
Beyond Autorun: Exploiting

vulnerabilities with removable storage

Jon Larimer

IBM X-Force Advanced R&D

jlarimer@us.ibm.com

jlarimer@gmail.com

© 2010 IBM Corporation

Removable storage malware

■ Malware has been spreading on removable storage
since at least 1982 (Elk Cloner)

■ First MS-DOS floppy virus emerged in 1986 (Brain)

■ First PE infector developed in 1996 (Bizatch)

■ First widespread virus to spread over USB drives
was in 2007 (SillyFD-AA)

■ In 2008, US Strategic Command banned all
removable storage devices

■ Stuxnet's use of LNK vulnerability to spread over
USB emerged in 2010

© 2010 IBM Corporation

AutoRun / AutoPlay

■ AutoRun originally designed for launching programs
from CD

■autorun.inf file specifies program to run

■ Windows XP SP2 allowed autorun.inf to work
from USB devices (2004)

■ Windows 7 changed so autorun.inf doesn't work

from USB devices (2009)

■ AutoPlay allows applications to handle media
devices plugged into a PC, AutoRun is now a
subset of this

© 2010 IBM Corporation

Stuxnet and the LNK vulnerability

■ Most entities disable AutoRun now

■ LNK vulnerability (CVE-2010-2568) allows loading
an arbitrary DLL just by browsing to a folder in
Windows Explorer

■ Also in File Open/Save dialogs...

■ Stuxnet used this vulnerability to spread via USB
drives without relying on autorun.inf

■ If malware authors found one vulnerability like this...
how many more are out there?

© 2010 IBM Corporation

Attacks on physical systems

■ Physical access is 'game over'

■ What about full disk encryption?

■ IEEE 1394 (FireWire) DMA physical memory access
–Requires FireWire port and drivers

■ Cold boot attack
–Requires being able to boot from external media

■ Removable storage attacks!
–Most desktop OS's will automatically mount file systems on
USB

–Physical access not really necessary, just find someone to
plug a device into their PC

–If an exploit runs while the PC is already booted and the
user is logged on, full disk encryption can be defeated

© 2010 IBM Corporation

About USB

■ Peripheral bus used by keyboards, mice, cameras, scanners, printers,
mass storage devices

■ Tiered star topology with the host controller at the top

■ Polled bus, host initiates all transactions

© 2010 IBM Corporation

USB vocabulary

■ Device – either a hub or a function

■ Hub – connects multiple devices to another hub

■ Function – a device that exposes a USB interface

■ Interface – a collection of endpoints

■ Endpoint – one end of a 'pipe'

© 2010 IBM Corporation

USB descriptors

■ Descriptors describe the device

■ Used by the OS to load correct drivers

■ Used by the drivers to communicate in a way the
device can understand

© 2010 IBM Corporation

USB device classes

■ Device classes allow single device drivers to operate
on devices of that class from any vendor

■ The class defines the interfaces and protocols a
device supports

■ Most OS's include common class drivers

■ Examples:
–Human interface device (HID) – mouse/keyboard
–Mass storage device (MSD) – flash drives
–Printer class
–Imaging class – scanners, cameras

© 2010 IBM Corporation

Attacks using USB protocols

■ BlackHat USA 2005, SPI Dynamics attacks on
Windows XP USB drivers
–USB drivers expecting valid data from devices

■ MWR InfoSecurity Auerswald Linux USB driver bug,
2009
–Problem handing USB descriptors

■ PS3 Jailbreak in 2010
–Emulates a USB hub
–Connects and disconnects devices to trigger a
heap overflow

© 2010 IBM Corporation

Finding bugs in USB drivers

■ Reversing / static analysis

■ Fuzzing
–Mortiz Jodiet – hardware+software (2009)
–Tobias Mueller – QEMU-based fuzzer (2010)

■ Other fuzzing options
–Windows Driver Simulation Framework (DSF)

