
Loreen V Haakonson
Cramsession™ for Designing and Implementing Desktop Applications with Microsoft Visual C ++ 6.0

Loreen V Haakonson
This Cramsession will help you to prepare for Microsoft exam 70-016: Designing and Implementing Desktop Applications with Microsoft Visual C ++ 6.0. Exam topics include Deriving the Physical Design, Establishing the Development Environment, Creating the user Interface, Creating and Managing COM Components, Deploying an Application and Maintaining and Supporting an Application.

Loreen V Haakonson
Notice: While every precaution has been taken in the preparation of this material, neither the author nor BrainBuzz.com assumes any liability in the event of loss or damage directly or indirectly caused by any inaccuracies or incompleteness of the material contained in this document. The information in this document is provided and distributed "as-is", without any expressed or implied warranty. Your use of the information in this document is solely at your own risk, and Brainbuzz.com cannot be held liable for any damages incurred through the use of this material. The use of product names in this work is for information purposes only, and does not constitute an endorsement by, or affiliation with BrainBuzz.com. Product names used in this work may be registered trademarks of their manufacturers. This document is protected under US and international copyright laws and is intended for individual, personal use only. For more details, visit our

Loreen V Haakonson
legal page.

Loreen V Haakonson
Check for the newest version of this Cramsession

Loreen V Haakonson
Rate this Cramsession

Loreen V Haakonson
Feedback Forum for this Cramsession/Exam

Loreen V Haakonson
More Cramsession Resources:

Loreen V Haakonson
Search for Related Jobs

Loreen V Haakonson
IT Resources & Tech Library

Loreen V Haakonson
SkillDrill - skills assessment

Loreen V Haakonson
CramChallenge - practice questions

Loreen V Haakonson
Certification & IT Newsletters

Loreen V Haakonson
Discounts, Freebies & Product Info

Loreen V Haakonson
http://cramsession.brainbuzz.com/checkversion.asp?V=2451956&FN=microsoft/desktopVisualC.pdf

Loreen V Haakonson
http://cramsession.brainbuzz.com/cramreviews/reviewCram.asp?cert=Visual+C%2B%2B+6%2E0+Desktop

Loreen V Haakonson
http://boards.brainbuzz.com/boards/vbt.asp?b=664

Loreen V Haakonson
http://jobs.brainbuzz.com/JobSearch.asp?R=&CSRE=

Loreen V Haakonson
http://itresources.brainbuzz.com

Loreen V Haakonson
http://skilldrill.brainbuzz.com

Loreen V Haakonson
http://www.cramsession.com/signup/default.asp#day

Loreen V Haakonson
http://www.cramsession.com/signup/

Loreen V Haakonson
http://www.cramsession.com/signup/prodinfo.asp

Loreen V Haakonson
© 2000 All Rights Reserved - BrainBuzz.com

http://www.cramsession.com/signup/prodinfo.asp
http://www.cramsession.com/signup/
http://www.cramsession.com/signup/default.asp#day
http://skilldrill.brainbuzz.com
http://itresources.brainbuzz.com
http://jobs.brainbuzz.com/BrowseJobSearchRes.asp?KW=%22Designing+Implementing+Desktop+Applications+with+Microsoft+Visual+C%2B%2B+6%2E0%22+OR+Designing+Implementing+Desktop+Applications+with+Microsoft+Visual+C%2B%2B+6%2E0
http://cramsession.brainbuzz.com/checkversion.asp?V=2451956&FN=microsoft/desktopVisualC.pdf
http://cramsession.brainbuzz.com/cramreviews/reviewCram.asp?cert=Visual+C%2B%2B+6%2E0+Desktop
http://boards.brainbuzz.com/boards/vbt.asp?b=664
http://cramsession.brainbuzz.com/helpInfo/LegalStuff/default.asp
http://www.brainbuzz.com/
http://www.brainbuzz.com/
http://www.cramsession.com/

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

1

Contents:

Contents: .. 1

Deriving the Physical Design .. 3

Differences between Windows 95, 98 and NT ... 4

Platform SDK vs. MFC ... 5

MFC Regular vs. MFC Extension DLLs .. 5

Message Routing .. 5

Document/View Architecture .. 6

MFC Drawing architecture .. 6

MFC Printing and print-preview architecture ... 7

Multithreading .. 7

Database ... 9

Designing Properties, Methods and Events of ActiveX Controls...10

Establishing the Development Environment...12

Implementing the Navigation for the User Interface ...14

MFC AppWizard ...14

Resource Editor ...15

Toolbars with MFC ...15

Status bar with MFC...16

Class Wizard ...16

Property Sheet ..16

CFormView ...17

Process and Validate User Input ..17

ActiveX Controls ..17

ISAPI DLLs..18

Scriptlets ..18

Store and Retrieve settings from the registry ..18

Display data from a data source ..19

Instantiate and Invoke a COM component...20

Asynchronous Processing..20

Implement online user assistance ..21

Error Handling...22

Use an Active Document...23

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

2

Creating and Managing COM components ...23

Create a COM component ...23

Create ActiveX user interface controls ..24

Reuse Existing Components ..24

Error Handling...25

Log errors in an error log..25

Create and use an Active Document...25

Debug a COM component ...26

Apartment-Model Threading..26

Creating Data Services ...27

Accessing and manipulating data by using ad hoc queries...27

Handle database errors ..28

Testing and Debugging the Solution...29

Debugging Techniques ...29

Elements of a Test Plan ..31

Deploying an Application ..31

Creating a Setup program...31

Using .cab Files ...32

Plan Floppy Disk, Web and Network Deployment. ..32

Evaluating Microsoft SMS..33

Uninstaller ..33

Zero Administration for Windows (ZAW) ...34

Maintaining and Supporting an Application..34

Fix errors and prevent future errors ...34

Deploy updates ...35

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

3

Deriving the Physical Design

MFC Framework

MFC is a set of pre-built C++ classes that are interfaces to the Windows API. MFC
also adds an optional architecture that greatly simplifies development.

