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1 R. R. Newton versus Ptolemy

by Hugh Thurston'

Readers of DIO will be familiar with the controversy over Ptolemy’s honesty and
competence. R. R. Newton was his most prominent critic. Ptolemy’s defenders were
mostly a collection of established academics (called “the Muffia” by Dennis Rawlins).

It is in fact hard work to extract Newton’s cogent arguments, and — most important —
the calculations supporting them, from his 411-page book The Crime of Claudius Ptolemy
(published by Johns Hopkins University Press in 1977) and his other books and papers.
I have not seen elsewhere a succinct exposition of his book’s reasoning, so I give one here.

References of the form Cx are to page x in Newton’s book. References of the form
Sx.y are to chapter y of book x of Ptolemy’s Syntaxis.

A The Length of the Year (C84 to 94)

Al  The obvious way to find the number of days in the year is to divide the time-interval
between two summer solstices by the number of years between them. (Or two equinoxes.)*
Hipparchus found the value 365 1/4 — 1/300 days. This was six minutes too long. The
error in the result is the error in the interval divided by the number of years. The greater the
number of years, the better the result. Ptolemy should have improved on Hipparchus. He
didn’t.

A2  Ptolemy calculated the average length of the year three times (S3.1), each time
comparing an equinox or solstice (which he claimed to have observed) with an earlier one.
These data are set forth in Table 1. In each of the three cases used in S3.1, Ptolemy obtained
exactly the same year as Hipparchus. The times that he gives for his “observations” are
badly in error [©1] — by over a day on average — and are in each case off by just the
amount needed to yield Hipparchus’s over-long result. Clearly Ptolemy did not observe the
equinoxes and solstice; he calculated times for them from the earlier observations, using
the length of the year that Hipparchus had found. And, if you do this calculation yourself,
taking morning to be a quarter of a day after midnight, and (like Ptolemy) express your
results to the nearest hour, you will get precisely’ the times and dates that Ptolemy cited.
A3  This reasoning was first given by J. B. J. Delambre (Histoire de [’astronomie du
moyen dge, 1819, page Ixviij). Newton went one step further than Delambre by also
bringing in an equinox that Ptolemy claimed [S3.7] to have observed on 132/09/25. and
showing that it was actually calculated in just the same way [©2 & ©3].

B The Obliquity of the Ecliptic (C96 to 102)

In Ptolemy’s time, the correct value of the difference between the noon elevations of the
Sun at the two solstices (which is twice the obliquity) was 47°21". In S1.12, Ptolemy
quoted repeated observations in which he found that this angle always lay between 47°40’
and 47°45’. The error is unreasonably large for the instruments that Ptolemy said he
used. However, Ptolemy’s result is extraordinarily close to a value which he imputed to
Eratosthenes (and himself adopted as accurate), namely, 11/83 of a circle. Ptolemy said that

! Professor Emeritus of Mathematics, University of British Columbia.
[Hugh Thurston died on 2006/10/29. The lead article of DIO 14 (2008) is dedicated to his memory.]
End-notes (section ®, pp.14-17) and footnotes are by D. Rawlins.

2Though, see DIO 1.1 16 §A3.

3See extra irony at DIO 1.2 §E1 and fn 64.
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Table 1: Equinoxes & Solstices

Event | Earlier observation Ptolemy “obs” | Actual Time | Error

Autumn Equinox | —146/09/27 midnight | 132/09/25 14" | 09/24 05" 33h
Autumn Equinox | —146/09/27 midnight | 139/09/26 07" | 09/24 22" 33"
Vernal Equinox | —145/03/24 morning | 140/03/22 13" | 03/21 16" 21"
Summer Solstice | —431/06/27 morning | 140/06/25 02" | 06/23 14" 36"

Superscript h stands for hour. Times are from midnight. Dates are Julian [®3].

Hipparchus also used it, but in fact Hipparchus used first 47°50’ and later 47°20'.* (See
Dennis Rawlins’s statistical study [©4], “An Investigation of the Ancient Star Catalog”,
Publications of the Astr. Soc. of the Pacific volume 94 (1982), pages 367 and 368.)

C The Epicycle of the Moon (C112 to 130)

C1  Hipparchus assumed that the Moon moved on a simple epicycle and Ptolemy’s
theory was, for full® Moons, equivalent to this. It is possible to use the time-intervals
between three eclipses of the Moon and the corresponding differences in the longitudes of
the Sun to calculate the radius of the epicycle.

C2  S4.6 and 4.11 quoted four trios of eclipses which yield values of 5;13 and 5;14
(84.6), also [®5] 5;15 and 5;15 (S4.11) on a scale on which the radius of the circle on
which the epicycle travels is 60 units.

C3  These values are incredibly® close to each other. Newton calculated the effect of
altering the time of the middle eclipse of the first trio by one hundredth of a day (about 1/4
hour) and he found that it reduced’ the value obtained to 5;06 (C122).

D The Sun’s Longitude (C145 and 147)

Ptolemy said in S5.3 that he observed the Sun on 139/02/09 (6:45 Alexandria Apparent
Time) and found [®6] its longitude to be 318°5/6. The longitude at this time as calculated
from his tables was also 318°5/6. In S7.2 he reported [©7] a similarly measured [©®8] and
calculated solar longitude for 139/2/23 (17:30 Alexandria Apparent Time) to be about 333°
and 333°1/20, respectively. During Ptolemy’s era, his tables for the longitude of the Sun
were out (on average) by over a degree. Consequently, if the observations had been genuine
the calculations would not have agreed with the tables.

E The Half-Moon (C145 to 158)

E1  The simple epicycle theory gives reasonable values for the Moon’s longitude at full
Moon, and for the maximum difference between the longitudes of the mean Moon M and
of the Moon itself, namely 5°. This is too small at half-Moon.

4The actual value in Hipparchus’s time was about 47°25.

5Many of the references to full Moon throughout this discussion could as well refer to new Moon;
though, of course, lunar eclipses occur only at full Moon.

S All results are remarkably near the round value 5 1/4, which suggests that all four results were
forced to come out very close to Ptolemy’s lunar epicycle radius, 5;15.

“This huge sensitivity to mere quarter-hour uncertainties is lethal to Ptolemy’s pretended precision
here, since much of the raw eclipse-time data are obviously good to only about 1" precision. See David
Dicks at DIO 4.1 11 §D1 & fn 46.
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E2  From an observation (S5.3) allegedly performed on 139/02/09 (§D) Ptolemy made
this difference 7°2/3 at half-Moon. However, in his calculations he said that the parallax
was negligible. It was in fact —9’ on his own parallax theory. He should thus have found a
difference of 7°31’, not 7°40'.

E3  Ptolemy also quoted (S5.3) an observation by Hipparchus on —127/08/05 from
which he again calculated the difference to be 7°2/3, once more neglecting parallax. But
parallax was again —9’, with an effect in the opposite direction from §E2, so Ptolemy should
have found 7°49’.

E4  The two observations disagreed, but Ptolemy fudged his calculations to make them
agree [©9].