• Included with Windows DDK
•Emulate USB devices with scripting language

–BOCHS
• Implement fake device

© 2010 IBM Corporation

USB on Windows 7

■ Core stack: usb[eou]hci.sys, usbport.sys

■ Class drivers: usbstor.sys, hidclass.sys, etc

© 2010 IBM Corporation

USB device recognition

■ Kernel mode PnP Manager manages device
relations

■ Bus drivers notify PnP manager when devices are
added/removed

© 2010 IBM Corporation

Generating a device ID

■ Windows queries USB device/interface descriptor

■ Generates device ID string:
–USB\VID_v(4)&PID_d(4)
–USB\VID_v(4)&PID_d(4)&REV_r(4)
–USB\CLASS_c(2)&SUBCLASS_s(2)&PROT_p(2)

Item Value Device Descriptor Value

v(4) vendor ID idVendor

d(4) product ID idProduct

r(4) revision ID bcdDevice

c(2) class code bDeviceClass

s(2) subclass bDeviceSubClass

p(2) protocol bDeviceProtocol

© 2010 IBM Corporation

Locating USB device driver

■ Device ID is used to match driver to device

■ Kernel mode PnP manager checks registry to see if this
device has a driver installed
(HKLM\System\CurrentControlSet\Enum\USB)

■ If not, driver user mode PnP manager searches for driver
("Plug and Play" service, umpnpmgr.dll)
–First checks Windows Update (using chkwudrv.dll)

–Then the local DriverStore
(%SystemRoot%\System32\DriverStore)

–Checks the DevicePath (%SystemRoot%\Inf)

–If a driver can't be found, it's reported via Windows Error
Reporting

© 2010 IBM Corporation

Drivers from Windows Update?

■ Windows 7 can automatically search Windows
Update for the latest drivers for a new device

■ Drivers are uploaded by the hardware vendors
themselves (WinQual)

■ Requirements are:
– a Class 3 digital certificate
–a driver that can pass the WHQL test
–INF file must specify vendor and product IDs

■ Companies don't submit code, they submit signed
binaries and WHQL test logs

© 2010 IBM Corporation

Windows Update Driver Attack #1

■ Malicious entity obtains class 3 certificate ($99-
$500)

■ Develops driver for hardware that doesn't exist, but
looks legit and passes WHQL ($250 for WHQL
testing)

■ Uploads driver to WinQual

■ Develop hardware device that matches the
submitted INF but triggers a cleverly hidden
backdoor

■ Can access any Vista/Win7 machine with a working
USB port and Windows Update drivers enabled

© 2010 IBM Corporation

Windows Update Driver Attack #2

■ Malicious entity reverse engineers Windows Update
driver check

■ Writes script to enumerate through every USB
vendor/product ID pair and download every available
driver

■ Analyzes the thousands of downloaded drivers for
vulnerabilities, finds some, writes exploits

■ Puts exploit on USB dev board firmware

■ Can access any Vista/Win7 machine with a working
USB port and Windows Update drivers enabled

© 2010 IBM Corporation

Staying safe from malicious drivers

© 2010 IBM Corporation

USB mass storage device stack

© 2010 IBM Corporation

File system drivers in Windows

■ Windows natively supports NTFS, FAT12/16/32,
ExFAT, CDFS (ISO 9660), and UDF

■ File systems recognized by fs_rec.sys, which
then loads the right driver

Filesystem Device Type Driver

CDFS CD-ROM cdfs.sys

UDF CD-ROM udfs.sys

UDF DISK udfs.sys

FAT DISK fastfat.sys

FAT CD-ROM fastfat.sys

NTFS DISK ntfs.sys

ExFAT DISK exfat.sys

© 2010 IBM Corporation

Finding bugs in file system drivers

■ Reverse engineering

■ Source for CDFS and FastFAT drivers are included
in DDK

■ Fuzzing?
–FileDisk by Bo Brantén
–Allows mounting a disk image in a file as a volume
–Either randomly perturb a disk image or modify
the code to modify data read from disk image

–Make your fuzzer smart (recognize and modify file
system metadata, etc)

–Code coverage/taint analysis with QEMU or
BOCHS?