Main MFC elements are:

Documents

Document object is derived from CDocument class, and provides methods to access
an application’s data. (See also CDocument)

Views

Views determine how the user interacts with the document’s data. There can be
multiple views on the same data. There are many kinds of views, each deriving from
a different class, like CView, CScrollView, CFormView, etc… (See also CView)

Frame Windows

Frame windows host view windows. A frame can be the main frame or a child frame
in the MDI architecture. (See also CFrameWnd)

Document templates

A document template is the link between an application’s document, view and frame
window, allowing them to act like a single entity. (See also Document Templates and
the Document/View Creation Process)

Threads

A thread is the basic unit of execution in a Window-based application.

Application Object

The app. object is the backbone of a MFC application. It encapsulate the Win32
WinMain() function. (See also CWinApp)

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vcmfc/_mfc_cdocument.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vcmfc/_mfc_cview.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vcmfc/_mfc_cframewnd.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_document_templates_and_the_document.2f.view_creation_process.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_document_templates_and_the_document.2f.view_creation_process.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vcmfc/_mfc_cwinapp.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

4

Differences between Windows 95, 98 and NT

Required DLLs

Not all the required DLLs exist in each kind of OS, and not all the DLLs expose the
same functionalities.

Security

An application must check NT permissions and has to display correct messages to
the users.

Versioning

GetVersion returns 4 on all these OSes. Use GetVersionEx instead. Don’t assume 4
as a response because on Win2000 the value is 5.

Large Drives

GetFreeDiskSpace doesn’t work with FAT32 drives larger than 2Gb. Use
GetFreeDiskSpaceEx instead.

System Paths and registry keys

In every OS system paths and registry keys are different. This also applies in
different language versions of the same OS. Use API to read correct paths and keys.

ANSI and Unicode

NT is a Unicode OS and Win9x are ANSI. Don’t use Unicode on Win9x applications. If
ANSI is used on NT a wrapper translates everything to Unicode, slowing the system.

To use Unicode under WinNT a UNICODE symbol has to be defined and the _T macro
must be used before every string. Also appropriate char types must be used.

(See also UNICODE programming summary)

Screen Coordinates

Under Windows 9x screen coordinates are limited to 16 bit, staying in the range –
32768 to 32767. Under Windows NT/2000 screen coordinates are 32 bit. (See also
CDC)

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_unicode_programming_summary.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_cdc.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

5

Platform SDK vs. MFC

Use Platform SDK only for very small applications that use very few common controls
or if you need to use only functionality not supported by the MFC framework.

Use MFC in all the other cases. If something is possible with MFC use it and do the
rest with Platform SDK.

MFC Regular vs. MFC Extension DLLs

MFC regular DLLs can be used in every Win32 programming environment because
only C functions are exported. C++ classes can be used inside the DLLs.

MFC extension DLLs can be used only with C++ compatible compilers, because MFC
derived classes, member functions, C++ classes and so on can be exported.

(See also Extension DLLs)

Message Routing

MFC objects can receive messages if they have a message map. A message map
contains message IDs and pointers to handlers. When the object receives a
message, it looks at its own message map for a matching message. If the message
is found the handler is executed, otherwise the message is routed to the object at
the lower level.

If multiple handlers exist, the higher is called. (See also Message Handling and
Mapping Topics)

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_extension_dlls.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_message_handling_and_mapping_topics.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_message_handling_and_mapping_topics.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

6

The handling order is the following:

SDI MDI

View View

Document Document

 Child Frame

Main Frame Main Frame

Application Application

Document/View Architecture

In Document/View architecture, an object manages data and another takes care of
presentation, allowing changes to how the data are showed without changing how
the data are managed.

Single Document Interface (SDI), Multiple Document Interface (MDI) and Dialog
Based are the three possible choices. In the SDI architecture there can be only one
document opened.

(See also Document/View Architecture Topics)

MFC Drawing architecture

To draw on the screen, Windows applications have to deal with GDI and device
contexts (DC).

MFC supply a class, CDC, which encapsulates the device context. With CDC it’s
possible to draw lines, ellipses and so on. The most important methods are MoveTo,
LineTo, PolyLine, PolyLineTo, Arc, ArcTo, PolyBezier, PolyBezierTo, PolyDraw, Chord,
Ellipse, Pie, Polygon, Rectangle, RoundRect.

MFC also supplies a set of graphic components like Pens, Brushes, Palettes, Bitmaps,
and Fonts.

To draw a text with MFC it’s necessary to set the attributes of the text before writing
it.

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_document.2f.view_architecture_topics.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_cdc.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

7

SetTextColor, GetTextColor, SetBkMode, GetBkMode, SetBkColor, GetBkColor,
SetTextAlign and GetTextAlign are used to set the attributes. TextOut,
TabbedTextOut, DrawText and ExtTextOut are used to write the text on the device.

GDI translates logical coordinates to physical coordinates using several mapping
methods. There are 8 mapping modes, MM_ISOTROPIC, MM_ANISOTROPIC,
MM_HIENGLISH, MM_LOENGLISH, MM_HIMETRIC, MM_LOMETRIC, MM_TEXT and
MM_TWIPS.

MFC Printing and print-preview architecture

MFC functions useful for printing support are embedded in all the classes derived
from CView and are OnPreparePrinting, DoPreparePrinting, OnBeginPrinting,
OnEndPrinting, OnEndPrintPreview, OnPrepareDC, OnDraw and the most important,
OnPrint.

Overriding OnPrint allows providing special printing functions, like header, footer and
so on.

(See also Printing and Print Preview Topics)

Multithreading

Interface threads

Can receive and process messages

Worker threads

Cannot receive messages. A worker thread is only another path of execution for the
application to do background work.

