Copyright] 1996 by Addison-Wesley Publishing Company 142

Chapter 15

Stacks and Queues

Copyright] 1996 by Addison-Wesley Publishing Company

TOS (-1)

How the stack routines work: empty stack, Push(A)

Push(B) , Pop

TOS (0)

TOS (1)

143

Copyright] 1996 by Addison-Wesley Publishing Company

MakeEmpty
Size=0
Enqueue(A)
Size=1
Enqueue(B)
Size=2
Dequeue()
Size=1
Dequeue()
Size=0

Basic array implementation of the queue

Back

Front
Back
A
Front
Back
A B
Front
Back
B
Front
Back

Front

144

Copyright] 1996 by Addison-Wesley Publishing Company 145

After 3Enqueues C D
Size =3 Front
Back
Enqueue(F) F C D
Size =4 Front
Back
Dequeue() F D
Size =3 Front
Back
Dequeue() F
Size =2
Back
Dequeue() F
Size=1 Front

Array implementation of the queue with wraparound

Copyright] 1996 by Addison-Wesley Publishing Company 146

TopOfStack

Linked list implementation of the stack

Copyright] 1996 by Addison-Wesley Publishing Company 147

Linked list implementation of the queue

Copyright] 1996 by Addison-Wesley Publishing Company 148

Ba.c/k

Before ... :_
] L
ek \

After ... :_ » X :_
| |

Enqueue operation for linked-list-based implementation

Copyright] 1996 by Addison-Wesley Publishing Company 149

Chapter 16
Linked Lists

Copyright] 1996 by Addison-Wesley Publishing Company 150

FrontOfList

Basic linked list

Copyright] 1996 by Addison-Wesley Publishing Company 151

|
e N [S — B | —»
| .

/

Current ,
Tmp

Insertion into a linked list: create new node (TMY), copy in
X, set Tm[’s next pointer, set Current ’s next pointer

Copyright] 1996 by Addison-Wesley Publishing Company 152

| | |
—P A | \— E X | - — B | ——p
| | |

/

Current

Deletion from a linked list

Copyright] 1996 by Addison-Wesley Publishing Company 153

Header

Using a header node for the linked list

Copyright] 1996 by Addison-Wesley Publishing Company 154

Header

Empty list when header node is used

Copyright] 1996 by Addison-Wesley Publishing Company 155

e

\ Head Tail;

Doubly linked list

Copyright] 1996 by Addison-Wesley Publishing Company 156

-

He:& /I’ail

Empty doubly linked list

Copyright] 1996 by Addison-Wesley Publishing Company 157

i

Insertion into a doubly linked list by getting new node and
then changing pointers in order indicated

Copyright] 1996 by Addison-Wesley Publishing Company 158

A ...B ... C
; P -
»
First

Circular doubly linked list

Copyright] 1996 by Addison-Wesley Publishing Company 159

Chapter 17

Trees

Copyright] 1996 by Addison-Wesley Publishing Company 160

A tree

Copyright] 1996 by Addison-Wesley Publishing Company 161

Tree viewed recursively

Copyright] 1996 by Addison-Wesley Publishing Company 162

First child/next sibling representation of tree in Figure 17.1

Copyright] 1996 by Addison-Wesley Publishing Company

mark*
books* courses* .
dsﬂcp*\ipps* copi%\cop%
\ \
chl ch2 chl ch2 chl ch2 syl syl

UNIX directory

163

Copyright] 1996 by Addison-Wesley Publishing Company 164

mark
books
dsaa
chl
ch2
ecp
chl
ch2
ipps
chl
ch2
courses
cop3223
syl
cop3530
syl
Jogin

The directory listing for tree in Figure 17.4

Copyright] 1996 by Addison-Wesley Publishing Company 165

books*y) coursesiyy

dm Cop3m

Ch](g) Ch2(7) Ch](4) Ch2(6) Ch](g) Ch2(8) Syl(z) Syl‘

UNIX directory with file sizes

Copyright] 1996 by Addison-Wesley Publishing Company 166

chl 9
ch2 7
dsaa 17
chl 4
ch2 6
ecp 11
chl 3
ch2 8
ipps 12
books 41
syl 2
cop3223 3
syl 3
cop3530 4
courses 8
Jogin 2
mark 52