© 2010 IBM Corporation

AutoPlay

■ AutoPlay is largely implemented in the Shell
Hardware Detection Service (shsvcs.dll)

■ Registers for PnP events with
RegisterDeviceNotification()

■ Checks for the existence of certain files and
directories on newly mounted volumes

■ Determines media type – Video CD, DVD, digital
camera media

■ Takes the configured AutoPlay action based on
determined media

© 2010 IBM Corporation

AutoPlay media checks

File Purpose

autorun.inf Autorun file

desktop.ini Desktop.ini file

video_ts\\video_ts.ifo DVD Video

dvd_rtav\\vr_mangr.ifo DVD Video

audio_ts\\audio_ts.ifo DVD Audio

VCD\entries.vcd Video CD

SVCD\entries.svd Super Video CD

SVCD\entries.vcd Super Video CD

DCIM Photos

BDMV Blu-ray disc

BDAV Blu-ray disc

© 2010 IBM Corporation

AutoPlay media checks screenshot

■ Media checks even when nobody is logged in...

© 2010 IBM Corporation

AutoPlay dialog

■ By default Windows will ask what you want to do
with media

■ Whatever AutoPlay option is selected won't take
effect if the screen is locked

■ Thumbnails/icons won't be
rendered if screen is locked

■ Can't rely on shell
extension exploits for
physical attacks

© 2010 IBM Corporation

Is AutoPlay useful for hackers at all?

■ When targeting AutoPlay or Windows Portable
Devices (WPD) applications, exploits will only work
when someone is using the PC (not when screen is
locked)

■ AutoPlay does cause certain files to be read and
parsed whenever a new volume is mounted
–Even when the screen is locked
–Even when nobody is logged in
–This fact could be used to trigger vulnerabilities in
file system drivers

© 2010 IBM Corporation

Windows Explorer

■ The OS shell, your main interface for interacting with
files and folders

■ Keeps getting (arguably) prettier and prettier

■ Supports image thumbnails, document previews, file
metadata retrieval

■ Some of these features will read and parse files
without you explicitly trying to open them

■ Bad things can happen when the OS tries to parse
untrusted data

© 2010 IBM Corporation

Files, file types, and perceived types

■ How Windows handles files is determined by registry
settings

■ File type is determined by extension (.doc, .jpg)

■ Extensions map to a "ProgId" in the registry
(Word.Document.8, jpegfile),

■ Perceived types match an extension to a generic
type (image, document)

■ Shell extension handlers are usually registered for
each extension, ProgId, or perceived types

© 2010 IBM Corporation

Registering file types

■ Extension and ProgIds are under
HKEY_CLASSES_ROOT or
HKEY_CURRENT_USER\Software\Classes

© 2010 IBM Corporation

Shell extension handlers

■ Registered to provide custom icons, thumbnails, previews, tooltips, and
other features for files

■ COM objects that implement an interface

© 2010 IBM Corporation

Type of shell extension handlers

■ Icon handlers: used in Small icons / Details view

■ Thumbnail handlers: used in Medium, Large, Extra Large
icon views and the Tiles and Content views

■ Intotip handlers: used for file metadata when mouse hovers
over file

■ Preview handlers: used when Preview pane is enabled

■ Property handlers: used in Details and other views when
file metadata is required
–Can also be used by Intotip and Thumbnail handlers...

© 2010 IBM Corporation

Vulnerabilities in shell ext handlers

■ LNK vulnerability used by Stuxnet – LNK file icon
handler

■ PDF preview/thumbnail has been known to trigger
malicious PDFs without clicking

■ Moti and Xu Hao "A vulnerability in my heart" at
POC2010 – embedded BMP thumbnail vulnerability
in the property handler for OLE document files

■ Many times these can be exploited remotely too (e-
mail attachments, links to network shares, etc)

■ I'm sure there will be more, that's why I'm here!