(See also Multithreading Topics)

Process priorities

• REALTIME_PRIORITY_CLASS Higher

• HIGH_PRIORITY_CLASS

• NORMAL_PRIORITY_CLASS Default

• IDLE_PRIORITY_CLASS Lower

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_printing_and_print_preview_topics.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_multithreading_topics.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

8

An application can change its priority using SetPriorityClass()/GetPriorityClass()

Thread priorities

• THREAD_PRIORITY_TIME_CRITICAL

• THREAD_PRIORITY_TIME_HIGHEST

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_LOWES

• THREAD_PRIORITY_IDLE

An application can change the priority of an individual thread using
SetThreadPriority() / GetThreadPriority()

Synchronization

CCriticalSection

Only a section of code can be accessed at one time

CEvent

Can block a process from accessing a resource until another thread allows it

CMutex

Used to lock a resource shared by multiple threads

CSemaphore

Allows a limited number of accesses to a resource

CSingleLock

Used to control access to previous synchronization objects

http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-27.xml&tocPath=vcmfc0-1-0-27&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_ccriticalsection.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-57.xml&tocPath=vcmfc0-1-0-57&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_cevent.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-118.xml&tocPath=vcmfc0-1-0-118&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_cmutex.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-194.xml&tocPath=vcmfc0-1-0-194&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_csemaphore.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-197.xml&tocPath=vcmfc0-1-0-197&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_csinglelock.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

9

CMultiLock

Can block up to 64 synchronization objects

Database

ODBC

ODBC was the standard to access a Relational DB. ODBC is still most popular, but
Microsoft prefers that new applications use OLE DB to access a DB.

RDO is the object model built over ODBC.

OLE DB

OLE DB is the new set of APIs to access Relational and non-Relational data. The most
important benefit of using OLE DB is that the same model is used to access every
kind of data (with the right provider). An ODBC provider for OLE DB is given for
backward compatibility with every relational database.

ADO is the object model built over OLE DB.

JET

JET is the database engine used by Microsoft Access and is very popular for desktop
databases.

DAO is the object model built over JET.

Access methods

MFC

MFC can directly access ODBC or DAO databases. (See also Database Topics
(General))

ATL

ATL can access OLE DB databases.

Platform SDK

The Platform SDK is the hardest way to access a database, and can be used if the
other two libraries are not sufficient to do what the application needs.

http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-117.xml&tocPath=vcmfc0-1-0-117&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_cmultilock.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_database_topics_.28.general.29.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_database_topics_.28.general.29.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

10

ADO and RDO object models can be accessed only by importing the type libraries
and by directly using COM objects.

(See also Choosing an API to see differences between DB access technologies)

Designing Properties, Methods and Events of ActiveX
Controls

ActiveX controls in MFC are implemented with the COleControl class.

Properties

There are 9 stock properties common to every ActiveX control already implemented
in a control that derives from COleControl base class:

• Appearance

• BackColor

• BorderStyle

• Caption

• Enabled

• Font

• ForeColor

• hWnd

• Text

There can also be custom properties that can be implemented in four ways:

• Member variable

• Member variable with notification

• Get/Set Methods

• Parameterized

Methods

There are two stock methods implemented by COleControl class:

• DoClick

• Refresh

http://msdn.microsoft.com/library/psdk/sql/8_ar_ad_1.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-128.xml&tocPath=vcmfc0-1-0-128&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_colecontrol.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

11

COleControl class doesn’t support custom methods. To add a custom methods a
programmer must use the DISP_FUNCTION() macro, and add the ID of the
statement in the primary dispatch interface in the .ODL file.

Events

These are the stock events implemented by COleControl class:

• Click

• DblClick

• Error

• KeyDown

• KeyPress

• KeyUp

• MouseDown

• MouseMove

• MouseUp

• ReadyStateChange

Like custom methods, custom events are also not supported by COleControl class.

Custom events can be implemented with the EVENT_CUSTOM macro. Also the .ODL
file must be modified to add the ID statement in the primary dispatch interface.

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

12

Establishing the Development Environment

Visual C++ Installation

Requirement Standard
Edition

Professional
Edition

Enterprise
Edition

Operating system Windows 95 or later, Windows NT 4.0 (SP 3 or later), Windows
2000

Processor 486/66 minimum

Pentium 90+
recommended

Pentium minimum

Pentium 90+ recommended

RAM 24 MB minimum, 32 MB recommended

Free Disk Space Typical: 225 MB

Full: 305 MB

Typical: 290 MB

Full: 275 MB

Typical: 305 MB

Full: 405 MB

Other CD-ROM, mouse, VGA monitor (SVGA recommended),

Internet Explorer 4.01 SP 1

Additional products

Internet Explorer Typical: 43 MB, Full: 59 MB

MSDN Typical: 57 MB, Full: 493 MB

Windows NT

Option Pack

Not included WinNT: 200 MB

Win9x: 20 MB

SQL Server 6.5 Not included WinNT: 80 MB

typical, 95 MB full

SNA Server 4.0 Not included WinNT: 50 MB
typical, 100+MB

full

Click to see a Comparison Chart of Features in Each Visual C++ Edition

Visual SourceSafe

Visual SourceSafe is a source code control system that comes with Visual C++ and
Visual Studio Enterprise Edition. (See also VSS Start Page)

http://msdn.microsoft.com/library/devprods/vs6/visualc/vcedit/vcrefcomparisonchartoffeaturesineachedition.htm
http://msdn.microsoft.com/library/devprods/vs6/ssafe/ssusexp/vssstartpage.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

13

VSS Client is installed on every developer’s machine, allowing access to the
centralized database installed and administered with VSS Server.

NetSetup is the best way to install VSS over a network. It installs only VSS Client,
not VSS Server.

It is stored on the same directory on the server where the VSS Server is installed,
and can be accessed over the network. No CD is necessary.

With NetSetup users can install VSS Client without the help of an Administrator.

After the installation of VSS Server, administrators have to configure it with VSS
Administrator.

If the VSS Server directory is shared it’s better to set the right read-write
permissions to users.

If project security is enabled, a user can have four levels of access:

• read-only

• check out/check in

• add/rename/delete

• destroy

If security is not enabled there are only read-only and read-write permissions. VSS
Administrator is used to set access rights.

VSS Client allows the user to store and retrieve files and to ensure that only one
person at a time can modify a file. Normally only one user can check out a file at a
time, but this can be changed.

