarly nondi-
mensionlized density-dependent SIR model:

dS

dτ
= −SI

N
, (26)

dI

dτ
=

(
S

N
− μ

)
I, (27)

dR

dτ
= μI. (28)

Here τ = tβN as above, but μ = ν/(βN ) = R−1
0 , because in

the SIR model our infected population recovers on its own.
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FIG. 1. (Color online) Deterministic trajectories for the SIR and
SZR models with an initial population of 200 people, 199 uninfected
and 1 infected. The (susceptible, infected, removed) population is
shown in (thick blue, thin red, dashed black). The SZR results are
darker lines, while the SIR results are lighter lines. For both models
τ = tβN , where N was taken to be the total population. For the SZR
model α was chosen to be 0.6, while for the SIR model μ was chosen
to be 0.6 to show similar dynamics. Notice that, in this case, in SZR
the human population disappears and only zombies remain in the
end, while the SIR model is self-limiting, and only a fraction of the
population ever becomes infected.

This is contrasted with SZR, where the process of infection
and recovery have the same functional form, depending on the
product SZ. This μ is the inverse of the usual R0 parameter
used to denote the infectivity of the SIR model, here used to
make a closer analogy to the SZR model. It is this parameter
that principally governs whether we have an outbreak or not.
Unlike the α parameter for SZR which depends only on our
disease constants β,κ , the relevant virulence for the density
dependent SIR model (μ) has a population dependence.

Notice again that while the only stable configuration for the
SIR model is when there is no infected population (I = 0), the
SZR model is stable when either the humans or zombies are
depleted (S = 0 or Z = 0).

The SIR model does not admit a closed form analytical
solution, but we can find a parametric solution by dividing the
first equation by the third, revealing

S(τ ) = S0e
− (R(τ )−R0)

μN . (29)

Using the observation that in the limit of infinite time, no
infected population can persist, we can choose N to be the
total population

S0 + I0 + R0 = N = S∞ + R∞ (30)

and so obtain a transcendental equation for the recovered
population at long times.

R∞ = N − S0e
− (R∞−R0)

μN . (31)

Unlike the SZR model, here we see that no matter how
virulent the disease is, the epidemic will be self-limiting,
and there will always be some susceptibles left at the end
of the outbreak. This is a sharp qualitative difference between
zombies and more traditional SIR models, arising from the
fact that the “recovery” of zombies is itself dependent on the
presence of susceptibles.

To visually compare the difference, in Fig. 1 we have shown
deterministic trajectories for both SIR and SZR for selected
parameter values.

III. STOCHASTIC SIMULATION

While most previous studies modeling zombie population
dynamics have been deterministic, things get more interesting
when we try to model discrete populations. By treating the
number of zombies and humans as continuous variables in
the last section, we are ignoring the random fluctuations that
arise in small populations: even a ferociously virulent zombie
infestation might fortuitously be killed early on by happy ac-
cident. Similar problems arise in chemical reactions: reactions
involving two types of proteins in a cell can be described by
chemical reaction kinetics evolving their concentrations [like
our SZR equations (4)], but if the number of such proteins is
small, accurate predictions must simulate the individual binary
reactions (each zombie battling each human). Interpreting our
SZR transitions as reaction rates, gives us a system akin to a
chemical reaction with two possible transitions:

(S,Z)
βSZ−−→ (Z,Z), (S,Z)

κSZ−−→ (S,R).

When a human and zombie are in contact, the probability of
a bite in a small period of time is given by the bite rate and
the size of the populations of the two species (βSZ dt), and
similarly for the probability of a kill. In order to efficiently
simulate this dynamics, we use the Gillespie algorithm [15],
which efficiently uses the computer to sequentially calculate
the result of each one-on-one battle.