© 2010 IBM Corporation

Icon handler registration

■ Registered with the subkey
ShellEx\IconHandler under the ProgId or
perceived type key

■ Places Explorer looks for icon handlers:
– HKCU\Software\Classes\jpegfile\ShellEx\IconHandler

– HKCR\jpegfile\ShellEx\IconHandler

– HKCU\Software\Classes\SystemFileAssociations\.jpeg\ShellEx\IconHandler

– HKCR\SystemFileAssociations\.jpeg\ShellEx\IconHandler

– HKCU\Software\Classes\SystemFileAssociations\image\ShellEx\IconHandler

– HKCR\SystemFileAssociations\image\ShellEx\IconHandler

■ Example of registration for .MSC:
– HKEY_CLASSES_ROOT\.msc = "MSCFile"

– HKEY_CLASSES_ROOT\mscfile\shellex\IconHandler = "{7A80E4A8-8005-11D2-BCF8-

00C04F72C717}"

– HKEY_CLASSES_ROOT\CLSID\{7A80E4A8-8005-11D2-BCF8-00C04F72C717}\

InprocServer32 = "%SystemRoot%\system32\mmcshext.dll"

© 2010 IBM Corporation

Icon handler implementation

■ Implements IExtractIcon[WA] interface

■ Also implements either IPersistFile,
IInitializeWithFile,
IIinitializeWithItem, or
IIinitializeWithStream

■IPersistFile::Load() is called to specify the

file name

■IExtractIcon::GetIconLocation() to get
path to file with icon

■IExtractIcon::Extract() to get icon handles

© 2010 IBM Corporation

Icon handler stack trace

■ From SysInternals Process Monitor

© 2010 IBM Corporation

Thumbnail handler registration

■ Registers at:
– ShellEx\{E357FCCD-A995-4576-B01F-234630154E96} (IThumbnailProvider)

– ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1} (IExtractImage)

■ Explorer checks (for .ini files):
– HKCU\Software\Classes\inifile\ShellEx\{E357FCCD-A995-4576-B01F-

234630154E96}

– HKCR\inifile\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

– HKCU\Software\Classes\.ini\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

– HKCR\.ini\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

– HKCU\Software\Classes\SystemFileAssociations\text\ShellEx\{E357FCCD-A995-

4576-B01F-234630154E96}

– HKCR\SystemFileAssociations\text\ShellEx\{E357FCCD-A995-4576-B01F-

234630154E96}

– HKCU\Software\Classes*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

– HKCR*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

– HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-

B01F-234630154E96}

– HKCR\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

© 2010 IBM Corporation

Thumbnail handler registration

■ IThumbnailProvider, using the file extension:
– HKEY_CLASSES_ROOT\.avi\ShellEx\{e357fccd-a995-4576-b01f-234630154e96} = "{9DBD2C50-

62AD-11D0-B806-00C04FD706EC}"

– HKEY_CLASSES_ROOT\CLSID\{9DBD2C50-62AD-11d0-B806-00C04FD706EC}\ InProcServer32 =

"SystemRoot%\system32\shell32.dll"

■ IExtractImage, using the ProgId:
– HKEY_CLASSES_ROOT\.ttf = "ttffile"

– HKEY_CLASSES_ROOT\ttffile\shellex\{BB2E617C-0920-11d1-9A0B-00C04FC2D6C1} = {B8BE1E19-

B9E4-4ebb-B7F6-A8FE1B3871E0}

– HKEY_CLASSES_ROOT\CLSID\{B8BE1E19-B9E4-4ebb-B7F6-A8FE1B3871E0}\ InProcServer32 =

"%SystemRoot%\system32\fontext.dll"

■ By default, thumbnail handlers run in isolated process (COM
Surrogate, dllhost.exe)
–Can be disabled with DisableProcessIsolation=1 in the CLSID for the

COM object class
–Or by calling IShellItem::BindToHandler() with a NULL context
–Isolated process runs as same user/context as explorer.exe

© 2010 IBM Corporation

IThumbnailProvider implementation

■ Explorer checks for this first when generating a thumbnail

■ Also requires implementing IIinitializeWithStream,
IInitializeWithItem, or IInitializeWithFile

■ Safer to implement IIinitializeWithStream, since
Windows doesn't have to give the thumbnail provider access
to the file system itself – just the file handle