Files can be shared among multiple projects. Changes made to a file are seen by all
the projects.

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

14

With branching a file can go in two directions. Under the Paths’ tab it’s possible to
see the history of a branched file.

Get Last Version is the command used to retrieve the last version of a file. Also an
older version can be retrieved from History of File/Project.

A file with Get Last Version can be retrieved only if it doesn’t exist, or is in read-only
state. If the file is not in read-only mode, VSS assumes that the file is checked out
and doesn’t replace it.

Label is the command used to mark all the files in the project. It’s useful to mark all
the files before a major release so that if the release needs to be restored files can
be immediately found.

Implementing the Navigation for the User
Interface

MFC AppWizard

Under the MFC AppWizard three kinds of projects can be created: Single Document
Interface, Multi Document Interface and Dialog Based.

It’s possible to enable or disable the support for the Document/View architecture.

Database support

None

Header Files Only It adds only the file AFXDB.H and links all
the libraries

Database View without File Support It gives the ability to use the
CRecordView derived view class but does
not give any serialization option

Database View with File Support It adds document serialization

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

15

Active Document Support

None

Container It allows the inclusion of Active
Documents generated by other servers

Mini Server It allows the creation of documents that
can be embedded in other applications

Full Server It allows the Active Documents to run as
a stand-alone application

Both container and server

Other options can be set like the support for ActiveX, Automation, Status Bar,
Docking Toolbar, 3D Controls, MAPI, Winsock, Printing support and Context Sensitive
Help.

Also some advanced options can be set like the name of the classes, the styles of the
windows, and so on.

Resource Editor

The Resource Editor can be used to work with .RC files. There are editors for
Toolbars, Menus, Dialogs, Strings, Accelerator Keys, HTML Resources, Graphics and
Binary Files.

To add an accelerator key directly in the Dialog Editor, or in the Menu Editor just add
“&” before the letter (“Save &As” for example)

(See also Resource Editor Topics (Specific to Visual C++))

Toolbars with MFC

Toolbars can be created with the Toolbar Resource Editor. It’s possible to create new
toolbars, buttons and separators, convert bitmaps into resources and edit existing
toolbars or buttons.

The “Prompt” edit box in the “Toolbar Button Properties” allows you to set status bar
text and tool tip. For example, with the text “Opens an existing Document\nOpen”,
when the cursor is over the button, “Opens an existing Document” is displayed in the
status bar and the tool tip “Open” is showed under the button.

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_resource_editor_topics_.28.specific_to_visual_c.2b2b29.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

16

To add a custom toolbar to a window a CToolBar protected member has to be added,
and, in the OnCreate function, the CreateEx function can be called. To enable tool
tips the CBRS_TOOLTIPS style has to be passed to the function.

(See also Toolbar Topics)

Status bar with MFC

To write in a status bar there are different ways: CStatusBar::SetText() and
CCmdUI::SetText()

(See also Status Bar Topics)

Class Wizard

Class Wizard can be used to create new classes, add member variables to existing
classes, and manage message maps and message handlers.

Class Wizard can also used to associate a Resource to a Class. If it’s possible to map
the resource to a class the line Class Wizard will be in the context-menu of the
resource.

Property Sheet

A property sheet is a tabbed dialog box. To create a property sheet a programmer
must create a set of dialogs with the resource editor and has to map them to a set of
classes derived from CPropertyPage.

Then a class derived from CPropertySheet must be created. All the property page
members must be added in the .h of the property sheet class with statements like
CPropPage1 m_PropPage1.

In the constructor every property page must be added to the sheet with
AddPage(&m_propPageX) for every page. AddPage() is member of CPropertySheet.

Now creating the property sheet and calling the DoModal will display the tabbed
dialog box.

(See also Property Sheet Topics)

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_toolbar_topics.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_status_bar_topics.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_property_sheet_topics.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

17

CFormView

CFormView is used to show controls, usually used in dialog boxes, into normal Views.

(See also CFormView)

Process and Validate User Input

DDV or Dialog Data Validation is the mechanism used to provide simple validation to
data using CString or numeric data types. It can be set by the ClassWizard or
directly with DDV_MaxChars, DDV_MinMaxInt or with all the other macros.

DDX or Dialog Data Exchange is the mechanism used to transfer data from a
document’s variables to a dialog box and vice versa.

DoDataExchange is the function that calls DDX and DDV macros.

First a DDX macro maps a control to a variable, and then a DDV macro defines the
rules that apply to the variable. Every DDV macro refers to the previous DDX macro.

(See also Dialog Data Exchange and Validation)

UpdateData(FALSE) forces the data to be transferred from the document to the
dialog; UpdateData(TRUE) force the opposite direction. If some of the rules are
violated UpdateData returns FALSE.

ActiveX Controls

With the AppWizard setting “ActiveX support” enabled, it’s possible to use ActiveX
controls directly in a project, using them like every other control.

To add an ActiveX control to a project it’s necessary to use Add to
Project/Components and Controls from the Project menu. There it’s possible to select
an ActiveX control and use it.

A wrapper class will be created and all the functions of the control become
accessible.

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vcmfc/_mfc_cformview.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_dialog_data_exchange_and_validation.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

18

ISAPI DLLs

ISAPI are extensions of the Internet Information Server that can extend its
functionality.

ISAPI Server extensions are equivalent to the CGI. They are used to generate
dynamic content in the Web Site in response of a request of the ISAPI DLL.

ISAPI Filters can pre and post process all the data sent from and to the Web
Browser.

The AppWizard can create ISAPI DLLs by selecting the appropriate items.

ISAPI Server related classes are CHttpServer and CHttpServerContext.

ISAPI Filter related classes are CHttpFilter and CHttpFilterContext.

(See also Internet Server API (ISAPI) Extensions)

Scriptlets

Scriptlets cannot be used directly in this version of Visual C++. The only way to use
them is to embed them in an HTML pages and to show the HTML page with
CHtmlView or with the Internet Explorer ActiveX.

