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Preface

I have never been able to figure out what subject I would most like to study,
and I still can’t decide. An odd confession perhaps, coming from one with a
tenured professorship in a specialized area (and in his fifth decade of life, to
boot). Yet, even within the confines of academia, there is such a wide vari-
ety of potentially useful and interesting work to choose from that it has always
seemed rather arbitrary and limiting to focus on a single subject to the exclu-
sion of others. On the other hand, specialization is required by the job mar-
ket. No one moves up who remains a “jack of all trades and master of none.”
And specialization is required in order to be productive in research.

For the scientifically inclined, one solution to this dilemma is to be well
trained in the methods of probability and statistics, which can then be applied
to a broad range of subjects. I came to this solution neither deliberately nor
immediately, but gradually and by accident. In college I took many enlight-
ening courses in anthropology, followed by demography. Taking them in this
order, I saw with fascination how regularities emerged from the most individ-
ualistic behaviors when societies were studied en masse. Then I saw that the
same was true in biology: the laws of probability could summarize and pre-
dict phenomena as diverse as population genetics and reactions to medicines.
Economics, physics, geology, psychology—everywhere you looked probabil-
ity mathematics was a useful tool and contributed something important to
human understanding.

These days, I use probability and statistics primarily in medical research,
to provide physicians with useful information from experiments that would
otherwise seem difficult to interpret, if not chaotic. However, I never lost my
interest in other areas and have always made a note of interesting (and prefer-
ably odd) examples showing probability’s applications more generally. Thus
this book: I’ve finally had the opportunity to put my favorite examples on pa-
per, thanks to Trevor Lipscombe and the Johns Hopkins University Press. I
hope that you find the examples intriguing, and an effective way to learn
some basic concepts of probability and statistical methods. And perhaps you
will even share my amazement when you see the extent to which probabil-
ity influences so many facets of human life.
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Roulette Wheels and the Plague

The Role of Probabilities in Prediction

It was gruesome. Corpses—swollen, blue-black, and stinking of
decay—were hurled through the air, propelled by a catapult on a tra-
jectory that landed them inside the walls of the besieged city. The city
was Caffa, in the Crimea, called Feodosiya in present-day Ukraine.
In the fourteenth century, the city was a stronghold of Genoese mer-
chants. It was under attack by Mongol armies, as it had been several
times before. An attack in 1344 had shown the city to be nearly im-
pregnable, but it was now two years later and something was different:
this time the bubonic plague accompanied the armies from Central
Asia. The invading Tartar soldiers were being decimated by the dis-
ease, and they also faced an acute sanitation problem caused by the
accumulation of dead bodies. Military genius came to their aid. The
Mongols had brought along a kind of strong catapult called the tre-
buchet; it was ordinarily used to hurl heavy loads of stone to destroy
defenses such as masonry walls and towers. Now, not stones but hu-
man missiles rained down upon those behind the walls. An eyewit-
ness by the name of Gabriel de Mussis wrote in a Latin manuscript
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2 • What Are the Chances?

(still legible today) that the mountains of dead were soon joined by
many of the Christian defenders, while those who were able to escape
fled the stench and the disease.

The story of Caffa is not just an early case of germ warfare. Some his-
torians and epidemiologists believe that this particular battle marks
the starting point of the plague’s invasion from Central Asia into Eu-
rope. The Genoese who fled to Europe may have brought the bacte-
ria back in rats on their ships, and in the rats’ fleas (which hop off and
bite people, thus transmitting the Yersinia pestis bacteria to the hu-
man bloodstream). Whatever the original source, the great European
plague of 1348 certainly emanated from Mediterranean port cities.
From accounts written by monks and from parish death records, we
know it went on to kill somewhere between 25 and 50% of the Eu-
ropean population. However, the exact route or routes by which the
Black Death came to Europe will never be known for certain.

The bubonic plague happened centuries ago, but the questions it
posed then are still with us today. Why do epidemics “break out”? Why
can’t scientists predict the size, location, and timing of the next out-
break of an “old” disease, such as influenza or measles, much less the
coming of “new” diseases, such as AIDS? The difficulty lies in creat-
ing accurate scientific models of infection, rather like predicting the
weather relies on decent models of the atmospheres and oceans. Epi-
demics occur when certain chains of events occur; each event has
a certain probability of occurring and, as a consequence, an aver-
age or expected frequency of occurrence. To predict epidemics, we
need to have accurate mathematical models of the process. Model-
ing involves knowing the steps in the chain and the probability of each
one. Then the expected outcome of the whole series of steps can be es-
timated, in essence by multiplying together all the probabilities and
numbers of people involved in a particular scenario. To take a sim-
ple example, consider the case in which a disease is spread by person-
to-person transmission, let’s say by sneezing, as with influenza. An epi-
demic can continue when each infected person in the population, on
average, meets and infects a healthy person, known to epidemiolo-
gists as a susceptible. There is a certain probability of this happening,
as there is for the infection of any given number of new suscepti-
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bles. An epidemic can grow when each person meets and infects on
average more than one susceptible, and then each of the newly in-
fected persons meets and infects several more in turn, and so on. An
epidemic will die out if infected people average less than one “suc-
cessful” new infection apiece, and a simple chain model of probabili-
ties will reflect this.

A closely related example comes not from the world of medicine, but
of comedy. Suppose you make up a joke and tell it to a couple of friends.
If it bombs, the joke won’t spread. But if your friends laugh, and each
of them tells 2 people within 24 hours of hearing it, then the number
of people who will have heard it after 24 hours is 2; at the same rate, af-
ter 48 hours it will be up to 4, after 3 days it will be 8, and by the end of
the week 128 people will have heard your joke. That may sound impres-
sive, but just wait—by the end of the second week, more than 16,000
people will have heard it, and by the end of the month, that num-
ber will have reached some 250 million (roughly the population of the
United States). Or will they have heard it? How many times have you
started to tell a joke only to meet with an “I’ve heard it” or “That’s not
funny”? The fact that a population is not infinite, and that some peo-
ple are immune to a disease or a joke, severely restricts the outcomes of
the mathematical models we construct to explain how a joke, or a dis-
ease, spreads. If this weren’t the case, then we’d have good news and
bad news: the good news would be that we could all make our for-
tunes from chain letters; the bad news would be that the entire popu-
lation of Europe would have been wiped out by the bubonic plague.

The way that gossip spreads throughout the workplace is another in-
teresting example of this chain reaction mechanism. Gossip, though,
has something more profoundly in common with the spread of dis-
ease. You hear a juicy piece of information and pass it on to a couple
of trusted confidants, they may repeat it as well. After a few person-to-
person transmissions, the message is rarely the same as at the begin-
ning. You hear something interesting about Craig and Maureen and
tell someone else. When you hear a spicy story a month later about
Greg and Noreen, will you recognize it as a garbled version of the orig-
inal, or as a hot news item to be e-mailed to your friends right away?
In the language of genetics, the gossip has mutated and, like a disease
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that mutates, it can then reinfect someone who had caught the orig-
inal disease. This happens with influenza, for which the vaccine has
to be reformulated each year in order to be effective against newly ap-
pearing strains of the disease.

Chain Reactions in Atoms and People

Chains of events are used to understand many important processes in
the sciences. The same model—consisting of successive probabilities
and producing estimates of overall outcomes—governs the chain re-
action in nuclear physics. A chain reaction can be sustained when the
atoms in a radioactive substance emit particles, and each atom’s parti-
cles split (on average) one atom in turn, causing further particle emis-
sion, and so on. If more than one atom gets split by particles from the
previous atom, then the chain reaction takes off. In nature, radioac-
tive decay occurs and particles are emitted, but chain reactions do not
occur: they die out, because the radioactive forms (radioisotopes) of el-
ements are not present in a great concentration (and the nonradioac-
tive isotopes do not “emit and split” the way the radioactive ones do).
Thus, the particles emitted, on average, travel harmlessly through the
substance without splitting another atom, without reproducing or en-
hancing their emission. These emitted particles can be very important
even when they are not being used to provoke a chain reaction. Ra-
dioisotopes have been put to great use in medicine, because certain
radioactive materials are attracted to particular bones, organs, or tis-
sues when injected or ingested. Films or radiation-sensitive devices
can then be placed next to the body, and the emitted particles pro-
duce images that allow diagnosis of cancers and other diseases. In
addition, some cancers are treated by radioisotopes because the radi-
ation kills the cancer cells, and the differential absorption by the tar-
geted tissue is a desirable property.

One of the key tasks of the Manhattan Project of the U.S. mili-
tary in World War II, under the leadership of General Leslie Groves,
was to determine how to produce growing chain reactions, in order to
make the atomic bomb. The scientists working on the project achieved
this by isolating and concentrating radioactive isotopes, which in-
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creased the probabilities of particle emission and subsequent nuclear
fission throughout the chain. It was also necessary to know, for exam-
ple, the diameters of atomic nuclei and how to compress atoms closer
together, to estimate and improve the chances of every emitted parti-
cle splitting a subsequent nucleus, causing further emission and en-
hanced release of energy. It took some of the finest physicists in the
world, including J. Robert Oppenheimer, to accomplish this. On July
16, 1945, a little before 5:30 A.M., the first nuclear weapon was ex-
ploded at Los Alamos, New Mexico. Within a month, “Fat Man” and
“Little Boy” would be dropped on Japan.

There’s a strong analogy here: the mathematics that governs chain
reactions is the same as that governing the course of epidemics, be-
cause each person or atom must affect the next one in order for sus-
tained transmission to occur. Early on in human history, large epi-
demics rarely, if ever, happened. Human populations were sparse in
prehistoric times when people were all hunters and gatherers. A small
band consisting of a few families might all be stricken if one mem-
ber encountered the measles virus, but odds were low of meeting and
infecting other bands during the illness. People infected with commu-
nicable diseases could not, on average, meet and infect one susceptible.
Epidemics therefore tended to die out quickly, and there is evidence
that such diseases were quite rare at first but became more common
as the possibilities of transmission rose along with expanding human
populations. Paleopathologists see evidence of measles in human re-
mains dating from about 4000 B.C.E. in the area of the Tigris and Eu-
phrates valleys, because the area was dotted then with small cities
made possible by the dawn of agriculture. From pathologists’ exam-
ination of mummies, we know that tuberculosis was known in an-
cient Egypt from the time when cattle were domesticated and herded
in proximity to people, around 1000 B.C.E., and that the disease prob-
ably entered human society from the bovine reservoir in which it
was prevalent. It takes a large settled society to ensure optimal con-
ditions for person-to-person spread of epidemics: in larger groups
there is a greater chance that someone within the population is avail-
able as a source of infection, and chances are higher that he or she
will meet some member of a constantly renewed source of suscepti-
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bles (provided by births or immigration). It takes a village to make an
epidemic.

For any given population size, the fraction of people who are sus-
ceptible to a disease is a key influence on the ultimate size of an epi-
demic. Smallpox was not an indigenous disease among the tribes native
to North America, so none had the immunity conferred by the expe-
rience of even the mildest smallpox infection, and almost all were sus-
ceptible when colonists arrived from Europe. Many Europeans had
immunity as a result of exposure, whereas others among them had ac-
tive cases of the disease. In 1763, a series of letters between Sir Jef-
frey Amherst, British commander in chief for North America, and
Colonel Henry Bouquet, in charge of military operations at the Penn-
sylvania frontier, outlined a plan to provide materials infected with
smallpox to the native “Indian” tribes. Once again, it was a plan em-
anating from an army facing both an enemy and an outbreak. Bou-
quet reported that the natives were “laying waste to the settlements,
destroying the harvest, and butchering men, women, and children.”
Also, his troops were suffering from an outbreak of smallpox. Bou-
quet and Amherst agreed that the solution was to attempt to appease
(and kill) the enemy with “peace offerings,” consisting of blankets,
handkerchiefs, and the like, which were obtained from the smallpox
hospital maintained near Fort Pitt. Amherst wrote in a letter dated
July 16, 1763, “You will do well to try to innoculate [sic] the Indi-
ans by means of blankets, as well as to try every other method that can
serve to extirpate [them].” An outbreak of smallpox, previously un-
known among the Ohio and Shawanoe tribes, killed them in great
numbers during late 1763 and early the next year, although it is not
clear whether the outbreak was caused by the infected gifts or coinci-
dentally by some other contact with the white settlers.

Variability and Prediction

If the factors influencing outbreaks are so well known, why can’t we do
a better job of predicting epidemics from existing probability models?
To put it statistically, there are too many parameters and they vary too
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much, so a particular prediction has too much uncertainty to it. Scien-
tists may know a lot about a microorganism because it has been stud-
ied for a long time. They may know the molecular structure of its sur-
face coating, the chemical structure of its toxins, a great deal about its
metabolism, even its DNA sequence—but who knows the probabil-
ity that an infected might meet a susceptible, whether in the Euphrates
Valley or the New York City subway system? And what about the prob-
ability that the susceptible gets the disease, a prerequisite for trans-
mitting it to others? This depends in part on the infectivity of the
germ, which depends, in turn, on various chemical and structural de-
tails governed by DNA and thus subject to variability. How many germs
are sneezed out? How many breathed in? What is the minimum in-
fectious dose? This latter parameter is estimated for many germs by
those who study the possibilities of germ warfare. But in natural set-
tings, variability from person to person (and even within one per-
son under various circumstances) comes into play, and there is simply
too much uncertainty because of the inherent variability in so numer-
ous a group of parameters.

For diseases with vectors—other animals that carry the disease to
humans—the steps needed for the chain of causation may have been
identified and scientifically demonstrated beyond the shadow of a
doubt, as in the case of plague. The life cycles of the organisms in-
volved are known in detail. Yet the uncertainties around our estimates
of each parameter are so great, and the likelihood of the estimate be-
ing accurate is so small, that prediction is impossible. In overwhelm-
ing situations, such as when enormous numbers of plague victims and
rats are traveling around Europe, or free blankets with smallpox are be-
ing distributed to a “virgin” population, you don’t need a lot of in-
formation to realize that a problem is coming. But the situation is
rarely so straightforward, and when it is you usually don’t know it un-
til after the fact (and even then only in broad outline). In fact, in epi-
demiology there are far more numerous factors, and much less under-
stood about them quantitatively, than is the case in nuclear physics.
And that’s why we can successfully build an atomic bomb based on cal-
culations of chain reactions yet cannot predict epidemics.
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Profiting from Predictable Probabilities

Oddly enough, some sequences of events are governed very little by bi-
ological or physical parameters that can be known and estimated but,
instead, are governed almost exclusively by what we might call ran-
dom chance; and yet in some ways they are among the most pre-
cisely predictable phenomena of all. Think of gambling, for exam-
ple. No team of scientists is needed to study the physical properties of
coins, cards, or roulette wheels, yet it is possible for a casino or a lot-
tery to predict in advance quite accurately the numbers of winners
and the amounts of the payoffs in the long run. No need for lots of de-
tailed scientific knowledge here—just statistical regularities, because
there are few individual phenomena whose variability will have ma-
jor impacts on the outcomes. The roulette wheel is so much simpler
than many other aspects of life.

The sequence of events on a roulette wheel differs from the se-
quence of events in an epidemic in another important way. Each spin,
each outcome, is independent of the one before. The roulette wheel
has no memory. If the wheel is not “fixed” in order to cheat—if it is a
fair wheel—then whether you win or not on a certain turn has no in-
fluence on your next turn. How different this is from an epidemic
model, in which it certainly is relevant whether the person sneezing
on you got infected from the person who last sneezed on him or her!

The roulette wheel was devised by Blaise Pascal, the eighteenth-
century French philosopher-scientist, who was investigating the con-
cept of perpetual motion. The device he came up with has meant for-
tune or ruin to thousands of people. The fortunate ones have runs of
good luck; the unfortunate do not. If there is no memory in a roulette
wheel and the spins are independent, how come there seem to be
“runs” of good luck? If we use the laws of probability, can we pre-
dict such sequences of events? To answer these questions, let’s look at
one “run” of good luck in detail. To illustrate how statistical probabil-
ity alone can cause runs of this sort, pick an example that we can model
as a simple, purely random process. A run of good luck for a team play-
ing some sport such as soccer or baseball wouldn’t be a good example
for this purpose since there are too many complicating factors op-
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erating at once, such as the teams that happen to be arrayed against
them. Even the timing of the game relative to other games, or the en-
thusiasm of the fans, might have a bearing on a player’s performance;
and the teammates all must interact, adding more complication to
the model. All of this occurs on top of the inherent random variabil-
ity in performance that we might call pure luck. So let’s stick to a
game of chance to keep it as simple as possible and see if we can ex-
pect or predict runs of good luck.

The roulette wheel at a casino in Monte Carlo has 37 slots num-
bered 0 through 36 into which the little metal ball will fall at the end of a
spin. Bets can be placed on odds or evens. Of course, if we only consider
1 through 36, there are 18 odd and 18 even numbers, so we would ex-
pect the house to break even: on average, half the bets would be placed
on odds, half on evens, so the house would collect from half the bet-
tors and pay out to the other half. But the presence of the 0 is the
means by which the house makes a profit on roulette. Zero is consid-
ered neither odd nor even; if the ball lands on 0, the house collects
all the amounts wagered. Thus, 1 of the 37 slots affords the possibil-
ity that the house wins. The ball has a 1/37 probability of landing
on 0, and the wheel is spun roughly 500 times a day, so, on aver-
age, 13 or 14 times per day the entire game’s bets accrue to the house.
Roulette wheels in American gaming houses favor the house even
more strongly: there are both a 0 and a double 0, so the chance is 2/38
that the number chosen is “neutral” and the house collects all wa-
gered amounts. In either case, the advantage in favor of the house is
pretty impressive (1/37 is 2.7%; 2/38 is 5.26%). And these percent-
ages can be counted on as quite reliable predictions in the long run.
But once in a while, a sequence of events may occur that shocks bet-
tors and house management alike.

A case in point occurred in 1873, when an English mill engineer by
the name of Joseph Jaggers won a huge amount of money at the beaux-
arts casino in Monte Carlo. His assistants went to the casino the day be-
fore he did and noted down all the numbers that came up during that
day. Jaggers looked over the numbers, searching for evidence of non-
random patterns. Five of the six roulette wheels in operation were
perfectly normal. The sixth, however, had nine numbers that came up
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far more often than chance alone would suggest. The next day, Jag-
gers came to the casino and played those nine numbers. By the end
of the fourth day, he was sitting on about $300,000. The year Jaggers
died, the English music hall performer Charles Coburn had tremen-
dous success with the song “The Man Who Broke the Bank at Monte
Carlo.”

Jaggers’s good fortune was not really a triumph of mathematics,
but of physics. A small scratch in the roulette wheel caused those nine
numbers to come up more frequently than, statistically speaking, they
should have. Since then, the roulette wheels in the casino at Monte
Carlo have been examined daily by engineers to ensure that all num-
bers come up equally frequently.

The Gambler’s Fallacy

One incident at the casino at Monte Carlo stands out as the most ex-
treme outcome ever seen there, and this one wasn’t due to a phys-
ical flaw in the wheel: on August 18, 1913, evens came up 26 times
in a row. Given that on a single spin there are 18 evens out of 37
possible outcomes, the chance of a single even outcome is 18/37, or
about 0.486 (same as for odds). The probability of 26 in a row is
18/37×18/37×18/37 . . . ,26 times, which is 0.000000007, or roughly
1 in 142,857,000. What a run of luck—or rather, it would have been,
had anyone been “stout of heart” enough to stay the course through
all 26 evens, and prescient enough to quit right on time. However, in
the expectation that an odd number was somehow overdue, there was
a huge stampede of bettors abandoning evens at various points, un-
til no one was left to profit from the run except the house.

Was it luck? Did Destiny provide a good opportunity for a favored
gambler, who ignorantly spurned her offer? Remember that roughly
500 turns of the wheel occur daily, and 4 or 5 or more may be turn-
ing at once. The casino is open almost every day and has been there for
more than 125 years. Eventually, you would see a run like that, or in-
deed of any specified size. Runs of “good luck” can be generated by
no special mechanism at all; no explanation is necessary beyond the
laws of chance and the multiplication of those successive probabili-
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ties. It wouldn’t be your best guess as to what would happen next, be-
cause it is exceedingly rare, but a one-in-a-million event, even a one-
in-five-hundred-million event would be expected to occur in a large
enough sample of outcomes. To this extent it is predictable—we can es-
timate the probabilities and, given a large enough sample size, see ex-
treme series of events in accord with mathematical expectations. It is
easier to estimate the probability of some strange-seeming event in
the case of the roulette wheel than it is to do so for an outbreak of a
rare disease, or the outcome of a baseball season. It’s hard to imag-
ine a simpler chain of probabilities than 18/37 × 18/37 . . . over and
over again.

Note that we can do this calculation in this way precisely because
with a fair wheel the events (outcomes on each spin) are indepen-
dent; we need to know little because the probabilities are unchang-
ing, since no event is contingent on a prior event. So a single probabil-
ity will do for our model. But another implication of this independence
is a source of despair to the gambler: since one outcome has no bear-
ing on the next, it gives the gambler no information on what will hap-
pen next. Beliefs such as “We are overdue for odds” are known as
the gambler’s fallacy. In roulette, every time the ball begins its trav-
els anew, it’s a fresh start, and the fresh start is the same on the first
spin as it is on the millionth. It’s a bit of a paradox: predictions can be
made from probability theory that tell us, rightly, to expect some oth-
erwise surprising runs in the behavior of that little ball, when the out-
comes are considered en masse; yet at the individual level of detail, ac-
tual predictions are impossible. These are statistical predictions, only
good for forecasting patterns in the group of outcomes.

Distributions

The forecasting of the patterns of independent outcomes can be made
much easier if a probability distribution is available that serves as a
model of the events under study. A distribution is a handy tool. We
can consider it as a list of possible outcomes, together with the proba-
bility of each of those outcomes. An everyday example of a probability
distribution is the set of possible outcomes when throwing two or-
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Table 1.1. Distribution of possible outcomes when throwing two dice

dinary dice. Since there are 6 possibilities on one die and 6 on the
other, there are a total of 6 × 6, or 36, possible obtainable combina-
tions, and all 36 combinations are each equally likely if the dice are fair
and independent. However, the various combinations add up to cer-
tain sums ranging from 2 to 12, and the sums are considered the out-
comes when we toss dice. These sums are not equally likely because cer-
tain sums can be arrived at in more than one way. Table 1.1 shows the
outcomes, how you can get them, and the probability of each.

Many probability distributions can become too complicated to set
up in the form of a table, because there are too many possible situa-
tions. One such distribution is the binomial distribution, so called be-
cause it gives the probabilities of outcomes that must occur as one
of two categories. However, in the simplest situation, such as coin
tosses with equal likelihood of heads or tails, values for the distribu-
tion can still be calculated using a tabular format that was developed by
Pascal, the inventor of the roulette wheel. This format, known as Pas-
cal’s triangle, appears in table 1.2.
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Table 1.2. Pascal’s triangle

Here’s how to read the table: Suppose that the number of tosses, or
trials, is 1. On the corresponding line, the two 1s in the triangle pro-
vide the numerators for the two possible outcomes, heads or tails. The
total number of possible outcomes is, of course, 2, so the denomina-
tor for calculation will always be 2, and the probability in both cases is
1/2. With two trials, as shown on the next line, there are three possi-
ble outcomes. Two are represented by 1s and occur with a probability of
1/4; these are the extremes, “two heads” and “two tails.” The third out-
come is “one head and one tail.” There are two ways to get such an
outcome (two different orders in which they can come up), so that out-
come is represented by a 2 and has the probability of 2/4, or 0.5. Fi-
nally, let’s suppose that we are going to toss a coin four times, so
we have four “trials” or experiments. There are two possible out-
comes, heads or tails, on the first try, and two apiece on the second,
third, and fourth tries; thus, the total number of possible combina-
tions we might see is 2×2×2×2, or 16. Therefore, 16 is the denomi-
nator. The triangle provides the numerators and lets us calculate prob-
abilities for all 16 combinations: 1/16 that we get all heads; 4/16 that
we get 1 head, 3 tails; 6/16 that we get 2 heads, 2 tails; 4/16 that we get
3 tails, 1 head; and 1/16 that we get all tails. Note that since the trian-
gle is symmetrical, it doesn’t matter which side you call heads or tails.
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In the days before calculators, it was extremely useful to be able to con-
struct a table like this, and it required little memory to set it up. Once
you write 1s for the outer borders of the triangle, any other num-
ber needed can be obtained by adding the two numbers closest on
the diagonals above it. The process can be repeated for any arbitrar-
ily large number of trials.

But what happens when it’s not a 50-50 split? As great an inven-
tion as Pascal’s triangle was, it only works for “even splits,” and there
is such a huge variety of probabilities (and numbers of trials) that it
would not be practical to generate the enormous books of tables that
would be required to cover every possible situation. Here is an exam-
ple for which we can really appreciate the economy inherent in the
mathematical expression known as an equation. From one little equa-
tion, we can generate all possible binomial distributions, for any de-
sired number of trials and for any underlying probability of event.
Suppose that a pharmaceutical company claimed that a new drug,
taken as directed, results in an 80% therapeutic success rate. A physi-
cian has three separate and independent patients, and they use the
new medicine as directed, but only one patient gets better. Is this sur-
prising? Is the observed success rate of 33% evidence against the com-
pany’s claim? We can use the binomial formula to answer such ques-
tions.

The Binomial Formula

Suppose that p is the assumed underlying probability of a successful
treatment; we are told by the company that p = 0.8. Then the proba-
bility of a treatment failure is called q, and q = 1− p = 0.2. The num-
ber of trials is called n, and n = 3 in this example; the number of out-
comes that are therapeutic successes is called r, and r = 1. The ques-
tion is, How likely is it to see 1 of 3 therapeutic successes when the un-
derlying true rate is 0.8? The binomial formula is

P(r) = n!

r!(n − r)!
prq(n−r)
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so for our example,

P(1) = 3!

1!(2!)
0.810.22

The exclamation point does not mean that “n” is to be shouted
emphatically. It is read as “factorial” and represents the sequential
multiplication of all integers from a given number down to 1; thus,
3! = 3 × 2 × 1 = 6. For the record, 0! and 1! are equal to 1. After a lit-
tle arithmetic, it turns out that P(1) = 0.096. Thus, even with an
underlying 80% therapeutic success rate, in any given set of three pa-
tients, you would have nearly a 10% chance of seeing just a single
success. The intuitive expectation that two or three should be thera-
peutic successes would indeed be your best guess as to the outcome,
since P(3) = 0.512 and P(2) = 0.384; but having a distribution that
matches the situation allows the precise calculation of the probabil-
ity of every possible outcome. Knowledge of these probabilities is the
basis of quantitative predictions before an event occurs, as well as a
basis for judging the likelihood or rarity of events once they are ob-
served.

Why does this formula work, and why didn’t we need it when we cal-
culated the probability of getting 26 in a row on Monte Carlo’s roulette
wheel? First of all, we were actually using the binomial distribution
then, but we didn’t need the formula to figure it out. Here’s why: the
fraction part would be 26!/(26!0!), since there are no odd outcomes
and (n−r) = 0. But 0! = 1, and 26!/26! = 1. The fraction part will al-
ways equal 1 when the outcomes are uniformly one way or the other,
so the fraction part isn’t needed for the calculation in such a situa-
tion.

The fraction part tells you the number of combinations that can pro-
vide a particular outcome. For uniform outcomes, such as all evens,
there’s only one way: each and every spin must come up even. By con-
trast, there are 26 ways to get a single odd spin out of 26 trials: the odd
one can be first, second, third, . . . all the way up to 26th. When cal-
culating the probability of a single spin being odd and 25 being even,
the fraction part would be 26!/(25!)(1!) and would reduce to 26.
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Similarly, while we did use (18/37)26, the q’s superscript (n − r) is
0, once again because there are no odd outcomes whose likelihood
has to be factored in. Thus, calculating the probability of a long string
of evens is easy to do, since you just take the probability of a single
even outcome “times itself” as many times as there are evens; however,
many people do not realize that that is just an easy, special case of the
more general and somewhat more complicated binomial distribution.

