
Copyright  1996 by Addison-Wesley Publishing Company 142

Chapter 15

Stacks and Queues

Copyright  1996 by Addison-Wesley Publishing Company 143

How the stack routines work: empty stack, Push(A) ,
Push(B) , Pop

TOS (0)

TOS (1)

TOS (-1)

A A

B

Copyright  1996 by Addison-Wesley Publishing Company 144

Basic array implementation of the queue

Front

Front

Front

Front

Front

Back

Back

Back

Back

Back

A

A B

B

Size = 0

Size = 1

Size = 2

Size = 1

Size = 0

MakeEmpty

Enqueue(A)

Enqueue(B)

Dequeue()

Dequeue()

Copyright  1996 by Addison-Wesley Publishing Company 145

Array implementation of the queue with wraparound

Front

Front

Front

F

Front

Back

Back

B

Back

Back

F

F

Size = 3

Size = 4

Size = 3

Size = 2

Size = 1

After 3 Enqueues

Enqueue(F)

Dequeue()

Dequeue()

Dequeue()

F

F

D

C D

C D

Copyright  1996 by Addison-Wesley Publishing Company 146

Linked list implementation of the stack

ABCD

TopOfStack

Copyright  1996 by Addison-Wesley Publishing Company 147

Linked list implementation of the queue

A B C D

Front Back

Copyright  1996 by Addison-Wesley Publishing Company 148

Enqueue operation for linked-list-based implementation

Back

X

Back

...

...

Before

After

Copyright  1996 by Addison-Wesley Publishing Company 149

Chapter 16

Linked Lists

Copyright  1996 by Addison-Wesley Publishing Company 150

Basic linked list

A B C D

FrontOfList

Copyright  1996 by Addison-Wesley Publishing Company 151

Insertion into a linked list: create new node (Tmp), copy in
X, set Tmp’s next pointer, set Current ’s next pointer

Current

... .

X

A B

Tmp

Copyright  1996 by Addison-Wesley Publishing Company 152

Deletion from a linked list

Current

...
XA B

Copyright  1996 by Addison-Wesley Publishing Company 153

Using a header node for the linked list

A B C

Header

Copyright  1996 by Addison-Wesley Publishing Company 154

Empty list when header node is used

Header

Copyright  1996 by Addison-Wesley Publishing Company 155

Doubly linked list

Head Tail

A B

Copyright  1996 by Addison-Wesley Publishing Company 156

Empty doubly linked list

Head Tail

Copyright  1996 by Addison-Wesley Publishing Company 157

Insertion into a doubly linked list by getting new node and
then changing pointers in order indicated

... A B

X
a b
c d

Copyright  1996 by Addison-Wesley Publishing Company 158

Circular doubly linked list

First

A B C

Copyright  1996 by Addison-Wesley Publishing Company 159

Chapter 17

Trees

Copyright  1996 by Addison-Wesley Publishing Company 160

A tree

A

B C D E

F G H I J

K

Copyright  1996 by Addison-Wesley Publishing Company 161

Tree viewed recursively

...

Root

T1 T2 T3 Tk

Copyright  1996 by Addison-Wesley Publishing Company 162

First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K

Copyright  1996 by Addison-Wesley Publishing Company 163

UNIX directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop353

syl syl

.

Copyright  1996 by Addison-Wesley Publishing Company 164

mark
 books
 dsaa
 ch1
 ch2
 ecp
 ch1
 ch2
 ipps
 ch1
 ch2
 courses
 cop3223
 syl
 cop3530
 syl
 .login

The directory listing for tree in Figure 17.4

Copyright  1996 by Addison-Wesley Publishing Company 165

UNIX directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop353

syl(2) syl(

.