Store and Retrieve settings from the registry

With the support of MFC, settings can be stored under
HKEY_CURRENT_USER\Software\CompanyName\AppName\SectionName

The SetRegistryKey() member function of CWinApp derived classes is used to set the
CompanyName.

AppName is the same used for the Application in project settings.

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_internet_server_api_.28.isapi.29_.extensions.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

19

SetProfileString(), GetProfileString(), SetProfileInt() and GetProfileInt() can be used
to store and retrieve string and integer data from the registry. SectionName is the
first parameter of these functions.

RegisterShellFileTypes() allows saving all the information about document types and
associations related to the application.

To write under other registry keys, Win32 APIs are needed. The most common are
RegCreateKeyEx, RegOpenKeyEx, RegCloseKey, RegDeleteKey, RegSetValueEx,
RegQueryValueEx and RegDeleteValue.

Display data from a data source

Serialization is the process of allowing objects to persist between runs of your
program

An object must derive from CObject, must use the macros DECLARE_SERIAL and
IMPLEMENT_SERIAL and must implement Serialize method. Serialize receives a
CArchive in which the data have to be stored.

CArchive is the class that stays in the middle between the Serialize method and the
CFile. CArchive allows moving data in only one direction once they’re created. To
move data it’s possible to use “<<” or “>>”.

CFile is the class that allows you to write and to read a file. CStdioFile is derived from
CFile and allows access to text files.

CSocket and CAsyncSocket can be used to use WinSock to send data across a
network.

CSocket is simpler and allows the programmer to create client/server applications,
which communicate with each other using sockets. CArchive is needed to manage
the communication process.

Displaying data from a database to the screen (using CRecordSet to access the
database) is available via the class CRecordView. A dialog template (shown inside
the CRecordView) contains controls that can be mapped to the fields of the database.

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_serialization_topics.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

20

Instantiate and Invoke a COM component

To instantiate and invoke a COM component under Visual C++ there are two main
ways.

The smartest way is to import the DLL of the component and to let the environment
take care of all the implementation details.

This is done in this way:

#import “file name with path.dll” no_namespace
Using no_namespace tells the compiler to not add a namespace to the component. If
there are many components with the same function names, it’s better to use
namespaces.

If the component has an interface called IFoo, to use it a programmer can do:

IFooPtr pFoo(_uuidof(Foo));
pFoo->DoWhatYouWant();

Smart pointers are used to call AddRef, Release, QueryInterface and so on.
(See also The #import Directive)

The other, classic, way is to initialise COM with AfxOleInit() or CoInitializeEx(),
identify the ClsID of the component using ::CLSIDFromProgID(), and call
CoCreateInstance to create the component.

Then Release has to be called when the component is not needed, and
CoUninitialize() has to be called at the end of the program.

Asynchronous Processing

Threads

Secondary threads can be created to do background tasks or to interact with the
user.

The function has to follow the prototype UINT ThreadName(LPVOID paramName) and
can be started with AfxBeginThread().

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_predir_the_.23.import_directive.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_afxbeginthread.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

21

Here is an example:

UINT foo(LPVOID lpFoo)

{ …… }

CWinThread* pFoo= AfxBeginThread(foo, NULL);

Download ActiveX user interface controls

To download an ActiveX control from a Web page the OBJECT tag is used, with the
CLASSID tag that specifies the ClsID of the control and the CODEBASE tag that
specifies the location of the control. With CODEBASE it is also possible to specify the
version of the control, so if a new version exists, the browser will not use the control
installed in the client machine, but will download the new version.

The control must be supplied in a .CAB file that contains the .OCX file and the .INF
file that specifies how to install the control. The .CAB file can also be signed to
ensure who is the maker of the control.

Implement online user assistance

Writing relevant information for the user in the status bar is the first method to
provide assistance.

To write in the status bar the best way is to use SetText(), like
m_stBar.SetText(“Ok”)

Tool tips are supplied by MFC for toolbar buttons and menus, but can be added to
every control.

This can be obtained with the help of CToolTipCtrl:

CToolTipCtrl* pToolTip;
pToolTip->Create(pDialogWnd); // pointer to the window

pToolTip->AddTool(pControl,”Tooltip…”) // pointer to the control

On line Help and Context Sensitive Help are implemented by the framework (if
selected in the MFC AppWizard).

http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-217.xml&tocPath=vcmfc0-1-0-217&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_ctooltipctrl.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

22

The WinHelp() member of CWinApp is used to call the standard Windows Help.

To use HTML Help it’s necessary to use run “hh.exe“ because at the moment there is
no support from the compiler. (See also HTML Help Start Page)

To link the help file to a compiled HTML help (also on a Web Site) it’s possible to add
a macro in the source RTF file (See also To link from a topic in a WinHelp file to a
topic in an HTML Help file):

!execfile(hh.exe, ms-its:file name.chm::/topic.htm)

Error Handling

Exceptions are objects that contain error conditions. Exceptions are produced by
functions when there are errors.

With MFC there are two ways of catching errors: MFC macros and C++ exceptions.

MFC macros are only for backwards compatibility. (See also Exception Handling
Topics (General))

CException is the base class of every MFC exception. It has two methods to report
errors, GetErrorMessage() that retrieves the error message and ReportError() that
retrieves it and reports it to the user.

try
{// piece of code that could generate exceptions

}

catch (CMemoryException* memExc)

{ // first catch a memory exception

memExc->Delete();

}

catch (CFileException* filExc)

{ // then a file exception, it’s just a sample

filExc->Delete();

}

catch (CException* allExc)

http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_cwinapp.3a3a.winhelp.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/tools/htmlhelp/chm/hh1start.htm&RLD=77
http://msdn.microsoft.com/library/tools/htmlhelp/chm/htlink6.htm
http://msdn.microsoft.com/library/tools/htmlhelp/chm/htlink6.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_exception_handling_topics_.28.general.29.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_exception_handling_topics_.28.general.29.htm
http://msdn.microsoft.com/library/default.asp?PP=/library/toc/vcmfc/vcmfc0-1-0-58.xml&tocPath=vcmfc0-1-0-58&URL=/library/devprods\vs6\visualc/vcmfc/_mfc_cexception.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

23

{ // this catches all the other exceptions…

allExc->Delete();

}

Remember to use Delete() method of the exception to delete it, because it’s not sure
that the exception is on the heap or on the stack.