The stochasticity gives more character to the simulation.
The fully connected continuous dynamics modeled by the
differential equation is straightforward: either the humans win
and kill all of the zombies, or the zombies win and bite all
of the humans. While the continuous approximation may be
appropriate at intermediate stages of the infection where the
total population is large and there are a nontrivial number
of infected individuals, we will eventually be interested in
simulating an actual outbreak on an inhomogeneous popu-
lation lattice, where every new site will start with a single
infected individual. But even though we may be interested in
modeling the outbreak case (α < 1), we would like to allow
the possibility that the humans manage to defeat the outbreak
before it really takes off. The stochastic Gillespie dynamics
allows for this possibility.

In Fig. 2 we have shown an example of a single stochastic
simulation using the same parameter settings as those used
in Fig. 1. The stochastic trajectory overall tracks the analytic
result, but at points in the simulation there may be more or
fewer zombies than anticipated if the dice fall that way.

Another implication of stochastic dynamics is that it is
not always guaranteed that a supercritical (α < 1) outbreak
will take over the entire susceptible population. For the
parameter settings used in Figs. 1 and 2, namely α = 0.6 with
a population of 200 and one infected individual to start, the
zombies win only 40% of the time. Additionally, the number
of zombies we end with is not fixed, as shown in Fig. 3.

In fact, we can solve exactly for the probability Pext

that an α < 1 simulation will go extinct in the limit of
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FIG. 2. (Color online) Example Gillespie dynamics for the SIR
and SZR models with the same parameter settings as Fig. 1. The
(susceptible, infected, removed) population is shown in (thick blue,
thin red, dashed black). The SZR results are dark lines, while the SIR
results are lighter lines. The two simulations were run with the same
seed so as to match their dynamics at early times.

large populations, using an argument drawn from the theory
of branching processes [16]. At the very beginning of the
simulation, there is only one zombie, who will be killed with
probability κ/(β + κ). If the first zombie is killed before it
bites anyone, we guarantee extinction. Otherwise, the zombie
will bite another human, at which point there will be two
independent zombie lines that need to be extinguished, which
will occur with probability P 2

ext. This allows us to solve

Pext = κ

β + κ
1 + β

β + κ
P 2

ext, (32)

Pext = κ

β
= α . (33)

The probability of extinction is just given by our dimensionless
inverse virulence α. In Fig. 4 we have shown the observed
extinction probabilities for 1000 Gillespie runs of a population
of 104 individuals at various values of α, and overlaid our
expected dependence of α.

FIG. 3. (Color online) Distribution for final zombies over
100 000 stochastic trajectories with the same parameters as Fig. 2.
Not pictured are the 60% of runs that end with no zombies in the
final state. Compare these to the analytical result, in which the final
population of zombies would be 81 with no possibility of surviving
humans.

FIG. 4. (Color online) Observed fraction of simulations that end
in an extinction for the zombie outbreak, for 1000 runs of 104

individuals at various values of α [Eq. (33)]. The observed extinction
probabilities agree with the expectation that they should go as α, here
shown as the dashed line. This is the same behavior as the SIR model.

This same extinction probability (Pext = μ = R−1
0 ) is ob-

served for the SIR model [1]. This is not a coincidence. In
precisely the limit that is important for studying the probability
of an extinction event, namely at early times with very large
populations, the SZR model and SIR are effectively the same,
since the population of susceptibles (S) is nearly constant.
Writing S as S0 − δS, we have

dZ

dτ
= (1 − α)

S0Z

N
− (1 − α)

(δS)Z

N
, (34)

dI

dτ
=

(
1 − μN

S0

)
S0I

N
− (μN + δS)

I

N
. (35)

Here as δS → 0, the two models are the same with α =
μN/S0, another indication that the density dependent SIR
model’s virulence is dependent on population size.

To get a better sense of the effect of the stochasticity, we
can look at the mean fractional population in each state for
various settings of α and choices for initial population size.
The results are shown in Fig. 5.