Copyright  1996 by Addison-Wesley Publishing Company 166

 ch1 9
 ch2 7
 dsaa 17
 ch1 4
 ch2 6
 ecp 11
 ch1 3
 ch2 8
 ipps 12
 books 41
 syl 2
 cop3223 3
 syl 3
 cop3530 4
 courses 8
 .login 2
mark 52

Trace of the Size function

Copyright  1996 by Addison-Wesley Publishing Company 167

Uses of binary trees: left is an expression tree and right is a
Huffman coding tree

+

a *

- d

a

d

b cb c

Copyright  1996 by Addison-Wesley Publishing Company 168

Result of a naive Merge operation

T1.Root

Root
X

Copyright  1996 by Addison-Wesley Publishing Company 169

Aliasing problems in the Merge operation; T1 is also the
current object

T2.Root

Root
X

OldRoot
OldT1.Root

T1.Root

Copyright  1996 by Addison-Wesley Publishing Company 170

Recursive view used to calculate the size of a tree: ST = SL
+ SR + 1

SL SR

Copyright  1996 by Addison-Wesley Publishing Company 171

Recursive view of node height calculation: HT = Max(
HL+1, HR +1)

HL

HL+1

HR

HR +1

Copyright  1996 by Addison-Wesley Publishing Company 172

Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

1

Copyright  1996 by Addison-Wesley Publishing Company 173

Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a

b

c 0
a 2

e 0
c 1
a 2

e 1
c 1
a 2

e 2
c 1
a 2

c 1
a 2

e

c 2
a 2 a 2

c a

a

b c

ed

Copyright  1996 by Addison-Wesley Publishing Company 174

Chapter 18

Binary Search Trees

Copyright  1996 by Addison-Wesley Publishing Company 175

Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2

1 5

3 8

7 7

Copyright  1996 by Addison-Wesley Publishing Company 176

Binary search trees before and after inserting 6

2 9

1 5

3

7

2

1 5

3 6

7

Copyright  1996 by Addison-Wesley Publishing Company 177

Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2

1

3

Copyright  1996 by Addison-Wesley Publishing Company 178

Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3

1

4

5

4

Copyright  1996 by Addison-Wesley Publishing Company 179

Using the Size data member to implement FindKth

X X X

SL SL SLSRSR

K < SL + 1 K == SL + 1 K > S

Copyright  1996 by Addison-Wesley Publishing Company 180

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N–1

Copyright  1996 by Addison-Wesley Publishing Company 181

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other

3

2

21

32

3

1

3

2

11

Copyright  1996 by Addison-Wesley Publishing Company 182

Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8

4 10

2 6

1

Copyright  1996 by Addison-Wesley Publishing Company 183

Minimum tree of height H

H–1

H

H–2
SH–1 SH–2

Copyright  1996 by Addison-Wesley Publishing Company 184

Single rotation to fix case 1

k2

k1

k1

A

B

C

A

Copyright  1996 by Addison-Wesley Publishing Company 185

Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4

2 8

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212

Copyright  1996 by Addison-Wesley Publishing Company 186

Symmetric single rotation to fix case 4

k2

k1

k1

A B C

A

Copyright  1996 by Addison-Wesley Publishing Company 187

Single rotation does not fix case 2

k2

k1

P

Q

R P

k1

Copyright  1996 by Addison-Wesley Publishing Company 188

Left-right double rotation to fix case 2

k3

k1

k2

k1

A
B C

D

A
B

k2

Copyright  1996 by Addison-Wesley Publishing Company 189

Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6

4 8

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12

Copyright  1996 by Addison-Wesley Publishing Company 190

Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B

k1

k2

Copyright  1996 by Addison-Wesley Publishing Company 191

A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a NULL pointer must contain the

same number of black nodes.