F The Final Theory for the Moon (C149 to 156)

F1  In Ptolemy’s final theory of the motion of the Moon (see Fig.VIL.2 at C150), the
mean Moon M moves round the Earth E at a constant speed. M maintains a constant
distance not from E but from a point C; which moves round E at a constant distance at the
same angular rate (as M) — but in reverse. The rate (and starting point) is chosen so that
C lies directly between E and M at full® Moon, but lies on the opposite side of E at either
half-Moon. So the distance from the Earth to the Moon is MC;+ C1 E at mean syzygy, but
MC; — C;E at half-Moon. This gives the lunar epicycle a larger apparent size at half-Moon
and so increases the maximum angle between the mean Moon (M) and the Moon. The
value of C1E is chosen to give the “right” value at half-Moon, namely, the 7°2/3 value of
SE. It turns out [©10] that C;E has to be 10;19 on a scale on which the maximum distance
is 60.

F2  The Moon moves (circling retrograde around M) on its epicycle at a constant speed
not relative to the diameter through E but relative to a point K on a slightly different
diameter. Following C150’s Fig.VIIL.2, we specify C2 as the point where this diameter
when prolonged reaches the straight line through C; and E.

F3 Ptolemy calculated the distance C2E from an observation of the Sun and Moon on
—126/05/02 (S5.5) as follows. From the time of the observation he first calculated (from
his S4.4 tables) the longitude of M. From this and the observed longitude of the Moon he
then found the position of the Moon on the epicycle. From the time of the observation he
also computed the distance the Moon has moved round on the epicycle from its zero-point
K, and so he found K by simple subtraction and could then compute C2E. He found it to
be 10;18, equal to C+E to a high degree of precision.

F4 From modern calculation, Newton found that, at the time of the —126/05/02 obser-
vation, the angle between M and the Moon was [©11] about 1°23’, not the 46 that Ptolemy
found (C156) by comparing the observed Moon to a value for M obtained from his tables.
If used (in place of 46"), 1°23’ would have made C2E equal 14;40, not 10;18.

F5  From an observation by Hipparchus on —126/07/07, Ptolemy computed C2E = 10;20
(also in S5.5). He achieved this almost perfect agreement (with C1E = 10;19) again by
having a wrong value for the angle between M and the Moon (C156): 1°26', instead of the
actual angle at this time, 2°19".

F6  There can be no doubt that Ptolemy decided in advance to make C1E and C2E equal,
and fudged the calculations or the observations to give this result. He did something very
similar® in his treatment of Mercury and again in his treatment of Venus.

8 At full Moon, C; will lie directly between E and M on the line SEM where S is the mean Sun.
Same at mean new Moon, except that the line of mean syzygy is then SME.
9See below at §§P2 and Q2.
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G The Inclination of the Moon’s Orbit (C184)

G1  To find the angle between the Moon’s orbit and the ecliptic (the inclination) Ptolemy
measured the zenith distance'® of the Moon when its longitude was near 90°, its ascending
node was near the vernal equinox, and the Moon was crossing the meridian. He claimed
(S5.12) that repeated measures of the zenith distance always found about 2°1/8. Taking
this as 2°07’, the obliquity of the ecliptic as 23°51” (it was actually 23°41") and the latitude
of Alexandria as 30°58'N (it is 31°.2 N; Newton takes it to be 31°13'N), he found the
inclination to be:

30°58" — 23°51" — 2°07’
That is, 5° exactly.
G2  With correct values for the obliquity, latitude, and inclination (which actually varies
between 5°.0 and 5°.3), Newton found that the zenith distance (for all the possible times
when Ptolemy could have measured it) was never outside the range 2°1/4 to 2°1/2 instead
of “always” near 2°1/8.

H The Distance of the Moon at the Quarters (C186 to C190)

H1  Ptolemy’s theory of the Moon’s motion makes the mean Moon much closer to the
Earth at the time of half-Moon (one quarter or three quarters of the way through the month)
than at full or new Moon. If the mean Moon’s distance (ME) is 60 at full Moon, then it
is 39;22 (§F1) at the time of half-Moon. The radius of the epicycle is 5;15 (§C3). So the
distance of the full Moon from the Earth can be as much as 65;15, and the distance of
the half-Moon can be as little as 34;07. This is much too big a variation. Anyone who
watches the Moon will know that its apparent size does not vary correspondingly.'' (Even
the notorious “Moon illusion” — which Newton does not mention — could only suggest
that the distance is less when the Moon is near the horizon, not when it is half-full.)

H2  Ptolemy estimated the distance of the half-Moon by measuring the zenith distance
at sunset on 135/10/01. He says (S5.13) that he observed'? the zenith distance to be 50°55".
But Newton found the correct value to be 50° 14’. For the instruments which Ptolemy said
that he was using, the error is unacceptably large."

10The “zenith distance” is a celestial object’s angular distance from the zenith; it is thus the compli-
ment of that object’s altitude above the true horizon.

1 Le., the Ptolemaic lunar theory implied that an Earth observer will see the Moon’s angular diameter
vary by a factor of nearly 2. Contra some Higher Opinion (see irony at C182f and DIO 1.3 fn 284),
Ptolemy actually believed in this impossibly counter-eyeball distance-variation — so much so that he
arranged an equally impossible “observation” (§§H2-H3) to prove it. The Moon’s actual distance-
extremes (including equation of centre, all perturbations, and observer-nongeocentricity) are in a ratio
of less than 7 to 6.

12 Celestial coordinates based upon the observer’s location (called “topocentric” coordinates) naturally
differ from those based on the Earth’s center (“geocentric” coordinates). (Only the latter were tabulated,
but only the former can be observed.) Parallax is the difference between these coordinates. For the
Moon, parallax is frequently as much as about a degree.

131f one takes Alexandria’s latitude as 31°12’N, the zenith distance is 50°13’, so the discrepancy is
42/, This error is more than 2 1/2 times the semi-diameter (under 16”) of the actual body Ptolemy was
allegedly measuring. And Ptolemy’s purported instrument was a framing device (see C182 Fig.VIIL.4),
which would naturally use so snug a viewing frame that (as pointed out at C183 and C188-191) if
he had actually used it: [a] the lack of serious lunar distance-variation would have been immediately
obvious; and [b] the Moon would be entirely outside the frame during the 135/10/01 observation if
Ptolemy pointed his instrument at the zenith distance he reports. [See also ©2.]
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H3  From his tables'* Ptolemy calculated that the zenith distance as seen from the centre
of the Earth was 49°48’, giving up a parallax of 1°07’ (50°55'— 49°48’) and a distance'’
of 39 3/4 times'® the radius of the Earth. The correct distance at that date was over 60."7
Clearly Ptolemy fabricated the observation to support his theory of the Moon’s motion.
H4  Ptolemy also calculated the distance of the Moon at this time, from his theory, to be
40,25 on a scale on which the greatest distance of the mean Moon was 60. This enabled him
to calculate that the greatest, mean, and least distances of the full Moon were respectively
64 1/6, 59, and 53 5/6 times the radius of the Earth.'®

I The Distance of the Sun (C174, 194 to 199, and 202 to 203)

I1  Ptolemy explained (S5.15) a geometrical method' for finding the distance of the Sun
which is equivalent, in modern terms, to saying that the sum of the apparent radius of the
Sun and the apparent radius of the shadow of the Earth on the Moon is equal to the sum of
the parallax of the Sun and the parallax of the Moon.

I2  He found the apparent radius of the Moon when it is at its greatest distance and the
apparent radius of the shadow then from the magnitudes of partial eclipses on —522/07/16
and —620/04/22 and the calculated latitude of the Moon in the middle of each eclipse. (To
calculate the time of the middle of the second eclipse from the observed beginning he used a
semi-duration of an hour, though in S6.5 he used a semi-duration of 1/2 hour for an eclipse
of the same stated magnitude.)® He found the apparent radius of the Moon to be 15'40"
and took this to be also the apparent radius of the Sun. The apparent radius of the shadow
was 40'40" .