CException catches all the exceptions, so it must be the last in the order, because
C++ exceptions are handled in the order they are declared.

An exception can also be ignored, and it will be catch by the next handler. An
unhandled exception can cause the termination of the program.

Use an Active Document

Active Documents are stand-alone applications hosted by other applications (like MS
Office or Internet Explorer).

Using Active Documents in VC applications is very simple. By using MFC AppWizard
it’s possible to select the type of support needed.

Creating and Managing COM components

Create a COM component

SDK

Using the SDK is the hardest way to create a COM component. Everything must be
programmed, the registration of the component, the specifications of the interfaces
in .IDL, the ClassFactory, and the class that implements the component.

MFC

CCmdTarget is the class that implements IUnknown and IDispatch. MFC is very
heavy and should be used to make COM components if it’s used very intensively.
With the Wizard only OLE Automation server and clients can be easily built.

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

24

ATL

ATL is the best choice to implement a lightweight COM component. Using the Wizard
is the fastest way to make a COM component with ATL.

Create ActiveX user interface controls

ATL

ATL generated controls are very light. To create a control the “ATL COM AppWizard”
should be used. After that the programmer should use “New ATL Object”, “Full
control”.

In the “ATL Object Wizard Properties/Attributes” the programmer can choose the
threading model, the ability to support aggregation, dual interfaces, connection
points, and ISupportErrorInfo for the FreeThreaded Marshaler.

SDK

To implement a control without ATL or MFC a programmer must implement
IOleControl, IOleControlSite and ISimpleFrameSite. After that the control must
support OLEIVERB_PROPERTIES and events. The control has to draw itself in the
container space.

MFC

Use the “MFC ActiveX Control Wizard” to create the control. The control is based on
COleControl that is based on COleControlModule. MFC ActiveX controls are very
heavy, and should be used only if MFC is used extensively.

(See also ActiveX Controls: Overview)

Reuse Existing Components

(See also Object Reusability)

Containment

A component is “contained” inside another component. When a request for an
interface of the “contained” component is requested, the call is sent to an interface
of the container that calls the inner interface. (See also Containment)

http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_activex_controls.3a_.overview.htm
http://msdn.microsoft.com/library/specs/S1D029.HTM
http://msdn.microsoft.com/library/specs/S1D195.HTM

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

25

Aggregation

With aggregation the inner interface is directly exposed to the client without a
wrapper. The inner component must support aggregation, because for every
QueryInterface done on the inner component it has to check its interfaces and the
interfaces of the outer component. (See also Aggregation)

Error Handling

IErrorInfo

Is supplied with the error object by the OS (CreateErrorInfo API)

ICreateErrorInfo

Is supplied with the error object by the OS (CreateErrorInfo API)

ISupportErrorInfo

Is used by the Automation server to report errors to the client

(See also Error Handling Interfaces)

Log errors in an error log

Under Windows NT/2000 the application error log can be used to store error
messages of every purpose. Use EventViewer to read the log. Use ReportEvent()
Win32 API to write in the application error log.

Create and use an Active Document

Active documents are implemented with additional interfaces that manage views, so
that objects can function within containers and yet retain control over their display
and printing functions.

COleServerDoc is the replacement of CDocument that supports Active Document
creation.

IOleObject, IOleClientSite, IOleDocumentView, IOleCommandTarget, Iprint,
IDataObject, IPersistStorage, IOleInPlaceActiveObject, IOleInPlaceObject, IPersistFile
are interfaces needed on the server.

http://msdn.microsoft.com/library/specs/S1D196.HTM
http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/automat/chap11_0fqr.htm
http://msdn.microsoft.com/library/psdk/winbase/eventlog_756c.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

26

IOleInPlaceSite and IOleInPlaceFrame are used on the container.

(See also Active Documents)

Debug a COM component
To debug a COM component the easiest way is to set a breakpoint into the
component, build it in debug mode, and register the component.

Then a programmer can load the client into the IDE and start it in debug mode.
When the client calls the component, the breakpoint stops the execution and
transfers it to the debugger.

ATL based COM components can also be debugged by using special macros.

_ATL_DEBUG_INTERFACES is used to enable reference count debugging.

_ATL_DEBUG_QI is used to enable QueryInterface debugging.

Apartment-Model Threading

Single-Threaded Apartment

COM calls are done by sending messages to the window’s message queue. This
technique allows synchronizing concurrent calls to be serial. Legacy code often
ignores threading, and by default uses a single STA. (See also Single-threaded
apartments)

To enter the STA the thread must call
CoInitializeEx(NULL,COINIT_APARTMENTTHREADED)

Multithreaded Apartment

COM calls are sent directly to the object. The object has to deal with synchronization,
because multiple calls could arrive from multiple threads. (See also Multi-threaded
apartments

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/vcconactivedocuments.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_atl_enabling_reference_count_debugging.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_atl_enabling_queryinterface_debugging.htm
http://msdn.microsoft.com/library/psdk/com/aptnthrd_68s3.htm
http://msdn.microsoft.com/library/psdk/com/aptnthrd_68s3.htm
http://msdn.microsoft.com/library/psdk/com/aptnthrd_00hf.htm
http://msdn.microsoft.com/library/psdk/com/aptnthrd_00hf.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

27

To enter the MTA the thread must call
CoInitializeEx(NULL,COINIT_MULTITHREADED)

Creating Data Services

Accessing and manipulating data by using ad hoc
queries

ODBC

To use ODBC in a Visual C++ application two MFC classes are necessary.

CRecordset is used to interact with rows returned from the database in response of a
query. CRecordset is never used directly; it’s better to use a derived class.

CDatabase is used to attach and to communicate with a database and is generally
used when there are more recordsets.