The binomial model provides a model of the behavior of the roulette
wheel that is an accurate representation of the outcomes (odds ver-
sus evens) that you would actually observe in a long series of spins.
The binomial is not quite an accurate representation of what is ob-
served with a long series of coin tosses, because most of the world’s
coinage is slightly unbalanced—a little more than half the weight may
be on one side or the other, owing to the slightly different volumes
taken up by the design on each side. For example, the English statis-
tician J. E. Kerrich was trapped as a prisoner of war during the Ger-
man occupation of Denmark during World War II. Having plenty
of time on his hands, he tossed a coin 10,000 times and got 5,067
heads—in other words, 50.67% instead of 50%. Realistically, we ex-
pect only small deviations from 50-50 and, moreover, the coin tosses
are still independent. Thus, the coin-tossing gambler who feels an im-
minent reversal of fortune is “overdue” after a long run is still mis-
taken. However, the binomial model, especially with a 50-50 split as-
sumed, is not an adequate model for predicting the frequencies of boys
and girls in a series of births.

First, demographers know that the sex ratio at birth ranges from 104
to 107 boy babies per 100 female babies, and that this finding is quite
general across societies and time periods. Occasionally, the sex ra-
tio is reportedly 110 or even higher, as in some regions in rural China.
Some observers believe that the elevated ratio there reflects infanti-
cide originating in a strong preference for boys, coupled with a forceful
governmental population control policy providing sanctions for fam-
ilies with more than one child. Others think that the governmental
policy provides the motivation, but that a failure to report and regis-
ter the births of females in rural areas results in the official statistics (but
not the population) being skewed toward boys. China aside, it is a bio-
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logical fact that a typical proportion of boy babies is 105/(105 + 100),
or 51.2%; a typical proportion of girl babies is 100/(105 + 100), or
48.8%, and the difference between the two is 2.4%. Thus, if you al-
ways bet on boys being born, and an opponent always bets on girls,
your profit margin in the long run would be about the same as that gar-
nered by the Monte Carlo casino on a roulette wheel.

However, boys have a much higher mortality rate at every age, from
birth to 100 and beyond, so the surplus proportion of boys dimin-
ishes with every passing year of age, until it becomes reversed and
widows far outnumber widowers. Indeed, the balance between births
and excess mortality so impressed the statistician Johann Peter Suss-
milch that he published a book in 1741, whose title translated into En-
glish is The Divine Order as Derived from Demography. The surplus
of boys at birth was, he said, evidence of the wisdom of the Creator
“thus compensating for the higher male losses due to the reckless-
ness of boys, to exhaustion and to dangerous tasks, to war, to sail-
ing, and to emigration. . . . [He] also maintains the balance between
the two sexes so that everyone can find a spouse at the appropriate
time for marriage.” Not everyone did get married, not even in Suss-
milch’s day, and we might ask the mortality differential to end at mar-
riage, so that the years lived in widowhood might be less on average.
These aspects of the divine plan are not addressed in Sussmilch’s book.

The preceding quote by Sussmilch is from the translation provided
by my friend and colleague Anouch Chahnazarian, published in So-
cial Biology in 1988 shortly before her own untimely death a few years
after completing her Ph.D. Her article provides an extensive exami-
nation of factors affecting the sex ratio at birth. This includes mater-
nal levels of the hormone gonadotrophin: these levels are inherited
and may vary by family and even by ethnic group. For example, she
states that persons of African ancestry “having higher levels of go-
nadotrophin, would have a higher probability of having girls, and
hence a lower sex ratio at birth,” than persons of European ances-
try. This expectation is validated by the findings of repeated stud-
ies of millions of births, in which the sex ratio of African-American
populations at birth ranges from 102 to 104. In addition, births con-
ceived early or late in the menstrual cycle tend to have a higher sex
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ratio, earlier births within a family tend to be males, and births to
younger fathers tend to be males. Hence, a “coin toss model” is wrong
for births, but not only because the chances deviate from 50-50: the bi-
nomial is also a poor model because successive births from one woman
are not independent. Her characteristics, hormonal or ethnic, for ex-
ample, are more similar from one pregnancy to the next than would
be the case for two randomly selected pregnancies from two differ-
ent women.

In any case, a simple distribution like the binomial sometimes can-
not be used to provide reliable estimates of expected outcomes for
a different kind of reason: in some situations, many factors influ-
ence the outcome, and each one has an unknown distribution. Then a
good statistical model would require knowing much more than a sin-
gle probability of success and the number of trials. In such situations,
modeling may be limited to a crude and imprecise model with rather
imperfect prediction. However, an imperfect prediction is often bet-
ter than none and may have much practical value.

This situation is especially common when human behavior, rather
than human physiology or medicine, is the subject of statistical predic-
tion. For example, people in the business of marketing know that po-
tential customers grouped by zip code and some other demographic
data have an increased or decreased propensity to buy a certain item
compared with other groups. Not every potential customer will “bite,”
but the predictions are good enough to increase the yield of a mar-
keting campaign and cut down on the costs of expensive catalogs or
phone calls, or advertisements futilely directed at those who are un-
likely to buy. Once again, you can predict the group outcomes in terms
of proportions buying (that is, the statistical probability or rate of buy-
ing), but not an individual’s decision. No marketers worth their salt
would propose to predict an individual’s behavior, but they can pre-
dict a large group’s behavior, and their profitability may depend on it.
So while you may think of unsolicited mailings as junk mail, in a suc-
cessful campaign these mailings have been very carefully chosen to be
sent to you.

I can think of two professions that do have the aim of predict-
ing of the behaviors of specific individuals: forensic psychiatry and
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astrology. How well founded are their claims of making useful predic-
tions? Remember that all practitioners of medicine, not only forensic
psychiatrists, are constantly asked to make predictions. Patients con-
stantly ask them what to expect, and choice of treatment is driven by
an implicit prediction of what will happen under various scenarios.
When the treatment is new and the disease or illness is poorly under-
stood, there is more uncertainty and the prediction is of dubious ac-
curacy. For example, in certain cancers that are currently incurable by
standard treatments, a clinical trial of a new medicine may be con-
ducted in order to determine whether that medicine lengthens life, or
makes it more pleasant. There must be some reason for a prior expec-
tation that it will, or the experiment wouldn’t be conducted; on the
other hand, there must be great uncertainty, or it wouldn’t be neces-
sary to conduct an experiment. In other situations, the prediction is
excellent. Someone with a strep throat treated with antibiotics will al-
most surely get better. But all predictions have some degree of un-
certainty. Even with a strep throat, occasionally the patient may have
come to the doctor too late, have a virulent, antibiotic-resistant infec-
tion, or suffer from an immune disorder resulting in an overwhelm-
ing susceptibility to the strep bacteria. Thus, we often hear doctors
say, “I think you’ll be okay,” but that’s a general prediction or a best es-
timate. They would never say your recovery is an absolute certainty,
if pressed. And when not just the physical well-being but the behav-
iors of an individual are involved, as in psychiatry, one might expect
prediction to be most difficult of all.

Predicting Criminal Recidivism

Forensic psychiatry is that branch of medicine that deals with psy-
chiatry and the law. Forensic psychiatrists are often asked to decide
whether it would be dangerous to release a particular person who is be-
ing held in a prison or mental hospital. These psychiatrists are being
asked for predictions about whether socially undesirable acts—so se-
vere as to have caused incarceration—are likely to be repeated if the
person is returned to society at large. Naturally, statistics concerning
the incidence of violence among people with various psychiatric di-
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agnoses will come into play here; for example, patients suffering from
paranoid schizophrenia are generally more dangerous to others than
are patients suffering from depression. But an individualized predic-
tion is much more valuable than such generalities, and it must take into
account the multifaceted aspects of a particular personality, the his-
tory of the course of development of that mental illness in that per-
son, and the specific acts committed and their circumstances. There
is likely to be much variability from person to person in these fac-
tors, which will have a significant impact on the decision. Indeed,
the decision is so fraught with ambiguities that it is common for re-
spected forensic psychiatrists to argue forcefully on opposite sides in a
courtroom, which has led to the formulation of Holland’s law of tes-
timony: For every psychiatric expert there is an equal and opposite
expert. By contrast, the decision is pretty straightforward once the di-
agnosis is established; the sensitivity of the bacteria to various an-
tibiotics can even be determined in advance. The decision has com-
paratively little ambiguity because the normal variability from person
to person is not too likely to have a significant impact on the out-
come of treatment.

So how well can future behavior be predicted by forensic psychia-
trists? Two studies provide some clue. The first, published in the Amer-
ican Journal of Psychiatry in 1972, concerns patients who had been held
in the New York State Hospital for Insane Criminals, in Dannemora.
One of the prisoners, Johnnie K. Baxstrom, sued to be released, say-
ing that the explicit purpose of his incarceration was for treatment and
that he was being subjected, unconstitutionally, to incarceration with-
out the mandated treatment. In addition, his rights were violated be-
cause “the administrative decision to retain Baxstrom in Dannemora
was made before any hearing was afforded to Baxstrom and was made
despite the otherwise unanimous conclusion by testifying psychia-
trists . . . that there was no reason why Baxstrom could not be trans-
ferred to a civil institution,” according to the U.S. Supreme Court deci-
sion of 1966 (Baxstrom v. Herold). Eventually, Baxstrom and 969 other
patients were released. Although previously remanded to incarcera-
tion at Dannemora because of predictions of imminent dangerous-
ness, all 970 were subsequently treated at a regular psychiatric hospital.
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Four years after the transfer to a regular hospital, half had been
released and gone to live in ordinary communities; the other half
remained hospitalized or were rehospitalized later. More than three-
fourths of the 970 had gone four years without committing any assault
whatsoever against any hospital staff member or the general public;
the remainder had committed some infraction (although the major-
ity of these infractions were considered minor from the medicolegal
standpoint). The question is, Does the evidence, provided by this un-
expected release for legal reasons, point to good prediction in the case
of the 970 sent to Dannemora? Half survived successfully in the gen-
eral community, the other half in an ordinary, rather than criminally
oriented, psychiatric institution. More than three-fourths showed no
further evidence of dangerousness, despite the original psychiatrists’
judgment that overriding concerns for public safety justified invol-
untary incarceration of each of these patients. Some people conclude
from these findings that proper treatment in ordinary hospital set-
tings or in communities is all that may be needed for adequate control
of some violent mental patients who have been arrested (and sim-
ilar figures have been found in similar circumstances upon release
from other U.S. mental hospitals for criminals). On the one hand, it
seems that more than three-fourths of the Dannemora patients were
deprived of their liberty and incarcerated unnecessarily, because the
prediction of dangerousness was not warranted for them; on the other
hand, as a group, they are dangerous, having a higher rate of commit-
ting some further assault than the general population. The dilemma
that this situation presents for public policy is due in part to the sta-
tistical property of having predictive power for a group but not for an
individual.

In 1972, H. L. Kozol and colleagues published another study of
the predictive power of physicians’ judgments of dangerousness. This
time, the outcome under investigation was the rate of repeat offenses
committed by sex offenders who had been detained for such crimes
and later released. One group was released by the courts in accor-
dance with doctors’ judgments that it was safe to do so; the group’s
rate of repeat offenses was 6.1%. Another group was released by le-
gal tribunals, against doctors’ judgments, and the rate of recidivism
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was 34.7%. Therefore, it seems that the doctors were much better than
the legal bodies at predicting dangerousness, but they weren’t perfect
either—they were wrong in about 6% of cases. Although a small per-
centage, this is an important error in prediction, of course, since these
6% went on to assault someone again. Is the use of doctors’ predic-
tions resulting in release decisions that are adequate for society? Set-
ting aside issues of punishment, should all of the sex offenders have
been permanently incarcerated, so that the detention of 94% would
serve the purpose of preventing the recidivism of the other 6%? Would
this be justice? Or is it acceptable to have a process that allows offer-
ing freedom to not just the 94% but also to those 6% who go on to re-
peat their heinous crimes?

The public is well aware that certain convicted violent criminals,
specifically sex offenders, may be released by the legal system into the
community, and that such offenders may have a fairly high likelihood
of repeating their crimes. From this awareness arose a political move-
ment that successfully sought the passage of laws requiring the names
of convicted sex offenders to be listed in a publicly available registry,
once the offender is no longer incarcerated. The movement gained mo-
mentum from the outrage over circumstances surrounding the brutal
rape and murder of 7-year-old Megan Kanka of New Jersey. Her par-
ents first learned that a neighbor was a twice-convicted sex offender
when he was arrested for the deadly attack. Each state was subsequently
required to meet U.S. federal guidelines by passing Sex Offender Regis-
tration Acts in the mid-1990s. In most locations, the new set of rules is
informally called Megan’s law, after the incident that served as the cat-
alyst for legislative action.

The level of risk of further criminal offenses may vary from one re-
leased offender to another, and Megan’s law dictates that the level of
risk shall determine the amount of information released and the type
of notification permissible. Recommendations about level of risk are
made to the court as a required part of the process when a convict is
being released. The recommendation is made based on the Sex Of-
fender Registration Act Risk Assessment Instrument. The instrument,
or questionnaire, categorizes risk into one of three levels, based on a
point system, and if a convict is classified as a level 3 offender, informa-
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tion about the convict including name, age, address, criminal history,
and photograph may be posted, even on the Internet. The point system
used is very detailed. For example, unwanted touching through cloth-
ing equals 5 points; sexual intercourse equals 25 points. If the crime
occurred less than 3 years ago, 10 points are added. If there were two
victims, that’s worth 20 points; three or more victims, 30 points. Four
circumstances automatically garner a level 3 classification: prior felony
conviction for a sexual crime, serious injury or death of the victim,
threat of further criminal acts made by the criminal, or clinical judg-
ment that the individual lacks self-control because of specific psychi-
atric abnormalities. This is an example of public policy being driven by
the public’s concern over the much-less-than-perfect predictive value
of psychiatrists’ judgments and the premature release of offenders. Yet,
paradoxically, those agitating for Megan’s law must have accepted that
statistical predictions are of some value, for the compromise solution
entails notification based in part on statistical categorization of risk.

There will always be unpredictable variability in individuals even
with a seemingly similar criminal and psychiatric profile. There are
also always differences in the contributing factors that, through a long
chain of causation, end up in the commission of crimes. There will
probably also always remain interrater variability among psychiatrists
in their assessment of an individual’s dangerousness. There can never
be a perfect checklist with a scoring system allowing us to free safely
all those with “dangerousness scores” lower than some cutoff value.
This type of problem, therefore, cannot have a permanent, objectively
correct, agreed-upon resolution, because statistical issues concerning
prediction for groups must necessarily have an impact on medicolegal
judgments.

Do Our Faults Lie in the Stars?

Astrology is another field that seeks to make useful predictions about
human behavior, as does forensic psychiatry, and should be subjected
to the same criteria of statistical proof. The low value of astrology in
predicting specific, unambiguous life events or sequences, or even per-
sonality traits, has been noticed since ancient times. A case in point
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is the commentary of the Roman senator Cicero, who lived from 106
to 43 B.C.E. In his book De Divinatione (I’m using Falconer’s transla-
tion), Cicero notes that “Plato’s pupil, Eudoxus, whom the best schol-
ars consider easily the first in astronomy, has left the following opinion
in writing: ‘No reliance whatever is to be placed in Chaldean [Baby-
lonian] astrologers when they profess to forecast a man’s future from
the position of the stars on the day of his birth.’ ” Cicero’s high opin-
ion of Eudoxus (a Greek who lived around 400 B.C.E.) has been borne
out over time. Eudoxus not only proved key theorems in geometry; he
also produced the first Greek map of the stars and was the first Greek
to calculate the motions of the planets using a geometrical model em-
ploying the mathematics of concentric spheres, an important calcula-
tional tool as well as a conceptual advance.

Cicero sets forth many reasons for doubting astrology. The mecha-
nism cannot be true because, as he notes, at the same moment in time
the stars will not be in the same positions for all observers on Earth,
but rather vary according to where they are. He also notes that appear-
ance, gestures, habits, and lifestyles of children resemble their parents.
These traits, and those differences in body and mind-set “which dis-
tinguish the Indians from the Persians and the Ethiopians from the
Syrians” are evidently “more affected by local environment than by
the condition of the moon.” More important to him than this gen-
eral reasoning is the lack of predictive power of astrology: to him,
“the fact that people who were born at the very same instant are un-
like in character, career, and in destiny, makes it very clear that the
time of birth has nothing to do in determining the course of life.” Most
tellingly, he asks, “Did all the Romans who fell at [the battle of] Can-
nae have the same horoscope? Yet all had one and the same end.” Can-
nae was a truly crushing defeat for the Roman army. In 216 B.C.E.,
Hannibal, leading the Carthaginian troops of about 50,000 men, de-
stroyed the much larger Roman army, killing more than 60,000 of its
80,000 soldiers. Cicero has a point: if horoscopes could not be used
to predict death at Cannae, they could not be said to possess predic-
tive value.

This is implicitly a statistical argument. A Roman’s chance of dy-
ing at Cannae is independent of when he was born (the rates are the
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same for all birth dates and times); and, conversely, among those sol-
diers who died in battle there, no preponderance (no elevated rate or
probability) of a particular horoscope could be seen. These days, the
evidence against astrology is more explicitly statistical, and the infor-
mation is better documented and better controlled. A study published
in 1985 in the British journal Nature illustrates this point and demon-
strates the strength of the statistical evidence against astrology.

Unlike Cicero, the research team conducting this modern study con-
sulted professional astrologers of high standing in that field, in order
to avoid testing “the scientists’ concept of astrology” rather than “as-
trology as practiced by the ‘reputable’ astrological community.” These
astrologers were selected from a list provided by the National Coun-
cil for Geocosmic Research, an organization respected by astrologers
worldwide. Twenty-eight astrologers agreed to participate and to pro-
duce natal charts showing positions of heavenly bodies at birth, to-
gether with the resultant personality descriptions, for more than 100
college-educated volunteer subjects from the general public. Despite
Cicero, astrologers do know that the stars are different from one lo-
cation to another at the same point in time; they were therefore pro-
vided, as requested, with exact location, as well as date and time of
birth. This information was included in the study only if documented
by birth certificate, hospital records, or other records contemporary
with the birth.

The study had two parts. First, each birth record resulted in a na-
tal chart and a written interpretation by an astrologer, who described
the personality traits that the corresponding individual subject was
supposed to possess. Next, the names were removed from these in-
terpretive documents. Each volunteer was then presented with three
personality descriptions: his or her own as well as two others cho-
sen at random from the remaining lot. The task for each subject was
then to pick the description of himself or herself. By chance alone,
one would expect 1/3 of their choices to be correct. This was the sci-
entists’ expectation. The astrologers felt that their work would result
in an identification rate better than 50%.

These predicted rates of matching represent estimates. No one said
that rates had to be exactly 1/3 or 1/2 to prove their point, of course.
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Sampling fluctuation is to be considered, and this is a phenomenon
produced by random chance. For example, even if a coin produced a
50-50 split of heads and tails in the long run, in 10 tosses one might
well have exactly 5 heads and 5 tails, but it would not be surprising
to find 6 of one and 4 of the other. Indeed, always finding exactly 5
heads and 5 tails in each set of 10 would be shocking. The point is
that in a single experiment your expectations are centered on a certain
number; the closer the actual outcome is to that number, the more the
finding is supportive of the viewpoint that had resulted in choosing
that number.

In the case of the test of astrology’s success, complete data from
both the test subject and the astrologer were available in 83 cases.
How often did a subject recognize the personality description result-
ing from his or her own natal information? Correctly matching choices
were made by 28 of the 83 subjects, or about one-third of the time
(33.7%, in fact). Thus, it would appear nothing special is going on be-
yond chance matching. Perhaps astrology did not produce recogniz-
able descriptions of subjects from their natal information. However,
this is a weak measure of astrology’s success. Astrologers or even sci-
entists might well argue that the outcome merely demonstrates that
people are not good at picking out descriptions of themselves.

The second, stronger part of the study involved the examination of
a different type of outcome. Individual subjects each filled out the Cal-
ifornia Psychological Inventory (CPI), a bank of more than 400 ques-
tions about various preferences, situations, and traits that has been
around since 1958. The questions are in the form of statements, with
respondents labeling each statement as true or false. H. G. Gough pub-
lished some examples of typical questions in Psychological Reports in
1994. These included

• “If the pay was right I would like to travel with a circus or carni-
val.”

• “I would never play cards (poker) with a stranger.”
• “Before I do something I try to consider how my friends will react

to it.”
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The CPI produces numerical ratings on a number of subscales such
as dominance/passivity, self-control, tolerance, and flexibility. This
test does not directly ask for characterization of one’s own personal-
ity, and the results have been subject to external validation by com-
parison with psychologists’ judgments concerning personality traits.
Thus, the test is well respected by psychologists; moreover, it was
selected from among the available personality traits specifically be-
cause the astrologers recruited for the Nature study agreed that the
personality traits measured were closest to “attributes discernable by
astrology.” The test results are presented as a CPI profile that gives nu-
merical results for the subscales.

In a mirror image of the first part of the study, the astrologers were
presented with sets consisting of one natal information chart and three
CPI profiles. One of these profiles came from the individual whose na-
tal chart was provided. The two others were selected at random from
the remaining lot. The task for the astrologers was to take the birth in-
formation and decide which of these three CPI profiles was the match-
ing profile from the same individual. Once again the scientists’ pre-
diction was that the astrologers’ rate of success at matching would be
consistent with the 1/3 probability expected by chance alone. The as-
trologers, for their part, felt that astrology would be proven useful if
they achieved 50% correct matches. There were 116 natal charts avail-
able to be matched with the CPIs. Thus, the scientists estimated that
there would be 39 correct matches, while the astrologers expected
to make 58 matches or better. The number of correct CPIs chosen
was 40. In addition, astrologers were also asked to rate how confi-
dent they felt about each match, on a scale of 1 to 10. There was a
strong tendency for answers to cluster around 8, but it was no differ-
ent for correct matches versus incorrect ones.

Occasionally, people I meet socially will ask me my astrological “sun
sign.” Years ago, I used to tell them—a revelation invariably followed
by a flash of “understanding” and a comment like, “Of course! That’s
why you have such-and-such a personality trait!” I always thought it
odd that they had to ask, if it was so obvious. Why not just come up to
me and say, “You must be a Leo,” or “You’re a Pisces, aren’t you?” So I no
longer reply with the sign, but rather a little challenge, because I am cu-
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rious to see the outcome. When asked my sign, I reply, “You tell me.”
I’ve kept track of the answers, and so far all the signs are suggested to
me in equal numbers. This is called an even distribution of outcomes,
or sometimes a flat distribution, because in a bar chart the bars repre-
senting the signs would all be about the same height and no one sign
would predominate. I’ve often thought about taking it one step fur-
ther and giving an incorrect sign and seeing whether my fraud would
be detected. So far, I’ve resisted the temptation.

My own experience of astrological predictions of sun signs, as well as
the astrologers’ inability to predict CPI outcomes from birth records,
implies something about the distribution of personal traits across as-
trological categories. Whether the categories are broad, like the choice
of sun sign categories, or narrow, like the multitude of possible na-
tal information configurations, personal traits are more or less equally
distributed across the categories. If you used the height of a bar graph
to show the proportion of people with a given trait, and used a sep-
arate bar for each astrological category, the bar would be about the
same height for each category. Similarly, the bars would be of about
equal height if Cicero had made a graph showing death rates at the
battle of Cannae, as in comparing sun signs or astrological configura-
tions. When there is a flat or “even” distribution of data among cate-
gories, an individual’s membership in a given category gives no useful
information about the likelihood of a particular outcome for that
person.

At the other extreme, some distributions of data provide lots of in-
formation about the likelihood of given outcomes. We’ve already be-
come familiar with the binomial distribution and its use in estimating
probabilities, but many situations involve continuous data. For exam-
ple, blood sugar levels have a continuous distribution, but the dis-
tribution is shifted to the high side in the diabetic patient. Elevated
pressure within the eyeball is a good predictor that the degenerative
disease known as glaucoma is under way, and the higher the intraoc-
ular pressure, the worse it is. Many measurements like these in clini-
cal medicine, and many in social science, follow a bell-shaped curve
called the normal distribution. When measurements do follow a nor-
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mal distribution, calculation of the probabilities of various measure-
ments within groups is made easier, and prediction is improved. Ap-
plications of the normal distribution are the main subject of the next
chapter.





2

Surely Something’s Wrong
with You

A great performance form the Yankees’ Derek Jeter helped crush the
Baltimore Orioles at the stadium yesterday.

As I typed the previous sentence, my word processor automatically
looked for errors in grammar and spelling and underlined the word
Jeter. The ballplayer’s correctly spelled last name was classified as a
spelling error. On the other hand, there’s a typographical error that
was missed: the word from should have appeared, rather than form.
Any system that classifies things into two categories can make two
kinds of mistakes, called “false positives” and “false negatives.” Un-
derlining Jeter is a false positive—his name shouldn’t be flagged as
a problem, yet it is. Failure to flag the word form is an example of
a false negative—it should have been noticed as a problem, yet it
was not. The prevalence of this type of error in the output of word-
processing programs has ensured the continued employment of copy
editors, because (at least for the present) people can recognize why
Jeter was right and form was wrong much more reliably than comput-
ers can.

31
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The inevitable phenomenon of false positives and false negatives
can have important consequences. For instance, they may pose a seri-
ous threat to proper diagnosis and treatment of illness. Blood tests pro-
vide a perfect example. In days gone by, a visit to the doctor meant that
leeches would be applied, or a bleeding performed, to rid the body of
impurities. Nowadays, a tube of blood is drawn and sent to a clini-
cal laboratory for analysis. A few hours or days later, the results come
back, and perhaps some of the lab values will be flagged as abnor-
mal, meaning that they are outside the normal range. Your doctor
may remark, “Something’s not right here: your blood levels of choles-
terol and calcium are high.” These elevated serum levels may be indica-
tive of an increased risk of heart disease and of metabolic disorders,
respectively. But do abnormal findings on laboratory tests necessar-
ily mean that something is wrong with you? Or could the lab’s results
be false positives or false negatives? If so, how prevalent are errors?

To start with, we need to know what “normal” means in this con-
text, so we need to know how normal ranges are set in medicine, and
how people get flagged as abnormal. Here’s a typical process: A large
group of presumably disease-free individuals have blood drawn, and
the distribution of values for such variables as cholesterol or calcium
is established. (In chapter 1 we defined a distribution as a set of pos-
sible outcomes together with the probability of each of those out-
comes.) With the distribution of lab values in hand, the next step
is to decide what constitutes an extremely high or low value. Usu-
ally the 95% of values in the center are considered unremarkable. The
5% of values that are most extreme are used to set cutoffs for the nor-
mal range (that is, the 2 1

2 % highest plus the 2 1
2 % lowest observa-

tions).
Although some normal people apparently have such extreme val-

ues, lab values way off center are worth further investigation, be-
cause they are probably more typical of other distributions, such as
those of people with disease—they are certainly not typical of nor-
mal individuals.

This common procedure is not based on any detailed knowledge
of disease processes. It’s not as if scientists are able to determine the
distribution of lab values that should be seen in normal individu-
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als or in case of disease based on the pathology involved and noth-
ing else. It’s all based on typical observed population values. Indeed,
5% of absolutely normal people will inevitably have lab values clas-
sified as “extreme” by this method. What’s worse, the more testing
that’s done, the more likely a mistaken classification will occur, a per-
son will be categorized as “abnormal” on some variable, in the absence
of disease. False positives on medical tests are often caused by this phe-
nomenon, especially when a large battery of tests is ordered for a par-
ticular patient.