Plotted are the fractional populations in the final state left
for both the SZR model (top row) and SIR model (bottom
row) for different parameter combinations of α and the initial
population. In all cases, the N parameter was chosen to be
100. For each box, 1000 independently seeded stochastic
trajectories were calculated until completion. Looking at the
SZR results in the top row, we can see that the dynamics is
fairly independent of population size once the population size
gets above around 100 individuals. The population dependence
for lower population sizes is an effect of the stochasticity. We
can clearly see a transition in the susceptible population near
α = 1 corresponding to where our continuous dynamics would
show a sharp boundary. Here the boundary is blurred, again
due to the stochasticity. The final dead zombie population
R remains small for all values of α; for extremely virulent
zombies α � 1, very few will be killed by the humans before
all of the humans are converted, while in the other extreme
few zombies are created so there are few to be killed.

Contrast these results with the density dependent SIR
dynamics shown in the second row. There can be no infected
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FIG. 5. (Color online) Mean final states as a function of model
parameters. One thousand different simulations are run for each cell.
Each simulation starts with a single zombie or infected individual.
The runs are run until they naturally terminate, either because the
susceptible population is deleted, the zombie population is gone, or
there are no more infected individuals. Each cell is colored according
to the mean fraction of the population occurring in each state. The top
row is for SZR simulations and the bottom row is for SIR simulations.
In both cases N is chosen to be 100. Here the sharp contrast
between density-dependent SZR and SIR is made apparent. Notice
that density-dependent SIR is very strongly population dependent.

individuals left in the end, so only the fraction of S and R in the
final state are shown. The two transitions in SIR couple differ-
ently to the population of infected and susceptible. While our
nondimensionalized SZR model has Z′ = (1 − α)SZ/N , our
nondimensionlized SIR has I ′ = (S/N − μ)I . This creates a
very strong population dependence. The transition observed
in the S population is largely independent of μ, except on the
very small end. When we move to inhomogeneous population
lattices this means that for the density dependent SIR model,
the most important parameter governing whether a particular
site has a breakout infection is the population of that site on
the lattice.

IV. CRITICAL BEHAVIOR OF LATTICE MODEL

Until now, we have considered fully connected, well-mixed
populations, where any infected individual can infect any
susceptible individual with equal probability. But surely, a
zombie in New York cannot bite someone in Los Angeles.
Investigation of the spatial spread of infectious diseases is
an important application of network science: social diseases
spread among intimate contacts; Ebola spreads by personal
contact in a network of care-givers; influenza can be spread
by direct contact, through the air or by hand-to-mouth,
hand-to-eye or hand-to-nose contact after exposure to a

contaminated surface. For most diseases, “long bonds” domi-
nate the propagation to distant sites [17]; airplane flights take
Ebola to new continents. Zombies do not fly airplanes, so our
model is closer in spirit to the spread of certain agricultural
infestations, where the disease spreads across a lattice of sites
along the two-dimensional surface of the Earth (although not
in those cases where pathogens are transported long distances
by atmospheric currents).

To begin, we will consider a two-dimensional square lattice,
where each site contains a single individual. Each individual
is allowed to be in one of three states: S,Z, or R. The infection
spreads through nearest neighbor bonds only. That is, a zombie
can bite or be killed by any susceptible individuals in each of
the four neighboring sites.

To make direct contact with our zombie model, the rate at
which a susceptible cell is bitten is given by βZ where Z is
the number of zombie neighbors (since S is one), and the rate
at which a zombie site is killed is κS where S is the number
of susceptible neighbors.

Because all state transitions in the SZR model depend only
on Z–S contacts, for computational efficiency, we need only
maintain a queue of all Z–S bonds, that is connections along
which a human and zombie can interact. At each step of the
simulation, one of these Z–S bonds is chosen at random, and
with probability β/(β + κ) = 1/(1 + α), the human is bitten,
marking it as a zombie. We can then query its neighbors, and
for all of them that are human, we can add a Z–S link to our
queue. With probability κ/(β + κ) = α/(1 + α) the zombie is
killed, removing any of its links to neighboring humans from
the queue. This process matches the stochastic dynamics of
our zombie model operating on the lattice.