(See also ODBC and MFC)

ADO

ADO is the object model built on the top of OLE DB. Remember to use ADO or OLE
DB in every new application. To use ADO with Visual C++ a programmer needs to
import the type library “msado15.dll”.

The object model exposed by ADO is composed of six main objects, but not all are
necessaries to query the database. For example a recordset can be obtained without
opening a connection and without sending a command, but using a connection allows
you to obtain more than one recordset, and using a command allows you to send the
same command without querying the metadata every time.

Connection

Used to maintain connection information like cursor type, connection string, time-
outs, default database

Error

Used to report extended error information. A collection of errors is used because one
or more errors could be returned.

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_database_topics_.28.odbc.29.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

28

Command

Contains information about a command, like the query string, parameters, and so
on.

Parameter

The Command object can contain a collection of parameters. Each parameter type
can be declared from the programmer to improve performance, or can be discovered
at run-time.

Recordset

Is a set of rows returned from a query, including cursors.

Field

Is used to contain a set of information about a single column of data.

(See also Using ADO with Microsoft Visual C++)

DAO

DAO is the object model used to access the Jet database engine. It’s supported by
MFC with these classes: CDaoWorkspace, CDaoDatabase, CDaoException,
CDaoQueryDef, CDaoRecordset, CdaoFieldExchange

Remember that CDaoRecordset is never used directly; a derived class is used
instead.

(See also DAO and MFC)

RDO

RDO is an object model built over ODBC. It’s not supported by MFC, but can be used
by importing the type library and accessing the COM objects directly.

Handle database errors

The ADO Connection object contains an error collection with these methods and
properties

http://msdn.microsoft.com/library/psdk/dasdk/mdap2o6b.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_dao_and_mfc.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

29

Count

Contains the number of error in the collection

Item

Is used to retrieve an error from the collection

Clear

Is used to remove all the errors from the collection

The Error object contains these properties: Description, Number, HelpFile,
HelpContext, Source, SQLState, NativeError

(See also Errors Collection (ADO))

Testing and Debugging the Solution

Debugging Techniques

Debugging Support

Visual C++ includes debugging support in the run-time library, enabled in the debug
version of the executable.

There are debug versions of malloc, free, calloc, realloc, new and delete
which are useful to find memory leaks.

(See also Using C Run-Time Library Debugging Support)

Also in the IDE of the compiler there are many debug features, like the integrated
debugger with advanced breakpoints, edit-and-continue, etc…

(See also VC Debugger)

http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/dasdk/mdao9pwz.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_core_using_c_run.2d.time_library_debugging_support.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcug/_asug_home_page.3a_.debugger.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

30

Depends

Depends (and other tools like QuickView and DumpBin) can be used to find the
dependencies of and executable to discover which dll, ocx or com components are
used by an application and which are missing or with a wrong version.

Spy++

Spy++ can be used to inspect windows, processes, threads and messages.

(See also Spy++)

MFC Macros

ASSERT

ASSERT allows the programmer to check for logic errors during the execution of a
program. If the condition is false the program stops and displays an error message.
This can be used to check for pre and post-conditions. ASSERT works only in debug
mode, cleaning the release mode of all the testing code.

ASSERT_VALID

ASSERT_VALID is used with objects derived from CObject. It’s the same of ASSERT
and it also calls the AssertValid function of the object.

ASSERT_KINDOF

ASSERT_KINDOF checks if the object is a member of the specified class.

TRACE

TRACE is used to send strings on a dump device. Use TraceR.EXE to enable tracing.

DEBUG_NEW

DEBUG_NEW is useful to find memory leaks. To use DEBUG_NEW the macro

#define new DEBUG_NEW

must be used. DEBUG_NEW logs every memory allocations in a file.
CMemoryState::DumpAllObjectsSince can be used to view all objects allocated.

http://msdn.microsoft.com/library/devprods/vs6/visualc/vcug/_asug_home_page.3a_.spy.2b2b.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_assert.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_assert_valid.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_assert_kindof.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_trace.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/_mfc_debug_new.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

31

Elements of a Test Plan

Beta test

A beta test is the testing made by users that are not part of the development
process. A beta test is useful to test the application with many different conditions
like OS, CPU, RAM, drivers, user level and different languages.

Regression test

Regression test is repeating the same test to check that nothing is changed from the
last version of the application in areas not affected by the development process.

Unit test

Unit test is the testing made by the developer on a small working part of an
application. Unit test can imply writing stubs to simulate other units not yet written.
Use only to try if a unit works.

Integration test

Integration test is used to check if all the units can work together. Unit testing is not
enough to show if different units can work together.

Stress test

Stress test is needed because an application can stop working if there is too much
load. Stress testing places the highest loads with the lowest amount of resources
available. This kind of test is useful to determine the minimum requirements and the
maximum load for an application.

Deploying an Application

Creating a Setup program

Use QuickView, Depends or DUMPBIN to determine dependencies.

Use InstallShield to create the setup program.

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

32

Remember to include all DLLs, COM and ActiveX components that are used by the
application.

Setup created with InstallShield will register all COM components into the registry.

Self-registering DLLs must contain DllRegisterServer and DllUnregisterServer
functions. These functions are called to register the COM component into the
registry.

Self-registering EXEs must accept \RegServer and \UnregServer command line
options. These are used to register/unregister the component without running it.

(See also Redistributing Microsoft Visual C++ 6.0 Applications)

Setup program must be called SETUP.EXE to comply with the Windows 98 Logo
Program

Using .cab Files

Cabinet or .cab are compressed files, used to distribute applications.

A cab file can be signed, and can be deployed over a network.

To sign a cab file a digital certificate is required.

A cab file can be embedded in an HTML page (using the tag OBJECT and CODEBASE)

A cab file can contain an .INF file to specify which components must be registered.

Plan Floppy Disk, Web and Network Deployment.

InstallShield allows selecting the media used to distribute the application.

An application can be distributed over a set of floppies or compact disc, over a
network or using a Web-Based distribution. Compact disc distribution can also be
made automatic by providing an AUTORUN.INF file on the CD. A simple file is:

http://msdn.microsoft.com/library/techart/redistribvc6.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

33

• [AutoRun]

• open=filename.exe

• icon=filename.ico

• where open is the file to run and icon is the icon of the CD.