■ Only exposes one method
– HRESULT GetThumbnail(UINT cx, HBITMAP *phbmp, WTS_ALPHATYPE *pdwAlpha);

■ Many file types and perceived types use the
"Property Thumbnail Handler"

© 2010 IBM Corporation

IExtractImage implementation

■ Only used if there's no IThumbnailProvider

registered

■ Also requires IPersistFile or one of the regular
shell extension initialization interfaces

■ There are still some file types with only
IExtractImage implementations on Windows 7

■ Exposes two methods:
– HRESULT GetLocation(LPWSTR pszPathBuffer, DWORD cchMax, DWORD *pdwPriority,

const SIZE *prgSize, DWORD dwRecClrDepth, DWORD *pdwFlags);

– HRESULT Extract(HBITMAP *phBmpImage);

© 2010 IBM Corporation

Property thumbnail handler

■ Used as the IThumbnailProvider/
IExtractImage interface for many file types

■ Uses the Windows Property System to read
thumbnails from files

■ Located in the CPropertyThumbnailHandler
class in shell32.dll

■ Looks for three different property keys:
–PKEY_Thumbnail (VT_CF)

–PKEY_ThumbnailStream (VT_STREAM)

–PKEY_ImageParsingName (VT_VECTOR|VT_LPWSTR)

or (VT_ARRAY|VT_BSTR)

© 2010 IBM Corporation

Folder thumbnails

■ Explorer can generate icons for folders that contain
thumbnails of files in that folder

■ A thumbnail vulnerability could be exploited without
even having the file in the current folder

■ Explorer picks two files to thumbnail

■ Can use icon or thumbnail handlers to
generate embedded thumbnails

■ See CFolderThumbnail() in
shell32.dll

© 2010 IBM Corporation

Infotip handlers

■ Infotips can be static or dynamic
–Static strings in the registry, could point to a DLL
resource

–Static strings could also reference properties
• HKEY_CLASSES_ROOT\SystemFileAssociations\.exe\InfoTip =

"prop:System.FileDescription;System.Company;System.FileVersion;System.D

ateCreated;System.Size"

–Dynamic Infotip handlers can implement the
IQueryInfo interface and register in
ShellEx\{00021500-0000-0000-C000-

000000000046}

■ There are a few IQueryInfo handlers registered
by default, but most Infotips come from the Property
System

© 2010 IBM Corporation

Preview handlers

■ Shown in preview pane when a file is clicked

■ Runs in an isolated, low integrity level process by
default (prevhost.exe)

■ Can also implement their own COM host – check
integrity level with Process Monitor

■ Low integrity level can be disabled in the registry,
DisableLowILProcessIsolation=1

■ Adobe Reader 9 had low-IL disabled in the preview
handler, Reader X enables it

© 2010 IBM Corporation

Preview handler registration &
implementation
■ Registered under ShellEx\{8895B1C6-B41F-4C1C-A562-
0D564250836F}

■ Also requires an entry under
HKLM\Microsoft\Windows\CurrentVersion\PreviewHandlers

■ Example registration:
– HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

PreviewHandlers\{BFD468D2-D0A0-4bdc-878C-E69C2F5B435D} = "Microsoft Windows

Mail Html Preview Handler"

– HKEY_CLASSES_ROOT\.html = htmlfile

– HKEY_CLASSES_ROOT\htmlfile\shellex\{8895B1C6-B41F-4C1C-A562-0D564250836F} =

"{f8b8412b-dea3-4130-b36c-5e8be73106ac}"

– HKEY_CLASSES_ROOT\CLSID\{f8b8412b-dea3-4130-b36c-5e8be73106ac}\

InprocServer32 = "%SystemRoot%\system32\inetcomm.dll"

■ Implements IPreviewHandler and a few other interfaces

■ DoPreview() is the magic function that does the rendering

© 2010 IBM Corporation

Auditing shell extension handlers

■ Reversing COM can be hard, use Process Monitor
to get stack traces

■ Windows debug symbols help A LOT for extensions
included with Windows

■ Fuzzing can work since we know how Windows
uses the COM interfaces
–Load COM object
–Initialize with stream/file
–Fuzz!