Simulating zombie outbreaks on fixed lattices, there is
qualitatively different behavior for small α and large α. When
α is large, the zombies do not spread very far, always being
defeated by their neighboring humans. When α is very small,
the zombies seem to grow until they infect the entire lattice.
This suggests evidence of a phase transition. Technically, the
presence of a phase transition would mean that if we could
simulate our model on an infinite lattice, there should be some
critical α (αc), above which any outbreak will necessarily
terminate. Below the critical value, there is the possibility
(assuming the infection does not die out) of having the
infection grow without bound, infecting a finite fraction of
individuals in the limit that the lattice size becomes infinite.
The SIR model has been demonstrated to undergo such a phase
transition, and we expect the zombie model does as well.

The study of critical phenomena includes a series of
techniques and analyses that enable us to study the properties
of phase transitions even on finite lattices. A major theme
of critical phase transitions is the importance of critical
points—where a system is tuned (here by varying α) to a value
separating qualitatively different behaviors (here separating
low-infectivity transient zombie infestations from a potentially
world-spanning epidemic). At critical points, the system can
show scale free behavior; there is no natural length scale to
the dynamics, and various physical parameters will usually be
governed by power laws (see below).

With α chosen to be precisely at the critical value, we indeed
see a giant component with fractal structure (Fig. 6). Note that
there are holes (surviving pockets of humans) of all sizes in the
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FIG. 6. (Color online) Example cluster resulting from the single
population per site square lattice zombie model with periodic
boundary conditions near the critical point αc = 0.43734613(57) on
a lattice of size 2048 × 2048. Susceptible, infected (zombie), and
removed are shown in white, red, and black, respectively.

figure. This reflects the proximity to the threshold: the battle
between zombies and humans is so evenly matched, that one
gets an emergent scale invariance in the survival patterns. This
is in keeping with studies of the SIR model, which shows a
similar critical behavior and phase transition [18].

Systems near critical points with this kind of scale invari-
ance fall into universality classes. Different systems (say, a
real disease outbreak and a simple computational model) can
in many ways act precisely the same on large scales near their
transitions (allowing us to predict behavior without knowing
the details of zombie-human (anti)social interactions). The
SIR model on a two-dimensional lattice with a single person
per site falls into the percolation universality class [19], though
details of its cluster growth can differ [20]. Given that the SZR
model has two second order couplings, it is of interest whether
it falls into the same percolation universality class.

To extract the scaling behavior of our zombie infestation,
we study the distribution P (s,α), the probability that a single
zombie will generate an outbreak of size s at inverse virulence
α. (An outbreak will be a fractal cluster in two dimensions,
with ragged boundaries if it dies out before reaching the
entire world.) At α = αc where the zombies and humans are
equally matched, we have an emergent scale invariance. A
large outbreak will appear to almost stop several times—it can
be viewed as a sequence of medium-sized outbreaks triggering
one another just before they die out. Medium-sized outbreaks
are composed of small outbreaks, which are in turn composed
of tiny outbreaks. At threshold, each of these scales (large,
medium, small) is related to the lower scale (medium, small,
tiny) in the same fashion. Let us oversimplify to say that at
criticality an outbreak of size Bs is formed by what would have
been B smaller outbreaks of size s which happened to trigger
one another, and these in turn are formed by what would have
been B outbreaks of size s/B. If the probabilities and form of

this mutual triggering is the same at each scale, then it would
not surprise us that many properties of the outbreaks would be
the same, after rescaling the sizes by a factor of B. In particular,
we expect at the critical point to find the probabilities of
outbreaks of size s to be related to the probabilities at size
s/B by some factor f :

P (s,αc) = f P (s/B,αc). (36)

This formula quantifies an emergent scale invariance at αc:
the properties of epidemics of size s (here the probability)
are rescaled versions of the properties at a smaller scale
s/B [21]—the system is self-similar to itself at different
scales. Equation (36) is solved by P (s,αc) ∝ s−τ , with τ =
log(1/f )/ log(B). The distribution of epidemic infection rates
is a power law.

Figure 7 shows a thorough test of this dependence for our
zombie model, following a procedure akin to that of Ref. [20].