• Compact disc is the default method for InstallShield.

Evaluating Microsoft SMS

Microsoft System Management Server can be used to deploy applications over a
network.

A package is the basic unit of software distribution under SMS.

The SMS installer can be used to create a Package Definition File that can be
distributed and launched on every client to install the package.

(See also Advanced Desktop Management: Systems Management Server)

Uninstaller

InstallShield automatically generates a program called UNINST.EXE that reads
installations log files (UNINST.ISU) and removes any items installed. UNINST.EXE
doesn’t remove hidden items except .GID, .FTG and .FTS files. UNINST.EXE also
doesn’t remove items added after the installation of the application, including user’s
documents.

To register an Uninstaller (with a custom setup program), an entry must be added to
the registry key under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CurrentVersion\Uninstall\AppName,
containing the path of the Uninstaller program.

(See also part 2.5 Support Add/Remove Programs properly of the Application
Specification for Microsoft Windows 2000 for Desktop Applications)

http://www.microsoft.com/NTServer/management/exec/overview/sms.asp
http://msdn.microsoft.com/library/specs/w2kcli_chapter2.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

34

(See also Removing "Ghosts" from the Add/Remove Programs Utility)

Zero Administration for Windows (ZAW)

Zero Administration for Windows is an initiative to reduce work and costs associated
with installing and managing a Windows-based network environment.

ZAW includes functionalities to automatically update systems and install applications,
to cache configuration information and to administer and lock systems from a central
point.

Windows Installer and Systems Management Server are part of the ZAW initiative.

To implement a ZAW solution the Zero Administration Kit is needed.

It can run on Windows NT and Windows 9x.

An evolution of the ZAW is available and is an important part of Windows 2000.

Maintaining and Supporting an Application

Fix errors and prevent future errors

Logic errors (known also as bugs) occur when the program can be compiled, but
doesn’t work as expected.

Syntax errors occur when the compiler doesn’t understand what is written in the
source code.

TRACE, ASSERT, SEH (Structured Exception Handling) and C++ exceptions can be
used to prevent future errors and to trap run-time errors when they occur.

http://msdn.microsoft.com/library/periodic/period98/w9p0898.htm

Cramsession:
Designing & Implementing Desktop Applications with Microsoft Visual C ++ 6.0

 TM

© 2000 All Rights Reserved – BrainBuzz.com

35

Deploy updates

Use InstallShield to deploy application updates. It can be used to replace program
files, components and registry settings. Use the Overwrite property to specify the
conditions under which files will or will not overwrite the user’s hard disk.

Special thanks to

Lorenzo Barbieri

for contributing this
Cramsession.

mailto:Lorenzo.Barbieri@libero.it

	desktopVisualC.pdf
	desktopVisualC.pdf
	Contents:
	Deriving the Physical Design
	MFC Framework
	Documents
	Views
	Frame Windows
	Document templates
	Threads
	Application Object

	Differences between Windows 95, 98 and NT
	
	Required DLLs
	Security
	Versioning
	Large Drives
	System Paths and registry keys
	ANSI and Unicode
	Screen Coordinates

	Platform SDK vs. MFC
	MFC Regular vs. MFC Extension DLLs
	Message Routing
	
	SDI
	View

	Document/View Architecture
	MFC Drawing architecture
	MFC Printing and print-preview architecture
	Multithreading
	
	Interface threads
	Worker threads

	Process priorities
	Thread priorities
	Synchronization
	CCriticalSection
	CEvent
	CMutex
	CSemaphore
	CSingleLock
	CMultiLock

	Database
	
	ODBC
	OLE DB

	JET
	Access methods
	MFC
	ATL
	Platform SDK

	Designing Properties, Methods and Events of ActiveX Controls
	Properties
	Methods
	Events

	Establishing the Development Environment
	Visual C++ Installation
	Requirement

	Visual SourceSafe

	Implementing the Navigation for the User Interface
	MFC AppWizard
	
	Database support

	Resource Editor
	Toolbars with MFC
	Status bar with MFC
	Class Wizard
	Property Sheet
	CFormView
	Process and Validate User Input
	ActiveX Controls
	ISAPI DLLs
	Scriptlets
	Store and Retrieve settings from the registry
	Display data from a data source
	Instantiate and Invoke a COM component
	Asynchronous Processing
	Threads
	Download ActiveX user interface controls

	Implement online user assistance
	Error Handling
	Use an Active Document
	Creating and Managing COM components
	Create a COM component
	
	SDK
	MFC
	ATL

	Create ActiveX user interface controls
	
	ATL
	SDK
	MFC

	Reuse Existing Components
	
	Containment
	Aggregation

	Error Handling
	
	IErrorInfo
	Is supplied with the error object by the OS (CreateErrorInfo API)
	ICreateErrorInfo
	ISupportErrorInfo

	Log errors in an error log
	Create and use an Active Document
	Debug a COM component
	Apartment-Model Threading
	Single-Threaded Apartment
	Multithreaded Apartment

	Creating Data Services
	Accessing and manipulating data by using ad hoc queries
	ODBC
	ADO
	Connection
	Error
	Command
	Parameter
	Recordset
	Field

	DAO
	RDO

	Handle database errors
	
	Count
	Item
	Clear

	Testing and Debugging the Solution
	Debugging Techniques
	Debugging Support
	Depends
	Spy++
	MFC Macros
	ASSERT
	ASSERT_VALID
	ASSERT_KINDOF
	TRACE
	DEBUG_NEW

	Elements of a Test Plan
	
	Beta test
	Regression test
	Unit test
	Integration test
	Stress test

	Deploying an Application
	Creating a Setup program
	Using .cab Files
	Plan Floppy Disk, Web and Network Deployment.
	Evaluating Microsoft SMS
	Uninstaller
	Zero Administration for Windows (ZAW)
	Maintaining and Supporting an Application
	Fix errors and prevent future errors
	Deploy updates