We can use the binomial distribution to quantify the chances of false
positives here. Suppose that 18 lab tests are conducted on a disease-
free individual, and there’s a 95% chance of being classified as normal
by any given test. The chance that all 18 will be normal is 0.9518, since
we assume that fluctuations in the tests are independent in normal in-
dividuals. The combined probability of all outcomes is, of course, 1.0;
the combined probability of all outcomes excluding the uniformly nor-
mal findings on all 18 tests is thus given by 1 − (0.9518). Hence, the
chance that at least one lab test will show an abnormal reading turns
out to be greater than 60%. So, if you go to a doctor and have a lot of
tests done, it is likely that some of them will indicate a suspicious find-
ing and that further tests will be required.

This process does not get repeated indefinitely, however, because
the odds are small that successive independent tests for a given con-
dition will all be positive, unless, of course, something is truly going
wrong. In addition, second-round tests are usually better at discrim-
inating between those with a given illness and those without it. Usu-
ally such tests are more expensive, and that’s why they are not done
first. In testing for HIV, the virus that causes AIDS, the enzyme-linked
immunosorbent assay (ELISA) is done before Western blots and vi-
ral culture because it is cheaper; however, it is not as good.

Testing Tests

What does it mean to say that a test is “not as good”? The quality of a di-
agnostic test is assessed by several measures. One is sensitivity, or how
often the test correctly identifies those with the disease. In other words,
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it is the probability of a positive test given that the patient in fact has
the disease. Sensitivity’s companion measure is specificity, the proba-
bility of a negative test given that the patient is in fact disease free. You
can see that the calculation of sensitivity and specificity requires the
use of a group of known “true positives” and “true negatives” whose
status is determined from some other measure or test, presumed ac-
curate. This other test is called the “gold standard.” For example, the
results of an ELISA for HIV might be assessed by the test’s manufac-
turer as correct or not depending on whether they match the results
of a definitive clinical examination for AIDS.

As a patient, however, your interest is not in the sensitivity and speci-
ficity of lab tests. You need to know about the reliability of the results
from a different perspective. When your doctor says the lab test has
come back “positive” or “negative,” you want to know the chance that
it’s true (or not). Two measures are relevant here. The first is the pre-
dictive value of the positive test (the probability that you actually have
the disease, given that you test positive). The second is the predic-
tive value of the negative test (the probability that you are actually dis-
ease free, given a negative result on the test).

How can the predictive values be determined? The sensitivity and
specificity are essentially fixed by the physical and chemical properties
of the test, and their estimates are provided by the test’s manufacturer—
before marketing, it must be clear that a test replicates the gold stan-
dard fairly closely. However, the predictive values cannot be known
in advance because they do not depend exclusively on sensitivity and
specificity. They also depend, in part, on the prevalence of the dis-
ease being tested for—in other words, they depend to an important
degree on the characteristics of the population in which the test is
used.

This may seem strange, but consider the following example. We
have a test for a disease, and it has a sensitivity of 0.95 and a speci-
ficity of 0.95. Thus, with either a known positive or a known negative,
the test has a 95% chance of correctly declaring the status of the dis-
ease. Suppose that the true prevalence of the disease is 40% in 1,000
persons tested. Such a high prevalence may seem surprising, but re-
member that people tested for a certain disease usually are a subset ex-
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Table 2.1. Disease status and test results in a setting with a high disease preva-
lence

hibiting signs or symptoms leading to a clinical suspicion of the illness
being present. And disease prevalence rates may indeed be that high
even in some asymptomatic populations; for example, it has been esti-
mated that the prevalence of HIV infection is greater than 50% among
intravenous drug abusers in Newark, New Jersey.

The tested population can therefore be classified as shown in ta-
ble 2.1. For every 1,000 persons, 400 have the disease and 600 don’t. Of
the 400 with the disease, 95% (or 380 individuals) are correctly called
positive by the test, and 95% of the 600 without the disease (or 570 in-
dividuals) will correctly yield a negative result. However, note that 20
of the 400 persons with the disease will end up erroneously classi-
fied as negative, and 30 of the individuals without the disease will be
classified as positive. These people are false negatives and false posi-
tives, respectively, but neither they nor their physicians are aware of
this, because they have only the lab results to go on at present. Here’s
the patient’s perspective: For every 410 lab slips labeled “positive” on
a physician’s desk, 380 will in fact be true positives, so the predic-
tive value of the positive is 380/410, or 0.927. Thus, when the patient’s
lab slip comes back positive, there is a 92.7% chance that it is cor-
rect and the disease is present. As to the negative slips, 570 of them are
correct, out of 590 in all, for a predictive value of the negative test of
0.966, or a 96.6% chance of being correct.

But this really does depend on prevalence, as you can see from ta-
ble 2.2. Let sensitivity and specificity remain the same, at 0.95 each,
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Table 2.2. Disease status and test results in a setting with a low disease prevalence

and let’s change the prevalence from 40 to 2%. Now 20 persons have
the disease, and 980 don’t. Nineteen of these 20 are correctly classi-
fied as positive by the test, and 931 of the 980 are correctly classified
as negative. As you can see from table 2.2, the numbers of false posi-
tives (49) and false negatives (1) can be obtained by subtraction.

Now the predictive value of the positive is 19/68, or 0.279, and the
predictive value of the negative is 931/932, or 0.999. In such a sit-
uation, a lab slip with a negative reading is almost always correct,
but a positive reading is true less than 28% of the time. What hap-
pened here? The test seemed pretty good at finding positives before.
The properties of the test resulting in 95% sensitivity haven’t changed.
The much lower prevalence of the disease means that there is rela-
tively little opportunity for true positives to occur, even if all disease
cases were perfectly categorized as positive. Furthermore, even a mod-
est false positive rate among the much larger group of negatives will
provide so many positive lab results that the resulting “pool” of posi-
tives will overwhelmingly consist of false positives.

There is a judgment implication in this: the physician (and pa-
tient) must use judgment in interpreting the results of clinical labora-
tory tests. Ironically, the assessment of the pre-test probability of dis-
ease, subjective though it may be, must play a role in determining
how much credence to give the seemingly objective lab report. This
means that the doctor should have a good idea of the type of popula-
tion from which the patient is drawn (with respect to risk factors and
the like). The lower the prevalence of disease in groups similar to this
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patient, the less likely the “laboratory positive” is to be correct and the
more likely it is to be a false positive. There is also a policy implication:
groups to be screened for a disease should be at high risk of the dis-
ease, in order to avoid spending time and money for a small yield of
true positives (and for a large yield of false positives who will have un-
necessary follow-up, expense, and worry until their true status be-
comes evident). Perhaps that implication seems obvious (who would
screen children for cancer of the colon or prostate?). However, remem-
ber that when the United States was in the grip of the anxiety sparked
by the initial awareness of the AIDS epidemic, some people suggested
that everyone in the United States should be screened for AIDS. If
1% of the U.S. population were infected with AIDS, the remaining
99% of the population would provide ample numbers of false posi-
tives at even a small error rate, and the majority of positives detected
in a national screening program might well be false ones (depending
on the exact sensitivity and specificity figures). This is hardly a use-
ful paradigm for a screening program.

If prevalence rises rather than falls, the trend is reversed: the pre-
dictive value of a positive is improved, and the predictive value of the
negative becomes problematic. The numbers of true negatives even-
tually become small enough that even if they are all correctly classified
as negative by the test, any small error rate among the overwhelm-
ing number of positives will cause a preponderance of false negatives
as a fraction of all negatives. To use an extreme example, in an AIDS
hospice every negative test would be a false negative test, and the pre-
dictive value of a negative would be zero.

Many measurements in medicine are not simply negative or posi-
tive readings of course, even though a decision about a patient’s sta-
tus is recorded in such binary fashion. Patients are said to have high
blood pressure or not, to have glaucoma or not, and so forth, but in re-
ality nature often presents a continuum of possible values for param-
eters while arbitrary cutoff points are used in diagnosis. At a certain
point, it’s important to treat high blood pressure; at a certain point
intraocular pressure needs to be treated to arrest the damage caused
by glaucoma. Still, knowledge of the underlying distribution of val-
ues is an important basis for medical decision making and for deter-
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mining when a drug has been effective in shifting the typical values of
a parameter. One of the most common and familiar underlying dis-
tributions is called the normal curve.

Celestial Distributions and the Corner Bakery

The normal curve is sometimes referred to as the Gaussian curve, or
the normal curve of error, because of its origin. Carl Friedrich Gauss
was one of the first to apply this distribution extensively, using it to cal-
culate the probabilities of various outcomes. A child prodigy born in
Germany in 1777, Gauss became an outstanding mathematician and
astronomer. He estimated the distance, sizes, and locations of celes-
tial objects and was using a new telescope in an attempt to produce
an improved estimate of the moon’s diameter. While doing so, he no-
ticed something strange. His repeated measurements varied because
of errors, yet the deviations occurred in a consistent way. Most mea-
surements differed slightly from the average; the greater the deviation
or error, the less likely it was to occur. Gauss established that the prob-
ability of errors was distributed according to the normal curve, whose
shape is shown in figure 2.1. The horizontal (x) axis represents mea-
surements and the vertical axis the relative frequency of such mea-
surements.

The normal curve is unimodal (one humped), continuous (any x
value is possible, not just certain intermittent ones), and extends in
both directions without touching the x-axis. This latter property im-
plies that the area under the curve (AUC) is never quite 0—any mea-
surement, no matter how extreme, might possibly occur. Of course,
the AUC at extreme values of x is very small. More than 99% of
the AUC (more than 99.7%, actually) is included within the range
of x values that runs from 3σ below the mean to 3σ above the
mean.

The Greek letter σ (sigma) represents a statistical value called the
standard deviation, or SD. It is obtained by subtracting the average (µ,
mu) from each x value; this process gives a set of deviations from the av-
erage, and then we can examine these differences to see whether they
might typically be large or small. After all, some types of measure-
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Figure 2.1. Areas under the curve of normal distribution.

ments are subject to a great deal of variability and others are rela-
tively reproducible. It would be useful to have a number reflecting the
sum of these deviations in order to quantify the amount of variabil-
ity, but some deviations have positive signs and others negative, and
these would cancel out each other. (The mean is right in the mid-
dle of all observations—the curve is symmetrical—so it is very easy
to see that the sum would in fact always be 0.) To avoid this prob-
lem, the deviations are squared before taking their sum. (The pro-
cess of taking the sum is symbolized by the Greek letter �, a capital
sigma.) Then they are averaged by dividing by N, the size of the pop-
ulation of observations. Since they were squared before they were av-
eraged, the square root is now taken to restore the scale to what it was
before. The result is the standard deviation:

σ =
√

�(x − µ)2

N

Gauss calculated that 68% of the observations in normally dis-
tributed data lie between 1 SD above and 1 SD below the mean. About
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95% of the observations lie in the rangeµ±2σ . And, as mentioned ear-
lier, 3 SDs on either side of the mean encompass almost all of the AUC.
More generally, Gauss discovered that if one has the mean and SD of
a normal distribution, it is possible to calculate the probability of see-
ing an observation at any location along the x-axis.

It’s not only celestial measurements that follow a normal distri-
bution. Quality control specialists involved in checking the results
of manufacturing processes often use normal distributions in ana-
lyzing the mean and variability of measurements as different as the
width of aircraft parts and the amount of wine in a bottle said to con-
tain 1 liter. There is always some variability from part to part and from
bottle to bottle, so distributions are examined to see whether this vari-
ability is within acceptable tolerance limits.

Long before Gauss quantified the systematic deviations that he
found, it had been understood that variability in measurements and
in manufacturing processes was to be expected. Efforts were made to
rein in variability by constant comparison with standard measures.
Throughout history, kings had standard gold coins of various denom-
inations and expected those produced by royal mints to match them
in weight. Knowing that the match would rarely if ever be perfect, they
promulgated allowable limits—excessive variation would lead to ac-
cusations of cheating. On the other hand, sometimes variability had
to be taken into account in the establishment of units of measure-
ment themselves. Many units were originally defined as distances that
could be approximated using a human body. The yard, for exam-
ple, started out as the distance from the tip of a grown man’s nose
to the tip of the longest finger on his outstretched hand. In Egyp-
tian and biblical times, the cubit, based on the forearm, was used in
building. The foot as a unit is another obvious example. Such units
were useful because they were always available and required no spe-
cial equipment, but obviously they were highly variable and therefore
not very helpful for commercial purposes and would often lead to dis-
agreements.

During the Enlightenment, technology and government grew to the
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point where a meter could be engraved on a bar of metal in Paris and
serve as a standard for all of France; but even before then some peo-
ple had seen the use in averaging out variability from person to per-
son, as a way of standardizing units. In 1584, J. Koelbel suggested a
way to provide a good estimate of the rute, or rood (a now-archaic unit
used in measuring land), and a good estimate of the linear foot as well.
He published his method in a book called Geometry. This was a book
for surveyors rather than mathematicians: here geometry is the “sci-
ence of measuring the earth,” rather than a system of theorems and
proofs about spatial figures as in Euclidean geometry (although such
systems did originate in techniques for measuring land). Koelbel sug-
gests taking 16 men “as they happen to come out” from church and
have them line up their left feet in a single, contiguous row, one be-
hind the next. The length of this sequence of feet would be “the right
and lawful rood”; one-sixteenth of this length would be “the right and
lawful foot.” We see here a recognition of the importance of averag-
ing out the person-to-person variability in some random, representa-
tive sample of foot lengths in order to arrive at some “truer” value. The
true value is held to be the mean of the observations, just as in the nor-
mal distribution.

Once Gauss had demonstrated that you could graph the expected
variability around observations and show how likely such deviations
were, a great many uses were found for the normal curve, some triv-
ial and some of great benefit to humanity. A great French mathemati-
cian, Jules Henri Poincaré (1854–1912), used the normal distribu-
tion to confirm his suspicion that his local bakery was cheating him.
It was his habit to pick up a loaf of bread each day, a loaf sold as
weighing 1 kg. Poincaré knew that one underweight loaf was not ev-
idence of deliberate cheating if the product weighed 1 kg on aver-
age, because the next loaf might weigh a bit over the average. Thus, he
weighed the bread he bought over the period of 1 year and found a nor-
mal distribution with a mean of 950 g. On average, he was being short-
changed by 5%, and he complained to the authorities, who gave the
baker a warning. The subsequent year’s data brought another com-
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Figure 2.2. Frequency of false negatives (FN) and false positives (FP) when two
normal curves overlap.

plaint from Poincaré, who said that the merchant continued to cheat.
Once again the data were unimodal, with the peak frequency at 950 g.
However, the distribution was no longer symmetrical. While the dis-
tribution’s right-hand half was the same as before, to the left of the peak
the curve was much attenuated; it was shorter in height and in length
than last time. The explanation? The baker had not changed his ways
except in one respect: aware that Poincaré would complain about be-
ing shortchanged, the baker always sold him the largest loaf he had on
hand. When the police came calling at his shop, the baker was aston-
ished that Poincaré had realized that the complaint was still valid.

The normal curve can help us understand why doctors using lab-
oratory tests may still have a great deal of trouble deciding whether
a given patient has a disease, even with precise, continuous measure-
ments in hand. Figure 2.2 is a schematic representation of the prob-
lem. On the left, there is a normal curve for the distribution of clinical
measurements in those without disease. It might be the distribution of
intraocular pressure in patients without glaucoma, for example. The
other normal curve is the distribution of measurements among peo-
ple who do have the disease. These curves overlap—in nature the sep-
aration between the groups is clearly not complete.
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The dashed vertical line that intersects the two normal curves in fig-
ure 2.2 can be referred to as a criterion line; if you go to the eye doctor
and your intraocular pressure is above that point, you will be consid-
ered to have glaucoma. The odds certainly would be overwhelming
that you’d have that disease, so it’s a good test in that sense. How-
ever, there will be some disease-free people with measurements to the
right of that criterion. The area that they occupy is designated FP, for
false positives. There will also be some people with disease whose mea-
surements fall to the left of that line, designated FN, for false nega-
tives. Sensitivity is also represented in figure 2.2: it is the proportion of
the area among the diseased population that is to the right of the cri-
terion line. Specificity is the proportion of the AUC for disease-free
people’s measurements to the left of the criterion line.

One might suggest moving the criterion line to the left to include
more of the people with disease among those who test positive. Such
an adjustment would indeed increase sensitivity by correctly classi-
fying more of those with measurements in the “diseased” curve. But
it would do so at the cost of poorer specificity—a smaller propor-
tion of the disease negative would be correctly classified as such, and
false positives would increase. Move the criterion line to the right and
the reverse would be true: false positives would decline and speci-
ficity would be improved. Yet, fewer people with disease would be
“over the border” to the right in the positive zone as designated by the
test. Thus, sensitivity would decline. In such a situation, it is impos-
sible to pick a criterion value permitting perfect discrimination be-
tween those who do and those who do not have disease.

There is usually no single, objective, best criterion for classifying pa-
tients according to the results of medical tests. In practice, criteria for
classification of outcomes depend on the consequences of an incor-
rect decision. Sometimes the expense and side effects of further tests
and possible erroneous treatment outweigh the dangers of a mild dis-
ease. Other times it is so important to treat a disease promptly that
more false positives are acceptable in lab test results, and they will be
ruled out as true cases of disease later on.
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“Normal” Intelligence

Many variables of primarily social rather than specifically medical im-
portance are also normally distributed, and here, too, we find overlap
between various groups of people. For example, the ability to per-
form various intellectual tasks is normally distributed: occasionally,
we find a person who is exceptionally talented or exceptionally hope-
less at something, but the extremes in level of ability are rarer than
more ordinary capabilities. Those who take IQ tests end up with a nu-
merical summary score that places them along a continuum of abil-
ity. The results are normally distributed and centered on an average of
100 points, with an SD of 15. Thus, 68% of the population has IQs be-
tween 85 and 115. The 2 1

2 % “smartest” have IQs above 130(µ + 2σ),
while the 2 1

2 % “dullest” have IQs below 70(µ − 2σ).
But what does IQ, your “intelligence quotient,” represent? The IQ

test measures a person’s skill at certain types of tasks, such as com-
pleting verbal analogies, picking the appropriate number to appear
next in a sequence, or finding an optimal means of combining ge-
ometrical figures to produce another. Interestingly, when construct-
ing an IQ test, which types of abstract reasoning questions are selected
is not very important; scores on these diverse tasks are closely simi-
lar within individuals. The overall score on the pool of such questions
is called g, for general intelligence.

In a sense, the close relationship of individual questions’ scores
gives us confidence that IQ really is reliable as a measure of a cer-
tain kind of innate ability in its various manifestations. Yet, in another
sense, that uniformity is also a reminder that only a certain kind of rea-
soning is being measured (and implicitly accorded value) by the IQ
test. For example, the ability to assess the emotional state of friends,
to pick just the right word or action to console someone, or to sway a
crowd and energize a political rally are all abilities that vary from per-
son to person. They are surely reflections of forms of intelligence, and
they are not included in the “general” intelligence index.

However, so much of schoolwork relies on the type of ability re-
flected in IQ scores that the scores are very good predictors of suc-
cess in school, whether the outcome is measured in terms of aca-
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demic marks or by number of years of education eventually obtained.
IQ is a stronger predictor of such outcomes than is social class; there
is a strong tendency for educational attainment of siblings, grow-
ing up together, to be different if their IQ scores are different. Con-
versely, genetically identical twins reared apart (as the result of adop-
tion, for example) tend to be more similar in IQ and in educational
attainment than would be expected by chance, despite different envi-
ronments. However, it is not clear what predictive value IQ has with
respect to more general aspects of success than these narrowly de-
fined schooling-specific measures, because obviously there aren’t any
agreed-upon overall measurements reflecting success in life.

One of the most controversial aspects of IQ is the difference in the
normal curves of IQ scores for African Americans and for white Amer-
icans of European ancestry. For the former group the mean value
is about 85, and for the latter about 100, according to the Ameri-
can Psychological Association’s Encyclopedia of Psychology (2000 edi-
tion). Given that the SDs in both groups are about 15, the mean value
for whites is 1 SD above the mean value for African Americans. Thus,
only 16% of African Americans have IQs above 100, whereas 50% of
whites do.

We cannot scientifically conclude from the existence of this dif-
ference that it is caused by specifically genetic attributes of the two
groups, however. Consider this: Among individuals raised in hypo-
thetical identical environments, differences in IQ would clearly be ge-
netic in origin. Now consider the converse: As psychologist Peter Gray
said, “If you were raised in a typical middle-class environment and
I were raised in a closet, the difference between us in IQ would cer-
tainly be due mostly to differences in our environments.”

African Americans and European Americans are not genetically
uniform groups, of course; they are social groups and, as such, are
subject to different environments. The historic prejudice and discrim-
ination against African Americans in the United States would be ex-
pected to leave a legacy of lower IQ scores as well as lower educa-
tional attainment. Research has shown that castelike minorities who
are considered inferior by dominant ethnic groups perform on aver-
age 10 or 15 points lower than the dominant majority, in all countries
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where such social stratification occurs. For example, a certain genet-
ically indistinguishable subset of Japanese people is considered so-
cially inferior. In Japan, these Buraku were given civil status in 1871,
when public scorning of Buraku was forbidden by edict of an en-
lightened Japanese emperor. However, even today this castelike group
suffers the disadvantages of low social status, occupying predomi-
nantly menial positions; friendship with Buraku is greeted with con-
tempt by the majority of Japanese. Like those of African descent in the
United States, Buraku in Japan fare markedly less well than the major-
ity on IQ tests. However, among Japanese immigrants to the United
States, Buraku and other Japanese score the same on IQ tests and
in school achievement—the differences disappear once pariah sta-
tus and a sense of hopelessness are removed. In the United States, al-
most no one would know that a Japanese immigrant is a Buraku, and
no one cares. Once the social opportunities are equalized, the nor-
mal curve of IQ for Buraku shifts upward and matches the normal
curve for the Japanese in general.

Popcorn and the Distribution of Sample Means

The normal distribution becomes audible when you pop a bag of mi-
crowaveable popcorn. For a while, nothing happens, but then you hear
an isolated pop now and then. Next you hear a few at a time. The in-
tervals between pops get smaller and smaller until lots of kernels are
popping at once with no silences between them. The number pop-
ping grows cacophonously, crests, and gradually diminishes until you
again hear but a couple at a time. Finally, the action peters out and
there are several seconds between pops; when the pops are few enough,
you remove the bag from the microwave and enjoy your snack.

A graph of this process would look like the curve we saw in figure 2.1.
The x-axis would show “time until popped,” and the y-axis the num-
ber of kernels having that popping time. The left-hand tail would show
that very few kernels pop right away, and then there would be a grad-
ual rise toward the mean time. There’s a symmetrical right tail too,
the full length of which is usually left unexplored: when you remove
the bag there are inevitably unpopped kernels.
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A popcorn company might store its entire crop of 10,000 pounds of
popcorn in a silo, and the crop would have a mean popping time. How-
ever, when this crop gets divided into 20,000 half-pound bags, each bag
will have a somewhat different mean popping time. Each bag is a sam-
ple, and its mean is subject to sampling variability; when you pop one
bag, it provides a sample mean that is an estimator of the true pop-
ulation mean. The mean of all the sample means has got to be the
true mean, as you may realize—especially if you think about what you
would hear if you were to pop all the bags at the same time. The over-
all mean popping time for the whole crop would be the point of max-
imum noise. There is a formal proof of this, known to mathemati-
cians as the Central Limit Theorem.

We have mentioned that the probability of any observation drawn
from a normal distribution can be calculated, onceµ andσ are known.
Similarly, sample means are also normally distributed, and their prob-
abilities can be calculated too. Almost all sample means are quite close
to the population mean, but an occasional bag of popcorn will have
a bit more than its share of slow- or fast-popping kernels. The fur-
ther the bag’s mean from the population’s mean, the more unlikely
it is. Quality control personnel have an interest in making a com-
pany’s product essentially uniform from one purchase to the next, so
they monitor the distribution of sample means quite closely.

When a single sample is available and the population mean is not
specifically known, the sample mean serves as the best estimate of the
overall mean. Although it is only an estimate, it is what statisticians call
an unbiased estimate; there is no particular reason for it to be higher
or lower than the true population mean, so on average it will be cor-
rect. However, the element of sampling variability (which would not
be present in a population average) must be present.

The larger the sample size, the less the sampling variability and
the more likely the sample mean will closely reflect the population
mean. After all, as the sample size approaches the population size,
it includes more and more of the population; even if the sample in-
cludes some anomalous observations, these will not alter the aver-
age too much if the sample includes practically all observations. As
the sample size decreases, however, the chance of an anomalous sam-
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ple increases. Imagine a bag of popcorn with only four kernels in it.
If by chance a kernel with a very short or very extended popping time
gets included, it can have a drastic effect on the mean.

The effects of sample size are taken into account by creating a statis-
tic called the standard error, or SE. It’s the SD calculated from the data
in the sample, divided by the square root of the sample size. Once
this adjustment is made, all the usual Gaussian probability calcula-
tions can be performed. When the likelihood of a sample mean rather
than a particular observation is to be calculated, the SE is simply sub-
stituted for the SD. For example, 68% of samples drawn from a nor-
mal distribution will have means somewhere in the range running
from 1 SE below the population’s mean to 1 SE above it.

Strangely enough, the samples don’t even have to be from popula-
tion data that are normally distributed in order for the sample means
to follow a normal distribution permitting Gaussian probability cal-
culations. The Central Limit Theorem proves this property of sample
means, too, but a moment’s reflection will make it seem less counter-
intuitive than it may at first appear. Suppose that we are looking at
samples of six observations apiece, from a totally flat distribution-one
forming a big rectangle when graphed. If it’s a random sample, the like-
liest situation is that the six are spread more or less evenly throughout
the range of x. Evenly spread samples will have a mean roughly midway
in the range; that is, the sample means will be approximately the same
as the population mean. The rarest situation is that the random sam-
ple will consist of six observations tightly clustered at one extreme or
the other, all coincidentally at very low or very high values of x. Thus,
very rarely, samples may produce means that are extremely high or ex-
tremely low compared with the mean of the population from which
they are drawn. Sample means that are neither spread nicely through-
out the range of x nor completely bunched in the extremes will have
means that differ moderately from the true population mean. These
samples will occur with intermediate frequency. Hence, sample means
end up being normally distributed even when the underlying popu-
lation is not normally distributed at all.

Often in industrial or medical applications, the true population
mean is not known, and only data on a single sample are available.
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For example, testing how long lightbulbs last if they’ve been produced
with a new type of filament may require letting a batch be illumi-
nated until they “blow out.” This type of “destructive testing” is costly,
and naturally it is not desirable to test the entire output of a manu-
facturing plant by ruining all the lightbulbs in order to show how the
true mean and the sample means compare. In other situations, involv-
ing the testing of a new medication, a sample provides the only knowl-
edge of the cure rate prior to marketing of the medicine to the entire
population. To be sure, the sample may be large and it may be rep-
resentative, but it’s still a sample. A useful tool called the confidence
interval (CI) has been devised to permit inference about the underly-
ing population’s mean when only a sample mean is available.

Here is a statement involving a CI: “We are approximately 95% cer-
tain that the mean duration of illumination for our brand of light-
bulb is between 3,500 and 3,600 hours.” How is such a statement ar-
rived at, and what does it mean? Look at figure 2.1 again, and suppose
it is the distribution of sample means. Since we are dealing with sam-
ples here rather than individual observations, we can replace the SD
(σ ) in the diagram with the SE, and the corresponding probabilities in
the diagram remain the same. Consider a specific sample whose mean
is just short of 2 SEs above the population mean. For that sample—
indeed, for any sample whose mean falls in that central 95%—the true
population mean will be located in an interval given by the follow-
ing: (the sample mean ± 2 SEs). Moreover, since 95% of samples will
be in the middle of the distribution of sample means and have that
property, 95% of the intervals constructed on sample means will in-
clude the population mean. Thus, there is a 95% probability that if you
take a randomly selected sample mean ± 2 SEs, the interval will in-
clude the true mean of the population from which the sample was
drawn. It is therefore called a 95% CI. You have 95% confidence that
it contains the true mean.