FIG. 7. (Color online) Cumulative distribution of epidemic sizes
for the two dimensional zombie model near the critical virulence. The
critical point found was αc = 0.43734613(57). (a) The probability of
a site being in a cluster of at least s in size (P�s) is shown in blue
circles. The fact that it forms a straight line on a log-log plot indicates
that P�s is a power law, and the slope is 2 − τ . For comparison, the
red line shows the power law corresponding to the percolation critical
exponent: τ = 187/91. (b) Data for three different values of α near
αc, each times sτ−2 using the exponent from percolation theory that
should make the critical point into a flat line. We plot these against sσ ,
the size taken to the power law σ = 36/91, as in Ref. [20]. Notice that
for α > αc (when the zombies lose) the large outbreaks are suppressed
below the power law, and for α < αc (when the zombies often win)
the largest outbreaks bend up. We follow Ref. [20] in estimating αc

by interpolating these slopes; the inset shows a bootstrap estimate
of our error in αc. Notice that the three curves are for very similar
α—leading to excellent precision in identifying the critical point.
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We simulated a zombie outbreak on a two-dimensional lattice
with periodic boundary conditions starting with a single zom-
bie. With the outbreak sizes following a power law distribution,
the probability that a site belongs to a cluster of size ns is
Ps = sns , so that at the critical point Ps ∼ s1−τ . Integrating
from s to ∞, the probability that a point belongs to a cluster of
at least s in size (P�s) should at the critical point itself follow
a power law: P�s ∼ s2−τ . To find our critical point αc, we ran
many simulations until our integrated cluster size distribution
followed a power law, using the interpolation methods of
Ref. [20] to get a precise estimate of the critical point.

For zombies on a two dimensional lattice, this critical
point occurs at αc = 0.43734613(57); the resulting integrated
cluster size distribution is shown at the top of Fig. 7.
Percolation theory predicts τ = 187/91 in two dimensions,
and we test that prediction in the bottom part of Fig. 7. Here,
if we were precisely at the critical point and the SZR model is
in the percolation universality class, with infinite statistics we
would have asymptotically a perfectly straight line. Notice the
small vertical scale: our fractional fluctuations are less than
0.1%, while our experimental results vary over several orders
of magnitude. The clear agreement convincingly shows that
the zombie model on the two dimensional lattice is in the
percolation university class.

As an additional check, we computed the fractal dimension
of our clusters near the critical point using box counting, a
distribution for which is shown in Fig. 8. We find a fractal
dimension df = 1.89(4), compared to the exact percolation
value of df = 91/48 = 1.895833.

Why did we need such an exhaustive test (many decades
of scaling, many digits in our estimate of αc)? On the one
hand, a much smaller simulation could have told us that
there was emergent scale invariance and fractal behavior
near the transition; one or two decades of scaling should
be convincing. However, it is often the case that there are

FIG. 8. (Color online) Histograms of P (df |L), the observed frac-
tal dimensions of the zombie epidemic clusters as measured by box
counting, measured in L × L systems sizes L varying from 64 to
2048. These extrapolate to give a measured value consistent with the
exact percolation value 91/48, with an error of ±0.04. The inset
shows a finite-size scaling collapse of these same curves. Using
scale invariance arguments similar to those in the text, one can
argue that properties like our measured df should take the form
P (df |L) ∼ LxP((d∞

f − df )/Lx). Hence by multiplying P (df |L) by
L−x and plotting it versus (d∞

f − df )/Lx , the scaling theory predicts
the curves at large system sizes should all lie atop one another. Here
we estimate the critical exponent x ∼ 0.30 ± 0.05; we also used the
scaling collapse to extrapolate and measure df .

several universality classes with critical exponents close to
one another as in the case of percolation [22]. A small error
in αc can produce large shifts in the resulting fits for τ and
df , demanding efficient programming and fast computers to
achieve a definitive answer.

We conclude that the single person per site zombie infes-
tation, near the critical virulence, will on long length scales
develop spatial infestation patterns that are well described by
two-dimensional percolation theory.

V. US SCALE SIMULATION OF ZOMBIE OUTBREAK

Having explored the general behavior of the zombie model
analytically, stochastically, and on homogeneous single person
lattices, we are prepared to simulate a full scale zombie
outbreak.