Trace of the Size function

Copyright] 1996 by Addison-Wesley Publishing Company 167

Uses of binary trees: left is an expression tree and right is a
Huffman coding tree

Copyright] 1996 by Addison-Wesley Publishing Company 168

" RooO

T1.Root

Result of a naive Merge operation

Copyright] 1996 by Addison-Wesley Publishing Company 169

OldRoot
OldT1.Root
\ T2.Root

Aliasing problems in the Merge operation; T1 is also the
current object

Copyright] 1996 by Addison-Wesley Publishing Company 170

Recursive view used to calculate the size of atree: S;=S;
+Sp+1

Copyright] 1996 by Addison-Wesley Publishing Company 171

A Ny
H +1 T T Hgr+1
HL Hg
Y + v Y

Recursive view of node height calculation: H; = Max(
H +1, He+1)

Copyright] 1996 by Addison-Wesley Publishing Company 172

&® 2®

Preorder, postorder, and inorder visitation routes

Copyright] 1996 by Addison-Wesley Publishing Company

do dl d?2
b0 b1l b2 b2 b2 b2
ao al al al al al al g
e0 el e 2
cO cl cl cl cl c?2
az2 az2 az2 az2 az2 az2 az2
e C

Stack states during postorder traversal

173

Copyright] 1996 by Addison-Wesley Publishing Company 174

Chapter 18

Binary Search Trees

Copyright] 1996 by Addison-Wesley Publishing Company 175

Two binary trees (only the left tree is a search tree)

Copyright] 1996 by Addison-Wesley Publishing Company 176

Binary search trees before and after inserting 6

Copyright] 1996 by Addison-Wesley Publishing Company 177

Deletion of node 5 with one child, before and after

Copyright] 1996 by Addison-Wesley Publishing Company 178

(D (D
(2) (9 (3)
ORNO O &
©
@ ©

Deletion of node 2 with two children, before and after

Copyright] 1996 by Addison-Wesley Publishing Company 179

K<g +1 K==§ +1 K>

Using the Size data member to implement FIndKth

Copyright] 1996 by Addison-Wesley Publishing Company 180

T

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N-1

Copyright] 1996 by Addison-Wesley Publishing Company 181

PRAR

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other

Copyright] 1996 by Addison-Wesley Publishing Company 182

Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)

Copyright] 1996 by Addison-Wesley Publishing Company 183

Minimum tree of height H

Copyright] 1996 by Addison-Wesley Publishing Company 184

Single rotation to fix case 1

Copyright] 1996 by Addison-Wesley Publishing Company 185

Single rotation fixes AVL tree after insertion of 1

Copyright] 1996 by Addison-Wesley Publishing Company 186

Symmetric single rotation to fix case 4

Copyright] 1996 by Addison-Wesley Publishing Company 187

Single rotation does not fix case 2

Copyright] 1996 by Addison-Wesley Publishing Company 188

Left-right double rotation to fix case 2

Copyright] 1996 by Addison-Wesley Publishing Company 189

Double rotation fixes AVL tree after insertion of 5

Copyright] 1996 by Addison-Wesley Publishing Company 190

Left-right double rotation to fix case 3

Copyright] 1996 by Addison-Wesley Publishing Company 191

A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.

2. The root is black.

3. Ifanode is red, its children must be black.

4. Every path from a node toNULL pointer must contain the
same number of black nodes.

Red black tree properties

Copyright] 1996 by Addison-Wesley Publishing Company 192

Example of a red black tree: insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

Copyright] 1996 by Addison-Wesley Publishing Company 193

If Sis black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if X is an outside grandchild

Copyright] 1996 by Addison-Wesley Publishing Company 194

If S is black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X is an inside grandchild

Copyright] 1996 by Addison-Wesley Publishing Company 195

If Sis red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P

Copyright] 1996 by Addison-Wesley Publishing Company 196

Color flip; only if X’s parent is red do we continue with a
rotation

Copyright] 1996 by Addison-Wesley Publishing Company 197

Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it

Copyright] 1996 by Addison-Wesley Publishing Company 198

Result of single rotation that fixes violation at node 50

Copyright] 1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node

Copyright] 1996 by Addison-Wesley Publishing Company 200

Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip

Copyright] 1996 by Addison-Wesley Publishing Company 201

Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation

Copyright] 1996 by Addison-Wesley Publishing Company 202

Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation

Copyright] 1996 by Addison-Wesley Publishing Company 203

(P)
—P —P
SHENO
B C B C @

X is black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent

Copyright] 1996 by Addison-Wesley Publishing Company 204

The level of a node is

* One if the node is a leaf
* The level of its parent, if the node is red
* One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because
there cannot be consecutive red nodes).