I3  The parallax of the Moon (its greatest distance on Ptolemy’s lunar theory being 64 1/6
times the radius of the Earth: §H4) was 53'35”, so the parallax of the Sun was 15'40" +
40'40" — 53/35" which amounts to 2'45", giving®' a distance 1250 times the radius of the
Earth. Ptolemy obtained 1210, using a complicated geometrical calculation. The difference
is inconsequential.

I4  But in another chapter (S6.5) Ptolemy found the apparent radii when the Moon is at
the least distance a full Moon can occur (which on his theory is 53 5/6 times the radius

4 Ptolemy already had figures for latitude, obliquity, and lunar 5 (all three in serious error); thus,
simple arithmetic could give 30°58'+4 23°51’— 5° = 49°49’. (Correct figures would have given
instead: 31°12’+ 23°41’— 5°18’ = 49°35’)) After Ptolemy’s tiny corrections (1’ net, though 5’
would have been more nearly correct) for the slight imperfections of the nodal and solstitial idealities,
he found 49°48’. (He should have gotten 49°30’.)

5 Ptolemy makes it 39 3/4 Earth-radii, while Newton more precisely computes 39 5/6. (One may
easily check the numbers by the law of sines: sin 50°55’/sin 1°07’ = 39 5/6 Earth-radii geocentric.
S0 1°07’ of non-horizontal parallax corresponded to a horizontal parallax of 1°26’ or 86’. (The math
should have been: sin 50°14//sin 0°44’ = 60 Earth-radii geocentric. Actual horizontal parallax at the
time: 57’. Both figures happen to be extremely average values for the Moon.)

16 This figure is geocentric, and it is in quite close accord with Ptolemy’s final lunar theory, developed
above. See §H1 and fn 11.

" Topocentric: a little under 60.

8 Using 39;50 (fn 15) and 40;25 (§H4), one may easily confirm: 60-(39;50/40;25) = 59 Earth-radii.
(See S5.13 and Gerald Toomer, Ptolemy’s Almagest 1984 page 251 note 49.) Multiplying 59/60 times
=+ 5;15/60 yields £5 1/6. Adding this to 59, one gets (in Earth-radii) 64 1/6 or 53 5/6.

19Easily understood from C174’s Fig. VIIL.2.

29 The S6.5 eclipse Newton refers to is that of —140/01/27. See C194 note and Toomer op cit
page 253 note 56 and page 284 note 23. Ptolemy gives the magnitude for both eclipses (—620 and
—140) as 3 digits (or 1/4 of the lunar diameter), though the magnitude of the —620 eclipse was
actually 2 digits. (It is 3 digits by Ptolemy’s tables.) Its actual semi-duration was 47 timeminutes.
The —140/01/27 eclipse was in fact 3 digits and about an hour’s semi-duration, though Ptolemy uses
a half-hour: §I4.

21The cosecant of 2'45" is 1250.
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of the Earth: §H4) from? eclipses in —173/04/30 and (fn 20) —140/01/27. (To calculate
the time of the middle of the second eclipse he took the semi-duration to be a half-hour,?
though his table correctly gives a semi-duration of an hour for an eclipse of this magnitude.)
Ptolemy did not use these radii to find the distance of the Sun. Had he done so he would
have found that the sum of the apparent radius of the Sun and the apparent radius of the
Earth’s shadow was less than the parallax®* of the Moon at the given least distance.”® This
is, to second Newton’s phrase, “physical nonsense” (C203).

I5  Such an outcome only dramatizes what was already obvious from the delicate math-
ematics of §I3: this method of finding the distance of the Sun is so sensitive®® to the exact
values of angles which cannot be measured or calculated precisely that it will not — except
by coincidence or fabrication — give a correct result. To obtain a result so far from the
truth (the mean distance to the Sun is about 23,500 times the radius of the Earth),”’ but
so close to a result previously obtained by Aristarchus and suspiciously close to the value
that Ptolemy needed for his later and totally erroneous theory of the way in which the
orbits of the celestial bodies fit together (Hypotheseis ton planomenon) would require an
unacceptable coincidence. It must have been obtained by fabrication.

J Positions of Stars (C211 to 212)

In S7.1 Ptolemy quoted some configurations of stars described by Hipparchus in his com-
mentary on Aratus’s Phaenomena. Newton investigated one. Hipparchus stated that
[ Cancri (to give it the modern name) was 1 1/2 digits north-east of the centre of the line
joining o Cancri and Procyon. Ptolemy said that he found the same result. He couldn’t
have done so. At this date 3 Cancri was very close to the midpoint and north-west of it.

K The Longitudes of Regulus and Spica (C217 to 218)

K1  Ptolemy (S7.2) used an observation of the Moon on 139/02/23 (§§D & E2), which
Newton showed to be fudged (C145 to 146 and 148 to 149), to find the longitude of Regulus.
The result was exactly 2°2/3 greater than the longitude that Hipparchus had measured 2 2/3
centuries earlier, giving a rate of precession equal to 1° per century. This is consistent with
Hipparchus’s statement (S7.2) that precession is at least 1° per century. (It was actually
1°23' per century.) So the longitude of Regulus in the catalogue was fudged.

K2  If we add 2°2/3 to Hipparchus’s value for the longitude of Spica we get Ptolemy’s
value, namely 176°2/3. The error is —1°17’. So this longitude was also fudged.

L Declinations (C220 to 225)

L1  In S7.3 Ptolemy listed the declinations of 18 stars measured by Timocharis or Arist-
yllus, by Hipparchus, and by Ptolemy himself [©14]. He chose six of the stars, found the
change in declination between Hipparchus’s time and his own for each of them, and showed
that this was consistent with a precession of 2°2/3 in the intervening 2 2/3 centuries.

221n fact, the —173 eclipse was not near perigee.

23See fn 20.

24 At C203, Newton uses Ptolemy’s own value (§H4) for the least distance of the Moon to compute
lunar parallax = arccsc(53 5/6) = 63/52".

25 Newton does the calculation (using the equation of §11) at C203. Using shadow radius 46’ (S6.5),
lunar semi-diameter 15/40" (§12), and lunar parallax 63’52 (fn 24), he has:
solar parallax = 46’ + 15'40" — 63/52"" = —2/12’.

26See N. Swerdlow Centaurus 14:287 (1969).

27The precise mean distance to the Sun is 23454.8 times the equatorial radius of the Earth.
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L2  Ptolemy could have used up to 14 of the 18 stars. (The other four are too close to
a solstice.) Accurate calculation of the rate of precession that would give the changes in
declination in the six stars that Ptolemy used varied from 35" .1 to 41”1 per year. The other
eight gave values ranging from 45” .1 to 64" .4 — much better. (The correct value was 49”.8
per year.) Pannekoek suggested that the observations were all genuine and Ptolemy had
simply picked six which agreed with his (erroneous) 36" per year”® value for the precession
(Vistas in Astronomy volume 1 [1955] pages 60 to 66). But if he had, the standard deviation
of the results from the stars used would have been larger than that from the others; in fact
it is smaller, as it would be if they were fudged.