Sometimes the mean is not the only measure estimated from the
sample. The variability that should be represented by the SD (σ ) is also
unknown. In that case, the numerator of the SE is s, the sample’s SD,
and it is used as the estimate of the population SD. In such cases, extra
sampling variability is introduced into the equations—even the mea-
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sure of uncertainty now has uncertainty. Another distribution, shaped
similarly to the normal distribution, is used to resolve this problem.
Although a bell-shaped curve, the t-distribution is somewhat “fat-
ter” than the normal curve. This allows for the greater uncertainty: CIs
need to be wider when s rather than σ is used to estimate SEs. Since un-
certainty varies according to sample size, the t-distribution changes
“fatness”: at larger sample sizes it gets thinner. For example, when the
sample size is 5, the 95% CI based on the t-distribution is given by the
sample mean ± 2.447 SEs. When the sample size is 20, it’s the sam-
ple mean ± 2.093 SEs, and at 30, it’s the sample mean ± 2.045 SEs.
In mathematical terms, we say that the t-distribution approaches the
normal distribution as sample size increases. Indeed, in many experi-
ments such as clinical trials involving large groups, the z-distribution
is used even when the data provide the estimate of s for the SE; the t-
and z-distributions give essentially the same CIs.

CIs do not have to be restricted to statements about 95% probabil-
ity. Ninety percent and 99% CIs are also commonly used. The higher
the percentage in the CI, the wider it must be. A 68% CI would be
rather narrow, merely requiring a range of ± 1 SE around the mean.
But who wants to have an estimate with just 68% certainty? A 100%
CI, seemingly the most desirable, is actually of no practical value: it
would run from negative infinity to positive infinity. To achieve per-
fect certainty about a group’s measurements on any parameter, one
would have to be sure to include any possible value, an infinite range.
Hence, there is a trade-off when constructing CIs: greater certainty ver-
sus greater precision in the estimate.

We can never remove uncertainty from life, of course, and it can be
unnerving to think that there is substantial uncertainty in such pro-
cesses as the measurement of aircraft parts or the testing of drugs’ ef-
fects in medical experiments. But there are patterns even in random
events such as “the luck of the draw” when selecting a sample. The reg-
ularity found in these chance fluctuations can be quantitatively pre-
dicted by distributions. This is surely one of the oddest discoveries
of mathematics. It is also an extremely practical insight upon which
much of modern medicine, engineering, and social science depends.
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The Life Table: You Can Bet on It!

The Deal of a Lifetime

On August 4, 1997, a Frenchwoman named Jeanne Calment died at
the age of 122. She was a native of Arles, the town in which Vin-
cent Van Gogh spent the year 1888. Van Gogh’s productivity there im-
presses art historians: it was in Arles that he painted Vase with Four-
teen Sunflowers, Starry Night, and more than 100 other paintings. Van
Gogh made quite an impression on Jeanne Calment, too, who was
13 when they met that year in her uncle’s shop. Even in adulthood
she was to remember the artist as “dirty, badly dressed, and disagree-
able.” By the time Charles Lindbergh crossed the Atlantic in 1927,
Jeanne Calment was 52 years old.

In the mid-1960s Jeanne Calment struck a deal with a lawyer that
seemed mutually advantageous. He bought her apartment for a low
monthly payment with the agreement that payments would cease at
her death, at which point he could move in. She would thus have an
ongoing source of cash to live on in her last years, and he would get
an apartment cheaply, with no money down, in return for accepting
the uncertainty as to when he would take possession.

51
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After making payments for more than 30 years, the lawyer died at
age 77, before she did. His family inherited the agreement: they would
be in line to get the apartment, but in order to do so they would have
to assume the original deal, continuing the monthly payments until
she died. Her age at death exceeded the lawyer’s age at death by 45
years.

Obviously it turned out that this was not a good way for the lawyer to
obtain an apartment “on the cheap”; in fact, he never occupied it. How-
ever, his expectation that it was a good deal was a reasonable one, based
as it was on typical human life spans. He had no way of knowing that
the woman with whom he has struck the deal would have such an ex-
ceptionally long life—indeed, the longest well-documented life span
on record at that time. Nor did she have any way of anticipating her
own longevity, although she did feel that the abundance of olive oil in
her diet—and her moderate drinking of port—could have salutary ef-
fects (an opinion that most epidemiologists would agree with today).

Individual life spans are unpredictable, but when data are collected
from groups of people and analyzed en masse, very regular patterns
emerge. Average life spans (called life expectancies) change quite lit-
tle from one year to the next, and ages at death in a population fol-
low a distribution with well-known and rather reproducible proper-
ties. As a consequence, the probabilities of mortality at various ages
are so reliably estimated that these quantities form the basis of the life
insurance industry. (In England it is called “life assurance”; the in-
dustry can assure you of the one thing certain in life and tell you
when it is likely to occur.) The casino industry is also based on knowl-
edge of probabilities, but the house “advantage” is higher for an in-
surance company than for any roulette wheel. And unlike the unlucky
lawyer, the insurance company is not betting on one life but on mil-
lions, so the frequency of remarkable deviations can be anticipated
and is not disastrous.

Insurance and Sacrilege

The lack of reliable mortality data meant that for a while the insur-
ance industry avoided life insurance and focused on other risks. In
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Rome, for example, proportions surviving at various ages had been
estimated by the jurist Ulpian around A.D. 200. Although Ulpian’s
writings on this subject have been lost, his estimates have been pre-
served in the form of a passage on his method for evaluating annu-
ities, quoted in Justinian’s Digest (a summary of Roman law that dates
from A.D. 533). These statistics were of limited utility, however, and
most insurance in Greek and Roman antiquity was for goods shipped
by sea, which was also the case in Babylonian and Phoenician times. Ci-
cero had his shipment of household goods insured by private parties in
49 B.C.E. The cost of insurance depended on the underwriter’s experi-
ence of losses and the value of the cargo. Some irreplaceable artworks
were always considered uninsurable, and multiple losses occurring si-
multaneously were understood to be too large for underwriting by pri-
vate persons. So that insurers would not become insolvent because of
multiple shipwrecks, for example, in A.D. 58 the Emperor Claudius ar-
ranged for merchants to be indemnified against storm losses, much as
a federal agency today might arrange for disaster relief beyond what in-
surance companies could provide.

Resistance to life insurance, in particular, was at a peak in the Euro-
pean Middle Ages. Insurance for many other purposes was available,
including for pilgrims to the Holy Land: in return for a premium, the
policyholder who was taken prisoner en route would have his ran-
som paid. Insurance based on the policyholder’s death, however, was
not acceptable, for Europe was now Christian. As Jacques Dupâquier
wrote in his 1996 volume, L’Invention de la Table de Mortalité,

Reasoning in terms of probabilities of the length of human life was
inconsistent with the traditional Christian concept of death. In the
closed system of medieval thought, death had a sacred character: not
only could it not be the object of speculation, but it was unseemly, al-
most sacrilegious, to attempt to look for laws governing it. Each per-
son’s destiny was subject to the will of the Almighty, who could inter-
rupt life at any moment, whether to repay the good by calling them
near to him in Paradise or to punish the wicked with the flames of
Hell and eternal damnation. This rules out any prediction, and even
more so, all calculation. (my translation)

As the Middle Ages faded into the Renaissance, this attitude be-
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came less pronounced. Furthermore, social organization as well as
banking, accounting, and other financial institutions grew more sta-
ble and more complex. It became progressively more feasible to offer
life insurance; at the same time, the public’s antipathy toward it could
no longer be counted on. Thus, where a conservative ruling establish-
ment objected to life insurance on moral grounds, such insurance had
to be prohibited by law, for moral suasion was no longer enough; for in-
stance, in 1570, life insurance became illegal in Spain, and in 1598 in
the Netherlands. Yet thinking changed rapidly. Less than 100 years
later, calculation of mortality probabilities and prediction of life ex-
pectancies were being established on a firm foundation of data, prob-
ability, and statistics, and no one seems to have thought it objection-
able. No theologian or church official raised any questions about it
or tried to prevent it. “Even better,” Dupâquier writes, “the discov-
ery of statistical regularities in human phenomena was soon to be in-
terpreted as a new proof of the existence of a Divine Order.”

Graunt’s Life Table

The world was awakened to the astonishing mathematical regularities
of the universe by the publication of Newton’s Principia Mathematica
in 1687. Another Englishman, John Graunt, revolutionized thinking
about mathematical regularities in the probabilities of human life and
death. Born in London in 1620, he started out working as a merchant,
a haberdasher in particular, and was much involved in civic affairs.
He held several public offices and attained the military rank of major.
In 1662, Graunt published Natural and Political Observations on the
Bills of Mortality, which was received to great acclaim. He was elected
a fellow of the Royal Society in 1663, and the book’s fourth edition
had been printed by 1665, the year of the Great Fire of London and a
year before the plague ravaged England for the last time.

The bills of mortality were weekly statements compiled from re-
ports of parish clerks in London concerning numbers of deaths (to-
gether with distributions of ages and causes of death). Compiled in
London since at least 1532 and distributed in printed form since 1625,
the statements helped the government keep track of the ebb and flow
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Table 3.1. Graunt’s data on survivorship

of plague and other epidemic diseases. Graunt carefully examined the
quality of the data and their possible shortcomings and analyzed the
data in terms of means and distributions. Then he made a particularly
valuable contribution: he structured the data in a format that statisti-
cians today call a life table. He believed that such tables would demon-
strate the existence of hidden laws underlying and governing human
mortality.

Rather than presenting the particulars of the numbers in the groups
actually observed, Graunt showed how death would diminish an ini-
tial group of people called a cohort. A hypothetical “round number”
of individuals was picked, to make the scale of mortality compara-
ble among life tables, and observed mortality rates were applied to
this round number. He published the data presented in table 3.1.
More than half the people died before age 16.

Today we would start the table at birth rather than at conception,
and different age categories would be used; but the concept of apply-
ing death rates at varying ages as you follow the experience of a con-
veniently sized cohort remains the same.

Gottfried Wilhelm Leibniz, Isaac Newton’s fierce competitor for
recognition as inventor of the calculus, made important contribu-
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tions to life table analysis. Among other refinements, he figured out
how to obtain life expectancy at various ages when presented with
data like Graunt’s. This development made possible the more elab-
orate life tables of today, which are very rich sources of information
about various aspects of human survivorship.

Getting from Mortality Rates to Life Expectancy

What is a “life expectancy”? The meaning of this statistic, and its rela-
tion to mortality rates, should become clearer if you examine a con-
temporary life table. Table 3.2 is a recent life table. The data con-
cern mortality for females in the United States in 1996 and come from
the Web site of the National Center for Health Statistics, a division of
the Centers for Disease Control (www.cdc.gov/nchs/data). Most coun-
tries’ published life tables are a few years behind current experience.
The data are based on death certificates, and it is a massive task to en-
sure the accuracy and completeness of a set of millions of these and
then to prepare them in a computerized form suitable for analysis.

The life table is always organized with one line for each age cate-
gory. Some life tables are extremely detailed and provide information
by single years of age. When the age category is one year through-
out the table, it is called an unabridged life table. Table 3.2 is abridged;
the first column shows the ages for each line, from X (at which
the age category begins) to X + N (in which N is the width of the
interval).

What is the chance of dying between ages 10 and 15? This is, tech-
nically speaking, an age-specific probability of mortality. In table 3.2
it is denoted by Q, corresponding to notation elsewhere in proba-
bility: P is the probability of surviving the interval and Q = 1 − P
is the complementary probability of failing to do so. These rates are
calculated from death certificate data and birth dates in the popula-
tion, and nothing else need be supplied in order to calculate life ta-
bles; the rest is all generated using Graunt’s logic and Leibniz’s refine-
ments. It’s not that simple to obtain the Qx column, however. People
who die at age X in a certain year were not all age X exactly at the start
of that year. The cohort at risk of dying at X changes while the year pro-
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Table 3.2. Abridged life table providing mortality data on females in the United
States in 1996

gresses, as some people attain that age and others safely progress to the
next one. Hence, an adjustment is made to ensure that the deaths are re-
lated to the correct numbers of person-years of risk at a given age in
a particular year. The net result is that 5Q10, the chance of dying be-
tween 10 and 15, is 0.00093.

Suppose that we started off with 100,000 persons. How many would
still be alive at age X? This is presented in the third column of ta-
ble 3.2, which corresponds to the data published by Graunt, and is la-
beled lX . The 100,000 is called the radix of the life table; the Latin word
means root (and is the root of radishes). The initial group would be di-
minished by 0.00659, or 659 babies, in the first year of life. The num-
ber of deaths, 659, is shown in the column labeled NDX . Subtract-
ing the NDX for a given interval from the lX on the same line gives
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the new lX for the next line. Here, we have 100,000 − 659 = 99,341,
which is the value for l1.

At this point, we know the number of people who start each inter-
val, and since we know the number who die during it, we also have
the number who survive it. We can now calculate an important statis-
tic, NLX . This is the number of person-years lived during each inter-
val. It is important because the life expectancy is the average number
of person-years lived by cohort members, so the number of person-
years in each interval is needed for the sum. To construct the NLX

column, the number of people starting the interval at age X is multi-
plied by the width of the interval. Then, since some people entering
the interval die during it, the number of person-years has to be di-
minished a bit. A reasonable approximation would be to take off half
the width of the interval for those who die during it, on the assump-
tion that deaths are evenly distributed throughout the interval. That
basic principle is followed. However, risks of mortality are not quite
evenly distributed, and when distributions of exact ages of death are
available, they are used to construct the NLX column.

If you start at the bottom of the table and take a cumulative sum
of the NLX values as you go up, you arrive at the NTX values. For ex-
ample, in the last age category NLX and NTX are the same, but T80 is
the sum of the NLX values at age 85 (266,261) and at age 80 (250,275);
thus, T80 is 516,536. With this cumulative sum in hand, life expectan-
cies can also be calculated. After all, the sum T0 on the first line is the co-
hort’s cumulative number of person-years lived after age 0 (that is, years
lived since birth), so we can find an average number of years that a co-
hort member would live. This particular average is called the life ex-
pectancy at birth, E0, and is given by T0/ l0. More generally the life ex-
pectancy at any age X is given by TX/ lX .

Looking for Universal Laws

There is an age-related pattern in the mortality rates and life expectan-
cies observed in table 3.2 that mirrors the pattern seen universally in life
tables for large human populations. The rate in the first year of life—
the infant mortality rate—is comparatively high. Indeed, the differ-
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ence between this rate and those in subsequent years is so great that the
first year’s data are almost always presented separately even in abridged
life tables. Some babies are afflicted with the hardships of prematu-
rity or birth defects. Such problems, as well as malformations of var-
ious kinds inimical to life, become manifest and have their strongest
effects in the first year. Mortality falls sharply thereafter, to a low be-
tween 5 and 15. At such ages, serious illness is rare and parental super-
vision renders fatal accidents uncommon. Next, youthful follies of var-
ious kinds, accidents, and driving cause a sharp uptick in NQX that is
followed by regular swift increases as people age. Interestingly, in ta-
ble 3.2, rates exceeding infant mortality are not seen until ages in the
forties.

Specific levels and other details of life tables vary from country to
country and over time. These differences are determined by social con-
ditions such as access to proper nutrition, clean water, and medical
attention. In most countries, from one year to the next there are mi-
nuscule improvements in each age-specific rate as the result of gradual
improvements in the standard of living, although reversals in Russia re-
cently have provided an important exception. Still, when looking at
a particular life table, the pattern in NQX values by age, described in
the previous paragraph, will be evident. The generality of this pat-
tern throughout human societies must originate in the biological as-
pects of viability and aging. Graunt’s expectation has been borne out
by subsequent experience.

It is obvious that life expectancy should decline from interval to in-
terval. There is, however, a strange phenomenon manifest in the EX

column in table 3.2. Look at the 60-year-old female, for example. She
will live another 22.9 years on average. However, if she makes it to 65,
her life expectancy is not 22.9 diminished by the 5 years she just got
through. It is not 17.9 years; E65 is 19 years. This phenomenon is some-
times flippantly summarized by demographers in the saying, “The
longer you live, the longer you’ll live.” It is thought to be the result of
heterogeneity in frailty, coupled with selection. Since there is variabil-
ity in the propensity to have a heart attack, cancer, or perhaps even an
accident, those likely to suffer these events tend to experience them
sooner than other people. Thus, cohort members who are less sus-
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ceptible to these problems make up a disproportionate fraction of the
people in successive age categories. The phenomenon is more notice-
able at higher ages (probably because of the increasing importance
of variability in frailty), but, unfortunately, it does not go on indefi-
nitely.

Betting against Your Own Survival

When you buy life insurance for some fixed term such as 1 or 5 years,
you are placing a bet with an insurance company. You are betting that
you will die in that interval; it is betting on the vastly greater probabil-
ity that you will survive. The insurance company loses its bet and pays
up only if you die. The insurance company has the life tables, and it
prices the policy accordingly. For example, in table 3.2 a 35-year-old fe-
male has a 0.00608 probability of dying in the next 5 years. Thus, if
an insurance company charges 35-year-old females $6.08 per $1,000
worth of 5-year term insurance, it would have exactly the amount of
money needed to pay the claims for this group. Of course, insurance
companies sell the policies at a higher price than that. They have ad-
ministrative costs such as offices and employees and a profit margin
to maintain. There is also a reserve needed in the event of chance up-
ward fluctuation in the insured sample’s death rate. Nevertheless, it is
fairly easy for insurance companies to estimate what they should actu-
ally charge for the insurance, because once the life table is in hand, the
other components of the premium can be readily estimated. In ad-
dition, by requiring a medical examination before issuing a policy,
insurance companies can insure a healthier subset rather than the en-
tire population represented by the life table. Consequently, insurance
companies seldom go bankrupt.

Chance fluctuations are naturally of great interest to the insur-
ance industry, but they rarely threaten the profitability of life insur-
ance. Mortality due to “acts of war” or “acts of God” is usually specif-
ically excluded, in order to avoid massive numbers of simultaneous
claims. “Acts of God” is legal language that might include, for exam-
ple, a city-destroying earthquake; it does not, in this context, include
deaths due to commonplace natural causes, or even epidemics. Evi-
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dently our legal system uses language in a manner far removed from
the medieval conception of “acts of God.”

With those exclusions in place, natural fluctuations are rarely im-
portant. Nationwide mortality probabilities are based on so many mil-
lions of lives that the occasional centenarians or clusters of deaths have
but negligible effects on life expectancy. Even outbreaks of disease, in-
cluding AIDS, do not affect national-scale life tables much in West-
ern nations. (It is estimated that 0.58% of the inhabitants of North
America are infected with the AIDS virus.) The trick for an insur-
ance company is to have a group of policyholders representative of
the nation as a whole, and as close to a national size as possible. The
larger the insured pool and the more general it is, the less subject it
will be to sampling fluctuation and to clustered deaths, and the more
closely it will follow the very gradual changes in mortality observed
over time.

Moreover, in the event that an improbably and unprofitably large
cluster of claims comes along, insurance companies have reinsur-
ance to protect them. Reinsurance is the insurance companies’ fail-
ure insurance—they pay into a pool of money that is then available to
bail out a company that would otherwise default on the payment of nu-
merous claims. However, reinsurance is more important for property
losses than for loss of life. A few unusual hurricanes can wreak bil-
lions in damage. And storm damage comes in clusters a lot more than
deaths do.

If the probabilities are so thoroughly understood by the insurance
companies, and so thoroughly stacked in their favor, is buying life in-
surance an unwise bet? No. Even though the odds of winning your
bet are small, life insurance is useful when it serves the purpose of
guarding your family against financial ruin. At a time when a large
investment can yield a 10% annual rate of return, most financial ad-
visers would suggest that those supporting a family have policies val-
ued at 10 to 15 times the annual income of the insured. If the insured
dies, the financial status of the family would remain essentially un-
changed. Investment income on the capital provided by the insurance
would roughly replace the income of the deceased. Therefore, hav-
ing life insurance is a fundamental part of financial planning, and it is
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socially desirable to have insurance companies protect themselves ef-
fectively against bankruptcy.

The type of life insurance I have described is a straightforward kind
of bet, but there are many variations. For one thing, some policy-
holders may want to be certain that they will have the right to re-
new the policy as they enter later (and riskier) age categories. As any
group ages, it will increasingly contain individuals who have become
ill and whom the company would like to drop, so guaranteed renew-
able insurance costs a bit extra.

Another variation is called decreasing term insurance. With ordi-
nary term insurance, premiums follow the death rate and rise dramat-
ically at higher ages, at a time in life when the expenses of housing
and educating children may be past. Both changes can be accommo-
dated simultaneously by reorganizing the policy to keep the premium
constant in return for a gradually decreasing payoff.

Another product available for those insisting on a permanently fixed
premium is the whole-life policy. Here the premium is constant but set
at a much higher cost than warranted by the risks at the start of cover-
age. The excess contributes to a cash value that is returned to policy-
holders who discontinue their insurance; for those continuing cover-
age (and continuing to live) into higher age categories, the cash value is
available to cover the additional risk, especially as the insurance com-
pany invests it over time. In addition, whole-life insurance offers the
company additional cash in hand, useful in the unlikely event of short-
falls or for such needs as new office buildings.

Just Your Type

Some risk factors are much more widespread than, say, the AIDS
virus. In such circumstances, the combination of increased risk and
high prevalence may make it useful to calculate life tables separately for
those in higher and lower risk categories. Insurance related to automo-
bile accidents in particular is priced differently according to the type of
individual buying the policy—age, gender, state of residence, and his-
tory of accidents all play an important role in categorizing the cus-
tomer and predicting risk.
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Another example concerns smoking. Many companies prefer life in-
surance premiums to reflect the increased costs of smokers’ elevated
death rates. It is also profitable to offer policies at lower cost to non-
smokers, who naturally relish the advantage of being classed with
similarly low-risk people. So, you see, although I have stated that indi-
vidual life spans are unpredictable, this is not completely true. Life ta-
bles give us averages (predictions of a sort), and they are accurate
enough for betting purposes. Certainly, individuals’ length of life may
vary substantially from averages, but the more you know about a per-
son’s risk factors, the more you can reduce this variability, and the bet-
ter your estimates of the predicted mortality rates for a specific type
of individual.

The differences between risk groups can be quite substantial. Fig-
ure 3.1 shows estimated annual mortality rates by age per 100,000
males (with vertical lines representing a range of variability), based
on the follow-up of about a half million men in the American Can-
cer Society’s Cancer Prevention Study II. The bottommost line shows
the lung cancer death rate for those who never smoked. Although
the risk of dying from lung cancer rises slightly throughout life, it re-
mains very small indeed for nonsmokers.

The other extreme is shown by the top line of figure 3.1, which
tracks the experience of the group that smoked cigarettes continu-
ously during the follow-up study. Their risk increases much more
quickly than that among the nonsmokers. Indeed, at age 80 those con-
tinuing to smoke had a death rate from lung cancer in excess of 1,500
per 100,000—more than 1.5% per year—a rate vastly greater than
that on the lowest curve. (The rates shown are subject to some sam-
pling variability because they are based on limited numbers of deaths
at a given age. Where possible, vertical bars have been inserted to de-
pict the variability around the estimates: they are ± 1 SE in height. In-
terpretation of the SE as a measure of variability is discussed in chap-
ter 2.)

Quitting smoking is advantageous compared to continuing to smoke.
The intermediate curves, as you go from top to bottom in figure 3.1,
represent the rates for groups of people who had quit smoking cigarettes
at earlier and earlier ages. Note that the risk doesn’t return to that of
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Figure 3.1. Model estimates of lung cancer death rates by age for male cur-
rent (solid line), former (dashed lines), and never smokers (dotted line), based
on smokers who started at age 17.5 and smoked 26 cigarettes/day. The five age-
at-quitting cohorts are distinguished at the age of quitting and also at age 80
as follows: �, 30–39; �, 40–49; �, 50–54; ◦, 55–59; ∇, 60–64. Source: Repro-
duced, by permission, from M. Halpern, B. Gillespie, and K. Warner, “Patterns
of Absolute Risk of Lung Cancer Mortality in Former Smokers,” Journal of the Na-
tional Cancer Institute 85, no. 6 (1993): 457.

a never smoker, however. For example, the risk of dying of lung can-
cer at age 70 for someone who had quit smoking in his early fifties is
severalfold higher than the rate for the never smoker at 70. It is also
more than double the risk seen in those who had quit in their thir-
ties. Even though the mortality rates don’t decrease for those kicking
the habit, smoking cessation is very important because it confers a rel-
ative benefit—relative to the risks sustained by those continuing to
smoke.

Some lifelong smokers never get lung cancer, whereas some non-
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smokers die young from it. Most people probably know someone like
my Aunt Mary, who smoked heavily throughout most of her life, and
died just short of her 101st birthday—but they probably don’t know
many such people. Despite Aunt Mary’s beating the odds, many more
friends and relatives who smoke heavily suffer serious health prob-
lems, or die young. Although we can’t predict what will happen to
individuals, we can certainly reason probabilistically about what is
likely to happen. The probabilities in figure 3.1 are quite predictive for
groups, because 1,000 heavy lifetime smokers will die from lung can-
cer at a much higher rate than 1,000 nonsmokers: they would be bet-
ter off choosing to be in a low-risk group rather than a high-risk one.

Alternative Conceptions

Use of the life table method is by no means restricted to the analy-
sis of mortality. Any event that has a distribution of occurrence over
time may be analyzed using life tables, even events occurring to inani-
mate objects. In engineering, for example, the lifetimes of mechanical
or electrical components are often the subject of study, and manu-
facturers offering replacement guarantees like to know in advance the
typical life expectancy of their products. With this knowledge, they
then can set the length of the guarantee period so that it will end be-
fore failures become numerous and repair or replacement costs climb.
That’s why the warranty always seems to expire just before your gad-
get breaks. In addition, manufacturers sell repair contracts for many
appliances such as refrigerators and stereos. The prices for such re-
pair contracts are based on the products’ life tables and are set to ex-
ceed the expected failure-related payout costs for the “population” of
items, in the same way that prices for life insurance policies are set.
However, many people find these high-priced service contracts irk-
some, because the cost of several years’ coverage can be a significant
fraction of the cost of replacing the appliance.

Not only can life tables be used to examine patterns of events other
than mortality; the events under study don’t even have to be undesir-
able. Life tables can be used to examine waiting times to events that are
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much sought after, and perhaps the foremost example of such events
might be conception and birth.

In infertility studies, life table analyses are commonplace. In healthy
well-nourished general populations, about 85% of married couples
trying to conceive will have done so after 1 year. In the second year,
roughly an additional 10% will conceive. After that, there is usually
some medical reason why pregnancy has not yet occurred (although
sometimes it’s just a long run of bad luck). The most fertile couples are
the most likely to conceive at once. In the case of mortality, it was said
earlier, “The longer you live, the longer you’ll live,” but for fertility it’s
a case of “The longer you wait, the longer you’ll wait.” As time goes on,
the group that has not yet conceived includes an ever-increasing pro-
portion of completely infertile people (and those with extremely long
waiting times for conception).

Not only are conception probabilities studied with life tables, but
the effects of treatments intended to increase such probabilities are an-
alyzed with the method as well. For example, one possible reason for
infertility is an inadequate production of progesterone. In some cases,
fertilization is successful, yet progesterone deficiency makes it impos-
sible to retain the fetus. The deficiency can be overcome by using pro-
gesterone suppositories. How do doctors know this? The evidence in
favor of this therapy came in the form of life tables such as table 3.3.
It demonstrates that progesterone supplementation can result in fer-
tility levels that approach or exceed normal levels. Treatments for in-
fertility are routinely assessed using life tables.