© 2010 IBM Corporation

Exploiting shell extension handlers

■ ASLR+DEP is tough to get around

■ Brute force?
–Will only work if the handler has it's own exception handler
–If a handler crashes, Windows notifies the user and
requires interaction to continue
• Could crash explorer.exe, closing the window
• Crashing dllhost.exe results in another
dllhost.exe being loaded for the next icon, etc

■ Force process to load non-ASLR DLL
–All system DLLs in Win7 are built with /DYNAMICBASE

–Might be easier to load/find 3rd party non-ASLR DLL's in
explorer.exe

–dllhost.exe can load more than one thumbnail handler
DLL at a time

© 2010 IBM Corporation

Windows Property System

■ Allows reading/writing of metadata for files without relying on
file system features (NTFS alternate streams...)

■ Examples: JPEG Exif data, MP3 ID3 tags, document authors,
etc

■ Used by Explorer (Details, Content, Infotips, etc)

■ Also used by Windows Search
–Indexing files on disk, email inbox, etc
–Uses low integrity isolated process by default

■ Not a shell extension, but feels a lot like it
–Registered in different part of registry
–Registration by extension only

© 2010 IBM Corporation

Property handler registration

■ Property handlers are registered at
HKLM\Software\Microsoft\Windows\

CurrentVersion\PropertySystem\

PropertyHandlers

■ Example registration:
– HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

PropertySystem\PropertyHandlers\.jpg = "{a38b883c-1682-497e-97b0-

0a3a9e801682}"

– HKEY_CLASSES_ROOT\CLSID\{a38b883c-1682-497e-97b0-0a3a9e801682}\

InProcServer32 = "C:\Windows\system32\PhotoMetadataHandler.dll"

■ Can use DisableProcessIsolation in COM object's
key

© 2010 IBM Corporation

Property handler vulnerabilities?

■ The recent BMP thumbnail thing was exploitable through the Thumbnail
Property Handler for MS Office files

■ Didier Stevens noticed that the PDF shell extension handler could be
exploited through details view, but that was in XP through
IColumnHandler (no longer in Windows 7)

■ If they're run be explorer.exe, exploits can be useful

■ Might be less useful if exploited through Windows Search...
–If they're run by SearchFilterHost.exe (isolated low isolation level

search host), a privilege escalation is required to escape
–If DisableProcessIsolation is enabled, they can run in
SearchProtocolHost.exe which has access to the file system

–External media aren't searched by default, but email could work for a
remote exploit

–In 2005, F-Secure observed that Google Desktop Search could trigger
a vulnerability in WMF files by indexing

© 2010 IBM Corporation

Folder customization

■desktop.ini

–Can specify icons and Infotips for folders
–Can be used to create virtual folder (Recycle Bin)
by specifying [.ShellClassInfo] entry

–Can contain UNC paths for some fields, triggering
external connections

–There was a buffer overflow in explorer.exe in

XP when processing this file
–Another vulnerability allowed loading arbitrary
COM objects

© 2010 IBM Corporation

Shell namespace extensions

■ Provides an interface for creating a 'virtual folder' that can be
browsed in Explorer

■ Used for Recycle Bin, My Computer, Control Panel, etc

■ Also used for handling .zip files and the .cab file viewer

■ Virtual folders can be created through
–Registry settings
–desktop.ini [.ShellClassInfo] entry
–Creating a folder named xxx.{CLSID}

■ desktop.ini and the folder both need the +s (system)
attribute to work

© 2010 IBM Corporation

USB on Linux

■ usbcore in drivers/usb/core

■ Host controller driver framework is
drivers/usb/core/hdc.c

–UHCI: drivers/usb/host/usb-uhci.c
–EHCI: drivers/usb/host/usb-ehci.c

■ Hub driver in drivers/usb/core/hub.c

■ Interface drivers register by calling usb_register() or
usb_register_driver(), specifying which
vendor/product IDs they work with

■ drivers/core/usb/driver.c usb_match_id() takes
care of the matching, then the driver is loaded