M  Occultations (C225 to 237)

In S7.3 Ptolemy discussed seven cases of occultation of a star by the Moon. For each case,
he calculated the position of the Moon at the time, and thereby deduced the latitude and
longitude of the star.

M1  On —282/01/29 the Moon’s northern half covered the eastern part of the Pleiades.
On 92/11/29 the southern cusp of the Moon covered the southeastern part of the Pleiades.
However (C223) on Ptolemy’s figures for the Moon (longitude 33°15’, latitude 4°)% it
could not in fact have covered any of the Pleiades as listed by Ptolemy in his catalogue of
stars.

M2  On —293/03/09 the Moon’s rim reached Spica, which was reported as 5" north of
the centre of the Moon. Ptolemy ignored™ this 5 when computing the latitude of Spica
from the data. On —282/11/09 Spica exactly touched the northern rim of the rising®' Moon.
On 98/01/11 Spica was hidden by the Moon.

M3 On —294/12/21 the Moon’s northern cusp touched [©15] 3 Scorpii. On 98/01/14
the southern cusp was in a straight line with § Scorpii and 7 Scorpii and as far from § as
0 was from m, and it covered § Scorpii. However, if the Moon was either where Ptolemy
placed it, or where it really was according to modern calculation, it could®® not have covered
[ Scorpii. (See Fig.IX.7 at C234.)

M4  Ptolemy used the change in longitude between two (or three) observations of the
same star to confirm his erroneous value for the precession (§L2). If we compute the
longitude of each star at the relevant date from the longitude in the catalogue and Ptolemy’s
erroneous precession, and round off to the nearest 5’, we get exactly the longitude that
Ptolemy “found” from the observation in all seven cases. If Ptolemy had computed the
longitudes in this way they were bound to confirm his value for the precession. Moreover
all the latitudes also agree to within 2’ (see Table IX.3 at C230) with the latitudes in the

28Same as the 1°/century value we recall from §K1.

2987.3 has true position longitude 33° 15, latitude 4°. But the calculation is riddled with problems,
well analysed by Toomer op cit page 335 note 70.

30 Atpage 112 of John Britton’s 1967 Yale dissertation (fortunately published at last in 1992), Britton
correctly notes that in fact the Moon’s centre went right over Spica. So Ptolemy’s ignoring the 5/ turned
out to be right. But, ironically, had he included the 5/, he would have gotten Spica’s latitude (—1°54’,
vs. his value of —2°) correct to 1’ by accidental cancellation of errors.

31The waning crescent Moon’s north cusp passed merely 2’ south of Spica; however, this occurred
not at the rising of the Moon but about 0".8 later. Toomer op cit page 336 note 75 rightly points out
that Ptolemy’s conversion of 3"1/2 seasonal hours into equinoctial hours confuses day and night and
thereby found 3"1/8 when he should have gotten 3%7/8. C236 adds (correctly) that for the time Ptolemy
states (2:30 Alexandria Apparent Time), the Moon and Spica were actually both below the horizon.
(Also true by his own tables.)

32 Anyone who simply looks at Scorpio can see that 3 Scorpii is too far from the §- line for the
Moon to touch both. Ancient readers could have realized this, without modern checks or any other
special knowledge. [See ©16.]
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catalogue (if we agree with Newton’s suggestion (C228) that the 3°1/3 for the eastern star
in the Pleiades was a scribal error for 3°2/3).%

M5  The amazingly exact agreement of the observations®* with the catalogue would be
impossible if they were genuine: there are too many sources of error. When a star is hidden
by the Moon, it can be anywhere behind the Moon. The times are given only to the nearest
half-hour [®16], so even accurately observed events could be up to a quarter of an hour
out, during which time the Moon moves about 8’. The errors in Ptolemy’s tables for the
longitude of the Moon have a standard deviation of 35" (C238).

N The Catalogue of Stars (C237 to 256)

N1  S7.5 and 8.1 consist of a catalogue of slightly over a thousand stars, giving their
longitudes and latitudes, which Ptolemy (S7.4) claimed to have based upon his own obser-
vations. Newton suggested that Ptolemy did not do this, but instead updated a catalogue
compiled at the time of Hipparchus by adding the difference in longitude caused by pre-
cession. Ptolemy’s erroneous value for precession (§K1) would make the typical updated
longitude more than 1° too low.*> This effect could account for the notorious systematic
error that does in fact exist in the longitudes.

N2  There is evidence that the catalogue was compiled at the latitude of Rhodes, where
Hipparchus worked.*® Every star listed was visible at Rhodes. Newton remarked®’ that
many stars always below the horizon at Rhodes were visible at Alexandria (which is about
5° further south) but were not included in the catalogue. He did not name any, but Dennis
Rawlins has filled the gap (Table II at page 364 of reference in §B). They include € Carinae,
A Centauri, o Gruis, « Indi, and « Phoenicis.

N3  The fractional parts of the latitudes and longitudes are not distributed at random. In
particular far more latitudes are whole numbers of degrees and far more longitudes end in
2/3° than would be expected. Newton produced a powerful argument that this implied that
Ptolemy compiled his catalogue by adding 2/3° to the longitudes of an earlier catalogue.
However, Shevchenko discovered that the dominance of 2/3° endings did not™ occur in
the southern constellations (Journal for the History of Astronomy, volume 21, pages 187 to
201). Therefore the figures that I give in Table 2 are for the northern stars not the figures
for the whole catalogue which Newton gave. Consequently, Newton’s reasoning applies to
the northern stars but not to the catalogue as a whole.

N4  Newton suggested that the instrument used was an armillary astrolabon graduated in
whole degrees (perhaps in half-degrees),*® and that the observer estimated the fractions for
those observations that did not fall on a graduation. The large numbers of whole degrees in
the latitudes would be accounted for if the eye were (C247) “attracted, so to speak, to the
degree mark” and assigned more measurements to it than to invisible marks.

33See Toomer op cit page 335 note 71 and page 363 note 188. The star in question is #411 in the
catalogue, evidently 27f Tauri (Atlas).

34The observations were supposedly performed independently via armillary astrolabon. See S7.4
and S5.1. For Newton’s estimate of the mean longitude error (22') of this instrument, see C216. Ulugh
Beg’s 15th century use of the same sort of instrument achieved similar accuracy.

35 An error in precession of —23’ per century (§K1) will, in 2 2/3 centuries, grow to more than —1°.

36See 14 fn 12 for a full array of proofs that Hipparchus was the observer of the star catalogue.

37Delambre first pointed this out in his Histoire de I’astronomie ancienne, 1817, volume 2 page 284.

38 Meaning that, in the southern constellations, the stars with 2/3 endings are outnumbered by the
zeros. However, southern stars with 1/6 endings vastly outnumber those with 1/2 endings (in accord
with the Newton distribution). This seeming dissonance is resolved at DIO 4.1 13, starting with the
point emphasized at the conclusion of its fn 5.

39 See DIO 2.3 18 §C8.
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Table 2: Distribution of the 359 Northern Stars’ Fractional Endings
Coordinates | integral | 1/6° | 1/4° | 1/3° | 1/2° | 2/3° | 3/4° | 5/6°

Latitudes 108 29 33 39 75 36 10 29
Longitudes 62 61 0 67 29 95 0 45
See §N5 72 75 0 46 29 | 108 0 29

First column of data (“integral”’) is number of endings for whole degrees.