A. Inhomogeneous population lattice

We will attempt to simulate a zombie outbreak occurring
in the United States. This will be similar to our lattice
simulation, but with an inhomogeneous population lattice. We
based our lattice on code available for creating a “dot map”
based on the 2010 US Census data [23]. The 2010 Census
released census block level data, detailing the location and
population of 11,155,486 different blocks in the United States.
To cast these blocks down to a square grid, we assigned each
of the 306,675,005 reported individuals a random location
inside their corresponding census block, then gridded the
population into a 1500 × 900 grid based on latitude and
longitude coordinates. The resulting population lattice can be
seen in the top half of Fig. 9. You will see the presence of
many empty grids, especially throughout the western United
States. This disconnects the east and west coasts in a clearly
artificial pattern—our zombies in practice will gradually
wander through the empty grid points. To add in lattice
connectivity, we did six iterations of binary closing (an image
processing technique) on the population lattice and added it
to the original. The effect was to add a single person to many
vacant sites, taking our total population up to 307,407,336. The
resulting population map is shown in the bottom half of Fig. 9.
This grid size corresponds to roughly 3 km square boxes. The
most populated grid site is downtown New York City, with
299,616 individuals. The mean population of the occupied grid
sites is 420; the median population of an occupied site is 13.

B. Augmented model

In order to more “realistically” simulate a zombie outbreak,
we made two additions to our simplified SZR model. The first
was to add a latent state E (exposed). The second was to
introduce motion for the zombies. Considered as a system of
differential equations, we now have

Ṡi = −βSiZi, (37)

Ėi = −νEi, (38)

Żi = νEi − κSiZi, (39)

Ṙi = κSiZi, (40)

Żi = μ
∑
〈j〉

Zj − μZi, (41)
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FIG. 9. (Color online) (a) 1500 × 900 grid of the 2010 US
Census Data showing raw data. Notice the multitude of squares with
no people in them in the Western United States. (b) The resulting map
after six steps of binary closing added to the original population.

or as a set of reactions:

(Si,Ei)
βSiZi−−−→ (Si − 1,Ei + 1), (42)

(Zi,Ei)
νEi−→ (Zi + 1,Ei − 1), (43)

(Zi,Ri)
κSiZi−−−→ (Zi − 1,Ri + 1), (44)

〈i j 〉 : (Zi,Zj )
μZi−−→ (Zi − 1,Zj + 1). (45)

Here i denotes a particular site on our lattice. 〈j 〉 denotes a
sum over nearest neighbor sites; 〈i j 〉 denotes that i and j are
nearest neighbors. In this model, zombies and humans only
interact if they are at the same site, but the zombies diffuse on
the lattice, being allowed to move to a neighboring site with
probability proportional to their population and some diffusion
constant (μ). We assume that the humans do not move, not only
for computational efficiency, but because, as we will see, the
zombie outbreaks tend to happen rather quickly, and we expect
large transportation networks to shut down in the first days,
pinning most people to their homes. The addition of a latent
state coincides with the common depiction that once a human
has been bitten, it typically takes some amount of time before

TABLE I. Parameters chosen for our US-scale simulations of
a zombie outbreak. These parameters were chosen to correspond
with standard depictions of zombies and simple physical estimations
explained in the main text.

β 3.6 × 10−3 h/person
α 0.8
κ αβ

η 2 h
μ 0.0914 h

they die and reanimate as a zombie. If a human is bitten, they
transition to the E state, where at some constant rate (ν) they
convert into the zombie state.