© 2010 IBM Corporation

USB mass storage on Linux

■ Storage class driver in
drivers/usb/storage/usb.c

■storage_probe()

–Sets up a SCSI host structure
–adds SCSI host to SCSI subsystem
–scsiglue.c and protocol.c take care of

converting SRBs to URBs for the USB drivers

■ SCSI subsystem adds a block device (/dev/sdb)

■ udev is notified

© 2010 IBM Corporation

udev, udisks, and D-Bus

■ udev
–device manager for Linux
–adds/remove entries in /dev
–can trigger events based on rules or through a netlink
socket

■ D-Bus
–IPC mechanism
–allows applications to register for system device events

■ udisks
–provides a D-Bus interface for dealing with disk devices
–uses GUdev library (part of udev) to subscribe to udev
events through a netlink socket, republishes them through
D-Bus

© 2010 IBM Corporation

File systems in Linux

■ Traditionally lived in fs/ branch of kernel source

tree

■ File systems operate between low level disk bus
drivers and virtual file system

■ FUSE – file system in userspace

■ GVFS – GNOME Virtual File System
–not a traditional file system
–can only be access through GVFS, GIO, or the
~/.gvfs FUSE mountpoint

© 2010 IBM Corporation

GNOME Nautilus

■ File manager / browser for the GNOME desktop

■ Uses GVFS to access browse file systems over
SMB, FTP, DAV, etc

■ Uses GVFS to be notified of newly mounted file
systems

© 2010 IBM Corporation

Auto mounting file systems

■ Auto mount settings are configured through gconf
– gconftool –g /apps/nautilus/preferences/media_automount

■ Can also use the Folder Options dialog

■ File systems on auto mounted device are
determined through the use of "mount –t auto"

–uses libblkid first
–then tries each file system in
/proc/filesystems

■ Auto mounted file systems can also be auto
browsed

– gconftool –g /apps/nautilus/preferences/media_automount_open

© 2010 IBM Corporation

Autorun capabilities

■ Nautilus supports an AutoPlay-like ability to play
CDs, DVDs, browse photos, etc

■ Configured through gconf in
/apps/nautilus/preferences

■ Content type determined by using
/usr/share/mime/treemagic

■ Nautilus also supports executing files named
autorun, .autorun, or autorun.sh!

–Fortunately there's no way to configure your
system to run these automatically

© 2010 IBM Corporation

Thumbnailers

■ Nautilus uses GdkPixBuf for rendering image
thumbnails

■ Also supports using external thumbnailer
applications

■ Thumbnailers configured through gconf
–gconftool –R /desktop/gnome/thumbnailers

■ 3 thumbnailers configured by default
–evince-thumbnailer for document files
–totem-video-thumbnailer for audio and
video files

–gnome-thumbnail-font for font files

© 2010 IBM Corporation

Putting this all together...

■ Nautilus will automatically mount new file systems
on USB sticks inserted into a PC

■ Nautilus will open a window to browse that file
system

■ Nautilus will render icons for all files in the root
directory of the file system that are visible

■ Nautilus will use thumbnailer applications that could
be full of old, insecure code for file formats that
nobody uses

■ A vulnerability in a thumbnailer could be exploited to
unlock a 'locked' GNOME desktop

© 2010 IBM Corporation

Exploiting thumbnailers

■ Linux offers a few mitigation techniques

■ On Ubuntu 10.10, we have NX, ASLR, and
AppArmor

■ NX can be defeated with return-oriented-
programming (ROP) techniques

■ ASLR can mitigate ROP

■ Even if you can execute code, AppArmor limits
what you can do to a system

© 2010 IBM Corporation

Exploiting thumbnailers – ASLR?