Table 3: Distribution of 359 Random Fractional Endings
integral | 1/6° | 1/4° | 1/3° | 1/2° | 2/3° | 3/4° | 5/6°
60 45 30 45 60 45 30 45

NS5  Inmore detail: because the fractions that appear are not evenly spaced we would not
expect™ the fractions to appear equally often if the odd fractions were distributed at random
and allotted correctly to the nearest fraction that does occur. In fact, we would expect the
359 fractions for the latitudes to be distributed as in Table 3 [where the sum is 360 only
because of rounding]. If we add 2°2/3 to each of these fractions (and drop the integral part
of the result) we obtain: 2/3°, 5/6°, 11/12°, zero, 1/6°, 1/3°, 5/12°, 1/2°. Newton said
(C250) that the “rules of the catalogue”' did not allow 11/12° or 5/12°. He did not say
why, but (C252) if we add the 11/12° stars to the zeros and the 5/12° stars to the 1/3° stars,
and apply this procedure to the distribution of latitudes in Table 2, we get the distribution
in the bottom row of Table 2. It is similar*? to the actual distribution for the longitudes.
N6 Newton’s suggestion explains not only the distribution of the fractions and the
systematic error of —1°.1, but also the otherwise-puzzling absence of 1/4° and 3/4° endings
in the longitudes.

N7  N.B. Rawlins has used similar reasoning (DIO 4.1 {3 §§D-E) to show that the
coordinates of the stars in the southern sky were found, not with an armillary astrolabon,
but with an instrument that measured zenith distances.*

O Conjunctions (C262 to 265)

Ptolemy recorded a near-conjunction of each planet with the Moon and a star.

01  On 139/05/17, 4 1/2 hours before midnight (S9.10) the longitude of Mercury (found
by comparing it with Regulus) was 77°1/2. Mercury was 1°1/6 east of the centre of the
Moon, giving the Moon a longitude of 76°1/3. Its longitude calculated from Ptolemy’s
tables is 76°1/3.

02 On 138/12/16, 4 3/4 hours after midnight (S10.4) the longitude of Venus (found
by comparing Venus with Spica) was 216°1/2. Venus was on the straight line joining
(3 Scorpii (whose longitude in the star catalogue is 216°1/3) to the centre of the Moon

40See C247 or DIO 4.1 13 §B4.

41See C250. Newton did not explain, but the implicit question is (DIO 4.1 13 §C1): who’d not look
askance at a set of 359 stars containing a great many with 5/12 or 11/12 endings, but none with 1/12,
1/4, 712, or 3/4 endings? That 2/3 (or 1/6) had been added to all endings would be obvious and so
would reveal the method of appropriation.

42 A X2 test (DIO 4.1 3 §C4) upon the last two rows of Table 2 shows that the discrepancies are not
statistically significant.

43See 14 §A23.
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(whose calculated longitude was 216°3/4) and 1 1/2 times as far from the Moon as from
(3 Scorpii. This gives Venus a longitude of 216°1/2, exactly as observed.

03 On 139/05/30, 3 hours before midnight (S10.8) the longitude of Mars (found by
comparing Mars with Spica) was 241°3/5. Mars was 1°3/5 east of the Moon, whose
calculated longitude was 240°, giving Mars a longitude of 241°3/5, exactly as observed.
04  On 139/07/11, 5 hours after midnight (S11.2) the longitude of Jupiter (found by
comparing Jupiter with Aldebaran) was 75°3/4. Jupiter was directly north of the centre of
the Moon and so had the same longitude. The calculated* longitude of the Moon was also
75°3/4, exactly as observed.

O5  On 138/12/22, 4 hours before midnight (S11.6) the longitude of Saturn (found by
comparing Saturn with Aldebaran) was 309°04’. Saturn was 1/2° east of the northern tip
of the crescent Moon. The calculated longitude of the Moon (neglecting the equation of
time and using a parallax* mistaken by 8’) was 308°34’, giving Saturn a longitude exactly
(to the nearest minute!) as observed.

06  The agreements between the observed and calculated*® longitudes could not have
happened by chance.

P Mercury (C287)

P1  Ptolemy calculated the apogee of Mercury in his own time twice and — also twice
— the apogee 400 years earlier. He concluded [®17] that it had increased by 4°. If we
calculate from Ptolemy’s data to one decimal place in degrees and add 4° to the earlier
values, we obtain 189°.9, 190°.3, 189°.8, 190°.0. The correct value during the 4 century
period under consideration was never less than 220°. From genuine observations it is not
possible to obtain values so close together and so far from the truth.

P2 In Ptolemy’s theory of the motion of Mercury the centre of the epicycle revolves
at a constant distance from a point F — which itself revolves (retrograde) at a constant
distance round a fixed point D — and at a constant rate round a point Z situated between D
and the Earth E. Ptolemy needed the values of the three small distances, EZ, ZD, and DF
(see C260 Fig.X.3), which Newton called eccentricities. Ptolemy calculated them from his
observations and made them all equal. Newton calculated the values they should have had,
i.e., the values that made Ptolemy’s mechanism fit reality most closely, and found them to
be far from equal.”’

Q Venus (C313)

Q1  Ptolemy found the apogee of Venus twice, and the two values were only 2" apart,
although they were in error by about 4°. Newton commented “the probability that Ptolemy’s
agreement could have happened by chance is so tiny that we do not need to estimate it.”

44(C263-264 suggests Ptolemy here made errors in the calculation of the equation of time and of
parallax when computing the Moon’s true and apparent longitude. But in fact Ptolemy’s figures here
agree well (&=1") with accurate calculations from his tables.

45Parallax used at S11.6 = —66'; actual parallax = —58’; computed from Ptolemy’s S2.13 Lower
Egypt parallax tables = —74/. Britton (op cif pp.140-141) was the first to reveal that, at the time of
this observation, Saturn was actually behind the Moon, “thus, like the previous observation [§02], the
circumstances which Ptolemy describes could not have been observed at the time which he reports.”
[S11.6: “Saturn sighted with respect to” Aldebaran.] So, a skeptic might wonder whether the original
(pre-manipulation) version of this record was just that of a plain occultation.

46 From lunar tables with mean error 35’. See §M5. [And ©16.]

47See C278 Table X.2.
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Q2  Ptolemy’s theory of motion for Venus needs two small eccentricities: the distance
from the Earth to the equant and the distance from the equant to the centre of the deferent.
He calculated them from observations and made them out to be equal. This is important
because Ptolemy assumed that this equality applies to all the remaining planets and for each
of them took it to be part of the theory of motion. They should not be equal, as Newton
found (see C311, Table XI.2) by calculating the values which fit reality most closely. (And,
I might add, as Kepler had earlier found.)

R Epicyclic Anomaly (C320 to 321)

R1  For each of the planets Ptolemy calculated the epicyclic anomaly from an old and a
new observation; and from the change in anomaly and the interval between the two dates
he calculated the change in anomaly per day. This is done by dividing the total change in
anomaly by the number of days in the interval. But the degrees per day that Ptolemy quoted
and tabulated (S9.4) do not agree with the values obtained by division. For example, for
Jupiter, division gives*® (in sexagesimals)

0;54,09,02,45,08,57
whereas Ptolemy quoted®’
0;54,09,02,46,26,00

The difference is tiny, but we are not talking about accuracy; we are talking about whether
a division is right or wrong. It is wrong.>

R2  Newton suggested (C325 to 327) that for each of the planets Ptolemy calculated’!
the anomaly at the later observation from the anomaly at the earlier observation and the rate
that he quoted. Rounding would account for the small discrepancy. Ptolemy neglected to
calculate from the “observation” he quoted to verify whether it did give the change per day
that he quoted.

