
GameDev.net - Game Programming 101 Part II

Game Programming 101 Part II  GameDev.net

Game Programming 101 Part II 
by Bruno Sousa

Introduction

I’m back and I have some good news and some bad news. The bad news is that we will probably not work 
on the DirectDraw wrapper as I said in the last article. The thing is, we need some more (not-so) important 
skeletons to help us work with DirectX before we can start on the wrapper. One of them is a Win32 skeleton 
and another is an error handler. I think we need to build these two things first so that we can debug our 
DirectX application more easily. The good news is that we will have a complete program at the end of this 
article. It won’t do very much, but it will work (or so I hope).

Enough said, let the coding begin.

Error Handling

Before we start on our Win32 skeleton we should create some kind of error visualization system. Since using 
GDI (graphical device interface) to display text in DirectX isn't very fast, we're going to make have our error 
routine log errors in a text file instead. We will also add an option to exit the game when an error occurs. 
We’ll create the class CError to handle all error routines. The prototype for our class will be the following:

class CError
{
public:
  FILE    *fErrorLog;
  bool    bQuit;
  LPSTR   lpzMessage;

  CError (LPSTR, bool);
  ~CError ();

  ProcessError (DWORD);

};

Now for a brief explanation of each variable. fErrorLog is a pointer to the file where we will log all our 
errors. bQbuit is just a Boolean variable holding true or false to indicate whether the program should quit 
or not when an error occurs. lpzMessage is the actual error message. The size of the message will be 
dynamically allocated when an error occurs for best performance in terms of memory and customizability 
(that sounded weird). CError is the constructor for the class; it takes a string and a boolean as arguments. 
The string is the name of the file where the errors will be logged and the boolean sets whether or not the 
program will quit when an error occurs. The destructor will clean things up when we’re done.

For the C programmers, a class is just like a struct with functions; they have more advanced features as 
well, but we will not use them. Just in case you don’t know, a constructor is called when an instance of the 
class is declared and the destructor is called when the instance is killed, either by the program termination, 
the variable going out of scope, etc.

http://www.gamedev.net/reference/articles/article1074.asp (1 of 6) [5/12/2001 5:45:20 PM]

http://www.gamedev.net/
mailto:akura@crosswinds.net


GameDev.net - Game Programming 101 Part II

We will now start the actual code for the error handling routines. First we must code the constructor and 
destructor.

CError::CError (LPSTR lpzFileName, bool bQuitOnError)
{
  fErrorLog = fopen (lpzFileName, "wt");
  bQuit = bQuitOnError;
}

CError::~CError ()
{

}

The constructor is very straightforward; it only opens a file for writing in text mode using the filename 
specified by the first argument, and sets the quit flag to the value of the second argument.

The destructor is empty for now.

Next is the main core of our error handling. It's very basic for now, but it will grow as we start adding the 
errors for DirectX.

CError::ProcessError (DWORD dwError)
{
  DWORD dwMsgSize;

  switch (dwError)
  {
  default :
    dwMsgSize = strlen ("Unkown error…\n");
    lpzMessage = (LPSTR) malloc (dwMsgSize + 1);
    strcpy (lpzMessage, "Unkown error…\n");
    break;
  }

  if (fErrorLog != NULL)
  {
    fprintf (fErrorLog, lpzMessage);
  }

  if (lpzMessage != NULL)
  {
    free (lpzMessage);
  }

  if (bQuit == true)
  {
    if (fErrorLog  != NULL)
    {
      fclose (fErrorLog);
    }

    PostQuitMessage (dwError);
  }

http://www.gamedev.net/reference/articles/article1074.asp (2 of 6) [5/12/2001 5:45:20 PM]



GameDev.net - Game Programming 101 Part II

  return 0;
}

Let's look at this code more closely. We first declare a variable to hold the length of the string; after that we 
use the switch statement to find out which error we're handling. Right now, only the default is used, and it 
does three things: it checks the length of the string, allocates sufficient memory for it, and copies it to the 
string member of our class, lpzMessage. We then check to see if the error should be logged to the file and 
write it as needed. We then free the memory allocated to the string, and finally we check the bQuit flag to 
see if we should abort the program and close the file (after checking to see if the file is open).

I just want to add two comments about this function. First, whenever we want to add another error we 
should put the code before the default case; we will do this later. Second, we don’t do any checking to see 
if all went well with the error handling. This is your homework. Check to see if the memory is allocated 
correctly, if the file was opened successfully, etc. Try to do this on your own, and if you can’t then e-mail me 
and I’ll help you out. I'll also post the corrections in the next article.

We will now need an instance of the class.

CError   ErrorHandling ("errors.log", true);

And that’s about it for error handling J. Now let’s move on to the world of Windows.

The Win32 Skeleton

Many game programmers I know don’t really bother learning the basics of Windows programming. They just 
copy-paste an existing skeleton the got from someone else and write their game on top of it. Even though 
there is nothing really wrong with that, you will be limited by the skeleton. I’m not going to teach you much 
about the Win32 API, but I'll teach you enough to put you on the right track to create windows the way you 
want them to appear.

char szClassName [] = "Chapter2";
char szWinName [] = "Chapter2";

LRESULT CALLBACK WndProc(HWND,UINT, WPARAM, LPARAM);

The first two variables are the class name and window name. We'll use these in a minute. The function 
prototype is for handling messages (more on this later).

For any DOS or Unix programmer, your C/C++ program always starts with void main (), or if you want 
command line arguments void main (int argc, char *argv[ ]). In Windows it starts with WinMain, 
which has a few more parameters than you may like. You must also include windows.h in your files.