Table 3.3 also demonstrates the effects of small, specially selected
samples. The cohort in this study consisted exclusively of people
known to have infertility resulting from a low progesterone level, and
the number of patients studied was small, fewer than 100. A cumu-
lative pregnancy rate of 100% after less than 1 year is not realistic for
fertility clinic patients in general: the sample size here precludes ac-
curate estimation of the small percentage for whom this treatment
wouldn’t work (and not all infertility clinic patients have this partic-
ular problem).

Demographers also use life tables to analyze the impact of social fac-
tors on conception probabilities. For instance, social scientists have
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Table 3.3. Life table analysis of data from patients treated with progesterone sup-
positories

noticed that in poorer, more rural societies, use of contraception is
low and large families are desired, often because of a mixture of tra-
ditional religious cultural values and the need for farm labor. At the
same time, infant mortality is high. This led to the expectation that un-
der such circumstances a woman will try to get pregnant again more
rapidly if a child dies young. Is this “child replacement hypothesis” sup-
ported by data?

The data presented in table 3.4 are derived from the Nepal Fertil-
ity, Family Planning, and Health Survey of 1991. The first column
shows time elapsed, in intervals, since giving birth. The other two
columns show the corresponding probabilities of giving birth to a
subsequent child. The probabilities are calculated separately for those
whose previous child died and for those whose previous child re-
mained alive. At every elapsed time interval, the probability of giv-
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Table 3.4. Cumulative probability of subsequent birth

ing birth again is higher if the previous child died rather than sur-
vived. Thus, the child replacement hypothesis is supported by these
data, as it generally is in studies of this type.

* * *

When we look at statistics concerning birth and death rates, we
might be struck not only by their regular, predictable patterns but
also by the relative frequency of the underlying events they describe.
A young woman in the childbearing years is much more likely to give
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birth in a particular year than die in it. Even death, however, is not that
rare an event. In table 3.2, the lowest death rate seen is that for children
5–10 years of age: it is 83 per 100,000, or the better part of 1 in 1,000.
A person who buys a lottery ticket hoping for a jackpot has a vastly
greater chance of dying in the year of purchase than he does of claim-
ing that top prize, an unsettling observation for anyone who gam-
bles. However, as we come to examine rarer and rarer events, such
as lottery jackpots and other occurrences with extremely small prob-
abilities, we find a great increase in sampling variability and there-
fore increased difficulty in prediction, especially as compared with
the regularity of the life table. Moreover, the interpretation of clus-
ters of events that are supposedly extremely rare becomes especially
problematic. Special statistical techniques have therefore been devel-
oped for the rarest events, which I discuss in the next chapter.





4

The Rarest Events

Isn’t It Amazing?

I was once spending a pleasant evening at home when a terrible thought
suddenly crossed my mind: my grandmother had just died. It’s hard
to explain why, but I was struck by this perception and instantly con-
vinced of its truth. Sure enough, a moment later, the phone rang. With
heavy heart, I picked it up and steeled myself to receive the bad news; in-
stead, it was a repairman. The phone call had nothing to do with my
grandmother, who lived on for many years.

Such a story rarely gets repeated (thankfully). It is not remark-
able. Stories are remarkable if they involve startling sequences like the
tale of someone who imagines or dreams he or she is about to re-
ceive notification of a death or a prize, and does so immediately there-
after. Those sequences are not only considered worthy of recounting,
they are sometimes held to be evidence of psychic powers, or of su-
pernatural beings providing information to favored individuals.

Such explanations are not necessary. After all, on a given day many
thousands of people are struck by the thought that a certain event
may be about to happen. Those events that actually do occur make

71
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up a very tiny proportion of all such thoughts. Some of these thoughts
must turn out to be accurate, due to chance alone. Fear of a rela-
tive’s death is widespread, so on any given day, death is bound to
take some small fraction of the relatives of those who fear its
occurrence.

The same principle holds true for dreams. On any given night in
a large city, people have millions of dreams. Lots of dreams are non-
sense, but people do dream about known individuals and possible
events. It should hardly be surprising that some matches with real-
ity do occur, given a staggering number of both dreams and poten-
tially matching events from which to choose (any one of your acquain-
tances might buy a new car, get engaged, change jobs, or win at the
racetrack). However, it is difficult to assess the rate at which matches
with reality occur, because the reports that reach your ears tell only of
dreams that came true, while matches are only a part of the story. Non-
matches are vastly more frequent, along the lines of “I dreamt I met
my old friend, but I did not.” But the boring stories that reflect no co-
incidence do not get retold, while the person who has a dream that
does come true recounts this experience. Such dreams tend to send a
shiver down the spine because they are often regarded as a demonstra-
tion of “psychic powers.” It is a much less common reaction to com-
ment, “Out of thousands of dreams I have had in my lifetime some
rather predictable ones came true, as we might expect.” People do not
like to think of their own “amazing experiences” as unremarkable co-
incidences.

Sometimes sequences cannot be dismissed as coincidence, since
cause-and-effect associations are present no matter how unlikely it
may seem. A case in point is the phenomenon of voodoo death. West-
ern medical workers who do not subscribe to the voodoo belief system
have observed the casting of a spell and the subsequent sickening and
death of the “hexed” individual and have documented these observa-
tions in the medical literature. The mortality probability for any given
individual is ordinarily very small, but it is high among the hexed, so
something other than random chance or coincidence must be at work.
For example, an article published by Kenneth Golden in the Ameri-
can Journal of Psychiatry in 1977 presents this case:
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A 33-year-old Black man from a rural area near Little Rock, Ark.,
was admitted to the neurology service of the University of Arkansas
for Medical Sciences. The patient had been having seizures recently
and had become increasingly irritable and withdrawn from his fam-
ily. When he could no longer be detained safely on the neurology ser-
vice, he was transferred to the psychiatric ward, where he became in-
creasingly more agitated, confused, and almost delirious. He became
very fearful when people approached him, and he began to halluci-
nate. He finally slowed down after being given 1000 mg of chlorpro-
mazine (Thorazine), but the necessity for bed restraint remained. All
neurological findings, including a brain scan, proved normal.

After two weeks of hospitalization the patient suffered a cardiac ar-
rest. All efforts to revive him failed. An autopsy provided no reason
for the death.

The patient’s wife, however, did provide a reason. He had angered
a woman whom their community believed to be endowed with the
power to cast fatal spells, so, according to their beliefs, his fate became
inevitable.

In 1992, another article published in the United States by Dr. C. K.
Meador in the Southern Medical Journal described what two medi-
cal doctors had observed. A man who believed himself to have been
marked for death by a voodoo priest during an argument had stopped
eating and had become so weakened that he required hospitalization.
He was being fed through a tube and was in a stupor near death. Doc-
tors found no organic disease.

In front of the patient’s terrified wife and relatives, the doctor in
charge of the case “revealed” to the patient that he himself had re-
cently had a violent argument with the voodoo priest about the pa-
tient, and that under dire physical threats from the doctor the voodoo
practitioner had divulged the nature of the patient’s problem. Thanks
to voodoo, a lizard inside the patient was consuming all his food and
his guts as well. After this explanation, the doctor then administered
an emetic injection, and through sleight of hand produced a lizard at
the end of the vomiting. The patient fell asleep, woke the next morn-
ing with a ravenous appetite, and was discharged in a week.

These illnesses, and other similar conditions in the medical litera-
ture, have a physical cause. They are the result of the physical effects
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of tremendous mental stress. Various specific mechanisms have been
suggested by neurophysiologists, especially for the fairly numerous re-
ports of sudden cardiac death following voodoo spells. In any case,
it is obvious that extreme fear can cause a fatal heart attack, as we
can see from newspaper accounts of such deaths among elderly rob-
bery victims and hostages. Clearly not coincidental, the deaths fol-
lowing voodoo spells are caused by some form of exaggerated, nega-
tive placebo effect rather than by the direct mechanisms claimed by
voodoo practitioners. The evidence for the power of suggestion as the
origin of physical problems among the “hexed” is strong: voodoo death
only occurs if the victim and all his or her friends and relatives be-
lieve in the power of the voodoo priest to cause it. They must all be-
lieve that the particular spell will be fatal and treat the victim as they
would treat any individual facing imminent death, in order for the il-
lusion to be complete and effective. Nonetheless, there’s a physical ex-
planation here. The reasoning is not limited to post hoc ergo propter
hoc—“after it, therefore because of it.”

The Statistics of Surprises

There are many situations in which the mechanism causing a cer-
tain phenomenon is entirely unknown or is strongly disputed. Then
it becomes difficult to distinguish between chance and causality as
the source of the confluence of events based solely on extreme rar-
ity. A classic image of a surprising rare event supposedly arising solely
from the operations of chance involves monkeys hitting the keys
of a keyboard. My computer keyboard has 55 keys. A monkey hit-
ting at random would have approximately a 1/55 chance of hitting
the key needed to type a given character. (I say approximately be-
cause the keys are not all the same size, some locations may be eas-
ier to hit, and so on.) My word-processing program informs me that
the previous chapter of this book had 41,400 characters. Thus, the
chance is (1/55)41,400 that a given series of 41,400 random keystrokes
would type out the chapter. That’s a very small probability, but that
probability isn’t 0 either; had we but monkeys enough and time, we
would expect that eventually the sequence of characters forming that
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chapter would be struck at random (a humbling thought for any
author).

An implication of this example is that you could come across a text
and judge it to be the result of human agency, when in fact it is the re-
sult of a random sequence of events. However, this implication is ob-
viously not very realistic. When you read a published work you know
that it wasn’t generated by the random hitting of letters or a random se-
lection of words that then coincidentally formed a interpretable se-
quence. (One could quibble. The Dada artistic and literary movement,
which flourished in Paris around 1920, did produce some examples of
poetry composed by drawing words at random from a bag. In addi-
tion, some readers find the later works of James Joyce very close to ran-
domly generated, although there is some question as to whether they
are in fact interpretable.)

Realistically speaking, you know that a readable book is not a prod-
uct of randomness. You know that because you also know a lot about
monkeys and people, not just about probability. The real problem
arises when the example is not contrived, something highly improba-
ble is observed, and your knowledge is essentially limited to the prob-
abilities in the face of great uncertainty as to mechanisms of causation.

For example, suppose there is a cancer that does not run in fam-
ilies. It occurs apparently at random (“sporadically,” as doctors say)
and strikes 1

2 of 1% of the population—it’s a rare disease. Yet, in a sin-
gle family living next to a waste dump site, three children get the cancer.
This seems unlikely by chance and might lead us to say that living next
to the dump was risky. After all, in a set of three siblings selected at ran-
dom, the probability that all three would get the cancer is 0.053, or 1
in 8,000, which surely meets most people’s definition of an event that
is unlikely by chance. However, in a country the size of the United
States, more than a million families have three children. We’d there-
fore expect 1 in 8,000 of these families to have all three children get
the cancer—that’s 125 families out of every 1 million.

These little clusters of three cases apiece are expected on the ba-
sis of chance alone. If these 125 families are distributed in the same
way as any other 125 randomly selected American families, many will
have homes in nice locations, but a few will live near dumps, high-
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tension electrical wires, chemical factories, and the like. Those that
do will consider only their own experience as informative. The fam-
ily home is near a dump site and the children have a rare cancer, so
what could be more “obvious” than a connection between the expo-
sure and the disease?

Epidemiologists know, however, that when small probabilities are
applied to vast denominators, astonishing coincidences may arise even
in the absence of any cause-and-effect association. Judging whether
the association is in fact causal requires knowledge not just of selected
instances, but of the entire pattern of disease throughout the popula-
tion. Thus, if the rate of “three siblings with disease” is 1/8,000 fam-
ilies in general, but 1/800 for families living near dump sites, we’d
say that the relative risk is 10-fold higher in those with the expo-
sure. That would not be proof of a causal association, especially in the
absence of any known mechanism, but it would certainly be good evi-
dence compared to a single selected instance. This kind of comparative
evidence is required because in the total absence of any association,
the rates would be 1/8,000 in both the exposed and unexposed seg-
ments of the population, yet a family with three cancers would still
be impressed by the “association” between the disease and whatever
looked suspicious in their vicinity. Their reported “association” would
be called anecdotal evidence, a term sometimes considered demean-
ing by those who present such observations. Nonetheless, it is a form of
evidence whose greatest value may be to raise questions that can be an-
swered by scientific comparisons involving numbers or rates of cases
that arise in various groups. By itself, an anecdotal report provides in-
adequate information about the risk conferred by an exposure; at worst
it is misleading, and at best it is inconclusive evidence.

Among those who are not scientifically trained, there is much resis-
tance to this type of conclusion (or nonconclusion). First, some peo-
ple harbor a faith that scientists should be able to make some judgment
based on whatever evidence is available, no matter how sparse the in-
formation; “cannot be determined” is often not considered an accept-
able answer. Second, people don’t like to have their experience held in
little esteem. But there is another key reason why some people abhor
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the skeptical attitude toward anecdotal reports of “surprising” clus-
ters of events. They are unfamiliar with an important phenomenon
that arises from the workings of probability: randomness comes in
bunches.

If it seems counterintuitive that randomness comes in bunches,
imagine looking up at the night sky and seeing the stars arranged in
an absolutely regular grid. The stars form the corners of the squares in
this grid, so the sky has the appearance of thousands of boxes at reg-
ular intervals. You would be astonished to see this, and it would be
difficult to imagine a less random arrangement. A random distribu-
tion must be the opposite of this grid in a certain respect: it would
have some empty areas and some clumps, not a clump-free pattern.
Only a perfectly regular grid is completely clump free.

It’s pretty obvious that assigning random locations to disease cases
would create some areas where no disease occurs: a patchy, scattered
appearance would be evident on a map of random locations. And the
complementary fact is that places on the map where no disease oc-
curs must be balanced by some places where many cases occur. It is
poor science to pluck out these local concentrations and throw out the
information on the empty regions—and then regard the isolated con-
centrations as amazing and rare. The degree to which concentrations
of disease are surprising or not must be a function of the context giv-
ing rise to the entire pattern of disease.

Why must the entire context be taken into account, and not just the
rarity of getting many cases together within (for example) a family of
a given size? Consider this analogy: the probability of getting 10 heads
in a row when tossing a coin is less than 1 in 1,000, so it would be a
surprising result—but it’s only surprising for an individual sequence
of 10 tosses. If you pick up a coin and toss it 10 times, it would indeed
be amazing to get all heads. However, if you have millions of 10-toss
trials, you know in advance you’ll have thousands of trials where the
result is 10 heads. In such circumstances, it is simply incorrect to pick
out a trial with 10 heads and insist that there must be a reason for
the 10 heads other than mere chance. It’s just the effect of enormous
denominators, in this case millions of trials of size 10.
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There is a further problem in deciding whether a cluster of disease
has a specific underlying biological cause, and has not occurred by
chance. Suppose that the disease rates in two groups being compared
actually are different, but not by much. The rates might be 1/8,000 in
one group and 1/8,001 in the other. Are these different? How about
1/8,000 versus 1/8,100? Where do we draw the line and conclude that
we are observing different rates?

The line should be drawn when the difference exceeds the fluctu-
ations we would expect due to chance alone. As you know, there are
chance fluctuations in rates. Even if tossing a coin had a true out-
come probability of 50-50 on average, a particular set of 10 tosses
might well differ from this, though usually not by much. The ef-
fects of chance fluctuation on rates are exacerbated when the rates
are very small. A single additional case of disease may raise a rate
from 1/10,000 to 2/10,000, a small increase in absolute terms but a
doubling of the relative risk. It won’t do to say we’ll ignore the rela-
tive risk and only consider a whopping big increase in absolute risk
as meaningful, since few exposures in real-life epidemiological stud-
ies engender very large disease rates in absolute terms. Even cigarette
smoking, which confers roughly a 10-fold relative risk of lung can-
cer compared with the risk among nonsmokers, elevates the absolute
rate of lung cancer mortality to roughly 1/100.

The crash of the Concorde supersonic aircraft provides a catas-
trophic example of the extreme variability inherent in rates of rare
events. Before the crash on July 25, 2000, there had never been a fa-
tal accident involving the Concorde, so the observed rate of such ac-
cidents was zero, and by that measure the plane was the safest in the
skies. The Boeing 737 series had 0.33 fatal accidents per million flights,
with 31 million flights to its credit. The Airbus 320 had 0.55 fatal ac-
cidents per million flights, with 7.3 million flights. Note that aircraft
safety engineers measure these failure rates on a per-flight basis rather
than on the basis of passenger miles traveled, because by far the riski-
est parts of an airplane trip are the takeoff and landing, and each flight
has a single pair of these no matter how long the flight may be. In ad-
dition, from an engineer’s point of view, the rates of reliability or me-
chanical failure for a plane should be independent of the number of
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passengers carried, although from a liability point of view that num-
ber matters a great deal.

After the crash, the Concorde became the plane with the worst safety
record. There are not many of the supersonic aircraft (about a dozen
in regular use), and they make relatively few flights. By the year 2000,
there had been roughly 80,000 Concorde flights. One crash elevated
the rate from 0 to 1/80,000, or 12.5 per million flights. When ex-
tremely rare events are studied, especially in fairly modestly sized de-
nominators, rates may seesaw because they are subject to tremendous
sampling variability. In short, small rates are estimated imprecisely.

The Poisson Distribution

One distribution in particular is quite useful in dealing with this prob-
lem of chance fluctuations when rates are very low. We can use it in
large populations even when the denominator is not known precisely.
All we need to know is the number of events that occur (such as cases
of disease or numbers of meteors striking Earth). Then the mathe-
matics of the Poisson distribution can be used to determine whether
this observed number is statistically different from some other typi-
cal expected number, above and beyond chance fluctuation. This dis-
tribution is named after Siméon Denis Poisson, a French mathemati-
cian who lived from 1781 to 1840 and was a student of Pierre-Simon
Laplace (about whom more will be said later).

The Poisson distribution is closely related to the binomial distribu-
tion, which was discussed in chapter 1. Use of the binomial requires
the probability of an event or hit occurring in any given trial, and the
number of trials; from this information the probability of various out-
comes in the set of trials can be calculated. Our interest at present is in
very rare events, again produced by a probability (p) applied to num-
bers (n) of trials. The expected value or mean, m, in a Poisson distri-
bution is just the same as it is for a binomial: m = n× p. In fact, if you
hold m constant, while reducing p to a tiny number and greatly in-
creasing n, the binomial distribution becomes the Poisson distribu-
tion. In terms of the calculus, the Poisson is a special limiting case of
the binomial as n → ∞ and p → 0.
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Table 4.1. Probability of observing no “hits,” when the Poisson
expectation is that one “hit” will take place

A special problem in dealing with rare events is that even in fairly
large samples, the event may sometimes not be observed at all. It is
then especially difficult to estimate the underlying probabilities from
a set of observations. It is here that the Poisson distribution becomes
particularly useful, for calculations may be made based on m in the
absence of specific knowledge of p and n. Table 4.1 illustrates why this
is so and also demonstrates that the Poisson distribution is the limit
of the binomial.

Suppose that m = 1. Various combinations of p and n would re-
sult in this expected value. A few such combinations are shown in ta-
ble 4.1, together with the probability of seeing no cases or “hits” in
increasingly large denominators. How often will the rare event be ab-
sent from the sample?

The heading of the last column is read, “the probability of observ-
ing 0 events in a distribution with m = 1.” This number is simply
(1 − p)n, since we are estimating the chance of nonoccurrence in all n
successive trials. Note that changes in P(1, 0) occur more rapidly at
first, then slow down at large n as a limit is approached. The limit is
called Pp(1, 0): the Poisson probability. Pp(1, 0) is equal to e−1.

Why is e−1 the limit of P(1, 0) (in which e is the base of natural log-
arithms)? In table 4.1, np = 1 so p = 1/n. Thus, we could rewrite the
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probability of zero successes, which we called (1 − p)n, as (1 − 1/n)n.
But e, by definition, is the limit of (1 + 1/x)x as x → ∞. Substitut-
ing −n for x and changing signs accordingly, it is an equivalent state-
ment to say e−1 is the limit of (1 − 1/n)n and thus of (1 − p)n.

This observation can be made more general. When m is not 1 but
some other expected value, the limit is for P(m, 0) is e−m. After all,
values of m can be altered by keeping the arbitrary sequence of p
as shown, and changing the n. Suppose that m is now 2, for exam-
ple, implying that all the n values are doubled. This time we substi-
tute −2n (rather than −n) for x in the formula defining e. Making the
same changes in sign as before, we obtain a limit of e−2, and more gen-
erally, the limit is e−m.

In chapter 1, we saw the binomial formula

P(r) = n!

r!(n − r)!
prq(n−r)

in which r is the number of hits or successes for which the probabil-
ity is being estimated. We can adjust this formula to obtain Poisson
probabilities very easily, including those for other outcomes than zero
hits. We can take advantage of the fact that we are using tiny probabil-
ities operating on huge samples. That is, in an incredibly large num-
ber of trials (n), the number of successes (r) is extremely small. Just as
1,000,000−1 is still roughly a million, n−r is still roughly n. In such cir-
cumstances, the binomial term prq(n−r) is essentially prqn, especially
when q, the chance of failure, is so close to 1. But we have also just
shown that qn = (1− p)n = e−m. Hence, that term prq(n−r) = pre−m.

The fractional part of the formula also gets simplified due to the rel-
ative sizes of n and r, cancellations, and the equivalence of m = np.
The entire binomial formula at the Poisson limit becomes Pp(m, r) =
mre−m/r!. This is extremely easy to use, as we shall see, and it is prefer-
able to the full binomial formula. For one thing, the binomial formula
would need factorials for the population-sized n, and n can be in the
millions. Exact values for such factorials can be hard to obtain.

However, obtaining values for huge factorials is not impossible.
There is a useful method for approximating n! when n is large, given
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by Stirling’s formula. The method was actually first suggested by Abra-
ham de Moivre, who published it in 1730 in Miscellanea Analytica, a
book on probability. James Stirling also described the method in his
own 1730 book, Methodus Differentialis, using an equivalent but more
convenient formula. The latter equation is mentioned in the 1738
edition of de Moivre’s book and is properly attributed to his con-
temporary British colleague. With Stirling’s formula (and almost any
calculator) in hand, n! is obtained as [(2π)/(n + 1)]1/2e−(n+1)(n +
1)(n+1). The approximation is quite good and improves with increas-
ing n: as n approaches infinity, the proportion of error approaches
1/(12n).

The odd ubiquity of e in mathematics is worthy of mention here,
and many have felt it worthy of wonder. We have seen its important
role in the relationship between the binomial and Poisson distribu-
tions, and in Stirling’s formula for factorials. Perhaps the most familiar
application of e involves the growth of money at a compound inter-
est rate, r, over a specified time period, t: the amount at the end of
the period is equal to ert . Radioactive decay occurs in a pattern in-
verse to the growth of money at compound interest, namely e−rt . Eli
Maor’s e: The Story of a Number explains the applications and his-
tory of this quantity that plays a role in so much of mathematics.

In any event, the Poisson limit function is the easiest way to cal-
culate the probabilities of rare events. Here is an important exam-
ple of its application, which looks at the effects of vaccination. Sup-
pose that 100 persons were inoculated against a disease that ordinarily
afflicts 1 person per year in a population that size (say, a group of dor-
mitory residents). Thus, m = 1. In the year after vaccination, none of
the 100 persons contracts the disease (thus, r = 0). The Poisson prob-
ability of no one getting the disease, by pure luck in the absence of the
vaccine, is P(1, 0) which is

Pp(1, 0) = mre−m/r! = 10e−1/0! = e−1 = 0.37

In other words, if you expect to find on average 1 case in 100 per-
sons, 37% of samples of 100 will contain no cases, simply because of
the sampling fluctuation when dealing with this small rate. There-
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fore, it’s not really surprising to find no cases in a particular year. Now
suppose that the experiment is repeated in a larger sample, a popu-
lation of 1,000. With roughly the same expected proportion of cases,
the value for m would be 10. Suppose that in this group, too, no cases
are observed. Then we have

Pp(10, 0) = mre−m/r! = 100e−10/0! = 0.000045

Thus, the finding of no cases in 1,000 vaccinees is very surprising if
the vaccine has no effect. It would be fairly likely that “1/100” would
fluctuate downward to no cases at all, as the result of a single per-
son not getting the disease; however, when it comes to a population of
1,000, the chances are 45 in 1,000,000 that all 10 expected cases would
just not get the disease. Indeed, sample sizes for clinical trials of vac-
cines are set in advance using this kind of logic, so that the effect of
the vaccine (if there is one) will exceed the expected sampling fluctu-
ation and hence be detectable.

The great thing about the formula is that exact knowledge of n and
p are not required; only m need be assumed as long as the popu-
lation is relatively constant. The practical advantage is that in large
populations that do not change quickly over time, expected fluctua-
tions in r from year to year can be predicted and distinguished from
“real” changes in frequency—those with a specific cause. The power
of the Poisson distribution goes well beyond medical applications. For
example, armies often are fairly constant in size from year to year, un-
less, of course, a war breaks out. Unfortunately, some soldiers die even
in peacetime. In the nineteenth century, soldiers in the Prussian cav-
alry would occasionally be accidentally kicked to death by horses. In
the late 1800s, the cavalry was divided into 16 different corps. Across
all years and corps, the value of m was 0.7: less than one death oc-
curred on average. Rarely, more deaths did occur. Three deaths were
observed in 11 corps in some particular year; even 4 deaths were ob-
served (on two occasions). These were not considered excessive num-
bers of deaths in the sense that the deaths were the result of poorly dis-
ciplined troops being careless around horses. Numbers of deaths oc-
curred with essentially the same frequency as predicted by the Poisson
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Figure 4.1. Original data cross-classifying mortality data by years (1875–1894)
and regiments. The upper panel shows the numbers of soldiers accidentally kicked
to death by horses. The lower panel shows the number of regiments that had par-
ticular numbers of deaths, and number of such deaths (right-hand column) that
would be expected according to Poisson distribution. Source: L. von Bortke-
witsch, Das Gesetz der Kleinen Zahlen, Teubner, Leipzig, 1898, p. 24.

distribution, so they were consistent with the sampling fluctuation ex-
pected in small rates (see figure 4.1).

During World War II, the London Blitz provided an example of
“An Application of the Poisson Distribution.” R. D. Clarke’s 1946 ar-
ticle by that title in the Journal of the Institute of Actuaries described
the pattern of damage by German V-2 bombs. He noted: “During
the flying-bomb attack on London, frequent assertions were made
that the points of impact of the bombs tended to be grouped in clus-
ters,” rather than to show a random distribution over the metropo-
lis. It was as if certain areas were specifically targeted, or as if bombs
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Table 4.2. Numbers of V-2 bombs on squares in a London grid, compared with
the Poisson expectations.

tended to fall together for some mechanical reason. The former ex-
planation seemed to imply an unexpected precision in the control
of the flight paths, and the latter explanation seemed strange, given
that each bomb traveled across Europe atop its own rocket. To deter-
mine whether clustering really took place, “144 square kilometers of
south London [were] . . . divided into 576 squares of 1

4 square kilome-
ter each, and a count was made of the number of squares containing
0, 1, 2, 3, . . . , etc. flying bombs. Over the period considered the to-
tal number of bombs within the area involved was 537. The expected
numbers of squares corresponding to the actual numbers yielded by
the count were then calculated from the Poisson formula.” Table 4.2
presents the actual results.

The most common outcome was to receive no bombs at all, fol-
lowed by a single bomb, but certain squares received very large num-
bers of hits in a real and unfortunate sense. Yet, despite the impres-
sion of clustering, clusters were no more common than one would
expect by chance. The observed numbers of beleaguered squares re-
ceiving four hits, or more than five, were almost identical to the num-
bers predicted by the Poisson distribution, and there was scant differ-
ence elsewhere.