S Final Remark

S1  To my mind, the most remarkable thing about the whole affair is not Newton’s
intemperate language, arising no doubt from frustration at not being able to use data from
the Syntaxis in his own researches, coupled with disdainful treatment by the historical
(not astronomical) establishment. Nor is opposition to Newton particularly surprising;
the establishment often digs in its heels and puts on blinkers when a radical and ingenious
proposal is set forth. No: the remarkable thing is that Delambre’s devastating and irrefutable
proof that Ptolemy lied about his “observations” of the equinoxes and solstice was ignored
for so long.

S2 For that matter, Christian Severin’s similar accusation, without the calculations, was
ignored or disbelieved for much longer. In 1639, in Introductio in Theatrum Astronomicum,
Lif 33, he wrote: Non tantum erasse ilium dixit observando sed plane finxisse observatum
quod ex Hipparcho computaverit.

48 A result accurate to the last place is given by Toomer (op cit p.669): 0;54,09,02,45,08,48.

49The null sixth sexagesimal place is absent in Ptolemy’s first rendition, the Canobic Inscription.
See DIO 2.1 13 tn 23.

50 The sources of Ptolemy’s tabular planet speeds, out to full 6-sexagesimal-place precision were 1st
revealed by Rawlins [©18] & A.Jones (DIO 11.2 p.30 & 14 eqs.31&45).

51This would be the same procedure used to fabricate the four solar observations [©2]. Again,
Ptolemy computed data from theory instead of theory from data. At the very least, one can protest that
this is mathematics, not science. And see DIO 1.2 tn 99 for what establishment opinion thought of
such behavior — before it became undeniable that Ptolemy had engaged in it.
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®© Notes by DR

o1 [Note to §A2.] The remarkably large latenesses of Ptolemy’s alleged observations average
more than a day. (See Table 1.) The errors for all 4 of Ptolemy’s claimed solar observations: +33"
(132 AE), +-33" (139 AE), +21" (139 VE), 436" (140 SS). Notice that the observations’ errors exhibit
close (but not perfect: ©2) fidelity to both the mean and periodic errors of his adopted Hipparchan solar
theory. (See similar stellar effect at ©8.) Ptolemy’s solar tables are believed to be those of Hipparchus
because the tables’ mean errors are huge, —1°.1 for his own era, though nearly null for Hipparchus’s
time. (This is true not only for the Sun, but for the Moon, all five planets, and the stars.) Because
of the accumulated effect of the incorrect length of the Hipparchus year (§A1) on which the solar
tables were based, these tables’ error increased by 6™/year (idem), or 1%/decade. So, in the 26 decades
between Hipparchus and Ptolemy, the mean error grew to about 26" (over a day late), which represents
—1°.1 of mean solar motion — and that is just the mean error of Ptolemy’s solar tables. Notice, too,
that there is a periodic error (also from Hipparchus) which has the considerable amplitude of 09.4.
Its effect, too, is faithfully reflected in Ptolemy’s “observations”, which is why, though the different
observations average over a day of lateness, predictably (akin to Gingerich’s finding: DIO 1.3 fn 223)
theory-responsive errors occur on either side of that mean. For Ptolemy’s epoch (137.547), the tables’
error in time ¢ or in Ptolemy’s solar longitude A can be expressed as:

At = +26"1/4 + (10P3/4) sin(\ — 38°) in hrs; A\ = —65’ — 25" sin(\ — 44°) in arcmin.

2 [Note to §A3.] You can use the AD 139 equinox as an example of how Ptolemy fabricated all
his solar observations by simple arithmetic: since there are 285 years from —146 to 139, just multiply
285 times Hipparchus’s year (§A1), and add the product to the Hipparchus observed autumn equinox,
—146/09/27 00". As an equation, this is (©3):

—146,/09/27 00" 4 285 - (36591 /4 — 1/300) = +139/09/26 07" 12™ 6))

a result which is (if rounded to the nearest hour) just equal to Ptolemy’s very erroneous “observed”
autumn equinox. See Table 1. All the other “observed” equinoxes in this table may also be computed
by the elementary arithmetical method of eq. 1. Note that Ptolemy did not even use the tables of the
Syntaxis for his fabrications. (See DIO 1.2 fn 166.) If one goes to that slight trouble, the results are
discrepant (vs. his “observations™) by 1" in some cases. So we know that Ptolemy used mere arithmetic
for these fabrications. Note that the errors are so enormous that the “observed” and actual solar disks
do not even touch, much less overlap. Likewise for the lunar “observation” discussed at §§H2-H3.

3 [Note to §A2, Table 1, & ®2.] All dates here are in the Julian calendar (yearlength = 36591/4).
For solving eq. 1, there is an easy method (not Ptolemy’s, since he used the Egyptian yearlength, 365%):
adding 285 Julian years to the Hipparchus —146/09/27 equinox yields the original time of the year
plus a quarter day (since 285 is 1 mod 4); so, the intermediate result is: 139/09/27 06". Adjusting for
Hipparchus’s yearlength, we need only alter the foregoing calculation by —285/300 days or —2248™,
which is 01212™ minus 19; so the fabricated autumn equinox obviously must be 139/09/26 07" 12™.

o4 [Note to §B.] Onreceiving an offprint of this paper, B. L. van der Waerden, author of a Springer
mathematical statistics text, offered a prediction which has proven sadly prescient (1982/7/24 letter to
DR): “I am afraid that most historians will not understand your mathematics and — even worse —
not be willing to admit that you are right, but I assure you that your mathematics is OK and that your
conclusions are sound and extremely interesting.” This is the same analysis that Ptolemy’s defenders
are still seeking an escape from. See News Notes; also DIO 2.3 18 §C & J.Evans History & Practice . . .
1998 pp.268f.

©5 [Note to §C2.] The S4.11 pair’s implicit epicycle-radii are effectively computed by Newton
(C122 Table V1.3) from his own and Ptolemy’s reductions of the data. (Table VI3 gives the equation
of center E, but the epicycle radius is easily computed, since it is equal to 60- sin E.) We here cite the
latter calculations. (The notation here, common for scholars of ancient astronomy, says that the four
measures of the epicycle’s size were, in the specified units: 5+13/60, 5414/60, 5+15/60, 5415/60,
respectively.)
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©6 [Note to §D.] Toomer op cit page 224 note 11 remarks that Ptolemy’s language may indicate
use of the analog-computer ecliptic-ring-shadow method for determination of the solar longitude via
armillary astrolabon (the following assumes an accurately-fashioned instrument): the observer spins
the armillary astrolabon equatorially, turning fused ecliptic rings #3 (ecliptic ring) & #4 (colure ring) in
Rawlins 1982 Fig.1 (or Toomer op cit page 218 Fig.F) until the sunward part of ring #3 casts its shadow
symmetrically upon the inward part of the opposite side of itself. He then freezes the equatorial motion
and, within the clamped rings #3-#4, turns ring #2 (the latitude ring) until its shadow is cast upon itself;
then the intersection of rings #2&#3 will automatically be at the graduation on ring #3 corresponding
to the Sun’s actual longitude. (Which ensures that all the instrument’s rings are correctly oriented
with respect to the actual sky.) We will call this the Fundamental Method. But S5.1 suggests another
method, for locating non-solar objects: first set the reference-object ring (#5) upon the tabular solar
position on ring #3 and then spin the rings #3-#4-#5 unit until the shadow of ring #5 is upon itself.
(If the tabular solar position is accurate, all the instrument’s rings are now oriented to reality, so the
unit is clamped.) Ring #2 within is now quickly spun & used to locate the quarry object. We will call
this the Tabular Method. Ptolemy’s defenders prefer assuming his use of the Tabular Method for good
reason: if the Fundamental Method would produce correct longitudes, then his claim that he used it
(while consistently acquiring data which always agreed with his tables instead of reality) convicts him
of fabrication. But it turns out that this defense doesn’t hold, because Ptolemy states (S5.1) that the
Tabular Method caused ring #3 to cast its shadow “exactly on itself” — just as in the Fundamental
Method. But whichever of the two methods Ptolemy chose, he would typically find a huge conflict
with the other, because his solar tables’ average error was a degree. The fact that he was unaware of
this flagrant and persistent contradiction raises a question regarding whether he ever actually used an
armillary astrolabon. (See also ®9, DIO 2.3 18 C26[b], & DIO 4.1 13 fn 7. And see a similar problem
at Rawlins 1982 page 367: Ptolemy’s erroneous geographical latitude is incompatible with the Ancient
Star Catalogue’s data.)