To choose our parameters we tried to reflect common
depictions of zombies in movies. The work of Witkowski and
Blais [3] performed a Bayesian fit of a very similar SZR model
to two films, Night of the Living Dead and Shawn of the Dead.
In both cases, the observed α was very close to 0.8. This means
that the zombies in the films are 1.25 times more effective at
biting humans than the humans are at killing the zombies.
We will adopt this value for our simulation. For our latent
state, we adopt a value close to that reported for Shawn of
the Dead, namely a half-life of 30 min. To set our movement
parameter, we estimate that zombies move at around 1 ft/s.
(Note that metric units are uniformly used in science. We use
the parochial US units of feet in homage to the popular culture
from which we draw our data.) To estimate the rate at which the
zombies will transition from one cell to the next, we assume
that the zombies behave like a random gas inside the cell, so
that the probability that a zombie will cross a cell boundary is
roughly 1

4
Z
L2 Lv�t , that is, one-fourth of the zombies within

v�t of the edge will move across that edge in a small amount of
time. This suggests a value of μ of 0.0914 h. This corresponds
to an average time between transitions of around 11 h, which
for a zombie stumbling around a 3 km block agrees with
our intuitions. Finally, to set a rate for our bite parameter,
we similarly assume that the zombies are undergoing random
motion inside the cell at 1 ft/s, and they interact with a human
anytime they come within 100 ft. We can then estimate the rate
at which humans and zombies will interact as SZ Rv�t

L2 , which
corresponds to a choice of β of around 3.6 × 10−3 h. Another
way to make sense of these parameter choices is to ask how
many susceptible individuals must be in a cell before a single
zombie has a higher rate for biting a human than transitioning
to a neighboring cell. For our choice of parameters, this gives

Nβ = 4μ ⇒ N ∼ 102. (46)

This corresponds to a low population density of
∼11 people/km2, again agreeing with our intuition. All of
our parameter choices are summarized in Table I.

C. Simulation details

To effectively simulate an outbreak at this scale, we
employed the Next Reaction Method of [24]. We maintained
a priority queue of all possible reactions, assigning each the
time at which the reaction would take place, an exponentially
distributed random number with scale set by the rate for the
reaction. At each time step of the simulation, we popped the
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FIG. 10. (Color online) S (thick solid blue), Z (solid red), R

(dashed black), and E (light thin green) populations as a function
of time for a full scale zombie outbreak in the continental United
States starting with one in every million people infected. The exposed
population (E) has been magnified by a factor of 100.

next reaction off of the queue, and updated the state of the
relevant squares on our grid. Whenever population counts
changed, we of course needed to update the times for the
reactions that depend on those population counts. This method
remained efficient for simulating the entire US. However,
at late times a large amount of simulation time was spent
simulating the diffusion of the zombies back and forth between
highly populated states. We could have achieved additional
computational efficiency by adopting the time dependent
propensity function approach of Fu et al. [25].

D. Results

With the simulation in place, we are now in a position
to simulate a full scale zombie outbreak. We first consider
an outbreak that began with one in every million individuals
starting in the exposed (E) state in the United States. For a
single instance the overall populations are shown in Fig. 10.
This looks similar to the analytical outbreaks we saw in Fig. 1,
but with a steeper rate of initial infection and some slight per-
turbations to the curves. The total population curves however
hide most of the interesting features. In Fig. 11 we attempt to
give a sense of how this outbreak evolves, showing the state of
the United States at various times after the outbreak begins.

As you can see, for the parameters we chose, most of the
United States population has been turned into zombies by the
first week, while the geographic map does not necessarily seem
all that compelling. In the early stages of the outbreak, while
the population is roughly homogeneous, the zombie plague
spreads out in roughly uniform circles, where the speed of the
infection is tied to the local population density. Infestations on
the coasts, with their higher population density, have spread
farther than those near the center of the country. After several
weeks, the map exhibits stronger anisotropy, as we spread over
larger geographical areas and the zombie front is influenced by
large inhomogeneities in population density. After four weeks,
much of the United States has fallen, but it takes a very long
time for the zombies to diffuse and capture the remaining
portions of the United States. Even four months in, remote
areas of Montana and Nevada remain zombie free.