86 • What Are the Chances?

Making an Unlikely Event a Certainty

While people naturally try to avoid certain rare events such as con-
tracting peculiar diseases, being kicked by horses, and being hit by
airborne bombs, there are other rarities that are eagerly sought af-
ter, ones that aren’t necessarily covered by Poisson probabilities. Few
rare events excite as much fervent hope in so wide a segment of the pop-
ulation as the choosing of a winning lottery number. The odds are mi-
nuscule of winning a large prize, of course, but millions of people play,
perhaps for fun and amusement, or perhaps out of financial despera-
tion or delusion. Few people really expect to win.

In 1992, however, an investment group in Melbourne, Australia,
called the International Lotto Fund did expect to win a lottery with a
multimillion-dollar prize. The group’s organizers noticed that the Vir-
ginia state lottery had a game that involved picking six numbers from 1
to 44, and they observed that the chance of picking the correct six num-
bers was not bad as lotteries go. The total number of possible com-
binations of six numbers is given by 44!/(6!38!), the fraction part
of the binomial formula. This number equals 7,059,052. Only a sin-
gle combination would be the winning combination, so any particu-
lar combination of six picked at random had a 1/7,059,052 probabil-
ity of winning.

The investment group set out to buy 7,059,052 lottery tickets in Vir-
ginia, one bearing each possible combination of six numbers. The
purchase of a ticket with the randomly chosen winning combination
would yield a prize of $27 million. The tickets cost $1.00 each. Thus,
for an investment of $7,059,052 (not counting the administrative costs
of purchasing 7,000,000 tickets—fairly substantial, I suppose), the re-
turn would be well over threefold, and the money would be secured
very quickly and with little risk. The International Lotto Fund had the
money to spend because it had the pooled resources of 2,500 small in-
vestors from Australia, New Zealand, the United States, and Europe,
who each contributed an average of $3,000. Each $3,000 would yield
$10,800.

The Virginia lottery winnings are not actually paid instantly, but
as installments over 20 years. Still, the return would be $1.35 mil-
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lion per year over that period; an investor contributing $3,000 would
collect $540 per year for 20 years. A New York Times article report-
ing the story on February 25 described the payoff as an investment
from an accountant’s perspective. Remember, no interest is paid dur-
ing the 20-year payoff, and due to inflation each successive payment
is worth a bit less than the one before; in addition, if you had the
whole jackpot in hand at the time of winning, that capital could be
used to earn income for the 20-year period. Nevertheless, the Times
still considered it a fine investment, “equal to receiving a rate of re-
turn of about 16 percent on a 7 million dollar investment.” Moreover,
this was “a sure thing,” whereas usually only the riskiest, most specu-
lative investments pay rates of interest in the neighborhood of 16%.

The winnings would actually be slightly greater than that. In the Vir-
ginia lottery, there are also second, third, and fourth prizes for various
other combinations, all of which would be present in the set of tickets
held by the investors. But these are rather small additions to the jack-
pot. The second prize is $899 (there are hundreds of these, rather than
a single such prize, since fewer numbers need be selected to win). The
third prize is $51 (tens of thousands of combinations will do). The
fourth prize is $1, just enough to allow you to buy your next chance of
winning (hundreds of thousands of combinations qualify for this re-
imbursement). All told, having every possible ticket in hand would
yield prizes totalling $27,918,561.

Buying every lottery combination and collecting the payoff looks
like a sure thing, but there were three sources of risk that could threaten
the profitability of the venture. One was not considered a realistic con-
cern: lottery officials might decline to award the prize under the cir-
cumstances. The second potential problem caused greater worry be-
cause of its greater likelihood: others might pick the same winning
numbers by chance, and the prize would be split among the holders
of more than one ticket. At the time of the game in question, Febru-
ary 15, 1992, the lottery had been held 170 times. Most of the time,
no one had won the jackpot; in fact, this had been the outcome 120
times. The jackpot had been awarded the remaining 50 times, but win-
nings had been shared 10 of those times. Sharing with one other win-
ner and receiving an 8% return on investment would still be consid-
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ered a tolerable rate of return compared to some other investments
in 1992 (though not compared to the New York Stock Exchange at
the time). A rate of return of roughly 5% would result if three tick-
ets were sold with the winning numbers; this rate of return (or any-
thing lower resulting from even wider sharing) is essentially a loss of
money from the investors’ perspective, because the $7 million could
have been invested elsewhere at a higher rate of return.

The third possible danger to the profitability of the venture was
that it might not be possible to complete the purchase of the tick-
ets in a timely fashion. This would lead to the expenditure of a great
deal of money for a large set of lottery tickets with insignificant prizes.
The investment group therefore laid the groundwork carefully, mak-
ing great efforts for the purchase to go smoothly. In advance of the
purchases, they filled out 1.4 million slips by hand as required—each
slip can be used to purchase five games (that is, sets of combina-
tions). They had 72 hours to purchase tickets. Teams of people pur-
chased tickets at 8 grocery store chains, for a total of 125 retail out-
lets. Grocery store employees involved in the purchase had to work
in shifts to print the tickets at record speed. One grocery sold 75,000
tickets just in the 48 hours before the selection of the winning num-
bers. One chain of stores accommodated the purchase in such a way
as to minimize the strain on its stores. The chain’s corporate head-
quarters accepted bank checks for the sale of 2.4 million tickets, dis-
tributed the work of generating them among its stores, and had the
tickets picked up by couriers.

As it turned out, the investment group’s workers ran out of time.
They were able to complete the purchase of only 5 million rather than
7 million tickets by the time of the drawing. But luck was with them: by
the time ticket sales ended, they had a winning ticket and avoided split-
ting the prize, circumventing two major potential problems. It took
them days to find the ticket, but they eventually presented it to lot-
tery officials.

The officials were in a quandary, because it didn’t seem fair to the
public to try to win the game by buying all the combinations, rather
than relying on chance. In addition, the public complained about be-
ing unable to purchase tickets because of the investment group’s activ-
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ities. The officials held hearings, at which one pizza deliveryman said,
“No one wants to be in line behind anyone who’s there for three or
four days.” There were reports of machines being labeled as “out of ser-
vice” while they were being used to generate huge numbers of tick-
ets for the bulk purchase, in the absence of the purchasers. Finally, it
was officially declared that nothing was specifically wrong with pur-
chasing millions of tickets to increase the chance of winning. How-
ever, the lottery commission promptly fashioned rules giving priority
to those standing in line, over absentee buyers. Rules concerning max-
imum numbers of tickets to be sold at one outlet were also placed un-
der consideration.

Lottery officials did pose a realistic threat to the investment, how-
ever. They balked at paying for another reason. They had found a sin-
gle rule in place with the potential to invalidate the winning ticket.
This was a state law requiring that the complete transaction take place
on the premises where the machine prints the ticket. The intent of this
rule had nothing to do with the sale of millions of tickets per se. In-
stead, it was meant to prevent middlemen from buying blocks of tick-
ets and reselling them elsewhere. Some people might then buy tickets
from the middlemen at a higher price than $1.00 in return for the con-
venience of not having to wait in line at the store. Such “scalping” of
tickets is illegal because lottery tickets have a regulated price, and also
because of the potential for counterfeiting. However, since some of
the tickets were paid for at a company headquarters and printed at the
company’s grocery stores, state officials at first said they might refuse
to pay. The grocery chain said it had never been made aware of the
rule, and the attorney for the investors echoed this statement. In addi-
tion, the International Lotto Fund stated that it could not determine
whether the winning ticket in its possession was one of those that had
been paid for at headquarters and printed elsewhere. Finally, Virginia
lottery officials announced on March 10 that the February 15 jack-
pot would be paid to the investment group, because of the threat of
protracted legal wrangling and the uncertainty over where the win-
ning ticket had actually been purchased.

Are there other ways to make certain or nearly certain that you
can win the lottery? Studies have shown that despite people putting
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much credence in “runs” of numbers or tendencies for certain num-
bers to be selected in particular lotteries, these are never more than co-
incidences one would expect by chance alone. An article in the New
York Daily News on November 8, 1996, purported to “reveal the se-
crets of Lotto.” It was filled with statistics and not a word about the
inherent fluctuations that could explain them. For example, it men-
tioned that the number 46 came up 22 times in the New York lot-
tery, more than the next most common number (4, which came up
18 times). But only a year’s worth of data were being considered, and
no estimate was presented of the variability one would expect in pro-
portions or frequencies observed in a series of this length. The ar-
ticle went on to say, “Some names have all the luck. Women named
Mary, Maria, or similar variations have scored most frequently as win-
ners. Among men, Josephs have hit the most jackpots.” Is this luck?
Aren’t names like Mary and Maria among the most common names
in New York, thus making their frequency among lottery winners sim-
ply an exact reflection of their proportion in the general population?
Wouldn’t “luck” imply that the probability of winning for a person
named Mary is greater than we’d expect on the basis of proportions?
Once again, the comparative method ought to be employed. Person-
ally, I would think it more surprising, and more of an indication of
special lucky attributes, if the most common first name for lottery win-
ners were Esmeralda rather than Mary.

Miracles

One evening in 1950, a church choir in Beatrice, Nebraska, experi-
enced both an annoying and a marvelous coincidence. The annoy-
ing coincidence was that everyone happened to be late for rehearsal
that evening. This was pretty remarkable because the choir consisted
of 15 people. It’s not as if they were all delayed by the same snow-
storm, for example. One delay involved an overly long nap. Another
occurred because a car wouldn’t start. Finishing up some geometry
homework delayed someone else. The delays were not all perfectly in-
dependent, because some families contributed more than one choir
member and delays were household specific. Still, there were a to-
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tal of 10 households with delays that could clearly be considered in-
dependent.

What is the probability that 10 households will all experience de-
lays and be late on a particular date? This is fairly ill defined, because we
do not have good estimates of the chance of a single lateness. In a lot-
tery, we can know the exact chance of a certain number or combina-
tion being selected. In many medical applications, we can rely on a
wealth of published experience to provide estimates of the probabil-
ity of responding to a particular therapy. Here, we can only guess, but
let’s say that the average choir member is late 10% of the time. Ten inde-
pendent latenesses occur with the probability 0.110, which is equal to 1
in 10 billion. Even if lateness were more common, it would still be ex-
tremely rare for 10 sources of delay to occur in a single evening. If
the chance of 1 delaying event in 1 household is 0.2, the probabil-
ity of all 10 occurring is about 1 in 10 million.

The annoying coincidence was that everyone was late. However,
it turned out to be a marvelous coincidence as well because the de-
lays all occurred the very evening that a freak accident occurred. An ex-
plosion destroyed the church a few minutes after the time that choir
practice was scheduled to start. In an article in the March 27, 1950, is-
sue of Life magazine, choir members wondered aloud whether the pe-
culiar series of delays might have been divine providence at work.

Very few churches end up destroyed, especially on a given evening
when an extremely rare set of circumstances delays all choir mem-
bers. What probability can we assign to the church’s destruction? We
need to multiply our probability of 10 delays, arbitrarily estimated
as 1 in 10 million or 1 in 10 billion, by the probability of destruc-
tion in order to arrive at the joint probability that the delays would
occur at that very point in time. Of course, the number we need is un-
obtainable (although I suppose insurance companies may have esti-
mates), but it is bound to be a tiny probability. That said, it is note-
worthy that Durham cathedral in England, which was built during
the medieval period, was also destroyed in a freak storm. This oc-
curred shortly after the Bishop of Durham had publicly questioned
whether Mary was indeed a virgin. Are such events miraculous? Cer-
tainly the probabilities are vanishingly small.
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Divine providence has often been invoked, even by statisticians, to
explain exceedingly rare series of events. John Arbuthnot was a Scot
and physician who found after medical school that he was more inter-
ested in statistics and mathematics than in medicine. In the late 1600s,
he translated into English a book on probability written by the Dutch
astronomer and physicist Christian Huygens. Arbuthnot added his
own examples from games of chance. When this joint work was pub-
lished, it was the first book in the field of probability to be printed
in English. Thereafter, he published and taught widely in mathemat-
ics and became a fellow of the Royal Society in 1704. It was in the
Royal Society’s Philosophical Transactions that he published his “Ar-
gument for Divine Providence” in 1710.

Arbuthnot had noticed the small but consistent excess of male over
female births mentioned in chapter 1. He looked at a series of data
that consisted of 82 annual records of christenings from London and
showed that the chance of having more males born than females each
year for 82 years was minuscule. Moreover, he claimed, this had most
likely happened for “Ages of Ages, and not only at London, but all over
the world.” Thus, he concluded, the chance of this phenomenon oc-
curring by chance “will be near an infinitely small Quantity, at least
less than any assignable Fraction. From whence it follows, that it is
Art, not Chance, that governs.”

Whose “Art”? And why govern the sex ratio at birth this way? Ar-
buthnot has this to say: “We must observe the external Accidents to
which Males are subject (who must seek their Food with danger) do
make a great havock of them, and that this loss exceeds far that of the
other Sex, occasioned by Diseases incident to it, as Experience con-
vinces us. To repair that Loss, provident Nature, by the disposal of its
wise Creator, brings forth more Males than Females; and that in an al-
most constant proportion.” It was in fact true, then as it is now, that
males have higher mortality rates at every age than females do. This
type of explanation of the sex ratio was also published 30 years later
by the minister and demographer Johann Peter Sussmilch; his writ-
ing, based on statistical studies of Brandenberg and Prussia, was dis-
cussed in chapter 1.

These days, science tends to address immediate physical causes
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(the more immediate the better) rather than intermediate or ulti-
mate causes. For instance, our explanation of the constancy of the sex
ratio at birth focuses on how hormones are regulated and how they de-
termine the sex of the child. Our control of medical and many other
problems has advanced as a result of this kind of reductionist science,
because the ability to alter immediate physical forces gives science great
power when those alterations have observable, desirable effects. Con-
sequently, the idea that something improbable might be proof of a
distant providence is rather less widespread than formerly; the great
rarity of a sequence of events does not, by itself, rule out mere coinci-
dence or a physical cause. Moreover, it’s hard to think of an event that
would have zero probability by chance alone and would have to be di-
vine in origin. On the other hand, perhaps there are occurrences so ex-
ceedingly rare that as a practical matter, we really should never have
the opportunity to observe them by chance alone. I refer to observed
events that might be, for example, as improbable as all the molecules
of air moving to one side of the room. If we have only statistical rea-
soning to rely on, and no incontrovertible evidence as to underlying
physical or divine causes, the source of the very rarest events must re-
main indeterminate.
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The Waiting Game

Driving You Crazy

If you take the bus, you surely have had occasion to wonder why buses
have to arrive in bunches after you’ve been impatiently waiting. Why
can’t they run at evenly spaced intervals? Intervals between trains also
vary too much. And if you drive, you have similarly experienced (even
in the absence of accidents) a sudden buildup of congestion that may
dissipate as quickly as it started. Mathematics predicts this everyday
experience. One branch, queuing theory, describes such phenomena
as a group of commuters going to work and provides explanations of
why they will almost never travel in a perfectly smooth and even flow.

Despite passengers’ suspicions, the clustering of buses need not orig-
inate in the desire of the drivers to travel together in friendly packs.
Suppose that the buses set out on their journeys at evenly spaced
intervals, let’s say 10 minutes apart. The trouble is, passengers do
not begin waiting at evenly spaced intervals. There is random vari-
ability in how many passengers accumulate at the bus stop during
those intervals. Even if they all intended to get to the bus stop at ex-
actly the same time, one may oversleep, another get up unusually

95
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early, and so on. At some point, an interval will have a larger num-
ber of people than the average, and the bus that comes along at that
time will have many people to pick up. Waiting for all those peo-
ple to board and pay slows down the bus a bit. This delay narrows
the interval between the crowded bus and the bus coming after it.
Because he or she has been delayed, the driver of the crowded bus
finds the crowding worsening progressively, with even more passen-
gers waiting at the next stop than if the driver had arrived on time.
The crowded bus gets slower and slower. Meanwhile, the bus behind
the crowded bus becomes faster and closer, having fewer passengers
to pick up than would typically accumulate during a full-length inter-
val. As the journeys continue, the difference in ridership grows more
pronounced, and the distance and time between the buses become
shorter and shorter. Of course, the trend can be reversed. The bus trav-
eling close behind, with fewer passengers, could suddenly have to pick
up a very large number of people who started waiting in the very nar-
row interval after the crowded one passed, such as when lots of peo-
ple leave a school or office at the same time. A book by Rob East-
away and Jeremy Wyndham, Why Do Buses Come in Threes?, describes
the above sequence of events and many other examples of queuing and
clustering.

The flow of automobile traffic also “bunches up,” whether city or
highway driving is involved. On city streets, traffic lights let through a
certain number of cars during the green interval. When traffic is mod-
erate, the length of the green light is usually ample to allow the pas-
sage of the backlog of cars accumulated during the red light. Indeed,
the timing of lights is usually set specifically to allow this to hap-
pen. However, since cars enter the system at random, on chance occa-
sions there will be too many cars at the light to allow them all to pass
in one green interval. Then, significant backups occur especially if the
backlog reaches another light. Moreover, during rush hour such back-
ups will be a typical occurrence, and even those lights that are adjusted
to keep up with the flow of traffic may not help much. Another possi-
ble problem is that there may not be that much freedom to adjust the
lights if a long green light holds back traffic flow at a major intersect-
ing road.
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It is perhaps more surprising that purely random variability in traf-
fic density causes congestion on highways with no traffic lights. Yet,
surely most drivers have had to slow down after traveling at full speed,
on account of a slowly moving dense patch of traffic. Resignation sets
in as you conclude that you are not going to make the trip as quickly
as you had thought, but then the slowdown clears and the drivers
in front of you return to the previous rate of speed. The even spac-
ing of the cars is also restored. When you pass the spot where traf-
fic had been clustered before, you see no evidence of any accident or
other reason for the slowdown.

Here, too, traffic density is a culprit, for this phenomenon is not ob-
served when traffic is light. When the roadway is saturated with cars,
however, the tight spacing of the vehicles may be at the limit of drivers’
toleration. Then, if a driver feels too close to the car in front, he taps the
brake lightly to maintain a more comfortable distance. This may oc-
cur when new cars enter the highway up ahead, or because somebody
slows down to avoid a bird, debris, or an irregularity in the road sur-
face such as potholes. Once one driver touches the brake, the one be-
hind him or her also feels too close and replicates the slowdown. The
successive deceleration of a series of cars ends when it reaches a driver
who, by chance, still has a satisfactory amount of “safety space” with-
out slowing down, but in the meantime this deceleration has created
a “bunching up” effect. Then a reversal occurs: the first car speeds up
once it passes the initial cause of the slowdown (for example, an exit
ramp), and the cars behind successively readjust their speed and spac-
ing. To the more distant observer, it seems as if the effects of an accident
have occurred, then vanished, and on passing the spot where the con-
gestion had been present a few moments earlier, there is nothing to be
seen that would provide a material explanation for the blocked traffic.

Some people hope to avoid queues by working at home and telecom-
muting. This reduces wear and tear on those individuals and vehicles
that avoid travel, but you still can’t escape queuing theory: its laws gov-
ern circuit requirements for things such as telephone calls and Inter-
net access.

Historically, problems related to telephone circuits motivated the
first mathematical treatment of queuing theory. In 1909, a Danish
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engineer by the name of Agner Krarup Erlang introduced the sub-
ject in the statistical literature. He was an employee of the Copenhagen
telephone company and had to determine the optimal number of cir-
cuits (and operators to complete them, in those days) needed by the
company in order to avoid severe congestion at peak call times. It be-
came clear that there was a trade-off: circuits cost money, so the im-
portance of making sure that calls could almost always be completed
was balanced against a concern about building expensive excess capac-
ity that would almost never be used. Consider the problem on a prob-
abilistic basis. There’s certainly never a zero probability of a given call
volume at a given instant. But the most extreme call volumes are very
unlikely (would everyone in the world really happen to call a particu-
lar neighborhood at the same moment?). It is not worth the effort and
expense of building facilities to handle the most unlikely situations. Er-
lang realized that it was desirable to use a mathematical model to cal-
culate a probability distribution of different levels of congestion given
the nature and variability of phone call traffic. The typical waiting
time to place a call and the typical size of the queue were also key sys-
tem characteristics for which quantification was important, since they
are measures of the adequacy of the system and are important com-
ponents of customer satisfaction.

Analysis of Some Simple Queues

The equations that govern queuing phenomena have quite general ap-
plications. For example, in a nearby park there is a lovely lake and on
fine days there are rowboats for rent. They can be rented at only one lo-
cation, namely a shack in which the boats are stored. Customers enter,
sign in, pay a deposit, and are given a life jacket and an explanation of
safety rules. The boathouse worker then assists the customer in drag-
ging the boat into the water. With no other customers in sight, it takes
5 minutes from the time a customer enters the boathouse to the time
he or she is floating on the water. In the language of queuing the-
ory, this 5-minute span is called the service time and is represented
by s. The service rate is 1/s, so in this example s = 1/5 = 0.2 cus-
tomers served per minute, or 12 per hour.
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The underlying service rate is assumed constant over time, although
the sample of observations inevitably has some random variability as-
sociated with it. Some service times will be a bit longer or shorter than
the next one. But, basically, they are samples governed by one constant
underlying rate, and there is no sequential effect: all fluctuations are
random, so what happened with a previous service time has no bear-
ing on the next one. Therefore, we say that the service times may be as-
sumed to be independent and identically distributed, in which the ser-
vice rate µ = 12 is a mean from an exponential distribution.

Of course, there’s another part to figuring out the typical backup
in the queue and the time to get through it: the arrival rate. This rate
tells us how many new customers enter the queue per unit time. The
Greek letter λ is often used to represent the arrival rate, and λ is of-
ten assumed to follow a Poisson distribution. Indeed, many real-world
situations involve an arrival process for which the Poisson is an appro-
priate model: spans of time may often be divided realistically into in-
tervals within which a single arrival would be usual, and additional
arrivals possible but rare; very numerous arrivals would be exceed-
ingly rare.

Suppose that we have a service time of 5 minutes, and an arrival on
average every 7 1

2 minutes, that is, 8 arrivals per hour. We thus have
µ = 12 and λ = 8. How often is the boathouse worker busy? He or she
can serve 12 persons per hour, but only 8 show up. Therefore, he or she
is busy 8/12 or 2/3 or 67% of the time. This is the so-called utilization
rate ρ. More generally, ρ = λ/µ. The average overall waiting time in
the system, including the service time, is W = 1/(µ−λ) = 1/(12−8);
thus, the average waiting time is 0.25 hours, or 15 minutes. The aver-
age wait in the queue—pure waiting time, exclusive of service time—is
given by Wq = ρW = ρ/(µ − λ) = 0.67/(12 − 8) = 0.1675 hour,
or about 10 minutes. These figures seem counterintuitive: after all,
the service time is shorter than the interval between arrivals, so why
can’t the boathouse worker finish with a customer before the next ar-
rival? The reason is that there’s no guarantee that the arrival will occur
just when the boathouse worker has finished serving the previous cus-
tomer and is ready to serve the next one. That’s why the average wait
must be longer than the average span of time between arrivals: ar-
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rivals have a 0.67 probability of arriving when the worker is helping
someone else.

As these waiting times imply, there will be a backed-up queue even
though the interarrival interval is longer than the service time. At
a given moment, the average number of customers in the system is
given by L = λ/(µ − λ) = 8/(12 − 8) = 2. This includes the per-
son whose service request is being worked on; the average length of
the pure queue behind him or her in these circumstances is given by
Lq = ρL = ρλ/(µ − λ) = 1.34.

Suppose that it’s an unusually beautiful spring day, and a week-
end to boot. The service rate might remain unchanged, but the num-
ber arriving per hour is now 10 rather than 8. What do the queue and
the waiting times look like now? µ remains equal to 12; with λ of 10,
ρ = 0.833. At a given time, L = 10/(12−10), so 5 people rather than 2
would be in the system. A high proportion of them would be in queue:
Lq = 0.833L, or 4.165 on average (that is, 4 people would be wait-
ing and the fifth would be in the course of being helped, with 16.5%
of his or her service time remaining). The waiting time to get through
the system is given by W = 1/(µ − λ) = 1/(12 − 10); thus, the aver-
age waiting time would be doubled, to half an hour. The average wait in
the queue—pure waiting time, Wq—now would be 0.833(0.5 hour),
which is 0.417 hour or 25 minutes, up from 10 minutes in the previ-
ous example.

What if 12 new customers arrived per hour? With bothλ andµ equal
to 12, their ratio ρ is equal to 1—the worker would be busy 100% of
the time. The waiting times and queue lengths would all have denom-
inators of 12 − 12, or 0; waiting times and queue lengths would be in-
finitely long, and if you joined the queue you would never get waited
on. Sometimes this is a realistic model of a situation in which you ac-
tually find yourself! The solution here is to add additional servers. In
fact, customer service–oriented businesses use models like this to ex-
amine in advance the conditions under which their systems would
cease to function and to indicate the appropriate number of servers
to avoid lengthy waiting lines or total system failure under varying as-
sumed arrival rates and service times. “Servers” need not be limited
to workers; the number of automated teller machines needed at vari-
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ous locations is determined in advance using the same logic, and num-
bers, as suggested by the equations. If ρ indicates that a server would
be busy 100% of the time, then 2 would be required to keep the line
moving; if ρ is 2 then the number of servers must be increased to 3,
and so on.

Sometimes additional servers may be added until the average wait-
ing time is quite reasonable, yet customers remain dissatisfied. This
happens often in grocery stores. The lines at supermarkets are espe-
cially annoying because they usually are about the same length and
you have to choose which cashier will check you out the fastest. I,
for one, almost always pick the wrong one. No matter how it looks
to me when I get in line, it is very rare that my line ends up finish-
ing first. I see other people who started at comparable positions in their
lines finishing before I do. Undoubtedly, you have had the same expe-
rience. Why does this happen?

Fancy queuing models are not needed to analyze this situation,
just the simplest of probability reasoning. Suppose that there are 10
cashiers, equally proficient, and 10 lines of equal length from which to
choose. The lines actually do tend to end up being of equal lengths—or,
more accurately, of equal expected service times. That phrase reflects
the fact that someone with a huge load of items tends to dissuade oth-
ers from joining the line, until several customers with smaller loads
accumulate elsewhere. When there are enough smaller loads to be pro-
cessed by other cashiers’ lines, people will again start to accumulate be-
hind the one big customer. On an ongoing, steady-state basis, then,
we can assume that the cashiers should take equally long to get to you.

Then why do we so often make the wrong decision about which line
to pick? Think of it this way: even though there are 10 equal lines and
10 equal cashiers, only 1 can be the fastest. There is variability between
the lines due to what are, at the outset, random unpredictable factors
(such as a cashier needing more change, more bags, a price check, or a
few moments to flirt with a customer). There are also random clusters
of hard-to-scan items, and of fatigue and slowing down. Given these
random factors, for our purposes it’s as if 1 of the 10 lines is selected
at random to be the winner; the probability must be 9/10 that it’s not
going to be the one you’re in.
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More Complicated Models

Of course, the models we’ve been discussing are simplified, and when
additional factors are relevant they can be factored in. In the boathouse
example, we have implicitly assumed that there is an infinite number
of customers, an infinite area for them to wait around in, and an infi-
nite number of available boats. Obviously, any real boathouse or lake
would only be able to accommodate some finite number of boats, and,
moreover, there would be an optimum number of boats. At a cer-
tain point, if the lake looks too crowded, renting a boat will start
to look less desirable and the arrival rate will slacken. Queuing the-
ory is often used to model waiting times in doctors’ offices, too, and
the same problem arises. The size of the waiting room is consider-
ably less than infinite, and nonurgent patients may take one look at
an overly crowded office and decide to go elsewhere (or be turned
away by telephone when asking to be seen on a given day). Sophisti-
cated queuing models often need to incorporate such feedback loops
as these.