o7 [Note to §D.] J.Wtodarczyk (J. Hist. Astron. 18:173; 1987) suggests that the 139/02/23 solar
longitude 333°1/20 was calculated from Ptolemy’s tables (which give 333°04’ for this time) — i.e.,
that he used the Tabular Method instead of the Fundamental Method. (Both described above in
(6.) Assuming that the observation was made right at sunset (with a full 34’ 1/2 of mean horizontal
refraction), the effect upon the Fundamental Method’s measure of solar longitude would have been
+0°.8 —but the 333° longitude’s error was actually —0° .7. This enormous discrepancy (1° 1/2) proves
that the Fundamental Method was not used. Wtodarczyk believes that Ptolemy instead merely set the
reference ring (ring #5) on tabular longitude 333°. The above-noted —0°.7 error of Ptolemy’s solar
tables, added to a 0°.6 astrolabon mis-aim in longitude caused by refraction of the Sun’s light, could
lead to the measured 139/02/23 longitudes of the Moon and Regulus being read as much as 1°.3 low.
(Ptolemy’s Regulus longitude was off by —1°.6in 139 AD.) But most of Ptolemy’s defenders (Britton
op cit p.144 provides a welcome exception) have overlooked Ptolemy’s equally crucial 2nd observation
of 139/02/23 — the very one which actually locates Regulus, an observation which can only be trivially
affected (c.1") by refraction. Ptolemy reports (S7.2) that he observed Regulus 57°1/6 east of the Moon,
whereas the actual difference (including refraction and parallax) at this time (18" Alexandria Apparent
Time) was 57°.7. This huge error (twice the lunar semi-diameter) was required, to get Regulus’s
longitude to come out “right”, i.e., exactly 2°2/3 more than Hipparchus’s Regulus longitude, which
(unfortunately for Ptolemy) happened to be enormously wrong in the negative direction. So Ptolemy
had to make a gross negative error to match Hipparchus’s. (Thus, Regulus became Ptolemy’s most
negatively misplaced principal star. As with the solar errors remarked at ®1, Ptolemy mimics not
only Hipparchus’s mean errors but his fine errors.) Again, the consideration to be stressed here (which
Wrhodarczyk op cit page 182 quotes, under the misimpression that he has undercut it) is Newton’s at
C254 (see also C218, 147-148): “the value [of Regulus’s longitude] that Ptolemy obtains cannot be
explained by experimental sources, no matter what their size. The crucial point is the exact agreement
with preassigned values; and exact agreement, occurring time after time, cannot be the consequence of
errors in measurement.” (See 4 fn 11.)

o8 [Note to §D.] The wording at S7.2 (like that at S5.3: (©6) implies use of the Fundamental
Method (which cannot have happened: ©6). By the way, Newton is wrong in doubting (QJRAS 20:383
[1979] page 391 footnote) J.Dreyer’s calculation of the effect of refraction upon the Fundamental
Method. Newton accounts only for w, the effect on astrolabon spin-orientation, but neglects &, the
direct effect of refraction upon longitude. If we call 1) the angle (tabulated at S2.13) between the
ecliptic and the vertical, and call 7 the angle between the ecliptic and the circle of constant declination
(where sinn = sinecos a, for € = obliquity and « = right ascension), then for refraction r, we
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have: w = rsint/tann and & = rcost. Longitude error AN = w + £. But a much simpler
equivalent expression can be formed by using 6, the angle between the vertical and the circle of constant
declination. (With cos 8 = cos¢sin HA/cosh, where ¢ = geographical latitude, H A = hour angle,
and h = altitude, we can find v [useful for ecliptical parallax problems] by simply remembering that
¥ = 0 —n.) Then we have just: AX = rsin@/sinn. (Which obviously breaks down near the
solstices, where it is well-known that the Fundamental Method is inapplicable.) This equation is most
clearly understood by seeing that A\ must be simply due to refraction’s effect upon declination (as
Dreyer said), this because the instrument is an analog computer of solar longitude (strictly) as a function
of declination. Note: this computer will of course misread if the ecliptic ring is not tilted (with respect
to the equator) by the correct obliquity. Ptolemy’s 411 obliquity error is therefore one more reason
why one questions (also at ©6) whether he ever used an astrolabon. If his putative instrument’s ecliptic
ring #3 was actually tilted at his € instead of the correct 23°40’.7, he would surely have found that
his solar longitudes obtained by the Fundamental Method were in error by large amounts — several
degrees near the solstices.

9 [Note to §E4.] A remarkable feature of the perfect agreement Ptolemy finds is that the annual
error in his (Hipparchus’s) lunisolar theory is near its absolute maximum of 0°.2 for both the S5.3
observations and thus for both of his seemingly precise calculations (from these data) that Moon-
minus-M equalled exactly 7°2/3. Such considerations emphasize how rigged these calculations had
to be in order that (even while degraded by 0°.2 errors in parallax and in lunar elongation, among
other effects), they nonetheless gave precisely the same answer down to the arcminute. (It is worth
remarking that both the Hipparchus and Ptolemy half-Moon observations were taken at just the right
time: in both cases, Moon-minus-M was actually very near maximum.)