■ What about ASLR?
–Brute force, since Nautilus doesn't care if a
thumbnailer crashes

–ASLR appears to be particularly weak in some
cases:

0

20

40

60

80

100

120

0
0
2
3
6
0
0
0

0
0
4
A
E
0
0
0

0
0
5
3
0
0
0
0

0
0
5
9
B
0
0
0

0
0
5
F
D
0
0
0

0
0
6
5
D
0
0
0

0
0
6
C
0
0
0
0

0
0
7
1
D
0
0
0

0
0
7
7
E
0
0
0

0
0
7
D
A
0
0
0

0
0
8
3
8
0
0
0

0
0
8
9
4
0
0
0

0
0
8
F
2
0
0
0

0
0
9
4
C
0
0
0

0
0
9
A
6
0
0
0

0
0
A
0
0
0
0
0

0
0
A
5
A
0
0
0

0
0
A
B
4
0
0
0

0
0
B
0
E
0
0
0

0
0
B
6
8
0
0
0

0
0
B
C
2
0
0
0

0
0
C
1
C
0
0
0

0
0
C
7
6
0
0
0

0
0
C
D
0
0
0
0

0
0
D
2
A
0
0
0

0
0
D
8
4
0
0
0

0
0
D
D
E
0
0
0

0
0
E
3
8
0
0
0

0
0
E
9
2
0
0
0

0
0
E
E
C
0
0
0

0
0
F
4
6
0
0
0

0
0
F
A
0
0
0
0

0
0
F
F
A
0
0
0

0
B
A
7
2
0
0
0

1
6
D
C
3
0
0
0

C
o

u
n

t

Address

Base address of libc per 40960 runs of
evince-thumbnailer

© 2010 IBM Corporation

Exploiting thumbnailers – AppArmor?

■ The only thumbnailer protected by AppArmor is
evince

■ AppArmor limits which files can be read and what
can be written

■ No launching of arbitrary processes

■ Weaknesses in AppArmor
–evince only allowed to read files with certain extensions,
but a symlink will get around that

–evince's profile allows writes to certain parts of the user's
home directory

–AppArmor can't prevent evince from using the X11
XKillClient() API call to kill the screen saver window

© 2010 IBM Corporation

evince vulnerabilities

■ Vulnerabilities in handling external font files for DVI
documents (CVE-2010-2640, CVE-2010-2641, CVE-
2010-2642, CVE-2010-2643)

■ DVI files can reference external fonts that get loaded
when the DVI file is processed

■ External fonts can be specified with an absolute path
(/media/XXX)

■ AppArmor will prevent loading a .pk600 file, but
creating a symlink from the .pk600 file to a file
ending in .png will get around this restriction

© 2010 IBM Corporation

CVE-2010-2640

© 2010 IBM Corporation

CVE-2010-2640

© 2010 IBM Corporation

CVE-2010-2640

■ So we can write an arbitrary value to a semi-
arbitrary location in memory

■ The write is relative to the heap, so ASLR won't
impact our ability to overwrite a function pointer on
the heap

■ What to overwrite?

© 2010 IBM Corporation

CVE-2010-2640

■ We can overwrite ptr->info.lookup with the address of
system

■ name is a string representing the font file it's looking for

■ To write this exploit:
–figure out what cc needs to be so that w, h, x, or y
overwrites ptr->info.lookup for one of the fonts

–specify that cc value for the first font, and put the address
in system in w, h, x, y

–for the 2nd font, speficy the name to be
/media/XXX/kill.sh, where XXX is volume name of
USB device

–/media/XXX/kill.sh can be a shell script to do
whatever you want – mine kills the screensaver

© 2010 IBM Corporation

Problems...

■ AppArmor won't let you execute a process

■ How do we get around this?
–Write a ROP 2nd stage shellcode loader
–mmap/open/read

–AppArmor won't let you map executable files, but
you can create an anonymous W+X mapping

–2nd stage shellcode can search for X11 library,
use X11 APIs to enumerate root windows then kill
the topmost one (it's the screensaver)

–Still working on it...

© 2010 IBM Corporation

Demo!

D E M O

DEMO

DEMO

© 2010 IBM Corporation

Conclusion

■ There are more ways than AutoRun to execute
code on a USB flash drive

■ A lot of these can be pre-emptively mitigated by
disabling the features of your OS

■ Epoxy those USB ports! (and IEEE1394, eSATA,
PC-CARD/CardBus, memory cards, CD/DVD
drives...)

■ Questions?