Also, the boathouse model relies on parameters reflecting the av-
erage values for distributions, but these result in a deceptive model if
there is a lot of variability around the means. Suppose that service time
is highly variable—perhaps “regular customers” at the boathouse ac-
tually require very little service time, while some newcomers have ques-
tions about acceptable means of payment, the prices for more than one
person, or the fine print in a waiver of liability. There may also be non-
random variation in service time, as the worker tires more at higher
values of ρ (or toward the end of the day). Arrivals may be more
clustered than has been assumed or may follow an entirely differ-
ent, non-Poisson distribution.

Many very complicated queuing models are not mathematically
tractable. Even when solutions to equations are not available, how-
ever, queuing models may yield results of great practical utility for
business applications. Results are obtained by computer simulation,
using the Monte Carlo method, named after the famous casino.

In Monte Carlo simulation, a computer generates random num-
bers that represent what happens to “make-believe” individuals in
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various situations. For example, a number might be generated at ran-
dom from a Poisson distribution with a suitable mean, or from some
other distribution that matches the observed data. This would pro-
vide the arrival time of a hypothetical person. A random selection from
exponentially distributed numbers might then provide his or her ser-
vice time. Data for the next person are generated using a new set of
random numbers. This is done sequentially for a huge group of sim-
ulated individuals, numbering in the thousands or even millions. As
each new person’s data are generated, the computer enters the new ar-
rival into the system, then has them “served,” and calculates how many
people would be in the queue up to that point. The computer keeps
running totals as it adds successive simulated individuals and can han-
dle millions of virtual arrivals and service times in a matter of seconds.

Although distributions’ means are used to characterize arrival and
service patterns, the simulated customers may bottleneck—or be few
and far between for a while—as a result of patterns created by the ran-
domness of the selection from the distribution. This is a better model of
what actually occurs than can be provided by equations that do not take
random variability into account. Also, simulation allows the calcula-
tion of the average backup as well as the distribution of the frequency
of periods of unusual congestion. In addition, service time might be al-
tered in the model to indicate changing conditions—it can be made
longer after some specific number of customers has been served (to in-
dicate a tired server) or shorter to model the speedier service result-
ing from additional servers. New arrivals may be stopped when the
queue is longer than some number, in order to represent a limited wait-
ing area; new customers can be added again once the number waiting
diminishes. In long queues, the probability that a customer will aban-
don the queue in disgust may be specified and applied to those who
are waiting. In short, the computer allows researchers to play with
the so-called toy models they have created, to find realistic simula-
tions and thereby practical solutions for real-world problems.

Queuing theory also helps companies make money. Using mod-
els provided by queuing theory, whether based on equations or simu-
lation, businesses try to optimize the output of their customer service
systems, in order to maximize profit and customer satisfaction. Sev-
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eral factors must be considered. For example, the server may be used
at a utilization rate (ρ) between 0 and 1. Queue lengths and waits
are low when ρ is closest to 0, because the probability is small that
the server is busy when a customer arrives; conversely, as ρ gets close
to 1, queue lengths and waits increase markedly. From the business’s
point of view, a ρ near 0 is not very desirable: customers will con-
sider the service excellent (no waiting), but there is ordinarily a high
cost for providing a service that would generate little revenue in return.
A very high utilization rate may seem desirable because costly employ-
ees or ATMs don’t sit around doing nothing, but customers will ex-
perience poor service and perhaps go to competitors; they may not
join a long queue in any case and potential demand and hence rev-
enue are lost.

The cost of service per customer varies inversely with the cost of a
long queue. Combined costs are lowest where the two lines cross. The
location of this optimum point is carefully modeled by large compa-
nies, which often have teams of people to study the distributions and
parameters involved in their operations in order to simulate queues
and estimate their costs. To this day, one of the primary uses of this type
of analysis is in estimating the numbers of telephone circuits needed
to serve a customer base, just as it was when Erlang initiated the math-
ematical analysis of queues.

Psychology in Queues

As my irritation in the grocery line implies, more than pure mathe-
matics is necessary when using queuing theory. The psychology of the
wait is an important part of determining acceptable queuing struc-
tures for businesses. Certain queues are rarely abandoned. For ex-
ample, persons who have undressed, donned a gown, and are wait-
ing to undergo a magnetic resonance imaging (MRI) scan rarely leave
at that point. On the other hand, each additional minute waiting for
the MRI is rated as much more unpleasant and unacceptable than a
minute waiting for an ice cream cone or a turn at a rowboat.

Unexplained waits seem longer than waits for which an explana-
tion has been offered, and waits whose expected duration is not spec-
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ified are also perceived as longer and more irritating. In most urban
commuter train systems, passengers consider recurrent minor un-
explained delays a major irritant, even when the delays do not ulti-
mately have much impact on time of arrival. Customer dissatisfaction
over these objectively small nuisances can lead to loss of revenue, be-
cause other means of transportation are selected simply to avoid ten-
sion.

Business management is well aware that waits involving unoccu-
pied time are more boring—and hence seem longer—than waits dur-
ing which there is something to do. In New York at lunchtime, the wait-
ing lines at banks are extremely long. To gain a competitive edge by
improving the perception of its waiting times, the Manhattan Sav-
ings Bank once had a practice of providing live musical entertain-
ment at lunchtime. This resulted in improved customer satisfaction.
The crowded bank that I go to in New York has installed television
screens showing the latest news, weather, and financial reports, so at
least there’s something interesting to look at while you wait; the wait-
ing time is perceived as less of a waste because at least you’ve been
catching up on the news. Similarly, many urban railway systems have
added news screens on the platforms. This improves customer satis-
faction without improving the actual waiting time (and serves as an
additional source of revenue, as well).

One of the strangest examples of the psychology of queues is pro-
vided by the successful handling of customer complaints concern-
ing long waits at the baggage carousel at Houston International Air-
port. The airport’s management was constantly receiving a barrage of
criticisms about the waits for baggage. These complaints pertained es-
pecially to flights arriving weekday mornings during the rush hour,
laden with passengers on their way to business appointments (who
were thus not inclined to tolerate poor service). The managers de-
cided to pay a great deal of attention to the issue, because the criti-
cism was so prevalent and so strident. They spent money increasing
the number of baggage handlers and also sought out experts for ad-
vice on how to provide better service. After these measures, they won-
dered whether the typical customer experience was now acceptable.
They had two forms of data to determine this. One was the aver-
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age elapsed time from leaving the plane to having luggage in hand,
which turned out to be 8 minutes, considered an acceptable time for
luggage collection in the air transport industry. The other was the ros-
ter of customer complaints, which continued unabated.

The experts then took a new approach, reasoning that the actual
waiting time involved was not the source of the problem but that some
psychological aspect of the situation might explain it. When they con-
sidered the experience of the typical passenger with checked luggage
more carefully, they noticed that the 8-minute time span was com-
posed of 1 minute of walking from the plane to the carousel followed
by 7 minutes of actually standing around next to it. Also, the carousel
stood between the plane door and the taxi stand, enabling those wait-
ing for checked luggage to see the others from their flight leaving im-
mediately. A solution was implemented that did not change the total
time from plane to taxi, but did change the psychology of the wait-
ing time. Flights landing during the morning rush were brought in to
gates at the opposite end of the airport from the baggage claim area. The
walk from the plane to the carousel was now 6 minutes, while the time
spent actually standing and waiting around for checked luggage—and
envying those without it—was cut to 2 minutes. Customer dissatis-
faction disappeared.

Sometimes, however, watching others while you are still waiting im-
proves customer satisfaction rather than diminishing it. For example,
amusement park designers make a point of having the lines for rides
weave around the attractions, so that the view of those enjoying the
ride provides an enticing advertisement of the fun that lies ahead. In
this way, fewer people are induced to abandon the line out of impa-
tience, and revenue is enhanced. In addition, Disneyworld has very
long “crocodile lines,” which weave in and out and keep people con-
stantly moving. So, even though the waiting time is long, people are
happier because they never have to stand still.

Amusement park lines usually don’t go solely around the attrac-
tion; they also weave back and forth in an area so that you get a re-
ally strong impression of the number of people waiting. This, too,
is often deliberate and plays on another aspect of customer psychol-
ogy. Desire for a given ride is related in part to a customer’s percep-
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tion of how many other people want to go on it. This psychological ef-
fect is so strong that it persists even after the ride is over. Customers rate
their enjoyment of a given ride lower on uncrowded days with no wait-
ing, compared with the average enjoyment on days when there’s a bit
of a wait.

* * *

In all the models described thus far, a well-defined pathway has
provided a template for calculation. Queuing theory allows estimates
to be made that help us understand the effects of changing density
on such phenomena as driving or customer service—but calcula-
tions must be done for a given queue, such as a certain bus route
or service station. But what if the pathway is not specified in advance?
How long will it take you to travel a given distance if the route you
take is itself subject to random influences that determine not just its
speed, but its very direction? A large body of mathematical theory has
arisen to study such “random walks” and has applications in such di-
verse fields as economics and climatology. These random walks are
the subject of the next chapter.
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Stockbrokers and Climate
Change

Paths Less Traveled

It’s a whiteout! You left your campsite to hike and explore the canyon,
and now you find yourself in a howling blizzard with no landmarks to
guide you. The steel gray sky is mirrored in the snow underfoot, the
color matching so perfectly that you can’t see the horizon line. The
view in every direction looks exactly the same. And it’s becoming in-
creasingly difficult even to look around, given the density of snow
in front of your face. The fierce winds make it a struggle to stay up-
right, to keep walking—but you must stay upright, for to fall now is
to be buried in the snow and die from the cold. So you keep walk-
ing, hoping for a chance encounter with the walls that enclose the
canyon, because you know that there is a series of emergency shel-
ters available at intervals along those canyon walls, and you will be
able to reach safety. No canyon wall is more than 30 feet away, but
traversing those 30 feet is not easy. You can’t focus on a single di-
rection because there is no way to know the right path to take, and
anyway the interference of the wind makes you stumble along hap-
hazardly: a step or two in one direction, half a step in another, then

109
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several steps in a row before reversing course again for a short dis-
tance. Your chance of taking a step in the right direction is just the
same as taking a step backward away from it. You are tracing what sci-
entists call a random walk.

A half-hour later, where will we find you? (In a shelter sipping tea,
I hope.) We can’t be sure exactly, but we can rate the probability of
your reaching a given distance. For starters, we know that one direc-
tion is as good as another. So, if we mark the points that you’ve got
an equal probability of reaching in half an hour, they will form a cir-
cle. If that circle shows distances having large probabilities, the ra-
dius is small; distances having small probabilities have larger radii.
There is little likelihood of reaching distant zones.

It is easy to see that two extremes represent the least likely dis-
tances traveled. One is the worst case: no two steps will ever be lined
up and you will stumble around and only retrace your steps over and
over again. Thus, the distance traveled would be zero. The other ex-
treme is that by random chance, every step will happen to be exactly
in front of the other in an unbroken, completely straight line. Hence,
the distance traveled would be maximized and equal to the number
of steps taken times the average size of your steps. Just as in coin toss-
ing, in which the first case corresponds to tossing heads and tails alter-
nately for the entire half-hour, and the second to tossing only heads,
these scenarios are extremely unlikely, but not impossible.

There is a likeliest distance, too, which also involves the numbers
of steps and their average size. There is more to the calculation, be-
cause these are not all in the same direction. For estimation purposes,
we can consider backtracking as creating a series of triangles cross-
ing and recrossing previous pathways. Suppose that you manage 25
straight segments in the half-hour with an average length of 6 feet
each. You don’t travel 25 × 6 = 150 feet, but rather

√
25 × 6 feet

(that is, 5 × 6 = 30 feet) because the straight-line distance is a gi-
ant hypotenuse cutting through all the overlapping triangles. Thus,
the Pythagorean theorem can be used to determine how far you travel,
and this provides the best estimate of the distance: 30 feet of unidirec-
tional progress for 150 feet of walking, in this case.

Here’s the mathematical rule: Imagine that you are about to take
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your ith step. Your displacement is xi and you have an equal chance
of taking a step to the left (distance −d) or right (distance d). On av-
erage, 〈xi〉 = 1

2(d ) + 1
2(−d ) = 0, so you get nowhere. But 〈x2

i 〉 =
1
2 d2 + 1

2(−d )2 = d2. Hence, after N steps you are on average a dis-
tance Nd2 from where you began.

However, random walks can be used to analyze many more situa-
tions than walks in snowstorms. There are lots of phenomena in nature
and in human behavior that follow random walks. One early appli-
cation arose from the observations of a nineteenth-century Scottish
clergyman and botanist, Robert Brown, who commented on the vio-
lent and seemingly random motions of spores that he had suspended in
solutions in preparation for microscopic examination. They seemed
to move as if kicked around, first this way then that, by some sub-
microscopic force. Similar motions were reported for microbes in wa-
ter, whose paths had random components in addition to the direction
seemingly intended by the germs. Such motions were also seen for par-
ticles of dust, smoke, or other very small materials suspended in air,
and there, too, it seemed that there was an invisible force determin-
ing the paths of the particles.

There was a vigorous scientific debate at first about what Brown
had reported and these other similar observations. Some people said
that the motions of tiny particles were evidence of a life force in inan-
imate matter, which could at times give rise to living things through
spontaneous generation. Many others said that the motions were sim-
ply the result of convection currents, and that the flow of heated liquid
(or gas) was moving the tiny objects. Still others dismissed the con-
vection arguments, countering with the fact that the movements of
adjacent particles, whether spores, microbes, or dust, were uncorre-
lated. Thus, tiny currents were not the source of the motion, or there
would have to have been at least several particles near each other mov-
ing the same way. Heat did have something to do with the motions,
though, because cooling slowed these motions and made them less vi-
olent, numerous, and frequent, whereas heating had the opposite ef-
fect. Eventually it was realized that the motions were the results of col-
lisions between molecules—always in random motion—and the tiny
objects of study; it became clear that the motion was greater at higher
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temperatures because heat energy makes the molecules move around
more often and with more energy. These movements became known
as Brownian motion, and its physics and mathematics have been ex-
tensively studied. Although Albert Einstein is best known for his the-
ory of relativity and won a Nobel Prize for work on the photoelectric
effect, his 1905 article on Brownian motion is his most-cited scien-
tific text. In fact, Brownian motion of suspended particles is a key piece
of observational evidence in support of the existence of atoms.

Since this motion is completely random, the path of any one par-
ticle cannot be predicted, any more than the single path of one hiker
in a blizzard can be predicted. What can be predicted from the math-
ematical nature of random walks is the average behavior of a sys-
tem. We have seen an example in which random walk yields 30 feet
of progress away from the center, but this “best estimate” is an aver-
age. This means that if you were so unfortunate as to have the “experi-
ment” repeated many times, and you made an X on the ground at the
end of each half-hour journey, the Xs would form a ring around the
monument with density greatest at 30 feet in diameter.

The larger the number of experiments or trials, the greater the cer-
tainty concerning the average outcome. Four or five wind-blown strolls
may very well produce an average distance quite different from 30 feet.
Four or five hundred would reduce the chance of deviation from 30,
very markedly; four or five million, vastly more. So when the sub-
ject is molecules in a gas or liquid, rather than people, the average be-
havior of the system is very predictable indeed—after all, there are
6.02 × 1023 molecules in 1 liter of gas at standard atmospheric pres-
sure and temperature—and is known as a set of Laws of Statistical Be-
havior. The attempt to recover the macroscopic laws of physics from
the microscopic behavior of constituent atoms gave rise to the branch
of physics known as statistical mechanics. Born in the nineteenth cen-
tury, it remains vibrant today.

Laws of Statistical Behavior govern such phenomena as the mixing
of solutions. If a strikingly colored solution is poured very gently into
a large glass of plain water but left unstirred, random Brownian mo-
tion alone will cause diffusion of the color throughout the glass. The
predicted ultimate outcome is a completely uniform color, and our ex-



Stockbrokers and Climate Change • 113

perience is, of course, in accord with this statistical prediction. The
mixing occurs because of the trillions of collisions occurring each sec-
ond on the molecular level—so many that the chance of them being
all in the same direction, and our expectation being thwarted, is negli-
gible indeed. The “front” of the colored liquid moves along at a speed
governed by the average distance traveled by each Brownian “kick” (a
very tiny number), and the square root of the number of kicks (a very
large number), in the same way that the hiker’s walking distance is pre-
dicted. However, a very tiny number times a very large number yields
a medium-sized number, so mixing of solutions as the result of Brow-
nian motion alone is consequently a relatively slow process (which is
why martinis have to be shaken or stirred but are never left to dif-
fuse on their own).

Deviations from laws of statistical behavior are so improbable as to
be of negligible concern in everyday life. You wouldn’t expect to see
millions of hikers walking, by chance stumbles, in precisely straight
lines during snowstorms. Likewise, when a colorful liquid has thor-
oughly diffused through a clear one, it is considered to be at equilib-
rium. You would be shocked to see the mixing reversed on its own, so
that the glass of liquid separates back into clear and colorful sections.
The likelihood is minuscule that the average positions of the colored
molecules will deviate from a uniform distribution throughout the wa-
ter, because each downward thrust on a colored molecule is on aver-
age counterbalanced by an upward kick on a different molecule, close
by. However, if all of the forces happened to be upward at a given mo-
ment, the color would move spontaneously from the bottom to the
top of the glass, and the bottom would become clear.

To pick a potentially more alarming yet possible example, what if
all the molecules of air in the room you are currently sitting in jig-
gled into a straight line and ended up on the other side of the room?
To simplify thinking about this, imagine the room divided in half—
the half you’re in and the other half. We’ll ignore distances and the
time needed for molecules to travel away and just imagine the calcula-
tion this way: each molecule can be either on your side of the room or
on the other. Let’s say the joint probability of all your side’s molecules
jiggling by chance to the other half is 0.5x, in which x is the num-
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ber of molecules—many, many trillions. I don’t know about your cal-
culator, but on mine even 0.51,000,000,000 rounds to 0, despite the use of
scientific notation as a compact way of displaying numbers with 99 ze-
ros after the decimal point. And 0.51,000,000,000 is a much larger num-
ber than 0.5many trillions. Moreover, we haven’t even allowed (more re-
alistically) for the need to rule out molecules from the other half dif-
fusing back to your half—ruling that out would make the probabili-
ties even smaller.

The streets of New York City, dense with pedestrians at rush hour,
provide a perfect example of the principle that collisions in large
numbers can slow down travel time enormously, compared with the
progress you can make at other times as a pedestrian without compe-
tition. Yet, my repeated experience of walking out from Grand Cen-
tral Station in the course of many years’ commuting pales in com-
parison with what a particle of light energy has to endure to exit the
sun. The radius of the sun is approximately 420,000 miles, and at
the speed of light a few seconds should suffice for a particle to tra-
verse the sun and make an exit from it, no matter where in our star the
particle was generated. However, so many collisions with atomic (and
subatomic) particles occur that the average straight-line distance trav-
eled in between collisions is roughly 1 centimeter at a time; then the
particle is bounced off in some other direction. A random walk is fol-
lowed, never an efficient means of transportation, and it averages hun-
dreds of years (depending on starting location) before a light parti-
cle leaves the sun behind. It then takes a mere 8 minutes to reach Earth,
on a straight-line path.

The Bucks Start Here

Let’s come down to Earth for a moment and consider a practical prob-
lem that is of concern to most people: making money. You are not a
light particle trying to exit the sun, but an individual trying to exit the
workforce with an accumulation of enough money so that you have a
comfortable retirement. Or perhaps you are even hard at work accu-
mulating wealth so that you can leave early and rich (or have done so
already). Many people pursue such goals by examining the stock mar-
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ket and attempting to invest in such a way that their investments out-
perform the market—that is, so that their stocks go up faster than
the “basket” of stocks that gets averaged in such indices as the Dow
Jones Industrial Average or the Financial Times stock exchange in-
dex. Every day in major newspapers and on the Internet, you can see
graphs showing the recent behavior of stock market indicators. These
vary from day to day, of course, but their general appearance is repre-
sented by the examples in figure 6.1. Much coverage in the media is de-
voted to the analysis of such numbers, including noting recent trends
and correlations of those trends with particular recent news events or
even just with recent changes in attitudes that are sometimes called
“the psychology of the herd.” The graphs are also examined for cycli-
cal fluctuations, because business cycles might be an important deter-
minant of future stock prices. In general, you would think that any-
thing that helps you peg future stock prices correctly would help you
make money: you would know when to buy something, when it will
crest, and when to pull out.

If past history is any guide, the stock market really is a good invest-
ment. Stock market records go back more than a century, and if you
pick any two dates 20 years apart you will find that a stock market in-
vestment (as measured by the Dow Jones Industrial Average, for ex-
ample) outperformed “fixed” investments (by which I mean bonds,
notes, and other financial instruments with a guaranteed but fixed in-
terest rate). Stocks also outperform the price of gold and commodities.

Of course, there’s no guarantee that past history is any guide. Af-
ter all, the stock exchanges with long series of records are in countries
that became the great industrial powers during that time span. Along
with the unprecedented increase in expansion and prosperity came
an unprecedented increase in the share values of companies. Never-
theless, amid all the bouncing around of prices within small spans of
time, there is indeed a general upward trend in the value of securi-
ties traded in the market, and you might say that short-term fluctua-
tions occur around an upward trend line, and that they are centered
on that line. The trend seems likely to continue.

However, most people are interested in outperforming the mar-
ket, in being above that line. Since an individual’s financial interest lies



Figure 6.1. Two patterns of changes in a measurement over time: stock market
price fluctuations or random walks?
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in maximizing the rate of gain, few investors are content to buy the
stocks in the Dow or the Financial Times “basket,” go away for 35 years,
and then retire with whatever they’ve got thanks to the general eco-
nomic expansion of their era. Rather, people buy and sell constantly in
order to gain and accumulate small advantages over time, and stock-
brokers are there to advise on whether and when trades seem most
advantageous. Even those whose stock market investments are lim-
ited to the pension plans provided by their employers are often given
the opportunity to decide when to increase the stock market por-
tion of their portfolio at the expense of fixed-income securities in
order to take advantage of expected rises in the stocks. Some large in-
stitutions have the legal, fiduciary responsibility of investing the pen-
sion funds of thousands or even millions of people, in such a way as to
maximize the return on investment; they, too, study trends and fluc-
tuations in the market, because there is much competition to stand
out as “better than average” at investing.

Suppose that the path of the Dow really is a random fluctuation
about a general upward trend line. Even in the absence of any useful in-
formation from a stockbroker, an individual who invests in the Dow
basket at a randomly selected date and sells the stocks at another ran-
domly selected date has got a 50-50 chance of outperforming the mar-
ket. Of course, there’s also a 50-50 chance that the reverse is true. The
thousands of such people who gain from their investments, whether
they decided on them by using a Ouija board or a “tip” from a friend
at work, would think that they had benefited from good advice. Those
who took what amounted to random, informationless tips from sim-
ilar sources and lost money would wonder what had gone wrong.
And if stockbrokers gave advice (even random advice), half their cus-
tomers would end up congratulating themselves on having retained
such an insightful stockbroker, who invested their nest egg and made
them so much better off.

Equity mutual funds are baskets of stocks picked by analysts and
are supposed to offer an opportunity to outperform the market. At
the end of a year, some of them do better than others, and those
that do best get advertised widely, trumpeting their competitive ad-
vantage. The problem is that even among randomly chosen mutual
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funds, some would do better and some would do worse than aver-
age by chance alone. You could even have some fund doing better
than most for a few years in a row and you couldn’t be sure it wasn’t
a fluke, like five heads in a row when tossing a coin. However, about
20 years ago, 90% of equity mutual funds produced less profit than
the stock market at large, as measured by the yardstick of the Stan-
dard and Poor’s 500 stock index. Some of the failure to profit may have
been due to service fees and charges, but some of it calls into ques-
tion the fundamental utility of trying to predict the market. These
days about 75% of mutual funds produce less profit than the S&P
500. The improvement may be real rather than an artifact or a fluc-
tuation. While trading costs are generally lower now, there has been a
proliferation of specialized mutual funds, and some focus on techni-
cal industries or the Internet. The existence of more numerous types
of mutual funds, rather than a large number of homogeneous ones,
makes it more likely that some—perhaps many—will tend to be fo-
cused on specific sectors of the market, such as technology or phar-
maceutical stocks, that may be undergoing profitable expansion at the
time; however, such trends are not necessarily sustained.

It’s time to mention a feature of random walks that may seem sur-
prising at first. If we look at a small local portion of a truly random
walk, we will inevitably have a section that does not look random at all;
in that section it may seem highly directional, or perhaps even cycli-
cal. It would be as if we were to see a person making very good progress
along a specific path. We may conclude, erroneously, that we are not
observing a random walk, especially if that section is the only part of
the data available for our inspection.

Suppose that you were told that figure 6.1 represents the prices of
two particular stocks in recent months. At certain time points, would
they have seemed good investments to you? Figure 6.1 actually il-
lustrates random walk behavior seen in a coin toss series, not stock
market prices. Every uptick in the trend line is a “heads” outcome, ev-
ery downtick a “tails” outcome. The vertical axis indicates the running
surplus of heads over tails. At the midway line halfway between the
top and bottom parts of the figure, the two outcomes are equal; be-
low that point, tails exceed heads while above it the reverse is true.
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Remember, when the trend goes up past this line it does not indi-
cate a huge number of heads “in a row”—just that the cumulative sur-
plus is in that direction. Even with lots of intermixing of heads and
tails, a surplus of one or the other can accumulate and become per-
sistent. It happens that in these series there is some bouncing around,
but a clear trend is evident: the proportion of heads is clearly go-
ing up in many places. Yet, figure 6.1 is actually an extract of small sec-
tions of a graph of many thousands of coin tosses. These are only
local trends. The entire graph, which would run for miles, has al-
most exactly the same number of heads and tails, and the same num-
ber of upward trends as downward ones. Random walks do gener-
ate trends, and even cycles, but these can be misinterpreted. Especially
in short runs of data, it simply may not even be possible to distin-
guish whether the data are simply from a random walk, or whether
they are a graph of some directed activity or phenomenon that is tak-
ing place.

Burton Malkiel’s best-selling book A Random Walk Down Wall
Street examines the question: Does picking individual stocks by their
past performance, or by analysis of their business potential, permit an
investor to outperform a random selection of stocks? Malkiel points
out that if thoughtful rather than random selection is to be useful,
there must be a correlation between successive price changes for the
same stock. Note that this successive correlation need not be per-
fect, but it must exceed what one would find by chance in random
walks such as those depicted in figure 6.1. Careful selection of the
right starting point in figure 6.1 can lead you to believe that the aver-
age percentage of heads in the coin tosses is increasing, so for a trend
to be real it must be distinguishable from what would likely be seen on
a random walk. Malkiel observes that successive price changes are not
quite independent; they do tend to run in a given direction more than
by chance, but this successive correlation is very weak. The conclu-
sion for the investor is that the “buy and hold” strategy is best: let the
general upward trend of the market increase the value of your hold-
ings, and ignore particular trends in specific stocks (no matter what
may lie behind the price changes), because it would be nearly impos-
sible to distinguish the changes from random chance and, therefore,



120 • What Are the Chances?

basically impossible to predict their future prices. The general up-
trend is a much more reliable predictor of increasing value for your
stocks.