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int 
nCmdShow)
{
  MSG    msg;

http://www.gamedev.net/reference/articles/article1074.asp (3 of 6) [5/12/2001 5:45:20 PM]

mailto:akura@crosswinds.net


GameDev.net - Game Programming 101 Part II

  HWND    hWnd;
  WNDCLASSEX  wcl;

  bool    bRunning;

  ZeroMemory (&wcl, sizeof (WNDCLASSEX));
  wcl.cbSize  = sizeof (WNDCLASSEX);
  wcl.hInstance  = hInst;
  wcl.lpszClassName = szClassName;
  wcl.lpfnWndProc = WndProc;
  wcl.style   = 0;

  wcl.lpszMenuName = NULL;
  wcl.cbClsExtra  = NULL;
  wcl.cbWndExtra  = NULL;

  wcl.hIcon  = LoadIcon (NULL, IDI_APPLICATION);
  wcl.hIconSm = LoadIcon (NULL, IDI_APPLICATION);
  wcl.hCursor = LoadCursor (NULL, IDC_ARROW);

  wcl.hbrBackground = (HBRUSH) GetStockObject(BLACK_BRUSH);

The return type of WinMain is int APIENTRY. This is the way Windows handles specific Win32 API entries. 
We will also use LRESULT CALLBACK but that's a completely different story. We then have four parameters. 
The first one is the current instance of the program. The second one is the previous instance, but it's not 
used in Windows 95 or later, so you can just ignore it. The third parameter is an array of strings containing 
the command line arguments; all arguments are separated with a blank character and, as opposed to 
DOS/Unix, it doesn’t include the executable name as the first parameter. The last parameter is how the 
Window will show in default mode.

We need another couple of variables. The first is the message to be processed, the second is the handle for 
the window, and the third one is where we will hold the window class information. The variable bRunning will 
tell us if the game is running or not.

We then set up our window class. The variable names are quite easy, so I’ll just cover the not so obvious 
ones. cbSize is needed to let Windows know the size of the class when registering. lpfnWndProc is the 
message handler. cbClsExtra and cbWndExtra are extra properties of the class, which in this case are set to 
nothing.

  if (!RegisterClassEx(&wcl))
  {
    ErrorHandling.ProcessError (ERROR_REGISTER_CLASS);
    return (-1);
  }

We then try to register the class and if an error ocurrs we call our error handling routine and log it. You need 
to add #define ERROR_REGISTER_CLASS 1 to Error.h and the following piece of code to ProcessError just 
before default:.

  case ERROR_REGISTER_CLASS :
    dwMsgSize = strlen ("Chapter 2 - Error log file\nCould'nt register class...\n");

http://www.gamedev.net/reference/articles/article1074.asp (4 of 6) [5/12/2001 5:45:20 PM]



GameDev.net - Game Programming 101 Part II

    lpzMessage = (LPSTR) malloc (dwMsgSize + 1);
    strcpy (lpzMessage, "Chapter 2 - Error log file\nCould'nt register class...\n");
    break;

This will add the "Couldn’t register class" error.

Back to WinMain, we need to create our window and show it. We set the class name, window name, type of 
window (WS_OVERLAPPEDWINDOW is the standard window with a title bar, minimize/maximize box and close 
box), and position and size (0,0, 640,480). We set the parent as the desktop, supply no menu, use the 
current instance and use NULL as the last parameter (advanced functions).

  hWnd = CreateWindow (szClassName, szWinName, WS_OVERLAPPEDWINDOW,0 , 0, 640, 480,
      HWND_DESKTOP, NULL, hInst, NULL);

  ShowWindow(hWnd, nCmdShow);

And finally we get to the last part of WinMain. We create a loop normally referred to as the message loop. 
The important thing you need to know is that it receives input from you or the Windows system and sends it 
to your message handler.

  while (bRunning)
  {
    if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
    {
      if (msg.message == WM_QUIT)
      {
        bRunning = false;
      }
      TranslateMessage(&msg);
      DispatchMessage(&msg);
    }
    else
    {
    }
  }

  return 0;
}

We finally return 0 to let the program know that we're done.

Is that it? No, we still need the message handler J.

The Message Handler

LRESULT CALLBACK WndProc (HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
  switch (msg)

http://www.gamedev.net/reference/articles/article1074.asp (5 of 6) [5/12/2001 5:45:20 PM]



GameDev.net - Game Programming 101 Part II

  {
  case WM_DESTROY:
    PostQuitMessage(0);
    return 0;
  default:
    return DefWindowProc (hWnd, msg, wParam, lParam);
    break;
  }

  return 0;
}

We don’t need to worry too much about the parameters of the function because the Windows system calls 
this function automaticlly. You just need to have those four parameters declared.

We determine the type of message and how to handle it by using a switch statement. This simple program 
just uses WM_DESTROY, which is a message that is sent to the program when it's beilg closed. We handle the 
message by telling the program to quit and return 0 to let Windows know we processed the message.

All messages that aren't processed by us are returned to Windows to use the default processing by calling 
DefWindowProc.

Conclusion

This was a long tiring article. I hope you were able to understand everything we covered. If you have any 
problems compiling the source, working through the material or any suggestions/corrections, feel free to 
mail me.

Ohh! Just one more thing, one month before school ended, I finally got a job in the industry and I got a new 
e-mail account. Feel free to use akura@crosswinds.net to contact me.

We will finally (I promise) dig into DirectDraw in the next article. Until then, stay well folks.

Get the source here!

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy 
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1074.asp (6 of 6) [5/12/2001 5:45:20 PM]

mailto:akura@crosswinds.net
mailto:akura@crosswinds.net
http://www.gamedev.net/reference/programming/features/gp101_2/Chapter2.zip
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1074&forum_id=35&Topic_Title=Game+Programming+101+Part+II
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming 101 Part II