©10 [Note to §F1.] For ease and clarity of manipulation, we may set MC; = R and C1E = p.
Ptolemy arbitrarily established a scale in which M-to-E’s maximum (syzygial) distance MC1+ C1E
or R + p is defined as 60 units. Then he simply solved for p in the equation (5;15)/(60 — 2p) =
sin 7°2/3. The equation forces p to equal 10;19. This in turn implies that R must be 60 —p = 49;41,
which makes M-to-E’s minimal (half-Moon) distance equal to R — p = 60 — 2p = 39;22.

o11 [Note to §F4.] C156 reconstructs the actual angle Moon-minus-M as 1°23/, but Newton says
in a footnote that this modern calculation is rough, subject to an uncertainty of probably less than 10’.
DR finds 1°17’, which is indeed within 10’ of Newton’s result. (For his calculation in §F5, Newton
gets 2°19’. DR finds likewise.) Note that in Hipparchus’s time, tabular M virtually agreed with
actual M. So, the error in Moon-minus-M should be effectively the same as the error of observation
of the lunar elongation. That this is not true is due partly to the periodic error of the Hipparchus
lunisolar theory and partly to errors introduced by Ptolemy’s manipulation of the reductions of both
S5.5 calculations. (See the large 0°.2 discrepancy correctly computed by Toomer, op cit page 2301.23.)
Also, Hipparchus’s observations of the elongation (angular distance of topocentric Moon from Sun) are
consistently underestimated by a large amount. Were these errors heavily due to a misunderstanding
of what was actually being observed by Hipparchus? (The hypothesis that follows suggests poor
coordination between observers and mathematicians in Hipparchus’s school. But we saw the same
in Tycho’s group at DIO 3 §N. For a different sort of Hipparchus-circle disjunction, see DIO 1.3
eqs.23&24.) If we include the —127/08/05 observation of S5.3 (§E3) with the S5.5 pair under study
here, we have a nearly contemporaneous trio (the same trio whose solar positions are analysed in DIO 1
16, 19 §G10, and DIO 6 13 §D). The observational errors in Hipparchus’s elongation measurements
were: —23' (—127/08/05), —23’ (—126/05/02), and —26’ (—126/07/07). (These figures are based
upon DIO calculations, controlled here [and elsewhere in this paper] by close comparison to more exact
values generated for DIO by Myles Standish of JPL, Cal Tech.) The fact that all these errors make the
elongation much too small is provocative, especially since the effect existed regardless of which side of
the Sun the Moon was on. A simple theory can begin to illuminate this odd circumstance: those using
Moon-shots for navigation know that it is in general better to observe the Moon’s limb than its centre.
(The Moon was crescent for all 3 of the observations considered here.) If we assume Hipparchus’s
three elongation observations measured the angle between the solar centre and the lunar limb, we
are left with errors of but —8’, —6’, and —11’, respectively, in absolute elongation. Analysis of his
star catalogue has shown that, after the armillary astrolabon was oriented (®6) and clamped in place,
Hipparchus took an average of 19° to complete a stellar observation, during which time the Earth turned
enough to affect a longitude reading by about —4’. (See DIO 1.1 16 §G4.) The effect would decrease
measurements of absolute elongation for eastern elongation and increase it for western. Correcting the
three residuals for this effect, they become —12’, —10, —7’. With or without such correction, this is a
remarkably steady data-set for antiquity. And it is possible that the observer (unwisely) used the Sun’s
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limb instead of centre. If, on this speculative theory, we apply solar semi-diameter (16’), the residuals
fall to merely 4/, 6/, 9’ (mean error 6’). Anyway, with or without solar-semi-diameter correction:
residuals of ordmag 0°.1 are more than satisfactory here. (The slight systematic bias could be due to
a personal equation in nonsymmetric measurements. E.g., if the solar limb was the intended reference
point, the observer may have aimed ring #5 in such a way as to just barely allow the Sun’s limb to
glimmer over the ring’s plane.) The results’ evident consistency here argues in favor of the probability
that the AT (barely over 3") used for these calculations is correct to within a very few timeminutes,
since any error in AT will have an effect (about 1’ per 2™ error in AT') upon the 3rd residual (eastern
elongation) virtually equal to that for the other two (both western), but opposite in sign.

®12 [Note to §I14.] Taken literally, a negative 2’.2 solar parallax (fn 25) would mean, since
csc(2/.2) = 1563, that the Sun’s distance is about 1600 Earth radii but — in the opposite direction
from which the Sun’s light is arriving! Evidently, Ptolemy’s cosmology was even more original and
advanced than even his most adoring modern historian-promoters have hitherto perceived.

®13 [Note to §K1.] Ptolemy’s stated star catalogue epoch (S7.4) is 137/07/20 (137.547). (Though,
see ®14.) The epoch of Hipparchus’s star catalogue was about 2 2/3 centuries earlier. For indications
that his exact chosen epoch was —127/9/24 1/2 (—126.278), see DIO 1.1 16 §8F and G4. The
Hipparchus and Ptolemy longitudes of Regulus were 119°5/6 and 122°1/2, respectively. Errors for the
given epochs: —35’ and —1°33’, respectively. Hipparchus’s longitude of Spica: 174° (error —19’).
®14 [Note to §L1.] The likely epochs of the several astronomers’ star observations: Timocharis
roughly 300 BC; Aristyllus ¢.260 BC (see p.263 of Isis 73:259 [1982], DIO 4.1 13 fn 40); Hipparchus
¢.130 BC (see ®13); for Ptolemy’s declinations, the epoch indicated by the stellar data is AD 15948 yrs
(DIO 4.1 13 Table 3). As to whether Ptolemy made these accurate observations (which are not
fabricated), see page 236 item (2) of D.Rawlins Amer J Physics 55:235 (1987) and n.17 of Isis ref
(above in this note).

15 [Note to §M3.] Conjunction occurred about two hours later than the time Ptolemy accepts
from Timocharis. The corresponding longitudinal discrepancy is huge: about 0°.8 (more than triple
the 15’ lunar semi-diameter). And, at conjunction, the northernmost part of the Moon slipped past
3 Scorpii at a distance of 11’ to the south (more than 2/3 of the Moon’s semi-diameter); so the reported
contact never occurred at all.

®16  [Note to §M5.] An 8’ lunar motion in a half-hour is seemingly trivial, but it is nonetheless
quadruple the size of the minuscule (2”) discrepancies implicitly claimed by Ptolemy (§M4). In fact,
for all but one of the seven cases, the precision is an hour; thus, a +1h2 error-range (16’ of motion)
is built into six of the calculations. Note that (unlike Newton’s point regarding the lunar tables’ 35’
mean error), this was obvious to any careful reader from antiquity to the present. (For other problems
with Ptolemy’s work that were discernable all along, see fn 32, DIO 1.1 17 §§A3-B1, DIO 4.2 16.)
[See also DIO 2.1 12 §H9 & resulting DIO 1.1 16 tn 37.]

Even more serious in connection with his use of lunar occultations (see also fn 46) are the errors in
his tables for the longitude of the Moon, which have a standard deviation of 35’ (C238), more than
10 times the 2’ agreements he managed to arrange on the basis of computations from these tables.
[For similar outrageously-overneat data-agreements in a modern hoax: see DIO 10 §G2.]

017 [Note to §P1.] In brief, Ptolemy used observations (real or no) contemporary and ancient to
him, to prove that Mercury’s apogee precessed at the 1° per century rate of stellar precession. This
becomes critical because he then assumed that the other four planets’ apogees precessed at the same
rate. By contrast (a contrast that is curious for a work attempting to synthesize astronomy), he kept the
solar apogee fixed. This feature presumably represents an assent to the by-then near-sacred nature of
Hipparchus’s solar orbit.

®18 [Note to fn 50.] Correct DR solutions to Ptolemy’s mean motions of Mercury, Venus, &
Saturn were transmitted to Owen Gingerich & R.Newton in 1980. [DR missed on Mars & Jupiter;
however, his general (then-heretical) thesis that period-returns explained all the planets’ mean motions
was luckily redeemed — and placed beyond all doubt — when Alex Jones deftly solved Mars’ &
Jupiter’s motions at a stroke in 2003 Sept: see the Jones source cited at fn 50.]