Malkiel believes that “unexploited trading opportunities should not
persist in any efficient market,” or at least that the evidence is very weak
for the existence of such opportunities. An efficient market, in this con-
text, is one in which new information is reflected in prices as quickly
as it becomes available. Prices move at random because they are af-
fected most strongly by essentially unpredictable external news (such
as wars, assassinations, political problems, and changes in fashions
and recreation). Even events within a company have a heavy ran-
dom component to them: a management approach that worked well
in one period may be inappropriate in another, and managers may
adjust or be replaced in time—or not. But what can the thoughtful
approach to investing accomplish? Not much. As soon as relevant in-
formation becomes available, everyone’s estimate of the impact of the
news gets incorporated into the stock price through the impact of
the information on supply and demand. As that estimate gets read-
justed, the price comes to reflect the average assessment of the impact
of the random news event. Therefore, the exploitation of informa-
tion to get ahead of the average investor is no advantage, because
everyone has the same information. Even the individual who wisely
bucks the trend, dismisses a company’s tale of woe, and ends up prof-
iting from his or her optimism will have no better luck than random
chance, next time. His or her decision to buck the trend was either hap-
hazard (and not predictive of his or her next decision’s success), or it
was based on information (and his next decision will involve new infor-
mation with new chances of random errors, uncertainties, and judg-
ment error, the same as everyone else has to contend with). And there’s
no way to know whether the good decision was haphazard or the re-
sult of good judgment.

It seems that the way to get ahead is to have surefire insider infor-
mation, but that is illegal because it is unfair and distorts the mar-
ket; only if everyone has the same information will price changes re-
flect a stock’s true value. Therefore, regulators want to see an efficient
market with an honestly appropriate price for the stock. For exam-
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ple, in October 2000, new regulations began requiring American cor-
porations to release any information with a potential bearing on their
stock prices to all parties at the same time. Announcements of earn-
ings and revenue projections and the granting of patents and the like
cannot be presented to the cadre of Wall Street analysts before they are
made to the general public. It used to be that you had to go to a stock-
broker to get comprehensive information about a corporation, but
that is a thing of the past. In the New York Times, October 20, 2000,
U.S. Securities and Exchange Commission chairman Arthur Levitt ex-
pressed this view: “The kind of volatility, uncertainty, and even insider
trading created by a system which depends on winks, nods, and whis-
pers is far more dangerous to our markets than a system which respects
the intelligence of investors who do not need intermediaries to inter-
pret financial information for them.”

At one time, it would have been difficult to require equal access to
information. When Wellington defeated Napoleon at Waterloo, the
news was sent by carrier pigeon to Nathan Rothschild, the wealthy in-
vestor in London who had arranged to receive it. Rothschild knew of
the victory even before the British government did. It was obvious to
him that British stock prices would increase wildly once the victory be-
came common knowledge. Rothschild was a master investor and had a
better strategy than to buy up stocks at once and profit from the com-
ing run-up in value. He ran to the floor of the stock exchange and
dumped everything he owned, putting all his stocks for sale at what-
ever price he could get. Other traders, seeing him react to a mes-
sage in this fashion, assumed that Wellington had lost and dumped
their stocks too. Prices plunged mightily, and only then did Roth-
schild buy up all the stocks he wanted, profiting doubly from both the
sell-off he deliberately sparked and the inevitable giddiness in stock
prices that he foresaw in the news of victory.

Even in the absence of market manipulation by a single individ-
ual, there are many examples of vast increases or decreases in wealth
being created by “crowd psychology.” After all, commodities such as or-
namental diamonds or a particular artist’s paintings command high
prices only because people agree on (and convince others of) their
value: the more people who create demand for an item, the more
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valuable it becomes. The introduction of tulips to the Netherlands
from Turkey in the mid-1500s sparked the emergence of a specula-
tive market for the flower bulbs. People began to bid on ever-rarer,
ever-trendier varieties, of which only a small number of bulbs were
available. In the early 1600s, single bulbs of rare, desirable types were
so costly that they were exchanged for houses, used to purchase man-
ufacturing plants such as a brewery, and offered as a bride’s dowry.
Often the bulbs did not even physically change hands; it was the ti-
tle to a particular bulb, still in the ground, that was exchanged. The
idea that prices could only rise became a self-fulfilling prophecy as
it caused ever-greater demand. Returns on investments in tulips in-
creased continuously and massively, cresting in the mid-1630s. The
speculative bubble burst in 1637. A feeling that the run-up in prices
would soon come to an end suddenly spread like a contagion and be-
came a second self-fulfilling prophecy: the market almost overnight
began to assess tulip bulbs as an investment of little value. Nothing ob-
jective had occurred, only the simple change in perception concern-
ing the “value” of the tulip bulbs. Many families were bankrupted by
the reversal, or lost homes that had been mortgaged for some flower
bulbs. The value of tulips was so evanescent and so wholly depen-
dent on a whim held in common that even today investment experts
warn of “another tulip craze” when observing a speculative bubble ex-
pected to burst once the self-reinforcing desirability of an investment
ceases.

In the short term, social forces such as belief in the continuing mar-
ket value of tulips create nonrandom trends in prices: that is, for a
time you can certainly invest more effectively by using your knowl-
edge of the demand for tulips rather than by ignoring the informa-
tion. In doing so, you will enjoy demonstrably better returns than you
would if you invested randomly. The problem is that when viewed on
a longer time scale, the investors’ infatuation and subsequent disen-
chantment with such things as tulips is yet another random, unpre-
dictable blip. You cannot predict what trendy new item investors will
seek, nor when the craze will start or stop.

Self-perpetuating trends and beliefs may occasionally arise for seem-
ingly the most analytical of reasons when a change in attitude con-
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cerns not a particular investment but beliefs about how a market
can or should operate. For example, changes in regulations govern-
ing fair trading on stock markets are socially agreed upon and (in a
sense) arbitrary rules; however, they may cause nonrandom trends,
perhaps permanently altering markets. Changes in how markets op-
erate may even come about simply because of the wide voluntary ac-
ceptance of novel economic concepts and theories. One example is
the Black-Scholes options pricing theory. It started out as a mathe-
matical model, which some thought accurately reflected the correct
price to pay for stock options. Those who initially followed the the-
ory made money from it, so others followed suit. Today the theory
is so widely accepted that all decisions on the pricing of stock op-
tions are based on the Black-Scholes equation. It is considered cor-
rect, and, thus, it is a model that is “forced to be true” as a way of es-
timating the value of options: investors act as if it is in fact true and
will only consider an option’s price to be fair if it is the Black-Scholes
price.

Let’s be clear about what stock options are. A “call option” gives you
the right to purchase a particular stock at a predetermined price. The
option is a contractual right that you pay for in advance and that ex-
pires on a certain date. You do not have to exercise your right. How-
ever, suppose that stock A is selling at $200. You feel that stock A
will rise and buy an option to purchase the stock at $220 two months
hence. If the stock is in fact selling for less than $220 at that time,
you have spent money on a worthless option. If the stock is selling at
$250, the option “locking in” the price of $220 is worth $30 (regard-
less of what you paid for it). If the stock is worth $300 the option is
worth $80, and so on.

Black-Scholes prices for call options are set by the following for-
mula, devised by Myron Scholes, Robert Merton, and Fischer Black;
the equation is considered so important that Scholes and Merton re-
ceived the 1997 Nobel Prize in economics for it (by 1997, Black had
died and Nobel Prizes are not awarded posthumously):

C = SN(d1) − Le−rtN(d1 − σ
√

T)
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What is a fair price for an option to buy a stock? It is obvious that
that price (C) has to depend on the initial price of the stock (S), the
exercise price at which you can buy it later (L), and the time to ex-
piration of the option (T). Two other factors come into play. One
is the prevailing interest rate you could earn on a safe, fixed invest-
ment over the same duration; this needs to be included to allow for
your potential earnings elsewhere, forfeited by the purchase of the op-
tion. Sometimes economists refer to this as “the time value of money.”
This time value is reflected by the compound interest term (in re-
verse): e−rt . The final factor is the potential increase (or decrease) in
the stock price, which is unknowable but allowed for by the inclu-
sion of a measure of the stock price’s volatility. The SD is used to
measure this variability; σ represents specifically the SD of the con-
tinuously compounded rate of return on the stock, on an annualized
basis.

Once these factors are all estimated, the previous equation is used
to set the options price: it is a fraction of the stock’s selling price, mi-
nus a fraction of the exercise price. The d1 term is instrumental in set-
ting this fraction. It involves previously estimated parameters and is
given by

d1 = ln(S/E) + (r + σ 2/2)T

σ
√

T

Finally, N(d1) is included in the Black-Scholes equation because
there is random variability in drawing a particular estimated d1; d1 is
a sample observation from a normally distributed “universe” of pos-
sible d1 observations. N indicates the probability of drawing it from a
normal distribution (the normal distribution was discussed in chap-
ter 2).

The equation for call options has become generally accepted; thus,
there are massive nonrandom effects on markets as everyone sets the
same price on options and they are not free to vary. The uniform be-
havior of the entire herd of investors to maximize profit in the same
manner is clearly a deviation from pricing structures with random
variability from investor to investor. (The same is true in principle
for “put options,” which give you the right to sell stocks at predeter-
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mined prices; corresponding equations exist for them.) Options prices
are therefore now predictable and no one has an advantage in know-
ing them; they have been incorporated into the structure of how an
investment market operates. No one gains from the situation by cor-
nering an options market or by being able to invest with unique in-
sight the way Rothschild could.

One night in January 1991, 176 years after Wellington’s victory en-
riched Rothschild, the armed forces of the United States and her al-
lies began to bomb Iraq. By the following morning, as Malkiel relates,
there was a “clear indication that victory would be achieved quickly,
[and] the Dow Jones industrial average opened 80 points over the pre-
vious day’s close. The adjustment of market prices was immediate.”
Indeed, it seems to me that with modern electronic media and the ad-
vent of 24-hour on-line instant news and stock trading, stock prices
are coming ever closer to being determined by the global, instanta-
neous inclusion of information freely available to all. This trend tends
to equalize investors’ judgments, limiting opportunities to exploit in-
formation and making it even more difficult to beat the average rates
of return. There is a countervailing force, however. Only a few years
ago, transaction costs were an important expense in large or frequent
trades, but these costs have recently fallen. This leads to higher trad-
ing volume and perhaps a new source of volatility because there is lit-
tle barrier to additional trades (and coupled with instantaneous news
availability, more of a stimulus to make them). Anomalous chains of
events could increase in number and create lots of new random win-
ners and losers. Some people believe that an intelligent examination
of instant news and stock prices will allow clever individual deci-
sion makers to beat the market thanks to their sustained good judg-
ments. However, a representative sample of the outcomes of such in-
dividuals’ behavior is not yet available to demonstrate definitively that
a random walk can be avoided by investors in the long run.

Another theory also remains unproven in the context of stock prices.
A body of mathematics called chaos theory has established that it is
possible for a set of a few simple equations, involving a few factors as
inputs, to generate output that is (to all appearances) completely ran-
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dom. The output of such chaotic processes satisfies all statistical tests
for randomness, yet it is fully deterministic. Thus, when the equa-
tions are known, a given set of inputs corresponds to a particular set
of outputs, making prediction possible. Some people hold that seem-
ingly random fluctuations in stock prices actually follow specific equa-
tions and could therefore be predicted from current prices and other
factors, but this is unproven. No one has specified the required equa-
tions and data and then successfully predicted the future course of
stock prices.

A Heated Argument

The example of changing stock prices shows that it can be very diffi-
cult to distinguish between a random walk and a trend influenced by
specific causes. Of course, there are many other examples of this prob-
lem including many with practical implications of various kinds. Con-
cern that the Earth’s climate is changing in ways that will prove trou-
blesome for humanity has motivated studies of global warming. Thus,
a great deal of what we might call “heated” argument centers on the is-
sue of whether observed trends result from a random walk, or from
some underlying process influenced by human activity, instead.

The Earth has recently gotten warmer. The trend is evident in data
from the past 150 years and especially since 1900. Figure 6.2 shows sin-
gle year changes and the same data displayed as 5-year moving aver-
ages. For a particular year, a 5-year moving average is that year’s read-
ing averaged together with the data from two adjacent years on ei-
ther side. The use of moving averages is called a smoothing proce-
dure. Since a given data point is used in several successive averages
(along with other values), as the focus of the averaging moves along,
the process dampens down isolated fluctuations and allows underly-
ing trends to be displayed more clearly.

Surface temperatures are shown as differences in degrees centi-
grade from the average value in the center of the entire run of data.
At first glance, these differences seem trifling, since they are com-
pletely contained within a range from roughly 0.3◦ below average to
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Figure 6.2. Global temperature trends. Measurements are relative to the average
temperatures in 1851–70 (surface) and 1979–89 (satellite). Sources: Phil Jones,
University of East Anglia (UK) and David Parker, United Kingdom Meteorolog-
ical Office (surface data); John Christy, University of Alabama, and Roy Spencer,
National Aeronautics and Space Administration (satellite data).

0.8◦ above average. However, vast amounts of energy are being re-
tained by the Earth if the entire planet is being warmed by 0.5 or 1◦

within a century or so. The incorporation of such energy into the
global climate system can unleash great storms and alter rain pat-
terns, among other changes, especially if the warming is uneven and
new patterns of convection currents arise in climatic systems. In ad-
dition, since figure 6.2 illustrates average changes, it obscures great
inequalities in warming around the world. According to the U.S. Envi-
ronmental Protection Agency’s Web site, from 1951 to 1993 alone, av-
erage surface temperatures in cooler latitudes of North America have
warmed up as much as 6◦C while in other areas cooling of equal mag-
nitude has been observed.

Incidentally, you can see that an immense amount of statistical data
must be used by climatologists to arrive at these numbers. In thou-
sands of locations around the world, weather station personnel col-
lect data that (for consistency) are preferentially sought from stations
that have been in operation for all or most of the 150-year span. For the
surface ocean temperatures, millions of observations from ships dur-
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ing the relevant time span are used. The surface of the Earth is divided
into a grid of 1◦ or less of latitude and longitude, and for a given year all
the observations in a given box are averaged (whether land or sea tem-
peratures). Then the boxes are all averaged to obtain an overall aver-
age for the Earth—after taking into account the fact that grid boxes
may cover areas of different sizes.

The surface temperature data are thus combined, broad based, and
reliable, and confidence in them is bolstered by consistency among ad-
jacent weather stations and between land and sea measurements, and
by the correspondence of local temperature data with local changes in
glacier size, tree growth, and other phenomena.

The satellite data were compiled to study temperatures in the lower
atmosphere. Although the trend in the data could be consistent with
surface temperatures, so far it’s a very short run of data with lim-
ited fluctuations and trend. Therefore, the data on the warming of the
Earth’s atmosphere are more controversial, whereas the data on global
warming at the Earth’s surface are rather clear-cut.

Let’s accept that average global temperatures are rising. Why does
global warming remain controversial? For one thing, there is an up-
ward trend but it may be caused by nothing more than a random walk.
After all, we saw graphs produced by coin tosses in figure 6.1, and they
too had long stretches of time in which a persistent surplus of heads
or tails arose from purely chance fluctuations, even though the un-
derlying probability of 50-50 per toss remained unchanged, of course.
There, too, our initial expectation might be that the time series of ob-
servations would show no trend and would fluctuate about the “zero
line” because of the equal probability of heads and tails. Consequently,
many scientists have made efforts to determine whether the global sur-
face temperature series can be distinguished from a random walk.

In 1991, A. H. Gordon published a figure showing the sequences
of cumulative changes in the direction of temperatures in the Jour-
nal of Climate (see figure 6.3). The top three graphs show the trends in
the Earth’s surface temperatures based on the yearly data, for the Earth
as a whole and separately for two hemispheres. An upward movement
for a particular year in any of these lines means that the tempera-
ture went up that year compared with the previous year in the series,
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Figure 6.3. Sequences of cumulative changes in the direction of temperatures,
globally and by hemisphere, with a random walk for comparison. Reproduced
by permission of the American Meteorological Society.

and vice versa. The scale from −10 to 10 indicates the current sur-
plus of “up years” or “down years” in the series. A mild (but by no
means uniform) tendency for temperatures to be higher in succes-
sive years results in a rather persistent stay in the zone above the zero
line in the overall (top) graph, and for the Northern Hemisphere as
well. In the Southern Hemisphere, the line remains in positive terri-
tory for a while, then turns consistently negative. The bottom graph
shows the results of a random casino game called Keno, as a series of
outcomes “measured” simply as odd or even numbers. As with tem-
perature change, the scale indicates the current surplus of odds or
evens.

We might expect that the proportion of time spent above or be-
low the “zero axis” in graphs such as these would be one-half. None
of the four series spend their length divided so evenly. In fact, ran-
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dom walks tend to drift away from the line of even distribution, and
the random walk of the Keno game here is no exception; the α value
is 0.36, which indicates that 36% of the Keno walk is spent on one
side of the line (that is, below it). The probability (p) of such an im-
balance is fairly large, 0.41, so this is not a surprising finding. South-
ern Hemisphere temperature data have a similarα (0.37) and p (0.416)
and are indistinguishable from the results of a game of chance. The se-
quence shown for the Northern Hemisphere is not much better, with
α = 0.213. The p value shows that between 30 and 31% (nearly one
third) of random walk sequences of this length will spend 21.3%, or
more than one fifth of their time, in the negative region.

The biggest difference from the Keno random walk is seen in the
combined global data, in which 11% of observation points are in the
negative zone. This means that in 89% of yearly observations, the tem-
perature remained above average (regardless of whether it went up or
continued back down in the direction of that average). Yet, the proba-
bility of getting the 11/89 split in a series this long is not too far-fetched:
it’s 0.215, so more than one-fifth of random walks this length would
have this type of persistent upward trend.

This may seem surprising, but we are looking at the series of ran-
dom independent tosses in a special way: we are not just counting
the heads and tails or ups and downs, but whether the cumulative se-
quence of heads or tails at a given point has got heads or tails in the
lead. If all the heads come first, then all the tails, you would have
50% of each as expected—in the form of a long run-up followed by
a long run-down. Of course, that’s an extreme example, but once a
rare, very positive stretch occurs, it is likely to be a long time un-
til an equally rare correspondingly negative stretch occurs. Thus, sur-
pluses (once they have started) tend to persist in random walks.

A Short, Frank Comment about Wiener Processes

You may have noticed that temperature fluctuation is continuous,
while Gordon simplified matters by reducing it to a discrete step that
is either upward or downward. The mathematics is thus made sim-
ilar to binomial sequences, providing an interpretation that is suit-
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able to our purposes: either there is a tendency upward or there is
not, irrespective of the magnitude. This analysis properly involves a
random walk, because a random walk has steps. There is an analo-
gous mathematical formulation called Wiener processes, comparable
in concept to random walks but used for examining continuous fluc-
tuations. They are named after Norbert Wiener, an American math-
ematician who studied processes such as Brownian motion that are
dependent on random events. He was very active in World War II, ap-
plying his talents to optimization of antiaircraft gunnery placement,
to filtering noise from radar signals, and to the devising of coding ma-
chines. Sometimes Wiener processes rather than random walks are
used to model global warming, but this is relatively rare; in the case of
climate change, the annual step size is tiny, and the first question of in-
terest is in fact a simplified one: Is the Earth warming or not?

Dead Seas and Tropical Flora

In any case, Gordon concluded that the global temperature series could
not be distinguished from a random walk. Four years later, Wayne A.
Woodward and H. L. Gray published in the Journal of Climate an im-
portant addition to the examination of these data. They examined sev-
eral possible models for the global temperature series. One was a lin-
ear trend through the points

temperature at time t = α + βt + zt

in which α and β are constants. α is the line’s intercept, and β is the
slope showing how steeply the trend is occurring per unit of time.
The term zt allows the addition or subtraction of a random tendency
around the line. Another model was the same with the addition of a
quadratic (squared) term, to allow the underlying line to be curved
rather than straight:

temperature at time t = α + β1t + β2t2 + zt

Finally, they looked at the results of an autoregressive model—one
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in which no specific preset formula for a line is used, neither straight
nor curved. Instead, a moving average is used. Each successive data
point is predicted from the moving average so far, plus a little bit of a
trend. The trend is randomly chosen but is more likely to be upward if
the last change was upward, and more likely to be downward if the re-
verse is the case (as if we had weighted rather than fair coins to toss).
The global temperature time series predicted by this third model pro-
vided the best match to the actual values.

The implication is that the global temperature series has random
trends rather than being the result of an inexorable fixed process that
could be well described by a deterministic equation. The tempera-
ture series is more characteristic of data with randomly started yet
persistent trends. They bounce around much more than would oc-
cur in a predetermined change (plus or minus some random noise)
each year; yet, the bouncing’s direction is significantly and highly de-
pendent on the immediately previous trend. Thus, Woodward and
Gray comment that the current observed trend may abate in the fu-
ture, adding that “the results shown here also suggest that if only 30
or 40 more years of reliable temperature data (or its equivalent) were
available, then a more definitive conclusion could be made concern-
ing whether the trend should be forecast to continue.” Those who
believe that “greenhouse gases” generated by human activity are trap-
ping heat, confident that current trends will continue, feel that it will
soon be amply demonstrated that global warming is being observed.

This will be important to follow up, for much is unknown about
global warming. Should we really consider the change depicted in fig-
ure 6.3 as a striking change? In the Cretaceous period, the Earth was so
warm that what we term tropical flora flourished everywhere. Ice ages
come and go on Earth, for reasons not yet fully understood. Among
the factors involved in such massive shifts are continental drift, preva-
lence of volcanic or other dusts, and prevalence and reflectivity of var-
ious types of clouds and ice sheets. There are also changes in the
shape of the Earth’s orbit and in the tilt of the Earth that have an im-
pact on climate change. For example, periodic changes in the elliptical
shape of the Earth’s orbit, and in the tilt of the Earth, influence the so-
lar energy received. In fact, the Mediterranean was a desert between
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5 and 6 million years ago, as can be confirmed by the types of fos-
sils and the minerals formed then (gypsum and halite crystals) and
still present under the sea floor. The flow from the Atlantic through the
Strait of Gibraltar was impeded by geological processes, and the evap-
oration rate exceeded the replenishment of water from precipitation
and rivers. One reason for the high evaporation rate was the tilt an-
gle of the Earth’s orbit around the sun at that time, which produced un-
usually high levels of heat energy. A 1999 article in Nature by Wout
Krijgsman notes that the “drier Mediterranean climate” was the rea-
son that “for a half million years, scattered bodies of water more saline
than the Dead Sea retreated across the isolated, salt-encrusted Mediter-
ranean basin.”

So is the trend seen in the past century and a half “man-made”—is it
more than what we would see because of natural fluctuation? Perhaps
we had best compare this recent experience with the immediately prior
centuries, in order to tease out the effects of human activity against a
backdrop of relative stability. Data for this period cannot be obtained
from weather stations, of course, but can be inferred from the types of
plants evidenced by fossil pollen, and from the speed of growth mani-
fest in tree rings. There are many other sources of information as well.
Deep-sea sediments contain bits of seashells, composed principally of
calcium carbonate (CaCO3). The oxygen in this compound may be of
several isotopes. Seawater is subject to a temperature-dependent evap-
oration process, and heavier isotopes of oxygen are more common in
seashells when it is cold. The heavier form of the seawater is evapo-
rated less readily. The temperature of seawater in the past can there-
fore be determined from the ratio of the isotopes in seashells at various
depths in cores brought up from the bottom of the ocean. A similar iso-
topic fractionation of oxygen from bubbles in cores of ice found in
glaciers at various depths permits an assessment of historic and pre-
historic air temperatures. The increasing presence of methane, carbon
dioxide, and other gases associated with human activity—sometimes
called “greenhouse gases”—is also documented in the sequence of
bubbles obtained from glacial cores.

All these sources of data provide convergent evidence, strengthen-
ing the conclusion that during the last thousand years in the North-
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ern Hemisphere the twentieth century was by far the warmest. Indeed,
in a thousand years the warmest four were 1990, 1995, 1997, and 1998.
Yet, some people note that there was a “little ice age” in the Middle
Ages and believe that the turnaround is merely part of the usual cy-
cle of recovery. The speed and ultimate magnitude of the upward trend
will soon permit a more definitive answer to whether global warm-
ing is the result of human pollution of the Earth with greenhouse gases
or simply part of natural cycles that would occur in any event.

Additional controversy surrounds the question of the effects of
global warming if the trend should continue. Will glaciers in Green-
land, Antarctica, and elsewhere melt, causing the sea level to rise?
Will new convection patterns in the oceans change sea life and af-
fect food sources, while new patterns in the atmosphere change rain-
fall and also affect the agricultural productivity of various regions for
better or worse? The Earth’s climate system is vastly complex; it is un-
certain what parameters would be needed to make predictions, and
even more uncertain what the actual values of all the many param-
eters are. There are undoubtedly feedback loops that may minimize
or accentuate trends. The problems in learning how the Earth’s cli-
mate works, what is influencing it, and where it is headed are remi-
niscent of the problems encountered in making predictions about the
course of epidemics that were discussed in chapter 1.

Perfect Models

At one time there was a faith that equations, provided with accu-
rately estimated parameters, could be used to predict all physical sys-
tems. That was during the Enlightenment, when educated people in
Western society were agog with the discovery that many natural phe-
nomena can indeed be predicted by mathematical functions. The late
1600s and early 1700s saw triumphs of understanding and mathemat-
ical prediction such as the publication of Newton’s Principia Mathe-
matica, the elucidation of relationships such as the inverse-square law
of planetary force, and the prediction of planetary orbits and the tra-
jectories of comets. The extraordinary success of this style of think-
ing went on for a century and more, leading the French mathematician
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Pierre-Simon Laplace to make this observation in the early 1800s: “An
intelligence that, at a given instant, could comprehend all the forces
by which nature is animated and the respective situation of the be-
ings that make it up, if moreover it were vast enough to submit these
data to analysis, would encompass in the same formula the move-
ments of the greatest bodies of the universe and those of the light-
est atoms. For such an intelligence nothing would be uncertain, and
the future, like the past, would be open to its eyes.”

This is a statement of faith that equations govern all physical events,
and it is also an interesting speculation that you could use equations to
predict the course of all future events from the past, and project them
backward as well to know how current events had originated. How-
ever, note that such omniscience is implicitly forever remote from
our experience: you would need every relevant equation and perfect
knowledge of every necessary parameter to make predictions. Cur-
rent thinking provides a realistic counterweight to Laplace’s flight of
fancy. You could never know all you would need to estimate per-
fectly the behavior of a physical system like the Earth’s climate. For
example, to obtain all the necessary data about temperature that per-
fect prediction requires, we would have to cover the Earth’s surface and
atmosphere entirely with thermometers. That, of course, would be im-
possible and would also change the Earth’s reflectivity and hence its cli-
mate. Thus, there is no possibility of perfect knowledge of the Earth’s
temperature in any of the years in figure 6.3. We introduce statistical
uncertainty to even the most perfect model. And that uncertainty ex-
ists for each of the many parameters that one would need to model
climate. Moreover, how would we submit such vast amounts of infor-
mation to analysis? Some people have estimated that a computer big
enough to model the Earth’s climate with extreme accuracy would have
to be so vast that all the material in the universe would be needed to
fashion it. After all, it currently takes about 24 hours of computer time
for the most accurate predictions of 36 hours of weather—and they
are hardly infallible predictions. While the need for a universe-sized
computer may be an overstatement (particularly if quantum comput-
ing ever becomes practical), the point is that Laplace’s dream seems
to be impossible in principle.
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Sir Robert May, F.R.S., is an outstanding scientist, a professor at Ox-
ford, and sometime chief scientific advisor to the prime minister of
Great Britain. Originally trained in Sydney as a physicist, he now spe-
cializes in the application of mathematical models in ecology and
epidemiology. Yet, May (a former mentor of mine, whose very name
indicates uncertainty) has observed that a statistical model must be a
“caricature of reality”: it is a recognizable representation of what re-
ally happens, but it is simplified and restricted to a few key (if distorted)
features. Nevertheless, models are an important aid to human judg-
ment, and our future depends in part on sensible application of sta-
tistical models to everything from drug development to climatology.
Knowledge of the role that probability and chance play in life are im-
portant elements of deciding on courses of action. If we add to this
mix the application of wisdom and judgment, then we perhaps will
have a better future—or at least make it more probable.
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