Red black tree properties

Copyright  1996 by Addison-Wesley Publishing Company 192

Example of a red black tree; insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright  1996 by Addison-Wesley Publishing Company 193

If S is black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if X is an outside grandchild

B

C D E

A

A B

SP

X

G

X

P

Copyright  1996 by Addison-Wesley Publishing Company 194

If S is black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C

G X

P

Copyright  1996 by Addison-Wesley Publishing Company 195

If S is red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P

P S

X

B

C D E

A

A B

G

X

P

Copyright  1996 by Addison-Wesley Publishing Company 196

Color flip; only if X’s parent is red do we continue with a
rotation

C1 C2

X

C1 C2

X

Copyright  1996 by Addison-Wesley Publishing Company 197

Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright  1996 by Addison-Wesley Publishing Company 198

Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80

30

5 40

Copyright  1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

8045

30

5 40

Copyright  1996 by Addison-Wesley Publishing Company 200

Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip

X T X

P P

Copyright  1996 by Addison-Wesley Publishing Company 201

Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation

P T

X T P

R X

Copyright  1996 by Addison-Wesley Publishing Company 202

Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation

P R

X T P

R X

Copyright  1996 by Addison-Wesley Publishing Company 203

X is black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent

B C B C B

TX P

TX' P

X'

Copyright  1996 by Addison-Wesley Publishing Company 204

The level of a node is

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because
there cannot be consecutive red nodes).

3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two

children are at the same level.

AA-tree properties

Copyright  1996 by Addison-Wesley Publishing Company 205

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80

30 70

6050

Copyright  1996 by Addison-Wesley Publishing Company 206

Skew is a simple rotation between X and P

A B C

P X

A B C

P X

Copyright  1996 by Addison-Wesley Publishing Company 207

Split is a simple rotation between X and R; note that R’s
level increases

A B

X R

A B

XG G

R

Copyright  1996 by Addison-Wesley Publishing Company 208

After inserting 45 into sample tree; consecutive horizontal
links are introduced starting at 35

After Split at 35; introduces a left horizontal link at 50

After Skew at 50; introduces consecutive horizontal nodes
starting at 40

5 10 20 35 40 55 65 8045

30 70

50 6015

5 10 20 35 55 65 80

50

45

604015

30 70

5 10 20 35 55 65 80

50

30

45

70

6015 40

Copyright  1996 by Addison-Wesley Publishing Company 209

After Split at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After Skew at 70; this introduces consecutive horizontal
links at 30

After Split at 30; insertion is complete

5 10 20 35 55 65 8045

50

15 40 60

30 70

5 10 20 35 55 65 8045

15 40 60

30 50 70

5 10 20 35 55 65 8045

15 40 60

30 70

50

Copyright  1996 by Addison-Wesley Publishing Company 210

When 1 is deleted, all nodes become level 1, introducing
horizontal left links

3 4 6 71

2 5

Copyright  1996 by Addison-Wesley Publishing Company 211

Five-ary tree of 31 nodes has only three levels

Copyright  1996 by Addison-Wesley Publishing Company 212

B-tree of order 5

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

59

Copyright  1996 by Addison-Wesley Publishing Company 213

A B-tree of order M is an M-ary tree with the following proper-
ties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to keys to guide the

searching; key i represents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between

and M children.
5. All leaves are at the same depth and have between

and L children, for some L.

B-tree properties

M 1–
i 1+

M 2⁄

L 2⁄

Copyright  1996 by Addison-Wesley Publishing Company 214

B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

57

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

58

59

Copyright  1996 by Addison-Wesley Publishing Company 215

Insertion of 55 in B-tree in Figure 18.71 causes a split into
two leaves

41 66 87

972 78 8348 51 54 578 18 26 35

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

87
89
90

57
58
59

Copyright  1996 by Addison-Wesley Publishing Company 216

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node

26 41 66 87

72 78 8348 51 54 5735 38

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

57
58
59

8 18

2
4
6

8
10
12
14
16

18
20
22
24

Copyright  1996 by Addison-Wesley Publishing Company 217

B-tree after deletion of 99 from Figure 18.73

26 41 66 83

72 7848 51 54 5735 38

26

28

30

31

32

35

36

37

38

39

40

41

42

44

46

48

49

50

51

52

53

54

55

56

78

79

81

72

73

74

76

66

68

69

70

57

58

59

8 18

2

4

6

8

10

12

14

16

18

20

22

24