Nodes at level 2 or higher must have two children.

4. If a node does not have a right horizontal link, then its two
children are at the same level.

w

AA-tree properties

Copyright] 1996 by Addison-Wesley Publishing Company 205

30

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35

Copyright] 1996 by Addison-Wesley Publishing Company 206

Skew is a simple rotation between X and P

Copyright] 1996 by Addison-Wesley Publishing Company 207

(RS (X) ©

AWA AWA

Split is a simple rotation between X and R; note that R's
level increases

Copyright] 1996 by Addison-Wesley Publishing Company 208

30

After inserting 45 into sample tree:; consecutive horizontal
links are introduced starting at 35

After Split at 35; introduces a left horizontal link at 50

30 »(70)
)
&1 @ G ® @@

After Skew at 50: introduces consecutive horizontal nodes
starting at 40

Copyright] 1996 by Addison-Wesley Publishing Company 209

After Split at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After Skew at 70: this introduces consecutive horizontal
links at 30

After Split at 30; insertion is complete

Copyright] 1996 by Addison-Wesley Publishing Company 210

(2 (3)
ONORORORC

When 1 is deleted, all nodes become level 1, introducing
horizontal left links

Copyright] 1996 by Addison-Wesley Publishing Company 211

Five-ary tree of 31 nodes has only three levels

Copyright] 1996 by Addison-Wesley Publishing Company 212

41| 66{|| 874

B-tree of order 5

Copyright] 1996 by Addison-Wesley Publishing Company 213

A B-tree of ordeM is anM-ary tree with the following proper-

ties:

1.
2.

The data items are stored at leaves.

The nonleaf nodes store upNb— 1 keys to guide the
searching; key represents the smallest key in subireel
The root is either a leaf or has between 2Mrahildren.
All nonleaf nodes (except the root) have betwelr 2]
andM children.

All leaves are at the same depth and have betjviega |
andL children, for somé.

B-tree properties

Copyright] 1996 by Addison-Wesley Publishing Company 214

41| 66| 871

10| |20 | 28| | 36| |42| |49| |52 |56 68| |73||79| |84 89| |
12|122| 30| |37| |44||50| [53| |57 69| |74||81| |85 90| |
14|24 |31||38| |46 58 70(|76
16 32|39 59

| 8 | 18| 26| 3‘1 |48| 51| 54 |72| 7E| 8+| |92
2||8|[18||26[|35||41||48||51||54 66| (72| |78||83 87| [
4
6

B-tree after insertion of 57 into tree in Figure 18.70

Copyright] 1996 by Addison-Wesley Publishing Company

215

41),| 64| 81

81/ 18| 2q,| 3% 48, 51| 54| 51 72)|| 78||| 83 ¢

y y y y y y
2||8||18||26||35||41||48||51||54||57||66||72||78||83 87
4 (110]||20||28||36||42| 49| |52| 55| |58] |68||73||79||84 89
6 ||12||22| |30 |37| |44 50| |53 |56 59| |69||74| 81| |85 90

14(|24||31||38| |46 70|76

16 32|39

Insertion of 55 in B-tree in Figure 18.71 causes a split into
two leaves

Copyright] 1996 by Addison-Wesley Publishing Company 216

24,141 66| 8|
v v v v
| 8 | 1€| |35| 38| |4E| 51| 511 ST |72| 78| 81
211811 26139138 41|48 (51 |54 (57166 |72 |78 |83
411102 28134139 42149 (5255 (58169 |73 |79 |84
6|12 |2 30(37 40 44 (50 (53 |56 (59169 |74 |81 |85
14 |2 3 46 7017

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node

Copyright] 1996 by Addison-Wesley Publishing Company 217

2q(41 | 6%| 88

8][1 26/ (3493 4149 [51][54 [57 [66 [72 [78
102 24136 [3 42|49 52|55 |58 |69 |73 |79
122 30|37 |4 44|50 |53 |56 |59 |69 |74 81
14 |2 3 46 707
1 3

B-tree after deletion of 99 from Figure 18.73