To investigate the geographical characteristics of the
outbreak, we must move beyond a single instance of an
outbreak and study how different regions are affected in an

FIG. 11. (Color online) Simulation of a zombie outbreak in the
continental United States. Initially one in every million individuals
was infected at random. Results are shown above at (a) one day,
(b) two days, (c) one week, (d) two weeks, (e) three weeks, (f)
four weeks, and (g) two months after the outbreak begins. Shown
here are the population of susceptible individuals (S) in blue, scaled
logarithmically, zombies in red, and removed in green. All three
channels are superimposed. A movie version of this outbreak is
available in the Supplemental Materials online [26].

ensemble of outbreaks. If it takes a month to develop and
distribute an effective vaccine (or an effective strategy for
zombie decapitation), what regions should one locate the
zombie-fighting headquarters? We ran 7000 different 28-day
zombie outbreaks in the continental United States starting with
a single individual. A single instance of one of these outbreaks
originating in New York City is shown in Fig. 12.

By averaging over all of these runs, we can start to build
a zombie danger map, as shown in Fig. 13. In the top plot,
we show the probability that the given cell is overrun by
zombies after seven days. Here you can clearly see that there
are certain regions—those surrounding populous metropolitan
areas—that are at a greater risk. This is partly because those
regions have lots of individuals who could potentially serve as
patient zero, and partly due to the rapid spread of zombies in
those areas. In the bottom plot, we plot the probability that the
cell is overrun, but at the 28 day mark.
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FIG. 12. (Color online) Status of the United States 28 days after
an outbreak that started in New York City. Here blue represents
humans, red represents zombies, and green represents dead zombies.
The three color channels have been laid on top of one another.

After 28 days, it is not the largest metropolitan areas that
suffer the greatest risk, but the regions located between large
metropolitan areas. For instance, in California it is the region
near Bakersfield in the San Joaquin Valley that is at the greatest
risk as this area will be overrun by zombies whether they
originate in the San Francisco area or the Los Angeles–San
Diego area. The area with the greatest one month zombie
risk is northeastern Pennsylvania, itself being susceptible to
outbreaks originating in any of the large metropolitan areas on
the east coast.

VI. CONCLUSION

Zombies offer a fun framework for introducing many
modern concepts from epidemiology and critical phenomena.
We have described and analyzed various zombie models, from
one describing deterministic dynamics in a well-mixed system
to a full scale US epidemic. We have given a closed form
analytical solution to the well-mixed dynamic differential
equation model. We compared the stochastic dynamics to a
comparable density-dependent SIR model. We investigated the
critical behavior of the single person per site two-dimensional
square lattice zombie model and demonstrated it is in the
percolation universality class. We ran full scale simulations of a
zombie epidemic, incorporating each human in the continental
United States, and discussed the geographical implications for
survival.

While this work is predicated on a fictional infestation,
one might ask whether there are any phenomena in the real
world that behave in a manner similar to our modeled zombie
outbreaks. As noted, the SZR model requires that susceptible
hosts directly participate in the removal of zombie hosts from
the infectious population, leading to runaway outbreaks as
susceptible hosts are depleted. One might imagine a similar
phenomenon for infectious diseases that require medical
intervention to be suppressed; as medical personnel themselves
become infected (as has sadly happened to a considerable

FIG. 13. (Color online) Average infection rate from US scale
runs. In both cases, the plot shows the probability of being infected
in that square after an epidemic that originates from a single infected
individual chosen at random from the total population. The top figure
(a) is the probability of being infected after 7 days, while the bottom
plot (b) is after 28 days. In total, this represents 7000 simulated runs
starting from a single individual. The top plot represents the 1467
outbreaks that lasted at least 7 days; the bottom plot represents 1458
outbreaks that lasted at least 28 days.

degree during the recent Ebola outbreak in West Africa), they
become less able to stem the spread of infection. (Medical
personnel, however, represent only a small fraction of all
susceptible hosts, so a refinement to an SZR-type model would
be required to account for this.) One might also imagine
SZR-like dynamics in the spread of ideas and opinions: a
person spreading a controversial opinion in a population, for
example, might be able to sway some converts, but is also
likely to meet resistance and counterarguments, which act to
reduce infectivity and perhaps ultimately stop the spread.

We hope our systematic treatment of an imaginary disease
will provide a useful and inspiring teaser for the exciting fields
of statistical mechanics, network science, and epidemiology.
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